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SUMMARY

Cloud Computing represents a recent paradigm shift that enables users to

share and remotely access high-powered computing resources (both infrastructure and

software/services) contained in off-site data centers thereby allowing a more efficient

use of hardware and software infrastructures. This growing trend in cloud computing,

combined with the demands for Big Data and Big Data analytics, is driving the rapid

evolution of datacenter technologies towards more cost-effective, consumer-driven,

more privacy conscious and technology agnostic solutions.

This dissertation is dedicated to taking a systematic approach to develop system-

level techniques and algorithms to tackle the challenges of large-scale data processing

in the Cloud and scaling and delivering privacy-aware services with anytime-anywhere

availability. We analyze the key challenges in effective provisioning of Cloud services in

the context of MapReduce-based parallel data processing considering the concerns of

cost-effectiveness, performance guarantees and user-privacy and we develop a suite of

solution techniques, architectures and models to support cost-optimized and privacy-

preserving service provisioning in the Cloud.

At the Cloud resource provisioning layer, we develop a utility-driven MapReduce

Cloud resource planning and management system called Cura for cost-optimally al-

locating resources to jobs. While existing services require users to select a number

of complex cluster and job parameters and use those potentially sub-optimal per-job

configurations, the Cura resource management achieves global resource optimization

in the cloud by minimizing cost and maximizing resource utilization. We also address

the challenges of resource management and job scheduling for large-scale parallel data
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processing in the Cloud in the presence of networking and storage bottlenecks com-

monly experienced in Cloud data centers. We develop Purlieus, a self-configurable

locality-based data and virtual machine management framework that enables MapRe-

duce jobs to access their data either locally or from close-by nodes including all input,

output and intermediate data achieving significant improvements in job response time.

We then extend our cloud resource management framework to support privacy-

preserving data access and efficient privacy-conscious query processing. Concretely,

we propose and implement VNCache: an efficient solution for MapReduce analysis of

cloud-archived log data for privacy-conscious enterprises. Through a seamless data

streaming and prefetching model in VNCache, Hadoop jobs begin execution as soon

as they are launched without requiring any apriori downloading. At the cloud service

delivery tier, we develop mix-zone based techniques for delivering anonymous cloud

services to mobile users on the move through Mobimix, a novel road-network mix-

zone based framework that enables real time, location based service delivery without

disclosing content or location privacy of the consumers.
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CHAPTER I

INTRODUCTION

Cloud computing and its pay-as-you-go cost structure have enabled hardware infras-

tructure service providers, platform service providers as well as software and appli-

cation service providers to offer computing services on demand and pay per use just

like how we use utility today. This growing trend in cloud computing, combined

with the demands for Big Data and Big Data analytics, is driving the rapid evolution

of datacenter technologies towards more cost-effective, more consumer-driven, more

privacy conscious and technology agnostic solutions. Cost effective resource opti-

mization techniques that are highly effective and yet greatly agile are critical for both

cloud providers and cloud consumers. We identify three key challenges in effective

provisioning and delivery of cloud services to a wide range of audiences. First, cloud

service providers are faced with the challenges of offering cost-effective solutions to

a much broader range of consumers than traditional data centers that are serving

in-house brands. Yield management, once only popular in airline and hotel industry,

becomes a critical factor in the equilibrium of the supply-demand and performance-

cost trade-off decision making process. Second, the cloud service providers are facing

the overwhelming challenge of meeting the service level agreements of diverse cloud

consumer jobs in terms of performance demand, resource need and infrastructure and

computing rental cost while minimizing the expenses of operating, maintenance and

upgrade of their cloud services. This calls for highly effective and yet greatly ag-

ile resource management and capacity planning at the cloud provider end to handle

workload variations, resource demand variations, as well as energy and maintenance

cost variations, while minimizing the overall service provisioning and delivery cost.
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Third but not the least, computing in the Cloud also demands for protection of data

privacy, access privacy and execution privacy of the consumer jobs against any unau-

thorized data access and program execution, which can lead to unwanted privacy

breaches.

This dissertation research is dedicated to addressing the above mentioned research

challenges with the focus on parallel processing of large scale data using Map-Reduce

and delivering privacy-conscious continuous data services with anytime-anywhere

availability.

1.1 Technical Challenges

A cloud service allows enterprises to cost-effectively analyze large amounts of data

without creating large infrastructures and parallel computing platforms of their own.

Using virtual machines (VMs) and storage hosted by the cloud, enterprises can simply

create virtual clusters to process and analyze their data.

One of the technologies that made large scale data processing and data analytics

popular and accessible to enterprises of all sizes is MapReduce [57] (and its open-

source Hadoop [4] implementation). With the ability to automatically parallelize the

application on a cluster of commodity hardware, MapReduce allows enterprises to

analyze terabytes and petabytes of data more conveniently than ever. A MapReduce

job is comprised of two main components – a map function (Figure 1) that processes

key/value pairs from input data to generate a set of intermediate key/value pairs,

and a reduce function that merges all intermediate values associated with the same

intermediate key. A number of web applications lend themselves well to this model,

for example, web search indexing [5], behavior analysis for ad recommendation sys-

tems and analyzing clickstream data [3]. A unique capability of this model is its

ability to execute map and reduce tasks of a job on a distributed cluster of machines,

transparently to the application programmer. The input data is split into blocks that
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are stored in a distributed filesystem throughout the cluster. A cluster master then

automatically schedules the map tasks at various worker nodes which process those

blocks to create intermediate key/value pairs. Some of these blocks may be present

locally on the worker node while others may require a remote-read to obtain from

another node. The intermediate values, generated as the output of the map tasks are

then scheduled to be processed by worker nodes to execute the reduce tasks which

write the output into files stored within the filesystem. The data transfer from the

map to the reduce tasks includes a shuffle phase in which reducers read data from all

mappers.

A cloud service for such large scale data processing introduces several technical

challenges in terms of efficient resource management, performance optimization and

privacy. We discuss them as follows.
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1.1.1 Cost-effectiveness

First, we argue that the existing cloud models for MapReduce are not cost-effective

leading to poor resource utilization in the datacenters and results in higher costs for

the customers. In general, there are two approaches in use today for MapReduce-

based large scale data processing in a cloud. In the first approach, customers use

a dedicated MapReduce cloud service (e.g. Amazon Elastic MapReduce [9]) and

buy on-demand clusters of VMs for each job or a workflow. Once the MapReduce

job (or workflow) is submitted, the cloud provider creates VMs that execute that

job and after job completion the VMs are deprovisioned. In the second approach

customers lease dedicated clusters from a generic cloud service like Amazon Elastic

Compute Cloud [10] and operate MapReduce on them as if they were using a private

MapReduce infrastructure. In this case, based on the type of analytics workload they

may use different number of VMs for each submitted job, however the entire cluster

needs to be maintained by the client enterprise.

Unfortunately, both of these models require users to figure out the complex job

configuration parameters (e.g. type of VMs, number of VMs and MapReduce config-

uration like number of mappers per VM etc.) while simultaneously forcing the cloud

provider to use those potentially sub-optimal configurations resulting in poor resource

utilization and higher cost. We note that the per-job optimized configurations cre-

ated from a user perspective are often suboptimal from a cloud provider perspective

and hence lead to requiring more cloud resources than that required by a globally

optimized schema with resource management performed at the cloud provider-end.

1.1.2 Datacenter Network Load

Another important challenge for the cloud provider is to manage the network resources

for multiple virtual clusters executing concurrently, a diverse set of jobs on shared

physical machines. Concretely, each MapReduce job generates different loads on the
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shared physical infrastructure – (a) computation load: number and size of each VM

(CPU, memory), (b) storage load: amount of input, output and intermediate data,

and (c) network load: traffic generated during the map, shuffle and reduce phases.

The network load is of special concern with MapReduce as large amounts of traffic

can be generated in the shuffle phase when the output of map tasks is transferred to

reduce tasks. As each reduce task needs to read the output of all map tasks [57], a

sudden explosion of network traffic can significantly deteriorate cloud performance.

This is especially true when data has to traverse greater number of network hops

while going across racks of servers in the data center [24]. Further, the problem

sometimes is exacerbated by TCP incast [109] with a recent study finding goodput

of the network reduced by an order of magnitude for a MapReduce workload [42].

To reduce network traffic for MapReduce workloads, we argue for improved data

locality for both Map and Reduce phases of the job. The goal is to reduce the network

distance between storage and compute nodes for both map and reduce processing – for

map phase, the VM executing the map task should be close to the node that stores the

input data (preferably local to that node) and for reduce phase, the VMs executing

reduce tasks should be close to the map-task VMs which generate the intermediate

data used as reduce input.

1.1.3 Privacy-conscious Data access

Additionally, computing in the cloud is fundamentally challenged by the issues of

data privacy, access privacy and execution privacy of consumer jobs against any

unauthorized data access and program execution, which can lead to serious privacy

breaches. As quite many data analysis operate on datasets that can be potentially

sensitive and private, privacy-conscious enterprises may choose to keep only encrypted

data in public clouds and decrypt to process them at their enterprise sites. In a

cloud both data access needs to be private and service execution needs to be private.
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Therefore it is important that the privacy-conscious data processing techniques are

scalable and cost-effective.

Additionally, when services are requested from client’s mobile devices, the location

information of the mobile clients need to be private to avoid any location privacy

breaches [49].

1.2 Dissertation focus and Contributions

In this dissertation, we focus on addressing the above mentioned challenges through

global resource optimization, locality-based job scheduling, effective caching tech-

niques and privacy aware service execution and delivery. This dissertation makes the

following contributions.

1.2.1 Cost-optimized Cloud Model

The first contribution of this dissertation research is the development of a utility-

driven cloud resource management system for MapReduce called Cura [106]. Cura

determines how to best provision virtual MapReduce clusters for jobs submitted to

the cloud by taking into consideration two sometimes conflicting requirements namely

meeting the service quality requirements in terms of throughputs and response times

on one hand while minimizing the overall consumption cost of the MapReduce cloud

data center on the other hand. Cura enables cloud consumers to get the desired

services at minimal cost while enabling cloud providers to maximize the utilization

rate of their service infrastructure. In contrast to existing MapReduce cloud services,

the resource management techniques in Cura aim at minimizing the overall resource

utilization in the cloud as opposed to per-job or per-customer resource optimization

in the existing services. Cura benefits from a number of novel performance enhance-

ments including pre-created virtual machine pools for scheduling, cost-aware resource

provisioning, VM-aware scheduling, intelligent capacity planning and online virtual

machine reconfiguration. Concretely, the first approach in Cura performs a VM-aware
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job scheduling using static virtual machine pools by utilizing pre-created virtual ma-

chines. The second approach of Cura performs VM-aware scheduling using dynamic

planning of virtual machines through online virtual machine reconfiguration, taking

into account dynamic characteristics of workload changes and the cost of the recon-

figuration process. The utility-driven scheduling and capacity planning approach of

Cura achieves significant improvements on the overall cost of operating the cloud

data center from the cloud service providers’ point of view without compromising the

service level agreement (SLA) of cloud consumers while making services available at

a lower cost to cloud users.

1.2.2 Locality-aware Cloud Resource Allocation

The second contribution of this dissertation is the development of a MapReduce

Cloud resource allocation system - Purlieus. Purlieus is a self-configurable locality-

based data and virtual machine management framework that enables MapReduce

jobs to access most of their data either locally or from close-by nodes including all

input, output and intermediate data generated during map and reduce phases of

the jobs. The first feature of Purlieus is to identify and categorize jobs using a

data-size sensitive classifier into three categories namely map-input heavy, reduce-

input heavy and map-and-reduce input heavy. The second feature of Purlieus is to

provision virtual MapReduce clusters in a locality-aware manner, enabling efficient

pairing and allocation of MapReduce virtual machines (VMs) such that the map and

reduce processing can access all the input and intermediate data from local or close-by

physical machines. We demonstrate how this locality-awareness during both map and

reduce phases of the job not only improves runtime performance of individual jobs but

also has an additional advantage of reducing network traffic generated in the cloud

data center. This is accomplished using a novel coupling of, otherwise independent,

data and VM placement steps.
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1.2.3 Privacy-conscious Cloud Resource Management

To address the concerns of privacy-conscious data access and query processing, we first

investigate on efficient MapReduce analysis for private data archived in a cloud. We

then address the challenges of provisioning location privacy-preserving cloud services

to mobile cloud users.

1.2.3.1 MapReduce Analysis for Archived Private Data

We note that public storage clouds have become a popular choice for archiving certain

classes of enterprise data such as application and infrastructure logs. As these logs can

contain sensitive information like IP addresses or user logins, regulatory and security

requirements often require data to be encrypted before moved to the cloud. In order

to leverage such data for any business value, we note that the current solutions are

highly inefficient, requiring to first download the data from the public clouds, decrypt

it and then process it at the secure enterprise site.

We propose VNCache: an efficient solution for MapReduce analysis of such cloud-

archived log data without requiring an apriori data transfer and loading into the local

Hadoop cluster. VNcache dynamically integrates cloud-archived data into a virtual

namespace at the enterprise Hadoop cluster. Through a seamless data streaming and

prefetching model, Hadoop jobs can begin execution as soon as they are launched

without requiring any apriori downloading. With VNcache’s accurate pre-fetching

and caching, jobs often run on a local cached copy of the data block significantly im-

proving performance. When no longer needed, data is safely evicted from the enter-

prise cluster reducing the total storage footprint. Uniquely, VNcache is implemented

with NO changes to the Hadoop application stack. While our first two contributions

of the thesis namely the Cura cost-optimized Cloud system and Purlieus locality-

aware resource management are at the cloud provider tier, our VNCache system is

implemented at the application service provider tier.

10



1.2.3.2 Location Privacy-aware Mobile Cloud Services

The next contribution of this dissertation extends our cloud service framework at the

cloud consumer tier to support privacy-preserving ubiquitous data access and query

processing. Concretely, the goal in this context is to offer anonymous cloud services

to mobile users on the move. Cloud users request location dependent data services

having their own location privacy constraints and thus the service requests must be

honored with respect to personalized location privacy requirements. Spatial cloaking

techniques are extensively studied to anonymize GPS or WiFi localization traces such

that the exact location of a mobile user is cloaked with a k-anonymized spatial region

before forwarding and storing them at an untrusted cloud provider. However spa-

tial cloaking suffers from a number of serious limitations, such as inability to support

pseudo-identity based services, lower quality of services due to lower spatial resolution

of anonymized locations and vulnerability of privacy leakages for continuous services.

As part of this dissertation, we have developed a novel road-network mix-zone based

framework for anonymizing location data and serving location based service requests

without disclosing privacy in real-time. In contrast to spatial cloaking based location

privacy protection, the MobiMix approach aims at breaking the continuity of location

exposure through the development of attack resilient road network mix-zones. We

have devised non-rectangular road network mix-zones [104] to protect snapshot query

users against location privacy risks by offering both timing attack resilience and tran-

sition attack resilience even when the mobility patterns and road-network topology

are exposed to the attackers. To protect continuous query users, we have devel-

oped three types of delay-tolerant road network mix-zones (i.e., temporal, spatial and

spatio-temporal) that achieve higher anonymity and attack resilience to CQ-timing

attacks and CQ-transition attacks [105]. Overall, the MobiMix approach can provide

higher level of anonymity while offering better quality of service for location based

11



services with hard continuity constraints. The cloud services powered by the Mo-

biMix system offers access privacy protection for cloud consumers enabling them to

use cloud service anytime and anywhere worry free of location privacy risks.

The overall goal of this dissertation lies in scalable and cost-effective provisioning

and privacy-conscious delivery of Cloud services. We firmly believe that an important

enabling technology for cloud services is the ability to offer cost-aware elasticity as well

as privacy-conscious scalability and high performance in supporting Big Data appli-

cations. This dissertation research scope focuses on taking a systematic approach to

developing system-level techniques and algorithms to addressing these challenges and

is dedicated to relevant research solutions to the next generation of cloud computing

services.

1.3 Organization of the Dissertation

This dissertation is organized into a series of chapters. Each chapter presents the

background of the problem being addressed and introduces the technical concepts

and discusses the solution techniques followed by experimental evaluation. We discuss

related work along every chapter. Below we present a brief overview of every chapter.

Chapter 2: In this chapter, we discuss the cost-inefficiencies in existing cloud

models for MapReduce and present the Cura cost-optimized model for MapReduce

Clouds. We also discuss the performance enhancement schemes in Cura namely

VM-aware scheduling and online virtual machine reconfiguration and present the

experimental evaluation.

Chapter 3: We provide an overview of the Purlieus locality-aware resource al-

location system. We discuss the challenges related to datacenter networking bottle-

necks and argue for improved data locality in the cloud. We present the Purlieus

coupled storage-compute architecture for MapReduce and describe its resource allo-

cation techniques.
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Chapter 4: In this chapter, we present our caching techniques for privacy-

conscious enterprises to efficiently process archived data stored in Public clouds.

Chapter 5: In this chapter, we introduce the location privacy risks involved in

accessing cloud services from mobile devices. We present the MobiMix road net-

work based mix-zone framework for protecting location privacy of mobile users. We

discuss the unique features of the MobiMix approach and presents its experimental

evaluation.

Chapter 6: We introduce the privacy risks involved in accessing continuous query

services and present the delay-tolerant mix-zone approach as an effective countermea-

sure to deal with the privacy attacks related to accessing continuous data services.

Chapter 7: We conclude with a summary of our thesis contribution and discuss

open issues and future research directions to the work presented in this thesis.
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CHAPTER II

CURA: A COST-OPTIMIZED MODEL FOR

MAPREDUCE IN A CLOUD

2.1 Introduction

One of the major IT trends impacting modern enterprises is big data and big data

analytics. As enterprises generate more and more data, deriving business value from

it using analytics becomes a differentiating capability – whether it is understanding

customer buying behavior or detecting fraud in online transactions. The most popular

approach towards such big data analytics is using MapReduce [57] and its open-

source implementation called Hadoop [4]. With the ability to automatically parallelize

the application on a scale-out cluster of machines, MapReduce can allow analysis of

terabytes and petabytes of data in a single analytics job. Today MapReduce forms

the core of technologies powering enterprises like Google, Yahoo and Facebook. This

MapReduce analytics capability, when paired with another major IT trend – cloud

computing, offers a unique opportunity for enterprises interested in big data analytics.

A recent Gartner survey shows increasing cloud computing spending with 39% of

enterprises having allotted IT budgets for it [77].

In general, there are two approaches in use today for MapReduce in a cloud. In

the first approach, customers use a dedicated MapReduce cloud service (e.g. Amazon

Elastic MapReduce [9]) and buy on-demand clusters of VMs for each job or a work-

flow. Once the MapReduce job (or workflow) is submitted, the cloud provider creates

VMs that execute that job and after job completion the VMs are deprovisioned. In

the second approach customers lease dedicated clusters from a generic cloud service

like Amazon Elastic Compute Cloud [10] and operate MapReduce on them as if they
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were using a private MapReduce infrastructure. In this case, based on the type of

analytics workload they may use different number of VMs for each submitted job,

however the entire cluster needs to be maintained by the client enterprise.

In this chapter we argue that these MapReduce cloud models suffer from the

following drawbacks:

Interactive workloads: Many modern MapReduce workloads constitute a large

fraction of interactive short jobs [37, 94, 43] that require short response times. A

recent study on the Facebook and Yahoo production workload traces [44, 43] show

that more than 95% of their production MapReduce jobs are short running jobs with

an average running time of 30 sec. These jobs typically process a smaller amount

of data (less than 200 MB in the Facebook trace [44] that are part of bigger data

sets, for example, a friend recommendation query that is issued interactively when

a Facebook user browses his/her profile. These jobs process a small amount of data

corresponding to a small subset of the social network graph to recommend the most

likely known friends to the user. As these jobs are highly interactive, providing high

quality of service in terms of job response time is infeasible in a dedicated MapReduce

cloud model (the first approach) since it requires virtual clusters to be created afresh

for each submitted job. On the other hand an owned cluster in a generic compute

cloud (the second approach) has high costs due to low utilization since the cluster

needs to be continuously up waiting for jobs and serving them when submitted.

Lack of global optimization: Secondly, both of these models require users to

figure out the complex job configuration parameters (e.g. type of VMs, number of

VMs and MapReduce configuration like number of mappers per VM etc.) that have

an impact on the performance and thus cost of the job. With growing popularity

of MapReduce and associated eco-system like Pig [8], Hive [127], many MapReduce

jobs nowadays are actually fired by non-engineer data analysts and putting such a

burden on those users is impractical. Additionally, even if MapReduce performance
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prediction tools like [74] are used in the current cloud models, the per-job optimized

configurations created by them from a user perspective are often suboptimal from

a cloud provider perspective and hence lead to requiring more cloud resources than

that required by a globally optimized schema with resource management performed

at the cloud provider-end. A good example of such a cloud managed system is the

recent Google BigQuery system [7] which allows to run SQL-like queries against very

large datasets with potentially billions of rows. In BigQuery service, customers only

submit the queries to be processed on the large datasets and the Cloud service provider

intelligently manages the resources for the SQL-like queries.

Low service differentiation: Thirdly, both existing models fail to incorpo-

rate significant other optimization opportunities available for the cloud provider to

improve its resource utilization. MapReduce workloads often have a large number

of jobs that do not require immediate execution, rather feed into a scheduled flow

- e.g. MapReduce job analyzing system logs for a daily/weekly status report. By

delaying the execution of such jobs, cloud provider can multiplex its resources better

for significant cost savings. For instance, the batch query model in Google BigQuery

service [7] has 43% lower cost than the interactive query model in which case the

queries are instantaneously executed.

To alleviate these drawbacks, we propose a MapReduce cloud service model called Cura.

Cura uses a secure instant VM allocation scheme that helps reduce the response time

for short jobs by up to 65%. To reduce user complexity, Cura automatically cre-

ates the best cluster configuration for the customers jobs with the goal of optimizing

the overall resource usage of the cloud. Finally, Cura includes a suite of resource

management techniques which leverage deadline awareness for cost-aware resource

provisioning. Overall, the use of these techniques including intelligent VM-aware

scheduling and online VM reconfiguration techniques lead to more than 80% savings

in the cloud infrastructure cost. While Cura focuses on cloud provider’s resource
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costs, we believe that any cost savings of the cloud provider in terms of infrastructure

cost and energy cost based on resource usage would in turn reflect positively in the

price of the services for the customers.

2.2 Cura: Model and Architecture

In this section, we present the cloud service model and system architecture for Cura.

2.2.1 Cloud Operational Model

Table 1 shows possible cloud service models for providing MapReduce as a cloud

service. The first operational model (immediate execution) is a completely customer

managed model where each job and its resources are specified by the customer on

a per-job basis and the cloud provider only ensures that the requested resources are

provisioned upon job arrival. Many existing cloud services such as Amazon Elastic

Compute Cloud [10], Amazon Elastic MapReduce [9] use this model. This model has

the lowest rewards since there is lack of global optimization across jobs as well as

other drawbacks discussed earlier. The second possible model (delayed start) [123] is

partly customer-managed and partly cloud-managed model where customers specify

which resources to use for their jobs and the cloud provider has the flexibility to

schedule the jobs as long as they begin execution within a specified deadline. Here,

the cloud provider takes slightly greater risk to make sure that all jobs begin exe-

cution within their deadlines and as a reward can potentially do better multiplexing

of its resources. However, specifically with MapReduce, this model still provides low

cost benefits since jobs are being optimized on a per-job basis by disparate users. In

fact customers in this model always tend to greedily choose low-cost small cluster

configurations involving fewer VMs that would require the job to begin execution

almost immediately. For example, consider a job that takes 180 minutes to complete

in a cluster of 2 small instances but takes 20 minutes to complete using a cluster of
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Table 1: Cloud Operational Models

Model Optimization Provider risk Potential benefits

Immediate execution Per-job Limited Low
Delayed start Per-job Moderate Low – Moderate
Cloud managed Global High High

6 large instances1. Here if the job needs to be completed in more than 180 minutes,

the per-job optimization by the customer will tend to choose the cluster of 2 small

instances as it has lower resource usage cost compared to the 6 large instance cluster.

This cluster configuration, however, expects the job to be started immediately and

does not provide opportunity for delayed start. This observation leads us to the next

model. The third model – which is the subject of this chapter – is a completely

cloud managed model where the customers only submit jobs and specify job comple-

tion deadlines. Here, the cloud provider takes greater risk and performs a globally

optimized resource management to meet the job SLAs for the customers. Similar

high-risk high-reward model is the database-as-a-service model [50, 31, 141] where

the cloud provider estimates the execution time of the customer queries and performs

resource provisioning and scheduling to ensure that the queries meet their response

time requirements. As MapReduce also lends itself well to prediction of execution

time [73, 101, 79, 110, 80], we have designed Cura on a similar model. Another recent

example of this model is the Batch query model in Google’s Big Query cloud service

[7] where the Cloud provider manages the resources required for the SQL-like queries

so as to provide a service level agreement of executing the query within 3 hours.

2.2.2 System Model: User Interaction

Cura’s system model significantly simplifies the way users deal with the cloud service.

With Cura, users simply submit their jobs (or composite job workflows) and specify

the required service quality in terms of response time requirements. After that, the

1Example adapted from the measurements in Herodotou et. al. paper[75]
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cloud provider has complete control on the type and schedule of resources to be

devoted to that job. From the user perspective, the deadline will typically be driven

by their quality of service requirements for the job. As MapReduce jobs perform

repeated analytics tasks, deadlines could simply be chosen based on those tasks (e.g.

8 AM for a daily log analysis job). For ad-hoc jobs that are not run per a set schedule,

the cloud provider can try to incentivize longer deadlines by offering to lower costs

if users are willing to wait for their jobs to be executed2. However, this model does

not preclude an immediate execution mode in which case the job is scheduled to

be executed at the time of submission, similar to existing MapReduce cloud service

models.

2.2.3 System Architecture

Once a job is submitted to Cura, it may take one of the two paths (Figure 2). If

a job is submitted for the very first time, Cura processes it to be profiled prior to

execution as part of its profile and analyze service. This develops a performance

2Design of a complete costing mechanism is beyond the scope of this work
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model for the job in order to be able to generate predictions for its performance for

different VM types, cluster sizes and job parameters. This model is used by Cura in

optimizing the global resource allocation. MapReduce profiling has been an active

area of research [73, 101, 80] and open-source tools such as Starfish [73] are available

to create such profiles. Recent work had leveraged MapReduce profiling for Cloud

resource management and showed that such profiles can be obtained with very high

accuracy with less than 12% error rate for the predicted running time [79].

The profile and analyze service is used only once when a customer’s job first goes

from development-and-testing into production in its software life cycle. For subse-

quent instances of the production job, Cura directly sends the job for scheduling.

Since typically production jobs including interactive or long running jobs do not

change frequently (only their input data may differ for each instance of their execu-

tion), profiling will most often be a one-time cost. Further, from an architectural

standpoint, Cura users may even choose to skip profiling and instead provide VM

type, cluster size and job parameters to the cloud service similar to existing dedi-

cated MapReduce cloud service models like [9]. Jobs that skip the one-time profile

and analyze step will still benefit from the response time optimizations in Cura de-

scribed below, however, they will fail to leverage the benefits provided by Cura’s

global resource optimization strategies. Jobs that are already profiled are directly

submitted to the Cura resource management system.

Cura’s resource management system is composed of the following components:

2.2.3.1 Secure instant VM allocation

In contrast to existing MapReduce services that create VMs on demand, Cura employs

a secure instant VM allocation scheme that reduces response times for jobs, especially

significant for short running jobs. Upon completion of a job’s execution, Cura only

destroys the Hadoop instance used by the job (including all local data) but retains the
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VM to be used for other jobs that need the same VM configuration. For the new job,

only a quick Hadoop initialization phase is required which prevents having to recreate

and boot up VMs3. Operationally, Cura creates pools of VMs of different instance

types as shown in Figure 3 and dynamically creates Hadoop clusters on them.

Pool of small 

instances

Pool of Large 

instances

Pool of extra 

large instances

Figure 3: VM Pool

When time sharing a VM across jobs it is important to ensure that an untrusted

MapReduce program is not able to gain control over the data or applications of other

customers. Cura’s security management is based on SELinux [12] and is similar to

that of the Airavat system proposed in [114] that showed that enforcing SELinux

access policies in a MapReduce cloud does not lead to performance overheads. While

Airavat shares multiple customer jobs across the same HDFS, Cura runs only one

Hadoop instance at a time and the HDFS and MapReduce framework is used by only

one customer before it is destroyed. Therefore, enforcing Cura’s SELinux policies

does not require modifications to the Hadoop framework and requires creation of only

two SELinux domains, one trusted and the other untrusted. The Hadoop framework

3Even with our secure instant VM allocation technique data still needs to be loaded for each job
into its HDFS, but it is very fast for small jobs as they each process small amount of data, typically
less than 200 MB in the Facebook and Yahoo workloads [44].
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including the HDFS runs in the trusted domain and the untrusted customer programs

run in the untrusted domain. While the trusted domain has regular access privileges

including access to the network for network communication, the untrusted domain

has very limited permissions and has no access to any trusted files and other system

resources. An alternate solution for Cura’s secure instant VM allocation is to take

VM snapshots upon VM creation and once a customer job finishes, the VM can revert

to the old snapshot. This approach is also significantly faster than destroying and

recreating VMs, but it can however incur noticeable delays in starting a new job

before the VM gets reverted to a secure earlier snapshot.

Overall this ability of Cura to serve short jobs better is a key distinguishing feature.

However as discussed next, Cura has many other optimizations that benefit any type

of job including long running batch jobs.

2.2.3.2 Job Scheduler

The job scheduler at the cloud provider forms an integral component of the Cura sys-

tem. Where existing MapReduce services simply provision customer-specified VMs

to execute the job, Cura’s VM-aware scheduler (Section 2.3.1) is faced with the chal-

lenge of scheduling jobs among available VM pools while minimizing global cloud

resource usage. Therefore, carefully executing jobs in the best VM type and cluster

size among the available VM pools becomes a crucial factor for performance. The

scheduler has knowledge of the relative performance of the jobs across different cluster

configurations from the predictions obtained from the profile and analyze service and

uses it to obtain global resource optimization.

2.2.3.3 VM Pool Manager

The third main component in Cura is the VM Pool Manager that deals with the

challenge of dynamically managing the VM pools to help the job scheduler effectively

obtain efficient resource allocations. For instance, if more number of jobs in the
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current workload require small VM instances and the cloud infrastructure has fewer

small instances, the scheduler will be forced to schedule them in other instance types

leading to higher resource usage cost. The VM pool manager understands the current

workload characteristics of the jobs and is responsible for online reconfiguration of

VMs for adapting to changes in workload patterns (Section 2.3.2). In addition, this

component may perform further optimization such as power management by suitably

shutting down VMs at low load conditions.

2.3 Cura: Resource Management

In this section, we describe Cura’s core resource management techniques. We first

present Cura’s VM-aware job scheduler that intelligently schedules jobs within the

available set of VM pools. We then present our reconfiguration-based VM pool man-

ager that dynamically manages the VM instance pools by adaptively reconfiguring

VMs based on current workload requirements.

2.3.1 VM-aware Scheduling

The goal of the cloud provider is to minimize the infrastructure cost by minimizing

the number of servers required to handle the data center workload. Typically the

peak workload decides the infrastructure cost for the data center. The goal of Cura

VM-aware scheduling is to schedule all jobs within available VM pools to meet their

deadlines while minimizing the overall resource usage in the data center reducing this

total infrastructure cost. As jobs are incrementally submitted to the cloud, scheduling

requires an online algorithm that can place one job at a time on an infrastructure

already executing some jobs. To better understand the complexity of the problem,

we first analyze an offline version which leads us to the design of an online scheduler.
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2.3.1.1 Offline VM-aware Scheduling

In the offline VM-aware scheduling problem, we assume that information about the

jobs, their arrival time and deadlines are known apriori and the goal of the algorithm

is to schedule all jobs to meet their deadline by appropriately provisioning VM clusters

and to minimize the overall resource usage in the cloud. We assume each job, Ji is

profiled when it first goes to production and based on the profile it has a number

of predictions across various cluster configurations, Ck,n in terms of instance types

denoted by k and number of VMs denoted by n. Let tarrival(Ji) and tdeadline(Ji)

denote the arrival time and deadline of job, Ji respectively. The running time of the

job, Ji using the cluster configuration, Ck,n is given by trun(Ji, C
k,n) and it includes

both execution time and the time for loading data into the HDFS4. Cost(Ji, C
k,n)

represents the resource usage cost of scheduling job, Ji using the cluster configuration,

Ck,n. Precisely, the cost, Cost(Ji, C
k,n) represents the product of the number of

physical servers required to host the virtual cluster, Ck,n and the running time of the

job, trun(Ji, C
k,n). If Rk represents number of units of physical resources in VM type,

k and if each physical server has M units of physical resources5, the resource usage

cost can be computed as:

Cost(Ji, C
k,n) = trun(Ji, C

k,n)× n×Rk

M

Let tstart(Ji) denote the actual starting time of the job, Ji and therefore the end time

of job, Ji is given by

tend(Ji) = tstart(Ji) +
∑
k,n

Xk,n
i × trun(Ji, C

k,n)

4Additionally, trun(Ji, C
k,n) can also include an error bound in the prediction to ensure that the

job will complete within its deadline even when there is prediction error.
5Though we present a scalar capacity value, VM resources may have multiple dimensions like

CPU, memory and disk. To handle this, our model can be extended to include a vector of resources
or compute dimensions can be captured in a scalar value, e.g. the volume metric [139].
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where Xk,n
i is a Boolean variable indicating if job, Ji is scheduled using the cluster

configuration, Ck,n and

∀i,
∑
k,n

Xk,n
i = 1

In order to ensure that all jobs get completed within their deadlines, we have

∀i, tend(Ji) ≤ tdeadline(Ji)

The sum of concurrent usage of VMs among the running jobs is also constrained by

the number of VMs, Vk in the VM pools where k represents the VM type. If St
i is a

Boolean variable indicating if job, Ji is executing at time, t, we have

St
i =

 1 if tstart(Ji) ≤ t ≤ tend(Ji)

0 otherwise

∀t,∀k,
∑
i

(St
i ×

∑
n

(Xk,n
i × n)) ≤ Vk

With the above constraints ensuring that the jobs get scheduled to meet deadlines,

now the key optimization is to minimize the overall resource usage cost of all the jobs

in the system.

Overallcost = min
∑
i,k,n

Cost(Ji, C
k,n)×Xk,n

i

An optimal solution for this problem is NP-Hard with a reduction from the known

NP-Hard multi bin-packing problem [62] with additional job moldability constraints.

Therefore, we use a heuristics based VM-aware scheduler which is designed to work

in an online fashion.

2.3.1.2 Online VM-aware Scheduler

Given VM pools for each VM instance type and continually incoming jobs, the online

VM-aware scheduler decides (a) when to schedule each job in the job queue, (b) which
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VM instance pool to use and (c) how many VMs to use for the jobs. The scheduler

also decides best Hadoop configuration settings to be used for the job by consulting

the profile and analyze service.
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Figure 4: Scheduling in Cura

Depending upon deadlines for the submitted jobs, the VM-aware scheduler typ-

ically needs to make future reservations on VM pool resources (e.g. reserving 100

small instances from time instance 100 to 150). In order to maintain the most agility

in dealing with incrementally incoming jobs and minimizing the number of reserva-

tion cancellations, Cura uses a strategy of trying to create minimum number of future

reservations without under-utilizing any resources. For implementing this strategy,

the scheduler operates by identifying the highest priority job to schedule at any given

time and creates a tentative reservation for resources for that job. It then uses the

end time of that job’s reservation as the bound for limiting the number of reservations

i.e. jobs in the job queue that are not schedulable (in terms of start time) within that

reservation time window are not considered for reservation. This ensures that we are
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not unnecessarily creating a large number of reservations which may need cancellation

and rescheduling after another job with more stringent deadline enters the queue.

A job Ji is said to have higher priority over job Jj if the schedule obtained by

reserving job Ji after reserving job Jj would incur higher resource cost compared to

the schedule obtained by reserving job Jj after reserving Ji. The highest priority job

is picked by performing pairwise cost comparisons. It is chosen such that it will incur

higher overall resource usage cost if the highest priority job is deferred as compared

to deferring any other job.

For each VM pool, the algorithm picks the highest priority job, Jprior in the job

queue and makes a reservation for it using the cluster configuration with the lowest

possible resource cost at the earliest possible time based on the performance predic-

tions obtained from the profile and analyze service. Note that the lowest resource

cost cluster configuration need not be the job’s optimal cluster configuration (that

has lowest per-job cost). For instance, if using the job’s optimal cluster configuration

at the current time cannot meet the deadline, the lowest resource cost cluster will

represent the one that has the minimal resource usage cost among all the cluster

configurations that can meet the job’s deadline.

Once the highest priority job, Jprior is reserved for all VM pools, the reservation

time windows for the corresponding VM pools are fixed. Subsequently, the scheduler

picks the next highest priority job in the job queue by considering priority only

with respect to the reservations that are possible within the current reservation time

windows of the VM pools. The scheduler keeps on picking the highest priority job one

by one in this manner and tries to make reservations to them on the VM pools within

the reservation time window. Either when all jobs are considered in the queue and no

more jobs are schedulable within the reservation time window or when the reservations

have filled all the resources until the reservation time windows, the scheduler stops

reserving.
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Then at each time instance, the scheduler picks the reservations for the current

time and schedules them on the VM pools by creating Hadoop clusters of the required

sizes in the reservation. After scheduling the set of jobs that have reservation starting

at the current time, the scheduler waits for one unit of time and considers scheduling

for the next time unit. If no new jobs arrived within this one unit of time, the

scheduler can simply look at the reservations made earlier and schedule the jobs that

are reserved for the current time, however, if some new jobs arrived within the last one

unit of time, then the scheduler needs to check if some of the newly arrived jobs have

higher priority over the reserved jobs and in that case, the scheduler may require to

cancel some existing reservations to reserve some newly arrived jobs that have higher

priority over the ones in the reserved list.

Algorithm 1 VM-aware Scheduling
1: Wlist: jobs that are waiting to be reserved or scheduled
2: Nlist: jobs that arrived since the last time tick
3: Rlist: jobs that have a tentative reservation
4: window(V ): reservation time window of VM type V
5: twindow : is the set of time windows of all the VM types
6: CostV M (Ji, Jj , V ): lowest possible resource usage cost of scheduling jobs Ji and Jj by reserving Ji before job Jj

in VM type V
7: Cost(Ji, Jj): lowest possible cost of scheduling jobs Ji and Jj on any VM type
8: Costtwindow(Ji, Jj): lowest possible cost of scheduling Ji and Jj by reserving Ji before Jj such that they both

start within the time window of the VM pools
9: Sched(Ji, twindow): determines if the Job Ji is schedulable within the current time window of the VM pools
10: All cost calculations consider only cluster configurations that can meet the job’s deadline
11: procedure VMawareSchedule(Wlist, Nlist, Rlist)
12: Assign redo reserve = true if ∃Jn ∈ Nlist, ∃Jr ∈ Rlist such that Cost(Jn, Jr) ≥ Cost(Jr, Jn)
13: Assign redo timewindow = true if ∃Jn ∈ Nlist, ∃Jr ∈ Rlist such that Cost(Jn, Jr) > Cost(Jr, Jn) and Jr is

a time window deciding job
14: if ( redo reserve == false) then
15: return
16: end if
17: if (redo timewindow == true) then
18: CJlist = Rlist ∪Nlist ∪Wlist

19: Cancel all reservations
20: for all V ∈ VMtypes do
21: Pick and reserve job Ji that maximizes
22:

∑
Jj∈CJlist

Cost(Jj , Ji)− CostV M (Ji, Jj , V ))

23: twindow(V ) = min(tend(Ji), tbound)
24: end for
25: else
26: CJlist = Rlist ∪Nlist

27: Cancel all reservations except twindow deciding ones
28: end if
29: while ( ∃Ji ∈ CJlist|sched(Ji, twindow) == true) do
30: Pick and reserve job Ji that maximizes
31:

∑
Jj∈CJlist

Costtwindow(Jj , Ji)− Costtwindow (Ji, Jj)

32: end while
33: Run jobs having reservations start at the current time
34: end procedure
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If the scheduler finds that some newly arrived jobs take priority over some jobs

in the current reservation list, it first tries to check if the reservation time window

of the VM pools need to be changed. It needs to be changed only when some newly

arrived jobs take priority over the current highest priority job of the VM pools that

decides the reservation time window. If there exists such newly arrived jobs, the

algorithm cancels all reserved jobs and moves them back to the job queue and adds

all the newly arrived jobs to the job queue. It then picks the highest priority job,

Jprior for each VM pool from the job queue that decides the reservation time window

for each VM pool. Once the new reservation time window of the VM pools are

updated, the scheduler considers the other jobs in the queue for reservation within

the reservation time window of the VM pools until when either all jobs are considered

or when no more resources are left for reservation. In case, the newly arrived jobs do

not have higher priority over the time window deciding jobs but have higher priority

over some other reserved jobs, the scheduler will not cancel the time window deciding

reservations. However, it will cancel the other reservations and move the jobs back

to the job queue along with the new jobs and repeat the process of reserving jobs

within the reservation time windows from the job queue in the decreasing order of

priority. For a data center of a given size, assuming constant number of profile and

analyze predictions for each job, it can be shown that the algorithm runs in polynomial

time with O(n2) complexity. We present a complete pseudo-code for this VM-aware

scheduler in Algorithm 1.

While even a centralized VM-aware scheduler scales well for several thousands of

servers with tens of thousands of jobs, it is also straight forward to obtain a distributed

implementation to scale further. As seen from the pseudocode, the main operation

of the VM-aware scheduler is finding the highest priority job among the n jobs in

the queue based on pairwise cost comparisons. In a distributed implementation, this

operation can be distributed and parallelized so that if there are n jobs in the queue,
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the algorithm would achieve a speed of x with x parallel machines, each of them

performing n
x
pairwise cost comparisons.

Figure 4(a) shows an example VM-aware schedule obtained for 15 jobs using 40

VMs in each VM type, VM-1, VM-2 and VM-3. Here we assume that jobs 1, 2, 5,

6, 7, 8, 9, 10, 11, 13, 15 have their optimal cluster configuration using VM-1 and

jobs 3, 12, and 14 are optimal with VM-2 and job 4 is optimal with VM-3. Here, the

VM-aware scheduler tries its best effort to minimize the overall resource usage cost

by provisioning the right jobs in the right VM types and using the minimal cluster

size required to meet the deadline requirements. However, when the optimal choice

of the resource is not available for some jobs, the scheduler considers the next best

cluster configuration and schedules them in a cost-aware manner. Below, we discuss

a detailed illustrative example.

VMs trun VM-
1

Cost VM-
1

trun VM-
2

Cost VM-
2

trun VM-
3

Cost VM-
3

10 900 1500 562.5 1875 321.42 2142.85
20 473.68 1578.94 296.05 1973.68 169.17 2255.63
30 333.33 1666.66 208.33 2083.33 119.04 2380.95
40 264.70 1764.70 165.44 2205.88 94.53 2521.00

Table 2: Job type -1: Optimal with virtual machine type -1 (VM-1)

VMs trun VM-
1

Cost VM-
1

trun VM-
2

Cost VM-
2

trun VM-
3

Cost VM-
3

10 1250 2083.33 500 1666.66 357.14 2380.95
20 657.89 2192.98 263.15 1754.38 187.96 2506.26
30 462.96 2314.81 185.18 1851.85 132.27 2645.50
40 367.64 2450.98 147.05 1960.78 105.04 2801.12

Table 3: Job type -2: Optimal with virtual machine type -2 (VM-2)

VMs trun VM-
1

Cost VM-
1

trun VM-
2

Cost VM-
2

trun VM-
3

Cost VM-
3

10 5000 8333.33 2187.5 7291.66 875 5833.33
20 2631.57 8771.92 1151.31 7675.43 460.52 6140.35
30 1851.85 9259.25 810.18 8101.85 324.07 6481.48
40 1470.58 9803.92 643.38 8578.43 257.35 6862.74

Table 4: Job type -3: Optimal with virtual machine type -3

30



VMs trun VM-
1

Cost VM-
1

trun VM-
2

Cost VM-
2

trun VM-
3

Cost VM-
3

10 250 416.66 156.25 520.83 89.28 595.23
20 131.57 438.59 82.23 548.24 46.99 626.56
30 92.59 462.96 57.87 578.70 33.06 661.37
40 73.52 490.19 45.95 612.74 26.26 700.28

Table 5: Job type -4: Optimal with virtual machine type -1

Table 6 shows a simple workload of 15 jobs scheduled using the VM-aware sched-

uler. The workload consists of 4 types of jobs. Tables 2, 3, 4 and 5 show the perfor-

mances predictions of these 4 job types made across 3 VM types. VM-1 is assumed

to have 2 GB memory and 2 VCPUs and VM-2 and VM-3 are assumed to have 4

GB memory and 4 VCPUs and 8 GB memory and 8 VCPUs respectively. The tables

compare 4 different cluster configurations for each VM type by varying the number

of VMs from 10 to 40. The running time of the job in each cluster configuration is

shown as trun and the resource utilization cost is shown as Cost. We find that job

type 1 is optimal with the VM-1 and incurs 20% additional cost with VM-2 and 30%

additional cost with VM-3. Similarly, job type 2 is optimal with VM-2 and incurs

20% additional cost with VM-1 and 30% additional cost with VM-3. Job type 3 is

optimal for VM-3 and incurs 30% additional cost with VM-1 and 20% additional cost

with VM-2. Job type 4 is similar to job type-1 which is optimal for VM-1, but it has

shorter running time.

In Table 6, the arrival time and the deadline of the jobs are shown. Now, the

scheduler’s goal is to choose the number of virtual machines and the virtual machine

type to use for each job. At time t = 0, we find jobs, 1, 2, 3, 4 and 5 in the system.

Based on the type of the jobs and by comparing the cost shown in Tables 2 - 5, jobs

1, 2 and 5 are optimal with VM-1 whereas job 3 is optimal with VM-2 and job 4

is optimal with VM-3. The VM-aware scheduler chooses job 1 as the time window

deciding job for VM-1 based on the cost-based priority and chooses jobs 3 and 4 as the

time window deciding jobs for VM-2 and VM-3 respectively. Once the time windows

are decided, it reserves and schedules job 2 in VM-1 based on the cost-based priorities
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by referring to the performance comparison tables. Similarly it reserves and schedules

job 5 in VM-3, however job 5 is optimal only with VM-1. As there is not enough

resources available in the VM pool of VM-1, the scheduler is forced to schedule it in

VM-3 although it knows that it is less efficient.

At time t = 5, job 6 arrives and it is scheduled in VM-2 within the reservation

time window as the other permissible cluster configurations using the VM types can

not meet its deadline. When job 7 arrives at time, t = 105 it is reserved and scheduled

in VM-1 within its reservation time window. At time t = 160 When job 8 arrives,

the scheduler identifies that it is optimal with VM-1, however as there is not enough

VMs in VM-1, it schedules it in VM-3 as the reservation of job 8 starts within the

current reservation time window of VM-3. When job 9 arrives, it gets reserved on

VM-1 to start at t = 225 as it is optimal with VM-1. However, when job 10 arrives at

t = 220 it overrides job 9 by possessing higher priority and hence job 9’s reservation

is cancelled and job 10 is reserved and scheduled at t = 225.

After job 11 arrives at time t = 230 and gets scheduled at t = 250, the reservation

time window needs to be updated for VM-1. The scheduler compares the priority

based on the cost and identifies job 11 as the time window deciding job and schedules

it at time t = 250. Subsequently, job 9’s reservation is also made at the earliest

possible, t = 357 within the new reservation time window. When job 12 arrives, the

scheduler identifies that it is optimal with VM-2 and it is reserved at the earliest

possible time t = 302 and at that time the reservation time window for VM-2 is

also updated with job 12. We note that job 13 is optimal with VM-1, however it

gets reserved and scheduled only with VM-3 as it has stronger deadline requirements

that only VM-3 can satisfy given the available resources in the other pools. Job 14

arrives at t = 430 and gets reserved and scheduled at t = 450 which also updates

the reservation time window of VM-2. However, Job 15 which is optimal with VM-1

needs to be scheduled with VM-3 due to lack of available resources in VM-1 pool.
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Thus the VM-aware scheduler minimizes the overall resource usage cost even though

some jobs violate their per-job optimality.

Job id type arrival
time

deadline VM No
VMs

start end

1 4 0 270 1 10 0 250
2 4 0 150 1 20 0 132
3 2 0 275 2 20 0 264
4 3 0 475 3 20 0 461
5 1 0 185 3 20 0 170
6 1 5 310 2 20 0 302
7 1 105 250 1 30 132 225
8 1 160 500 3 10 170 492
9 1 215 850 1 20 357 831
10 1 220 400 1 20 225 357
11 1 230 650 1 20 250 624
12 2 240 460 2 40 302 450
13 1 400 800 3 10 461 783
14 2 430 730 2 20 450 714
15 4 460 700 3 20 492 662

Table 6: VM-aware schedule

2.3.2 Reconfiguration-based VM Management

Although the VM-aware scheduler tries to effectively minimize the global resource

usage by scheduling jobs based on resource usage cost, it may not be efficient if the

underlying VM pools are not optimal for the current workload characteristics. Cura’s

reconfiguration-based VM manager understands the workload characteristics of the

jobs as an online process and performs online reconfiguration of the underlying VM

pools to better suit the current workload. For example, the VM pool allocation shown

in Figure 3 can be reconfigured as shown in Figure 5 to have more small instances by

shutting down some large and extra large instances if the current workload pattern

requires more small instances.

The reconfiguration-based VM manager considers the recent history of job exe-

cutions by observing the jobs that arrived within a period of time referred to as the

reconfiguration time window. For each job, Ji arriving within the reconfiguration time

window, the reconfiguration algorithm understands the optimal cluster configuration,

Copt(Ji) that incurs the lowest resource usage cost among all cluster configurations

that can meet the job’s deadline requirements. At the end of the reconfiguration
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Figure 5: Reconfiguration-based VM Management

time window period, the algorithm decides on the reconfiguration plan by making

a suitable tradeoff between the performance enhancement obtained after reconfigu-

ration and the cost of the reconfiguration process. If Y k,n
i is a Boolean variable

indicating if Ck,n is the optimal cluster configuration for job, Ji, then the proportion

of physical resources, Pk to be allocated to each VM type k can be estimated based

on the cumulative resource usage in each VM pool computed as the product of total

running time of the jobs and the size of the cluster used:

Pk =

∑
i,n(trun(Ji, Copt(Ji))× n× Y k,n

i )∑
i,k,n(trun(Ji, Copt(Ji))× n× Y k,n

i )

The total physical resources, Rtotal in the cloud infrastructure can be obtained as

Rtotal =
∑
k

Vk ×Rk

where Rk represents the physical resource in VM type, k, and Vk is the number of

VMs in the existing VM pool of type k. Therefore, the number of VMs, V ′
k in the

new reconfigured VM pools is given by
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V ′
k = Pk ×

Rtotal

Rk

Such reconfiguration has to be balanced against the cost of reconfiguration op-

erations (shutting down some instances and starting others). For this, we compute

the benefit of doing such reconfiguration. The overall observed cost represents the

actual cumulative resource cost of the jobs executed during the reconfiguration time

window using existing VM pools. Here, Zk,n
i is a Boolean variable indicating if the

job Ji used the cluster configuration, Ck,n
i .

Overallcostobserved =
∑
i,k,n

Cost(Ji, C
k,n)× Zk,n

i

Next, we compute the estimated overall cost with new VM pools assuming that the

jobs were scheduled using their optimal cluster configurations, Copt(Ji). Reconfigura-

tion benefit, Reconfbenefit is then computed as the difference between the two.

Overallcostestimate =
∑
i

Cost(Ji, Copt(Ji))

Reconfbenefit = Overallcostestimate −Overallcostactual

Assuming the reconfiguration process incurs an average reconfiguration overhead,

Reconfoverhead that represents the resource usage spent on the reconfiguration pro-

cess for each VM that undergoes reconfiguration, the total cost of reconfiguration is

obtained as

Reconfcost =
∑
k

|(V ′
k − Vk)| ×Reconfoverhead

The algorithm then triggers the reconfiguration process only if it finds that the esti-

mated benefit exceeds the reconfiguration cost by a factor of β, i.e., if Reconfbenefit ≥

β × Reconfcost where β > 1. As Reconfbenefit only represents an estimate of the

benefit, β is often chosen as a value greater than 1. When the reconfiguration process
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starts to execute, it shuts down some VMs whose instance types needs to be de-

creased in number and creates new VMs of the instance types that needs to created.

The rest of the process is similar to any VM reconfiguration process that focuses

on the bin-packing aspect of placing VMs within the set of physical servers during

reconfiguration [139, 121].

Continuing the example of Figure 4, we find that the basic VM-aware scheduler in

Figure 4(a) without reconfiguration support schedules jobs 5, 6, 8, 13, 15 using VM-2

and VM-3 types even though they are optimal with VM-1, The reconfiguration based

VM-aware schedule in Figure 4(b) provisions more VM-1 instances (notice changed

Y-axis scale) by understanding the workload characteristics and hence in addition to

the other jobs, jobs 5, 6, 8 13 and 15 also get scheduled with their optimal choice

of VM-type namely VM-1, thereby minimizing the overall resource usage cost in the

cloud data center.

For the same workload shown in Table 6, with the reconfiguration-based VM pool

management, the allocation of the VMs in each pool is based on the current workload

characteristics. For the example simplicity, we do not show the reconfiguration process

in detail, instead we assume that the reconfiguration is performed and illustrate the

example with the efficient schedule obtained by the VM-aware scheduler with the

reconfigured VM pools. In Table 7, we note that all the jobs of job type 1 and job

type 4 are scheduled using their optimal VM type VM-1. Similarly type 2 and type

3 jobs also obtain their optimal VM types VM-2 and VM-3 respectively.

2.4 Experimental Evaluation

We divide the experimental evaluation of Cura into two – first, we provide detailed

analysis on the effectiveness of Cura compared to conventional MapReduce services

and then we present an extensive micro analysis on the different set of techniques in

Cura that contribute to the overall performance. We first start with our experimental
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Job id type arrival
time

deadline VM No
VMs

start end

1 4 0 270 1 10 0 250
2 4 0 150 1 20 0 132
3 2 0 275 2 20 0 264
4 3 0 475 3 20 0 461
5 1 0 185 1 70 0 172
6 1 5 310 1 40 0 270
7 1 105 250 1 30 132 225
8 1 160 510 1 30 172 502
9 1 215 850 1 20 357 831
10 1 220 400 1 20 225 357
11 1 230 650 1 20 250 624
12 2 240 460 2 20 264 529
13 1 400 800 1 30 400 734
14 2 480 730 2 20 529 773
15 4 460 700 1 20 460 592

Table 7: Schedule with Reconfiguration-based VM Management

setup.

2.4.1 Experimental setup

Metrics: We evaluate our techniques on four key metrics with the goal of measur-

ing their cost effectiveness and performance– (1) number of servers: techniques that

require more number of physical servers to successfully meet the service quality re-

quirements are less cost-effective; this metric measures the capital expense on the pro-

visioning of physical infrastructure in the data center, (2) response time: techniques

that have higher response time provide poor service quality; this metric captures

the service quality of the jobs, (3) per-job infrastructure cost - this metric represents

the average per-job fraction of the infrastructure cost; techniques that require fewer

servers will have lower per-job cost and (4) effective utilization: techniques that result

in poor utilization lead to higher cost; this metric captures both the cost-effectiveness

and the performance of the techniques. It should be noted that the effective utiliza-

tion captures only the useful utilization that represents job execution and does not

include the time taken for creating and destroying VMs.

Cluster Setup: Our cluster consists of 20 CentOS 5.5 physical machines (KVM as

the hypervisor) with 16 core 2.53GHz Intel processors and 16 GB RAM. The machines

are organized in two racks, each rack containing 10 physical machines. The network
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is 1 Gbps and the nodes within a rack are connected through a single switch. We

considered 6 VM instance types with the lowest configuration starting from 2 2 GHz

VCPUs and 2 GB RAM to the highest configuration having 12 2GHz VCPUs and 12

GB RAM with each VM configuration differing by 2 2 GHz VCPUs and 2 GB RAM

with the next higher configuration.

Workload: We created 50 jobs using the Swim MapReduce workload generator [44]

that richly represent the characteristics of the production MapReduce workload in the

Facebook MapReduce cluster. The workload generator uses a real MapReduce trace

from the Facebook production cluster and generates jobs with similar characteristics

as observed in the Facebook cluster. Using the Starfish profiling tool [73], each job is

profiled on our cluster setup using clusters of VMs of all 6 VM types. Each profile is

then analyzed using Starfish to develop predictions across various hypothetical cluster

configurations and input data sizes.

Before discussing the experimental results, we briefly discuss the set of techniques

compared in the evaluation.

Per-job cluster services: Per job services are similar to dedicated MapReduce

services such as Amazon Elastic MapReduce [9] that create clusters per job or per

workflow. While this model does not automatically pick VM and Hadoop param-

eters, for a fair comparison we use Starfish to create the optimal VM and Hadoop

configuration even in this model.

Dedicated cluster services: Dedicated clusters are similar to private cloud infras-

tructures where all VMs are managed by the customer enterprises and Hadoop clusters

are formed on demand when jobs arrive. Here again the VM and job parameters are

chosen via Starfish.

Cura: Cura incorporates both the VM-aware scheduler and reconfiguration-based

VM pool management. For the micro-analysis, we also compare the following sub-

techniques to better evaluate Cura: 1) Per-job Optimization technique that uses
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Cura’s secure instant VM allocation but always uses the per-job optimal number of

VMs and the optimal VM type, 2) VM-aware scheduler described in Section 2.3.1

and 3) Reconfiguration based VM Management (Section 2.3.2).

2.4.2 Experimental Results

We first present the experimental evaluation of Cura by comparing with the existing

techniques for various experimental conditions determined by distribution of the job

deadlines, size of the MapReduce jobs, number of servers in the system and the

amount of prediction error in the profile and analyze process. By default, we use a

composite workload consisting of equal proportion of jobs of three different categories:

small jobs, medium jobs and large jobs. Small jobs read 100 MB of data, whereas

medium jobs and large jobs read 1 GB and 10 GB of input data respectively. We

model Poisson job arrivals with rate parameter, λ = 0.5 and the jobs are uniformly

distributed among 50 customers. The evaluation uses 11,500 jobs arriving within a

period of 100 minutes. Each of the arrived job represents one of the 50 profiled jobs

with input data size ranging from 100 MB to 10 GB based on the job size category.

By default, we assume that jobs run for the same amount of time predicted in the

profile and analyze process, however, we dedicate a separate set of experiments to

study the performance of the techniques when such predictions are erroneous. Note

that a job’s complete execution includes both the data loading time from the storage

infrastructure to the compute infrastructure and the Hadoop startup time for setting

up the Hadoop cluster in the cluster of VMs. The data loading time is computed by

assuming a network throughput of 50 MBps per VM 6 from the storage server and

the Hadoop startup time is taken as 10 sec.

6Here, the 50 MBps throughput is a conservative estimate of the throughput between the storage
and compute infrastructures based on measurement studies on real cloud infrastructures [63].
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2.4.2.1 Effect of job deadlines

In this set of experiments, we first study the effect of job deadlines on the performance

of Cura with other techniques (Figure 6) and then we analyze the performance of

Cura in terms of the contributions of each of its sub-techniques (Figure 7). Figure

6(a) shows the performance of the techniques for different maximum deadlines with

respect to number of servers required for the cloud provider to satisfy the workload.

Here, the deadlines are uniformly distributed within the maximum deadline value

shown on the X-axis.
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Figure 6: Effect of Job-deadlines

We find that provisioning dedicated clusters for each customer results in a lot of

resources as dedicated clusters are based on the peak requirements of each customer
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and therefore the resources are under-utilized. On the other hand, per-job cluster

services require lower number of servers (Figure 6(a)) as these resources are shared

among the customers. However, the Cura approach in Figure 6(a) has a much lower

resource requirement having up to 80% reduction in terms of the number of servers.

This is due to the designed global optimization capability of Cura. Where per-job

and dedicated cluster services always attempt to place jobs based on per-job optimal

configuration obtained from Starfish, resources for which may not be available in the

cloud, Cura on the other hand can schedule jobs using other than their individual

optimal configurations to better adapt to available resources in the cloud.

We also compare the approaches in terms of the mean response time in Figure 6(b).

To allow each compared technique to successfully schedule all jobs (and not cause

failures), we use the number of servers obtained in Figure 6(a) for each individual

technique. As a result, in this response time comparison, Cura is using much fewer

servers than the other techniques. We find that the Cura approach and the dedicated

cluster approach have lower response time (up to 65%).
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Figure 7: Effect of Job-deadlines

In the per-job cluster approach, the VM clusters are created for each job and it

takes additional time for the VM creation and booting process before the jobs can

begin execution leading to the increased response time of the jobs. Similar to the
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comparison on the number of servers, we see the same trend with respect to the per-

job cost in Figure 6(c) that shows that the Cura approach can significantly reduce

the per-job infrastructure cost of the jobs (up to 80%). The effective utilization in

Figure 6(d) shows that the per-job cluster services and dedicated cluster approach

have much lower effective utilization compared to the Cura approach. The per-job

services spend a lot of resources in creating VMs for every job arrival. Especially with

short response time jobs, the VM creation becomes a bigger overhead and reduces the

effective utilization. The dedicated cluster approach does not create VMs for every

job instance, however it has poor utilization because dedicated clusters are sized based

on peak utilization. But the Cura approach has a high effective utilization having

up to 7x improvement compared to the other techniques as Cura effectively leverages

global optimization and deadline-awareness to achieve better resource management.

Micro Analysis: Next, we discuss the performance of the sub-techniques of Cura

and illustrate how much each sub-technique contributes to the overall performance

under different deadlines. Figure 7(a) shows that with only per-job optimization

(which only leverages instant VM allocation), it requires up to 2.6x higher number

of servers compared to using reconfiguration-based VM pool management scheme

with the VM-aware scheduler. The per-job optimization scheduler always chooses the

optimal VM type and the optimal number of VMs for each job and in case the optimal

resources are not available when the job arrives, the scheduler keeps on queuing

the job until the required optimal resource becomes available when some other jobs

complete. It drops the request when it finds out that the job cannot meet its deadline

if the optimal resources are provisioned. However, with the VM-aware approach, the

scheduler will be able to still schedule the job by provisioning higher resources in order

to meet the deadline. Second, with the per-job optimization scheduler, even when

some sub-optimal resources are available when the job is waiting, they remain unused

as the job is expecting to be scheduled only using the optimal resources. Therefore
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the per-job optimization results in poor performance. The number of servers required

by the VM-aware approach is significantly reduced by up to 45% servers by efficient

reconfiguration-based VM management that dynamically manages the VMs in each

VM pool. Figure 7(b) shows the mean response time of the jobs for various sub-

techniques. We find that the sub-techniques have similar response times except for

the per-job optimization case that has up to 11% higher mean response time. As per-

job optimization scheduler keeps the jobs waiting until it finds their optimal resources,

it leads to higher queuing time that causes this increase.

2.4.2.2 Effect of Prediction Error

This set of experiments evaluates the techniques by studying the effect of inaccuracies

in the performance prediction. As accurate performance predictions may not always

be available, it is important that the techniques can tolerate inaccuracies in perfor-

mance prediction and yet perform efficiently. Figure 8 shows the comparison of the

techniques while varying the error rate from 0 to 70%. Here, the mean deadline of the

jobs is taken as 200 second. The error rate means that accurate running time of the

jobs can be anywhere within the error range on both sides of the predicted value. The

comparison of number of servers in Figure 8(a) shows that all the techniques require

more number of servers when the prediction error increases. The Cura approach on

an average requires 4% additional number of servers for every 10% increase in predic-

tion error. Note that even the per-job cluster and dedicated cluster schemes require

increased number of servers as they also decide the resource requirements based on

the performance predictions of the jobs across different cluster configurations.

Figure 8(b) shows that the response time of the techniques decreases with increase

in the error rate. While the Cura and dedicated cluster approaches have a decrease

of 4.2% and 3.7% respectively, the per-job cluster approach has a decrease of only

1.4% for every 10% increase in error rate as the major fraction of the response time
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Figure 8: Effect of Prediction Error

in these services is due to the VM creation process. As error rate increases, the

techniques provision more resources to ensure that even in the worst case, when the

jobs run for the maximum possible time within the error range, the jobs complete

within the deadline. Therefore, in cases where the job completes within the maximum

possible running time, these additional resources make the job complete earlier than

its deadline and therefore it speeds up the execution resulting in lower response time.

The cost trend shown in Figure 8(c) also shows that the techniques that require fewer

servers result in lower per-job cost. Similarly the effective utilization comparison in

Figure 8(d) shows similar relative performance as in Figure 6(d)

We compare the performance of the sub-techniques of Cura under different error
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rates in Figure 9. We find that the number of servers in Figure 9(a) shows a similar

relative performance among the sub-techniques as in 8(a). Here again, the response

time as shown in Figure 9(b) shows that the per-job optimization scheduler leads

to higher response time due to queue wait times and the response time of the sub-

techniques increases with increase in error rate.
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Figure 9: Effect of Prediction Error

2.4.2.3 Varying number of Servers

We next study the performance of the techniques by varying the number of servers

provisioned to handle the workload. Figure 10(a) shows the success rate of the ap-

proaches for various number of servers. Here, the success rate represents the fraction

of jobs that successfully meet their deadlines. We find that the Cura approach has a

high success rate even with 250 servers, whereas the per-job cluster approach obtains

close to 100% rate only with 2000 servers. Figure 10(b) shows that the response time

of successful jobs in the compared approaches show a similar trend as in Figure 6(b)

where the Cura approach performs better than the per-job cluster services.

2.4.2.4 Varying job sizes

This set of experiments evaluates the performance of the techniques for various job

sizes based on the size of input data read. Note that small jobs process 100 MB of
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Figure 10: Effect of servers

data, medium jobs process 1 GB of data and large and extra large jobs process 10

GB and 100 GB of data respectively. Also small, medium and large jobs have a mean

deadline of 100 second and the extra large jobs have a mean deadline of 1000 second

as they are long running. We find that the performance in terms of number of servers

in Figure 11(a) has up to 9x improvement for the short and medium jobs with Cura

approach compared to the per-job cluster approach. It is because in addition to the

VM-aware scheduling and reconfiguration-based VM management, these jobs benefit

the most from the secure instant VM allocation as these are short jobs. For large and

extra large jobs, the Cura approach still performs significantly better having up to 4x

and 2x improvement for large and extra large jobs compared to the per-job cluster

services. The dedicated cluster service requires significantly higher resources for large

jobs as the peak workload utilization becomes high (its numbers significantly cross

the max Y-axis value). This set of experiments show that the global optimization

techniques in Cura are not only efficient for short jobs but also for long running

batch workloads. The response time improvements of Cura and dedicated cluster

approach in Figure 11(b) also show that the improvement is very significant for short

jobs having up to 87% reduced response time and up to 69% for medium jobs. It is

reasonably significant for large jobs with up to 60% lower response time and extra
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Figure 11: Effect of Job type

large jobs with up to 30% reduced response time. The cost comparison in Figure 11(c)

also shows a similar trend that the Cura approach, although is significantly effective

for both large and extra large jobs, the cost reduction is much more significant for

small and medium jobs.

The sub-technique comparison of Cura for various job types in terms of number

of servers is shown in Figure 12(a). We find that the sub-techniques have impact

on all kind of jobs irrespective of the job size. While secure instant VM allocation

contributes more to the performance of the small jobs compared to large jobs, the sub-

techniques in Cura have equal impact on the overall performance for all job categories.

The response time comparison of the sub-techniques in Figure 12(b) shows that the
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sub-techniques have similar response time, however, for large and extra large jobs, the

per-job optimization leads to increased response time by up to 24.8% as large jobs in

the per-job optimization require incur longer waiting time in the queue as they often

request more resources that may not be immediately available.

2.5 Related Work

Resource Allocation and Job Scheduling: There is a large body of work on

resource allocation and job scheduling in grid and parallel computing. Some repre-

sentative examples of generic schedulers include [102, 122]. The techniques proposed

in [26, 113] consider the class of malleable jobs where the number processors provi-

sioned can be varied at runtime. Similarly, the scheduling techniques presented in

[124, 46] consider moldable jobs that can be run on different number of processors.

These techniques do not consider a virtualized setting and hence do not deal with

the challenges of dynamically managing and reconfiguring the VM pools to adapt for

workload changes. Therefore, unlike Cura they do not make scheduling decisions over

dynamically managed VM pools. Chard et. al present a resource allocation frame-

work for grid and cloud computing frameworks by employing economic principles in

job scheduling [41]. Hacker et. al propose techniques for allocating virtual clusters by
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queuing job requests to minimize the spare resources in the cloud [70]. Recently, there

has been work on cloud auto scaling with the goal of minimizing customer cost while

provisioning the resources required to provide the needed service quality [90]. The

authors in [123] propose techniques for combining on demand provisioning of virtual

resources with batch processing to increase system utilization. Although the above

mentioned systems have considered cost reduction as a primary objective of resource

management, these systems are based on either per-job or per-customer optimization

and hence unlike Cura, they do not lead to a globally optimal resource management.

MapReduce task placement: There have been several efforts that investigate task

placement techniques for MapReduce while considering fairness constraints [115, 142].

Mantri tries to improve job performance by minimizing outliers by making network-

aware task placement [24]. Similar to Yahoo’s capacity scheduler and Facebook’s

fairness scheduler, the goal of these techniques is to appropriately place tasks for

the jobs running in a given Hadoop cluster to optimize for locality, fairness and

performance. Cura, on the other hand deals with the challenges of appropriately

provisioning the right Hadoop clusters for the jobs in terms of VM instance type and

cluster size to globally optimize for resource cost while dynamically reconfiguring the

VM pools to adapt for workload changes.

MapReduce in a cloud: Recently, motivated by MapReduce, there has been work

on resource allocation for data intensive applications in the cloud context [78, 103].

Quincy [78] is a resource allocation system for scheduling concurrent jobs on clus-

ters and Purlieus [103] is a MapReduce cloud system that improves job performance

through locality optimizations achieved by optimizing data and compute placements

in an integrated fashion. However, unlike Cura these systems are not aimed at im-

proving the usage model for MapReduce in a Cloud to better serve modern workloads

with lower cost.

MapReduce Profile and Analyze tools: A number of MapReduce profiling tools

49



have been developed in the recent past with an objective of minimizing customer’s

cost in the cloud [80, 129, 101, 110, 133]. Herodotou et al. developed an automated

performance prediction tool based on their profile and analyze tool Starfish [73] to

guide customers to choose the best cluster size for meeting their job requirements [74].

Similar performance prediction tool is developed by Verma. et. al [133] based on a

linear regression model with the goal of guiding customers to minimize cost. Popescu.

et. al developed a technique for predicting runtime performance for jobs running

over varying input data set [110]. Recently, a new tool called Bazaar [79] has been

developed to guide MapReduce customers in a cloud by predicting job performance

using a gray-box approach that has very high prediction accuracy with less than 12%

prediction error. However, as discussed earlier, these job optimizations initiated from

the customer-end may lead to requiring higher resources at the cloud. Cura while

leveraging existing profiling research, addresses the challenge of optimizing the global

resource allocation at the cloud provider-end with the goal of minimizing customer

costs. As seen in evaluation, Cura benefits from both its cost-optimized usage model

and its intelligent scheduling and online reconfiguration-based VM pool management.

2.6 Summary

In this chapter, we presented a new MapReduce cloud service model, Cura, for data

analytics in the cloud. We argued that existing cloud services for MapReduce are inad-

equate and inefficient for production workloads. In contrast to existing services, Cura

automatically creates the best cluster configuration for the jobs using MapReduce pro-

filing and leverages deadline-awareness which, by delaying execution of certain jobs,

allows the cloud provider to optimize its global resource allocation efficiently and re-

duce its costs. Cura’s resource management techniques include cost-aware resource

provisioning, VM-aware scheduling and online virtual machine reconfiguration.

While in this chapter we addressed the cost-inefficiencies of the current cloud
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models, in the next chapter, we discuss on the job performance issues related to dat-

acenter networking and storage bottlenecks and present our architecture and solution

techniques to alleviate them.
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CHAPTER III

LOCALITY-AWARE RESOURCE ALLOCATION FOR

MAPREDUCE IN A CLOUD

3.1 Introduction

As discussed in Chapter 2, MapReduce offered as a service in the cloud provides

an attractive usage model for enterprises. Using virtual machines (VMs) and stor-

age hosted by the cloud, enterprises can simply create virtual MapReduce clusters

to analyze their data. However, an important challenge for the cloud provider is to

manage multiple virtual MapReduce clusters executing concurrently, a diverse set of

jobs on shared physical machines. Concretely, each MapReduce job generates dif-

ferent loads on the shared physical infrastructure – (a) computation load: number

and size of each VM (CPU, memory), (b) storage load: amount of input, output and

intermediate data, and (c) network load: traffic generated during the map, shuffle

and reduce phases. The network load is of special concern with MapReduce as large

amounts of traffic can be generated in the shuffle phase when the output of map

tasks is transferred to reduce tasks. As each reduce task needs to read the output of

all map tasks [57], a sudden explosion of network traffic can significantly deteriorate

cloud performance. This is especially true when data has to traverse greater number

of network hops while going across racks of servers in the data center [24]. Fur-

ther, the problem sometimes is exacerbated by TCP incast [109] with a recent study

finding goodput of the network reduced by an order of magnitude for a MapReduce

workload [42].

To reduce network traffic for MapReduce workloads, in this chapter, we argue for

improved data locality for both Map and Reduce phases of the job. The goal is
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to reduce the network distance between storage and compute nodes for both map

and reduce processing – for map phase, the VM executing the map task should be

close to the node that stores the input data (preferably local to that node) and

for reduce phase, the VMs executing reduce tasks should be close to the map-task

VMs which generate the intermediate data used as reduce input. Improved data

locality in this manner is beneficial in two ways – (1) it reduces job execution times

as network transfer times are big components of total execution time and (2) it reduces

cumulative data center network traffic. While map locality is well understood and

implemented in MapReduce systems, reduce locality has surprisingly received little

attention in spite of its significant potential impact. As an example, Figure 13 shows

the impact of improved reduce locality for a Sort workload. It shows the Hadoop task

execution timelines for a 10 GB dataset in a 2-rack 20-node physical cluster, where 20

Hadoop VMs were placed without and with reduce locality (top and bottom figures

respectively). As seen from the graph, reduce locality resulted in a significantly

shorter shuffle phase helping reduce total job runtime by 4x.
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Figure 13: Impact of Reduce-locality. Timeline plotted using Hadoop’s
job history summary. Merge and Waste series are omitted since they were

negligible
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In this chapter, we present Purlieus – an intelligent MapReduce cloud resource al-

location system. Purlieus improves data locality during both map and reduce phases

of the MapReduce job by carefully coupling data and computation (VM) placement

in the cloud. Purlieus categorizes MapReduce jobs based on how much data they

access during the map and reduce phases and analyzes the network flows between

sets of machines that store the input/intermediate data and those that process the

data. It places data on those machines that can either be used to process the data

themself or are close to the machines that can do the processing. This is in contrast

to conventional MapReduce systems which place data independent of map and re-

duce computational placement – data is placed on any node in the cluster which has

sufficient storage capacity [57, 4] and only map tasks are attempted to be scheduled

local to the node storing the data block.

Additionally, Purlieus is different from conventional MapReduce clouds (e.g.,

Amazon Elastic MapReduce [9]) that use a separate compute cloud for performing

MapReduce computation and a separate storage cloud for storing the data persis-

tently. Such an architecture delays job execution and duplicates data in the cloud. In

contrast, Purlieus stores the data in a dedicated MapReduce cloud and jobs execute

on the same machines that store the data without waiting to load data from a remote

storage cloud.

To the best of our knowledge, Purlieus is the first effort that attempts to improve

data locality for MapReduce in a cloud. Secondly, Purlieus tackles the locality

problem in a fundamental manner by coupling data placement with VM placement

to provide both map and reduce locality. This leads to significant savings and can

reduce job execution times by close to 50% while reducing up to 70% of cross-rack

network traffic in some scenarios.
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3.2 System Model

In this section, we provide a brief background on MapReduce and introduce our

system model.

3.2.1 MapReduce: Background

A MapReduce job is comprised of two main components – a map function that pro-

cesses key/value pairs from input data to generate a set of intermediate key/value

pairs, and a reduce function that merges all intermediate values associated with the

same intermediate key to generate the output [57]. A unique capability of this model

is the execution of map and reduce tasks on a distributed cluster of machines, trans-

parently to the application programmer. The input data is split into blocks that

are stored in a distributed filesystem throughout the cluster. A cluster master then

automatically schedules the map tasks at various worker nodes which process those

blocks to create intermediate key/value pairs. Some of these input blocks may be

present locally on the worker node while others may require a remote-read from an-

other node. The map outputs are then scheduled to be processed by worker nodes for

reduce tasks which write the output into files stored within the filesystem. The data

transfer from the map to the reduce tasks includes a shuffle phase in which reducers

read data from all mappers. This phase, in particular, can cause significant network

traffic and perform poorly [24].

3.2.2 Model

In our system model, customers using the MapReduce cloud service load their input

datasets and MapReduce jobs into the service. This step is similar to any typical

cloud service which requires setting up of the application stack and data. There

is one key distinction, however. Typically cloud service providers use two distinct

infrastructures for storage and compute (e.g. Amazon S3 [11] for storage and Amazon

EC2 [10] for compute). Executing a MapReduce job in such infrastructures requires
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an additional loading step, in which data is loaded from the storage cloud into the

distributed filesystem (e.g. Hadoop’s HDFS) of the MapReduce VMs running in the

compute cloud before even the job begins execution. Such additional loading has

two drawbacks –(1) depending upon the amount of data required to be loaded and

connectivity between the compute and storage infrastructures, this step adversely

impacts performance, and (2) while the job is running (often for long durations) the

dataset is duplicated in the cloud – along with the storage cloud original, there is

a copy in the compute cloud for MapReduce processing, leading to higher costs for

the provider. In contrast, we propose a dedicated MapReduce service, in which data
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Figure 14: Load Awareness in Data placement

is directly stored on the same physical machines that run MapReduce VMs. This
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prevents the need for a wasteful data loading step before executing a MapReduce

job. We contend that since MapReduce input data is often predominantly used for

MapReduce analysis, storing it into a dedicated cloud service provides the greatest

opportunity for optimization.

In our proposed service, when customers upload their data into the service, the

data is broken up into chunks corresponding to MapReduce blocks and stored on a

distributed filesystem of the physical machines. The placement of data – deciding

which machines to use for each dataset – is done intelligently based on techniques

described later. When the job begins executing (i.e. MapReduce VMs are initialized),

the key challenge is to make data stored in the physical machines seamlessly available

to the MapReduce VMs running on those machines. We tackle this challenge using

two specific techniques in our design – (1) loopback mounts: For a job, when its data

is loaded into the cloud, the chunks being placed on each machine are stored via a

loopback mount [14] into a single data file (we refer to it as a vdisk-file)1 and (2)

VM disk-attach: The vdisk-file is then attached to the VM as a block device using

server virtualization tools (e.g. Xen’s xm block-attach command2). The VM can

then mount the vdisk file like it would any typical filesystem. The mount point of

this vdisk-file inside the VM serves as the MapReduce DFS directory (e.g. Hadoop’s

data.dir configuration variable). Note that if a MapReduce VM is required to be

placed on a physical machine other than the one containing that job’s data chunks,

the vdisk file is copied over to the appropriate physical machine and then attached

to the VM – analogous to traditional MapReduce’s remote-read. Also, similar to

Amazon Elastic MapReduce [9] the same VMs are used for both map and reduce

task execution. Note that when the job finishes execution, its VMs are de-provisioned

1To do this, a sparse empty file is created which is then loopback mounted and formatted using
ext2 providing access similar to any local filesystem, even though all data is being stored in a single
file on the physical filesystem.

2Similar commands exist for KVM and VMware
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while the input data continues to reside on the physical machines.

3.3 Purlieus: Principles and Problem Analysis

Under our proposed system model, the cloud provider faces two key questions – (1)

Data Placement: Which physical machines in the cluster should be used for each

dataset? and (2) VM Placement: Where should the VMs be provisioned to process

these data blocks? Poor placement of data or VMs may result in poor performance.

Purlieus tackles this challenge with a unique coupled placement strategy, where data

placement is aware of likely VM placement and attempts to improve locality. In this

section, we describe the principles of our design and provide a formal analysis of the

problem.

3.3.1 Principles

We argue that unlike traditional MapReduce, where data is placed independently of

the type of job processing it or loads on the servers, in a multi-tenant virtualized

cloud these attributes need to be accounted during data placement.

1. Job Specific Locality-awareness: Placing data in the MapReduce cloud service

should incorporate job characteristics - specifically the amount of data accessed in the

map and reduce phases. For example, a job that processes a lot of reduce data

(referred to as a reduce-input heavy job) is best served by provisioning the VMs of

MapReduce cluster close to each other on the cluster network, as each reducer reads

the outputs of all mappers. If the VMs are far from each other, each reducer would

have to read map outputs over longer network paths, which will increase job execution

time and also increase cross-rack traffic in the data center. On the other hand, map-

input heavy jobs that generate little intermediate data do not benefit by placing its

data blocks close to each other on the cluster. An efficient data placement scheme

could distribute data blocks for such a map-input heavy job across the network to
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preserve resources for placing reduce-input heavy jobs on a set of closely connected

machines.

Specifically, we use three distinct classes of jobs – (1) Map-input heavy (e.g. a

large grep workload which generates small intermediate data simply indicating if a

word occurs in input data), (2) Map-and-Reduce-input heavy (e.g. a sort workload:

intermediate data is equal to input data) and (3) Reduce-input-heavy (e.g. a permu-

tation generator workload which generates all permutations of given input strings).

Purlieus uses different strategies of data placement for different job types with the

goal of improving data locality3.

2. Load Awareness: Placing data in a MapReduce cloud should also account for

computational load (CPU, memory) on the physical machines. A good technique

should place data only on machines that are likely to have available capacity to

execute that job, else remote-reads will be required to pull data from busy machines

to be processed at less-utilized machines. For example, in Figure 14(a), consider

datasets A, B, C, D and E placed on six physical machines, M1 to M6. A load

unaware placement may collocate the blocks of datasets A, C and D together as

shown in Figure 14(a), even if jobs execute on A, C, D more frequently and generate

higher load than B and E. Here, when the job on the dataset D arrives and requests

for a virtual cluster of 3 VMs, say each with 40% CPU resources of the physical

machine, even though it would be best to place the VMs on the physical machines,

M1, M2 and M3 as they contain the data blocks of the dataset D, the system may

be forced to place the VMs on M4, M5 and M6, resulting in remote reads for the job

executing on dataset D. In contrast, the data placement shown in Figure 14(b) is able

to achieve local execution for all the map tasks. Here, while placing the data blocks,

it is made sure that the expected load on the servers does not exceed a particular

3For completeness a Map-and-Reduce-input light class can also be considered, however data
locality has little impact on its overall performance
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threshold. This incorporates the frequency and load generated by jobs executing on

datasets stored on these servers.

It is important to note that information about expected loads is available to a

cloud provider by monitoring the cloud environment. Typically with MapReduce, a

set of jobs are repeatedly executed on a similar input data set – e.g. periodic execu-

tion of indexing on web crawled data. This allows the cloud provider to understand

the load characteristics of such jobs and use this knowledge. Additionally, there are

many proposals that profile MapReduce jobs via trial executions on a small subset of

data [101, 32, 80, 40]. These show that understanding MapReduce job characteristics

can be quick and accurate. For the scope of this work, we assume that the expected

load on each dataset is known. Also that the cloud provider has enough data to

estimate job arrival rate and the mean execution time. Later in Section 3.5, we will

demonstrate that our proposed techniques perform well even when such estimates are

partly erroneous.

3. Job-specific Data Replication: Traditionally, data blocks in MapReduce are

replicated within the cluster for resiliency (by default, each block of the dataset is

replicated 3 times). While the job is executing any replica of the block can be used for

processing. Purlieus handles replicas in a different manner. Depending upon the type

and frequency of jobs, we place each replica of the entire dataset based on a particular

strategy. As an example, if an input dataset is used by three sets of MapReduce jobs,

two of which are reduce-input heavy and one map-input heavy, we place two replicas

of data blocks in a reduce-input heavy fashion and the third using map-input heavy

strategy. This allows maintaining greater data locality, especially during the reduce

phase, since otherwise by processing data block replicas far from other input data

blocks during the map phase, the reducers may be forced to read more data over the

network.
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3.3.2 The Data Placement Problem

Next, we formally analyze the data placement problem. We start with notation for

representing datasets, physical cloud infrastructure and their relationship.

Datasets and Jobs: Let D = {Di : 1 ≤ i ≤ |D|} be the set of datasets that

need to be stored in the MapReduce cloud. For the sake of presentation simplicity,

assume that each dataset is associated with only one MapReduce job-type and that

the replication factor is 14 Each dataset Di is divided into uniform sized blocks Bi,j :

1 ≤ i ≤ |D|, 1 ≤ j ≤ Qi} where Q = {Qi : 1 ≤ i ≤ |Q|} represent the number of

blocks for Di.

We assume that the job arrivals on the datasets follow a Poisson process and let

λ = {λi : 1 ≤ i ≤ |D|} denote the arrival rate of the jobs on the datasets. After a

job starts, it first executes map tasks. We denote the mean size of the expected map

output of each block of dataset, Di by mapoutput(Di).

Cloud Infrastructure: Let M = {Mk : 1 ≤ k ≤ |M|} denote the set of physical

machines. Each physical machine, Mk has some compute resources (CPU, memory)

with capacity Pcap(Mk)
5 and some storage resources (disk) with capacity expressed

in number of data blocks and denoted by Scap(Mk). In the data center, the physical

machines are connected to each other by a local area network. Let dist(Ml,Mm)

denote the distance between the physical machines Ml and Mm – we use the number

of network hops as the dist measure.

Relationship Notation: Let Pi ∈ M be the set of servers used to store the dataset

Di and Xk
i be a Boolean variable indicating if the physical machine Mk is used to

store the dataset Di. Therefore, Mk ∈ Pi if X
k
i =1. Let N = {Ni : 1 ≤ i ≤ |N |}

4If the job is associated with multiple jobs of different job types, as mentioned earlier different
replicas are used to support each type.

5Though we present a scalar capacity value, compute resources may have multiple dimensions
like CPU and memory. To handle this, either our model can be extended to include a vector of
resources or compute dimensions can be captured in a scalar value, e.g. the volume metric presented
in [139].

61



denote the number of machines used to store Di. Thus,

∑
k

Xk
i = Ni,∀i

Within Pi, let Y
k
i,j be the boolean variable indicating if the specific block Bi,j is present

in the physical machine Mk ∈ M. Thus, in order to ensure that the blocks are evenly

distributed among the nodes in Pi, we have

∀i, k
∑

1≤j≤Qi

Y k
i,j =

Qi

Ni

Locality based Cost: To capture locality, we define a cost function that measures

the amount of data transfer during job execution. Consider a job, A on the dataset,

Di. Let V (A) be the set of physical machines that host the VMs for job A. The total

cost of a MapReduce application is the sum of map and reduce costs that represent

the overhead involved in the data transfers during the map and reduce phases.

Cost(A,Di) = Mcost(A,Di) +Rcost(A,Di)

If Snode(Bi,j) ∈ Pi is the physical machine storing the data block, Bi,j, and its map

task gets scheduled on the physical machine, Cnode(Bi,j) ∈ V (A), we consider

Mcost(A,Di) =∑
1≤j≤Qi

size(Bi,j)× dist(Snode(Bi,j), Cnode(Bi,j))

This cost definition captures the amount of data and the distance it travels over the

network. Similarly, the reduce cost can be computed as the overhead involved in

transferring the map outputs to the servers where the reducers are executed. As each

reducer needs to see the output of all the map tasks, assuming the number of reducers

is greater than the number of VMs used (as recommended by MapReduce) and each

VM runs atleast one reducer, the map outputs need to be transferred to every physical

machine used for the MapReduce job (i.e. V (A)). Therefore the reduce cost is given
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by:

Rcost(A,Di) =∑
1≤j≤Qi,m∈V (A)

dist(Cnode(Bi,j),Mm)×mout(A,Bi,j)

where mout(A,Bi,j) is the amount of output data generated by the map task on the

data block, Bi,j. To improve locality, the goal is to minimize Mcost and Rcost,

subject to not violating the storage capacity constraint on physical machines

∀k
∑
i,j

Y k
i,j ≤ Scap(Mk)

Minimizing Map Cost: To minimize map cost, the computations should get placed

on the same physical machines storing the map-input blocks (dist is zero). The data

placement technique, in turn, should try to maximize the probability of such co-

location. This is achieved by upper-bounding the expected resource load on the

servers for hosting the VMs at any given time. By placing data blocks such that

every server has a low expected utilization, there is higher probability that the server

will be available to host a VM when a request for a job on the datasets arrives.

Concretely, we model each physical machine, Mk as a M/M/1 single server queue.

Let a dataset, Di have a service time distribution with mean, µi, where µi is the mean

time to process the blocks by each VM and ρi =
λi

µi
. Therefore the expected number

of jobs on the dataset Di running on the physical machine Mk is given by

W k
i =

ρi
ρi − µi

.Xk
i

Now, the expected load on physical machine Mk is given by

Ek =
∑
i

W k
i × CRes(Di)

where CRes(Di) denotes the computational resource required by each VM of the job

on Di, given by the type of VM chosen by the user (e.g. Amazon EC2’s small VM
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instance that uses 1.7 GB memory and 1 vCPU). We upper-bound the expected load

on any physical machine based on the load parameter, α.

∀k,Ek ≤ α× Pcap(Mk)

Here, a low value of α would indicate a conservative data placement where the ex-

pected load on the physical machines is less and therefore there is a high probability

for a job on a data chunk on a physical machine to get executed locally.

Minimizing Reduce Cost: With the above method for minimizing map cost, now

the key optimization is to improve reduce locality. At the time of data placement, the

node used to host the VM that processes the data, Cnode(Bi,j) is not fixed. Hence

Rcost can not be obtained precisely during data placement. Instead, we compute

an estimated reduce cost during data placement – we assume that at the time of job

execution, the VMs get placed on the physical machines storing the data block, which

based on the previous map cost optimization should be likely. Now the optimization

is

min
∑
i

Rcostest(A,Di)

Rcostest(A,Di) =∑
1≤j≤Qi,m∈Pi

dist(Snode(Bi,j),Mm)×mapoutput(Di)

mapoutput(Di) is the mean size of the expected map output of each block of dataset,

Di. While being an estimate, this definition serves as a useful guideline for placement

decisions, which as our evaluations show provides significant benefits.

It is easy to see that an optimal solution for this problem is NP-Hard – both

data and VM placement involve bin-packing, which is known to be NP-Hard [62].

Therefore, we use a heuristics based approach, which is described next.
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3.4 Purlieus: Placement Techniques

Next, we describe Purlieus’s data and VM placement techniques for various classes

of MapReduce jobs. The goal of these placements is to minimize the total Cost by

reducing the dist function for map (when input data, Qi is large) and/or reduce (when

intermediate data, mout is large).

3.4.1 Map-input heavy jobs

Map-input heavy jobs read large amounts of input data for map but generate only

small map-outputs that is input to the reducers. For placement, mappers of these

jobs should be placed close to input data blocks so that they can read data locally,

while reducers can be scheduled farther since amount of map-output data is small.
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Figure 15: Placing Map-input heavy jobs

3.4.1.1 Placing Map-input heavy data

As map-input heavy jobs do not require reducers to be executed close to each other,

the VMs of the MapReduce cluster can be placed anywhere in the data center. Thus,

physical machines to place the data are chosen only based on the storage utilization

and the expected load, Ek on the machines. As discussed in the cost model, Ek
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denotes the expected load on machine, Mk.

Ek =
∑
i

W k
i × CRes(Di)

To store map-input heavy data chunks, Purlieus chooses machines that have the least

expected load. This ensures that when MapReduce VMs are placed, there is likely to

be capacity available on machines storing the input data.

3.4.1.2 VM placement for Map-input heavy jobs

The VM placement algorithm attempts to place VMs on the physical machines that

contain the input data chunks for the map phase. This results in lower MCost

– the dominant component for map-input heavy jobs. Since data placement had

placed blocks on machines that have lower expected computational load, it is less

likely, though possible that at the time of job execution, some machine containing

the data chunks does not have the available capacity. For such a case, the VM

may be placed close to the node that stores the actual data chunk. Specifically, the

VM placement algorithm iteratively searches for a physical machine having enough

resources in increasing order of network distance from the physical machine storing

the input data chunk. Among the physical machines at a given network distance, the

one having the least load is chosen.

3.4.2 Map-and-Reduce-input heavy jobs

Map-and-reduce-input heavy jobs process large amounts of input data and also gen-

erate large intermediate data. Optimizing cost for such jobs requires reducing the

dist function during both their map and reduce phases.

3.4.2.1 Placing Map-and-Reduce-input heavy data

To achieve high map-locality, data should be placed on physical machines that can

host VMs locally. Additionally, this data placement should support reduce-locality

– for which the VMs should be hosted on machines close to each other (preferably
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within the rack) so that reduce traffic does not significantly load the data center

network.
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Figure 16: Data and VM placement for Map and Reduce-input heavy jobs.

Ideally, a subgraph structure that is densely connected, similar to a clique, where

every node is connected to every other node in 1-hop would be a good candidate for

placing the VMs. However, it may not always be possible to find cliques of a given size

as the physical network may not have a clique or even if it does, some of the machines

may not have enough resources to hold the data or their expected computational load

may be high to not allow VM placement later. An alternate approach would be to
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find subgraph structures similar to cliques. A number of clique relaxations have been

proposed, one of which is k-club [99]. A k-club of a graph G is defined as a maximal

subgraph of G of diameter k. While finding k-club is NP-Complete for a general

graph, data center networks are typically hierarchical (e.g. fat-tree topologies) and

this allows finding a k-club in polynomial time. In a data center tree topology, the leaf

nodes represent the physical machines and the non-leaf nodes represent the network

switches. To find a k-club containing n leaf nodes, the algorithm simply finds the

sub-tree of height k
2
containing n or more leaf nodes.

For map-and-reduce-input heavy jobs, data blocks get placed in a set of closely

connected physical machines that form a k-club of least possible k (least possible

height of the subtree) given the available storage resources in them. If several subtrees

exists with the same height, then the one having the maximum available resource is

chosen. As an illustration, in Figure 16(a), the input data blocks, I1, I2, and I3 are

stored in a closely connected set of nodes M13, M14 and M15 that form a k-club of

least possible k in the cluster.

3.4.2.2 VM placement for Map and Reduce-input heavy jobs

As data placement had done an optimized placement by placing data blocks in a

set of closely connected nodes, VM placement algorithm only needs to ensure that

VMs get placed on either the physical machines storing the input data or the close-

by ones. This reduces the distance on the network that the reduce traffic needs to

go over, speeding up job execution while simultaneously reducing cumulative data

center network traffic. In the example shown in Figure 16, VMs for job on dataset I

get placed on the physical machines storing input data. As a result, map tasks use

local reads (Figure 16(a)) and reduce tasks also read within the same rack, thereby

maximizing reduce locality (Figure 16(b)). In case node M15 did not have available

resources to host the VM, then the next candidates to host the VM would be M16,
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M17 andM18, all of which can access the input data block I3 by traversing one network

switch and are close to the other reducers executing in M13 and M14. If any of M16,

M17 and M18 did not have available resources to host a new VM, then the algorithm

would iteratively proceed to the next rack (M7, M8, M9, M10, M11 and M12) and look

for a physical machine to host the VM. Thus the algorithm tries to maximize locality

even if the physical machines containing input data blocks are unavailable to host the

VMs.

3.4.3 Reduce-input heavy Applications

Jobs that are reduce-input heavy read small sized map-inputs and generate large

map-outputs that serve as the input to the reduce phase. For these type of jobs,

reduce locality is more important than map-locality.

3.4.3.1 Placing Reduce-input heavy data

As map-input to these jobs is light, the map-locality of the data is not as important.

Therefore, the map-input data can be placed anywhere within the cluster as it can

be easily transferred to the corresponding VMs during map execution. The data

placement algorithm chooses the physical machine with maximum free storage. The

example in Figure 16(a) shows the placement of input data blocks for dataset L

consisting of L1, L2 and L3 on M3, M6 and M7 which are chosen only based on

storage availability, even though they are not closely connected.

3.4.3.2 VM placement for Reduce-input heavy jobs

Network traffic for transferring intermediate data among MapReduce VMs is intense

in reduce-input heavy jobs and hence the set of VMs for the job should be placed

close to each other. For an example job using the dataset, L, containing L1, L2, and

L3 in Figure 16(a), the VMs can be hosted on any set of closely connected physical

machines, for instance, M10, M11 and M12. These machines are within a single rack
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and form a 2-club (diameter of 2 with a single network switch). Although the map

phase requires remote reads from the nodes storing the input data, M3, M6 and M7, it

does not impact job performance much as the major chunk of data transfer happens

only during the reduce phase. In the reduce phase, as VMs are placed in a set of

densely connected nodes, the locality of the reads is maximized, leading to faster job

execution.

3.4.4 Complexity of Techniques

There are two key operations used in our algorithms – (1) finding a k-club of a given

size with available resources and (2) finding a node close to another node in the

physical cluster. As noted before, with typical data center hierarchical topologies,

both of these operations are very efficient to compute. As a result our techniques

scale well with increasing sizes of datasets or the cloud data center.

3.5 Experimental Evaluation

We divide the experimental evaluation of Purlieus into two – first, we provide detailed

micro-benchmarking on effectiveness of our data and VM placement techniques for

each MapReduce job class on a real cluster testbed of 20 physical machines. Then,

we present an extensive macro analysis with mix of job types and evaluate scalability

of our approach on a large cloud scale data center topology through a simulator

which is validated based with experiments on the real cluster. We first start with our

experimental setup.

3.5.1 Experimental setup

Metrics: We evaluate our techniques on two key metrics with the goal of measur-

ing the impact of data locality on the MapReduce cloud service – (1) job execution

time: techniques that allow jobs to read data locally result in faster execution; thus

this metric measures the per-job benefit of data locality, and (2) Cross-rack traffic:
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techniques that read a lot of data across racks result in poorer throughput [24]; this

metric captures such characteristics of the network traffic.

Data Placement Techniques: We compare two data placement schemes – our

proposed locality and load-aware data placement (LLADP) accounts for MapReduce

specific job characteristics and estimated loads on servers while placing data as de-

scribed in Section 3.4. In contrast, the random data placement (RDP) scheme does not

differentiate between job categories and places data blocks in a set of randomly chosen

physical machines that have available storage capacity. It also has no knowledge of

the server loads (analogous to conventional MapReduce data placement). Note that

both the locality-aware and random data placement schemes are rack-aware [15]; no

two replicas of a given data block are placed on the same cluster rack for reliability

purposes.

VM Placement Techniques: We compare five techniques:

• Locality-unaware VM Placement(LUAVP): LUAVP places VMs on the physi-

cal machines without taking into consideration the locations of the input data

blocks for the job. The LUAVP scheme does try to pick a set of least loaded

physical machines for placing the VMs.

• Map-locality aware VM placement (MLVP): MLVP considers locality of only

the input-data blocks for the map phase and considers the current load and

resource utilization levels of the machines while placing the VMs (load-aware).

• Reduce-locality aware VM placement (RLVP): RLVP does not consider map

locality, but it tries to improve reduce locality by packing VMs in a set of

closely connected machines. It is also load aware.

• Map and Reduce-locality aware VM placement (MRLVP): MRLVP is aware of

both map and reduce locality and is also load aware.
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• Hybrid locality-aware VM placement (HLVP): Our proposed HLVP technique

adaptively picks the placement strategy based on type of the input job. It uses

MLVP for map-input heavy, RLVP for reduce-input heavy jobs and MRLVP

for map and reduce-input heavy jobs.

Key Comparison: The important comparison is between the combination of LLADP

+ HLVP (Purlieus proposal) with RDP + MLVP – analogous to traditional MapRe-

duce. The other techniques help us understand the benefits of individual map or

reduce locality as well as benefits gained from data vs. VM placement.

Cluster Setup: Our cluster consists of 20 CentOS 5.5 physical machines (KVM as

the hypervisor) with 16 core 2.53GHz Intel processors. The machines are organized in

two racks, each rack containing 10 physical machines. The network is 1 Gbps and the

nodes within a rack are connected through a single switch. Each job uses a cluster of

20 VMs with each VM configured with 4 GB memory and 4 2GHz vCPUs. A descrip-

tion of the various job types and the dataset sizes is shown in Table 8. Each workload

uses 320 map tasks. The Grep workload uses only one reducer since it requires lit-

tle reduce computation while the Sort and Permutation Generator workloads use 80

reducers. The Hadoop parameter, mapred.tasktracker.map.tasks.maximum that con-

trols the maximum number of map tasks run simultaneously by a task tracker is set

as 5. Similarly, the mapred.tasktracker.reduce.tasks.maximum parameter is set as 5.

Similar to typical data center topologies, the inter-rack link between the two switches

becomes the most contentious resource as all the VMs hosted on a rack transfer data

across this link to the VMs hosted on the other rack. For example, with 10 physical

machines on each rack, and each physical machine hosting a nominal 8 VMs, 80 VMs

(and thus, Hadoop nodes) on each rack will contend for the inter-rack link bandwidth

of 1 Gbps. To simulate this contention in a more controlled environment that lets

us accurately measure per-job improvements, we set the bandwidth of the inter-rack

link to 100 Mbps while running one job at a time. The other alternative would be
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Figure 17: Map and Reduce-input heavy workload

to run multiple jobs at the same time on the cluster, however, that would have made

micro analysis on a per-job type basis tougher to evaluate.

Workload Type Job Input
data

Output
data

Map-input heavy Grep: word
Search

20 GB 2.43 MB

Reduce-input heavy Permutation
Generator

2 GB 20 GB

Map and Reduce-input heavy Sort 10 GB 10 GB

Table 8: Workload types

3.5.2 Micro-benchmarking Results

We first present evaluation of our proposed techniques for various MapReduce job

types.

3.5.2.1 Map and Reduce-input heavy workload

In Figure 17, we study the performance for jobs that are both Map and Reduce-input

heavy using the Sort workload on a dataset generated using Hadoop’s RandomWriter.

The job execution time in Figure 17(a) for map-and-reduce VM placement with local-

ity and load-aware data placement (LLADP + MRLVP) shows the least value among

all schemes with more than 76% reduction compared to RDP + MLVP. For data
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Figure 18: Map-input heavy workload

placement, MRLVP with RDP performs poorly indicating that without a locality-

aware data placement, it is hard to achieve high locality during VM placement and

therefore leads to higher job execution time. This justifies our coupled data placement

and VM scheduling technique.

Also, RLVP does not perform well as it tries to consider only reduce locality. The

LUAVP scheme places the VMs randomly without considering locality and therefore

does not perform well either. An interesting trend here is that MLVP performs well

with LLADP as the locality-awareness in data placement tried to place the data in

a set of closely connected physical machines and hence, when the map-locality aware

VM placement tries to place the VMs close to the input data, the reduce-locality is

implicitly accounted for. These benefits can be explained by the trend in cross-rack

traffic (normalized with respect to RDP + LUAVP) in Figure 17(b), showing 68%

lesser cross rack reads when using LLADP + MRLVP compared to RDP + MLVP.

3.5.2.2 Map-input heavy workload

Next we evaluate data and VM placement for map-input heavy jobs using the Grep

workload. Figure 18 compares our metrics with various schemes. In Figure 18(a), first

notice that the job execution time for the locality-unaware VM placement (LUAVP)

and reduce-locality aware VM placement (RLVP) schemes is much higher than that
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of map-locality aware (MLVP) and map-and-reduce locality aware (MRLVP) VM

placements for both the random (RDP) and locality and load-aware data placement

(LLADP) schemes. As map-input heavy jobs generate only small map-outputs and

have little reduce traffic, the techniques that optimize for map locality – MLVP and

MRLVP perform much better than the reduce-locality only technique (RLVP) (up to

88% reduction in job execution time). The job execution time difference can be

explained by cross-rack network traffic (Figure 18(b)), normalized with respect to

RDP + LUAVP, shows that map-locality awareness has a big impact. Lower cross-

rack network traffic suggests that the data reads are more local to the rack, avoiding

more than 95% of cross-rack traffic.

3.5.2.3 Reduce-input heavy workload
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Figure 19: Reduce-input heavy workload

Figure 19 shows the performance for reduce-input heavy workload using a per-

mutation generator job that generates and sorts the first 10 permutations of each

record of a dataset generated by Hadoop’s RandomWriter. We find in Figure 19(a)

that RLVP and MRLVP have lower execution time for both the random (RDP) and

locality-aware data placement (LLADP), having up to 32% faster execution time when

compared to RDP + MLVP. Reduce-locality awareness in VM placement ensures that
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the reducers are packed close to each other and reduce traffic does not traverse a long

distance on the network. Here, the underlying data placement scheme makes little

impact as these jobs do not have large input data, so violating map locality does not

cost much.

The LUAVP and MLVP schemes perform poorly since they do not capture reduce

locality which is key for this reduce-intensive workload. A similar trend is seen for the

ratio of cross-rack reads in Figure 19(b), where the (LLADP + MRVLP) technique

has 10x+ higher number of reads within racks as compared to RDP + MLVP.

Summary: This micro-analysis demonstrates that data and VM placement tech-

niques when applied judiciously to MapReduce jobs can have a significant impact on

the job execution time as well as total datacenter traffic. To realize these benefits,

the right technique needs to be applied for each MapReduce job type. Our Purlieus

technique (LLADP + HLVP) identifies and uses the right strategy for each type of

workload.

3.5.3 Macro Analysis: Mix of workloads, Scalability and Efficiency

Following the per-job-type analysis, next we consider a mix of workloads and evaluate

the scalability of the techniques with respect to the size of data center network and

number of VMs in virtual MapReduce clusters using a mix of workload types.

For a thorough analysis at scales of 100s and 1000s of machines and with vary-

ing job, workload and physical cloud characteristics, we implemented a MapReduce

simulator, called PurSim, similar to the existing NS-2 based MRPerf simulator [134].

However, unlike MRPerf, PurSim does not perform a packet-level simulation of the

underlying network. Per-packet approach simulates every single packet over the net-

work which makes it difficult to scale for even reasonably large workloads and cluster

sizes. For instance, a per-packet simulator for a cluster size of 1000 hosts send-

ing traffic at 1Gbps would generate 3× 1010 packets for a 60 second simulation and
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Figure 20: Simulator Validation

simulating a million packets per second would take 71 hours to simulate just that

one case [23]. Instead we use a network flow level simulation. Our discrete event

simulator simulates the MapReduce execution semantics similar to the Hadoop im-

plementation. The inter-node traffic is simulated in terms of network flows between

the source-destination pairs. The simulation framework uses a data center of 1000

compute nodes with 1 Gbps network configured in the typical tree topology for the

default setting. The performance metrics were averaged over the jobs executed during

a 2 hour simulation period. By default, we use a mixed workload of jobs consisting

of equal proportions of all MapReduce job types in Table 8. We use a 30 GB dataset

for both the Grep and Sort workloads and a 2 GB dataset for Permutation workload.

For the default setting, a total of 150 datasets were used, 50 for each of the job types

and 3 replicas were created by default. The arrival rate of the jobs on the datasets is

uniformly distributed from 200 to 2000 seconds.

3.5.3.1 Simulator Validation

Before presenting our simulation experiments, we provide a validation of the simulator

based on the experiments on our real 20 node cluster. To bootstrap the simulator,

we used measurements obtained from the cluster experiments to configure simulator
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parameters, e.g. map and reduce compute times. We used the same settings from

our cluster setup including the cluster network topology and workload characteristics

in Table 8. As the key comparison is between the (RDP + MLVP) and Purlieus

(LLADP + HLVP) schemes, we compare these two techniques for various job types.

In figure 20(a), we compare the job execution time of the two schemes for the

three workloads. We find that for most cases, the execution time produced by the

simulator is within 10% of the execution time obtained in our cluster experiments.

The cross-rack transfer in Figure 20(b) shows that the simulator estimated cross-

rack transfer matches closely with that of our cluster experiments, having less than

5% error in the cross-rack transfer estimated by the simulator. While not validated

against large scale clusters, these low error rates when compared to our 20-node

cluster experiments, provide good confidence in the quality of the simulator.

3.5.3.2 Mixed workload

For our first macro analysis, we study the performance with a composite workload

that consists of an equal mix of all MapReduce job categories with the default setting

of 150 datasets and jobs using 20 VMs per job. Recall that Purlieus’s HLVP decides

on the placement policy based on the type of MapReduce job. For example, it uses

RLVP for reduce-input heavy jobs and MRLVP for jobs that are both map and

reduce heavy. The execution time in Figure 21(a) shows that HLVP works best for a

mixed workload compared to all other VM placement policies. As discussed earlier,

a reduce-locality aware VM placement would lose map locality for map-input heavy

jobs and a map-locality VM placement might lose reduce-locality while trying to

achieve map-locality. While the map and reduce locality-aware VM placement could

be a conservative policy for all types of jobs, it may not be needed in all cases and in

fact may use valuable dense-collection of machines for jobs that do not need it. This

explains the difference between HLVP and MRLVP. – HLVP uses the right kind of
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resources for each job type. Overall, HLVP with LLADP shows 2x faster execution

time when compared to RDP + MLVP schemes and a 9.1% improvement with most

conservative policy of LLADP + MRVLP. Figure 21(b) shows the same trend with the

normalized cross-rack traffic – LLADP + HLVP shows a lower cross-rack traffic (only

30.1%) compared to the RDP + MLVP. Overall, it is vivid that with random data

placement, it is hard to achieve a higher ratio of rack-local reads no matter what VM

placement algorithm is used, thus validating our claim made in the Purlieus design.
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Figure 21: Mixed workload

3.5.3.3 Impact of number of VMs

We study the impact of varying the number of VMs used for a given job in Figure 22

using the default PurSim setting. In figure 22(a), the number of VMs is varied from

10 to 200 and the average job execution time is compared. The job execution time

decreases with increasing number of VMs but that decrease almost stops beyond a

certain number of VMs (100 VMs in this case). The initial increase in number of

VMs increases the computational parallelism and improves execution time. But as

the number of VMs exceed a certain value, the reduce tasks get distributed across the

network since not all of them can be placed on a set of closely connected machines
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Figure 22: Varying number of Virtual Machines

(racks get exhausted). This reduction in data locality and increased network trans-

mission time counters the improved parallelism. This also shrinks the advantage of

Purlieus approach over RDP + MLVP. For instance, there is a performance gain of

2.3x in execution time while using 20 VMs and it drops down to a gain of 1.7x when

100 VMs are used. This is expected since when a large virtual cluster is provisioned,

it is tough to provide both map and reduce locality. This impact can be further

analyzed by visualizing the CDFs of number of network hops in both schemes with

varying number of VMs in Figures 22(b) and 22(c). When number of VMs increase,

there are more reads over longer network paths. However, we always find higher

percentage of closer reads with (LLADP + HLVP) compared to (RDP + MLVP).
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Overall, there are two key take-aways. First, Purlieus approach outperforms other

approaches for varying sizes of virtual MapReduce clusters per job. Secondly, we

notice that for a given job and cloud topology, there is a sweet-spot in the size of the

virtual MapReduce cluster which gives the most bang for the buck. A tool that helps

customers identify this would be very valuable.

3.5.3.4 Varying Network Size

In this experiment, we measure the job execution time and cross-rack traffic for various

sizes of the cloud topology using 50 VMs for each job. The other parameters are based

on PurSim’s default setting. The job execution time in figure 23(a) is fairly constant

for various network sizes with LLADP + HLVP. However, with RDP + MLVP, the

data blocks gets distributed all over the network and with bigger clusters, the VMs are

spread across the network and hence the reduce phase obtains poor locality leading

to longer execution times. The normalized cross-rack traffic in Figure 23(b) is also

indicative of the same trend. Thus, Purlieus techniques work well with varying size of

the cloud datacenter topology while conventional technique perform worse for larger

network topologies.

 0

 200

 400

 600

 800

 1000

100 200 500 1000 1500

M
ea

n 
E

xe
cu

tio
n 

T
im

e 
(s

ec
)

No of physical machines

LLADP + HLVP

RDP + MLVP

(a) Job Execution time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

100 200 500 1000 1500

N
or

m
al

iz
ed

 c
ro

ss
-r

ac
k 

tr
af

fic

No of physical machines

LADP + HLVP

RDP + MLVP

(b) Cross-rack traffic

Figure 23: Varying Network Size
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3.5.3.5 Impact of Load-aware Data Placement

Our next experiment evaluates the effectiveness of load-awareness in data placement.

The experiments use the workload in the default PurSim setting using 20 VMs for each

job. A good load-aware technique should make good decisions even with reasonably

accurate estimates. We study the locality and load aware data placement (LLADP)

with only locality-aware data placement (LADP) and random data placement (RDP).

Figure 24 compares the LADP scheme with RDP and LLADP scheme for several

load estimation error values, e. The estimation error, e directly corresponds to the

percentage error in the estimation of the job arrival rates on the datasets. In figure
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Figure 24: Load Aware Data placement

24(a), we find that without any load estimation error, LLADP (e = 0%) performs

better than the load-unaware (LADP) and random placement (RDP) schemes. Also,

we find that even with an estimation error of 20 % or 40%, the LLADP scheme

performs better than the random and load-unaware (LADP) schemes. A similar

trend is seen in Figure 24(b) for the cross-rack traffic normalized with respect to

(RDP + HLVP). It suggests that even an approximate estimate of the arrival rate of

the jobs on the datasets helps balance the expected load among physical machines and

increases data locality.
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3.6 Related Work

To the best of our knowledge, Purlieus, with its coupled data and VM placement, is

unique in exploiting both map and reduce locality for MapReduce in a cloud. We

briefly review some of the related work in this area. There have been several efforts

that investigate efficient resource sharing while considering fairness constraints [13].

For example, Yahoo’s capacity scheduler uses different job queues, so each job queue

gets a fair share of the cluster resources. Facebook’s fairness scheduler aims at im-

proving the response times of small jobs in a shared Hadoop cluster. Sandholm

et al [115] presented a resource allocation system using regulated and user-assigned

priorities to offer different service levels to jobs over time. Zaharia et al. [142] de-

veloped a scheduling algorithm called LATE that attempts to improve the response

time of short jobs by executing duplicates of some tasks in a heterogenous system.

Herodotou et al. propose Starfish that improves MapReduce performance by auto-

matically tuning Hadoop configuration parameters [73]. The techniques in Purlieus

are complementary to these above mentioned optimizations. Recent work, Mantri,

tries to minimize outliers by making network-aware task placement, task restarting

and protecting the output of valuable tasks [24]. It also identifies that cross-rack traf-

fic during the reduce phase is a crucial factor for MapReduce performance. However,

without a locality-aware data placement scheme in Mantri, there are only limited op-

portunities for optimizations during task placement. Purlieus solves the fundamental

problem of optimizing data placement so as to obtain a highly local execution of the

jobs during scheduling, minimizing the cross-rack traffic during both map and reduce

phases. As seen in evaluations, Purlieus benefits from its locality-aware data as well

as computation placement.

A large body of work has explored the placement of applications in a virtual-

ized data center to minimize energy consumption [132], perform load balancing [121]
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or perform server consolidation [83]. These approaches primarily focus on the bin-

packing aspect and place applications (VMs) independent of the underlying data

placement. Purlieus differs from these in terms of its consideration of both input

and intermediate data locality for MapReduce. Recently, motivated by MapReduce,

there has been work on resource allocation for data intensive application, especially in

the cloud context [85, 68]. Gunarathne et al.[68] present a new MapReduce runtime

for scientific applications built using Microsoft Azure cloud infrastructure services.

Tashi [85] identifies the importance of location awareness but does not propose a com-

plete solution. Tara [88] presents an architecture for optimized resource allocation

using a genetic algorithm. Quincy [78] is a resource allocation system for scheduling

concurrent jobs on clusters, but it considers only input data locality and does not

optimize for locality of any intermediate data generated during job execution which

is a key factor to scaling MapReduce in large data centers. Purlieus differentiates

from these through its locality optimizations achieved for both input and interme-

diate data. Also, as discussed in Section 3.4, without an efficient underlying data

placement, even a sophisticated locality-aware compute placement may not be able

to achieve high data locality.

3.7 Summary

In this chapter, we illustrated how locality-awareness in data and virtual machine

placement impact on the performance of the jobs and on the total network traffic

in the data center. We presented a coupled compute-storage cloud architecture for

MapReduce and developed a suite of data and VM placement techniques that achieves

high data locality. Our detailed evaluation showed significant performance gains

with some scenarios showing close to 50% reduction in execution time and upto 70%

reduction in the cross-rack network traffic.

In the next chapter, we investigate locality optimizations for MapReduce when
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data and compute can not be collocated in a cloud datacenter such as when the cloud

consumer has privacy concerns in processing the stored data within the cloud.
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CHAPTER IV

VNCACHE: MAPREDUCE ANALYSIS FOR

CLOUD-ARCHIVED DATA

4.1 Introduction

Data Storage requirements have seen an unprecedented growth owing to more strin-

gent retention requirements and longer term mining potential of data. Enterprises

have adopted various techniques such as tiering, archiving [112], Deduplication [38]

and remote cloud storage to combat data growth with varying degrees of success.

For certain classes of enterprise data - application and infrastructure logs, enterprises

are increasingly resorting to cloud storage solutions mainly due to lower cost and

expandable on demand nature of solutions.

Logs often contain sensitive information like IP addresses, login credentials, etc.

which necessitate encrypting the data before it leaves the enterprise premises. Tempo-

ral mining of archived data is gaining increased importance in a variety of domains for

multitude of use cases such as fault isolation, performance trending, pattern identifi-

cation,etc. After securely archiving data in the storage cloud, extracting any business

value for the above mentioned use cases from this data using any analytics platforms

such as MapReduce[57] or Hadoop[4] is non trivial. Exploiting compute resources in

the public cloud for such analytics is often not an option due to security concerns.

Most state-of-the-art cloud solutions today are highly sub-optimal for such use-cases.

All (encrypted) data sets need to be first transferred to the enterprise cluster from

remote storage clouds, decrypted, and then loaded into the Hadoop Distributed File

System (HDFS)[16]. It is only after these steps complete that the job will start ex-

ecuting. Secondly, this results in extremely inefficient storage utilization. While the
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job is executing, the same dataset will reside in both the public storage cloud and the

enterprise cluster and is in fact replicated multiple times at both of these places for

resiliency purposes, resulting in higher costs. For example, Hadoop by default will

replicate the data 3 times within the enterprise Hadoop cluster. This is on top of the

storage replication cost incurred at the public storage cloud.

In this chapter, we propose a unique hybrid cloud platform called VNcache that

alleviates the above mentioned concerns. Our solution is based on developing a virtual

HDFS namespace for the encrypted data stored in the public storage cloud that

becomes immediately addressable in the enterprise compute cluster. Then using a

seamless streaming and decryption model, we are able to interleave compute with

network transfer and decryption resulting in efficient resource utilization. Further by

exploiting the data processing order of Hadoop, we are able to accurately prefetch

and decrypt data blocks from the storage clouds and use the enterprise site storage

only as a cache. This results in predominantly local reads for data processing without

the need for replicating the whole dataset in the enterprise cluster.

Uniquely we accomplish this without modifying any component of Hadoop. By

integrating VNCache into the filesystem under HDFS, we are able to create a new

control point which allows greater flexibility for integrating security capabilities like

encryption and storage capabilities like use of SSDs. Our experimental evaluation

shows that VNCache achieves up to 55% reduction in job execution time while en-

abling private data to be archived and managed in public clouds.

The rest of the chapter is organized as follows. Section 4.2 provides the background

and the use-case scenario for supporting MapReduce analysis for Cloud-archived. In

Section 4.3, we present the design of VNCache and its optimization techniques. We

discuss our experimental results in Section 4.4 and we present a discussion of alternate

solutions and design choices for VNCache in Section 4.5. In Section 4.6, we discuss

related work and we summarize in Section 4.7.
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4.2 Background

We consider enterprise applications that perform MapReduce analysis over log data

that get generated at the enterprise site and archived in a public cloud infrastructure.

For example, an application that monitors the status of other application software

and hardware typically generates enormous amounts of log data. Such log data is

often associated with a timestamp and data analysis needs to performed on them

periodically.

With current cloud storage solutions, the logical method to perform analysis of

archived data would be as follows. Log data generated at the enterprises would be

encrypted and archived at a possibly nearest public storage cloud. Upon a need to

execute a Hadoop analytics job, the enterprise cluster would download all relevant

input data from the public clouds (time for which depends on WAN latencies). It

will then create a virtual Hadoop cluster by starting a number of VMs. Data is then

decrypted locally (time for which depends on CPU/Memory availability on local nodes

and denoted by Decryption Time) and then ingested into HDFS of the Hadoop cluster

(HDFS Ingestion Time) and then the job can start executing (Hadoop Job Execution

Time). Upon finishing the job, local copy of the data and the virtual Hadoop cluster

can be destroyed.

Figure 25 shows the breakdown of execution time for running a grep hadoop job

on a 5GB dataset using the conventional execution model mentioned above. The

network latencies 45, 90 and 150 milliseconds represent various degrees of geographic

separation such as co-located datacenters, same coast data centers, and geographically

well-separated data centers. Results show that WAN copy time and HDFS load

time can have significant impact on overall execution time, thus making this model

inefficient.

Further, depending upon the amount of data required to be loaded and connec-

tivity between the enterprise cluster and the remote storage cloud infrastructure, this
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step adversely impacts performance, and while the job is running (often for long

durations) the dataset is duplicated in both the public storage cloud as well as the

local enterprise cluster– along with the storage cloud original, there is a copy in the

enterprise cluster, leading to higher costs for the enterprise.

Figure 25: Breakdown of Fullcopy Runtime: 5 GB dataset with varying
network latency

In contrast to this conventional model, VNCache aims at minimizing the impact

of apriori data ingestion and decryption steps by intelligent pipelining of compute

with those steps; specifically, by creating a virtual HDFS namespace which lays out

the HDFS data blocks across the compute cluster. Whenever the job needs to access

any data block, VNCache streams it on-demand from the appropriate storage clouds,

decrypting it on-the-fly, and making it available to the job. As an additional perfor-

mance optimization, VNCache prefetches data ahead of processing so that the map

tasks read the data from local storage.

We next present the design overview of VNCache and describe its various compo-

nents.

4.3 Design Overview

We start with a brief overview of HDFS and its interaction with the underlying

filesystem.
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4.3.1 HDFS and underlying filesystem

Hadoop Distributed Filesystem (HDFS) is a distributed user-space filesystem used as

the primary storage by Hadoop applications. A HDFS cluster consists of a Namenode

that manages filesystem metadata and several Datanodes that store the actual data

as HDFS blocks. HDFS is designed to be platform independent and can be placed on

top of any existing underlying filesystem (like Linux ext3) on each node of the cluster.

It follows a master/slave architecture. HDFS exposes a file system namespace and

allows user data to be stored in files. The HDFS Namenode manages the file system

namespace and regulates access to files by clients. The individual Datanodes manage

storage attached to the nodes that they run on. When a client writes a file into

HDFS, the file is split into several smaller sized data blocks (default size is 64 MB)

and stored on the storage attached to the Datanodes.

Figure 26: HDFS Architecture

Within the cluster, the Namenode stores the HDFS filesystem image as a file

called fsimage in its underlying filesystem. The entire HDFS filesystem namespace,

including the mapping of HDFS files to their constituent blocks, is contained in this

90



file. Each Datanode in the cluster stores a set of HDFS blocks as separate files in

their respective underlying filesystem1. As the Namenode maintains all the filesystem

namespace information, the Datanodes have no knowledge about the files and the

namespace. As a HDFS cluster starts up, each Datanode scans its underlying

filesystem and sends a Block report to the Namenode. The Block report contains the

list of all HDFS blocks that correspond to each of these local files.

When an application reads a file in HDFS, the HDFS client contacts the Namenode

for the list of Datanodes that host replicas of the blocks of the file and then contacts

the individual Datanodes directly and reads the blocks from them. We refer the

interested readers to [16] for a detailed documentation on the design and architecture

of the Hadoop Distributed Filesystem.

Disk Cache

Secure Enterprise Cluster

Public Storage Cloud

Create chunks of 

HDFS block size

Encrypt

Archiving 

process

Figure 27: System Model

4.3.2 VNCache overview

VNCache is a FUSE based filesystem [19] used as the underlying filesystem on the

1Location in the underlying filesystem is determined by the dfs.data.dir configuration setting
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Namenode and Datanodes of the HDFS cluster. It is a virtual filesystem (similar to

/proc [18] on Linux) and simulates various files and directories to the HDFS layer

placed on it. For the Namenode, VNCache exposes a virtual HDFS namespace with

an artificially constructed fsimage file and for Datanodes, it exposes a list of data

files corresponding to the HDFS blocks placed on that datanode. Figure-27 shows

the overall framework which is composed of the following key components.

4.3.2.1 Data Archiving Process

In our approach, we pre-process the log data created at the enterprise cluster to

encrypt and make it HDFS friendly before archiving them in a public cloud. Specifi-

cally, large log data gets chunked into several small files of HDFS block size (64 MB

default), gets encrypt it, and we label them with the timestamp information (e.g.

1-1-2013.to.2-1-2013.data) before uploading to the public storage cloud. The enter-

prise site can use a symmetric key encryption scheme to encrypt the dataset before

archiving in the cloud.

When log data belonging to a given time window needs to be analyzed later on,

VNCache can identify all blocks stored in the storage cloud that contain data relevant

to that analysis. Next, we describe how these data blocks are presented to the HDFS

layer at the enterprise cluster so that jobs can begin execution right away. We note

that archiving the data in this manner does not preclude the data being accessed in

a non-HDFS filesystem when needed. In such cases when there is a need to download

the data in a non-HDFS filesystem, VNCache can download it through a normal

Hadoop dfs -get command.

4.3.2.2 Virtual HDFS Creation

When a Hadoop job at the enterprise cluster needs to process an archived dataset,

a virtual cluster is created by starting a number of VMs including one designated

to be the primary Namenode. Before starting Hadoop in the VMs, a virtual HDFS
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Table 9: HDFS fsimage

Image Element Datatype

Image version Integer
NAMESPACE ID Integer
NumInodes Integer
GENERATION STAMP Long

namespace is created on the Namenode. It starts by generating a list of relevant HDFS

blocks Bjob for the job based on the input dataset. For example, for an analysis of

1 month of log data archived in the cloud, all blocks stored in the storage cloud

that contains any data for the chosen time window would become part of the virtual

filesystem2. A virtual file Fjob is then created to contain |Bjob| HDFS blocks, where

each block is given a unique HDFS identifier while maintaining its mapping to the

filename in the remote cloud. Similar to HDFS Namenode filesystem formatting,

a fsimage (filesystem image) file is generated and the virtual file is inserted into

this fsimage filesystem image file (using our HDFS virtualization technique described

next).

... ...

...

Figure 28: HDFS: FileSystem Image

The HDFS virtualization in VNCache initially creates a HDFS filesystem image

and inserts an inode corresponding to the new file to be added into the virtual HDFS.

The fsimage file is a binary file and its organization in shown in Tables 9 - 12. The

2Any unaligned time boundaries are handled in a special manner, details of which are omitted
due to space constraints.
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Table 10: HDFS INode

Image Element Datatype

INODE PATH String
REPLICATION Short
MODIFICATION TIME Long
ACCESS TIME Long
BLOCK SIZE Long
numBlocks Integer
NS QUOTA Long
DS QUOTA Long
USER NAME String
GROUP NAME String
PERMISSION Short

Table 11: HDFS Block

Image Element Datatype

BLOCKID Long
NUM BYTES Long
GENERATION STAMP Long

spatial layout of the HDFS filesystem is shown in Figure 28. The fsimage begins

with the image version, Namespace identifier and number of Inodes stored as Integers

and Generation stamp stored as Long. The Generation stamp is generated by the

Namenode to identify different versions of the Filesystem image. Here the INode

represents the HDFS datastructure used to represent the metadata of each HDFS file.

For inserting a Virtual file into the virtualized HDFS, VNCache creates a new INode

entry corresponding to the INode organization described in Table 10. The first field

in the INode structure is the INode path stored as a String, followed by replication

factor, modification and access times for the file. It also contains other fields such as

the HDFS block size used by the file, number of HDFS blocks, namespace and disk

space quotas, user name and group names and permission. The INode structure is

followed by the information of each of the individual blocks of the file. As shown in

Table 11, each block representation consists of a block identifier, number of bytes and

generation stamp. The block generation stamp is a monotonically increasing number

assigned by the Namenode to keep track of the consistency of the block replicas. Since

these are assigned by the Namenode, no two HDFS blocks can ever have the same

Generation Timestamp. The HDFS filesystem image also has a list of INodes under
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Table 12: HDFS INode

Image Element Datatype

INODE PATH String
REPLICATION Short
MODIFICATION TIME Long
PREFERRED BLOCK SIZE Long
numBlocks Integer
USER NAME String
GROUP NAME String
PERMISSION Short
CLIENT NAME String
CLIENT MACHINE String

construction (INodesUC) whose description is shown in Table 12.

An example HDFS Filesystem image is shown in Figure 29 where we find that

there is an Inode created for the file /input/perf svc volumes.csv with a replication

factor of 3 and it has the listing of the block ids of the 2 HDFS blocks present in

this file. While the fsimage file is a binary file, for simplicity, it is shown in an XML

format converted using the Hadoop Offline Image viewer Utility [17]. We find that the

INode corresponding to the archived file /input/perf svc volumes.csv is added with a

replication factor of 3 and similarly, the individual blocks of the file with randomly

generated block ID is added with the generation stamp information.

At the enterprise cluster, the namenode is started using the virtual HDFS filesys-

tem image which enables Hadoop to understand that the required file and its indi-

vidual blocks are present in the HDFS.

Next, we determine the virtual data layout of these HDFS blocks on the Datan-

odes. It is done similar to Hadoop’s default data placement policy with its default

replication factor of 3. Once Hadoop is started on the cluster, Datanodes report these

blocks in the Block report to the Namenode, which assumes all HDFS blocks in the

HDFS filesystem namespace are present even though initially the data still resides in

the public storage cloud. Thus, from a Hadoop application stack the job execution

can begin immediately.
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<FS_IMAGE>

<IMAGE_VERSION>-18</IMAGE_VERSION>

<NAMESPACE_ID>838262466</NAMESPACE_ID>

<GENERATION_STAMP>1003</GENERATION_STAMP>

<INODES NUM_INODES="11">

<INODE>

<INODE_PATH>/input/perf_svc_volumes.csv

</INODE_PATH>

<REPLICATION>3</REPLICATION>

<MODIFICATION_TIME>2012-07-24 13:31

</MODIFICATION_TIME>

<ACCESS_TIME>2012-07-24 13:31</ACCESS_TIME>

<BLOCK_SIZE>67108864</BLOCK_SIZE>

<BLOCKS NUM_BLOCKS="2">

<BLOCK>

<BLOCK_ID>-3240566806188966147</BLOCK_ID>

<NUM_BYTES>67108864</NUM_BYTES>

<GENERATION_STAMP>1001</GENERATION_STAMP>

</BLOCK>

<BLOCK>

<BLOCK_ID>-3809894240632508629</BLOCK_ID>

<NUM_BYTES>67108864</NUM_BYTES>

<GENERATION_STAMP>1001</GENERATION_STAMP>

</BLOCK>

<NS_QUOTA>-1</NS_QUOTA>

<DS_QUOTA>-1</DS_QUOTA>

<PERMISSIONS>

<USER_NAME>balaji</USER_NAME>

<GROUP_NAME>supergroup</GROUP_NAME>

<PERMISSION_STRING>rw-r--r--</PERMISSION_STRING>

</PERMISSIONS>

</INODE>

</INODES>

</FS_IMAGE>

Figure 29: fsimage file converted to XML format

4.3.2.3 On-demand Data Streaming

VNCache enables on-demand streaming and on-the-fly decryption of HDFS data

blocks. Once the read request for a HDFS block reaches the Datanode that (vir-

tually) stores the block, VNCache on the Datanode looks up the mapping to its

public cloud storage location and begins fetching the data from the public storage

cloud. Once the block has been downloaded, it is decrypted before returning the data

to the call. The enterprise site uses a symmetric key encryption scheme to encrypt

the dataset before archiving in the cloud and therefore for decryption, we use the

same key to decrypt the blocks prior to passing them to HDFS. Please note that the

read requests received by the underlying VNCache may be for a portion of a data
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Figure 30: VNCache: Data Flow

block (e.g. Hadoop often does multiple 128k byte reads while reading a complete 64

MB block). For our implementation, we have chosen to start downloading the block

when an open call is received and corresponding read requests are served from that

downloaded and decrypted block.

Overall, from the HDFS standpoint, the HDFS data blocks - stored as files on

the VNCache filesystem - are seamlessly accessible so Hadoop works transparently

without the interference of streaming and decryption happening along this process.

4.3.2.4 Caching and Pre-fetching

The performance of the VNCache approach can be significantly improved if HDFS

block read requests can be served from the disks of the enterprise cluster as opposed to

streaming for each access. The goal of the caching algorithm is to maximize the reads

from the local disks on the VMs and minimize streaming requests from the storage

server in order to minimize the read latency for the jobs. Additionally, a good caching

algorithm is expected to yield high cache hit ratios even for reasonable size of the

cache on the disks of the VMs and should aim at minimizing the cache space used.

VNCache incorporates a distributed cache prefetching algorithm that understands
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the processing order of the blocks by the MapReduce workflows and prefetches the

blocks prior to processing. For subsequent open and HDFS block read operations,

the data from the disk cache in the enterprise cluster is used for reading. In case of a

cache miss, VNCache still streams the data block from the remote storage clouds as

explained above.

The cache manager follows a master/slave architecture where a dynamic workflow-

aware prefetch controller monitors the job progress of the individual jobs in the work-

flow and determines which blocks need to be prefetched next and sends instructions

to the slave prefetchers running on individual Hadoop nodes. Each slave prefetcher is

multi-threaded and follows a worker model where each worker thread processes from

a queue of prefetch requests. Each worker thread prefetches one HDFS data block

file from the storage cloud and replicates the block within the Hadoop cluster based

on the replication factor.

As mentioned earlier, the cache prefetcher logic needs to be capable of predict-

ing the processing orders of the individual HDFS blocks by the MapReduce jobs so

that the order of accesses corresponds to the prefetch order. Secondly, the caching

algorithm needs to be dynamically adaptive to the progress of the jobs in terms of

the map tasks that have been already launched and the ones that are to be launched

next, thereby it does not attempt to prefetch data for tasks that have already com-

pleted. In addition, the prefetcher should also be aware of the rate of processing the

job in terms of the average task execution time and as well as on the current network

throughput available between the storage Clouds and the enterprise site.

Prefetching order: The cache prefetcher logic in VNCache is capable of predict-

ing the processing order of the individual HDFS blocks. From the Hadoop design, we

note that the default processing order of the blocks in a Hadoop job is based on the

decreasing order of the size of the files in the input dataset and within each individ-

ual file, the order of data processed is based on the order of the blocks in the HDFS
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filesystem image file - fsimage. While this ordering is followed in the default FIFO

scheduler in Hadoop, some other sophisticated task placement algorithms ([143], [24])

may violate this ordering to achieve other goals such as higher fairness and locality.

One direction of our ongoing work is focused on developing cache-aware task place-

ment algorithms that achieve the goals of these sophisticated scheduling algorithms

in addition to being aware of the blocks that are already cached.

Dynamic rate adaptive prefetching: We have designed the pre-fetching al-

gorithm to be adaptive to the progress of the jobs so that it does not attempt to

prefetch data for tasks that have already completed or likely to start before prefetch-

ing is complete. The algorithm constantly monitors the job progress information from

log files generated in the logs/history directory of the master Hadoop node. It parses

the execution log file to obtain the Job SUBMIT TIME and Job LAUNCH TIME

and looks for task updates related to map task launching and completion. Based on

the differences in the speed of job progress (primarily dictated by the type of job)

and the time being taken to prefetch a block (dependent on connectivity between

the enterprise site and the public storage cloud), the algorithm aims to pick the right

offset for fetching a block. For example, if a job is progressing quickly and is currently

processing block-4, the prefetcher may choose to prefetch blocks from an offset 20; in

contrast, it may start from an offset 5 for a slow job.

To further react dynamically to the prefetching requests, the prefetch controller

obtains the list of all tasks that are launched since the beginning of the job and

the set of tasks that have already completed. Thus, based on the task start time

and completion time, the caching algorithm understands the distribution of the task

execution times of the current job.

In a similar manner, the slave prefetchers periodically report the average time to

prefetch and replicate an HDFS block and the bandwidth observed by them from

the Storage cloud to the enterprise site. Based on these reports, the cache controller
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understands the average time for a block prefetch operation and accordingly makes

the prefetching decision. If map task is launched for an input split whose block is

not prefetched, the prefetch controller understands that the prefetchers are unable

to prefetch at a rate similar to the rate of processing the blocks and hence makes

an intelligent decision to skip prefetching the next few blocks and start prefetching

blocks that are n blocks after the currently processing block in the prefetch ordering.

Concretely, if mtimeavg represents the average map execution time of a job running

on a cluster with M map slots on each task tracker and if ptimeavg represents the

average time to prefetch a block, then upon encountering a task launch for a map

task t whose data block Bi is not prefetched, the cache controller skips the next few

blocks and starts prefetching blocks after block Bi+n where

n =
ptimeavg
mtimeavg

×M

Cache eviction: Additionally, VNCache implements a cache eviction logic that

closely monitors the job log and evicts the blocks corresponding to tasks that have

already completed execution. It thus minimizes the total storage footprint resulting

in a fraction of local storage used as compared to the conventional model in which

the entire data set has to be stored in the enterprise cluster. Similar to the cache

prefetching, the cache manager sends direction to the slave daemons for evicting a

data block upon encountering a task completion status in the job execution files. The

daemons on the VMs evict the replicas of the block from the cache creating space in

the cache for prefetching the next data block.

Workflow-awareness: When dealing with workflows (multiple back-to-back jobs

processing a set of data), the cache manager understands the input and output data

of the individual jobs and makes prefetch and eviction decisions based on the flow

of data within the workflows. If a workflow has multiple jobs each processing the

same input dataset, the cache prefetch logic recognizes it and prefetches the data

blocks only once from the storage cloud and subsequent accesses to the data is served
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from the disk cache. Thus, the workflow-aware cache eviction policy makes its best

effort to retain a data block in the cache if the workflow is processing that data block

through another job in the future.

4.4 Experimental Evaluation

We present the experimental evaluation of VNCache based on three key metrics: (1)

job execution time: this metric captures the response time of the jobs. It includes data

transfer time, data loading and decryption time, and job processing time. (2) cache

hit-ratio: this metric captures the effectiveness of the VNCache’s caching algorithm.

It measures the amount of data read from the local disks of the enterprise site as

compared to streaming from the public storage cloud. (3) Cache size: this metric

captures the total storage footprint required at the enterprise site for processing a

remotely archived dataset. It thus indirectly captures the storage equipment cost at

the enterprise cluster.

We compare three techniques primarily:

• Full copy + Decrypt Model: This technique downloads the entire dataset prior

to processing and decrypts it and loads it onto the HDFS of the enterprise

cluster. Therefore it incurs higher delay in starting the job.

• VNCache: Streaming: This technique incorporates the HDFS virtualization

feature of VNCache and enables Hadoop jobs to begin execution immediately.

It streams all data from the public storage cloud as blocks need to be accessed.

• VNCache: Streaming + Prefetching: It incorporates both the HDFS virtu-

alization and streaming feature of VNCache and in addition, incorporates the

VNCache prefetching and workflow-aware persistent caching mechanisms to im-

prove job performance.

We begin our discussion with our experimental setup.
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4.4.1 Experimental setup

Our cluster setup consists of 20 CentOS 5.5 physical machines (KVM as the hy-

pervisor) with 16 core 2.53GHz Intel processors and 16 GB RAM. Out of these 20

servers, we considered 10 of them as the secure enterprise cluster nodes and used 5

other servers for functioning as public storage cloud servers. Our enterprise cluster

had VMs having 2 2 GHz VCPUs and 4 GB RAM and by default we artificially in-

jected a network latency of 90 msec (using the tc Linux command) between the public

storage cloud and the enterprise cluster nodes to mimic the geographically separated

scenario. Based on our cross-datacenter measurement experiments on Amazon EC2

and S3 (details explained in Section 4.4.2.1), this latency setting mimics the scenario

where the public storage cloud and the enterprise cluster are present within the same

coast (Oregon and Northern California datacenters) but physically separated.

The FUSE-based VNCache filesystem is implemented in C using FUSE 2.7.3.

Our Virtual HDFS and VNCache cache manager are implemented in Java. We use

DES symmetric key encryption scheme for encrypting the blocks. We use four kinds

of workloads in our study including a data-intensive workload using grep and the

Facebook workload generated using the Swim MapReduce workload generator [44]

that richly represent the characteristics of the production MapReduce traces in the

Facebook cluster. The workload generator uses a real MapReduce trace from the

Facebook production cluster and generates jobs with similar characteristics as ob-

served in the Facebook cluster. The trace consists of thousands of jobs depending

upon the trace duration. Out of these, we randomly pick up 5 jobs and use that as a

representative sample. Each job processes 5 GB of data by default and uses 5 VMS,

each having 2 2 GHz VCPUs and 4 GB RAM. For a compute-intensive workload, we

use the sort workload. In addition we consider two workflow-based workloads namely

(i) tf-idf workflow and (ii) a workflow created as a combination of the jobs in the

facebook workload trace. While the tf-idf workflow is reasonably compute-intensive,

102



0

200

400

600

800

1000

1200

1400

1600

45 90 150

E
x
e

cu
ti

o
n

 t
im

e
 (

se
c)

Network Latency (msec)

Fullcopy + Decrypt Model

VNCache: Streaming

VNCache: Streaming + Prefetching

(a) Execution time

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

45 90 150

C
a

ch
e

 H
it

 R
a

ti
o

Network Latency (msec)

VNCache: Streaming + Prefetching

(b) Cache hit ratio

Figure 31: Performance of Grep Workload

the facebook workflow is more data-intensive.

4.4.2 Experimental Results

Our experimental results are organized in the following way. We first present the

comparison of VNCache Streaming + Prefetching model with the basic full copy +

decrypt model and the VNCache streaming model for the single job workloads. We

analyze the job performance enhancements of VNCache under a number of experi-

mental setting by varying the network latency between the public storage cloud and

enterprise site, the size of the archived dataset, the size of the disk cache present in

the enterprise site. We show the impact of both the HDFS virtualization and stream-

ing techniques in VNCache as well as its caching and prefetching mechanisms on the

overall job performance. We then present a performance study of our techniques by

considering workflow-based workloads and show that VNCache performs better than

the full copy + decrypt model even in such cases.

4.4.2.1 Impact of Network Latency

We study the performance of the VNCache approach for several network latencies

representing various geographical distance of separation between the public storage

cloud and the enterprise site. In order to simulate the scenarios of various degrees of
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geographic separation, we did cross-datacenter measurement experiments on Amazon

EC2 and S3. As Amazon blocks ICMP packets and does not allow Ping based net-

work measurements, we measured the average transfer time for transferring a file of

HDFS block size (64 MB) between the datacenters and used that measurement to set

our network latencies to obtain the similar block transfer times. For example, with

S3 server in Oregon and EC2 in Northern California, a 64 MB HDFS block file takes

11 seconds to get transferred. Here, the 90 msec network latency scenario represents

the public storage cloud and enterprise site located within the same coast (Northern

California and Oregon datacenters corresponding to 11 second transfer time in our

measurements) and a 250 msec scenario would represent another extreme scenario

where the public storage cloud at the west coast (Oregon site) and the compute site

at the east coast (Virginia datacenter). Therefore, we use the 150 msec setting to

represent a geographic separation that is in between these two extremes. In Figure

31(a), we present the execution time of the Grep workload at various latencies. We

find that with increase in network latency, the execution time of the jobs increase

for both the Fullcopy + decrypt model and the VNCache approaches. Here, VN-

Cache: Streaming consistently performs better than the Fullcopy + decrypt model

at various latencies showing an average reduction of 42% in execution time. Further,

the execution time of the streaming approach is reduced by more than 30% by the

prefetch optimization. As evident from the figure, this improvement comes from both

the Virtual HDFS based streaming model as well as through VNCache’s intelligent

prefetching. The cache hit ratios shown in Figure 31(b) illustrate that a significant

amount of the input data (more than 45 %) were prefetched and read locally from

the enterprise cluster.

While the Grep workload represents an I/O intensive workload, we next consider

a more compute-intensive workload namely Sort. Figure 32 shows the execution time

of the sort workload for the three approaches. Here we notice that VNCache achieves
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Figure 32: Performance of Sort workload - Execution time

a reasonable improvement of 25% for even a compute-intense workload such as Sort.

4.4.2.2 Performance of Facebook workload

Our next set of experiments analyze the performance of VNCache for the Facebook

workload. Figure 33(a) shows the comparison of the execution time of 5 randomly

picked jobs from the Facebook workload for streaming and streaming + prefetching

techniques in VNCache and the basic Full copy + decrypt model. Here each job

processes 5 GB of data and the network latency between the public storage cloud

and enterprise cluster is 90 msec. We note that since the basic Full copy + decrypt

model copies the entire (encrypted) dataset from the public storage cloud, decrypts

and loads it into HDFS of the enterprise cluster, the jobs take longer time to execute.

VNCache streaming technique on the other hand uses its Virtual HDFS to start

the job immediately while streaming the required data on demand. We find that the

streaming approach consistently achieves higher performance than the Fullcopy + de-

crypt model showing an average reduction of 52.3 % in job execution time for the jobs.
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Figure 33: Performance of Facebook workload

Additionally, the VNCache prefetching techniques give further performance benefits

to the jobs achieving an average reduction of 25.8% in execution time compared the

VNCache streaming approach.

We present the obtained cache hit ratios for the VNCache: streaming + prefetch-

ing technique in Figure 33(b). We find that the prefetching optimization achieves an

average cache hit ratio of 43.5% and thus serves 43.5% of the data from the local

disks at the enterprise site as compared to streaming from the public storage clouds.

These local reads contribute to the reduction in job execution times shown in Figure

33(a). We also notice that FB4 job has a higher cache hit ratio compared to the other

jobs as its running time (excluding the data loading and loading time) is longer which

gives more opportunity to interleave its compute and data prefetching resulting in

higher local reads from prefetched data.

4.4.2.3 Performance of Job Workflows

Next, we study the performance of VNCache for job workflows that constitutes sev-

eral individual MapReduce jobs. We first study the performance for a I/O intensive

workflow composed of three randomly picked facebook jobs that process the same

input dataset. As the three jobs in this workflow process the same dataset as input,
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Figure 34: Performance of workflow (facebook jobs)

we notice in Figure 34(a) that the VNCache:Streaming model is not too significantly

better than the full copy model especially at some higher latency such as 150 msec.

Here, since three individual jobs of the workflow use the same input dataset, just

merely streaming the data blocks for each of the three jobs becomes less efficient.

Instead, the workflow-aware persistent caching approach in VNCache: Streaming +

Prefetching caches the prefetched data at the enterprise site for the future jobs in the

workflow and thereby achieves more than 42.2% reduction in execution time com-

pared to the Full copy model. The cache hit ratios shown in Figure 34(b) shows that

VNCache enables more than 88.8% of data to be read locally from the enterprise

cluster for this workflow. Thus,the workflow-aware persistent caching avoids multi-

ple streaming of the same block and helps the individual jobs read data within the

enterprise cluster.

For a compute-intensive workflow, we use the tfidf workflow which computes the

term frequency - inverse document frequency (tf-idf) for the various words in the given

dataset. It consists of three jobs, the first two of which read the input dataset while

the third job reads the output of the first two jobs. In Figure 35(a), we find that

the job execution time for this workflow is again significantly reduced (by more than

47%) by VNCache. Also, the cache hit ratio in this case (Figure 35(b)) suggests that
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Figure 35: Performance of Tfidf workflow

VNCache is able to prefetch a significant fraction (more than 70%) of the data.

4.4.2.4 Impact of Data size

Our next set of experiments vary the input dataset size for the jobs and study the

performance of the individual jobs as well as the workflows. We present the execution

time of Grep workload in Figure 36(a) for different input dataset size. We find that

the techniques perform effectively for various datasets achieving an average reduction

of 50.6% in execution time. We also find a good average cache hit ratio of 47% in

Figure 36(b).

Similarly, for a compute-intensive workflow, we present the tfidf workflow perfor-

mance for different dataset size. We find in Figure 37(a) that the VNCache techniques

continue to perform well at even bigger dataset size with an average reduction of 35.9%

in execution time. The performance improvement is further explained by the high

average cache hit ratio (61.2 %) in Figure 37(b).

4.4.2.5 Impact of Cache Size

Next we study the impact of cache size at the enterprise cluster on the running time

of the jobs. We vary the disk cache size on each VM in terms of the number of HDFS

blocks that they can hold. Each HDFS block in our setting is 64 MB and we vary
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Figure 36: Performance of Grep with different data size
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Figure 37: Performance of Tf-idf workflow with different data size

the cache size on the VMs from 10 to 100 blocks representing a per-VM cache of 640

MB to 6400 MB. We first study the performance of the Grep workload with cache

sizes 10, 40, 100 blocks in Figure 38(a) and we find that the execution time of the

VNCache:Streaming + Prefetching approach decreases with increase in cache size as

a larger cache gives enough opportunity to hold the prefetched data blocks. Here the

cache size of 0 blocks refers to the VNCache pure streaming approach. We find that

even with a cache size of 10 blocks, VNCache achieves significantly lower execution

time (Figure 38(a)) compared to the Fullcopy + decrypt model with a reasonable

cache hit ratio (more than 35%) as shown in Figure 38(b).
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Figure 38: Impact of Cache size - Grep workload
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Figure 39: Impact of Cache size - Tfidf workflow

The performance tradeoffs with cache size for the tfidf workflow shown in Figure

39(a) also shows that with a reasonable cache, the privacy-conscious enterprise can

tradeoff job performance to save storage cost at the local cluster.

4.4.2.6 Effect of number of VMs

Our next set of experiments studies the performance of VNCache under different

number of VMs in the Hadoop cluster. In Figure 40 We vary the Hadoop cluster

size from 5 VMs to 10 VMs and compare the performance of VNCache (streaming

+ prefetching model) with the full copy + decrypt model. We find that VNCache

continues to perform well at different cluster sizes achieving an average reduction of
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Figure 40: Effect of number of VMs

51%.

4.5 Discussions

VNCache is developed with the goals of providing on-demand streaming and prefetch-

ing of encrypted data stored in public clouds. Here we discuss some of the merits of

the design choice of implementing VNCache streaming and prefetching techniques at

the Filesystem layer. We note that as an alternate solution, the Hadoop Distributed

Filesystem (HDFS) can be modified to add the caching and prefetching techniques

of VNCache. In a similar manner, HDFS can be also modified to implement addi-

tional functionalities such as encryption support for handling privacy-sensitive data.

However, we argue that such an implementation suffers from two drawbacks. First, it

can not seamlessly operate with Hadoop as it requires changes to the Hadoop stack.

Also, it makes it difficult to implement any changes to caching and prefetching policies

as it requires modifying the Hadoop source each time. Additionally, implementing

the HDFS virtualization and caching techniques at the Filesystem layer provides a

seamless control point to introduce further optimizations such as dealing with storage
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hierarchies. For instance, VNCache can be easily extended to deal with in-memory

processing of blocks by caching the blocks in a memory location and using a memory

cache in addition to the disk cache. In a similar way, VNCache can also provide

support to optimize for introducing SSDs into the solution where the data blocks

can be moved between memory, SSDs and disks based on a prefetch/evict plan. One

direction of our future research is focused on extending VNCache to optimize job

latency through in-memory computations.

4.6 Related Work

Hybrid Cloud solutions for MapReduce: There is some recent work on hy-

brid cloud architectures for security-conscious MapReduce applications [144, 84] that

use public clouds for storing and processing non-private data while using a secure

enterprise site for storing and processing private data. VNCache on the other hand

addresses the challenge of processing archived (encrypted) data stored in public clouds

in a privacy-conscious manner by providing a seamless interface for Hadoop to process

the data within the enterprise site. Heintz et. al. [71] propose a solution to process

geographically distributed data by scheduling map tasks close to their data. We note

that such solutions are not suitable for security-conscious applications that prohibit

the use of public clouds for data processing.

Caching Solutions: Recently, caching techniques have been shown to improve

the performance of MapReduce jobs for various workloads [25, 97]. The PACMan

framework [25] provides support for in-memory caching and the MixApart system

[97] provides support for disk based caching when the data is stored in an enter-

prise storage server within the same site. VNCache differentiates from these systems

through its ability to seamlessly integrate data archived in a public cloud into the

enterprise cluster in a security-conscious manner and through its seamless integration

with Hadoop requiring no modifications to the Hadoop stack. Furthermore, VNCache
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provides a flexible control point to seamlessly introduce additional security-related

functionality and other performance optimizations for storage hierarchies.

Locality Optimizations: In the past, there have been several efforts that in-

vestigate locality optimizations for MapReduce. Zaharia et al. [143] developed delay

scheduler that attempts to improve job performance through increased task locality.

Mantri [24] identifies that cross-rack traffic during the reduce phase of MapReduce

jobs is a crucial factor for MapReduce performance and optimizes task placement.

Quincy [78] is a resource allocation system for scheduling concurrent jobs on clusters

considering input data locality. Purlieus [103] solves the problem of optimizing data

placement so as to obtain a highly local execution of the jobs during both map and

reduce phases. These above mentioned systems assume that the data is collocated

with compute within the same Hadoop cluster and thus do not provide solutions for

decoupled storage and compute clouds.

Resource Allocation and Scheduling: There have been several efforts that

investigate efficient resource sharing while considering fairness constraints [13]. For

example, Yahoo’s capacity scheduler uses different job queues, so each job queue

gets a fair share of the cluster resources. Facebook’s fairness scheduler aims at im-

proving the response times of small jobs in a shared Hadoop cluster. Sandholm

et al [115] presented a resource allocation system using regulated and user-assigned

priorities to offer different service levels to jobs over time. Zaharia et al. [142] de-

veloped a scheduling algorithm called LATE that attempts to improve the response

time of short jobs by executing duplicates of some tasks in a heterogeneous system.

Herodotou et al. propose Starfish that improves MapReduce performance by auto-

matically tuning Hadoop configuration parameters [73]. The techniques in VNCache

are complementary to these above mentioned optimizations.
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4.7 Summary

In this chapter, we presented an efficient solution for privacy-conscious enterprises

that deal with cloud-archived log data. We showed that current solutions are highly

inefficient as they require large encrypted datasets to be first transferred to the se-

cure enterprise site, decrypted, and loaded into a local Hadoop cluster before they

can be processed. We presented our filesystem layer called VNcache that dynami-

cally integrates data stored at public storage clouds into a virtual namespace at the

enterprise site. VNCache provides a seamless data streaming and decryption model

and optimizes Hadoop jobs to start without requiring apriori data transfer, decryp-

tion, and loading. Our experimental evaluation shows that VNCache achieves up to

55% reduction in job execution time while enabling private data to be archived and

managed in public clouds

In the next chapter, we extend our cloud service provisioning framework to support

ubiquitous access to data and compute services in the cloud without compromising

user privacy when accessing services over a mobile device. Concretely, we will dis-

cuss the privacy risks involved in accessing location-based cloud services over mobile

devices and present a suite of mix-zone based location anonymization schemes to

support anonymous cloud services to mobile users on the move.
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CHAPTER V

PROTECTING LOCATION PRIVACY OF MOBILE

USERS IN A CLOUD

5.1 Introduction

We are entering a world where people and vehicles are being connected and tracked

automatically on an ongoing basis. Such location tracking, on one hand, can offer

useful and continuous services to mobile users, and on the other hand, generates

enormous amount of potentially sensitive information. Location-based services (LBS)

are becoming increasingly popular due to the advancement in wireless communication

and the availability of low-cost mobile positioning devices. Such services require

the mobile clients to report their location information to the Location-based Service

running in an untrusted infrastructure such as a Cloud datacenter. Examples of

Location-based services include searching nearest points of interest (”Where is the

nearest gas station to my current location?”), spatial alerts (”Remind me when I

drive close to the ATM, I need to deposit a check”), location-based social networking

(”Where is my friend, Tom?”). Although LBS applications provide a lot of interesting

and convenient services to users, it opens up new security risks that can endanger

the location privacy of the mobile clients [81, 21]. Location privacy is a system-

level capability of location systems, which controls the access to this information at

different spatial granularity and different temporal and continuity scale, rather than

stopping all access to location information. Provisioning efficient location-based cloud

services to mobile users while strictly guarding and meeting their location privacy

requirements is the focus of this chapter.

Several strategies have been suggested to protect personal location information.
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The first strategy is to restrict access. Users who do not want location based services

should be provided an option to refuse being tracked [72]. The second category

of strategies is using spatial cloaking of locations, often referred to as location k-

anonymization. This approach degrades the spatial resolution of location information

in a controlled fashion before releasing it through location k-anonymity guarantee.

A subject is considered k-anonymous if its location is indistinguishable from that of

k − 1 other users [33, 64, 67, 98, 135]. Location k − anonymization approaches are

targeted at applications that can operate completely anonymously and thus do not

require true identity of users, such as finding nearby gas-stations or restaurants, and

notifying the sale price of items of interest when we pass a shopping mall. However,

the use of spatially cloaked resolution instead of exact position of users does not

prevent continuous exposure of location information and thus may lead to breaches

of location privacy due to statistics-based inference attacks [86]. The third category

of strategies is the use of mix-zone model that anonymizes user identity by restricting

the positions where users can be located [35] and by introducing methods to break

the continuity of location exposure.

Mix-zones are regions in space where no applications can trace user movements.

This is guaranteed by enforcing that a set of users enter, change pseudonyms and exit

a mix-zone in a way such that the mapping between their old and new pseudonym

is not revealed [35, 60, 61, 39]. However, most of the existing mix-zone proposals

fail to provide attack resilient mix-zone construction algorithms that are effective for

mobile users traveling on road networks and yet robust against timing and transition

attacks. Concretely, theoretic mix-zones [35] are constructed independently of the

spatially constrained road networks and thus limit their applicability to real world

situations that people travel in spatially constrained networks or walk-paths. For

instance, an adversary can utilize the timing information of users’ entry into and

exit from a mix-zone and the non-uniformity in the transitions taken at the road
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intersections to guess the mapping between the old and new pseudonyms [60].

In this chapter, we present MobiMix, a road network based Mix-Zone framework

to protect location privacy of mobile users. Compared to the existing approaches, the

MobiMix mix-zones have a number of unique features.

First, the MobiMix mix-zones are developed based on a formal study of the as-

sumptions of the theoretic mix-zone model and the detrimental impact on its obtained

anonymity when certain assumptions are violated when taking into consideration of

road network characteristics and motion behavior of mobile users (Section 5.2).

Second, we present the adversary model, including goals and types of attacks, and

formally describe the MobiMix road network mix-zone model and the evaluation met-

rics in the presence of this adversary model (Section 5.3). Third but not the least,

we develop a suite of attack resilient mix-zone construction techniques in terms of

unlinkability between the old and new pseudonyms (Section 5.5.1). Our algorithms

take into account of the constraints and limitations imposed by the road networks,

the timing of users entering and exiting a mix-zone, and the transitioning probability

of users in terms of their movement trajectory. We also present a detailed analysis of

our mix-zone construction algorithms against the timing and transition attacks. We

discuss mix-zone placement in Section 5.6 and evaluate the MobiMix approach and

algorithms through extensive experiments conducted on traces produced by GTMo-

biSim [108] using different scales of geographic maps (Section 5.7). Our experiments

show that MobiMix provides significantly higher level of resilience to timing and tran-

sition attacks compared to existing mix-zone approaches and yet efficient and scalable

with respect to different types of road networks (maps) and different number of mo-

bile users with different mobility patterns. We discuss related work in Section 5.8

and summarize in Section 5.9.
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5.2 Analysis of Theoretical Mix-zones

In this section, we review the concept of theoretical mix-zone and the implications of

its assumptions on the level of anonymity it provides.

Figure 41: Mix Zone Model

A mix-zone of k participants refers to a k-anonymization region in which users

can change their pseudonyms such that the mapping between their old and new

pseudonyms is not revealed. In a mix-zone, a set of k users enter in some order

and change pseudonyms but none leave before all users enter the mix-zone. These

k users exit the mix-zone in an order different from their order of arrival, providing

unlinkability between their entering and exiting events. Figure 41 shows a mix-zone

of three participants, a, b and c exiting with new pseudonyms p, q and r. We formally

present the theoretic model of a mix-zone and illustrate the strong assumptions used

by the model to ensure high privacy guarantee.

Definition 1 A mix-zone Z is said to offer k-anonymity for a set A of users iff

1. The set A has k or more members, i.e., |A| ≥ k.

2. All users in A must enter the mix-zone Z before any user i ∈ A exits. Thus,

there exists a point in time where all k users of A are inside the zone.
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3. Each user i ∈ A, entering the mix-zone Z through an entry point ei ∈ E and

leaving at an exit point oi ∈ O, spends a completely random duration of time

inside.

4. The probability of transition between any point of entry to any point of exit

follows a uniform distribution. i.e., an user entering through an entry point,

e ∈ E, is equally likely to exit in any of the exit points, o ∈ O.

Inside the mix-zone, the location of users cannot be tracked.

In the theoretical mix-zone model, the anonymity is measured in terms of the

unlinkability between the old and new pseudonyms. For user i, exiting with a new

pseudonym, i′, let pi′→j denote the probability of mapping i′ to j, where j ∈ A.

According to Definition 1, the theoretical mix-zone ensures an equi-probable distri-

bution of mapping i′ to j ∈ A. In other words, for every outgoing user, i′, it is equally

probable for i′ to be any of the k users in the anonymity set A, having pi′→j = 1
|A| .

Therefore, the entropy, H(i′) of each outgoing user i′ is computed according to the

information theoretic measure of anonymity [59, 117]

H(i′) = −
∑
j∈A

pi′→j × log2(pi′→j)

The Entropy is a measure of the amount of information required to break the anonymity

provided by the system. In other words, the new pseudonym of user, i is indistin-

guishable from that of |Ai| other users. We refer to this as pseudonym anonymity.

Additionally, if each outgoing user exits in a uniquely different direction, then as an

effect, the users would also obtain transition anonymity that ensures that the direc-

tions taken by an user, i during the exit is indistinguishable from that of |A| users.

In the theoretical model, although users take uniform transitions while exiting, there

is no guarantee that all users exit in a unique direction and hence it can not make

guarantees on the transition anonymity.
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Next, we discuss the significance of the two important assumptions in the mix-zone

model namely (1) users stay random time inside. (2) users follow uniform transition

probability when entering and exiting a mix-zone.

When the users inside the mix-zone spend random time, it ensures a random

reordering between the entry and exit orders providing a strong unlinkability between

their old and new pseudonyms. However, a mix-zone that does not ensure random

duration of time inside for its users usually leaks information [35, 60]. Such leakage

may aid attackers to infer the mapping between the old and new pseudonyms of users.

For example, when all users spend a constant time inside, the system would simply

function in a FIFO (first-in-first-out) style, with the first exit event corresponding

to the first entry event and so on. In that case, even though the users might have

changed pseudonyms inside, their mapping from the old and new pseudonyms can

still be inferred. A good mix-zone should therefore ensure sufficient randomness in

the time spent inside it in order to obtain a high anonymity in terms of unlinkability

after the pseudonym change process.

Similarly in a theoretical mix-zone, the probability of transition between an entry

point and an exit point follows a uniform distribution. By relaxing this assumption,

some transitions between entry and exit points may be more probable than the others.

The attacker can use such knowledge to infer the mapping between the old and new

pseudonyms. For example, if some transitions are less probable, the attacker may

eliminate the pseudonym mappings corresponding to those transitions and thereby

improve the success rate of his inference.

5.3 MobiMix: Overview

In this section, we present an overview of the MobiMix framework. We begin by

introducing the challenges imposed by road networks for the construction of mix-

zones and then present the associated attack models and anonymity metrics.
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Theoretical mix-zones assume mobile users move in an Euclidian space without

any spatial constraints. In real world, mobile users always move on a spatially con-

strained space, such as road networks or walk paths. Each road network mix-zone

corresponds to a road intersection on a road network. Mix-zones constructed at road

intersections have a limited number of ingress and egress points corresponding to

the incoming and outgoing road segments of the intersection. Furthermore, users in a

road network mix-zone are also constrained by the limited trajectory paths and speed

of travel that are limited by the underlying road segments and the travel speed desig-

nated by their road class category [20]. Thus, users are not able to stay random time

inside a road network mix-zone and no longer follow uniform transition probability

when entering and exiting the mix-zone.

Figure 42: Road Network Mix Zone

For example, in figure 42, users a and b enter the road intersection from segment

2 and turn on to segment 4. Users c and d enter from segment 1 and leave on segment

2. When user a and b exit the mix-zone on segment 1 with their new pseudonyms,

say α and β, the attacker tries to map their new pseudonyms α and β to some of

the old pseudonyms a,b, c, and d of the same users. The new pseudonym α is more
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likely to be mapped to two of the old pseudonyms, a or b, than the other pseudonyms

because users a and b entered the mix-zone well ahead of users c and d and it is thus

less probable for c and d to leave the mix-zone before users a and b given the speed

and trajectory of travel. Here, the limited randomness on the time spent inside a

road network mix-zone introduces more challenges to construct efficient mix-zones.

Similarly, in figure 42, in order for the attacker to map α and β to c and d, the

old pseudonyms, users c and d should have taken a left turn from segment 1 to

segment 4 and users a and b should have taken an U -turn on segment 2. Based on

common knowledge of inference, the attacker knows that the transition probability

of an U − turn is small and the mapping of α and β to c and d is very less probable.

Hence, an efficient road network mix-zone should be resilient to such transition and

timing attacks. Next, we introduce the attack models and the anonymity measures

for road network mix-zones.

5.3.1 Adversary Model

The MobiMix development requires only the MobiMix engine that performs the

pseudonym change for users inside a mix-zone to be trusted. Thus location based ser-

vice providers are untrusted. For an adversary associated with an untrusted location

based service provider, he may obtain a time series of locations and can partition such

location data into subsequences by pseudonyms. By sorting different subsequences of

locations, each corresponding to a different pseudonym, in terms of timing and road

network location, the adversary is knowledgeable about mix-zones. Even though no

true user identity is available in the location service requests received, the adversary

is considered successful if he can utilize timing and transition based inference to infer

the correct linkage between a pseudonym observed from the service requests received

before a mix-zone and a pseudonym observed after a mix-zone. Similarly, an attacker

can also be external observers of mobile users and traffics on the road networks and

can intercept messages in the selected spatial and temporal space. The overall goal
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of an adversary (curious or malicious) is to track the where about of certain users

by linking a sequence of pseudonyms and by associating a user’s pseudonym to the

actual user’s identity through establishing one to one mapping between the set of

observed pseudonyms, combined with the association of a sequence of locations to a

sensitive location such as home address or office building of a specific user or a loca-

tion of special interest to a given user at a given time window. Also we assume that

attackers in the adversary model can be semi-honest in the sense that they can be

curious rather than completely malicious when launching an inference attack. Upon

the success of an attack, an adversary is able to infer the where about of a user based

on the correct mapping between a pseudonym and the true identity of a user and the

linkage among a time series of pseudonyms. By intruding location privacy of a user,

the adversary associated with a location service provider may further track location

queries of the user associated with the set of her pseudonyms, leading to intrusion of

user’s content privacy.

The design of MobiMix aims at protecting location privacy of users by preventing

timing and transition attacks to the road network mix-zones. We below describe three

types of attacks based on the characteristics of road networks: (1) Timing Attack,

(2) Transition Attack and (3) Combined Timing and Transition Attack.

Timing Attack: In timing attack, the attacker observes the time of entry, tin(i)

and time of exit tout(i) for each user entering and exiting the mix-zone. When the

attacker sees an user i′ exiting, he tries to map i′ to one of the users of the anonymity

set, Ai. The attacker assigns a probability, pi′→j that corresponds to the probability

of mapping i′ to j, where j ∈ A. The mapping probabilities are computed through

inference based on the likelihoods of the rest of the users to exit at the exit time of

i′, denoted by tout(i
′). Once the mapping probabilities are computed, the attacker

can utilize the skewness in the distribution of the mapping probabilities to eliminate

some low probable mappings from consideration and narrow down his inference to
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only the high probable mappings. Such timing attack can be detrimental if not han-

dled appropriately in the mix-zone construction and usage model.

Transition Attack: In transition attack, the attacker estimates the transition prob-

ability for each possible turn in the intersection based on previous observations. On

seeing an exiting user, i′, the attacker assigns the mapping probability pi′→j for each

j ∈ A based on the conditional transitional probabilities T ((ingress(j), egress(i′)).

Recall, T ((ingress(j), egress(i′)) denotes the conditional probability of an user i′ en-

tering through the entry point, ingress(j) given that the user exited at the exit point,

egress(i′). Transition attack can equally affect the effectiveness of road network mix-

zones as timing attack if not handled with care.

Combined Timing and Transition Attack: In the combined timing and tran-

sition attack model, the attacker is aware of both the entry and exit timing of the

users and as well the transition probabilities at the road intersection for a given road

network mix-zone. The attacker can estimate the mapping probabilities pi′→j for each

j ∈ A based on both the likelihoods of every user j exiting at time tout(i
′) and the

conditional transition probabilities T (ingress(j), egress(i′)). This combined attack

is often more powerful than the timing and transition attacks in isolation.

5.4 MobiMix System Architecture

The system architecture of MobiMix consists of following components (1) MobiMix

Anonymizer, (2) Road Network Monitor, (3) Mix-zone construction modules, (4)

Mix-zone placement and (5) Computing Infrastructure. We describe each of them

below:

5.4.0.1 Mix-zone Anonymizer

The Mix-zone anonymizer is responsible for anonymizing the raw location updates

received from the mobile clients before releasing it to the Location Based Service
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provider for processing. The anonymizer stores two important information: (1) Mix-

zone-junctions Map that stores which junctions are presently functioning as mix-

zones and (2) User-pseudonyms Map that stores the mapping between the user’s real

identity and their current pseudonyms. Upon arrival of a location update from a

client, the anonymizer checks to see if the present location of the client corresponds

to a mix-zone region. If so, the anonymizer drops the location update from being

sent to the Location-based service (LBS) provider and denies service to the mobile

client. Also, the mobile user is assigned a new pseudonym and the corresponding

entry is updated in the User-pseudonym Map. If the mobile user is not currently

inside a mix-zone, then the anonymizer passes the location update to the LBS server

by replacing the real identity of the user its the current pseudonym.

5.4.0.2 Road Network Monitor

The road network monitor works closely with the mix-zone anonymizer. It examines

each location update of the mobile client and monitors the current behaviour of the

road network in terms of the user speeds and their arrival patterns. It consists of the

following sub-components:

Arrival Rate Monitor: The arrival rate monitor observes the user arrivals in

each road junction along each road segment and identifies the user arrival process

and the associated parameters. It provides the arrival rate parameter to the mix-

zone construction module.

Transition Monitor The transition monitor observes the transitions taken by

the users in each road junction and computes the transition probabilities for all pos-

sible transitions in the road intersections. This information is used to compute the

conditional transition probability in the attack-resilient mix-zone construction phase.

Road Speed Monitor Based on the location updates received from the clients,

the road speed monitor computes the current speed of the road segments in terms of
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the mean speed and standard deviation. Also, it is aware of the speed limits of the

road segments based on the road category they belong to.
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Figure 43: MobiMix System Architecture

5.4.0.3 Mix-zone Construction

The mix-zone construction module consists of the implementation of the MobiMix

attack-resilient mix-zone techniques. It has information about the user arrival rate,

transition probability in the junctions and speed distribution in the road segments

through the road network monitor. The mix-zone construction takes into account the

effect of both timing and transition attacks and ensures an expected number of users

in the mix-zone that directly corresponds to the level of anonymity obtained. The

construction module outputs the mix-zone size and shape for each mix-zone and also

assists the mix-zone placement module to determine the best set of road intersections

to function as mix-zones based on the user arrival rate, the transition probabilities at

the junctions and the speed characteristics of the road segments.
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5.4.0.4 Mix-zone Placement

The mix-zone placement component is responsible for deploying the mix-zones in the

road network. In a huge road network of several tens of thousands of road junctions,

the critical decision of which road junctions function as mix-zones can significantly

impact the anonymity of the users. Improper selection of road junctions may result in

unacceptably large size of mix-zones due to low user arrival rate or skewed transition

probability distribution in the junctions. The placement module has knowledge of the

road network topology, road characteristics in terms of road segment speed and arrival

rate and also the mobility profiles of the users in terms of the transitioning probabili-

ties at the road junction. MobiMix implements three mix-zone placement techniques

namely (i) Naive Placement, (ii) Road characteristics aware (top-n) placement and

(iii) Quadtree based (Grid) Network-aware placement.

5.4.0.5 Computing Infrastructure

The anonymizer with its monitoring sub-components run in a computing infrastruc-

ture. This computing infrastructure can be a dedicated infrastructure within the

anonymizer’s organization. Here, a set of servers would be responsible for anonymiz-

ing users in one geographical area and each server gets to receive only the location

updates corresponding to its geographic area thereby balancing the overall load in

the system.

5.4.1 Evaluation Metrics

In this subsection, we discuss the evaluation and anonymity metrics for measuring

the level of anonymity provided by road network mix-zones.

The goal of mix-zone construction in MobiMix is to provide a guarantee by means

of a lower bound on the anonymity obtained in them. We first review various existing

metrics and discuss their inapplicability for the design of mobimix mix-zones and then

present the metrics used in MobiMix.
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Anonymity set size: The size of anonymity set is the most straight forward measure

of anonymity. However, this metric alone is insufficient given the mapping probabil-

ities may not be uniform in a road network mix-zone. Unlike an ideal mix-zone, in

a road network mix-zone the attacker can identify which members are low-probable.

Here, the low probable mappings do not effectively count for the anonymity. When

the mapping probability distribution is not uniform, there can be attacks based on

probability analysis [59, 117, 130]. In other words, we can not say that a road inter-

section performs as a good mix-zone just by the mere fact that the anonymity set is

greater than k. A number of users in the anonymity set can become low probable

under timing and transition attacks and will not effective count towards anonymity.

Entropy: An alternate measure of anonymity would be based on Entropy that cap-

tures the attacker’s uncertainty in guessing the mapping between a new and old

pseudonym [131, 55, 59, 117, 130]. However, entropy of a user is a measure over all

members of the anonymity set. Therefore it may not effectively capture the cases

where there is a few skewed mapping probabilities and a large number of non-skewed

mapping probabilities. In such cases, a few high probable mappings can signifi-

cantly increase the attacker’s success of guessing the correct pseudonym mapping

even though the entropy value may be high. In such cases, a significant part of the

entropy could be contributed by a large number of non-skewed mapping probabili-

ties leading to a high value of entropy. Hence, we cannot consider that a mix-zone

provides good anonymity for a user if its entropy is greater than a certain value. To il-

lustrate this, two systems can be shown to have the same entropy but however provide

different levels of anonymity [130]. Let us consider two mix-zone based anonymity

systems, one with uniform probability distribution among m users, i.e., D1 : pu = 1
m
,

the other with a non-uniform distribution D2 among n users, which is given by:

D2 : pu =

 0.5 for the actual subject

0.5
n−1

otherwise
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m n Entropy S

10 26 3.3219

20 101 4.3219

50 626 5.6439

Table 13: Two example systems yielding the same Entropy

We set different values ofm and n as shown in Table 13 in order to obtain the same

value of entropy. Whenm= 10, the first system gives only 10% chance for the attacker

to guess the actual subject (according to D1). However, the attacker has 50% chance

(according to D2) to guess the actual subject in the second system although both

systems have the same entropy of 3.3219. This example suggests that entropy is not a

sufficient measure to guarantee anonymity when the mapping probability distribution

is non-uniform. As shown in the example, even one bad mapping probability can

significantly break the anonymity of the user although there may be other users in

the anonymity set with a probability similar to that of an uniform distribution. In

summary, the entropy measure may not be used as an accurate estimation of the

privacy when the mapping probabilities are non-uniform [130] as in our road network

mix-zone case.

Normalized Entropy: Normalized entropy, also called Degree of Entropy, is defined

as the ratio of the entropy obtained from the road network mix-zone to the entropy

obtained from a theoretical mix-zone with the same anonymity set. In other words,

it is a measure of how close is the entropy of the roadnet mix-zone as compared

to a theoretical mix-zone. As entropy itself is a measure over all members of the

anonymity set, comparing the entropy of the realistic mix-zone with the theoretical

mix-zone also may not accurately capture the non-uniformity in the mapping prob-

ability distribution in all cases. It can be shown that there are still cases, such as

when the normalized entropy is close to 1 but the mapping probabilities significantly

deviate from the others [130].

We next present our proposed anonymity metric, Pairwise Entropy and explain

our anonymity model based on Pairwise Entropy and the anonymity set size.
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Pairwise Entropy: In order to ensure that the distribution of the mapping prob-

abilities does not deviate much from the uniform distribution, we argue that it is

important to measure the deviation of the mapping probabilities in a pairwise fash-

ion. Pairwise entropy between two users i and j is the entropy obtained by considering

i and j to be the only members of the anonymity set. In that case, we have two events:

the event of i exiting as i′ and the event of j exiting as j′. For the first event, we have

only two mapping probabilities: pi′→i and pi′→j. If the probabilities pi′→i and pi′→j

are equal, then i′ is equally likely to be i or j. The attacker has the lowest certainty

of linking the outgoing user i′ to i or j (50%). However, if one of the probabilities is

much larger than the other, then the new pseudonym i′ is more likely to be associated

with one of the two old pseudonyms with high certainty (> 50%) by eliminating the

low probable one. In comparison, by Definition 1, a theoretical mix-zone ensures a

uniform distribution for all possible mappings between old and new pseudonyms and

a high pairwise entropy of 1.0 for all pairs of users in the anonymity set. If the pair-

wise entropy, H(i, j) between users i and j when i exits as i′ is close to 1, it means

that the attacker will have a high uncertainty similar to that of an ideal mix-zone

in guessing the old pseudonym of i′. However, the attacker also has another event

namely the exit of j as j′. If this event leaks information, with a low pairwise entropy,

H(j, i), for instance if one of the mapping probabilities, pj′→i and pj′→j is significantly

different from the other, the attacker will be able to identify the old pseudonym of

j′. Consequently the attacker can also guess the old pseudonym of i′ as i′ and j′ are

mutually exclusive events. Therefore, both the pairwise entropies, H(i, j) and H(j, i)

need to be close to 1. Hence, the effective pairwise entropy between users i and j can

be assumed as the minimum of the two pairwise entropies H(i, j) and H(j, i).

We argue that an effective mix-zone should provide a pairwise entropy close to

1.0 for all possible pairs of the anonymity set. In general if there are k members

in the anonymity set, then it requires that the pairwise entropy for all k2 possible
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pairs of users in the anonymity set is close to 1.0. For example, with three users, i,

j, and k, in order for the anonymity set of i to contain {i, j, k}, we require that all

pairwise entropies, H(i, j), H(j, i), H(i, k), H(k, i), H(j, k) and H(k, j) are high and

close to 1. Only when the pairwise entropy of all possible pairs in {i, j, k} is high and

greater than the predefined threshold, α, they can belong to the effective anonymity

set of i, Ai. Here, the lower bound pairwise entropy α decides the level of allowable

variations in the levels of anonymity being offered. Higher value of α will restrict

the variation of the likelihood probabilities and make them more closely resemble a

uniform distribution. Here we would also like to note that the constraint of high

pairwise entropy between all pairs of users in the anonymity set ensures that any low

pairwise entropy between one pair of users gets propagated to affect the anonymity

of the other users. For instance, in the above example let us assume H(i, j) = 0 and

other pairwise entropies, H(j, i), H(i, k), H(k, j), H(j, k) and H(k, j) are greater

than α. Here, we can find that for user k, both H(j, k) and H(k, j) are greater than

α and hence the anonymity set of k contains {j, k}. We also find that both H(i, k)

and H(k, i) are greater than α, however it does not mean that user i belongs to the

anonymity set of k. This is because, if the anonymity set of k contains {i, j, k} then

we require all pairs of users to have high pairwise entropy. This contradicts with the

given fact that H(i, j) = 0. Thus, the low pairwise entropy H(i, j) gets propagated to

impact the anonymity of k even though user k has high pairwise entropy individually

with users i and j.

As the pairwise entropy only measures how much uncertainty each member pro-

vides to the other, we also need to measure for a given user i, how many members

belong to the effective anonymity set, Ai such that all pairs of users in Ai have high

pairwise entropy with each other. Those members would form the effective anonymity

set of i. In MobiMix, we use the pairwise entropy metric in combination with the

effective anonymity set size to measure the anonymity.
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Next, we describe the relative anonymity and success rate metrics used for evalu-

ating MobiMix mix-zones.

Relative Anonymity: The relative anonymity level is a measure of the level of

anonymity provided by the mix-zones, normalized by the level of anonymity required

by the users. Higher relative anonymity levels mean that, on the average, users get

anonymized with larger k values than the system-specified minimum k-anonymity

levels.

Success Rate: The success rate measures the ratio of the number of times users

obtain anonymity equal or greater than the system-specified minimum k-anonymity

levels. A good mix-zone should provide anonymization with a success rate close to

100%.

5.4.2 Road Network Mix-zone Model

In this section, we present the MobiMix model for road network mix-zones and discuss

the level of anonymity offered in terms of pairwise entropy and the anonymity set size,

k. We model the road network as a directed graph G = (VG, EG) where the node

set VG represent the road junctions and the edge set EG represent the road segments

connecting the junctions. In this work, we consider only the road junctions that

connect three or more road segments as candidate junctions for mix-zones. Consider

a mix-zone constructed at a road intersection v as shown in Figure 44. Assume that

each user i enters the mix-zone at time tin(i) and exits at time tout(i) with a new

pseudonym i′. Let iseg(i) denote the incoming segment of user i through which

i enters the mix-zone, oseg(i) denote the outgoing road segment of user i through

which i leaves the mix-zone. The speed followed by the users in a road segment is

assumed to follow a Gaussian distribution with a mean µ and standard deviation σ,

where µ and σ are specific to each road class category. For user i, the set of all other

users who had entered the mix-zone during the time window defined by tin(i)− τ to
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tin(i) + τ , forms the anonymity set of i, denoted as Ai where τ is a small value.

Figure 44: Road Network Model

We first derive the pairwise entropy corresponding to user i and its anonymity set

Ai under timing attack. Then, we discuss the anonymity obtained under transition

attack. We define di(i) as the distance travelled by i inside the mix-zone. It is the sum

of the lengths of the mix-zone regions on the incoming and exiting segments ,iseg(i)

and oseg(i). di(j) is defined as the distance that j needs to travel inside the mix-zone

if it were to exit on the outgoing segment of i namely oseg(i) instead of its actual

outgoing segment, oseg(j). di(j) is the sum of the lengths of the mix-zone regions on

the segments, iseg(j) and oseg(i). If liseg(i) and loseg(i) represent the lengths of the

mix-zone on the incoming and outgoing segments of i, then di(i) is given by

di(i) = liseg(i) + loseg(i)

Similarly,

di(j) = liseg(j) + loseg(i)

Let speedi and speedj denote the random variables of the speed of users i and j.

As the speed is assumed to follow a Gaussian distribution, the variables speedi and
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speedj become Normal variables. We also assume that time is slotted and let t be

the time of exit of user i, that is tout(i). Let pi′→j be the probability that the exiting

user i′ is j and pi′→i be the probability that the exiting user is i. Users i and j

become anonymous from each other if the probability, pi′→j is exactly equal to the

probability, pi′→i which happens when users i and j enter the mix-zone at the same

time and travel the same distance to exit the mix-zone. In short, the more one of

these probabilities differs from the other, the higher confidence the attacker will have

in linking the old and new pseudonyms.

Let P (j, t) denote the likelihood that user j exits the mix-zone in the time interval,

t to t+ 1. P (j, t) numerically equals to the probability that user j takes time in the

interval (t− tin(j)) to (t+1− tin(j)) to travel the distance di(j). Accordingly, j needs

to travel with an average speed in the range s1 =
di(j)

(t−tin(j))
to s2 =

di(j)
(t+1−tin(j))

in order

to exit during the time interval between t to t+ 1. Therefore, we have

P (j, t) =

∫ s1

s2

speedj(s)ds

Similarly,

P (i, t) =

∫ s1

s2

speedi(s)ds

where s1 =
di(i)

(t−tin(i))
to s2 =

di(i)
(t+1−tin(i))

If P (i′, t) represents the likelihood that some user i′ exits at time t to t+ 1, where i′

can be either of i or j, we have

P (i′, t) = P (i, t) + P (j, t)

Therefore, applying Baye’s Theorem, the probability of i′ being j when i′ exits at

time t, denoted as pi′→j(t) is given by

pi′→j(t) = P ((j, t)/(i′, t)) =
P ((i′, t)/(j, t))× P ((j, t)

(i′, t))
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Here P ((i′, t)/(j, t)) = 1, as P (j, t) is contained in P (i′, t). Therefore

pi′→j(t) =
P (j, t)

P (i′, t)

Similarly, the probability of i′ being i, pi′→i(t) is given by

pi′→i(t) = P ((i, t)/(i′, t)) =
P (i, t)

P (i′, t)

The pair-wise entropy between users i and j when i exits as i′ is given by

Hpair(i, j, t) = −(pi′→i(t)logpi′→i(t) + pi′→j(t)logpi′→j(t))

Similarly, the pair-wise entropy between users i and j when j exits as j′ is given by

Hpair(j, i, t) = −(pj′→i(t)logpj′→i(t) + pj′→j(t)logpj′→j(t))

Here, we notice that even though when i′ exits, it might resemble both i and j with a

closely equal probability and a high pairwise entropy, Hpair(i, j, t), when user j′ exits,

it might reveal that j′ is more likely to be one of i and j than the other as these are

mutually exclusive events. Therefore, although the pair-wise entropy between i and j,

Hpair(i, j, t) may be close to 1 when i′ exits, it may happen that the pair-wise entropy

of j, Hpair(j, i, tout(j′)) when j′ exits is well below 1. Hence, it is important that both

of the two pair-wise entropies are high enough to make the attacker harder to guess

the mapping. Therefore, the effective pairwise entropy of users i and j is given by

the minimum of the two pairwise entropies, Hpair(i, j, tout(i′)) and Hpair(j, i, tout(j′))

Hpair(i, j) = min{Hpair(i, j, tout(i′)), Hpair(j, i, tout(j′))}

Also, we find that the pairwise entropy is a function of the exit time, t of i′. As the exit

time depends on the time spent inside the mix-zone which is inversely proportional to

the speed of the user inside the mix-zone, the pairwise entropy becomes a function of

the speed of the user inside the mix-zone. A good mix-zone should offer high pairwise

entropy for a wide range of user speeds, for example, say 0 to 90 mph on a highway
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road and 0 to 40 mph on a residential road. The lowest pairwise entropy offered by

the mix-zone within this speed range would define the lowerbound pairwise entropy

of the mix-zone. A good mix-zone should therefore offer a high lowerbound, α on the

pairwise entropy for a wide range of user speeds.

We now extend our discussion with the pairwise entropy under transition attack.

Based on the transition probabilities of the road junction, let T (segl, segm) be the

conditional transition probability computed by the attacker on exit of i′. T (segl, segm)

represents the conditional probability of user i′ entering through an incoming segment

segl given that i′ exited on the outgoing segment segm. The mapping probabilities,

pi′→i and pi′→j under the transition attack are therefore given by

pi′→i =
T (iseg(i), oseg(i′))

T (iseg(i), oseg(i′)) + T (iseg(j), oseg(i′))

and

pi′→j =
T (iseg(j), oseg(i′))

T (iseg(i), oseg(i′)) + T (iseg(j), oseg(i′))

Hence, the pairwise entropy under transition attack will be

Hpair(i, j) = −(pi′→ilogpi′→i + pi′→jlogpi′→j)

In order for the mix-zone to be resilient to transition attacks, the mix-zone should

offer a high lowerbound, β on the pairwise entropy after transition attack for all pairs

of users in the anonymity set.

Next, we define the criteria for a roadnet mix-zone to function as an effective

mix-zone based on the lowerbounds α and β on the pairwise entropies after timing

and transition attacks.

Definition 2 A road network mix-zone offers k-anonymity to a set A of users if and

only if the following conditions are met:

1. There are k or more users in the anonymity set A.
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2. Given any two users i, j ∈ A and assuming i exiting at time t, the pairwise

entropy after timing attack should satisfy the condition: Hpair(i, j, t) ≥ α.

3. For any two users i, j ∈ A, the pairwise entropy after transition attack should

meet the condition: Hpair(i, j) ≥ β.

In the next section, we present our proposed techniques and approaches to construct

road network mix-zones that effectively satisfy the above conditions.

5.5 Mix-zone Construction

In this section, we present the MobiMix techniques to construct road network mix-

zones. We compare and analyze their effectiveness against timing and transition

attacks.
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seg
3
o
u
t

seg
3
in

seg
1
o
u
t

seg
1
in

seg4
out

seg4
in

seg2
in

seg2
out

(c) Non-rectangular Mix-zones

Figure 45: Mix-zone Shapes
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5.5.1 Construction Approaches

We first describe the weaknesses of the naive rectangular mix-zone approach and

then propose three MobiMix mix-zone construction techniques taking into consid-

eration the geometry of the zones and their impact on the resilience to timing at-

tack. We propose: (i) Time Window Bounded(TWB) Rectangular, (ii) Time Window

Bounded(TWB) Shifted Rectangular and (iii) Time Window Bounded(TWB) Non-

rectangular mix-zones. All perform better than the naive Rectangular mix-zones

under timing attack.

5.5.1.1 Naive Rectangular Mix-zones

A straight forward approach to construct mix-zones around the road junction is to

define a rectangular region centered at the road junction as shown in figure 45(a).

The rectangle is defined based on some default size. For each exiting user i′, the set of

users that were inside the mix-zone at any given time during user i′’s presence in the

mix-zone forms its anonymity set, Ai. Here, any two users that were present together

at any same given time, become members of each other’s anonymity sets.

5.5.1.2 TWB Rectangular Mix-zones

In the time window bounded approach, the rectangle is constructed in the same

way as in naive rectangular mix-zone, however, the anonymity set for each user, i is

assumed to comprise of users who had entered within a time window in the interval,

|tin(i)− τ1| to |tin(i) + τ2|. Here, tin(i) is the arrival time of user i and τ1 and τ2 are

chosen to be small values so that the time window ensures that the anonymity set

of i comprises only of the users entering the mix-zone with a closely similar arrival

time as that of i. The goal of the mix-zone construction is to ensure high pairwise

entropy for every pair of users entering within the time window. We would like to

note that the anonymity guarantee made by the mix-zone is by design a lower bound

on the anonymity observed by the adversary for two reasons. First, we argue that a

138



good anonymity system should anonymize users in such a way that there is similar

probability of mapping the actual subject to all the other users in the anonymity

set. Thus, by discarding the low probable mappings and the corresponding users

from the guaranteed anonymity set, we get an estimate of the number of users whose

mapping probability distribution closely resembles a uniform distribution. Thus we

get a measure of the number of users to belong to the anonymity set in such a way

that they get anonymized in a way very similar to that of an ideal system. For road

intersections that have segments with the same speed distribution, we can precisely

guarantee a lowerbound on the pairwise entropy for the members of the anonymity

set by constructing the anonymity set with the right value of time window based on

our MobiMix road network model. Although, the notion of mix-zone time window

has been adopted in existing mix-zone proposals [60, 39] where a default value of time

window is assumed for the junctions, the TWB rectangular approach decides the right

size of the time window based on the arrival rate of users so that k or more users

enter within the time window. Also as mentioned earlier, for road intersections that

have road segments with same speed distribution, we can guarantee a lowerbound

pairwise entropy based on the Mobimix model for each pair of users entering with the

time bound window.

5.5.1.3 TWB Shifted Rectangular Mix-zones

In the Time window bounded shifted rectangular approach, the rectangle is not cen-

tered at the center of the junction, instead it is shifted in such a way that from any

point of entry into the mix-zone, it takes the same amount of time to reach the center

of the road junction when travelled at the mean speed as shown in figure 45(b). In

the same way, from the center of the junction, it takes the same time to reach any

exit point when travelling at the mean speed of the road segments. Here, a set of

users entering within the short time window, |tin(i) − τ1| to |tin(i) + τ2| are likely
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to exit the mix-zone at the same time. Hence, when user i exits as i′ the attacker

would find that i′ is likely to be any of the members of the anonymity set, Ai. If t

represents the average time to reach the center of the road junction from an entry

point which is the same as the average time to reach an exit point from the junction

center, then the mix-zone lengths on the segments would be given by the product

of their mean speed, say v and the average time, t as shown in 45(b). Compared

to naive rectangular and time window bounded rectangular mix-zones, shifted rect-

angular mix-zones provide good pairwise entropy for many cases, however, they do

leak information when the speed of the users deviate from the mean speed resulting

in a weaker anonymity system [59, 117, 130]. Another limitation of this approach

is that it may not be possible to satisfy the shifted rectangle property if the road

segments are not orthogonal. Hence, this approach is limited to only road junctions

with orthogonal segments.

5.5.1.4 TWB Non-Rectangular mix-zones

A more effective way to construct mix-zones would be to have the mix-zone region

start from the center of the junction only on the outgoing road segments as shown

in figure 45(c). We refer to this technique as non-rectangular approach. The non-

rectangular approach is free from timing attacks caused by the heterogeneity in the

speed distribution on the road segments. As in the rectangular approaches, the

anonymity set for each user, i comprises of users who had entered the mix-zone within

a time window in the interval, |tin(i)− τ1| to |tin(i) + τ2|. The length of the mix-zone

along each outgoing segment is chosen based on the mean speed of the road segment,

the size of the chosen time window and the minimum pairwise entropy required. We

discuss details on computing the mix-zone size and time window in section 5.5.4.
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5.5.2 Timing Attack Analysis

In this sub-section, we analyze the privacy strengths of the proposed mix-zone ap-

proaches under timing attack and compare their attack-resilience.

5.5.2.1 Naive Rectangular Mix-zones

Timing attack is highly effective in Naive rectangular Mix-zones. In Naive Rectan-

gular mix-zones, although the anonymity set size is typically large, a large number

of members of the anonymity set become low probable under the timing attack. For

instance, in figure 45(a), consider two users i and j entering from the segments a

into the mix-zone. Let user i exit with a new pseudonym i′ on segment c and let us

assume the four road segments in the mix-zone, a, b, c and d have the same speed

distribution. If the arrival times of i and j differ by a large value, then although users

i and j might have been present together in the mix-zone for some amount of time,

the attacker might infer that the user who entered first is more likely to exit first and

that it is unlikely for j to have overtaken i before i exits the mix-zone. Therefore,

the pairwise entropy of the naive rectangular mix-zones is low under timing attack,

leaking more information to aid the attacker.

5.5.2.2 TWB Rectangular Mix-zones

TWB rectangular mix-zones have high resilience to timing attack in road junctions

that have segments with the same speed distribution as the members of its anonymity

set have similar time of arrival into the mix-zone. However, when the segments of the

road intersection have different mean speeds, for instance if they belong to different

road classes, the attacker may be able to eliminate some mappings based on the

timing information. For example, in figure 45(a), let us assume a mix-zone of size 0.5

miles × 0.5 miles with segments a and c of residential road category having a mean

speed of 20 mph and segments b and d of highway roads with a mean speed 60 mph.

Consider two users i and j entering the mix-zone at the same time. Let user i enter
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through the highway segment b and exit through the highway segment d and let user

j enter though the residential segment a and exit through the residential segment c.

If both i and j travel around the mean speed of their respective road segments, then i

and j would exit approximately in 30 seconds and 90 seconds respectively. When user

i exits out with a changed pseudonym i′ in 30 seconds, the attacker can infer that i′

is more likely to be i than j. Thus, even though the anonymity set consists of users

entering with closely similar arrival time, the differences in the speed distribution on

the roads leaks information to aid the timing attack.

5.5.2.3 TWB Shifted Rectangular Mix-zones

TWB shifted rectangular mix-zone are resilient to timing attacks even on road junc-

tions that have segments with different mean speeds if the users travel at the mean

speed of the segments. However, they are also prone to timing attack when the speed

of the users deviate from the mean speed of the road segments. For example, in

figure 45(b), consider a mix-zone of size 0.5 miles X 0.5 miles in a road intersection

with a slow residential road segment, a having mean speed 20 mph and three other

highway segments, b, c, and d having mean speed 60 mph. Let all road segments

have a standard deviation of 10 mph from their mean speed. The computation would

yield va.t = 0.375 miles and vb.t = vc.t = vd.t = 0.125 miles. Let users i and j enter

the mix-zone at the same time. Let user i enter through the highway segment, b

and exit through the highway segment, d and let j enter through the residential road

segment, a and exit through the highway segment, c. Let us assume user j travels

with a speed of 10 mph on segment a and travels at 60 mph on segment, c. In this

case, the attacker would see j′ exiting in 2 minutes, 32.5 seconds. With this timing

information, the attacker can find that j′ is more likely to be mapped to j than i

because if j′ is i, then i should have travelled really slow on the highway segments b

and c, with an average speed of 5.9 mph in order to exit after 2 minutes, 32.5 seconds.

However, if j′ is j, then j needs to have travelled only at 10 mph on the residential
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road segment, a which is more likely to happen. Thus, the attacker can guess that

j′ is j with high confidence. In general, the shifted rectangular approach performs

badly when the user’s speed deviate from the mean speed of the road segments.

5.5.2.4 TWB Non-rectangular Mix-zones

The TWB non-rectangular mix-zone is most resilient to timing attacks as it does

not encounter any disparity in the speed distributions. Here, as long as a pair of

users enter within each other’s time window, the attacker can not infer the correct

pseudonym mappings if the length of the mix-zone is sufficiently large for the chosen

time window. In the next subsection, we compare the effectiveness of the mix-zone

approaches.
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Figure 46: Effectiveness of Mix-zones against timing attack.
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5.5.2.5 Pairwise Analysis

In order to better understand the effect of timing attack on guessing the mapping

between the old and new pseudonyms, we perform a pairwise analysis considering only

two users in the mix-zones. We compare the effectiveness of the different approaches

in figure 46. As an example, we consider a mix-zone of length 400 meter in a road

junction that has two highway road segments where the speed is normally distributed

with 60 mph mean and 20 mph standard deviation and 2 residential road segments

where the speed is distributed with 25 mph mean and 10 mph standard deviation.

For a rectangular and shifted rectangular mix-zone, the mix-zone length corresponds

to the longer side of the rectangle and for the non-rectangular mix-zone, the mix-

zone length refers to the length of the longest mix-zone region on the outgoing road

segments. In this pairwise analysis, for the rectangular mix-zones, the breadth is also

taken as 400 meter. We consider two users i and j and measure the worst case and

average case pairwise entropies. User i travels on the fast highway segments and user

j travels on the slow residential segments. The worst case typically represents the

arrival times of i and j separated by the maximum possible value defined by the mix-

zone time window. Here the mix-zone time window is taken as 4 sec for the example

mix-zone considered. The average case represents the case where the arrival times of i

and j are separated by half the size of the time window, namely 2 sec. User i changes

its pseudonym to i′ and the X-axis shows the average speed followed by the exiting

user, i′ inside the mix-zone and the Y-axis shows the worst case and average case

pairwise entropies. We find that both the naive rectangular approach and the time

window bounded rectangular approach have low pairwise entropy for both the worst

case and average case for speeds even close to 60 mph, the mean speed of the highway

segments that i travelled. Interestingly, the TWB rectangular approach shows higher

pairwise entropy when user i′ travels slow on its highway segments. This is because,

if i′ travels slow on the highway segments, then it’s exit time would resemble that of
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j much better as j is travelling on a slow residential segment. Similarly, the shifted

rectangular approach shows good pairwise entropy when the speed of i′ is close to

the mean speed, 60 mph. However, its pairwise entropy drops when the speed of i′

deviates from its mean speed. Outperforming all these approaches, the TWB non-

rectangular approach has a very steady high pairwise entropy for a wide range of

speeds of i′. This is because, in this mix-zone geometry, users travel only on one

segment in the mix-zone and thereby do not encounter any disparity in the speed

distributions and therefore it is the most resilient geometry for timing attack.

5.5.3 Transition Attack Analysis

We now analyse the impact of transition attack that can be launched to guess the

mapping between the pseudonyms. For each exiting user, i′ the attacker observes

the exiting segment of i′ and tries to maps i′ to one of the users, j in the anonymity

set based on the conditional transitional probability of exiting in the outgoing seg-

ment, oseg(i′) given that j entered from the incoming segment, iseg(j). We study

the significance of protecting mix-zones against transition attack by measuring the

distribution of the pairwise entropy among the road junctions based on the skewness

in their transition probabilities. We show the distribution of worst case and average

pairwise entropies after transition attack in table 14 for the Northwest Atlanta map of

Georgia. The worst case refers to the least possible pairwise entropy obtained in the

junction. We notice that most junctions have only reasonably high average pairwise

entropy after transition attack, suggesting that the transition probabilities at these

junction do not follow an uniform distribution. We find that only less than 12 % of

the junctions have a high pairwise entropy in the range 0.9 to 1.0 after the transition

attack. Also, the worst case entropy of many junctions (more than 90%) have a low

value of 0, corresponding to the mappings that indicate an U -turn. Clearly, in these

cases of low pairwise entropy, the attacker would able to eliminate the mappings if

transition attack is not handled properly in the mix-zone construction.
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(a) Average

H(i,j) % of junctions

0.0-0.1 0
0.1-0.2 0
0.2-0.3 0
0.3-0.4 0
0.4-0.5 0.25
0.5-0.6 1.33
0.6-0.7 7.75
0.7-0.8 37.75
0.8-0.9 41.33
0.9-1.0 11.58

(b) Worst case

H(i,j) % of junctions

0.0-0.1 95.58
0.1-0.2 0.166
0.2-0.3 0.5
0.3-0.4 0.42
0.4-0.5 0.25
0.5-0.6 0.42
0.6-0.7 0.33
0.7-0.8 1.0
0.8-0.9 0.58
0.9-1.0 0.75

Table 14: Pairwise Entropy with Transition attack

In order to protect against transition attack in cases where the transition proba-

bility is skewed, the mix-zone time window should be chosen in such a way that for

each outgoing segment, l, there are enough number of users (k or more) entering the

mix-zone from the road segments that have similar transitioning probability to the

outgoing segment, l, and hence have a higher pairwise entropy, say greater than or

equal to β. Therefore, the attacker will have at least k users in the anonymity set

that he cannot ignore from consideration.

Figure 47 shows a TWB non-rectangular mix-zone with 3 incoming segments,

u, v, w and three outgoing segments, r, y, z. Let T (u, y) be the conditional proba-

bility of an user entering the junction through segment u given that the user ex-

ited on segment y. The attacker assigns probability pi′→j to each of the users

{a1, a2, a3, ...ak1, b1, b2, b3, ...bk2, c1, c2, c3, ...ck3} based on the conditional transition prob-

abilities T (u, y), T (v, y), t(w, y). Assume the conditional transition probability T (u, y)

is too small compared to T (v, y) and T (w, y) and let the probabilities T (v, y) and

T (w, y) be similar. Let us assume an user i enters from segment w and exits in

segment y as i′. Here, the attacker may be able to ignore {c1, c2, c3, ...ck3} from

the anonymity set of i′. However, i′ would have a higher pairwise entropy with

{a1, a2, a3, ...ak1, b1, b2, b3, ...bk2}. Thus, for outgoing segment y, if we can ensure that
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Figure 47: Countering Transition Attack

there are always k or more users entering from the segments v and w, then for any

user, i′ exiting on segment y, the attacker would be confused to differentiate i′ from

at least k other users that forms the effective anonymity set, A′
i. Here it should be

also noted that even though the exit of i′ on segment y does not leak information, the

exit of some user, say a2 along segment z may leak some information if the transition

probability, T (v, z) is much smaller than T (w, z). Therefore, the effective anonymity

should not contain those members that exit in a segment where user i’s probability

of exiting is lower as these are mutually exclusive events.

In the next sub-section, we discuss how to determine the time window and size of

the mix-zone so as to make it resilient to both timing and transition attacks, yielding

a high lowerbound, α and β on the pairwise entropies after timing and transition

attacks respectively.

5.5.4 Combination of Timing and Transition attacks

The mix-zone time window directly impacts the number of users arriving from the

various segments and therefore decides the mix-zone’s resilience to transition attack.

Once the right size of the mix-zone time window is determined for a specified level
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of resilience to transition attack in terms of a high lowerbound, β on the pairwise

entropy after transition attack, we need to determine the length of the mix-zone for

the given time window so as to ensure a high lowerbound on the pairwise entropy

after timing attack.

We assume that the user arrival on the road segments follows a poisson process.

Given the mean arrival rate, λl on each incoming segment, l, let λx,y
L represent the

cumulative mean arrival rate of the users that effectively count towards the anonymity

set of an user, i′ exiting along segment y that entered through segment, x. If Mx,y is

a subset of the road segments in the mix-zone, we have λx,y
L =

∑
l∈Mx,y |Hy

pair(l,x)
>β(λl−∑

z|∃m∈Mx,y ,Hz
pair(m,l)

<β T (l, z) × λl). It is the sum of the arrival rate of the segments

such that the members have high pairwise entropy with each other and with i′ during

the exit of i′ in segment y. Note that it excludes among the users who entered from

segment, l, those that would exit in some segment, z where the conditional probability

of exiting in z is significantly different. Here Mx,y is chosen as that subset of the road

segments that maximizes λx,y
L . If N(t) represents the number of users who had entered

the mix-zone at time t since the beginning, then the probability of having n users

enter during a short time window, τx,y is given by

P [N(t+ τx,y)−N(t) = n] =
e−λx,y

L τx,y(λx,y
L τx,y)n

n!

N(t+ τx,y)−N(t) would represent the number of users arrived within the short time

interval, τx,y. The probability that k or more users enter the mix-zone in the time

window, τx,y is

P [(N(t+ τx,y)−N(t) ≥ k] = 1−
∑

1≤n≤k

e−λx,y
L τx,y(λx,y

L τx,y)n

n!

By adjusting the size of the time window, τx,y, we can lowerbound the number of

users arriving from the segments whose conditional probability of exiting in segment

y is similar to that of users from segment x. For instance, we may choose the time

window, τx,y such that there are k = 5 or more users entering with a high probability,

148



say p = 0.9. The overall time window, τ of the mix-zone is given by the maximum

value of τx,y among the various segments, y in the road junction.

τ = max
y

τx,y

Once the value of τ is decided, we determine the length of the mix-zone so that

the mix-zone provides a high lowerbound, α on the pairwise entropy after timing

attack for a wide range of user speeds. For example, we might want a lowerbound

pairwise entropy of α = 0.9 for a wide range of users’ speed, say 0 mph to 90 mph.

Our algorithm iteratively increments the length of the mix-zone till the expected

lowerbound on the pairwise entropy is met for the chosen time window, τ . In this

context, we note that except for the TWB non-rectangular mix-zones, the other

approaches suffer from timing attacks and hence it is not possible to have a time

window and mix-zone length for them to ensure a high lowerbound on the pairwise

entropy. However, the TWB non-rectangular mix-zones offer high lowerbounds even

for small mix-zone lengths. As we have a lower bound on the pair-wise entropy and

a lower bound on k, the number of users, the mix-zone can now make probabilistic

guarantees on the anonymity provided.

In addition to pseudonym anonymity k, the number of outgoing segments used

by the k users differentiates the trajectories of the users. We discuss in Section 5.6

that we can maximize the trajectory anonymity through careful placement of the

mix-zones on those road junctions where there is minimal skew in the transition

probability distribution. Here, we would like to point out that in some extreme cases,

it can happen that even though there is a guaranteed pseudonym anonymity of k in

each mix-zone, the trajectories followed by the users may be the same. We believe

that it is extremely rare in real life that all of the following three assumptions are

true at the same time for such a case to happen: (1) All k users of the anonymity

set travel together with the same velocity using the same trajectory right from their

starting point such as home or office. (2) The trajectory of these k users is reserved
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solely for themselves. No other users can enter these road junctions and mix-zones

during the time when these K users are going through. (3) The destination of the

trajectory can uniquely identify a privacy sensitive location such as cancer clinic or

AIDs Clinic. If any of the above assumptions is not true, the MobiMix model will

guard the location privacy of the user. It is obvious that the second assumption

above is false for public road networks operational in most of countries today. Thus,

we believe that the MobiMix development is original and beneficial for protecting

location privacy of moving objects on road networks.

5.6 Mix-zone placement

In this section, we present the mix-zone placement algorithms that find the best set

of road intersections to function as mix-zones based on the user arrival rates, statis-

tics of user movements, road network topology and road characteristics in terms of

mean user speeds and the temporal and spatial resolution of location exposure. Al-

though individual mix-zones are efficient with respect to providing the required level

of anonymity, careful deployment on the road is crucial to ensure good cumulative

anonymity for users as they traverse through multiple mix-zones on their trajecto-

ries. Mix-zones placed too far from each other may lead to longer distances between

adjacent mix-zones in users’ trajectories. On the other hand, if there are too closer

mix-zones, users may need to often go through mix-zones although they might have

already gained the anonymity they wanted. An optimal solution to the mix-zone

placement problem is NP-complete for even small road networks [61]. Thus we use

a heuristic-based placement approach in MobiMix. A good placement algorithm

should (i) provide sufficient anonymity in each of the mix-zones (ii) ensure that users

go through sufficient number of mix-zones along their path to the destination and

(iii) minimize the total number of mix-zones in the system, thereby minimizing the

overall cost of the privacy protection.
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An optimal solution to the mix-zone placement problem may be obtained using

a formulation similar to that discussed in [14], however such optimal solutions to the

placement problem become NP-complete for even small road networks. We present

three heuristic-based strategies for mix-zone placement. A naive placement strategy

is to randomly select a subset of road junctions with three or more road segments. A

better strategy is to place mix-zones at intersections that have high density of traf-

fic and low skewness in the transition probability distribution. While high density

of traffic yields higher pseudonym anonymity, low skewness in transition probability

helps maximize segment l-diversity obtained. We call this approach the road-aware

top n placement. An alternative approach is the grid-based quadtree placement strat-

egy, which divides a road-network into grid cells using quadtree index partition and

maximizes the average distance between any pair of mix-zones within each quadrant

(grid cell). The mix-zone placement algorithms find the best set of road intersections

to function as mix-zones based on the user arrival rates, statistics of user movements,

road network topology and road characteristics in terms of mean user speeds and the

temporal and spatial resolution of location exposure. We know that the anonymity

strength of the mix-zone is directly proportional to the anonymity set size and the

attack resilience of the mix-zone, however, for a given value of anonymity set size,

k, the size of the mix-zone is directly proportional to the arrival rate of the users

form various road segments connected to the road junction and the skewness in the

transition probability distribution. Therefore, the cost of a mix-zone is directly pro-

portional to the size of the mix-zone as it directly impacts the limits on the usage

of the location based service. A good placement algorithm should provide sufficient

anonymity in each of the mix-zones, should also ensure that users go through suffi-

cient number of mix-zones along their path to the destination, while minimizing the

total number of mix-zones maintained in the system.
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5.6.1 Naive Placement

In the naive placement scheme, the mix-zones are chosen based on only the structure

of the intersections, considering only those that connect to three or more road seg-

ments. This set of road intersections forms the candidate set of mix-zones. Among

the candidate set of road intersections, the mix-zones are placed by choosing a random

subset of the candidate set of mix-zones. Although this straight-forward approach

of mix-zone placement is aware of the road intersection topology, the approach lacks

knowledge of the user arrival rate and user travel characteristics and hence it does

not make careful decisions to minimize the cost of the constructed mix-zones. For

example, even road intersections having low user arrival rates and skewed transition

probability distributions may get chosen for placing mix-zones. However, construct-

ing mix-zones at them would lead to huge mix-zone sizes in order for them to be

sufficiently resilient to timing and transition attacks. Hence, the overall cost of the

mix-zone placement in the naive approach may not be minimal.

5.6.2 Road-aware top -n Placement

In this placement methodology, the mix-zones are placed at intersections that have

high density of traffic and low skewness in the transition probability distribution.

The mix-zones constructed at such intersections are small in size, incurring minimal

cost in terms of limiting the service inside the mix-zones. All the mix-zones are

constructed to yield a certain lower-bounded anonymity in terms of the anonymity

set size, k, and resilience to timing and transition attacks. This is done by carefully

choosing the time window, τ to ensure that sufficient number of vehicles arrive in

the anonymizing time window and the size of the mix-zone in such a way that every

member of the anonymity set has a high pairwise entropy after transition and timing

attacks. In this approach, the top-n mix-zones are selected based on their average

estimated anonymity levels of the road intersections, precisely in terms of the cost of
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the mix-zones. If C(v) is the cost of the mix-zone constructed at road junction v for

the privacy guarantees Hmin. The selection algorithm sorts the road junctions in the

increasing order of the cost of the mix-zones C(v) and chooses the top-n candidates

for the placement. Although, this approach minimizes the overall cost of the mix-

zones in the road network, the distribution of the mix-zones may not be uniform

across the road network. For example, while some parts of the network may be

densely populated with mix-zones, some other parts may be very scarce in mix-zones.

As a result, users following some trajectories will pass through unnecessarily more

mix-zones, while some users may not be able to find sufficient mix-zones in their

trajectories.

5.6.3 Quadtree/Grid Network-aware Placement

In the quadtree-based network-aware approach, the placement algorithm considers

the topology of the road map in addition to the user and road characteristics. Similar

to the top-n placement approach, this approach also considers only road intersections

having low skewness in transition probability and high traffic arrival rates. However

in order to ensure a uniform distribution of the mix-zones, the placement decision

is made by closely considering the underlying road network topology. For instance,

the placement of the mix-zones should ensure that the trajectories followed by the

users have sufficient number of mix-zones at evenly separated distances. Hence, the

mix-zone deployment in the road network has to ensure saptial uniformity while

minimizing the overall cost of the mix-zones in terms of their size.

The Quadtree-based network-aware placement is a two phase algorithm. The

first phase of the algorithm recursively divides the entire road map to construct a

quadtree index. The quadtree construction divides the area based on the number

of road junctions in it, the overall geographical area and the total length of the

road segments and the number of candidate junctions for mix-zones. The algorithm

dynamically decides and partitions if it needs to recursively partition the space further
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Figure 48: Grid-based Placement

into four quadrants. At the end of the quadtree construction, each quadrant roughly

consists of the same number of road junctions, total segment length and number of

candidate mix-zones as shown in figure 48.

The second phase of the algorithm deploys the mix-zones on a quadrant by quad-

rant basis. In each quadrant, the algorithm attempts to deploy the same number

of mix-zones, however, the decision of which road junctions function as mix-zones is

done to minimize the overall mix-zone cost while maximizing the average distance

between any pair of mix-zones in a given quadrant. The objective is to maximize the

pairwise distance between the mix-zones while not exceeding a certain specified max-

imum cost. This ensures that the mix-zones are uniformly distributed within each

quadrant achieving higher spatial uniformity. Let Q represent the set of quadrants in

the road network and let each quadrant, q have m mix-zones. If Vq and Mq respec-

tively represent the set of all intersections in quadrant q and the set of intersections

that functions as mix-zones in quadrant, q ∈ Q, then the objective function is given

by

min
q∈Q

∑
v1,v2∈Mq

dist(v1, v2)

subject to the constraints: ∑
v∈Vq

xv = m

154



∑
v∈Vq

C(v)xv ≤ Cmax ×m

where xv is a boolean variable indicating if vertex v ∈ Vq is a mix-zone and vertex v

belongs to Mq if xv = 1.

5.7 Experimental Evaluation

We divide the experimental evaluation of MobiMix into three components: (i) the

effectiveness of our mix-zone construction approaches in terms of their resilience to

timing and transition attacks (ii) their performance in terms of success rate and rela-

tive anonymity levels and (iii) the effectiveness of the mix-zone placement algorithms

in terms of overall cumulative anonymity, mix-zone size and spatial uniformity of

placement. Before reporting our experimental results, we first briefly describe the

experimental setup.

5.7.1 Experimental setup

We use the GT Mobile simulator [108] to generate a trace of 10000 cars moving on

a real-world road network, obtained from maps available at the National Mapping

Division of the USGS [20]. By default we use the map of Northwest Atlanta region

of Georgia that has 6831 road intersections with 10000 mobile users. The GTMo-

biSim mobile simulator extracts the road network based on three types of roads −

expressway, arterial and collector roads. Our experimentation uses maps from three

geographic regions namely that of Chamblee and Northwest Atlanta regions of Geor-

gia and San Jose West region of California to generate traces for a two hour duration.

We generate a set of 10,000 cars on the road network that are randomly placed on

the road network according to a uniform distribution. The speed of the cars are

distributed based on the road class categories as shown in Table 15. We use the

Random Router mobility model in GTMobiSim where Cars generate random trips

with source and destination chosen randomly and shortest path routing is used to
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route the cars for the random trips. This captures more realistic scenarios than the

random walk model. For instance, unlike the random walk model, the highway roads

and expressways are more populated than the small residential roads as these roads

share more parts of the shortest paths used by the users. Also, the random router

model gives more realistic transition probabilities at the junctions which is essential

to our evaluation.

Road type Expressway Arterial Collector

Mean speed(mph) 60 50 25

Std. dev.(mph) 20 15 10

Speed Distribution Gaussian Gaussian Gaussian

Table 15: Motion Parameters

Parameter Value

Map Northwest Atlanta region

Mobility Model Random Roadnet Router

Total number of vehicles 10000

Number of Road junctions 6831

Number of Road segments 9187

Table 16: Simulation Parameters and Setting

5.7.2 Experimental results

Our experimental evaluation consists of three parts. First, we evaluate the effective-

ness of the mix-zone construction algorithms by measuring their attack resilience to

timing and transition attacks. We then evaluate the effectiveness of the mix-zones

in terms of the success rate in providing the desired value of k and study the rela-

tive anonymity level which is defined as the ratio of the obtained value of k to the

expected value of k. We observe how these parameters behave when we vary the

settings of a number of parameters, such as the expected value of k, the expected

probability of success, p. Our final set of experiments evaluates the performance of

the mix-zone placement algorithms in terms of the overall cumulative anonymity of

the users, average mix-zone size and spatial uniformity of mix-zone placement. Our

results show that the MobiMix construction techniques are effective, fast and scalable

and outperform the basic construction methods by a large extent.
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5.7.2.1 Resilience to Timing and Transition Attacks
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Figure 49: Average Pairwise Entropy after Attacks

In our first set of experiments, we analyse the effectiveness of the mix-zones against

timing, transition and combined attacks. Out of the 6831 road junctions in the

Northwest Atlanta region map, more than 2000 candidate junctions were chosen to

build mix-zones based on their user arrival rate and the number of road segments that

connect to them. Figure 49 shows the average pairwise entropy of the mix-zones for

various values of k, the size of the anonymity set. We observe that the pairwise entropy

after transition attack is low in the naive rectangular mix-zone compared to the other

MobiMix approaches as the MobiMix mix-zones are protected for transition attack

with their anonymity sets consisting of only members that have high pairwise entropy
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to each other. The effect of timing attack is different across various approaches: we

find that the TWB non-rectangular mix-zones perform the best under timing attack

with the average pairwise entropy close to 1.0. Here, the length of the non-rectangular

mix-zone is computed so as to ensure a lowerbound pairwise entropy of α = 0.9 for

the chosen time window size, τ which is computed based on the user arrival rate

in the road junction to ensure the expected value of k with a high probability of

p = 0.9. However, as discussed in section 5.5.2.5, it is not possible to lowerbound

the pairwise entropy for the other mix-zone approaches. Hence, in order to compare

the effectiveness of these approaches with the TWB non-rectangular approach, we

construct the TWB rectangular and TWB shifted rectangular mix-zones with the

same length and time window as used by the non-rectangular mix-zone. Similarly,

the size of the naive rectangular mix-zone is fixed in such a way that the mean time

to cross the mix-zone equals the time window of the TWB non-rectangular mix-

zone. In figure 49, we also find that the naive rectangular and time window bounded

rectangular mix-zones have low pairwise entropies after timing attack but the pairwise

entropy of the TWB shifted rectangular approach is relatively higher, close to 0.8 as

it’s geometry is more resilient to timing attack. However, a high pairwise entropy

of 0.9 or higher may be often required to ensure strong anonymity. In such cases,

the time window bounded rectangular approach becomes the most efficient approach.

Additionally, in the figure, we find that the effect of combined timing and transition

attack is at least as severe as either of these attacks in isolation and it gets worse

in naive rectangular mix-zones which is least resilient to both timing and transition

attacks.

Similarly, figure 50 shows the comparison of the worst case pairwise entropy after

timing attack for various mix-zones. The worst case pairwise entropy represents the

lowest possible pairwise entropy obtained by the users after timing attack. Here also,

only the TWB non-rectangular approach offers a high value for the worst case pairwise
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Figure 50: Worst-case Pairwise Entropy

entropy. The other approaches in their bad cases leak a lot information to aid the

attacker. We also compare the overall entropy under attacks for various values of

k in figure 51 for the same experimental setting. The overall entropy is computed

by assigning the probability distribution, Pi′−>j for each user j ∈ Ai based on the

likelihood of user j to exit at the exit time of i. The line showing the theoretical

value of entropy corresponds to the actual entropy obtained from an ideal mix-zone

for the same anonymity set as the realistic mix-zones. We find that the TWB non-

rectangular approach has the highest overall entropy after timing, transition and

combined attacks closely resembling that of a theoretical mix-zone.

5.7.2.2 Success Rate and Relative Anonymity

In order to measure the effectiveness of the mix-zones, we study the success rate

of them in providing the expected value of k. Here, the expected probability of

getting k or more users, p is taken to be 0.9 and the value of k is varied from 2

to 11. Figure 52(a) shows the comparison of the success rate among the mix-zone

approaches. A mix-zone is considered successful for an user if the user has at least k

other users in its anonymity set with pairwise entropies greater than 0.9 under both

timing and transition attacks. As evident from the figure, the TWB non-rectangular
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Figure 51: Comparison of Entropy after attacks

mix-zones have the highest success rate, the other mix-zones have low success rate

due to their lack of resilience to timing attack. In order to compare the level of

anonymity offered by the mix-zones with the anonymity expected from them, we

measure relative anonymity which is defined as the ratio of the value of obtained k to

the value of expected k. Figure 52(b) shows the variation of relative-k of TWB non-

rectangular mix-zones with respect to the expected value of k for different geographic

maps. The expected success rate is set to 90%. The graphs show that the value of

relative k lies within the range of 2 to 3, meaning that the mix-zone on an average

offers two to three times the anonymity requested by the users.
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Figure 52: Success rate and Relative-k

5.7.2.3 Performance of Placement Techniques

We now study the performance of the various mix-zone placement algorithms in

terms of the mix-zone size, spatial uniformity of placement, the average number of

mix-zones traversed by the mobile clients and the entropy obtained during user’s

travel with the three mix-zone placement algorithms namely (i) Naive placement

(ii) top-n (user and road characteristics-aware) placement and (iii) Grid (Quadree)

based network-aware placement. The experiment uses the NW atlanta region map

that contains 6831 road junctions, out of which the placement algorithms chooses

7% of the road intersections for deploying mix-zones that corresponds to 478 road

junctions. The experiment uses a 10 minute simulation period. Figure 53(a) shows

the cumulative distribution function (CDF) of the users in percentage for various

number of mix-zones traversed during their trip. We find that users traverse less

number of mix-zones in the naive mix-zone deployment scheme. We find more than

60% of the users traverse less than 10 mix-zones during their entire 10 minute travel.

The top-n (user and road characteristics-aware) placement scheme enables users to

pass through higher number of mix-zones as it basically finds all the intersections that

have dense traffic. Here, users go through more number of mix-zones in short intervals

of distance which may not be necessary. Such unnecessary traversal of mix-zones may

deteriorate the quality of service for the mobile clients. In figure 53(a), we also find
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that there is a significant percentage of users traversing less number of mix-zones.

For example, more than 9% of the users traverse only less than 10 mix-zones during

the 10 minute trajectory. This is due to the non-uniformity in the spatial distribution

of the mix-zones. Hence, users traversing some part of the road networks go through

few mix-zones while users travelling in other parts unnecessarily go through many

mix-zones. The Grid (Quadree-based network-aware) deployment ensures a higher

level of spatial uniformity in the distribution of mix-zones. In the Grid approach, we

find that almost all users traverse at least 10 mix-zones during the 10 minute interval.

Also, we find that users do not unnecessarily traverse many mix-zones, only few users

travel a large number of mix-zones as compared to the top-n placement scheme.
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Figure 53: Mix-zone Placement

Figure 53(b) shows the average size of the mix-zone in meters for values of k.

We find that the naive placement approach leads to larger mix-zone sizes for even
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small values of k as it lacks knowledge of the user arrival rate and user transition

probability. Such large mix-zone size would significantly impact the service quality

of the mobile users. The top-n scheme has the lowest mix-zone length among the

three approaches as it identifies the most densely populated road junctions where

even small mix-zone sizes yield higher k. However, the Grid placement scheme is also

able to achieve almost similar mix-zone lengths as the top-n placement as it considers

the road characteristics and user population factors in addition to the road network-

aware spatial uniformity. Figure 53(c) shows the time line of cumulative entropy. The

x-axis shows the time in seconds and the Y-axis represents the average cumulative

entropy obtained. The naive placement shows low cumulative entropy, particularly

in the beginning of the timeline (0 to 200 sec). Also, we find that both the top-n

and Grid placements show similar average cumulative entropy in the beginning of

the timeline although the top-n scheme has higher cumulative entropy at the later

part of the timeline as users go through a large number of mix-zones with the top-n

placement. In order to better understand the impact of the spatial uniformity of

the mix-zone deployment on the cumulative entropy, in figure 53(d) we study the

cumulative distribution of the users in percentage for various values of average final

cumulative entropy at the end of the 10 minute interval. It shows a very similar trend

as in figure 53(a). We find the naive placement scheme does not achieve high final

cumulative entropy for all users. The top-n scheme has overall higher final cumulative

entropy but has a significantly higher percentage of users having low final cumulative

entropy. In the Grid approach, almost all users obtain higher final cumulative entropy

and therefore the distribution has low skewness. Thus, the Grid placement scheme

becomes the most effective choice in deploying mix-zones.
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5.8 Related work

Location Anonymization has been proposed in [67] and adopted by several others

[64], [98], [65], [33]. Some recent work on location anonymity had focused from the

road network perspective [135] and [96]. The XStar framework presented in [135]

performs location cloaking based on road-network-specific privacy and QoS require-

ments, striking a balance between the attack resilience of the performed protection

and the processing cost of the anonymous query. The Cachecloak algorithm proposed

in [96] uses cache prefetching to hide the exact location of the user by requesting the

location based data along an entire predicted path. While the approaches based on

location cloaking do not work for applications that require an exact point location of

the mobile user, the approach presented in [96] is not suitable when users ask different

queries as they move.

The concept of mix-zones to change pseudonyms for location privacy has been

introduced in [35] and the idea of building mix-zones at road intersections has been

proposed in [60] and [39]. A formulation for optimal placement of mix-zones in a road

map is discussed in [61], however such optimal solutions to the placement problem

become NP-complete for even small road networks. Almost all of these mix-zone

techniques follow a straight forward approach of using rectangular or circular shaped

zones and their construction methodologies do not take into account the effect of

timing and transition attacks in the construction process. The approaches presented

in MobiMix differ from these in two folds: firstly, the mix-zone construction process

of MobiMix tries to minimize the effect of timing and transition attacks based on the

characteristics of the underlying road network at the construction time and secondly,

the framework attempts to address the issue of guaranteeing an expected value of

anonymity by taking into consideration the statistics of user arrival users and other

factors in the road network.
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5.9 Summary

We have presented MobiMix, a framework for building attack resilient road network

mix-zones for protecting the location privacy of mobile clients accessing location-

based cloud services. We first provided a formal analysis of the theoretical mix-

zone model and the vulnerabilities of applying them to road networks where some

of the assumptions may be violated. We presented a suite of road network mix-

zone construction and placement techniques that consider number of factors such

as the mix-zone geometry, the statistics of the user population, and the spatial and

velocity constraints on the movement patterns of the users. We show analytically and

experimentally that the MobiMix construction and placement techniques are efficient

and more resilient to timing and transition attacks compared to the existing mix-zone

approaches.

The next chapter extends the MobiMix approach to support continuous privacy-

conscious location-based services in the cloud where the mobile client exposes con-

tinuity in the information obtained from the cloud service in addition to exposing

location information.
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CHAPTER VI

PRIVACY-PRESERVING PROVISIONING OF

CONTINUOUS LOCATION-BASED SERVICES

6.1 Introduction

Continuous location-based queries are gaining growing interest and attention in both

mobile service industry as well as in mobile cloud computing. Examples of contin-

uous queries (CQs) include “informing me the nearest gas stations coming up along

the highway I-85 south every 1 minute in the next 30 minutes” or “show me the

restaurants within 2 miles every two minutes during the next hour”. Many consider

continuous spatial queries as a fundamental building block for continuous provisioning

of location services to mobile users traveling on the roads.

Continuous query attacks (CQ-attacks) refer to the query correlation attacks.

Concretely, a CQ represents a time series of query evaluations of the same query

within a given validity time window. For example, if Alice is traveling on I-85 south

and requested a CQ service: show me the restaurants within 2 miles every two minutes

during the next hour, then the CQ server will process this CQ as a standing query for

1 hour period upon its installation and it will consist of a sequence of 30 evaluations

along the trajectory of Alice. The CQ-attack refers to the risk that an adversary can

perform inference attacks by correlating the semantic continuity in the time series of

query evaluations of the same CQ and the inherent trajectory of locations. In this

chapter we show that such CQ-attacks can intrude location privacy of mobile users

(i.e., exposing the identity of Alice), even though the locations of mobile users are

anonymized through well-known location anonymization techniques.
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A fair amount of research efforts have been dedicated to protecting location pri-

vacy of mobile travelers. We can broadly classify the state of art research and de-

velopment results into two categories. The first category is represented by location

cloaking techniques [67, 33, 64, 98, 135]. Spatial location cloaking typically adds

uncertainty to the location information exposed to the location query services by

increasing the spatial resolution of a mobile user’s locations while meeting location

k-anonymity and/or location l-diversity [33]. More specifically, the spatially cloaked

region is constructed to ensure that at least k users (location k anonymity) are lo-

cated in the same region, which contains l different static sensitive objects (locations).

Spatial cloaking is effective for snapshot queries but vulnerable to CQ-attacks. The

second class of location anonymization techniques is represented by mix-zone de-

velopment [35, 60, 61, 39, 104]. Mix-zones are spatial regions where a set of users

enter, change pseudonyms in such a way that the mapping between their old and

new pseudonyms is not revealed. Also inside a mix-zone, no applications can track

user movements. Mix-zones break the continuity of location exposure by introduc-

ing uncertainty such that it is very hard to perform correlation attacks to link old

pseudonym with new pseudonym of mobile users. However, neither spatial cloak-

ing nor mix-zone techniques are resilient to CQ attacks as they are vulnerable to

query correlation. Concretely, with spatial cloaking, an adversary can infer user

movement by performing query correlation attacks over the adjacent or overlapped

cloaking boxes. Similarly, mobile users requesting CQ services are vulnerable un-

der CQ-attacks even though their movements on the road networks are protected by

mix-zone anonymization. With these problems in mind, in this chapter we present a

delay-tolerant mix-zone framework for protecting location privacy of mobile users with

continuous query services in a mobile environment. First, we describe and analyze

the continuous query correlation attacks (CQ-attacks) that perform query correlation
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based inference to break the anonymity of road network-aware mix-zones. We for-

mally study the privacy strengths of the mix-zone anonymization under the CQ-attack

model and identify that providing high initial anonymity in the mix-zone model is

the key to anonymizing continuous queries in a mix-zone framework. We argue that

spatial cloaking or temporal cloaking over road network mix-zones is ineffective and

susceptible to attacks that carry out inference by combining query correlation with

timing correlation (CQ-timing attack) and transition correlation (CQ-transition at-

tack) information.

Next, we introduce three types of delay-tolerant road network mix-zones (i.e., tem-

poral, spatial and spatio-temporal) that are free from CQ-timing and CQ-transition

attacks and in contrast to conventional mix-zones, perform a combination of both

location mixing and identity mixing of spatially and temporally perturbed user loca-

tions to achieve stronger anonymity under the CQ-attack model. In the delay-tolerant

mix-zone model, users expose spatially or temporally perturbed locations outside the

mix-zone area. However, on the exit of each temporal delay tolerant mix-zone, the

mix-zone changes their perturbed locations by introducing a random temporal shift

to their already perturbed locations. Similarly, the spatial delay tolerant mix-zones

introduce a random spatial shift to the spatially perturbed locations when the users

exit them. While conventional mix-zones only change pseudonyms inside them, the

additional ability of delay-tolerant mix-zones to change and mix user locations brings

greater opportunities for creating anonymity. Our third type of delay tolerant mix-

zones, namely spatio-temporal delay-tolerant mix-zones effectively combine temporal

delay-tolerant and spatial delay tolerant mix-zones to obtain the highest anonymity

for continuous queries while making acceptable tradeoff between anonymous query

processing cost and temporal delay incurred in anonymous query processing. We eval-

uate the proposed techniques through extensive experiments conducted using traces

168



produced by GTMobiSim [108] on different scales of geographic maps. Our exper-

iments show that the delay-tolerant mix-zone techniques are efficient and offer the

desired level of anonymity for continuous queries.

6.2 Mix-zones and CQ-attacks

In this section, we introduce the basic mix-zone concepts, illustrate the vulnerabili-

ties of mix-zones to continuous query correlation attacks (CQ-attacks) and present a

formal analysis of the continuous query anonymization problem.
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Figure 54: Mix-zone anonymization and its risks under CQ-attack

6.2.1 Mix-zone concepts

A mix-zone of k participants refers to a k-anonymization region in which users

can change their pseudonyms such that the mapping between their old and new
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pseudonyms is not revealed. In a mix-zone, a set of k users enter in some order and

change pseudonyms but none leave before all users enter the mix-zone. Inside the

mix-zone, the users do not report their locations and they exit the mix-zone in an

order different from their order of arrival, thus, providing unlinkability between their

entering and exiting events. The properties of a mix-zone can be formally stated as

follows:

Definition 3 A mix-zone Z is said to provide k-anonymity to a set of users A iff

1. The set A has k or more members, i.e., |A| ≥ k.

2. All users in A must enter the mix-zone Z before any user i ∈ A exits. Thus,

there exists a point in time where all k users of A are inside the zone.

3. Each user i ∈ A, entering the mix-zone Z through an entry point ei ∈ E and

leaving at an exit point oi ∈ O, spends a completely random duration of time

inside.

4. The probability of transition between any point of entry to any point of exit

follows a uniform distribution. i.e., a user entering through an entry point,

e ∈ E, is equally likely to exit in any of the exit points, o ∈ O.

Figure 54(a) shows a mix-zone with three users entering with pseudonyms a, b

and c and exiting with new pseudonyms, p, q and r. Here, given any user exiting

with a new pseudonym, the adversary has equal probability of associating it with

each of the old pseudonyms a, b and c and thus the mix-zone provides an anonymity

of k = 3. Therefore, the uncertainty of an adversary to associate a new pseudonym

of an outgoing user i′ to its old pseudonym is captured by Entropy, H(i′) which is

the amount of information required to break the anonymity.

H(i′) = −
∑
j∈A

pi′→j × log2(pi′→j)
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where pi′→j denotes the probability of mapping the new pseudonym, i′ to an old

pseudonym, j. Here note that when users change pseudonyms inside mix-zones along

their trajectories, an adversary observing them loses the ability to track their move-

ments.

Unlike the theoretical mix-zones, mix-zones constructed at road intersections (Fig-

ure 54(b)) may violate some conditions. For instance, in a road network mix-zone,

users do not stay random time inside while entering and exiting the mix-zone [60, 104]

and also violate the assumption of uniform transition probabilities in taking turns.

Such violations provide additional information to the adversary in inferring the map-

ping between the old and new pseudonyms. Precisely, the timing information of

users entry and exit in a road network mix-zone leads to timing attack and the non-

uniformity in the transition probabilities at the road intersection leads to transition

attack respectively. The MobiMix road network mix-zone model (Definition 4) and

the construction techniques [104] deal with the challenges of constructing road net-

work mix-zones that are resilient to such timing and transition attacks. Accordingly

a road network mix-zone is defined as:

Definition 4 A road network mix-zone offers k-anonymity to a set A of users if and

only if:

1. There are k or more users in the anonymity set A.

2. Given any two users i, j ∈ A and assuming i exiting at time t, the pairwise

entropy after timing attack should satisfy the condition: Hpair(i, j) ≥ α.

3. Given any two users i, j ∈ A, the pairwise entropy after transition attack should

satisfy the condition: Hpair(i, j) ≥ β.

Here the pairwise entropy, Hpair(i, j) between two users i and j represents the

entropy obtained by considering i and j to be the only members of the anonymity
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set. In comparison, a theoretical mix-zone offers a high pairwise entropy of 1 for

all pairs of users. Therefore, a good road network mix-zone would offer a pairwise

entropy close to 1 for all pairs of users in the anonymity set. The non-rectangular

road network mix-zone geometry (Figure 54(c)) proposed in [104] enables each user

to travel along only one road segment inside the mix-zone and thereby avoids timing

attack due to difference in speed distributions. Similarly, the MobiMix road network

mix-zone model discusses the necessary criteria to ensure transition attack resilience

in the mix-zone construction process. However as we discuss next, when users run

continuous queries, any type of mix-zone is prone to CQ-attacks.

6.2.2 CQ-attack

When a user is executing a continuous query, even though her pseudonym is changed

whenever she enters a road network mix-zone, an adversary may simply utilize the

consecutive snapshots of the query to reveal the correlation between the old and new

pseudonyms. Consider the example in Figure 54(a) where three users enter with

pseudonyms a, b and c and exit with new pseudonyms p, q and r. The attacker finds

that before entering the mix-zone, users a and b run continuous queries on obtaining

nearest drug store and shortest path driving directions to the airport respectively.

Upon their exits, the attacker again finds more instances of their corresponding con-

tinuous queries with different pseudonyms, q and r. Here, although users a and c

change their pseudonyms to q and r, the continuous exposure of their CQ informa-

tion breaks their anonymity. Similar attack can happen in a road network mix-zone

as shown in Figure 54(b) where three users with pseudonyms, a, b and c enter and

leave the mix-zone. As users a and b are running continuous queries, the attacker

finds an instance of a′s continuous query before entering the mix-zone and when user

a exits with a new pseudonym, say α and receives another instance of the same query,

the attacker infers that the new pseudonym α must correspond to the old pseudonym
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a. To the best of our knowledge, no existing road network mix-zone technique is

effective against CQ-attack. For instance, we find in Figure 54(c) that even the non-

rectangular mix-zone [104] that is most effective against road network timing attack

is also prone to the CQ-attack.

Anonymity under CQ-attack model: When a user executes a continuous

query, it induces a trajectory corresponding to the movement of the user even though

the user’s pseudonym is changed whenever she crosses a road network mix-zone.

When a mobile user starts a continuous query from a personal location like office

or home address, then the user’s trajectory induced by the continuous query can be

easily linked with the user’s personal location and hence to user’s real identity even

though the pseudonyms are changed time to time. Therefore, in the proposed mix-

zone anonymization model, any mobile user who wishes to obtain CQ service first

moves to the nearest mix-zone and starts to run the CQ service from the mix-zone.

Consider the user with pseudonym, a in Figure 55 who wants to start a CQ service for

obtaining k-nearest drug stores. User a first goes to the nearest mix-zone and starts

the first instance of the query after exiting the mix-zone with a new pseudonym e.

Here, the attacker becomes confused to associate this continuous query with the users

{a, b, c} who entered the mix-zone as each of them have equal likelihood of starting this

continuous query. Hence the continuous query obtains an initial anonymity of k = 3.

However, it should be noted that at the subsequent mix-zones, the query correlation

reveals the mapping between the old and new pseudonyms of the continuous query.

For example, in the second mix-zone the mapping between new pseudonym j and old

pseudonym e is revealed and similarly in the third mix-zone, the mapping between

new pseudonym m and old pseudonym j is revealed. Thus, the anonymity strengths

of the mix-zones is weakened under the continuous query correlation attack model.

In contrast, if users in the system ask only snapshot queries, then user a’s anonymity
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keeps on increasing as a traverses through more mix-zones as it does not run contin-

uous queries. For example, when user a changes its pseudonym from e to j in the

second mix-zone, its anonymity increases from k = 3 (corresponding to {a, b, c}) to

k = 5 (corresponding to {a, b, c, f, g}). Hence, even though the initial anonymity is

low (k = 3), in the snapshot query model, the anonymity gained in the intermediate

mix-zones add to the user’s anonymity.
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Figure 55: CQ-induced trajectory

However for a continuous query, its initial anonymity forms the major compo-

nent and intermediate mix-zones add anonymity only when users in the intermediate

mix-zones ask the same query. For instance, if m out of the k users traversing an

intermediate mix-zone run continuous queries and if there are R number of unique

continuous queries run by the m users and if Ar is the set of users running the con-

tinuous query, Qr, 1 ≤ r ≤ R, then the entropy of each continuous query user, i

executing the query, Qr and exiting the mix-zone with a new pseudonym, i′ is given

by

H(i) = −
∑
j∈Ar

pi′→j × log2(pi′→j)

where pi′→j denotes the probability of mapping the user exiting with the new pseudonym,

i′ to an old pseudonym, j that runs the same continuous query. Therefore, for a user

starting to execute a CQ from mix-zone m1, if fi users out of the mi continuous
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query users in the ith mix-zone execute the same CQ, then the entropy X of the user

executing the continuous query is given by

X = log|k1 −m1|+
∑

2≤i≤n

log|fi|

where log|k1 − m1| represents the initial anonymity of the user while starting the

continuous query in mix-zone, m1.

The goal for designing CQ-attack resilient solutions is to increase the anonymity

strengths of the mix-zones by considering the fact that the attacker has the continuous

query correlation information at the intermediate mix-zones to infer and associate the

CQ induced trajectory with its user. Note that the initial anonymity forms the major

component of the anonymity under the CQ-attack model and therefore it is important

that the mix-zones provide high initial anonymity for the continuous queries so that

even when the attacker breaks the anonymity in the subsequent mix-zones, the initial

anonymity remains sufficient to meet the required privacy level. For instance, if

the first mix-zone in the above example provides a higher anonymity, say k = 100

instead of k = 3, then the initial anonymity may be sufficient to meet the privacy

requirements of the continuous query even though the attacker breaks the anonymity

obtained in the intermediate mix-zones under the CQ-attack model. In the next sub-

section, we discuss CQ-cloaking techniques (spatial cloaking or temporal cloaking of

CQs) over road network mix-zones as a candidate approach for achieving higher query

anonymity and show that it is ineffective and susceptible to attacks that combine CQ

information with timing correlation (CQ-timing attack) and transition correlation

(CQ-transition attack).

6.2.3 CQ-cloaking approach and its vulnerabilities

In the CQ-cloaking approach, the continuous queries are either temporally or spatially

perturbed while the snapshot queries continue to be unperturbed. In the CQ-cloaking

approach, the locations used by the CQ is perturbed such that a continuous query
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originating from a mix-zone is indistinguishable from at least k users traversing the

mix-zone. While this technique does not make changes to the mix-zone model, we

show that the location exposure of snapshot queries makes the CQ anonymization

susceptible to CQ-timing attack and CQ-transition attack.
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Figure 56: Continuous Query: Timing and Transition attacks

Consider the example shown in Figure 56(a) where we have two CQs labeled as

star CQ and triangle CQ respectively. The square nodes represent road network

mix-zones. We observe two different CQ traces starting from the mix-zone at road

junction n6. The triangle trace crossed the junctions n6, n5 and n2 and the star trace

crossed the junctions n6, n5 and n9 respectively and each star or triangle represents

one snapshot execution of the corresponding CQ. Intuitively, if we delay the execution

of the individual CQ snapshots of CQ users starting at mix-zone n6 such that at least
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kc users leave the mix-zone within the temporal delay, it will make it harder for an

adversary to associate the CQ-induced trajectory with the corresponding CQ user.

For instance, in Figure 56(a), if the continuous query on the shortest path to the

airport (marked by stars) originating from the mix-zone n6 is perturbed temporally

in such a way that there are k or more users coming out of the mix-zone at road

junction n6 within the continuous query’s temporal cloaking window, then from the

attacker’s perspective, the query could have originated from any of the k users who

entered the mix-zone within the time window. CQ-spatial cloaking is similar to CQ-

temporal cloaking except that instead of delaying the snapshots of the continuous

queries, the CQ exposes a larger spatial region such that there are k or more users

within the spatial region.

CQ-timing Attack: As mentioned earlier, CQ-cloaking techniques are vulner-

able to CQ-timing attack when users in the anonymity set violate the steady motion

assumption, i.e., if all users do not travel at the imposed speed of the road segment.

In the example shown in Figure 56(b), we find that users with pseudonyms a, b, c, d,

e, f , g and h enter the mix-zone during the continuous query’s temporal cloaking win-

dow, dtmax. When the steady motion assumption fails, user a travels slowly and stays

on segment n5n6 while other users move ahead of the segment, n5n6. If user a is the

issuer of the continuous query, then the continuous query would stay on segment, n5n6

even though it is executed with a temporal delay while other users of the anonymity

set move ahead. By observing this, the attacker can eliminate the low probable mem-

bers and identify the issuer of the continuous query with high confidence. Concretely,

we assume the attacker has knowledge of the maximum temporal delay, dtmax used

by the users. Let AC(i) represents the anonymity set of the continuous query, Ci, for

each user, j ∈ AC(i) and let MCi,j be the likelihood that the continuous query orig-

inates from user j. Since only continuous query’s location is temporally perturbed,

the attacker observes the movement of the users through their location exposure for
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snapshot queries. Let loc(j, t) and loc(Ci, t) represent the location of user j and the

location of the temporally cloaked continuous query, Ci observed by the attacker at

time t. If X t−dt
j (loc(Ci, t)) is a Boolean variable indicating if the attacker observed

user j moving through the location, loc(Ci, t) at time t − dt, the likelihood MCi,j is

given by

MCi,j =
∑

0≤dt≤dtmax

q(Ci, dt)×X t−dt
j (loc(Ci, t))

where q(Ci, dt) denotes the probability that the continuous query, Ci uses a temporal

lag dt. Based on the proportion of the likelihoods of the users, the attacker can assign

the probability, QCi,j that represents the probability of user j to be source of the

continuous query, Ci.

QCi,j =
MCi,j∑

j∈A(Ci)
MCi,j

Based on the probabilities, the attacker may either ignore the low probable members

from consideration or narrow down the search to the high probable members. We

note that similar attack is also possible in the case of CQ-spatial cloaking when the

steady motion assumption fails.

CQ-transition Attack: Additionally, CQ-cloaking techniques are also prone to

CQ-transition attack. When the transitions taken by a subset of the users in the

anonymity set differ from that of the user executing the query, then those members

can be eliminated based on transition correlation. For example, in Figure 56(c), at

road intersection n5, users c and e and h take a left turn on to the road segment,

n2n5 whereas users b, f and g move straight on segment, n4n5 and users a and d turn

right on to segment, n5n9. When the continuous query uses CQ-temporal cloaking

or CQ-spatial cloaking and follows the querying user after a temporal delay or using

a spatial cloaking region, from the transition taken by the continuous query from

segment, n6n5 to n4n5, the adversary will be able to eliminate the users, c, e, h, b, f

and g from consideration as their transitions differ from that of the continuous query.
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Concretely, if Yj is a Boolean variable indicating if the path taken by user j is the

same as that of the continuous query, Ci, then the probability QCi,j of user j being

the source of the continuous query, Ci is given by

QCi,j =


1∑

j∈A(Ci)
Yj

if Yj = 1

0 otherwise

In the next section, we introduce the concept of delay-tolerant mix-zones that use

a modified mix-zone model to perform both location mixing and identity mixing to

achieve higher anonymity for continuous queries as compared to only identity mixing

in the conventional mix-zone model. Delay -tolerant mix-zones perturb both contin-

uous queries and snapshot queries and are free from CQ-timing and CQ-transition

attacks.

6.3 Delay-tolerant Mix-zones

Delay-tolerant mix-zones combine mix-zone based identity privacy protection with

location mixing to achieve high anonymity that is otherwise not possible with con-

ventional mix-zones. In the delay-tolerant mix-zone model, users expose spatially

or temporally perturbed locations outside the mix-zone area. However, on the exit

of each delay tolerant mix-zone, the mix-zone changes their perturbed locations by

introducing a random temporal or spatial shift to their already perturbed locations.

While conventional mix-zones only change pseudonyms inside them, the additional

ability of delay-tolerant mix-zones to change and mix user locations brings greater

opportunities for creating anonymity.1 Therefore, the anonymity strength of delay-

tolerant mix-zones comes from a unique combination of both identity mixing and

location mixing.

1This model is analogous to anonymous delay-tolerant routing in mix networks where network
routers have the additional flexibility to create anonymity by delaying and reordering incoming
packets before forwarding them [120].
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Before presenting the detailed analysis of the privacy strengths of the delay-

tolerant mix-zones, we first illustrate the concept of delay-tolerant mix-zones with

an example temporal delay-tolerant mix-zone. Table 17 shows the entry and exit

time of users in a conventional rectangular road network mix-zone. We find that user

a enters the mix-zone as t = 100 and exits at time t = 104. Similarly the other users

enter and exit as shown in Table 17. Here the adversary may know that the average

time taken by the users to cross the mix-zone is 4 sec. Therefore when user a exits at

a′ at time t = 104, the attacker can eliminate users e and f from consideration as they

have not even entered the mix-zone by the time user a exits2. Similarly, the adversary

can eliminate users o and n from consideration based on timing inference that users

o and n have exited the mix-zone by the time a and b enter the mix-zone. Therefore

when a exits as a′, the attacker has uncertainty only among the users {a, b, c, d,m}.

Also, among the users {a, b, c, d,m}, the attacker can eliminate more users through

sophisticated reasoning based on timing inference described later.

User tin tinside tout

o 94 4 98
n 96 4 100
m 98 4 102
a 100 4 104
b 101 4 105
c 103 4 107
d 103 4 107
e 106 4 110
f 108 4 112

Table 17: Conventional Road Network Mix-zone

However, in the delay-tolerant mix-zone model, each user uses a temporal delay,

dt within some maximum tolerance, dtmax. Inside the mix-zone, the temporally per-

turbed location of each user is assigned a random temporal shift. In the delay-tolerant

mix-zone example shown in Table 18, we find that user a initially uses a temporal

delay, dtold of 4 sec and inside the mix-zone it is shifted randomly to 16 sec. Here

dtmax is assumed as 20 sec. Therefore when user a exits as a′, it becomes possible that

2For the sake of example simplicity, we assume that the users take the average time of 4 sec to
cross the mix-zone, in a real road intersection, it could actually take slightly longer or shorter time
to cross based on the speed of travel.
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User Observed tin tinside dtold dtnew Observed
tout

w 81 4 4 20 105
v 84 4 7 20 108
u 84 4 7 20 108
s 87 4 10 20 111
r 89 4 12 20 113
q 90 4 13 20 114
p 92 4 15 20 116
o 94 4 18 20 118
n 96 4 19 20 120
m 98 4 20 18 120
a 100 4 4 16 120
b 101 4 4 15 120
c 103 4 7 13 120
d 103 4 7 13 120
e 106 4 10 10 120
f 108 4 12 8 120
g 109 4 13 7 120
h 111 4 15 5 120
i 113 4 18 3 120
j 115 4 19 1 120
k 117 4 20 0 120
l 118 4 20 0 121

Table 18: An example temporal Delay-tolerant mixing

many users can potentially exit in the exit time of user a. The example in Table 18

shows one possible assignment of new temporal delays, dtnew for other users in order

for them to exit at the same time as a′. Thus, during the exit of user a as a′, the at-

tacker is confused to associate the exiting user a′ with the members of the anonymity

set, {a, b, c, d, e, f, g, h, i, j, k,m, n}. In principle, users’ new temporal delays, dtnew

are randomly shifted inside the mix-zone ensuring the possibility of each of the users

to exit at the exit time of each other and thus the delay-tolerant mix-zone model

provides significantly higher anonymity compared to conventional mix-zones. Such

high anonymity provides the initial anonymity required for the continuous queries

under the CQ-attack model.

Timing attack in delay-tolerant mix-zone: Before we proceed to analyze

the privacy strengths of the delay-tolerant mix-zone, we formally define the timing

attack described above. The attacker observes the time of entry, tin(i) and time

of exit tout(i) for each user entering and exiting the mix-zone. When the attacker

sees an user i′ exiting, he tries to map i′ to one of the users of the anonymity set,

Ai. The attacker assigns a probability, pi′→j that corresponds to the probability of

mapping i′ to j, where j ∈ A based on the likelihood of user j exiting at the exit

time of i′, denoted by tout(i
′). Once the mapping probabilities are computed, the
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attacker can utilize the skewness in the distribution of the mapping probabilities

to eliminate some low probable mappings from consideration and narrow down his

inference to only the high probable mappings. Consider the example shown in Table

17 for the conventional mix-zone case, when user a exits as a′, we have the anonymity

set, A = {a, b, c, d, e, f,o, n,m}. Clearly the probability of mapping a′ to the users

{e, f, o, n} is zero as they either enter the mix-zone after a′ exits or leave the mix-

zone before a even enters. However, between the users {a, b, c, d,m}, the attacker can

assign a non-zero likelihood of resembling a′ as they have been inside the mix-zone

while a was present. Let these likelihoods be 0.37, 0.35, 0.1, 0.1 and 0.12 respectively.

In this case, we show that it is easy to analyze the anonymity based on pairwise

entropy. The pairwise entropy, Hpair(a, b) between two users a and b during the exit

of a′ is the entropy obtained by considering a and b to be the only members of the

anonymity set. In this case, we have two mapping probabilities, pa′→a and pa′→b which

are computed as: : pa′→a = 0.37
0.37+0.35

= 0.513, pa′→b = 0.35
0.37+0.35

= 0.486. Hence the

pairwise entropy H(a, b) is given by

Hpair(a, b) = −(pa′→alogpa′→a + pa′→blogpa′→b)

Therefore, Hpair(a, b) = 0.99. In general, a mix-zone defines a short mix-zone time

window, τ such that a set of users entering within the short time window, τ have high

pairwise entropy with each other. In the above example, if we take τ = 1 sec, then

we find users a and b enter within 1 sec and hence they have high pairwise entropy

close to 1. However, users a and c do not enter within the mix-zone time window of 1

sec and therefore we find that their pairwise entropy is lower(Hpair(a, c) = 0.75 ). In

comparison, a theoretical mix-zone (recall Definition 1) ensures a uniform distribution

for all possible mappings between old and new pseudonyms and therefore ensures a

high pairwise entropy of 1.0 for all pairs of users in the anonymity set. Thus, the

effective anonymity set of a road network is assumed to comprise of only those users

that have high pairwise entropy with each other.
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Definition 5 A delay-tolerant road network mix-zone offers k-anonymity to a set A

of users if and only if:

1. There are k or more users in the anonymity set A.

2. Given any two users i, j ∈ A and assuming i exiting at time t, the pairwise

entropy after timing attack should satisfy the condition: Hpair(i, j) ≥ α.

3. Given any two users i, j ∈ A, the pairwise entropy after transition attack should

satisfy the condition: Hpair(i, j) ≥ β.

In the above example, only users {a, b} will belong to the effective anonymity set of a

under the conventional mix-zone model as only they have high pairwise Entropy with

each other. However as discussed earlier, under the delay-tolerant mix-zone model

more number of users ({a, b, c, d, e, f, g, h, i, j, k,m, n}) will have high pairwise entropy

with each other and belong to the anonymity set of user a. Here, in addition to the

pairwise entropy with respect to timing attack, the pairwise entropy with respect

to transition attack is also considered for cases where the road intersections do not

have uniform transition probabilities to different segments (Condition 3). In such

cases, the effective anonymity set will contain only those members who enter from

road segments such that their transition probability to the exit segment of user a

is similar to the transition probability of their exit segments. As the delay-tolerant

mix-zones primarily influence the impact of timing attack, we focus our discussion

based on timing attack. However, in our experiments using real road networks, we

take into account the fact that road intersections do not have uniform transition

probability and accordingly construct the anonymity set with only those members

which have similar transition probability as discussed in [104]. Next, we present

the design and formal analysis of three proposed delay-tolerant mix-zone techniques

namely (i)temporal delay-tolerant mix-zones, (ii) spatial delay-tolerant mix-zones and

(iii) spatio-temporal delay-tolerant mix-zones.
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6.3.1 Temporal Delay-tolerant Mix-zones

As discussed before, in a temporal delay tolerant mix-zone, every mobile user delays

the location exposure with a randomly chosen delay, dt within the maximum temporal

tolerance, dtmax. The temporal time window, dtmax is chosen based on the arrival rate

of the users in the road junction so as to ensure an expected number of users arriving

into the mix-zone within the temporal tolerance, dtmax. Note that the random delay

used by a mobile client does not change during its travel between mix-zones. Only

when the mobile client enters a new mix-zone, its temporal delay is randomly shifted

to a new value within the temporal window, dtmax. Based on the delayed exposure

of users’ location information, the attacker knows their current temporally cloaked

location.

Based on the temporally cloaked location exposed by the users, the adversary

observes each user i entering the mix-zone at a temporally cloaked time tcloakin(i) and

exiting at a temporally cloaked time tcloakout(i
′) with a new pseudonym i′. The speed

followed by the users in a road segment is assumed to follow a Gaussian distribution

with a mean µ and standard deviation σ, where µ and σ are specific to each road

class category. For user i, the set of all other users who had entered the mix-zone

during the time window defined by |tcloakin(i)− τ −dt| to |tcloakin(i)+ τ +dt|, forms

the anonymity set of i, denoted as Ai where τ is a small value and represents the

mix-zone time window. Let t be the temporally cloaked exit time of user i, which is

also tcloakout(i
′).

For each user, j in the anonymity set, Ai, we compute pi′→j, the probability

that the exiting user i′ at temporally cloaked time, tcloakout(i
′) is j and pi′→i be the

probability that the exiting user is i. Let P (j, t) define the probability that user

j exits the mix-zone at the cloaked time, t. Here, the observed movement of the

temporally cloaked user location in the mix-zone is controlled by two factors: the

speed of the user inside the mix-zone and the change in the temporal delay used by
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the user. Let Pv(j, x) be numerically equal to the probability that user j takes x

units of time to traverse the mix-zone region. It is computed based on the speed

distribution on the road segments. Let Pt(j, t) be the probability that the temporal

delay of user j is shifted by t seconds after exiting the mix-zone. In order for user

j to exit at temporally cloaked time, tcloackout(i
′), it depends on both the temporal

shift introduced to user j in the mix-zone as well as the time j takes to cross the

mix-zone. Thus, P (j, t) is given by

P (j, t) =

∫ ∞

0

Pv(j, x)× Pt(j, t− tcloackin(j) + x)dx

Here we note that our temporal location mixing algorithm assigns a new temporal

delay, dtnew based on the current temporal delay, dt and the maximum temporal delay,

dtmax.

dtnew = |dtmax − dt|

and hence it ensures a uniform distribution of shift values, Pt(j, t) while also ensuring

that the temporal lags of the users are uniformly distributed. Similar to P (j, t), we

can also obtain P (i, t) based on the temporally cloaked arrival time of i, tcloackin(i).

We have

P (i′, t) = P (i, t) + P (j, t)

Here, P (i′, t) is the cumulative likelihood of both i or j exiting as i′ as i′ is either

of them. Therefore, the probability of i′ being j when i′ exits at time t, denoted as

pi′→j(t) is given by the following conditional probability

pi′→j(t) = P ((j, t)/(i′, t))

Similarly, the probability of i′ being i, pi′→i(t) is given by

pi′→i(t) = P ((i, t)/(i′, t))

and the pair-wise entropy after timing attack, Hpair(i, j) between users i and j when
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i exits as i′ can be obtained as

Hpair(i, j) = −(pi′→i(t)logpi′→i(t) + pi′→j(t)logpi′→j(t))

As it is intuitive, for an exiting user, i′, the number of users in the effective anonymity

set (i.e., those members that have high pairwise entropy with each other and with i′)

is directly proportional to the temporal tolerance, dtmax, ie., the greater the temporal

tolerance value, dtmax, the more the number of users that could possibly resemble i

during the exit of i′ with a high pairwise Entropy. Thus by varying the temporal

tolerance, dtmax the temporal delay tolerant-mix-zones can offer any desired level of

anonymity to the users.

6.3.2 Spatial Delay-tolerant Mix-zones

We now present our second class of delay-tolerant mix-zones namely spatial delay-

tolerant mix-zones. Unlike the temporal delay-tolerant mix-zones, in the spatial delay-

tolerant mix-zone approach, users’ locations are instantaneously sent out using a

spatial region instead of the exact point location. Here, the spatial region masks

the exact time of traversal of the user inside the mix-zone ensuring the possibility

that the user could be located at any point within the spatial region. This ensures

that the adversary can not infer the exact time of traversal of the user. The spatial

region is constructed by first identifying the temporal window size, dtmax based on

the arrival rate of the users in the mix-zone and by translating the user’s current

location into a spatial region based on the temporal window size, dtmax. A spatial

region corresponding to a temporal window size dtmax includes all road segments

that can be reached within dtmax units of time (i.e., the corresponding dl units of

length) from the center of the region when travelled at the mean speed of the road

segments. The delay-proportional spatial cloaking algorithm described in Algorithm

2 computes the spatial region in such a way that the distance from the center of the

spatial region and the location of the mobile user exactly corresponds to the spatial
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distance, dl proportional to the temporal delay, dt of the user in the temporal delay-

tolerant approach. Inside the delay-tolerant mix-zone, the spatial regions of the users

are randomly changed by introducing a spatial shift.
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Figure 57: Illustration of Delay-tolerant mix-zones

We illustrate the principle of spatial delay-tolerant mix-zone through an example

in Figure 57(a) and Figure 57(b). Figure 57(a) shows the entry of the spatial regions

of users a, b, c and d into the mix-zone and Figure 57(b) illustrates the spatial location

mixing process. We find that the location mixing process changes the spatial regions

of the users, a, b, c and d in such a way that the distance of the users from the center

of their spatial region is randomly shifted (Notice changed distance in the spatial

regions in Figure 57(b)). Therefore, after the spatial location mixing process, the

spatial regions of users a, b, c and d all have similar probability to exit at a given

time. Note that without this spatial mixing, the attacker would still infer that the

regions of a and b entered well ahead of c and d and hence a and b will exit before c

and d.

Here we assume that each user, i’s spatial region enter the mix-zone at time,

tin(region(i)) and exits at time tout(region(i)) with a new pseudonym, i′. For each

user, i, the set of other users whose spatial regions entered the mix-zone during the

time window defined by |tin(region(i))−τ | to |tin(region(i))+τ | forms the anonymity
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Algorithm 2 Delay-proportional Spatial Cloaking

1: dtmax: continuous query temporal window
2: v: vertex v corresponds to the road junction v
3: pathtimev: mean travel time to vertex v from starting mix-zone, if v is the mix-zone

junction, then pathtimev = 0
4: region: is a global list of road segments representing the cloaking region. It is empty

at beginning and represents the cloaking region when the algorithm terminates
5: procedure FindCloakRegion(dtmax, pathtimev, v)
6: for all segments(v, u) ∈ segs(v) do

7: pathtimeu = pathtimev +
length(v,u)
speed(v,u)

8: if (pathtimeu < dtmax) then
9: if (region.contains(v, u) == false) then
10: region.add(v, u)
11: FindCloakRegion(dtmax, pathtimeu, u)
12: end if
13: end if
14: end for
15: end procedure

set of i, denoted by Ai. The anonymity obtained in the mix-zone is dependent on the

pairwise mapping probabilities, pi′→i and pi′→j where j ∈ Ai and pi′→j denotes the

probability that the exiting user i′ at time, tout(region(i
′)) is j and pi′→i represents

the probability that the exiting user is i.

The movement of a user’s spatial region is governed by two factors in a spatial

delay-tolerant mix-zone namely the randomness of the user movement in terms of

its velocity inside the mix-zone and the spatial shift introduced in the spatial region

after exiting the mix-zone. Let us assume that user j takes x units of time in the

mix-zone and let Pv(j, x, l) be the probability that user j travels with a velocity such

that it takes x units of time to cross l units of distance of the mix-zone region. Let

lmix be the distance to cross the mix-zone and let us assume that j’s spatial region

is shifted by y units of length in the location mixing process. Let Ps(j, y) denote

the probability that the spatial shift introduced in the mix-zone is y units of length.

Therefore, for user j to exit at time, tout(region(i
′)), it should travel a distance of

lmix + y in the mix-zone instead of the usual distance lmix. Therefore, we have
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P (j, t) =

∫ ∞

0

Pv(j, x, lmix + y)× Ps(j, y)dx

where x = t − tin(region(j)). Here, the spatial location mixing process assigns a

new spatial region to each user ensuring a uniform distribution of spatial shift values,

Ps(j, y). i.e., inside the mix-zone, every user’s distance from the center of its spatial

region is shifted by a random length, y.

Similar to P (j, t), we can obtain P (i, t) and hence pi′→j(t), the probability of i′

being j when i′ exits at time t can be obtained from the conditional probability,

pi′→j(t) = P ((j, t)/(i′, t)). Similarly, as discussed in section 6.3.1, the probability of i′

being i, pi′→i(t) can be computed and thus the pair-wise entropy, Hpair(i, j, t) between

users i and j when i exits as i′ can be obtained.

We note that the spatial delay-tolerant mix-zone approach does not incur temporal

delays, however they lead to higher query processing cost that is directly proportional

to the size of the spatial regions. In the next subsection, we discuss spatio-temporal

delay-tolerant mix-zones that yield suitable tradeoffs between the incurred delay and

the cost of query processing.

6.3.3 Spatio-temporal delay-tolerant Mix-zones

In the spatio-temporal delay-tolerant mix-zone approach, user locations are perturbed

using both a temporal delay as well as a spatial region instead of the exact point

location and the mix-zone introduces both random temporal and spatial shifts to

the spatio-temporally perturbed user locations. Therefore, to an adversary observing

an user, the user could have been located at any point in the spatial region at any

instance of time during the temporal time window.

The anonymity strength of this model is analyzed as follows. We assume that each

user uses a temporal time window of dtmax and a spatial cloaking region of length,

dlmax. Based on the delayed exposure of the spatial regions, the attacker estimates
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the current temporally perturbed position of the spatial region of each user’s location.

Here we assume that each user, i’s spatial region, region(i), enters the mix-zone at a

temporally cloaked time, tcloakin(region(i)) and exits at a temporally cloaked time,

tcloakout(region(i)) with a new pseudonym, i′. For user i, the set of all other users

whose spatial regions entered the mix-zone during the mix-zone time window defined

by |tcloakin(region(i))− τ −dt| to |tcloakin(region(i))+ τ +dt|, forms the anonymity

set of i, namely Ai.

In a spatio-temporal delay-tolerant mix-zone, the movement of a user’s spatio-

temporally perturbed location is governed by three factors: (i) the randomness of

user’s movement inside the mix-zone determined by velocity, (ii) the random temporal

shift introduced inside the mix-zone and (iii) the random spatial shift introduced

inside the mix-zone. For all j ∈ Ai, let us assume that user j’s spatial region, region(j)

takes x units of time to cross the mix-zone and let Pv(j, x, l) be the probability that

user j travels with a velocity such that it takes x units of time to cross l units of

distance of the mix-zone region and let j’s spatial region be shifted by y units of

length and its temporal delay be shifted by z units of time. Let Ps(j, y) denote the

probability that the spatial shift introduced in the mix-zone is x units of length and

Pt(j, z) be the probability that the temporal delay of user j is shifted by z seconds

after exiting the mix-zone. Therefore, for user j’s spatial region, region(j) to exit at

temporally cloaked time, tout(region(i
′)), it should travel a distance of lmix+ y in the

mix-zone instead of the usual lmix where lmix is the length of the mix-zone region.

Therefore,

P (j, t) =

∫ ∞

0

Pv(j, x, lmix + y)

×Ps(j, y)× Pt(j, t− tcloackin(j) + x)dxdy

Here we note that the spatio-temporal delay-tolerant mix-zone introduces both
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random temporal and spatial shifts inside and thus it ensures a uniform random

distribution of Ps(j, y) and Pt(j, t− tcloackin(j) + x) in the above equation.

Thus, the pair-wise entropy between users i and j when i exits as i′ can be obtained

after knowing the probabilities pi′→i(t) and pi′→j(t) which are deduced from P (i, t)

and P (j, t) similar to the analysis on temporal delay-tolerant mix-zones in section

6.3.1

6.4 Experimental Evaluation

We divide the experimental evaluation of our techniques into three components: (i)

the effectiveness of the proposed techniques under the CQ-attack model, (ii) perfor-

mance in terms of query processing cost, incurred temporal delays and success rate of

anonymization and (iii) evaluation of the spatio-temporal tradeoffs between incurred

temporal delays and query processing cost. Before reporting our experimental results,

we first describe the experimental setup, including the road-network mobile object

simulator used in the experiments.

6.4.1 Experimental setup

We use the GT Mobile simulator [108] to generate a trace of cars moving on a real-

world road network, obtained from maps available at the National Mapping Division

of the USGS [20]. The simulator extracts the road network based on three types of

roads − expressway, arterial and collector roads. Our experimentation uses maps

from three geographic regions namely that of Chamblee and Northwest Atlanta re-

gions of Georgia and San Jose West region of California to generate traces for a two

hour duration. We generate a set of 10,000 cars on the road network that are ran-

domly placed on the road network according to a uniform distribution. Cars generate

random trips with source and destination chosen randomly and shortest path routing

is used to route the cars for the random trips. The speed of the cars are distributed

based on the road class categories as shown in Table 19.
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Road type Expressway Arterial Collector

Mean speed(mph) 60 50 25

Std. dev.(mph) 20 15 10

Speed Distribution Gaussian Gaussian Gaussian

Table 19: Motion Parameters

Parameter Value

Map Northwest Atlanta region

Mobility Model Random Roadnet Router

Total number of vehicles 10000

Number of Road junctions 6831

Number of Road segments 9187

Table 20: Simulation Parameters and Setting

6.4.2 Experimental results

Our experimental evaluation consists of three parts. First, we evaluate the effective-

ness of the proposed techniques in terms of their anonymization effectiveness. We

compare the delay-tolerant mix-zone techniques with CQ-cloaking techniques and

conventional road network mix-zones in terms of the obtained entropy that captures

the amount of information required to break the anonymity and then compare the

various delay-tolerant mix-zones in terms of the average temporal delays incurred and

the cost of query processing in terms of query processing time. Next, we evaluate the

spatio-temporal tradeoffs of delay-tolerant mix-zones that helps understand the best

tradeoffs in terms of the incurred temporal delay and the query processing time. Our

final set of experiments evaluate the effectiveness of the delay-tolerant mix-zones in

terms of the average temporal delays, query execution time and success rate in pro-

viding the desired value of k. Our default setting uses the map of Northwest Atlanta

that has 6831 road junctions and 9187 road segments as shown in table 20. Among the

6831 junctions in the road network, 1025 (15 %) road junctions are chosen as the can-

didate mix-zones and the experimental results are averaged among these mix-zones.

By default, each delay-tolerant mix-zone is constructed over a non-rectangular road
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network mix-zone with pairwise Entropy lowerbound after timing attack, α taken as

0.9 so that the effective anonymity set of the mix-zone comprises only of users who

have pairwise Entropy greater than 0.9 with each other. Similarly for comparison,

each conventional mix-zone is also constructed using the non-rectangular geometry

with α = 0.9. For both delay-tolerant mix-zones and conventional mix-zones, the

pairwise Entropy lowerbound β after transition attack is taken as 0.9. We assume

that all continuous queries are unique and by default 10% of users in the system run

continuous queries.
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Figure 58: Comparison with Conventional Mix-zones
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6.4.2.1 Comparison with Conventional Mix-zones and CQ-cloaking

This set of experiments compares the delay-tolerant mix-zone approaches with the

conventional mix-zones and CQ-cloaking techniques in terms of their anonymity mea-

sured by Entropy. Here, the delay-tolerant mix-zones are constructed over a conven-

tional road network mix-zone whose size is chosen to offer an anonymity of 4. In

Figure 58(a), we compare the average entropy of the temporal, spatial and spatio-

temporal delay-tolerant mix-zone approaches (t-M, s-M, and st-M) with the con-

ventional mix-zone approach and the temporal and spatial CQ-cloaking approaches

(CQ-t and CQ-s) for various values of required anonymity, k. Here, the temporal

window and spatial region size are chosen based on the arrival rate of the users in the

mix-zones to ensure the required number of users, k with a high probability, p = 0.9.

For the spatio-temporal delay-tolerant mix-zones, the spatial region size is fixed as

800 m and the temporal window is varied according to the required value of k. We

find that the average entropy of the conventional mix-zone approach is significantly

lower than that of the delay-tolerant mix-zones as they can not adapt to higher levels

of anonymity but the delay-tolerant mix-zones always provide the required anonymity

level for all values of k as shown by the high Entropy. Here, we also note that the

CQ-cloaking approaches (CQ-t and CQ-s) have low level of Entropy due to the ef-

fect of CQ-timing and CQ-transition attacks. In Figure 58(b) and Figure 58(c), we

plot the timeline of the Entropy obtained by continuous queries (CQ) and snapshot

queries (SQ) respectively. Here, we use the spatio-temporal mix-zone as the candi-

date delay-tolerant mix-zone and temporal CQ-cloaking as the candidate CQ-cloaking

technique. We find that with conventional mix-zones, the continuous queries obtain

low initial anonymity and it stays constant throughout the timeline. With the CQ-

cloaking approach, the queries obtain higher anonymity in the beginning but their

anonymity is gradually reduced due to the impact of CQ-timing and CQ-transition

attacks. However, the delay-tolerant mix-zones offer very high anonymity to meet
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the privacy requirements of the continuous queries under the CQ-attack model. For

snapshot queries, we find that the techniques have a different trend as shown in Fig-

ure 58(c). The conventional mix-zone model shows an increasing Entropy timeline

where users gain more anonymity at the intermediate mix-zones as CQ-attack has

no impact on snapshot queries. We also find that the delay-tolerant mix-zone offers

greater anonymity to snapshot queries with a much steeper Entropy timeline but the

CQ-cloaking technique offers only similar anonymity as the conventional mix-zone.
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Figure 59: Performance of Continuous and SnapShot queries

6.4.2.2 Performance of Continuous and Snapshot queries

Next, we study the performance impact of the proposed approaches for continuous and

snapshot queries individually. We measure the average temporal delay incurred and

the average query execution time of the techniques in figure 59(a) and 59(b). Here,

all queries are anonymized corresponding to a k = 50. The spatio-temporal delay-

tolerant mix-zone uses its default spatial region size of 800 m. The query execution

time represents the average time to process a snapshot of a k-NN query for a k-nearest

neighbor value of (kq = 7) over 14000 uniformly distributed objects on the road

network using the road network based anonymous query processor described in [135].

We find that with the CQ-temporal cloaking (CQ-t), only the continuous queries
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incur delay before getting processed and in CQ-spatial cloaking (CQ-s), neither of the

queries incur any delay. With the spatial cloaking approach, we obtain the results of

the query for all possible locations within the cloaking region, however the continuous

queries in the CQ-spatial cloaking approach result in higher query execution time. In

temporal delay-tolerant mix-zones (t-M), both continuous and snapshot queries incur

temporal delays but have low query execution time. Conversely, the spatial delay-

tolerant mix-zones (s-M) do not incur any delays for the queries but have increased

query execution time for both snapshot and continuous queries. The spatio-temporal

delay-tolerant mix-zones technique (st-M) finds a tradeoff between these approaches

and has more than 55% lower average temporal delay compared to the temporal

cloaking case as well as a 40% lower query execution time compared to the spatial

delay-tolerant mix-zones.
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Figure 61: Comparison of Query Execution time

6.4.2.3 Evaluating Spatio-temporal tradeoff

Our next set of experiments compares the performance of the delay-tolerant mix-zones

in terms of the average temporal delays incurred and the query execution time under

various values of required anonymity, k. Figure 60(a) shows the average temporal

delay required to anonymize users for various anonymity levels. The X-axis shows the

anonymity offered by the conventional mix-zone and the Y-axis shows the anonymity

level offered by the delay-tolerant mix-zones constructed over the conventional mix-

zones and the Z-axis represents the average temporal delay, dt used by the delay-

tolerant mix-zones. We find that the temporal delay increases with increase in the

anonymity level of the delay-tolerant mix-zone. Also, we find that there is only a

small decrease in temporal delay with increase in mix-zone anonymity as the temporal
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window has a significant impact on the obtained anonymity.

Similarly, we study the performance of spatial delay-tolerant mix-zones in Figure

60(b). The X-axis represents the anonymity offered by the conventional road network

mix-zone and the Y-axis represents the anonymity of the delay-tolerant mix-zones.

We plot the required spatial resolution along Z-axis. We observe a similar trend

with spatial resolution values as with the temporal delay in Figure 60(a). We notice

that higher query anonymity levels require larger spatial cloaking regions for location

perturbation. In the context of delay-tolerant mix-zones, we measure the data quality

in terms of the size of the spatial region (spatial resolution) instead of the number

of objects as those in the location k-anonymized cloaking [45]. This is because the

spatial perturbation in a delay-tolerant mix-zone is focused on changing the pseudo-

identity with a higher anonymity rather than obtaining a perturbed location with a

k-anonymized cloaking region. However, we refer the interested readers to [45] for

additional object distribution based metrics for measuring data quality of the location

perturbation process.

Next, we study the spatio-temporal tradeoff between the spatial resolution that

determines query processing cost and the temporal delay incurred before processing

the query requests. In Figure 60(c), the spatial resolution value is varied along the

X-axis and the Y-axis represents the delay-tolerant mix-zone anonymity level. Here,

the conventional mix-zone anonymity is set as 12. We find that the average temporal

delay along Z-axis is much smaller with the effect of spatio-temporal perturbation

compared to the temporal and spatial delay-tolerant mix-zones. Higher spatial res-

olution greatly reduces the temporal window size required to provide the required

anonymity. However, the right trade-off between the temporal window size and the

spatial resolution can be made based on the acceptable delay in processing the user

queries and the desired cost of query processing.

Our next set of experiments compares the delay-tolerant mix-zones in terms of
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their average query execution time. In Figure 61, the average query execution time

to process a snapshot of a k-NN query with (kq = 7) over 14000 uniformly dis-

tributed objects on the road network is shown. In Figure 61(a), observe that the

temporal delay-tolerant mix-zones incur very low query execution time (less than

1 msec) as these queries use the point location of the mobile client with a tempo-

ral delay. Whereas, the query execution time of spatial delay-tolerant mix-zones in

Figure 61(b) increases with increase in the required anonymity as larger anonymity

requires larger spatial regions for processing. The query execution time of spatio-

temporal delay-tolerant mix-zone approach in 61(c) shows the reduction in the query

processing cost at the expense of the incurred temporal delay in processing the queries

(Figure 60(c)).

6.4.2.4 Impact of fraction of Continuous Query users

The anonymity of the delay-tolerant mix-zones also depends on the fraction of total

users who run continuous queries. For instance, if a number of continuous queries

exist in the system, each uniquely identifying the querying user, the anonymization

process might result either in long temporal delays or large spatial regions leading

to higher query processing cost. The continuous query fraction denotes the fraction

of the total users who currently execute a continuous query. Here, each query is

anonymized with an anonymity, k = 50. In Figure 62(a), we measure the average

temporal delay incurred by the approaches for varying values of fraction of continuous

queries. We find that the average temporal delay of both (t-M) and (st-M) approaches

increases steadily with increase in the proportion of continuous queries till a point,

(0.6 in the figure) and then increases steeply indicating that it could be expensive

to anonymize continuous queries if more than 60% of the users execute continuous

queries. A similar trend is exhibited in Figure 62(b) for query processing cost sug-

gesting that the anonymization cost could be higher when the fraction of continuous
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queries approaches 0.7. As a large number of mobile users are passive in general (i.e.,

execute no queries while traveling), we believe that a 60% continuous query fraction

of the entire user population is expected to be rarely crossed in practice.
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Figure 62: Fraction of Continuous Query users

6.4.2.5 Success Rate and Relative-k

Our final set of experiments evaluates the performance of the delay-tolerant mix-zones

in terms of their success rate in providing the desired level of anonymity. The success

rate represents the fraction of the cases where the proposed framework is able to

provide an anonymity equal or greater than the requested value, k. In Figure 63(a),

the query anonymity level is varied along the X-axis and the Y-axis represents the

obtained success rate. Based on the arrival rate of the users in the mix-zone, the

expected success rate is chosen as 0.9 so that the delay-tolerant mix-zones provide

an anonymity of k or higher in more than 90% of the cases. We find that all the

delay-tolerant mix-zone techniques obtain a success rate close to the expected success

rate of 0.9, however the success rate of the CQ-cloaking approach is much lower (less

than 0.3) and the conventional mix-zone approach has a even lower success rate of

less than 0.06. Similarly, we study relative-k which is defined as the ratio of the

anonymity obtained by the queries to the query anonymity requested. In Figure
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63(b), we find that the relative anonymity level of delay-tolerant mix-zones ranges

from 1.5 to 2.0 showing that the queries on an average obtain an anonymity which

is 1.5 to 2.0 times the requested value. The successful cases of CQ-cloaking and

conventional mix-zone approaches have a lower relative anonymity as the mix-zones

have lower success rate and provides lower value of k in general. In order to evaluate
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Figure 64: Success rate

the success rate under different fractions of continuous queries in the system, we

study the approaches by varying the fraction of users executing continuous queries.

Here, each query is anonymized with an anonymity of 50. Figure 64(a) shows that

the obtained success rate is close to the expected success rate for the delay-tolerant
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mix-zones across different fractions of CQs in the system. However, the CQ-cloaking

and conventional mix-zone techniques have much lower success rate. Similarly, the

success rate of the techniques is compared across different scales of geographic maps

described in section 6.4.1. We compare the success rate of spatio- temporal delay-

tolerant mix-zones in Figure 64(b) that shows that the technique performs well across

different geographic maps.

6.5 Related work

Location privacy has been studied over the past decade along two orthogonal di-

mensions: spatial cloaking through location k-anonymity represented by [64, 98, 33,

135, 45, 29] and mix-zone based privacy protection and its variations represented by

[35, 60, 61, 39, 104, 96]. However, these approaches are suitable only for snapshot

queries and are inadequate and ineffective for protecting location privacy of mobile

users with continuous query services.

In recent years, there had been research efforts that dealt with location privacy

risks of continuous queries. [36] describes various attacks in Location-based systems,

including the continuous query attacks and the challenges of supporting continuous

query services. [54] proposes spatial cloaking using the memorization property for

continuous queries. This is further used in [107] for clustering queries with simi-

lar mobility patterns. However, this type of techniques may lead to large cloak-

ing boxes resulting in higher query processing cost as users may not always move

together. [58] identifies that location cloaking algorithms with only k-anonymity

and l-diversity guarantee are not effective for continuous LBS and therefore propose

query m-invariance as a necessary criterion when dealing with continuous location

queries. However, m-invariance based approach is ineffective when the mobile users

ask uniquely different CQ services as they move on the road. An alternative thread
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of research is represented by the Personal information retrieval techniques as an al-

ternate to location cloaking for anonymous query processing [66]. PIR techniques

guarantee privacy of mobile users regardless of which types of queries (continuous

or snapshot) they ask. However PIR based solutions are known to be expensive in

both computation and storage overheads, even with the recent new techniques such

as hardware-assisted PIR techniques [138], developed to improve the scalability and

efficiency of the PIR approach. Another general issue with PIR based solutions is its

limitation in terms of what kinds of queries can be protected under PIR [136].

The concept of mix-zones was first presented in the context of location privacy in

[35]. The idea of building mix-zones at road intersections is proposed in [60] and [39].

In [61], a formulation for optimal placement of mix-zones in a road map is discussed.

Almost all existing mix-zone techniques follow a straight forward approach of using a

rectangular or circular shaped zone and their construction methodologies do not take

into account the effect of timing and transition attacks in the construction process.

The MobiMix framework presented in [104] is the first road-network aware attack-

resilient mix-zone that guarantees an expected value of anonymity by leveraging the

characteristics of both the underlying road network and motion behaviors of users

traveling on spatially constrained road networks. However, all existing road network

mix-zone approaches, to the best of our knowledge, fail to protect mobile users from

continuous query attacks.

Inspired by the mix-zone concept, the Cachecloak algorithm [96] employs an alter-

nate technique for path-mixing by using cache prefetching to hide the exact location

of mobile user by requesting the location based data along an entire predicted path.

Although these techniques are effective when all users obtain the same service, they

are vulnerable to continuous query correlation attacks when the mobile users obtain

uniquely different CQ services. Recently, content caching[27] has been proposed as an

alternate solution to location privacy. However, caching large amounts of information
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on tiny mobile devices may not be effective. In addition, they may limit the usabil-

ity of the services by restricting mobile clients to ask only services that are cached

before-hand.

In this chapter, we introduce delay-tolerant road-network mix-zones as an effective

countermeasure against CQ attacks. We show that by performing a combination of

both location mixing and identity mixing in the mix-zones, the delay-tolerant mix-

zones offer greater level of anonymity that is sufficient to meet the anonymity levels of

continuous queries under the CQ-attack model while maintaining acceptable quality

of continuous query services. Though both location perturbation based techniques

and mix-zone anonymization are well researched topics by themselves, to the best of

our knowledge, this is the first work to systematically study the benefits of combining

location perturbation based techniques with mix-zone based location anonymization

schemes to tackle sophisticated attacks such as the continuous query attacks. In

general, we believe that an effective combination of location perturbation with mix-

zone based techniques has the potential to provide the strongest defense against the

sophisticated CQ attacks.

6.6 summary

We presented a delay-tolerant mix-zone framework for protecting location privacy of

mobile users against continuous query correlation attacks. First, we described and

formally analyzed the mix-zone anonymization problem under the CQ-attack model

and showed that spatial cloaking or temporal cloaking over road network mix-zones is

ineffective and susceptible to CQ-timing and CQ -transition attacks. We introduced

three types of delay-tolerant road network mix-zones that are free from CQ-timing

and CQ-transition attacks and in contrast to conventional mix-zones, perform a com-

bination of both location mixing and identity mixing of spatially and temporally per-

turbed user locations to achieve stronger anonymity for the continuous queries under
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the CQ-attack model. Extensive experiments using traces generated by GTMobiSim

on different scales of geographic maps showed that the delay-tolerant mix-zones are

effective under the CQ attack model and offer the required level of anonymity to the

continuous queries.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

Cloud computing and its pay-as-you-go cost structure have enabled infrastructure

providers, platform providers and application service providers to offer computing ser-

vices on demand and pay per use just like how we use utility today. This growing trend

in cloud computing with the exponential data growth witnessed in recent years calls

for resource management techniques that are highly cost-effective, consumer-driven

and privacy conscious. This dissertation addresses these challenges with systematic

approaches and techniques with the focus on parallel processing of large scale data

using Map-Reduce and scaling and delivering privacy-aware services in the Cloud.

In this chapter, we first summarize the contributions made by this thesis and then

discuss open problems and interesting directions for future work.

7.1 Summary

In summary, this dissertation makes the following contributions. First, we argued that

existing cloud services for MapReduce are highly cost-inefficient and inadequate for

production workloads. We presented a new MapReduce cloud service model, Cura,

for large scale data analytics in the cloud. In contrast to existing services, Cura

automatically creates the best cluster configuration for the jobs using MapReduce

profiling and leverages deadline-awareness which, by delaying execution of certain

jobs, allows the cloud provider to optimize its global resource allocation efficiently and

reduce its costs. Cura’s resource management techniques include cost-aware resource

provisioning, VM-aware scheduling and online virtual machine reconfiguration.

Second, we developed Purlieus, a locality-aware resource allocation system for
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MapReduce in a cloud. We discussed the Purlieus system architecture for MapRe-

duce cloud service and described how existing data and virtual machine placement

techniques lead to longer job execution times and large amounts of network traffic

in the data center. We identified data locality as the key principle which if exploited

can alleviate these problems and developed a unique coupled data and VM placement

technique that achieves high data locality. Uniquely, Purlieus’s proposed placement

techniques optimize for data locality during both map and reduce phases of the job by

considering VM placement, MapReduce job characteristics and load on the physical

cloud infrastructure at the time of data placement.

Third, we developed a suit of techniques for enabling privacy-preserving access to

data and compute services in the Cloud. In this context, we developed VNCache: an

efficient solution for MapReduce analysis of cloud-archived log data without requiring

an apriori data transfer and loading into the local Hadoop cluster. We showed that

current solutions are highly inefficient as they require large encrypted datasets to

be first transferred to the secure enterprise site, decrypted, and loaded into a local

Hadoop cluster before they can be processed. We presented our filesystem layer called

VNcache that dynamically integrates data stored at multiple public storage clouds

into a virtual namespace at the enterprise site. VNCache provides a seamless data

streaming and decryption model and optimizes Hadoop jobs to start without requiring

apriori data transfer, decryption, and loading.

The next contribution in this context extended our cloud service framework to sup-

port privacy-preserving ubiquitous data access and query processing. In a cloud, mo-

bile users request location dependent data services having their own location privacy

constraints. We have presented MobiMix, a framework for building attack resilient

road network mix-zones that enables handling cloud service requests with respect to

system-defined location privacy requirements. The construction techniques proposed

in MobiMix are efficient and are more attack-resilient than the existing mix-zone
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approaches. We then extended the MobiMix framework to develop a delay-tolerant

mix-zone framework for protecting location privacy of mobile cloud users against

continuous query correlation attacks (CQ-attacks). We introduced three types of

delay-tolerant road network mix-zones (temporal, spatial and spatio-temporal) that

achieve stronger anonymity for the continuous query services.

7.2 Open issues and Future directions

Large-scale data processing in the Cloud is an interesting area of research both from

performance and cost-optimization perspective as well as from the perspective of

system privacy. We are interested in pushing this research in several interesting

directions. We highlight some of them below.

7.2.1 Performance and Cost-optimization

As we argued in Chapter 2, most of today’s Cloud services for Big Data applica-

tions function merely as a Virtual-Machine-as-a-service model leading to poor re-

source utilization and higher cost for customers. In such models, we notice that

there is a significant wastage of I/O and CPU resources due to virtualization over-

heads. Given the exponential data growth witnessed in the recent years, customers

often look for cheaper services given that many Big Data analytic jobs do not require

strong performance guarantees. One interesting direction of future research is to de-

vise Cloud solutions that leverage such opportunities and optimize job performance

in non-virtualized cloud environments to minimize cost for customers who are willing

to trade off strict performance guarantees. As an extension of this research direction,

we are interested in exploring to build service models for fine-grained resource sharing

using a layered virtualization approach. We note that conventional server virtualiza-

tion virtualize every aspect of the physical resources leading to higher virtualization

overheads and poor cost-effectiveness. We are interested in building fine-grained

virtualization techniques that virtualize physical resources at different granularities,

208



virtualizing precisely what customer jobs need while leaving the rest of the physical

resources to perform without the virtualization overhead and cost. We believe that

such fine-grained virtualization would make future cloud services more utility-aware

and cost-effective.

7.2.2 Locality-optimizations

Our research on locality-aware MapReduce processing continues in two directions.

First, for placement techniques, we would like to capture relationships between datasets,

e.g. if two datasets are accessed together (MapReduce job doing a join of two

datasets), their data placement can be more intelligent while placing their blocks

in relation to each other. Second, we plan to develop online techniques to handle

dynamic scenarios like changing job characteristics on a dataset. While core prin-

ciples developed in this work will continue to apply, such scenarios may use other

virtualization technologies like live data and VM migration.

7.2.3 Dealing with Geographically Distributed Data

We also plan to extend our cost-optimization and locality-aware resource management

frameworks to deal with the upcoming challenges in effectively processing globally dis-

tributed data where massive amounts of data get generated from disparate sources at

possibly different geographical locations of the world. While conventional MapReduce

framework and MapReduce algorithms assume that the data is present in one physical

location, scalable processing of geographically distributed big data brings an entirely

new challenge. Such scenarios require both framework level optimizations to MapRe-

duce as well as middleware-level solutions to support analytics over geographically

distributed sites.

209



7.2.4 Cloud System Privacy

In the cloud system privacy context, an important challenge that cloud computing

poses is a way for customers to delegate processing of the data to the cloud without

giving away access to it. While completely homomorphic data encryption techniques

enable query processing on the encrypted data so that the Cloud provider does not

have direct access to the plain text, such techniques consume a lot of time and compu-

tational resources making them difficult to scale. One direction of our future research

is on designing private query processing techniques that protect data privacy through

anonymity while retaining high utility of the data, enabling the process to scale higher

than encryption-based query processing techniques. Such techniques would primarily

involve private query processing using both homomorphic encryption as well as data

anonymization. When computation on an anonymized dataset is delegated to the

Cloud, an attacker observing the computed output has the uncertainty in associat-

ing the actual result of the computation as the computation in this case, will return

several possible values, one out of which represents the actual result. Under such

a scheme, the Cloud provider can process the final outputs using homomorphically

encrypted secrets so that the encrypted final results are sent back to the clients while

the Cloud itself has no access to the actual result. We believe that ensuring execu-

tion privacy through anonymity based guarantees would provide a more realistic and

practical solution to leveraging public clouds for sensitive data analytics on private

data.

7.2.5 Cloud Consumer Privacy

At the cloud consumer tier, we plan to carry out further research on our mix-zone con-

struction frameworks presented in Chapters 5 and 6 along multiple directions. First

we would like to develop attack-resilient mix-zone anonymization schemes considering

more sophisticated attack models based on background knowledge about the users’
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trajectory patterns and travel behavior. In this context, we would like to consider

more powerful attack models based on background knowledge from location-based

social networking information such as user location check-ins. While many principles

developed in the MobiMix framework will apply in such scenarios, we will require

more dynamic and adaptive mix-zone construction schemes that effectively consider

the additional information leaked through such background knowledge.

Further, we plan to extend our consumer-tier privacy protection schemes to deal

with online social networks. With the extensive popularity of social networking appli-

cations and the enormous amounts of social network data being generated, supporting

privacy preserving analytics and queries on real-time social network data needs sup-

port for anonymizing dynamically evolving social graphs. For instance, how can one

understand and predict the real-time propagation of information based on social in-

fluence of the users without compromising user privacy? Another example will be

an anonymous voting system in a social network which exposes the graph proper-

ties corresponding to the trust among the users without compromising individual

user privacy. We intend to devise anonymization algorithms that provide utility on

these dynamically evolving datasets while being attack-resilient on exposing various

snapshots of the streaming graphs to an application hosted in the cloud.
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