
A SYSTEM DESIGN APPROACH TO NEUROMORPHIC
CLASSIFIERS

A Thesis
Presented to

The Academic Faculty

by

Shubha Ramakrishnan

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2013

A SYSTEM DESIGN APPROACH TO NEUROMORPHIC
CLASSIFIERS

Approved by:

Professor Jennifer Hasler, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Robert Butera
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor David Anderson
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Eugenio Culurciello
School of Biomedical Engineering
Purdue University

Professor Sung-kyu Lim
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: Jan 2013

ACKNOWLEDGEMENTS

I thank my advisor, Jennifer Hasler, for all her support, encouragement, and men-

torship. I am deeply grateful to her for introducing me to several exciting areas of

research, as well as allowing me freedom to pursue some of my own interests.

I thank my committee members, for the time they have taken to serve on my

committee and for their feedback. I am especially thankful to David Anderson for his

insight and guidance on noise-suppression and auditory processing.

I met several bright and wonderful people at the ICELAB, whom I enjoyed working

with and who taught me a lot. I thank all the members of ICELAB for their help

and camaraderie.

I thank my parents for their unconditional love, support, encouragement, and

patience. I am grateful to my sister Prabha, for all the phone counseling. I am

thankful to my parents-in-law for all their support.

My journey would have been impossible without my husband Rishi, who was with

me every step of the way and also made it enjoyable.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . xi

I NEUROMORPHIC DESIGN FOR ENGINEERING 1

1.1 Analog Signal Processing . 2

1.2 Neuromorphic Engineering . 3

II SPEECH PROCESSING ON A RECONFIGURABLE ANALOG
PLATFORM . 7

2.1 Speech Enhancement . 10

2.1.1 Known signal quality . 11

2.1.2 Unknown signal quality . 12

2.2 Reconfigurable Analog Hardware . 12

2.3 System Components . 14

2.3.1 Band Pass filter . 14

2.3.2 Envelope Detector . 16

2.3.3 Multiplier . 18

2.4 Single Channel System Results . 19

2.5 Multi-Channel System Results and Discussion 21

2.5.1 Power consumption . 22

2.6 Conclusions . 23

III THE VMM AND WTA AS AN ANALOG CLASSIFIER 32

3.1 Implementation and Efficiency Overview 35

3.2 Hardware : FPAA Implementation 36

3.3 Winner Take All . 39

3.3.1 WTA dynamics . 41

iv

3.3.2 Multiple Winners . 42

3.4 Compact VMM Implementations . 43

3.5 Capability of VMM+WTA Classifiers 46

3.5.1 Linear Classifiers . 47

3.5.2 Multi-class Classifiers . 49

3.5.3 Non-linear classifiers . 51

3.6 System performance characterization 54

3.6.1 Mismatch compensation . 54

3.6.2 Speed, Power and Efficiency 55

3.6.3 Temperature Effects . 58

3.7 Conclusions . 59

IV RECONFIGURABLE NEURON ARRAY WITH PLASTIC SYNAPSES
AND PROGRAMMABLE DENDRITES 61

4.1 A Neuromorphic FPGA . 62

4.1.1 Chip Architecture . 64

4.1.2 Global Interconnect . 65

4.2 Silicon Neuron Model . 65

4.2.1 Silicon Synapses . 66

4.2.2 Dendritic modeling . 68

4.2.3 Neuron Soma . 69

4.2.4 AER . 70

4.3 Dendritic computation . 72

4.4 Conclusions . 74

V FLOATING GATE SYNAPSES WITH SPIKE TIME DEPEN-
DENT PLASTICITY . 76

5.1 Basics of Transistor Learning Synapses 78

5.1.1 Feed Forward Synapse Computation 79

5.1.2 Synaptic Weight Updates . 82

5.2 Learning Algorithm . 84

v

5.2.1 LTP Learning Algorithm . 84

5.2.2 LTD Learning Algorithm . 85

5.2.3 STDP Learning Algorithm 87

5.3 Mathematical Model . 88

5.3.1 LTP model . 90

5.3.2 LTD model . 90

5.3.3 STDP model . 92

5.4 Measurements from Spike Based Learning Experiments 92

5.4.1 STDP Learning Experiments 94

5.5 Conclusion . 95

VI SYSTEM IMPLEMENTATION . 97

6.1 RASP 3.0N . 97

6.1.1 Neuron RASP Core . 99

6.1.2 Neuron Tile . 101

VII CONCLUSION . 107

7.1 List of Contributions . 108

APPENDIX A — A COMPACT VMM 110

REFERENCES . 113

VITA . 123

vi

LIST OF TABLES

1 Subjective evaluation of noise suppression algorithm on speech samples
with added pink noise . 22

2 Power consumption of individual blocks for a 4-channel system. . . . 23

3 Key parameters of the Neuron2 Chip. 66

vii

LIST OF FIGURES

1 Efficiency Wall for Digital Processors. 2

2 Comparison of memory access costs. 3

3 System flow for building neuromorphic classifiers. 5

4 High level overview of auditory processing on a reconfigurable platform. 8

5 System overview and MATLAB simulation results. 9

6 Overview of RASP 2.8a chip. 11

7 Programmable Band Pass Filter. 15

8 Envelope detector: circuit diagram and measurements. 17

9 Signal Multiplier: Circuit diagram, DC and transient measurements
and frequency analysis. 25

10 Single Channel results for envelope thresholding system. 26

11 Squaring Non-linearity for dynamic range expansion. 27

12 Multi-channel System Results. 28

13 SNR Estimation System: block diagram and measured results. 29

14 Characterization of the translinear product-reciprocal circuit. 30

15 Effect of limited channels on performance. 30

16 Spectrogram of noisy and processed speech. 31

17 Application of VMM+WTA classifiers in an Analog Speech Recognizer. 33

18 RASP 2.9v IC overview: specialized infrastructure for building large
VMMs. 35

19 Schematic of winner-take-all structures and its input-output character-
istics. 37

20 System Block diagram of VMM+WTA classifiers. 38

21 Measured dynamic response of WTA to input current step. 39

22 k-winner-take-all . 40

23 1x2 VMM characterization. 43

24 Equivalence between VMM topologies. 45

25 Implementation of linear classifiers using VMM+WTA. 48

viii

26 Multi-dimensional classifiers. 49

27 Implementation of nonlinear classifiers using VMM+WTA 52

28 Implementation of the four-bit parity problem using VMM+WTA . . 53

29 Schematic of VMM+WTA circuit: Speed, Power and Efficiency. . . . 56

30 Computing Efficiency vs classifier size. 56

31 Temperature dependence of VMM+WTA classifier. 59

32 Scaling arguments affecting chip design philosophy. 63

33 Neuron chip architecture. 64

34 Synaptic Inputs . 67

35 EPSP and Action Potential . 68

36 Programmable dendritic structure in the Neuron2 chip. 69

37 Summation of synaptic inputs on the dendrite 70

38 Detailed diagram of the configurable soma. 71

39 Timing waveforms generated as a result of a neuron spike. 72

40 Word Detector . 73

41 Directional Selectivity in the dendrite. 74

42 Sensitivity of dendrite line to delays between inputs. 75

43 Single Transistor Learning Synapse. 77

44 EPSC before and after learning. 78

45 Array for Learning Synapses. 81

46 Timing Diagram for LTP and LTD. 83

47 Timing of the Programming algorithm for the STDP learning rule. . . 85

48 Learning Experiments: LTP and LTD. 91

49 Learning Experiments: STDP. 93

50 Injection Characterization. 96

51 A block diagram of the RASP 3.0N IC and its layout. 97

52 CABs in the Neuron RASP IC Core. 98

53 Tiles in the RASP 3.0N IC. 100

54 Components of the Analog CABs. 101

ix

55 The Neuron CAB in the RASP 3.0N IC. 102

56 Schematic of the charge pump. 103

57 Schematic of the NMDA Synapse. 104

58 Channels in the Soma block. 105

59 Modified WTA block. 106

x

SUMMARY

In our attempts to make our devices smarter, smaller, and increase battery

lives, we need to consider alternative strategies to mainstream approaches to problem

solving - namely analog and neuromorphic solutions for signal processing. Contrary to

expectations from Moore’s Law predicting an efficiency increase with technology node

scaling, the efficiencies of modern digital processors have asymptotically approached

10 Giga Computations per Joule. It is clear that the next generation application need

demands a much higher computing efficiency than is possible with following current

trends. We need to investigate other techniques to increase computing efficiencies.

The two strategies that we deal with in this research are analog and neuromorphic

engineering. Carver Mead’s hypothesis states that computation using the inherent

physics of the device is 1000X more efficient than digital. It has already been shown

that for certain functions such as Matrix Multiplication, Frequency decomposition,

Analog FFT, Adaptive filtering, Winner Take All, analog is more efficient than digital

processing. However, for analog signal processing to be a serious contender to digital

techniques, it is essential that the hardware is programmable. Custom analog IC fab-

rication, although more efficient, is very expensive. Custom analog is also inflexible,

making it difficult to make modifications to the processing algorithm or use it for

slightly different applications.

Neuromorphic engineering deals with the design of systems that are either in-

spired by neuro-biological functions or replicate them. However, for real impact, it

is essential to demonstrate significant advantages to main stream approaches in engi-

neering applications by introducing a new paradigm of computing, new algorithms for

information processing ultimately leading to more intelligent systems. This research

xi

deals with developing emulation tools in silicon that enable investigation of neural

computing principles and their pertinence to information processing in engineering

applications.

Ultimately, this work aims to develop a neuromorphic system design flow for

implementing speech classifier solutions, thereby demonstrating significant compu-

tational efficiency advantages over other existing implementations. This work uses

low-power analog solutions for frequency analysis and feature extraction, and a neu-

romorphic approach to classification tasks. In doing so, this work also aspires to posit

the significance of dendrites in neural computation.

xii

CHAPTER I

NEUROMORPHIC DESIGN FOR ENGINEERING

A large portion of the research in electrical and computer engineering today is di-

rected towards efficient computing to make smart and low power devices. In our

attempts to make our devices smarter, smaller, and increase battery lives, we need to

consider alternative strategies to mainstream approaches to problem solving - namely

analog and neuromorphic solutions for signal processing. The reason for alternate

approaches is due to the barrier to computing efficiency observed in today’s digital

computers. Marr et al published a survey of digital processors currently in the market

by plotting their technology node and their computing efficiency [69]. These were in-

market ICs and contrary to expectations from Moore’s Law predicting an efficiency

increase with technology node scaling, the efficiencies asymptotically approached 10

Giga Computations per Joule. The unit of computation here was considered to be a

Million Multiply Accumulate (MMAC) operations, which is a fair metric for compar-

ing DSPs, microprocessors as well as analog processors. We prefer to use the metric of

MMAC for computation as opposed to Operations (Ops), since the MMAC actually

defines a computation, while an Op could well be a no-Op. The survey from [69] is

plotted in Fig. 1. A possible cause for the efficiency wall is the sub-threshold mis-

match in devices that worsens as the technology scales. Designers have to spend more

power and area compensating for the mismatch. It is clear that the next generation

application need for smart devices demands a much higher computing efficiency than

is possible with following current trends. We need to investigate other techniques to

increase computing efficiencies. The two strategies that we deal with in this research

are analog and neuromorphic engineering.

1

2018 202020162014201220102008

Year

2006200420022000

0.01

0.1

1

10

100

G
ig
a
-c
o
m
p
u
ta
ti
o
n
s
 p
e
r
J
o
u
le
 (
3
2
-b
it
 M
u
lt
ip
ly
 A
c
c
u
m
u
la
te
)

Efficiency Wall

130 nm 90 nm 65 nm 45 nm 32 nm ?? nm

Next Generation

Application Need

tms320c6412-500

tms320c6424-700

Athlon X2 BE2300

Pentium Dual-Core E2140

Monarch

IBM Cell
ARM Cortex-A

Virtex 6
nVidia Fermi GTX480

core i7 980 ee

Atom N270

Core 2 QX670o

Tile64

Pentium 4 ee HT 3.2

Current trends will not

meet application need!

Energy Efficiency Wall

Processor Survey

Curve Fit

Koomey’s Law

Figure 1: Efficiency Wall for Digital Processors: A barrier to the observed
computing efficiency at 10 Giga Computations / Joule is plotted. Technology node
scaling does not change the barrier. Sub-threshold mismatch is hypothesized as a
reason for this efficiency barrier.

1.1 Analog Signal Processing

Carver Mead’s hypothesis states that computation using the inherent physics of the

device is 1000X more efficient than digital [72]. It has already been shown that for

certain functions such as Matrix Multiplication, Frequency decomposition, Analog

FFT, Adaptive filtering, Winner Take All, analog is more efficient than digital pro-

cessing [17, 31]. However, for analog signal processing to be a serious contender to

digital techniques, it is essential that the hardware is programmable. Custom analog

IC fabrication, although more efficient, is very expensive. Custom analog is also in-

flexible, making it difficult to make modifications to the processing algorithm or use

it for slightly different applications.

Programmable analog processing in the case of a multiplier is more efficient due

to the computing element also having memory, as shown in Fig. 2. The local weight

storage obviates the need for memory access, as in the case of a digital computing flow,

thereby reducing power consumed during computation. Programmable analog also

2

Figure 2: Comparison of memory access costs: In programmable analog, the
computing and storage elements are located close to each other, while in digital they
are separated. The cost of computing includes access to the memory.

has the great advantage of canceling mismatch effects using floating-gates. Hence,

during the course of this work, we explore programmable analog strategies for signal

processing.

1.2 Neuromorphic Engineering

Neuromorphic engineering deals with the design of systems that are either inspired

by neuro-biological functions or replicate them. The goal of neuromorphic engineer-

ing may be developing system emulation tools for neuroscientists for investigative

purposes with a significant improvement over fully digital solutions in terms of com-

puting efficiency and size. Systems that closely model biology, with power supplies

3

similar to biology can be used for neural interfacing and stimulation in medical appli-

cations. Other goals include high-level modeling of signal processing pathways based

on the structure of biological systems for improving performance/efficiency and de-

tailed modeling of neural networks to exploit low-level processing for engineering

applications.

In the two decades of its existence, progress has been made in bringing the funda-

mental principles of neuromorphic engineering to fruition in products like touch-pads

and imagers, system designs such as silicon retina/imager, silicon cochlea. However,

for greater impact, it is essential to demonstrate significant advantages to main stream

approaches in engineering applications by introducing a new paradigm of computing,

new algorithms for information processing ultimately leading to more intelligent sys-

tems. This research deals with developing emulation tools in silicon that enable

investigation of neural computing principles and their pertinence to information pro-

cessing in engineering applications.

Humans perform much better than current systems at speech recognition tasks.

Low-power real-time compact implementations have several wide ranging applications

such as in aids for the hearing impaired, search of speech databases, and enhancing

human computer interactions. However, the best existing speech recognizers per-

form poorly on unconstrained speech, and do better with specific talkers when ample

training data is available. Among the popular speech recognition algorithms in use

today is one that uses Hidden Markov Model (HMM) techniques, but is also the most

computationally challenging. However, it consistently performs better than other

classifier architectures in speech recognition tasks which make it an attractive op-

tion to pursue. The high computation and memory requirements of the algorithm

mandate massively parallel designs for real-time, large-vocabulary speech recogniz-

ers which raises the barrier for hardware implementation using conventional digital

hardware approaches.

4

Auditory

Front-End

for Speech

Enhancement

and Frequency

Decomposition

Feature

Extraction

Stage

Continuous

Time HMM

using dendrites:

Phoneme/Word

Recognizer

Raw

Speech

Sub-banded

Speech

Envelopes
Symbols

Output

Probabilities

Figure 3: System flow for building neuromorphic classifiers.

This work aims to develop a neuromorphic system design flow for implementing

HMM-based speech classifier solutions, thereby demonstrating significant computa-

tional efficiency advantages over other existing implementations. This work uses

low-power analog solutions for frequency analysis and feature extraction, and a neu-

romorphic approach to classification tasks. In doing so, this work also aspires to

posit the significance of dendrites in neural computation, which is often ignored by a

significant portion of the neuroscience community.

The system shown in Fig. 3, includes a sensory front-end built based on high-

level biological modeling of the cochlea to enhance speech and extract sub-band signal

energies. These inputs are transformed into “symbols” or “parts of speech” repre-

sentation using a weighted summation, after which the probability that a “symbol”

is detected is estimated. These input probabilities are supplied to a continuous-time

HMM, which computes the output probabilities for phonemes/words.

This document is organized as follows. In Chapter 2, we describe architectures

for audio classification front-ends on a reconfigurable analog platform. Real-time

implementation of audio processing algorithms involving discrete-time signals tend to

be power-intensive. We present an alternate continuous-time system implementation

of a noise-suppression algorithm on our reconfigurable chip, while detailing the design

considerations. We also describe a framework which enables implementations of other

speech processing algorithms, classifier front-ends and hearing aids.

5

In Chapter 3, a novel classifier structure is presented as a general-purpose, low-

power, compact, programmable classifier architecture that is capable of greater com-

putation than a 1-layer neural network, and equivalent to a 2-layer perceptron. The

classifier generates event outputs and is suitable for integration with event-driven

systems. The main sources of mismatch, temperature dependence and methods for

compensation are discussed. We present measured data from simple linear and non-

linear classifier structures and analyze the power and computing efficiency for scaled

structures.

In Chapter 4, a novel neuromorphic chip that models neurons for efficient com-

putation is discussed. Traditional architectures of neuron array chips consist of large

scale systems that are interfaced with AER for implementing intra- or inter-chip con-

nectivity. We present a chip that uses AER for inter-chip communication but uses

fast, reconfigurable FPGA-style routing with local memory for intra-chip connectivity.

We model neurons with biologically realistic channel models, synapses and dendrites.

This chip is suitable for small-scale network simulations and can also be used for

sequence detection, utilizing directional selectivity properties of dendrites, ultimately

for use in word recognition.

In Chapter 5, we describe a single transistor floating gate synapse device that can

be used to store a weight in a non-volatile manner, compute a biological EPSP, and

demonstrate biological learning rules such as LTP, LTD and STDP. We also describe

a highly scalable architecture of a matrix of synapses to implement the described

learning rules. Parameters for weight update in the 0.35µm process have been ex-

tracted and can be used to predict the change in weight based on time difference

between pre- and post-synaptic spike times.

Finally, in Chapter 6, we describe a new IC that integrates all the elements re-

quired for building low power, efficient neuromorphic classifiers. We list the choices

made in the design process and describe the functional blocks.

6

CHAPTER II

SPEECH PROCESSING ON A RECONFIGURABLE

ANALOG PLATFORM

We present a reconfigurable analog chip that can be used as a front-end for audio

processing and signal enhancement. The possible benefits of analog in terms of power

dissipation per unit computation has long been hypothesized by Mead in [72]. A

careful study of the same done in [92] showed that for a particular system, analog

processing would be better than digital if the desired signal to noise ratio (SNR) was

below a certain value. Since then, there have been several custom analog implemen-

tations of various signal processing blocks exploiting this feature [19, 20, 57, 80, 95].

The popularity of analog processing, however has remained far lesser than digital

owing to difficulty in design and fixed functionality. However, recent developments in

field programmable analog arrays (FPAAs), the analog equivalent of FPGAs, shows

great promise in allowing the end user to easily utilize the power of analog process-

ing. The scope of such a structure in performing signal processing was discussed

earlier in [108]. FPAAs offer the advantage of rapid prototyping and programmabil-

ity, allowing the user to implement a wide variety of circuits, unlike expensive custom

analog IC fabrication. In this work, we use the FPAA to implement a few signal

processing algorithms that are useful in audio processing. We introduce the reader

to the trade-offs in implementing a few algorithms on a reconfigurable platform and

demonstrate a few examples of noise suppression algorithms based on a physiological

model of hearing that use non-linear filtering in different sub-bands. The motivation

and approach to audio processing adopted in this work, shown in Fig. 4 is closely

7

Nonlinear Processing

Nonlinear Processing

Nonlinear Processing

Nonlinear Processing

Sound

source

Human

Ear

F
re
q
u
e
n
c
y
 D
e
c
o
m
p
o
s
it
io
n

FPAA

Noise Suppression

Hearing Compensation

Speech Detector

Digitized

sub-band

outputs

to DSP

Figure 4: High level overview: We envision a range of biologically inspired signal
processing algorithms, that fit into the pathway between speech production (source)
and perception (human ear). These algorithms are implemented by non-linear pro-
cessing of sub-banded speech signals for applications such as noise suppression or
hearing compensation, by proper choice of the non-linearity. In addition, the out-
puts of the non-linear processor can be taken at each sub-band, for speech detection
instead of recombining to generate a perceptible signal for the human ear.

related to the model for the human auditory system [62]. The frequency decomposi-

tion performed by the basilar membrane is modeled using a bank of parallel bandpass

filters, with exponentially spaced center frequencies. The inner and outer hair cells,

which detect the sound intensity and provide non-linear amplification respectively,

are modeled by the non-linear signal processing block. Using this general framework,

a variety of non-linear processing can result in applications ranging from noise sup-

pression systems, speech activity detectors, speech classifiers and hearing aid blocks.

The signal is recombined post-processing and converted back into an audio signal,

or digitized before recombination, providing sub-banded input for further DSP. This

structure is amenable to easy implementation on the FPAA, making it an attractive

platform for comparing various analog signal processing (ASP) algorithms for audio

applications. This chapter is organized as follows: Section II examines a few gain

8

Gain
ControlEnergy

Estimator
Soft

Threshold
SNR

Estimator
Soft

Threshold

cl
ea
n
 s
p
ee
ch

n
oi
se
 s
u
p
p
re
ss
ed
 a
n
d

n
oi
sy
 s
p
ee
ch
 a
m
p
li
tu
d
e

0.4

0.2

0.3

0

0.1

-0.4

-0.3

-0.2

-0.1

time (s)
0 0.5 1 1.5 2

0.4

0.2

0.3

0

0.1

-0.3

-0.2

-0.1

time (s)
0 0.5 1 1.5 2

cl
ea
n
 s
p
ee
ch

0.4

0.2

0.3

0

0.1

-0.4

-0.3

-0.2

-0.1

time (s)
0 1 2 3 4 5

time (s)
0 1 2 3 4 5

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

n
oi
se
 s
u
p
p
re
ss
ed
 a
n
d

n
oi
sy
 s
p
ee
ch
 a
m
p
li
tu
d
e

Figure 5: System Overview: Top level signal flow consists of frequency decompo-
sition of incoming speech signal into exponentially spaced sub-bands. The non-linear
processing consists of signal energy detector and a gain control block which modulates
the gain applied to a signal-signal multiplier block. The outputs from the multipliers
are then recombined to produce the processed output. For a non-linear processing
block consisting of a speech envelope detector and a thresholding block, results from
a MATLAB simulation showing clean, noisy(gray) speech with 5 dB SNR and pro-
cessed speech. MATLAB simulation results for a processing block consisting of an
SNR estimator and a threshold block are also shown.

control topologies and their applicability to noise suppression algorithms. Section III

provides a short review of the reconfigurable hardware that is being used. Section

IV and V discuss circuits and measurement results of individual blocks used in our

algorithm and measurement results from a single channel implementing a processing

algorithm respectively. In Section VI we present measured results for a few system

implementations of noise suppression.

9

2.1 Speech Enhancement

Today, most efforts in audio signal enhancement have been concentrated in processing

the digitized signal with Wiener filtering, spectral subtraction and other techniques

[58,90]. We consider an approach in which the signal is “enhanced” prior to/instead

of digitizing, using the non-linear signal processing blocks available in the FPAA,

to propose a solution for speech enhancement. Our solution follows the algorithm

previously described in [3, 21], suitable for implementation using analog VLSI. A

noisy audio signal x(t) can be represented as

x(t) = s(t) + n(t) (1)

where s(t) is the signal and n(t) is the noise. We assume the noise is stationary

over a longer period of time relative to the speech signal, resulting in a separation of

timescales in s(t) and n(t). We estimate the noise n̂(t), from x(t) and then modulate

the gain of the signal in the following stage. When x(t) > n̂(t), our audio signal

dominates our noise estimate. Hence, we apply a large gain to the signal, to emphasize

speech portions of the signal. When x(t) ≈ n̂(t), the audio signal is mostly noise and

we reduce the signal gain, so that the noisy portions may be suppressed.

Fig. 5 depicts the approach taken in this research for noise suppression. The

noisy audio signal is sub-banded using a second-order bandpass filter. We represent

an acoustic signal as a sum of band-limited signals; each sub-band representation is

further decomposed into a product of an envelope (which carries the instantaneous

loudness information) and a rapidly oscillating signal (carrier) of nearly constant

power. This signal representation can be applied to auditory analysis by making the

signal sub-bands roughly equal in bandwidth to the critical bands in the ear. In

particular, the acoustic signal s(t) can be expressed as

s(t) =
∑

i

ei(t)vi(t) (2)

10

CAB CAB

CAB CAB

(a)

(b)

+
 V
1
 -

+ V2 -

Iout +

Iout -

Analog

Buffer

Floating-Gate

Current Mirror

Ii
n

Io
u
t

(c)

(d)

Figure 6: Overview of RASP 2.8a chip: (a) This FPAA consists of computa-
tional analog blocks(CABs) embedded in a routing fabric made up of programmable
switches. (b) A die photo of the device fabricated in a 0.35µm CMOS process. (c)
The CAB consists of commonly used analog functional blocks such as OTAs, signal-
signal multipliers, transistors, MITEs and capacitors. (d) Our test infrastructure
includes a PCB that uses USB for power and communication. The board consists of
a micro-controller, DACs, ADCs for programming and testing. The board also has
audio ports and amplifiers that can be used to drive speakers.

where vi(t) is the speech excitation (high frequency) and ei(t) is the speech envelope

(low frequency) in the ith channel. The band-limited signal envelope is estimated

using an envelope detector, followed by a gain control block which modulates the

gain of the signal provided by a signal-by-signal multiplier.

2.1.1 Known signal quality

The gain control block can be simplified with a priori knowledge of the incoming

speech signal quality. For signals with reasonably high SNR, we can assume that

11

when the sub-banded noisy speech envelope falls below a certain value, there is no

actual speech signal and it is mostly noise. A soft thresholding function applied to

the envelope estimate then results in attenuation of all signals with an envelope below

a certain value and a gain applied to all signals above the threshold. Fig. 5 shows

the results from a MATLAB simulation for such a block. This technique results in

loss of stand-alone soft sounds in the speech. Furthermore, this algorithm is limited

in the sense that it performs poorly on inputs with low SNR.

2.1.2 Unknown signal quality

This method does not make assumptions about the input SNR, but assumes that

the temporal characteristics of background noise and speech signal are different [22].

Using that information, we can arrive at a noise estimate based on the noisy input

speech. Dividing the noisy speech envelope by the noise estimate gives us a measure

of the “instantaneous SNR”. A soft thresholding function is now applied to the in-

stantaneous SNR estimate, to emphasize portions of the input with moderate SNR

and attenuate portions with low SNR. Fig. 5 plots the simulated results for such

an algorithm. This method performed better in retaining soft sounds, unless the

masking noise was present in the same band as the soft sound. We also expect that

this technique performs better with low SNR inputs. Simulations indicate that a

soft-thresholding function is essential to avoid artifacts of processing such as harsh

clipping sounds generated due to the switching of the gain-control block output. In

this work, we do not consider the non-linearities generated due to soft-thresholding.

2.2 Reconfigurable Analog Hardware

The chip used in our implementation has been described previously [6]. Nevertheless,

we briefly describe it here for the sake of completeness. The Rasp 2.8a has 32 Compu-

tational Analog Blocks (CABs) embedded in programmable routing fabric, as shown

in Fig. 6a. The CABs consist of commonly used analog circuit components such

12

as Operational Transconductance Amplifiers (OTA), signal multipliers, floating ca-

pacitors, voltage buffers, multiple-input floating-gate (FG) transistors, transmission

gates and transistor arrays. Some of the OTAs have FG inputs to the differential pair

(FGOTA) due to the presence of capacitive dividers for increasing input linear range.

All of the OTAs, buffers and multipliers are biased using precisely programmable

FG transistors giving the user the flexibility to make trade-offs between bandwidth

and power consumption. The range of the FG programming is 6 pA to 20 µA, with

an accuracy of 9.5 floating-point bits [6]. FGs demonstrate excellent charge retention

properties, with a charge loss of < 1% over a period of 10 years [104]. The interconnec-

tion between the various CAB components is made using the routing fabric which are

of various types, allowing the user to select global routing lines for connecting blocks

that are spaced far apart, local lines for connecting blocks within the same CAB

and nearest neighbor lines, allowing connection between neighboring CABs. These

offer flexibility to the user to choose a routing scheme which minimizes parasitic load

capacitance for sensitive analog nodes (by choosing local or nearest neighbor lines)

or a low resistance path for signals that travel long distances (by choosing global

routing lines). Another advantage of this chip is that the interconnect switches are

also FG transistors that can be programmed in an analog fashion and not just as

ON/OFF switches [107]. Hence these can also be used as circuit elements, increas-

ing the number of computational elements per unit area of the chip. The maximum

signal bandwidth through the switch matrix is 57 MHz and the highest achievable

filter bandwidth is 5 MHz, which makes it suitable for implementing audio processing

algorithms. The test platform for using the FPAA is powered on USB which doubles

up as a communication interface. It also has two sound ports for input and output

stereo sounds, seen in Fig. 6d. The user can specify the desired signal processing

function from a high level interface in SIMULINK, a software product by Mathworks.

13

An intermediate processing software is used which first converts the SIMULINK de-

scription to a SPICE netlist, which is then converted into target switch addresses on

the chip [5], [82].

2.3 System Components

In this section, we discuss the various components used in the signal flow and present

measured results from characterizing each individual block.

2.3.1 Band Pass filter

The first stage of the signal processing chain involves frequency decomposition. We

use a bank of second-order bandpass filters that have exponentially spaced center

frequencies. The basilar membrane can be modeled as a bank of bandpass filters with

a 20 dB/decade roll off on the low frequency side, and a steeper roll off on the high

frequency side. In practice, a filter with 20 dB/decade roll off is sufficient to separate

the signal into bands. In a hearing aid model, we would choose the bandwidth of each

filter to equal the bandwidth of the corresponding critical band in the cochlear model.

The OTAs and FGOTAs in our chip enable implementation of Gm-C filters with

tunable frequency responses. Their bias currents are set by FG devices which can be

precisely programmed. The general expression for the subthreshold transconductance

of the OTA used is

Gm = κIb/2 ∗ UT (3)

where Ib is the bias current, κ is the subthreshold slope of the transistors making up

the differential input pair of the OTA and UT is the thermal voltage. Fig. 7a depicts

the schematic of a second-order bandpass filter compiled on the RASP2.8a, which

is an OTA-based implementation of the circuit described in [103]. We use OTAs

with FG differential inputs in this structure to improve the input linear range of the

14

(a)

10
0

10
1

10
2

10
3

10
4

10
5

-25

-20

-15

-10

-5

0

Frequency (Hz)

V
o

lt
a

g
e

 G
a

in
 (

d
B

)

(b)

Figure 7: Band Pass Filter: (a) Schematic of the second order bandpass filter used
for frequency decomposition. (b) Measured results from a bank of 4 bandpass filters
with exponentially spaced center frequencies. The mismatch in the passband gain is
due to the parasitic load capacitance CL.

system. The transfer function of the filter is given by

Vo(s)

Vi(s)
=

C1

CFB
s τ
Q
(sτz − 1)

s2τ 2 + s τ
Q
+ 1

(4)

where τ =
√

C1CFB

Gm1Gm2
is the filter time constant, Q =

√

C1

CFB

Gm2

Gm1
is the quality factor,

and τz =
CFB

Gm1
. Gm1 and Gm2 are the subthreshold transconductances of the forward

and reverse amplifiers respectively. Intuitively, the filter is a second order section

where the bias current of the forward amplifier sets the high-frequency cutoff and the

bias current of the feedback amplifier sets the lower cutoff frequency. The midband

gain is set by the ratio of the two capacitors. The additional filter zero can be placed

at frequencies outside the speech band, thereby relying on low-pass filtering by the

signal multiplier and the human ear itself to minimize its effects. The same filter

structure is used but the bias currents are varied to get different center frequencies.

Since the center frequency is given by fc = 1
2∗π

√

Gm1Gm2

C1CFB
and Gm ∝ Ib, the higher

frequency channels dissipate more power than the lower frequency channels. Fig.

7b shows the measured frequency response of a bank of four filters compiled on our

chip. The variability in gain is seen due to parasitic capacitance CL at the output

15

node causing additional loading. The mid-band gain including the effect of parasitic

loading at the output is given by

Av = −
C1

CFB

1

1 + Gm2

Gm1

CL

CFB

(5)

The effect of the parasitic capacitance can be lowered by increasing CFB, but to

maintain the same filter Q and center frequency, C1, Gm1 and Gm2 will also have

to be proportionally increased. Making a sensible routing choice for the output node

helps in reducing the variability in gain. Since this node is sensitive to parasitic

capacitance, it is preferable to use local or nearest-neighbor routing lines for making

connections. Also, a voltage buffer is used at the output of the filter to prevent loading

due to the following block.

2.3.2 Envelope Detector

To extract the envelope we take advantage of the non-linear behavior exhibited by

a simple source follower. A pFET based source follower shown in Fig. 8a actually

acts as a minimum detector. Vout quickly follows Vin with a gain of κ when the input

decreases, but charges up at a rate Iτ
CL

, where CL is the capacitance at the output

node. An nFET based source follower functions as a maximum-detector and can

be used to extract the positive envelope of the signal. Using an OTA based peak

detector, shown in Fig. 8b instead of a regular capacitively loaded source follower

makes the circuit more sensitive to small changes in input. The gain now becomes

κA
(1+κA)

where A is the open loop gain of the amplifier. The attack time constant of

the minimum detector is also decreased by a factor of (1 + κA), allowing a faster

response. Kirchoff’s current law at the output node can be written as,

CL
dVout

dt
= Ioe

(κVin−Vout)/UT − Iτ (6)

We assume sub-VT saturation operation for the input device and the transistor imple-

menting the current source. Removing DC bias from (6) by using Ioe
(κVin−Vout)/UT =

16

Vin

Vout

Cl

Itau

(a)

Gm2

Vin

Vtau

Vout

Cl

(b)

Envelope
Detector

FGOTA

Vin

Vref

Vout

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Input amplitude (V)

M
in

 D
e

te
c
to

r
o

u
tp

u
t

-
D

C
 o

ff
s
e

t

(d)

0 10 20 30 40 50 60 70 80 90 100

1.15

1.2

Time (ms)

In
p

u
t

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Time (ms)

O
u

tp
u

t

(e)

Figure 8: Envelope Detector: (a) and (b) Schematics of minimum detector circuits
implemented on our chip. (c) Minimum detector followed by a FGOTA, providing
a gain of about 5. (d) Measured transfer curve of the minimum detector showing
output voltage versus input amplitude. (e) Transient output of the amplified envelope
detector.

Iτ , we get

CL
dvout
dt

= Iτ [e
(κvin−vout)/UT − 1] (7)

Using normalized variables x = κvin
UT

, y = vout
UT

, and τ = CLUT

Iτ
, the dynamics of the

output voltage for the pFET based source follower can be written in normalized form

as

τ
dy

dt
= ex−y − 1 (8)

where Iτ is the quiescent bias current flowing through the circuit, set by Vτ . x and

y refer to the normalized input and output voltages. For an OTA based minimum-

detector, the dynamics remain the same, but τ = CLUT

Ib(1+κA)
, resulting in a faster re-

sponse time. The transfer function of the minimum detector is plotted in Fig. 8d.

17

The ”‘attack”’ and ”‘release”’ parameters of the envelope detector can be modified

by changing the bias current. For the ith channel, we choose the bias current for

the peak detector such that the rate of decay of its output Ib/CL does not cause

a significant change in output voltage in a time period corresponding to the lowest

frequency signal in that band. Choosing a very small bias current will cause the

envelope detector to miss portions of the envelope, especially in the higher frequency

signals within the ith band. A higher than optimum bias current choice will result

in capturing the excitation signal in addition to the envelope itself, which is not

desirable. Thus, the bias current for the lower frequency bands is lower than that of

the higher frequency bands. While in this implementation this parameter is set using

a DAC voltage Vτ , it can be replaced with a FG switch element in the routing fabric,

thereby storing the parameter Vτ on-chip. The measured results from the minimum-

detect block are plotted in Fig. 8e. For an increased gain from the envelope detector,

we use an open loop FGOTA to further amplify the signal, shown in Fig. 8c.

2.3.3 Multiplier

A fully differential signal by signal multiply block present in the RASP 2.8a is used to

control the gain for each individual channel in the system. The multiplier is the well

known gilbert cell structure, shown in Fig. 9a [28]. Stacking of multiple differential

pairs leads to voltage head-room issues in the traditional Gilbert cell. In our structure,

we avoid this by folding signal currents. The cascode biases are generated using [73].

V1 and V2 are the two differential inputs to the multiplier. The multiplier block

produces differential output currents which can be converted to single ended voltage

using a FG current mirror. Fig. 9c plots the measured output voltage against the

differential input voltage V1 for several fixed values of V2.

The frequency response of the multiplier block is shown in Fig. 9d. The bandwidth

of the multiplier can be increased by programming a larger bias current. In the figure,

18

Ib refers to the current in the bias generation circuits. All the inputs to the multiplier

are FG transistors, which allow for precise offset cancellation. Since the outputs of

the multiplier blocks are differential currents, signals from multiple channels can be

added by tying the output nodes together. The summed current is then converted

into voltage using a single FG current mirror. The FG transistors at the multiplier

inputs and in the current mirror enable offset cancellation due to mismatch. Fig. 9a

shows a piece of our system with 4 sub-banded channels and 4 gain stages provided by

the gilbert multiplier. Fig. 9b plots the sum of the 4 channels at the output. In this

case, there is a gain of 0.5 for each channel in the multiplier. The signal attenuation

in the highest-frequency channel is higher than other channels since the bandwidth

of the compiled system was around 2 KHz.

2.4 Single Channel System Results

We now proceed to discuss single band systems that include blocks described in the

previous section. The non-linear signal processing block in Fig. 5 can be implemented

in a variety of ways to produce processed speech for different applications. For noise

suppression of signals with SNR ≥ 10dB, we apply a soft threshold to the sub-banded

signal envelope to determine the gain for that channel, shown in Fig. 10a. The soft-

threshold block is implemented using a comparator with very low gain. This is realized

using an FGOTA programmed to a bias current of 1nA. Fig. 10b shows the transient

results for such a system for a single tone input.

A system that expands the dynamic range of the input signal can result in noise

suppression [79]. One way to achieve this is by ensuring a power law relationship

with an exponent > 1 between the input and output. The non-linear function can

be implemented in current mode employing the trans-linear principle using MITE

transistors [74]. The voltage output from the envelope detector is converted to current

using an FGOTA block which has a linear range of about 600mV . Fig. 11a depicts a

19

circuit with a squaring non-linearity. Iscale is set by the reference voltage Vscale. The

output of the squaring circuit is converted back to voltage using a trans-impedance

amplifier. Fig. 11c plots the relation between input and output amplitudes and shows

a 12 dB improvement in dynamic range. The transient response of the system for a

single tone input is plotted in Fig. 11b.

While an expansive non-linearity can be used for noise-suppression, a compressive

non-linearity can be used in hearing aid applications [15]. Hearing loss is characterized

by loss of inner hair cells that impair the ability to discern low intensity sounds. To

compensate for the hearing loss, hearing aids typically compress the dynamic range

by implementing a power law relationship with an exponent < 1. The squaring circuit

can be easily converted into a square root circuit, by changing the configuration of

the capacitors on the MITE transistors. While we do not show results from a speech

processing system for hearing aid applications, we believe that the FPAA would be a

good tool for prototyping algorithms.

While the circuits described previously may be suitable for enhancement of speech

signals with moderately high SNR, they do not perform well for inputs with SNR ≤ 10

dB. In these cases, it is preferable to estimate the noise portion of the speech input

before further processing. To do a real-time estimation of the noise floor, we detect

the minimum of the noisy sub-band envelope [70]. The integration time constant

of the minimum detector is chosen to be slower than the envelope detector for that

channel. Essentially, our noise floor estimate is the minimum of the envelope signal

in a time window that is set by the bias current of the minimum detector. We choose

this time window to be large enough that the speech signal in that band is too fast to

cause a significant change in the noise estimate. We rely on a separation of timescales

in the noise signal and speech signal within a particular band. The voltage output

from the envelope estimator and the noise estimator are then converted into currents,

as shown in Fig. 13b. The MITE transistors can be configured to do current mode

20

multiplication and division using the circuit shown in Fig. 14b [74]. The output of

the divider circuit is plotted in Fig. 14a. The relevant signals in the SNR estimator

circuit is shown in Fig. 13a. In this case, we choose to use a minimum detector as

the first envelope estimator and a slow maximum detector on the envelope to arrive

at the noise estimate. Since the current to voltage converter provides an inversion,

the divider voltage output is low for high SNR estimates and high for low SNR. The

divider output is now thresholded using a comparator to produce the control voltage

for the multiplier.

2.5 Multi-Channel System Results and Discussion

A four channel noise suppression system was implemented on the Rasp 2.8a chip. The

maximum number of channels that can be implemented on this chip is 8, limited by

the number of gilbert multiplier blocks. For the multi-band system, the time constants

for the envelope detector and noise estimator blocks were set independently using on-

board DACs. The envelope detector for the lowest frequency channel is tuned to have

the highest time constant.

Transient output waveforms from the envelope-threshold and SNR estimator sys-

tems are plotted in Fig. 12. We used speech samples from the NOIZEUS database,

which provides acoustically recombined noisy speech samples with fixed SNR [43].

Noisy speech with 0 dB and 5 dB SNR was played and the output from our system

was recorded. Both systems resulted in substantial reduction of background noise

present between speech. In the envelope-threshold system, the intelligibility of the

output suffered, since this system resulted in harsher clipping sounds, cutting out soft

sounds in the speech itself.

The SNR estimator system performed better with overall processed speech quality.

Listening tests on the processed speech revealed that the system effectively reduced

noise in between speech portions, but failed to do so during the speech. This behavior

21

is expected and is illustrated by Fig. 15. Channels 2 and 3 are active when speech

is detected and the SNR is high enough. However, this allows the noise present in

these channels to also leak through to the output. Increasing the number of bands

will increase the ability of the system to resolve speech and noise into multiple bands,

thereby allowing it to suppress the noise better. We conducted blind subjective

hearing tests on a group of graduate students, the results of which are tabulated

in 1. The students were asked to compare the noisy and processed speech on the

background noise level and intelligibility and mark the sample that had lower noise

and higher intelligibility. The percentages of people who preferred the processed

speech in these metrics is presented in Table 1. A majority of students felt that the

processed speech was more noise-suppressed than the original speech. However, the

quality of our output rated lower than the original speech, which we attribute to

the hardware limitation of 4 bands in the system. The spectrogram of the processed

speech for selected inputs is plotted in Fig. 16, and shows that our system suppresses

noise considerably for moderately low input SNR.

Table 1: Subjective evaluation of noise suppression algorithm on speech samples with
added pink noise

SNR Subjective (%): Noise
level

Subjective (%): Intelligibility

0.7 100 35
2.6 100 40
4.5 100 40
5.5 90 0
10.6 90 0
13 80 5

2.5.1 Power consumption

Increasing the number of bands allows separation of the speech and noise activity,

resulting in better noise suppression, but will also increase the power consumption.

22

The power consumed in individual blocks is listed in Table 2. The total power con-

sumption for the 4 channel system, without including the FG programming circuitry

and the amplifiers to drive the audio ports is 128.03µW . A significant portion of

this power is consumed in the buffers, that are necessary for driving sensitive analog

signals over routing lines with large parasitic capacitance. The projected power con-

sumption for a 32 channel system is 1.02mW . The power consumption of all blocks

except the bandpass filter can be linearly scaled. The filter power consumption is

dependent on its center frequency, but since it is a small fraction of the total power,

we assume it to be constant.

Table 2: Power consumption of individual blocks for a 4-channel system.

Functional Block Power consumption
Bandpass filter 0.4µW
Noise estimator 3.84µW
Speech estimator 4.03µW
Multiplier 5.52µW
Divider and gain control 27.84µW
Buffers 86.4µW
Total 128.03µW

2.6 Conclusions

Our work describes how the reconfigurable chip (FPAA) described in [6], can be

used for implementing signal processing algorithms, specifically for audio applica-

tions. The framework developed in this research also supports other applications

such as voice-activity detection, hearing compensation, and classifier front-ends. The

FPAA provides the user the flexibility in implementing circuits for analog signal pro-

cessing while avoiding the costs of custom analog IC fabrication. Significant effort is

spent in custom IC design to overcome mismatch effects. In our implementation, cir-

cuit parameters are set using FG biases that can be precisely programmed, enabling

compensation of offsets due to component mismatch. This feature is exploited in

23

tuning the multiplier, bandpass filter and SNR estimator blocks. In the current im-

plementation, the programmable biases show a temperature dependence. However,

techniques for temperature compensation can be applied, where the gate coupling

voltage to all FG transistors is supplied from a bootstrap reference. This ensures

that the bias current (in weak inversion) is independent of temperature. One ap-

proach to noise suppression discussed in this work was previously published in [22].

However, we provide measured data for the first time from an integrated system com-

piled on a single reconfigurable chip. We also discuss three different approaches to

noise suppression where we use implementations for the system components based

on the blocks present in the FPAA, while describing trade-offs in performance. We

acknowledge that there are better noise suppression algorithms in the literature, and

the goal of this research is not to develop the best noise suppression system. We hope

this chip makes analog signal processing more accessible to a wide audience.

24

V1+ V1-

V2+ V2- V2- V2+

(a)

10
0

10
1

10
2

10
3

10
4

10
5

-30

-25

-20

-15

-10

-5

Frequency (Hz)

V
o

lt
a

g
e

 G
a

in
 (

d
B

)

(b)

0 0.5 1 1.5 2 2.5

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Differential Input (V)
S
in
g
le
 E
n
d
e
d
 O
u
tp
u
t
(V
)

(c)

10
0

10
1

10
2

10
3

10
4

10
5

-5

0

5

Frequency (Hz)

V
o
lt
a
g
e
 G
a
in
 (
d
B
)

10

-15

-20

1 nA
2 nA
4 nA
6 nA

12 nA

(d)

Figure 9: Signal Multiplier: (a) Feedforward system with four channels and four
multipliers. The multipliers have current outputs that allow channel summing by
tying together the outputs of individual channels. The multiplier has programmable
bias current, and FG fully-differential inputs that allow offset cancellation. (b) Fre-
quency response of the feedforward system, with summed responses from all four
channels. The lines and dots denote the individual channels and the summed re-
sponse, respectively. The gain of the fourth channel is lower than that of the other
channels since the bandwidth of the system has been programmed to be lower than
the center frequency of the fourth channel. (c) Multiplier DC response: Vout versus V1

for different V2. The current output of the multiplier is converted into voltage using a
current mirror fashioned out of transistors in the CABs. (d) The frequency response
of the multiplier. The corner frequency can be tuned by programming a higher bias
current.

25

Envelope

Estimator

Channel

Input

Gain

Control

(a)

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

10 30 50 70 90 110

Time (ms)

V
o
lt
a
g
e
 (
V
)

(b)

Figure 10: Single Channel results for envelope thresholding system : (a)
Channel gain is determined by thresholding the envelope estimate. (b) Transient
results for single tone inputs (Dashed trace is the input and Dotted trace is the
output).

26

Envelope� � � � � � � �� � � � � �
(a)

Time (s)

A
m
p
li
tu
d
e
 (
V
)

0 0.05 0.1 0.15 0.2

0.3

0.2

0.1

0

-0.1

-0.2

(b)

Input Amplitude (dB)

O
u
tp
u
t
A
m
p
li
tu
d
e
 (
d
B
)

-35 -30 -25 -20 -15
-45

-40

-35

-30

-25

-20

-15

-10

-40

(c)

Figure 11: Squaring Non-linearity: (a) Schematic of squaring block implemented
with MITE elements in the FPAA. (b) Transfer function of single channel system
implementing the squaring non-linearity, resulting in an expansion of the dynamic
range. (c) Transient response of system for a single tone input(gray trace). Large
input amplitudes are amplified while smaller inputs are attenuated.

27

0 1 2 3 4 5 6 7 8 9 10

-0.2

-0.1

0

0.1

0.2

0 1 2 3 4 5 6 7 8 9 10

-0.2

-0.1

0

0.1

0.2

Time (s)

N
oi

sy
 S

pe
ec

h
(S

N
R

 =
 5

 d
B

)
P

ro
ce

ss
ed

 S
pe

ec
h

Time (s)

(a)

0 1 2 3 4 5 6 7 8 9 10

-0.2

-0.1

0

0.1

0.2

0 1 2 3 4 5 6 7 8 9 10

-0.2

-0.1

0

0.1

0.2

Time (s)

Time (s)

N
oi

sy
 S

pe
ec

h
(S

N
R

 =
 5

dB
)

P
ro

ce
ss

ed
 S

pe
ec

h

(b)

Figure 12: Multi-channel System Results: Comparison of noisy and processed
speech for 5dB input SNR in the (a) Envelope thresholding system, (b) SNR estima-
tion system.

28

1.15

1.2

1.25

0

0.5

1

0.8

1

1.2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−0.5

0

0.5

S
N

R

E
s
ti
m

a
te

S
p
e
e
c
h

E
s
ti
m

a
te

N
o
is

e

E
s
ti
m

a
te

In
p
u
t

Time (s)

(a)

Envelope	
 �
 � � � � � � �
en

�� �
	 �
vider

Minimum

Detector

Voltage to Current

Conversion

Current to Voltage

Conversion

Noise Estimate

Speech

Estimate

SNR

Estimate

(b)

Figure 13: SNR Estimation System: (a) The input and control voltages gener-
ated in the SNR estimation system. (b) System block diagram: The SNR estimate
is computed by using the speech estimate and the noise estimate. The speech es-
timate is approximately equal to the envelope while the noise estimate is equal to
the slow average of the minimum of the envelope. The current mode divider requires
the conversion of the estimates from voltage to current domain. This is achieved
using FGOTA blocks. The divider output is converted back into voltage using a
transimpedance amplifier.

29

Current Input (A)
Tr
a
n
sl
in
e
a
r
D
iv
id
e
r
O
u
tp
u
t
(A
)

10
-12

10
-10

10
-8 10

-6

10
-6

10
-8

10
-10

10
-12

(a)

I
1

I
3

I
out

=

I
1
I
2

I
2

I
3

(b)

Figure 14: SNR Estimation System: (a) Characterization of the trans-linear mul-
tiplier/divider circuit with the relation Iout = I1 ∗ I2/I3. The slope when I1 and I2
are swept together is double that of when I1 is swept alone. When I3 is swept with
I1 and I2 kept constant, the slope is -1. (b) Implementation of the current mode
multiplier/divider circuit on the FPAA using MITE transistor elements.

Channel 1

Channel 2

Channel 3

Channel 4

Speech

Noise

F
re
q
u
en
cy

T ime

Channels 2, 3

act ive

Noise

Channel 1

Channel 2

Time

Channels 2, 3

act ive

Channel 3

Channel 4

Noise
Suppression

Figure 15: Effect of limited channels on performance: The gain control system
is active when speech activity is detected, transmitting the entire channel for that
duration. Any noise present in the active channel in that duration is also transmitted
to the output.

30

Time

F
re

q
u
en

cy

Noisy Speech Signal

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

Time

F
re

q
u
en

cy
Noise−Suppressed Speech Signal

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

(a)

Time

F
re

q
u
en

cy

Noisy Speech Signal

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

Time

F
re

q
u
en

cy

Noise−Suppressed Speech Signal

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

(b)

Time

F
re

q
u
en

cy

Noisy Speech Signal

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

Time

F
re

q
u
en

cy

Noise−Suppressed Speech Signal

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

(c)

Figure 16: Spectrogram of noisy and processed speech: Comparison of noisy
and processed speech for (a) Speech with added pink noise, at 13 dB SNR, (b) with
street noise at 5dB SNR, and (c) with added pink noise, at 0 dB SNR

31

CHAPTER III

THE VMM AND WTA AS AN ANALOG CLASSIFIER

In embedded systems that receive sensory inputs, process and classify them to make

decisions, it is essential to take a low-power approach for enabling such structures in

robots and other mobile platforms. Classifiers are typically used in the information

refinement stage and it is often essential that besides being low power, they also

produce very few events. Events are generated when a certain class has been detected,

triggering further circuitry dependent on this decision. Energy efficiency is a key

concern in information processing in low-power smart sensors and mobile devices [69].

A typical information processing chain usually involves a refinement stage that reduces

the processing load on the following stages.

In highly integrated systems, an increased number of events often leads to in-

creased power consumption, which is required to transmit events over interconnects

between blocks that have significant capacitances. This strategy of minimizing the

number of events is observed in biology, where the nervous system processes sev-

eral sensory inputs and refines the information before transmitting them along large

distances. The high power efficiency of the nervous system observed in biological

organisms, is achieved by maintaining a low rate of spiking in the neurons, which is

on average 100 Hz or less [71].

There are advantages to using Analog Signal Processing (ASP), as opposed to

digital, for classification tasks that do not require high precision [94]. In the past,

significant effort in hardware classifiers has been through the rise of the Artificial

Neural Network (ANN) community since the 1980s, which solidified a framework of

neural models that resulted in a variety of techniques to solve problems in many

32

Microphone

Waveform

Enhancement /

Frequency

Decomposition

ANN

GMM

VMM + WTA

Classifier /

Sequence

Detector"signals" "symbols"

 or

"events"

WTA
Single Winner

Multiple WInner

Local Winner

Hysteretic WTAm
 i

n
p

u
ts

 /

o
u

tp
u

ts

VMM (n x m)

W

a (n x 1)

VMM (n x m)

W

a (n x 1)

VMM

m outputs

Figure 17: Application in Analog Speech Recognizer Chain: The speech input
undergoes frequency decomposition or enhancement resulting in sub-band signals.
These signals undergo first-level information refinement in the feature detection stage,
resulting in a sparse “symbols” or “event” representation. The following stage detects
sequences of symbols/events to identify words or syllables. The feature detect stage
maybe implemented as an Artificial Neural network, Gaussian Mixture model (GMM)
or a VMM+WTA classifier. A typical 2-layer NN has synaptic inputs represented by
the VMM and the sigmoid modeling the soma of a point-neuron. Alternatively, we
can have synaptic computation followed by a competitive network modeled by the
WTA. We investigate computational advantages to using the VMM+WTA over the
ANN/GMM approach.

applications. Many of these techniques are considered standard and taught in most

universities. The NN approach has its early roots in the perceptron [91] and adaptive

filter models [110] that then extend to multi-level network models, Hopfield models

as well as other related computational approaches.

In the simplest approach, we have inputs being multiplied by a weight vector,

added together at the soma compartment, where a linear or nonlinear function is

applied before we receive the output. ANN approaches include having continuous

valued (e.g. tanh) functions that approximate the spike frequency versus current

33

input (f-I) characteristic of neurons with an analog voltage, or spiking (integrate-

and-fire neurons, rate-encoded neurons), feedforward or feedback stages.

In this research, we consider an analog classifier consisting of a Vector-Matrix

Multiply (VMM) terminated with a Winner-Take-All (WTA), shown in Fig. 17,

that is versatile and has more computing power than a 1-layer NN. The VMM block

performs a multiply operation between a vector and a matrix of weights, resulting

in a vector and forms a core component of many signal processing algorithms. The

VMM+WTA, which we use as the base classifier, compares favorably against the 1-

layer NN in terms of the number of components as well. We show a direct translation

of a 1-layer NN to a VMM+WTA, where the WTA acts as a current comparator.

In a different formulation, the WTA can perform an analog max function, selecting

the largest (or smallest) of its inputs. With minor modifications, the WTA can be

designed to allow multiple winners, local winners or exhibit hysteresis [46, 56, 75],

leading to classifiers that allow multiple winners with spatial responses which can be

useful in image processing, or exhibit hysteresis which makes the classifier immune to

noisy inputs.

We see this structure being used in an analog speech recognizer as shown in Fig.

17. The speech input undergoes frequency-decomposition or signal-enhancement in

the front-end, resulting in input features such as sub-band energies. These signal

inputs are transformed into symbols or events with ANN, GMM or VMM+WTA

in the first stage of information refinement. This can be followed by higher level

refinement or by a sequencing block to detect syllables or words.

This chapter is organized as follows. We briefly discuss the computational effi-

ciency and circuit complexity comparisons of VMM+WTA versus NN implementa-

tions in Sec. 3.1. In Sec. 3.2, we describe the hardware platform used for imple-

menting our classifiers. Next, in Sec. 3.3, we discuss the WTA circuit, its dynamics,

and modifications made to obtain a multiple-winner WTA. In Sec. 3.4, we describe

34

CAB

CAB

CAB

CAB

CAB

(a)

Selection

Device

Indirect

device

Direct

device

Selection

Device

Indirect Switch Programming Scheme Direct switch Programming Scheme

(b)

Figure 18: Field Programmable Analog Array (FPAA): The FPAA used in
this work consists of 78 Computational Analog Blocks (CABs) embedded in re-
programmable routing enabled by floating-gate switches [98]. Each CAB consists
of capacitors, transistors and Operational Transconductance Amplifiers (OTAs) that
have programmable bias currents. Some OTAs have floating-gate inputs that allow
cancellation of input offsets. The routing elements may be of the two types shown
in (b). Switch programming schemes: The device(s) within the dashed circle
appear in the signal path while other devices are used for programming and selection.
The indirect programming scheme minimizes parasitic in the signal path by using a
separate device that shares the floating gate with the actual device. The selection
device is required for isolation. The indirect scheme can result in inaccuracies due to
mismatch between programmed device and actual device, but can be characterized.
The direct scheme, where the programmed device and actual device are the same,
requires no additional characterization. However, there is an extra selection device in
the signal path which reduces switch conductance at low voltages.

our VMM implementation, which is more compact and has lower noise and power

than the previously described VMMs. In Sec. 3.5, we present measured results from

classifier circuits that integrate the VMM and WTA to yield linear, multi-class and

nonlinear classifier systems. Finally, we discuss mismatch, computing efficiency, and

temperature effects in Sec. 3.6.

3.1 Implementation and Efficiency Overview

A 1-layer neural network requires the computation of a Vector-Matrix Multiply (VMM)

+ neuron. The addition of various weighted inputs is achieved through Kirchoff’s Cur-

rent Law (KCL) at the soma node, adding all currents. We define synaptic computa-

tion as the multiplication of inputs with synaptic weights, and neuron computation

35

as a non-linear threshold function. Assuming we have n synapses per neuron and m

neurons, we expect a complexity of m ∗ n for synaptic computation. The computa-

tion at the neuron is governed by the choice of complexity in the model. A simple

neuron model (tanh(.)) would require 4 MAC (Multiply ACcumulate) per neuron

computation, as seen from a Taylor series expansion with 4 terms.

tanh(x) ≈ x−
x3

x
+

x5

5
−

x7

7

≈ x(1−
x2

3
(1−

3

5
x2(1−

5

7
x2))) (9)

Usually, for moderate size of n, the synaptic computation dominates the neuron

computation.

The VMM+WTA classifier topology has the advantage of being highly dense and

low power. Each multiply is performed by one single transistor that stores the weight

as well, and each WTA unit has only 2 transistors, providing very high circuit den-

sity. Custom analog VMMs have been shown to be 1000X more power efficient than

commercial digital implementations [97]. The non-volatile weights for the multiplier

can be programmed allowing flexibility. The transistors performing multiplication

are biased in deep sub-threshold regime of operation, resulting in high computing

efficiency. We combine these advantages of VMMs with the reconfigurability offered

by FPAA platforms to develop simple classifier structures. VMMs on FPAA with

high power efficiency have already been demonstrated in core signal processing ap-

plications viz. Image transforms and OFDM receivers [17, 106]. In this chapter, we

discuss the computing power of the VMM+WTA classifier, and show that we can

implement any 2-layer perceptron with modifications to the WTA.

3.2 Hardware : FPAA Implementation

The hardware platform used for implementing the classifier is among the family of

Field Programmable Analog Array (FPAA) chips, specifically geared towards building

large VMMs. A detailed description of this chip and its features can be found in

36

(a)

10
−4

10
−2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
in1

/I
in2

V
1
,V

2

(b)

10
−4

10
−2

10
0

10
2

10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−6

I
in1

/I
in2

I o
u

t1
,I

o
u

t2

(c)

(d)

10
−5

10
0

10
5

−0.5

0

0.5

1

1.5

2

2.5

I
in1

/I
in2

V
1
,V

2
 (

V
)

(e)

10
−5

10
0

10
5

0

0.5

1

1.5

2

x 10
−6

I
in1

/I
in2

I o
u
t1

,I
o
u
t2

 (
V

)

(f)

Figure 19: Schematic of winner-take-all structures and its input-output
characteristics: (a) Circuit diagram of current-mode Winner-take-all structure
from [56]. (b) Voltage outputs on the winner-take-all input nodes for a differential in-
put current. (c) Current output of the winner-take-all for a differential input current.
(d) Circuit diagram of the modified winner-take-all using OTAs. (e) Voltage outputs
on the winner-take-all input nodes. (f) Current outputs from the winner-take-all.

[98]. However, for the sake of completeness, we provide a short discussion on the

architecture of this chip.

FPAAs have the general structure of Computational Analog Blocks (CAB) with

routing infrastructure to make re-programmable connections between the compo-

nents. The CAB consists of circuit blocks commonly used in analog design, as shown

in Fig. 18. The re-programmability is enabled using floating-gate transistors that

can be programmed ON or OFF by operations known as injection and tunneling

respectively, similar to programming EEPROMs. The programming infrastructure

that includes selecting specific switches and injecting them is integrated on-chip, as

discussed in [6].

37

The chip that is used in this work, follows a similar architecture to [6] with some

key differences, which are leveraged for building classifier structures. To build large

VMMs, we require a large number of floating-gate switches that can be programmed

accurately. The switch used for programmable connectivity uses the indirect pro-

gramming structure, shown in Fig. 18b, that was developed to minimize parasitic

resistance on the switch by using a separate device that shared the gate. This other

device required extra devices for ensuring isolation during injection. In building

VMMs, we require precise control over the weights programmed on the transistors,

but this structure also suffers from mismatch issues that involve lengthy character-

ization process. In the FPAA used in this work, a portion of the routing switches

are directly programmed switches, where the actual device used in the circuit is pro-

grammed. This removes any errors due to mismatch, but these switches are poorer

than the indirectly programmed switch, since they contain an extra device in the

signal path that is needed during program time for isolation purposes. The two

programming schemes are shown in Fig. 18b. A detailed discussion on direct and

indirectly programmed switches can be found in [30]. The components in the FPAA

that are available for building classifiers are shown in Fig. 18. A high-level system

overview of the VMM+WTA circuit is shown in Fig. 20. The inputs to the classi-

fier are voltages, while the outputs from the VMM are uni-directional currents. The

WTA may produce voltage or current outputs.

Input (Voltage)

VMM

O
u
tp
u
t
(C
u
rr
e
n
t)

WTA
Output

(Voltage/

Current)

Figure 20: High level System Flow: The VMM takes voltage inputs and has
uni-directional current output. The WTA may generate voltage or current outputs.

38

3.3 Winner Take All

WTA networks of neurons was an early area where VLSI and neuroscience positively

interacted with each other, providing a unique and efficient means of computation.

The WTA module is used for modeling competition in neural networks, specifically

in representing the mechanism of attention [51]. A WTA network consists of multiple

(m) somas that all connect (through excitatory synaptic connections) onto a single

neuron that provides inhibitory feedback to all the original somas. The net effect is

that we have an adaptive threshold, which can be global or local, that is the largest of

some function on the inputs. Whether these somas are continuous valued or spiking

representations is dependent on the design and computing environment.

In spiking representations, the WTA models the inhibiting effect exerted by neu-

rons over the firing rate of competing neurons in a network. The neuron that starts

to fire earliest, inhibits its neighbors before they can fire through inhibitory synaptic

connections. This mechanism is critical to reducing firing rates in biological networks,

which in turn translates to a fewer number of events and therefore, lower overall power

dissipation. The classic circuit implementation by Lazzaro et al [56] was based on

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−3

3

4

5

6

7

8

9
x 10

−7

Time (s)

I in
1
,

I in
2
 (

A
)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−3

0

0.2

0.4

0.6

0.8

1

1.2

V
1
,V

2
 (

V
)

Time (s)

Figure 21: Measured dynamic response of WTA to input current step: The
winning node settles faster than losers. The dynamics of the winning node are gov-
erned by a diode time constant (small). In this measurement, the WTA nodes see a
large pin capacitance of ≈ 10pF.

39

(a)

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

Time (ms)

W
in

n
e

r−
T

a
k
e

−
A

ll
o

u
tp

u
t

(V
)

3 Winners2 Winners1 Winner0 Winners

(b)

Figure 22: k-winner-take-all:(a) The traditional WTA can be modified to a k-WTA
with a current threshold at each output, realized using a cascoded pFET. The current
flowing through the winning branch is constrained, allowing other inputs to the WTA
to win. The voltage outputs from the WTA are inverted and a node wins when its
output is below mid-rail. (b) Choice of current threshold determines the number of
winners: winner-take-all with 0, 1, 2 and 3 winners.

continuous valued elements, that utilized transistor device physics to build an effi-

cient circuit. Later, others built multiple spike-based representations to complete the

connection between the analog VLSI approach and biological computation [45]. Sev-

eral modifications to this circuit exist, that allow local winners, hysteresis behavior

that stabilize the outputs, temporary winners that fatigue after a period of winning

and allow other inputs to win and multiple winners [46, 55, 109]. In this chapter, we

discuss the computational advantages offered by WTAs in classifier architectures.

The CAB components in the FPAA support several WTA implementations, but

we first implement the classic WTA composed of discrete transistors shown in Fig.

19a. The two possible outputs from the WTA circuit are the voltages at the input

nodes (V1, V2), or output currents in each branch (Iout1, Iout2). The measured DC

characteristics are plotted in Fig. 19b and Fig. 19c. The WTA biases itself depending

on the input currents. The small-signal gain for the WTA shown in Fig. 19a is UT

κI

where I is the DC input current, UT is the thermal voltage and κ is the inverse of the

sub-threshold slope.

40

Next, we implement an OTA-based WTA circuit shown in Fig. 19d respectively.

The transistors and OTAs are CAB components in our chip, effectively resulting in

the same number of components. However, there are trade-offs in using either im-

plementation. The OTA-based WTA can take bi-directional input currents, while

the classic WTA takes uni-directional current inputs. The OTA-based WTA has the

constraint that the tail current of the OTAs have to be set larger than the largest

expected input current into the WTA. The OTA-based WTA circuit has a gain de-

pendent on the OTA bias current given by 2UT

κIbias
, where Ibias is the tail current of the

OTA. Increasing Ibias results in an increased dynamic range of inputs to the WTA,

but also reduces the gain of the WTA.

3.3.1 WTA dynamics

The winner-take-all performs a highly non-linear computation which results in dif-

ferent settling behaviors for the winning and losing nodes. The initial state of the

winner-take-all and the magnitude of the differential inputs determine the time con-

stant of the settling nodes. In the case of the two-input circuit shown in Fig. 19a, if

Iin1 > Iin2, M1 is in saturation and behaves like a diode-connected nFET while M2 is

in the ohmic region of operation. Further increases in Iin1 result in quick settling of

V1 since it is a low-impedance node with a time constant of CUT/(κIin1). Now, if Iin2

changes to become greater than Iin1, once V2 charges up to move M2 out of ohmic

and into saturation, it charges up at a rate determined by the Early voltage VA. As

an input starts to lose, for small difference between inputs, the input node of the

winner-take-all undergoes a high impedance VA

Iin
phase, resulting in a slow transition.

For large difference between inputs, the input becomes a low-impedance node with

the transistor in linear region with an impedance of UT

Iin
. As an input starts to win,

the input node undergoes a transition from low impedance to high impedance back

to low impedance. In this circuit, the winners settle faster than the losers, as seen in

41

Fig. 21. This is expected from the time constants of the winning and losing nodes.

The time response is slower when the inputs are close to each other and then change.

When the inputs are far apart and then change, the response is faster.

3.3.2 Multiple Winners

Often, we require classifiers that generate not just one output, but multiple outputs.

In pattern classification, we can expect the classifier to indicate that a certain pattern

matches two categories instead of just one. The WTA circuit does not preclude

multiple winners and this can be achieved by modifying the circuit shown in Fig.

19a. For a k-WTA, or a WTA with k winners, we use the current outputs from the

WTA and apply a current threshold at the output. The modified implementation

is shown in Fig. 22a. A current threshold Ithresh is mirrored to each of the current

outptus from the WTA. By constraining the current in the winning branch, we allow

other inputs of the WTA to continue winning after the first winner. The choice of

Ithresh determines the number of winners. For k winners, the relation between Ithresh

and Ic is given by

Ic
k + 1

≤ Ithresh <
Ic
k

(10)

The distribution of input currents also determines the number of winners for a fixed

Ithresh. When the inputs are close to each other, Ithresh needs to be closer to Ic/(k+1)

than Ic/k. The value of Ithresh required to guarantee k winners is given by the

lower limit of (10). Fig. 22b shows the measured results from a five-input WTA,

with different current thresholds to obtain multiple winners. The cascoding pFET

devices were inserted to improve the Early voltage of the current threshold, thereby

constraining the current through the winning branches to Ithresh more effectively than

if cascodes were not present. The k-WTA produces inverted voltage outputs that are

taken at the drain of the thresholding pFET. Compared to the k-WTA circuit in [109],

this implementation does not require any additional power/circuitry.

42

(a)

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

I
in

 (nA)

I o
u
t1

,I
o
u
t2

 (
n

A
)

w=0.5

w = 1

(b)

Figure 23: 1x2 VMM characterization:(a) Schematic of a 1x2 VMM with current
inputs, as described in [97]. The OTA with base floating-gate is a logarithmic trans-
impedance amplifier and generates a source voltage that is applied to other devices
with programmed weights. (b)measured results from a 1x2 VMM programmed to
weights of 0.5 and 1.

3.4 Compact VMM Implementations

VMMs can be implemented in a power-efficient and compact manner using floating

gates. The multiplication weights are stored as charge on the floating node and can

be precisely programmed and controlled. The weight can be expressed as

w = eκQ/CTUT (11)

where Q is the charge programmed on the floating-gate node and CT is the total

effective capacitance seen at the floating node. A single floating gate stores the

weight as well as performs a multiply function. The programming accuracy of the

VMM weights have been well characterized and in one application, has been shown

to be 1.5% accurate in [98]. Examples of the different VMM topologies that we

can implement are discussed in [97]. The schematic of a 1x2 VMM which achieves

single-quadrant multiplication is shown in Fig. 23a. This circuit takes uni-directional

43

current inputs and has positive weights. The core of the multiplication is achieved

using a current mirror structure. However, in contrast to a traditional current mirror

where the gate terminal is broadcast, we use a source broadcasting topology that is

more conducive to implementation on our reconfigurable chips. The weights w11 and

w12 are programmed by setting a difference in charge Q11 −Q10 and Q12 −Q10, and

can be expressed as

w11 = eκ(Q11−Q10)/UT (12)

w12 = eκ(Q12−Q10)/UT (13)

Fig. 23b shows the measured current outputs from the VMM programmed with

weights 0.5 and 1. To achieve four-quadrant multiplication, we require a VMM that

takes differential inputs and implements signed weights. These structures are dis-

cussed in [97].

For a VMM with voltage inputs, we require a structure shown in Fig. 24a. This

structure converts a voltage input linearly into a current, using an OTA as a trans-

conductance stage. The current is log-compressed on the source terminal using a

logarithmic trans-impedance amplifier and broadcast. Hence, the voltage input into

the VMM and the weight of the input is encoded in the source voltage using the

trans-conductance amplifier and logarithmic trans-impedance amplifier. This signal-

conditioning block, that maps input voltage to a broadcasted source voltage is shown

in the dashed box in Fig. 24a.

We note that the number of OTAs required in the signal-conditioning block scales

linearly with inputs, and is 2n for single-quadrant multipliers, and 4n for four-

quadrant multipliers, where n is the number of inputs. Hence, for classifiers with

a large number of inputs, a significant portion of the power budget is spent in the

signal-conditioning block. In addition to the power overhead due to the amplifiers, we

see effects of mismatch and noise added on the inputs. The main sources of mismatch

44

(a)

−1 −0.5 0 0.5 1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Signed Input (x)

v
in

,p
−

v
in

,n

(b)

−1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Signed Input (x)
v

s
,p

 −
 v

s
,n

(c)

Figure 24: Equivalence between VMM topologies: We show that the two VMM
circuits are equivalent in the Appendix. The VMM structure shown on the left trans-
forms voltage inputs into currents using a trans-impedance stage. The multiplication
is achieved in current mode using a source-driven floating-gate current mirror where
the weights are a result of difference in charge programmed on the floating gates.
vin,p − vin,n is the differential input to the VMM. The structure shown on the right
shows a source-driven VMM where the input signal is applied directly to the source
of the floating gates. vs,p − vs,n is the differential input to the source-driven VMM.
(b) and (c) plot the differential input voltages for the two topologies versus signed
input x, as calculated in (66). x is the normalized input to the classifier. We notice
that the input for the source-driven topology is a compressed form of the input for
the standard VMM topology. In this simulation, we use κeff = 0.05.

are input offsets in the V-I, mismatch between bias currents of the V-I, and input off-

sets in the I-V. Cancellation of these effects often requires a lengthy characterization

process.

In this work, we choose a source-driven VMM topology as shown in Fig. 24a

to build low-power compact structures that minimize the added noise and mismatch

45

effects by eliminating 4 OTAs per VMM input. Here, the voltage inputs are directly

applied the source terminal of the weighted current sources. We derive the equivalence

between the two topologies in the Appendix.

We assume that the inputs to the classifier are from the set {x : |x| ≤ 1}, which is

reasonable for normalized inputs. It can be shown that for small x, there is a linear

relation between the differential inputs for the two different VMM topologies shown

in Fig. 24a.

vin,p − vin,n ∝ vs,p − vs,n (14)

The differential input at the source is a compressed linear representation of the inputs

to the V-I, and the attenuation factor is inversely related to the input linear range

of the trans-conductance stage. The two voltage inputs for different values of x is

plotted in Fig. 24b.

The equivalence of the two structures in Fig. 24a shows that we can achieve

compact VMM structures using just the routing infrastructure in the FPAA. From

(14), the voltage inputs to the VMM can be applied directly to the source of the FG

transistors. We note that the differential voltage inputs to the source-driven VMM

need to be constrained to a range of 2UT ≈ 50mV for linear operation of the VMM.

The stage driving the VMM also needs to supply the current required for the VMM.

The output current can be expressed as

Iout = Ibias(2w + x∆w) (15)

3.5 Capability of VMM+WTA Classifiers

We now integrate the VMM and WTA circuits to build simple classifier structures.

In this section, we first describe measured results from system compilations of linear,

multi-class and non-linear classification problems.

46

3.5.1 Linear Classifiers

We start by considering a perceptron, which is a simple linear classifier with a binary

output that can be implemented with a 1-layer neural network. A linearly separable

set of inputs can be classified using a perceptron trained to weights wi and bias b

having the equation

z =

1 if
∑

i wixi − b ≥ 0

0 otherwise
(16)

A VMM+WTA classifier can be trained as a generalized single-layer perceptron by

using a fixed current source as an additional bias input to the WTA, shown in Fig. 25a.

The WTA functions as a current comparator and the detects the larger of the inputs.

When
∑

i wixi > b, the first input wins. By using a 1-WTA circuit implemented

with the current threshold at the WTA output, we obtain inverted voltage outputs.

Hence, the first output is low when
∑

i wixi > b and high otherwise.

We measured results from two different linear classifier boundaries programmed on

the VMM+WTA circuit, for multiple bias values. For a linear decision boundary, we

train a perceptron using MATLAB’s Neural Network Toolbox and apply the weight

and bias values directly to the VMM+WTA classifier. We restricted ourselves to

a 2-input case for ease of visualization. The structure in Fig. 25a only supports

positive values for the bias. Since our implementation required signed weights and

bias values, we chose a topology with fully-differential inputs. The classifier was tested

over all inputs from the set {(x, y) : |x| ≤ 0.8, |y| ≤ 0.8}. We plot the inverted WTA

voltage output in Figs. 25c, 25d. The output makes a sharp transition at the desired

decision boundary, which is marked by the solid line in the plots. Since our VMM

implementation consisted of directly programmed floating-gate transistors, we were

able to directly apply the weights obtained from the training algorithm and target

them to the hardware, without any calibration or offset correction procedure and still

match the theoretical decision boundary.

47

n x 1

VMM

W T A

(a)

1.5

0.5

1.5

0.5

1.0

1.0

1.0

1.0

1.0

1.0

WTA

2.0

2.0

2.0

2.0

2.0

2.0

WTA

3.5

0.5

2.5

1.5

(b)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Signed Input (x)

S
ig

n
e

d
 I

n
p

u
t

(y
)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Signed Input (x)

S
ig

n
e

d
 I

n
p

u
t

(y
)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

(c)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Signed Input (x)

S
ig

n
e

d
 I

n
p

u
t

(y
)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Signed Input (x)

S
ig

n
e

d
 I

n
p

u
t

(y
)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

(d)

Figure 25: Linear Classifiers: A simple perceptron or a one-layer feed-forward
network can be implemented using a VMM+WTA structure. (a) The input multi-
plication can be implemented using VMMs. The bias b is the second input to the
WTA, implemented as a fixed current source. (b) Differential implementation of lin-
ear separator. The bias is programmed as a differential weight with a fixed input.
Measured results:(c) A VMM+WTA classifier trained to have a decision boundary
of y + x ≥ b, for bias values b = 0.25,−0.25. (d) VMM+WTA classifier trained to
have a decision boundary of y − 3x ≤ b, for bias values b = 0.75,−0.75. The black
solid line represents the theoretical decision boundary.

48

VMM

4 Differential Input

6 Output

Winner - Take - All

1 0 0 0 0 1

0 1 0 0 1 1

0 0 1 0 1 0

0 0 0 1 1 0

Time

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

T
im

e

x
1

x
2

x3

x
4

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

Time (ms)

W
in

n
e
r
T
a
k
e
 A

ll
O

u
tp

u
ts

 (
V

)

1 2 4 653

(a)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(c)

Figure 26: Multi-dimensional classifiers: (a) A four-input six-output
VMM+WTA classifier constructed to classify input sequences. The weights are com-
puted using the psuedo-inverse method. The trained classifier responds to sequence
of input patterns. (b) A two-input three-output VMM+WTA classifier constructed
to have the theoretical decision boundaries shown. Each color represents a different
winner. (c) Measured results from the VMM+WTA classifier compiled.

3.5.2 Multi-class Classifiers

As the name suggests, multi-class classifiers have several outputs, and classify data

into multiple classes. The competitive behavior modeled in the VMM+WTA circuit

allows building of such classifiers with multiple outputs that can detect regions of

49

interest. We demonstrate the capability of the VMM+WTA circuit to build a region

detector in Fig. 26b. We train a 2-input, 3-output classifier to detect regions of

inputs defined as shown in Fig. 26b. Again, for simplicity of visualization, we chose

only 2 differential inputs. We constructed a classifier with 3 outputs and the region

boundaries specified in Fig. 26b. From this theoretical construction, we obtained

the weights for the VMM using the pseudo-inverse method. We generate random

inputs in MATLAB and multiply them by the weight matrix obtained. We then

do a max function on the transformed inputs to generate the theoretical classifier

output in Fig. 26b. Since the theoretical weights were signed, we constructed a fully-

differential implementation and targeted the weights to the VMM circuit. We then

applied 1000 inputs randomly from the set {(x, y) : |x| ≤ 0.8, |y| ≤ 0.8}. Since the

WTA voltage outputs are inverted, we found the winning output by finding WTA

voltages below inverter threshold(mid-rail) and recording its position. In Fig. 26c,

we denote the winning position for each of the random inputs by a different colored

dot. Our 3-output classifier was programmed with weights obtained directly from

MATLAB. It matches the desired classifier response quite well. Multi-class classifiers

are often used as pattern recognizers. We constructed a simple pattern recognizer

problem consisting of 4 inputs and 6 outputs, by artificially choosing a set of inputs

and outputs to the system. The desired system response is shown in Fig. 26a, where

the input sequence produces an identity matrix at the output. Each column in the

identity matrix represents an output of the WTA and each bit of the 4-bit input

pattern represents a differential input. We obtained the weights using the pseudo-

inverse method and programmed the classifier. We tested the classifier by generating a

repeating sequence of the inputs using the on-board DACs on our hardware platform.

Each pattern was held for 5ms before the next pattern was presented to the classifier.

The transient response measured from each output of the WTA shows that the system

classifies the patterns correctly. Since the outputs from the WTA were unbuffered

50

and saw a pin capacitance of ≈ 10pF, we see a slow transition between states of the

classifier. This was also the reason why we presented inputs for a long time before

switching, and can be avoided by buffering the output nodes.

3.5.3 Non-linear classifiers

Non-linear classification boundaries required in most real-world problems are usually

very computationally intensive. Single-layer neural networks can only implement

classifiers for linearly separable data, but a 2-layer NN can approximate any function

[101]. A 2-layer NN has an input layer, hidden layer and an output layer. An analog

VLSI implementation would require 2 VMMs for the synaptic computation and 2

layers of threshold blocks for the hidden and the output layers. This considerably

increases the complexity and power consumption of the circuitry. In [64], Maass

showed that any boolean function with analog or digital inputs and one binary output

can be approximated with a VMM+k-winner-take-all classifier. He showed that the

weights for the VMM+WTA classifier are a linear combination of weights of the 2-

layer perceptron, and further, they are all positive, requiring only single-ended inputs

in our implementation. This result provides additional support to the computational

power of the VMM+WTA classifier, by halving the computing resources required.

One of the most computationally challenging problems for neural networks is the

XOR problem, which does not involve a linear decision boundary. We use the algo-

rithm provided in [64] to compute weights for our VMM+k-winner-take-all structure

to implement a non-linear classification boundary for an XOR circuit. One possible

implementation of the XOR gate with a 2-layer neural network and its equivalent

VMM+WTA implementation is shown in Fig. 27a. The VMM+WTA XOR circuit

requires only a single-winner WTA. The position of the WTA output computing the

XOR function is marked z in Fig. 27a. We tested the XOR circuit by generating

inputs from the set {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} and recording the voltage at the

51

XOR Problem

3 x 3 VMM

2

0

0

0

2

2

1.5

1

1

WTA

0.5

1.5

1

1

1

1

1

-1

0.5

ANN Implementation

(a)

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1
0.5

1

1.5

2

2.5

x
2

x
1

W
T

A
 o

u
tp

u
t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

x
2

1

1.5

2

(b)

Figure 27: Nonlinear Classifiers: The VMM+WTA structure is powerful enough
to implement any boolean function with one digital output. (a) A solution for the
XOR problem using a two-layer neural network can be translated to a VMM+WTA
implementation. (b) Measured results from an XOR implementation using the
VMM+WTA structure.

52

5 x 5 VMM

2-WTA

0.5

1.5

0.5

2.5

3.5

1

-1

1

-1

Weight=1

1 3 1 3 2

1 3 1 3 2

1 3 1 3 2

1 3 1 3 2

4 2 6 0 3.5

4-bit Parity Detect

ANN Implementation

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06

2.2

2.3

2.4

In
p
u
t
1

0 0.01 0.02 0.03 0.04 0.05 0.06

2.2

2.3

2.4

In
p
u
t
2

0 0.01 0.02 0.03 0.04 0.05 0.06

2.2

2.3

2.4

In
p
u
t
3

0 0.01 0.02 0.03 0.04 0.05 0.06

2.2

2.3

2.4

In
p
u
t
4

0 0.01 0.02 0.03 0.04 0.05 0.06

0.5

1

1.5

2

Time (s)

O
u
tp
u
t

E
x
p
e
c
te
d

P
a
ri
ty 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

(b)

Figure 28: Nonlinear Classifiers: The VMM+WTA structure is powerful enough to
implement any boolean function with one digital output. (a) A four-bit parity prob-
lem implementation using a two-layer neural network and its equivalent VMM+WTA
implementation. (b) Measured results from the parity detect block.

53

third output. The results are plotted in Fig. 27b. The VMM weights are biased at

10nA, resulting in 95nA drawn in the VMM when both inputs are active. The WTA

is biased at 100nA, resulting in 0.47µW drawn at 2.4V, when all inputs are active.

The XOR gate is also the simplest case of the N -input parity function. Here, we

demonstrate the implementation of a 4-input parity function using the VMM+WTA

classifier. Starting with a two-layer neural network implementation [41], we obtain

weights for the VMM+WTA classifier using the procedure detailed in [64]. This

implementation requires a 2-WTA, with 5 inputs, with the fifth output computing

the parity function. The theoretical neural network and VMM+WTA implementation

is shown in Fig. 28a. We obtain a 2-WTA by setting Ithresh to Ic/3, as shown in Fig.

22, where Ic is the WTA bias current. We test the 4 bit parity circuit by setting

input patterns using DACs on our test platform. We compute the expected parity

(marked in the figure) and plot the fifth output from the WTA in Fig. 28b. The slow

transition at the WTA output is due to the large capacitance at the node and can

be avoided by buffering the output. The WTA output does not swing all the way

up to the rail for the case of all zeros and all ones, since the VMM output for those

cases is very close to the second winner. However, the transition from this state to

the winning case is large enough, that it can be detected by a logic gate.

3.6 System performance characterization

In the following section, we characterize the system performance by considering mis-

match effects, power consumption, computing efficiency and speed of computing. We

also discuss the temperature dependence of the classifier output.

3.6.1 Mismatch compensation

In this section, we investigate effects of mismatch in the winner-take-all circuit, and

techniques to compensate for them. We will ignore effects of mismatch in (W/L)

and κ. The dominant source of mismatch in analog design is the threshold voltage

54

mismatch ∆VT [52], which is true in sub- and near-threshold regions. In particular,

effects of mismatch are worse in the sub-threshold mode of operation since δI/I =

−κ∆VT/UT .

In the WTA shown in Fig. 19a, we assume that Iin1 = Iin2 = Iin. Then, we expect

that V1 = V2. Both M1 and M2 share the same gate voltage Vc. The equation for the

drain current through M1, assuming sub-threshold saturation is

I = 2Ith(
W

L
)e

κ(Vg−VT0)

UT eVd/VA (17)

where Ith is the threshold current of the device, Vg is the gate voltage and Vd is the

drain voltage. In the balanced case, the difference between V1 and V2 can be expressed

as

V1 − V2 =
κVA∆VT1

UT

+∆VT3 (18)

where ∆VT1 is the mismatch between M1 and M2 and ∆VT3 is the mismatch between

M3 and M4. A difference in the input currents Iin1 = Iin+∆Iin and Iin2 = Iin results

in a difference in output voltages given by

V1 − V2 = VAln(1 +
∆Iin
Iin

) ≈ VA
∆Iin
Iin

(19)

This difference in input currents can be programmed in the VMM bias currents to

cancel offsets present in the WTA. Another technique for mismatch compensation

is including floating-gate transistors in the WTA circuit (M1 and M2), which would

require floating-gate nFET devices. Our current chip does not include floating-gate

nFET transistors, but this is possible in future versions of this chip. A detailed

treatment of mismatch characterization and its automation on the FPAA is presented

in [100].

3.6.2 Speed, Power and Efficiency

We observe the classic power-speed trade-off in the performance of the VMM+WTA

classifier. The power consumption of the VMM is O(mn), while the WTA power

55

Figure 29: Schematic of VMM+WTA circuit: Node capacitance at the WTA
input scales with the VMM inputs, the common node capacitance scales with WTA
outputs. We assume single-quadrant multiplication in the VMM.

10
0

10
1

10
2

10
0

10
1

10
2

of WTA Outputs

C
o

m
p

u
ti
n

g
 E

ff
ic

ie
n

c
y
 (

M
M

A
C

/s
/µ

W
)

n=1

n=10

n=1000

n=100

Figure 30: Computing Efficiency vs classifier size: The inverse of the power-
delay product in (23) is approximately the computing efficiency in MMAC/s/µW,
which is fixed and scales with inputs and outputs.

is O(n). The settling time of the WTA is dominated by the input capacitance Cin.

The settling time can be reduced by increasing the VMM bias current, which also

increases the power consumption. The dynamic response of the system is determined

by the capacitance at the common node in the WTA, shown in Fig. 29. From [56],

56

we get first-order behavior from the circuit when

Iwta > 4nIbias(Cc/Cin) (20)

which gives us the WTA bias current to avoid ringing at the winning outputs. Then,

the winning node has a time constant τ = CinUT/(nIbias). Since Cin scales with the

number of inputs n, we write Cin = nCin0. Hence, the settling time for the winning

node is independent of n and can be written as

τ =
Cin0UT

Ibias
(21)

The power consumption for our classifier, when all inputs are active can be expressed

as

P = PVMM + PWTA

= mnIbiasVdd + IwtaVdd

= IbiasVdd(mn+ 4m
Cc0

Cin0

) (22)

where m is the number of outputs. PVMM scales linearly with the number of inputs

and outputs, while PWTA scales with the number of outputs only. This is because the

common node capacitance scales with the number of WTA outputs as Cc = mCc0.

We assume a settling time of 4τ to calculate the computation performed by the

classifier. The VMM computation is m ∗ n MAC. The WTA computation is more

involved, and is equivalent to solving dynamical equations at the m input nodes and

the common node. For an equivalent ODE simulation using Runge-Kutta 4th and

5th order adaptive integrator (RK45), we need approximately 60 MAC per node.

Thus the effective computation performed by the classifier can be approximated as

C = (m ∗ n) + 60 ∗ (m+ 1)MAC. The power per unit computation can be calculated

as

P ∗ (4τ)

C
=

4m(n+ 4 Cc0

Cin0
)Cin0UTVdd

(m ∗ n) + 60 ∗ (m+ 1)
(23)

57

The computing efficiency is plotted in Fig. 30. We assume that Cin0 = Cc0 = 1pF for

this calculation. For large number of inputs and outputs, the VMM efficiency (which

is constant), dominates. For smaller outputs from the classifier, the WTA efficiency

dominates.

3.6.3 Temperature Effects

The programmed weights have a direct temperature dependence due to UT , as seen

in (11). In a classifier with a differential VMM implementation, as seen in Fig. 31,

it is possible to compensate for temperature effects [97]. To derive the temperature

dependence, we first note that the WTA output voltage Vout in Fig. 31 is directly

proportional to UT . This is true, whether in the balanced case (gain determined by

Early voltage) or in the winning case (gain determined by diode-connected nFET),

and only the proportionality constants differ. We use the exponential formulation for

Early voltage in the nFET drain current equation given by

Infet = 2Ith
W

L
e(κ(Vg−VT0)+σVd)/UT (24)

where σ = UT/VA.

We determine the current from a single differential cell in terms of a reference

temperature T0.

I1 = Ibw
T0/T eVb/UT [(1 +

∆w

2w
)T0/T (1 +

x

2
)

+ (1−
∆w

2w
)T0/T (1−

x

2
)] (25)

which can be approximated, by ignoring higher order terms, as

I1 = 2Ibw
T0/T eVb/UT [1 + x1

∆w1

4

T0

T
] (26)

Vb is the common mode input voltage, x is the differential input normalized to UT ,

and w is the bias weight. We assume that the bias weight w = 1 and express the

58

Figure 31: Temperature dependence: A classifier with a differential VMM can be
compensated for temperature.

total WTA input current as

Iout = 2Ibe
Vb/UT

n
∑

k=1

[1 + xk
∆wk

4

T0

T
]

= 2nIbe
Vb/UT [1 + (1/n)

n
∑

k=1

xk
∆wk

4

T0

T
] (27)

For small increases in temperature, we can assume that Vg remains fixed, resulting in

the WTA output voltage

Vout =
UT

σ
log(

2nIb
Ith

) +
Vb

σ
+

UT0

4nσ

n
∑

k=1

xk∆wk (28)

The WTA output voltage consists of a bias term, which is temperature dependent

and the signal term which is temperature independent. We note that the signal term

contains x which shows no temperature dependence when the differential input to the

VMM scales with temperature.

3.7 Conclusions

Analog classifiers can provide a low-power alternative to DSP techniques and a va-

riety of techniques have been proposed for low-precision applications [32, 111, 113].

One of the drawbacks of using analog is fixed functionality in the classifier. We have

presented results from a powerful re-programmable classifier that can implement lin-

ear as well as nonlinear decision boundaries. The classifier architecture combines two

power efficient circuits to provide an ASP alternative to traditional approaches. The

system is extremely compact, allowing scaling to large number of inputs. One of the

disadvantages of ASP is fixed functionality. The reconfigurability of the chip allows

59

programmable weights which enables off-line training, modifying the size and chang-

ing the topology of the WTA to generate different behavior. As an extension to this

work, we can implement local WTAs and hysteretic WTA for certain applications. We

have seen that the VMM+WTA classifier is roughly equal to a 1-layer NN in circuit

complexity, but has computing power equivalent to a 2-layer NN. We demonstrate

this by implementing classic small-scale nonlinear classification problems.

60

CHAPTER IV

RECONFIGURABLE NEURON ARRAY WITH PLASTIC

SYNAPSES AND PROGRAMMABLE DENDRITES

What if FPGAs were able to take inspiration from biology? One of the greatest

drawbacks of FPGAs today is the high power consumption. The advantage of re-

configurability offered by FPGAs comes with the cost of large size, parasitics in the

interconnect which in turn limit use in high-frequency applications and the poor

power efficiency. An FPGA consists of computational blocks embedded in a global

interconnection architecture. The programmable global interconnect, along with lo-

cal interconnection present in the computational units provides great flexibility and

allows quick implementation of many digital systems. A majority of the static power

dissipation in FPGAs can be attributed to gate oxide leakage currents in the inter-

connect, while the dynamic power dissipation can be attributed to the high capacitive

load posed by the interconnection fabric. Static memory cells used for programming

connectivity and configuration, although optimized for area, contribute to increased

size of routing lines which further accentuates the power dissipation issue.

While traditional research on FPGAs have focused on reducing size and improv-

ing functionality, there is a great need today to focus on building architectures that

are more power efficient. Contrast this to biology, where large networks of neu-

rons exist, performing complex computations with extremely low power consumption.

How do biological networks differ in their connectivity and complexity and how can

we use that information to build more power efficient FPGAs? Anatomical studies

have suggested that in biological networks, most of the connections to neurons are

nearest-neighbor type, local connections with very few global connections. Neurons

61

themselves are complex analog processing units with several state variables and rich

dynamics. Further, communication between neurons occur with digital events known

as action potentials, but the connectivity and computation in the neurons ensure that

the rate at which events occur is about 1 Hz.

This chapter is organized as follows. In Section 4.1, we discuss the chip architec-

ture and the reconfigurable routing. Next, we describe the components of the Neuron

block, including the synapse, dendrite and soma elements. We provide measured re-

sults characterizing the synapses, soma and summation of inputs over the dendrite.

We conclude with the application space for this chip and potential computational

efficiency.

4.1 A Neuromorphic FPGA

Recent efforts at emulating neuron activity in the visual cortex have shown that the

main challenges are power consumption and scalability [2, 67]. Several researchers

have built neuron arrays in the past [47, 114] and their approach has been to cre-

ate a compact array of neurons with interconnectivity handled by a digital interface,

since neuron outputs can be considered digital events. Address Event Representation

(AER), developed by Mahowald and Sivilotti is a commonly used digital commu-

nication standard for hardware neuron chips in which an event from a neuron is

represented by the address of that particular neuron on the address bus [65]. AER

transceivers on-chip can direct inputs to specific neurons, collect outputs from neurons

and can “program” connections between neurons using SRAM to store connections.

The AER interface is very useful for direct digital communication to the chip, as

well as interfacing with a variety of neuromorphic sensors which also provide digital

outputs, thereby making it possible to build larger systems that do high-level process-

ing. However, while this approach ensures all-to-all connectivity, it also accounts for

the majority of power dissipation in the neuron chips. Also, the power consumption

62

Inter-chip communication

through Address Event

Representation (AER)
Intra-chip communication

using FPGA-style fabric

(a) (b)

Figure 32: Chip Design Philosophy: Large scale neuron arrays can quickly be-
come power hungry. Using the knowledge base that motivated FPGA designs and
architectures and learning from physiological studies that suggest that connections
between neural computation centers remain largely local, a system design flow is de-
veloped. Single neurons within a chip communicate using local routing, using local
memories embedded in FPGA style architectures. Off-chip communication is more
communication and hence kept sparse, handled by well known digital AER interfaces.

does not scale linearly with the number of neurons.

The power consumption due to memory access and the bottleneck of intra-chip

neuron connectivity through the AER interface can be reduced by using FPGA-

style routing for specifying interconnections. This scheme decreases the number of

events transmitted on the digital bus, reducing the load on the AER infrastructure.

This also mirrors network topologies in biology, where dense connectivity is observed

between neurons close to each other and connections between neurons far away remain

sparse. By using the programmable routing fabric for local connectivity and using

the AER transceiver for off-chip communication as seen in Fig. 32a, overall power

consumption can be reduced significantly while retaining the advantages of having a

digital interface. We present a chip designed based on these principles and fabricated

in the 0.35µm process, shown in Fig. 33b.

63

(a) (b)

Figure 33: Chip Architecture: The Neuron2 chip consists of neuron cells embedded
in a typical FPGA routing fabric. The Neuron I/O interface with the routing at the
C-Blocks through programmable floating-gate switches. The tracks are segmented for
allowing faster event transmission and maximizing utilization. The tracks are routed
at the S-Blocks, where each node consists of 6 switches. The neuron cell has synaptic
inputs, programmable dendrites with active channels that aggregate inputs into the
soma block.

4.1.1 Chip Architecture

The chip presented in this work (Neuron2) consists of 21 programmable neuron cells

that are biophysically inspired. Each neuron cell consists of several synaptic inputs,

capability for specifying a 2D dendritic structure with active channels, programmable

channels and a 2D soft winner-take-all network. The synaptic inputs to the neuron

cell and the neuron output can be routed on the programmable fabric. Some of the

routing lines are connected to the AER interface for off-chip communication. Fig 33a

depicts the neuron tile, consisting of a neuron cell and associated routing. A summary

of key chip parameters is provided in Table 3.

64

4.1.2 Global Interconnect

The neuron cells are equivalent to the computational logic blocks(CLBs) in a re-

configurable Manhattan-style interconnect architecture. The Manhattan-style inter-

connection offers advantages of reducing parasitic capacitance while allowing greater

utilization of routing lines. This is achieved by segmenting the routing fabric into

lines spanning the width of one neuron cell. The routing architecture consists of the

C-Block and S-Block segments. The C-Block is used for making connections between

the Neuron I/O and the routing tracks. The S-Block allows connections between

the track segments. All the switches in the routing fabric consist of floating gate

transistors that may be programmed, much like EEPROM memories.

The total number of neuron cells and their connectivity affects the choice of the

number of tracks in the global routing, which impacts the size of the neuron array.

There is a trade-off in the number of tracks (and hence, total size) and arbitrary

connectivity between the neuron cells. One approach to further improve scaling and

reduce size is to force connectivity between neighbor and nearest-neighbor cells, with

tracks being used only for other connections. In the Neuron2 chip however, 11 global

tracks are used and connectivity is not forced since the chip only contained 21 neuron

cells.

The neuron cells themselves are reconfigurable blocks of models of neural compu-

tation(Neuron CAB), that accept digital events from other neurons as inputs. The

interface to the neuron block consists of synapses which process digital events and

convert them into analog signals. In the following section, the parts of the neuron

CAB are discussed in greater detail.

4.2 Silicon Neuron Model

The neuron cells themselves are reconfigurable blocks of models of neural computation

(Neuron CAB), that accept digital events from other neurons as inputs. The interface

65

to the neuron block consists of synapses which process digital events and convert

them into analog signals. In the following section, the parts of the neuron CAB are

discussed in greater detail.

Table 3: Key parameters of the Neuron2 Chip.

Parameter Value
Size 25 mm2

Neurons 21
Synapses 588
Dendritic channels 315
Programmable Parameters 1932

4.2.1 Silicon Synapses

Neurons provide inputs to other neurons through synapses. A fact that provides some

perspective of the neural structure is that there is an estimated 1 billion synapses

per cubic millimeter of cortical gray matter [[53]]. Based on this calculation, there

are about 1015 synapses in a typical human brain! Synapses may be electrical (or

gap junctions) or chemical synapses, which are more common. Some connections

between neurons may be direct electrical connections or gap junctions, which can be

modeled as a conductance between two neurons. Chemical synapses on the other

hand are involved in the activation of chemical pathways that cause changes in the

post-synaptic neuron.

Synapses are usually between the axon of the pre-synaptic neuron and the den-

drites of the post-synaptic neuron. In some cases, the pre- and the post-synaptic

neuron may be one and the same, as in cortical inhibitory neurons present in the

Winner-Take-All structure. Pre-synaptic terminals contain sacks or “vesicles” con-

taining neuro-transmitters. An action potential at the pre-synaptic terminal causes

a Calcium influx, which causes the vesicles to fuse with the pre-synaptic membrane

at specific sites. Neuro-transmitters are released into the synaptic cleft and diffuse

accross the separation, which is usually just a few nanometres wide and bind to the

66

A
E
R
 S
e
n
d
e
r

SomaDendrite

Synapse

SomaDendrite

Synapse

Pre-synaptic

neuron

EPSP

EPSP

Figure 34: Inputs to synapses may be generated by other neurons or externally, by
the AER sender.

post-synaptic receptors. These are responsible for selective opening of channels (e.g.

Na), causing an increase in post-synaptic membrane potential.

An input at the pre-synaptic terminal causes a change at the post-synaptic ter-

minal. Synapses may be excitatory or inhibitory. Excitatory synapses cause the

post-synaptic terminal(membrane) to depolarize and inhibitory synapses cause the

post-synaptic terminal to hyperpolarize. The synapse circuit model and dynamics

are discussed in greater detail in Chapter 5.

The Neuron2 chip has 28 synaptic inputs, of which 20 synaptic weights can be

modified based on network activity in run time based on the STDP learning rule

[87]. Each synapse itself is a floating gate transistor whose weight can be precisely

programmed. The other 8 synapses can be configured as excitatory or inhibitory

synapses. Inputs to neurons may be generated by other neurons or externally, through

the AER sender. To elicit an appropriate EPSP, a digital input event undergoes

waveform shaping [87] to generate a triangle waveform shown in Fig. 39a.

67

0 0.5 1 1.5 2 2.5 3 3.5
−20

0

20

40

60

80

100

120

140

160

180

Figure 35: EPSP on soma in response to a synaptic input. Inputs events to neurons
are converted into a triangle waveform with programmable duration and slopes.

4.2.2 Dendritic modeling

The role played by dendrites in neural computation remains a controversial issue.

Dendrites are widely believed to merely aggregate inputs received from synapses and

do passive filtering. This hypothesis leads to the treatment of dendrites as wires

and the reduction of the compartmental neuron model to the point neuron model.

Wilfrid Rall proposed a model for dendrites and hypothesized that channels present

at dendrites may result in some nonlinear behavior [85, 99]. In recent literature,

evidence has been presented which indicates that dendrites may play a greater role in

the processing done in each neuron [40,61]. In this chip, we choose to model dendrites

in the cell to study possible computation performed by them.

Each neuron cell in the Neuron2 chip features a fully reconfigurable 2-D dendritic

network, supporting arbitrary arborization. The dendritic fabric is modeled as in [76],

with conductances set using floating gate transistors which allows tuning of diffusion

constants along the line. Every other node in the dendrite also contains programmable

active channels (a band pass channel and a low pass channel).

68

Soma

Active

Channels

Active

Channels

Active

Channels

Active

Channels

(a)

v
axial

v
leak

EK

ENa

v
in

v
axial

v
leak

EK

ENa

v
in

(b)

Figure 36: Dendritic Structure: (a) Depiction of the neuron cell structure, with
arbitrary dendritic structure capability. Dendrites are also interspersed with active
channels to model the nonlinear behavior observed in biology. In blue, we show a
8-tap dendritic line programmed on the neuron. (b) Model of a silicon dendrite.
The axial and leak conductances are set by the horizontal and vertical transistors
respectively.

4.2.3 Neuron Soma

The analog current output from the dendrite feeds into a soma, which is a configurable

block consisting of nonlinear channels and local soft WTA. The channels consist of

programmable Bandpass channel (Na+ model), a Low pass channel (K+ model) and

a leak channel that result in a digital output or event from the neuron. The channels

are modeled as discussed in [23]. The schematics of the channels are shown in Fig

38. An OTA configured as a buffer is used to observe the spiking dynamics of the

neuron and for debugging purposes. An OTA based comparator is used to generate

digital events from membrane spikes. The threshold is set as a global parameter but

the OTA inputs are floating gates which allow cancellation of offsets due to mismatch

in the input pair of the OTA as well as the variability in spiking thresholds.

Also included in the soma is circuitry that enables Spike Time Dependent plasticity

in the synapses. These circuits involve modifying the tunneling and drain terminals

of the synapse FG transistor during “run time” [87]. The thresholded neuron output

69

Soma
Dendritic Line

Input 1

Input 2

Input 3

Input 4

Input 5

T
im
e

(a)

0 2 4 6 8 10 12
0.8

0.9

1

V
m

e
m

 (
V

)

0 0.5 1 1.5 2 2.5
0.8

0.9

1

V
m

e
m

 (
V

)

0 0.5 1 1.5 2 2.5
0.8

0.9

1

1.1

Time (ms)

V
m

e
m

 (
V

)

(b)

Figure 37: Summation of synaptic inputs on the dendrite: Summation of
synaptic inputs on a 4-tap dendrite line: synaptic inputs aggregate over the dendrite,
eliciting an EPSP with higher peak voltage for inputs occurring simultaneously.

can be routed to synapse inputs of other neurons, but since each synapse would re-

quire a waveform shaping circuit to generate post-synaptic currents similar to biology,

redundancy is avoided by routing the pre-synaptic shaped waveform over the routing.

Thus, the FPGA-style routing is not really used for routing digital events, but for

analog waveforms. Each neuron event generates various timing waveforms, shown in

Fig. 39, with a triangle waveform to generate inputs to synapses on afferent neurons,

and STDP control pulses that govern learning for synapses on the active neuron.

4.2.4 AER

The Neuron2 chip contains an AER interface to for external communication. The

interface has been synthesized using Cadence tools from a high level description in

Verilog. The AER transmitter which takes events from neurons and transmits ad-

dresses for the events, takes rising-edge triggered inputs and latches all of the events

in a given time period into an array of N flipflops. The latched structure of stored

events then converts each event, in turn, to an address on the output bus. The AER

receiver module takes input event addresses and communicates them to the array. It

70

τm

τh

Vmem

ΕNa

Vamp

Νa_Vss

(a)

Vmem

Ek

Vgk

Vk

Cmem τn

(b)

Sodium Channel

Potassium Channel

Leak Channel

Local
Winner
Take-All
Computing
Unit

Buffer

Learning
Circuitry

Pre-Synaptic
Pulse Shaping
Circuitry

Output
to Axon

Soma
MembraneInputs summed

through dendritic
network

(c)

Iin

Vmem

Inputs From
Nearest Neighbors

(d)

Figure 38: Detailed view of Configurable Soma: (a)Programmable structure
modeling the Na channel. The Na channel transistor itself is a floating-gate device to
allow ease of biasing. The activation and inactivation time constants are set by two
other floating-gate devices, marked in grey. (b) Structure modeling K channel, slow
activation time constant set by a floating gate device shown. (c) Besides the channels,
the soma also consists of a local WTA unit, a thresholder to generate digital events,
a buffer for debugging and learning circuitry that can be enabled. The axonal output
is actually a shaped pre-synaptic waveform. (d) A local WTA computing unit can
accept inputs from its neighbors in all four directions. This will greatly reduce the
event rate in our networks besides modeling mechanisms seen in interneurons in the
visual cortex.

71

0 1 2 3 4 5 6 7 8 9 10
1.05

1.1

1.15

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

(a)

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

(b)

Figure 39: Timing waveforms generated as a result of a neuron spike: triangle wave-
form routed as neuron output, drain control waveforms with programmable delay and
pulse width for injection control and tunnel waveform for tunnel control. The drain
and tunnel waveforms can be enabled for allowing learning in the synapses.

is functionally a digital decoder followed by a circuit to hold the event for a particu-

lar duration to be input into the pre-synaptic waveform shaper circuit. In this chip,

individual neurons are not addressed, instead AER receiver is used to generate events

that can be routed to individual neurons, or address multiple synapses on the same

neuron. The AER sender is used to collect events from specific global routing lines

that can have events routed onto them from individual neurons.

4.3 Dendritic computation

The computation in dendrites is highly debated, particularly given the complexity

and computation richness available here. In many modeling efforts, the dendrite is

approximated to be a wire, greatly simplifying the resulting network and enabling a

system that is tractable by a range of computational principles. However, given recent

results that indicate efficient computational models using dendrites, we investigate

dendritic computation in speech processing applications.

72

WTA

Symbol Inputs

Word 1 model

Word 2 model

Word n model

n outputs

Figure 40: Word detector: Block diagram of dendritic lines being used to detect
words

Neurons with a basic dendritic structure can implement a word-spotting algo-

rithm, a key engineering approach for many classifier applications. The block dia-

gram of a word-spotting network using dendrites is shown in Fig. 40. Each dendritic

line represents a word model, with the states extracted after an HMM training se-

quence. The synaptic inputs into each line represent the probability of inputs to that

word model, and the dendritic line computes the probability of the word occurrence.

We exploit temporal summation and directional selectivity properties of the dendrite

line. These properties ensure that the dendrite line responds with the largest magni-

tude EPSP for the “preferred” direction of inputs, while not responding to the “null”

direction. The “preferred” direction corresponds to the inputs on the dendrite line

appearing in sequence from the distal to the proximal end, while the “null” direction

corresponds to inputs in sequence from the proximal to the distal end.

The dendrite line tuned to exhibit directional selectivity is shown in Fig. 41. The

response of the dendrite in the “null” direction is similar to when only the proximal

input is applied to the line. This can be achieved by increasing the axial conductance

and decreasing the leak conductance when moving from distal to proximal end of the

soma. This effect is similar to the increasing diameter of the dendrite towards the

soma.

The dendrite shows directional selectivity over a range of delays that are in the

order of the signal propagation delay on the dendrite. Fig. 42 plots the difference

73

0 0.5 1 1.5 2 2.5 3 3.5 4

0

5

10

15

20

25

30

35

40

Time (ms)

V
s
o
m

a
 −

 V
re

s
t (

m
V

)

Distal to Proximal

Proximal to Distal

Only Proximal input

Figure 41: Directional Selectivity: A dendritic line is directionally selective to a
temporal sequence of inputs arriving from the distal end to the proximal end when
having an increasing diameter towards the soma. The effect of the increasing di-
ameter can be modeled by increasing the axial conductance and decreasing the leak
conductance.

between the voltages at the soma for activation in the “preferred” and “null” direc-

tions. This line is sensitive to inputs that have a 40ms delay between them. When

the delay between inputs is very small, the

4.4 Conclusions

A novel neuron chip architecture that shows promise in building large-scale neuron

arrays has been described. The architecture minimizes use of power-hungry external

digital memories for on-chip connectivity by leveraging local memory present in the

floating-gate routing. The neurons in this chip are not considered point-neurons and

a programmable dendrite structure with active channels are included. The synapses

in this chip support learning through STDP.

74

10
−2

10
−1

10
0

0

1

2

3

4

5

6

7

8

9

10

Time between inputs (ms)

V
fw
d
V
re
v

-
(m
V
)

10
−2

10
−1

10
0

0

2

4

��101214
16

18

Time between inputs (ms)

O
u
tp
u
t
M
et
ri
c
(m
V
)

Figure 42: Characterization of line sensitivity to delay between inputs: The
directionally selective dendrite line responds to a limited range of delay between the
inputs, which is related to the delay due to the dendrite itself.

The goal of neuromorphic engineering is to develop biologically inspired engineer-

ing solutions that offer a significant computing and power advantage over mainstream

digital approaches. It is therefore essential that while building large scale neuron ar-

rays, we take a low-power approach. We intend to use this neuromorphic chip for

implementing a low-power word detector, discussed in [24]. This system takes speech

symbols detected by a front-end processing unit and detects sequences to identify

words. This is an alternative implementation to DSP-based speech recognition en-

gines, and shows promise in being more computationally efficient. In addition, this

system implementation requires dendritic lines performing sequencing and can be an

interesting hypothesis for the role of dendrites in neural computation.

75

CHAPTER V

FLOATING GATE SYNAPSES WITH SPIKE TIME

DEPENDENT PLASTICITY

Currently there is a great interest in implementing large scale biological networks

in silicon to provide a substrate for performing hardware simulations of neural net-

works. As part of this effort, it is essential to model the learning processes inherent

in biological synapses. Many of these learning processes are forms of Hebbian learn-

ing observed in biology, and while they are often interpreted as changes in synaptic

weight based on correlations between mean firing rates of pre- and post-synaptic neu-

rons, [9] and [68] describe synaptic learning rules that are governed by precise timing

differences between pre- and post-synaptic spike times. As shown in Fig. 43, when a

post-synaptic spike follows shortly after a pre-synaptic spike, the synaptic weight is

increased, but when the order of spikes is reversed, the weight decreases.

Over a decade ago, the concept of a single transistor learning synapse (STLS)

with experimental results was proposed, similar to a modern EEPROM cell that

could simultaneously store a weight in a non-volatile manner and compute a product

of the input by the weight and adapt the weight based on signals in the array [34].

The specifics of adaptation mechanisms for an individual device were described but

not well defined in terms of usable adaptation algorithms. Since then, there have

been efforts in adaptive amplifiers [39], adaptive filters [36] as well as development of

techniques enabling least means squared (LMS) adaptive filters [37].

In biology, synapses strengthen through Long-Term Potentiation (LTP) in which

chemical and morphological changes are made to improve signal transduction from

76

-80 -40 0
(ms)

0.1

0.2

D
W

 (
W

0
 =

 1
)

0

t tpost pre-

G
at

e
V

o
lt

ag
e

(V
)

0

1

0.1

0.01

D
ra

in
 C

u
rr

en
t

(n
A

)

Non-volatile Storage

Vdd
Vtun

Iout

Vd

Vfg

Vg

Vdd

1.0 1.5 2.00.5

t (ms)

Figure 43: Single Transistor Learning Synapse: stores a “weight” in a non-
volatile manner and computes a Post-Synaptic Current(PSC) with a triangle wave
input generated by a pre-synaptic computation block. The synapse also implements
a weight update rule which depends on the time difference between pre- and post-
synaptic spike times.

the pre-synaptic to the post-synaptic cell [1]. After LTP, the post-synaptic poten-

tial(PSP) is much stronger than it was before LTP. Conversely, long-term depression

(LTD) decreases synaptic strength such that the PSP becomes weaker.

In this discussion we present a STLS device and architecture that stores a weight

in a non-volatile manner, computes a biological post-synaptic potential (PSP) and

demonstrates biological synapse learning rules such as LTP, LTD and spike-time de-

pendent plasticity (STDP). In order to explore the intrinsic learning rules that can

be found with the STLS, we used variable inputs to the gate, tunneling node and the

drain. Inspired by the experiments of Bliss and Lømo [10], the initial PSP was mea-

sured. A particular sequence of input and output spikes was repeated several times

and the final PSP was noted. Fig. 44 shows the excitatory post-synaptic currents

(EPSC) obtained after 10 pairings of the pre- and post-synaptic spikes. The weight

increases when the post-synaptic spikes follow the pre-synaptic spikes and decreases

when the order is reversed, as seen from the amplitude of post-synaptic currents.

77

This current is measured with a triangle waveform at the input generated by the

pre-synaptic computation block. Our synapse was fabricated in a widely available

0.35µm double-poly CMOS process. The size of the synapse transistor in this work

is 1.8µm/0.6µm. Initial results from the STLS were presented in [88]. In Section

0 2 4 16 18 20
0

0.5

1.0

1.5

2.0

E
P

S
C

 (
n

A
)

Time (ms)

(a)

0 2 4 16 18 20

Time (ms)

0

0.2

0.4

0.6

0.8

1

E
P

S
C

 (
n
A

)

(b)

Figure 44: EPSC before and after learning: Similar to the Bliss and Lømo
experiments, we record EPSCs before and after learning events that are activated by
post-synaptic spikes. The order of pre- and post-synaptic spikes determine whether
the synapse is “potentiated” or “depressed”. (a) EPSC after 10 pre-post pairings.
(b) EPSC after 10 post-pre pairings.

II, the basics of transistor learning synapses is presented. Section III discusses the

algorithm used to implement LTP and LTD. A mathematical model for the learning

rule implemented in the STLS is derived in Section IV. In Section V, data from STDP

experiments is presented.

5.1 Basics of Transistor Learning Synapses

Fig. 45 shows one configuration of single transistor learning synapses (tunneling

junctions not drawn for clarity). In this chapter, we present measured results from

78

a single synapse device and propose an architecture for n neurons and an n × n

synapse array that supports all-to-all connectivity. A very high density of synapses

is obtained, and complex circuitry placed near the periphery can be shared among

elements in the array. The pre-synaptic computation circuitry is placed to the left of

the array and fed into all synapses afferent to the neuron in that row. The output

from all synapses in one column feed into an axon block. The control for the learning

circuitry is also placed in the bottom of the array. Fig. 45 shows the basic approach

for the synaptic learning mechanism. A combination of hot-electron injection and

Fowler-Nordheim tunneling is used for synaptic weight modification. The learning

mechanism is only enabled when an event on a post-synaptic neuron occurs. The

synapse is turned into “PROGRAM” mode for a short time, allowing the weight to

adapt based on other signals in the array and then reset into “RUN” mode. This

approach allows a wide set of potential learning rules to be implemented.

5.1.1 Feed Forward Synapse Computation

In this subsection, we discuss the feed-forward computation of primarily excitatory

synapses and the setup for learning. The terminals of the floating gate transistor

shown in Fig. 43 are the gate voltage (Vg), drain voltage (Vd), tunneling voltage

(Vtun) and floating gate voltage (Vfg). For this discussion, we assume that the source

and well of the transistor are tied to Vdd. The pre-synaptic computation block must

provide the necessary channel gating voltage to the transistor synapse to get the PSP

described in Fig. 43. The synaptic current as a result of an input to a biological

synapse is given by [54].

Isyn ∝ te−t/τrise (29)

where τrise is typically on the order of 0.1 ms. The exponential nature of the relation-

ship between the gate voltage and drain current of the MOS transistor lends itself

to the implementation of a synapse-type structure. Hence the gating voltage to the

79

synapse has to be a triangle waveform that decreases from its high resting value. The

current at the highest gate voltage is nearly zero, within the source and drain leakage

currents. The fast decreasing part of the input with slope s1 results in a quick rise of

the synaptic current while the slowly increasing input with slope s2 determines the

exponential decay in the output current. In order to generate EPSCs similar to biol-

ogy, we apply a triangular wave with unequal slopes at the input. A current starved

inverter structure [29] is used to convert the action-potential like digital pulse into a

triangular waveform, with the slopes precisely controlled using floating gate biases.

The strength of the synapse or the “weight” is part of the proportionality constant

of (29). The pre-synaptic triangle waveform also assists in shaping the learning rule

implemented, as discussed in Sections III and IV.

Hot-electron injection is used to add electrons on the floating gate node, resulting

in more current from the transistor and increasing the weight of the synapse. Electron

tunneling removes electrons from the floating-gate node, reducing the drain current

of the transistor thus decreasing the synaptic weight. The amount of injection and

tunneling depend on the current through the device and the field across the tunneling

oxide respectively, which again depends on the gate voltage. Since the instantaneous

gate voltage depends on the time since the pre-synaptic spike (marking the start of

the triangular waveform), injection and tunneling currents also depend on the time

difference between pre and post-synaptic spike times. We define the drain current of

a sub-threshold saturated floating-gate pFET as

Id = Ibiaswe
−4Vg/Vgc (30)

where Ibias is the quiescent bias current through the device, Vgc is a constant deter-

mined by the capacitive coupling between the gate and the surface potential of the

channel, and 4Vg is the change in gate voltage. The weight of the synapse w is

80

V
dd

PreSynaptic

Computation

V
dd

V
dd

V
dd

V
dd

V
dd

V
dd

V
dd

V
dd

V
dd

V
dd

V
dd

V
dd

V
dd

V
dd

V
dd

PreSynaptic

Computation

PreSynaptic

Computation

PreSynaptic

Computation

x1

x2

x3

x4

Dendrite1 Dendrite2 Dendrite3 Dendrite4
Vg1

Vg2

Vg3

Vg4

Vd1 Vd2 Vd3 Vd4

Soma

Computation

Axon1 Axon2 Axon3 Axon4

Soma

Computation

Soma

Computation

Soma

Computation

Vtun1 Vtun2 Vtun3 Vtun4

V
dd

Vin Vout

PreSynaptic

Computation
Vin Vout

Soma

Computation

Vd

Axon

Vtun

Neuron

(Soma)

Circuits

Axon

Tunnel

Control
Inject

Control

On Event Prog

VdVtun

Figure 45: Array for Learning Synapses: An array of synapses that allow all-to-all
connectivity between neurons results in a very high density of synapses per neuron.
This architecture also allows the pre-synaptic computation block to be shared across
an entire row. Tunneling lines are not shown, but are shared along the column of
the array. When an axon event occurs, the entire array is turned into “PROGRAM”
mode, and the Inject and Tunnel control blocks are activated. When an input event
occurs (pre-synaptic spike), the pre-synaptic computation block produces a triangular
waveform which feeds into all the synapses along that row.

81

related to the floating-gate voltage Vfg by

w ∝ e−Vfg (31)

To build the synapse structure, we need a floating-gate transistor and the required

pre-synaptic circuitry. We previously presented some initial data on the synapse feed-

forward function, including schemes for excitatory, inhibitory and NMDA synapses

in an older CMOS process [23]. The transistor and resulting power supply model

the post-synaptic channel population. This approach is based on modeling a bio-

logical channel with the channel of a MOSFET device in sub-threshold regime of

operation [29]. The floating gate structure allows us to store a weight value, which

is proportional to the amplitude of the post-synaptic potential. Therefore, the pre-

synaptic computation must create a waveform specified by equating currents in (29)

and (30) as

te−t/τrise ∝ Ibiaswe
−4Vg/Vgc (32)

where the solution for 4Vg is approximated by a linear change in voltage with time.

For the exponentially falling tail of the response, (32) simplifies to

4Vg =
Vgc

τrise
t = s2t. (33)

where s2 > 0, and we have a linearly increasing gate input with time.

5.1.2 Synaptic Weight Updates

We find the update equation for synaptic weight by considering injection and tunnel-

ing currents. The reader is referred to [39] for a detailed discussion on the models for

injection and tunneling mechanisms. The simplified expressions are

Iinj ∝ wαe−α4Vg/Vgc

Itun ∝ wβe4Vtun/Voxe−β4Vg/Vgc (34)

82

In

Vg

Out

Vd

td

t

t1 Integration

 Point

(a)

In

Vg

Out

Vtun

td

t2

t

t1

Vox

Max

Integration
Point

(b)

V g

td

t1

s2

V tun

-td

 - t1

s3

Injection LTP(t
d

>0) Tunneling LTD(t
d

<0)

(c)

In

Vg

Out

Vtun

td

t2

t

t1

Vox

Max

Integration
Point

(d)

Figure 46: Timing Diagram for LTP and LTD: (a) LTP timing rule: When
an output event occurs, the drain of the synapse device is pulsed. (b) LTD timing
rule with fixed tunnel pulse: At an output event, the tunnel line for the column
is pulsed for a fixed duration. (c) Timing relationship for LTP and LTD : We see
a linear relationship between gate voltage and positive time delay for LTP and a
linear relationship between tunneling voltage and negative time delay for LTD. (d)
Modified LTD timing rule: constant tunnel pulse replaced with linearly decreasing
tunnel voltage.

where α, β and Vox are process dependent parameters that we define in Section

IV. Note that the currents are exponentially dependent on the gate and tunneling

voltages. We make the assumption that injection and tunneling currents do not

change much in the region of interest. The synaptic weight is a function of the charge

on the floating node and hence, using (34), we can write a weight update equation

for the synapse as

4w ∝ T (Iinj − Itun) (35)

83

For the LTP portion of the curve, as seen in Fig. 43, we require the change in weight

to exponentially decay with increasing time delay between input and output spikes.

From (34) and (35), the gate voltage versus td, td > 0 can be directly related to LTP.

For an exponential decrease in 4w with td, a linear change in Vg with a positive slope

is required. A similar change in Vg also results in an exponential decrease in −4w

with negative td. We can also relate the tunneling voltage versus td, td < 0 directly

to the LTD portion of the curve. An exponential decrease in −4w with td requires

a linear change in Vtun with a negative slope. These concepts are illustrated in Fig.

46c.

5.2 Learning Algorithm

Although the groundbreaking work which discovered LTP was completed decades

ago [10], the full understanding of all of the mechanisms have not been codified.

Furthermore, LTD is even less understood. Our system mimics the overall effect of

LTP and LTD without relying upon these unknown characteristics. Previously in

Section II, we described how to modify the synaptic weight on an STLS. Here in

Section III, we will use this knowledge to implement a form of biologically plausible

LTP and LTD.

5.2.1 LTP Learning Algorithm

Fig. 46a shows the timing for injection required for the LTP rule and will extend to

STDP when combined with tunneling. As seen in Fig. 46a, td is the time delay from

the start of the input (pre-synaptic spike) to the output (soma/post-synaptic spike)

generated. The learning algorithm consists of an injection pulse when the output

spike occurs. For simplicity of analysis, we assume without loss of generality that

injection occurs immediately following an output spike without delay, however it is

possible to modify the learning algorithm by delaying the injection phase relative to

when the output spike occurs. When td > 0, the drain pulse occurs when the gate

84

In

Vg

Out

Vd

Vtun

t1

tinj

t2

ttun

t

(A xo n)

td Program Time (T)

Figure 47: Timing of the Programming algorithm for the STDP learning
rule: the algorithm shown here uses a linearly decreasing tunnel voltage.

voltage is lower than its quiescent value due to the pre-synaptic computation block,

resulting in non-zero injection of the floating gate. For values of td larger than the

duration of the pre-synaptic waveform, the gate voltage has reached is quiescent value

again by the time the drain pulse occurs. The floating gate is programmed such that

there is no current through the device when the gate is at its quiescent value, hence

the injection phase for these values of td results in no change in weight. Similarly,

when td < 0, the optimal conditions for injection are not achieved and there is no

change in weight of the synapse. Thus, since the voltage at the gate input of the

synapse at the time of the injection pulse can be related to td and the slopes of the

pre-synaptic gate waveform, from (34), injection current is exponentially related to

the td and the slope of pre-synaptic gate waveform.

5.2.2 LTD Learning Algorithm

Fig. 46b shows the tunneling timing diagram required for the LTD rule, which when

combined with the injection phase, can be extended to the STDP rule. As seen in

Fig. 46b, td is the time delay from the start of the output (soma) spike to the input

(pre-synaptic) spike.

The LTD learning algorithm itself consists of pulsing the tunneling input to the

synapse after a post-synaptic spike occurs. During the tunnel pulse, the tunneling

85

current can be estimated using (34). We can achieve a timing dependence for the LTD

model in two ways : we could use the slope of the pre-synaptic gate waveform, as in

the LTP case, or we can introduce a timing dependence for the tunneling voltage as

described in Fig. 46d. The former leads to more symmetric LTP and LTD learning

rules, while we can introduce an asymmetry that is widely observed in biological

synapses [9] using a transient on the tunneling voltage. From (34), for a fixed tunnel

pulse as shown in Fig. 46b, the tunnel current is only dependent on the change in gate

voltage which in turn depends on td and the slope of the pre-synaptic gate waveform.

When a learning algorithm described in Fig. 46d is used, the tunnel current also

depends exponentially on the change in tunnel voltage.

We first consider the case when Vtun remains constant during the tunneling phase,

as shown in 46b. The analysis is very similar to the LTP case, except for the delay

between the output spike and the start of the tunnel phase, t2. We assume that the

tunneling current is determined by the gate voltage at the start of the tunneling phase.

When the input occurs before the output, the gate voltage is already at the highest

possible voltage resulting in the lowest possible voltage across the tunneling oxide,

resulting in a very small tunneling current. When td < 0, the tunnel pulse overlaps

with the pre-synaptic gate waveform, and the tunneling oxide is exposed to a larger

voltage. This results in an exponentially larger tunneling current compared to the

case when td < 0. For the fixed tunneling pulse, the tunneling current depends only

on the voltage at the gate input at the time of tunneling (34), which can be related to

td and the slope of the pre-synaptic waveform. Note that even without an input spike,

there is a certain baseline tunneling current, which is exponentially smaller than when

there is an input spike. Therefore even for large time delays between input and output

spikes, there would be some tunneling that occurs during the learning algorithm.

Also, for an STDP type learning algorithm which uses a combination of injection

and tunneling, injection parameters can be chosen such that its effect would dominate

86

in the case when the output spike occurs after the input spike. Next, we consider

the case when the tunneling voltage is varied with time, to obtain a greater time

dependence. The transient used on the tunneling line is shown in Fig. 46d. The

tunneling voltage is allowed to slowly decay with time with a constant slope. We

assume that the tunneling current is set by the maximum voltage across the tunneling

oxide during the tunnel phase. When td < 0, the tunneling waveform overlaps with

the pre-synaptic gate input and the tunneling current is determined by the largest

voltage across the tunneling oxide which is determined by td and the slope of the

tunneling voltage alone. For td > 0, the maximum voltage across the tunneling oxide

is at the start of the tunnel phase, and the tunneling current depends on the voltage

on the gate input, which in turn depends on td and the slope of the pre-synaptic

input.

5.2.3 STDP Learning Algorithm

STDP has been found in systems ranging from the hippocampus, barrel cortex, and

visual cortex [13]. Like LTP and LTD, the total scheme of how STDP works in biology

has not been discovered. Thus, many descriptions of synaptic weight changes exists.

Here we present an implementation of STDP which produces results similar to what

has been observed in biology. We modify the timing diagram as shown in Fig. 47 to

select an algorithm for the STDP learning rule. At the occurrence of a post-synaptic

spike, a program phase consisting of an injection pulse followed by a tunnel input is

applied. For td < 0, the input spike occurs after the output spike and hence the gate

voltage remains at its highest possible voltage during the injection phase. However,

the tunnel input overlaps with part of the triangular waveform at the gate. For

sufficiently small negative delays, the input spike occurs during the tunneling phase

of the algorithm, resulting in a large voltage across the tunneling oxide. Thus, for

these values of td, the tunneling effect is dominant and we get a net negative change in

87

weight. For large negative values of td, there is a baseline tunneling, resulting in a net

negative change in weight as discussed in the section on LTD modeling. When td > 0,

the input spike occurs before the output spike, and during the injection phase the

gate voltage is at its lowest point. During the tunnel phase, the gate voltage increases

back to its initial value, thereby exponentially reducing the tunneling current. So for

these values of td, the injection effect dominates resulting in a positive change in

weight.

5.3 Mathematical Model

The equation for the drain current of a sub-threshold saturated pFET equation whose

well is tied to Vdd is given by

Id = Isoe
κ(Vdd−Vfg)/UT (36)

where Id is the drain current and UT is the thermal voltage kT/q. Since the adaptation

timescale is much slower than the computation timescale, we can expand (V) into its

constant offset value (Vo), a fast timescale voltage change (4V) and a slow timescale

voltage change (V). As a result, we define

Vfg = Vfgo +4Vfg + Vfg (37)

where Vfg0 is the constant bias part of the floating gate voltage, analogous to a DC

operating point that we expand around. We define 4Vfg as the fast timescale change

due to capacitive coupling; this term for a change in Vg is

4Vfg =
C

CT

4Vg (38)

where C is the capacitance between the gate and the floating node and CT is the total

capacitance at the floating gate node. We define Vfg as the slow timescale change

in the floating-gate voltage which relates to the charge stored on the floating-gate

device, and effectively defines the weight of the synaptic device as

w = exp(
−κVfg

UT

) (39)

88

Since there is no slow change component to Vd, Vg and Vtun, we expand these voltages

as Vtun = Vtuno+4Vtun, Vd = Vdo+4Vd and Vg = Vgo+4Vg. All of these results lead

to the resulting model equation for the saturated, sub-threshold floating-gate pFET

device as

Id = Ibiaswe
−4Vg/Vgc (40)

where Vgc is UTCT/κC, which is effective voltage change required to increase the

source current by an e-fold. In order to determine the update equation for the weight,

which involves the slow timescale, we write

CT
dVfg

dt
= CT

dV fg

dt
= Itun − Iinj (41)

where

Iinj = Iinj0(
Id
Is0

)αe4Vds/Vinj (42)

Itun = Itun0e
(Vtun−Vfg)/Vox (43)

where α = 1−UT/Vinj and β = UT/κVox. Using (65) and (66), (64) can be re-written

as

dw

dt
= Aw1+αe−α4Vg/Vgc −Bw1+βe−β4Vg/Vgc

A =
κIinj0
CTUT

(
Ibias
Is0

)αe4Vds/Vinj

B =
κItun0

CTUT Is0
(Ibias)

βe(Vtun−Vdd)/Vox (44)

For solving the resulting differential equations, we start by assuming the injection

and tunneling currents do not vary significantly over the region of interest. This

assumption is reasonable when solving for functions with strong exponentials, which

we have in this case. Therefore, from (64) and (62), for small changes in weight,

Vfg(t)− Vfg(t = 0) =
UT

κ
log(wo +4w)−

UT

κ
log(wo)

≈ −
UT

κ

4w

wo

=
T

CT

(Itun − Iinj) (45)

89

5.3.1 LTP model

For the LTP model, we first consider the case when the output spike occurs after the

input spike. When td > t1, where t1 is the width of the linearly decreasing portion of

the gate voltage, we can write this result as

4Vg = −s1t1 + s2(td − t1) (46)

where s1 and s2 are the falling and rising slopes of the pre-synaptic gate waveform.

Substituting (46) in (67), we get

4w = Aw1+αTinje
(−α(s2(td−t1)−s1t1))/Vgc

= A1w
1+αTinje

−αtd/τrise (47)

where A1 = Aeα(s1+s2)t1/Vgc and Tinj is the width of the drain pulse. Next, we consider

the case when td < t1 resulting in a gate voltage determining the injection current as

4Vg = −s1td. We approximate the solution in this region as

4w = Aw1+αTinje
αs1td/Vgc = Aw1+αTinje

αtd/τfall (48)

where τfall characterizes the initial transient waveform having typical values of 0.1

- 0.2 ms. Combining the two pieces of the solution, we can write an interpolation

equation for the LTP case.

4w =
w1+αTinj

A−1e−αtd/τfall + A−1
1 eαtd/τrise

(49)

5.3.2 LTD model

For LTD with the constant tunnel pulse, the analysis is very similar to the LTP case,

except for the delay between the output spike and the start of the tunnel phase, t2.

We assume that the tunneling current is determined by the gate voltage at the start

90

-6 0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

%
 c

h
an

g
e

in
 w

ei
g
h
t

Theoretical

Measured

tpost - tpre (ms)
-2

(a)

0 2 4 6 8 10

0

1

%
 c

h
an

g
e

in
 w

ei
g

h
t

Theoretical

Measured

-10 -8 -6 -4 -2

-1

-2

-3

-4

-5

-6

tpost - tpre (ms)

(b)

0 50 100-100 -50

tpost - tpre (ms)

0

%
 c

h
an

g
e

in
 w

ei
g

h
t -2

-8

-4

-6

Theoretical

Measured

(c)

Figure 48: Learning Experiments: (a) Measured LTP with Vdd = 4.2V and Tinj =
25µs. Note that the exponential decay of the change in weight is related to the rise
time of the triangular waveform at the gate input. Predicted change in weight is
plotted using (49).(b) LTD with fixed tunnel pulse, Vtun = 14.9V , Ttun = 150µs. The
time constant of the exponential change in weight is related to the rise time of the
triangular waveform at the gate input. Expected change in weight using LTD model
in (52). (c) LTD with linearly decreasing tunnel voltage, with slope 17.5V/s, starting
at Vtun = 14V . Predicted weight from (54), time dependence of the LTD model is
determined by the rate of decrease of the tunnel voltage and the rise time of the
triangular gate input.

of the tunneling phase. For the output spike occurring before the input spike (td < 0)

and −td + t1 < t2, we can write 4Vg = −s1t1 + s2(t2− | td | −t1).

4w = −Bw1+βTtune
−β(s2td−(s1+s2)t1)/Vgc

= −B1w
1+βTtune

−βtd/τrise (50)

where B1 = Be−β((s1+s2)t1+s2t2)/Vgc . When td + t2 < t1, the tunnel pulse starts during

the decreasing part of the gate waveform. We can write 4Vg = −s1(td+ t2) resulting

in

4w = −B2w
1+βTtune

βtd/τfall (51)

where B2 = Beβs1t2/Vgc . An interpolated expression can be written for LTD as

4w = −
Ttunw

1+β

B−1
1 eβtd/τrise +B−1

2 e−βtd/τfall
(52)

When the tunneling voltage is varied with time, we obtain for td + t2 < 0,

4w = −B3Ttunw
1+βetd/τcp (53)

91

B3 = e−s3(t1+t2)/Vox . For td > 0, the largest voltage across the tunneling oxide is set

by the gate voltage, since the tunneling voltage is at its maximum at the start of

the tunneling phase. Substituting 4Vg = −s1t1 + s2(td + t2 − t1) in (34), we get

4w = −B4Ttunw
1+βe−βtd/τrise , B4 = eβ(−t1(s1+s2)+s2t2)/Vgc . Thus, we can write an

interpolated equation for the change in weight as

4w = −
Ttunw

1+β

B−1
3 e−td/τcp +B−1

4 eβtd/τrise
(54)

5.3.3 STDP model

We obtain the expression for an STDP model with a fixed tunnel pulse by combining

(49) and (52) as

4w =
w1+αTinj

Ae−αtd/τfall + A−1
1 eαtd/τrise

−
Ttunw

1+β

B−1
1 eβtd/τrise +B−1

2 e−βtd/τfall
(55)

For the STDP algorithm shown in Fig. 47, we add (49) and (54) to get

4w =
w1+αTinj

Ae−αtd/τfall + A−1
1 eαtd/τrise

−
Ttunw

1+β

B−1
3 e−td/τcp +B−1

4 eβtd/τrise
(56)

5.4 Measurements from Spike Based Learning Experiments

Fig. 48a shows the change in synaptic weight for different delays between pre- and

post-synaptic spikes. The programming algorithm followed is shown in Fig. 46a.

When an output spike occurs, the chip is turned into “PROGRAM”mode and injected

for a short duration. The synapse device is operated at a high voltage (Vdd = 4V)

in order to eliminate ramp-up delays, and injection is achieved by pulsing down the

drain terminal. When an input spike occurs, the pre-synaptic computation block

generates a triangular waveform that results in an EPSP lasting 1 ms, similar to

biological timescales. For td < 0, there is no current through the device, hence no

92

-8 -6 -4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

tpost - tpre (ms)

%
 c

h
an

g
e

in
 w

ei
g

h
t

Measured
Theoretical

(a)

-20 -15 -10 -5 0 5 10 15 20
-2

-1

0

1

2

3

4

5

6

tpost - tpre (ms)

%
 c

h
an

g
e

in
 w

ei
g
h
t

Vtun slope 200V/s
Vtun slope 100V/s
Vtun slope 50V/s

(b)

−8 −6 −4 −2 0 2 4 6 8
−6

-4

-2

0

2

4

6

8

10

12

%
 c

h
an

g
e

in
 w

ei
g

h
t

tpost−tpre(ms)

(c)

Figure 49: Learning Experiments: (a) STDP: Using a constant tunneling pulse
with Vtun = 15V, Vinj = 4.2V, Ttun = 200ms, Tinj = 100µs. (b) STDP: Using a linearly
decreasing tunnel voltage. Data presented here is from an experiment with Ttun =
200ms, starting at Vtun = 14V with 3 different slopes. Note that the slope is inversely
proportional to the duration of the LTD effect. (c) Modified algorithm to obtain a
reversed STDP learning rule, with Vtun = 14V, Vinj = 4.2V, Ttun = 2.5ms, Tinj = 50µs.

injection occurs. For positive values of td, Vg is sufficiently low during injection to

increase the current through the device exponentially and there is an increase in the

synaptic weight. For td � 0, the gate voltage has risen back up, thereby reducing

the drain current and the change in weight. Fig. 48a also shows the predicted change

in weight, obtained using (49). Fig. 48b shows the change in synaptic weight for

an LTD-type learning rule. At the occurrence of an output spike, the synapse is

tunneled for a short duration. Tunneling occurs when the barrier across the tunneled

oxide is low enough for electrons to tunnel through. Even for td ≥ 0, we can observe

a decrease in synaptic weight since the tunneling pulse overlaps the triangle gate

waveform. The largest change in weight occurs when the tunnel pulse overlaps the

minimum of the gate voltage. Fig. 48b shows the measured change in weight for

different delays between input and output with the LTD algorithm shown in Fig.

46b. The tunneling voltage used here is a constant pulse of fixed width. Fig. 48b

also shows predicted change in weight obtained using (52). For the tunnel control

block shown in Fig. 45, we would have a small charge pump for the tunneling device,

such as a Dickson charge pump. It has been previously experimentally demonstrated

93

in [42] that a four stage charge pump is sufficient for generating the tunneling voltage.

Given that the tunneling current is very small, we do not expect loading of the charge

pump to be an issue. Due to natural current source leakage from the “OFF” charge

pumping elements, charge will slowly leak off the tunneling junction, giving us the

desired slow movement of tunneling voltage with time. Alternatively, an external high

voltage power supply can be switched in or out depending on the timing of the LTD

algorithm. In these experiments we use an external power supply. Fig. 48c shows

the change in synaptic weight for the learning algorithm described in Fig. 46d. With

a tunneling voltage decreasing with a slope of 17.5V/s, we see that the LTD effect

extends for a much longer duration as compared to the algorithm in Fig. 46b. We

also see the predicted change in weight using (54) matches the measured data well.

5.4.1 STDP Learning Experiments

Next, the change in weight for different delays between input and output is plotted for

an STDP algorithm shown in Fig. 49a. The expected change in weight from (55) is

also plotted. When an output spike occurs, the drain of the synapse device is pulsed

for a duration of Tinj = 100µs, then the tunneling line is pulsed for Ttun = 2ms. The

results presented here are for an experiment with Vdd = 4.2V and Vtun = 15V.

For td > 0, the injection effect dominates, since the gate voltage is at its lowest

point during the injection phase. Also, the gate voltage starts increasing during

the tunneling phase and parameters can be chosen such that injection overrides the

tunneling currents. Hence we expect a positive change in weight for these delays.

The negative change in weight we see for some positive delays in Fig. 49a is due to

a stronger tunneling phase than desired. The parameters for injection and tunneling

were chosen to cause < 10% change in weight after one learning event. For a constant

tunnel pulse, the time dependence of the LTP and LTD portions of the learning rule

are roughly equal. When a linearly decreasing tunneling voltage is used during the

94

tunnel phase of the programming algorithm, we expect a longer time dependence for

the LTD, which is similar to learning rules seen in the hippocampus. By varying the

slope of the tunneling voltage, the timing dependence during LTD can be changed.

Fig. 49b shows the change in weight for different delays between input and output

spikes while using the programming algorithm shown in Fig. 47.

Fig. 49c shows the learning rule obtained when the programming algorithm con-

sists of a tunnel phase followed by an injection phase. For td < 0, the gate voltage

is at its highest level during the tunnel phase, thus injection dominates. For positive

delays, the tunnel phase overlaps with the lowest gate voltage, resulting in a large

decrease in weight. The programming algorithm described in this research provides

a general framework for implementing several different learning rules.

5.5 Conclusion

We have presented results from a silicon synapse capable of implementing STDP

learning. The small size of the synapse and supporting circuitry that can be shared

across several synapses make this an attractive implementation and allows a high

level of integration. It is possible to achieve a wide set of biological learning rules

by modifying the programming algorithm for the synapse. [4, 44, 48, 60, 63, 78] have

demonstrated learning synapses, but the one presented in this work has the added

advantage of density over other implementations. In an area of 1.2mm x 1.7mm,

we have 20,000 synapses. This is an important consideration in realistic network

simulations, since synapses outnumber neurons 1000 to 1 in biology [18]. The learning

rule implemented here is also a weight-dependent STDP rule as opposed to bimodal,

and a function of difference in pre- and post-synaptic spike times as opposed to a

rate-based learning rule proposed in [60]. Since our synapse structure is based on a

floating-gate device, small changes in weight can be stored in a non-volatile manner.

Thus, our learning rule is closer to the one observed in [9], as opposed to bimodal

95

−8

−7

−6
10

10

10
d
 I

 (
A

)

−7
10

−8
10

−6
10

I (A)

Slope

1 + α

Figure 50: Injection Characterization: Plot of change in drain current versus
initial current (dashed line) after an injection pulse with parameters Vinj = 4.2V and
Tinj = 1ms. A linear fit (solid line) to the data (in log scale) suggests a power law
dependence on initial weight for the STDP learning rule.

STDP implementations in [4, 48]. We have derived a mathematical model for the

learning rule implemented in the synapses, which gives a good fit to measured results.

This model can be integrated with a simulation tool to study properties of networks

with this type of learning.

Another distinguishing feature of the proposed structure is that it results in an

STDP model that has an inherent weight dependence. While there is a lack of consen-

sus in the neuroscience community about the weight dependence of the STDP model,

we hypothesize using the model derived from the STLS, that the change in weight

has a power law relation to the initial weight. This is seen from experimental data

for the characterization of the injection process shown in Fig. 50. The plot shows the

change in the measured drain current versus initial drain current for a device injected

with a Vinj = 4.2V, Tinj = 1ms. The plot is linear in the log scale and hence indicates

a power law relationship, 4w ∝ w1+α which would be useful to compare biological

data.

96

CHAPTER VI

SYSTEM IMPLEMENTATION

A classifier system involving all three components described previously would require a

developing a board with a RASP 2.9 IC and a Neuron2 IC. A second option however,

is to integrate all elements required to build these classifiers on a single IC. The

following chapter describes my work towards building such an IC. The advantages of

an integrated implementation is immediately apparent in terms of power and area.

6.1 RASP 3.0N

The chip titled RASP 3.0N, integrates several elements present on the board on to

the die including the processor, memory and peripherals. A block diagram of the

RASP 3.0N and the layout of the IC submitted for fabrication is shown in Fig. 51.

(a) (b)

Figure 51: RASP 3.0N IC: A block diagram of the IC submitted for fabrication and
the completed layout. The IC integrates a processor, memory and several peripherals
with the NEURON RASP core.

A 16-bit microcontroller core (openMSP430) available in the public domain (in

97

Verilog) was synthesized. The processor is compatible with the Texas Instruments

MSP430 microcontroller family and can execute code generated by the MSP430

toolchain. The system also integrates 16KB SRAM for program memory and 16KB

for data memory. A 16-channel DAC is also integrated along with the core, a few

channels being reserved for the drain and gate voltages during programming, and the

rest available for setting inputs and biases. 2 high-speed ADCs are also integrated

with the core, allowing possibilities of using the MSP430 as a co-processor along with

the RASP 3.0N. A high level block diagram of the RASP 3.0N is shown in Fig. 52.

Figure 52: CABs in the Neuron RASP IC Core: A combination of digital,
analog and neuron CABs are present in the RASP 3.0N core. Together with a filter-
bank front-end whose outputs are directly routed into the interconnect, all blocks for
building the classifier are integrated on a single IC.

The idea of integrating the neurons with the analog and digital computing el-

ements in the RASP IC is two-fold. Firstly, it allows seamless integration of all

elements in the classifier. Secondly, it opens the possibilities of using the neurons

as computing elements in signal processing applications. Thirdly, the architecture

of the RASP 3.0N core is supported by Versatile Place and Route (VPR) tool, is a

98

standardized tool for FPGA routing and will allow quick and optimal placement of

components.

6.1.1 Neuron RASP Core

The RASP 3.0N core has 28 Digital tiles, 84 Analog tiles (each having specialized

blocks), and 63 Neuron tiles. The basic tile is depicted in Fig. 53. Each tile consists

of the global interconnect and the CABs. The global interconnect consists of the C-

Block that makes connections from CABs to the interconnect and the S-Block (switch

block) that is used for routing. Within the CAB, there exists the local interconnect,

which allows all-to-all connectivity between the components. The array was designed

such that the analog and digital CABs have 24 I/O. This choice reflects a tradeoff

between the number of I/O and the size of the local interconnect within each block.

An increased local interconnect also increases routing parasitics. Each Digital CAB

consists of 8 BLEs and local interconnect. The BLE itself comprises of a Look-up

Table (LUT) and a flip-flop whose inputs and clocks are routable.

The analog and digital tiles have general purpose I/O blocks terminating the tiles,

which allow analog or digital signals in/out of the tiles. The I/O blocks terminating

the neuron tiles are basic I/O which connect the global interconnect to the AER

in/out blocks. At the bottom of the array is the C4 I/O block, which consists of

programmable filterbanks. The C4 I/O block is reconfigurable, since its inputs may

be from an external microphone or from the array itself. The outputs from the

filterbank can be routed into the array for further processing, or be routed out to

pads.

The filterbank is the first stage of the auditory processing. The C4 I/O block has

two outputs - a filterbank output and an envelope detector output. These outputs

may be processed further to do sub-banded speech enhancement using the blocks in

the CABs shown in Fig. 54. The blocks in Analog CAB2 and CAB3 can be used for

99

Figure 53: Tiles in the RASP 3.0N IC: The tiles consist of CABs and the global
interconnect. Within each tile, a local-inteconnect or switch matrix is used to make
connections between blocks.

“speech quality estimation” and “gain control”, as discussed in Chap. 2. The Ana-

log CAB3 has been designed to include elements required for building VMM+WTA

classifiers and directly interfacing with the neuron elements, without involving the

AER blocks resulting in a low-latency and low-power approach. The blocks in CAB3

include 4 − input,4 − output WTA elements, and discrete pFETs that can be used

to convert the WTA outputs into digital “events”. The event to synaptic input con-

version block is similar to the gate waveform shaper block in the neuron itself, used

to make connectivity between neurons. The outputs from the WTA can be directly

connected to the synaptic input generator blocks within CAB3, and the resulting

output from CAB3 can serve as synaptic inputs to the neurons.

100

Figure 54: Analog CABs: Three types of analog CABS are present in the RASP
3.0N IC, with specialized blocks for building VMM+WTA classifiers and signal-
conditioning blocks converting their outputs to synaptic inputs to the neurons.

6.1.2 Neuron Tile

Since the RASP 3.0N architecture supported only 24 inputs and we require more in-

puts into each neuron, the neuron CAB was made twice as wide as the analog/digital

CABs, thereby increasing the number of inputs by 50%. The number of inputs dou-

bled in the dimension that also doubled, while it stayed the same in the other dimen-

sion. To further increase the number of inputs, the number of global routing tracks

would have to be increased to ensure that all inputs can be routed simultaneously.

Another approach to increase the number of inputs is to “hardcode” certain inputs

from neighbor and nearest-neighbor neurons, leaving the programmable inputs for

neurons farther away. Examples of specific applications and the number of inputs are

needed to make a decision on whether this architecture provides a favorable trade-off

between ease of routing and number of synaptic inputs. The synaptic inputs and the

dendrites which make up the equivalent “local interconnect” in the neuron CAB is

shown in Fig. 55.

The architecture chosen for the dendrites differs from that chosen in the Neuron2

IC described previously in Chap. 4. The synaptic inputs in the Neuron2 IC were

present only in the periphery of dendrites, reducing the number of synaptic inputs

101

Figure 55: The Neuron CAB: synapses are distributed throughout the dendrites to
increase the density of synapses per unit dendrite area.

available per unit area of the dendrites. Further, the dendritic classifier also requires a

synaptic input per dendritic compartment, which was not possible with the Neuron2

IC. Hence, the structure of the dendrite has been modified as shown in Fig. 55.

The neurons have 34 inputs and 2 outputs : 16 stdp inputs, 8 nmda inputs, 8

non-stdp inputs, 2 inhibitory inputs. The outputs are soma output and intermediate

dendrite node output. Several improvements have been made in the RASP 3.0N IC,

compared to the Neuron2 IC. Many of these are related to implementing learning

synapses. In the Neuron2 IC, even during normal operation, the learning synapses

were on a separate injection-level supply. During learning events, the drains of the

synapses were pulsed to a lower voltage to allow injection.

There were several disadvantages to such an implementation. Firstly, the synapses

sources and the gates (inputs to the synapses from the global interconnect) had to be

on injection level supplies during normal circuit operation. Besides complicating the

design and adding protection diodes to ensure no unintended injection occurred, it

also affected the column selection and row selection circuitry. Further, a high voltage

supply caused an increased power draw due to leakage currents. If the injection

voltage supply is implemented using a switching converter, that also contributes to

noise during normal circuit operation. The design would be complicated even further

102

Figure 56: Charge Pump: An integrated negative chargepump circuit eliminates
the need for noisy high-voltage supplies that allow run-time injection for synaptic
learning.

while trying to interface with analog and digital tiles which do not require injection

level supplies.

To avoid these drawbacks and to simplify the design process, the Neuron CABs

in the RASP 3.0N IC were designed to operate at the same clean 2.5V supply as the

rest of the elements. Additionally, to support learning in the synapses, local negative-

chargepumps were included in each neuron which will provide a sufficient field across

the drain and source terminals to cause injection. The circuit diagram of the negative

chargepump is shown in Fig. 56.

The microprocessor clock can be used as the clock for the chargepump. When

STDP learning is enabled and the drain pulse is active for a particular neuron, the

clocks are gated to the chargepump, allowing a negative voltage to be built up at

Vpump. The clocks to the chargepump can be muxed so as to be generated from the

array itself. The digital blocks in the array can be used to build a non-overlapping

clock generator, and then routed to the chargepump, giving more flexibility. Simula-

tions showed a pumping action of 3V within 1ms of the start of the pumping action.

However, a load current (from the synapses) reduced the pumped voltage. This is

expected to be an issue as the number of active synapses increases, but this may also

103

model a built-in regulatory mechanism where neurons with several active synapses

or synapses with large weights experience a lower degree of potentiation than those

neurons with fewer synaptic inputs.

NMDA receptors in synapses are thought to play an important role in synaptic

plasticity. A sufficient pre-synaptic excitation causes NMDA receptors to be activated

and increase synaptic efficacy. This effect is modeled by a new type of synapse

implemented in the RASP 3.0N IC, which we call the “NMDA Synapse”. Studies

on dendritic trees have also revealed that NMDA synapses are a key component

for obtaining robust directional selectivity. These synapses have an inbuilt positive

feedback mechanism that model higher synaptic strength for those synapses that have

a high local dendritic potential. The circuit diagram of the NMDA synapse is shown

in Fig. 57. An common-source amplifier whose gain is set by the ratio of the input

capacitance of the floating gate to the overlap capacitance is used to amplify the local

dendritic potential before feeding it back to the second control gate on the synapse.

The inverting characteristic of the common-source amplifier is desirable, since the

synapse is implemented using a pFET device.

Figure 57: NMDA synapse: Circuit model for synapses with NMDA receptors.

104

Figure 58: Channels in the Soma: The RASP 3.0N IC includes channels that
exhibit a Hopf bifurcation and a Saddle-node bifurcation.

The other component of the Neuron CAB is the soma, which consists of pro-

grammable channels and the WTA block. In addition to the Hopf channels which

were included in the Neuron2 IC, extra channels that show saddle-node dynamics are

also included in the soma. Effectively, the soma has 2 Sodium channels, 2 Potassium

channels and 2 leak channels with programmable parameters. The circuit schematics

of the channels in the RASP 3.0N is shown in Fig. 58. Besides the channels, the WTA

block is also included in the soma, with two key modifications from the Neuron2 IC.

The source of the input device to the WTA has been modified to be at Ek and the

output from the WTA can be converted into digital events. The Neuron output is

selectable between the output from the membrane and the WTA using a floating-gate

memory device.

105

Figure 59: Modified WTA block: The WTA block has been modified from the
Neuron2 IC, to allow digital outputs.

The choice of integration platform being the standard FPGA architecture with a

Manhattan-style global and local interconnect allows us to leverage several existing

tools from the suite of tools for automatic place and route for FPGAs. VTR, an open-

source academic software takes inputs in verilog, and given the FPGA architectural

description, synthesizes the logic, places and routes the elements. The analog and

neuron elements can be treated as black boxes, and taking intermediate outputs from

the VTR tool flow, another tool named VPR2P can be used to place and route these

blocks. This streamlines the tools for automatic placement and routing, given cost

functions of parasitic capacitance/area etc, and makes use of existing tools instead of

requiring costly tool development.

106

CHAPTER VII

CONCLUSION

The previous chapters detail my work that leads up to the system implementation of

neuromorphic classifier architectures. The goal of this dissertation is to design hard-

ware that enables analog and neuromorphic computing. Digital computing efficiencies

observed in commercial ICs have reached an efficiency wall due to device mismatch,

whose effects are more prominent in small feature sizes. There is a great need for

alternate computing strategies that allow us to get past the efficiency wall. Analog

processing has been shown to be more efficient than digital, particularly for appli-

cations such as multiplication, filtering, FFT etc. However, custom analog has fixed

functionality and is too expensive to design and fabricate. We take a programmable

analog approach, which gives flexibility in functionality and allows mismatch com-

pensation. Further, we explore neuromorphic strategies by building silicon models

of computational primitives in the brain - neurons, synapses and dendrites. Neuro-

morphic computing has to be more efficient for engineering applications for it to be

a viable alternative to digital computing. As a result, we take a low-power approach

to the design of the neuromorphic ICs by taking inspiration from FPGAs.

In an effort to target a speech recognition application using programmable analog

and neuromorphic classifiers, I first described an auditory front-end that generates

sub-banded enhanced analog outputs. A feature/symbol extraction block can be

implemented using a VMM and WTA structure. A phoneme or word recognizer can

be built using the dendrites available in the Neuron2 chip, as described in [24].

In Chapter 2, an auditory front-end implementation consisting of non-linear filter-

ing blocks was described. Sub-banded processing blocks with expansive non-linearity

107

or automatic gain control based on signal activity can result in noise suppression.

The system framework described also supports other applications such as speech ac-

tivity detection, hearing aids and classifier front-ends. An extension of this work

would be to test the speech enhancement front-end with a software HMM classifier

implementation to observe lower error percentages.

In Chapter 3, a powerful, compact, programmable classifier was described. This

classifier was implemented with routing elements on the FPAA, and used a WTA

as the decision-making element. It has been shown that this classifier is capabale to

implementing linear and nonlinear decision boundaries. An important contribution of

this work is that we have halved the computing resources required for implementing

non-linear classifiers, as compared to a NN implementation.

In Chapter 4, a neuromorphic IC with a low-power scalable architecture that

allows investigation of neural and dendritic computation is described. This platform is

designed to implement a dendritic wordspotter network and demonstrates properties

of dendrites that are critical for implementing the wordspotter, namely directional

selectivity and spatio-temporal summation.

An algorithm for the implementation of the STDP learning rule observed in

synapses is described in Chapter 5. This algorithm has been successfully implemented

in the Neuron2 and Neuron1 ICs.

Finally, Chapter 6 describes a system implementation consisting of an IC that

combines the auditory front-end, feature extraction and dendritic classifier blocks.

During the course of this work, I have also been involved in several other projects

which have not been described in this document. My important contributions and

the list of collaborators have been listed below.

7.1 List of Contributions

• Implementation of auditory front-end for speech recognizers on the RASP 2.8a.

108

• Development of learning algorithm to implement biological learning rules in

CMOS floating gate synapses.

• Implementation of VMM+WTA classifiers on the RASP 2.9v.

• Design and layout of RASP 3.0N IC. Collaborators: All ICELAB members.

• Design and layout of a Neuron2 chip, consisting of biological channels, pro-

grammable dendrites, active channels, learning synapses and AER infrastruc-

ture. Collaborator: Richard Wunderlich.

• Design, layout and infrastructure development of the general FPAA system.

Collaborators: Arindam Basu, Stephen Brink, Craig Schlottmann, Scott Koziol,

Csaba Petre and Christopher Twigg.

• Design and layout of the Rasp 2.8b chip, titled the BioFPAA. Collaborator:

Arindam Basu.

• Design and layout of the Neuron1 chip. Collaborators: Stephen Brink, Richard

Wunderlich, and Arindam Basu.

• Contributed to design of Analog memory peripheral. Collaborators: Farhan

Adil, Suma George, and Richard Wunderlich.

109

APPENDIX A

A COMPACT VMM

Consider a four quadrant VMM cell, shown in Fig. 24a. We start with the signed

input x and the desired multiplication y = w ∗ x, where w is a signed weight. The

core of the VMM is a current multiplication with the input current being expressed

as Iin ∝ x. In our multiplier structure, currents are unidirectional but we desire four

quadrant behavior. This is achieved by using differential input currents. The signed

input x is encoded as

Iin,p = Iin,bias(1 + (x/2))

Iin,n = Iin,bias(1− (x/2)) (57)

The common mode input current is given by

Iin,bias = (Iin,p + Iin,n)/2 (58)

and the signal input is

Iin = (Iin,p − Iin,n) = Iin,bias(x) (59)

The output of the trans-impedance stage implementing the I-V stage can be cal-

culated by writing the sub-threshold current equation for the transistor in feedback.

We assume that the transistor bulk is tied to the power supply.

Ipfet = Ioe
κ(VDD−VFG)/UT e−(VDD−VS)/UT

= Ioe
VDD(κ−1)/UT e−κVFG/UT eVS/UT

= Iin,biaswe
VS/UT (60)

110

The constraint on the input range can be seen from (60). x is a dimensionless

input and (1+ (x/2)) expresses the ratio of the input current to the bias current. Since

the voltage input is applied to the source and due to the exponential dependence of

the drain current on source voltage, linearization only holds for a small voltage range.

Using (60), the output of the trans-impedance stage that sets the source voltage

of the input device which has a weight w = 1, we get

vs,p = UT ln
Iin,p
Iin,bias

vs,n = UT ln
Iin,n
Iin,bias

(61)

vs,p − vs,n = UT ln
Iin,p
Iin,n

= UT ln
1 + (x/2)

1− (x/2)
(62)

For small values of x, i.e. −1 ≤ x ≤ 1, ln(1+x/2
1−x/2

) ≈ x and hence, vs,p− vs,n ≈ UTx.

To generate the current inputs to the VMM, vin,p, vin,n are applied to the negative

terminal of an OTA with bias current Iotabias, used here as a V-I block. To allow

values for −1 ≤ x ≤ 1, we require Iotabias ≥ 2Iin,bias. As a result, the input currents

are

Iin,p = Iotabias tanh(κeff (vin,p − vref)/2UT)

Iin,n = Iotabias tanh(κeff (vin,n − vref)/2UT) (63)

By using small inputs or a highly linear input stage that has capacitive dividers at

the inputs, we can make a linear approximation of (63).

Iin,p = κeffIotabias(vin,p − vref)/2UT

Iin,n = κeffIotabias(vin,n − vref)/2UT (64)

The differential voltage input can be expressed as

vin,p − vin,n = (
2UT

κeff

)
Iin,p − Iin,n
Iotabias

(65)

111

By choosing Iotabias = 2Iin,bias, we obtain the relation between voltage inputs to the

two VMM topologies as a function of the input x.

vin,p − vin,n =
UT

κeff

x =
vs,p − vs,n

κeff

(66)

κeff denotes the effective coupling from the OTA input to the channel of the

differential pair transistors and includes any linearizing factor applied to the OTA

to obtain a wide linear input range. The output current can be calculated using the

pFET subthreshold equation (60) and (59) as

Iout = Iin,bias(w +∆w)evsp/UT + Iin,bias(w −∆w)evsn/UT

= (w +∆w) ∗ Iin,p + (w −∆w) ∗ Iin,n

= 2Iin,biasw + Iin,biasx∆w (67)

The first and second terms in (67) represent the bias and the four quadrant multipli-

cation terms respectively, since x and ∆w can be signed.

112

REFERENCES

[1] Abbott, L. F. and Nelson, S. B., “Synaptic plasticity: taming the beast,”
Nat. Neurosci. 3, pp. 1178–1183, 2000.

[2] Ananthanarayanan, R. and Modha, D., “Anatomy of a cortical simu-
lator,” in Proceedings of the 2007 ACM/IEEE conference on Supercomputing,
pp. 1–12, ACM, 2007.

[3] Anderson, D., Hasler, P., Ellis, R., Yoo, H., Graham, D., and Hans,

M., “A low-power system for audio noise suppression: a cooperative analog-
digital signal processing approach,” in Proc. IEEE 10th and the 2nd Signal
Processing Education Workshop Digital Signal Processing Workshop, pp. 327–
332, 2002.

[4] Arthur, J. and Boahen, K., “Learning in silicon: Timing is everything,” in
Advances in Neural Information Processing Systems 18 (Y. Weiss, B. S. and
Platt, J., eds.), (Cambridge, MA), MIT Press, 2006.

[5] Baskaya, F., Reddy, S., Lim, S. K., andAnderson, D. V., “Placement for
large-scale floating-gate field-programable analog arrays,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 14, no. 8, pp. 906–910,
2006.

[6] Basu, A., Brink, S., Schlottmann, C., Ramakrishnan, S., Petre, C.,
Koziol, S., Baskaya, F., Twigg, C. M., andHasler, P., “A floating-gate-
based field-programmable analog array,” IEEE Journal of Solid-State Circuits,
vol. 45, no. 9, pp. 1781–1794, 2010.

[7] Basu, A., Ramakrishnan, S., and Hasler, P., “Neural dynamics in recon-
figurable silicon,” in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE
International Symposium on, pp. 1943–1946, IEEE, 2010.

[8] Basu, A., Ramakrishnan, S., Petre, C., Koziol, S., Brink, S., and
Hasler, P., “Neural dynamics in reconfigurable silicon,” Biomedical Circuits
and Systems, IEEE Transactions on, vol. 4, no. 5, pp. 311–319, 2010.

[9] Bi, G.-Q. and Poo, M., “Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength and post-synaptic cell
type,” J. Neuroscience, vol. 18, pp. 10464–72, 1998.

[10] Bliss, T. and Lomo, T., “Long-lasting potentiation of synaptic transmission
in the dentate gyrus area of the anaesthetized rabbit following stumulation of
the perforant path,” Journal of Physiology, vol. 232, pp. 331–356, 1973.

113

[11] Borgstrom, T., Ismail, M., and Bibyk, S., “Programmable current-mode
neural network for implementation in analogue MOS VLSI,” in Circuits, Devices
and Systems, IEE Proceedings G, vol. 137, pp. 175–178, IET, 1990.

[12] Brink, S., Koziol, S., Ramakrishnan, S., and Hasler, P., “A bio-
physically based dendrite model using programmable floating-gate devices,” in
Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on,
pp. 432–435, IEEE.

[13] Caporale, N. and Dan, Y., “Spike timing-dependent plasticity: a hebbian
learning rule,” Annu. Rev. Neurosci, vol. 31, pp. 25–46, 2008.

[14] Cauwenberghs, G. and Pedroni, V., “A low-power CMOS analog vector
quantizer,” Solid-State Circuits, IEEE Journal of, vol. 32, no. 8, pp. 1278–1283,
1997.

[15] Chabries, D. M., Anderson, D. V., Stockham, T. G., J., and Chris-

tiansen, R. W., “Application of a human auditory model to loudness per-
ception and hearing compensation,” in Proc. Int Acoustics, Speech, and Signal
Processing ICASSP-95. Conf, vol. 5, pp. 3527–3530, 1995.

[16] Chakrabartty, S. and Cauwenberghs, G., “Sub-microwatt analog VLSI
trainable pattern classifier,” Solid-State Circuits, IEEE Journal of, vol. 42,
no. 5, pp. 1169–1179, 2007.

[17] Chawla, R., Bandyopadhyay, A., Srinivasan, V., and Hasler, P., “A
531 nW/MHz, 128 x 32 current-mode programmable analog vector-matrix mul-
tiplier with over two decades of linearity,” in Custom Integrated Circuits Con-
ference, 2004. Proceedings of the IEEE 2004, pp. 651 – 654, oct. 2004.

[18] Churchland, P. S. and Sejnowski, T. J., The Computational Brain. MIT
Press, 1992.

[19] Delbruck, T., Koch, T., Berner, R., and Hermansky, H., “Fully inte-
grated 500uw speech detection wake-up circuit,” in Circuits and Systems (IS-
CAS), Proceedings of 2010 IEEE International Symposium on, pp. 2015–2018,
IEEE, 2010.

[20] Deng, Y., Chakrabartty, S., and Cauwenberghs, G., “Analog auditory
perception model for robust speech recognition,” in Neural Networks, 2004.
Proceedings. 2004 IEEE International Joint Conference on, vol. 3, pp. 1705–
1709, IEEE, 2004.

[21] Diethorn, E., “A subband noise-reduction method for enhancing speech in
telephony and teleconferencing,” in Applications of Signal Processing to Audio
and Acoustics, 1997. 1997 IEEE ASSP Workshop on, p. 4 pp., oct 1997.

114

[22] Ellis, R., Yoo, H., Graham, D. W., Hasler, P., and Anderson, D. V.,
“A continuous-time speech enhancement front-end for microphone inputs,” in
Proc. IEEE Int. Symp. Circuits and Systems ISCAS 2002, vol. 2, 2002.

[23] Farquhar, E. and Hasler, P., “A bio-physically inspired silicon neuron,”
Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 52, no. 3,
pp. 477–488, 2005.

[24] George, S. and Hasler, P., “HMM classifier using biophysically based
CMOS dendrites for wordspotting,” in Biomedical Circuits and Systems Con-
ference (BioCAS), 2011 IEEE, pp. 281 –284, nov. 2011.

[25] Georgiou, J. and Toumazou, C., “A 126-µw cochlear chip for a totally
implantable system,” Solid-State Circuits, IEEE Journal of, vol. 40, no. 2,
pp. 430–443, 2005.

[26] Germanovix, W. and Toumazou, C., “Design of a micropower current-
mode log-domain analog cochlear implant,” Circuits and Systems II: Analog
and Digital Signal Processing, IEEE Transactions on, vol. 47, no. 10, pp. 1023–
1046, 2000.

[27] Gestner, B., Tanner, J., and Anderson, D., “Glass break detector analog
front-end using novel classifier circuit,” in Circuits and Systems, 2007. ISCAS
2007. IEEE International Symposium on, pp. 3586–3589, IEEE, 2007.

[28] Gilbert, B., “A precise four-quadrant multiplier with subnanosecond re-
sponse,” IEEE Journal of Solid-State Circuits, vol. 3, no. 4, pp. 365–373, 1968.

[29] Gordon, C., Farquhar, E., and Hasler, P., “A family of floating-gate
adapting synapses based upon transistor channel models,” in IEEE Internation
Symposium on Circuits and Systems, vol. 1, pp. 317–320, 2004.

[30] Graham, D. W., Farquhar, E., Degnan, B., Gordon, C., and Hasler,

P., “Indirect programming of floating-gate transistors,” Circuits and Systems
I: Regular Papers, IEEE Transactions on, vol. 54, pp. 951 –963, may 2007.

[31] Graham, D. W., Hasler, P. E., Chawla, R., and Smith, P. D., “A low-
power programmable bandpass filter section for higher order filter applications,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 6,
pp. 1165–1176, 2007.

[32] Gu, M. andChakrabartty, S., “Synthesis of bias-scalable cmos analog com-
putational circuits using margin propagation,” Circuits and Systems I: Regular
Papers, IEEE Transactions on, vol. 59, no. 2, pp. 243–254, 2012.

[33] Hall, T., Twigg, C., Gray, J., Hasler, P., and Anderson, D., “Large-
scale field-programmable analog arrays for analog signal processing,” Circuits
and Systems I: Regular Papers, IEEE Transactions on, vol. 52, no. 11, pp. 2298–
2307, 2005.

115

[34] Hasler, P., Diorio, C., Minch, B., and Mead, C., “Single transistor
learning synapses,” in Advances in Neural Information Processing Systems 7
(Gerald Tesauro, D. S. T. and Leen, T. K., eds.), (Cambridge, MA),
pp. 817–824, MIT Press, 1994.

[35] Hasler, P., Diorio, C., Minch, B., and Mead, C., “Single transistor
learning synapses,” in Advances in Neural Information Processing Systems 7
(Gerald Tesauro, D. S. T. and Leen, T. K., eds.), (Cambridge, MA),
pp. 817–824, MIT Press, 1994.

[36] Hasler, P. and Dugger, J., “Correlation learning rule in floating-gate pfet
synapses,” IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, vol. 48, pp. 65–73, Jan 2001.

[37] Hasler, P. and Dugger, J., “An analog floating-gate node for supervised
learning,” IEEE Transactions on Circuits and Systems I, vol. 52, pp. 834–845,
May 2005.

[38] Hasler, P. and Dugger, J., “An analog floating-gate node for supervised
learning,” IEEE Transactions on Circuits and Systems I, vol. 52, pp. 834–845,
May 2005.

[39] Hasler, P., Minch, B., and Diorio, C., “An autozeroing floating-gate am-
plifier,” IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, vol. 48, pp. 74–82, Jan 2001.

[40] Hausser, M. and Mel, B., “Dendrites: bug or feature?,” Current Opinion in
Neurobiology, vol. 13, no. 3, pp. 372–383, 2003.

[41] Hertz, J., Krogh, A., and Palmer, R., Introduction to the theory of neural
computation, vol. 1. Westview press, 1991.

[42] Hooper, M., Kucic, M., and Hasler, P., “Integration of high voltage
charge-pumps in a submicron standard cmos process for programming ana-
log floating-gate circuits,” in IEEE International Symposium on Circuits and
Systems, vol. 1, pp. 125–128, 2005.

[43] Hu, Y. and Loizou, P., “Subjective evaluation and comparison of speech
enhancement algorithms,” Speech Communication, vol. 49, pp. 588–601, 2007.

[44] i Petit, A. B. and Murray, A. F., “Synchrony detection and amplification
by silicon neurons with stdp synapses,” IEEE Trans. Neural Netw., vol. 15,
pp. 1296–1304, Sep 2004.

[45] Indiveri, G., “Modeling selective attention using a neuromorphic analog VLSI
device,” Neural computation, vol. 12, no. 12, pp. 2857–2880, 2000.

116

[46] Indiveri, G., “A current-mode hysteretic winner-take-all network, with excita-
tory and inhibitory coupling,” Analog Integrated Circuits and Signal Processing,
vol. 28, no. 3, pp. 279–291, 2001.

[47] Indiveri, G., Chicca, E., and Douglas, R., “A vlsi array of low-power
spiking neurons and bistable synapses with spike-timing dependent plasticity,”
Neural Networks, IEEE Transactions on, vol. 17, no. 1, pp. 211–221, 2006.

[48] Indiveri, G., Chicca, E., and Douglas, R., “A vlsi array of low-power
spiking neurons and bistable synapses with spike-timing dependent plasticity,”
IEEE Trans. Neural Netw., vol. 17, pp. 211–221, Jan 2006.

[49] Indiveri, G., Horiuchi, T., Niebur, E., andDouglas, R., “A competitive
network of spiking VLSI neurons,” in World Congress on Neuroinformatics,
pp. 443–455, Vienna, Austria: ARGESIM/ASIM Verlag, 2001.

[50] Indiveri, G., Murer, R., and Kramer, J., “Active vision using an analog
VLSI model of selective attention,” Circuits and Systems II: Analog and Digital
Signal Processing, IEEE Transactions on, vol. 48, no. 5, pp. 492–500, 2001.

[51] Itti, L., Koch, C., and Niebur, E., “A model of saliency-based visual at-
tention for rapid scene analysis,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 20, no. 11, pp. 1254–1259, 1998.

[52] Kinget, P., “Device mismatch and tradeoffs in the design of analog circuits,”
Solid-State Circuits, IEEE Journal of, vol. 40, no. 6, pp. 1212–1224, 2005.

[53] Koch, C., Biophysics of Computation. Oxford University Press, 1999.

[54] Koch, C., Biophysics of Computation. Oxford University Press, 1999.

[55] Kruger, W., Hasler, P., Minch, B., and Koch, C., “An adaptive WTA
using floating gate technology,” Advances in Neural Information Processing Sys-
tems, pp. 720–726, 1997.

[56] Lazzaro, J., “Winner-take-all networks of o (n) complexity,” tech. rep., DTIC
Document, 1988.

[57] Lee, J., Bandyopadhyay, A., Faik Baskaya, I., Robucci, R., and
Hasler, P., “Image processing system using a programmable transform im-
ager,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing
(ICASSP ’05), vol. 5, 2005.

[58] Lim, J. S. and Oppenheim, A. V., “Enhancement and bandwidth compres-
sion of noisy speech,” Proceedings of the IEEE, vol. 67, no. 12, pp. 1586–1604,
1979.

[59] Liu, B., Chen, C., and Tsao, J., “A modular current-mode classifier circuit
for template matching application,” Circuits and Systems II: Analog and Digital
Signal Processing, IEEE Transactions on, vol. 47, no. 2, pp. 145–151, 2000.

117

[60] Liu, S.-C. and Mockel, R., “Temporally learning floating-gate vlsi
synapses,” in IEEE International Symposium on Circuits and Systems,
pp. 2154–157, 2008.

[61] London, M. and H

”ausser, M., “Dendritic computation,” Annu. Rev. Neurosci., vol. 28,
pp. 503–532, 2005.

[62] Lyon, R. F. and Mead, C., “An analog electronic cochlea,” IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, vol. 36, no. 7, pp. 1119–1134,
1988.

[63] M. Pankaala, M. L. and Hasler, P., “Compact floating-gate learning array
with stdp,” in International Joint Conference on Neural Networks, pp. 2409–
2415, 2009.

[64] Maass, W., “On the computational power of winner-take-all,” Neural Com-
putation, vol. 12, no. 11, pp. 2519–2535, 2000.

[65] Mahowald, M., VLSI analogs of neuronal visual processing: a synthesis of
form and function. PhD thesis, Citeseer, 1992.

[66] Maliuk, D., Stratigopoulos, H., and Makris, Y., “An analog vlsi multi-
layer perceptron and its application towards built-in self-test in analog circuits,”
inOn-Line Testing Symposium (IOLTS), 2010 IEEE 16th International, pp. 71–
76, IEEE, 2010.

[67] Markram, H., “The blue brain project,” Nature Reviews Neuroscience, vol. 7,
no. 2, pp. 153–159, 2006.

[68] Markram, H., Lubke, J., Frotscher, M., and Sakmann, B., “Regulation
of synaptic efficacy by coincidence of postsynaptic aps and epsps,” Science,
vol. 275, pp. 213–215, 1997.

[69] Marr, B., Degnan, B., Hasler, P., and Anderson, D., “Scaling en-
ergy per operation via an asynchronous pipeline,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. PP, no. 99, pp. 1 –5, 2012.

[70] Martin, R., “Noise power spectral density estimation based on optimal
smoothing and minimum statistics,” IEEE Transactions on Speech and Audio
Processing, vol. 9, no. 5, pp. 504–512, 2001.

[71] Mead, C., Analog VLSI and neural systems. Addison-Wesley, 1989.

[72] Mead, C., “Neuromorphic electronic systems,” Proceedings of the IEEE,
vol. 78, no. 10, pp. 1629–1636, 1990.

[73] Minch, B. A., “A low-voltage mos cascode bias circuit for all current levels,” in
Proc. IEEE Int. Symp. Circuits and Systems ISCAS 2002, vol. 3, pp. 619–622,
2002.

118

[74] Minch, B. A., “Synthesis of static and dynamic multiple-input translinear ele-
ment networks,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 51, no. 2, pp. 409–421, 2004.

[75] Morris, T., Horiuchi, T., and DeWeerth, S., “Object-based selection
within an analog VLSI visual attention system,” Circuits and Systems II:
Analog and Digital Signal Processing, IEEE Transactions on, vol. 45, no. 12,
pp. 1564–1572, 1998.

[76] Nease, S., George, S., Hasler, P., Koziol, S., and Brink, S., “Modeling
and implementation of voltage-mode CMOS dendrites on a reconfigurable ana-
log platform,” Biomedical Circuits and Systems, IEEE Transactions on, vol. PP,
no. 99, p. 1, 2011.

[77] Ozalevli, E., Hasler, P., and Higgins, C., “Winner-take-all-based visual
motion sensors,” Circuits and Systems II: Express Briefs, IEEE Transactions
on, vol. 53, no. 8, pp. 717–721, 2006.

[78] P. Hafliger, M. M. and Watts, L., “A spike based learning neuron in
analog vlsi,” in Advances in Neural Information Processing Systems 9,(p. 692)
(M. C. Mozer, M. I. J. and Petsche, T., eds.), (Cambridge, MA), MIT
Press, 1997.

[79] Parikh, D. N., Ravindran, S., and Anderson, D. V., “Gain adapta-
tion based on signal-to-noise ratio for noise suppression,” in Proc. IEEE Work-
shop Applications of Signal Processing to Audio and Acoustics WASPAA ’09,
pp. 185–188, 2009.

[80] Peng, S.-Y., Tsao, Y., Hasler, P. E., and Anderson, D. V., “A pro-
grammable analog radial-basis-function based classifier,” in Proc. IEEE Int.
Conf. Acoustics, Speech and Signal Processing ICASSP 2008, pp. 1425–1428,
2008.

[81] Peng, S., Hasler, P., and Anderson, D., “An analog programmable mul-
tidimensional radial basis function based classifier,” Circuits and Systems I:
Regular Papers, IEEE Transactions on, vol. 54, no. 10, pp. 2148–2158, 2007.

[82] Petre, C., Schlottmann, C., and Hasler, P., “Automated conversion of
simulink designs to analog hardware on an fpaa,” in Proc. IEEE Int. Symp.
Circuits and Systems ISCAS 2008, pp. 500–503, 2008.

[83] Rall, W., “Theoretical significance of dendritic trees for neuronal input-
output relations,” Neural theory and modeling, pp. 73–97, 1964.

[84] Rall, W. and Segev, I., “Functional possibilities for synapses on dendrites
and on dendritic spines,” Synaptic function, pp. 605–636, 1987.

119

[85] Rall, W. and Shepherd, G., “Theoretical reconstruction of field potentials
and dendrodendritic synaptic interactions in olfactory bulb,” Journal of Neu-
rophysiology, vol. 31, no. 6, p. 884, 1968.

[86] Ramakrishnan, S., Basu, A., Brink, S., Chiu, L.-K., and Hasler, P.,
“Reconfigurable platform for implementing speech processing algorithms,” Cir-
cuits and Systems I, IEEE Transactions on, p. Under Revision Review, 2011.

[87] Ramakrishnan, S., Hasler, P., and Gordon, C., “Floating gate synapses
with spike time dependent plasticity,” in IEEE International Symposium on
Circuits and Systems, pp. 367–372, 2010.

[88] Ramakrishnan, S., Hasler, P., and Gordon, C., “Floating gate synapses
with spike time dependent plasticity,” in IEEE International Symposium on
Circuits and Systems, pp. 367–372, 2010.

[89] Ramakrishnan, S., Hasler, P., and Gordon, C., “Floating gate synapses
with spike-time-dependent plasticity,” Biomedical Circuits and Systems, IEEE
Transactions on, vol. 5, no. 3, pp. 244 –252, 2011.

[90] Ravindran, S., Physiologically motivated methods for audio classification.
PhD thesis, Georgia Institute of Technology, Atlanta, GA, 2006.

[91] Rosenblatt, F., “The perceptron: A probabilistic model for information stor-
age and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386,
1958.

[92] Sarpeshkar, R., Efficient precise computation with noisy components: extrap-
olating from an electronic cochlea to the brain. PhD thesis, California Institute
of Technology, Pasadena, CA, 1997.

[93] Sarpeshkar, R., Efficient precise computation with noisy components: extrap-
olating from an electronic cochlea to the brain. PhD thesis, California Institute
of Technology, 1997.

[94] Sarpeshkar, R., “Analog versus digital: extrapolating from electronics to
neurobiology,” Neural Computation, vol. 10, no. 7, pp. 1601–1638, 1998.

[95] Sarpeshkar, R., Baker, M., Salthouse, C., Sit, J., Turicchia, L.,
and Zhak, S., “An analog bionic ear processor with zero-crossing detection,”
in Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC.
2005 IEEE International, pp. 78–79, IEEE, 2005.

[96] Satyanarayana, S., Tsividis, Y., and Graf, H., “A reconfigurable VLSI
neural network,” Solid-State Circuits, IEEE Journal of, vol. 27, no. 1, pp. 67–
81, 1992.

120

[97] Schlottmann, C. and Hasler, P., “A highly dense, low power, pro-
grammable analog vector-matrix multiplier: The FPAA implementation,”
Emerging and Selected Topics in Circuits and Systems, IEEE Journal on, vol. 1,
pp. 403 –411, sept. 2011.

[98] Schlottmann, C., Shapero, S., Nease, S., and Hasler, P., “A digitally
enhanced dynamically reconfigurable analog platform for low-power signal pro-
cessing,” Solid-State Circuits, IEEE Journal of, vol. 47, pp. 2174 –2184, sept.
2012.

[99] Segev, I. and Rall, W., “Computational study of an excitable dendritic
spine,” Journal of Neurophysiology, vol. 60, no. 2, p. 499, 1988.

[100] Shapero, S. and Hasler, P., “Precise programming and mismatch compen-
sation for low power analog computation on an FPAA,” Circuits and Systems
I: Regular Papers, IEEE Transactions on, p. To be published.

[101] Siu, K., Roychowdhury, V., and Kailath, T., Discrete neural computa-
tion: a theoretical foundation. Prentice-Hall, Inc., 1995.

[102] Sivilotti, M., Wiring considerations in analog VLSI systems, with application
to field-programmable networks. PhD thesis, Citeseer, 1990.

[103] Smith, P., Graham, D., Chawla, R., and Hasler, P., “A five-transistor
bandpass filter element,” in Circuits and Systems, 2004. ISCAS’04. Proceedings
of the 2004 International Symposium on, vol. 1, pp. I–861, IEEE, 2004.

[104] Srinivasan, V., Graham, D., and Hasler, P., “Floating-gates transistors
for precision analog circuit design: an overview,” in Circuits and Systems, 2005.
48th Midwest Symposium on, pp. 71 –74 Vol. 1, aug. 2005.

[105] Srinivasan, V., Serrano, G. J., Gray, J., and Hasler, P., “A precision
cmos amplifier using floating-gate transistors for offset cancellation,” Solid-State
Circuits, IEEE Journal of, vol. 42, pp. 280 –291, feb. 2007.

[106] Suh, S., Basu, A., Schlottmann, C., Hasler, P., and Barry, J., “Low-
power discrete fourier transform for OFDM: A programmable analog approach,”
Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 58, pp. 290
–298, feb. 2011.

[107] Twigg, C. M., Gray, J. D., and Hasler, P. E., “Programmable floating
gate fpaa switches are not dead weight,” in Proc. IEEE Int. Symp. Circuits and
Systems ISCAS 2007, pp. 169–172, 2007.

[108] Twigg, C. M.,Hasler, P., andAnderson, D. V., “Large-scale fpaa devices
for signal processing applications,” in Proc. IEEE Int. Conf. Acoustics, Speech
and Signal Processing ICASSP 2007, vol. 2, 2007.

121

[109] Urahama, K. and Nagao, T., “K-winners-take-all circuit with o (n) com-
plexity,” Neural Networks, IEEE Transactions on, vol. 6, no. 3, pp. 776–778,
1995.

[110] Widrow, B. andWinter, R., “Neural nets for adaptive filtering and adaptive
pattern recognition,” Computer, vol. 21, no. 3, pp. 25–39, 1988.

[111] Yamasaki, T. and Shibata, T., “Analog soft-pattern-matching classifier us-
ing floating-gate mos technology,” Neural Networks, IEEE Transactions on,
vol. 14, no. 5, pp. 1257–1265, 2003.

[112] Yıldız, M., Minaei, S., and Göknar, İ., “A flexible current-mode classi-
fier circuit and its applications,” International Journal of Circuit Theory and
Applications, vol. 39, no. 9, pp. 933–945, 2011.

[113] Yldz, M., Minaei, S., and Goknar, I., “A cmos classifier circuit using
neural networks with novel architecture,” Neural Networks, IEEE Transactions
on, vol. 18, no. 6, pp. 1845–1850, 2007.

[114] Yu, T. and Cauwenberghs, G., “Analog VLSI biophysical neurons and
synapses with programmable membrane channel kinetics,” Biomedical Circuits
and Systems, IEEE Transactions on, vol. 4, no. 3, pp. 139–148, 2010.

122

VITA

Shubha Ramakrishnan received her B.E. in Electronics from Birla Institute of Tech-

nology and Science, Pilani, India and her MS in Electrical Engineering from Oregon

State University in 2002 and 2004 respectively. She received the PhD degree in Elec-

trical and Computer Engineering at Georgia Institute of Technology. Her interests

include low power analog design for signal processing and classification, bio-inspired

circuit design, and modeling biological learning processes in silicon.

123

