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SUMMARY

Natural geomaterials exhibit a wide range in sagsical properties, chemical
properties, and mechanical behaviors. Soils treicamposed of mixtures of particles
with different physical and chemical propertiesgaschallenge to characterization and
guantification of the engineering properties. Thisidy examined the behavior of
particulate mixtures composed of differently siz#iita particles, mixtures composed
of aluminosilicate and organic carbon particles) amixtures composed of particles
with approximately three orders of magnitude ddfere in particle size. This
experimental investigation used elastic, electram#g, and thermal waves to
characterize and to quantify the small to interragdstrain behavior of the mixtures.

The mechanical property of stiffness of mixed mater(e.g. binary mixtures
of silica particles and fly ashes with various earband biomass contents) was
evaluated through the stiffness of active graint@cts, and the stiffness of particles
which carry applied load, using the physical cotsey intergranular void ratio and
interfine void ratio. Additionally, the change inoth contact mode/stiffness and
electrical property due to the presence of naneesparticles (i.e., iron oxides) on the
surface of soil grains was evaluated accordingpied stress, packing density, iron
coating density, and substrate sand particle Sirally, the biomass fraction and total
organic carbon content of mixtures was used to tifyathe electrical and thermal

conductivities when particulate organic was mixethwluminosilicate particles.
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CHAPTER 1 INTRODUCTION

Natural geomaterials exhibit a wide range in sipbdysical properties,
chemical properties, and mechanical behaviorssSbét are composed of mixtures
of particles with different physical and chemicabjperties pose a challenge to
characterization and quantification of their engimeg properties. The engineering
behaviors of original host soils can be signifitarthanged by the properties and
content of added materials, while, in some condgjothe behaviors of mixed
materials can be comparable to those of host madderThus, the identification of
properties of mixed materials for the design aralyais of geotechnical structure and
soil-structure interaction is one of the most imaot tasks in geotechnical
engineering. However, studies on the behaviors otumes of soil particles with
various properties remained relatively limited daeat least in part, the complexity
of the structure and interaction between differpatticles despite the fact that
knowledge of those mixed materials is a necessaesequisite for the fundamental
understanding of the behavior of a large of soils.

Geophysical properties, especially elastic sheavewselocity, electrical
conductivity/resistivity, and thermal conductivitgtrongly reflect the physical and
geotechnical properties of soils (McDowell et al02). This study examined the
behavior of particulate mixtures composed of défdly sized silica particles,
mixtures composed of aluminosilicate and organitb@a particles, and mixtures
composed of particles with approximately three mydef magnitude difference in
particle size through the use of three geophysieating methods (i.e., elastic,
electromagnetic, and thermal waves). The stiffnesshe mixed materials (e.g.,

binary mixtures of silica particles and fly asheghwarious carbon and biomass
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contents) was evaluated by the stiffness of acgw@n contacts, indicating the
stiffness of particles which carry applied loadrotigh the physical concepts of
intergranular void ratio and interfine void ratiddditionally, the change in both
contact mode/stiffness and electrical properties thuthe presence of nano-sized
particles (i.e. iron oxides) on the surface of gpiins was evaluated according to
applied stress, packing density, iron coating dgnand substrate sand particle size.
Finally, the biomass fraction and total organidcar content of mixtures was used to
guantify the electrical and thermal conductivitigeen the particulate organic was
mixed with aluminosilicate particles.

Elastic shear wave velocity measurements were adeduby employing
bender element tests, electrical conductivity/tasig measurements were conducted
using electromagnetic waves and were measured lploging a four-electrode
resistivity probe, and thermal conductivity measueats (one property of thermal
waves) were measured by employing a thermal ngedlze. The shear wave velocity
measurements, electrical conductivity measuremeats] thermal conductivity
measurements were small-perturbation, non-destrusiil testing methods leading
to the determination of reliable constant fabriopgarties of soils without disturbance
(Benson 2000; Santamarina et al. 2001). In additima shear wave velocity (or small
strain stiffness), electrical conductivity, andrthal conductivity strongly reflect the
physicochemical properties of soils, leading taghsinto the nature of soil mixtures.

A summary of the research focus for each chaptgiven below.

1.1 Thesis Organization

This study focuses on finding the physical and dbahmechanisms behind

the behaviors of a variety of mixed materials, dase particulate level simplification



of complex structure or complex interaction betwegmarticles with a range of
physical and chemical properties. This study combim series of experimental
investigations with a theoretical framework to exagnthe fundamental mechanisms
governing the behavior of mixed materials. Consatjye the key variables
determining the behaviors of mixed materials wexeefully selected and controlled
to see the change of geophysical properties of dnixaterials according to the
change of key variables.

Chapter 2 quantified the dynamic properties of hyinaixtures, including
sand-sand mixtures with different particle sizes] ailty sand mixtures with small
guantities of fines (up to critical fines conter®y. performing bender element tests on
those mixtures, the variation of shear wave vejoziiues according to fines content,
size ratios, and relative densities were evalualhd.intergranular void ratiogewas
employed as an indicator of mechanical propertfesirary mixtures, instead of the
global void ratio. Most notably, shear wave velpcdf binary mixtures can be
expressed in terms of intergranular void ratioardgess of fines content at low fines
content (FC < FC¥*).

Chapter 3 focused on the stress-history-based dgnproperties of binary
mixtures such as sand-sand mixtures with diffesngs, and silty sand with non-
plastic fines up to critical fines content. By merhing bender element tests on those
mixtures as a function of fines content, size raind overconsolidation ratio, the
stress-history-based & of binary mixtures was evaluated. For the relevdata
analysis, the OCR exponent in thgsformulation was expressed in terms of stress
exponents during loading and unloading in thiswtud

Chapter 4 investigated the small to intermediatairstproperties of fly ash.

Stricter regulation of air emissions from coal dirpower plants, coupled with the



addition of biomass as a co-fired source of enelngye resulted in fly ashes with
relatively high carbon content. High carbon contiéyntashes are typically landfilled
unless another beneficial application can be fo@Guhsequently, this study evaluated
the suitability of fly ashes with various carborddnomass contents in terms of small
to intermediate strain geotechnical properties. Therfine void ratio, £ was
employed instead of global void ratio to capture #fteration of interparticle contact
or interparticle coordination between microsphetas to the change in carbon and
biomass contents.

Chapter 5 investigated the impact of unburned carparticles on the
electrical conductivity of fly ash slurries. BecaUASTM C618 prohibits the use of
fly ash with carbon content greater than 6 % inccete or cement, estimation of the
in-situ unburned carbon content of fly/pond ash egosn important challenge.
Additionally, with the recent stability issues ishaponds, estimation of in situ void
ratio or water content of ash is also critical teld performance of these ponds.
Therefore, in this study, the efforts were directedard determining the in-situ
carbon content and void ratio of fly ash using tleal conductivity/resistivity
measurements. Because unburned carbon particlesleatically conductive, the
resulting media conductivity will be a function ofrbon content, and electrical
conductivity methods allowed determination of tlebon content of fly ash, coupled
with void ratio or water content of the soil matrix

Chapter 6 quantified the thermal conductivity of fly ashes. The studies on
recent fly ashes with high contents of carbon amimbss particles in terms of
mechanical and chemical aspects were relativelyl @WeVeloped; however, the
thermal characterization of those fly ashes wasdtditn Consequently, this study

evaluated the thermal conductivities of fly ashathwarious carbon and biomass



contents to quantify the effect of unburned carparticles and biomass fired fly ash
on the rate of heat transfer of fly ash. The thémeadle probe method was employed
in this study.

Chapter 7 focused on the effect of nano-sized gdastion the alteration of
contacts and, correspondingly, stiffness betwead garticles. The presence of nano-
sized particles can dramatically alter the physaal chemical properties of natural
soils due to their small particle diameter (typigatmaller than 100 nm) and
correspondingly high specific surface. In addititme mechanical properties of soils
may also be changed due to the presence of naed-particles due to their impact
on the contacts between particles. Therefore, shisly assessed the change in
stiffness at very small strain due to the presesfcgon oxides (i.e., hematite and
goethite), particularly focusing on the change oantact mode between particles. The
iron oxide coating density of coated sands wasrobtietl by changing the substrate
sand particle size ranging from 0.11 to 0.72 mnthworresponding iron contents
ranging from 0.13 mg iron oxide/g sand (goethite)6t4 mg iron oxide/g sand
(hematite).

Chapter 8 verified Archie’s equation and quantifibd electrical conductivity
of uncoated and hematite coated soils. Electrioatactivity/resistivity measurement
is one of the most widely used testing methods siaosurface exploration, with
analysis typically performed using the work of AieehArchie’s equation is attractive
due to its simplicity; however, it is empirical, amay not be applicable for fine
grained soils, even though most coarse grained geials, such as sands, gravels,
and marine sediments, obey Archie’'s equation. Thizk developed a clear
theoretical background for Archie’s equation, amirced a clear boundary for the

applicability of Archie’s equation for a variety sbil types of and water chemistries.



In addition, this study also performed an experitakimvestigation to examine the
electrical properties of uncoated and laboratogppred iron oxide (hematite) coated
sands and clay, in order to evaluate the role ofdige adsorbed onto soil surfaces on

the measured electrical conductivity/resistivityttod particulate mixture.



CHAPTER 2 SHEAR WAVE VELOCITY OF BINARY
MIXTURES OF SILICA PARTICLES AS A FUNCTION OF FINES

FRACTION, SIZE RATIOS AND RELATIVE DENSITIES

2.1 Introduction

Most natural sand deposits are actually a mixtéisand particles and varying
quantities of fine grained soil particles (Carrataal. 2009; Georgiannou et al. 1990;
Iwasaki and Tatsuoka 1977; Salgado et al. 2000y&reeyagam et al. 2002; Yang et
al. 2006). Traditionally, studies to investigatee timechanical behaviors of sand
deposits have been performed using clean sandh, thdt impact of fine grained
particles on the behavior of sand deposits beindiesti more recently. Among the
engineering properties, the liquefaction poterdfadands with fines content (e.g. silt)
has been widely studied, with some investigati@perting that liquefaction potential
increases with increasing fines content (Chienl.eR@02; Georgiannou et al. 1990;
Lade and Yamamuro 1997), but the others showingittdecreases with increasing
fines content (Robertson and Campanella 1985; 8algtaal. 2000; Seed et al. 1983).
These debatable results, reflecting the difficuttythe interpretation of behaviors of
mixtures in terms of fines content, may be attelouto the difference in sample
preparation method, testing condition (density siness), as well as type and content
of fines (plasticity).

A new look to the interpretation of mechanical bebis of sands with fines,
focusing on the effect of intergranular void ratistead of the effect of fines content,
on the behaviors of mixtures, has been developedrgf® et al. 2003; Polito and

Martin 2001; Thevanayagam 1998; Thevanayagam €08R; Yang et al. 2006). In



this concept of intergranular void ratio, it was@sed that, at low fines content (fines
content, FC < critical fines content, FC*), smalperticles were generally retained in
the pores of large particles, and did not partieipa the load-carrying chain. Because
the applied stress will be transferred through toatacts of large particles, the
influence of fines (small particles) on the mechahbehavior of binary mixtures will
be negligible. Consequently, several researchexated the fines as void space,
despite the increase in mass density achieved inwgdmaller particles to the host
sand. As a result, those previous studies thattiyaryclic stress ratio (CSR) and
undrained strength of binary mixtures (e.g., sitgnd) frequently report the
mechanical behavior of binary mixtures as a fumctid intergranlular void ratio,
rather than the fines content or global void ratio.

In terms of dynamic properties, the maximum sheadulus (G gives
insight into the deformation characteristics ofisotontrols the shear wave velocity
(V) of soil deposits, and is often a required paramiet design and analysis of soils
and soil-structure interactions (Tatsuoka and Sfahi991). At very small strains (i.e.,
less than 0.001 %), the shear modulus is indepé¢mdestrain amplitude and exhibits
its maximum magnitude. Additionally, shear waveoedly is frequently used to
define the state of soils, since it can be easiasnred in the field as well as in the
laboratory (Robertson et al. 1995), and can be tsgdantify the stiffness of soils. In
terms of shear wave velocity or maximum shear megjut is generally accepted that
shear wave velocity (or maximum shear modulus) efeses with increasing non-
plastic fines content (Andrus and Stokoe 2000; lguah al. 2004; Iwasaki and
Tatsuoka 1977; Liu and Mitchell 2006; Randolph let1&94; Salgado et al. 2000);
however, only limited studies have systematicalyaracterized the effect of fines

content and size ratios on the alteration of stheae velocity or small strain stiffness



of binary mixtures.

The present investigation quantifies the effectfioés content, size ratios
between small and large particles, and relativesities on the shear wave velocity
values of binary mixtures of silica particles suab sand-sand mixtures of two
different sizes or silty sands containing smallrgitees of fines (~15%). Theoretical
analysis of the behavior of binary mixtures wasfqrened using the soil parameters
of critical fines content and intergranluar voidisgabecause the classical geotechnical
parameter of global void ratio was not suitabledéscribe the behaviors of binary
mixtures. The experimental investigation performidd® bender element tests that
were analyzed according to fines content, sizerand packing density; however,

the effect of plasticity on the binary mixtures we considered.

2.2 Theoretical Aspects of Binary Mixture

2.2.1 Pore Size

The propagation of waves through a particulate inomdis dependent on
packing arrangement and packing density. Conselyuenttheoretical analysis of
packing of binary mixtures of particles was perfedn

Spherical particles can be uniformly packed in rgeaments with void ratios
that range from 0.35 — 0.91. Examination of thepdentubic packing (loose packing
condition) and the cubic tetrahedral packing (dgmeeking condition) demonstrates
that the maximum size of small particles)(dvhich could be retained in the pore
space between larger particles with a median giaim of D, was 0.414-D for loose
packing and 0.155-D for dense packing (Figure @ahg 2011; Santamarina et al.

2001). Consequently, in order to ensure the casmefparticles retained within the



pore space of large particles, the size ratio effthe grained particle to the coarse

grained particle (D) should be less than 0.155.

o >d=0.414-D

Figure 2.1. lllustration of simple cubic and cutgtrahedral soil particle packings: the
maximum size of small particles fd which could be retained in the pore space
between large particles with a median grain sizB,ofvas 0.414-D for loose packing

and 0.155-D for dense packing.

2.2.2 Critical Fines (Small Particles) Content

The critical fines (small particles) content isidefl as the ratio of the weight
of fine particles to the weight of the total mixtuwhen the voids between large
particles are fully filled with fine particles (Ladet al. 1998). Consequently, the
following relation can be established for the caindi of critical fines content (Figure
2.2):
ale =bld+e,) (2-1)
where, a is volume of large particles; b is voluaiesmall particles, eis the void
ratio of large particles, ang & the void ratio of small particles.

The fines content can be defined according to:
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wg blGg Ly, _ b(Gg
WL+WS a[qssLD/W-'-b‘];sSD/W aBBSL+b[]BSS

FC = (2-2)

where, W : weight of small particles; W: weight of large particles; &: specific
gravity of large particle; ¢s : specific gravity of small particles. By combigin

equations (2-land (2-2, results in the determination for the criticalefincontent of a

binary mixture according to:

Gsle
GSL (1+ eS) +GSS [}L

FC* =

(2-3)

where, FC* : critical fines (small particles) conite

Note that Equation (2)3is the same relationship that Yang et al. (2006)

suggested to determine the transitional fines ecintéonsequently, the critical fines
content, transitional fines content, or limitingés content (Polito and Martin 2001)
describe essentially same conditions. Additionalljyjevanayagam et al. (2002)
defined the critical fines content as the finestenhwhen the interfine void ratio;, e

decreased below the maximum void ratio of finegshvg defined as the ratio of

global void ratio, e, to FC (Thevanayagam 1998).

Assuming the specific gravities of mixture partichkre the same, (3-8an be

further simplified to:

&

FCr=———
lte +e

(2-4)
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Figure 2.2. Gravimetric-volumetric analyses of éaemd small materials: W = weight;
V = volume; L = large particle; S = small particee= volume of large particles; b =
volume of small particles. Note thakea= b + be; at critical fines content, and the
volume of small particles are considered as vaidké concept of intergranular void

ratio.

2.2.3 Intergranular Void Ratio

Application of a global void ratio to binary mixes containing both large and
small particles is limited because the global veatio does not capture the
mechanical behavior of coarse grained soils withlkem particles that are located in
pore space between the larger particles. In titis tf packing arrangement, it can be
assumed that the fine-grained (small) particlesaboparticipate in the load-carrying
force chains. Consequently, a number of researdhéxsduced the concept of the
intergranular void ratio, instead of global voidioa to describe the behaviors of
mixed materials such as silty sand (Georgiannal.et990; Kuerbis and Vaid 1988;
Thevanayagam 1998), where small particles are deremil as voids when their

content is low (FC < FC*), resulting in (Figure 2.2

V, +Ve V-V
g: V S: T L:__l (2_5)
VL VL VL
where, \{ : volume of voids; ¥ : volume of small particles; V: volume of large
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particles; \f : total volume

Additionally, the following equation can be maderir Figure 2.2:

=t =%t (2-6)
GsL D/w GsL D/w

Combining (2-y and (2-¢ will yield:

— GsL [yw[VT
W — Wy

&

-1 (2-7)

Above Equation (2-7is the same relation suggested by Kuerbis and {£ifi8). And
total volume, \f can be expressed as:
Vi = (1+ e) EQVL +Vs) (2'8)

By substituting (2-Rand (2-8 into (2-7:

G, [, 1+e)(v, +vg) ~1+FC (1+¢) [El_ FC +GsLJ_1+ FC
e = = = 2-9
’ 1-FC 1-FC (2-9)
By simplification, (2-9 becomes:
e[EFc Eégstﬂjﬂ}gst FC
sS sS
e, = 2-10
¢ 1-FC ( )

If the specific gravities of mixtures are the santlee equation can be further

simplified to have the same form of Thevanayaga@®8):

e+ FC
e =<

2-11
¢ 1-FC ( )
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2.3 Experimental Program

2.3.1 Materials

ASTM 20/30 sand was chosen for use as the larggclear for the binary

mixtures and smaller particles were subsequentijeddo the ASTM 20/30 sand

according to the selected size rat@D%‘—) and fines (small particles) content. In all
50

experiments performed in this study, the termingltayge particles will be used to
denote ASTM 20/30 sand, and the added materialdowitlenoted as small particles
or fines, even though median grain sizes of theenas may be greater than 0.075
mm.

All soils were received from U.S. Silica Companyydawere composed
primarily of silicon dioxide (99.8%), with otheraite materials, such as iron oxide or
aluminum oxide composing approximately 0.2% of thmeralogy. The grain size
distributions of the soil samples were obtainedoatiog to ASTM D422, and the
limiting void ratios of the samples were determiratording to ASTM D4253 and
ASTM D4254. Measured properties of the soils useithé experimental investigation

are given in Table 2-1 and Figure 2.3.
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Table 2-1. Material Properties of Binary Soil Mixtg

) ASTM ASTM ASTM Sil-Co-Sil
Properties  “oq/39  §GS2230/40 504, 100/200 R40
Dso (Mmm) 0.72 0.503 0.203 0.113 0.010
Size Ratio

(d./ D) - 0.699 0.282 0.157 0.014
G, 2.65 2.65 2.65 2.65 2.65
€max 0.742 0.949 0.912 0.879 1.81
€min 0.502 0.689 0.584 0.560 0.64
Note: Dyp = median grain size; & specific gravity
100 - T
Vo —— ASTM20/30
'| ----- GS22 30/40
80 :
] ! --- ASTM60/80
\ 1
) ‘: \ ASTM 100/200
<60 : \ . .
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Figure 2.3. Grain size distributions of the tedeis.

2.3.2 Shear Wave Velocity Measurements

The shear wave velocity of each mixture was measusing bender elements

fitted inside a modified oedometer cell, which aleml measurement of the shear
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wave velocity as a function of increasing consdl@astress (after the method of Lee
and Santamarina (2005)) (Figure 2.4). Prepared lesmpere tested in the oK
condition under vertical stresses ranging from KR8 to 388.6 kPa, with shear wave
velocity measured at the end of each load step. shtear wave, which traveled
through the soil specimen, was generated by aifumgenerator (33210A, Agilent),
with a square wave of frequency = 20 Hz and angdita10 V, which was connected
to the source bender element. The bender elemanatked as the signal receiver was
connected to a filter amplifier (3364, Krohn-Hit&yhich in turn was connected to a
digital oscilloscope (DSO5014A, Agilent). A totaf 8024 signals were stacked to
reduce the influence of uncorrelated noise. Traume of the shear wave was
determined using the digitized signal, as recortgdthe oscilloscope (Lee and
Santamarina 2005), and the tip-to-tip distance ¢is&ance from the tip of the source
bender to the tip of the receiver bender elemeraty wsed as the travel distance

(Fernandez 2000; Lee and Santamarina 2005).
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Figure 2.4. Setup for shear wave measurement dfter method of Lee and

Santamarina (2005).

2.3.3 Sample Preparation and Testing Program

Varying test results for binary mixtures, such ity sand, have been obtained
depending on the method of sample preparation gragloeven when all other test
conditions were held constant (Yamamuro and Woo@4R0Additionally, water
sedimentation of particle mixtures has been shawwyi¢ld segregation between the
large and small particles (Lade and Yamamuro 198i/d et al. 1990). However,
specimen preparation using dry funnel depositiaih wiose to zero falling height has
been widely used to produce relatively uniform $pens with good mixing of large
and small particles (Ishihara 1993; Lade and Yaman®97; Yamamuro and Lade
1997). Dry funnel deposition has the added advantigoroducing a wide range of
relative densities of the resulting mixtures.

ASTM 20/30 sand was used as the large particle mmagerial, and smaller
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particles (GS22 30/40, ASTM 60/80, ASTM 100/200d asil-Co-Sil R40) were
added to ASTM 20/30 sand according to chosen sitzesrand fines contents. Initial
relative densities of the mixtures ranged from 2@80%, and the maximum fines
contents were selected based on the critical ftoesent of each mixture. Tests were
conducted in dry conditions. A total 112 bendenredat tests were performed to
elucidate the effects of size ratio, relative dgnsind fines content on the shear wave

velocity of the binary mixtures (Table 2-2).

Table 2-2. Experimental Matrix for Bender Elemeasiing

HOSt. Added Materials
material
Type - -
ASTM GS22 ASTM ASTM Sil-Co-Sil
20/30 30/40 60/80 100/200 R40
Size Ratio
0.699 0.282 0.157 0.014
(d/D)
. 30, 50, 30, 50, —an o _ 0 -0 0
Initial D, 70 % 70 % 20 ~80 % 20 ~80 % 20~80 %
- 20% 1% 1% 1%
- 40% 5% 5% 5%
Fines - 60% 10% 10% 10%
Contents - 80% 20% 20% 15%
- 100% 40% 40% 100%
- - 100% 100% -

Note: size ratio = g(size of small particles) / D (size of large pads); D = relative

density

2.4 Results and Analysis

ASTM 20/30 sand was mixed with four finer grain@ilssthat were chosen to

study three different mixing conditions: 1) GS22/48D mixture (d > 0.414-I3; of
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ASTM 20/30, small particles cannot be retainechimppores between larger particles);
2) ASTM 60/80 and ASTM 100/200 (0.414s50>> ds > 0.155- 3y of ASTM 20/30,
small particles retained in pore space betweertgygrticles only in loose packing at
low fines content, less than the critical fines teo); and 3) Sil-Co-Sil R40 {d&k<
0.155- B, small particles retained in pore space betwerge lgrains, regardless of

packing densities).

2.4.1 The Variation of Extreme Void Ratio

The limiting void ratios of the binary mixtures deased with increasing fines
(small particles) content until the pore space betw the larger particles was
completely filled with small particles. This conidit coincided with the critical fines
content. However, at fines contents larger than d¢hgcal fines content, larger
particles were dispersed in a fines matrix andvtsid ratio increased as fines content
increased. Further increases in the fines contgmtoached the extreme void ratio of
the added materials (Figure 2.5). The void ratduntion observed below the critical
fines content was impacted by multiple factors udahg size ratio, uniformity,
surface roughness, and particle shape (Bowles 1B@8e and Yamamuro 1997,
Vallejo 2001). It is well known that uniformity, gace roughness, and particle shape
determine the extreme void ratios of the host aihded materials (Cho et al. 2006;
Mitchell and Soga 2005; Youd 1973); consequentig, size ratio and extreme void
ratios of original soils will be the primary factodetermining void ratio reduction of
binary mixtures. The effect of these two factorsvoid ratio reduction was observed
through the following: 1) the mixture with GS22 80/(size ratio ~ 0.7) resulted in
void ratios that were linearly shifted from thode26/30 sand to those of 30/40 sand,

according to the mass content of small particlesabse small particles could not be
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retained between large particles; 2) the extremie vatios of ASTM 60/80 and
ASTM 100/200 showed very similar numbers; consetiyetme mixture with ASTM
100/200 showed greater void ratio (botheand @,,) reductions than those of the
mixture with ASTM 60/80 due to the smaller sizeiaggr greater size difference)
because the fines could be more easily locateddrvoids of large particles, with an
increase in size difference (Lade and Yamamuro 19&7d 3) the minimum void
ratio of SCS R40 was comparable with those of o#tueled materials, leading to the
greatest void ratio g, reduction of the mixture with SCS R40 at a giviares
content due to the much smaller size ratio; howeber maximum void ratio of SCS
R40 was much greater than those of other addedriadatéeading to limited void

ratio (enay reduction of the mixture with SCS R40 in spitevefy small size ratio.
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Figure 2.5. The variation of extreme void ratiog tested binary mixtures: (a)
variation of @y (b) variation of gi,; size ratio for ASTM 20/30 with GS22 30/40 =
0.699; size ratio for ASTM 20/30 with ASTM 60/800=282; size ratio for ASTM

20/30 with ASTM 100/200 = 0.157; size ratio for A8T0/30 with SCS R40 = 0.014.
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2.4.2 Shear Wave Velocity

A number of researcher expressed thg.Gor Vs estimating formulas
including the function of void ratio to considek @r Gynax dependency on relative
density (D) or void ratio (e) (DeAlba et al. 1984; Hardin aRéchart 1963; Iwasaki
and Tatsuoka 1977; Lo Presti et al. 1997), and¥ahg the expression of Hardin and

Richart (1963) based on resonant column test segidtd:

Vs =(m —m, [€) EE%"} (2-12)

where, e = void ratio, mand m are material constants, B atmospheric pressure
(100 kPa), and m 0.25, typically. Equation (2-12) clearly demonstththat the shear
wave velocity increases with a decrease in voitb rat with an increase in relative

density due to the increase in interparticle cawtion.

2.4.2.1 ASTM 20/30 with GS22 30/40

The mixture of ASTM 20/30 with GS22 30/40 was prepkto study the case
of ds greater than 0.414spof ASTM 20/30, with no possibility of retaining small
particles to the pores between larger particlesefiscted in the variation of extreme
void ratio (Figure 2.5). Comparison of the sheavevaelocity of this mixture at fines
content of 20%, 40%, 60%, and 80% indicated valoksshear wave velocity
increased relative to clean ASTM 20/30 or GS22 @@#fines content of 40 or 60 %,
but were similar to the values for clean sandsnaisfcontents of 20% and 80%. This
increase is attributable to the increased coorinatumber that occurred as the soil
matrix transitioned from large particle dominateal $mall particle dominated.
Additionally, the shear wave velocity of all mixedaterials increased with an

increase in relative density reflecting an increiasaterparticle coordination.
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Figure 2.6. Shear wave velocity of ASTM 20/30h@S22 30/40 according ta.D

size ratio = 0.699; applied vertical effective ste 98.2 kPa.

Examination of the shear wave velocity measuredttier mixture of ASTM
20/30 and GS22 30/40 as a function of the global vatio demonstrated that with
increasing content of smaller particles, the trigmel shifted essentially proportionally
as a function of the fines content (Figure 2.7)e Tata demonstrated that in cases
where small particles could not be retained in Yoéds of large particles, the
mechanical properties of mixtures changed frompitoperties of the large grain host
material to those of the small grain mixture materat a level that was almost
proportional to the content of the fines. Note ttiet particle shapes differed between
ASTM 20/30 sand and GS22 30/40 sand, which resiitedsignificant difference in

the tested void ratio ranges of the two unmixedisdivoud 1973).
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2.4.2.2 ASTM 20/30 with ASTM 60/80 and ASTM 100/200

The mixtures of ASTM 20/30 with ASTM 60/80 and ASTMO0/200 were
prepared to study the case of 0.414-B d; > 0.155-3o. In loose packing of these
mixtures, smaller particles were confined withire tkoid space between large
particles at low fines content (FC < FC*); howe\eas, packing density increased, the
theoretical pore size between larger particles eseed from 0.414-D to 0.155:D,
resulting in exclusion of small particles from tlaege particle pore space. Ultimately,
as the packing density of these mixtures increaeddirect contact between large
particles was reduced by the presence of smalieicles. Comparison of the shear
wave velocity as a function of relative density vibe¢n the clean large matrix
(FC=0%) and the clean small matrix (FC=100%) angtumés with fines contents of
1%, 5%, 10%, 20%, and 40% demonstrated that tharskave velocity was not
dependent on the relative density up to the ctificees content (~20%) (Figure 2.8
and Figure 2.9). The mixture with 1% fines conteitt show comparable shear wave
velocity to that of the original ASTM 20/30 sanahdacorrespondingly, a dependence
on relative density reflecting less interruption direct contacts between large
particles with the condition of satisfying both ydow fines content and great size
ratio. At fines contests higher than critical (40%) which case the smaller particles
were the primary load-carrying skeleton, the sheave velocity of the mixtures
increased with increased relative density reflgctiransition of structural skeleton

from the contacts of large particles to the costactsmall particles.
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Figure 2.8. Shear wave velocity of ASTM 20/30 wiBTM 60/80 according to D

size ratio = 0.282; applied vertical effective ste 98.2 kPa.
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Figure 2.9. Shear wave velocity of ASTM 20/30 wit8 TM 100/200 according to,D

size ratio = 0.157; applied vertical effective sge 195 kPa.

The shear wave velocity of the mixtures of ASTM 3Miith ASTM 60/80
and ASTM 100/200 were analyzed in terms of intergtar void ratio (Figure 2.10
and Figure 2.11). At fines levels lower than catigFC < FC*), the shear wave
velocity of the t