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ABSTRACT 

 

 

The research activity leading to this dissertation focused on the boundary treatment for 

computational fluid dynamics problems, especially those with unbounded domains. This 

involved a rigorous literature survey of boundary treatment techniques. The primary interest of 

this effort was on one of the emerging concepts of nonreflecting boundary treatment for 

numerical schemes, namely the perfectly matched layer (PML) absorbing technique. The need 

for an appropriate space-time transformation for a stable PML emphasized in previous efforts 

was the starting point for this developmental research activity. Based on this, unsplit PML 

equations were constructed for Euler equations linearized over a uniform mean flow with a 

proper space-time transformation. Dispersion analysis was carried out to demonstrate the 

effectiveness of the space-time transformation in terms of stability of the PML formulation. 

Numerous numerical simulations were carried out to investigate the stability of the PML 

formulation for long-term integration of various combinations of time-step size and PML 

parameters. The major focus of this research was to extend the construction of the PML for 

nonlinear Euler equations in a generalized coordinate system to widen its application in uniform 

and nonuniform grid structures. Emphasis was placed on the application of conventional 

numerical schemes without employing any form of artificial dissipation or numerical filtering. 

With this objective in mind, the split-form PML equations for nonlinear Euler equations were 

constructed. Various numerical simulations were carried out to validate the PML formulation 

and demonstrate its effectiveness as an absorbing boundary condition.  
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CHAPTER 1 

 

INTRODUCTION 

 

 The potential of computational fluid dynamics (CFD) techniques has evolved into many 

dimensions in the past few decades, with tremendous technological growth in areas of numerical 

computing. It is well known that a numerical simulation usually requires truncation of the 

physical domain and introduction of an artificial boundary due to the limitation of a finite 

computational domain. Also, one must specify appropriate initial and boundary conditions to 

obtain a unique and accurate solution for a system of partial differential equations (PDE). This is 

a challenging and vital issue, since the imposed boundary conditions can seriously impact the 

computed solution. The boundary conditions implemented on artificial boundaries are very 

critical to successful numerical simulations.  If these artificial boundaries are not transparent to 

the out-going disturbances, then reflections of large spurious waves from these artificial 

boundaries will contaminate the solution in the interior domain, which is certainly undesirable. 

Therefore, the truncated boundaries should be nonreflecting in order to obtain time-accurate 

solutions. A detailed discussion on spurious waves and the artifacts of numerical discretization 

can be found in the review of computational aeroacoustics (CAA) by Lele [1].  There is 

extensive literature on the nonreflecting boundary treatment, and a variety of methods has been 

proposed by several researchers in order to treat many computational problems [1-4]. These 

include out-flow boundary conditions based on characteristics, radiation boundary conditions 

based on far-field asymptotic solutions, and the absorbing zone or buffer layer technique. 

Hoffmann and Chiang [5] group these boundary treatments into three major categories: 

simple extrapolation schemes, methods based on characteristics, and artificial/buffer zone 

techniques. The simple extrapolation scheme requires a larger computational domain for 



2 

 

reflection-free solutions, thus leading to increased computational effort and cost [6, 7]. Methods 

based on characteristics of multidimensional flow involve complicated procedures and make the 

boundary treatment difficult.  

Tam [3] reviewed, in detail, the advances in numerical boundary conditions for CAA. 

Nizampatnam [6] and Nizampatnam et al. [8] carried out extensive investigation work on 

boundary conditions for computational aeroacoustics and development of the perfectly matched 

layer (PML) for aeroacoustic applications in time frequency domains. The development and 

application of the PML technique that falls into the category of an absorbing layer or buffer zone 

in a generalized coordinate system is the central focus of this research. The concept of PML was 

originally proposed by Berenger [9] for solving electromagnetic problems involving Maxwell 

equations in unbounded domains. The basic strategy of the PML absorbing technique is to 

introduce additional grid points, or layers, to surround the truncated physical domain so that the 

out-going disturbances are attenuated in the added zones. Inspired by the success of Berenger’s 

PML method, Hu extended the PML technique to an aeroacoustic problem to solve linearized 

Euler equations (LEEs) for perturbation [10, 11]. A detailed literature review on the PML 

absorbing boundary condition has been provided in the work of Velu [7]. The originally 

proposed split-form PML equations was shown to be only weakly well-posed by Abarbanel and 

Gottlieb [12] through their detailed mathematical analysis of electromagnetic PML equations. 

Hesthaven [13], through his similarity transformation analysis, showed that both original unsplit 

and split-form equations proposed by Hu [10, 11] lost the symmetry and were weakly well-

posed. A filtering technique was used by Hu [11] to overcome the instability. However, it is not 

an easy process to know a priori when one should apply filtering in a particular application. Tam 

and Auriault [14] extended the stability analysis through the dispersion relations of the PML 
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equations, and considered the role of phase signs and group velocities. They used artificial 

damping in order to obtain a stable solution. This is accomplished by absorbing only the short 

waves, which does not adversely affect the long waves. Subsequently, the concept of conserving 

the dispersion relation of the physical space equations was explored.  

Several studies on the PML indicate that it can be viewed as a complex change of 

variables, and this idea was extended to Euler equations in constructing unsplit PML equations. 

Abarbanel et al. [15] used a coordinate transformation in such a way that the transformed 

coordinates preserved the dispersion relation. But their method can be applied in a situation 

where a rotation is used to align the mean flow with the computational grid. However, when the 

mean flow is not aligned to one of the axes, which is the case in general situations, an 

appropriate transformation will be required. Hu [16] attributed the exponential growth of the 

reflections to the angle of the wave-front normal vector and proposed the need of a proper space-

time transformation to obtain a stable PML in order to align the group and phase velocities in the 

same direction. Following the concept of Abarbanel et al. [15], Hu [16] applied a complex 

change of variables for x  and y , where the governing equations are expressed in frequency 

domain. Subsequently, he obtained the unsplit formulation in the time domain by introducing an 

auxiliary variable. This procedure produced a reflection-free solution, and a similar complex 

variable transformation with PML boundary treatment to Euler and Navier-Stokes equations was 

developed [17, 18]. The concept of PML is introduced in section 1.1. 

 

1.1  Perfectly Matched Layer Boundary Condition 

The PML is a nonreflecting boundary condition also called the absorbing boundary 

condition or buffer zone technique. It is a region with a width of a few grid points appended 
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adjacent to artificial boundaries called the PML domain. The common goal of the PML method 

is to dampen disturbances entering the PML domain in order to eliminate any physical or 

nonphysical reflections that contaminate the interior solution. A typical computational domain 

with a PML is shown in Figure 1.1. The governing equations in the PML domain are obtained in 

such a way that out-going waves are absorbed without reflection, when they impinge on the 

interface between the PML and the interior domain.  

 

 
 

Figure 1.1. Schematic of computational domain showing interior domain and PML domain on 

boundary with absorption coefficients in the PML domain. 

 

PML equations can be developed by splitting the dependent variables into sub-components [10] 

as well as in unsplit form [16], which does not involve splitting variables. The absorption 

coefficients, x  and y , are introduced for the absorption of waves in the PML domain as 

complex change of variables [16]:  
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x y

x y
x y

i i
x x dx y y dy 

 
    

0 0

 (1.1) 

where x  0  and y  0  are the absorption coefficients, and x0  and y0  are the locations of the 

Euler PML interface. The absorption coefficients are varied across the layer in such a way that 

they are zero at the interface between the PML domain and the interior domain, and maximum at 

the outer boundary of the PML domain. The variation of x  and y  in the PML is governed by 

the following relation:  

 m

d

D



 
 

  
 

 (1.2) 

where D  is the width of the PML domain, d  is the distance from its interface with the interior 

domain, m  is the maximum value of  , and   is the damping rate. Alternatively, the PML 

domain can also be viewed as consisting of layers with constant  , which varies linearly [10]. 

The absorption coefficients, x  and y , are assumed to be greater than or equal to zero. The 

coefficient x  is zero in a layer parallel to the x -direction, and the coefficient y  is zero in a 

layer parallel to the y -direction. 

Both coefficients are greater than zero in the corner regions. Also, the larger the 

thickness, D , of the PML, the better the wave absorption. However, as thickness increases, the 

computational time and effort required also increase. At the end of a PML domain, certain 

boundary conditions, such as a solid-wall condition or other radiation boundary condition, can be 

applied. In numerical cases investigated in this research, extrapolation at the PML boundaries, 

i.e., the outer boundaries of the computational domain, is utilized. Parameters of the PML 

domains can be adjusted for desired absorption. They can also be determined independent of the 

size of the interior domain.  
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It has been shown that the theoretical reflection coefficients for incident linear waves at 

an interface between the interior domain and a PML domain are zero [11]. Thus, the amplitudes 

of waves that enter the PML domain decrease exponentially. In reality, the solution in the PML 

domain has no physical significance, since it only helps to prevent the contamination of the 

solution in the interior domain.  

Up to the present time, research activities have shown that the PML technique is a 

powerful tool. The application of this scheme will greatly reduce the computational cost, since a 

small computational domain will suffice to solve the numerical problem.  

This research effort focuses on the construction of a PML formulation based on the 

complex change of variables and space-time transformation for unbounded problems governed 

by linearized and nonlinear Euler equations in a generalized coordinate system. The split-form 

PML equations for linearized Euler equations over a uniform mean flow without and with space-

time transformation and complex change of variables are constructed and investigated for their 

effectiveness in terms of stability. The main objective is to investigate the PML formulation for 

domains which are of a nonrectangular shape using generic/conventional numerical schemes for 

spatial discretization and temporal integration without employing any form of numerical filtering 

or artificial dissipation. For this purpose, the split formulation of a PML based on the complex 

variable transformation for unbounded problems governed by nonlinear Euler equations is 

constructed and applied in a generalized coordinate system. This enables the user to solve 

nonlinear Euler equations in physical domains that are nonrectangular in shape  , ,x y z or with 

nonuniform grid spacing by mapping the nonrectangular physical space or the physical space 

with nonuniform grid spacing, which is the case when grid clustering is used, to a rectangular 

uniform grid spacing  , ,    in the computational space [19]. A stability analysis on the PML 



7 

 

formulation can be carried out by analyzing the dispersion relation following the procedure used 

in the work of Velu and Hoffmann [20]. For nonuniform shear flows in the absence of an 

arbitrary mean-flow profile, a generalized procedure based on the spectral collocation method 

can be used for the stability analysis and the calculation of the PML parameter introduced in the 

space-time transformation [21].  

This dissertation is organized as follows: Chapter 2 presents the governing equations in 

Cartesian and generalized coordinate systems. Chapter 3 describes the details of the numerical 

scheme and solver used for the numerical simulations. Chapters 4 and 5 are dedicated to the 

PML for linear and nonlinear Euler equations, respectively.  
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CHAPTER 2 

 

GOVERNING EQUATIONS 

 

 

2.1 3-D Euler Equations in Cartesian Coordinates 

 Euler equations in the physical space are given by  

 
Q E F G

t x y z

   
   

   
0  (2.1) 

where   

 

2

2

2

; ; ;

t

u v w

vuu u p wu

Q v E uv F v p G wv

w uw vw w p

e hu hv hw

  

  

   

   

   

      
      

      
          
      

      
            

 (2.2) 

and   

   
2 2 2 2 2 2

; ; 1 ; 1
2 2

t t i i t

p u v w u v w
h e e e p e p e   



    
         

 
 (2.3) 

in which u , v , and w  are the velocity components in the x -, y -, and z -directions, 

respectively; p  is the pressure;   is the density; h  is the enthalpy; 
te  is the total energy per 

unit mass; 
ie  is the internal energy per unit mass; and   is the ratio of specific heats and equals 

1.4.  

 

2.2 3-D Euler Equations in Generalized Coordinates 

 If all CFD applications dealt with physical problems where a uniform, rectangular grid 

could be used in the physical plane, then the appropriate finite difference formulations of the 

governing partial difference equations could be applied in rectangular  , , ,x y z t  space with 
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uniform values of x , y , z , and t . Unfortunately, the majority of physical domains of 

interest are nonrectangular in shape. To enhance the efficiency and accuracy of a numerical 

scheme and to simplify implementation of boundary conditions, a transformation from a 

curvilinear grid  , ,x y z  in physical space to a rectangular grid in computational space  , ,  

is performed. This requires the governing physical equations to be recast so as to apply them in 

the transformed, rectangular grid. This transformation is accomplished using the following 

relations [5]:  

 t   (2.4) 

  , , ,t x y z   (2.5) 

  , , ,t x y z   (2.6) 

  , , ,t x y z   (2.7) 

 Using equations (2.4)–(2.7), partial derivatives in the physical space are related to the 

partial derivatives in the computational space by applying the chain rule of partial differentiation 

to obtain the following expressions: 

 
t t t

t
  

   

    
   

    
 (2.8) 

 
x x x

x
  

  

   
  

   
 (2.9) 

 
y y y

y
  

  

   
  

   
 (2.10) 

 
z z z

t
  

  

   
  

   
 (2.11) 

 By applying equations (2.8)–(2.11) to equation (2.1), Euler equations in the physical 

space can be transformed to the computational space as   



10 

 

 
Q E F G

   

   
   

   
0  (2.12) 

where   

 
Q

Q
J

  (2.13) 

  
1

t x y zE Q E F G
J

        (2.14) 

  
1

t x y zF Q E F G
J
        (2.15) 

  
1

t x y zG Q E F G
J

        (2.16) 

where t , x , y , z , t , x , y , z , t , x , y , and z  are the metrics of transformation, and  

J  is the determinant of the Jacobian of the transformation. Equation (2.12) is solved in the 

computational domain with step-sizes of         1.0. A reverse transformation is 

carried out to compute the values in the original physical space. Only two-dimensional problems 

with subsonic flow are considered in this research. 

 

2.3  2-D Euler Equations 

In conservative form in Cartesian coordinates, two-dimensional Euler equations are written 

as  

 
Q E F

t x y

  
  

  
0  (2.17) 

where 
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Q E F

v uv v p

e hu hv

 

 
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    

      
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    

     

 (2.18) 

and 

    
2 2 2 2

; ; 1 ; 1
2 2

t t i i t

p u v u v
h e e e p e p e   



  
         

 
 (2.19) 

in which u  and v  are the velocity components in the x - and y -directions, respectively; p  is 

the pressure;   is the density; h  is the enthalpy; 
te  is the total energy per unit mass; 

ie  is the 

internal energy per unit mass; and   is the ratio of specific heats and equals 1.4.  

 Euler equations, equation (2.17), in generalized coordinates are given by 

 0
Q E F

  

  
  

  
 (2.20) 

where  

 
1 1

; ;t x y t x y

Q
Q E Q E F F Q E F

J J J
                   (2.21) 

2.3.1  Linearized Euler Equations over Uniform Mean Flow  

By assuming that acoustic values are a small, linear, unsteady perturbation upon a steady 

mean flow, linearized Euler Equations, equations (2.22)–(2.25), are derived directly from Euler 

equations, equation (2.17). A detailed derivation is presented in Appendix I of the work of Velu 

[7].  

 
' ' ' ' '

0x y

u v
M M

t x y x y

        
     

     
 (2.22) 

 
' ' ' '

0x y

u u u p
M M

t x y x

   
   

   
 (2.23) 
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' ' ' '

0x y

v v v p
M M

t x y y

   
   

   
 (2.24) 

 
' ' ' ' '

0x y

p p p u v
M M

t x y x y

     
     

     
 (2.25) 

in which 'u  and 'v  are the velocity perturbations in the x - and y -directions, respectively; 
'p  is 

the perturbation pressure; 
'  is the perturbation density; and xM  and yM  are the mean flow 

velocity components in the x - and y -directions, respectively, normalized by the acoustic speed. 

The LEE in conservative form in Cartesian coordinates is written as  

 0
Q E F

t x y

  
  

  
 (2.26) 

where 
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'' ''
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Q E F

v M v M v p

p M p u M p v

    
   
   

          
          

 (2.27) 

Here, Q , the solution vector, represents the aeroacoustic perturbation in density, velocity, and 

pressure. Using equation (2.20), the LEE, equation (2.26), in generalized coordinates is obtained 

and solved in the computational domain. As discussed in section 2.2, a reverse transformation is 

employed to calculate the values in the physical space.  
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CHAPTER 3 

 

NUMERICAL SCHEME AND SOLVER DETAILS 

 

 

3.1 Spatial Discretization  

 Recalling the 2-D Euler equations, equation (2.17), presented in Chapter 2.3, equation 

(2.17) is solved in the computational domain using equation (2.20). The convective terms in 

equation (2.20) are approximated by sixth order compact difference scheme [5, 7] for LEEs and 

second-order central difference expression [5], equation (3.1), for nonlinear Euler equations: 

 
, ,, ,

, ,

i j i ji j i j

i j i j

E EE F F F

   

       
     

      

1 11 1

2 2
 (3.1) 

where i  and j  represent the indexes of a grid point in the   and   directions, respectively. 

 

3.2 Time Integration  

 A modified fourth-order Runge-Kutta scheme is used for temporal integration as 

 
   

, ,

n

i j i j
Q Q

1

 (3.2) 
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
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      
       
      

1 1
2 1

4
 (3.3) 

 
   

   
 
,, ,

, ,

n

i ji j i j

i j i j

E F
Q Q H


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where the superscripts n  and n1 refer to the time levels, and the superscripts within 

parentheses refer to the values at the intermediate stages. The term H  is the damping term that 

appears in the PML formulation. 

 A method that is second-order accurate has a tendency to produce dispersion errors. A 

second-order central difference scheme used in this numerical solver is no exception, and in 

order to reduce the dispersion error, a total variation diminishing (TVD) scheme is employed by 

amending equation (3.6). Among the various available TVD schemes, the Davis-Yee symmetric 

TVD scheme [5], equation (3.7), is used in the numerical solver.  
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  
         

  
        

1

1 11 1

2 22 2

1 11 1

2 22 2

1

2

1

2

 (3.7) 

where AX  and BX  are the eigenvector matrices of the flux Jacobian matrices E Q   and 

F Q  , respectively, and   and   are the flux limiter vectors given by equations (3.8)–

(3.11).  

            
, , , , , ,

n

i j i j i j i j i j i j
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   

     

        
                  

2

1 1 1 1 1 1

2 2 2 2 2 2

 (3.8) 

            
, , , , , ,

n

i j i j i j i j i j i j
G G     


   

     

        
                  

2

1 1 1 1 1 1

2 2 2 2 2 2

 (3.9) 

            ,, , , , ,

n

i ji j i j i j i j i j
G G    


   

     

        
                  

2

11 1 1 1 1

22 2 2 2 2

 (3.10) 

            ,, , , , ,

n

i ji j i j i j i j i j
G G    


   

     

        
                  

2

11 1 1 1 1

22 2 2 2 2

 (3.11) 
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where  and   are the eigenvalue vectors corresponding to AX  and BX , respectively. In the 

expressions given by equations (3.8)–(3.11),  

        , , , ,,, , ,
,A i j i j i j i ji ji j i j i j

X J Q Q J J J
 

   

 
    

 

1 1
11 1 1 1 1
22 2 2

1

2
 (3.12) 

        , , , ,,, , ,
,A i j i j i j i ji ji j i j i j

X J Q Q J J J
 

   

 
    

 

1 1
11 1 1 1 1
22 2 2

1

2
 (3.13) 

        , , , ,,, , ,
,B i j i j i j i ji ji j i j i j

X J Q Q J J J
 

   

 
    

 

1 1
11 1 1 1 1
22 2 2

1

2
 (3.14) 

        , , , ,,, , ,
,B i j i j i j i ji ji j i j i j

X J Q Q J J J
 

   

 
    

 

1 1
11 1 1 1 1
22 2 2

1

2
 (3.15) 

 The limiters are given by equations (3.16)–(3.19),  

            
, , , , , ,

min mod , , ,
i j i j i j i j i j i j

G         
     

  
   

  
1 1 1 3 1 3

2 2 2 2 2 2

1
2 2 2

2
 (3.16) 

            
, , , , , ,

min mod , , ,
i j i j i j i j i j i j

G         
     

  
   

  
1 1 1 3 1 3

2 2 2 2 2 2

1
2 2 2

2
 (3.17) 

            
, , , , , ,

min mod , , ,
i j i j i j i j i j i j

G         
     

  
   

  
1 1 1 3 1 3

2 2 2 2 2 2

1
2 2 2

2
 (3.18) 

            
, , , , , ,

min mod , , ,
i j i j i j i j i j i j

G         
     

  
   

  
1 1 1 3 1 3

2 2 2 2 2 2

1
2 2 2

2
 (3.19) 

 In equations (3.8)–(3.11), the term   represents the entropy correction term which is 

given by 

 

 for

for

 





  

  
 



 


  
 


2 2

2

 (3.20) 
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The positive constant   is selected within the range of 0.0    0.125. The numerical 

simulations shown in this research use a value of 0.0001. A global time-step size is used in all 

numerical simulations.  

 

3.3 Nondimensionalization  

  Calculations in the computational domain are carried out in nondimensional form. 

Among the many choices available, refL , 0a , 0/refL a , 0 , and 2

0 0a  are used as length, velocity, 

time, density, and pressure scales, respectively, in this research effort, where refL  is a reference 

length, 0a  is the speed of sound, and 0  is the mean flow density.  

 

3.4 Work Station Specifications  

All simulations were run on the DELL Precision WorkStation T3400 powered with       

an Intel (R) Core (TM) 2 Extreme CPU Q6800 @ 2.93 GHz (4 CPUs). All calculations were 

made with double precision of accuracy. 
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CHAPTER 4 

 

PML FOR LINEARIZED EULER EQUATIONS OVER UNIFORM MEAN FLOW 

 

 

4.1 Linearized Euler Equations  

 The LEEs given by equations (2.22)–(2.25) are written in vector form as 

 
Q Q Q

A B
t x y

  
  

  
0  (4.1) 

where 

 

'

'

'

'

0 1 01 0 0

0 0 00 0 1
; ;

0 0 10 0 0

0 0 10 1 0

yx

yx

yx

yx

MM

MMu
Q A B

MMv

MMp

    
    
      
    
    
       

 (4.2) 

in which 'u  and 'v  are the velocity perturbations in the x - and y -directions, respectively; 
'p  is 

the perturbation pressure; 
'  is the perturbation density; xM  and yM  are the mean flow velocity 

components in the x - and y -directions, respectively, normalized by the acoustic speed; and Q , 

the solution vector, represents the aeroacoustic perturbation in density, velocity, and pressure.  

 The LEE for a uniform mean flow in the x  direction is 

 
Q Q Q

A B
t x y

  
  

  
0  (4.3) 

where  

 

'

'

'

'

1 0 0 0 0 1 0

0 0 1 0 0 0 0
; ;

0 0 0 0 0 0 1

0 1 0 0 0 1 0

x

x

x

x

M

Mu
Q A B

Mv

Mp

     
     
       
     
     
     

 (4.4) 
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Providing the mean flow Mach number ( )xM , the perturbation quantities can be solved in a 

straight-forward manner from equation (4.3).  

 

4.2 PML Equations Using Two-Component Splitting 

 For the implementation of the PML, 
' , 'u , 'v , and 

'p  in equation (4.4) are split into 

subcomponents in coordinate directions as 1 , 2 ,  1u , 2u , 1v , 2v , 1p , and 2p . Following the 

concept of Berenger’s PML technique [9], the original system of four equations is rewritten into 

a system of eight equations, equations (4.5)–(4.12), with the introduction of absorption 

coefficients, x  and y , in the coordinate directions [10]. Equations (4.5)–(4.12) are the 

governing perfectly matched layer equations of the linearized Euler equations, equation (4.3).  

 
   1 2 1 21

1x x

u u
M

t x x

 
 

   
   

  
 (4.5) 

 
 1 22

2y

v v

t y


 

 
  

 
 (4.6) 

 
   1 1 1 21

1x x

p p u uu
u M

t x x


   
   

  
 (4.7) 

 2
2 0y

u
u

t



 


 (4.8) 

 
 1 11

1y

p pv
v

t y


 
  

 
 (4.9) 

 
 1 22

2x x

v vv
v M

t x


 
  

 
 (4.10) 

 
   1 2 1 21

1x x

u u p pp
p M

t x x


   
   

  
 (4.11) 
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 1 22

2y

v vp
p

t y


 
  

 
 (4.12) 

The PML damping coefficients are zero in the interior domain (see Figure 1.1). It is to be noted 

that, when x y   0 and '   1 2 , 'u u u 1 2 , 'v v v 1 2 , and 'p p p 1 2 , equations 

(4.5)–(4.12) are reduced to LEEs, i.e., equation (4.3).  

 In generalized coordinates,   and  , the conservative form of the PML equations for 

uniform mean flow, take the following form [7]:  

 0
Q E F

H
  

  
   

  
 (4.13) 

where 

 

   

 

   

   

   

 

   

   

' ' '

1

2
' '

1

2

1

' '
2

' ' '1

2

' ' '

' '

' '

' ' '

0

01
; ;

0

0

0

0

1

0

0

x x y

x x

x x y

x x y

x x y

x x

x x y

x x y

M u v

M u pu

u
Q E

v J

v M v p

p
M p u v

p

M u v

M u p
F

J M v p

M p u v

  






 

 

  



 

 

  
   
   
   

   
   
    
   
   
   
   
    
    

 




 


 

 




  


1

2

1

2

1

2

1

2

1
;

u

u
H

vJ

v

p

p

















 

 













  
  
  
  
  
  
   
  
  
  
  
  
   

 (4.14) 
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The source term, H , in equations (4.13) and (4.14) represents the damping term associated with 

the PML layers. Equation (4.13) is solved in the computational domain.  

 

4.3 Three-Step PML Procedure 

  The procedure for the construction of a stable PML formulation with a space-time 

transformation essentially involves three steps [17, 18]: 

 A proper space-time transformation is determined and applied to the governing 

equations. This is a crucial step in the construction of an effective PML equation. The 

main purpose of applying a space-time transformation is to ensure that in the 

transformed coordinates all linear waves supported by Euler equations have 

consistent phase and group velocities. Inconsistency in these two velocities inside the 

PML domain will result in amplification instead of damping of the waves. This will 

be demonstrated through a dispersion analysis for acoustic waves and numerical 

simulations in section 4.4.2 for the LEE. 

 A PML complex change of variables is applied in the frequency domain as per        

equation (1.1). After writing the equations in the frequency domain, they are split in 

coordinate directions to obtain a split-form PML or retained as is to obtain the PML 

in an unsplit form, and then simplification and reorganization of the equations is 

performed. 

 The time domain absorbing boundary condition is derived from the frequency domain 

equations. This is the last step in which the equation in the frequency domain is 

written back in the time domain in the transformed coordinates. Finally, the PML 

equation is obtained in the original coordinates through a reverse transformation. 
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4.3.1 PML Equations with Transformation in Unsplit  Form 

 Now, by introducing new variables x , y , and t  as used in the work of Hu [16],  

 2

2
, 1 ,

1

M
x x y M y t t x

M
    


 (4.15) 

the LEE, equation (4.3), with the new variables is found to be  

 2

2
1 0

1

M Q Q Q
I A A M B

M t x y

   
     

    
 (4.16) 

where I  is the identity matrix. Then, by applying the PML complex change of variables as per 

equation (1.1),   

 
' '1 , 1

yx
ii

x x y y


 

  
     
   

 (4.17) 

in the frequency domain, the LEE, equation (4.16), takes the form of  

 2

2

1 1
1 0

1
1 1

x y

M Q Q
i I A Q A M B

i iM x y


 

 

  
      

           
   

 (4.18) 

where   is the frequency in the transformed equation, which is equal to  . Subsequent to 

multiplying equation (4.18) by 1 1 yx
ii 

 

     
  

, the LEE in the frequency domain is 

rewritten back in the time domain as   

 

 2

2 2

1

1 1 0

x y x y y

x

M Q Q q
I A Q Q q A A

M t x x

Q q
M B M B

y y

    



     
              

 
    

 

 (4.19) 

where q  is an auxiliary variable given by   

 
q

Q
t





 (4.20) 



22 

 

 Finally, in terms of the original variables x , y , and  t , the new formulation of the PML 

equations is expressed as   

 

 

 
2

0
1

y x x y

x y x y

Q Q Q q q
A B A B Q

t x y x y

M
q A Q q

M

   

   

    
     

    

   


 (4.21) 

Equations (4.21) and (4.20) are the governing PML equations of the LEE, equation (4.3), in 

unsplit form. The auxiliary variable q  needs to be calculated only within the PML domain where 

 x  or y  is a non-zero value. Thus, it is not necessary to calculate q  within the interior domain, 

where the absorption coefficients are zero. 

   In generalized coordinates,   and  , the conservative form of the PML equations for 

uniform mean flow takes the following form:  

 0
Q E F

H
  

  
   

  
 (4.22) 

where  
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 

   
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     
 
   
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 
 

      
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and    

 
q

Q






 (4.24) 

 In equation (4.23), the subscript of q  represents the corresponding physical variable 

associated with the vector q . The source term, H , in equations (4.22) and (4.23) represents the 

damping term associated with the PML layers. Equations (4.22) and (4.24) are solved in the 

computational domain.  

 

4.4  Numerical Results 

The split-form of PML formulation, equation (4.13), and the unsplit formulation, 

equations (4.22) and (4.24), are validated by considering an initial value problem with two-

dimensional acoustic and vorticity disturbances, equations (4.25)–(4.28), as provided by category 

three of benchmark problems of computational aeroacoustics [22]. The mean flow is in the 

direction of the x -axis, with M = xM = 0.5. The square physical domain, [-110, 110] x [-110, 

110], is a uniform grid with spacing of    x y 1 which includes a PML domain of ten grid 

points on the four sides, as shown in Figures 4.1(a) and (b). In the computational domain, 

    1. The values of m  2 are selected.  
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(a)                         (b) 

 

Figure 4.1. Square physical domain for uniform grid: (a) grid structure, (b) PML domain          

(shaded region in olive green) and physical space. Number of PML layers (NPML) = 10. 
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 (4.28) 

 These equations include an acoustic pulse centered at  ,a ax y , and vorticity and entropy 

pulses both centered at  ,b bx y , with amplitudes of 0A = 1, 0B = 0.04, and 0C = 0.1. Initially, the 

acoustic pulse is located at the origin,  , a ax y (0, 0), and the vorticity and entropy pulses are 

located at  , b bx y (67, 0). A time-step size of 0.1 is used for time integration.  



25 

 

 It is found that both split and unsplit formulations produced identical results, and the 

unsplit-formulation solution is presented here in this section. The u  velocity contours obtained 

using the unsplit-PML formulation at various time levels are presented in Figure 4.2. It can be 

seen that the waves are absorbed in the PML domain with no reflection. 

 

   
(a)                         (b) 

 

   
(c)                         (d) 

 

Figure 4.2 u-velocity contours at values of ±0.1, ±0.05, ±0.01, ±0.005, and ±0.001showing 

acoustic and vorticity pulses: M = 0.5 at (a) t = 50, (b) t = 100, (c) t = 150, and (d) t = 200, with 

σm = α = 2 and NPML = 10. 
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 The analytical solution [22] for this initial value problem with an acoustic pulse, vorticity 

and an entropy pulses is given by equations (4.29)–(4.32):  

    

2

14

0

1 0

1
cos

2
p e t J d



    
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   (4.29) 
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where 

 0J and  1J are Bessel functions of order 0 and 1. 

 
   

1 2

ln 2 ln 2
,

9 25
    (4.33) 

 0.5M  , and  
1

2 2 2x Mt y    
 

 (4.34) 

  

Figures 4.3 and 4.4 show a comparison of the PML solution with the analytical solution along 

line y 0 at t  200 for u  velocity and pressure, respectively. Figures 4.5 and 4.6 show a similar 

comparison at t  600 for u  velocity and pressure, respectively. The u  velocity as a function of 

time at a selected point (100, 0) on the Euler and PML domain interface is shown in Figure 4.7. 

The numerical solution compares very well with the analytical solution. 
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(a) 

 

 
(b) 

 

Figure 4.3. u-velocity along line y = 0 for M = 0.5 at t = 200: (a) analytical vs. split PML,             

(b) analytical vs. unsplit PML, with σm = α = 2 and NPML = 10. 
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(b) 

 

Figure 4.4. Pressure along line y = 0 for M = 0.5 at t = 200: (a) analytical vs. split PML,                

(b) analytical vs. unsplit PML, with σm = α = 2 and NPML = 10. 

 

 
(a)  

 

 
(b) 

 

Figure 4.5. u-velocity along line y = 0 for M = 0.5 at t = 600: (a) analytical vs. split PML,             

(b) analytical vs. unsplit PML, with σm = α = 2 and NPML = 10. 
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(a) 

 

 
(b) 

 

Figure 4.6. Pressure along line y = 0 for M = 0.5 at t = 600: (a) analytical vs. split PML,                    

(b) analytical vs. unsplit PML, with σm = α = 2 and NPML = 10. 
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(b) 

 

Figure 4.7. u-velocity as a function of time at Euler and PML domain interface at selected point 

(100, 0) for M = 0.5: (a) analytical vs. split PML, (b) analytical vs. unsplit PML, with σm = α = 2 

and NPML = 10. 
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Integration 

Now, both split- and unsplit-PML formulations are simulated with the same initial 

conditions given by equations (4.25)–(4.28) for a mean flow along the x -axis with M = 0.8. The 

values of m   1.5 and  2 are selected with a time-step size of 0.1. Figure 4.8 shows the u

velocity contours obtained using the split-form PML.  

Reflections that appear predominantly from the right side boundary are visible at a time 

level of around t  550. These reflections result in a spurious solution and subsequently lead to 

divergence. On the other hand, it is observed from Figure 4.9 that the unsplit formulation, which 

involves a space-time transformation with complex change of variables, provides a stable 

reflection-free solution. The waves not only leave the Euler domain smoothly but also are 

effectively damped in the PML domain before hitting the outermost boundaries. 
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(a)                         (b) 

 

   
(c)                         (d) 

 

Figure 4.8. u-velocity contours obtained using split PML formulation at values of ±0.1, ±0.05, 

±0.01, ±0.005, ±0.001, and ±0.0005 showing acoustic and vorticity pulses for M = 0.8:             

(a) t = 150, (b) t = 350, (c) t = 550, and (d) t = 700, with σm = 1.5, α = 2, and NPML = 10. 

 

   
(a)                         (b) 
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(c)                         (d) 

 

Figure 4.9. u-velocity contours obtained using unsplit PML formulation at values of ±0.1, ±0.05, 

±0.01, ±0.005, ±0.001, and ±0.0005 showing acoustic and vorticity pulses for M= 0.8:  

(a) t = 150, (b) t = 350, (c) t = 550, and (d) t = 700, with σm = 1.5, α = 2, and NPML = 10. 

 

 

Figures 4.10(a) and (b) present a comparison of the split-form PML solution with the 

analytical solution along line y 0 at t  700 for u  velocity and pressure, respectively. These 

plots clearly show the growing solution due to the reflections from the boundaries in the split 

formulation. Hu [16] attributes this instability of the split formulation to the amplification of the 

acoustic waves that have a positive group velocity but a negative phase velocity in the direction 

of the mean flow. It has been shown that this growth rate increases with M  and x  for a 

uniform mean flow along the x -axis, and it would be difficult to suppress the instability 

occurring in flows with a high Mach number [16]. With the transformation, the convective 

acoustic waves are made nonconvective with the group velocities of all linear waves in the same 

direction as that of the phase velocities in order to obtain stable PML equations. A comparison of 

the unsplit-form PML solution with the analytical solution is presented in Figure 4.11. It is 

observed that the numerical solution matches well with the analytical solution, thus 

demonstrating the stability of the unsplit-PML formulation. The  u  velocity as a function of time 
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at a selected point (100, 0) on the Euler and PML domain interface is shown in Figure 4.12. The 

diverging solution from the split-form of the PML formulation is clearly seen in Figure 4.12(a). 

It is also observed in Figure 4.12(b) that the unsplit-PML formulation predicts a solution that 

compares very well with the analytical solution. 

 

 
(a)  

 

 
 (b) 

 

Figure 4.10. Comparison of split-form PML solution with analytical solution along line y = 0 for 

M = 0.8 at t = 700: (a) u-velocity and (b) pressure, with σm = 1.5, α = 2, and NPML = 10. 
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(b) 

 

Figure 4.11. Comparison of unsplit-form PML solution with analytical solution along line y = 0 

for M = 0.8 at t = 700: (a) u-velocity and (b) pressure, with σm = 1.5, α = 2, and NPML = 10. 

 

 
(a) 

 

 
(b) 

 

Figure 4.12 u-velocity as a function of time at Euler and PML domain interface at selected point 

(100, 0) for M = 0.8: (a) analytical vs. split PML, (b) analytical vs. unsplit PML, with               

σm = 1.5, α = 2, and NPML = 10. 
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4.4.2 Stability Analysis Using Dispersion Relation 

To investigate the instability issue, it is necessary to carry out a dispersion analysis 

according to Hu [16]. When a plane wave solution of the elementary form 0
x yik x ik y i t

e
 

Q is 

assumed, the disturbance governed by the LEE can be considered a superposition of vorticity, 

entropy, and acoustic modal wave fields [11, 23, 24], where xk and 
yk are the wave numbers in 

the x - and y -directions, respectively;  is the angular frequency; and 0Q  is the amplitude of 

the wave. To satisfy the governing equations, xk , 
yk , and   must be related by an equation 

called the dispersion relation. The dispersion relations for the LEE, equation (4.3), are  

  
2 2 2 0x x yMk k k      (4.35) 

for the acoustic waves and  

   0xMk    (4.36) 

for the vorticity and entropy waves [16, 25]. With the complex change of variables, equation 

(4.17), the dispersion relations for the split formulation and the unsplit formulation with a space-

time transformation for the acoustic waves are given by equations (4.37) and (4.38) respectively, 

as  
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 (4.38) 

Equations (4.37) and (4.38) are solved numerically for the frequency for real values of 

the wavenumber. The exponential solutions will be stable provided the imaginary part (Iω) of 
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the four roots of ω is negative. The angular frequencies are calculated for a chosen range of 

wavenumbers xk  ≤ 5 and yk  ≤ 5. Figures 4.13―4.16 show the maximum Iω obtained from the 

dispersion relations. Solid and dashed lines represent contours of positive and negative 

imaginary roots, respectively. Even though imaginary roots of lower values with a positive sign 

are shown in Figure 4.13(a), the dominant negative roots result in a stable accurate solution for 

the split formulation, as shown previously in Figures 4.2―4.7 for M = 0.5.  

 

   
(a)       (b) 

 

Figure 4.13. Contours of maximum Iω, imaginary part of ω, of four roots solved numerically 

from equation (4.37) with M = 0.5: (a) σx = 2.0 and σy = 0, (b) σx = 0 and σy = 2.0. 

 

 

In Figure 4.14, negative imaginary roots are shown for equation (4.38) of the unsplit 

formulation, resulting in a stable solution. However, for a high subsonic number, M = 0.8, the 

split-form dispersion equation, equation (4.37), has a positive Iω, as can be seen in Figure 

4.15(a), thus leading to exponential growth of the solution in the PML domain. This follows the 

trend between the Mach number, M , and the damping parameter, x , as discussed in section 

4.4.1. On the other hand, the dispersion equation, equation (4.38), has all negative imaginary 
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roots, as shown in Figures 4.16(a) and (b), which eventually lead to a decaying solution in the 

PML domain. 

 

   
(a)      (b) 

 

Figure 4.14. Contours of maximum Iω, imaginary part of ω, of four roots solved numerically 

from equation (4.38) with M = 0.5: (a) σx = 2.0 and σy = 0, (b) σx = 0 and σy = 2.0. 

 

   
(a)           (b) 

 

Figure 4.15. Contours of maximum Iω, imaginary part of ω, of four roots solved numerically 

from equation (4.37) with M = 0.8: (a) σx = 2.0 and σy = 0, (b) σx = 0 and σy = 2.0. 
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(a)           (b) 

 

Figure 4.16. Contours of maximum Iω, imaginary part of ω, of four roots solved numerically 

from equation (4.38) with M = 0.8: (a) σx = 2.0 and σy = 0, (b) σx = 0 and σy = 2.0. 

 

4.4.3 Effect of Time-Step Size on Stability of PML Formulations 

Most unsteady fluid-flow analyses are carried out with a smaller time-step size in order to 

provide a stable accurate solution. Since PML formulations are a function of multiple variables, 

viz., the number of layers used in the PML domain, the maximum value of damping and its 

distribution rate in the PML domain, and the error associated with the numerical approximations 

of the schemes used in the computations, it is a challenging task to identify an appropriate 

combination of the PML parameters for a given flow problem. Moreover, with regard to 

stability, the time-step size plays a key role in the long-time behavior of the computational 

scheme. Simulations with a large time-step size resulted in a diverging solution for both split and 

unsplit formulations for the initial value problem considered in section 4.4. Thus, it was 

necessary to investigate and verify if the time-step size used in the simulations could be a 

possible cause of the instability associated with the PML equations. Furthermore, this 

investigation provides the range of time-step size and PML parameters for which numerical 

schemes produce accurate results with an effective PML.  
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 An unsteady acoustic source case is found to be a well-suited candidate for this 

investigation. The LEE, equation (4.3), is solved with the source term, equation (4.39), added to 

the energy equation [26]:  

      
2 21

, , exp ln 2 sin
2 2

x y
p x y t t

 
  

 
 (4.39) 

where the frequency of the source is    = 2π/30, and the mean-flow Mach number is M = 0.8. 

Due to the presence of mean flow, acoustic waves have a larger wavelength at the downstream 

boundary than at the upstream boundary. The following example is used to illustrate the 

effectiveness of PML equations for both long and short waves: The Euler domain is                    

[-100, 100] x [-100, 100]. A PML domain with ten layers on all four sides of the interior domain 

is used. The source is located at the origin. Several numerical simulations are carried out using 

the unsplit formulation for a wide range of PML parameters with various time-step sizes. Time- 

step sizes of 0.5, 0.2, 0.1, 0.05, 0.01, and 0.001 are used. The PML parameters,   and  , are 

varied from 0.5 to 4.0 in steps of 0.5, thus providing various combinations of time-step size and 

PML parameters.  

  Figure 4.17(a) shows the pressure along line y  = 0 at t  = 600. The PML region is shown 

by the hatched section. The damping of the solution from the Euler-PML interface to the 

outermost boundary of the PML domain is clearly observed on both sides of the physical space 

i.e., the solution is reduced to nearly zero as it approaches the outermost boundary of the PML. It 

is also observed that the solution obtained from the unsplit-PML formulation compares very well 

with the reference solution obtained from a large computational domain. The pressure as a 

function of time at a selected point on the Euler and PML domain interface shows a clear 

sinusoidal wave in Figure 4.17(b).  
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(a)  

 

 
(b)  

 

Figure 4.17. Pressure obtained with unsplit PML: (a) along line y = 0 at t = 600 and (b) at a 

selected point (100, 0) as a function of time, for M = 0.8, with Δt = 0.05, σm = 1.5, α = 2,          

and NPML = 10. 

 

Figure 4.18(a) shows the pressure contours at t  = 600, along with reflections, obtained 

with the split formulation. From various numerical simulations, it was found that reflections arise 

around the time level of t  = 450 in the split-formulation solution, and the scheme fails even for a 

very small time-step size. These reflections grow with time and eventually spoil the entire 

solution. On the other hand, a clean solution is seen in Figure 4.18(b), an unsplit formulation 

with a proper space-time transformation. It is further found that the unsplit PML formulation 

produces excellent results for small time-step sizes. However, in order to perform effectively, it 

must be ensured that the PML domain is provided with sufficient damping, which is a necessary 

condition for any PML formulation. From the investigations, it was found that the unsplit PML 

formulation performs well for PML parameters of    and   ranging between 1.5 and 4.0, with a 
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time-step size ranging between 0.001 and 0.1. Although the unsplit-PML formulation converges 

for a solution for PML parameters of values lower than 1.5, results indicate inaccuracies in the 

solution. 

   
(a)           (b) 

 

Figure 4.18. Pressure contours at values of ±0.1, ±0.01, and ±0.001, for M = 0.8 at t = 600:       

(a) split-form PML solution and (b) unsplit-PML solution, with Δt = 0.05, σm = 1.5, α = 2,       

and NPML = 10. 
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CHAPTER 5 

 

PML FOR NONLINEAR EULER EQUATIONS 

 

 

5.1 2-D Nonlinear Euler Equations 

 Recalling the two-dimensional Euler equations discussed in section 2.3, in a conservative 

form, the two-dimensional Euler equations are written in Cartesian coordinates as  

 0
Q E F

t x y

  
  

  
 (5.1) 

where  
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 (5.2) 

and  

    
2 2 2 2

; ; 1 ; 1
2 2

t t i i t

p u v u v
h e e e p e p e   



  
         

 
 (5.3) 

in which  u  and v  are the velocity components in the  x - and y -directions, respectively; p  is 

the pressure;   is the density; h  is the enthalpy; 
te  is the total energy per unit mass; 

ie  is the 

internal energy per unit mass; and   is the ratio of specific heats and equals 1.4. 

  

 The two-dimensional Euler equations, equation (5.1), in generalized coordinates are 

given by  

 0
Q E F

  

  
  

  
 (5.4) 
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where  

 
1 1

; ;t x y t x y

Q
Q E Q E F F Q E F

J J J
                   (5.5) 

and J  is the Jacobian of transformation. 

 

5.2 Pseudo Mean-flow 

In a nonlinear simulation, the total variable Q could be quite large and may not be most 

efficient absorbing it completely in the PML domain. Therefore, a pseudo mean-flow, as shown 

in Figure 5.1, is introduced in the PML domain as equation (5.6), and only the fluctuation needs 

to be absorbed in the PML domain [17].  

 '

pQ Q Q   (5.6) 

where 
pQ  is the time-independent pseudo mean-flow, and 

'Q  is the time-dependent fluctuation.  

 

 
 

Figure 5.1. Schematic showing total pseudo mean-flow variables and absorption of  

fluctuations in PML domain. 
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The only requirement of this pseudo mean-flow is that it satisfies steady-state Euler equations, as 

given by equation (5.7), in order to carry out the linearization of the nonlinear Euler equations 

inside the PML domain and construct the PML formulation in such a way that only the time-

dependent fluctuations need to be reduced to nearly zero inside the PML domain.  

 0
p pE F

x y

 
 

 
 (5.7) 

It may not be possible to find an exact pseudo mean-flow for a given flow problem. For example, 

in the case of a wall-bounded compressible flow governed by Navier-Stokes equations, the 

solution near the boundaries may not be known at the beginning of the numerical simulation, in 

which case, a similarity solution can be used as the pseudo mean-flow [27]. But, these 

approximate solutions may not define an accurate pseudo mean-flow. Therefore, the pseudo 

mean-flow should be judiciously chosen according to the problem at hand. Hence, the choice of 

pQ  is not unique. But any known solution or a parallel flow that satisfies the steady Euler 

equation, equation (5.7), appropriate to the actual flow problem can be used as a pseudo mean-

flow in the construction of PML equation. Once a suitable pseudo mean-flow is identified, PML 

equations are constructed in such a way that the nonlinear fluctuations, 
'Q , are absorbed in the 

PML domain. These fluctuations inside the PML domain depend on the choice of the most 

appropriately selected pseudo mean-flow, 
pQ . It must be reemphasized here that the solution 

inside the PML domain has no physical significance, and the foremost objective is that the 

fluctuations are reduced to nearly zero inside the PML domain, thus guaranteeing a nonreflecting 

outer boundary.  

The Euler equations in terms of fluctuations can be written using equations (5.1) and (5.7) as  
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   '

0
p pE E F FQ

t x y

   
  

  
 (5.8) 

5.3 PML for Nonlinear Euler Equations in Split Form 

  A three-step PML procedure, as presented in Chapter 4.3, is used for the construction of 

the PML equation for nonlinear Euler equations as well, in terms of fluctuating terms as given by 

equation (5.8). In order to preserve the dispersion relation of the waves supported by equation 

(5.8), a proper space-time transformation needs to be identified before applying the complex 

change of variables [17, 21].  Therefore, a dispersion analysis needs to be performed to identify 

the proper space-time transformation. In other words, the proper space-time transformation is 

identified in order to correct the dispersion relation with consistent phase and group velocities in 

the transformed coordinates. But the analysis is more challenging than the procedure involved in 

the dispersion analysis of the LEE. The PML equations in unsplit form for Navier-Stokes 

equations obtained using the space-time transformation, equation (4.15), required the 

introduction of an advection term to improve the stability of the PML formulation [27]. In this 

research effort, a proper space-time transformation of the form 

 t t x   (5.9) 

is used [17, 21]. Here,   is a function of phase speed. For uniform mean flows, there exists an 

exact dispersion relation for the acoustic wave, and the value of  can be evaluated. The phase 

speed is obtained from the dispersion diagram by identifying the zero group velocity points for 

the chosen number of acoustic modes. The slope of the line formed by these zero group velocity 

points is the phase speed and   is the negative inverse of this phase speed. But for nonuniform 

shear flows (for jets, shear layers, wakes, and boundary layers, for example) in the absence of an 

explicit and direct relationship between the phase speed and the arbitrary mean flow profile, the 



46 

 

spectral collocation method provides a general way of determining the dispersion relations for an 

arbitrary mean flow [21], and the values of the phase speed and   are extracted from the 

spectral collocation method for flows with nonuniform arbitrary mean flow. The idea here is to 

find an appropriate value of   in such a way that the phase and group velocities of the waves 

supported by non-linear Euler equations are consistent [21] for the problem at hand. Thus, the 

value of   is very critical for the stability of the PML.  

 It has been shown that Euler equations support entropy, vorticity, and acoustic waves. 

The entropy wave consists of density fluctuations alone, whereas the vorticity wave consists of 

velocity fluctuations alone. Both entropy and vorticity waves are convected downstream by the 

uniform mean flow without distortion [28]. Acoustic waves involve fluctuations in all physical 

variables, and due to their dispersive nature, they are given major emphasis. For cases where a 

linearization is carried out over a uniform mean-flow, it has been shown [21] that for cases 

where the mean density is constant, i.e., the non-dimensionalized mean density   1y , the 

expression given by equation (5.10) can be used as an empirical formula to calculate the value of 

 .  
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 


    where       

1
, ,

1

b

m

a

U U y dy y a b
b

 
   (5.10) 

The transformation given by equation (5.9) changes the partial derivatives of equation (5.8) to 

 
t t

 


 
;    

x x t


  
 
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;  and     

y y

 


 
 (5.11) 

Thus, applying the transformation, equation (5.9), to equation (5.8) results in 

 
     '

0
p p pE E E E F FQ

t t x y

     

   
   

 (5.12) 
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 Consider equation (5.12) in the frequency domain by replacing 


t
 with i . Then 

equation (5.12) in the frequency domain can be written as 

  
   

' 0
p p

p

E E F F
i Q i E E

x y
 

   
     

 
 (5.13) 

where a tilde denotes the time Fourier-transformed quantity. Now, by applying the PML 

complex change of variables obtained as per equation (1.1) 

 1 , 1
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 

  
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   

 (5.14) 

in the frequency domain, equation (5.13) takes the form 

     
   

' 1 1
0

1 1

p p

p

x y

E E F F
i Q E E

i ix y
 

 

 

   
     

    
    

   

 (5.15) 

where   is the frequency in the transformed equation, which is equal to  . The 'Q can be split 

into sub-components '

1Q  and '

2Q , and equation (5.15) can be written in the frequency domain in 

split form as 
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 (5.16) 
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 (5.17) 

Now, multiplying equation (5.16) by 1
 
 

 

xi


 and equation (5.17) by 1

 
 

 

yi


yields 
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Equations (5.18) and (5.19) can be written in the time domain as  
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Equations (5.20) and (5.21) form the PML equations for absorbing 
'Q  in the PML domain. 

Adding equations (5.20) and (5.21) and replacing  '

1Q  with ' '

2Q Q  yields  
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 (5.22) 

Using the fact that  
pQ  satisfies the steady Euler equations as given by equation (5.7), equation 

(5.22) is rewritten in the original x  and t  variables as 

    
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 (5.23) 

By introducing an auxiliary variable q  in such a way that  q  =  '

2Q  and by equation (5.6), 

equation (5.23) can be written as 
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 (5.24) 
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Thus, the pseudo mean-flow is defined as time independent and satisfies the steady-state Euler 

equation as given by equation (5.7). Applying this fact, equation (5.24) is written as 

 0
Q E F

H
t x y

  
   
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 (5.25) 

where    

    x p y x pH Q Q q q E E          (5.26) 

 And from equation (5.21),  
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 (5.27) 

Equations (5.25) and (5.27) are the governing split-form PML equations of the nonlinear Euler 

equations in a Cartesian coordinate system. Based on equation (5.4), the PML formulation in the 

Cartesian coordinate system can be transformed into the generalized coordinate system as 

 0
Q E F

H
  
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   
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 (5.28) 

where 

    p pH Q Q q q E E            (5.29) 

and  
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0
pF Fq

q
 

 
  

 
 (5.30) 

 Equations (5.28) and (5.30) are solved in the computational space. By a reverse-

transformation, the physical variables are calculated in the Cartesian coordinates. In this split 

formulation, only one auxiliary variable needs to be calculated within the PML domain, where 
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 x  or y is a non-zero value. Thus, it is not necessary to calculate this auxiliary variable within 

the interior domain, where the absorption coefficients are zero. 

 

5.4 Numerical Results  

 In order to demonstrate the effectiveness of PML in a generalized coordinate system, 

three physical domains of different shapes are considered: the physical domains, viz., square 

domain with uniform grid spacing, tapered domain, and arbitrary-shaped domain with 

nonuniform grid spacing in Cartesian coordinates, as shown in Figures 5.2, 5.3, and 5.4, 

respectively.  

 

   
(a)            (b) 

 

Figure 5.2. Square physical domain with uniform grid: (a) grid structure, (b) PML domain 

(shaded region in olive green) and physical space. Number of layers in PML domain = 20. 
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(a)            (b) 

 

Figure 5.3. Tapered physical domain with nonuniform grid: (a) grid structure, (b) PML domain 

(shaded region in olive green) and physical space. Number of layers in PML domain = 20. 

 

   
(a)      (b) 

 

Figure 5.4. Arbitrary physical domain with nonuniform grid: (a) grid structure, (b) PML domain 

(shaded region in olive green) and physical space. Number of layers in PML domain = 20. 

 

  The square domain with a uniform grid is of the size [-1.2, 1.2] x [-1.2, 1.2]. The non-

rectangular physical domain tapered on the top and bottom boundaries is obtained by changing 

the lower and upper-right vertices of the square domain as (-1.2, -0.6) and (1.2, 0.6).  The 

physical domain of arbitrary shape is obtained by using a third-order polynomial for the top and 

bottom boundaries and a second-order polynomial for the left and right boundaries. The physical 
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domains include a PML domain, the region shaded in olive green in Figures 5.2(b), 5.3(b), and 

5.4(b), with 20 grid points appended on the four sides. Thus, the square domain uses a uniform 

grid spacing of    x y 0.01, the non-rectangular tapered domain uses a grid spacing of    

 x 0.01 and a varying grid spacing of y in the physical space, and the physical domain of 

arbitrary shape has a varying grid spacing of  both x  and y . For all three physical domains, 

the grid spacing is uniform in the computational space, i.e., generalized coordinates, and is 

    1.0.   

A reference length of 0.01 m, speed of sound of 340.26855 m/s, and mean-flow density 

of 1.225813 kg/m
3
 are used in arriving at the length, velocity, density, and pressure scales for 

nondimensionalization. Unless otherwise specified explicitly, a global nondimensional time-step 

size of 0.001 is used in the calculations. For a mean-flow velocity of 0.5pu , using the 

empirical formula given by equation (5.10), the parameter   is calculated to be 0.66667. 

 

5.4.1  Extrapolation Boundary Condition 

 Benefits of the PML formulation will not be realized until the solution is compared with 

that of other techniques. For this, a computational domain with four open boundaries is 

considered. An initial value problem with a two-dimensional strong acoustic pulse [17] 

analogous to category three of benchmark problems of computational aeroacoustics [22] is used, 

and the Euler domain is initialized with the initial conditions as given by equations (5.31)–(5.34). 

These equations include a strong acoustic pulse, initially located at the origin,  , a ax y (0, 0). 

The values of  m  = 500.0 and   = 2.5 are used in the computational domain.  

 1.0   (5.31) 
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0 0.5u U   (5.33) 

 
0 0.0v V   (5.34) 

The pseudo mean-flow inside the PML domain is initialized by equations (5.35)–(5.38).  

 1.0p  (5.35) 

 
1


p

p


 (5.36) 

 0.5pu  (5.37) 

 0.0pv  (5.38) 

Figure 5.5 shows the pressure contours obtained from a small computational domain 

without a PML layer, [-1.0, 1.0] x [-1.0, 1.0], with zero-order extrapolation on the outermost 

boundaries. It can be seen from Figure 5.5(b) that the outgoing waves are not smooth closer to 

the right boundary. At t   1.0, shown in Figure 5.5(c), these ripples have spread into the domain 

and have affected the solution almost everywhere, subsequently resulting in a contaminated 

solution at t   2.0, as can be seen in Figure 5.5(d).  
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(a)      (b) 

 

 

   
           (c)          (d) 

 

Figure 5.5. Pressure contours: (a) t = 0.0 with levels from 0.65 to 1.75 in steps of 0.02,             

(b) t = 0.5, (c) t = 1.0, and (d) t = 1.5 with levels from 0.65 to 0.9 and in steps of 0.02 obtained 

with zero-order extrapolation. 

 

In order to reduce the dispersion, the same case was simulated again with a TVD scheme, 

and the solution is shown in Figure 5.6. Even though the solution appears to be oscillation-free, it 

is quite evident from Figures 5.6(c) and (d) that the waves are not smooth due to reflections from 

the outflow boundaries. In order to verify the effect of a simple extrapolation scheme on a small 

computational domain, a reference solution is obtained by computing the flow with the same 

spatial and temporal resolution but in a much larger domain in such a way that for the time levels 
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considered, the waves do not reach the boundaries so that the numerical solution is not affected 

by the boundary condition. The pressure contours obtained from the reference simulation is 

shown in Figure 5.7. For clarity, only the region of interest is shown in Figure 5.7. A clear 

solution is observed at all time levels.  

 

   
(a)      (b) 

 

   
(c)      (d) 

 

Figure 5.6. Pressure contours: (a) t = 0.0 with levels from 0.65 to 1.75 in steps of 0.02, 

(b) t = 0.5, (c) t = 1.0, and (d) t = 1.5 with levels from 0.65 to 0.9 and in steps of 0.02  

obtained with TVD scheme and zero-order extrapolation. 
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(a)      (b) 

 

   
 (c)      (d) 

 

Figure 5.7. Pressure contours: (a) t = 0.0 with levels from 0.65 to 1.75 in steps of 0.02, 

(b) t = 0.5, (c) t = 1.0, and (d) t = 1.5 with levels from 0.65 to 0.9 and in steps of 0.02  

obtained from large computational domain. 

 

The comparison of pressure at t   1.5 and t   2.0 along line y 0 obtained from both 

the small computational domain with the zero-order extrapolation scheme and the reference 

solution is shown in Figures 5.8 and 5.9, respectively. In Figure 5.8, although the solution 

appears to differ only by a small amount at t   1.5, it is clearly visible that the solution obtained 

from the small computational domain without TVD is oscillating due to reflections as well as 

dispersion.  
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The application of TVD has reduced the dispersion error and is observed in both Figures 

5.8 and 5.9. Although the difference in the solution obtained with TVD and the reference 

solution appears to be small, it is inevitable that the error due to reflections from the boundaries 

will grow with time and eventually result in a spurious solution. This demonstrates that a simple 

extrapolation boundary treatment requires a large computational domain for accurate results, but 

at the cost of increased computational time and effort.  

This can be avoided by appending a PML domain on the four sides of the smaller 

computational domain in such a way that the PML domain absorbs the incoming waves and thus 

prevents any reflection back into the domain from the boundaries. 

 

 
 

Figure 5.8. Comparison of pressure along line y = 0 at t = 1.5 obtained from reference case and 

small computational domain with simple extrapolation on boundaries. 

 

 

 
 

Figure 5.9. Comparison of pressure along line y = 0 at t = 2.0 obtained from reference case and 

small computational domain with simple extrapolation on boundaries. 
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5.4.2 Advection of Isentropic Vortex 

 Advection of the isentropic vortex is considered in this case, where the initial conditions, 

equations (5.39)–(5.42), are given by the work of Hu [17] as 

    
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1 1

1
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
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where  

    
2 2 '

0 0 max, 0.25, 0.2r x U t y V t U b       (5.43) 

and  

 0, 0 [0.5,0]U V     (5.44) 

 

 

The values of m  = 50.0 and   = 2.0 are selected. The v -velocity contours at 

progressive time frames are shown in Figures 5.10, 5.11, and 5.12, obtained from domains with 

uniform and nonuniform grid structures. The contour plots clearly demonstrate that the PML 

formulation effectively dampens the waves entering the PML domain, with no reflections seen.  

 

In order to validate the results obtained from the PML formulation, the numerical 

solutions are compared with that of the analytical solution, whereas the analytical solution is 

obtained in a straight forward manner for the advection of the given wave form as a function of 

time. The comparison of the v -velocity profile along line y = 0 plotted at various time levels is 
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shown in Figure 5.13. The solution obtained from both tapered and arbitrary-shaped domains 

with nonuniform grid spacing compared very well with the reference solution, and the solution 

from the tapered domain is used in the comparison. These plots clearly demonstrate how well the 

numerical solutions match the analytical solution in the Euler domain. The hatched regions 

shown in Figure 5.13 represent the PML domain. The damping of the wave entering the PML 

domain can be clearly seen in Figures 5.13(d)–(g). It is also observed that the numerical solution 

approaches the proposed pv  as the wave approaches the outermost boundary of the PML domain 

on the right. In this case, the entire v -velocity of the wave entering the PML domain is 

comprised of the time-independent fluctuation and is effectively absorbed by the PML domain. It 

must be noted that the solution inside the PML domain is non-physical and is of no significance 

as long as it is not reflected at the boundaries and does not contaminate the interior solution. 
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(a)               (b) 

   
(c)               (d) 

   
(e)               (f) 

 

Figure 5.10. v-velocity contour levels from ± 0.02 to ± 0.24 with step of 0.02:   

(a) t = 0.0, (b) t = 1.0, (c) t = 1.5, (d) t = 2.0, (e) t = 2.5, and (f) t = 3.0. 
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(a)               (b) 

   
(c)               (d) 

   
(e)               (f) 

 

Figure 5.11 v-velocity contour levels from ± 0.02 to ± 0.24 with step of 0.02:  

(a) t = 0.0, (b) t = 1.0, (c) t = 1.5, (d) t = 2.0, (e) t = 2.5, and (f) t = 3.0. 
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(a)                 (b) 

   
(c)                 (d) 

   
(e)                 (f) 

 

Figure 5.12 v-velocity contour levels from ± 0.02 to ± 0.24 with step of 0.02:  

(a) t = 0.0, (b) t = 1.0, (c) t = 1.5, (d) t = 2.0, (e) t = 2.5, and (f) t = 3.0. 
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(e) 

 

 
(f) 
 

 
(g) 
 

Figure 5.13 Comparison of analytical solution with PML solution for v-velocity along y = 0: 

(a) t = 0, (b) t = 0.5, (c) t = 1.0, (d) t = 1.5, (e) t = 2.0, (f) t = 2.5, and (g) t = 3.0. 

 

Figure 5.14 shows a comparison of the PML solution with the reference solution for       

v -velocity at a point (1, 0) on the Euler-PML interface. It can be seen that the PML solution 

matches well with the reference solution, clearly demonstrating the PML as a nonreflecting 

boundary condition. 
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Figure 5.14 Comparison of PML solution with reference solution for v-velocity at Euler-PML 

interface at point (1, 0) as function of time. 

 

5.4.3 Pressure Pulse 

The initial conditions for this strong pressure pulse case are the same as those provided in 

section 5.4.1, but the major difference is that the nonlinear Euler equations are numerically 

solved with PML boundaries. The values of m  = 500.0 and   = 2.5 are selected. Figures 5.15, 

5.16, and 5.17 show the pressure contours at various time levels obtained from domains with 

uniform and nonuniform grids. At all time levels, the pressure wave is seen to travel smoothly 

through the nonlinear regime and absorbed effectively in the PML domain with very minimal 

reflection.  

The pressure profile along line y = 0 at various time levels is presented in Figure 5.18. 

The solutions obtained from the tapered domain and the domain with an arbitrary shape matched 

the reference solution very well, and only the solution from the tapered domain is presented as a 

nonuniform grid solution in Figure 5.18. The hatched region represents the solution in the PML 

domain. It can be seen that the acoustic pulse entering the PML domain is dampened, and the 

solution approaches 1  , the proposed p
p ,  in the PML domain, thus indicating the damping of 

the fluctuation term appearing in equation (5.32). It is observed that the solutions obtained with 

PML boundary conditions match well with that of the reference solution. 
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(a)               (b) 

   
(c)               (d) 

   
(e)               (f) 

 

Figure 5.15. Pressure contours: (a) t = 0.0 with levels from 0.65 to 1.75 in steps of 0.02, 

(b) t = 0.5, (c) t = 0.7, (d) t = 1.0, (e) t = 1.5, and (f) t = 2.0 with levels from 0.65 to 0.9  

and step of 0.02. 
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(a)               (b) 

   
(c)               (d) 

   
(e)               (f) 

 

Figure 5.16. Pressure contours: (a) t = 0.0 with levels from 0.65 to 1.75 in steps of 0.02,               

(b) t = 0.5, (c) t = 0.7, (d) t = 1.0, (e) t = 1.5, and (f) t = 2.0 with levels from 0.65 to 0.9 

and step of 0.02. 
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(a)                 (b) 

   
(c)                 (d) 

   
(e)                 (f) 

 

Figure 5.17 Pressure contours: (a) t = 0.0 with levels from 0.65 to 1.75 in steps of 0.02, 

(b) t = 0.5, (c) t = 0.7, (d) t = 1.0, (e) t = 1.5, and (f) t = 2.0 with levels from 0.65 to 0.9 

and step of 0.02. 
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(e) 
 

 
(f) 
 

 
(g) 
 

 
(h) 
 

Figure 5.18 Pressure along y = 0: (a) t = 0, (b) t = 0.5, (c) t = 0.7, (d) t = 1.0, (e) t = 1.5, 

(f) t = 2.0, (g) t = 2.5, and (h) t = 3.0. 
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A point (1, 0) is chosen on the Euler-PML domain interface to appraise the effectiveness 

of the PML boundary condition. The solution for pressure obtained using the PML boundary 

condition is checked with that of the reference solution at this interface and is shown in              

Figure 5.19. A good match between the solutions is observed. 

 

 
 

Fig. 5.19 Comparison of PML solution with reference solution for pressure at Euler-PML 

interface at point (1, 0) as function of time. 
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5.4.4 Acoustic Radiation from Oscillating Piston 

5.4.4.1 Rectangular Domain with Uniform Grid Spacing 

 In this case, acoustic radiation from an oscillating piston in a wall is simulated to 

demonstrate the effectiveness of the PML boundary condition. The boundary condition defining 

the piston and the wall used in this case is analogous to problem 2 of the category 4 benchmark 

problem found in a NASA Conference Publication [22]. The rectangular physical domain, Figure 

5.20, used in this simulation is of the size [-105, 105] x [0, 105] with a uniform spacing of 

   x y 0.5. The physical domain includes a PML domain with ten layers, the region shaded in 

olive green in Figure 5.21, appended to the three sides of the physical space. The piston, blue 

line in Figures 5.20 and 5.21, is located at -10 ≤ x  ≤ 10, y = 0. Hatching defines the wall for           

-105 ≤ x  < -10 and 10 < x  ≤ 105, y = 0. In the computational space, i.e., generalized 

coordinates, the grid spacing is     1.0. A nondimensional global time-step size of 0.01 is 

used. 

 The entire domain is initialized with the conditions as given by equations (5.45)–(5.48).  

 1.0   (5.45) 

 
1

p


 (5.46)  

 
0u U  (5.47) 

 0.0v   (5.48) 

Two numerical simulations are carried out for 
0 0.0u U   and 

0 0.5u U  . Simple 

extrapolation is used on the outermost boundaries of the PML domain. The velocity of the piston 

is defined by equation (5.49). The wall boundary condition is enforced by specifying the zero 
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normal component of velocity along y = 0. Zero-order extrapolation is used to calculate the 

other physical variables on the wall and the piston. 

  sin 20v A t  (5.49) 

where A  is the amplitude and equal to 0.2.   

 

 

 

 

 

 

 

 

 

Figure 5.20. Rectangular domain with uniform grid structure showing piston (blue line)  

and wall (hatched section). Number of layers in PML domain = 10. 

 

 

 

 

 

 

 

 

 

 

Figure 5.21. Rectangular domain showing physical space and PML domain (shaded  

region in olive green). Number of layers in PML domain = 10. 
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The pseudo mean-flow inside the PML domain is initialized by equations (5.50)–(5.53).  

 1.0p  (5.50) 

 
1


p

p


 (5.51) 

 pu u  (5.52) 

 0.0pv  (5.53) 

The parameter   is appropriately calculated based on the chosen pu  using the empirical 

formula given by equation (5.10). The values of m  = 50.0 and   = 2.0 are used for the PML 

parameters in the computational domain.  

Figures 5.22 and 5.26 show the pressure contours over a period of oscillation, from 

200t  to 240t  in steps of ten, for 0.0u  and 0.5u  respectively. The damping of the 

perturbation of the pressure induced by the oscillating piston is clearly shown in the contour 

plots. A comparison of pressure along 0x  (Figures 5.23 and 5.27) and along 0y   (Figures 

5.23 and 5.28), obtained with the PML boundary condition and from a reference case for 0.0u  

and 0.5u , respectively, shows a clear match between the two solutions. The rectangular 

domain used for the reference case is of the size [-315, 315] x [0, 315].  Over a period of 

oscillation of the piston, it is observed that the solution obtained with PML compares very well 

with the solution from the reference case. Because the perturbation is dampened inside the PML 

domain, it can be seen that the solution for pressure approaches  1  , the proposed p
p , as per 

equation (5.50). Figures 5.25 and 5.29 show a comparison of the PML solution with that of the 

reference case for pressure as a function of time at the Euler-PML interface for 0.0u  and 
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0.5u , respectively. Clear agreement between the solutions demonstrates that the PML 

boundary condition is an effective nonreflecting boundary condition.  

 

(a)  

 

(b)  

 

(c)  
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(d)  

 

(e)  

 

Figure 5.22. Pressure contours over period of piston oscillation: (a) t = 200, (b) t = 210, 

(c) t = 220, (d) t = 230, and (e) t = 240 with levels from 0.5 to 0.95 in steps of 0.02 for u = 0.0. 
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(b) 

 

 
(c)  

 

 
(d)  

 

 
(e) 
 

Figure 5.23. Pressure along x = 0 over period of piston oscillation: (a) t = 200, (b) t = 210, 

(c) t = 220, (d) t = 230, and (e) t = 240 for u = 0.0. 
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(e) 

 

Figure 5.24. Pressure along y = 0 over period of piston oscillation: (a) t = 200, (b) t = 210, 

(c) t = 220, (d) t = 230, and (e) t = 240 for u = 0.0. 
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(c) 

 

Figure 5.25. Pressure as function of time at Euler-PML interface at locations: (a) (0, 100), 

(b) (100, 0), and (c) (-100, 0) for u = 0.0. 

 

 

(a)  

 

(b)  

 

0.65000

0.70000

0.75000

0.80000

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

P
re

ss
u

re

Time

PML Solution Reference Solution



81 

 

(c)  

 

(d)  

 

(e)  

 

Figure 5.26. Pressure contours over period of piston oscillation: (a) t = 200, (b) t = 210, 

(c) t = 220, (d) t = 230, and (e) t = 240 with levels from 0.5 to 0.95 in steps of 0.02 for u = 0.5. 
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(e) 

 

Figure 5.27. Pressure along x = 0 over period of piston oscillation: (a) t = 200, (b) t = 210, 

(c) t = 220, (d) t = 230, and (e) t = 240 for u = 0.5. 
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(c) 

 

 
(d) 

  

 
(e) 

 

Figure 5.28. Pressure along  y = 0 over period of piston oscillation: (a) t = 200, (b) t = 210, 

(c) t = 220, (d) t = 230, and (e) t = 240 for u = 0.5.  
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(b) 

  

 
(c) 

 

Figure 5.29 Pressure as function of time at Euler-PML interface at locations: (a) (0, 100), 

(b) (100, 0), and (c) (-100, 0) for u = 0.5. 

 

5.4.4.2 Tapered Domain with Nonuniform Grid Spacing 

 In order to demonstrate the PML in a generalized coordinate system, a tapered domain 

with nonuniform grid spacing, Figures 5.30 and 5.31, is chosen. Except the taper introduced in 

the shape of the physical domain on the left and right side boundaries, all other parameters 

remain the same as that in section 5.4.4.1.  The physical domain includes a PML domain with ten 

layers, the region shaded in olive green in Figure 5.31, appended to three sides of the physical 

space. In the computational space, i.e., generalized coordinates, grid spacing is     1.0. A 

nondimensional global time-step size of 0.01 is used in the numerical simulations. Two cases, 

viz., 
0 0.0u U   and  

0 0.5u U  , are carried out in this tapered domain with nonuniform grid 

spacing for the oscillating piston. 
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Figure 5.30. Tapered domain with nonuniform grid structure showing piston (blue line)  

and wall (hatched section). Number of layers in PML domain = 10. 

 

 

 

 

 

 

 

 

 

 

Figure 5.31. Tapered domain showing physical space and PML domain (shaded region  

in olive green). Number of layers in PML domain = 10. 

 

 

Figures 5.32 and 5.36 show the pressure contours over a period of oscillation, from 

200t  to 240t  in steps of ten, for 0.0u and 0.5u , respectively. The comparison of 

pressure along 0x  (Figures 5.33 and 5.37) and along 0y   (Figures 5.34 and 5.38), obtained 

with PML boundary condition and from a reference case for 0.0u  and 0.5u , respectively, 
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shows a clear match between the two solutions. Over a period of oscillation of the piston, it is 

observed that the solution obtained with the PML compares very well with the solution from the 

reference case. Figures 5.35 and 5.39 show a comparison of the PML solution with that of the 

reference case for pressure as a function of time at the Euler-PML interface for 0.0u  and 

0.5u , respectively.  

 

(a)  
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(c)  

 

(d)  

 

(e)  

 

Figure 5.32. Pressure contours over period of piston oscillation: (a) t = 200, (b) t =210,              

(c) t = 220, (d) t = 230, and (e) t = 240 with levels from 0.5 to 0.95 in steps of 0.02 for u = 0.0. 
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(e) 

 

Figure 5.33. Pressure along x = 0 over period of piston oscillation: (a) t = 200, (b) t = 210, 

(c) t = 220, (d) t = 230, and (e) t = 240 for u = 0.0. 
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Figure 5.34. Pressure along y = 0 over period of piston oscillation: (a) t = 200, (b) t = 210, 

(c) t = 220, (d) t = 230, and (e) t = 240 for u = 0.0. 
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(a) 

  

 
(b) 

  

 
(c) 

 

Figure 5.35. Pressure as function of time at Euler-PML interface at locations: (a) (0, 100), 

(b) (100, 0), and (c) (-100, 0) for u = 0.0.  
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(a)  
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(d)  

 

(e)  

 

Figure 5.36. Pressure contours over a period of piston oscillation (a) t = 200, (b) t = 210,              

(c) t = 220, (d) t = 230, and (e) t = 240 with levels from 0.5 to 0.95 in steps of 0.02 for u = 0.5. 
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Figure 5.37. Pressure along x = 0 over period of piston oscillation: (a) t = 200, (b) t = 210, 

(c) t = 220, (d) t = 230, and (e) t = 240 for u = 0.5. 
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(e) 

 

Figure 5.38. Pressure along  y = 0 over period of piston oscillation: (a) t = 200, (b) t = 210, 

(c) t = 220, (d) t = 230, and (e) t = 240 for u = 0.5. 
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(c) 

 

Figure 5.39. Pressure as function of time at Euler-PML interface at locations: (a) (0, 100), 

(b) (100, 0), and (c) (-100, 0) for u = 0.5. 

 

5.4.5 Roll-Up Vortices 

In this case, a source term in a mixing layer is simulated with a PML boundary condition. 

The rectangular physical domain used in this simulation is of the size [-1.5, 9.5] x [-1.1, 1.1] with 

a spatial-step size of 0.05x   and 0.01y  . In the computational space, i.e., generalized 

coordinates, the grid spacing is     1.0. The physical domain includes a PML domain 

with ten layers, the region shaded in olive green in Figure 5.40, appended to all four sides of the 

physical space. A fairly large rectangular domain of size [-18, 26] x [-4.4, 4.4] is used for the 

reference case. A nondimensional global time-step size of 0.001 is used.  

 

 
 

Figure 5.40. Rectangular domain showing physical space and PML domain (shaded  

region in olive green). Number of layers in PML domain = 10. 
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The initial conditions in primitive variables are given by equation (5.54): 

 
u
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p
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 
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y

U y





 
 
 
 
 
 
 

 (5.54)  

where the mean velocity profile is obtained by equation (5.55). Figure 5.41 shows the velocity 

profile along x = 0 as defined by equation (5.55). 

      1 2 1 2

1 2
tanh

2

y
U y U U U U



  
      

  
 (5.55)  

The mean density, equation (5.56), is obtained from the mean temperature, equation (5.57), 

determined by the Crocco relation for compressible flows [17] as  

  
 

1
y

T y
   (5.56)  

where 

  
   
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1 2 1 2

1 2 1 2

1
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U y U U U y
T y T T U U y U y U

U U U U

  
    

 
 (5.57)  

The parameters that appear in equations (5.55)–(5.57) are given by equations (5.58)  

 1 2 1 20.8, 0.2, 0.4, 0.8, 0.8, 1.4U U T T        (5.58)  

A source term of the form, equation (5.59), is added to the equation of energy.  

   
     

2 2 2
0 0 0ln 2

( , , ) 5sin
x x y y r

S x y t t e
    
    (5.59) 

where 

    0 02, , 0.5,0x y      and  0 0.03r   (5.60)  
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Figure 5.41 Initial velocity profile, along line x = 0, defining the mixing layer. 

 

 

 

This source term will induce an exponentially growing Kelvin-Helmholtz instability wave which 

will result in roll-up vortices [17, 18]. The PML boundary condition is used on the four sides to 

absorb the vortices at the outflow boundary as they convect with the mean flow and the acoustic 

waves at all four artificial boundaries as they travel in all directions at the speed of sound. The 

pseudo mean-flow inside the PML domain is assumed to be the parallel flow as given by 

equation (5.54), and for this shear flow, the parameter   is found to be approximately 1/1.4 as 

per the linear wave analysis [17, 18, 21]. The values of  m  = 200.0 and   = 2.5 are used for the 

PML parameters in the computational domain.  

The vorticity contours at progressive time levels are presented in Figure 5.42. The vortices 

convecting downstream along with the flow and their absorption as they enter the PML domain 

are clearly seen in the contour plots.  
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(a)  

 

(b)  

 

(c)  

 

(d)  

 

(e)  

 

Figure 5.42. Vorticity contours at progressive times: (a) t = 40, (b) t = 45, (c) t = 50,  

(d) t = 55, and (e) t = 60 with levels from –2.2 to –0.2 in steps of 0.2 and at level +0.2. 

 

The comparison of pressure, fluctuating pressure, and v-velocity obtained from the PML 

-based solution and a reference case at a selected point close to the outflow boundary,       

 ,x y  (8.75,0), is provided in Figures 5.43, 5.44, and 5.45, respectively. A good agreement in 
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these two solutions reveal that PML boundary condition can be effectively used for flows 

involving shear layers and instability waves. 

 

 
 

Figure 5.43 Pressure as function of time at selected point (8.75, 0). 

 

 
 

Figure 5.44 Fluctuating pressure as function of time at selected point (8.75, 0). 

 

 
 

Figure 5.45 v-velocity as function of time at selected point (8.75, 0). 
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 

 

 

A rigorous literature survey on the boundary conditions of unbounded problems of 

computational fluid dynamics revealed that there is an emerging concept of a nonreflecting 

boundary condition known as perfectly matched layer. The evolution of PML was studied 

carefully, especially the instability of the PML for high subsonic flows. On that basis, PML 

equations were constructed for linearized Euler equations, with and without the application of 

space-time transformation and a complex change of variables. Investigation was carried out on 

the stability aspect of the PML formulation for LEEs in terms of long-time integration and a 

combination of PML parameters that affect the absorption capability of the PML. Furthermore, 

analysis on the dispersion relation of the acoustic waves governed by LEEs was carried out 

numerically to demonstrate the benefits of space-time transformation to the stability of the PML.  

Following a similar procedure, PML equations for nonlinear Euler equations were 

constructed and demonstrated for their effectiveness as an absorbing boundary condition. The 

concept of pseudo mean-flow and its associated advantages in the performance of the PML 

boundary condition were also demonstrated. The main objective of this research effort was to 

enable these equations to be applied in a generalized coordinate system so that nonrectangular 

physical domains and domains with nonuniform grid spacing could be handled by a single 

numerical solver. This was accomplished by constructing appropriate equations of 

transformation from physical space to computational space. Also, the idea of developing a 

numerical solver with generic/conventional numerical schemes without employing numerical 

filtering or artificial dissipation was accomplished, and numerical examples were shown to 

demonstrate the effectiveness of the solver and the PML formulation.  
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It is also found that the space-time transformation used in the construction of perfectly 

matched layer equations was exclusively meant for flows with mainstream direction parallel to 

the horizontal axis in Cartesian coordinates. The space-time transformation must be modified in 

such a way that it supports flows in an arbitrary direction which is an essential criterion for an 

effective boundary condition in generalized coordinates.  

There is no doubt that the perfectly matched layer could be used as an effective 

nonreflecting boundary condition. But a great deal of research is needed for those cases 

involving high subsonic flows, transient flows, and supersonic flows governed by Navier-Stokes 

equations. Also, a complete mathematical stability analysis of the PML formulation must be 

carried out. 
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