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SUMMARY

We study various binomial and monomial ideals arising from the theory of di-

visors, orientations, and matroids on graphs. We use ideas from potential theory on

graphs and from the theory of Delaunay decompositions for lattices to describe mini-

mal polyhedral cellular free resolutions for these ideals. We show that the resolutions

of all these ideals are closely related and that their Z-graded Betti tables coincide. As

corollaries, we give conceptual proofs of conjectures and questions posed by Postnikov

and Shapiro, by Manjunath and Sturmfels, and by Perkinson, Perlman, and Wilmes.

Various other results related to the theory of chip-firing games on graphs – including

Merino’s proof of Biggs’ conjecture and Baker-Shokrieh’s characterization of reduced

divisors in terms of potential theory – also follow from our general techniques and

results.

viii



CHAPTER I

INTRODUCTION

This work is concerned with the development of new connections between the theory of

divisors on graphs, potential theory, the theory of lattices, Delaunay decompositions,

and commutative algebra.

1.1 Divisors on graphs

Let G be a graph. Let Div(G) be the free abelian group generated by V (G). An

element of Div(G) is a formal sum of vertices with integer coefficients and is called a

divisor on G.

We denote by M(G) the group of integer-valued functions on the vertices. The

Laplacian operator ∆: M(G)→ Div(G) is defined by

∆(f) =
∑

v∈V (G)

∑
{v,w}∈E(G)

(f(v)− f(w))(v) .

The group of principal divisors is defined as the image of the Laplacian operator

and is denoted by Prin(G). Two divisors D1 and D2 are called linearly equivalent

if their difference is a principal divisor. This gives an equivalence relation on the

set of divisors. The set of equivalence classes forms a finitely generated abelian

group which is called the Picard group of G. If G is connected, then the finite

(torsion) part of the Picard group has cardinality equal to the number of spanning

trees of G. This group has appeared in the literature under many different names; in

theoretical physics and in probability theory it was first introduced as the “abelian

sandpile group” or “abelian avalanche group” in the context of self-organized critical

phenomena [3, 24, 30]. In arithmetic geometry, it appears implicitly in the study
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of component groups of Néron models of Jacobians of algebraic curves [39, 54]. In

algebraic graph theory this group appeared under the name “Jacobian group” or

“Picard group” in the study of flows and cuts in graphs [2]. The study of a certain

chip-firing game on graphs led to the definition of this group under the name “critical

group” [11, 12]. We recommend the recent survey article [38] for a short but more

detailed overview of the subject.

The theory of divisors on graphs closely mirrors the theory of divisors on algebraic

curves. In fact, Baker and Norine in [5] prove a version of Riemann-Roch theorem in

this setting via a combinatorial argument. It was immediately realized (in [31, 45])

that this divisor theory has a natural extension to metric graphs (or abstract tropical

curves). This theory, however, has resisted a more conceptual and cohomological

interpretation.

Associated to G there is a canonical ideal which encodes the equivalences of divi-

sors on G. This ideal is already implicitly defined in Dhar’s seminal paper [24], but

it was first introduced in [22]. Let K be a field and let R = K[x] be the polyno-

mial ring in variables {xv : v ∈ V (G)}. The canonical binomial ideal is defined as

IG := 〈xD1 − xD2 : D1 ∼ D2 both nonnegative divisors〉. A related monomial ideal,

which we denote by Mq
G, is a certain initial ideal of IG which is defined after fixing

a vertex q ∈ V (G) (see §3.2). This ideal, for the case of complete graphs, was exten-

sively studied in [53]. In [42], Riemann-Roch theory for graphs is linked to Alexander

duality (see §11.3) for the ideal Mq
G.

1.2 Minimal free resolutions

Let A be an abelian group and let R be an A-graded polynomial ring over K. Let m

denote the ideal consisting of all polynomials with zero constant term. We require the

A-grading to be “nice”, in the sense that a version of Nakayama’s lemma holds (see

§8.1). For a graded R-module M , a graded free resolution of M is an exact sequence
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of the form

F : 0→ · · · → Fi
ϕi−→ Fi−1 → · · · → F0

ϕ0−→M → 0

where all Fi’s are free R-modules and all differential maps ϕi’s are graded. This

resolution is called minimal if ϕi+1(Fi+1) ⊆ mFi for all i ≥ 0. The i-th Betti number

βi(M) of M is the rank of Fi. The i-th graded Betti number in degree j ∈ A, denoted by

βi,j(M), is the rank of the degree j part of Fi. If the grading is “nice” then any finitely

generated graded R-module has a minimal free resolution, and the numbers βi,j(M)

and βi(M) are independent of the choice of the minimal resolution. These integers

encode very subtle numerical information about the module M . Many invariants of

M (e.g. its Hilbert series) can be computed using these Betti numbers.

There is a standard way to write down a complex of graded modules from a cell

complex C. Namely, one can label 0-dimensional cells of C by monomials, and then

extend the labeling to arbitrary faces by labeling each face F with the least common

multiple of the monomial labels on the vertices of F . The resulting labeled cell

complex leads to a complex of free graded R-modules

FC =
⊕
∅6=F∈C

R(−mF )

where mF denotes the monomial label of the face F . The differential of FC is the

homogenized differential of the cell complex C; if [F ] denotes the generator of R(−mF )

we have

∂([F ]) =
∑

codim(F,F′)=1

F ′⊂F

ε(F, F ′)
mF

mF ′
[F ′]

where ε(F, F ′) ∈ {−1,+1} denotes the incidence function indicating the orientation

of F ′ in the boundary of F .

This construction is so general that the resulting complex is expected not to be

exact. In the rare case that we do get an exact sequence, the pair (F , ∂) is called a

cellular free resolution. If all cells are polyhedral, (F , ∂) is called a polyhedral cellular
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free resolution. If moreover all mF/mF ′ appearing in the differential maps are non-

units in R, then we have a minimal polyhedral cellular free resolution.

1.3 Outline and our results

Our first goal is to give a minimal polyhedral cellular free resolution for the ideal

IG. Quite surprisingly, many ideas from potential theory on graphs, from lattices

and Delaunay decomposition, and from (a generalized version of) the notion of total

unimodularity (developed in §3 and §4) fit together nicely to give a direct and self-

contained solution to this problem. This is worked out in §5. Note that as a result

we obtain a whole family (as G varies) of ideals with minimal polyhedral cellular free

resolution. For complete graphs this is a Scarf complex and for trees this is a Koszul

complex.

We then step back and define two more ideals; the graphic Lawrence ideal JG and

one of its initial ideals Oq
G (defined after fixing a vertex), which we call the graphic

oriented matroid ideal. These are special classes of more general ideals studied in

[8] and [49]. They are intimately related to graphic hyperplane arrangements and to

Delaunay decomposition of cut lattices reviewed in §6. In §7 we take a close look at

these ideals, review some general known results, and prove some new results for our

special situation.

Roughly speaking, the ideals JG and Oq
G can be thought of as “orientation” vari-

ants of the “divisor” ideals IG and Mq
G. A powerful technique in the theory of divisors

on graphs and chip-firing games is to relate divisors to orientations. Given an orien-

tation, one can form a divisor by reading off the associated indegrees or outdegrees

(see, e.g., [15, Theorem 2.3], [5, Theorem 3.3], [36], [48], and [1]). Our next main

result shows that, algebraically, there is a good justification for the strength of this

method. We show that the relation between the ideals JG and IG (and similarly Oq
G

and Mq
G) can be understood via regular sequences. This is the content of §8 and §9.
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These regular sequences allow us to compare many algebraic properties and con-

structions for the ideals JG and IG (and similarly Oq
G and Mq

G). For example, one

immediate corollary is to obtain a minimal polyhedral cellular free resolution for the

ideal IG from a minimal polyhedral cellular free resolution for the ideal JG. This

resolution is essentially equivalent to the one obtained by our potential theoretic con-

siderations (see Remark 10.0.8). We also obtain a minimal polyhedral cellular free

resolution for the ideal Mq
G from a minimal polyhedral cellular free resolution for

the ideal Oq
G. It follows that all these resolutions are closely related to Delaunay

decompositions of the lattice of integral coboundaries (which we call the integral cut

lattice) and to the graphic hyperplane arrangement. Moreover, the Z-graded Betti

numbers of all these ideals coincide. So Mq
G and Oq

G are examples of “nice” initial

ideals in the sense of [19], meaning that one can read the Betti numbers of the original

ideal from the initial ideal (see [16, 47] for other such examples). Also, we obtain,

automatically, an interpretation of the Betti numbers in terms of the number of faces

of various dimensions in the graphic hyperplane arrangement, or equivalently, the

number of orbits of the Delaunay cells of various dimensions in the cut or principal

lattice. These interpretations also imply that Betti numbers can be read from the

number of acyclic partial orientations of G (see Remark 6.1.3, Example 7.5.5, and

Theorem 10.0.5). As a corollary, it follows that the Betti table of all these ideals is

independent of the base field K.

For complete graphs, a minimal polyhedral cellular free resolutions for Mq
G and

IG was given in [53] and [42], respectively. The case of general graphs was left open in

both works. Our work generalizes these constructions to arbitrary graphs, puts their

constructions into a larger context, and resolves several questions and conjectures

from these papers. We should mention that minimal free resolutions and the Betti

numbers for both Mq
G and IG were first established in [48] and independently in [41].

The first Betti number for IG was computed in [40]. A minimal cellular resolution for
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Mq
G was given in [26]. Very recently, the Betti numbers for Mq

G was also computed

in [35].

We also remark that it is possible to directly give a minimal polyhedral cellular

free resolution for the ideal Mq
G by our potential theoretic techniques in §5, but we

have chosen to skip the details of this construction here as all the main ideas appear

elsewhere in this writing. Moreover, an essentially equivalent (see Remark 5.2.7(ii))

solution for Mq
G has recently (and independently) appeared in [26], where they leave

the solution for IG as an open problem.

Our techniques allows us to revisit some of the foundational results on chip-firing

games and related fields. For example, we remark that our potential theoretic in-

terpretation of Gröbner weights relating IG to Mq
G gives a new proof of the result

in [6] interpreting q-reduced divisors as divisors of minimum total potential (see Re-

mark 3.3.2). A related problem is to describe the whole Gröbner cone of the initial

ideal Mq
G. This was a question of Bernd Sturmfels which we completely answer in

§3.4. We show that the rays of the Gröbner cone associated to Mq
G correspond, in a

precise sense, to Green’s functions.

The equality of the Betti tables of all of our ideals allows one to prove many nu-

merical facts about one ideal by looking instead at another ideal in this family. We

consider a few such examples in §11. One example is the computation of multiplic-

ities. Perhaps the most exciting example of this observation is that we can reprove

some important results expressing the h-vectors of IG and Mq
G in terms of the Tutte

polynomial. These results were originally proved by Merino in [44] and by Postnikov

and Shapiro in [53] using direct combinatorial methods. In our approach, we show

that there is a fifth ideal MatG, directly related to the cographic matroid of G, with

the same Betti table. This observation gives a direct and conceptual proof of the

connection with the Tutte polynomial, which is likely to be generalizable.

This work is a first step in understanding the “algebraic geometry” of divisor
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theory of graphs and related objects. There are many directions that remain open

for further explorations. Here we list two examples.

If G is not a tree, the ideal IG is not prime and, although it is generated by

binomials, it does not define a toric variety. It has been a challenge (certainly to

the author) to try to mimic “toric arguments” to obtain results for IG, with the

eventual goal of understanding the divisor theory on graphs at a more conceptual

and geometric level. It follows from our work here that the variety associated to IG

inherits many properties of the toric variety associated to JG because it is cut out in

JG by a regular sequence. We believe this is an important observation and we expect

it to lead to some interesting mathematics.

We hope to extend many of our results to more general classes of matroids. The

most exciting application would be to prove a Merino type result for a more general

class of matroids using commutative algebra. This could be a promising approach to

Stanley’s famous O-sequence conjecture ([57, page 93]).
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CHAPTER II

NOTATION AND BACKGROUND

Throughout, we assume N contains zero. All rings are commutative with 1.

A graph means a finite, connected, unweighted multigraph with no loops. As

usual, the set of vertices and edges of a graph G are denoted by V (G) and E(G). For

A ⊆ V (G), we denote by Ac the complement of A in V (G). We set n = |V (G)| and

m = |E(G)|. For a set of vertices S, the induced subgraph of G with the vertex set

S is denoted by G[S].

Let E(G) denote the set of oriented edges of G; for each edge in E(G) there are

two edges e and ē in E(G). So we have |E(G)| = 2m. An element e of E(G) is called

an oriented edge, and ē is called the inverse of e. We have a map

E(G)→ V (G)× V (G)

e 7→ (e+, e−)

sending an oriented edge e to its head (or its terminal vertex) e+ and its tail (or its

initial vertex) e−. Note that ē+ = e− and ē− = e+. Given disjoint nonempty subsets

A,B of V (G) we define

E(A,B) = {e ∈ E(G) : e+ ∈ A, e− ∈ B} .

e− e+

ē

e

Figure 1: Oriented edges, head, and tail
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Figure 2: Graph K3, its oriented edges, and a fixed orientation

Figure 3: Two equivalent ways to draw a partial orientation

An orientation of G is a choice of subset O ⊂ E(G) such that E(G) is the disjoint

union of O and Ō = {ē : e ∈ O}. An orientation is called acyclic if it contains

no directed cycle. A partial orientation of G is a choice of subset P ⊂ E(G) that

strictly contains an orientation O of G. For a partial orientation P , the associated

(connected) partition is the partition of G into totally cyclic subgraphs with edges

{e, ē ∈ P}. A partial orientation is called acyclic if the induced orientation on the

graph obtained by contracting all its totally cyclic components is acyclic.

Let O be an orientation of G. A vertex q is called a source for O if q = e− for

every e ∈ O which is incident to q. Let P be a partial orientation of G. Let H be the

associated connected component containing the vertex q. Then q is called a source for

P if H corresponds to a source in the graph obtained by contracting all components

of P (see Example 7.5.5).

For an abelian group A, we let C0(G,A) denote the set of all A-valued functions

on V (G). It is endowed with the bilinear form

〈f1, f2〉 =
∑

v∈V (G)

f1(v)f2(v) .

Also, C1(G,A) will denote the space of all A-valued functions g on E(G) such

that g(ē) = −g(e) for all e ∈ E(G). After fixing an orientation O ⊂ E(G) we have

9



C1(G,A) = C1
O(G,A)⊕C1

Ō(G,A), where C1
O(G,A) denotes the space of all A-valued

functions on O. The group C1(G,A) (and therefore C1
O(G,A)) is endowed with the

bilinear form

〈g1, g2〉 =
∑
e∈O

g1(e)g2(e) =
1

2

∑
e∈E(G)

g1(e)g2(e) (1)

The usual coboundary map d : C0(G,A)→ C1(G,A) is defined by

(df)(e) = f(e+)− f(e−) = −(df)(ē) .

After fixing an orientation O ⊂ E(G), we also obtain the restricted coboundary

map dO : C0(G,A)→ C1
O(G,A).

Let R be a commutative ring with 1. We let C0(G,R) denote the free R-module

generated by V (G). Elements of C0(G,R) are of the form
∑

v∈V (G) av(v) for av ∈ R.

It is endowed with a bilinear form induced by 〈(u), (v)〉 = δv(u) for u, v ∈ V (G). Here

δv(u) denotes the usual Kronecker delta function.

Likewise, we let C1(G,R) denote the free R-module generated by E(G). Elements

of C1(G,R) are of the form
∑

e∈E(G) ae(e) for ae ∈ R. It is endowed with a bilinear

form induced by

〈(e), (e′)〉 =


1, if e′ = e

−1, if e′ = ē

0, otherwise

for e, e′ ∈ E(G). The usual boundary map ∂ : C1(G,R)→ C0(G,R) is defined by

∂(e) = (e+)− (e−) .

The bilinear forms defined above provide canonical isomorphisms C0(G,R) ∼=

C0(G,R) and C1(G,R) ∼= C1(G,R). Then the maps ∂ and d are adjoint with respect

to these bilinear forms. We let e∗ ∈ C1(G,R) denote the image of (e) ∈ C1(G,R)

under this isomorphism, i.e.

e∗ := 〈(e), ·〉 .
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The characteristic function of v or χv = δv ∈ C0(G,R) is the image of (v) ∈ C0(G,R)

under the canonical isomorphism.

Let K be a field. Associated to G we define two polynomial rings:

• Let R = K[x] denote the polynomial ring in n variables {xv : v ∈ V (G)}.

• Let S = K[y] denote the polynomial ring in 2m variables {ye : e ∈ E(G)} or

{ye, yē : e ∈ O} (for any orientation O).
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CHAPTER III

DIVISORS AND POTENTIAL THEORY ON GRAPHS

Following [5], we let Div(G) be the free abelian group generated by V (G). Equiv-

alently, Div(G) = C0(G,Z). An element of Div(G) is written as
∑

v∈V (G) av(v) for

av ∈ Z and is called a divisor on G. The coefficient av in D is denoted by D(v). A

divisor D is called effective if D(v) ≥ 0 for all v ∈ V (G). The set of effective divisors

is denoted by Div+(G). We write D ≤ E if E − D ∈ Div+(G). For D ∈ Div(G),

let deg(D) =
∑

v∈V (G) D(v). Given disjoint nonempty subsets A,B of V (G) one can

assign a divisor D(A,B) =
∑

v∈A |{w ∈ B : {v, w} ∈ E(G)}| (v).

We denote byM(G) the group of integer-valued functions on the vertices. Equiv-

alently, M(G) = C0(G,Z). For A ⊆ V (G), χA ∈ M(G) denotes the {0, 1}-valued

characteristic function of A. The Laplacian operator ∆: M(G)→ Div(G) is defined

by

∆(f) =
∑

v∈V (G)

∑
{v,w}∈E(G)

(f(v)− f(w))(v) .

Remark 3.0.1. With the identification M(G) = C0(G,Z) and Div(G) = C0(G,Z)

and the canonical isomorphism C1(G,R) ∼= C1(G,R), the operator ∆ is identified

with ∂OdO : C0(G,Z) → C0(G,Z), where ∂O and dO denote the usual (restricted)

boundary and coboundary maps for an arbitrary orientation O. Somewhat more

canonically, ∆ = 1
2
∂d. It follows that ∆ is a self-adjoint operator.

The group of principal divisors is defined as the image of the Laplacian op-

erator and is denoted by Prin(G). It is easy to check that Prin(G) ⊆ Div0(G)

where Div0(G) denotes the set consisting of divisors of degree zero. The quotient
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Pic0(G) = Div0(G)/Prin(G) is a finite group whose cardinality is the number of

spanning trees of G (see, e.g., [6] and references therein). The full Picard group of G

is defined as

Pic(G) = Div(G)/Prin(G)

which is isomorphic to Z⊕Pic0(G). Since principal divisors have degree zero, the map

deg : Div(G) → Z descends to a well-defined map deg : Pic(G) → Z. Two divisors

D1 and D2 are called linearly equivalent if they become equal in Pic(G). In this case

we write D1 ∼ D2.

3.1 Divisors and potential theory

For p, q ∈ V (G) let the Green’s function jq(p, ·) denote the unique (Q-valued) solution

to the Laplace equation ∆f = (p) − (q) satisfying f(q) = 0. If we think of graph G

as an electrical network (in which each edge is a resistor having unit resistance) then

jq(p, v) denotes the electric potential at v if one unit of current enters the network at p

and exits at q, with q grounded (i.e., zero potential). It is easy to check that jq(p, q) =

0, jq(p, v) = jq(v, p), and 0 ≤ jq(p, v) ≤ jq(p, p) (see [4, 18]). [6, Construction 3.1]

explains how to compute these functions using basic linear algebra.

There exists a positive definite, symmetric bilinear form

〈· , ·〉en : Div0(G)×Div0(G)→ Q

〈D1, D2〉en =
∑

u,v∈V (G)

D1(u)jq(u, v)D2(v)

which is a canonical (i.e. independent of the choice of q) pairing on Div0(G) (see

[6, 55]). It is called the energy pairing on Div0(G).

Let 1 denote the all-1’s divisor. For D ∈ Div(G) and q ∈ V (G), following [6], the
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total potential functional is defined as

bq(D) = 〈1− n(q), D − deg(D)(q)〉en

=
∑
v

∑
p

jq(p, v)D(v) .

3.2 Divisors and commutative algebra

Any effective divisor D gives rise to a monomial

xD :=
∏

v∈V (G)

xD(v)
v ∈ R .

Associated to every graph G there is a canonical ideal in R which encodes the

linear equivalences of divisors on G:

IG := 〈xD1 − xD2 : D1 ∼ D2 both effective divisors〉

= spanK{xD1 − xD2 : D1 ∼ D2 both effective divisors}

which was first introduced in [22]. This ideal is graded by both Pic(G) and Z.

Remark 3.2.1. It is shown in §8.1 (and in [48]) that, although Pic(G) has torsion

elements, it provides a “nice” grading in the sense that Nakayama’s lemma holds

with respect to this grading and the concept of Pic(G)-graded minimal free resolution

makes sense in this context.

Once we fix a vertex q, there is a natural term order that gives rise to a particularly

nice Gröbner basis for IG. This term order was also introduced in [22]. Consider a

total ordering of the set of variables {xv : v ∈ V (G)} compatible with the distances

of vertices from q in G:

dist(w, q) < dist(v, q) ⇒ xw < xv . (2)

Here, the distance between two vertices in a graph is the number of edges in a shortest

path connecting them. This ordering can be thought of as an ordering on the vertices

induced by running the breadth-first search (BFS) algorithm starting at the root
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vertex q. The term order <q will denote the graded reverse lexicographic ordering

(grevlex) on R induced by the total ordering on the variables given in (2).

The initial ideal Mq
G := in<q(IG) for (IG, <q) is canonically defined (up to the

choice of the distinguished vertex q). This ideal is extensively studied in [53], where

it is denoted by MG. This ideal is naturally equipped with Div(G) (fine) and Z

(coarse) gradings.

One of the main results of [22] is the following theorem – see also [48, Section 5]

where this result is reproved and generalized to higher syzygy modules.

Theorem 3.2.2. A Gröbner basis of (IG, <q) is

{
xD(Ac,A) − xD(A,Ac) : A ( V (G), q ∈ A

}
.

Moreover,

(i) LM(xD(Ac,A) − xD(A,Ac)) = xD(Ac,A).

(ii) It suffices to consider only those subsets A of V (G) such that both G[A] and

G[Ac] are connected. In this case we obtain a minimal Gröbner basis of (IG, <q).

As we will see, the minimal Gröbner basis described in part (ii) is also a minimal

generating set (see also [48]).

3.3 Potential theory and Gröbner weight functionals for IG

Let ϑ ∈ C0(G,R) and think of it as a linear functional ϑ : Div(G) → R. For f =∑
cix

Di ∈ R the ϑ-degree of f , denoted by degϑ(f), is the maximum value of ϑ(Di).

The ϑ-initial form of f is the sum of all terms cix
Di such that ϑ(Di) is maximum. For

an ideal I ⊂ R, the ϑ-initial ideal inϑ(I) is the ideal generated by all ϑ-initial forms.

Fix a term order < for R. The functional ϑ is said to represent < for I if inϑ(I) =

in<(I). It is known that for any term order < and any ideal I, there is a non-negative

and integer-valued functional representing < for I ([58, Proposition 1.11]).
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In our situation there is a nice and direct interaction between Gröbner theory and

potential theory.

Lemma 3.3.1. bq : Div(G) → Q is a non-negative rational-valued functional repre-

senting <q for IG.

Proof. For D ∈ Div(G) we know bq(D) =
∑

v,p jq(p, v)D(v), so the non-negativity

and rationality follows immediately. By Theorem 3.2.2, it suffices (see [58, proof of

Proposition 1.11]) to check that for any A ( V (G) with q ∈ A, we have

bq(D(Ac, A)) > bq(D(A,Ac)) .

But D(A,Ac)−D(Ac, A) = ∆(χA), where χA denotes the {0, 1}-valued characteristic

function of A. The Laplacian operator ∆ is self-adjoint (see Remark 3.0.1), which

means ∑
v

f(v)∆(g)(v) =
∑
v

g(v)∆(f)(v)

for all f, g ∈M(G). Therefore for all f ∈M(G) we have∑
v

jq(p, v)∆(f)(v) =
∑
v

f(v)∆(jq(p, ·))(v)

=
∑
v

f(v)(δp(v)− δq(v))

= f(p)− f(q) .

(3)

Therefore we have

bq(D(A,Ac)−D(Ac, A)) = bq(∆(χA))

=
∑
v,p

jq(p, v)∆(χA)(v)

=
∑
p

(χA(p)− χA(q)) .

The result now follows, because for any set A ( V (G) with q ∈ A, we have χA(q) = 1,

and there exists a vertex p ∈ Ac with χA(p) = 0.
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Remark 3.3.2. q-reduced divisors (or G-parking functions with respect to q) can be

defined as the normal forms of R/IG with respect to the Gröbner basis described

in Theorem 3.2.2. It easily follows from Lemma 3.3.1 that a q-reduced divisor is

precisely the unique (in each equivalence class) minimizer of the bq functional. See

[6] for a precise statement and a different proof of this fact.

Definition 3.3.3. We let ϑq denote the non-negative, integral functional associated

to bq (i.e. obtained from bq by clearing the denominators). Clearly, ϑq will also

represent <q for IG.

3.4 Gröbner cone of Mq
G

A modification of the proof of Lemma 3.3.1 shows that the rays of the Gröbner cone

associated to Mq
G, in a precise sense, correspond to Green’s functions.

The weight functional η ∈ C0(G,R) defined by η(D) =
∑

v∈V (G) η(v)(v) is in the

Gröbner cone if and only if for any set B 6= ∅ with q 6∈ B we have

η(∆(χB)) =
∑

v∈V (G)

η(v)∆(χB)(v) =
∑

v∈V (G)

χB(v)∆(η)(v) > 0 . (4)

In particular, for each vertex p 6= q, setting B = {p} we must have:

γp := ∆(η)(p) > 0 . (5)

This condition is also sufficient because for all B 6= ∅ with q 6∈ B we have

η(∆(χB)) =
∑

v∈V (G)

χB(v)γv =
∑
v∈B

γv .

It follows that η ∈ M(G) is a solution to ∆(η) = γ for the degree zero divisor

γ :=
∑

p∈V (G) γp(p). From the definition of the Green’s function jq(p, v), and the fact

that the Laplacian operator has a 1-dimensional zero-eigenspace generated by the

all-1 function 1, we obtain:

η =
∑

p∈V (G)

γpjq(p, ·) + k · 1 (6)
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for some constant k ∈ R. We summarize these observations in the following theorem.

Theorem 3.4.1. The weight functional η ∈ C0(G,R) represents <q for IG if and

only if there exist k ∈ R and real numbers γp > 0 (for p ∈ V (G)) such that

η =
∑

p∈V (G)

γpjq(p, ·) + k · 1 .

In other words η, up to constant functions, is in the interior of the cone gener-

ated by the vectors (jq(p, v))v∈V (G) for various p ∈ V (G). Note that these vectors

are independent because the matrix (jq(p, v))p,v∈V (G)\{q} is invertible (see [6, Con-

struction 3.1]). The question of describing this Gröbner cone was asked by Bernd

Sturmfels.
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CHAPTER IV

LATTICES, DELAUNAY DECOMPOSITIONS, TOTAL

UNIMODULARITY, AND INFINITE ARRANGEMENTS

4.1 Lattices and Delaunay decompositions

Let Λ be a free Z-module (abelian group), endowed with a positive definite symmetric

bilinear pairing β : Λ× Λ→ Z. The pair (Λ, β) (or just Λ, when β is understood) is

called a free bilinear form space over Z or, more concisely, an abstract Z-lattice.

Let (Λ, β) be an abstract Z-lattice. We let ΛR := Λ ⊗ R. The bilinear pairing β

naturally extends to a bilinear pairing βR on ΛR by βR(a⊗ u, b⊗ v) = ab β(u,v).

The dual Z-module Λ∨ := HomZ(Λ,Z) is contained (via extension of scalars)

in the dual real vector space Λ∨R := HomZ(Λ,R) = HomR(ΛR,R) = Λ∨ ⊗ R. The

non-degeneracy of β is the statement that the homomorphism

Ψ: Λ→ Λ∨

v 7→ β(v, ·)

is injective. Clearly every positive definite bilinear pairing is automatically non-

degenerate. Therefore the natural extension ΨR : ΛR → Λ∨R is also injective (e.g.,

because R is a flat R-module). Since these vector spaces have the same dimension, it

follows that ΨR is indeed an isomorphism. In other words, in the language of bilinear

forms, βR is a perfect pairing1 on ΛR. So, in this situation, any ϕ ∈ Λ∨R is of the form

ϕ(·) = βR(a, ·) for some a ∈ ΛR.

Let d : ΛR×ΛR → R be any distance function on ΛR. The Delaunay decomposition

of ΛR with respect to the lattice Λ and the distance function d (not necessarily induced

1A perfect pairing is sometimes called a unimodular pairing in the literature. We will avoid this
terminology to avoid confusion.
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by the bilinear form) is defined as the collection of cells

Ap = conv.hull{s ∈ Λ : d(p, s) is minimal} .

as p varies in ΛR. It is a classical fact (essentially due to Voronoi and Delaunay) that

the collection of Delaunay cells {Ap} gives a locally finite, cellular decomposition

(face to face tiling) of ΛR which is invariant under the action of Λ (see, e.g., [20]).

4.2 Total unimodularity

Consider a (not necessarily minimal) finite set {ϕi}i∈I of generators for the free Z-

module Λ∨. Extension of scalars gives an inclusion Λ∨ ↪→ Λ∨R. Clearly, for any subset

J ⊆ I such that {ϕi}i∈J generates Λ∨ as a Z-module, we have {ϕi}i∈J spans Λ∨R as a

real vector space (here we have identified ϕi ⊗ 1 with ϕi). The converse is, of course,

not true in general.

Definition 4.2.1. Let (Λ, β) be an abstract Z-lattice. A finite set {ϕi}i∈I of gen-

erators for Λ∨ is called totally unimodular if for any subset J ⊆ I such that the

collection {ϕi}i∈J spans Λ∨R as a real vector space, the collection {ϕi}i∈J generates Λ∨

as a Z-module.

Example 4.2.2. Let Λ = Z2, generated by e1 and e2, endowed with the obvious

bilinear pairing induced by 〈ei, ej〉 = δi(j). Let e∗i ∈ (Z2)∨ denote the dual basis

element e∗i (ej) = δi(j). Then

• {e∗1, e∗2, e∗1 + e∗2} generates Λ∨ and is totally unimodular.

• {e∗1, e∗2, e∗1 + 2e∗2} generates Λ∨ but is not totally unimodular.

The subcollection {e∗1, e∗1 + 2e∗2} spans (R2)∨ as a real vector space, but it does

not generate (Z2)∨. For example, e∗2 will not be in the Z-module it generates.
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Example 4.2.3. The primary examples of total unimodularity and the most well-

known examples arise from totally unimodular matrices or, more generally, weakly

unimodular matrices. An r × m (r ≤ m) integer matrix A = (aij) is called weakly

unimodular if every r×r square submatrix of A has determinant in the set {−1, 0, 1}.

If every square submatrix of A has determinant in the set {−1, 0, 1}, then A is called

a totally unimodular matrix. Any totally unimodular matrix is weakly unimodular. A

weakly unimodular matrix which contains the identity matrix of size r is automatically

totally unimodular.

Let A be a weakly unimodular matrix. Let Λ denote the row space Image(AT ) ↪→

Zm with the bilinear pairing induced by the natural bilinear pairing on Zm. For

1 ≤ j ≤ m let ϕj ∈ Λ∨ denote the restriction of e∗j ∈ (Zm)∨ to Λ. Concretely, if we

denote the i-th row (1 ≤ i ≤ r) of A by vi, then each ϕj is defined by ϕj(vi) = aij.

By Cramer’s rule, the collection {ϕ1, . . . , ϕm} is totally unimodular precisely because

A is weakly unimodular.

4.3 Infinite hyperplane arrangements

Consider a finite collection {ϕi}i∈I ⊂ Λ∨R spanning Λ∨R as a vector space over R. For

each p ∈ ΛR we denote by Cp the polyhedron in ΛR defined by

Cp = {s ∈ ΛR : bϕi(p)c ≤ ϕi(s) ≤ dϕi(p)e for all i ∈ I} .

As usual, bxc denotes the largest integer n ≤ x, and dxe denotes the smallest integer

n ≥ x. Clearly Cs = Cp for all s ∈ rel. int(Cp). We denote by H(ΛR, {ϕi}i∈I) the

collection of all polyhedra Cp for p ∈ ΛR.

The following result is well known for the case of totally unimodular matrices

(Example 4.2.3) (see, e.g., [29, 51]). We give a proof suited for our general setting.

Theorem 4.3.1. Fix a finite collection {ϕi}i∈I ⊂ Λ∨R which spans Λ∨R as a vector

space over R.
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(i) H(ΛR, {ϕi}i∈I) is a polyhedral cell decomposition of ΛR by bounded convex poly-

hedra. This cell decomposition is invariant under the translation by

{s ∈ ΛR : ϕi(s) ∈ Z for all i ∈ I}

which is contained in the set of 0-dimensional polyhedra in H(ΛR, {ϕi}i∈I).

(ii) If, further, {ϕi}i∈I ⊂ Λ∨ and it generates Λ∨, then the polyhedral decomposition

H(ΛR, {ϕi}i∈I) is invariant under the translation action by elements of Λ which

is contained in the set of 0-dimensional polyhedra in H(ΛR, {ϕi}i∈I).

(iii) If, further, {ϕi}i∈I is totally unimodular, then Λ coincides with the set of 0-

dimensional polyhedra in H(ΛR, {ϕi}i∈I). Moreover, H(ΛR, {ϕi}i∈I) coincides

with the Delaunay decomposition of ΛR with respect to the lattice Λ and the

metric induced by

‖p‖2 =
∑
i∈I

|ϕi(p)|2 . (7)

Proof. Consider the map

Φ : ΛR −→ RI

p 7→ (ϕi(p))i∈I .

Since {ϕi}i∈I spans Λ∨R we know Φ is injective. Let {εi}i∈I denote the standard basis

of RI , and let {ε∗i }i∈I denote the dual basis of (RI)∨. Then H(RI , {ε∗i }i∈I) is clearly

the Delaunay decomposition of RI with respect to the lattice ZI with its standard

pairing (induced by 〈εi, εj〉 = δi(j)).

The decomposition H(ΛR, {ϕi}i∈I) is the decomposition of ΛR induced by Φ from

this Delaunay decomposition of RI . It consists of Φ−1(C) for various cells C in the

Delaunay decomposition of RI with Φ−1(rel. int(C)) 6= ∅.

(i) immediately follows from the above considerations.

For (ii) note that, since {ϕi}i∈I generates Λ∨, we have Λ = Φ−1(ZI).
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For (iii), let A = Φ−1(C) for cells C in the Delaunay decomposition of RI with

Φ−1(rel. int(C)) 6= ∅. By the total unimodularity assumption, A is 0-dimensional if

and only if A = {s} for some s ∈ Λ. Let B be a cell in the Delaunay decomposition

of ΛR. By definition this means there exists some p0 ∈ ΛR such that

A = Ap0 = conv.hull{s ∈ Λ : ‖p0 − s‖ is minimal} .

Consider Φ(p0) ∈ RI , and let B′ denote the corresponding Delaunay cell in RI , i.e.

B′ = B′Φ(p0) = conv.hull{a ∈ ZI : 〈Φ(p0)− a, Φ(p0)− a〉 is minimal} .

B is obviously contained in Φ−1(B′). However the convex polyhedron Φ−1(B′) is the

convex hull of its 0-dimensional faces. Therefore B = Φ−1(B′).

Remark 4.3.2.

(i) Under the total unimodularity assumption, by Theorem 4.3.1(iii), we obtain

a finite polyhedral cell decomposition of the quotient torus ΛR/Λ. This cell

decomposition is essential in the study of our binomial ideals.

(ii) If the totally unimodular collection is coming from a weakly unimodular matrix

as in Example 4.2.3, then the norm in (7) coincides with the standard norm

induced by the bilinear form βR. This is because the ϕj’s are precisely the

restriction of the e∗j ’s to ΛR.
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CHAPTER V

POTENTIAL THEORY AND THE CELLULAR FREE

RESOLUTION OF IG

Here we use potential theory and the energy pairing to give a self-contained and direct

solution to the problem of finding a minimal polyhedral cellular free resolution of the

ideal IG.

5.1 Minimal cellular free resolutions

Let S be a polynomial ring in r variables. Let C be a regular cell complex. If we label

the vertices (0-dimensional cells) by monomials in S, we may extend the labeling to

arbitrary faces by labeling an arbitrary face F with the least common multiple of the

monomial labels on the vertices of F . In this way we obtain a labeled cell complex,

which leads to a complex of free Zr-graded S-modules

FC =
⊕
∅6=F∈C

S(−mF ) (8)

where mF denotes the monomial label of the face F . The homological degree of

S(−mF ) is dim(F ). Let [F ] denote the generator of S(−mF ). The differential of FC

is the homogenized differential of the cell complex C:

∂([F ]) =
∑

codim(F,F′)=1

F ′⊂F

ε(F, F ′)
mF

mF ′
[F ′]

where ε(F, F ′) ∈ {−1,+1} denotes the incidence function indicating the orientation

of F ′ in the boundary of F (see [43, IX.5] or [17, Section 6.2]). Note that the length

of (F , ∂) is the dimension of C.

It is shown in [9, Proposition 1.2] that the complex (F , ∂) is exact if and only if

every subcomplex C≤m (i.e. the subcomplex of C consisting of all cells whose labels
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divide the monomial m) is acyclic over K (i.e. its homology with K coefficients is

only in degree 0). In this case (F , ∂) is called a cellular free resolution. If all cells

are polyhedral it is called a polyhedral cellular free resolution. It is a minimal cellular

free resolution if all mF/mF ′ appearing in the differential maps are non-units. See

[9] for more details.

5.2 Principal lattice with the energy pairing

Recall the Z-module Prin(G) is defined as the image of the Laplacian operator

∆: M(G) → Div(G). We have introduced two different canonical bilinear forms

on this group. One is the bilinear form induced from the bilinear form on C0(G,Z) =

Div(G) defined in §2. The bilinear form that is most relevant in this section is the

one induced from the energy pairing defined in §3.1.

Definition 5.2.1. By a principal lattice we will mean the pair (Prin(G), 〈·, ·〉en) where

〈·, ·〉en : Prin(G)× Prin(G)→ Z

is the restriction of the energy pairing to Prin(G) ⊆ Div0(G).

Remark 5.2.2. It is easy to see (using (3)) that if D ∈ Prin(G) then for all E ∈

Div0(G) we have 〈E,D〉en ∈ Z and therefore

(i) The restriction of the energy pairing to Prin(G) is Z-valued.

(ii) The energy pairing descends to a well-defined pairing on Pic0(G), which is shown

to be non-degenerate in [55].

The principal lattice is an abstract Z-lattice in the sense of §4.1. Its ambient vector

space Prin(G)R = Prin(G)⊗ R coincides with Div0
R(G) = Div0(G)⊗ R ⊂ C1(G,R).

Our next goal is to find a nice collection of functionals for this lattice. For each

e ∈ E(G) we define the functional ζe ∈ Div0
R(G)∨ by

ζe(·) = 〈∂(e), ·〉en .
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Lemma 5.2.3.

(i) Any D ∈ Div0
R(G) is of the form D = ∆(f) for some f ∈ C1(G,R).

(ii) For D = ∆(f) ∈ Div0
R(G) we have ζe(D) = (df)(e).

Proof. (i) This follows from the fact that the kernel of ∆ consists of constant functions.

(ii) We have, using (3)

〈∂(e), D〉en = 〈∂(e),∆(f)〉en

=
∑

u,v∈V (G)

(δe+(u)− δe−(u))jq(u, v)∆(f)(v)

=
∑

u∈V (G)

(δe+(u)− δe−(u))
∑

v∈V (G)

jq(u, v)∆(f)(v)

=
∑

u∈V (G)

(δe+(u)− δe−(u))(f(u)− f(q))

= f(e+)− f(e−) .

Proposition 5.2.4.

(i) {ζe}e∈E(G) ⊂ Prin(G)∨.

(ii) {ζe}e∈E(G) generates Prin(G)∨.

(iii) {ζe}e∈E(G) is totally unimodular for the principal lattice.

Proof. (i) We need to show that ζe(D) ∈ Z for all D ∈ Prin(G). Let D = ∆(f) for

f ∈ M(G). Then by Lemma 5.2.3(ii) ζe(D) = (df)(e) which is an integer because f

is integer-valued.

(ii) Let ζ be an arbitrary element of Prin(G)∨. We need to show that ζ =∑
e∈E(G) aeζe for some integers ae. Since ζ ∈ Div0

R(G)∨ and 〈·, ·〉en is positive definite
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(and therefore non-degenerate), we must have ζ(·) = 〈a, ·〉en for some a ∈ Div0
R(G)

(see §4.1). For all p ∈ V (G)\{q} we have (see (3))

〈a,∆(χp)〉en =
∑

u,v∈V (G)

a(u)jq(u, v)∆(χp)(v)

=
∑

u∈V (G)

a(u)
∑

v∈V (G)

jq(u, v)∆(χp)(v)

=
∑

u∈V (G)

a(u)(χp(u)− χp(q))

= a(p) .

(9)

Since ζ ∈ Prin(G)∨ we must have a(p) = 〈a,∆(χp)〉en ∈ Z for all p ∈ V (G)\{q}.

Since a(q) = −
∑

p 6=q a(p) we obtain a ∈ Div0(G). Let

a =
∑

p∈V (G)

a(p)(p) =
∑
p 6=q

a(p)((p)− (q)) . (10)

Since G is connected, for each p 6= q there is a directed path from q to p consisting

of some oriented edges {e(i)}1≤i≤` such that e
(1)
− = q, e

(`)
+ = p, and e

(i)
+ = e

(i+1)
− for

1 ≤ i ≤ `− 1. We may write

(p)− (q) =
∑̀
i=1

(e
(i)
+ − e

(i)
− ) =

∑̀
i=1

∂(e(i)) .

Substituting this in (10), we conclude that a =
∑

e∈E(G) ae∂(e) for some integers ae.

Therefore ζ =
∑

e∈E(G) aeζe as we want.

(iii) Assume J ⊆ E(G) is such that the collection {ζe}e∈J spans Div0
R(G)∨ as a real

vector space. We need to show that {ζe}e∈J also generates Prin(G)∨ as a Z-module.

Let ζ be an arbitrary element of Prin(G)∨. Then ζ =
∑

e∈J beζe for some be ∈ R

because {ζe}e∈J spans Div0
R(G)∨. In other words

ζ(·) = 〈b, ·〉en with b =
∑
e∈J

be∂(e)

for some be ∈ R. We need to show that be ∈ Z for all e ∈ J . A computation

identical to (9) shows that we have b ∈ Div0(G). It is a well-known classical fact
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(due to Poincaré) that the incidence matrix of G is totally unimodular (see, e.g.,

[10, Proposition 5.3] and §6.2). So
∑

e∈J be∂(e) ∈ Div0(G) will automatically imply

that all be’s must be integers.

Remark 5.2.5. It also follows from the proof of Proposition 5.2.4(ii) that

(i) Prin(G)∨ ∼= Div0(G) and a canonical isomorphism is furnished by the energy

pairing.

(ii) C1(G,Z)
∂−→ C0(G,Z)

deg−−→ Z → 0 is an exact sequece. This statement, when

Z is replaced with R is classical (see, e.g., [11, Proposition 12.1 and Proposi-

tion 28.1]).

We are now ready to apply the results in §4.3 to this setting.

Theorem 5.2.6. Let H(Div0
R(G), {ζe}e∈E(G)) = {Ca} be the collection of all polyhedra

Ca = {b ∈ Div0
R(G) : bζe(a)c ≤ ζe(b) ≤ dζe(a)e for all e ∈ E(G)} . (11)

as a varies in Div0
R(G). Then

(i) {Ca} is a polyhedral cell decomposition of Div0
R(G) by bounded convex polyhedra.

(ii) The cell decomposition {Ca} is invariant under the translation by the lattice

Prin(G).

(iii) The set of 0-dimensional cells in {Ca} coincides with Prin(G).

(iv) {Ca} is the same as the Delaunay cell decomposition of Div0
R(G) with respect to

the lattice Prin(G) and the metric induced by the norm

‖p‖ =
√
〈p,p〉en =

√
E(p) . (12)

(v) {Ca} descends to a finite polyhedral cell decomposition of Div0
R(G)/Prin(G).
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Proof. This result follows from Proposition 5.2.4, Theorem 4.3.1, and Remark 4.3.2(i).

We only need to show that the norm defined in (12) is compatible with the one

considered in (7). By Lemma 5.2.3(i) any p ∈ Div0
R(G) is of the form ∆(f) for some

f ∈ C1(G,R). By (3), Lemma 5.2.3(ii), and Remark 3.0.1 we have

E(p) = 〈∆(f),∆(f)〉en

=
∑

v∈V (G)

f(u)∆(f)(u)

=
1

2

∑
v∈V (G)

f(u)(∂df)(u)

=
1

2

∑
e∈E(G)

(df)(e)(df)(e)

=
1

2

∑
e∈E(G)

|ζe(p)|2 .

So the norm defined in (12) is proportional to the norm defined in (7) and they induce

the same Delaunay cell decomposition.

The Delaunay cell decomposition {Ca} of Theorem 5.2.6 will be denoted by

Del(Prin(G)). The induced finite cell decomposition of the torus Div0
R(G)/Prin(G)

will be denoted by Del(Prin(G))/Prin(G).

Remark 5.2.7.

(i) Since ζē = −ζe for all e ∈ E(G) we could alternatively define Ca in (11) as

{b ∈ Div0
R(G) : ζe(b) ≤ dζe(a)e for all e ∈ E(G)} .

It follows that open cells in this cell complex correspond precisely to equivalence

classes of points, where a ∼ b if and only if dζe(a)e = dζe(b)e for all e ∈ E(G).

(ii) By Lemma 5.2.3(ii) the local picture at the origin is the image of the graphic

arrangement defined in §6.1 under the map ∆.

29



(iii) The cell complexes Del(Prin(G)) and Del(Prin(G))/Prin(G) are related to the

cell complexes Del(L(G)) and Del(L(G))/L(G) (defined in §6.2) by the (re-

stricted) boundary map (see Remark 5.3.5 and Remark 10.0.8). The finite cell

complexes Del(L(G))/L(G) and Del(Prin(G))/Prin(G) have the same f -vector

(i.e. the same number of i-dimensional faces for all i).

The following lemma will be used in the proof of Theorem 5.3.2.

Lemma 5.2.8. Fix a divisor E ∈ Div(G). The subcomplex of Del(Prin(G)) on the

lattice points P (E) = {D ∈ Prin(G) : D ≤ E} is a polyhedral subdivision of a

contractible space.

Proof. P (E) is precisely the set of lattice points inside the closed convex polytope

Q(E) = {a ∈ Div0
R(G) : a ≤ E}. The subcomplex of Del(Prin(G)) consisting of

cells on the lattice points P (E) consists of all Delaunay cells on these lattice points.

Recall Del(Prin(G)) is a tiling of the ambient space. Therefore this subcomplex forms

a space which is homotopy equivalent to the polytope Q(E) itself, and therefore is

contractible.

5.3 Labeling Del(Prin(G)) and the minimal free resolution of
IG

Let T = K[x,x−1] denote the Laurent polynomial ring in variables {xv : v ∈ V (G)}.

Clearly T is a module over R. Consider the R-submodule UG ⊂ T generated by

Laurent monomials {xD : D ∈ Prin(G)}. This Laurent monomial module UG may

be thought of as the “universal cover” of IG and many question about IG can be

reduced to questions about UG. For example, the free resolutions of UG and IG are

closely related. See [9] for an extensive study of this relation. Since the only effective

divisor in Prin(G) is the all-0 divisor, the results of [9] apply to our situation.

Consider the cell decomposition Del(Prin(G)). By Theorem 5.2.6 the set of 0-

dimensional cells in Del(Prin(G)) is precisely Prin(G). We will label each 0-cell
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D ∈ Prin(G) by the Laurent monomials xD. As usual, we let the label of any other

cell to be the least common multiple of the labels of its vertices. This labeled cell

complex leads to a complex of free Div(G)-graded R-modules

FG := FDel(Prin(G)) =
⊕

∅6=F∈Del(Prin(G))

R(−mF )

where mF denotes the monomial label of the face F . Let [F ] denote the generator of

R(−mF ). The differential of FG is the homogenized differential (boundary) operator

of the cell complex Del(Prin(G)):

∂([F ]) =
∑

codim(F,F′)=1

F ′⊂F

ε(F, F ′)
mF

mF ′
[F ′] (13)

where ε(F, F ′) ∈ {−1,+1} denotes the incidence function indicating the orientation

of F ′ in the boundary of F .

Lemma 5.3.1.

(i) Let a ∈ Div0
R(G). Then a(v) =

∑
e+=v ζe(a).

(ii) Let F = Ca be a cell in Del(Prin(G)) corresponding to a point a ∈ Div0
R(G)

(i.e. a ∈ rel. int(F )). Then mF = xE where E ∈ Div(G) is defined by

E(v) =
∑
e+=v

dζe(a)e . (14)

(iii) For distinct faces F ′ ( F of Del(Prin(G)) we have mF 6= mF ′.

Proof. (i) By Lemma 5.2.3(i) we may write a = ∆(f) for some f ∈ C1(G,R). By

definition we have ∆(f) =
∑

v

∑
e+=v(f(e+) − f(e−))(v). Therefore, it follows from

Lemma 5.2.3(ii) that a(v) =
∑

e+=v ζe(a).

(ii) follows from (i) and the fact that open cells in Del(Prin(G)) correspond pre-

cisely to equivalence classes of points, where a ∼ b if and only if dζe(a)e = dζe(b)e

for all e ∈ E(G) (Remark 5.2.7(ii)).
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(iii) Let F = Ca for a ∈ rel. int(F ) and F ′ = Ca′ for a′ ∈ rel. int(F ′). Since

a′ is in F as well, it satisfies ζe(a
′) ≤ dζe(a)e for all e ∈ E(G). Therefore we have

dζe(a′)e ≤ dζe(a)e. But since F ′ 6= F there must exist some e such that ζe(a
′) ∈ Z

but ζe(a) 6∈ Z and therefore dζe(a′)e < dζe(a)e. The result now follows from part (ii)

because for this edge, by (14), the exponent of xe+ in mF ′ must be strictly less than

the exponent of xe+ in mF .

Theorem 5.3.2. The complex (FG, ∂) is a minimal Div(G)-graded free resolution of

the module UG over R.

Proof. We need to show two things:

(i) (FG, ∂) is exact, i.e. (FG, ∂) is a cellular free resolution of UG.

(ii) For distinct faces F ′ ( F of Del(Prin(G)) with codim(F, F ′) = 1 we have

mF 6= mF ′ , i.e. no unit of R appears in differential maps and the resolution

(FG, ∂) is minimal.

By [9, Proposition 1.2], we know (i) is equivalent to

(i’) For each E ∈ Div(G), the subcomplex of Del(Prin(G)) on the lattice points

{D ∈ Prin(G) : D ≤ E} is acyclic over the field K, i.e. its reduced homology

H̃i with K coefficients vanishes for all i ≥ 0.

(i’) follows from Lemma 5.2.8 and (ii) follows from Lemma 5.3.1(iii).

From Theorem 5.3.2 and [9, Corollary 3.7] we immediately obtain the following

theorem.

Theorem 5.3.3. The quotient cell complex Del(Prin(G))/Prin(G) supports a Pic(G)-

graded minimal free resolution for IG.

Example 5.3.4. Consider the graph K3 with a fixed orientation as in Figure 4.
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u1

u3 u2
e1

e3 e2

Figure 4: Graph K3 and a fixed orientation O

The lattice Prin(G) is two dimensional and is depicted in Figure 5. This lattice

“lives in” C0(G,R) = span{(u1), (u2), (u3)} ∼= R3. In the picture c1 = ∆(χu1) =

2(u1)− (u2)− (u3), c2 = ∆(χu2) = −(u1) + 2(u2)− (u3), and c3 = ∆(χu3) = −(u1)−

(u2) + 2(u3).

ζe1 = 0

ζe2 = 0

ζe3 = 0

ζe1 = 1

ζe2 = 1

ζe3 = 1

c1

c2

c3 0

Figure 5: The lattice (Prin(G), 〈·, ·〉en) and the associated cellular decomposition of
the ambient space Div0

R(G)

The cell decomposition Del(Prin(G)) is the Delaunay decomposition of Div0
R(G)

with respect to the principal lattice and the energy distance (Theorem 5.2.6(iv))

which coincides with the infinite hyperplane arrangement (11). The quotient cell

complex Del(Prin(G))/Prin(G) of the torus has one 0-cell {v} (orbit of the origin),

three 1-cells {e, e′, e′′} (orbits of green, red, and black edges), and two 2-cells {f, f ′}
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(orbits of upward and downward triangles).

In Figure 6 we have chosen a fundamental domain for the lattice, and have labeled

all cells of this fundamental domain according to the recipe described in the beginning

of §5.3 or, equivalently, in Lemma 5.3.1(ii). For simplicity we have used xi instead of

xui . The labeled cell complex in Figure 6 is enough to completely describe a minimal

free resolution for both IG and UG. Concretely, the minimal resolution of IG is as

follows:

0→ R(−mf )⊕R(−mf ′)
∂2−→ R(−me)⊕R(−me′)⊕R(−me′′)

∂1−→ R(−mv) .

As usual, assume [F ] denotes the generator of R(−mF ). Let

me = x2
1 , me′ = x1x2 , me′′ = x2

2 ,

mf = x2
1x2 , mf ′ = x1x

2
2 .

The homogenized differential operator (see (13)) (∂1, ∂2) of the cell complex is de-

scribed as follows:

∂1([e]) =
x2

1

1
[v]− x2

1

x2
1

x2x3

[v] = (x2
1 − x2x3)[v] ,

∂1([e′]) =
x1x2
x1x2

x2
3

[v]− x1x2

1
[v] = (x2

3 − x1x2)[v] ,

∂1([e′′]) =
x2

2

x2
2

x1x3

[v]− x2
2

1
[v] = (x1x3 − x2

2)[v] ,

∂2([f ]) =
x2

1x2

x2
1

[e]− x2
1x2

x2
1x2

x3

[e′′] +
x2

1x2

x1x2

[e′] = x2[e]− x3[e′′] + x1[e′] ,

∂2([f ′]) =
x1x

2
2

x1x2
2

x3

[e]− x1x
2
2

x2
2

[e′′] +
x1x

2
2

x1x2

[e′] = x3[e]− x1[e′′] + x2[e′] .

Clearly IG is the image of ∂1 after identifying [v] with 1 ∈ R (see Theorem 3.2.2).

Note that, since the labeling is compatible with the action of the lattice, any other

fundamental domain would give rise to the exact same description of the differential

maps.

34



x2
2

x1x3

x2
1

x2x3

x1x2

x2
3

1

x2
1

x2
2

x1x2

x2
1x2

x3

x1x2
2

x3

x2
1x2

x1x
2
2

Figure 6: A choice of fundamental domain with labels

Remark 5.3.5. It follows from the computation

〈∆(f),∆(g)〉en =
∑

v∈V (G)

f(u)∆(g)(u)

=
∑

v∈V (G)

f(u)(∂OdOg)(u)

=
∑
e∈E(G)

(dOf)(e)(dOg)(e)

that there is an isometry between the principal lattice (Prin(G), 〈·, ·〉en) and the cut

lattice (lattice of integral cocyles) (L(G), 〈·, ·〉) defined in §6.2. It is natural to ask

whether there are other ideals defined directly in terms of the cut lattice and, if

so, whether there are nice relations between these ideals. These questions will be

answered in this work (see §10, especially Remark 10.0.8).

Remark 5.3.6. It is possible to give a polyhedral cellular free resolution of the ideal

Mq
G using the local picture at the origin of Del(Prin(G)) (or, alternatively, using

the graphic hyperplane arrangement – see Remark 5.2.7(ii)) and study its Gröbner

relation with IG, similar to what we will do for Oq
G in relation to JG in §7. Instead,
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we will show (in §10) that one could alternatively relate IG to JG and Mq
G to Oq

G via

a regular sequence. As a corollary, this gives an alternate way to describe polyhedral

cellular free resolutions of all these ideals and to compare their Betti numbers.

Remark 5.3.7. The minimal free resolution of Mq
G is a Koszul complex when G is

a tree because Mq
G is generated by the variables {xv : v 6= q} (see Theorem 3.2.2).

When G is a complete graph, the minimal free resolution of Mq
G is given by a Scarf

complex (see, e.g., [53, Corollary 6.9]).
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CHAPTER VI

GRAPHS, ARRANGEMENTS, AND INTEGRAL CUTS

6.1 Graphic arrangements and connected partitions

Following [32], we define the graphic hyperplane arrangement as follows. An impor-

tant feature that we want to emphasize in this section is that this arrangement nat-

urally “lives in” the Euclidean space C0(G,R), i.e. the vector space of all real-valued

functions on V (G) endowed with the bilinear form

〈f1, f2〉 =
∑

v∈V (G)

f1(v)f2(v) .

Recall that C1(G,R) denotes the vector space of all real-valued functions on E(G),

and d : C0(G,R)→ C1(G,R) denotes the usual coboundary map.

For each edge e ∈ E(G), let He ⊂ C0(G,R) denote the hyperplane

He = {f ∈ C0(G,R) : (df)(e) = 0} .

Note that Hē = He. Consider the arrangement

H′G = {He : e ∈ E(G)}

in C0(G,R). Since G is connected, we know
⋂
e∈E(G)He is the 1-dimensional space

of constant functions on V (G), which is the same as the kernel of d. We define the

graphic arrangement corresponding to G, denoted by HG, to be the restriction of H′G

to the hyperplane

(Ker(d))⊥ = {f ∈ C0(G,R) :
∑

v∈V (G)

f(v) = 0} . (15)

The intersection poset of HG (i.e. the collection of nonempty intersections of

hyperplanes He ordered by reverse inclusion) is naturally isomorphic to the poset of
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connected partitions of G (i.e. partitions of V (G) whose blocks induce connected

subgraphs). See, e.g., [32, p.112].

It is well-known that there is a one-to-one correspondence between acyclic ori-

entations of G and the regions of HG (see, e.g., [32, Lemma 7.1 and Lemma 7.2]).

Given any function f ∈ C0(G,R) one can label each vertex v with the real number

f(v). In this way we obtain an acyclic partial orientation of G by directing v to u

if f(u) < f(v). Recall this means we have an acyclic orientation on the graph G/f

obtained by contracting all unoriented edges (i.e. all edges {u, v} with f(u) = f(v)).

We are mainly interested in acyclic orientations of G with a unique source at

q ∈ V (G). For this purpose, we fix a real number c > 0 and define

Hq,c = {f ∈ C0(G,R) : f(q) = −c} .

The restriction of the arrangement HG to Hq,c will be denoted by Hq,c
G . We denote

the bounded complex (i.e. the polyhedral complex consisting of bounded cells) of Hq,c
G

by Bq,cG .

Remark 6.1.1.

(i) By (15), the restriction of HG to Hq,c coincides with the restriction of HG to

(Hq,c)′ = {f ∈ C0(G,R) :
∑
v 6=q

f(v) = c} .

(ii) We will see in §7.5 (e.g. Lemma 7.5.2(ii)) that it is most natural (although not

necessary) to choose 0 < c < 1.

The following lemma relates regions of Bq,cG to acyclic orientations with unique

source at q (see also [32, Theorem 7.3]).

Lemma 6.1.2. Each f ∈ Bq,cG gives an acyclic partial orientation of G with a unique

source at q. In particular f(v) ≥ f(q) for any edge {v, q} ∈ E(G).
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Proof. Since we are considering the orientation on G/f we may assume f(u) 6= f(v)

for any {u, v} ∈ E(G). Since any acyclic orientation of G has at least one source

vertex1, it suffices to show that no vertex v 6= q can be a source in the orientation

corresponding to f .

Let w be a vertex such that f(w) is maximum (i.e. f(w) ≥ f(v) for all v ∈ V (G)).

To obtain a contradiction, assume s 6= q is a source and therefore f(v) > f(s) for all

{v, s} ∈ V (G).

Recall that χv denotes the characteristic function of v ∈ V (G). It follows that

ft = f + t(χw − χs) ∈ C0(G,R)

also belongs to the same cell as f for any t ≥ 0. This is because:

• ft(q) = f(q) = −c: note that s 6= q by assumption. Moreover, since f(q) = −c

and
∑

v 6=q f(v) = c > 0, there must be at least one vertex v with f(v) > 0 >

f(q). Therefore f(q) cannot be maximum among f(v)’s, which means w 6= q.

•
∑

v∈V (G) ft(v) =
∑

v∈V (G) f(v) + t− t = 0.

• If {u, v} ∈ E(G), we have ft(u) > ft(v) if and only if f(u) > f(v). Note that

ft and f differ only in places w and s. So this claim follows from the fact that

ft(w) = f(w) + t ≥ f(w) and f(s) ≥ f(s)− t = ft(s).

However, not all ft for t ≥ 0 can be contained in the bounded complex because

they constitute a ray in C0(G,R) emanating from f .

Remark 6.1.3. It follows (see also [32, Corollary 7.3]) that the number of i-dimensional

cells in Bq,cG is equal to the number of acyclic partial orientations of G with (i + 2)

(connected) components having a unique source at q. For an example, see Exam-

ple 7.5.5.

1It is an elementary fact that any acyclic orientation of G has at least one source and one sink.
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6.2 Lattice of integral cuts and graphic infinite arrange-
ments

Fix an arbitrary orientation O ⊂ E(G). Consider the restricted coboundary map

dO : C0(G,Z)→ C1
O(G,Z) and the usual bilinear form on C1

O(G,Z) defined by

〈g1, g2〉 =
∑
e∈O

g1(e)g2(e) . (16)

The lattice of integral cuts (with respect to the orientation O) is by definition the

group of integral coboundaries Image(dO) inside C1
O(G,Z) with its bilinear form in-

duced from (16). It is denoted by L(G,O). When the orientation is clear we simply

denote it by L(G).

Remark 6.2.1. Consider the (unrestricted) coboundary map

d : C0(G,Z)→ C1(G,Z) ∼= C1
O(G,Z)⊕ C1

Ō(G,Z) .

Its image Λ = Image(d) is isomorphic to the lattice {(a,−a) : a ∈ L(G,O)}. The

choice of the orientation O gives a splitting of C1(G,Z) and of Λ.

We may identify C0(G,Z) with ZV (G) and C1
O(G,Z) with ZO. If we also fix a

labeling on the vertices and edges of the graph, then dO is represented by the matrix

BT , where B is the n×m vertex-edge incidence matrix of G. In this case, the lattice

of integral cuts L(G) is Image(BT ) ↪→ Zm. It is a well-known classical fact (due to

Poincaré) that the matrix B is totally unimodular in the sense of Example 4.2.3 (see,

e.g., [10, Proposition 5.3]). Therefore Theorem 4.3.1(iii) and Remark 4.3.2 apply to

this situation. The Delaunay cell decomposition corresponding to the lattice L(G)

will be denoted by Del(L(G)).

Here we list some properties of L(G) from [59]. Elements of L(G) are integral

1-coboundaries. A 1-coboundary is called elementary if it has minimal nonempty

support in L(G). An elementary element f ∈ L(G) is called primitive if f(v) ∈

{−1, 0,+1} for all v ∈ V (G). It follows from the total unimodularity that every
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elementary element of L(G) is an integral multiple of a primitive element of L(G) (see,

e.g., [59, §1 and §5]). Primitive elements of L(G) correspond precisely to bonds (i.e.

minimal edge-cuts, or, equivalently, edge-cuts connecting two connected subgraphs)

(see, e.g., [59, §1.3]). If f, g ∈ L(G), we say that g conforms to f if f(e)g(e) > 0 for

all e ∈ O with g(e) 6= 0. For any 0 6= f ∈ L(G), there exists a primitive element

conforming to f ([59, 1.23]). Moreover, f can be represented as a sum of primitive

elements, each conforming to f ([59, 1.24]).

41



CHAPTER VII

GRAPHIC ORIENTED MATROID IDEAL AND

LAWRENCE IDEAL

We next study some natural ideals associated to the cell complexes introduced in §6.

See [8] and [49] for a more general study of such constructions.

7.1 Graphic oriented matroid ideal

An oriented hyperplane arrangement is a real hyperplane arrangement along with a

choice of a “positive side” for each hyperplane. Equivalently, one may fix a set of linear

forms vanishing on hyperplanes to fix the “orientation”. For any oriented hyperplane

arrangement one can define (see [49]) the associated oriented matroid ideal: let {hj}

be m nonzero linear forms defining the hyperplane arrangement A with hyperplanes

Hj = {p ∈ V : hj(p) = cj} in a real affine space V . The oriented matroid ideal

associated to A is the ideal in 2m variables of the form:

OA = 〈m(p) : p ∈ V 〉 ⊂ K[w, z]

where for each p ∈ V

m(p) =
∏

hi(p)>ci

wi
∏

hi(p)<ci

zi .

Note that any two points in the relative interior of a cell will give rise to the same

monomial.

Consider the hyperplane arrangement Hq,c
G (defined in §6.1) which is contained in

a codimension 2 affine subspace of C0(G,R). Fixing an orientation O of the graph G

will fix the linear forms (df)(e) = f(e+) − f(e−) for e ∈ O and gives an orientation

to the hyperplane arrangement Hq,c
G . The oriented matroid ideal associated to this
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oriented hyperplane arrangement Hq,c
G will be denoted by Oq

G (instead of OHq,c
G

) and

will be called the graphic oriented matroid ideal associated to G and q. It follows from

the discussion in §6.1 that this ideal is independent of the choice of the real number

c > 0. In this situation, we may consider the variables w as {ye : e ∈ O} and the

variables z as {yē : e ∈ O} and then Oq
G ⊂ S.

7.2 Graphic Lawrence ideal

For any embedded integral lattice L ↪→ Zm one can define (see [58, Chapter 7]) a

binomial ideal JL in 2m variables, called the Lawrence ideal of L, by the following

formula:

JL = 〈wa+

za
− −wa−za

+

: a+, a− ∈ Nm, a = a+ − a− ∈ L〉 ⊂ K[w, z] .

When the lattice L is unimodular, the Lawrence ideal JL is called unimodular

([8]).

For simplicity, the unimodular Lawrence ideal associated to the unimodular lattice

of integral cuts L(G) will be denoted by JG (instead of JL(G)) and will be called the

graphic Lawrence ideal of G. Again, we may consider the variables w as {ye : e ∈ O}

and the variables z as {yē : e ∈ O} and then JG ⊂ S.

7.3 Labeling Bq,c
G and the minimal free resolution of Oq

G

The bounded polyhedral cell complex Bq,cG (defined in §6.1) supports a minimal free

resolution for the ideal Oq
G. To see this, we need to label the vertices of Bq,cG appro-

priately: each vertex f ∈ Bq,cG is labeled by the monomial

m(f) =
∏

e∈E(G)
(df)(e)>0

ye . (17)
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Remark 7.3.1. Fixing an orientation O will result in the factorization of m(f) as

m(f) =
∏
e∈O

f(e+)−f(e−)>0

ye
∏
e∈O

f(e−)−f(e+)>0

yē .

In this way, we obtain a labeling of all cells by the least common multiple con-

struction. It is easily seen that the label of any cell will be m(f) (as in (17)) for any

point f in the relative interior of that cell.

The following result is an application of [49, Theorem 1.3(b)] for the hyperplane

arrangement Hq
G.

Theorem 7.3.2. The labeled polyhedral cell complex Bq,cG gives a C1(G,Z)-graded

minimal free resolution for Oq
G. In particular, Oq

G is minimally generated by the

monomials m(f), as f ranges over the vertices of Bq,cG .

The fact that there is no unit in the corresponding differential maps is immediate

from the description of the labelings. All subcomplexes (Bq,cG )≤m are in fact con-

tractible, by a result of Björner and Ziegler ([14, Theorem 4.5.7]). See [49] for more

details, and Example 7.5.5 and Figure 11 for an example.

7.4 Labeling Del(L(G)) and the minimal free resolution of
JG

Fix an arbitrary orientation O ⊂ E(G) of G and consider the lattice of integral

cuts L(G) as in §6.2. As we have already discussed, it comes equipped with a

canonical polyhedral cell decomposition of the ambient real vector space L(G)R =

L(G) ⊗ R = Image(dO : C0(G,R) → C1
O(G,R)). This polyhedral cell decomposi-

tion, denoted by Del(L(G)), can be thought of as an infinite hyperplane arrangement

(Theorem 4.3.1(iii)), or more naturally, as the Delaunay decomposition of the ambient

space with respect to the lattice L(G) and the metric induced by its natural pairing

(16) (See Remark 4.3.2(ii)). We make this a labelled cell complex by assigning the
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label

b(a) =
∏

e∈E(G)

ya(e)
e (18)

to each vertex a ∈ L(G) ↪→ C1(G,R).

Remark 7.4.1. Fixing an orientation O will result in the factorization of this Laurent

monomial as

b(a) =
∏
e∈O

ya(e)
e

∏
e∈Ō

y−a(e)
e =

∏
e∈O

ya(e)
e /

∏
e∈O

y
a(e)
ē

for a ∈ L(G).

As usual, we extend the labeling to all faces by the least common multiple rule.

The associated complex of free C1(G,Z)-graded S-modules (see §5.1) is not S-finite.

By [8, Theorem 3.1] this complex is a minimal cellular free resolution of the (Laurent)

monomial module generated by the labels of the lattice points in L(G). This Laurent

monomial module can be thought of as the “universal cover” of JG; the Delaunay cell

complex is invariant under the translation by L(G) (Theorem 4.3.1 and Remark 4.3.2),

and the labeling is also compatible with this action. So we obtain a well-defined finite

cell complex on the quotient torus L(G)R/L(G), which we denote by Del(L(G))/L(G).

The following theorem is an application of [8, Theorem 3.5] (or [9, Theorem 3.2]) to

our setting.

Theorem 7.4.2. The quotient cell complex Del(L(G))/L(G) supports a (C1(G,Z)/Λ)-

graded minimal free resolution for JG.

Here Λ is the image of the (unrestricted) coboundary map d : C0(G,Z) →

C1(G,Z) (see Remark 6.2.1).

7.5 Gröbner relation between JG and Oq
G

Recall that the hyperplane arrangement Hq,c
G is naturally sitting inside C0(G,R),

and the Delaunay decomposition Del(L(G)) is an infinite hyperplane arrangement
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naturally sitting inside C1
O(G,R). The obvious map between these ambient spaces

is the (restricted) coboundary map dO : C0(G,R) → C1
O(G,R). As we will see, this

map relates the corresponding hyperplane arrangements and cell complexes, and this

relation translates into precise algebraic relations between JG and Oq
G.

First note that Ker(d) = Ker(dO) is the 1-dimensional space of constant functions

on V (G), and we have

L(G)R = Image(dO) ∼= C0(G,R)/Ker(d) ∼= C0(G,R) ∩ (Ker(d))⊥ .

Let e ∈ E(G). Under the induced isomorphism dO : C0(G,R) ∩ (Ker(d))⊥
∼−→ L(G)R,

the hyperplane

He|(Ker(d))⊥ = {f ∈ C0(G,R) : (df)(e) = 0} ∩ (Ker(d))⊥

is mapped to the hyperplane

Ge = {a ∈ L(G)R : ϕe(a) = 0} ,

where ϕe is the restriction of the functional e = e∗∗ ∈ C1(G,Z) to L(G)R. By

Example 4.2.3, Proposition 4.3.1(iii), and Remark 4.3.2(ii), the hyperplanes Ge are

precisely the hyperplanes passing through the origin in Del(L(G)).

Recall from §6.1 that the hyperplane arrangement Hq,c
G has another hyperplane

defined by

(Hq,c)′|(Ker(d))⊥ = {f ∈ C0(G,R) :
∑
v 6=q

f(v) = c} ∩ (Ker(d))⊥ . (19)

The real vector space L(G)R is spanned by {dO(χv) : v 6= q}. Under the induced

isomorphism dO : C0(G,R) ∩ (Ker(dO))⊥
∼−→ L(G)R, the hyperplane (19) is mapped

to the affine hyperplane

Gq,c = {a ∈ C1(G,R) : a =
∑
v 6=q

f(v)dO(χv) with
∑
v 6=q

f(v) = c} .
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This is a hyperplane passing through all points {c · dO(χv) : v 6= q}.

We denote the restriction of the arrangement {Ge}e∈E(G) to the affine hyperplane

Gq,c by Gq,cG . It follows that Gq,cG , upto a linear transformation, coincides with the

arrangement Hq,c
G , and therefore its bounded complex, which we denote by Aq,cG , may

be identified with Bq,cG .

Next we show that these geometric considerations nicely relate the labeling of

Bq,cG by monomials (described in §7.3) with the natural labeling of Aq,cG induced by

Del(L(G)) (described in §7.4). For this purpose, we will see that it is most natural to

assume 0 < c < 1. With this assumption, if the hyperplane Gq,c intersects a Delaunay

cell C, then C must contain the origin. By the least common multiple labeling rule,

this means that all such cells C have monomial labels in S.

To concretely describe these induced monomial labels, it suffices to find the labels

of the vertices in Gq,cG induced from the labels of the rays in the central hyperplane

arrangement {Ge : e ∈ E(G)}. These rays correspond to bonds dO(χB) for B ⊂ V (G)

(see §6.2). Such a ray intersects Gq,c if and only if for some real number t > 0 we have

tdO(χB) =
∑
v 6=q

f(v)dO(χv) ,

or equivalently

dO(tχB −
∑
v 6=q

f(v)χv) = 0 .

Since the kernel of dO consists of constant functions we must have

t
∑
v∈B

χv −
∑
v 6=q

f(v)χv = k
∑
v

χv (20)

for some constant k ∈ R.

We claim that q 6∈ B. Indeed, if q ∈ B, then evaluating (20) at q we obtain k = t

and therefore

t
∑
v∈Bc

χv = −
∑
v 6=q

f(v)χv .
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This implies that f(v) = −t < 0 for v ∈ Bc and f(v) = 0 for v ∈ B\{q}. But this is

impossible because
∑

v 6=q f(v) = c by assumption.

Since q 6∈ B, by evaluating (20) at q we obtain k = 0 and therefore

t
∑
v∈B

χv =
∑
v 6=q

f(v)χv ,

which implies that f(v) = t for v ∈ B and f(v) = 0 for v ∈ Bc\{q}. Since∑
v 6=q f(v) = c, we must have t = c

|B| . Conversely, for any nonempty subset B ⊂

V (G)\{q}, the ray corresponding to the simple cut dO(χB) intersects Gq,c at the

point c
|B|dO(χB). If we fix 0 < c < 1, then we always have 0 < c

|B| < 1 which means

that the point of intersection belongs to a cell in Del(L(G)) containing the origin. We

summarize these observations in the following proposition.

Proposition 7.5.1. Let ∅ 6= B ⊂ V (G). The ray corresponding to the bond dO(χB)

intersects Gq,c if and only if q 6∈ B. If 0 < c < 1, then the point of intersection belongs

to a cell in Del(L(G)) containing the origin.

The vertices of Aq,cG are the points of intersections with these rays. For each vertex

of Aq,cG we may assign the label corresponding to the 1-dimensional cell of Del(L(G))

containing that vertex. If we assume 0 < c < 1, this is a (non-Laurent) monomial

label that coincides with the labeling rule for Bq,cG described in §7.3. From this point

of view, it is straightforward to describe these labels combinatorially.

Lemma 7.5.2. For any A ( V (G) with q ∈ A the following holds.

(i) The label of the point dO(χAc) in the labeled complex Del(L(G)) is

b(dO(χAc)) =

∏
e∈E(Ac,A) ye∏
e∈E(A,Ac) ye

.

(ii) For 0 < c < 1, the induced label on the vertex Aq,cG corresponding to the bond

dO(χAc) is ∏
e∈E(Ac,A)

ye .
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Proof. (i) By (18) we have

b(dO(χAc)) =
∏

e∈E(G)

yd(χAc )(e)
e

=
∏

e∈E(G)

yχAc (e+)−χAc (e−)
e

=

∏
e∈E(Ac,A) ye∏
e∈E(A,Ac) ye

.

(ii) The label of the origin is b(0) = 1. Therefore, by the least common multi-

ple construction, the label of the one-dimensional cell {0, dO(χAc)} in Del(L(G)) is∏
e∈E(Ac,A) ye. The result now follows from Proposition 7.5.1.

Since the labeled complex Aq,cG (for 0 < c < 1) coincides with the labeled complex

Bq,cG , we might as well think of the ideal Oq
G as constructed from Aq,cG . The advantage

of this point of view is a precise Gröbner relation between Oq
G and JG coming from

the described relation of Aq,cG and Del(L(G)).

Lemma 7.5.3. Intersection of cells in Del(L(G)) with the hyperplane Gq,c induces a

bijection between (i+1)-dimensional cells of Del(L(G))/L(G) and i-dimensional cells

of Aq,cG for all 0 ≤ i ≤ n− 2.

Proof. It suffices to only consider cells in Del(L(G)) containing the origin; all other

cells in Del(L(G)) can be obtained by translating such cells by L(G). The primitive

(or indecomposable) elements of L(G) correspond to bonds (see §6.2). Therefore the

vertex set of any cell in Del(L(G)) containing the origin is of the form {0} ∪ P for

some P ⊂ {dO(χB) : ∅ 6= B ⊂ V (G)}. Since dO(χBc) = −dO(χB), it suffices to

restrict our attention to the case where P ⊂ {dO(χB) : ∅ 6= B ⊂ V (G), q 6∈ B}. By

Proposition 7.5.1, these are precisely those cells that have nonempty intersection with

Gq,c.

Proposition 7.5.4.
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(i) A generating set for the ideal JG is ∏
e∈E(Ac,A)

ye −
∏

e∈E(A,Ac)

ye : A ( V (G), q ∈ A

 .

If we consider only those subsets A of V (G) such that both G[A] and G[Ac] are

connected, then we have a minimal generating set for JG.

(ii) The minimal generating set in part (i) is also a Gröbner basis with respect to

any term order (i.e. is a universal Gröbner basis).

(iii) A minimal generating set for the ideal Oq
G is ∏

e∈E(Ac,A)

ye : A ( V (G), q ∈ A,G[A] and G[Ac] are connected

 .

(iv) Oq
G is the initial ideal of JG with respect to any term order ≺q with the property

that ∏
e∈E(A,Ac)

ye ≺q
∏

e∈E(Ac,A)

ye

for every A ( V (G) with q ∈ A such that both G[A] and G[Ac] are connected.

Proof. (i) It follows from the discussion in §5.1, Theorem 7.4.2 and [9, proof of The-

orem 3.2] that a minimal generating set for JG is given by binomials

mF

mF ′
− mF

m0

,

where F is in a fundamental set of representatives of 1-cells in Del(L(G)) connecting

0 to F = dO(χAc) for A ( V (G) and q ∈ A.

By Lemma 7.5.2(i), we have

mF ′ = b(dO(χAc)) =

∏
e∈E(Ac,A) ye∏
e∈E(A,Ac) ye

, m0 = 1,

mF = lcm(mF ′ ,m0) =
∏

e∈E(Ac,A)

ye
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and therefore

mF

mF ′
− mF

m0

=
∏

e∈E(A,Ac)

ye −
∏

e∈E(Ac,A)

ye .

The rest of part (i) is immediate.

(ii) follows from the general fact that in any Lawrence ideal, a minimal binomial

generating set is a Gröbner basis with respect to any term order ([58, Theorem 7.1]).

In our concrete situation, one can also easily verify (as in the proof of Theorem 3.2.2

given in [48, Theorem 5.1]) that the S-polynomial of the two binomials corresponding

to the cuts (A,Ac) and (B,Bc) can be reduced to zero by the binomials corresponding

to the cuts (A\B, (A\B)c) and (B\A, (B\A)c).

(iii) It follows from the discussion in §5.1, Theorem 7.3.2, and the fact that the

labeled cell complex Aq,cG coincides with the labeled complex Bq,cG , that a minimal

generating set for Oq
G is given by the monomials mF as F varies over the vertices

of the bounded cell complex Aq,cG . By Proposition 7.5.1 and Lemma 7.5.2(ii), these

labels are precisely of the form ∏
e∈E(Ac,A)

ye

for A ( V (G) with q ∈ A such that the edges between (A,Ac) form a bond.

(iv) follows from (ii) and (iii).

Example 7.5.5. Consider the graph G depicted in Figure 7 with the fixed orientation

O. Let q be the distinguished (red) vertex at the bottom. Acyclic partial orientations

of G with unique source at q are depicted in Figures 8–10.

e5

e3e1

e4e2

Figure 7: Graph G and a fixed orientation O
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Figure 8: Acyclic partial orientations with 2 components

Figure 9: Acyclic partial orientations with 3 components

Figure 10: Acyclic partial orientations with 4 components

Consider the arrangement H′G = {He1 , . . . ,He5}. The graphic arrangement Hq,c
G

(for some c > 0) is two-dimensional and is depicted in Figure 11. Its bounded complex

Bq,cG is the bounded part of this figure. Recall that the graphic arrangement “lives

in” C0(G,R), which may be identified with R4 after fixing a labeling of the vertices.

For each hyperplane labeled He, the small arrow next to it denotes the side where

(df)(e) > 0. The hyperplane Hē coincides with He, but its arrow will be reversed.

We have also labeled the 0-cells according to (17).

The polynomial ring S has 10 variables:

{ye, yē : e ∈ O} = {ye1 , ye2 , ye3 , ye4 , ye5 ; yē1 , yē2 , yē3 , yē4 , yē5} .

By Theorem 7.3.2, the associated oriented matroid ideal Oq
G is minimally gener-

ated by the labels of the 0-cells:

Oq
G = 〈yē1ye4ye5 , ye2ye3ye5 , yē3ye4 , yē1ye3ye5 , ye1ye2 , ye2ye4ye5〉 . (21)
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Figure 11: Hq
G, BqG, and the monomial labels on the vertices

Note that the indices appearing in the minimal generating set correspond precisely

to the oriented edges leaving the connected partition containing q (i.e. the blue edges

in Figure 8). This is what we expect by Proposition 7.5.4(iii).

The lattice of integral cuts L(G) is 3-dimensional. Instead of drawing it, we may

directly write a minimal generating set for JG using Proposition 7.5.4(i):

JG = 〈yē1ye4ye5 − ye1yē4yē5 , ye2ye3ye5 − yē2yē3yē5 , yē3ye4 − ye3yē4 , yē1ye3ye5 − ye1yē3yē5 ,

ye1ye2 − yē1yē2 , ye2ye4ye5 − yē2yē4yē5〉 .

The first term in each binomial is the dominant term for the term order ≺q. The

bounded complex BqG has six 0-cells {p1, . . . ,p6}, nine 1-cells {E1, . . . , E9}, and four 2-

cells {F1, . . . , F4}. These numbers correspond to the acyclic orientations of Figure 8,

Figure 9, and Figure 10, as well as the Betti numbers of Oq
G and JG. Moreover,

BqG supports a minimal free resolution for Oq
G. To explicitly describe this minimal

resolution, let

E1 = {p1,p2}, E2 = {p2,p3}, E3 = {p1,p5}, E4 = {p2,p4}, E5 = {p3,p4}
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E6 = {p4,p5}, E7 = {p5,p6}, E8 = {p4,p6}, E9 = {p3,p6} ,

F1 = {p1,p2,p4,p5}, F2 = {p2,p3,p4}, F3 = {p4,p5,p6}, F4 = {p3,p4,p6} .

We extend the labeling on the vertices to the whole BqG by the least common multiple

construction. For example,

mE2 = yē1yē3ye4ye5 , mE4 = yē1ye2ye4ye5 , mE5 = ye2yē3ye4ye5 , mE6 = ye2ye3ye4ye5 ,

mF2 = yē1ye2yē3ye4ye5 .

Then the minimal resolution of Oq
G is as follows.

0→
4⊕
i=1

S(−mFi
)
∂2−→

9⊕
i=1

S(−mEi
)
∂1−→

6⊕
i=1

S(−mpi
)
∂0−→ S � S/Oq

G .

As usual, assume [F ] denotes the generator of S(−mF ). The homogenized differential

operator of the cell complex (∂0, ∂1, ∂2) is as described in (13). For example

∂0([pi]) = mpi
= m(pi) ,

∂1([E6]) =
ye2ye3ye4ye5
ye2ye4ye5

[p4]− ye2ye3ye4ye5
ye2ye3ye5

[p5] = ye3 [p4]− ye4 [p4] ,

∂2([F2]) =
yē1ye2yē3ye4ye5
yē1yē3ye4ye5

[E2]− yē1ye2yē3ye4ye5
yē1ye2ye4ye5

[E4] +
yē1ye2yē3ye4ye5
ye2yē3ye4ye5

[E5]

= ye2 [E2]− yē3 [E4] + yē1 [E5] .

Although JG has the same Betti table as Oq
G, it is not possible to read the min-

imal free resolution for JG directly from BqG; one really needs to consider the cell

decomposition of the torus L(G)R/L(G).

Example 7.5.6. Consider the graph K3 with a fixed orientation as in Figure 12.

The lattice of integral cuts L(G) is two-dimensional and is depicted in Figure 13.

This picture should be compared with Figure 5 (see Remark 5.3.5). This lattice
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u1

u3 u2
e1

e3 e2

Figure 12: Graph K3 and a fixed orientation O

ϕ1 = 0

ϕ2 = 0

ϕ3 = 0

ϕ1 = 1

ϕ2 = 1

ϕ3 = 1

a1

a2

a3 0

Gq,c

Figure 13: Cut lattice L(G)

“lives in” C1
O(G,R) = span{e∗1, e∗2, e∗3} ∼= R3. In the picture a1 = dO(χu1) = e∗2 − e∗3,

a2 = dO(χu2) = e∗1 − e∗2, and a3 = dO(χu3) = e∗3 − e∗1.

The cell decomposition Del(L(G)) is the Delaunay decomposition of L(G)R with

respect to the cut lattice and the usual Euclidean metric (cf. Remark 4.3.2(ii)),

which coincides with an infinite hyperplane arrangement (Theorem 4.3.1(ii) and §6.2).

The hyperplanes at the origin are defined by ϕi = ei|L(G)R = 0. The quotient cell

decomposition Del(L(G))/L(G) of the torus L(G)R/L(G) has one 0-cell {p} (the orbit

of the origin), three 1-cells {E,E ′, E ′′} (the orbits of the green, red, and black edges),

and two 2-cells {F, F ′} (the orbits of the upward and downward triangles). Assume

55



that q = u3 is the distinguished vertex. The hyperplane Gq,c is the hyperplane passing

through points ca1 and ca2. In the figure c is roughly 1
3
. The bounded complex of

the intersection of this hyperplane with the arrangement at the origin is denoted by

a solid blue segment. This is Aq,cG , which is combinatorially equivalent to Bq,cG (via the

coboundary map).

In Figure 14, we have chosen a fundamental domain for the lattice, and have

labeled all cells of this fundamental domain according to the recipe described in §7.4.

This labeling induces a labeling on Aq,cG (compatible with the labeling of Bq,cG ) which

is also given in the figure. The labelled cell complexes in Figure 14 are enough to

completely describe minimal free resolutions for JG and for OG. Concretely, the

minimal resolution of JG is as follows:

0→ S(−mF )⊕ S(−mF ′)
∂2−→ S(−mE)⊕ S(−mE′)⊕ S(−mE′′)

∂1−→ S(−mp) .

As usual, assume [F ] denotes the generator of S(−mF ). The labels of cells in

Del(L(G))/L(G) are:

mE = ye2yē3 , mE′ = ye1yē3 , mE′′ = ye1yē2 ,

mF = ye1ye2yē3 , mF ′ = ye1yē2yē3 .

The homogenized differential operator (see (13)) of the cell complex (∂1, ∂2) is de-

scribed as follows:

∂1([E]) =
ye2yē3

1
[p]− ye2yē3

ye2yē3

yē2ye3

[p] = (ye2yē3 − yē2ye3)[p] ,

∂1([E ′]) =
ye1yē3
ye1yē3

yē1ye3

[p]− ye1yē3
1

[p] = (yē1ye3 − ye1yē3)[p] ,

∂1([E ′′]) =
ye1yē2
ye1yē2

yē1ye2

[p]− ye1yē2
1

[p] = (yē1ye2 − ye1yē2)[p] ,

∂2([F ]) =
ye1ye2yē3
ye2yē3

[E]− ye1ye2yē3
ye1ye2yē3

ye3

[E ′′] +
ye1ye2yē3
ye1yē3

[E ′] = ye1 [E]− ye3 [E ′′] + ye2 [E ′] ,
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∂2([F ′]) =
ye1yē2yē3
ye1yē2yē3

yē1

[E]− ye1yē2yē3
ye1yē2

[E ′′] +
ye1yē2yē3
ye1yē3

[E ′] = yē1 [E]− yē3 [E ′′] + yē2 [E ′] .

Clearly JG is the image of ∂1 after identifying [p] with 1 (see Proposition 7.5.4).

Since the labeling is compatible with the action of the lattice, any translation of this

fundamental domain would give rise to the exact same description of the differential

maps.

The minimal resolution of Oq
G can be read from the bounded complex Aq,cG . If

we identify the name of each cell in Aq,cG with the name of the associated cell in

Del(L(G)), we have

0→ S(−mF )⊕ S(−mF ′)
∂̃1−→ S(−mE)⊕ S(−mE′)⊕ S(−mE′′)

∂̃0−→ S ,

where

∂̃0([E]) = mE = ye2yē3 ,

∂̃0([E ′]) = mE′ = ye1yē3 ,

∂̃0([E ′′]) = mE′′ = ye1yē2 ,

∂̃1([F ]) =
ye1ye2yē3
ye2yē3

[E]− ye1ye2yē3
ye1yē3

[E ′] = ye1 [E]− ye2 [E ′] ,

∂̃1([F ′]) =
ye1yē2yē3
ye1yē3

[E ′]− ye1yē2yē3
ye1yē2

[E ′′] = yē2 [E ′]− yē3 [E ′′] .

The ideal Oq
G is the image of ∂̃0 (see Proposition 7.5.4). This example is, of course,

closely related to Example 5.3.4. The general relationship between these two con-

structions is explained in Remark 10.0.8.

7.6 Potential theory and Gröbner weight functionals for JG

Let C0(G,R) denote the real vector space spanned by V (G), and let C1(G,R) denote

the real vector space spanned by E(G). The usual boundary operator ∂ : C1(G,R)→

C0(G,R) is defined by

(∂(σ))(v) =
∑
e+=v

σ(e)−
∑
e−=v

σ(e) .
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ye2yē3

ye1ye2yē3

ye1ye2yē3

Figure 14: A choice of fundamental domain with labels (left) , Aq,cG with its induced
labels (right)

An element σ ∈ C1(G,R) gives a map σ : C1(G,Z) → R by sending f to f(σ).

So it may be thought of as a weight functional for the ideal JG. Our next goal is

to study the weight functionals σ ∈ C1(G,R) that represent the term order ≺q in

Proposition 7.5.4(iv). For our application, a very important class of examples arises

from weight functionals representing <q for IG as studied in §3.3 (see Lemma 3.3.1,

Definition 3.3.3, or (6)).

Proposition 7.6.1. Let ϑ ∈ C0(G,R) be any weight functional representing <q for

IG (i.e. Mq
G = inϑ (IG)). Then the 1-chain σ ∈ C1(G,R) defined by

σ(e) = ϑ(e+) for all e ∈ E(G)

represents a term order ≺q for JG with Oq
G = inσ(JG).

Proof. By Proposition 7.5.4, the term order ≺q is characterized by requiring

∏
e∈E(A,Ac)

ye ≺q
∏

e∈E(Ac,A)

ye
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for every A ( V (G), where q ∈ A with G[A] and G[Ac] connected. Since (see

Lemma 7.5.2) ∏
e∈E(Ac,A) ye∏
e∈E(A,Ac) ye

=
∏

e∈E(G)

yd(χAc )(e)
e ,

we have Oq
G = inσ(JG) if and only if

σ(d(χAc)) =
∑
e∈E(G)

σ(e) · (d(χAc))(e) > 0 (22)

for all bonds d(χAc)(e) associated to A ( V (G) with q ∈ A. Since ∂ is the adjoint to

d, (22) is equivalent to

∑
v∈V (G)

(∂(σ))(v) · χAc(v) > 0 . (23)

Since σ(e) = ϑ(e+), we have

(∂(σ))(v) =
∑
e+=v

σ(e)−
∑
e−=v

σ(e)

=
∑
e+=v

ϑ(e+)−
∑
e−=v

ϑ(e+)

= deg(v)ϑ(v)−
∑

{u,v}∈E(G)

ϑ(u)

= ∆(ϑ)(v) .

Therefore (see (4))∑
v∈V (G)

(∂(σ))(v) · χAc(v) =
∑

v∈V (G)

∆(ϑ)(v) · χAc(v) > 0

and (23) holds.

Definition 7.6.2. Let ϑq ∈ C0(G,Z) denote the non-negative, integral functional

defined in Definition 3.3.3. We denote by λq the associated non-negative, integral

weight functional in C1(G,R) defined by

λq(e) = ϑq(e+) for all e ∈ E(G)

as in Proposition 7.6.1 .
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7.7 Gröbner cone of Oq
G

Next we will describe the Gröbner cone associated to Oq
G. As in §3.4, this cone is

intimately related to potential theory and Green’s functions.

The description of this cone is most elegant when G does not have a cut vertex.

Cut vertices introduce linear subspaces in the Gröbner cone and are slightly tedious

(but similar) to deal with. Throughout this section, we will therefore assume that G

is 2-vertex-connected. This condition is equivalent to assuming that the lattice L(G)

is indecomposable ([2, Proposition 4]).

Proposition 7.7.1. Assume G is 2-vertex-connected. Then σ ∈ C1(G,R) represents

a term order ≺q for JG with Oq
G = inσ(JG) if and only if for all p ∈ V (G)\{q} we

have

βp := (∂(σ))(p) > 0 .

Proof. We have already seen that σ ∈ C1(G,R) represents a term order ≺q for JG

with Oq
G = inσ(JG) if and only if (23) holds for all bonds d(χAc)(e) associated to

A ( V (G) with q ∈ A. Since we have assumed there is no cut vertex, the star of

every vertex gives a bond, so it is necessary (setting Ac = {p} for p 6= q in (23)) to

have βp = (∂(σ))(p) > 0. This condition is also sufficient because then for any bond

d(χAc)(e) associated to A ( V (G) with q ∈ A, we get∑
v∈V (G)

(∂(σ))(v) · χAc(v) =
∑

v∈V (G)

βv ·
∑
p∈Ac

χp(v) =
∑
p∈Ac

βp > 0

and (23) holds.

Therefore σ ∈ C1(G,R) is a solution to ∂(σ) = β for β =
∑

p∈V (G) βv(v) in Div0(G)

with βp > 0 for p 6= q.

After identifying C1(G,R) with C1(G,R) (by sending e to e∗) we have the orthog-

onal (“Hodge”) decomposition

C1(G,R) ∼= Ker(∂)⊕ Image(d) .
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Let σ = σ′ + σ′′ for σ′ ∈ Ker(∂) and σ′′ = d(ψ) ∈ Image(d) for ψ ∈ C0(G,R). Then

∂(σ) = β if and only if ∂d(ψ) = ∂(σ′′) = β. By Remark 3.0.1 ∂d = 2∆, so

∆ψ =
1

2
β .

It follows from the definition of the Green’s function jq(p, v), together with the

fact that the Laplacian operator has a one dimensional zero-eigenspace generated by

1, that:

ψ =
1

2

∑
p∈V (G)

βpjq(p, ·) + k · 1

for some constant k ∈ R. Therefore

σ(e) = σ′(e) + σ′′(e) = σ′(e) + (d(ψ))(e) = σ′(e) +
1

2

∑
p∈V (G)

βp(jq(p, e+)− jq(p, e−)) .

We summarize these observations in the following theorem.

Theorem 7.7.2. Assume G is 2-vertex connected. The 1-chain σ ∈ C1(G,R) repre-

sents ≺q for JG if and only if there exist σ′ ∈ Ker(∂) and real numbers β′p > 0 (for

p ∈ V (G)) such that

σ(e) = σ′(e) +
∑

p∈V (G)

β′p(jq(p, e+)− jq(p, e−))

for all e ∈ E(G).

In other words σ (up to an element of the “extended cycle space” Ker(∂)) is in the

interior of the cone generated by the vectors (jq(p, e+) − jq(p, e−))e∈E(G) for various

p ∈ V (G). It is easy, using [6, Construction 3.1], to show that these vectors are

independent.
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CHAPTER VIII

REGULAR SEQUENCES, MINIMAL FREE

RESOLUTIONS, AND FLAT FAMILIES

8.1 “Nice” gradings and Nakayama’s lemma for polyno-
mial rings

Let S be a polynomial ring over K in r variables {z1, . . . , zr}. Let m denote the ideal

consisting of all polynomials with zero constant term. Let M be a finitely generated

Z-graded module over S. Nakayama’s lemma for Z-graded polynomial rings is the

statement that mM = M implies M = 0.

The proof of this lemma is significantly simpler than the proof of the analogues

statement for local rings; taking i to be the least integer such that Mi 6= 0, we see

that the graded piece Mi cannot appear in mM , so mM 6= M unless M = 0.

The above version of Nakayama’s lemma is a statement about Z-graded polyno-

mial rings and modules. It naturally extends to other gradings, provided that the

grading is “nice”. Let A be an abelian group, and assume the polynomial ring S is

endowed with an A-valued degree map (semigroup homomorphism) degA : Nr → A.

Let Sa denote the K-vector space consisting of all homogeneous polynomials having

degree a ∈ A. Then S has the direct sum decomposition

S =
⊕
a∈A

Sa

satisfying Sa · Sb ⊆ Sa+b.

Definition 8.1.1. We call an A-grading of S “nice” if there exists a group homomor-

phism u′ : A → Z such that the semigroup homomorphism u := u′ ◦ degA : Nr → Z

has the following properties
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(i) u(v) ≥ 0 for all v ∈ Nr,

(ii) u(v) = 0 if and only if v = (0, 0, . . . , 0).

For a “nice” A-grading of S, we automatically have S0 = K. This is because S0

is spanned by the set of all monomials zv satisfying degA(v) = 0. Since u′(0) = 0, it

follows that u(v) = 0 and (ii) implies that v = (0, 0, . . . , 0). It follows that, when we

have a “nice” grading,
⊕

a∈A\{0} Sa coincides with the maximal ideal m consisting of

all polynomials with zero constant term.

It is clear that the usual (coarse) Z-grading is “nice” in the above sense. The

following example generalizes the (fine) Zr-grading.

Example 8.1.2. Let ω = (ω1, ω2, . . . , ωr) be an integral positive (i.e. ωi ∈ Z>0)

weight vector. Let ei denote the standard vector having 1 in position i and 0 elsewhere.

Consider the grading degω : Nr →
⊕r

i=1 Zωiei defined by sending ei to ωiei. This is a

“nice” grading. Indeed, let u′ :
⊕r

i=1 Zωiei → Z be the group homomorphism defined

by sending ωiei to ωi. Then the induced map u : Nr → Z is defined by sending ei to

ωi, and (i) and (ii) immediately follow from the positivity of the ωi’s. These are the

“positive multigradings” in the sense of [46, Definition 8.7].

Example 8.1.3. Consider the polynomial ring R = K[x] in variables {xv : v ∈

V (G)}. Each monomial is of the form xD for some effective divisor D ∈ Div+(G).

Consider the Pic(G)-grading defined by the semigroup homomorphism Div+(G) →

Pic(G) sending D to its equivalence class [D]. This is a “nice” grading via the map

u′ : Pic(G)→ Z sending [D] to deg([D]) =
∑

vD(v). This is a well-defined homomor-

phism because all principal divisors have degree 0. The induced map u : Div+(G)→ Z

sends the effective divisor D to deg(D) =
∑

vD(v). It is immediate that (i) and (ii)

hold. See [48, Section 2.2] for more details. Note that if G is not a tree then Pic(G)

contains torsion elements. This example shows that our definition is robust enough

to handle gradings with groups which are not necessarily torsion-free.
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Let S be graded by A. An S-module M is called A-graded if it is endowed with

a decomposition M =
⊕

a∈AMa as a direct sum of graded components such that

SaMb ⊆Ma+b for all a,b ∈ A.

Lemma 8.1.4 (Nakayama’s lemma for “nicely” graded polynomial rings). Assume S

is a polynomial ring endowed with a “nice” A-grading. Let M be a finitely generated

A-graded S-module. Then mM = M implies M = 0.

Proof. Suppose M 6= 0. Let u′ : A → Z be as in Definition 8.1.1. Write M =⊕
a∈AMa. For any graded piece Ma, let `(Ma) denote the integer u′(a). Let `(M) =

mina∈A `(Ma). Since M is assumed to be finitely generated, `(M) > −∞. Since

u′(r) ≥ 1 for all r ∈ m =
⊕

a6=0Ma, we have `(mM) > `(M) and therefore mM 6= M .

8.2 Regular sequences and homogeneous systems of param-
eters

Recall that for a commutative ring S and an S-module M , an element s ∈ S is called

a nonzerodivisor on M if sm = 0 implies m = 0 for m ∈ M . An M-regular sequence

is a sequence s1, . . . , sd ∈ S such that

(i) M/(s1, . . . , sd)M 6= 0,

(ii) si is a nonzerodivisor on M/(s1, . . . , si−1)M for i = 1, . . . , d.

Remark 8.2.1. In our application S will always be a “nicely” graded polynomial ring,

M 6= 0 will be a finitely generated graded S-module, and the si’s will be polynomials

with zero constant term. In this situation (i) is automatically satisfied. This follows

from Lemma 8.1.4: if si ∈ m and M/(s1, . . . , sd)M = 0, then we must have M = mM .

But Nakayama’s lemma would then imply that M = 0.

Lemma 8.2.2. Assume that s1, . . . , sd ∈ S is an M-regular sequence and ε1, . . . , εd

are units in S. Then ε1s1, . . . , εdsd is also an M-regular sequence.
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Proof. Clearly ε1s1 is a nonzerodivisor onM . We need to show that εisi is a nonzerodi-

visor onM/(ε1s1, . . . , εi−1si−1)M for all i > 1. First note that (ε1s1, . . . , εi−1si−1)M =

(s1, . . . , si−1)M . Assume that (εisi)m ∈ (s1, . . . , si−1)M for somem ∈M , or (εisi)m =∑i−1
j=1 sjmj for some mj ∈M . Then sim ∈ (ε−1

1 s1, . . . , ε
−1
i−1si−1)M = (s1, . . . , si−1)M ,

which is a contradiction because si is a nonzerodivisor on M/(s1, . . . , si−1)M .

Lemma 8.2.3. Let S be a ring, M be an S-module, and N be a flat S-module. If

s1, . . . , sd ∈ S is an M-regular sequence then s1, . . . , sd is also an (M ⊗S N)-regular

sequence, provided that (s1, . . . , sd)(M ⊗S N) 6= (M ⊗S N).

For a proof see, e.g., [17, Proposition 1.1.2].

It is not necessarily true that every permutation of the si’s is again a regular

sequence. For example, xy, xz, y − 1 is a regular sequence for K[x, y, z] (as a module

over itself), but xy, y − 1, xz is not a regular sequence. However, in situations where

Nakayama’s lemma apply, permutation of a regular sequence is allowed. The following

theorem, for local rings, is proved in [17, Proposition 1.1.6].

Theorem 8.2.4. Let S be a polynomial ring endowed with a “nice” A-grading. Let

M be a finitely generated A-graded S-module. Assume s1, . . . , sd is an M-regular

sequence consisting of elements in m. Then any permutation of s1, . . . , sd is also an

M-regular sequence.

Proof. It suffices to show that if s1, s2 is an M -regular sequence then s2, s1 is also an

M -regular sequence (see [17, proof of Proposition 1.1.6]).

• s2 is a nonzerodivisor onM : letN denote the kernel of the mapM →M sending

m to s2m. For each z ∈ N we have s2z = 0 and therefore s2z + s1M = s1M .

Since s2 is a nonzerodivisor on M/s1M by assumption, we must have z ∈ s1M

or z = s1z
′ for some z′ ∈ M . But then s1(s2z

′) = s2(s1z
′) = 0 and since s1 is

a nonzerodivisor on M we must have s2z
′ = 0 and z′ ∈ N . So we have shown
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that N ⊆ s1N and therefore N = s1N . Since s1 ∈ m by assumption, we obtain

N = s1N ⊆ mN ⊆ N or mN = N , and by Lemma 8.1.4 we get N = 0, which

is what we want.

• s1 is a nonzerodivisor on M/s2M : if s1(z + s2M) = s2M for some z ∈M , then

s1z ∈ s2M or s1z = s2z
′ for some z′ ∈M . But then s2z

′ ∈ s1M , or equivalently

s2(z′ + s1M) = s1M . Since s2 is a nonzerodivisor on M/s1M , this means that

z′ ∈ s1M , so z′ = s1m for some m ∈ M . But s1z = s2s1m implies z = s2m

because s1 is a nonzerodivisor on M . Therefore z ∈ s2M , which is what we

want.

Remark 8.2.1 completes the proof.

Consider polynomial rings with Z-gradings. In this Z-graded setting, an h.s.o.p.

(homogeneous system of parameters) for M is defined as a set {θ1, . . . , θdim(M)} ⊂ S of

homogeneous elements of positive degree such that dim(M/(θ1, . . . , θdim(M))M) = 0.

Here dim(·) denotes the Krull dimension. Equivalently, {θ1, . . . , θd} ⊂ S is an h.s.o.p

if and only if d = dim(M) and M is a finitely generated K[θ1, . . . , θd]-module. Clearly

the property of being an h.s.o.p. does not change under permutation.

By definition, depth(M) is the length of the longest homogeneous M -regular se-

quence. In general depth(M) ≤ dim(M). If depth(M) = dim(M), then M is called

Cohen-Macaulay.

Theorem 8.2.5. Assume M has an h.s.o.p. Then M is Cohen-Macaulay if an only

if every h.s.o.p. is an M-regular sequence.

For a proof see, e.g., [57, p.35].

An l.s.o.p. (linear system of parameters) for M is an h.s.o.p., all of whose elements

have degree one.
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8.3 Linear systems of parameters and squarefree monomial
ideals

Consider the polynomial ring K[z] in variables z = {z1, . . . , zr}. Monomial ideals are

the Nr-graded ideals of K[z]. An ideal is squarefree if it is generated by squarefree

monomials. Given an abstract simplicial complex Σ, the squarefree monomial ideal

in K[z] defined as

IΣ = 〈zτ : τ 6∈ Σ〉

is called the Stanley-Reisner ideal of Σ. The Stanley-Reisner ring (or face ring) K[Σ]

is, by definition, K[z]/IΣ. In fact, this gives a bijective correspondence between

squarefree monomial ideals inside K[z] and abstract simplicial complexes on the ver-

tices {z1, . . . , zr} (see, e.g., [46, Chapter 1]). The simplicial complex Σ is called

Cohen-Macaulay if K[Σ] is Cohen-Macaulay. A (pure) “shellable” simplicial com-

plex is Cohen-Macaulay (see, e.g., [57, Chapter III] or [46, Chapter 13]). In general,

dim(K[Σ]) is equal to the maximal cardinality of the faces of Σ (see, e.g., [57, p.53]).

Given a degree one element θ =
∑

i αizi and a face τ ∈ Σ, by restriction of θ to τ

we mean

θ|τ =
∑
zi∈τ

αizi .

For squarefree monomial ideals, there is a nice characterization of l.s.o.p. which

was first given in [37].

Lemma 8.3.1. Let K[Σ] be a Stanley-Reisner ring of Krull dimension d, and let

{θ1, . . . , θd} ⊂ K[Σ] be a set of elements of degree one. Then the following are equiv-

alent:

(i) {θ1, . . . , θd} is an l.s.o.p. for K[Σ],

(ii) for every facet τ of Σ the restrictions θ1|τ , . . . , θd|τ span a vector space of di-

mension equal to |τ | (the cardinality of τ).

For a proof see, e.g., [57, pp.81-82].
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8.4 Regular sequences and free resolutions

Let S be a polynomial ring with its usual Z-grading, and M be a graded S-module.

Assume that

F : 0→ · · · → Fi
ϕi−→ Fi−1 → · · · → F0

ϕ0−→M → 0

is a graded free resolution. We may form the free complex of S/(s)-modules

F ⊗S S/(s) : 0→ · · · → Fi ⊗S S/(s)
ϕi⊗id−−−→ Fi−1 ⊗S S/(s)→ · · · → F0 ⊗S S/(s) .

The following theorem is a slight generalization of [28, Lemma 3.15] (see also

[17, Proposition 1.1.5]).

Theorem 8.4.1. Assume s is a nonzerodivisor on S and on M . Then

(i) F ⊗S S/(s) is a free resolution of M/(s)M .

(ii) If s ∈ m (i.e. if s has zero constant term) and if F is a minimal free resolution

of M , then F ⊗S S/(s) is a minimal free resolution of M/(s)M .

(iii) If s is homogeneous of positive degree, then the Z-graded Betti numbers of M

over S coincide with the Z-graded Betti numbers of M/(s)M over the graded

ring S/(s).

(iv) If s ∈ m and if F is a minimal cellular free resolution of M , then F ⊗S S/(s)

is a minimal cellular free resolution of M/(s)M .

Proof. (i) We compute the homology of the complex F ⊗S S/(s). By definition, this

homology is computed by the Tor functor:

TorSi (M,S/(s)) = Ker(ϕi ⊗ id)/ Image(ϕi+1 ⊗ id) .

To compute TorSi (M,S/(s)) consider the exact sequence (for the nonzerodivisor s

on S)

0→ S
s−→ S

ε−→ S/(s)→ 0
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which can be seen as a free resolution of S/(s). Tensoring this resolution with M on

the left we obtain the complex

0→M
id⊗s−−→M

id⊗ε−−→M ⊗S S/(s)→ 0 .

Again by definition, TorS0 (M,S/(s)) = M ⊗S S/(s) = M/(s)M , TorS1 (M,S/(s)) =

Ker(id ⊗ s) = 0 (because s is a nonzerodivisor on M), and TorSi (M,S/(s)) = 0 for

i > 1.

(ii) F is a minimal free resolution of M if and only if there are no S-units in

the matrices corresponding to ϕi (i ≥ 1). The matrix corresponding to ϕi ⊗ id in

F ⊗S S/(s) is the same as the matrix corresponding to ϕi, except that its entries are

considered as elements in S/(s). If an entry u is a unit in S/(s) then there exists

u′ ∈ S such that (u+ (s))(u′ + (s)) = 1 + (s), or equivalently uu′ − 1 ∈ (s). But this

is not possible because u and u′ are homogeneous of positive degree and s ∈ m.

(iii) It follows from part (ii) that a minimal free resolution of M turns into a

minimal free resolution of M/(s)M . When s is homogeneous, the degrees of the

graded parts remain the same.

(iv) Assume the minimal free resolution F is supported on a labeled cell complex

D. Then F ⊗S S/(s) is supported on the same cell complex whose labels are now

considered as elements of S/(s).

We remark that one can use Theorem 8.4.1 repeatedly and obtain a similar result

for regular sequences.

8.5 Regular sequences and flat families

The purpose of this section is to give a generalization (and a complete proof) of

[27, Proposition 15.15] in Proposition 8.5.2

Let S be a polynomial ring in r variables {z1, . . . , zr}, and let S[t] be the polyno-

mial ring with one extra indeterminate t over S. Let ω ∈ Hom(Zr,Z) be an integral
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weight functional. For any g =
∑

i uimi ∈ S, where ui’s are nonzero constants in K

and mi’s are some monomials in S, we define degω(g) := maxω(mi). The “lift” of g

to S[t] with respect to ω is

g̃ = tbg(t−ω(z1)z1, . . . , t
−ω(zr)zr)

in which b = degω(g). For any ideal I ⊂ S we define the ideal

Ĩ = 〈g̃ : g ∈ I〉 ⊂ S[t] .

It follows from the definition that

(S[t]/Ĩ)/t(S[t]/Ĩ) ∼= S/ inω(I) . (24)

In other words, g̃ modulo t is precisely inω(g).

For a proof of the following result, see [27, Theorem 15.17].

Theorem 8.5.1. For any ideal I ⊂ S,

(i) The K[t]-algebra S[t]/Ĩ is a free (and thus flat) K[t]-module.

(ii) The map

ϕ : (S[t]/Ĩ)⊗K[t] K[t, t−1]→ (S/I)[t, t−1]

induced by

zi 7→ tω(zi)zi

gives an isomorphism of K[t]-algebras.

Note that for the map ϕ we have ϕ(g̃) = tbg (where b = degω(g)) and ϕ(Ĩ) = I.

Proposition 8.5.2. Let I be a graded ideal and ω be a positive integral weight func-

tional. Assume that f1, . . . , fd ∈ S are such that

inω(f1), . . . , inω(fd)
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is an (S/ inω(I))-regular sequence. Then

f1, . . . , fd

is an (S/I)-regular sequence.

Proof. Let M = S[t]/Ĩ. By Theorem 8.5.1(i), M is a free K[t]-module. Therefore t

is a nonzerodivisor on M . By (24), M/tM ∼= S/ inω(I) and g̃ modulo t equals inω(g)

for all g ∈ S. Therefore, the hypothesis is precisely the statement that t, f̃1, . . . , f̃d

is an M -regular sequence. But t, f̃1, . . . , f̃d are all homogeneous elements with re-

spect to the “nice” grading of M defined by deg(zi) = ω(zi) and deg(t) = 1 (see

Example 8.1.2). Therefore, by Theorem 8.2.4, the permutation f̃1, . . . , f̃d, t is also an

M -regular sequence. The module K[t, t−1] is the localization of K[t] with respect to

t, therefore it is a flat K[t]-module. By Lemma 8.2.3 (and Remark 8.2.1), f̃1, . . . , f̃d

is also a regular sequence on M ′ := M ⊗K[t] K[t, t−1].

By Theorem 8.5.1 (ii), the map

ϕ : M ′ → (S/I)[t, t−1] with zi 7→ tω(zi)zi

is an isomorphism. Therefore ϕ(f̃1) = tb1f1, . . . , ϕ(f̃d) = tbdfd is a regular sequence on

(S/I)[t, t−1] (here bi = degω(fi)). Since tbi ’s are units in (S/I)[t, t−1], by Lemma 8.2.2,

f1, . . . , fd is also a regular sequence on (S/I)[t, t−1]. Therefore f1, . . . , fd is a regular

sequence on (S/I).

Remark 8.5.3. When f1, f2, . . . , fd are Z-homogeneous, the positivity of ω in Propo-

sition 8.5.2 is unnecessary. This is because ω and ω + c1 (for any c > 0) behave the

same on these Z-homogeneous forms.
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CHAPTER IX

REGULAR SEQUENCES FOR Oq
G AND JG

9.1 Linear system of parameters for Oq
G

The ideal Oq
G ⊂ S is a squarefree monomial ideal. Let Σq

G denote its associated

simplicial complex on 2m vertices {ye : e ∈ E(G)}.

For each spanning tree T of G, let OT denote the orientation of T with a unique

source at q (i.e. the orientation obtained by orienting all paths away from q). For an

example, see Figure 17.

Proposition 9.1.1.

(i) The number of facets of Σq
G is the same as the number of spanning trees of G.

For each spanning tree T , the corresponding facet τT is:

τT = {ye : e ∈ E(G)\OT} .

(ii) For each spanning tree T of G, let PT = 〈ye : e ∈ OT 〉. The minimal prime

decomposition of OqG is

Oq
G =

⋂
T

PT ,

the intersection being over all spanning trees of G.

(iii) For each facet τ of Σq
G we have |τ | = 2m− n+ 1. Therefore

dim(K[Σq
G]) = 2m− n+ 1 .

(iv) Σq
G is Cohen-Macaulay.
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Proof. (i) By Proposition 7.5.4, we know that Oq
G is generated by monomials of the

form
∏

e∈E(Ac,A) ye, where q ∈ A ( V (G) and E(Ac, A) ⊂ E(G) denotes the set of

oriented edges from A to its complement Ac.

First we show that for each spanning tree T , the monomial mT :=
∏

e∈E(G)\OT
ye

does not belong to Oq
G. Clearly mT ∈ Oq

G if and only if mT is divisible by one of the

given generators
∏

e∈E(Ac,A) ye. But

∏
e∈E(Ac,A)

ye |
∏

e∈E(G)\OT

ye ⇐⇒ E(Ac, A) ⊆ (E(G)\OT ) .

However, it follows from the definition of OT that it must contain some element of

E(Ac, A) for any A. This shows that τT = {ye : e ∈ E(G)\OT} is a face in the

simplicial complex Σq
G.

Next we show that τT must be a facet; for f ∈ OT removing f from the tree gives

a partition of V (T ) = V (G) into two connected subsets B and Bc with f− ∈ B and

f+ ∈ Bc. Then the monomial mT · yf is divisible by
∏

e∈E(Bc,B) ye.

It remains to show that for any monomial m =
∏

e∈F ye that does not belong to

Oq
G we have F ⊆ (E(G)\OT ) for some spanning tree T . To show this, we repeatedly

use the fact that m is not divisible by generators of the form
∏

e∈E(Ac,A) ye for various

A, and construct a spanning tree T . This procedure is explained in Algorithm 1.

Note that if
∏

e∈F ye is not divisible by
∏

e∈E(Ac,A) ye then there exists an e ∈ E(Ac, A)

such that e 6∈ F . The orientation OT is also induced by Algorithm 1.

(ii) follows from (i) and [46, Theorem 1.7].

(iii) follows from (i) and the fact that dim(K[Σq
G]) is equal to the maximal cardi-

nality of the faces of Σq
G.

(iv) The Krull dimension of K[Σq
G] = S/Oq

G is 2m − n + 1 by part (iii). By the

Auslander–Buchsbaum formula (for graded rings and modules, see [33, page 437]),

depth(S/Oq
G) = depth(S)− pdS(S/Oq

G) = 2m− n+ 1
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Input:
A monomial m =

∏
e∈F ye not belonging to Oq

G.
Output:
A spanning tree T such that F ⊆ (E(G)\OT ).

Initialization:
A = {q},
T = ∅.
while A 6= V (G) do

Find an oriented edge e such that e ∈ E(A,Ac) and e 6∈ F ,
T = T ∪ {e},
A = A ∪ {e+},

end
Output T .

Algorithm 1: Finding a facet containing a given monomial not belonging to
Oq
G

because pdS(S/Oq
G) = n−1 by Theorem 7.3.2. Therefore dim(S/Oq

G) = depth(S/Oq
G)

and K[Σq
G] is Cohen-Macaulay.

Remark 9.1.2.

(i) Proposition 9.1.1(iii) can be strengthened; the simplicial complex Σq
G is in fact

shellable. Since JG is the lattice ideal associated to the free abelian group

Λ = Image(d), it is a toric ideal (in the sense of [58, Chapter 4]). Σq
G is precisely

the initial complex of JG with respect to ≺q (in the sense of [58, Chapter 8]). Let

σ ∈ C1(G,R) be any weight functional representing the term order ≺q for JG

(e.g. ϑq of Definition 7.6.2 – see also §7.7). By [58, Theorem 8.3] σ provides us

with a regular triangulation of Σq
G. This is accomplished by “lifting” each point

ye into the next dimension by the height σ(e), and then projecting back the lower

face of the resulting positive cone. This is a unimodular triangulation because

the ideal Oq
G is squarefree ([58, Corollary 8.9]). The associated Gröbner fan

studied in §7.6 coincides with the associated secondary fan of this triangulation.

It is well-known that given any regular triangulation, one can obtain shelling
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orders using the line shelling technique (see, e.g., [23, Theorem 9.5.10]).

(ii) A minimal free resolution of the Alexander dual of Oq
G can be obtained by the

constructions given in [7] or in [25].

Example 9.1.3. Consider the graph in Example 7.5.5. For the spanning tree in

Figure 15 we have

τT = {ye : e ∈ E(G)}\{ye1 , ye3 , ye4} = {ye2 , ye5 , yē1 , yē2 , yē3 , yē4 , yē5} ,

(which is the same as τ8 in Example 9.1.5). Moreover, PT = 〈ye1 , ye3 , ye4〉.

Figure 15: Spanning tree T and its orientation OT

We are now ready to give a particularly nice l.s.o.p. for Oq
G. Note that since

K[Σq
G] = S/Oq

G is Cohen-Macaulay, every h.s.o.p. (in particular every l.s.o.p.) is

regular (Theorem 8.2.5).

First we introduce some notation. For each v ∈ V (G) we choose a distinguished

incoming edge to v and denote it by ev. In other words, we fix a distinguished subset

{ev : v ∈ V (G) } ⊂ E(G) of cardinality n in such a way that (ev)+ = v.

For each v define the set of linear forms

Lv = {ye − yev : e ∈ E(G) , e 6= ev , e+ = (ev)+ = v}

and let

L =
⋃

v∈V (G)

Lv . (25)
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We also let

L(q) = L ∪ {yeq} .

Clearly, |Lv| = deg(v)− 1 for v ∈ V (G), |L| = 2m− n, and |L(q)| = 2m− n+ 1.

Proposition 9.1.4. The set L(q) forms an l.s.o.p. (and thus a regular sequence) for

K[Σq
G] = S/Oq

G.

Proof. We will use the criterion in Lemma 8.3.1. Note that by Proposition 9.1.1(iii),

dimK[Σq
G] = |L(q)|. For each facet τ and each vertex v 6= q, by Proposition 9.1.1(i),

all but one variable ye with e+ = v appear in τ . Again by Proposition 9.1.1(i), all

variables ye with e+ = q appear in τ . It follows that the dimension of the vector space

spanned by the restrictions of forms in L(q) to the facet τ is equal to
∑

v(deg(v) −

1) + 1 = 2m−n+ 1 which is equal to |τ | by Proposition 9.1.1(iii), and the conditions

in Lemma 8.3.1 are satisfied.

Example 9.1.5. For the graph in Example 7.5.5, Oq
G is the Stanley-Reisner ideal of

the simplicial complex Σq
G given by facets

u4

u2

u1 u3

e1

e2

e3

e4

e5

Figure 16: Graph G and a fixed orientation

τ1 = {ye1 , ye3 , ye4 , ye5 , yē2 , yē4 , yē5}, τ2 = {ye1 , ye3 , ye4 , yē1 , yē2 , yē4 , yē5},

τ3 = {ye2 , ye3 , ye4 , yē1 , yē2 , yē4 , yē5}, τ4 = {ye1 , ye3 , ye5 , yē2 , yē3 , yē4 , yē5},
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Figure 17: Spanning trees T and orientations OT corresponding to τ1, τ2, . . . , τ8

τ5 = {ye1 , ye3 , yē1 , yē2 , yē3 , yē4 , yē5}, τ6 = {ye2 , ye3 , yē1 , yē2 , yē3 , yē4 , yē5},

τ7 = {ye1 , ye5 , yē1 , yē2 , yē3 , yē4 , yē5}, τ8 = {ye2 , ye5 , yē1 , yē2 , yē3 , yē4 , yē5}.

See Proposition 9.1.1(i), Example 9.1.3, and Figure 17.

If we choose {e1, e3, e4, ē4} as our distinguished set of incoming edges to vertices,

we have

Lu1 = {ye2 − ye1} , Lu2 = {yē1 − ye3 , ye5 − ye3} ,

Lu3 = {yē3 − ye4} , Lu4 = {yē2 − yē4 , yē5 − yē4} .

Therefore

L =
⋃

v∈V (G)

Lv = {ye2 − ye1 , yē1 − ye3 , ye5 − ye3 , yē3 − ye4 , yē2 − yē4 , yē5 − yē4}

and

L(q) = L ∪ {yē4} .

Note that |L(q)| = 7 = 2× 5− 4 + 1. The restrictions of linear forms of L(q) to τ1

are

L(q)|τ1 = {−ye1 ,−ye3 , ye5 − ye3 ,−ye4 , yē2 , yē5 , yē4} ,

which span a vector space of dimension |τ1| = 7 = 2 × 5 − 4 + 1. Similarly, the

restrictions of the linear forms of L(q) to the other τi’s span a vector space of dimension

|τi|.
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9.2 Linear system of parameters for JG

Next we use Proposition 8.5.2 to give a regular sequence for S/JG.

Proposition 9.2.1. The set L forms a regular sequence for S/JG.

Proof. Let λq ∈ C1(G,R) be the integral, non-negative weight functional defined in

Definition 7.6.2. Any element of L is of the form g = ye − yev with e+ = (ev)+ = v

for some v ∈ V (G). Since λq(e) = λq(ev) depends only on v by the construction in

Proposition 7.6.1, we obtain inλq(g) = g and g̃ = g. Therefore {inλq(g) : g ∈ L} = L

which is a regular sequence on S/ inλq(JG) = S/Oq
G by Proposition 9.1.4. So we may

apply Proposition 8.5.2 to conclude that L is a (S/JG)-regular sequence.

Remark 9.2.2. It follows from Theorem 8.2.5 and Proposition 11.1.1 that L also forms

a (partial) l.s.o.p. for S/JG.
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CHAPTER X

IG FROM JG AND Mq
G FROM Oq

G

A common and powerful technique in the theory of divisors on graphs and chip-

firing games is to relate divisors to orientations. Given an orientation, one can form

a divisor from the associated indegrees or outdegrees (see, e.g., [15, Theorem 2.3],

[5, Theorem 3.3], [36], [48], and [1]). Algebraically, there is a good justification for

the strength of this method related to the regular sequences studied in §9.

Recall that R = K[x] denotes the polynomial ring in n variables {xv : v ∈ V (G)}

and S = K[y] denotes the polynomial ring in 2m variables {ye : e ∈ E(G)}. There is

a canonical surjective K-algebra homomorphism

φ : S→ R

defined by sending ye to xe+ for all e ∈ E(G). The kernel of this map is precisely the

ideal generated by L (defined in (25)), which we denote by a = 〈L〉. The induced

isomorphism

φ̄ : S/a
∼−→ R

is the “algebraic indegree map”, and it relates the ideals IG and Mq
G to the ideals JG

and Oq
G.

Proposition 10.0.3.

(i) φ̄(JG + a) = IG. In other words φ̄ induces an isomorphism (S/JG)⊗S (S/a) ∼=

R/IG.

(ii) φ̄(Oq
G+a) = Mq

G. In other words φ̄ induces an isomorphism (S/Oq
G)⊗S(S/a) ∼=

R/Mq
G.
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Proof. The map φ̄ sends
∏

e∈E(Ac,A) ye + a to xD(Ac,A). So the proposition immedi-

ately follows from examining the generating sets described in Theorem 3.2.2 and in

Proposition 7.5.4.

Remark 10.0.4. The variables ye with e+ = q do not appear in the support of any

element of Oq
G (see Theorem 7.5.4(iii)). Likewise, the variable xq does not appear

in the support of any element of Mq
G (see Theorem 3.2.2). Therefore we also have

an isomorphism φ̄(Oq
G + 〈L(q)〉) = φ̄(Oq

G + a + 〈yeq〉) ∼= Mq
G + 〈xq〉. In other words

(S/Oq
G)⊗S (S/〈L(q)〉) ∼= R̃/Mq

G, where R̃ = K[{xv}v 6=q].

Theorem 10.0.5.

(i) The polyhedral cell complex Bq,cG (equivalently, Aq,cG ) supports a Div(G)-graded

(and Z-graded) minimal free resolution for Mq
G.

(ii) The quotient labeled cell complex Del(L(G))/L(G) supports a Pic(G)-graded

(and Z-graded) minimal free resolution for IG.

(iii) The Z-graded Betti diagrams of JG, IG, Oq
G, and Mq

G coincide.

Proof. (i) By Theorem 7.3.2, we know that Bq,cG gives a C1(G,Z)-graded minimal

free resolution for S/Oq
G. The same statement is true if we replace Bq,cG with Aq,cG

by the discussion in §7.5. By Theorem 8.4.1(iv) and Proposition 9.1.4, if we replace

all the labels mF with mF + a, we obtain a minimal cellular free resolution for

(S/Oq
G)/ ⊗S (S/a) ∼= R/Mq

G (see Proposition 10.0.3(ii)). Alternatively we could

replace all labels mF with mF + 〈L(q)〉 to obtain a minimal cellular free resolution

for (S/Oq
G)⊗S (S/〈L(q)〉) ∼= R̃/Mq

G. The new labels are easily seen to be Div(G) and

Z-homogeneous, and the resulting minimal free resolution is Div(G) and Z-graded.

(ii) follows similarly from Theorem 7.4.2, Theorem 8.4.1(iv), Proposition 9.2.1,

and Proposition 10.0.3(i).
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(iii) The fact that the (ungraded) Betti numbers of JG and Oq
G coincide follows

from Lemma 7.5.3. By the labeling compatibility described in Lemma 7.5.2 the

Z-graded Betti numbers of JG and Oq
G coincide as well. Since all elements of L are

homogeneous (linear) forms, the relabeling of cells described above (in passing from JG

to IG and from Oq
G to Mq

G) does not change the Z-degrees (see also Theorem 8.4.1(iii)).

Therefore the Z-graded Betti diagrams of all four ideals coincide.

Remark 10.0.6. Recall from Remark 6.1.3 that the number of i-dimensional cells in

Bq,cG is equal to the number of acyclic partial orientations of G with (i+2) (connected)

components having a unique source at q. So one immediately obtains a combinatorial

description of the (ungraded) Betti numbers in terms of acyclic partial orientations.

This interpretation for the Betti numbers of IG was conjectured in [52] and proved in

[48] and [41].

Example 10.0.7. We return to Examples 7.5.5. We described the sequence L(q)

in Example 9.1.5. For simplicity we let xi = xui . By sending {ye2 , ye1} to x1,

{yē1 , ye5 , ye3} to x2, and {yē3 , ye4} to x3, Oq
G in (21) is sent to the ideal

〈x2
2x3, x1x

2
2, x

2
3, x

3
2, x

2
1, x1x2x3〉

which is precisely Mq
G = in<q(IG) by Theorem 3.2.2(ii). The minimal cellular free

resolution of Mq
G is obtained from the minimal cellular free resolution of Oq

G (described

in Examples 7.5.5) by “relabeling” (i.e. by replacing each ye with xe+). We first relabel

the complex in Figure 11 to obtain Figure 18. The resulting labeled complex gives a

minimal free resolution for Mq
G which is precisely the minimal free resolution of Oq

G

“relabeled”. Concretely, we first extend the labels m′(pi) on the vertices to the whole

of BqG by the least common multiple construction. For example,

mE2 = yē1yē3ye4ye5 7→m′E2
= x2

2x
2
3 ,

mE4 = yē1ye2ye4ye5 7→m′E4
= x1x

2
2x3 ,
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mE5 = ye2yē3ye4ye5 7→m′E5
= x1x2x

2
3 ,

mE6 = ye2ye3ye4ye5 7→m′E6
= x1x

2
2x3 ,

mF2 = yē1ye2yē3ye4ye5 7→m′F2
= x1x

2
2x

2
3 .

The minimal resolution of Mq
G is as follows.

0→
4⊕
i=1

R(−m′Fi
)
∂′2−→

9⊕
i=1

R(−m′Ei
)
∂′1−→

6⊕
i=1

R(−m′pi
)
∂′0−→ R � R/Mq

G .

Assume [[F ]] denotes the generator of R(−m′F ). The homogenized differential oper-

ator of the cell complex (∂′0, ∂
′
1, ∂
′
2) is as described in (13). For example:

∂′0([[pi]]) = m′pi
= m′(pi) ,

∂′1([[E6]]) = x2[[p4]]− x3[[p4]] ,

∂′2([[F2]]) = x1[[E2]]− x3[[E4]] + x2[[E5]] .

Although JG and IG have the same Betti table as Oq
G and Mq

G, it is not possible

to read the minimal free resolutions for JG or IG directly from BqG; one really needs

to consider the cell decomposition of L(G)R/L(G) or of Div0
R(G)/Prin(G).

Remark 10.0.8. There is an isometry between the principal lattice (Prin(G), 〈·, ·〉en)

and the cut lattice (L(G), 〈·, ·〉) (Remark 5.3.5). So the Delaunay decompositions

Del(Prin(G)) and Del(L(G)) are combinatorially equivalent (compare Figure 5 with

Figure 13) and the relabeling of cells in Del(L(G)) described above correspond to the

labels that were given to cells of Del(Prin(G)) in §5.3. Therefore the resolution of

IG described in Theorem 5.3.3 coincides with the resolution of IG obtained from the

resolution of JG in Theorem 7.4.2 by “relabeling” as in Theorem 10.0.5. For example,

the resolution of IG described in Example 5.3.4 can alternatively be obtained from

the resolution of JG described in Example 7.5.6.

It is straightforward to give an alternate proof for Theorem 5.3.2 and Theo-

rem 5.3.3 using these observations.
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Figure 18: The relabeled bounded complex Bq,cG giving a minimal free resolution of
Mq

G
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CHAPTER XI

SOME CONSEQUENCES OF OUR MAIN RESULTS

11.1 Cohen-Macaulayness

For a polynomial ring S, a term order < and an ideal I ⊂ S, it is known that S/I is

Cohen-Macaulay if and only if S/ in<(I) is Cohen-Macaulay (see, e.g., [34, Corollary

3.3.5]).

Proposition 11.1.1. The modules S/Oq
G, R/Mq

G, S/JG, and R/IG are all Cohen-

Macaulay.

Proof. By Proposition 9.1.1(iv) we have that S/Oq
G is Cohen-Macaulay.

For R/Mq
G, first observe that by Theorem 3.2.2 the variable xq does not appear

in the support of any of the given monomial generators of Mq
G. This implies that

depth(R/Mq
G) ≥ 1. On the other hand, dim(R/Mq

G) = 1. One way to see this is the

following: by Proposition 9.1.1(iii) we know that dim(S/Oq
G) = 2m − n + 1. Since

L(q) = a ∪ {yeq} is an l.s.o.p. for S/Oq
G, we deduce by Proposition 10.0.3(ii) that

dim(R/Mq
G) = dim((S/Oq

G) ⊗S (S/a)) = dim((S/Oq
G)/a(S/Oq

G)) = 1. Therefore

Mq
G is also Cohen-Macaulay.

Since in≺q(JG) = Oq
G and in<q(IG) = Mq

G, we immediately conclude that S/JG

and R/IG are also Cohen-Macaulay.

11.2 Multiplicities

For a finitely generated (graded) moduleM of dimension d > 0 over a polynomial ring,

the multiplicity of M is defined to be the leading coefficient of the Hilbert polynomial

of M (i.e. the polynomial defining i 7→ dim(Mi) for i >> 0). We will denote this
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quantity by e(M). Since the Hilbert polynomial is completely determined by the

Betti table (see, e.g., [46, Theorem 8.20 and Proposition 8.23]), the multiplicity is

also determined by the Betti table. The following result easily follows.

Theorem 11.2.1.

e(S/Oq
G) = e(S/JG) = e(R/Mq

G) = e(R/IG) = κ(G) ,

where κ(G) denotes the number of spanning trees of G.

Proof. All these ideals have the same Betti table and hence the same multiplicity. It

suffices to compute the multiplicity of S/Oq
G = K[Σq

G]. By Proposition 9.1.1(ii), we

have

Oq
G =

⋂
T

PT ,

the intersection being over all spanning trees of G. By Proposition 9.1.1(iii), we have

dim(S/Oq
G) = 2m−n+ 1. Also, for each spanning tree T we have PT = 〈ye : e ∈ OT 〉

and therefore

dim(S/PT ) = 2m− n+ 1 and e(S/PT ) = 1 .

In this situation (see, e.g., [33, Lemma 5.3.11]) we have

e(S/Oq
G) =

∑
T

e(S/PT ) ,

the sum being over all spanning trees of G.

For R/IG, the multiplicity was recently computed in [50] using a different method.

11.3 Alexander dual of Mq
G and cocellular free resolution

In [42], Riemann-Roch theory for graphs is linked to Alexander duality for the ideal

Mq
G. Recall that Mq

G ⊂ R̃ = K[{xv}v 6=q] (see Remark 10.0.4). Here we quickly study

the Alexander dual of Mq
G and use Theorem 7.3.2 to obtain its minimal cocellular

free resolution.
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We define the divisor

a =
∑

v∈V (G)

(deg(v))(v) .

It follows from Theorem 3.2.2 and Theorem 10.0.5(i) that:

(i) Mq
G is generated in degree preceding a.

(ii) Mq
G + 〈{xa(v)+1

v }v 6=q〉 = Mq
G; this this is because for each v 6= q in V (G), the

star of the vertex v forms a cut and therefore x
deg(v)
v ∈Mq

G.

(iii) All face labels in the labeled cell complex Bq,c
G resolving Mq

G (as in Theo-

rem 10.0.5(i)) divide xa+1. In fact a stronger statement is true; all vertex

labels divide xa.

Consider the cellular complex Bq,cG with labels m′F for cells F as in the proof of

Theorem 10.0.5(i). Relabel each cell F with xa+1/m′F . For simplicity, let us call

Bq,cG with its new labels D. Let D≤a denote the subcomplex consisting of cells with

labels dividing a. Let (Mq
G)[a] denote the Alexander dual of Mq

G with respect to a

([46, Definition 5.20]). In this setting, [46, Theorem 5.37] gives the following result:

Proposition 11.3.1. The polyhedral complex (DG)≤a supports a minimal (cocellular)

resolution for the ideal (Mq
G)[a].

This observation has been made (independently) in [26]. See [46, Section 5.3] for

more details. Here we give an example to illustrate this result.

Example 11.3.2. The complex (DG)≤a associated to Example 10.0.7 and Figure 18

is depicted in Figure 19 in blue. The ideal (Mq
G)[a] is minimally generated as

(Mq
G)[a] = 〈x1x

2
2x

2
3, x1x

3
2x3, x

2
1x

2
2x3, x

2
1x2x

2
3〉 .

86



s

s s
x2

1x
2
2x3 s

x2
1x2x

2
3

s
x1x

3
2x3

s
x1x

2
2x

2
3 ss

s

sHH
HHH

HHH
HHHH

H
HH

H
HH

HH

He3

He2

He4

@
@@

@
@@

He5

He1

Q
Q
Q
Q

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

��

@
@
@

@
@
@

@
@

@
@
@

@
@
@@

@
@
@@

Figure 19: The bounded complex supporting a minimal free resolution of (Mq
G)[a]

11.4 Graphic matroid ideal and h-vectors

Let S̃ = K[z] denote the polynomial ring in m variables {ze : e ∈ E(G)}. There is a

surjective K-algebra homomorphism

π : S→ S̃

defined by sending both ye and yē to ze. The kernel of this map is the ideal generated

by

K = {ye − yē : e ∈ O}

for some fixed orientation O. We will denote this kernel by b = 〈K〉. We get an

induced isomorphism

π̃ : S/b→ S̃ .

We define the (unoriented) graphic matroid ideal MatG ⊂ S̃ to be the image of Oq
G+b

under this isomorphism. Concretely, MatG is obtained from Oq
G by identifying the

variables ye and yē and replacing them with ze.

Lemma 11.4.1.
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(i) K forms a regular sequence for S/Oq
G.

(ii) Bq,cG (equivalently Aq,cG ) supports a minimal free resolution for MatG.

(iii) MatG is independent of the choice of q.

(iv) The Z-graded Betti diagram of MatG coincides with the Z-graded Betti diagrams

of JG, IG, Oq
G, and Mq

G.

Proof. (i) follows from [49, Corollary 2.7]. Alternatively, by the explicit description

of the facets in Proposition 9.1.1(i), the restriction of each linear form in K spans a

vector space of dimension 1 and therefore the result follows from Lemma 8.3.1.

(ii) follows from (i) and Theorem 8.4.1(iv).

There are several ways to see (iii). For example, it follows from (ii) and the

discussion in §7.5 (e.g. Proposition 7.5.4) that MatG is minimally generated by

monomials

{
∏

e∈E(Ac,A)

ze : A ( V (G), G[A] and G[Ac] are connected} (26)

where E(Ac, A) denotes the set of (unoriented) edges connecting G[A] and G[Ac].

This description is independent of the choice of the base vertex q.

(iv) follows from Theorem 10.0.5 and Theorem 8.4.1(iii).

It is a fact, essentially due to Hilbert, that the Hilbert series of a module is

completely determined by its graded Betti table and its dimension. The numerator

of the Hilbert series is called the h-polynomial. Its coefficients are obtained from

the Betti numbers as an alternating sum and they form the h-vector (see, e.g, [46,

Theorem 8.20 and Theorem 8.23]). So we immediately obtain, from Lemma 11.4.1(iv),

the following result.

Lemma 11.4.2. The h-vectors of S/JG, R/IG, S/Oq
G, R/Mq

G, and S̃/MatG coin-

cide.
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The ideal MatG has been extensively studied in the literature (see, e.g., [56],

[57, Section III.3], [49, Section 3]). A more well known presentation of this ideal is

by its prime decomposition; for each spanning tree T of G, let IT = 〈ze : e ∈ T 〉. The

minimal prime decomposition of MatG is

MatG =
⋂
T

IT , (27)

the intersection being over all spanning trees of G. This can be proved the same way

as Proposition 9.1.1(ii) (or can be deduced from it).

From (27) it is evident that MatG is the Stanley-Reisner ideal of the simplicial

complex Σ of independent sets of the cographic matroid (i.e. the matroid whose bases

are the complements of spanning trees of G). Therefore the h-polynomial of S̃/MatG

is precisely T (1, y), where T (x, y) is the Tutte polynomial of the graph ([13, page

236]). By Lemma 11.4.2, we obtain the following result:

Corollary 11.4.3. T (1, y) is the h-polynomial for S/JG, R/IG, S/Oq
G, R/Mq

G, and

S̃/MatG.

Postnikov and Shapiro in [53] prove this result for R̃/Mq
G (equivalently, for R/Mq

G)

by a combinatorial argument. Merino’s work in [44] proves this result for R/IG using

deletion-contraction methods. A bijective proof of Merino’s result was later presented

in [21] (see also [6]). We believe that Corollary 11.4.3 gives a unified and more con-

ceptual proof of these results. Moreover, Merino’s theorem (stating that T (1, y) is

the generating function for the number of q-reduced divisors in various degrees) is a

straightforward consequence of Corollary 11.4.3 and Theorem 3.2.2.
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