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ABSTRACT 

Server virtualization has become the modern trend in various industries. Industries are 

resorting to the deployment of virtualized servers in order to cut the cost of additional, expensive 

hardware and consolidate the servers on minimal hardware for easier management and 

maintenance. Virtualized servers are often seen connected to disk arrays in many industries 

ranging from small to medium business to large data centers. In such a setup, assuring a low 

latency of data access from the disk array plays an important role in improving the performance 

and robustness of the overall system. Caching techniques have been researched and used in the 

past on traditional processors to reduce the number of memory accesses and have proven benefits 

in alleviating the response times of applications.  

The research done in this paper explores caching on the hypervisor and analyzes the 

performance of data cache locking technique in hypervisor caches. The research aims at reducing 

the Input / Output (I/O) latency in a server virtualized Storage Area Network (SAN) setup, which 

thereby increases the performance of applications running on the virtualized servers. The authors 

introduce a miss table that can determine the blocks of data in the hypervisor cache that need to 

be locked. Way cache locking method is used for locking, such that only selected lines of cache 

are locked (not the entire cache). The proposed cache locking technique is later evaluated with 

the introduction of a small victim buffer cache and probability based cache replacement 

algorithm. Valgrind simulation tool was used to generate memory traces by virtual machines 

(VMs). Experimental results show an improved cache hit percentage and a considerable 

reduction in the I/O response time due to the proposed cache locking technique when compared 

to the results without hypervisor cache locking. 
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CHAPTER 1 

INTRODUCTION 

 

ith the arising need to maintain voluminous and ever growing data of modern times, various 

industries are resorting to use storage area networks (SAN) to store and organize data. SAN 

provides the servers with access to disk arrays   that have terabytes or even petabytes of storage 

capacity, unlike traditional servers that have directly attached hard disks. Recent advances in 

computer architecture have paved the way for invention of virtualization techniques like block 

virtualization, server virtualization, network virtualization, I/O virtualization, storage 

virtualization and the like. Storage virtualization technology is one of the effective solutions 

which simplifies Enterprise Data Management with a unified architecture that increases 

flexibility, scalability and security. Server virtualization has become the foundation of data 

centers today. Server virtualization enables multiple operating systems also known as virtual 

machines (VMs), to be run on the same underlying hardware[1]. Hypervisor is the main software 

component in the virtualized server architecture, which enables server virtualization.  

1.1 Motivation 

Virtualized servers connected to disk arrays form an integral part of storage area network and 

are commonly seen these days in a variety of cloud data centers, large organizations, hospitals, 

social media data centers that demand Terabytes of storage. Disk arrays are isolated from the 

servers and connected to the servers using protocols such as Fiber Channel (FC), Iscsi, Storage 

Attached SCSI and the like through which read/write requests to the disk array are transmitted 

from the applications running on the virtual machines. Applications running on the VMs can be 

real time or non-real time applications that are time sensitive [2][3]and hence, it is very critical to 

ensure a low latency of data access from the disk array.  

W 
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 The virtualized servers also known as virtual machines are assigned memory from the Random 

Access Memory of the physical server. Hence, the greater the RSM capacity of a physical server, 

the more virtual machines it can support. The virtual machines are allocated a portion of the 

availablememory for caching purposes. The applications running on the virtual machines 

constantly access the cache memory to access the data needed by them [1]. Whenever the 

required data is not found in the cache/memory on the VMs, they read data from the disk array 

attached to the physical server through protocols such as Fibre Channel, Iscsi, Infiniband and so 

on. The VMs read and write data to the disk arrays by sending I/Os. Reading data from the disk 

array is an expensive operation as the request and data has to traverse through the protocol, the 

spindle and then the disk. In time critical applications, this latency may not be acceptable [4][5]. 

Therefore, algorithms need to be developed that can help retain the desirable data by the 

applications in the cache for optimal amounts of time.  

 Researchers, in the past, have proposed and implemented efficient cache policies in regular, 

standalone processor systems that can retain important blocks of data in the cache. In those 

previous researches, the aim was to minimize the number of accesses the processor makes to the 

internal memory because the data access from the memory was a slower operation when 

compared to the speed of the processor [6][7][8][9]. In order to bridge the gap between the 

processor speed and memory speed, researches introduced cache memory, which is typically 

present on the processor chip. Data is prefetched into this cache from the memory as applications 

run and access data. Since cache is closer to the processor, time to access data from the cache is 

much lesser when compared to accessing data from the memory. In this regard, several cache 

implementations, cache hierarchies, cache replacement algorithms, cache locking techniques 

were proposed, which could improve the performance of caching as well as minimize the 
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drawbacks of using the cache. 

 However, as data storage became more expensive and as industries are resorting to minimize 

IT expenses, Storage Area Networks, server virtualization, I/O virtualization, cloud computing 

are becoming more and more popular [10][11]. All these are new technologies, that have gained 

momentum in the past decade and more research needs to be done in these fields to improve the 

performance of storage and computing. While previous research has focused on caching in 

standalone processors, very little work has been done in investigating cache performance in 

virtual machines [12]. Cache can make a tremendous impact in server virtualized setup and the 

right usage of cache in VMs can improve the performance of the virtual machines 

tremendously[13][14].  

 The authors in this research investigate caching on hypervisors and propose dynamic caching 

and cache locking techniques that can effectively utilize the hypervisor cache, alleviate the I/O 

response time, increase the number of cache hits and improve the performance on the whole, in a 

server virtualized SAN configuration. The authors in their previous research propose caching on 

the hypervisor instead of caching on the individual virtual servers. In this approach, the 

hypervisor has control over allocating the cache to the VMs dynamically and on the go. This 

type of cache allocation makes cache utilization very efficient and allows optimal usage of the 

available and expensive resource such as cache. In this research, the authors propose algorithms 

that can improve the performance of such a hypervisor cache.  

 The authors, in this research, propose cache locking in hypervisor caches, so that, the number 

of disk accesses is minimized. In order to do this, the authors use a miss table, that can determine 

the blocks of data in the cache that need to be locked. The authors also propose using a victim 

buffer cache in order to tight proof the erroneous cache evictions and then propose a probability 
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based cache replacement algorithm. All these techniques have two main objectives:First, 

minimize the number of I/Os to the disk array, so that the I/O latency is reduced. 

1.2 Research Proposal and Contributions 

In this paper, the authors first propose dynamic caching in hypervisor caches and then propose 

a data cache locking mechanism in the hypervisor cache in order to reduce the number of misses 

incurred by applications in the hypervisor cache and to reduce the access latency of applications 

running on the virtual machines. Strategies are proposed on the hypervisor that are used to 

improve the performance of locking. This paper presents the below major contributions in the 

field of server virtualization and caching: 

1. A hypervisor cache is proposed in which caching on the virtual server is eliminated and 

caching is at the hypervisor level. 

2. Dynamic Caching using thin provisioning is proposed in the afore mentioned 

hypervisor or cache 

3. A miss table is proposed for the locking algorithm. The information in the miss table is 

used to determine the blocks of data in the hypervisor cache to be locked. 

4. A cache locking algorithm for the hypervisor cache is proposed. The locking 

mechanism proposed is way locking, where certain cache lines are locked and not the 

entire cache. The cache locking scheme reduces the number of misses incurred by an 

application running on the VM. Less number of misses results in reduction in the 

number of disk accesses in a SAN. 

1.3 Dissertation Organization 

This dissertation is organized as follows. Chapter 2 describes the related work and previous 

work that is done in the area of cache, cache locking and hypervisor caches. Chapter 3 describes 



 

5 

 

the cache memory organization in traditional processors and in server virtualized systems. The 

cache memory organization is considerably different in both the traditional processor and server 

virtualized processor architectures. The chapter also describes the cache replacement policies and 

the hypervisor cache architecture. Chapter 4 describesthe preliminary work done by the authors, 

based on which they proposed the research done in this work. In Chapter 4, the authors propose 

different types of cache locking in multi core processor caches and evaluate the performance of 

locking. Chapter 5 explains the proposed cache locking techniques and the best practices in 

hypervisor caches. The chapter gives details on the proposed hypervisor cache, dynamic caching 

in the hypervisor cache, hypervisor cache locking mechanism, the victim buffer and also the 

updated cache replacement algorithm.  

Chapter 6gives information on the simulation details, the test bed and workloads used, 

obtaining memory traces of the VMs and the input/output parameters used. Chapter7 shows the 

results obtained and discussion of the obtained results. The results are obtained by varying cache 

parameters such as cache size, associativity in the presence/absence of the victim buffer, cache 

locking and cache replacement algorithm. The chapter also shows the variation of the total 

response time when cache locking is enabled and disabled. Chapter 8 gives the conclusions and 

future work. 

1.4 Conference and Journal Publications  

 The research presented here is based on and built upon many previous research done by the 

authors in the area of server virtualization and caching. A part of the work was published in the 

Local Computer Network (LCN) conference in October 2012, which was held in Clearwater, 

Florida. The work published by the authors in their previous research is given below. 
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CHAPTER 2 

LITERATURE SURVEY 

 B. Singh [3], studies various caching schemes on the KVM hypervisor and discusses the 

advantages and disadvantages of double caching in virtualized environments. The paper proposes 

some solutions to overcome the disadvantages of caching on both the hypervisor and virtual 

machines. The author first proposes a mixed caching approach where caching is pushed on the 

hypervisor side and the cache on the VMs is monitored and shrunk frequently. Another 

algorithm is proposed wherein a ballooning driver is cooperatively used to control the page 

cache. 

H. Chen et al [4] identify memory as a bottleneck of application performance in virtualized 

setup. They propose a scheme called REMOCA (Hypervisor Remote Disk Cache) in order to 

reduce the number of disk accesses, thereby reducing the average disk I/O latency. Caching in 

traditional processors has been researched extensively in the past and has proven benefits in 

saving the CPU cycles by caching the frequently accessed data. In many high performance 

computer architectures, accesses to the memory are cached in an attempt to compensate for the 

relatively slow speed of main memory . 

  Caching on hypervisors is relatively new and very little research has been done in this area 

of server virtualization. P.Luet al [5] mention that prediction of miss rate at the VMs is very 

beneficial for efficient memory assignment to the VMs. They also mention that such a prediction 

is very challenging because the hypervisor does not contain any knowledge about the VM 

memory access pattern. The authors propose a technique that the hypervisor uses to manage the 

part of VM memory so that all accesses that miss the remaining part of the VM memory can be 

traced by the hypervisor. In this mechanism, the hypervisor manages its memory for exclusive 
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caching, i.e., the pages that are evicted from the VMs are cached. The pages entering from the 

VM and not from the secondary storage are cached. They use the ghost buffer technique to 

predict the page miss rate on VMs where the memory is beyond its current allocation. 

 X. Vera et al [6] have done a compile time cache analysis with data cache locking to examine 

the worst case execution time analysis. According to the authors, in real time systems, cache 

locking trades the performance of the cache for predictability of the cache. They mention that 

cache behavior is very unpredictable in real time systems and are effective only when the 

programs exhibit sufficient data locality in their memory accesses. The analysis done at the 

compile time assists in increasing the predictability of caching in real time systems and the 

approach can be effectively applied in actual architectures. 

 V. Suhendra and T. Mitra [7] have conducted research on the caching schemes for shared 

memory multi cores for real time systems. They have developed and evaluated various design 

policies for the shared L2 cache by means of static/dynamic locking and task/core based 

partitioning. They indicate that having a shared L2 cache in multi core systems is very 

advantageous because each core can be assigned the required amount of cache as per the core‟s 

requirement and multiple cores can quickly access the shared data. However, when real time 

applications are running on the cores, it is very critical to efficiently schedule and share the L2 

cache because of strict timing requirements. The authors use cache locking and cache 

partitioning mechanisms to perform a static analysis on the shared cache. They use cache locking 

to load selected contents into the cache and prevent those contents to be replaced at runtime. 

They use cache partitioning to assign a portion of cache to each task and restrict cache 

replacement on each individual partition. 

Abu Asaduzzamanet al [8] have studied cache performance in an embedded system running 
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real time applications. They indicate that modern computing architectures running real time 

applications should provide high system performance and high timing predictability. They 

further mention that most of the unpredictability in the modern computing systems comes from 

caching and is a critical entity that needs to be examined for running real time applications. The 

authors propose a miss table based cache locking scheme at level 2 (L2) cache in modern day 

embedded systems that can improve the timing predictability and the power ratio of the 

processor. Information in the miss table is used by the authors to selectively lock blocks of data 

that could improve the timing predictability and reduce the power consumed by the system. The 

authors mainly focus on embedded systems because they identify the power dissipation on the 

die to be a critical component that needs attention. 

AbhikSarkaret al [9] have studied the effects of cache locking in multi core systems running 

real time applications. They mention in their research that locking the cache improves the 

predictability of cache access behavior of a hard real time task. However, real time tasks have 

small cache footprints and low intra task conflicts and they obtain a shorter worst case execution 

time by using locks. In cache locking, execution of a task assumes cache hits for locked lines, but 

when there are a lot of task migrations, locking the cache does not do any good. The authors 

identified locked cache line mobility as a hindrance to task migration in real time systems. The 

authors, in their work, have focused on migrating the locked cache lines and providing a 

predictable task migration scheme to the scheduler. 

M.Juet al [10] have done a performance analysis of caching technique and analyzed the 

effectiveness of caching in single core multi-threaded processors. The cache was used for IP 

route caching. Their simulation and results show that, when the miss rate is less, caching can be 

very effective. But as the miss rate increases, the efficiency of caching decreases.  
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J.Irwinet al [11] have studied the performance of instruction cache in multimedia devices. They 

state that if instructions are evicted from the cache by competing blocks of code, the running 

application will take significantly longer to execute than is the instructions were present. In the 

paper, the authors let the compiler allocate the cache and also automatically configure instruction 

caches that can improve the overall predictability of multimedia systems. The authors propose to 

use a partitioned cache for this purpose that guarantees determinism in the instruction cache.  

V. Suryanarayana et al [13] propose a dynamic caching algorithm for the VMs based on thin 

provisioning technique. In their work, the authors propose isolating the cache from the individual 

VMs and allowing the hypervisor allocate cache to the VMs on-the-go based on the needs of the 

VM. This technique makes efficient utilization of an expensive resource such as a cache and also 

improves the response times of the VMs in processing the application requests.  

V. Suryanarayana et al in [18] have proposed a shared cache on the hypervisor and a 

prefetching algorithm to prefetch the blocks of data into the shared hypervisor cache. The 

authors implemented a Hidden Markov Model to predict the data blocks that have a high 

probability of access after the current I/O. The blocks with the highest probability of read are 

brought into the shared hypervisor cache. Their results show that prefetching of data blocks into 

the hypervisor cache improves the response time of the VMs. The authors considered a para 

virtualized setup in their work and propose changes to the credit scheduling algorithm. In 

summary, the authors try to alleviate the response time involved in a server virtualized setup by 

decreasing the scheduling latency when credit scheduler is involved and also the data fetch 

latency by proposing prefetching. 

H. Kim et al [19] propose a cooperative caching mechanism known as 

“XHive”inservervirtualized setup. In their proposed technique, the virtual machines collaborate 
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with each other and maintain a shared copy of the data blocks, which prevents the need to fetch 

redundant blocks of data from the disk array over and over again. In a server virtualized setup in 

SAN, the I/O operations are more expensive than the native system due to virtualization 

overheads. According to their scheme, a singlet, which is a block cached solely by the virtual 

machine, is preferentially given more chances to be cached in the machine memory. Although 

the authors demonstrate through experiments that, XHive considerably reduces the number of 

I/Os and improves the read performance, XHive is limited in usage to the following assumptions: 

1) The VMs share the underlying storage and 2) The number of cooperative cache hits are way 

higher than the storage accesses. Sharing the storage is usually seen in clustered environments 

and is not very widely deployed. The cooperative caching strategy is expected to efficiently 

operate for read intensive workloads and the authors have evaluated their strategy on mostly read 

only/ read intensive workloads.  

While the above researches have mainly focused on investigating cache performance in 

virtualized servers, not much research has been done in improving the cache in virtual machines 

by implementing locking. Most of the work that have analyzed cache locking performance are 

implemented on traditional processor caches and have shown significant benefits. Some of the 

major contributions in cache locking in traditional processor caches is outlined below. 

P. Thierry et al [21] investigate the impact of Worst Case Execution Time analysis of caches 

on security. The authors mention that such a WCET analysis leads to security breaches in task 

partitioning and can result in huge overheads, making the caches useless. In order to address the 

security concerns, the authors propose a cross layer approach for a secure management of L1 

cache by the scheduler. In their paper, the authors have not considered shared data caches or 

multi-level caches.  
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J.Liedtke et al in [25] describe an OS-controlled application-transparent cache-partitioning 

technique that can transparently assign tasks to partitions. The authors also study the worst case 

impact of asynchronous cache activities on tasks whose ideal execution times are known. In 

order to overcome the limitations of traditional cache partitioning techniques, the authors use 

memory coloring techniques.  

While the above research on cache and locking has been done and tested on traditional 

processor caches, there has been no significant work done in investigating the performance of 

cache locking in server virtualized environments, especially hypervisor caches. In this paper, the 

authors study the performance of data cache locking when implemented on hypervisor caches. A 

miss table is introduced on the hypervisor in order to determine the cache blocks that need to be 

locked. Cache locking is a technique in which certain cache lines are locked, so that they cannot 

be replaced from the cache. The data blocks that are locked can still be accessed by applications. 

Cache locking in hypervisor caches locks those blocks of data that incur the most number of 

misses by the applications running directly on top of the hypervisor cache. Hence, cache locking 

is intended to decrease the miss percentage of cache blocks and increase the number of cache 

hits. The authors later evaluate the cache locking technique in the presence of a victim buffer 

cache and a probabilistic cache replacement algorithm when compared to the traditional LRU. 

Experimental results show that cache locking in hypervisor cache improves the performance of 

caching by decreasing the miss percentage and reducing the total I/O response time. 
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CHAPTER 3 

CACHE MEMORY ORGANIZATION 

3.1 Cache Mapping 

In traditional processors, the data is prefetched from the main memory into the processor 

cache, so that applications can quickly access the important data. The data from memory is 

mapped and stored in certain lines in the cache. This mapping is done in 3 ways: Direct mapping, 

Fully Associative Mapping and Set Associative Mapping. In direct mapping, a memory block 

with address „1‟ is mapped to cache line „1‟. Whenever, the cache line „1‟ is full, a block of data 

needs to be evicted from the cache in order to hold the new data in cache line „1‟. Data eviction 

from a cache follows the rules of the cache replacement policy in place. Direct mapping takes 

place as shown in Figure 1. 

 

Figure 1: Direct Mapped Cache 
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In fully associative cache mapping, a memory block can be stored in any cache line. When a 

cache block is requested, the entire cache must be searched in order to return the requested cache 

block. This is as shown in Figure 2. 

 

Figure 2: Fully Associative Cache 

In a set associative mapped cache, a cache line is divided into many sets. A block from 

memory can reside in any of the sets in a cache line. Hence, when a block of data is requested 

from a set associative cache, an entire set needs to be searched to find the cache block. A set 

associative cache results in lesser seek time when compared to a fully associative cache, but  

results in a longer seek time when compared to a direct mapped cache. 
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3.2 Cache Memory Organization 

The memory and cache organization in virtualized servers is slightly different from the 

traditional server memory organization. In the former, a lot of virtualization is enabled, which 

would make a lot of physical server resources such as memory, cache, CPU virtualized as well. 

In traditional servers, the amount of memory in the processor is dedicated to the entire physical 

server. The number of CPU cores in the physical processor is assigned entirely to the server [28]. 

However, in a server virtualized setup, where there are many virtual servers running on a single 

physical server, the underlying physical resources such as memory, CPU.etc..have to be shared 

by the virtual servers. The hypervisor, which is the important entity that enables server 

virtualization, is responsible for allocating the resources to each of the virtual servers. 

In the non-virtualized setup, another important memory organization to consider is the cache 

organization [31][33]. Depending on the processor architecture, a physical processor may have 

two or higher number of cache levels, such as L1, L2 and L3 cache. The cache is mainly used by 

the processor for fetching and storing blocks of data that are frequently accessed by applications 

running on the physical server. The cache in a non-virtualized system was mainly designed to 

bridge the speed gap between the memory and processor. A data fetch from the memory is 

considered more expensive in terms of CPU cycles, when compared to the data fetched from 

processor cache. The data is prefetched from the memory and stored in cache for the processor to 

access. Figure 3 shows the memory organization in a non-server virtualized setup. 
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Figure 3: Memory Organization in Non-Virtualized Setup 

In a server virtualized setup, the cache organization is very different. Here, the virtual 

machines are assigned memory from the available RAM on the physical server. A part of 

memory that is assigned to the VMs is used for caching by the applications running on the VM. 

The physical cores are virtualized and assigned to each VM. The research conducted in this work 

is related to the cache that is used by the virtual machines and not the physical cache that is 

present on the physical server. Figure 4 shows the memory organization in a server virtualized 

setup. 
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Figure 4: Memory Organization in Server Virtualized Setup 

3.3 Cache Replacement Policies 

The cache is a very small, expensive piece of memory. Because of its size, it cannot 

accommodate all the blocks of data that applications require. Once the cache becomes fully 

populated, certain blocks of data need to be evicted from the cache. Usually, the unwanted 

blocks of data are evicted so that useful blocks can be brought into the cache. It is very important 

that the right decision be made about what data is unwanted and what data is useful. A cache 

replacement algorithm or the policies set on the cache for replacement determine the above 

criteria. The commonly used cache replacement algorithms are: 

1)  LRU - where the least recently used block in the cache is evicted 

2) MRU – where the most recently block is evicted 
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3) LFU – where the least frequently used block is evicted 

4) Random – Where a block is randomly evicted out of the cache 

The cache replacement policies set and the cache eviction algorithms determine the 

performance of caching. 

3.4  Cache Locking 

The performance of caching is measured by the number of cache hits an application 

encounters. When the right data blocks are cached, the number of cache hits increase and the 

effectiveness of caching increases. Hence, techniques and algorithms need to be applied on the 

cache,  that can increase the number of cache hits. Various such techniques and algorithms have 

been proposed for a traditional processor cache [32][34]. Cache locking is one of the techniques 

used to increase the number of cache hits. Cache locking refers to locking certain portions of the 

cache so that the locked cache lines are not replaced from the cache. However, the locked blocks 

of data can still be accessed by applications running on the server. A technique similar to cache 

locking is used in Oracle databases. This technique known as “pinning” refers to keeping 

database packages in the shared pool of Oracle database‟s System Global Area [16].  

There are two main types of cache locking namely, entire locking and way locking. In the 

entire locking technique, the entire cache is locked and the blocks of data in the cache cannot be 

replaced. In the way locking technique, not the entire cache is locked, but some lines in the cache 

are locked. Entire locking provides performance benefits for small applications while way 

locking provides performance benefits to large applications. The objective behind cache locking 

is that, by locking the most needed data blocks or the frequently accessed data blocks, there is a 

high probability of finding the required blocks of data in the cache and the number of cache hits 
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can be increased. In other words, cache locking tries to achieve a balance between the cache size 

and the number of cache hits an application encounters. 

3.5 Hypervisor Cache 

In the present day, caching in SAN is done on the disk array controller and on the VMs 

[3][17]. The physical machine hosting the VMs is connected to the disk array using protocols 

such as Fiber Channel, SAS, Infiniband and the like. The disk arrays are basically a set of hard 

disk drives and array controllers. Logical Units (LUNs) are created on the disks in the array that 

are presented to the physical host as virtual storage volumes. The disks from the array are 

abstracted to form a virtual disk pool and each VM is allocated storage from the virtual disk pool 

[14]. The VMs use a portion of the allocated storage space for caching [13][14]. The cache on 

the VMs is first searched by the applications running on the VMs. If the required data is not 

present in the VM cache, then, the disk array controller cache is searched for the required data. If 

a cache miss occurs even in the controller cache, then the data block is fetched from the disk.  

Accessing the data from external disk array introduces latency for the applications running on 

the VMs. On the other hand, caching on the VMs can result in inefficient cache utilization [13]. 

In order to make efficient utilization of the available cache, the authors proposed isolating the 

cache from the VMs and instead caching on the hypervisor. The authors in [1] showed that 

sharing the cache among the VMs deteriorates the performance of the VMs by nearly 30%. 

Memory allocation policies in technologies like VMware, XEN partition the physical memory 

among the different VMs and allow performance isolation [15]. Furthermore, research done by 

the authors in [24] shows that, sharing on-chip resources such as caches results in challenges to 

guaranteeing predictable application performance.  

Every VM is allocated its private share of cache on-the-go based on its requirements by the 



 

20 

 

hypervisor. In this research, the authors propose cache locking on such a hypervisor cache that 

will improve the performance of caching. The secondary level cache of the physical server is 

used for hypervisor caching and the proposed hypervisor cache is partitioned, so that every 

virtual server gets its own share of the hypervisor cache. In a non-virtualized setup, the 

secondary cache of a physical server is a large, shared cache. In this research, the proposed 

hypervisor cache is not shared by the VMs and locking is implemented on each partition that is 

private to the virtual servers.  

The main design features of the hypervisor cache are: 

1) It should be near to all the VMs and dynamic in nature 

2) The hypervisor cache proposed is not shared by the VMs and each VM has its own 

private share of cache on the hypervisor 

3) The proposed dynamic hypervisor caching scheme efficiently utilizes the available cache 

to cache the VMs blocks of data 

4) It should cache the most frequently accessed data blocks by the VM hence reducing the 

number of disk accesses, thereby reducing the latency. 

The architecture of the proposed hypervisor cache is as shown in Figure 5. As seen in the 

figure, there are 4 VMs running different operating systems such as Windows 2003, Windows 

2008, Red Hat Linux 5 and the Cent OS. The physical disks are presented to the VMs as virtual 

disks due to the abstraction layer. The miss table is controlled by the hypervisor and is used to 

determine the cache lines that need to be locked. The physical server hosting the VMs is 

connected to the storage subsystem through protocols such as Fibre Channel, Infiniband and so 

on. 
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Figure 5: Architecture of hypervisor cache 

3.6 Dynamic Caching using Thin Provisioning 

Dynamic caching of the hypervisor cache refers to allocating cache to the virtual servers on the 

go, on a need per basis. Dynamic cache allocation leads to thin provisioning of cache resources 

and enables efficient utilization of an expensive piece of memory like cache. In a paravirtualized 

setup, the hypervisor is aware of all the IO requests that are being made by the VMs [35][37][40] 

and can hence manage the cache allocation to the VMs effectively. Since cache is one of the 

most crucial resources which influences the performance of a VM, ample care has to be taken on 

the placement of a cache. Having it at the hypervisor level and allowing the hypervisor to take a 

Storage Area 

Network

CENT 

OS
RHEL5W2K8W2K3

Cache 

w2k3

Cache 

W2K8

Cache 

RHEL 

5

Cache 

CENT 

OS

Virtual Disks

Storage Subsystem

Victim 

Buffer 

Cache

UUID MISS
ADDRE

SS

NO OF 
MISSE

S

Miss Table

Miss Table

Physical Server

Secondary Level 

Physical Cache



 

22 

 

wise decision on the allocation of resources augurs well with the needs the posed by the VMs. 

The following sections explain the model used for thin provisioning of cache resources on the 

hypervisor and the proposed algorithm. 

3.6.1 Issues with Static Caching 

The current caching mechanism used in server virtualization is based on caching on virtual 

machines. The physical disks attached to the physical server are abstracted to form a virtual disk 

pool. The virtual disks are allocated to the VMs and a part of the allocated virtual disk space on 

each VM is used for caching purposes. This method of static allocation of cache on the VMs has 

several disadvantages: 

1) Not every virtual server is active all the time. For example, a backup server is active 

during the night because there will not be many active users. Game servers are active 

only for some time during the day. Database servers are active when employees are at 

work and so on. Static allocation allocates cache to the servers even when they are not 

active resulting in cache wastage. 

2) When a server has a high I/O rate, a statically allocated cache space might not be 

sufficient to store the data and will result in high numbers of cache misses. When the 

cache miss rate increases, the response time of the virtual server also increases. This 

could have very detrimental consequences on the performance of the virtual server. 

3) Static allocation results in under utilization of the cache. 
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CHAPTER 4 

PRELIMINARY WORK: CACHE LOCKING IN MULTICORE 

 This section describes the preliminary work done by the authors before proposing the 

hypervisor cache solutions in this research. In their preliminary work, the authors study and 

analyze the effect of cache locking in multi core processor caches and then apply the technique 

to a new area of research emerging in the storage industry, namely, server virtualization.

 Multiple caches in multicore architecture increase power consumption and timing 

unpredictability. Although cache locking in single-core systems shows improvement for large 

multithreaded applications, there is no such effective strategy for multicore systems. In this 

work, the authors propose three level-1 cache locking strategies for multicore systems – static, 

random, and dynamic. In the random strategy, blocks are randomly selected for locking. The 

static and dynamic schemes are based on the analysis of applications‟ worst case execution time 

(WCET). The static scheme does not allow unlocking blocks during runtime, but the dynamic 

scheme does. Using VisualSim and Heptane tools, the authors simulate a system with four cores 

and two levels of caches. According to the simulation results, the dynamic cache locking strategy 

outperforms the static and random strategies by up to 35% in mean delay per task for the 

workloads used (e.g., MPEG3 and MPEG4). 

 Multicore architectures are more suitable for multithreaded, parallel, and distributed 

processing, because concurrent execution of tasks on a single processor, in many respects 

including execution time and thermal constraints, is inadequate for achieving the required level 

of performance and reliability. Startingwith two cores, the number of cores in multicore 

processor is increasing. According to recently published articles, IBM POWER7 has up to 8 

cores, Intel Xeon has up to 12 cores, AMD Opteron has up to 12 cores, MIT RAW has 16 cores, 
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and Tilera TILE-Gx has 100 cores. As the number of cores in the processors is increasing, 

software applications are having more and more threads to take advantage of the available cores 

[63][67][68].  Based on currently available processors and future design trends, the first level 

caches inside the cores and the second level caches outside of the cores are common in most 

multicore processors. In a multicore processor, two or more independent cores are combined into 

a die. Each core has its own level-1 cache (CL1); in most cases, CL1 is split into instruction 

cache (I1) and data cache (D1). Multicore processor may have one shared level-2 cache (CL2) or 

multiple distributed CL2s [69][70][71]. It is established that cache parameters may improve 

system performance [66]. However, cache consumes considerable amount of power and 

introduces execution time unpredictability.Real-time applications demand timing predictability 

and cannot afford to miss deadlines. Therefore, it becomes a great challenge to support real-time 

applications on power-aware multicore systems.  

Studies show that cache locking improves predictability in single-core systems [63][64]. 

Cache locking is the ability to prevent part of the instruction or data cache from being 

overwritten. A locked cache block is excluded by the cache replacement policy. However, the 

content of the locked cache block can be updated according to the cache write policy. Cache 

entries can be locked for either an entire cache or for individual ways within the cache. Entire 

cache locking is inefficient if the number of instructions or the size of data to be locked is small 

compared to the cache size. In way cache locking, only a portion of the cache is locked by 

locking ways within the cache. Unlocked ways of the cache behave normally. Way locking is an 

important alternative of entire locking. Using way locking, Intel Xeon processor achieves the 

effect of using local storage by Synergistic Processing Elements (SPEs) in IBM Cell processor 

architecture [71][72]. Way cache locking at level-1 cache in multicore systems should improve 
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the overall performance of large (and multithreaded) real-time applications. To the best of the 

author's knowledge, no effective level-1 cache locking strategy is available for multicore 

systems. 

 The authors propose three level-1 cache locking strategies for multicore systems in this work. 

First, the authors introduce random strategy. According to this strategy, some blocks should be 

randomly selected, preloaded, and locked in level-1 cache. The random strategy is simple to 

implement (no pre-processing is needed), but performance improvement cannot be guaranteed. 

Then, the authors introduce static and dynamic strategies. Blocks are preselected for locking 

based on WCET analysis of applications in both (static and dynamic) schemes. In the static 

scheme, a locked block cannot be unlocked during the runtime. In the dynamic scheme, a core is 

allowed to lock, un-lock, and re-lock its cache blocks, during runtime, at the beginning of each 

code segment. Static locking may be a better option over random strategy when all or most 

applications are known and large in code-size. However, static locking may decrease overall 

performance if most applications are small. Dynamic locking strategy provides the flexibility so 

that each core can decide whether to apply cache locking or not for a particular code segment at 

run-time. In the dynamic strategy, a core can adjust its locked cache size during run-time to excel 

performance. The well-known MESI protocol can be used to deal with cache inconsistency. In 

case of multiple cached copies of the same memory block, (i) all blocks can be locked or (ii) 

only the first cached block can be locked and other cores should refer the locked copy (not the 

main memory copy) for reading/writing. 

4.1 Proposed Cache Locking Strategies for Multi Core Systems 

In this section, the authors present our proposed level-1 cache locking strategies for multicore 

systems. The authors propose three strategies – random, static, and dynamic CL1 cache locking. 



 

26 

 

In random strategy, blocks are randomly selected for locking. In the static and dynamic 

strategies, blocks are preselected based on WCET analysis – cache miss information is used 

knowledgeably with cache locking algorithm to determine the memory blocks to be locked. 

Information about the blocks that cause cache misses are collected together and called block 

address and miss information (BAMI). One BAMI is generated for each application after post-

processing the tree-graph generated by Heptane. Static scheme does not allow unlocking blocks 

during runtime; however, dynamic scheme allows changes in the locked cache size at runtime. 

Each job (like a thread) consists of a number of tasks. Each task can be considered as a single 

instruction or a set of instructions. Finally, cache locking issue with multiple cached copies is 

also addressed in this section. 

4.1.1 Random CL1 Cache Locking 

 In random CL1 cache locking, block selection for cache locking is done randomly. In this 

strategy, jobs are selected from the job queue depending on the job properties and available cores 

for processing. Selected jobs are assigned among the cores. Based on the selected jobs, CL1s and 

CL2 are preloaded using randomly selected blocks. Any additional spaces in CL2 are also 

preloaded using randomly selected blocks. Random CL1 cache locking is illustrated in Figure 6. 

After being assigned a job, each core decides (at cache level) if it should apply cache locking or 

not. A core may decide not to apply cache locking for a small job, because small jobs may 

entirely fit in the core‟s cache. If the core decides to apply cache locking, it may lock any 

number of ways it wants. Different core may lock different cache size (number of ways). The 

overhead due to the fact that each core makes its own decision about locking is negligible, 

because each core has the required information (e.g., cache size, job size, and BAMI). The 

locked cache remains locked until the core is done with its assigned job.  
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Each core completes its job independently. To calculate average delay per task, the maximum 

delay is considered for each batch of jobs. *The maximum delays fromall batches of jobs are 

added together; then the sum of the maximum delays is divided by the total number of tasks. The 

cores re-decide whether they should apply cache locking or not depending on the newly assigned 

jobs. For large or new applications (i.e., the code does not fit in the cache or miss information for 

block address is not known, respectively), random CL1 cache locking may be beneficial.For 

smallorknown applications(i.e., the code fits in the cache or miss information is known, 

respectively), random cache locking is not favorable.In addition to cache locking, block selection 

for preloading and block selection for cache replacement are also done randomly in this strategy. 

 

Figure 6: Random CL1 Cache Locking 

4.1.2 Static CL1 Cache Locking 
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 In the static CL1 cache locking, block selection for cache locking is done using WCET 

analysis based on BAMIs of the applications. Unlike random CL1 cache locking, block selection 

for cache locking is done first using the BAMIs of all jobs in the job queue. Then the master core 

(Core.0 at CPU level) makes the decision if static CL1 cache locking should be applied, before 

the jobs are actually assigned to the cores. If Core.0 decides not to apply cache locking, no core 

locks any of its caches. If Core.0 decides to apply cache locking, each core should lock its 

similar ways. Locked caches remain locked until all the jobs are completed.  Figure 7 illustrates 

static CL1 cache locking strategy. 

 

Figure 7: Static CL1 Cache Locking 
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For processing, jobs are selected from the job queue depending on the job properties and 

available cores. Based on the selected jobs, only CL2 is preloaded using the BAMIs of the jobs. 

A core cannot lock any ways it wants (it is decided by the master core, Core.0, of the CPU). 

Each core completes its job independently. Mean delay per task is calculated using similar 

methods as used in random CL1 cache locking. To calculate mean delay per task, the maximum 

delay is considered for each batch of jobs. After completion of a batch of jobs, another batch is 

selected. However unlike random CL1 cache locking, the CL1s are not re-preloaded according to 

the newly selected jobs (only CL2 is re-preloaded). Also, unlike random CL1 cache locking, the 

cores cannot re-decide whether it should apply cache locking or not (cache locking decision is 

made only once, by the master core, Core.0). For large applications (when the code does not fit 

in the cache but miss information for block address is known), static CL1 cache locking may be 

beneficial. 

In this strategy, the BAMI entries are used to determine the block with the maximum number 

of misses for preloading and the block with the minimum number of misses is selected as the 

victim block for cache replacement. 

4.1.3 Dynamic CL1 Cache Locking 

Like static CL1 cache locking, block selection for cache locking, preloading, and cache 

replacement in the dynamic CL1 cache locking is done using the BAMIs of the applications. 

Like random CL1 cache locking, each core decides if it should apply CL1 cache locking or not 

for the assigned job. As a result, dynamic CL1 cache locking has the flexibility and merits of 

making the cache locking decision at each core using the BAMI. However, this strategy is 

complicated when compared with the other two strategies. Figure 8 depicts our proposed 

dynamic CL1 cache locking strategy. 
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Like random CL1 cache locking strategies, jobs are selected from job queue first. Then CL1s 

and CL2 are preloaded using the BAMIs of the selected jobs, like static CL1 cache locking. 

Selected jobs are then assigned among the cores. Like random CL1 cache locking (and unlike 

static CL1 cache locking), each core decides if it should apply cache locking or not after a job is 

assigned to it. If a core decides to apply cache locking, it may lock any number of ways it wants. 

Different cores may lock different cache sizes. The locked cache remains locked until the core is 

done with its assigned job. Each core completes its job independently. Mean delay per task is 

calculated using similar methods as used in random and static CL1 cache locking. To calculate 

mean delay per task, the maximum delay is considered for each batch of jobs. After completion 

of a batch of jobs, another batch is selected. 

 

Figure 8: Dynamic CL1 Cache Locking 
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Like random CL1 cache locking (and unlike static CL1 cache locking), both CL1s and CL2 

are re-preloaded according to the newly selected jobs. The cores re-decide whether they should 

apply cache locking or not depending on the new jobs. Dynamic CL1 cache locking strategy has 

the advantages of both random and static CL1 cache locking strategies to improve overall system 

performance. For any applications (i.e., the code may or may not fit in the caches) when block 

address and miss information are known, dynamic CL1 cache locking may be beneficial. 

 Comparing with the proposed random and static CL1 locking strategies, it is complicated but 

feasible to implement the proposed dynamic CL1 locking strategy. The complexity is two-fold: 

CL1 cache locking is asynchronous across the cores (like random CL1 locking strategy) and 

BAMIs are needed (like static CL1 locking strategy). 

4.2 Simulations 

The authors evaluate our proposed CL1 cache locking strategies for multicore systems using 

simulation technique. In this section, the authors discuss the simulation details and present the 

simulation results. The authors use Heptane [71] and VisualSim (short for VisualSim Architect) 

[72] tools to model and simulate a multicore embedded system. Heptane is used for WCET 

analysis of application on a single-core system with one-level cache and to generate workloads 

for VisualSim. VisualSim is used to simulate multicore systems with multi-level caches and to 

collect the results. In the following subsections, the authors briefly discuss the assumptions, 

applications, simulated architecture, important parameters, and tools.  

4.3 Assumptions 

Important assumptions include the following, 

• A homogenous multicore is simulated where all cores are identical. Cache parameters used 

are the same for all cores. 
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• In random and dynamic cache locking, each core can implement cache locking 

independently as needed. However in the static cache locking, the master core(Core.0 of 

the CPU) decides whether cache locking should be implemented or not and all cores either 

locks their similar ways or not, respectively. 

• Write-back memory update policy is used for all strategies. 

• In random cache locking, victim block is selected randomly. However in the static and 

dynamic cache locking, victim block is the block with the minimum number of 

misses(which is determined by using a BAMI). 

• The delay introduced by the bus that connects CL2 with the memory is 15 times longer 

than the delay introduced by the bus that connects CL1 and CL2. 

4.4 Applications Used 

To overcome the limitations of simulation tools and applications, the authors choose widely 

used Heptane and VisualSim simulators and consider five popular applications that are widely 

used in math/science, Internet, and multimedia to run the simulation programs. These diverse 

applications are: Fast Fourier Transform (FFT), Graphics Interchange Format (GIF), Joint 

Photographic Experts Group (JPEG), Moving Picture Experts Group‟s MPEG3, and MPEG4 

(part-2). Selected applications have various code sizes. The code size for FFT, GIF, JPEG, 

MPEG3, and MPEG4 are 2.34 KB, 35.17 KB, 41.90 KB, 87.51 KB, and 91.83 KB, respectively. 

Heptane takes C code as the input application and generates tree-graph. Tree-graph shows which 

memory blocks caused cache misses and how many (if any). This tree-graph information is used 

to create the BAMI. 

 

 



 

33 

 

4.5 Simulated Architecture 

The authors model and simulate a four-core system which depicts popular Intel Xeon quad-

core architecture. Each core has level-1 private cache which is split into I1 and D1 and unified 

CL2 is shared. As shown in Figure 9, BAMI is implemented inside the cores and BALCI is 

implemented in CL2. 

 

Figure 9:Simulated Architecture 

4.6 Important Parameters 

The authors keep number of cores fixed at 4, CL2 cache size fixed at 1024 KB, associativity 

level fixed at 8-way, and line size fixed at 128 Byte. The authors vary I1 (and D1) cache size 

from 4 KB to 64 KB (start at 4 KB, double every time). Finally, the authors vary the percentage 

of locked I1 cache size from 0.0% to50.0%; start with no locking, lock one extra way (starting 

with way-0) in every successive attempt.Time to load CL1 from CL2 is 1 unit and to load CL2 

from the main memory is 15 units. 

Output parameters include mean delay per task. Delay is the time between the start of 

execution of a task and the end. Mean delay per task is defined as the average delay of all the 

tasks. 
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4.7 Tools Used 

Simulation tools are very important for precise assessment of the systems under consideration. 

the authors did not find any single tool available for modeling and simulating the proposed CL1 

cache locking in multicore architecture. Hence, the authors use two effective and famous 

simulation tools, Heptane [21] and VisualSim [22], in this study. In addition, the authors develop 

C programs to pre-process the application code and post-process the Heptane generated tree-

graphs. 

Heptane is used to characterize the applications and generate the workloads. Heptane is a well-

known WCET analyzer from IRISA, a research unit in the forefront of information and 

communication science and technology. Heptane simulates a processing core, takes C code as 

the input application, and generates a tree-graph that shows the blocks that cause misses. After 

post-processing the tree-graph, block addresses are selected for cache locking. 

VisualSim (short for VisualSim Architect) is used to model the multicore architectures, 

simulate cache locking at shared cache, and collect simulation results. Heptane-generated 

workloads are used to run VisualSim simulation programs. VisualSim from Mirabilis Design is a 

graphical simulation tool to build models. VisualSim contains a complete suite of modeling 

libraries, simulation engines, report generators, and debugging tools. Using VisualSim, the 

authors model the abstracted multicore architectures. VisualSim provides a simulation cockpit 

that has functionalities to run the VisualSim model and to collect simulation results. Simulation 

cockpit can be used to change the values of the input parameters and store the results as text 

and/or graph files. 
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4.8 Results and Discussion 

The authors model a four-core system with two-level cache memory subsystem and simulate 

our proposed random, static, and dynamic CL1 cache locking schemes using FFT, GIF, JPEG, 

MPEG3, and MPEG4 applications. The authors obtain results by varying the amount of locked 

cache size and I1 (and D1) cache size. In the following subsections, the authors first discuss how 

execution time predictability is impacted by cache locking, followed by the impact of the 

percentage of locked I1 cache size and the total I1 cache size. Then (finally), the authors 

compare the proposed CL1 cache locking strategies: random, static, and dynamic. 

4.8.1 Average Cache Hit Rate 

The average cache hit rate can be improved by applying proposed cache locking strategies, 

because cache locking helps hold the blocks in the cache during execution that might generate 

more misses if not locked. The authors conduct this experiment using the Heptane simulation 

package. For a system with 2 KB cache size, 128 Byte line size, and 8-way associativity, the 

total number of blocks in cache is 16 (2048/128) and total number of set is 2 (16/8). If 2 blocks 

from each set is locked, 4 (2x2) blocks out of 16 blocks (i.e., 25% of I1) is locked. From Heptane 

WCET analysis, FFT code generates 246 cache misses in the cache subsystem mentioned above. 

It is also found that the maximum number of misses from any 4 blocks is 128. By locking those 4 

blocks that create the maximum number of misses (i.e., 128), predictability can be enhanced (as 

more than 50% cache misses are avoided) by locking only 25% of the cache size. These results 

are summarized in Table 1. When multiple applications are being executed in a multicore CPU, 

dynamic CL1 cache locking should provide the best predictability as each core can implement 

cache locking as/if needed. In a multicore system, random and static CL1 cache locking may not 

provide the best predictability because randomly selected blocks may not be the blocks with 
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maximum cache misses and static cache locking doesnot have the flexibility to change locked 

cache during runtime. 

Table 1:Average Cache Hit Rate 

Parameter Value 

Cache size  2 KB 

Line size  128 Byte 

Associativity level 8-way 

Total number of blocks in cache 16 (2048 / 128) 

Number of blocks for 25% cache locking 4 (16 * 0.25) 

Total number of misses for FFT 246 

Maximum misses from any 4 blocks 128 

Maximum cache misses possible by 25% cache 

locking 

50.41%  

(246 / (128 – 4)) Cache misses saved by 25% random cache locking < 50.41%  

Cache misses saved by 25% static cache locking < 50.41% 

Cache misses saved by 25% dynamic cache locking Always 50.41% 

 

4.8.2 Impact of Locked Cache Size 

As the amount of locked cache size increases – on the one hand, more cache blocks that cause 

most of the misses are locked; but on the other hand, the effective cache size decreases. In this 

subsection, we explore the impact of cache locking on mean delay per task using proposed 

random CL1 cache locking strategy. To run the simulation program, the authors send similar 

workload through all four cores and vary the locked cache size and obtain the Figure 10 

illustrates mean delay per task for all five workloads with various locked I1 cache size (0% to 

50% locking). Simulation results show that random CL1 cache locking has significant impact on 

large applications (like MPEG3 and MPEG4) than small applications (like FFT). For MPEG4, 

mean delay per task decreases as we move from no locking to 25% locked I1 cache size; mean 

delay per task starts increasing as we move beyond 25% I1 locking as compulsory cache misses 

increase. For GIF and JPEG, random CL1 cache locking has some (but not very significant) 
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positive impact on mean delay per task. For FFT, there is no positive impact of random CL1 

cache locking. This is because FFT code entirely fits inside I1 but other codes do not. 

 

Figure 10: Impact of Random CL1 Cache Locking on Mean Delay 

4.8.3 Impact of Entire Cache Size 

 We know that capacity misses decrease as cache size increases. In this subsection, we examine 

how random CL1 cache locking impact on mean delay per task when I1 cache size changes. 

Figures 11 illustrate the average delay per task for various I1 cache size starting at 4 KB. Results 

for no locking and 25% random I1 cache locking using FFT, GIF, and MPEG4 are considered. 

 

Figure 11: Impact of CL1 Size on Mean Delay for 25% Random CL1 Locking 
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4.9 Conclusions 

 This work presents three level-1 cache locking strategies for multicore systems: static, random, 

and dynamic. The random strategy is easy to implement as blocks are randomly selected for 

locking by each core (at core level). The static and dynamic schemes are based on WCET 

analysis. For static locking scheme, blocks are preselected by the master core (Core.0 at CPU 

level) using BAMIs of all applications and cannot be unlocked during the runtime. For the 

dynamic locking scheme, blocks are preselected by each core (at core level) using BAMI of the 

assigned job and the locked cache size can be changed during runtime for each job. A system 

with four cores and two levels of caches is simulated using FFT, GIF, JPEG, MPEG3, and 

MPEG4 applications. According to the simulation results, timing predictability can be enhanced 

by avoiding more than 50% cache misses (see Table 1). Simulation results also show that the 

static and random schemes may offer good improvement for large applications. Dynamic CL1 

cache locking is difficult to implement as each core determines how many ways to lock for 

optimal outcomes.However, the dynamic cache locking strategy outperforms the static and 

random strategies by up to 35% and 22%, respectively.  

Based on the simulation results, the proposed CL1 cache locking should have significant 

performance impact on commercially available embedded multicore processors (like Intel Atom 

D510 and ARM Cortex-A9) and on multicore server processors (like Intel quad-core Xeon DP 

and AMD quad-core Opteron) for real-time applications. 

A hybrid cache locking strategy (no locking on some cores for small applications, static locking 

on some cores for large applications, random locking on some cores for new/unknown 

applications, and dynamic locking on the rest of the cores) may be a better choice for multicore 

architecture.  
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 As a future work to this research, the authors wanted to investigate the impact of cache locking 

in hypervisors. Server virtualization is a relatively new technology and very little research has 

been done in this area with respect to studying the performance of cache. Hence, the authors 

extend the preliminary work described in this chapter to study the performance of cache and 

cache locking in hypervisors. This is explained in the next chapter.  
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CHAPTER 5 

PROPOSED IMPROVEMENT TECHNIQUES FOR HYPERVISOR CACHE 

5.1 Proposed Dynamic Cache Allocation Model 

This section describes the model for dynamically allocating the cache resources among the 

VMs. As explained earlier, the hypervisor manages the cache and is the central entity which 

decides cache allocation to the VMs. The model and the algorithm used by the hypervisor to 

decide the cache allocation is as explained below. Table 2 represents the parameters used in the 

model. The authors used the following parameters as indicators to allocate and de-allocate 

hypervisor cache to the VMs dynamically: 

1) Number of IO requests a VM receives in a particular time interval,  𝑡 , 𝑡 +  ∆𝑡  

2) Cache Miss percentage of a VM in the time interval,  𝑡 , 𝑡 + ∆𝑡  

Table 2:Parameter used in Dynamic Cache Model 

Parameter Description 

C Total available cache size on the hypervisor 

N Number of active Virtual Machines 

CAlloc Cache allocated to each VM 

CThreshold Threshold cache usage for each VM 

RThreshold Threshold of number of I/O requests on the VM 

CMissTh Threshold of number of cache misses for the VM 

Rn Number of I/O requests on the VM in  𝑡, 𝑡 +  ∆𝑡  

CUsed 
Amount of cache used by a VM in  𝑡 , 𝑡 + ∆𝑡  
 

CMiss Number of cache misses on the VM in 𝑡, 𝑡 + ∆𝑡  

CRemain Amount of cache remaining on each VM 

  

 

 

Initially, the total available cache C is divided and equally allocated to each of the active 

virtual servers. The hypervisor owns a small portion of the cache space for itself and is not 

allocated to the VMs [3]. If the portion of cache owned by the hypervisor is represented by Ch, 
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then the available cache to allocate to the VMs can be given by: 

𝐶𝑣𝑚 = 𝐶 − 𝐶ℎ ....................................................(1) 

The cache space initially allocated to the VMs is given by: 

 

𝐶𝑎𝑙𝑙𝑜𝑐 =  
𝐶𝑣𝑚

𝑁
...................................................(2) 

 

The model developed in this research is based on the following assumptions: 

1) Each virtual machine plays the role of a server. Example, a VM can be a database server, 

web server and so on 

2) The workload characteristics of each VM are known apriori 

3) The values of 𝐶𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑅𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝐶𝑀𝑖𝑠𝑠𝑇ℎare calculated when the virtual server has 

heavy workloads running on it. Hence, these values are taken as a reference to make 

decisions about allocating and de-allocating cache space 

The dynamic caching algorithm proposed in the research is based on thin provisioning 

technique. A virtual server which owns excess cache than the threshold, in time interval  𝑡 , 𝑡 +

 ∆𝑡 acts as a cache donor and a virtual server which has less cache than the threshold borrows the 

cache space from the donor. The virtual server cache allocation and de-allocation are decided 

based on the following conditions in time interval 𝑡 , 𝑡 +  ∆𝑡 : 

 If 𝑅𝑛 > 𝑅𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝐶𝑀𝑖𝑠𝑠 > 𝐶𝑀𝑖𝑠𝑠𝑇ℎ then cache needs to be allocated to the virtual 

server and the virtual server acts as a borrower 

 If 𝑅𝑛 < 𝑅𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝐶𝑀𝑖𝑠𝑠 < 𝐶𝑀𝑖𝑠𝑠𝑇ℎ  then, cache can be de-allocated from the virtual 

server and the VM acts as a donor 

 If 𝑅𝑛 ≥ 𝑅𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and 𝐶𝑀𝑖𝑠𝑠 ≤ 𝐶𝑀𝑖𝑠𝑠𝑇ℎ  then no action will be taken because it indicates 

that the virtual server still has cache remaining 
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 If 𝑅𝑛 < 𝑅𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and 𝐶𝑀𝑖𝑠𝑠 > 𝐶𝑀𝑖𝑠𝑠𝑇ℎ  then, the cache replacement policy has to be 

looked into as this scenario is independent of cache allocation. 

 If the 𝐶𝑈𝑠𝑒𝑑 > 2𝐶𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 for two consecutive time intervals 2 𝑡, 𝑡 + ∆𝑡 in a virtual 

server and 𝐶𝑅𝑒𝑚𝑎𝑖𝑛 < 2𝐶𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   then the condition calls for a cache allocation and 

cache is borrowed from the donor which has a greater cache remaining than required 

 If 𝑅𝑛 < 𝑅𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝐶𝑅𝑒𝑚𝑎𝑖𝑛 > 2𝐶𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  then the VM with the greatest 𝐶𝑅𝑒𝑚𝑎𝑖𝑛  

will be the first to be de-allocated of cache equivalent to 𝐶𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

The evaluation of the above proposed algorithm is provided in the simulation and results 

section. 

5.2 Proposed Miss Table for Cache Misses 

The miss table is a data structure that holds the addresses of data blocks that incur the most 

number of misses by the applications running on the virtual machines. The idea behind using the 

miss table on the hypervisor is, to make available those blocks of data in the hypervisor cache 

that are missed greater number of times than the threshold, because, the data addresses that incur 

large number of misses are the data blocks that are frequently accessed by applications on the 

VM. The miss table is hence used to identify the frequently accessed data blocks by applications 

running on the VMs and making them available to the VMs. A single miss table is proposed on 

the hypervisor that can store the data block addresses incurring misses by the VMs.         

Although the miss table is transparent to the VMs, the hypervisor uses the information in the 

miss table for cache locking purposes. The hypervisor sees all the VM data accesses that miss the 

VM memory in the form of I/O requests [5]. The authors in [2] have developed a tool, which 

they call Geiger, that can accurately determine the VM data access pattern on the hypervisor.  

From the above mentioned researches, one can infer that the VM cache misses are visible to the 



 

43 

 

hypervisor and hence, the hypervisor can store the addresses of the data blocks that incur misses. 

In this research the authors use the Valgrind tool to trace the data access by VMs. The miss table 

proposed in this research consists of three fields namely, unique identifier of the VM, address of 

the blocks missed by the VM and the number of times that address incurs a miss as shown in 

Table 3. For the sake of simplicity, the miss table is made to hold twenty addresses that incur 

maximum number of misses for each VM. The addresses stored in the miss table are the ones 

that are most needed by the VM and the data blocks corresponding to those addresses need to be 

cached and locked, so that they are not evicted. Since the miss table is populated over a period of 

time, cache locking can be done dynamically once the application on the VM starts execution.  

Table 3: Miss Table 

 

 

 

 

 

 

 

 

 

 

5.3 Proposed Hypervisor Cache Locking 

The hypervisor cache proposed in the research aims at reducing the number of data cache 

misses on the hypervisor cache and thereby improve the hit rate of data blocks in the cache. The 

miss table explained in the previous section is used to determine which data blocks in the 

hypervisor cache need to be locked. Hence the authors propose a locking mechanism on the 

hypervisor cache that retains the frequently accessed data block with the help of the miss table. 

Cache locking is mostly used in processor caches in order to improve the cache hit percentage. 

UID of 

theVM 
Address of 

the block 

missed 

Number of 

misses 

1 000A0800 400 

1 000A0543 239 

2 E51B5378 536 

3 B538C12 220 

. . . 

. . . 

. . . 
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When the data blocks in the cache are locked, they cannot be replaced from the cache. They can 

however, be read and written, but not evicted from the cache until the cache line is unlocked. The 

cache locking mechanism proposed on the hypervisor cache is way locking where certain lines in 

the cache are locked. 

By locking the cache lines, it can be made sure that the frequently accessed blocks are present 

in the hypervisor cache and further memory and disk accesses can be avoided. The cache locking 

algorithm is applied to each share of the cache that is private to the VMs. In a real time SAN, 

accessing data blocks from the disk array is very expensive and any reduction in the number of 

I/O requests is very significant. This is because, the disk array is connected via protocols such as 

FC, Iscsi, SAS and I/O requests have to traverse through them, which can be very time 

consuming if the number of I/O is large. A further question that arises is the time for which the 

cache lines need to be locked. Since the requirements of the VMs change dynamically with 

respect to the data blocks that incur misses, it is desirable to have an algorithm that dynamically 

determines the data addresses that are frequently missed and an algorithm that locks the cache 

accordingly and dynamically. The design of such an algorithm is a work in progress by the 

authors of this paper. In this research, the cache lines selected are locked for the entire execution 

of the application on the VM, for the sake of simplicity. 

5.4 Victim Buffer  

A victim buffer cache is a small cache used to hold the recently evicted cache lines. The victim 

buffer cache proposed in this research is a small piece of cache that stores blocks of data that are 

evicted from the main hypervisor cache. The victim buffer cache is usually very small when 

compared to the main cache. The main purpose of using a VB cache is to cache the blocks of 

data that are evicted from the main cache, so that, next time the evicted blocks are needed by an 
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application, they are moved into the main cache faster and a disk access can be avoided. In this 

research, every active VM‟s hypervisor cache assigned to a VM is given a small victim buffer 

cache. In this research, the victim buffer cache is abstracted from the secondary level cache. This 

means that, a small part of the hypervisor cache is used as a victim buffer cache. Hence, the 

victim buffer cache is still a part of the secondary cache of the physical server.  

5.5 Updated Cache Replacement Algorithm 

Cache replacement policies play an important role in the performance of caching. A good 

cache replacement policy preserves the frequently accessed blocks in the cache, while evicting 

the unnecessary blocks. In this research, the authors propose a probability based cache 

replacement algorithm that preserves those blocks of data, whose probability of access by 

applications running on the VMs is higher than the threshold and evicts those blocks of data 

whose probability of access is lesser than the threshold. The probability based cache replacement 

algorithm proposed in the research is effective and results show that the performance is better 

than the LRU replacement algorithm. The algorithm and its working are described below. 

The authors implemented a probability based cache replacement policy and analyzed the 

performance of hypervisor caching. In the probability based cache replacement, when an 

application is run on the VM, an access history table is generated for the blocks of data in the 

cache. The history table contains the block number and the number of accesses to that block in 

the hypervisor cache. Based on the number of accesses, a threshold value is calculated for the 

probability of access of the block. Hence, once the workload starts running, the cache is 

monitored for some time to generate the access history table. Once the table is generated, the 

probability of current access to the cache block is calculated. The current probability is compared 

with the history probability and if the current probability of access is lesser than the history 
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probability of access to the cache block, then the block is evicted from the cache. If not, the 

cache block is not evicted. The advantage of using probability based cache replacement is that 

the blocks that have a high probability of access are retained in the cache and hence, the number 

of cache hits increase. This in turn increases the effectiveness of cache locking. 
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CHAPTER 6 

SIMULATION DETAILS 

 

 

 In this section, the authors describe the simulation details and implementation of the dynamic 

caching and locking mechanism on the hypervisor cache. The section also describes how the 

miss table and victim buffer cache are implemented. 

6.1 Dynamic Caching Simulation  

 The model developed in this research was used to evaluate the performance of virtual servers 

when dynamic caching using thin provisioning is used. The model was evaluated with the 

dynamic caching and without dynamic caching and the experimental results show that dynamic 

caching using thin provisioning reduces the response time of the server and also leads to efficient 

cache utilization. In order to evaluate the dynamic cache allocation model, virtual box hypervisor 

was installed on a host PC and 3 virtual servers were created. The specifications of the host PC 

are as follows: 

  Sony Vaio with Intel® Core™ i5 M460  

 2.53GHz processor  

 4GB RAM  

 Windows 7 Operating System (OS) and will be the Host for the three Virtual Machines 

The specifications of the three virtual machines created are as follows: 

 20GB of assigned hard disk  

 1 GB of RAM allocated for each VM 

 Windows Vista Professional OS 
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Each of the VMs act as dedicated servers. The servers in consideration are File server, Web 

server and Database server. FileZilla software has been used in both the server and the client for 

the file server VM. MySQL software was used as the database management tool on the database 

server. Due to the constraints of creating a web server for a localized environment, the authors 

had to resort to IOmeter software to generate the required load for a web server. 

The reasons for considering these servers as candidates for the experiments is because, the 

workloads on them depict varying percentages of reads and writes and different levels of cache 

utilization. Hence, the proposed model can be better analyzed for different workloads.  Cache 

performance of each VM is measured for different amounts of loads and parameters. Generally 

caching is done at various levels, be it the processor cache, RAM or the database buffer. For the 

sake of experiments in this research, the authors consider caching on the VMs and see how the 

performance varies for different servers. 

Windows Task Manager and performance monitor are the tools being used for the 

measurement of cache utilization by a process at any given point in time. The cache utilization 

and response time for the servers are recorded for the three servers. Cache performance for a file 

server is measured while there is a file transaction happening between the server and the client. 

Similarly, for a database server, cache performance is measured when the server is processing 

database queries for different request sizes of data. For a web server, the cache performance is 

measured for different IOmeter loads. The test files that are being used are of uniform sizes 

across the three servers. 

The requests from each of the servers go through the hypervisor through which the cache is 

controlled. The algorithm proposed in this research works on controlling the dynamic 

provisioning of the cache while maintaining the optimum performance metrics which are pre-
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determined and are as per the industry standards. The proposed model is evaluated for the 

workloads on different servers and the response time and cache utilization are evaluated. The 

results are promising and are evaluated for each parameter separately. 

6.2 Installation of Hypervisor and Virtual Machines 

For the purpose of this research, Oracle‟s virtual box hypervisor was used to host the virtual 

machines. Three virtual machines were created and CentOS operating system was installed on 

them. Four different workloads were run on the virtual machines to collect traces of the memory 

loads and stores. The details on the workloads used and memory trace generation are explained 

in the subsequent sections. 

6.3 Workloads Used 

Workloads used in the research are primarily used to generate memory traces on the VM, 

which consists of details of the memory addresses where the data is read from and stored into. 

Four different types of workloads were run on the VMs and they are as follows: 
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1)  Array Sort:An array sort program written in C consisting of lots of sorting operations 

constituted the first type of workload. The array sort program involves a lot of memory swap in 

and swap out, which further aids in generating a good memory trace and can help evaluate the 

locking mechanism well. 

2)  Gzip:TheGzip utility is used to compress the files and is used as a second workload on the 

virtual machine. The compression operation mainly involves a lot of write operations because 

compression converts the original file to a compressed version of the file (file.gz). This workload 

was chosen because it consists of more writes than reads and the proposed locking algorithm can 

be evaluated for similar such workloads. 

3)  Fast Fourier Transforms:Fast Fourier Transforms are used widely in the area of 

mathematics and involves computations. FFT is used to compute discrete Fourier transform and 

its inverse. The advantage of using the FFT is, the same mathematical computation can be done 

in lesser time which otherwise would have taken more time.  The Fast Fourier Transform was 

chosen so that the locking mechanism can be evaluated for computational workload. 

4)  MP3:The MP3 workloadrunning on the VMs is a streaming feature where a music file is 

continuously read from the memory. The MP3 workload involves a lot of I/Os and a lot of read 

operations. The locking algorithm is evaluated for the streaming workload involving a lot of 

reads. 

6.4 Obtaining Memory Traces of the VMs 

Since the data block addresses that incur cache misses need to be recorded on the miss table, it 

is necessary to obtain the memory traces of the virtual machines with the above workloads 

running on them. Valgrind and Lackey tool was used to obtain memory traces of the applications 

running on the VMs [22]. The output of Valgrind is a file that contains a list of memory data 
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references made by the application running on the VM. The output of Valgrind consists of all the 

data addresses that are loaded, stored and modified. The miss table consists of data addresses that 

incur misses and hence, the authors had to filter the load values since load values correspond to 

addresses that incur misses. A Perl script was written to filter the load values from the output of 

Valgrind. 

The cache performance for the three types of workloads discussed above with and without 

cache locking, with and without a victim buffer cache were evaluated. Experimental results show 

that cache locking can provide benefits in reducing the percentage of hypervisor cache misses 

and the response time for the applications running on the VMs. 

6.5 Assumptions 

This research makes the following assumptions: 

 

1) The hypervisor used for server virtualization is not a bare metal hypervisor, but, a para 

virtualized one. In a para virtualized setup, the VMs are unaware that they are virtualized 

and assume that they are not sharing the underlying resources. 

2) The workloads evaluated were run on a single VM and not on multiple VMs 

simultaneously.  

3) The traces obtained were for the duration of running any type of workload on a single 

VM. 

4) The cache locking proposed is for data cache and not the instruction cache 

5) All the VMs are assumed to have same amounts of memory and cache 

6) Simulations were conducted on a 64 bit machine. Results may vary for a 32 bit 

architecture 

7) The VB cache is designed to hold 12 blocks of data (maximum). 
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6.6 Input/Output Parameters 

The simulations were conducted for different cache sizes with several configuration features 

such as: Cache locking enabled, cache locking disabled, VB Cache enabled, VB cache disabled, 

probability based cache replacement enabled/disabled and so on. The input parameters were the 

cache size, associativity and the output parameter was the miss ratio. Tables4,5,6 show some of 

these parameters and their output. Table 4 shows the miss percentage with and without cache 

locking for different cache sizes.  

Table 4: Varying Cache Size with and w/o Locking 

Cache Size (KB) Miss Percentage with 

Locking 

Miss Percentage w/o 

Locking 

% Reduction in Miss 

Rate 

2 15.76 17.37 1.61 

4 10.5 12.02 1.52 

8 4.9 5.7 0.8 

16 3 3.8 0.8 

32 1.7 2 0.3 

64 1.3 1.5 0.2 

 

Table 5: Varying Cache Size with and w/o Locking in the presence of a Victim Buffer 

Cache Size (KB) Miss Percentage with 

Locking 

Miss Percentage w/o 

Locking 

% Reduction in Miss 

Rate 

2 14.39 

 

17.37 

 

2.98 

 

4 11 

 

12.02 

 

1.02 

 

8 5.3 

 

5.7 

 

0.4 

 

16 3.3 

 

3.8 

 

0.5 

 

32 1.6 

 

2 

 

0.4 

 

64 1.3 

 

1.5 

 

0.2 
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Table 5 shows the miss percentage with and without cache locking in the presence of a victim 

buffer and Table 6 shows the miss percentage with different associativities. 

 

Table 6: Varying Associativity with and w/o Locking 
 

Associativity Miss Percentage with 

Locking 

Miss Percentage w/o 

Locking 

% Reduction in Miss 

Rate 

2 15.76 

 

17.37 

 

1.61 

 

4 10.5 

 

12.02 

 

1.52 

 

8 5.5 

 

5.7 

 

0.2 

 

16 4.4 

 

5.1 

 

0.7 

 

 

 

The values in the above tables are used during simulations for the array sort workload. 

Similarly, the cache sizes and associativities were varied for different workloads and the results 

were recorded. 
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CHAPTER 7 

RESULTS AND DISCUSSION 

 

This section explains the results obtained as a result of the proposed dynamic caching, cache 

locking mechanism and implementation of victim buffer cache and the probability based 

hypervisor cache replacement algorithm. The proposed techniques are evaluated for different 

workloads with different cache configurations and the results look promising in terms of 

reducing the number of cache misses and reducing the data access latency by the VMs. The 

proposed techniques in this research are evaluated with cache parameters such as cache size, 

associativity. Cache size and associativity are the two main parameters that directly affect the 

performance of caching.  

7.1 Evaluation of Cache Utilization with respect toFileSize 

 The thin provision model is designed to dynamically allocate the cache and also use the cache 

efficiently and effectively among the VMs. The authors do not consider the caching policy in this 

aspect of their calculation. Most caches usually have the LRU cache replacement policy in place. 

For the first part of the experimentation, the authors consider the case of static cache allocation. 

In the static allocation technique, every VM gets a definite and fixed amount of cache 

irrespective of its workload. If the cache becomes full, evictions start taking place based on the 

cache replacement policy and new blocks are brought into the cache. 

 Figure 12 shows the utilization of the cache as the request block size varies. Eventually the 

cache in all the three servers reaches its maximum limit. We can see that the database server 

takes the longest to process the workload, which is the same across the three servers in an 

equally distributed, statically allocated cache scenario. The database server, web server and the 

file server take 80, 28 and 8.5 minutes respectively to process a gradually incrementing workload 
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for a cache capacity of 825 MB. The drawback lies in the fact that, as the workload increased, 

the cache reached its maximum capacity. This leads to a common cache miss called capacity 

miss, where in, the cache miss percentage increases due to the fact that a lot of data has to be 

swapped in and swapped out. In such a case, the cache becomes conservative, thereby decreasing 

the cache performance and affecting the overall throughput. 

 The thin provisioning model was applied to the virtual servers and the cache was allocated 

dynamically to the VMs according to the model. With the thin provisioning model in place, it 

can be observed that the cache utilization is optimal and for the same file size, the cache is not 

limited. Another interesting thing to observe is that, there is no converging point for the thin 

provisioning model. This is because, cache is allocated on the go, on a need per basis and the 

VM does not run out of cache space quickly. Fig 13 shows the improvement achieved by this 

algorithm. 

 

Figure 12: Cache Utilization with Static Caching 
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Figure 13: Cache Utilization with Dynamic Caching 

7.2 Evaluation of Response Times 

Response time can be considered as the time interval between the initiation of request by the 

user and the time at which it will be serviced. Response time is a major factor that decides the 

performance of any system. A lot of parameters are responsible for affecting the response time, 

of  which, the cache and processor speed are the most significant ones. When cache is statically 

allocated, the file server took only 8.5 minutes to process the workload, whereas, the database 

server took 80 minutes for the same. This clearly indicates that the cache at the file server is 

lying dormant while that of the database server was exhausted.  Similarly while the database 

server was processing a smaller block of data, file server was almost exhausted of its cache 

resources. Therefore, a balance has to be achieved among the three servers so that the overall 

performance of caching and the performance of the entire system improves. 
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Figure14 shows that the dynamic allocation of the cache improves the response time of the 

server, by adequately balancing the cache among the three servers. Dynamic allocation also 

helps reduce the number of capacity misses because, cache is allocated to the VM when there is a 

need for it, unless there is no cache space to allocate. Hence, the chance that a VM might run out 

of cache quickly is thinner than otherwise. 

Database server with thin provisioning has shown a remarkable decrease of 25% in the 

response time, file server has shown a 17% decrease and the web server has shown a 14% 

reduction in the response time when dynamic caching was in place. 

 

Figure 14: Response Time Comparison with Static and Dynamic Caching 

7.3 Evaluation of Cache Utilization with respect to Time 

The performance of the three servers considered varied considerably when they were tested 

with the thin provision cache allocation model. Figures 15,16 and 17 show the cache utilization 

with respect to time for statically allocated and dynamically allocated caching mechanisms for 

0

10

20

30

40

50

60

70

80

90

File Server Web Server Database 

Server

Execution 

Time (min) Exec time Static

Exec time Dynamic



 

58 

 

the three servers. It can be seen that the file server, database server and the web server reach the 

maximum cache capacity much sooner in the static cache technique when compared to the 

dynamic allocation model. This is because, when the cache becomes full in the dynamic model, 

more cache can be allocated based on the availability of extra cache space. Hence, the dynamic 

caching using thin provisioning can help improve the performance of caching and the entire 

system. 

 

Figure 15: Cache Utilization w.r.t Time in File Server 

As seen in the above Figure 15, the cache utilization for the file server increases with the 

dynamic caching in place, when compared to the cache utilization with static caching. The web 

server and database server show similar trends and are as shown in Figures 16 and 17 

respectively. 
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Figure 16: Utilization w.r.t Time in Web Server 

 

Figure 17: Utilization w.r.t Time in Database Server 
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As seen above, the dynamic cache allocation to virtual servers are very beneficial. In that, they 

not only help to improve the performance of the servers, but also make efficient utilization of an 

expensive resource such as a cache. 

7.4 Evaluation of Cache Miss Ratio With and Without Hypervisor Cache Locking  

7.4.1 Cache Miss Percentage with respect to Cache Size 

The 4 workloads considered, namely, Array sort, FFT, Gzip and MP3 were evaluated for the 

percentage of cache misses when locking was in place and without cache locking in place. A 5% 

cache locking was initially used to evaluate the strategy. Later, the percentage of cache locking 

was varied from 5% upto 30% and the cache performance was recorded and the results of this 

are shown later. Figures 18, 19, 20 and 21 show the miss percentages for the 4 workloads when 

the cache size was varied from 2KB to 64 KB. The authors observed that implementation of 

cache locking in the hypervisor cache reduced the miss rate by about 1.7% for the array sort 

workload and by about 0.8% for the Gzip workloads when the cache sizes were 2 KB and 4 KB 

respectively, for a 5% cache lock. However, as the cache size increased, cache locking did not 

show considerable improvement in performance.  

7.4.2 Cache Miss Percentage with respect to Associativity 

The performance of the four workloads was evaluated with and without cache locking by 

varying the associativity of the hypervisor cache. A cache size of 4KB was used while varying 

the associativity, since a cache size of 4KB resulted in optimal performance as shown in the 

previous section. Associativity refers to the way the main memory blocks are mapped to the 

cache. A set associative cache was used for the purpose of this research. The associativity of the 

hypervisor cache was varied in terms of 2,4,8 and16 and the miss percentage for the various 

workloads was recorded.  Figures 22, 23, 24 and 25 show the performance of the hypervisor 
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cache with respect to associativity for the four workloads used. As seen from the Figure 18, the 

array sort application resulted in 1.6% reduction in the number of cache misses for an 

associativity of 2, FFT showed a 0.6% reduction for an associativity of 4, Gzip showed a 

reduction of 0.8% in the miss percentage for an associativity of 4 and MP3 showed a 0.6% 

reduction in the percentage of cache misses with an associativity of 2 when cache locking was 

implemented. As the associativity increased, cache locking showed the same performance as no 

locking. An associativity of 4 for the locked hypervisor cache resulted in lesser number of cache 

misses for a majority of the workloads used. 
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Figure 18:Miss Percentage for Array Sort 

 

Since array sort consists of a lot of eviction operations, we can see from Figure 18 that cache 

locking does help in decreasing the number of cache misses. 
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Figure 19:Miss Percentage for FFT 

 

FFT workload is compute intensive and hence shows very little improvement in cache misses 

with cache locking. This is as shown in Figure 19. 
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Figure 20:Miss Percentage for Gzip 
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Gzip workload is write intensive and shows some improvement with cache locking, but not 

considerable. This is because, the cache locking technique proposed in this research is 

implemented in the read cache, not in the write cache. Figure 20 shows this impact. 
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Figure 21:Miss Percentage for MP3 

 

As seen in Figure 21, MP3 workload did not show considerable improvement with the cache 

locking technique. This is because, MP3 is a sequential workload, hence, the probability that a 

previous data block again in future is very less. 
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Figure 22: Miss Percentage for Array Sortwrt Associativity 

A seen in the above Figure 22, an associativity of 2 benefits the cache locking technique. 
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Figure 23: Miss Percentage for FFT 

Unlike array sort, the FFT workload shows an advantage with the cache locking technique 

when the associativity is 4. This is seen in Figure 23. 
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Figure 24: Miss Percentage for Gzip 

As seen in Figure 24, Gzip workload shows a decrease in the cache miss percentage when the 

associativity is set to 8 or 16, but, when the associativity is 2 or 4, cache locking does not show 

any improvement. 
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Figure 25: Miss Percentage for MP3 
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As seen in Figure 25, MP3 workload shows an improvement in the cache miss percentage 

when the associativity is 4. 

As seen in the above figures, different workloads show benefits with the cache locking 

technique in place with different associativities. One needs to used an optimal value of 

associativity while designing the cache, depending on the types of workloads used. 

7.5 Evaluation of Cache Miss Percentage with and without Cache Locking and VB Cache 

In this section, the authors introduce a victim buffer cache on the hypervisor in addition to the 

main hypervisor cache. The victim buffer cache is a very small cache and holds the blocks of 

data that are evicted from the main cache. The cache miss percentage is recorded for the 

hypervisor with cache locking and without cache locking in the presence of a victim buffer 

cache. 

7.5.1 Cache miss percentage with respect to Cache Size 

When the victim buffer cache is added, the probability of finding a block of data in the cache 

increases. The workloads used in this research were evaluated with the caching locking 

technique and the presence of a victim buffer cache. When cache locking was in place and in the 

presence of a victim buffer cache, the array sort application showed a 3% decrease in the number 

of cache misses for a 2KB cache, the FFT showed a 0.9% reduction in the number of cache 

misses for a 4 KB cache, Gzip showed a 1.65% reduction for a 4 KB cache and MP3 showed a 

2.3% reduction in the number of cache misses for a 4KB cache. As the cache size increased, 

cache locking did not show much of a performance improvement when compared to no locking. 

Figures 26, 27, 28 and 29 show this variation. 
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Figure 26:Miss Percentage for Array Sort 

 

As seen from Figure 26, using a VB cache further improves the cache miss percentage in the 

array sort workload. 
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Figure 27:Miss Percentage for FFT 

 

From Figure 27, we can see that the FFT workload does show a little bit of improvement in the 

presence of a VB cache when compared to no VB cache, for the same reasons stated before. 
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Figure 28 :Miss Percentage for Gzip 

 

As seen in Figure 28, Gzip workload decreases the percentage of cache miss by 2% when the 

VB cache is used. 
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Figure 29:Miss Percentage for MP3 

 

MP3 workload shows a small improvement in the cache miss percentage in the presence of a 

VB cache. This is shown in the Figure 29. 
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7.5.2 Cache Miss Percentage with respect to Associativity 

When the victim buffer cache was present, the associativity of the hypervisor cache was varied 

to see the effect on cache locking. A cache size of 4KB was used for the experimentation. 

Figures 30, 31, 32 and 33 show the effect of varying associativity on the miss percentage. As 

seen from the figure 5, the presence of a victim buffer cache and an associativity of 2, 4, reduces 

the miss percentage by 3% in the array sort workload, 1% in the FFT, 1.7% in Gzip and 2.3% in 

the MP3 workload.  
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Figure 30:Miss Percentage for Array Sort 

 

The authors of this research wanted to see what effect associativity has in the presence of a VB 

cache. As seen from Figure 30, the array sort workload showed benefits with cache locking when 

the associativity was set to 2. 
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Figure 31: Miss Percentage for FFT 

 

The FFT workload showed an improvement when the associativity was set to 4 as seen in Figure 

31. 
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Figure 32: Miss Percentage for Gzip 
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Gzip workload showed the same performance as not using a VB cache even when VB cache 

was used. An associativity of 8 and 16 showed a considerable decrease in the number of cache 

misses. 

0

5

10

15

20

25

2 4 8 16

M
is

s
 P

e
r
c
e
n

ta
g

e

Associativity

MP3 without

Locking

MP3 with Locking

and with VB Cache

 
Figure 33:Miss Percentage for MP3 

 

The performance showed by MP3 workload with an associativity of 4 and the presence of a 

VB cache is the same as the performance in the absence of the VB cache.This is shown in Figure 

33. 

 

7.6 Evaluation of Response Times with and without Cache Locking 

When the application running on a virtual server encounters a cache hit, the required data block 

is fetched from the cache. Hence, by increasing the number of cache hits, the application 

response time can be reduced. If the required data block is not found in the cache, then cache 

miss occurs and results in an I/O request. I/O requests fetch the desired data from an external 

disk array connected to the physical server through protocols such as Fibre Channel (FC), SAS, 

iSCSI etc. The time needed for an I/O request is given by equation 3 [12]: 
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𝑇𝐼/𝑂 = 𝑀𝐶𝑀 +   1 − 𝑀 𝐶𝐻 ≈  𝑀𝐶𝑀…………………………… (3) 

 

Where „M‟ is the hypervisor cache miss ratio, CM is the cost of a cache miss, CH is the cost of a 

cache hit. The cost of a cache miss is the time taken to fetch the desired block of data from the 

disk array. Hence, CH can be written as shown in equation 4: 

 

𝐶𝐻 = 2𝑇𝐹𝐶 +   𝑇𝑆𝐸𝐸𝐾 + 𝑇𝑅𝑂𝑇 +  𝑇𝑐𝑐……………………………. (4) 

 

Where𝑇𝐹𝐶is the transmission delay on the Fiber Channel link, 𝑇𝑆𝐸𝐸𝐾 is the seek time on the 

disk,𝑇𝑅𝑂𝑇is the rotational latency and 𝑇𝑐𝑐  is the time to search the controller cache on the disk 

array for the required data block. If the block is found in the controller cache, then the seek time 

and rotational latency are not involved and is equal to 0. 

Figure 34 shows the total I/O response time without cache locking, with cache locking and 

with cache locking in the presence of a VB cache. Total I/O response time is the total time taken 

to access the desired data blocks from the disk array when the data request encounters a cache 

miss on the VM. As seen from Figures 34, 35,36 and 37, cache locking with VB cache decreases 

the total response time when compared to an unlocked cache and cache locking without a VB 

cache. The response time saving vary for the different workloads for different cache sizes. 
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Figure 34:I/O Response time for Array Sort 

 

As seen from Figure 34, the response time varies with the cache size. For the array sort 

workload, a cache size of 2 KB shows the greatest benefit of using cache locking and VB cache 

in terms of reducing the I/O response time. 

 

0

5

10

15

20

25

2KB 4KB 8KB 16KB 32KB 64KB

T
o
ta

l 
I/

O
 R

e
s
p
o
n

s
e
 
T

im
e
 
(s

e
c
)

Cache Size

Response Time w/o Locking

(FFT)

Response Time with Locking

(FFT)

Response Time with Cache

Locking and VB Cache

(FFT)

 
Figure 35:I/O Response time for FFT 
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As seen from the above Figure 35, for the FFT workload, a cache size of 4KB shows the 

greatest benefit of reducing the I/O response time in the presence of a VB cache and cache 

locking. 
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Figure 36:I/O Response time for Gzip 

 

For the gzip workload, a cache size of 4KB proves beneficial in alleviating the I/O response 

time. This is seen in Figure 36. 
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Figure 37:I/O Response time for MP3 
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As seen in Figure 37, a cache size of 4KB helps the MP3 workload as well, in reducing the I/O 

response time. 

7.7 Cache Hit Percentage for Varying Percentages of Cache Lock 

The percentage of cache locked plays an important role in determining the cache performance, 

in addition to the other factors mentioned above. For some workloads, a higher percentage of 

cache lock leads to better performance, while in some other workloads, a lower percentage of 

cache lock leads to better performance. A hypervisor cache size of 4KB was used and the 

percentage of cache lock was varied for the four workloads from 5%-30% with and without a VB 

cache and the results were analyzed. The results obtained in the previous sections were obtained 

with a 5% cache lock and hence, the benefits were not clearly visible in terms of the cache hit 

percentage. In this section, the percentage of locking was varied and the cache hit percentage for 

varying percentages of cache lock was recorded as shown in Figures 38, 39, 40 and 41.  

A cache size of 4KB was found to be optimal and gave good performance results. Hence, a 

4KB cache was selected for locking purposes. In the presence of a VB cache, the array sort 

workload showed a highest number of hits when the cache is 15% locked, FFT and Gzip showed 

the highest number of hits when the cache is 30% locked and MP3 showed the highest number of 

hits when the cache is 5% locked. This analysis helps to further develop a dynamic locking 

strategy for the hypervisor caches. As mentioned earlier, a static locking strategy was 

implemented in this research where certain cache lines are locked for the entire execution of the 

workload.  
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Figure38:Cache Hit Percentage for Array Sort 

 

When 15% of the cache is locked, the array sort shows an increase in the number of cache hits, 

as seen in Figure 38. 
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Figure 39: Cache Hit Percentage for FFT 

 

A 30% cache lock, shows an improvement in the number of cache hits for the FFT workload as 

seen in Figure 39. 
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Figure 40:Cache Hit Percentage for Gzip 

 

As seen in Figure 40, a 30% cache lock shows the greatest benefit of increasing the number of 

cache hits for the Gzip workload. 

 

77.5

78

78.5

79

79.5

80

80.5

81

81.5

0 5 10 15 20 25 30

C
a
c
h

e
 H

it
 P

e
r
c
e
n

ta
g

e

Percentage of Cache Locked

Cache Hit

Percentage for

Locked Cache (MP3)

Cache Hit

Percentage for

Locked Cache + VB

Cache (MP3)

 
Figure 41:Cache Hit Percentage for MP3 

 

A 5% cache lock has showed an increase in the number of cache hits for the MP3 workload as 

seen in Figure 41. 



 

78 

 

 

7.8 Probability Based Cache Replacement 

In the results obtained in the previous sections, the Least Recently Used (LRU) cache 

replacement policy was used. In the LRU scheme, a block of data in the cache that was used well 

past in time is evicted out of the cache. In order to determine which blocks are recently used, 

counters are maintained and are updated frequently. Experimental results showed that, a 

probability based cache replacement in the hypervisor caches reduces the number of misses 

further, for optimal cache size of 2KB and 4KB. Figures42, 43, 44 and 45 show the number of 

misses when LRU is used when compared with the probability based cache replacement 

algorithm. As seen from the results, a probability based cache replacement algorithm 

outperforms the traditional LRU algorithm since, it can predict a block that will be less 

frequently used. Such a block with a low probability of access is not required to be cached and is 

evicted from the hypervisor cache.  
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Figure 42:Number of Misses for Array Sort 
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As seen from Figure 42, a 2KB cache shows a reduction in the number of cache misses in the 

presence of a VB cache, cache locking and probability based cache replacement algorithm. 
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Figure 43:Number of Misses for FFT 

 

A cache size of 4 KB helps with the FFT workload in the presence of a VB cache, probability 

based cache replacement algorithm and cache locking. This is seen in Figure 43. 
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Figure 44:Number of Misses for Gzip 
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A 2KB cache works best for the Gzip workload as seen in Figure 44. 
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Figure 45:Number of Misses for MP3 

 

A cache size of 2KB has proven beneficial for the MP3 workload as seen in Figure 45. 

 

7.9 Discussion of Results 

This section discusses the cache locking performance results obtained for the hypervisor cache 

when the four different workloads were run on the virtual servers. Apart from what is obvious 

and already discussed in the previous sections, there are a few general and interesting 

observations that need to be noted. The hypervisor cache locking technique proposed in this 

research tries to achieve a balance in optimizing the cache size while trying to improve the 

performance of caching using a relatively smaller cache size. A smaller cache is less expensive 

when compared to a larger cache and is ideal to be used on hypervisors. An optimal sized cache 

and lower associativity reduces the overhead on the hypervisor in maintaining the cache and the 

search time inside the cache is minimized. Experimental results show that cache locking 

produces optimal results when a hypervisor cache size of 2 KB - 4 KB is used with an 

associativity of 2, 4 for the system in place. Furthermore, the experiments performed in this 
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research show that different workloads show variation in performance for different percentages 

of cache locked. For most or all of the workloads considered in the research, a cache lock 

percentage in the range of 5% - 30% shows a drastic improvement in the cache hit rate. 

It can also be observed that, the presence of a VB cache further improves the performance of 

the virtualized system in terms of reducing the number of misses and decreasing the I/O response 

time. Hence, having a VB cache on the hypervisor can result in good and noticeable performance 

improvements.  

Overall, hypervisor cache locking technique has shown good results in reducing the miss rate 

when an optimal percentage of cache is locked. Yet another important benefit of cache locking 

lies in the fact that the total I/O response time for an application running on the virtual server is 

reduced. Even a small reduction in the I/O response time is very significant in a storage area 

network, since external disk accesses can be very expensive and may degrade the performance if 

not addressed. Hence, an optimal hypervisor cache size of 2 KB – 4KB, an associativity of 2, 4 

and a cache lock percentage between 5% - 30% can improve the performance of hypervisor 

cache in the presence of a VB cache for the configurations used in this research. Results also 

show that when a probability based cache replacement algorithm is used as opposed to the 

traditional LRU, the number of misses can be further reduced, resulting in a better cache 

performance. The above results were recorded on a 64-bit processor system. The results may 

vary to some extent on a 32-bit machine. 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

8.1 Conclusion 

In this research, the authors first proposed a hypervisor level cache in a virtual machine 

environment and later proposed dynamic caching in hypervisor caches. The authors then studied 

the performance of cache locking in hypervisor caches. Static caching in virtual machines can 

lead to poor utilization of the cache. Dynamic caching proposed in this technique has shown 

great improvements in the cache efficiency. Cache locking is a technique used to improve the 

performance of caching by locking some cache lines that could potentially decrease the number 

of cache misses. A miss table was implemented to determine the cache lines that need to be 

locked. The locked cache lines are essentially those blocks of data that incur the most number of 

misses. This is because, the cache lines that incur the most number of misses are the blocks that 

are most needed by the applications running on the VMs. The performance of caching when 

locking is implemented is studied for the parameters – miss percentage and I/O response time. 

Later, a victim buffer cache is introduced and the performance of cache locking is studied. 

Results show that cache locking results in a marginal decrease in the miss ratio when about 5% 

of the cache is locked. However, as the percentage of locking increases to about 30%, the 

number of cache misses with locking and in the presence of VB cache is considerably decreased. 

 In the presence of VB cache, cache locking results in a considerable decrease in the total I/O 

response time. A decrease in the I/O response time is of a lot of significance in a Storage Area 

Network setup where data blocks are accessed from external disk arrays. Also, when a 

probability based cache replacement algorithm is used as opposed to the traditional LRU, the 

number of misses can be further reduced, resulting in a better cache performance. The authors 

conclude by saying that cache locking in hypervisor caches aims to improve the performance of 
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caching by using an optimal cache size. A smaller cache is favorable and less expensive than a 

larger cache. Hence, cache locking with an optimal percentage of lock is very effective in 

improving the performance of caching and also alleviating the total I/O response time. 

8.2 Future Work 

The cache locking percentage used in this research is set manually to analyze the effect of the 

percentage of the cache lock on the workloads. However, it is desirable to decipher the optimal 

percentage of cache lock automatically using an algorithm. This is left as a future work and 

needs further investigation. The probability based cache replacement algorithm could lead to 

erroneous results and is chance based. It is also an overhead to keep track of the number of 

accesses of a data block. Hence, a better cache replacement algorithm needs to be developed. 

This is also left as a future work.  
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APPENDIX  

KEY TERMINOLOGIES  

 

Storage Area Network:A network of servers and storage where the storage is arranged at the 

back end as an array and connected to the servers in the front end. 

Virtualization: The method of abstracting an underlying entity. 

Server Virtualization: A method of virtualization wherein the server OS is abstracted and 

installed as many virtual servers on a physical server. 

Cache:  A piece of hardware/software that is closer to the applications that the memory and 

stores the frequently accessed data. 

Instruction Cache: A cache that stores frequently accessed instructions. 

Data Cache:  A cache that stores the frequently accessed data blocks. 

Cache Hits: The process of finding the data required by the applications in the cache. 

Cache Misses: The process of not being able to find the required data by applications in the 

cache. 

Hypervisor: The software that sits on top of the server OS and makes server virtualization 

possible. 

Dynamic Caching: The technique of allocating cache dynamically and on-the-go. 

Thin Provisioning: The technique of allocating less cache than needed and later allocate cache 

on a need basis. 

I/O Response Time: The time needed to fetch the required data by applications from the 

cache/memory/hard disk. 
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APPENDIX (continued) 

 

Cache Locking: The technique of locking certain cache lines, so that, those lines cannot be 

replaced. 

Associativity: The technique that decides how the data blocks are mapped from the memory to 

the cache. 
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