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SUMMARY

This dissertation presents a stochastic framework for modeling the degradation processes of

components in complex engineering systems using sensor based signals. Chapters 1 and 2 discuses

the challenges and the existing literature in monitoring and predicting the performance of complex

engineering systems.

Chapter 3 presents the degradation model with the absorbing failure threshold for a single unit

and the RLD estimation using the first-passage-time approach. Subsequently, we develop the esti-

mate of the RLD using the first-passage-time approach for two cases: information prior distributions

and non-informative prior distributions. A case study is presented using real-world data from rolling

elements bearing applications.

Chapter 4 presents a stochastic methodology for modeling degradation signals from compo-

nents functioning under dynamically-evolving environmental conditions. We utilize in-situ sensor

signals related to the degradation process, as well as the environmental conditions, to predict and

continuously update, in real-time, the distribution of a component’s residual lifetime. Two distinct

models are presented. The first considers future environmental profiles that evolve in a deterministic

manner while the second assumes the environment evolves as a continuous-time Markov chain.

Chapters 5 and 6 generalize the failure-dependent models and develop a general model that ex-

amines the interactions among the degradation processes of interconnected components/subsystems.

In particular, we model how the degradation level of one component affects the degradation rates

of other components in the system. Hereafter, we refer to this type of component-to-component

interaction caused by their stochastic dependence as degradation-rate-interaction (DRI). Chapter 5

focuses on the scenario in which these changes occur in a discrete manner, whereas, Chapter 6

focuses on the scenario, in which DRIs occur in a continuous manner. We demonstrate that in-

corporating the effects of component interactions significantly improves the prediction accuracy of

RLDs.

Finally, we outline the conclusion remarks and a future work plan in Chapter 7.

x



CHAPTER I

INTRODUCTION
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The use of real-time sensor data for continuously monitoring critical engineering components

in complex systems (wind turbine systems, aircraft navigation systems, smart grids, nuclear reactor

cooling systems, etc.) holds significant promise for not only assessing the current health of com-

ponents, but for dynamically predicting the future remaining lifetime of components in complex

engineering systems. Today, advances in sensor technologies, especially those related to sensor

miniaturization and improved energy consumption, have enabled the health and performance mon-

itoring of complex engineering systems, as well as the environmental conditions in which they

operate. These condition-based sensor data include vibration data, acoustic data, oil analysis data,

temperature, pressure, moisture, humidity, weather or environment data, etc.

Condition-based sensor data acquired from functioning units are usually correlated with the un-

derlying physics-of-failure and known as degradation signals (cf. [47]). In this context, a component

or system is considered to have failed once its degradation signal crosses a predetermined failure

threshold (assuming a single mode of failure). These degradation-based signals serve as a proxy for

physical degradation and can be used to predict the residual lifetime distributions of the engineering

systems and their constituent components. Predicting such distributions entails accurately under-

standing the future evolution of degradation signals from the constituent components of a complex

system. This is generally very challenging because the environmental/operational conditions and

the interactions among the constituent components cause enormous uncertainty in the patterns of

degradation signals.

In this dissertation, we focus on developing a stochastic degradation framework that utilizes real-

time sensory information to improve the prediction accuracy of residual life distributions (RLDs)

for components in complex engineering systems. Accurately predicting the RLDs of an engineering

system is generally a difficult problem because of the following challenges :

1. The RLD of a unit depends not only on reliability data that reflect population characteristics

but also the real-time condition of an operating unit. This requires the integration of traditional

reliability analysis and condition-based degradation signals.

2. In industrial applications, engineering systems are often subject to variable operating/environmental

conditions, the effect of which, if not properly considered, may greatly reduce the accuracy

2



of RLD estimations.

3. The reliability of a complex system depends on the RLDs of its constituent components and

the interactions among them. The research area of component interactions has not been well

explored.

1.1 Research Challenges

1.1.1 Challenges With Traditional Reliability Models and Conventional Condition Monitor-
ing Techniques

Most conventional reliability formalisms treat failures as a random process rather than a process

of evolution across a continuum of degradation states. Reliability models focus on evaluating fail-

ure measures for a population of components, primarily, by collecting and analyzing failure data (cf.

[12], [37], [32], [39], [60], [71], [84], and [139]). The uncertainty associated with degradation and

failure processes-even for identical components functioning under similar operating conditions-is

usually characterized by parametric and empirical failure distributions. These distributions are used

to evaluate component reliability. This is achieved using time- and state-dependent reliability tech-

niques, covariate models, static/dynamic models, and physics-of-failure models. System reliability

is evaluated using reliability measures of its constituents (components). A system is defined as

a given configuration of components whose proper functioning over a stated interval of time de-

termines whether the system will perform as designed. However, these approaches provide little

ongoing reliability information of a particular unit/system that is currently functioning in the field.

Besides, failure behavior of each unit depends on the changes in work the operational age or time

that the unit has survived, operating environment, and failure interaction between components.

On the other end of the spectrum, conventional condition monitoring (CM) techniques focus on

collecting sensory information from a functioning device in order to determine its state of health

(cf. [113], [122], [129], [131], and [143]). Condition monitoring is very useful when direct obser-

vations of physical degradation processes, such as fatigue, wear, corrosion, etc, are not possible.

Condition-based sensory signals, such as vibration, temperature, acoustic emissions, etc, often ex-

hibit characteristics patterns that are correlated with the underlying physical transitions that occur

during degradation. Some applications include condition monitoring of bearings, machine, engines,

3
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cardiac pacemakers, blood glucose, and body temperature among others. Unfortunately, CM tech-

niques focus on the degradation characteristics of individual components with little or no emphasis

on the characteristics of the component’s population. This leaves out a critical source of information

when trying to predict failures using CM techniques.

As noted by [89], failure prediction that incorporates condition-based data and lifetime data

tend to provide more accurate reliability estimation. The limited literature that combines the reli-

ability formalisms with condition monitoring methods includes [47], [46], [48], and other relevant

prognostic papers. However, in these papers, the residual life distribution is estimated using an

approximation of the actual distribution.

1.1.2 Challenges With the Effects of Operational/Environmental Conditions

The use of real-time sensor data for continuously monitoring critical engineering components in

complex systems holds significant promise for predicting the future remaining life of components

dynamically. One aspect of dynamic reliability assessment that is often overlooked is the impact of

the component’s physical or operating environment on its useful lifetime. For example, increasing

the load and speed of rotating machinery may accelerate the degradation of its constituent com-

ponents, such as roller bearings. Similarly, large variations in the ambient operating temperature

may adversely effect electronic components. The uncertainties associated with component degra-

dation processes coupled with the effects of time-varying environmental and operation conditions

pose significant challenges to the accurate assessment of the useful lifetime distribution of critical

components. Therefore, the development of stochastic models that can incorporate the effect of

environmental or operating conditions has become an important issue to reliability modelers and

engineers alike.

As noted by [24], the vast majority of conventional failure models assume that prevailing en-

vironmental conditions are temporally invariant, or have no effect on deterioration and failure pro-

cesses. However, generally speaking, harsh environments tend to accelerate the degradation mecha-

nisms that occur prior to failure as compared to milder environments. The limited number of failure

models that do consider environmental effects generally belong to one of two groups: (1) hazard

rate models that treat environmental conditions as model covariates (cf. [57] and [75]), and (2)
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stochastic wear and/or shock models in which the wear and/or shock intensities are modulated by

the environment (cf. [37] and [62]). Even these models have key limitations that impact their ap-

plicability. First, the failure rate functions of the first group are only useful for making inferences

about a large population of components but not about specific components. Moreover, failure rates

cannot be observed or measured for individual components (cf. [118]). The second group of models

are useful for deriving analytical lifetime distributions (or their transforms) and assessing, proba-

bilistically, the time-to-failure. The limitation of these models is that they treat failure as a random

event and do not provide information about the evolution of the physical degradation process that

occurs prior to failure (cf. [125]).

1.1.3 Challenges With the Effects of Component Interactions

Predicting the lifetime of a complex system requires an accurate evaluation of the degradation

states of its constituent components, and a sufficient understanding of how these states evolve in

the future. These challenges become more complicated when the components of a system are in-

terdependent. There are different forms of dependencies as noted in [35]: economic dependence,

structural dependence, and stochastic dependence. (a) Economic dependence implies that either

costs can be saved when several components are jointly maintained instead of separately. (b) Struc-

tural dependence applies if components structurally form a part, so that maintenance of a failed

component implies maintenance of other components as well. (c) Stochastic dependence occurs if

the state of a component influences the lifetime distribution of other components. This paper fo-

cuses on stochastic dependence, which refers to situations where the failure or degradation of one

component influences the lifetime of other components in the system. In particular, we assume

when a component degrades (say due to wear, or plastic deformation), it affects the performance

of other components in the system by accelerating their degradation processes. Wind turbines are

an example of a typical mechanical system where, for example, the degradation of hydrodynamic

bearings may result in increasing the looseness of primary transmission shafts, which in turn may

increase the vibration levels in the gearbox. Such a scenario will definitely alter and most proba-

bly accelerate the degradation of the constituent gears. In networked systems such as power grids,

the aging of generators or transformers in a subnetwork may result in increased demands on other
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units in the network. This results in increasing their loading profiles, and in turn accelerates their

degradation processes. Similar arguments can be made for various applications domains such as

mechanical systems (cf. [39, 88]), smart grids (cf. [59, 130]), water distribution systems (cf. [115]),

and other multi-component systems.

To date, many reliability models that consider component lifetime distributions in multi-component

systems assume that component lifetimes are independent (cf. [22, 40]). Although such an assump-

tion may help in obtaining mathematically tractable models, these models remain unrealistic and

inappropriate for applications where stochastic dependence is indeed present (cf. [14, 119]). The

limited literature that considers stochastic dependence can be divided into two groups. The first

group focuses on how the failure of one component affects the failure rates of other components in

a given system (cf. [68, 92, 95]). In the second group, stochastic dependence among component

lifetimes is characterized by correlated multivariate lifetime distributions, the parameters of which

change as the failures of components occur (cf. [44, 79, 87]). Both of these two approaches focus

on modeling the distribution of component lifetime or time-to-failure. It would be difficult to utilize

these methods to characterize the degradation processes of components and the interactions between

before component failure occurs.

1.2 Proposed Research

This dissertation proposes a stochastic degradation framework that utilizes the real-time observa-

tions of sensory signals and the degradation characteristics associated with the entire population of

similar components to estimate the RLDs. We will investigate how to accurately estimate the RLD

of a single component using a first-passage-time approach, how to model various effects of environ-

mental conditions on the degradation signals, and how to characterize the interactions among the

degradation signals of constituent components in a multi-component system.

1.2.1 Estimating the RLD of a Component Using a First-Passage-Time Approach

Very few research efforts such as [46], [47], and [133] have utilized real-time degradation signals

to update the residual life distributions (RLDs) of a single component. In this context, the RLDs

represented the time distribution until the observed degradation signal crossed a predetermined fail-

ure threshold. Our proposed model in Chapter 3 is an extension of [46] and [47], in which the
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authors used an approximation method to predict the RLD and pointed out that the prediction accu-

racy would be improved if the first-passage-time of degradation process was utilized to estimate the

failure time.

Our methodology begins with the development of a degradation model, in which the degrada-

tion signal is characterized by a stochastic process, and the failure threshold is the absorbing barrier

of this stochastic process. Since degradation signals are monitored at discrete epochs in most ap-

plications, our model accounts for the engineering fact that the failure time is greater than the latest

observation epoch of degradation. That is, we exclude the degradation signals that cross the failure

threshold between discrete observation epochs from our space of degradation signals. Furthermore,

our degradation model consists of deterministic coefficients that capture degradation attributes com-

mon to all units of a population and stochastic coefficients that capture the unit-to-unit variability,

such as the rate of degradation. The estimates of these coefficients can be obtained using a sample of

historical degradation signals or from expert knowledge. Next, we focus on a unit/component that

has been operating in the field, whose degradation signal is used to update the prior distributions of

the stochastic coefficients in a Bayesian manner. The updated model is then used to revise the com-

ponent’s residual life distribution (RLD) with a first-passage time approach. We will demonstrate

through a real-world case study that this approach provides accurate prediction of the residual life

and is relatively robust with respect to different levels of signal-to-noise ratios when compared to

existing models.

1.2.2 Characterizing the Effects of Environmental Conditions on The Degradation Signal of
a Single Component

We develop a stochastic methodology for modeling degradation signals from components func-

tioning under dynamically-evolving environmental conditions. We utilize in-situ sensor signals

related to the degradation process, as well as the environmental conditions, to predict and continu-

ously update, in real-time, the distribution of a component’s residual lifetime. Our models assume

that the real-time rate at which a system’s degradation signal increases (or decreases) is affected

by the severity of the current environmental or operational conditions. In addition, we account for

the reality that transitions in the environmental and operational conditions may induce upward or

downward jumps in the amplitude of the degradation signal, depending on the nature of the changes.
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To estimate residual life distributions (RLDs), we consider two cases, both of which take into con-

sideration the future characteristics of the environmental conditions. In the first case, we assume the

component operates in a dynamic environment that transitions between distinct states and follows

a deterministic profile, (i.e., there is no uncertainty about how the environment transitions in the

future). This case is appropriate when the component experiences conditions that might occur in a

cyclic manner. As an example of such a scenario, consider the rotational speed and thrust profiles

that a jet engine experiences during the take-off, cruising, and landing cycles. The second case also

assumes dynamic environmental or operating conditions but allows for the future environmental

profile to be uncertain. Specifically, the transition times and dwell times in each distinct environ-

mental state are stochastic and characterized using a continuous-time Markov chain model. This

case may be appropriate for systems that are exposed to uncertain environments, such as weather

conditions. For example, the velocity of wind as it relates to the productivity of wind turbines, or

temperature and humidity changes as they relate to electronic components in aircraft avionics sys-

tems. For both cases, we propose a stochastic model for characterizing the degradation signal of the

component and use this model to predict the residual lifetime by estimating the distribution of the

first-passage time of the signal to a critical degradation threshold.

1.2.3 Characterizing the Component Interactions Among the Degradation Signals from Multi-
Component Systems

While the existing models address the challenges associated with component dependencies by

studying the effects that a component’s failure has on the remaining functioning components, our

approach addresses this problem at a much more fundamental level. Instead of focusing on the ef-

fects of failure, we focus on modeling the effects of ongoing degradation processes that take place

prior to failure. In particular, we are interested in studying how the degradation level of one com-

ponent affects the degradation rate of other components in the system. We assume that sensor data

obtained from a functioning component can be synthesized into degradation-base signals, which are

directly correlated with the severity of the components’ physical degradation state. Consequently,

interactions among components will be manifested in the behavior of their respective degradation

signals. In other words, degradation interaction may cause a noticeable change in the rate by which
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the amplitude of a component’s degradation signal (hereafter referred to as degradation rate) in-

creases or decreases over time.

We propose a stochastic degradation framework that models the inherent degradation processes

of components as well as the effects of degradation interactions among interdependent components.

Two types of component interactions are considered: (1) We will first consider degradation inter-

actions that occur on a continuous basis, referred to as continuous interaction. In other words,

the degradation rate of each component is continuously being influenced by the amplitudes of the

degradation signals of other components. Thus, changes in the degradation rates are much more

subtle and occur continuously over time. (2) The second type of interactions, which occur at dis-

crete levels of degradation, are referred to as discrete interactions. In other words, changes in the

degradation rate of a component occur when other components reach pre-specified levels of degra-

dation, i.e., when their degradation signals reach specific amplitudes or amplitude ranges. This

proposed stochastic framework will be used to estimate the residual life distributions (RLDs) of

constituent components in a given system. The RLDs will be updated based on real-time senor

signals in a Bayesian manner. This updating scheme allows us to incorporate information about the

latest degradation states of the components that are being monitored.

1.3 Dissertation Organization

The organization of this dissertation is illustrated in Figure 1.0.1. Chapter 2 surveys the relevant

literature on reliability estimating, degradation modeling, lifetime estimation under time-varying

operational conditions, system reliability with and without component dependence.

Chapter 3 presents the degradation model with the absorbing failure threshold for a single unit

and the RLD estimation using the first-passage-time approach. We start by presenting a base-case

model, where the evolution of the degradation signal is model using a random coefficient linear

model with residual terms follow a Brownian motion process. Subsequently, we develop the esti-

mate of the RLD using the first-passage-time approach for two cases: information prior distributions

and non-informative prior distributions. A case study is presented using real-world data from rolling

elements bearing applications. A paper based on this work can be found in [19].
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Chapter 4 presents a stochastic methodology for modeling degradation signals from compo-

nents functioning under dynamically-evolving environmental conditions. We utilize in-situ sensor

signals related to the degradation process, as well as the environmental conditions, to predict and

continuously update, in real-time, the distribution of a component’s residual lifetime. Two distinct

models are presented. The first considers future environmental profiles that evolve in a deterministic

manner while the second assumes the environment evolves as a continuous-time Markov chain. For

the first model, we compare our method with two benchmark models and demonstrate that our ap-

proach significantly improves the prediction accuracy of RLDs by incorporating the signals jumps

in the future. For the second model, we conduct comprehensive simulation studies to evaluate the

performance of our method for various values of model parameters. Papers based on this work can

be found in [17, 18, 20].

Chapters 5 and 6 generalize the failure-dependent models and develop a general model that ex-

amines the interactions among the degradation processes of interconnected components/subsystems.

In particular, we model how the degradation level of one component affects the degradation rates

of other components in the system. Hereafter, we refer to this type of component-to-component

interaction caused by their stochastic dependence as degradation-rate-interaction (DRI).

Chapter 5 focuses on the scenario in which these changes occur in a discrete manner. In par-

ticular, changes in the degradation rate of a component occur when other stochastically dependent

components reach pre-specified degradation levels, i.e., when their degradation signals reach spe-

cific amplitudes or amplitude ranges. From a practical perspective, discrete-type DRIs can take

place in applications where, for example, different levels of wear or plastic deformation result in

categorically different effects on the degradation processes of other components. Our approach

rests on the idea that degradation signals from interdependent components can be divided into am-

plitude ranges that correspond to discrete degradation states. When a component transitions from

one state to a more severe state, it triggers a DRI, which results in increasing the degradation rates

of other dependent components. Consequently, the times at which DRIs take place correspond to

change-points in the degradation rates of the components of the system. Using this approach, we

develop a stochastic degradation modeling framework where the evolution of degradation signals is

modeled as a continuous-time stochastic process, and in which degradation interactions are modeled
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as change-points in the growth rate of the signals. A change-point detection algorithm is utilized

to identify the times that correspond to degradation interactions. Historical degradation signals are

used to estimate the model parameters and their prior distributions. However, the main benefit of

this approach lies in the ability to utilize in-situ degradation signals from the components of fielded

systems to update the model parameters in a Bayesian manner, and predict their residual life distri-

butions. A paper based on this work can be found in [16].

Chapter 6 focuses on the scenario, in which DRIs occur in a continuous manner. Specifically,

changes in the degradation rate of a component is continuously affected by the amplitudes of degra-

dation signals of other components. To model such dynamics among the degradation signals of

components in a given system, we utilize the approach of SDE systems, the coefficient matrix of

which characterizes the inter-dependency among system components. One major advantage of us-

ing an SDE approach is that we can exploit the mathematical tools of Ito’s formulae and express the

component RLDs in closed-form expressions. Once the degradation model is established, we utilize

the real-time degradation signals from the components of a system functioning in the field to update

the model parameters and the component/system residual life distributions in a Bayesian manner.

To validate our methodology, we conduct a series of simulation studies for testing the prediction

accuracy with various of model parameters. The results are compared with a benchmark model,

which does not consider component interactions. We demonstrate that incorporating the effects of

component interactions significantly improves the prediction accuracy of RLDs. A paper based on

this work can be found in [15].

Finally, we outline the conclusion remarks and a future work plan in Chapter 7.
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CHAPTER II

LITERATURE REVIEW
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In this chapter, we survey the literature that is related to our research areas. That is, reliability

estimation, degradation modeling, lifetime estimation under time-varying environments, and relia-

bility models for multi-component systems.

2.1 Reliability Estimation and Degradation Modeling

Most existing degradation models focus on estimating the lifetime distribution of a population of

similar units. [84] proposed a regression model with random effects to characterize the degradation

trend of a population of components. The authors developed a two-stage approach for the parameter

estimation. Monte Carlo simulation was used to obtain point estimates and confidence intervals

for reliability assessment. Along this line, [104] modeled degradation using nonlinear regression

models with random coefficients. Different from [84], the authors utilized a full Bayesian approach

for the statistic inference and verified their method using fatigue crack growth data. These models

are based on the assumption of independent and identically distributed (iid) Gaussian noise. That

is, these regression models with random effects assume that the underlying degradation process is

determined by a monotonic function with iid error.

To model the degradation process, which is not necessarily monotonic and exhibits temporal

variability, researchers developed degradation models with stochastic processes, such as the Wiener

process, the Gamma process and discrete Markov processes. A major advantage of modeling degra-

dation processes with Wiener processes is that by [31] the distribution of the failure time has a

closed-form expression, known as the inverse Gaussian distribution. Based on this property, [37]

used the Wiener process with a time-varying drift to model the degradation signals from accelerated

life tests under variable stress. The authors developed a timescale transformation to convert the

non-stationary Wiener process to a stationary Wiener process, and proved that the resulting failure

times followed an inverse Gaussian distribution. This transformation was applied by [137], in which

the authors modeled the degradation of self-regulating heat cables subject to high-stress reliability

testing. Other applications of Wiener processes can be found in [1], [75], [80], [96], and [102]. In

addition, variations of the Wiener process, such as the integrated Wiener process and the geometric

Brownian motion, have also been utilized in degradation models based on the characteristics of data.

For example, [124] used an integrated Wiener process to model the degradation process in burn-in
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tests for highly reliable products. The authors compared the proposed method with conventional

procedures and showed that their method is more sensitive and efficient in detecting defects. [99]

and [100] investigated the use of geometric Brownian motion in modeling degradation and devel-

oped the expression of failure time distribution. In their later work, [100] introduced environmental

variables to capture different operating conditions.

Besides Wiener processes, Gamma processes and discrete Markov processes have appeared in

many applications of degradation models. The major advantage of modeling a degradation process

with a Gamma process is that the computation of the crossing time to a pre-specified threshold is

straightforward because of the monotonic property of Gamma processes. [118] summarized failure

models in dynamic environments and investigated the use Gamma processes in such environments.

[70] incorporated the Gamma process with random effects to model unit-to-unit differences in the

degradation signals among a population of similar components. The authors developed estimates

of model parameters and failure time distribution with the aid of numerical methods. The pro-

posed method is verified with the crack-growth data. [38] investigated a repairable system which

was assumed to be maintained and repaired upon each failure. The authors modeled the degrada-

tion processes of individual components with independent Gamma processes. Based on this model,

the author computed the mean function, which represents the expected number of failures up to a

certain time, and discussed the corresponding maintenance policy. Other applications of Gamma

processes can be found in [99], [100], [101], and [123]. Additionally, discrete Markov processes

also show promising applications in modeling degradation processes. [62] considered the reliabil-

ity of a single-unit system whose cumulative damage over time was a degradation process, which

depended on an external environment process. The external process was characterized as a discrete

Markov process with continuous time. [63] extended [62] by incorporating both environment ob-

servations and degradation measures in their stochastic failure model to numerically compute the

failure time distributions. These two papers assume discrete Markov processes in which the system

state sojourn time follows an exponential distribution. [66] generalized [62] and [63] by loosing the

assumption of Markov processes to Semi-Markov processes.

In addition to the reliability literature above, a large amount of papers on joint modeling of

longitudinal and survival data in biostatistics have applied similar approaches. For example, [34],
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[41], and [138] examined linear regression models with random effects for studying AIDS data.

These models consider repeated measurements of a time-dependent covariate, which is related to

the disease risk. Furthermore, [74] and [136] considered a linear model with a stationary Wiener

process. The trend of the linear model varies over time in order to capture evolving biological

fluctuations. Additionally, [74] modeled AIDS data using a bivariate Wiener process. To study the

treatment effects, the authors presented a generalized linear regression model, which included base-

line conditions and covariates. They derived an explicit formula of the residual life for prediction

purposes. Recently, [76] incorporated the Markov property into a regression model and presented a

new model for the survival analysis called Markov Threshold Regression, in which the degradation

processes followed a stochastic process and failure occurred when the process first reached a failure

state.

Very few papers such as [46], [47], and [133] have utilized real-time degradation signals to

update the residual life distributions (RLDs) of a single component. In this context, the RLDs rep-

resented the time distribution until the observed degradation signal crossed a predetermined failure

threshold. Our proposed model in Chapter 3 is an extension of [46] and [47], in which the authors

used an approximation method to predict the RLD and pointed out that the prediction accuracy

would be improved if the first-passage-time of degradation process was utilized to estimate the fail-

ure time. Another paper along this line is [133], which utilized Wiener processes with random

effects to compute the residual life distribution. The most significant difference between our work

and [133] is that we consider the failure threshold as an absorbing barrier of the degradation process

whereas in [133] the failure threshold was considered as a crossing boundary. Our model implies

an important inherent constraint that the failure time is always greater than the latest observation

epoch. Since all the degradation observations occur at discrete time epochs in both papers, our

model ensures that the degradation process will not cross the failure threshold between two discrete

observation epochs. By contrast, the model in [133] included degradation processes which crossed

the failure threshold between the observation times of degradation signals. Finally, we restrict our

choices of the prior distribution for the degradation rate among those which take only positive val-

ues (such as Gamma, Weibull, lognormal, etc.) because the rate of degradation is never negative in

16



reality. In [133], the author assumes a normal distribution for the drift rate. As a result, the degrada-

tion processes of [133] may drift away from the failure threshold, which is unrealistic for modeling

the degradation process that causes the failure of a component.

2.2 Lifetime Estimation Under Time-Varying Environmental/Operational Conditions

Residual life estimation for components operating under time-invariant environmental conditions

has been studied extensively in the literature. [84] and [104] considered regression models with ran-

dom effects to characterize the degradation trend of a population of components. These regression

models assume that the underlying degradation processes are determined by a trend function with in-

dependent and identically distributed Gaussian noise. To model degradation processes that exhibit

temporal variability, researchers have characterized the evolution of degradation using stochastic

processes, e.g., the Wiener process, the gamma process, etc. A major advantage of modeling degra-

dation processes using a Wiener process is that the failure time distribution exists in closed-form as

the inverse Gaussian distribution (cf. [31]). [47] and [133] utilized the Wiener process to model real-

time degradation signals and computed the residual life distribution (RLD) of a single component.

Besides, the gamma process has been utilized to model degradation processes that are almost surely

monotone. [125] provided a comprehensive review of the use of the gamma process in maintenance

modeling. However, none of the models described here considered the effects of the component’s

operating environment.

The literature pertaining to modeling the degradation of components operating under time-

varying environments can be divided into two groups. The first group of papers are based on the

proportional hazard model (PHM) that was first introduced by [30]. Due to its generality and flex-

ibility, the PHM has been widely utilized to relate the hazard function to environmental conditions

(cf. [57, 7, 80]). By contrast, the second group of papers focuses on modeling the degradation

process or its manifestations. These processes are usually characterized using Brownian motion,

general Markov processes, or random coefficients models to characterize degradation measures or

signals (cf. [37], [48], and [62]). [116] has provided a comprehensive review of recent papers that

estimate the RLD of components operating in time-varying environments.
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In the first group of models that use PHMs to incorporate the effects of environmental condi-

tions, some researchers considered the environmental condition to be deterministic and modeled

its effects as a time-varying covariate with a pre-specified functional form. For example, [93] fo-

cused on a reliability model operating in a deterministic environment in which the hazard rate was a

quadratic time-dependent function of the environment. Along these lines, [45] investigated dynamic

operational conditions in which the hazard function is piecewise exponential. More generally, [103]

analyzed a repairable systems’s failure behavior using additive hazard models. Other extensions

and applications of PHMs in deterministic environments can be found in [75], [126], [119], [82],

and [145]. These models assume that the evolution of the covariate (environmental) condition is

known – an assumption that can be rather restrictive. To account for scenarios in which the future

environment is assumed to evolve stochastically, some PHMs assume the environmental covariate

is driven by a Markov process. For example, [7] presented a PHM with a Markovian covariate

and applied an approximation method to estimate the failure time distribution and represented the

resulting expression in a complex integral form. Computational issues associated with this problem

were further investigated by [6] who proposed a general numerical method to approximate the fail-

ure time distribution. Similar approximation techniques were applied in [49], in which the authors

used a hidden Markov model to characterize the unobservable degradation status. Recently, [147]

discussed condition-based inspection policies for systems subject to random shocks. The amplitude

of these shocks are driven by a Markov process that characterizes the environmental conditions.

The second group of literature focuses on modeling the degradation process or its manifesta-

tions, i.e., degradation signals ([47]). These processes are usually characterized using stochastic

processes such as the Wiener process, the gamma processes or general Lévy processes to model

degradation measures and signals. A major advantage of this approach is that the covariates can be

directly related to the environmental/operational conditions. For example, [37] applied Brownian

motion with a stress-dependent drift to accelerated life test experiments and developed the failure

time distribution. The authors proposed a time-scale transformation that converts non-stationary

Brownian motion to a stationary Wiener process to obtain a closed-form expression for the RLD.

The same transformation was applied in [137]. [48] extended the model in [37] to include the ef-

fects of shocks on the signal amplitude at environment transition epochs. These types of models
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consider scenarios in which the environmental profile is deterministic and have been widely used in

accelerated life testing (see [81] and [123]) and biomedical engineering (see [118], [75], and [73]).

Researchers have also developed failure models for components operating in random environ-

ments. Two types of environmental effects on the degradation process have been considered: (1)

random shocks that increase or decrease the degradation instantaneously, and (2) changes in the

degradation rate. The first model to consider a system subject to random shocks was proposed by

[40] who assumed shocks arrive according to a Poisson process. This model was later extended by

[2] and [42] to optimal inspection and maintenance problems. Similarly, [78] examined the lifetime

distribution of a system under dynamic stress. The system stress was also modeled as a Poisson

process whose time-varying rate parameter is driven by a shot-noise process. More generally, [56]

investigated the failure of a system under environmental conditions that evolves as a Markov renewal

shock process. A common theme among these works is that the environment is primarily modeled

as a shock process, but the impact of the environment on the degradation rate is not considered.

Other researchers have investigated the effects of environmental conditions on the degradation rate

using general Markov processes, whose properties and applications were discussed in [28]. [29]

presented a model in which the environment is modeled as a Markov process and the degradation

evolves according to an increasing Lévy process. The resulting degradation process was expressed

as an additive functional of the environment. [62] examined a similar problem wherein the system

degrades linearly at a rate that depends on the state of the random environment. He derived double

Laplace transform expressions for the distribution of the first passage time to a fixed threshold. [64]

extended the model in [62] to include homogeneous Poisson shocks, each of which induces a ran-

dom amount of damage to the component. In [65], a model with Markov-modulated degradation

rates and Poisson shock intensities was studied. Both transient and asymptotic reliability indices

were obtained therein. However, these papers did not account for the possibility of shocks that may

occur at environment transition epochs.

The models presented in Chapter 4 belong to the second group of models that focus on character-

izing the degradation process, or an associated signal of degradation, in dynamic environments. Our

work is unique and distinguished from existing models in at least two aspects. First, unlike degra-

dation models that focus on estimating the lifetime of a population of components (cf. [37]), our

19



primary aim is to estimate the RLD of an individual, fielded component by incorporating its unique

degradation signal. As a result, the estimated RLD exploits not only prior information, but also the

future environmental profile. Second, unlike typical random shock models (cf. [64]), our approach

accounts for the reality that environment transitions may induce upward or downward jumps in the

amplitude of the degradation signal, depending on the nature of the changes. In other words, our

method accounts for the scenario when shocks in degradation signals occur at environment transi-

tion epochs, instead of randomly. As a result, shock models presented in [64, 65] can be considered

as special cases of our proposed degradation model with randomly evolving environmental profiles.

2.3 Reliability Estimation for Systems

The lifetime distributions of systems with independent components have been studied extensively.

We classify these approaches into two categories: qualitative methods and quantitative methods.

The qualitative methods include Fault Tree Analysis (FTA), Failure Mode and Effects Criticality

Analysis (FMEA and FMECA), and other techniques. These methods have straightforward en-

gineering interpretations, a review of which can be found in [23] and [77]. On the other hand,

quantitative models assume that the state of the system can be represented as a function of the state

of its components (cf. [22, 10, 54, 53, 142]). Within this category of models, some researchers have

utilized dynamic Markov models and semi-Markov models to characterize the evolution of system

states (cf. [3, 52, 90, 142, 27]). With the aid of the mathematical tools of Markov processes, the

transitions of the states of the system can be estimated in closed-form expressions. A comprehen-

sive review of many modeling techniques of multi-state reliability can be found in [83]. A major

advantage of models with independent components is that they result in mathematically tractable

expressions of system reliability. This feature has been utilized by many researchers to evaluate the

reliability of large and complex system via various methods, some of which are summarized in [55].

These methods include minimal cut sets approximation ([58]), probability network ([67]), Monte

Carlo simulation ([9]), and other approaches. However, it has been pointed out that the indepen-

dence assumption among components may not be realistic in many industrial applications and may

lead to errors in estimating the lifetimes of components/systems (cf. [120, 88]).
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With regard to the dependence among components, we limit our discussion to the statistical de-

pendence of component lifetimes instead of the economical dependence in maintenance activities,

as described in [121]. [68] partitioned the models that account for component interactions into two

groups: (1) shock models and (2) load-share models. Shock models focus on investigating the joint

multivariate distributions of component lifetimes as failures occur. The Marshall-Olkin multivariate

exponential distribution, presented by [86], is a typical example of this approach. However, [52]

argued that this approach is not realistic when the system failures are affected by their use and the

amount of load they experience. To model the component interaction in this scenario, researchers

developed load-share models, in which the failure of one component changes the failure rates of

surviving components. The majority of current research in system reliability with component in-

teractions focus on investigating and generalizing load-share models. The pioneering paper by [44]

characterizes the lifetime of a two-component system using a bivariate exponential distribution,

which was extended by [107], [112], [119] and others.

Different from the classification by [68], [91] provided another classification for multi-component

models with component dependence from the perspective of maintenance activities, which identi-

fies three types of failure interactions for a two-component system: Type I interaction assumes that

the failure of one component induces failure of other components, i.e., there are two types of failure

modes, natural and induced (cf. [109, 114]); Type II interaction considers two components, where

the failure of the first component can possibly induce failure of the second component, however,

failure of the second only induces shocks (typically modeled as a non-homogeneous Poisson pro-

cess) in the first (cf. [11, 146]); Type III interaction assumes that the failure of one component

affects the failure rate of the others. Other research efforts in this class of literature include [4],

[110], [36], and [119]. One major limitation of this class of approaches is that they are restricted

to the scenario, in which only the failure event triggers component interactions. This assumption

might not be realistic for characterizing the interactions among the degradation processes of system

component and estimating their residual life distributions.

Unlike the previous models, many research efforts are dedicated to examining inter-dependent

multivariate degradation data that are observed before failure occurs. [132] provided a probability

framework for modeling the reliability of a system with inter-dependent components by assuming a
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multivariate normal distribution of component degradation processes. The interdependency among

components are captured by the covariance matrix of multivariate degradation measures. This model

was extended in [79], which considered the effects of common environments on dependency among

components. Different from this research line, which modeled component dependency using the co-

variance of degradation measure, our approach focuses on the amplitude of one component affects

the degradation rates of other components. Other methods that investigated the modeling of inter-

dependent degradation processes can be classified into two subgroups: Multi-Dimensional Time

Series Models provide an intuitive tool to fit multivariate degradation data (cf. [85], [141]). The de-

pendency among components are captured by a transition matrix. However, this approach relies on

using Kalman filters to predict the future transitions of component degradation processes. Kalman

Filters are known to perform poorly with high dimensional data, as noted by [50]. Techniques

that utilize Copulas have also been applied to model multiple competing risks in reliability. The

advantage of the copula method is that, the degradation process of each component can be mod-

eled independently using various stochastic processes, such as the Wiener process (cf. [134]), the

Gamma process (cf. [148], [98]), and the shock process (cf. [134]). The interdependency among in-

dividual degradation processes is subsequently modeled by a given copula function. [108] provided

an insightful summary for using various types of copulas. Although the method of copula has the

flexibility of synthesizing individual degradation processes, the correlation between individual pro-

cesses are completely defined by the given copula function, instead of the actual physical conditions

of individual components.

The model presented in Chapter 5 generalizes the failure-dependent models, which only investi-

gate the dependence on the failure events in multi-component systems. Specifically, we examine the

interactions among the degradation processes of inter-connected components. Our work is unique

and distinguished from existing models in that no previous papers have investigated the RLDs of

the system and its components with interactive degradation processes to the best of our knowledge.

Moreover, we will prove that our proposed degradation framework include the three types of failure

interactions, proposed by [91], as special cases. In addition, unlike conventional reliability models

that focus on estimating lifetime distributions of a population of similar systems, our primary aim

is to estimate the RLD of a fielded system by incorporating its unique degradation signals. That is,
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by observing the evolution of degradation signals, the RLDs of the system and its components can

be updated in real time; therefore, the estimated RLDs exploit not only prior information, but also

the real-time interactions among inter-connected components.

Chapter 6 models the degradation signals of system components using a system of stochastic

differential equations (SDEs), the coefficient matrix of which captures the interactions among the

component degradation signals. By solving this SDE system, we can estimate the future evolution

of degradation signals as well as their interactions, and eventually estimate the component residual

life distributions. Although the SDE model is widely used in various applications including eco-

nomics, finance, and actuarial science, its application to model independent degradation processes

in reliability are few. [140] proposed an SDE model to capture the correlation between degradation

characteristics with random stresses. The authors developed the estimation of component lifetime

distributions by assuming a full rank coefficient matrix, which may not be practical in many real

world applications. We propose a more general SDE model by relaxing the condition of the coeffi-

cient matrix, and derive a closed-form expression for the residual life distributions of components.

In addition, unlike conventional reliability approaches that focus on estimating lifetime distributions

of a population of similar systems, our primary objective is to estimate the RLDs of components in

a fielded system by incorporating its unique degradation signals. That is, by observing the evolution

of degradation signals, component interactions are determined by the actual physical conditions of

components, such as component degradation and replacement. Hence, the RLDs of components

can be updated in real time; therefore, the estimated RLDs exploit not only prior information, but

also the real-time interactions among interconnected components.
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CHAPTER III

ESTIMATING THE RLD OF A COMPONENT USING A FIRST-PASSAGE-TIME

APPROACH
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This chapter generalizes the models by [46] and [47], in which the authors used an approxima-

tion method to predict the RLD and pointed out that the prediction accuracy would be improved

if the first-passage-time of degradation process was utilized to estimate the failure time. A recent

paper in this area is [133], which utilized Wiener processes with random effects to compute the

residual life distribution. The most significant difference between our work and [133] is that we

consider the failure threshold as an absorbing barrier of the degradation process whereas in [133]

the failure threshold was considered as a crossing boundary. Our model implies an important inher-

ent constraint that the failure time is always greater than the latest observation epoch. Since all the

degradation observations occur at discrete time epochs in both papers, our model ensures that the

degradation process will not cross the failure threshold between two discrete observation epochs.

By contrast, the model in [133] included degradation processes which crossed the failure threshold

between the observation times of degradation signals. Last but not least, we restrict our choices of

the prior distribution for the degradation rate among those which take only positive values (such

as Gamma, Weibull, lognormal, etc.) because the rate of degradation is never negative in reality.

In [133], the author assumes a normal distribution for the drift rate. As a result, the degradation

processes of [133] may drift away from the failure threshold, which implies the component would

never fail.

The model development, evaluation, and validation are discussed in the following sections.

Sections 3.1 and 3.2 discusses the degradation modeling framework with a detailed development

of a base case linear degradation model and the corresponding estimation of the RLD. In Section

3.3, we evaluate the performance of our degradation model using simulated degradation signals.

In Section 3.4, the model is validated using real-world vibration-based degradation signals from a

rotating machinery application.

3.1 Degradation Modeling

Unique to our work, we model the degradation signal as a stochastic process {S (t), t > 0}with an ab-

sorbing barrier D, where D is the failure threshold and S (t) is the amplitude/level of the degradation

signal at time t. The failure threshold D is assumed to be a constant and can be determined using

engineering knowledge or defined based on industrial standards, such as ISO 2732 for machinery
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vibration. We model the failure threshold D as an absorbing barrier of the degradation signal S (t).

As a result, the degradation signal S (t) exists only before S (t) reaches the failure threshold D for

the first time. Since the degradation signals are monitored at discrete epochs in most applications,

a degradation model without the absorbing barrier may include the degradation signals that cross

the failure threshold between discrete observation epochs when estimating model parameters using

signal observations. Different from these type of models such as [133], our model focuses on the

stochastic processes that remain below the failure threshold by the latest observation epoch.

Before the failure, we assume that the degradation signal S (t) is represented as follows:

S (t) = H(t; κ, θ) + B(t) (3.1.1)

where H(·) represents the parametric functional form of the model (for example, linear, exponen-

tial, polynomial and others), θ is a deterministic coefficient (parameter) that captures degradation

characteristics common across all units of a population, and κ is a stochastic parameter that captures

unit-to-unit variability in the degradation rate. In addition, signal transients due to randomness in

the degradation process itself are captured by B(t), which is assumed to be a Brownian motion with

B(t) ∼ N(0, σ2t). To model the random effects across units, we assume that the coefficient κ and the

error variance σ2 are random variables with the probability density function denoted by π(κ, σ2).

The primary objective of this work is to provide a framework for online updating the RLD of

the component based on discrete observations of the signal process S (t) using a first-passage-time

approach. We utilize real-time degradation signals observed from components that are operating

in the field to update the coefficients of the degradation model in a Bayesian manner. The updated

degradation model is in turn used to compute an updated RLD for the each component based on its

latest degradation state. Specifically, in-situ degradation signals communicated from a fielded com-

ponent are used to update the distribution of κ and σ2. The updated model is then used to estimate

the corresponding RLD of the component. Subsequent signal observations are used to revise the

model and continuously update the RLD. Suppose that the degradation signal is monitored at times

t0, t1, . . . , tk such that 0 = t0 < t1 < . . . < tk, and let s(ti) denote the observed signal at observation

time ti. We store the set of observations in a vector sk ∈ Rk+1, where sk = (s(0), s(t1), . . . , s(tk))′.

The component’s lifetime corresponds to the first time the degradation signal {S (t) : t ≥ 0} crosses
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the failure threshold D. Given the model parameters κ and σ2, the distribution of a component’s

lifetime, denoted byTD, is written as :

P(TD > t|κ, σ2) = P(max
0<r<t

S (r) < D|κ, σ2) = P(max
0<v<t

H(v; κ, θ) + B(v) < D|κ, σ2) (3.1.2)

Therefore, the unconditional distribution of TD can be expressed as:

P(TD > t) =
"

κ,σ2
P(max

0<r<t
H(r; κ, θ) + B(r) < D|κ, σ2)π(κ, σ2) dκdσ2 (3.1.3)

Furthermore, let Rk denote the remaining time needed for the signal to first reach the threshold D.

Our aim is to estimate the distribution of Rk namely

P(Rk ≤ t − tk|sk), t > tk.

Based on our model, the latest observation epoch tk implies an inherent condition that the

stochastic process S (t) does not cross its absorbing barrier by time tk. More formally, we denote the

condition that S (t) does not cross the failure threshold D during the time interval [t0, tk] by A[t0,tk].

Next, let ν(κ, σ2|sk, A[t0,tk]) be the posterior distribution of (κ, σ2). We compute ν(κ, σ2|sk, A[t0,tk]) as

follows :

ν(κ, σ2|sk, A[t0,tk]) =
π(κ, σ2) f (κ, σ2)|sk, A[t0,tk]!

κ,σ2 π(κ, σ2) f (κ, σ2|sk, A[t0,tk]) dκdσ2
(3.1.4)

where π(κ, σ2) is the prior distribution of (κ, σ2), and f (κ, σ2|sk, A[t0,tk]) is the likelihood function.

The likelihood function does not only depends on the monitored signals sk = (s(0), s(t1), . . . , s(tk))′

but also A[t0,tk]. As a result, our estimates of (κ, σ2) are only based on the degradation signals of

surviving components whose amplitudes are completely below the failure threshold. In other words,

we exclude from our consideration the stochastic processes that cross the failure threshold between

observation epochs. Next, we define Rk as the residual life of the component evaluated at time tk.

The updated RLD of the component can be estimated using the following expression:

P(Rk > t|sk, A[t0,tk]) =
"

(κ,σ2)
ν(κ, σ2|sk, A[t0,tk])P(Rk > t|κ, σ2) dκdσ2

To demonstrate our framework, we consider a base case degradation model with an exponential

functional form for H(·) in Section 3.2. We will discuss a Bayesian updating framework for updating

the stochastic parameters of the degradation model using real-time degradation signals. We will
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examine two scenarios : (1) a first case where a sample of historical degradation signals are available

and used to estimate the distribution of the stochastic coefficients of the model and (2) a second case

where there is no historical data or expert knowledge available.

3.2 Linear Degradation Model : a Base Case Model

In this section, we demonstrate our proposed framework in Section 3.1 by assuming that the func-

tional H(·) takes a linear form H(t; κ, θ) = κt. As a result, the degradation signal with failure

threshold D is modeled as :

S (t) = κt + B(t) (3.2.1)

where B(t) is assumed to evolve as a Brownian motion with mean 0 and variance σ2t. κ and σ2 have

a prior distribution with the probability density function π(κ, σ2). Given κ and σ2, the degradation

signal evolves as a Brownian motion with positive drift κ. The resulting distribution of lifetime TD

given κ and σ2 follows an inverse-Gaussian distribution :

P(TD > t|κ, σ2) = 1 − IG(t; µ0, λ0), (3.2.2)

and the unconditional distribution of TD is given as:

P(TD > t) =
"

(κ,σ2)
(1 − IG(t; µ0, λ0))π(κ, σ2) dκ dσ2 (3.2.3)

where IG(.; µ, λ) is the cdf of the inverse Gaussian distribution with parameters µ, λ and

µ0 =
D
κ
, λ0 =

D2

σ2 (3.2.4)

At time tk, the posterior distribution of (κ, σ2) given the signals sk = (s(t0), . . . , s(tk)) is ex-

pressed as

ν(κ, σ2|sk, A[t0,tk]) =
π(κ, σ2) f (κ, σ2|sk, A[t0,tk])∫

κ,σ2 π(κ, σ2) f (κ, σ2|sk, A[t0,tk]) dκdσ2
(3.2.5)

where π(κ, σ2) is the prior distribution of (κ, σ2), and f (κ, σ2|sk, A[t0,tk]) is the likelihood function.

The next theorem gives the expression of the likelihood function.
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Theorem 3.2.1. For the degradation model, as described by Equation (3.2.1), the likelihood func-

tion f (κ, σ2|sk, A[t0,tk]) given the observations of degradation signals sk is expressed as follows

f (κ, σ2|sk, A[t0,tk])

=

(
1

√
2πσ2∆t

)k k∏
j=1

ϕ

(
s(t j) − s(t j−1) − κ∆t

√
σ2∆t

) [
1 − exp

(
−2

(D − s(t j−1))(D − s(t j))
σ2∆t

)]
(3.2.6)

Proof. We denote by f̃ (sk, A[t0,tk]|κ, σ2) the joint probability density function of (sk, A[t0,tk]) given

parameters (κ, σ2). In this case,

f̃ (sk, A[t0,tk]|κ, σ2) = f (κ, σ2|sk, A[t0,tk]).

Let yi = s(ti) − s(ti−1), i = 1, 2, . . . , and A[ti,t j] represents the event that the degradation signal

does not cross the failure threshold, D, within the interval [ti, t j]. We decompose the expression of

f̃ (κ, σ2|sk, A[t0,tk]) to the product of likelihood functions with only one observation given the prior

information. That is, f̃ (yi, Ati−1,ti |si−1, A[t0,ti−1]).

f̃ (κ, σ2|sk, A[t0,tk])

= f̃ (y1, A[t0,t1]|κ, σ2) f̃ (y2, A[t1,t2]|s1, A[t0,t1], κ, σ
2) . . . f̃ (yk, A[tk−1,tk]|sk−1, A[t0,tk−1], κ, σ

2)

=

k∏
i=1

f̃ (yi, A[ti−1,ti]|si−1, A[t0,ti−1], κ, σ
2)

By the Markov property,

f̃ (yi, A[ti−1,ti]|si−1, A[t0,ti−1], κ, σ
2) = f̃ (yi, A[ti−1,ti]|s(t j−1), κ, σ2)

Thus,

f̃ (κ, σ2|sk, At0,tk )

=

k∏
i=1

f̃ (yi, A[ti−1,ti]|s(t j−1), κ, σ2)

=

(
1

√
2πσ2∆t

)k k∏
j=1

ϕ

(
y j − κ∆t
√
σ2∆t

) [
1 − exp

(
−2

(D − s(t j−1))(D − s(t j))
σ2∆t

)]
since

f̃ (y j, A[t j−1,t j]|s(t j−1), κ, σ2) =
1

√
2πσ2∆t

ϕ

(
y j − κ∆t
√
σ2∆t

) [
1 − exp

(
−2

(D − s(t j−1))(D − s(t j))
σ2(∆t)

)]
by [31], where ϕ(.) represents the pdf of standard normal distribution. �
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The next step is to use the posterior distribution of π(κ, σ2) to compute an updated distribution

of the component’s residual lifetime at time tk. The updated distribution of the residual lifetime Rk

is given as follows:

P(Rk > t|sk, A[t0,tk]) =
"

(κ,σ2)
ν(κ, σ2|sk, A[t0,tk])P(Rk > t|sk, κ, σ

2) dκdσ2 (3.2.7)

where P(Rk > t|sk, κ, σ
2) = (1 − IG(t; µk, λk)) with µk =

D−s(tk)
κ and λk =

(D−s(tk))2

σ2 .

Remark 3.2.1. An important distinction needs to be made here regarding the random variable

Rk and the standard residual life distribution. Assume for the moment that the distribution of TD

is known in advance. Then the residual life distribution is defined by P(TD > t + tk |TD > tk),

for t ≥ 0. However, for real applications computing the residual life distribution in this way is

problematic because (1) the true distribution of TD is not typically known in advance, and (2) it

does not exploit available information about the current condition of the component – information

that can drastically affect the estimate of the remaining useful lifetime of the component.

The calculation of expression (3.2.7) depends on our choice of the prior distribution π(κ, σ2).

We consider two scenarios for π(κ, σ2). The first case considers applications where historical degra-

dation data is available. The choice of prior distributions for the model parameters depends on

the historical dataset. Examples of such distributions include the Gamma distribution, the lognor-

mal distribution, the Weibull distribution and so on. We provide an illustrative example when the

prior distribution of κ follows a Gamma distribution and that of σ2 follows an inverse-Gamma dis-

tribution. We consider this pair of distributions because they provide the best fit for degradation

data that will be used later in our case study in Section 3.4. The second case considers situations

where historical degradation data is unavailable. For this case, we assume that κ and σ2 follow a

non-informative prior distribution.

3.2.1 Case 1: Informative Prior Distribution

This case focuses on applications which have historical degradation data, such as a sample of degra-

dation signals. The historical degradation data can be used to estimate the prior distribution of κ

and σ2. Unlike most of the existing literature that uses normal distributions, we assume that κ fol-

lows a Gamma distribution with parameters (k1, θ1). The Gamma distribution is a more reasonable
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choice for characterizing the degradation rate κ, since it ensures that the probability of negative

degradation rate is zero. That is, P(κ < 0) = 0. On the other hand, we assume that σ2 follows an

inverse-Gamma distribution with parameters (k2, θ2). The choice of an inverse-Gamma distribution

for σ2 is to ensure conjugacy with the likelihood function f (κ, σ2|sk, A[t0,tk]). Assuming that κ and

σ2 are independent, we express the prior distribution of (κ, σ2) as follows:

π(κ, σ2) =

κk1−1 exp(−κ/θ1)

Γ(k1)θk1
1

 (σ2)−(k2+1) exp(−θ2/σ
2)

θk2
2

Γ(k2)

 (3.2.8)

Given that we observed a sequence of degradation signals sk from a fielded component, the

posterior distribution of (κ, σ2) can be obtained by substituting (3.2.8) in expression (3.2.5):

ν(κ, σ2|sk, A[t0,tk])

=
hk(κ, σ2)κk1−1(σ2)−(k2+1+k/2) exp(− κ

θ1
− 1

σ2 (θ2 +

∑k
j=1(s(t j)−s(t j−1))2

2∆t ))∫
(κ,σ2) hk(κ, σ2)κk1−1(σ2)−(k2+1+k/2) exp(− κ

θ1
− 1

σ2 (θ2 +

∑k
j=1(s(t j)−s(t j−1))2

2∆t )) dκdσ2
(3.2.9)

where

hk(κ, σ2) =
k∏

j=1

[
1 − exp(−2

(D − s(t j−1))(D − s(t j))
σ2∆t

)
]

exp
(
κs(tk)
σ2 − κ

2tk
2σ2

)
By substituting (3.2.9) in expression (3.2.7), the updated RLD of the fielded component that is being

monitored can be written as:

P(Rk > t|sk, A[t0,tk])

=

∫
(κ,σ2)(1 − IG(t; µk, λk))hk(κ, σ2)κk1−1(σ2)−(k2+1+k/2) exp(− κ

θ1
) exp(− 1

σ2 (θ2 +

∑k
j=1(s(t j)−s(t j−1))2

2∆t )) dκdσ2∫
(κ,σ2) hk(κ, σ2)κk1−1(σ2)−(k2+1+k/2) exp(− κ

θ1
) exp(− 1

σ2 (θ2 +

∑k
j=1(s(t j)−s(t j−1))2

2∆t )) dκdσ2

=
E(κ,σ̃2)[hk(κ, σ̃2)(1 − IG(t; µk, λ̃k))]

E(κ,σ̃2)[hk(κ, σ̃2)]
(3.2.10)

where σ̃2 ∼ inv-Γ(k3, θ3) with k3 = k2 + k/2 and θ3 = θ2 +

∑k
j=1(s(t j)−s(t j−1))2

2∆t ; and λ̃k =
(D−s(tk))2

σ̃2 .

To compute expression (3.2.10), we propose a Monte-Carlo simulation approach to estimate the

involved expectations. The sequence of steps involved in this procedure is outlined below :

1. Select a sufficiently large number of realizations M, say M = 5, 000;

2. Simulate M realizations of κ and σ̃2 from the distributions : σ̃2 ∼ inv-Γ(k3, θ3) and κ ∼

Γ(k1, θ1);
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3. Denote by κi and σ̃2
i the ith realization of κ and σ̃2 and compute

hk(κi, σ̃
2
i )(1 − IG(t; µk, λ̃k)) and h(κi, σ̃

2
i );

4. Estimate (3.2.10) using the following expression :∑M
i=1 hk(κi, σ̃

2
i )(1 − IG(t; µk, λ̃k))/M∑M

i=1 hk(κi, σ̃
2
i )/M

.

Furthermore, we utilize expression (3.2.10) to obtain the mean and the confidence intervals of

Rk. The mean estimate of Rk is expressed as :

E(Rk|sk, A[t0,tk]) =
E(κ,σ̃2)[hk(κ, σ̃2)µk]

E(κ,σ̃2)[hk(κ, σ̃2)]
(3.2.11)

For any 0 < α < 1, assume that tα satisfies

P(Rk > tα|sk, A[t0,tk]) = α

we can also use formula (3.2.10) to compute the tα/2 and t1−α/2 numerically. The 100%(1 − α)

confidence interval is computed as (t1−α/2, tα/2).

3.2.2 Case 2: Non-informative Prior Distribution

The second case considers applications where no historical data or expert knowledge is available.

Thus, it is not possible to estimate and obtain an informative prior distribution for κ and σ2. We

assume that (κ, σ2) follow a non-informative prior distribution:

π(κ, σ2) =
1
σ2 1{σ2>0} (3.2.12)

The posterior distribution of (κ, σ2) given that we observed a sequence of degradation signals

sk from a fielded component can be obtained by substituting (3.2.12) in expression (3.2.5):

ν(κ, σ2|sk, A[t0,tk])

=

gk(σ2)
[
(σ2)−

k+1
2 exp

(
−

∑k
j=1((s(t j)−s(t j−1))−ȳ)2

2σ2∆t

)] [
1√
σ2

exp
(
− k(κ∆t−ȳ)2

2σ2∆t

)]
∫

(κ,σ2) gk(σ2)
[
(σ2)−

k+1
2 exp

(
−

∑k
j=1((s(t j)−s(t j−1))−ȳ)2

2σ2∆t

)] [
1√
σ2

exp
(
− k(κ∆t−ȳ)2

2σ2∆t

)]
dκdσ2

(3.2.13)
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where

gk(σ2) =
k∏

j=1

[
1 − exp(−2

(D − s(t j−1))(D − s(t j))
σ2∆t

)
]

and ȳ =
∑k

i=1(s(ti) − s(ti−1))
k

By substituting (3.2.13) in expression (3.2.7), the updated RLD of the fielded component that is

being monitored can be written as:

P(Rk > t|sk, A[t0,tk])

=

∫
(κ,σ2)(1 − IG(t; µk, λk))gk(σ2)

[
(σ2)−

k+1
2 exp

(
−

∑k
j=1((s(t j)−s(t j−1))−ȳ)2

2σ2∆t

)] [
1√
σ2

exp
(
− k(κ∆t−ȳ)2

2σ2∆t

)]
dκdσ2

∫
(κ,σ2) gk(σ2)

[
(σ2)−

k+1
2 exp

(
−

∑k
j=1((s(t j)−s(t j−1))−ȳ)2

2σ2∆t

)] [
1√
σ2

exp
(
− k(κ∆t−ȳ)2

2σ2∆t

)]
dκdσ2

=
E(κ̃,σ̃2)[gk(κ̃, σ̃2)(1 − IG(t; µ̃k, λ̃k))]

E(σ̃2)[gk(σ̃2)]
(3.2.14)

where µ̃k =
D−s(tk)

κ̃ , λ̃k =
(D−s(tk))2

σ̃2 , σ̃2 ∼ inv-Γ(k4, θ4) and κ̃|σ̃2 ∼ N(k5, θ5) with

k4 =
k − 1

2
, θ4 =

∑k
j=1((s(t j) − s(t j−1)) − ȳ)2

2∆t
, k5 =

ȳ
∆t
, θ5 =

σ2

k∆t
;

Expression (3.2.14) can be estimated using the same simulation technique we proposed in Sec-

tion 3.2.1. Similarly, the mean estimate of the component’s residual lifetime is expressed as follows

:

E(Rk|sk, A[t0,tk]) =
E(κ̃,σ̃2)[gk(κ̃, σ̃2)µ̃k]

E(σ̃2)[gk(σ̃2)]
(3.2.15)

For any 0 < α < 1, assume that tα satisfies

P(Rk > tα|sk, A[t0,tk]) = α

we can also use formula (3.2.10) to compute the tα/2 and t1−α/2 numerically. The 100%(1 − α)

confidence interval is computed as (t1−α/2, tα/2).

The performance of our base case degradation model will be evaluated for the informative and

non-informative cases using two separate studies. The first is a study involving simulated degra-

dation signals while the second uses vibration-based degradation signals from a real-world rotating

machinery application.
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3.3 Analyzing Degradation Models Using Simulated Data

The objective of using simulated degradation signals is to study the effect of signal characteristics

on the performance of our degradation modeling framework. Specifically, we investigate the effect

of signal-to-noise ratio on the performance of the base case exponential degradation model under

the informative and the non-informative assumptions for the prior distribution of κ and σ2. For

each scenario, we evaluate the accuracy of predicting the residual lifetime and investigate the effect

of two levels of signal-to-noise ratios. Two groups of degradation signals, Groups H and L, are

simulated using equation (3.2.1): S (ti) = κti + B(ti). Each group of signals corresponds to a specific

signal-to-noise ratio. Degradation signals in Group H have a relatively high signal-to-noise ratio,

whereas signals in Group L have a lower ratio. For each group, degradation signals are simulated

using random values of κ and σ2 that are generated from pre-specified distributions (shown below).

• Degradation signals in Group H are simulated using the following distribution for κ and σ2:

κ ∼ Γ(100, 0.01) and σ2 ∼inv-Γ(102, 101), thus,

E[κ] = 1, var[κ] = 0.01,E[σ2] = 1, var[σ2] = 0.01,
E[κ]√
E[σ2]

= 1 (3.3.1)

• Degradation signals in Group L are simulated using the following distribution for κ and σ2:

κ ∼ Γ(100, 0.01) and σ2 ∼inv-Γ(104, 106), thus,

E[κ] = 1, var[κ] = 0.01,E[σ2] = 100, var[σ2] = 1,
E[κ]√
E[σ2]

= 0.1 (3.3.2)

where E[κ]√
E[σ2]

represents the signal-to-noise ratio.

For each signal group, we generate two types of degradation signals, “historical” and “valida-

tion”. “Historical” degradation signals simulate the existence of a historical database and are used

to estimate the prior distribution of (κ, σ2) for Case 1, using informative prior. A total of 200 “his-

torical” degradation signals are simulated until they reach a predetermined failure threshold: 100

signals using the settings of Group H and another 100 using the settings of Group L. Without loss

of generality, we define a failure threshold, D = 500. Figure 3.3.1 shows an example of the degra-

dation signals in each group. Note that the 200 “historical” degradation signals will only be used

to estimate the prior distribution for Case 1 and will not be used for Case 2, non-informative prior

distribution.
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Figure 3.3.1: Evolution of degradation signals with the Brownian motion residual term.

The second type of degradation signals is referred to as the “validation” degradation signals.

These signals are used to simulate real-time signals being communicated (for example, via em-

bedded sensors) from components that are operating in the field. They are generated in a similar

manner as their historical counterparts, i.e., using the same prior distributions for κ and σ2 as spec-

ified above. Assuming that the signal is being generated from a fielded component, each time a

signal observation is made, it is used to compute the posterior distribution of (κ, σ2) (using ex-

pressions (3.2.9) and (3.2.13)), and update the corresponding RLD (using expressions (3.2.10) and

(3.2.14)) A total of 200 “validation” degradation signals are simulated until they reach a predeter-

mined failure threshold (up to and including the time of failure). One hundred degradation signals

are simulated using the settings of Group H and another 100 using settings of Group L. For the sim-

ulation experiments, let Li denote the lifetime of the ith simulated path, and let L̂i be the estimated

lifetime (using our updating procedure). Then the prediction error (%) for the ith degradation signal

is given by

δi =
|Li − L̂i|

Li
× 100. (3.3.3)
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3.3.1 Model Performance Using Informative Prior Distribution

The “historical” degradation signals that have been generated earlier are used to estimate the pa-

rameters of the degradation model. We use the two-stage method proposed by [84] to estimate the

prior distribution, π(κ, σ2). First, we let S i(t) represent the degradation signal from component i

for i = 1, . . . , 100. The corresponding degradation model is expressed as S i(t) = κit + Bi(t), where

κi represents the degradation signal of component i, and Bi(t) the residual term of the degradation

signal from component i. We then define the term ri,m as follows:

ri,m =
si(tm) − si(tm−1)

∆t
= κi +

Bi(tm) − Bi(tm−1)
∆t

For the degradation signal from component i, ri,m’s are clearly i.i.d. with distribution,N(κi, σ
2
i /∆t).

Let (κ̂i, σ̂
2
i ) denote the maximum likelihood estimate of (κi, σ

2
i ). For i = 1, . . . , 100, we fit the result-

ing estimates, κ̂i and σ̂2
i to a Gamma and an inverse-Gamma distribution, respectively. This process

is performed for the two types of signal groups, Group H and Group L. The estimated distributions

are shown below.

• For group H,

κ̂ ∼ Γ(187.78, 7.91 × 10−3), σ̂2 ∼ Γ−1(153.25, 167.48) (3.3.4)

• For group L,

κ̂ ∼ Γ(204.80, 7.3 × 10−3), σ̂2 ∼ Γ−1(1.41 × 104, 1.59 × 106) (3.3.5)

Next, we use the “validation” degradation signals to emulate signals being communicated from

(hypothetical) fielded components. Each time a signal is observed, it is used to update π(κ, σ2) and

compute a corresponding RLD. To evaluate the performance of our model, we calculate an expected

residual lifetime, E[Rk], using Equation (3.2.11), and then a corresponding prediction error using

equation (3.3.3). Figure 3.3.2 presents the prediction error for each signal group, Group H with

signal-to-noise ratio =1, and Group L with signal-to-noise ratio =0.1. The x-axis represents the

degradation percentiles, where 1, 2, . . . , 9 refers to the 10th, 20th, . . . , 90th percentile of lifetimes;

and the y-axis represents the prediction error evaluated at the corresponding degradation percentile.

Figure 3.3.2 demonstrates the performance of our model under degradation signals with differ-

ent levels of signal-to-noise ratio. In fact, one noticeable difference between the two plots is that the
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Figure 3.3.2: Prediction error of simulated signals using the informative prior distribution.

variance of the prediction error is relatively larger for signals with lower signal-to-noise ratio. How-

ever, in both cases, we notice that the variance of the prediction error decreases significantly with

degradation percentiles. We believe that this is due to updating the RLDs at progressive degradation

percentiles, which improves the prediction accuracy. Since we estimated the prior distribution from

the historical data set, there might be a slight bias in the mean of the prediction error due to the

difference between the estimated and the true values.

3.3.2 Model Performance Using Non-informative Prior Distribution

A similar approach is employed in evaluating the performance of the exponential degradation model

under this setting. Since the stochastic model parameters are assumed to follow a non-informative

prior distribution, we ignore the “historical” degradation signals because they are not used for any

estimation process. Only the 200 “validation” degradation signals (100 signals for each signal

group) are used to evaluate the performance of the model. Each signal observation is used to update

the prior distribution of (κ, σ2). An updated residual life distribution is evaluated and an expected

residual lifetime, E[Rk], is calculated using equation (3.2.15).

Figure 3.3.3 presents box plots of the prediction error for each type of signal group. The plots

show larger spread in the prediction error at earlier degradation percentiles (compared to Figure

3.3.2). This is most probably a result of using a non-informative prior distribution for (κ, σ2).
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Figure 3.3.3: Prediction error of simulated signals using the non-informative prior distribuiton.

However, we notice that as more degradation signals are observed, a higher prediction accuracy

can be attained. This is evident by observing that the width of the box plot becomes smaller as

more degradation percentiles increase and more degradation signals are observed. Although the

prediction accuracy of the degradation model when using a non-informative prior distribution is

slightly less than the informative case, it is still comparable. In other words, the RLD of a partially

degraded component can be predicted reasonably accurately even when prior/expert knowledge is

unavailable.

3.4 Case Study: Implementation of Bearing Data

In this section, we present a case study with the implementation of ball bearings. We first discuss

the vibration analysis that develops the degradation signals using the raw data from the accelerom-

eters. Subsequently, we propose a procedure that examines the model assumption and estimates the

parameters. Eventually, we compare our model with the benchmark model proposed in [47].

3.4.1 Experimental Setup

This case study considers a rotating machinery application. Vibration-based degradation signals

are used to predict and update the RLD of partially degraded rolling element bearings using our
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proposed first-passage time approach. Bearings are a crucial component of any rotating machin-

ery. Bearing degradation typically begins with the formation of subsurface micro-cracks inside the

raceway material. The crack propagates towards the surface of the raceway. Once cracks reach

the surface, they dislodge pieces of the raceway material causing small pits on the surface, also

known as spalls. Spalling increases the friction between the rolling elements (usually steel balls)

and bearing raceways, which is typically accompanied by increased temperature. More importantly,

spall formation and propagation along the surface of the raceway results in increased levels of vi-

bration. The passage of the rolling elements over these spalls creates repetitive impacts that result

in the excitation of fault-specific vibration frequencies related to the bearing defect. These defective

frequencies are usually a function of the bearing’s rotational speed, number of rolling elements,

bearing dimensions, and geometry as discussed in [51].

An experimental setup is used to perform accelerated degradation tests on a sample of thrust

ball bearings. We ran each test bearing under constant operating conditions, a load of 200 lbs and a

rotational speed of 2200 rpm. Accelerometers attached to the testing chamber are used to monitor

and acquire vibration signals. The time-domain signals, acquired every 2 minutes, are processed

into the corresponding vibration frequency spectrum (using a FFT) with the aid of Labview soft-

ware. The average of the amplitudes of the bearing’s defective frequency (ball-passing frequency)

and its first six harmonics were used to develop a vibration-based degradation signal. Furthermore,

we define bearing failure based on the root mean square (RMS) value of the overall vibration ac-

celeration. According to industrial standards for machinery vibration, ISO 2372, 2.0-2.2 Gs (G is

a measure of acceleration) represents a “vibration-based danger level” for applications involving

general-purpose mid-size machinery (our setup falls in this category of machines). This level was

used to identify a corresponding failure threshold for our vibration-based degradation signal. Based

on the signal observations, the failure threshold was identified as 0.025 Vrms (Root Mean Square

Volts). The same degradation signals were used in [47] and [46].

3.4.2 Model Selection

We conducted two groups of tests: a set of 25 experiments for generating a historical data set,

designated as ID 1 to 25 and a set of 25 online validation experiments, designated as ID 26 to 50

39



(as shown in Table 3.4.1). In particular, we use the degradation signals of bearings 1-25 to examine

the assumption of our degradation model and estimate the prior distributions of κ and σ2. We first

examine the model assumption that the degradation signal from each bearing evolves as Brownian

motion with a positive drift. To achieve this, we use the fact that Brownian motion has independent

and identical normal increments. That is, for the degradation signals of each bearing, s(ti)− s(ti−1)’s

are independent random variables that followN(κ(ti−ti−1), σ2(ti−ti−1)). We apply the Shapiro-Wilk

test to s(ti)− s(ti−1)’s for each bearing and present the resulting p-values in Table 3.4.2. We observe

that the resulting p-values range from 0.68 to 0.99. Hence, we do not reject the model assumption

of Brownian motion.

Table 3.4.1: Lifetimes of bearing 26 to 50 with unit=2 minutes.

Bearing Lifetime Bearing Lifetime

26 216 39 99

27 98 40 136

28 165 41 83

29 152 42 156

30 227 43 190

31 77 44 195

32 154 45 133

33 148 46 116

34 128 47 98

35 217 48 197

36 128 49 116

37 277 50 141

38 100

Subsequently, we apply the two-stage method, as in Section 3.3.1, to estimate κ and σ2 for each

bearing and use the estimated the values of κ and σ2 to select the prior distributions. We investigate

the goodness-of-fit for the Gamma distribution, the Weibull distribution, and the lognormal distri-

bution for the purpose of illustration. We apply the Anderson-Darling test to the estimated values of
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Table 3.4.2: P-Values of the Shapiro-Wilk test for the model assumption.

Bearing P-Value Bearing P-Value

1 0.81 14 0.93

2 0.69 15 0.76

3 0.92 16 0.89

4 0.76 17 0.73

5 0.77 18 0.79

6 0.74 19 0.86

7 0.84 20 0.69

8 0.87 21 0.91

9 0.73 22 0.89

10 0.68 23 0.84

11 0.94 24 0.67

12 0.91 25 0.79

13 0.99



κ and σ2 from each bearing. Table 3.4.3 lists the resulting p-values for each choice of prior distri-

butions. We observe that the lognormal distribution and the Weibull distribution are not suitable for

(σ̂2)−1, since the corresponding p-values are very small. Hence, we select the Gamma distribution

as the prior distribution of (σ2)−1. Equivalently, we choose the inverse Gamma distribution as the

prior distribution of σ2. For the prior distribution of κ, we do not have strong evidence to reject the

lognormal distribution and the Weibull distribution, although the p-value of the Gamma distribution

is the highest. Hence, we will estimate and compare the RLD for these three prior distributions

of κ. Since the Gamma distribution and the inverse Gamma distribution have fitted the estimated

values of κ (p-value = 0.71) and (σ2)−1 (p-value = 0.83), respectively. Investigation of other prior

distributions, such as the log-logistic distribution and the two-parameter exponential distribution,

is not necessary. However, other choices of prior distributions should be considered if none of the

Gamma, Weibull, and lognormal distributions can fit the estimated values of κ and σ2.

Table 3.4.3: P-Values of the Anderson-Darling test for prior distributions.

Gamma Lognormal Weibull

κ̂ 0.71 0.37 0.45

(σ̂2)−1 0.83 0.02 0.01

Next, we validate our proposed approach using the degradation signals from the second group of

tests, bearing 26-50. We estimate the RLD using three possible prior distributions of κ: the Gamma

distribution, the Weibull distribution, and the lognormal distribution. Table 3.4.4 and Table 3.4.5

respectively present the estimates of the RLD at the 50th and 90th percentiles of each bearing’s

lifetime. The results are presented in the form of mean estimates and 95% confidence intervals. We

compute the prediction error using equation (3.3.3) as described in Section 3.3.1. The prediction

error is presented in Table 3.4.6. We observe that the Gamma prior distribution results in the highest

prediction accuracy, since its mean estimate of the lifetime is closest to the actual lifetime for almost

every bearing (as shown in Table 3.4.4 and Table 3.4.5).
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Table 3.4.4: Prediction of the residual life at the 50th percentile of lifetimes.

Gamma Lognormal Weibull

Bearing Mean 95% CI Mean 95% CI Mean 95% CI

26 235.56 (213.42, 285.97) 244.38 (214.28, 303.04) 237.78 (214.09 , 281.06)

27 90.22 (81.74, 109.53) 84.91 (75.14, 105.29) 85.28 (77.86, 100.80)

28 174.80 (158.37, 212.21) 182.72 (161.71, 226.57) 188.36 (161.98, 222.65)

29 170.96 (148.84, 207.55) 200.94 (177.84, 249.17) 173.25 (158.18, 204.78)

30 202.95 (187.73, 240.50) 199.33 (176.41, 247.17) 196.82 (179.70, 232.64)

31 83.10 (75.87, 98.47) 93.34 (82.61, 115.74) 90.26 (75.41, 106.68 )

32 132.20 (122.29, 156.66) 110.88 (98.13, 137.49) 123.66 (112.90, 156.16)

33 136.16 (125.95, 161.35) 131.42 (116.31, 162.97) 134.03 (122.37, 158.42)

34 140.80 (128.24, 166.85) 160.72 (142.24, 199.29) 150.86 (137.74, 178.32)

35 189.26 (175.07, 224.27) 180.16 (159.45, 223.40) 190.67 (174.08, 225.37)

36 150.72 (137.91, 178.60) 171.01 (151.34, 212.05) 164.25 (149.96, 194.14)

37 253.76 (232.19, 300.71) 239.46 (211.93, 296.94) 237.78 (217.09, 281.05)

38 83.00 (75.95, 99.19) 69.20 (61.24, 85.81) 74.04 (67.60, 87.52)

39 112.77 (98.17, 133.63) 130.88 (115.83, 162.29) 121.87 (111.27, 144.05)

40 148.64 (134.22, 176.14) 165.70 (146.64, 205.46) 154.52 (134.07, 182.64)

41 71.23 (65.18, 84.41) 65.92 (58.34, 85.74) 67.39 (61.53, 87.66)

42 143.24 (131.06, 169.74) 130.14 (115.17, 161.37) 137.34 (125.39, 162.34)

43 167.70 (153.45, 198.72) 164.78 (145.83, 204.33) 171.89 (156.93, 203.17)

44 208.15 (190.46, 246.66) 221.41 (192.95, 274.55) 214.12 (195.49, 253.09)

45 144.28 (130.12, 170.97) 162.79 (144.07, 201.86) 158.11 (142.35, 186.89)

46 102.60 (93.88, 121.58) 97.64 (86.41, 121.07) 99.47 (90.81, 117.57)

47 107.40 (95.59, 127.27) 119.16 (105.46, 147.76) 112.69 (102.89, 133.20)

48 214.22 (194.01, 253.85) 228.71 (195.41, 283.60) 217.44 (198.52, 257.01)

49 101.64 (93.00, 120.44) 109.90 (97.26, 136.27) 104.26 (95.18, 123.23)

50 127.03 (116.23, 150.53) 119.44 (105.71, 148.11) 122.72 (112.04, 145.05)
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Table 3.4.5: Prediction of the residual life at the 90th percentile of lifetimes.

Gamma Lognormal Weibull

Bearing Mean 95% CI Mean 95% CI Mean 95% CI

26 224.64 (213.65, 243.36) 235.35 (222.53, 252.53) 229.13 (217.73, 247.46)

27 95.31 (89.49, 104.97) 91.96 (85.73, 98.67) 93.90 (88.05, 101.41)

28 159.95 (151.55, 174.14) 174.09 (164.08, 186.79) 162.52 (153.86, 175.52)

29 160.74 (150.31, 174.99) 170.58 (160.73, 183.02) 159.28 (150.75, 172.02)

30 218.49 (207.75, 236.78) 207.93 (196.37, 223.11) 214.06 (203.28, 231.18)

31 80.78 (75.54, 89.42) 84.94 (79.03, 91.13) 84.78 (79.30, 91.5)

32 142.30 (134.61, 155.26) 146.75 (138.00, 157.46) 136.30 (128.70, 147.19)

33 145.04 (137.24, 158.19) 141.37 (132.87, 151.68) 143.50 (135.61, 154.98)

34 139.20 (129.63, 151.94) 153.09 (144.05, 164.26) 145.02 (137.07, 156.62)

35 215.07 (204.46, 233.11) 194.27 (183.33, 208.44) 208.86 (198.29, 225.56)

36 135.68 (128.25, 148.17) 145.20 (136.52, 155.80) 139.67 (131.94, 150.84)

37 278.69 (265.54, 301.19) 268.39 (254.04, 287.97) 254.37 (241.93, 274.71)

38 94.50 (88.72, 104.11) 87.68 (81.65, 94.08) 91.64 (85.88, 98.97)

39 103.69 (97.54 , 113.95) 105.75 (98.89, 113.47) 103.65 (97.40, 111.94)

40 134.16 (126.79, 146.55) 151.28 (142.32, 162.32) 143.40 (135.52, 154.87)

41 79.06 (73.90, 87.59) 74.17 (68.76 , 79.58) 77.01 (71.85, 83.16)

42 157.81 (149.50, 171.85) 147.65 (138.86, 158.43) 153.55 (145.25, 165.83)

43 181.93 (172.65, 197.65) 171.91 (162.00, 184.46) 177.73 (168.43, 191.94)

44 193.29 (183.56, 209.81) 203.56 (192.20, 218.42) 197.60 (187.49, 213.40)

45 138.32 (130.79, 151.00) 144.92 (136.25, 155.49) 141.09 (133.30, 152.37)

46 113.65 (107.10, 124.60) 108.26 (101.28, 116.15) 117.39 (110.57, 126.77)

47 95.35 (89.54, 105.02) 104.46 (97.66, 112.08) 99.17 (93.10, 107.10)

48 201.81 (191.73, 218.93) 215.68 (203.76, 231.42) 206.46 (195.99, 222.98)

49 111.91 (105.43, 122.74) 105.36 (98.51, 113.04) 103.74 (97.48, 112.04)

50 141.01 (133.37, 153.87) 147.58 (138.79, 158.34) 142.89 (135.03, 154.32)



Table 3.4.6: Average prediction error at the 50th and 90th percentiles of lifetimes.

Gamma Weibull Lognormal

50th percentile 18.25% 20.75% 23.56%

90th percentile 3.01% 4.71% 6.21%
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Figure 3.4.1: Prediction Error of Bearings 26 to 50.

3.4.3 Benchmark Model

Based on our previous analysis, the degradation model where κ and σ2 follow the Gamma distribu-

tion and the inverse Gamma distribution respectively results in the highest accuracy of prediction.

Next, we compare the performance of this model with a benchmark degradation model, the degrada-

tion model presented in [47], where the RLD at time tk is evaluated using the following expression,

P(Rk < t|s(tk)) = P(S (tk + t) > D|s(tk)) (3.4.1)
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Note that expression (3.4.1) does not necessarily represent the distribution of the first time that the

degradation signal crosses the failure threshold. Consequently, the RLD calculated using this ex-

pression is an approximation. The approximation works well for degradation signals whose signal-

to-noise ratio is high, thus, it is limited only to applications that exhibit degradation signals that

have a high signal-to-noise ratio. Similar approximations have been widely presented in existing

literature, such as [84].

The benchmark model is applied to the validation bearings, bearings 26 to 50. We calculate

prediction error in a similar manner to that presented in the simulation study. The results are pre-

sented in the left plot of Figure 3.4.1. The prediction error calculated using our FPT approach are

also shown in the right plot of Figure 3.4.1. We note that our FPT approach provides a reasonably

accurate prediction of the residual life compared to the benchmark model. The benchmark method

performs relatively poorly due to the fact that the signal-to-noise ratio for the bearing degradation

signals is low, E(κ)
σ = 0.09.
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CHAPTER IV

DEGRADATION MODELING FOR REAL-TIME ESTIMATION OF RESIDUAL

LIFETIMES IN DYNAMIC ENVIRONMENTS

47



In this chapter, we develop a stochastic methodology for modeling degradation signals from

components functioning under dynamically-evolving environmental conditions. We utilize in-situ

sensor signals related to the degradation process, as well as the environmental conditions, to predict

and continuously update, in real-time, the distribution of a component’s residual lifetime. Our mod-

els assume that the real-time rate at which a system’s degradation signal increases (or decreases)

is affected by the severity of the current environmental or operational conditions. In addition, we

account for the reality that transitions in the environmental and operational conditions may induce

upward or downward jumps in the amplitude of the degradation signal, depending on the nature of

the changes. To estimate residual life distributions (RLDs), we consider two cases, both of which

take into consideration the future characteristics of the environmental conditions. In the first case,

we assume the component operates in a dynamic environment that transitions between distinct states

and follows a deterministic profile, (i.e., there is no uncertainty about how the environment transi-

tions in the future). This case is appropriate when the component experiences conditions that might

occur in a cyclic manner. As an example of such a scenario, consider the rotational speed and

thrust profiles that a jet engine experiences during the take-off, cruising, and landing cycles. The

second case also assumes dynamic environmental or operating conditions but allows for the future

environmental profile to be uncertain. Specifically, the transition times and dwell times in each

distinct environmental state are stochastic and characterized using a continuous-time Markov chain

model. This case may be appropriate for systems that are exposed to uncertain environments, such

as weather conditions. For example, the velocity of wind as it relates to the productivity of wind

turbines, or temperature and humidity changes as they relate to electronic components in aircraft

avionics systems. For both cases, we propose a stochastic model for characterizing the degradation

signal of the component and use this model to predict the residual lifetime by estimating the dis-

tribution of the first-passage time of the signal to a critical degradation threshold. Our approach is

unique in that it unites historical data of a population of similar components with real-time sensor

data that updates the residual life distribution dynamically.

The remainder of this chapter is organized as follows. Section 4.1 describes the first of our

models which assumes the environment or operating conditions evolve dynamically, but in a de-

terministic manner. Section 4.2 extends the model of Section 4.1 by allowing the environment to
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evolve in an uncertain manner. In Section 4.3, we describe a number of simulation studies to com-

pare the results of our models with other existing in the current literature. We also illustrate the

effectiveness of our models via a case study using real empirical data.

4.1 Degradation in a Deterministic, Dynamic Environment

In this section, we present the first of two degradation models and a procedure for estimating the

residual life distribution (RLD) of the component in real time via Bayesian updating. Here, we

assume that the environment is temporally dynamic but deterministic. This model forms the foun-

dation of the model of Section 4.2, which considers a dynamic, randomly-varying environment. We

begin with an elucidation of the notation and a few preliminaries.

For each t ≥ 0, let S (t) be the degradation signal at time t and let S (0) be the initial signal

observation. It is assumed that a population of identical components begins with the same initial

degradation signal. At any time t ≥ 0, the component’s environment can occupy one of the states

in a set S = {1, 2, . . . ,m}, m < ∞. Deciding the appropriate number of environment states m, and a

meaningful ordering of the states in S, are important aspects of our modeling framework discussed

in the following subsection. Let ψ : [0,∞) → S be an S-valued deterministic, piecewise constant

function so that ψ(t) is the state of the environment at time t. That is, the environment visits the

states in S in a deterministic way. Denote by r(ψ(t)) the component’s rate of degradation at time t,

i.e., whenever ψ(t) = j ∈ S, the component degrades at rate r( j). The rate function r : S → R is

not restricted to the positive half-line (i.e., there are environment states for which the degradation

signal exhibits a decreasing trend). Finally, we account for the reality that in typical applications, the

degradation signal exhibits jumps at environment transition epochs. Therefore, we define a mapping

J : S → R so that J(ψ(v)) is a function of the jump (either upward or downward) that occurs at time

v. Specifically, for these models, the jump magnitude is a deterministic quantity that depends on the

environment state just before and just after the jump epoch. The mapping J can assume a variety of

forms; however, in this research we assume that the jump magnitude is proportional to the current

state of the environment.

With these definitions and notation, the model of the degradation signal is

S (t) = S (0) +
∫ t

0
r(ψ(v))dv + J(ψ(v)) + σW(t), (4.1.1)
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where {W(t) : t ≥ 0} is a standard Brownian motion (BM) process and σ (σ > 0) is its diffusion

parameter. That is, for each t ≥ 0, σW(t) ∼ N(0, σ2t) where N(a, b) denotes a normal random

variable with mean a and variance b. This term models degradation effects that cannot be attributed

to the environment process. The component’s time to failure corresponds to the first time the degra-

dation signal {S (t) : t ≥ 0} crosses a fixed, deterministic threshold D, i.e., the failure time, TD, is the

first passage time,

TD = inf{t > 0 : S (t) ≥ D}.

Figure 4.1.1 depicts a sample path of the degradation signal {S (t) : t ≥ 0} and illustrates the effect

of the deterministic environment on its evolution.

Figure 4.1.1: A sample path of degradation signals.

The primary objective of this work is to provide a framework for dynamically updating the

remaining life distribution of the component based on discrete observations of the signal process

S (t) over time. Specifically, given a sequence of k + 1 realized signal observations, {s(ti) : i =

0, 1, 2, . . . , k}, let Rk denote the remaining time needed for the signal to first reach the threshold D,

given the set of signal observations up to time tk. Our aim is to estimate the distribution of Rk,

50



namely

P(Rk ≤ t − tk | s(t1), s(t2), . . . , s(tk)), t > tk.

The novelty of our approach is the updating of the residual life distribution using real-time sen-

sor data to dynamically estimate parameters of the signal model S (t) within a Bayesian framework.

This distinguishes our hybrid stochastic model from other failure models that either do not update

parameter estimates in real time, or do not consider the evolution of the environment and its ef-

fects on the component. Next, we show how to use the signal and environment observations to

dynamically estimate the residual life distribution of the component as it degrades over time.

4.1.1 Bayesian Updating of the Signal

In this subsection, we describe our Bayesian approach for updating the degradation model using

prior information estimated from historical data in conjunction with real-time degradation signal

observations obtained from a fielded component. For many applications, a historical database of

degradation signals and environmental conditions is available for the estimation of prior informa-

tion. However, even identical components can exhibit significant differences due to variations in the

components’ quality, etc. By combining both historical and real-time data, we are able to account

for these inherent differences. The real-time updating of the degradation signal S (t) hinges upon the

updating of the degradation rate function r, the mapping J, and the drift parameter σ. Let us denote

the joint prior distribution of (r, J, σ) by πs(r, J, σ) where we suppress the dependence of r and J on

the environment state ψ(t) for notational convenience. By monitoring in real time the degradation

signal of a fielded component (via sensors), along with the current state of the environment, we will

update the prior distribution πs.

Suppose the degradation signal is monitored at times t0, t1, . . . , tk such that 0 = t0 < t1 < · · · < tk,

and let s(ti) denote the observed signal at observation time ti (the ith observation epoch). The set of

observations will represented by a vector sk ∈ Rk+1, where sk = (s(0), s(t1), . . . , s(tk))′. Additionally,

we must observe the magnitude of jumps occurring at environment transition epochs. Therefore, in

addition to the vector sk, we observe the ordered pairs, {(v j, ψ(v+j )) : j = 1, 2, . . . , n(tk)}, where v j

is the time of the nth environment transition, ψ(v+j )) is the state of the environment just after the jth

environment transition where for some ϵ > 0, v+j = limϵ↓0 v j + ϵ, and n(tk) is the cumulative number
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of environment transitions up to time tk. Using this convention, the environment maintains state ui

over the interval [vi−1, vi), i = 1, 2, . . . n(tk).

Next, we denote the likelihood function of the degradation signal by fs(sk|r, J, σ). In the basic

Bayesian framework, the posterior distribution of (r, J, σ) is computed by

νs(r, J, σ|sk) = πs(r, J, σ) fs (sk|r, J, σ) . (4.1.2)

4.1.2 Estimating the Residual Life Distribution With Discrete Environmental States

When the future environmental profile is deterministic, the distribution of the residual life can be

obtained using boundary crossing probabilities for a standard Brownian motion (BM) process. In

particular, we consider a boundary that is piecewise linear over an interval [0,T ]. We decompose

the degradation signal into its deterministic and stochastic components, respectively so that

S (t) = ζ(t) + σW(t),

where ζ(t) ≡ s(0)+
∫ t

0 r(ψ(v))dv+ J(ψ(v)) is the deterministic portion of the signal, and σW(t) is the

stochastic component. The probability that the signal is below the threshold D at time t is given by

P(S (t) < D) = P(σW(t) < D − ζ(t)),

where, by virtue of our modeling framework, the function D − ζ(t) is linear in t. For convenience,

we denote this function by d(t) = D − ζ(t), where the slope of ζ(t) is r(ψ(t)). The probability that

the degradation signal does not exceed D on [0,T ] is equivalent to the complementary probability

that a standard BM process crosses a linear boundary whose slope depends explicitly on the current

environment state.

Boundary crossing probabilities for BM processes have been well-studied in the literature (cf.

[117, 128]). For instance, if the function d(t) is linear on [0, T ], [117] derived the (conditional)

probability that a BM process crosses the linear boundary in this interval. This result was extended

to piecewise linear functions without jump discontinuities on [0,T ] by [128] . Theorem 4.1.1 below

extends Theorem 1 of [128] to consider the case when the function d(t) is piecewise linear with

jump discontinuities at finitely-many deterministic points. To this end, partition the interval [0, T ]

so that [0, T ] =
∪n

j=1[v j−1, v j), where v j denotes the time of the nth jump in the signal process. It is
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important to note that both upward and downward jumps can occur. Therefore, to simplify notation

in Theorem 4.1.1, let m j ≡ min{d j, d−j } where d j = d(v j) and d−j = d(v−j ), j = 0, 1, . . . , n, and let

d = (d1, d2, . . . , dn)′.

Theorem 4.1.1. Let 0 = v0 < v1 < · · · < vn = T denote n fixed jump times and suppose d(v) is

linear on [v j−1, v j), j = 1, 2, . . . , n with d(0) > 0. Then for each v ∈ [0, T ], the complement of the

crossing probability of a Brownian motion process, σW(v), with diffusion parameter σ is given by

P(σW(v) < d(v)) = E [h(W(v1),W(v2), . . . ,W(vn); d)] , (4.1.3)

where

h(x1, x2, . . . , xn; d) =
n∏

j=1

1(x j < m j/σ)∆(v j, v j−1),

with

∆(v j, v j − 1) = 1 − exp

−2[d j−1/σ − x j−1] [d−j /σ − x j]

v j − v j−1

 ,
and 1(A) is the indicator function for condition A.

Proof. The proof is similar to that of Theorem 1 of [128] except that we include jump discontinuities

at the interval boundaries. For a single linear boundary on the interval [0,T ] of the form d(v) =

av+ b, [117] proved that the (conditional) probability that a standard BM process does not cross the

boundary in this interval is given by

P(W(v) < av + b, v < T |W(T ) = x) = 1 − exp
[
−2b(aT + b − x)

T

]
.

For our model, we have

P(σW(v) < d(v), v ≤ T ) = P
(
W(v) <

d(v)
σ

, v ≤ T
)

=

∫ m1/σ

−∞
P

(
W(v) <

d(v)
σ

, v < v1|W(v1) = x1

)
× P

(
W(v) <

d(v)
σ

, v > v1|W(v1) = x1

)
dPv1(x1), (4.1.4)

where

dPv(x) =
1
√

2πv
exp

(
−x2/2v

)
dx,
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i.e., dPv(x)/dx is the probability density function of W(v). The product of (4.1.4) holds since {W(t) :

t ≥ 0} possesses the strong Markov property. Using the results of [117], the first term in the integrand

of (4.1.4) is given by

P

(
W(v) <

d(v)
σ

, v < v1|W(v1) = x1

)
= 1 − exp

−2 d0
σ (

d−1
σ − x1)
v1


Owing to the fact that a standard BM process has stationary and independent increments, provided

that W(v1) = x1, it is clear that W(v+v1)− x1 is also a BM process starting from the origin. Arguing

along the same lines as [128], for any v ∈ (v1,T ], the second term in the integrand of (4.1.4) is

P

(
W(v) <

d(v)
σ
|W(v1) = x1

)
= P

(
W(v) <

d(v + v1)
σ

− x1, v ≤ T − v1

)

=

∫ (m2−x1)/σ

−∞

1 − exp

−2( d1
σ − x1)(

d−2
σ − x1 − x2)

(v2 − v1)




× P
(
W(v) <

d(v + v1)
σ

− x1, v ∈ (v2 − v1, T − v1)|W(v2 − v1) = x2

)
dPv2−v1(x2)

=

∫ m2/σ

−∞

1 − exp

−2( d1
σ − x1)(

d−2
σ − x2)

(v2 − v1)




× P
(
W(v) <

d(v + v1)
σ

− x1, v ∈ (v2 − v1, T − v1)|W(v2 − v1) = x2 − x1

)
dPv2−v1(x2 − x1)

=

∫ m2/σ

−∞

(
1 − exp

[
−

2(d1/σ − x1)(d−2 /σ − x2)
(v2 − v1)

])
× P

(
W(v) <

d(v + v2)
σ

− x2, v ≤ T − v2

)
dPv2−v1(x2 − x1).

Now, similar steps can be followed to obtain the probability

P(W(v) < d(v + v2)/σ − x2, v ≤ T − v2)dPv2−v1(x2 − x1).

Repeating these steps in an inductive manner, one obtains

P

(
W(v) <

d(v)
σ

, vn−1 < v ≤ T
)
=

∫ mn/σ

−∞

1 − exp

−2( dn−1
σ − xn−1)( d−n

σ − xn)
vn − vn−1


 dPvn−vn−1(xn − xn−1).

where for j = 1, 2, . . . , n and x0 = 0,

dPv j−v j−1(x j − x j−1) =
1√

2π(v j − v j−1)
exp

− (x j − x j−1)2

2(x j − x j−1)

 dx j
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since {W(t) : t ≥ 0} is a BM process. Finally, due to the independent increments property, we obtain

P(W(v) < d(v)/σ, v ≤ T ) =
∫ m1

σ

−∞
· · ·

∫ mn
σ

−∞

n∏
j=1

1 − exp

 (d j−1/σ − x j−1)(d−j /σ − x j)

v j − v j−1

 g(x)dx

(4.1.5)

where x = (x1, x2, . . . , xn)′, and

g(x) =
n∏

j=1

1√
2π(v j − v j−1)

exp
− (x j − x j−1)2

2(v j − v j−1)

 .
The result follows directly by noting that g(x) is the probability density function of the random

vector (W(v1),W(v2), . . . ,W(vn)). �

Suppose the degradation signal has been sampled at k distinct times, t1, t2, . . . , tk, and the current

time is tk < T . The (deterministic) process, {ψ(t) : tk < t ≤ T }, is the future environmental profile

from time tk up to some future time T . On the interval (tk,T ], the deterministic component of the

degradation signal is

ζk(v) ≡ s(tk) +
∫ T

tk
r(ψ(v))dv + J(ψ(T )) − J(ψ(tk)). (4.1.6)

Define by Rk the residual life of the component at time tk, given that the degradation signal has

not crossed the threshold on the interval [0, tk]. Applying equation (4.1.3) of Theorem 4.1.1, the

distribution of Rk is given by

P(Rk ≤ T |sk) = 1 − E[h(W(v1),W(v2), . . . ,W(vn); dk)] (4.1.7)

where v1, v2, . . . , vn are the transition epochs of the environment process {ψ(t) : tk < t ≤ T } and dk

indicates the dependence of d on the observation time tk.

Equation (4.1.7), though simple in form, is not easy to compute due to the multidimensional

integration requirement of (4.1.3). To circumvent this integration, we propose a Monte-Carlo sim-

ulation approach to estimate E[h(W(v1),W(v2), . . . ,W(vn); d)]. The steps of the procedure are as

follows:

Step 1: Select a sufficiently large number of realizations M′ for the n-dimensional Brownian mo-

tion process (W(v1), . . . ,W(vn)), say M′ = 5000;
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Step 2: For each j ∈ {1, 2, . . . , M′}, generate n independent normal random variables, say X1, X2, . . . , Xn

such that for i = 1, . . . , n, Xi ∼ N(0, σ2(vi − vi−1)) with v0 ≡ 0, and w j
i =

∑i
k=1 Xk, for

i=1,2,. . . ,n. The vector (w j
1, . . . ,w

j
n) is the jth realization of (W(v1), . . . ,W(vn)).

Step 3: By applying the strong law of large numbers (SLLN), for sufficiently large M′, we can

estimate the residual lifetime distribution at time tk by

P(Rk ≤ T |sk) ≈ 1 − 1
M′

M′∑
j=1

h(w j
1, . . . ,w

j
n; dk).

4.1.3 Estimating the Residual Life Distribution With Continuous Environmental States

When the future environmental condition evolves continuously, the RLD can be obtained using

boundary crossing probabilities for a standard Brownian motion (BM) process with a continuous

boundary. For a linear boundary, the first-passage-time of a Brownian motion process follows an

inverse Gaussian distribution. However, the crossing boundary is generally not linear unless the

environmental condition remains constant. In what follows, we approximate the RLD for a general

continuous boundary using the techniques of tangent approximation developed by [33].

We decompose the degradation signal into its deterministic and stochastic components, respec-

tively so that

S (t) = ζ(t) + γB(t),

where ζ(t) = S (0)+
∫ t

0 r(w(v))dv is the deterministic portion of the signal, and γB(t) is the stochastic

component. The probability that the signal is below the threshold D at time t is given by

P
(
max
0≤v≤t

S (v) < D
)
= P

(
B(v) <

D − ζ(v)
γ

, for 0 ≤ v ≤ t
)
,

where, by virtue of our modeling framework, the function D−ζ(t)
γ is a continuous function of t. For

convenience, we denote this function by d(t) = D−ζ(t)
γ . As demonstrated in Figure 4.1.2, the proba-

bility that the degradation signal does not exceed D is equivalent to the complementary probability

that a standard BM process crosses a boundary determined by d(t). The plot on the left repre-

sents the original degradation signal and its failure threshold. The plot on the right represents the

transformation that incorporates ζ(t) into the failure threshold.
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Figure 4.1.2: Relation between the RLD and the crossing probability of BM.

Estimating boundary crossing probabilities of BM processes for a curved boundary is gener-

ally very challenging. Very few exact solutions are available for specific boundaries. Even when

a formula is known for a particular boundary the computation cost is very high. [33] studied the

approximation of the first-passage-time (FPT) distribution of a standard Wiener process to a gen-

eral boundary. Since the exact representation of this crossing probability is generally unavailable,

[33] approximated the density of the FPT by using the tangent of the boundary, which is a linear

function. In this case, the probability density function of the FPT is evaluated using an inverse

Gaussian distribution. [33] demonstrated with numerical studies that the tangent approximation

has promising performance for many continuous boundaries. Theorem 4.1.2 utilizes the tangent

approximation to assesses the residual life distribution in our degradation model by estimating the

equivalent distribution of the FPT.

Theorem 4.1.2. Let Rk represent the residual lifetime of a unit at time tk. We denote by s(tk) the

observation of the signal amplitude at time tk. Then the probability density function of Rk, denote

by gk(t) is expressed as follows
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gk(t) ≈ ak,t√
2πt3

exp
[
−2ak,tbk,t −

(dk(t) − 2ak,t)2

2t

]
, where (4.1.8)

dk(t) =
1
γ

[
D − s(tk) −

∫ t+tk

tk
r(w(v))dv

]
,

bk,t = −
r(w(t))
γ

, and

ak,t = dk(t) +
r(w(t))
γ

t.

Proof. For any given t > 0, the distribution of residual life Rk is expressed as follows

P(Rk < t) = P
(
max
0≤v≤t

[
s(tk) +

∫ tk+v

tk
r(w(u))du + γB(v)

]
> D

)
.

s(tk) +
∫ tk+v

tk
r(w(u))du represents the deterministic part of the degradation signal. We incorporate

this term in the failure threshold, as shown in Figure 4.1.2, and rewrite the distribution of Rk as

follows

P(Rk > t) = P (B(v) < dk(v), for 0 ≤ v ≤ t) ,

where

dk(t) =
1
γ

[
D − s(tk) −

∫ t+tk

tk
r(w(u))du

]
represents the transformed boundary corresponding to standard Wiener process B(t) when the cur-

rent time is tk. Subsequently, we estimate the probability density function of Rk by approximating

dk(v) using its tangent. We denote by d̃k,t(·) the tangent of dk(v) at v = t. The existence of d̃k,t(·) for

any t > 0 is guaranteed by the continuity in the environmental profile. Since environmental state

w(v) is a continuous function, dk(t) is differentiable for any t > 0.

We assume that for any given t

d̃k,t(v) = ak,t + bk,tv,

where ak,t and bk,t represent the intercept and the slope of d̃k,t(·), respectively. bk,t and ak,t are

computed as follows

bk,t =
d
dv

dk(v)
∣∣∣∣∣
v=t
= −r(w(t))

γ
,

ak,t = d̃k,t(t) − bk,tt = dk(t) +
r(w(t))
γ

t.
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According to [33], we approximate gk(t) using the pdf of the first-passage-time when the crossing

boundary is represented by d̃k,t(·) for each given t > 0. In this case, gk(t) is approximated by the pdf

of an inverse Gaussian distribution, which is expressed as follows

gk(t) ≈ ak,t√
2πt3

exp
[
−2ak,tbk,t −

(dk(t) − 2ak,t)2

2t

]
for t > 0. �

Remarks The cumulative density function of Rk given signal observations sk is expressed as

P(Rk < T |sk) =
∫ T

0
gk(t)dt.

4.1.4 An Illustrative Example

We now illustrate how to compute the residual life distribution by describing a model with a specific

form of the degradation rate function and the environment-dependent jump process. The rate of

degradation, as a function of the environment state, is given by

r(ψ(v)) = αψ(v) + β,

and the impact of jumps is captured by the function

J(ψ(v)) = ηψ(v),

where α, β and η are parameters of the degradation signal model as is σ, the diffusion coefficient.

The prior marginal distributions of these parameters are as follows: α ∼ N(µ1, σ
2
1), β ∼ N(µ2, σ

2
2),

η ∼ N(µ3, σ
2
3), andσ ∼ N(µ4, σ

2
4). The parameters are assumed to be mutually independent random

variables. To estimate the posterior distribution of (α, β, η, σ), or equivalently of (r, J, σ), we next

derive the likelihood function of degradation model. The likelihood function of sk, conditioned on

the parameter vector (α, β, η, σ), is denoted by

L(sk|α, β, η, σ) =
k∏

i=1

ϕi(s(ti) − s(ti−1))

where ϕi is the probability density function of a normal distribution with mean∫ ti

ti−1

[α + βψ(v)]dv + η (ψ(ti) − ψ(ti−1))
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and variance σ2(ti − ti−1). To simplify notation, let Gtk = {ψ(v) : 0 ≤ v ≤ tk}. The posterior

distribution of (α, β, η, σ) is

νs
(
α, β, η, σ|sk, Gtk

)
= πs(α, β, η, σ) ×

k∏
i=1

ϕi(s(ti) − s(ti−1))

where πs(α, β, η, σ) = φ1(α)φ2(β)φ3(η)φ4(σ), and φi(x) = 1√
2πσ2

i

exp
[
− (x−µi)2

2σ2
i

]
, for i = 1, 2, 3, 4.

The updated residual life distribution at time tk is given by

P(Rk ≤ T |sk, Gtk ) =
∫

α,β,η,σ

P(Rk ≤ T |sk) × νs
(
α, β, η, σ|sk, Gtk

)
=

∫
α,β,η,σ

P(Rk ≤ T |sk)
k∏

i=1

ϕi(s(ti) − s(ti−1))πs(α, β, η, σ)

= Eπs

P(Rk ≤ T |sk)
k∏

i=1

ϕi(s(ti) − s(ti−1))

 , (4.1.9)

where Eπs is the expectation operator with respect to the measure πs. In a manner similar to that de-

scribed for estimating P(Rk ≤ T |sk), equation (4.1.9) can be estimated using Markov chain Monte-

Carlo (MCMC) techniques. Specifically, a sufficiently large number (say M′) of realizations of

(α, β, η, σ) can be simulated from the joint density πs(α, β, η, σ) in order to estimate the correspond-

ing values of

P(Rk ≤ T |sk)
k∏

i=1

ϕi(s(ti) − s(ti−1)).

Applying the SLLN, for sufficiently large M′, the updated RLD is estimated by

P(Rk ≤ T |sk, Gtk ) ≈
1

M′
∑

(α,β,η,σ)

P(Rk ≤ T |sk)
k∏

i=1

ϕi(s(ti) − s(ti−1))

 .
Numerical examples illustrating the quality of these estimates will be provided in Section 5.

However, in Section 4.2 we first describe a more general model that allows the environment to

evolve randomly over time.

4.2 Randomly-Varying Environment

While the model of Section 4.1 is potentially useful for environments that change deterministically,

it cannot be applied to scenarios in which the fielded component operates in a randomly-varying

conditions. Therefore, we now present a generalization of the model of Section 4.1 to account for

an uncertain future environmental profile.
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In the spirit of the model studied by [62], we denote by U(t) the state of the environment at time

t and assume that {U(t) : t ≥ 0} is an ergodic, finite continuous-time Markov chain (CTMC) on the

state space S = {1, 2, . . . ,m}. As before, the states in S are ordered by the level of severity so that

r(i) < r( j) if i < j. The CTMC has infinitesimal generator matrix Q and limiting distribution p

satisfying

pQ = 0, pe = 1

where 0 is the zero vector of order m and e is a column vector ones. The degradation signal at time

t is given by

S (t) = S (0) +
∫ t

0
r(U(v))dv + J(U(v)) + σW(t)

where the functions r and J are defined as in Section 4.1 as is σW(t). Moreover, we assume that∫ t

0
|r(U(v))|dv < ∞, t ≥ 0

with probability 1 to ensure that the degradation path is well defined for each t ≥ 0.

Whenever the environment occupies state i, it stays there for an exponentially-distributed time

with parameter qi > 0, where qi = −qii =
∑

j,i qi j, is the total rate of leaving state i. Let V j denote

the jth jump epoch of {U(t) : t ≥ 0} and define U j = U(V+j ), the state of the environment just

after the jth environment transition. The process {(U j,V j) : j ≥ 0} is a Markov renewal process;

therefore, {U j : j ≥ 0} is a discrete-time Markov chain (DTMC) with transition probability matrix

P = [pi j] where pi j is given by

pi j =


qi j
qi
, if j , i,

0, if j = i.

4.2.1 Bayesian Updating Methodology

Similar to the deterministic environment model of Section 4.1, we propose a Bayesian methodology

to update the parameters of {U(t) : t ≥ 0}, as well as the degradation signal {S (t) : t ≥ 0}, using prior

information estimated from historical data and real-time degradation signals. Individual components

may experience different types of environmental conditions, so we assume the parameters of the

CTMC model (namely the non-negative off-diagonal elements of Q) are random. The (negative)

diagonal elements follow directly from the fact that the row sums of Q are all zero. We will estimate
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the prior distribution of the environment’s generator matrix, Q, as well as (r, J, σ), the parameters

of the degradation model.

To simplify notation in what follows, let q = {qi, j : i, j ∈ S , j , i} be the set of off-diagonal

elements of Q. The prior distribution of Q will be denoted by πQ(q), while the prior distribution of

(r, J, σ) is again denoted by πs(r, J, σ). Consider an interval of time [0,T ] and assume the degra-

dation signal has not crossed the threshold D by this time. The degradation signal is sampled at

the discrete times t0, t1, . . . , tk < T such that 0 = t0 < t1 < t2 < . . . < tk, and these observations

are stored in the vector sk = (s(0), s(t1), s(t2), . . . , s(tk)) while the environment, {U(t) : t ≥ 0}, is

monitored continuously on the interval [0, tk] for some tk. For i, j ∈ S, j , i, let Ni, j(tk) denote the

number of environment transitions from state i to state j in the interval [0, tk], and let Ri(tk) be the

total time spent by the environment in state i on this interval. It is well-known (cf. [21]) that for

a continuously-monitored CTMC, the likelihood function of its infinitesimal generator matrix Q is

given by

L(q) =
m∏

i=1

∏
j,i

qNi, j(tk)
i, j exp

[
−qi, jRi(tk)

]
.

Our aim is to update the elements of Q using a Bayesian approach. To this end, we assume that

the (i, j)th element of Q has a gamma prior distribution, i.e.,

qi, j ∼ Γ(ki, j, θi, j), j , i

where ki, j is the shape parameter and θi, j is the scale parameter of the gamma distribution. The

probability density function of qi, j is

qki, j−1
i, j exp(−qi, j/θi, j)

Γ(ki, j)θ
ki, j
i, j

We choose the gamma distribution as a prior distribution for a few pragmatic reasons. First, each

of the off-diagonal elements of Q is a non-negative, real number. Second, the gamma distribution

encompasses a number of important distributions including the exponential, Erlang, and chi-square

distributions. Moreover, the shape and scale parameters can be chosen to model distributions with

varying degrees of skewness. Finally, the gamma prior distribution results in a closed-form pos-

terior distribution that facilitates easy implementation. By applying Bayes’ formula, the posterior
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distribution of Q, νQ, can be obtained by noting that

νQ(q|Ftk ) ∝ πQ(q) × L(q)

where Ftk = {U(v) : 0 ≤ v ≤ tk} is the history of the environment process up to time tk, and ni, j(tk)

and ri(tk) are the realizations of Ni, j(tk) and Ri(tk), respectively. Theorem 4.2.1 establishes that the

posterior distribution of qi, j also follows a gamma distribution and gives the explicit form of its

parameters.

Theorem 4.2.1. Suppose the environment process is observed continuously up to time tk, that

Ni, j(tk) = ni j(tk), and Ri(tk) = ri(tk) for i, j ∈ S such that j , i. Then the posterior distribution

of qi, j is the gamma distribution with parameters (k̃i, j, θ̃i, j) where

k̃i, j = ki, j + ni, j(tk), and θ̃i, j =
[
θ−1

i, j + ri(tk)
]−1

.

Proof. Let Ftk = {U(v) : 0 ≤ v ≤ tk} be the history of the environment process up to observation

time tk and suppose Ni, j(tk) = ni, j(tk) and Ri(tk) = ri(tk) during [0, tk]. By applying Bayes’ formula

and the likelihood function L(q), we can write

νQ(q|Ftk ) ∝ πQ(q)L(q)

=

 m∏
i=1

∏
j,i

qki, j−1
i, j exp(−qi, j/θi, j)

Γ(ki, j)θ
ki, j
i, j


 m∏

j=1

∏
j,i

qni, j(tk)
i, j exp

[
−qi, jri(tk)

]
∝

 m∏
i=1

∏
j,i

qki, j+ni, j(tk)−1
i, j exp(−qi, j(1/θi, j + ri(tk)))


Therefore,

νQ(q|Ftk ) =
m∏

i=1

∏
j,i

qk̃i, j−1
i, j exp(−qi, j/θ̃i, j)

Γ(k̃i, j)θ̃
k̃i, j
i, j

where

k̃i, j = ki, j + ni, j(tk),

and

θ̃i, j =
[
θ−1

i, j + ri(tk)
]−1

.

That is, the posterior distribution of qi, j is the gamma distribution with parameters k̃i, j and θ̃i, j. �
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To update the signal model, we use a procedure analogous to the one described in Section 4.1.

Using the same definitions in that section the posterior distribution of (r, J, σ) is

νs(r, J, σ|sk) = πs(r, J, σ) × fs(sk|r, J, σ).

The updated degradation model will be used together with the environment process to dynamically

update the residual life distribution of the component.

4.2.2 Estimating the Residual Life Distribution

Here, we describe two separate schemes for estimating the residual life distribution for a system

that degrades in a randomly-evolving environment. The first scheme is a sample path approach

that simulates a large number of future environment profiles and applies the deterministic model of

Section 4.1 to each of these profiles. The second approach uses the limiting distribution of {U(t) :

t ≥ 0} to estimate the future environmental profile. The latter technique, while less computationally

intensive, but may not adequately represent the environment’s evolution in finite time.

4.2.2.1 Approach I: Sample Path Averaging

Suppose the environment is observed continuously on [0, tk]. In this approach, we simulate the

environment process {U(t) : tk < t ≤ T } for some T . That is, we simulate the evolution of the

environment starting from the observed environment state at time tk until the end of some time

horizon. Because each simulated sample path represents a single environmental profile (that behaves

deterministically), we can estimate the residual life distribution for each profile independently using

Theorem 4.1.1. Subsequently, the set of c.d.f.s are averaged to obtain the estimate of the RLD. The

procedure is formalized as follows:

Step 1: Select the number of future environment profiles to simulate, I;

Step 2: Simulate I sample paths of the environment process on the interval [tk,T ], i.e., simulate

{Ui(t) : tk < t ≤ T } for i = 1, 2, . . . , I;

Step 3: For sample path i, obtain ζi(tk), i = 1, 2, . . . , I, using equation (4.1.6);

Step 4: For sample path i, compute the residual life distribution at time tk by

Pi(Rk ≤ T |sk) = 1 − E
[
h(W(v1), . . . ,W(vn); di

k)
]
, i = 1, 2, . . . , I,
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using equation (4.1.7) and the simulation method described thereafter;

Step 5: For I sufficiently large, estimate the remaining life distribution at time tk by

P(Rk ≤ T |sk) ≈ I−1
I∑

i=1

Pi(Rk ≤ T |sk).

Approach I allows us to consider a large number of potential future environment profiles that

the component might encounter. However, this approach is computationally expensive as we must

simulate a large number of these profiles, and the evolution of the stochastic component of the

degradation signal.

4.2.2.2 Approach II: Stationary Environment

Approach II circumvents the need to simulate future profiles by assuming that the environment is

operating in its limiting regime at observation time tk. We estimate the residual lifetime at time tk in

two different ways, depending on the length of the time horizon.

Case 1: Let ik be the observed state of the environment at time tk (i.e., U(tk) = ik). Due to the memo-

ryless property, the remaining time in state ik, call it Yik , is exponentially distribution with parameter

qik . Therefore, if P(Yik ≤ T − tk) < ϵ′ for some tolerance value ϵ′ > 0, then we assume there are no

environment transitions during [tk, T ], and the current environment state serves to approximate the

future environmental profile. In such case, the RLD has the inverse Gaussian distribution, i.e.,

P(Rk ≤ T |sk) ≈ Φ


√
λk

T

(
T
ϑk
− 1

) + exp
(
2λk

ϑk

)
Φ

−√
λk

T

(
T
ϑk
+ 1

)
where Φ is the standard normal c.d.f.,

λk =
[D − s(tk)]2

σ2 , ϑk =
D − s(tk)

r(ik)
,

and s(tk) and ik are the signal and environment observations at time tk, respectively. A reasonable

tolerance value is ϵ′ = 10−4.

Case 2: In case P(Yik ≤ T − tk) > ϵ′, then assume the environment is operating in its limiting regime

and partition [tk, T ] into m disjoint intervals such that the fraction of [tk, T ] spent in state i is pi, the

ith element of the stationary distribution p, for each i ∈ S. Note that the expected proportion of time

is therefore pi(T − tk). Therefore, we must consider the m! different permutations of these intervals

that correspond to m! potential future environmental profiles.
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For the ith permutation, compute the residual life distribution at time tk by

Pi(Rk ≤ T |sk) = 1 − E
[
h(W(v1), . . . ,W(vn); di

k)
]
, i = 1, 2, . . . ,m!,

using equation (4.1.7) and the simulation method described thereafter. Finally, we estimate the RLD

using

P(Rk ≤ T |sk) ≈ 1
m!

m!∑
i=1

Pi(Rk ≤ T |sk).

The advantage of Approach II over Approach I is that it does not require simulation of the future

environmental profiles, only enumeration of the m! permutations and their resulting residual life

distributions.

4.2.3 An Illustrative Example

Here, we illustrate the degradation model and Bayesian updating framework when the environment

evolves as a CTMC. We first use observations of the degradation signal and environment state to

update the degradation model as well as the environmental process; subsequently, we compute the

RLD with the updated information.

First, let us assume that the prior distribution of qi, j is the gamma distribution with probability

density function
qki, j−1

i, j exp(−qi, j/θi, j)

Γ(ki, j)θ
ki, j
i, j

where ki, j is the shape parameter and θi, j is the scale parameter. By Theorem 4.2.1, the posterior

distribution of Q, given the history of the process up to time tk, is

νQ(q|Ftk ) =
m∏

i=1

∏
j,i

qk̃i, j−1
i, j exp(−qi, j/θ̃i, j)

Γ(k̃i, j)θ̃
k̃i, j
i, j

.

Next, to characterize the signal model, the functions r and J are assumed to be

r(U(v)) = αU(v) + β and J(U(v)) = ηU(v)

where α, β, and η are random parameters. As before, the prior distributions of these parameters are

assumed to be normal, i.e., α ∼ N(µ1, σ
2
1), β ∼ N(µ2, σ

2
2), η ∼ N(µ3, σ

2
3), and σ ∼ N(µ4, σ

2
4),

and they are all mutually independent. As for the deterministic model, let πs(α, β, η, σ) denote their

joint prior distribution. To estimate the posterior distributions of (α, β, η, σ) we need to derive the
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likelihood function of degradation model. Recall that the degradation signal observations up to time

tk comprise the vector sk. The likelihood function of sk is

fs(sk|(α, β, η, σ)) =
k∏

i=1

ϕi(s(ti) − s(ti−1))

where for i = 1, 2, . . . , k, ϕi(·) is the p.d.f. of a normal random variable with mean∫ ti

ti−1

(α + βu(v))dv + η(u(ti) − u(ti−1))

and variance σ2(ti − ti−1). The term u(v) in the integrand is the realization of the environment at

time v. The posterior distribution of (α, β, η, σ) is thereby obtained as

νs(α, β, η, σ|sk, Ftk ) = πs(α, β, η, σ) ×
k∏

i=1

ϕi(s(ti) − s(ti−1))

where πs(α, β, η, σ) = φ1(α)φ2(β)φ3(η)φ4(σ), and

φi(xi) =
1√

2πσ2
i

exp
 (xi − µi)2

2σ2
i

 , i = 1, 2, 3, 4.

Therefore, using the degradation observations up to time tk, the updated RLD is

P(Rk ≤ T |sk, F (tk)) =
∫

q

∫
(α,β,η,σ)

P(Rk ≤ T |sk, q, α, β, η, σ) νs(α, β, η, σ|sk, Ftk ) νQ(q|Ftk ). (4.2.1)

The first term in the integrand of (4.2.1) can be estimated using the MCMC technique described in

Section 4.1. The last term in the integrand is obtained via Theorem 4.2.1. In the next section, we

provide a few numerical illustrations of these procedures via simulation experiments.

4.3 Numerical Results

In this section, we illustrate the degradation models and the performance of our Bayesian updating

approach via a few numerical examples and a real case study. To this end, we simulate degradation

signals under two scenarios: (1) when the environment evolves deterministically, and (2) when the

environment evolves as a CTMC. For each numerical study, we simulated 1000 sample degradation

signals (sample paths) until each first hits a fixed degradation threshold. The 1000 sample paths are

partitioned into two sets: the first 500 paths are used to estimate parameters of the prior distributions,

while the remaining 500 are used to illustrate real-time residual life prediction.

67



For the first two experiments, simulated sample paths serve as our benchmark, whereas real

observed failures are used for the third experiment. Therefore, we assess our real-time RLD esti-

mates by computing the mean and variance of the prediction error percentage. For the simulation

experiments, let Li denote the lifetime of the ith simulated path, and let L̂i be the estimated lifetime

(using our updating procedure). Then the prediction error (%) for the ith sample path is given by

δi =
|Li − L̂i|

Li
× 100. (4.3.1)

Denoting δ as the true error, we estimate the mean and variance of the prediction error, respectively,

by

E(δ) ≈ δ̄ = 1
500

1000∑
i=501

δi, (4.3.2)

and

Var(δ) ≈ 1
499

1000∑
i=501

(δi − δ̄)2. (4.3.3)

Additionally, when the environment is deterministic, we compare our techniques to two existing

approaches which are special cases of our model, namely those of [48] and [37]. [48] modulate the

degradation signal by assuming a time-varying degradation rate and jumps that occur at environment

transition epochs; however, they assume that the future environmental profile is unchanged when

predicting the RLD. [37] presented a degradation model in which the time-varying (deterministic)

environment modulates the degradation rate, but they do not consider jumps in the degradation

signal. Using a time transformation, they developed an expression for the lifetime distribution.

Clearly, these two models can be obtained as special cases of the degradation model presented

herein.

When the environment evolves randomly, we compare our predicted residual lifetime only with

the simulated results. The main objective of these experiments is to examine and illustrate the

sensitivity of the Bayesian approach to a few of the model’s parameters. Finally, the case study of

Section 4.3.3 uses a deterministic environment as the benchmark.

4.3.1 Simulated Degradation Signals: Deterministic Environment

The first experiment mirrors the illustration provided in Section 4.1. The functions r and J are

given by r(ψ(t)) = αψ(t) + β and J(ψ(t)) = ηψ(t), t ≥ 0. The prior distributions of the degradation
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model parameters are α ∼ N(µ1, σ
2
1), β ∼ N(µ2, σ

2
2), η ∼ N(µ3, σ

2
3), σ ∼ N(µ4, σ

2
4), a collection of

mutually independent random variables. Recall that [37] does not consider jumps in the degradation

signals, and [48] assumes that the future environmental profile is unchanged. To investigate the

effects of jumps, we conduct numerical studies with various values of the prior mean and variance

of η: µ3 = 0.0, 10.0, 20.0 and σ2
3 = 0.1µ3. The other parameter values are chosen according to

Table 4.3.1. For each numerical study, we simulated 1000 degradation signals and denote the ith

simulated signal at time t by si(t), i = 1, 2, . . . , 1000 using the parameters in Table 4.3.1.

Table 4.3.1: Prior distribution parameter values: deterministic environment.

Model parameter Mean of prior p.d.f. Variance of prior p.d.f.

α µ1 = 0.3 σ2
1 = 0.03

β µ2 = 0.5 σ2
2 = 0.05

σ µ4 = 3.0 σ2
4 = 0.30

For these experiments, the failure threshold is D = 350 units, and we assume S (0) = 0 with

probability 1. The environment alternates between only two states so that (S = {1, 2}), and its

evolution is given by the step function

ψ(v) =



1, 0 ≤ v < 100,

2, 100 ≤ v < 200

1, 200 ≤ v < 300

2, v ≥ 300.

The following procedure was used to simulate si(t), i = 1, 2, . . . , 1000:

Step 1: For i = 1, 2, . . . , 1000, sample from the prior distributions of α, β, η and σ according to the

parameters provided in Table 4.3.1. The resulting realizations are denoted by αi, βi, ηi, and γi.

Step 2: Using αi, βi, ηi, γi, and ψ(t), simulate the degradation signal si(t) according to

si(t) =
∫ t

0
(αiψ(v) + βi)dv + ηiψ(v) + γiW(t)
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until it first hits the failure threshold D, i.e., simulate until time Li where

Li = inf{u ≥ 0 : si(u) ≥ D}.

For each simulated signal si(t), we re-sample degradation signals at discrete epochs t1, t2, t3, . . . , tki ,

where tki is the actual lifetime of signal si(t). For simplicity, we let t j = j, j = 1, 2, . . . , ki. The first

500 degradation signals can be viewed as a historical data set, and the remaining 500 degradation

signals are used to test online prediction of the RLD. A two-stage procedure was employed to esti-

mate the prior distributions of (α, β, η, σ), i.e., µk and σ2
k , k = 1, 2, 3, 4. The details are attached in

the Appendix.

Next, we use equation (4.1.9) with the estimated prior distributions of α, β, η, σ to assess online

prediction of the RLD using the remaining degradation signals (signals 501, . . . , 1000). We estimate

the component lifetime by observing the degradation signal up to the 50th and 90th percentiles of

the lifetime and then compute the average and sample variance of the prediction error via equations

(4.3.2) and (4.3.3), respectively. The results are compared with those obtained using the models of

[48] and [37] in Figure 4.3.1 where technique (a) represents the prediction error obtained via [48],

technique (b) represents results from [37], and technique (c) represents results from our method.
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Figure 4.3.1: Comparison of prediction error as a function of η: deterministic environment.

Figure 4.3.1 indicates that our online updating technique yields the smallest mean prediction
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error, and substantially smaller variation in the results. This is due, in part, to the fact that we com-

pletely characterize the features of simulated signals and utilize online data from the degradation

signals.

4.3.2 Simulated Degradation Signals: Random Environment

In this subsection, we test online prediction of the RLD under a variety of scenarios in which the

degradation model and environment process are updated online. We start with a baseline framework

with parameter values chosen according to Table 4.3.2. As before, we set the degradation threshold

to D = 350 and assume S (0) = 0 with probability 1. Initially, the environment has only two states

so that S = {1, 2}, i.e., m = 2.

Table 4.3.2: Baseline parameter values: random environment.

Model parameter Mean of prior p.d.f. Variance of prior p.d.f.

α µ1 = 0.3 σ2
1 = 0.03

β µ2 = 0.5 σ2
2 = 0.05

η µ3 = 1.0 σ2
3 = 0.10

σ µ4 = 3.0 σ2
4 = 0.30

q1,2 k1,2 = 0.2 θ1,2 = 0.1

q2,1 k2,1 = 0.2 θ2,1 = 0.1

For this analysis, we change the value of one parameter while holding all others fixed. Addi-

tionally, we assess the effect of the number of environment states on RLD prediction. To make fair

comparisons among simulation experiments, we fix the average state holding time for each state

and assume the environment process chooses the next state according to a uniform distribution. The

details of the simulation experiments are provided in what follows:

Group 1: (Assessing the effect of η). Let µ3 assume the values 1, 2, . . . , 50 and set σ2
3 = 0.1µ3;

Group 2: (Assessing the effect of σ). Let µ4 assume the values 1, 2, . . . , 50 and set σ2
4 = 0.1µ4;

Group 3: (Assessing the effect of Q). Let m assume the values 2, 3, . . . , 15. Given m, set ki, j =

0.2/(m − 1) and θi, j = 0.1, for j , i. Then, qi, j has mean θi, jki, j = 0.02/(m − 1) for j ,
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i, the mean holding time in each state is 1/0.02, and the environment transitions to next

state according to a uniform distribution (i.e., it visits any one of the other states with equal

probability) at the next transition.

We assess the quality of RLD prediction for different values of η and σ but fix α, β, S (0) and D.

These values are fixed because increasing α or β and/or decreasing D − S (0) have the same effect

on prediction accuracy as decreasing the parameter σ; hence, we focus on parameters involving σ.

For each instance, we simulate degradation signals via the following procedure:

Step 1: Simulate the environment’s evolution.

1. Generate an m-state generator matrix Q using the prior distributions. That is, for each

i, j ∈ S such that j , i, generate a realization of qi, j, denoted by q∗i, j, from a Γ(ki, j, θi, j)

p.d.f. and define q∗i =
∑

j,i q∗i, j;

2. Choose an initial environment state from S randomly (i.e., any state is chosen with

probability 1/m);

3. If the current state is i, generate an exponential holding time with parameter q∗i ;

4. The environment next transitions to state j with probability q∗i, j/q
∗
i ;

5. Return to Step 1(c) until the total elapsed time reaches Tmax = 10000. The resulting

sample path can be viewed as a deterministic function of t denoted by u∗(t).

Step 2: Simulate degradation signals subject to the environment process u∗(t). The procedure is

identical to the deterministic case described in Section 4.3.1.

Figures 4.3.2 depicts the simulation results for a number of instances using Approach I (sam-

ple path averaging) and Approach II (assuming a stationary environment) to compute the RLD as

described in Section 4.2.

The graphs in the left-hand column plot the average prediction error whereas those in the right-

hand column plot the variance of the prediction error as functions of m, σ, and η. From these

figures, we deduce the following general conclusions: (1) For large η, jumps caused by environment

transitions dominate, i.e., system failure can primarily be attributed to shocks. (2) For large σ, the
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Figure 4.3.2: RLD prediction error using Approach I and Approach II.



diffusion term of the degradation signal dominates, and the effect of the environment can almost be

ignored. (3) An increase in the number of environment states (m) results in a sharp increase in the

mean and variance of the prediction error.

Figure 4.3.2 suggests that moderate parameter values should be chosen for the prior distribu-

tions. For example, η < 20, σ < 20, m < 10 are reasonable for the experiments we conducted. As

compared to using Approach I, computing the RLD via Approach II sacrifices about 7% of average

prediction accuracy at the 50th percentile and 2% of average prediction accuracy at the 90th per-

centile. However, Approach II reduces the computational burden drastically by circumventing the

simulation of future profiles.

4.3.3 A Case Study

In this subsection, we present a case study that involves ball bearings operating under deterministic

environmental profiles. We use vibration-based degradation signals generated from an experimental

test rig that is designed to perform accelerated degradation tests on ball bearings using different

loads and rotational speeds. Bearing failure has been widely studied in the literature, and vibration

monitoring is considered as one of the most widely used techniques for monitoring bearing degrada-

tion ([51]). In fact, vibration signals contain distinctive frequencies that are related to various types

of bearing defects ([48]). Figure 4.3.3 shows how the vibration spectra from a degrading bearing

evolve as the rotational speed changes. It also shows that the system experiences a significant shock

as the bearing transitions from one operating condition to another. This observation lends credence

to our degradation signal model, i.e., signal jumps are more prominent as the component transitions

from one operating condition to another.

We construct the vibration-based degradation signals based on the fact that the vibration ampli-

tude of bearing-specific defective frequencies is generally correlated with the severity of the bear-

ing’s degradation. In particular, we compute the average amplitude of the defective frequency and

its first five harmonics. We limit ourselves to the first five harmonics since higher-order harmonics

have been observed to behave erratically. Furthermore, we define bearing failure based on the root

mean square (RMS) value of the overall vibration of the test rig. According to industrial standards

for machinery vibration, ISO 2372, 2.0–2.2 G (G denotes gravitational acceleration) represents a
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Figure 4.3.3: Evolution of the vibration spectra of a degrading bearing.

vibration-based danger level for applications involving general purpose mid-size machinery. We

use this standard to identify a corresponding failure threshold of 0.025 Vrms (Root Mean Square

Volts).

In this study, we examine the effects of two environmental factors: the load applied to the

bearing and the rotational speed of the bearing. In particular, two different loads (400 lbs and

500 lbs) and two different rotational speeds (2,200 rpm and 2,600 rpm) are considered; therefore,

initially there are four distinct environmental conditions: (2,200 rpm, 400 lbs), (2,200 rpm, 500 lbs),

(2,600 rpm, 400 lbs), and (2,600 rpm, 500 lbs). To construct the mapping from the environmental

conditions to the environmental state space, we examine the degradation rate in each environmen-

tal condition and determine the environmental states so that state 1 represents the environmental

condition with the lowest degradation rate and state 4 the highest degradation rate. Let r(s, l) de-

note the degradation rate when the rotational speed is s (rpm), and the load is l (lbs). Since higher

load or speed accelerates the degradation of bearings ([94]), we obtain the following inequalities of

degradation rates in various environment states:

1. r(2,200 rpm, 400 lbs) < r(2,200 rpm, 500 lbs) < r(2,600 rpm, 500 lbs),

2. r(2,200 rpm, 400 lbs) < r(2,600 rpm, 400 lbs) < r(2,600 rpm, 500 lbs).
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To establish a complete ordering of the degradation rates in all four environmental conditions,

we evaluate r(2,200 rpm, 500 lbs) and r(2,600 rpm, 400 lbs) using the vibration data. Our anal-

ysis, which is based on the hypothesis testing procedure, indicates that r(2,200 rpm, 500 lbs) < r

(2,600 rpm, 400 lbs). Therefore, the final ordering of degradation rates (from least severe to most

severe) is r(2200, 400) < r(2200, 500) < r(2600, 400) < r(2600, 500). The resulting environmental

states included in S are summarized in Table 4.3.3.

Table 4.3.3: Definition of ordered environmental states.

Environmental condition Environmental state

(2,200 rpm, 400 lbs) 1

(2,200 rpm, 500 lbs) 2

(2,600 rpm, 400 lbs) 3

(2,600 rpm, 500 lbs) 4

We conducted two groups of bearing tests. The first set of 12 experiments was used to esti-

mate prior distribution parameters for the degradation model, and these are designated as ID 1 to

12. The second set of 3 experiments are used for validation, and these are labeled as ID 13 to 15.

The experimental setups for these two groups are summarized in Table 4.3.4. Moreover, the real

observed degradation signals used for validation are depicted in Figure 4.3.4). Applying the ap-

proach described in Section 5.1, we estimate the prior distributions of model parameters using the

degradation signals from experiments 1-12. Subsequently, we assess online prediction of the RLD

using the degradation signals from experiments 13-15.

We predict the component’s lifetime by observing the degradation signal and updating the degra-

dation model at the 30th, 60th and 90th percentiles of the lifetime. The means of the estimated

lifetimes and the corresponding prediction errors are presented in Table 4.3.5. We observe that the

prediction errors at the 90th percentile of the lifetime are relatively small. This is, in part, because

the environmental condition remains constant for all of the three online experiments after the 90th

percentile of the lifetime.
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Figure 4.3.4: Degradation signals for online validation.
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Table 4.3.4: Experiments for prior information and online validation.

Experiment ID Operating conditions Number of bearings

1 (2,200 rpm, 400 lbs) 4

2 (2,200 rpm, 500 lbs) 4

3 (2,600 rpm, 400 lbs) 4

4 (2,600 rpm, 500 lbs) 4

5 (2,200 rpm, 400 lbs)→ (2,200 rpm, 500 lbs) 2

6 (2,200 rpm, 500 lbs)→ (2,200 rpm, 400 lbs) 2

7 (2,600 rpm, 400 lbs)→ (2,600 rpm, 400 lbs) 2

8 (2,600 rpm, 400 lbs)→ (2,600 rpm, 400 lbs) 2

9 (2,200 rpm, 400 lbs)→ (2,600 rpm, 400 lbs) 2

10 (2,600 rpm, 400 lbs)→ (2,200 rpm, 400 lbs) 2

11 (2,600 rpm, 400 lbs)→ (2,200 rpm, 400 lbs) 2

12 (2,200 rpm, 400 lbs)→ (2,600 rpm, 400 lbs) 2

13 (2,200 rpm, 400 lbs)→ (2,600 rpm, 400 lbs) 1

14 (2,600 rpm, 400 lbs)→ (2,200 rpm, 400 lbs) 1

15 (2,200 rpm, 400 lbs)→ (2,200 rpm, 500 lbs) 1

Table 4.3.5: Prediction of lifetime for validation data.

ID Actual Lifetime 30th Percentile 60th Percentile 90th Percentile

13 283 318.28 (12.5% error) 301.31 (6.5% error) 289.81 (2.4% error)

14 546 489.56 (10.3% error) 575.14 (5.3% error) 563.32 (3.1% error)

15 402 440.24 (9.5% error) 432.21 (7.5% error) 387.86 (3.8% error)



CHAPTER V

STOCHASTIC FRAMEWORK FOR SYSTEMS WITH DISCRETE

INTERACTIVE DEGRADATION SIGNALS
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This chapter focuses on modeling degradation-rate-interactions (DRIs) that occur in a discrete

manner. Specifically, changes in the degradation rate of a component occur when other stochas-

tically dependent components reach pre-specified degradation levels, i.e., when their degradation

signals reach specific amplitudes or amplitude ranges. From a practical perspective, discrete-type

DRIs can take place in applications where, for example, different levels of wear or plastic deforma-

tion result in categorically different effects on the degradation processes of other components. Our

approach rests on the idea that degradation signals from interdependent components can be divided

into amplitude ranges that correspond to discrete degradation states. When a component transitions

from one state to a more severe state, it triggers a DRI, which results in increasing the degradation

rates of other dependent components. Consequently, the times at which DRIs take place correspond

to change-points in the degradation rates of the components of the system. Using this approach,

we develop a stochastic degradation modeling framework where the evolution of degradation sig-

nals is modeled as a continuous-time stochastic process, and in which degradation interactions are

modeled as change-points in the growth rate of the signals. A change-point detection algorithm

is utilized to identify the times that correspond to degradation interactions. Historical degradation

signals are used to estimate the model parameters and their prior distributions. However, the main

benefit of this approach lies in the ability to utilize in-situ degradation signals from the components

of fielded systems to update the model parameters in a Bayesian manner, and predict their residual

life distributions.

The remainder of this chapter is organized as follows : Section 5.1 describes a multi-state degra-

dation model that captures the discrete-type DRIs among the components of a system. In Section

5.2, we present a series of simulation studies that evaluate the performance of the proposed model

and report our analysis.

5.1 Degradation Model for Discrete-Type Degradation-Rate-
Interactions

Consider a system with n interdependent components, C1,C2, . . . ,Cn, with corresponding degrada-

tion signals denoted by S 1(t), S 2(t), . . . , S n(t). For notational convenience, we let

S(t) = (S 1(t), S 2(t), . . . , S n(t))′.
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Based on the amplitude of S i(t), a component Ci can be classified into different degradation states,

e.g., “good”, “degraded”, “failed”, etc. Let hi(·) define the degradation state of component Ci,

i = 1, . . . , n, such that hi : R→ Z+ is a piecewise constant function expressed as follows:

hi(S i(t)) =



0 S i(t) < gi,1

1 gi,1 ≤ S i(t) < gi,2

. . . . . .

Mi − 1 S i(t) ≥ gi,Mi−1

(5.1.1)

where Mi represents the number of degradation states for component Ci, and gi,1, . . . , gi,Mi−1 rep-

resent the signal thresholds for different degradation states such that gi,1 < . . . < gi,Mi−1. For

example, when Mi = 3, the degradation state of component Ci can occupy three states, state 0 (for

S i(t) < gi,1), state 1 (for gi,1 ≤ S i(t) < gi,2), and state 2 (for S i(t) ≥ gi,2). Generally, a component

can occupy at least two states “good” and “failed”, i.e., Mi ≥ 2. We define di ≡ gi,Mi−1 as the failure

threshold of component Ci. As a result, the failure state is a special case of the degradation states

characterized by hi(S i(t)).

Next, we denote the degradation rate of component Ci at time t by ri(t) and assume that ri(t)

consists of two parts: (1) κi, which represents the inherent degradation rate of component Ci,

i.e., the degradation rate of component Ci without the effect of any DRIs, and (2) h(S(t)), where

h(S(t)) = (h1(S 1(t)), . . . , hn(S n(t)))′ represents the degradation states of all the other interdependent

components of the system. Thus, the overall degradation rate of component Ci can be expressed as

ri(t) = ri[t; κi, h(S(t))]. As mentioned earlier, we use degradation signals to model the underlying

physical degradation process. The degradation signal of a component Ci can therefore be expressed

as follows:

S i(t) = S i(0) +
∫ t

0
ri[v; κi, h(S(v))]dv + ϵi(t), (5.1.2)

where S i(0) represents an initial signal amplitude that directly precedes degradation, and ϵi(t) is

used to model the noise level of the signal.

5.1.1 Base-Case DRI Model

Equation (5.1.2) presents a general DRI modeling framework. Here, we focus on a base-case

stochastic model with the following assumptions :

81



Assumption (1): A DRI event (degradation-rate-interaction event) occurs when one compo-

nent transitions to a more severe degradation state, which increases the degradation rates of

all other interdependent components. We refer to the former as the “influencing component”

and the latter as the “affected components”. By virtue of our model, the probability that two

DRI events occur at the same time is 0. This because a DRI event occurs when the degrada-

tion signal of a certain component, say S i(t), crosses the interaction thresholds. Since S i(t)

is a continuous stochastic process for i = 1, . . . , n, the probability that two crossing events

occurs at the same time is 0. Therefore, at each DRI event there is exactly one influencing

component, and at least one affected component.

Assumption (2): When an influencing component, say C j, transitions to a more severe state,

it increases the degradation rate of every other affected component, say Ci, by an amount δ j,i.

In this paper, we limit our development to the case where δ j,i is constant and does not depend

on the age nor degradation states of components Ci or C j. In addition, we assume that the

degradation rate of the influencing component C j remains unchanged, i.e., δ j, j = 0.

Assumption (3): The degradation rate of a component, say Ci, is a linear function of its inher-

ent degradation rate and the degradation states of other influencing components. Specifically,

ri(t) = κi +
∑

j,i δ j,ih j(S j(t)).

Assumption (4): ϵi(t) = Bi(t), where Bi(t) is assumed to follow a stationary Brownian motion

process with diffusion parameter σ2
i , i.e., Bi(t) ∼ N(0, σ2

i t).

The resulting base-case degradation model for component, say Ci, can be expressed as follows:

S i(t) = S i(0) +
∫ t

0

κi +
∑
j,i

δ j,ih j(S j(v))

 dv + Bi(t). (5.1.3)

Model parameters are divided into deterministic and stochastic parameters. Deterministic pa-

rameters are generally fixed and determined by the characteristics of a given system, i.e., its config-

uration, operating conditions, and constituent components. We assume that δi, j’s are deterministic.

For notational convenience, we let ∆ = [δi, j]. On the other hand, stochastic parameters capture

variations among similar components that are due to manufacturing processes, materials inhomo-

geneities, and other random factors. In our model, κi’s and σ2
i ’s are assumed to be stochastic. The
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vector forms of these parameters are denoted by κ = (κ1, . . . , κn) and σ2 = (σ2
1, . . . , σ

2
n). Note that

κ and σ2 are fixed for components of a specific system, but take different values across different

systems. The randomness of κ and σ2 is modeled using prior distributions. As will be shown later

in Section 5.1.2, the values of ∆ as well as the prior distributions of κ and σ2 can be estimated using

a historical sample of degradation signals.

Degradation Signal Sj(t) 

Time 

Failure Threshold  

Time 

Failure Threshold  

Component Ci 

Component Cj 

g i,1 

g i,2 

g j,1 

Degradation Signal Si(t) 

hi(Si (t)) = 0 

hi(Si (t)) =1 

hi(Si (t)) = 2 

hj(Sj (t))= 0 

hj(Sj (t))= 1 

1
p

2
p

3
p

1
p

2
p

3
p

Figure 5.1.1: Degradation-rate-interactions between the degradation processes of components. △

represents the influencing component, and ◦ the affected component.
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Figure 5.1.1 illustrates a possible scenario for two dependent components and their correspond-

ing DRIs using the based-case model expressed in equation (5.1.3). The figure displays the degra-

dation signals of two interdependent components Ci and C j. The dashed line segments adjacent

to the signals represent the underlying degradation rate of the respective components at different

stages of their degradation. The arrows define the direction of influence at each DRI event. In total,

there are three DRI events, and they occur at times p1, p2, and p3. These events correspond to

change-points in the degradation rates of the two interacting components. At time p1, we say that

the degradation state of component Ci transitions from state 0 to state 1, and at p3 it transitions to

state 2. The transition thresholds corresponding to these degradation states are given by gi,1 and gi,2,

respectively. Once the degradation signal of component Ci crosses gi,1, it impacts the degradation

rate of component C j by increasing its degradation rate by an amount δi, j. This is represented by

the increased slopes of the dashed line segments at times p1 in the degradation signal of C j (upper

graph of Figure 5.1.1). A similar scenario occurs at p3. At p1 and p3, we refer to component Ci as

the “influencing component”, and component C j as the “affected component”. This is illustrated by

the direction of the arrows. A reverse scenario occurs at time p2, where C j takes one the role of the

influencing component, and Ci becomes the affected component.

In Section 5.1.2, we discuss how to estimate the values of ∆ as well as the prior distributions

of κ and σ2 using a sample of historical degradation signals. In Section 5.1.3, we discuss how to

update the distributions of κ andσ using real-time observations of degradation signals from a system

operating in the field, which allows for more accurate predictions of the residual life distributions.

5.1.2 Parameter Estimation Using Historical Degradation Signals

To estimate the parameters of the model, we exploit assumption (2) of section 5.1.1 which states

that when a component transitions to a more severe state, it increases the degradation rates of other

dependent components by a constant amount δi, j. As mentioned earlier, the points at which these

interactions occur represent change-points in the degradation rates as shown in Figure 5.1.1. We

use this assumption as the basis for estimating the parameters of the degradation state function hi(·),

namely, Mi and gi,ℓ, for i = 1, . . . , n and ℓ = 1, . . . , Mi − 1.
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To estimate the change-points of degradation rates, we consider the increments of the degrada-

tion signals. For a given system, we denote the observed component degradation signals at time t by

s(t), where s(t) = (s1(t), . . . , sn(t))′. Note that s(t) ∈ Rn represents the realization of random variable

S(t). Thus, the observed degradation signals at t0, t1, . . . , tq can be expressed as s(t0), s(t1), . . . , s(tq).

Without loss of generality, assume t1 − t0 = t2 − t1 = . . . = tq − tq−1 = ϵt and let ym =
s(tm)−s(tm−1)

tm−tm−1
,

for m = 1, . . . , q. ym can be expressed as a vector ym = (ym,1, . . . , ym,i, . . . , ym,n)′ where ym,i =

1
tm−tm−1

∫ tm
tm−1

(
κi +

∑
j,i δ j,ih j(s j(v))

)
dv+ Bi(tm)−Bi(tm−1)

tm−tm−1
(using equation (5.1.3)). For applications where

the interval between two consecutive monitoring epochs is short (i.e. ϵt is small), we can use the

following approximation for ym,i: 1
tm−tm−1

∫ tm
tm−1

(
κi +

∑
j,i δ j,ih j(s j(v))

)
dv ≈ κi +

∑
j,i δ j,ih j(s j(tm−1)).

Recall that ri(tm−1) = κi +
∑

j,i δ j,ih j(s j(tm−1)). Thus, the distribution of ym,i can be approximated

using a normal distribution with the following parameters,

ym,i ∼ N(ri(tm−1), σ2
i /(tm − tm−1)).

Therefore, ym ∼ MVN
(
r(tm), 1

ϵt
Σ
)
, where r(t) ∈ Rn,r(t) = (r1(t), . . . , rn(t))′, Σ ∈ Rn×n, and

Σ = diag{σ2
1, . . . , σ

2
n}. Furthermore, the times at which DRIs occur correspond to the change-points

in the mean of ym for m ∈ {1, 2, . . . , q}. If we denote the number of change-points by L (L < q) and

let G = {t0, t1, t2, . . . , tq} represent the set of observation times, we can define p = (p1, p2, . . . , pL)′

where p ∈ GL, as the vector of change-points in r(t).

As a result, r(t) = (r1(t), . . . , rn(t))′ such that ri(t) represents the degradation rate of component

Ci at time t; and p1, p2, . . . , pL represent the times at which DRI events occur. Recall that we assume

when a DRI event occurs, it changes the degradation rates of the affected components. Hence, for

any two consecutive DRI times, say pℓ−1 and pℓ, the vector of degradation rates r(t) remains a

constant vector, which is denoted by µℓ, as shown in Figure 5.1.2. In this figure, the degradation

rates of components are represented by the slopes of dashed line segments. Therefore, r(t) is a
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Figure 5.1.2: r(t) as a piecewise constant function.

piecewise constant function and can be expressed as follows:

r(t) =



µ1 t0 ≤ t < p1

µ2 p1 ≤ t < p2

. . . . . .

µL pL−1 ≤ t < pL

µL+1 pL ≤ t ≤ tq.

The challenge now is to identify these change-points. Many researchers have addressed the

problem of change-point detection using various approaches, such as Schwarz criterion ([111]), the

Bayesian approach ([69]), the non-parametric approach ([72]), the penalized likelihood approach

([8]) and other techniques. In [111], the authors developed Schwarz’ criterion (BIC) for model

selection with independent and identically distributed observations from the exponential family.

In [144], the authors examined Schwarz’ criterion for change-point detection and established the

consistency of the estimator for the number of change-points. In our framework, we present a

three-step algorithm based on Schwarz’ criterion to estimate the change-points in r(t), and hence

the function, h(·).

First, we estimate the vector p for a given number of change-points, L, where L = 1, . . . , Lmax.
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Here, Lmax can be a pre-specified maximum value of L. Next, the optimal value of L and the corre-

sponding p is then chosen using Schwarz’ criterion. In the third step, we identify the “influencing

component” at each interaction and estimate the corresponding interaction thresholds. Once the

interaction state function has been estimated, it can be used to estimate κ and σ2.

Step 1: Fix the number of change-points L and compute the MLEs of p,µ1, . . . ,µℓ, . . . ,µL+1, and

σ2 by maximizing the following likelihood function:

fp(p,µ1, . . . ,µL+1,σ
2|y1, . . . , yq)

=

(
ϵt√

(2π)n|Σ|

)q L∏
ℓ=0

exp

−ϵt

2

pℓ≤tm<pℓ+1∑
tm∈G

(ym − µℓ+1)′Σ−1(ym − µℓ+1)


 , (5.1.4)

where p0 ≡ t0, pL+1 ≡ tq, and |Σ| represents the determinant of Σ.

For moderate values of L, we can maximize likelihood function fp for each given p, and obtain

a global maximum for fp for all possible values p. Given p, the likelihood function is maximized at

σ2 = σ̂2
p and µℓ = µ̂p,ℓ where,

µ̂p,ℓ =
ϵt

pℓ − pℓ−1

pℓ−1≤tm<pℓ∑
tm∈G

ym and σ̂2
p =

ϵt

q

L∑
ℓ=0

pℓ≤tm<pℓ+1∑
tm∈G

(ym − µ̂p,ℓ+1)2.

Here, the square of any vector x is defined as x2 ≡ (x2
1, x

2
2, . . . , x2

n)′ for x = (x1, x2, . . . , xn)′.

For each p ∈ GL with constraint p1 < p2 < . . . < pL, we substitute σ̂2
p and µ̂p,ℓ in

fp(p,µ1, . . . ,µL+1,σ
2|y1, . . . , yq) for ℓ = 1, . . . , L. Note that p0 ≡ t0 and pL+1 ≡ tq. The likelihood

function is maximized at p = p̂L where,

p̂L = arg max
p∈G,p1<...<pL

fp(p, µ̂p,1, . . . , µ̂p,L+1, σ̂
2
p|y1, . . . , yq).

This procedure works well for moderate values of L. For large L (e.g. L > 6), we can utilize the

dynamic programming technique developed by [5].

Step 2: This step focuses on selecting the optimal number of change-points, L, using Schwarz’

criterion. The Schwarz’ criterion (BIC) is expressed as follows:

S C(L) =
q
2

log ||σ̂L||2 + L log q,

where ||σ̂L|| is the Euclidean norm of σ̂L, and σ̂2
L is the calculated MLE of σ2 that corresponds to

p̂L.
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If we let L̂ denote an estimate of the optimal value of L, then L̂ minimizes based on Schwarz’

criterion given below,

L̂ = arg min
L=1,2,...,Lmax

[q
2

log ||σ̂L||2 + L log q
]
. (5.1.5)

Once L̂ is calculate, we denote the corresponding estimates of pL, σ2
L, and µℓ as p̂, σ̂2, and µ̂ℓ,

respectively. These values will be used to estimate the parameters of h(·), namely Mi’s and gi,m’s,

in the following step.

Step 3: This step focuses on estimating the parameters of h(·), namely Mi’s and gi,m’s. As men-

tioned earlier, during each DRI event the degradation rates of the affected component increase,

while that of the influencing component remains unchanged. Hence, it is reasonable to assume that

at each DRI event, the influencing component is the component with the smallest change in degra-

dation rate (considering the signal noise). In other words, the influencing component at change-

point p̂ℓ is the component that corresponds to the minimal element of |µ̂ℓ+1 − µ̂ℓ|. Formally, let

I : G → {1, . . . , n} such that I(p̂ℓ) is a function that returns the index of the influencing component

at p̂ℓ, where p̂ = (p̂1, . . . , p̂ℓ, . . . , p̂L̂)′. That is,

I(p̂ℓ) = arg min
i=1,...,n

|µ̂ℓ+1,i − µ̂ℓ,i|,

where µ̂ℓ,i is the ith element of vector µ̂ℓ for i = 1, . . . , n and ℓ = 1, . . . , L̂, and CI(p̂ℓ) represents the

influencing component at time p̂ℓ.

Recall that at each DRI event there is exactly one influencing component, and at least one af-

fected component. Furthermore, each DRI event signals the transition of the influencing component

to a more severe degradation state. Thus, the number of transitions for a component, say Ci, is equal

to its number of degradation states minus one, Mi − 1. If we let M̂i denote the estimate of Mi, then

we have,

M̂i = 1 +
L̂∑
ℓ=1

1(I(p̂ℓ) = i), (5.1.6)

where 1(A) is the indicator function of condition A.

To estimate the signal thresholds for each degradation state, we begin by identifying the influ-

encing component at change-point p̂1, CI( p̂1), using the function I(p̂ℓ). Next, we estimate g{I(p̂1),1}

using the amplitude of the degradation signal of CI(p̂1) at time p̂1, i.e., ĝ{I(p̂1),1} = sI(p̂1)(p̂1). For

change-point p̂2, if the influencing component is still CI(p̂1), i.e., I(p̂1) = I(p̂2), we set ĝ{I(p̂1),2} =
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sI(p̂1)( p̂2); otherwise, we set ĝ{I( p̂2),1} = sI(p̂2)( p̂2). We continue this procedure for p̂3, . . . , p̂L̂ and

obtain the estimate of all gi,l for m = 1, . . . , M̂i−1. Given M̂i’s and ĝi,m, hi(·) is estimated as follows:

ĥi(si(t)) =



0 si(t) < ĝi,1

1 ĝi,1 ≤ si(t) < ĝi,2

. . . . . .

M̂i si(t) ≥ ĝi,M̂i−1

. (5.1.7)

Given ĥi(si(t))’s and σ̂2
i ’s, the MLE of κ and ∆ can be expressed using equation (5.1.3),

fd(κ,∆|y1, . . . , yq, ĥ, σ̂
2)

=

q∏
m=1

(√
ϵt

(2π)n|Σ̂|
exp

{
−ϵt

2
[ym − (κ + ∆′ × ĥ(s(t)))]′Σ̂

−1
[ym − (κ + ∆′ × ĥ(s(t)))]

})
,

where Σ̂ = diag{σ̂2
1, . . . , σ̂

2
n} and ĥ(s(t)) = (ĥ1(s1(t)), . . . , ĥn(sn(t)))′. fd(κ,∆|y1, . . . , yq) is maxi-

mized at ∆ = ∆̂ and κ = κ̂, where A = [ai, j], B = [bi, j], e = (e1, . . . , en)′, and

∆̂ = A−1B, (5.1.8)

κ̂ =
s(tq)

tq
− 1

q
∆̂

q∑
m=1

s(tm−1), (5.1.9)

ai, j =
ϵt

q

q∑
m=1

ĥi(si(tm))
q∑

m=1

ĥ j(s j(tm)) − ϵt

 q∑
m=1

ĥi(si(tm))ĥ j(s j(tm))

 , (5.1.10)

bi, j =
s j(tq)

q

q∑
m=1

ĥ j(s j(tm)) −
q∑

m=1

[s j(tm) − s j(tm−1)]ĥi(si(tm)). (5.1.11)

The proposed algorithm and equations (5.1.8)–(5.1.11) provide the MLEs of (κ,σ2,∆) for com-

ponents of a single system. We can also use a historical data set that consists of degradation signals

from N independent systems. In this case, we can apply a two-stage procedure similar to the one

proposed in [84] to obtain estimates for the N systems. To do this, we first obtain the MLEs of

(κ,σ2,∆) for each individual system. Since ∆ is deterministic, it can be estimated using a sample

average of its MLEs. For κ̂ and σ̂2, we fit their MLEs obtained from the individual systems to the

desired prior distributions. Once these parameters are estimated, the degradation model can now be

applied to estimate the residual lifetimes of interdependent components of systems that are func-

tioning in the field. Real-time signal observations from the components of these fielded systems are
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used to update the stochastic parameters of the degradation model based on the latest degradation

states of these components and their interactions. Consequently, more accurate predictions of their

residual life distributions can be obtained.

5.1.3 Updating the Degradation Model Using Real-Time Degradation Signals

In this section, we discuss a Bayesian updating framework that utilizes in-situ degradation sig-

nals from components of fielded systems in order to update their residual lifetime predictions.

Specifically, the observed degradation signals are used to update the prior distributions of κ and

σ2. First, we assume that the prior distribution of σ2
i follows an inverse Gamma distribution,

i.e. σ2
i ∼ Γ

−1(ξi, θi). Γ−1(ξ, θ) represents an inverse Gamma distribution with shape parame-

ter ξ and scale parameter θ. Conditional on σ2
i , assume that κi has a normal prior distribution

κi|σ2
i ∼ N(µi, τiσ

2
i ) for i = 1, . . . , n, where N(µ, σ2) represents a normal distribution with mean

µ and variance σ2. These two prior distributions are chosen for a few pragmatic reasons. First,

the gamma distribution encompasses a number of important distributions (e.g., exponential, Erlang,

and chi-square); second, the normal distribution is widely used to model a mixture of populations;

third, such prior distributions yield a closed-form density function of the posterior distributions (see

Proposition 5.1.1 by Berger (1985)) that is easy to use.

Now, consider a system operating in the field that consists of n critical components. Assume

that we can monitor (in real-time) the degradation signals of these critical components at times

t∗0, t
∗
1, . . . , t

∗
k , where t∗k represents the time of the most recent observation epoch. Denote the corre-

sponding signal observations by s(t∗0), s(t∗1), . . . , s(t∗k), respectively, where s(t∗m) = (s1(t∗m), s2(t∗m), . . . , sn(t∗m))′,

for m = 0, 1, . . . , k. Furthermore, assume ϵ∗t = t∗1 − t∗0 = t∗2 − t∗1 = . . . = t∗k − t∗k−1. Let S∗k represent

the set of real-time signal observations up to time t∗k , i.e., S∗k = (s(t∗0), s(t∗1), . . . , s(t∗k)). Using Propo-

sition 5.1.1, we can express the posterior distributions of (κi, σ
2
i ) given S∗k, where κi is the inherent

degradation rate of component Ci and σ2
i is its diffusion parameter.

Proposition 5.1.1. (Berger, 1985) Given S∗k, the posterior probability density function (p.d.f.) of

(σ2
i , κi), denoted by πi(κi, σ

2
i |S∗k), is given by

πi(κi, σ
2
i |S∗k) = πi,1(κi|σ2

i ,S∗k)πi,2(σ2
i |S∗k),
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where πi,1(κi|σ2
i ,S∗k) represents the p.d.f. of a normal distribution with mean µ̃i and variance τ̃iσ

2
i ,

and πi,2(σ2
i |S∗k) represents the p.d.f. of an inverse Gamma distribution with shape parameter ξ̃i and

scale parameter θ̃i. Here, µ̃i, τ̃i, ξ̃i, and θ̃i for i = 1, . . . , n are computed as follows:

µ̃i =
µi + ϵ

∗
t τi

∑k
m=1 xi,m

1 + kτiϵ
∗
t

,

τ̃i =
1

kϵ∗t τi + 1
τi,

ξ̃i = ξi + k/2,

θ̃i = θi +
ϵ∗t
2

k∑
m=1

(xi,m − x̄i)2 +
kϵ∗t (x̄i − µi)2

2(1 + kϵ∗t τi)

where xi,m =
si(t∗m)−si(t∗m−1)

ϵ∗t
−∑

j,i s j(t∗m)δ j,i and x̄i =
1
k
∑k

m=1 xi,m for m = 1, . . . , k.

Given the observed degradation signals, S∗k, the posterior distribution of σ2
i follows an inverse

Gamma distribution, i.e., σ2
i |S∗k ∼ Γ−1(ξ̃i, θ̃i), and the posterior distribution of κi|σ2

i follows a

normal distribution, i.e., κi|σ2
i ,S∗k ∼ N

(
µ̃i, τ̃σ

2
i

)
. In Proposition 5.1.2, we show that the posterior

marginal distribution of κi for i = 1, . . . , n follows a T distributions.

Proposition 5.1.2. Ifσ2
i ∼ Γ

−1(ξi, θi) and κi|σ2
i ∼ N(µi, τiσ

2
i ), the marginal distribution of κi follows

T distribution T (2ξi, µi, τi/(ξiθi)).

Proof. The p.d.f. of a random variable X, which follows T distribution T (α, µ, γ2), is expressed as

follows

fT (x) =
Γ[(α + 1)/2]
γ(απ)1/2Γ(α/2)

(
1 +

(x − µ)2

αγ2

)−(α+1)/2

.

Proposition 5.1.2 can be proven by integrating over σ2
i the joint probability density of κi and σ2

i .

The details are omitted in this paper. �

Thus, by Proposition 5.1.2, the posterior marginal distribution of κi denoted by κi|S∗k follows a

T distribution expressed as κi|S∗k ∼ T
(
2ξ̃i, µ̃i,

τ̃
ξ̃iθ̃i

)
for i = 1, . . . , n. If we let κ∗i and σ∗2i denote the

posterior means of κi and σ2
i , then κ∗i and σ∗2i can be estimated using the following expressions.

κ∗i = E(κi|S∗k) = µ̃i, and σ∗2i = E(σ2
i |S∗k) =

θ̃i

(ξ̃i − 1)
. (5.1.12)

The updated values of κ∗i and σ∗2i can be used to revise the predicted residual life distribution of

component Ci, for i = 1, . . . , n. The updating process can be performed each time when new

degradation signals are observed.
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5.1.4 Estimating the Residual Life Distributions of Components Using Real-Time Degrada-
tion Signals

The residual life distribution of a partially degraded component is the distribution of the time it

takes for a partial degradation signal to reach a predefined failure threshold. If we let Ri,k denote the

first-passage time of the degradation signal S i(t) to a threshold level di, given that it has not crossed

di up to time t∗k , then the random variable Ri,k represents the residual lifetime of component Ci at

time tk. Thus, the residual lifetime can be written as Ri,k = inf{u > 0 : S i(t∗k + u) ≥ di} and express

its cumulative distribution function (c.d.f.) given (κ∗i , σ
∗2
i ,S∗k) as follows:

P(Ri,k ≤ t − t∗k |κ∗i , σ∗2i ,S∗k) = P

 sup
t∗k<u≤t

S i(u) ≥ di

∣∣∣∣∣∣∣ κ∗i , σ∗2i ,S∗k

 . (5.1.13)

We note that given (κ∗i , σ
∗2
i ,S∗k), the degradation signal can be characterized by two terms

S i(t) = ϑi,k(t) + σ∗i Wi(t − t∗k)

where Wi(t) represents a standard Wiener process, and ϑi,k(v) = si(t∗k)+
∫ t

t∗k

(
κ∗i +

∑
j,i δ j,ih j(S j(v))

)
dv

represents the underlying path of the degradation process for component Ci after time t∗k . In Figure

5.1.2, ϑi,k(t) is represented by the dashed line segments and the S i(t) is represented by the curves.

Hence, ϑi,k(t) captures the major degradation characteristics of component Ci and and its DRIs with

other components. Since the actual degradation process ϑi,k(t) is not observable due to the signal

noise in many applications, we estimate the properties of ϑi,k(t) by examining the degradation signal

S i(t).

The decomposition above can be used to evaluate the distribution of Ri,k through the expression

below.

P(Ri,k > t − t∗k |κ∗i , σ∗2i ,S∗k) = P
(
Wi(v − t∗k) <

di − ϑi,k(v)
σ∗i

,∀ t∗k < v < t
)
. (5.1.14)

Recall that due to interactions between the degradation processes, the degradation of component

Ci is affected by the influencing component C j, for j , i. This can be seen by noting that ϑi,k(v)

depends on S j(v), for any j , i. Since S j(v) is a stochastic process with its own Brownian motion

term W j(v) representing signal noise, this makes ϑi,k(v) directly dependent on W j(v)’s. Due to

this dependency, estimating the exact future evolution of ϑi,k(v), and hence the distribution of Ri,k

becomes very challenging.
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To overcome this issue, we propose an approximation for the future evolution of ϑi,k(v) by

dropping the Brownian motion term W j(v) in S j(v). Since W j(v) only represents the signal noise

for component C j, this assumption can be considered a reasonable one. As a result, ϑi,k(t) can be

approximated as

ϑ̂i,k(t) = si(t∗k) +
∫ t

t∗k

κ∗i +∑
j,i

δ j,ih j(ϑ̂ j,k(v))

dv.

The approximated degradation path ϑ̂i,k(t) is a deterministic piecewise linear function in t for t >

t∗k . To see this, assume that at time tk, there are nk future DRI events that occur at the following times

v1, v2, . . . , vnk , such that t∗k ≡ v0 < v1 < v2 < . . . < vnk . This implies that during the interval [vℓ−1, vℓ),

the degradation state function h j(ϑ̂ j,k(t)) remains constant for t ∈ [vℓ−1, vℓ), ℓ = 1, . . . , nk. Thus, if

h j(ϑ̂ j,k(t)) = ζ j,ℓ for t ∈ [vℓ−1, vℓ), the slope of ϑ̂i,k(t) can be expressed as κ∗i +
∑

j,i δ j,iζ j,ℓ. A similar

scenario occurs at subsequent time intervals, i.e., after the DRI event at time vℓ, the slope changes

due to the effect of degradation interaction from other components and become κ∗i +
∑

j,i δ j,iζ j,ℓ+1,

and so forth.

We can therefore use this approximation to estimate the probability distribution expressed by

equation (5.1.14) as follows:

P(Ri,k > t − t∗k |κ∗i , σ∗2i ,S∗k) = P

Wi(v − t∗k) <
di − ϑ̂i,k(v)

σ∗i
,∀t∗k < v < t

 . (5.1.15)

If we let bi,k(t) ≡ di−ϑ̂i,k(t)
σ∗i

, the problem of estimating the distribution of the residual life becomes

equivalent to finding the first passage time probability of a Brownian motion given a piecewise

linear boundary. It should be noted that boundary crossing probabilities for BM processes have

been well-studied in the literature (cf. [117], [128]). For instance, Siegmund [117] derived the

(conditional) probability that a BM process crosses the linear boundary in this interval, i.e., when the

function bi,k(t) is linear in [t∗k , t]. This result was later extended to the case where the boundary was

a piecewise linear function by Wang and Potzelberger in [128]. In this work, we rely on Theorem 1

of [128] to approximately estimate the residual life distribution of a partially degraded component

that experiences degradation interactions with other components of a given system.

Theorem 5.1.1. (Wang and Potzelberger, 1997) Let t∗k ≡ v0 < v1 < v2 < . . . < vnk < t. Suppose

bi,k(t) is linear on [vℓ−1, vℓ], ℓ = 1, . . . , nk. Then for each v ∈ [t∗k , t], the complement of the first
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passage probability of a Brownian motion process, Wi(t), is given by

P
(
Wi(v − t∗k) < bi,k(v),∀t∗k < v < t

)
≈ E[Hi,k(Wi(v1), . . . ,Wi(vnk ))], (5.1.16)

where

Hi,k(x1, x2, . . . , xnk ) =
nk∏
ℓ=1

{
1(xℓ < bi,k(vℓ))

(
1 − exp

[
−2(bi,k(vℓ−1) − xℓ−1)(bi,k(vℓ) − xℓ)

vℓ − vℓ−1

])}
.

Equation (5.1.16) is not easy to compute because it requires multidimensional integration. To

circumvent this complication, we use a Monte-Carlo simulation procedure to estimate the right-hand

side of (5.1.16). The details can be found in [128].

5.2 Numerical Studies

In this section, we investigate the performance of our proposed DRI degradation model. We focus

on evaluating the accuracy of predicting the residual lifetimes of partially degraded components

from a hypothetical system in which components are assumed to exhibit degradation interactions.

We study several scenarios for various key model parameters. Specifically, we investigate the impact

of different levels of degradation signal noise, which is captured by σ2
i of our model. This is

important because it allows us to evaluate the maximum signal noise level beyond which changes in

the degradation rates, which result from interaction, are masked by the noise. Second, we investigate

the impact of different magnitudes of degradation interaction. In other words, we study the effects

of different levels by which the rate of the degradation signal changes at a DRI event, i.e., δi, j

for any two components Ci and C j. This enables us to identify the lowest level of rate changes

resulting from DRIs at which our model becomes almost equivalent to models that do not consider

any interactions between the degradation processes or simply assume independence. Finally, we

study the effect of the number of degradation states Mi on the accuracy of predicting the residual

lifetime.

As a case in point, we consider a system with three constituent components. These components

are assumed to be interdependent, and thus their degradation processes exhibit interactions that are

manifested in their degradation signals. For the purpose of this study, we simulate degradation

signals for all three components using equation (5.1.3) with n = 3. To simulate degradation signals

for the different scenarios, we consider two experimental settings. The first experiment, Experiment
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I, focuses on different combinations of noise and interaction magnitude. We begin by considering

σ2
i which represents the level of signal noise for some component Ci. Recall that σ2

i is the diffusion

parameter of the signal model and has a prior distribution that is assumed to be an inverse-Gamma

distribution, i.e., σ2
i ∼ Γ

−1(ξi, θi). Next, we note that δi, j represents the magnitude of the DRI event,

i.e., the incremental change in the degradation rate of component C j when component Ci transitions

to a more severe state. To facilitate our simulation, we start with a baseline setup with parameter

values chosen according to Table 5.2.1. We then define two scale factors, m1 and m2. m1 is used to

define different noise levels whereas m2 is used to scale δi, j. Thus, for the first experiment, we use

the following simulation settings.

Experiment I: (Assessing the effects of σ2
i and δi, j). Suppose

(θi, δi, j) ∈ {(m1 × θbase
i ,m2 × δbase

i, j ) : m1,m2 = 1, 2, . . . , 20}.

Thus, the prior mean of σ2
i equals 0.1, 0.2, . . . , 1.9, 2.0.

In the second experiment, we study the relationship between the accuracy of the predicted RLDs

and the number of degradation states Mi. We also define a scaling factor m3 for the number of

degradation states. The simulation settings for Experiment II are summarized below.

Experiment II: (Assessing the effect of Mi). Suppose Mi ∈ {Mbase
i + m3 : m3 = 0, 1, . . . , 9}.

For each scenario, we simulate component degradation signals for 100 systems. For each sys-

tem, the degradation signals of its components are simulated using the following procedure:

Step C.1: For i = 1, . . . , 3, sample from the prior distributions of σ2
i and κi according to

Experiments I and II. The realizations are denoted by σ̃2
i and κ̃i.

Step C.2: Set si(0) = 0, use σ̃2
i and κ̃i to simulate the degradation signal si(t), i = 1, . . . , 3

according to the model below until it first hits the failure threshold di, i.e., simulate until time

Li, where Li = inf{u ≥ 0 : si(u) ≥ di} represents the lifetime of component Ci:

si(t) = si(0) +
∫ t

0

κ̃i +
∑
j,i

δ j,ih j(s j(v))

 dv + σ̃iWi(t).
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Table 5.2.1: Baseline parameter values for the discrete model.

Component Index Component C1 Component C2 Component C3

di 300 300 300

Mbase
i 3 3 3

µi 1.8 1.4 2.3

τi 0.2 0.3 0.1

ξi 92 92 92

θbase
i 9.1 9.1 9.1

δbase
1,i 0 0.12 0.23

δbase
2,i 0.04 0 0.02

δbase
3,i 0.05 0.07 0

Table 5.2.2: Results for estimated baseline parameters.

Component Index Component C1 Component C2 Component C3

M̂base
i 3 3 3

µ̂i 1.82 1.43 2.23

τ̂i 0.32 0.26 0.18

ξ̂i 87 95 98

θ̂base
i 9.2 8.9 9.0

δ̂base
1,i 0 0.119 0.231

δ̂base
2,i 0.043 0 0.022

δ̂base
3,i 0.046 0.077 0
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Figure 5.2.1: Example of simulated degradation signals from a system of three components.

Figure 5.2.1 provides a plot of a sample of simulated degradation signals using the baseline

values defined in Table 5.2.1 and the following values for scaling factors: m1 = 3, m2 = 10, and

m3 = 0. The degradation signals are divided equally into two groups. The first group consists of 50

randomly chosen degradation signals. This group represents the historical degradation database and

is used to estimate the deterministic and stochastic parameters of our degradation model. Specifi-

cally, these degradation signals are used to estimate matrix ∆, and the prior distributions of κ andσ2.

The results of the estimated baseline parameters are summarized in Table 2. The second group con-

sists of the remaining 50 signals, hereafter referred to as validations signals. These signals are used

to emulate in-situ component degradation signals that are observed from systems still operating in

the field. The individual signal observations associated with each component are used to update the

prior distributions of the stochastic model parameters, and in turn revise its predicted residual life

distribution. Equation (5.1.15) is used to compute the updated RLDs using the validation signals.

To evaluate the performance of our proposed model, we compare the predicted lifetime of each

component at different life percentiles with its actual failure time Ti for i = 1, . . . , 3. Specifically, the

predicted lifetimes are evaluated at the 50th, 70th, and 90th life percentiles. To do this, let T̂i be the

predicted lifetime of component Ci. T̂i is calculated using the following expression, L̂i = t∗k + R̂i,k,

where R̂i,k is the median of the posterior RLD updated using the degradation signals of component

Ci (for i = 1, . . . , 3) that have been observed up to time t∗k . Note that T̂i is evaluated at each life

percentile. In other words, for the three life percentiles defined above, t∗k = 0.5Ti, t∗k = 0.7Ti, and
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t∗k = 0.9Ti. Corresponding prediction errors are then computed for each life percentile using the

following expression

ei =
|Ti − T̂i|

Ti
× 100.

The overall prediction error for all three components of a given system is given by ē =
∑3

i=1 ei/3.

To demonstrate the importance of modeling degradation interactions, we apply a benchmark

model that was developed in [47] to the same set of simulated signals. We also compute the cor-

responding prediction errors at the same life percentiles. We could have chosen other benchmark

approaches, but we focus on this specific model for the following reasons: (1) this benchmark model

is similar in spirit to our proposed model in that it models that degradation signal as a stochastic

process with a Brownian error term, however unlike our modeling approach it does not account

for any component interdependencies and degradation interactions; and (2) similar to our approach,

this benchmark model also utilizes real-time degradation signals to update the degradation model

and the component RLDs. Therefore, using this benchmark is a reasonable choice because it helps

demonstrate that any potential improvements in the accuracy of predicting residual lifetimes origi-

nate solely from the consideration of component DRIs.

Results of Experiment I. In Experiment I, we study how different levels of signal noise and

interaction magnitudes affect the accuracy of predicting a component’s residual lifetime. Figure 2(a)

shows six plots of the mean prediction error (in %) evaluated at three designated life percentiles.

The upper row summarizes the prediction errors from our proposed DRI model and the lower row

plots those resulting from applying the benchmark model. In both cases, the prediction errors are

computed using the validation degradation signals. Furthermore, prediction errors are evaluated for

20 different levels of signal noise, i.e., θi = m1 × θbase
i where m1 = 1, . . . , 20, and 20 different levels

of DRI magnitudes by which the degradation rate of an affected component can change at a DRI

event, i.e., δi, j = m2× δbase
i, j for m2 = 1, . . . , 20. The corresponding sample variance of the prediction

errors are shown in (Figure 2(b)).

The plots in Figure 2(a) illustrate that the average prediction errors (%) increase as the magni-

tude of interaction parameter δi, j increases. A similar trend can also bee seen as the signal noise
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(b) Sample Variance of Prediction Error

Figure 5.2.2: Prediction error from Group 1 simulation study. m1: signal noise. m2: component

interactions.
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Figure 5.2.3: Prediction error from Group 2 simulation study. m3: the number of degradation

states. Approach A: our proposed model. Approach B: the benchmark model.



increases. If we focus on the small values of m2, for example m2 = 0, it is obvious that the predic-

tion error increases as m1—scale parameter associated with the signal noise—increases for both the

DRI model and the benchmark model.

On the other hand, by comparing the plots of the upper and lower rows of Figure 2(a) along the

m2 axis, we can see that although the prediction error increases our approach performs significantly

better than the benchmark model. Intuitively speaking, increasing m2 implies that the effects of

degradation interactions become more pronounced, i.e., the changes in the degradation rates are

greater. It is therefore reasonable to conclude that our approach outperforms the benchmark model

because it captures the effects of DRIs.

By studying the plots from left to right, we can see that the average prediction error decreases

when the prediction is made at later life percentiles. We believe that one of the primary reasons for

this is the Bayesian updating procedure which incorporates the real-time behavior of each compo-

nent. Furthermore, the difference in prediction errors of our approach and those of the benchmark

decrease for predictions made at later life percentile. In fact, there is little difference between the

two models for relatively smaller values of m1 and m2 (< 10), at the 90th life percentile. One may at-

tribute this phenomenon to the fact that we expect to see significantly fewer degradation interactions

beyond the 90th percentile compared, for example, to the 50th percentile.

The plots of the variance of the prediction error shown in Figure 2(b) show that the values of

the error variance resulting from our approach are significantly lower than the benchmark. The

differences become more pronounced for larger values of m1 and m2. This observation may indicate

the relative robustness of our approach.

Results of Experiment II. This numerical experiment examines how the number of degradation

states affects the accuracy of predicting component RLDs. Recall that the degradation signals are

simulated with the number of degradation states Mi = Mbase
i +m3, m3 = 0, . . . , 9. Thus, Mi increases

as m3 increases. Figure 5.2.3 presents boxplots for prediction errors resulting from our approach

versus the benchmark model for different values of m3. Approach A represents the results of our

proposed model, and Approach B corresponds to the benchmark model [47].

It is clear that as the number of degradation states (characterized by m3) increases, the mean and

the variance of the prediction errors associated with the benchmark model (Approach B) increase
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significantly, whereas those corresponding to our model (Approach A) are relatively less affected.

We believe that when m3 increases, DRI events that take place between the components become

more evident. Since the benchmark model does not capture the effects of DRIs, which results in

higher prediction errors.

We can also see that the prediction errors at the 90th life percentile are lower than those at

the that at the 50th. Once again, we believe that this is because at the 90th percentile more real-

time degradation signals are used to update the degradation model. This observation echoes with

our observation from Experiment I, which indicates that updating the RLD using real-time signal

improves the prediction accuracy.
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CHAPTER VI

STOCHASTIC FRAMEWORK FOR SYSTEMS WITH CONTINUOUS

INTERACTIVE DEGRADATION SIGNALS
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This chapter focuses on modeling degradation-rate-interactions (DRIs) that occur in a continu-

ous manner. Specifically, changes in the degradation rate of a component is continuously affected

by the amplitudes of degradation signals of other components. To model such dynamics among

the degradation signals of components in a given system, we utilize the approach of SDE systems,

the coefficient matrix of which characterizes the inter-dependency among system components. One

major advantage of using an SDE approach is that we can exploit the mathematical tools of Ito’s for-

mulae and express the component RLDs in closed-form expressions. Once the degradation model is

established, we utilize the real-time degradation signals from the components of a system function-

ing in the field to update the model parameters and the component/system residual life distributions

in a Bayesian manner. To validate our methodology, we conduct a series of simulation studies for

testing the prediction accuracy with various of model parameters. The results are compared with

a benchmark model, which does not consider component interactions. We demonstrate that in-

corporating the effects of component interactions significantly improves the prediction accuracy of

RLDs.

The remainder of this chapter is organized as follows : Section 6.1 describes a SDE degra-

dation model that captures the continuous DRIs among the constituent components of a given

multi-component system with two special cases. In Section 6.3, we discuss how to estimate the

model parameters using a historical data set and update the established model as well as the com-

ponent/system RLDs using the real-time observations of degradation signals. In Section 6.4, we

present a series of simulation studies that evaluate the performance of the proposed model.

6.1 General Stochastic Degradation Framework

In this section, we present a method for stochastically modeling the degradation signals of dependent

components and how their degradation processes affect each other. We consider a system of n inter-

connected components, C1,C2, . . . ,Cn with degradation signals denoted by S 1(t), S 2(t), . . . , S n(t),

respectively. For notational convenience, we let S(t) = (S 1(t), S 2(t), . . . , S n(t))′.

We define ri(t) as the rate at which the degradation signal of component Ci increases (or de-

creases) over time. Hereafter, we refer to this as the degradation rate since the amplitude of the
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signal is correlated with physical degradation. Let r(t) = (r1(t), . . . , rn(t))′. Assume that r(t) con-

sists of two parts: (1) κ, where κ = (κ1, . . . , κn)′ represents the natural degradation rates of system

components, i.e., κi represents the degradation rate of component Ci without the effect of any inter-

actions from other components; and (2) h(S(t)), which captures the effects of DRIs (degradation-

rate-interactions) on the degradation rate. We assume that the degradation rates of system compo-

nents can be expressed as r(t) = κ + h(S(t)). Using this setup, the degradation signals of different

components in a system can be described by the following equation

dS(t) = [κ + h(S(t))]dt + dϵ(t), (6.1.1)

where ϵ(t) ∈ Rn represents the noise content in the degradation signals.

Equation (6.1.1) presents our stochastic DRI modeling framework. In other words, the ampli-

tude of the degradation signal and the path that it follows, both capture the degradation level of the

respective component in addition to the degradation effects resulting from other components in the

system. In this framework we make the following key assumptions:

(1) If two components exhibit a DRI, the degradation rate of one component is linearly increasing

in the degradation level of the other. That is, the function h(S(t)) assumes a linear form

h(S(t)) = ∆ × S(t), where ∆ ∈ Rn×n characterizes the magnitudes of DRIs. Recall that S(t) is

the amplitudes of the degradation signals and represents the degradation levels of components.

(2) Signal noise follows a Brownian motion process. That is, ϵ(t) = B(t), where

B(t) = (B1(t), . . . , Bn(t))′.

Here, B1(t), . . . , Bn(t) are independent Brownian motion processes with diffusion parameters

σ2
1, . . . , σ

2
n, respectively, i.e., Bi(t) ∼ N(0, σ2

i t) for i = 1, . . . , n. In other words, B(t) ∼

MVN(0,Π0t), where Π0 = diag{σ2
1, . . . , σ

2
n}.

(3) ∆ is a deterministic parameter that is fixed and determined by the characteristics of the sys-

tems, including the structure, the function, the operating condition of the systems as well as

the types of individual components, which can also be estimated using data.
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(4) κ and σ2, where σ2 = (σ2
1, σ

2
2, . . . , σ

2
n)′, are stochastic parameters that may vary even among

identical components due to the variations in the manufacturing processes, material inhomo-

geneities, and other factors, and other factors (cf. [47, 133]). Hence, these parameters are

assumed to follow some distributional form across the population of units, with those of the

individual device being an unknown “draw” from the population.

Given these assumptions, equation (6.1.1) can be rewritten in the following form:

dS(t) = [κ + ∆ × S(t)]dt + dB(t). (6.1.2)

Figure 6.1.1 provides an example of degradation signals from a system of 3 components with con-

tinuous DRIs.
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Figure 6.1.1: Example of degradation signals with continuous interactions in a 3-component sys-

tem.

6.1.1 Estimating Component Lifetime Distributions

For each component, say Ci, we assume that failure occurs when its degradation signal S i(t) crosses

a pre-specified threshold di. We let Ti be the failure time of component Ci. In this case, Ti is the first-

passage-time of S i(t) to di. However, estimating the first-passage probability of S i(t) is generally

very challenging, and a closed-form expression is usually unavailable. Here, we circumvent this

challenge by introducing an approximation:

P(Ti > t) ≈ P(S i(t) < di). (6.1.3)
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Similar approximations of failure probability have been utilized in many reliability publications

such as [132], [47], [134], and other papers. This technique is a very reasonable when the signal

noise (σ2
i ) is not too large. Hereafter, we use the “=” sign, instead of “≈”, in the expression of

(remaining) lifetime distributions.

To evaluate the probability in equation (6.1.3), we need to understand how degradation signals

S(t) evolve in future. To this end, we solve the system of stochastic differential equations (SDEs)

as described in equation (6.1.2) with initial condition S(0) = s0, where s0 represents the vector

of initial degradation levels for components in the system. [61] presented a general procedure for

the solving the system linear SDEs. Proposition 6.1.1 below applies this procedure and provides a

closed-form expression for the transition of S(t) given the values of (κ,σ2).

Proposition 6.1.1. For any t > 0, the solution to SDE system given (κ,σ2)

dS(t) = [κ + ∆ × S(t)]dt + dB(t)

S(0) = s0

is expressed as follows

S(t)|(κ,σ2) = exp(t∆) × s0 +

∫ t

0
exp[(t − s)∆] × κ ds +

∫ t

0
exp[(t − s)∆]dB(s). (6.1.4)

1

Proof. To solve for the SDE system, we introduce an integrating factor exp(−t∆), which is a matrix

exponential. Recall that for any matrix A, where A ∈ Rn×n, matrix exponential exp(A) is defined as

exp(A) =
∑∞
ℓ=0

1
ℓAℓ. Here, exp(−t∆) satisfies the following equation

d exp(−t∆) = −∆ × exp(−t∆)dt (6.1.5)

Next, we consider the differentiation of exp(−t∆)× S(t). By Ito’s formula in n-dimensions, we have

d(exp(−t∆) × S(t)) = d exp(−t∆) × S(t) + exp(−t∆) × dS(t) + 0.

1In the proofs of Proposition 6.1.1, Proposition 6.1.2, and Corollary 6.1.1 – Corollary 6.1.4, all expressions are
conditional on the values of (κ,σ2). We compress the of condition of (κ,σ2) in these proofs for notational convenience.
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Plug in equations (6.1.2) and (6.1.5) for the expressions of d exp(−t∆) and dS(t), respectively. We

have

d(exp(−t∆) × S(t)) = −∆ exp(−t∆)S(t)dt + exp(−t∆){[κ + ∆ × S(t)]dt + dB(t)} (6.1.6)

= exp(−t∆) × κ dt + exp(−t∆)dB(t) (6.1.7)

Integrating both sides from 0 to t, we have

exp(−t∆ × S(t)) − s0 =

∫ t

0
exp(−s∆) × κ ds +

∫ t

0
exp(−s∆)dB(s),

where the integration is calculated matrix-coefficient-wise. For instance, we denote the (i, j)th

element of matrix exp(−s∆) by ei, j(s), which a function of variable s. Thus, the first integral∫ t
0 exp(−s∆) × κ ds can be expressed as follows∫ t

0
exp(−s∆) × κ ds =

∫ t

0

n∑
j=1

e1, j(s)κ j ds, . . . ,
∫ t

0

n∑
j=1

en, j(s)κ j ds


′

=

 n∑
j=1

κ j

∫ t

0
e1, j(s)ds, . . . ,

n∑
j=1

κ j

∫ t

0
en, j(s)ds


′

.

Similarly, the second integral
∫ t

0 exp(−s∆)dB(s) can be expressed as∫ t

0
exp(−s∆)dB(s) =

 n∑
j=1

∫ t

0
e1, j(s)dB1(s), . . . ,

n∑
j=1

∫ t

0
en, j(s)dBn(s)


′

.

Note that the inverse matrix of exp(t∆) is exp(−t∆). We multiply both sides by exp(t∆) and solve

for S(t):

S(t) = exp(t∆) × s0 +

∫ t

0
exp[(t − s)∆] × κ ds +

∫ t

0
exp[(t − s)∆]dB(s).

�

Based on the results of Proposition 6.1.1, S(t)|(κ,σ2) is a multivariate Gaussian process. Thus,

for any t > 0, S(t)|(κ,σ2) follows a multivariate normal distribution. Proposition 6.1.2 below pro-

vides the mean vector and the covariance matrix of S(t), given the values of κ and σ2.

Proposition 6.1.2. For any given t > 0, S(t)|(κ,σ2) follows a multivariate normal distribution with

mean vector µ(t)|(κ,σ2) and covariance matrix Σ(t)|(κ,σ2), where

µ0(t)|(κ,σ2) = exp(t∆) × s0 +

∫ t

0
exp[(t − s)∆] × κds (6.1.8)

Σ0(t)|(κ,σ2) =
∫ t

0
exp[(t − s)∆] ×Π0 × exp[(t − s)∆]T ds (6.1.9)
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Proof. Based on Equation (6.1.4),

µ0(t) = E(exp(t∆) × s0) + E
(∫ t

0
exp[(t − s)∆] × κds

)
+ E

(∫ t

0
exp[(t − s)∆]dB(s)

)
.

Note that exp(t∆) × s0 and
∫ t

0 exp[(t − s)∆] × κds are deterministic values for any give t, whereas

E[
∫ t

0 exp[(t − s)∆]dB(s)] = 0. Thus,

µ0(t) = exp(t∆) × s0 +

∫ t

0
exp[(t − s)∆] × κds.

Using the same facts, we have

Σ0(t) = cov
(∫ t

0
exp[(t − s)∆]dB(s)

)
= E

[(∫ t

0
exp[(t − s)∆]dB(s)

)
×

(∫ t

0
exp[(t − s)∆]dB(s)

)′]
As discussed in the proof of Proposition 6.1.1, exp[(t − s)∆] is an n × n matrix, each element of

which is function depending on (t − s). We denote the (i, j)th element of exp[(t − s)∆] by ei, j(t − s).

The multi-dimensional Ito’s integral is expressed as∫ t

0
exp[(t − s)∆]dB(s) =

 n∑
ℓ=1

∫ t

0
e1,ℓ(t − s)dBℓ(s), . . . ,

n∑
ℓ=1

∫ t

0
en,ℓ(t − s)dBℓ(s)

′ .
Thus, the (i, j)th element of Σ0(t), denoted by Σi, j(t), is calculated as follows

Σi, j(t) =E


 n∑
ℓ1=1

∫ t

0
ei,ℓ1(t − s)dBℓ1(s)

 ×
 n∑
ℓ2=1

∫ t

0
e j,ℓ2(t − s)dBℓ2(s)




=

n∑
ℓ1=1

n∑
ℓ2=1

E

(∫ t

0
ei,ℓ1(t − s)dBℓ1(s) ×

∫ t

0
e j,ℓ2(t − s)dBℓ2(s)

)
(6.1.10)

Since Bℓ1(t) and Bℓ2(t) are two independent Brownian motion processes for ℓ1 , ℓ2,

E

(∫ t

0
ei,ℓ1(t − s)dBℓ1(s) ×

∫ t

0
e j,ℓ2(t − s)dBℓ2(s)

)
= 0.

Hence, we can simplify the expression of Σi, j(t) as follows

Σi, j(t) =
n∑
ℓ=1

E

(∫ t

0
ei,ℓ(t − s)dBℓ(s) ×

∫ t

0
e j,ℓ(t − s)dBℓ(s)

)

=

n∑
ℓ=1

∫ t

0
ei,ℓ(t − s)e j,ℓ(t − s)σ2

ℓds

=

∫ t

0
exp[(t − s)∆]i· ×Π0 × exp[(t − s)∆′]· jds,
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where exp[(t− s)∆]i· represents the ith row of matrix exp[(t− s)∆], and exp[(t− s)∆′]· j the jth column

of matrix exp[(t − s)∆′]. Therefore, the covariance matrix Σ(t) can be expressed as follows

Σ0(t) =
∫ t

0
exp[(t − s)∆] ×Π0 × exp[(t − s)∆T ]ds.

�

This result provides a closed-form expression for the distribution of S(t) given (κ,σ2). The

resulting expressions of mean vector µ0(t)|(κ,σ2) and covariance matrix Σ0(t)|(κ,σ2) are in the

form of multi-dimensional integrals that depend explicitly on matrix exponential exp[(t − s)]. Both

of expressions (6.1.8) and (6.1.9) can be computed directly using mathematical software, such as

Matlab and Mathematica.

Proposition 6.1.2 can be used to compute the point estimate and the confidence interval of

component lifetimes, Ti’s. We denote the (100α)th percentile of Ti by t(i,α). For any 0 < α < 1, t(i,α)

can be computed by solving the following equation: P
(
S i(t(i,α)) > di

)
= α. Hence, we can compute

the median estimate of Ti (i.e. t(i,0.5)), and the 95% confidence interval of Ti (i.e.
(
t(i,0.025), t(i,0.975)

)
).

This result herein generalizes the method in [140], which presented a similar SDE model with

the assumption that ∆ is a full rank matrix. This assumption may not necessarily be satisfied in

many real world applications.

Example:

Here, we provide an illustrative example for using Proposition 6.1.2. We assume that model param-

eters (∆, s0, κ,σ
2) take the following values:

∆ =

 0 0

1 0

 , s0 =

 1

0

 , κ =

 1

0.5

 , and σ2 =

 1

4

 .
Thus, the DRI model dS(t) = [κ + ∆ × S(t)]dt + dB(t) can be written as follows:

dS 1(t) = dt + dB1(t) (6.1.11)

dS 2(t) = [S 1(t) + 0.5]dt + dB2(t) (6.1.12)

with initial conditions S 1(0) = 1 and S 2(0) = 0. Here, B1(t) and B2(t) are independent Brownian

motion processes with diffusion parameters 1 and 4, respectively, i.e., B1(t) ∼ N(0, t) and B2(t) ∼

N(0, 4t).
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In this example, there exists a one-way DRI between Components C1 and C2. Specifically,

the degradation level of C1 affects the degradation rate of C2 but not the vice versa. In terms of

their degradation signals, S 1(t) is a Brownian motion process independent from S 2(t), and S 2(t) is

affected by the amplitude of S 1(t). It can be shown directly using Equation (6.1.11) that S 1(t) =

S 1(0) + t + B1(t) follows a normal distribution N(1 + t, t) for any t > 0.

Next, we apply the results of Proposition 6.1.2 to compute the mean vector and covariance

matrix of S(t). We can compute the expressions of µ0(t)|(κ,σ2) and Σ0(t)|(κ,σ2) using the symbolic

function of Matlab for any ∆ ∈ Rn×n. The results are expressed as follows:

µ0(t)|(κ,σ2) =

 t + 1

t + (t+0.5)2

2 − 1
8

 (6.1.13)

Σ0(t)|(κ,σ2) =

 t t2
2

t2
2

[t(t2+12)]
3

 . (6.1.14)

In the expression above, the mean of S 1(t) is t + 1, and its variance is t. This is consistent with the

model of S 1(t) in Equation (6.1.11).

6.1.2 Two Special Cases of the Continuous DRI Model

In this subsection, we discuss two special cases of our proposed degradation model that considers

two different assumptions of ∆.

6.1.2.1 Special case (1): ∆ is a Diagonal Matrix.

We consider the case where a system components are independent and there is not form of degrada-

tion interaction. Thus for a system with n independent components we have ∆ = diag{λ1, . . . , λn},

where λ1, . . . , λn ∈ R. The magnitude of DRIs between any pair of components 0. Hence, equa-

tion (6.1.2) collapses to n independent equations: dS i(t) = [κi + λiS i(t)]dt + dBi(t), for i = 1, . . . , n,

where each equation characterizes the degradation signal of an individual component. Corollary

6.1.1 and Corollary 6.1.2 below provide the expression and the distribution of S i(t), respectively,

when ∆ is a diagonal matrix.

Corollary 6.1.1. If ∆ is a diagonal matrix expressed as ∆ = diag{λ1, . . . , λn}, for any i = 1, . . . , n,
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the future evolution of any component’s degradation signal is expressed as follows

S i(t)|(κi, σ
2
i ) = eλit s0,i +

κi

λi

(
eλit − 1

)
+

∫ t

0
eλi(t−s)dBi(s), (6.1.15)

where s0 = (s0,1, . . . , s0,n)′.

Proof. According to Proposition 6.1.1, the future evolution of S(t) can be expressed as

S(t) = exp(t∆) × s0 +

∫ t

0
exp[(t − s)∆] × κ ds +

∫ t

0
exp[(t − s)∆]dB(s) (6.1.16)

Note that the matrix exponential exp[t∆] is a diagonal matrix expressed as diag{exp(λ1t), . . . , exp(λnt)}.

Hence, the multi-dimensional integral
∫ t

0 exp[(t − s)∆] × κ can be expressed as follows∫ t

0
exp[(t − s)∆] × κds

=

(∫ t

0
exp[(t − s)λ1]κ1ds, . . . ,

∫ t

0
exp[(t − s)λn]κnds

)T

=

(
κ1

λ1
(eλ1t − 1), . . . ,

κn

λn
(eλnt − 1)

)T

(6.1.17)

Similarly,

exp(t∆) × s0 =
(
eλ1t s0,1, . . . , eλnt s0,n

)T

∫ t

0
exp[(t − s)∆]dB(t) =

(∫ t

0
exp[(t − s)λ1]dB1(t), . . . ,

∫ t

0
exp[(t − s)λn]dBn(t)

)T

.

Therefore, for any i = 1, . . . , n, the future evolution of S i(t) can be expressed as follows:

S i(t) = eλit s0,i +
κi

λi

(
eλit − 1

)
+

∫ t

0
eλi(t−s)dBi(s).

�

Corollary 6.1.2. For any given t > 0, S i(t)’s are independent with mean and variance expressed as

follows:

E(S i(t))|(κi, σ
2
i ) = eλit s0,i +

κi

λi

(
eλit − 1

)
(6.1.18)

var(S i(t))|(κi, σ
2
i ) =

σ2
i

2λi

(
e2λit − 1

)
(6.1.19)
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Proof. The expression of E(S i(t)) follows directly by taking the expectation of S i(t) in equation

(6.1.15). Recall we prove in Proposition 6.1.2 that

Σ(t) =
∫ t

0
exp[(t − s)∆] ×Π0 × exp[(t − s)∆T ].

When ∆ = diag{λ1, . . . , λn}, we have

exp[(t − s)∆] = exp[(t − s)∆T ] = diag{exp[(t − s)λ1], . . . , exp[(t − s)λn]}.

Hence, Σ(t) is also a diagonal matrix, which is expressed as follows:

Σ(t) =diag
{
σ2

1

∫ t

0
exp[2(t − s)λ1]ds, . . . , σ2

n

∫ t

0
exp[2(t − s)λn]ds

}
=diag

 σ2
1

2λ1

(
e2λ1t − 1

)
, . . . ,

σ2
n

2λn

(
e2λnt − 1

) (6.1.20)

Therefore, S i(t)’s are independent for i = 1, . . . , n with var(S i(t)) =
σ2

i
2λi

(
e2λit − 1

)
. �

Based on Corollary 6.1.2, the lifetime distribution of each component, say component Ci, can

be estimated independently:

P(Ti < t|(κi, σ
2
i )) ≈ P(S i(t) ≥ di|(κi, σ

2
i )) = Φ

(
E(S i(t)) − di√

var(S i(t))

∣∣∣∣∣∣ (κi, σ
2
i )
)
.

P(Ti < t) ≈ P(S i(t) ≥ di) = Φ
(
E(S i(t)) − di√

var(S i(t))

)
.

Also, when λ1 = · · · = λn = 0, this special case collapses to the conventional degradation model

for individual components (cf. [84], [47]).

6.1.2.2 Special case (2): ∆ is a Diagonalizable Matrix on R.

When ∆ is a diagonalizable matrix on R. That is, there exists matrix V ∈ Rn×n such that V−1∆V

is a diagonal matrix. Matrix V can be found using eigen-decomposition. In particular, assume that

∆ has eigen values λ1, . . . , λn and the corresponding eigen vectors v1, . . . , vn. Let V = (v1, . . . , vn),

thus V−1∆V = diag{λ1, . . . , λn}. This case encompasses a large variety of components whose degra-

dation processes interact with each other. For example, a real symmetric matrix is diagonalizable

on R. When Σ is a real symmetric matrix, i.e., ∆ = [δi, j] where δi, j = δ j,i, for i, j = 1, . . . , n, equa-

tion (6.1.2) characterizes the degradation signals from a system with n identical components with
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similar interaction characteristics among their degradation processes. In such systems, the DRI ef-

fects between any pair of components are identical, since the constituent components in the system

are identical. Corollary 6.1.3 and Corollary 6.1.4 below provide the expression and the distribution

of S(t) when ∆ is a diagonalizable matrix.

Corollary 6.1.3. Assume that ∆ is a diagonalizable matrix on R, the future evolution of S(t) can be

expressed by

S(t)|(κ,σ2) = V D1(t)V−1 × s0 + V D2(t)V−1 × κ + V ×
∫ t

0
D1(t − s)V−1dB(s), (6.1.21)

where D1(t) = diag
{
eλ1t, . . . , eλnt

}
and D2(t) = diag

{
eλ1 t−1
λ1

, . . . , eλnt−1
λn

}
.

Proof. Since V−1∆V = diag{λ1, . . . , λn}, matrix exponential exp(t∆) can be expressed as

exp(t∆) = V × diag{exp(λ1t), . . . , exp(λnt)} × V−1 = V × D1(t) × V−1.

Similarly, exp((t − s)∆) = V × diag{exp(λ1(t − s)), . . . , exp(λn(t − s))} × V−1. Thus, the multi-

dimensional integral
∫ t

0 exp((t − s)∆) × κds can be expressed as follows:∫ t

0
exp((t − s)∆) × κds =

∫ t

0
V × diag{exp(λ1(t − s)), . . . , exp(λn(t − s))} × V−1 × κds

= V ×
∫ t

0
diag

{
exp(λ1(t − s)), . . . , exp(λn(t − s))

}
ds × V−1 × κ

= V × diag
{

eλ1t − 1
λ1

, . . . ,
eλnt − 1
λn

}
× V−1 × κ

= V × D2(t) × V−1 × κ (6.1.22)

Similarly,
∫ t

0 exp((t − s)∆)dB(s) can be expanded as∫ t

0
exp((t − s)∆)dB(s) =

∫ t

0
V × D1(t − s) × V−1dB(s) = V ×

∫ t

0
D1(t − s) × V−1dB(s).

Therefore, based on equation (6.1.4), the expression of S(t) can be written as

S(t) = V D1(t)V−1 × s0 + V D2(t)V−1 × κ + V ×
∫ t

0
D1(t − s)V−1dB(s).

�
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Corollary 6.1.4. Assume that ∆ is a diagonalizable matrix on R. For any given t > 0, S(t) follows

a multivariate normal distribution with mean vector µ(t) and covariance matrix Σ(t), where

µ0(t)|(κ,σ2) = V D1(t)V−1 × s0 + V D2(t)V−1 × κ (6.1.23)

Σ0(t)|(κ,σ2) = V ×
∫ t

0
D1(t − s)V−1 ×Π0 × (V−1)T D1(t − s)ds × VT (6.1.24)

Proof. The expression of µ(t) follows by taking the expectation of S(t) in equation (6.1.21). Based

on Proposition 6.1.2, Σ(t) can be expressed as

Σ(t) =
∫ t

0
V D1(t − s)V−1 ×Π0 × (V D1(t − s)V−1)T ds

=

∫ t

0
V D1(t − s)V−1 ×Π0 × (V−1)T D1(t − s)VT ds

= V ×
∫ t

0
D1(t − s)V−1 ×Π0 × (V−1)T D1(t − s)ds × VT

�

Remark 6.1.1. Corollary 6.1.3 and Corollary 6.1.4 are developed on the assumption that ∆ is

diagonalizable on R. Variations of Corollary 6.1.3 and Corollary 6.1.4 can be developed to obtain

the expression of S(t) with other forms of ∆. For example, when ∆ is diagonalizable on C, a modified

version of Corollary 6.1.3 and Corollary 6.1.4 can be developed. Note that ∆ is a real-valued matrix.

The complex eigenvalues of ∆ show up in conjugate pairs. In this case, we would not be able to

obtain n separate SDEs by diagonalizing ∆. However, the resulting SDEs corresponding to the

complex eigenvalues can still be solved in pairs. In other words, we can equivalently solve multiple

SDE systems, each of which has two linear equations.

6.2 DRI Model with Instantaneous Component Replacement

In this section, we extend the proposed DRI model described by Equation (6.1.2) and consider the

scenario, in which the failed component is replaced instantaneously by a new component.

6.2.1 Estimating Time to the Next Replacement

We consider a relatively structured system where components are assumed to belong to two different

categories of lifetimes. One class of components has a relatively longer lifetime compared to the

other. In other words, we expect that components with shorter lifetime will be replaced multiple

115



times before any of the components that belong to the category of longer lifetimes. For illustrative

purposes, Figure 6.2.1 shows the replacement strategy for a hypothetical two-component system.

Assume that C1 has a relatively longer lifetime compared to C2 and that C1 and C2 are replaced

instantaneously once their degradation signals reach a predetermined failure threshold.

Time

Degradation Signal

Figure 6.2.1: Degradation signals of a two-component systems with instantaneous replacement.

The upper and lower plots in Figure 6.2.1 show the degradation signals of components C1 and

C2, respectively. We denote the time for the ℓth replacement by Uℓ, for ℓ = 1, 2, . . .. Note that

C1 is replaced at time U3 while C2 being the component with the shorter lifetime is replaced more

often at times, U1,U2,U4, . . . ,U7. Within the context of our DRI framework, we note that the

replacement points of the C2 become increasingly more frequent as the degradation signal of C1

increases. This can be seen by observing the difference between U5,U6 and U7. In other words,

as soon as component C2 is replaced, its degradation rate will follow a path that is dictated by the

amplitude of the degradation signal of component C1. The relationship between the two paths of the
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two degradation signals is governed by the DRI model that was discussed earlier in equation (6.1.2).

For instance, at U1 component C2 is replaced with a new unit. However, its lifetime becomes

significantly shorter, i.e., U2 − U1 < U1 due to its DRI with component C1. Similar observations

can be noticed for U5 − U4,U6 − U5, and U7 − U6.

Characterizing the dynamics of component DRIs with replacement is very challenging. In what

follow, we propose an iterative procedure to estimate the replacement times of components in a

series system. That is, the system fails if any of its constituent component fails. We assume that the

initial degradation states of all the components in the system are observable, which are represented

by a deterministic vector s0. Based on the proposed DRI model, we can estimate the failure time

of the system as the first failure time of components in the system. When the failure of a compo-

nent occurs, we replace the failed component with a new component (with degradation level 0) and

monitor the degradation states of all components in the system. Using the observed degradation

states, we can again use the proposed DRI model and estimate the distribution of the next replace-

ment time. Hence, we can iteratively estimate the future replacement times for a finite replacement

horizon.

• Replacement 1: Estimating U1 given S(0) = s0.

U1 is equivalent to the time, at which the first failure event occurs. That is U1 = min{T1, . . . , Tn},

where Ti, i = 1, . . . , n, represents the lifetime of component Ci. Hence, the distribution of U1,

given s0, can be computed as follows

P(U1 > t|S(0) = s0, (κ,σ2)) = P(T1 > t, . . . , Tn > t|S(0) = s0, (κ,σ2))

≈ P(S 1(t) < d1, . . . , S n(t) < dn|S(0) = s0, (κ,σ2))

= P(S(t) < d|S(0) = s0, (κ,σ2)) (6.2.1)

By Proposition 6.1.2, S(t), given S(0) = s0, follows a multivariate normal distribution

MNV(µ0(t)|(κ,σ2),Π0(t)|(κ,σ2)).

Thus, the distribution of U1 can be computed as follows:

P(U1 > t|S(0) = s0, (κ,σ2)) = φ0,t(d),
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where φ0,t(·) is the c.d.f. of the multivariate normal distribution with mean vector µ0(t)|(κ,σ2)

and covariance matrix Π0(t)|(κ,σ2).

• Replacement 2: Estimating U2 given (U1 = u1,S(u1) = s(u1)).

Let u1 be a realization of U1. We replace the failed component and monitor the degradation

signals of the rest of the components in the system. Let the observed degradation signals at

U1 be denoted by s(u1). The future evolution of degradation signals S(t) before the second

replacement U2 can be described by the following expressions:

dS(t) = [κ + ∆ × S(t)]dt + dB(t), for t > u1, (6.2.2)

S(u1) = s(u1).

Once again, using Proposition 6.1.2 we see that S(t)|(U1 = u1,S(u1) = s(u1), κ,σ2) follows

a multivariate normal distribution. We denote the mean vector and the covariance matrix of

S(t)|(U1 = u1, S(u1) = s(u1), κ,σ2) at time u1 as µ1(t)|(κ,σ2) and Σ1(t)|(κ,σ2), respectively.

Hence, the conditional distribution of U2 can be computed as

P(U2 > t|U1 = u1, S(u1) = s(u1), κ,σ2) = φ1,t(d),

where φ1,t(·) is the c.d.f. of the multivariate normal distribution with mean vector µ1(t)|(κ,σ2)

and covariance matrix Σ1(t)|(κ,σ2). This procedure can be repeated iteratively until replace-

ment ℓ.

• Replacement ℓ: Estimating Uℓ given (Uℓ−1 = uℓ−1,S(uℓ−1) = s(uℓ−1)).

For the ℓth replacement, the conditional distribution of Uℓ can be computed as

P(Uℓ > t|Uℓ−1 = uℓ−1,S(uℓ−1) = s(uℓ−1), κ,σ2) = φℓ−1,t(d),

where φℓ−1,t(d) can be obtained by solving equation:

dS(t) = [κ + ∆ × S(t)]dt + dB(t), for t > uℓ−1, (6.2.3)

S(uℓ−1) = s(uℓ−1).

The proposed procedure provides the estimated time for the next replacement activity when

a failed component is replaced. By incorporating real-time observations of degradation signals,
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this approach is useful for decision making regarding maintenance/replacement activities in the

short term. For decision making about component replacement in the long term, we can utilize

the property of conditional probability to obtain the joint probability distributions of (U1, . . . ,Uℓ).

The results can be used to schedule the next ℓ replacement activities in future. The details are not

discussed here.

6.2.2 Determining Replacement Policy for System With Component DRIs

As noted in Section 6.2.1, DRIs among the components of a system may affect the lifetimes or the

residual lifetimes of components in a system. Typically, when the degradation level of one compo-

nent is high, it may significantly increase the degradation rates of its interconnected components and

decrease their lifetimes. Hence, in a system with significant component-to-component interactions,

the total replacement cost could be very high, if each component is replaced individually at their

own failure thresholds without considering the interactions among them.

Here, we propose a policy for determining the replacement thresholds of components in a system

with inter-dependent components while account for the DRIs among the components. Our goal is

choose the replacement thresholds for each component so that we can minimize the total cost of

replacement in the system. In particular, we determine the replacement thresholds for individual

components so that the limiting average replacement cost of the entire system is minimized. The

limiting average replacement cost, Av, for a system with n components can be expressed as follows:

Av = lim
k→∞

n∑
i=1

ei

Ek(Ti| f1, f2, . . . , fn)
, (6.2.4)

where ei represents the replacement cost of component Ci for one replacement, fi represents the

replacement threshold for component Ci, and Ek(Ti| f1, f2, . . . , fn) is the expected lifetime of com-

ponent Ci after the kth replacement. As discussed earlier, Ek(Ti| f1, f2, . . . , fn) is determined by the

replacement thresholds of all components in the system, namely f1, . . . , fn, and Ek(Ti| f1, f2, . . . , fn)

can be computed based on the our proposed DRI models.

We consider the limiting average replacement for two important reasons: (1) this criterion can

be equivalently converted to other measures of system performance, such as the availability of the

system (cf. [135].) (2) The computational cost is relatively low compared with other decision
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making tool, such as Markov decision process (MDP), the computation cost of which increases

significantly as the number of components increases (n ≥ 2).

However, due to the uncertainty associated with the degradation process of each component,

the limit in equation (6.2.4) does not generally exist. Instead, we develop a conservative policy that

minimize the upper bound of Av. The optimization formulation is expressed as follows:

min
f1,..., fn

lim sup
k→∞

n∑
i=1

ei

Ek(Ti| f1, f2, . . . , fn)
(6.2.5)

s.t. 0 < fi ≤ di, for i = 1, . . . , n. (6.2.6)

Recall that the degradation level of a new component is defined to be 0, and the failure threshold of

component Ci is denoted by di. The constraint in expression (6.2.6) guarantees that any component

is replaced before the component failure occurs due to safety and security conditions. Also, when a

component fails, it is usually replaced by a new component.

Determining the optimal values of f1, . . . , fn requires solving the non-linear optimization prob-

lem expressed in expressions (6.2.5) and (6.2.5). For a medium size system (n ≤ 5), this optimiza-

tion problem can be solved directly using mathematical software. For larger systems, the develop-

ment of advanced optimization technique is required. In what follows, we provide an illustrative

example of a system with two inter-dependent components to demonstrate the proposed procedure.

6.2.3 Illustrative Example

We consider a system of two-components, which exhibit continuous DRIs, for the purpose of

demonstration. The proposed approach can be generalized to a system with n components and

discrete DRIs.

Degradation signals of a two-component system with continuous component interactions can be

characterized by the following equations.

dS 1(t) = [S 2(t)δ2,1 + κ1]dt + σ1dW1(t) (6.2.7)

dS 2(t) = [S 1(t)δ1,2 + κ2]dt + σ2dW2(t) (6.2.8)

Let µ1(t) = E[S 1(t)] be the mean of S 1(t). Based on the proposed DRI model, µ1(t) can be expressed

as follows
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µ1(t) =s2(tk
0)

√
δ1,2δ2,1

2δ2,1

exp((t − tk
0)

√
δ1,2δ2,1) − 1

exp((t − tk
0)

√
δ1,2δ2,1)

 (6.2.9)

+
s1(tk

0)
2

exp((t − tk
0)

√
δ1,2δ2,1) +

1

exp((t − tk
0)

√
δ1,2δ2,1)

 − κ2

δ2,1
(6.2.10)

+
exp((t − tk

0)
√
δ1,2δ2,1)

2δ2,1

κ2 +
κ2 − (δ2,1κ1)/

√
δ1,2δ2,1

exp(2(t − tk
0)

√
δ1,2δ2,1)

+
δ2,1κ1√
δ1,2δ2,1

 (6.2.11)

µ2(t) can be obtained in a similar way, with a symmetric form to µ1(t).

Moreover, we approximate Ek[T1| f1, f2] using the median of T1, which can be obtained by

solving µ1(t) = f1. The resulting expression of Ek[T1| f1, f2] is represented as follows:

Ek[T1| f1, f2] ≈ 1√
δ1,2δ2,1

ln


√
δ1,2δ2,1(κ2 + δ2,1 f1) + δ2,1(δ1,2δ2,1 f 2

1 + 2κ2δ1,2 f1 + a1)1/2

δ1,2δ2,1s2(tk
0) + a2

 ,
where

a1 = 2δ1,2κ1s2(tk
0) − δ1,2δ2,1s2

1(tk
0) − 2κ2δ1,2s1(tk

0) + κ2
1 + δ

2
1s2

2(tk
0) (6.2.12)

a2 = δ2,1κ1 + κ2
√
δ1,2δ2,1 + δ2,1s1(tk

0)
√
δ1,2δ2,1 (6.2.13)

Here, tk
0 represents the starting time of a replacement cycle when component C1 is replaced by a new

component after the kth replacement. Recall that the degradation signal for a new component starts

at 0. That is, s1(tk
0) = 0. Using this condition, Ek[T1| f1, f2] can be further simplified as follows:

Ek[T1| f1, f2] ≈ 1√
δ1,2δ2,1

ln

1 + δ2,1
√
δ1,2δ2,1 f1

δ1,2δ2,1s2(tk
0) + δ2,1κ1 +

√
δ1,2δ2,1κ2


However, lim

k→∞
Ek[T1| f1, f2] does not generally exist because s2(tk

0) is fluctuating between 0 and

f2. Hence, we consider the bounds of lim
k→∞
Ek[T1| f1, f2] as follows:

L1( f1, f2) ≤ lim
k→∞
Ek[T1| f1, f2] ≤ U1( f1) (6.2.14)

where

L1( f1, f2) =
1√

δ1,2δ2,1
ln

1 + f1
f2

√
δ1,2δ2,1/δ2,1 + κ1/

√
δ1,2δ2,1 + κ2/δ2,1

 (6.2.15)

U1( f1) =
1√

δ1,2δ2,1
ln

1 + f1
κ1/

√
δ1,2δ2,1 + κ2/δ2,1

 (6.2.16)
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Let Ni(t) represent the number of replacements of component Ci by time t. For large t, the value

of N1(t) varies between:
t

U1( f1)
≤ N1(t) ≤ t

L1( f1, f2)
.

Due to the symmetry in the DRI model, we have similar results for the component C2. That is,

t
U2( f2)

≤ N2(t) ≤ t
L2( f2, f1)

,

where

L2( f2, f1) =
1√

δ1,2δ2,1
ln

1 + f2
f1

√
δ1,2δ2,1/δ1,2 + κ2/

√
δ1,2δ2,1 + κ1/δ1,2

 (6.2.17)

U2( f2) =
1√

δ1,2δ2,1
ln

1 + f2
κ2/

√
δ1,2δ2,1 + κ1/δ1,2

 (6.2.18)

Hence, the limiting average replacement cost, Av, can be expressed as follows:

Av = lim
t→∞

[
e1

N1(t)
t
+ e2

N2(t)
t

]
(6.2.19)

As a result, the upper and lower bounds of CA can be found using the following expression

e1

U1( f1)
+

e2

U2( f1)
≤ Av ≤

e1

L1( f1, f2)
+

e2

L2( f1, f2)
.

Our goal is to choose f1 and f2 to minimize the upper bound of Av. The optimization problem

can be formulated as follows

min
f1, f2

e1

L1( f1, f2)
+

e2

L2( f1, f2)
(6.2.20)

s.t. 0 < fi ≤ di, for i = 1, 2. (6.2.21)

This optimization problem can be solved directly using mathematical software.

6.3 Estimating and Updating the DRI Model

In this section, we discuss how to estimate model parameters using historical degradation signals

from an existing database of degradation signals. In particular, we present the maximal likelihood

estimates (MLEs) of model parameters κ, σ2, and ∆ based on the historical degradation signals.

We realizes that the each system and its components behaves differently when put to use in the

field. Thus, we use signals from the components of each individual system to update this interactive
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model based on the degradation characteristics of the components within each system. Specifically,

we update the distributions of (κ,σ2). The updated models are then used to estimate an updated

residual life distributions for the components of each system as well as revised replacement times

for the components.

6.3.1 Estimating Model Parameters Using Historical Signals

Suppose that between replacement times uℓ and uℓ+1, degradation signals from a given system are

monitored at discrete times t0, t1, . . . , tq such that uℓ = t0 < t1 < . . . < tq < uℓ+1. Without loss of gen-

erality, we assume that ϵt = t1−t0 = t2−t1 = . . . = tq−tq−1. We let s(tm) = (s1(tm), s2(tm), . . . , sn(tm))′

be a vector of signals corresponding to the system components that are being monitored at time tm,

m = 1, . . . , q. Thus, for m = 1...q we have s(t0), s(t1), . . . , s(tq).

Recall that the proposed degradation model described by Equation(6.1.2) is a continuous-time

SDE model of S(t), whereas, the degradation signals are usually monitored at discrete times. Link-

ing a continuous-time model and discrete-time data is a challenging problem, and many researchers

have explored how to estimate or approximate a 1-dimensional SDE model based on discrete-time

data. These approximation methods include the discrete maximum likelihood (DML) method (cf.

[43]), the local linearization method (cf. [97]), the generalized method of moments (cf. [25]),

Monte Carlo Markov chain simulation, and others methods. Some of these methods become dif-

ficult to implement for parameter estimation in n-dimensional SDE systems due to the increased

dimensionality. In this paper, we use the method of discrete maximum likelihood (DML) for pa-

rameter estimation because of its ease of implementation and speed. As shown by [43], the DML

estimates converge to the exact MLE as the interval between two consecutive monitoring times,

namely ϵt, converges to 0.

In a similar manner to what is used in the DML method, we approximate S(tm) as

S(tm) = S(tm−1) + [κ + ∆s(tm−1)]ϵt + B(tm) − B(tm−1). (6.3.1)

Note that S(tm)−S(tm−1)’s are independent, each of which follows the distribution S(tm)−S(tm−1) ∼

MVN([κ + ∆s(tm−1)]ϵt, ϵ
2
t Σ), where Σ = diag{σ2

1, . . . , σ
2
n}/ϵt. We denote the likelihood function of
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(κ,∆,Σ) by f (κ,∆,Σ|s(t1), . . . , s(tq)), which is expressed as follows

f (κ,∆,Σ|s(t1), . . . , s(tq))

=

q∏
m=1

[
1

2πn/2|Σ|1/2
exp

{
−1

2
[ym − κ − ∆s(tm−1)]TΣ−1[ym − κ − ∆s(tm−1)]

}]
, (6.3.2)

where ym =
1
ϵt

[s(tm) − s(tm−1)] for m = 1, . . . , q. Proposition 6.3.1 below provides the expressions

for the the MLEs of (κ,∆,Σ).

Proposition 6.3.1. Given the likelihood function described by Equation (6.3.2), the MLEs of (κ,∆,Σ)

are expressed as follows

∆̂ = B × A−1 (6.3.3)

κ̂ =
s(tq) − s(t0)

tq
− 1

q
∆̂

q∑
m=1

s(tm−1) (6.3.4)

Σ̂ =
1
q

q∑
m=1

[ym − κ̂ − ∆̂s(tm−1)][ym − κ̂ − ∆̂s(tm−1)]T (6.3.5)

where A = (A·1, A·2, . . . , A·n), B = [Bi, j]i, j=1,...,n, and

A· j =
1
q

 q∑
m=1

s(tm−1)

  q∑
m=1

s j(tm−1)

 − q∑
m=1

s(tm−1)s j(tm−1)

Bi, j =
si(tq) − si(t0)

tq

q∑
m=1

s j(tm−1) −
q∑

m=1

ym,is j(tm−1)

Proof. Let L = − log f (κ,∆,Σ|s(t1), . . . , s(tq)) represent the negative log-likelihood function, then L

can be expressed as follows:

L =
nq
2

log(2π) +
q
2

log |Σ| + 1
2

q∑
m=1

[ym − κ − ∆s(tm−1)]TΣ−1[ym − κ − ∆s(tm−1)]

To obtain the MLEs of (κ,∆,Σ), we find the values of (κ,∆,Σ) that minimize L. In particular, we set

the partial derivative of L with respect to theses parameters equal to 0 and solve for (κ,∆,Σ) based

on the following equations:

∂L
∂κ
= 0 (6.3.6)

∂L
∂Σ−1 = 0 (6.3.7)

∂L
∂δi, j

= 0, i, j = 1, . . . , n (6.3.8)
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Here, in Equation (6.3.7), we consider the partial derivative of L wrt Σ−1 instead of Σ for computa-

tional convenience. Note that there exist a 1− to− 1 mapping between Σ−1 and Σ. Hence, the MLE

is preserved. In what follows, we solve Equations (6.3.6) – (6.3.8) for (κ,∆,Σ).

• Equation (6.3.6) implies that
q∑

m=1
[ym − κ − ∆s(tm−1)]TΣ−1 = 0. We use the fact that

q∑
m=1

ym =

s(tq)−s(t0)
ϵt

and express κ as follows:

κ =
s(tq) − s(t0)

tq
− 1

q
∆

q∑
m=1

s(tm−1). (6.3.9)

• Note that [ym − κ−∆s(tm−1)]TΣ−1[ym − κ−∆s(tm−1)] is a scalar, which equals its trace. Thus,

[ym − κ − ∆s(tm−1)]TΣ−1[ym − κ − ∆s(tm−1)]

=Tr([ym − κ − ∆s(tm−1)]TΣ−1[ym − κ − ∆s(tm−1)])

=Tr(Σ−1[ym − κ − ∆s(tm−1)][ym − κ − ∆s(tm−1)]T )

Hence, in Equation (6.3.7),

∂

∂Σ−1 [ym − κ − ∆s(tm−1)]TΣ−1[ym − κ − ∆s(tm−1)] = [ym − κ − ∆s(tm−1)][ym − κ − ∆s(tm−1)]T

Also, note that ∂
∂Σ−1 log |Σ| = Σ. Equation (6.3.7) can be re-written as

q
2
Σ − 1

2

q∑
m=1

[ym − κ − ∆s(tm−1)][ym − κ − ∆s(tm−1)]T = 0

Hence, we express Σ as follows

Σ =
1
q

q∑
m=1

[ym − κ − ∆s(tm−1)][ym − κ − ∆s(tm−1)]T . (6.3.10)

• To solve for δi, j’s, we use the fact that Σ = diag{σ2
1/ϵt, . . . , σ

2
n/ϵt} and re-write L as follows

L = C +
1
2

q∑
m=1

n∑
ℓ=1

[ym,ℓ − κℓ − ∆ℓ·s(tm−1)]2

σ2
ℓ
/ϵt

,

where ym,ℓ is the ℓth element of ym, ∆ℓ· is the ℓth row of ∆, and C is a constant that does not

contain δi, j’s. Since for ℓ , i,

∂[ym,ℓ − κℓ − ∆ℓ·s(tm−1)]2

∂δi, j
= 0,
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we can simplify the expression of ∂L
∂δi, j

as follows:

∂L
∂δi, j

=
∂

∂δi, j

1
2

q∑
m=1

[ym,i − κi − ∆i·s(tm−1)]2

σ2
i /ϵt

 = −ϵt

σ2
i

q∑
m=1

[ym,i − κi − ∆i·s(tm−1)]s j(tm−1)

As a result, Equation (6.3.8) can be re-written as follows
q∑

m=1

ym,is j(tm−1) − κi

q∑
m=1

s j(tm−1) − ∆i·

 q∑
m=1

s(tm−1)s j(tm−1)

 = 0. (6.3.11)

Note that Equation (6.3.11) involves the term of κi’s. We plug in the expression of κi us-

ing Equation (6.3.9). Based on equation (6.3.9), κi can be expressed as κi =
si(tq)−si(t0)

tq
−

1
q∆i·

q∑
m=1

s(tm−1). Substitute κi in equation (6.3.11) and combine terms of ∆i·, we have, for

i, j = 1, . . . , n,

∆i· × A· j = Bi, j, where (6.3.12)

A· j =
1
q

 q∑
m=1

s(tm−1)

  q∑
m=1

s j(tm−1)

 − q∑
m=1

s(tm−1)s j(tm−1)

Bi, j =
si(tq) − si(t0)

tq

q∑
m=1

s j(tm−1) −
q∑

m=1

ym,is j(tm−1)

The matrix form of Equation (6.3.12) can be expressed as

∆ × A = B,

where A = (A·1, A·2, . . . , A·n) and B = [Bi, j]i, j=1,...,n. Therefore, Equations (6.3.6)–(6.3.8) are

proved. �

Equations (6.3.3)–(6.3.5) provide the MLE estimates of model parameters (κ,σ2,∆) based on

the degradation signals between replacement times uℓ and uℓ+1. We then use a two-stage method

by [84] to synthesize the resulting estimates from N different replacement segments. Specifically,

we denote the MLEs based on the degradation signals between uℓ and uℓ+1 by (κ̂ℓ, σ̂2,ℓ, ∆̂
ℓ
) for

ℓ = 0, . . . ,N − 1. Recall that we assume ∆ is fixed across all independent systems. Hence, we

estimate ∆ using the sample mean of ∆ℓ’s, i.e. ∆̂ = 1
N

∑N
ℓ=1 ∆̂

ℓ
. With regard to κ and σ2, which

are assumed to be stochastic parameters that capture the inherent variability across various similar

systems, we use κ̂ℓ’s and σ̂2,ℓ’s as the sampled data and fit a desired prior distributions for κ and

σ2, respectively. These prior distributions will be updated using real-time degradation signals of

components of a system that is functioning in the field.
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6.3.2 Updating the DRI Model Using Real-Time Degradation Signals

This section focuses on updating stochastic parameters κ and σ2 using real-time degradation signals

from the constituent components of a system functioning in the field. Specifically, we use the

degradation signals that have been observed since the last replacement to update the distributions of

(κ,σ2). Specifically, we assume that we monitor real-time degradation signals of components from a

fielded system at times t∗0, t
∗
1, . . . , t

∗
k after the ℓth replacement, such that Uℓ = uℓ < t∗0 < t∗1 < . . . < t∗k .

Without loss of generality, we assume that ϵ∗t = t∗1 − t∗0 = t∗2 − t∗1 = . . . = t∗k − t∗k−1. The observed

signals s(t∗0), s(t∗1), . . . , s(t∗k) are subsequently used update the next replacement time Uℓ as well as

the stochastic parameters, κ and σ2.

6.3.2.1 Updating the distributions of κ and σ2

Let S∗k = (s(t∗0), s(t∗1), . . . , s(t∗k)) represent the set of real-time signal observations. We estimate the

posterior distributions of κ and σ2 based on S∗k. We assume that the prior distribution of σ2
i follows

an inverse Gamma distribution, i.e. σ2
i ∼ Γ

−1(ξi, θi), where Γ−1(ξ, θ) represents an inverse Gamma

distribution with shape parameter ξ and scale parameter θ. Conditioning on σ2
i , we assume that

the independent degradation rate κi (the degradation rate of component Ci assuming that there is

no component interactions) has a normal prior distribution κi|σ2
i ∼ N(µi, τiσ

2
i ) for i = 1, . . . , n,

where N(µ, σ2) represents a normal distribution with mean µ and variance σ2. These assumptions

on the prior distributions facilitate the closed-form expressions for the posterior distributions of κ

and σ2. These two prior distributions are chosen for a few pragmatic reasons. First, the gamma

distribution encompasses a number of important distributions (e.g., exponential, Erlang, and chi-

square); second, the normal distribution is widely used to model a mixture of populations; third,

such prior distributions yield a closed-form density function of the posterior distributions that is

easy to use. Proposition 6.3.2 below summarizes some results in [13] and provides the updated

distributions of the model parameters.

Proposition 6.3.2 (Berger, 1985). Assume that the prior distribution of σ2
i follows an inverse

Gamma distribution Γ−1(ξ, θ), and the prior distribution of κi|σ2
i follow a normal distributionN(µi, τiσ

2
i )

for i = 1, . . . , n. Given S∗k, the posterior distribution of σ2
i follows follows an inverse Gamma dis-

tribution, i.e., σ2
i |S∗k ∼ Γ

−1(ξ̃i, θ̃i), and the posterior distribution of κ follows a T distribution, i.e.,
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κi|S∗k ∼ T
(
2ξ̃i, µ̃i,

τ̃
ξ̃iθ̃i

)
for i = 1, . . . , n. The parameters of the posterior distributions are expressed

as follows:

µ̃i =
µi + ϵ

∗
t τi

∑k
m=1 xi,m

1 + kτiϵ
∗
t

,

τ̃i =
1

kϵ∗t + τ
−1
i

,

ξ̃i = ξi + k/2,

θ̃i = θi +
ϵ∗t
2

k∑
m=1

(xi,m − x̄i)2 +
kϵ∗t (x̄i − µi)2

2(1 + kϵ∗t τi)
.

where xi,m =
si(t∗m)−si(t∗m−1)

ϵ∗t
−∑n

j=1 s j(t∗m−1)δ j,i and x̄i =
1
k
∑k

m=1 xi,m for m = 1, . . . , k.

Proof. By [13], the posterior probability density function (p.d.f.) of (σ2
i , κi), denoted by πi(κi, σ

2
i |S∗k),

is given by

πi(κi, σ
2
i |S∗k) = πi,1(κi|σ2

i ,S∗k)πi,2(σ2
i |S∗k),

where πi,1(κi|σ2
i ,S∗k) represents the p.d.f. of a normal distribution with mean µ̃i and variance τ̃iσ

2
i ,

and πi,2(σ2
i |S∗k) represents the p.d.f. of an inverse Gamma distribution with shape parameter ξ̃i

and scale parameter θ̃i. Note that the p.d.f. of a random variable X, which follows T distribution

T (α, µ, γ2), is expressed as follows

fT (x) =
Γ[(α + 1)/2]
γ(απ)1/2Γ(α/2)

(
1 +

(x − µ)2

αγ2

)−(α+1)/2

.

Hence, we integrate out σ2
i in the expression of the posterior joint probability density of κi

and σ2
i , namely πi(κi, σ

2
i |S∗k). The resulting pdf of κi is the pdf of a T distribution with κi|S∗k ∼

T
(
2ξ̃i, µ̃i,

τ̃
ξ̃iθ̃i

)
. The details are omitted in this paper. �

We let κ∗i and σ∗2i denote the posterior means of κi and σ2
i , then κ∗i and σ∗2i can be estimated

using the following expressions.

κ∗i = E(κi|S∗k) = µ̃i, and σ∗2i = E(σ2
i |S∗k) =

θ̃i

(ξ̃i − 1)
. (6.3.13)

In what follows, we use the updated values of κ∗i and σ∗2i to update the residual life distribution

of each component Ci, i = 1, . . . , n, and further update the distribution of the next replacement time

Uℓ+1. The updating process can be performed each time new degradation signals are observed.
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6.3.2.2 Updating the RLDs Using Real-Time Degradation Signals

The posterior distributions of κ andσ2 are then used to computed posterior residual life distributions

for the components of a fielded system that exhibit degradation interactions. Given that we have

observed s(t∗k), and our DRI model expressed in equation (6.1.2), the future path of the degradation

signals after time tk can be characterized by the following SDE system:

dS(t) = [κ∗ + ∆̂ × S(t)]dt + dB∗(t), for t > t∗k , (6.3.14)

S(t∗k) = s(t∗k),

where κ∗ = (κ∗1, . . . , κ
∗
n)′, B∗(t) = (σ∗1W1(t), . . . , σ∗nWn(t))′, and ∆̂ represents the estimate value of ∆̂

based on the historical degradation signals.

If we let S∗(t) denote the solution of the SDE system (6.3.14), by applying Proposition 6.1.1 we

can express S∗(t) as follows

S∗(t) = exp[(t − t∗k)∆̂]s(t∗k) +
∫ t−t∗k

0
[(t − t∗k − s)∆̂]κ∗ds +

∫ t−t∗k

0
[(t − t∗k − s)∆̂]dB∗(s), (6.3.15)

where σ∗2 = (σ∗1
2, . . . , σ∗n

2)′. The future evolution of S∗(t) depends on the updated parameters

(κ∗,σ∗2), which are the posterior means of (κ,σ2) as shown in expression (6.3.13). Moreover, based

on Proposition 6.1.2, S∗(t) follows a multivariate normal distribution MVN(µ∗(t),Σ∗(t)), where

µ∗(t) = exp[(t − t∗k)∆̂]s(t∗k) +
∫ t−t∗k

0
[(t − t∗k − s)∆̂]κ∗ds

Σ∗(t) =
∫ t

0
exp[(t − t∗k − s)∆̂] × Σ∗0 × exp[(t − t∗k − s)∆̂]T ds,

where Σ∗
0
= diag{σ∗21 , . . . , σ

∗2
n }.

Therefore, the updated distribution of residual life of component Ci until the next replacement,

namely Ri, is expressed as follows

P(Ri < t − tk|S∗k) = Φ

µ∗(t)(i) − di√
Σ∗(t)(i,i)

 , for t > t∗k , (6.3.16)

where µk(∗)(i) represents the ith element of µ∗(t), and Σ∗(t)(i,i) represents the (i, i)th element of Σ∗(t).

The updated distribution of the next replacement time Uℓ+1 can be computed as follows

P(Uℓ+1 > t + t∗k |S∗k) = φ∗t (d), for t > 0, (6.3.17)

where φ∗t (·) is the c.d.f. of a multivariate normal distribution with mean vector µ∗ (t) and covariance

matrix Σ∗(t).
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6.4 Numerical Studies

In this section, we conduct a sequence of numerical studies and test our proposed approach for mod-

eling continuous DRI among the constituent components of a given system using simulated signals.

As a case in point, we focus on a hypothetical series system of three components that are interde-

pendent. The system fails when any component fails. The degradation processes exhibit continuous

DRI that are manifested in the behaviors of their degradation signals. In what follows, we present a

procedure for simulating degradation signals of components with degradation processes that exhibit

continuous DRIs. These signals are simulated until the entire system fails. We then use the sim-

ulated signals to test accuracy of the estimation procedure used to estimate the model parameters

as well as the goodness of fit. In particular, we use the simulated signals to verify the assumptions

on the prior distributions of model parameters and the signal noise by conducting the Kolmogorov-

Smirnov test and the Shapiro-Wilk test, respectively. We also test accuracy of predicting the failure

time of the system for different values of model parameters θi’s and δi, j’s, which characterize differ-

ent levels of signal noise and component interactions. Recall that σ2
i is the diffusion parameter of

the signal model and has a prior distribution that is assumed to be an inverse-Gamma distribution

with shape parameter θi, and δi, j represents the magnitude of the DRI between components Ci and

C j , i.e., the infinitesimal change in the degradation rate of component C j caused by its interaction

with Ci. By choosing different values of θi’s and δi, j’s, we can test of prediction accuracy of the

system failure time for various levels of signal noise and component DRI. (4) To highlight the ca-

pability of our model for capturing the effects of component interactions, we further compare our

results with a benchmark model by [47], which adopts a similar modeling approach but does not

take into account the effect of component DRI.

6.4.1 Signal Simulation

We focus on a series system of three constituent components and simulate degradation signals of

the components until the system failure occurs. We use the baseline model parameters shown in

Table 6.4.1 and simulate degradation signals via the following procedure.

Step B.1: Let ϵt = 0.1 represent the time interval for discretization of the continuous DRI

model. Note that smaller value of ϵt increases the accuracy of simulation and computation
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cost.

Step B.2: Choose simulated values of σ2
i and κi from the following distributions: σ2

i ∼

Γ−1(ξi, θi) and κi|σ2
i ∼ N(µi, τiσ

2
i ) using the values defined in Table 6.4.1.

Step B.3: For i = 1, 2, 3, set si(tm+1) = si(tm) +
∑n

j,i δ j,is j(tm) + zi, where tm = mϵt and zi ∼

N(0, σ2
i ϵt). Repeat this step until si(tm) > di where di is the failure threshold for component

Ci. The system failure time is denoted by L. We denote the actual failure time of the system

by L.

Table 6.4.1: Baseline parameter values for the continuous model.

Parameters Component C1 Component C2 Component C3

Failure threshold di 10 10 10

Initial signal value si(0) 0 1 0.8

Prior mean of κi µi 0.02 0.06 0.08

Scale for prior variance of κi τi 0.1 0.1 0.1

Prior shape parameter of σ2
i ξi 92 92 92

Prior scale parameter of σ2
i θi 9.1 9.1 9.1

DRI effects of Component C1 δ1,i 0 0.05 0.08

DRI effects of Component C2 δ2,i 0.06 0 0.09

DRI effects of Component C3 δ3,i 0.08 0.06 0

Using the aforementioned simulation procedure, we generate degradation signals for compo-

nents from 100 systems. The first 50 degradation signals are considered to represent a historical

data set used to estimate the model parameters and test of the goodness of fit. The remaining 50

degradation signals are used to test real-time prediction of the RLDs.
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6.4.2 Parameter Estimation and Goodness of Fit

Using degradation signals from each system, we obtain the MLEs of (κ,∆,σ2) using equations

(6.3.3) – (6.3.5). The resulting estimates are used to fit the prior distributions of κ and σ2 as dis-

cussed in Section 6.3.1. The estimated values of the model parameters based on the historical data

set are summarized in Table 6.4.2. The hats on parameters represent the values estimated using the

historical data set.

Table 6.4.2: Estimated values of baseline parameters.

Estimated parameters Component C1 Component C2 Component C3

µ̂i 0.021 0.053 0.087

τ̂i 0.087 0.157 0.152

ξ̂i 102.6 90.1 97.4

θ̂i 12.45 11.71 10.34

δ̂1,i 0.003 0.054 0.074

δ̂2,i 0.066 0.001 0.092

δ̂3,i 0.084 0.076 0.000

Table 6.4.3: P-values of the two-sample Kolmogorov-Smirnov test for prior distributions.

Parameters (κ1, σ
2
1) (κ2, σ

2
2) (κ3, σ

2
3)

P-Value 0.74 0.68 0.83

Table 6.4.4: P-values of the Shapiro-Wilk test for noise term.

Noise term B1(t j+1) − B1(t j) B2(t j+1) − B2(t j) B3(t j+1) − B3(t j)

Range of p-Value [0.72, 0.81] [0.86, 0.93] [0.67, 0.84]

With the estimated parameters, we test the goodness-of-fit of the prior distributions for σ2
i ∼

Γ−1(ξi, θi) and κi|σ2
i ∼ N(µi, τiσ

2
i ). In particular, we denote by (κ̂ℓ, σ̂2,ℓ

i ) the MLEs of (κ, σ2
i ) based
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on the historical degradation signals of components from the ℓth system. Our goal is to verify

that the sample of {(κ̂ℓ, σ̂2,ℓ
i ) : ℓ = 1, . . . , 50} satisfy the aforementioned assumptions of the prior

distributions. To this end, we simulate a benchmark sample of (κi, σ
2
i ) based on the model assump-

tions and compare the sample of {(κ̂ℓ, σ̂2,ℓ
i ) : ℓ = 1, . . . , 50} with the benchmark sample using the

two-sample Kolmogorov-Smirnov test. The p-values of the test are summarized in Table 6.4.3. The

results show that there is no evidence to reject the model assumption on the prior distributions based

on the historical data set.

We also test the model assumption that signal noise follows a Brownian motion process. To

do this, we use the discretization procedure of the degradation signals of components from a given

system in Equation (6.3.1), and examine the increments in the signal noise:

s(t j+1) − s(t j) − [κ̂ + ∆̂ × s(t j)] = B(t j+1) − B(t j).

Recall that B(t j+1) − B(t j+1) ∼ MNV(0,Π0(t j+1 − t j)), where Π0 = diag{σ2
1, . . . , σ

2
n}. Hence, we

verify the normality of {si(t j+1)− si(t j) : j = 0, . . . , k} for i = 1, 2, 3 using the Shapiro-Wilk test. We

apply the Shapiro-Wilk test to the historical degradation signals of components from each system.

Table 6.4.4 summarizes the range of the resulting p-values of all signals in the historical data set.

Based on the resulting values, we do not reject the assumption that increments in the noise term for

each component are samples from a normal distribution.

6.4.3 Testing Prediction Accuracy of the RLD

To evaluate the performance of our proposed methodology, we simulate degradation signals of com-

ponents observed from systems that are operating in the field and compare estimated system lifetime

with the simulated system failure time L. In particular, we estimate the RLD of the system at the

30th, 60th, and 90th lifetime percentile of the system, i.e., t∗k = 0.3L, 0.6L, 0.9L. We define R̂ as the

median estimate of the system residual life computed using Equation (6.3.16). Thus, the predicted

system lifetime L is estimated as t∗k + R̂. Hence, the lifetime prediction error for a given system is

computed by

e =
|t∗k + R̂ − L|

L
. (6.4.1)

Moreover, we investigate the prediction accuracy for various values of signal noise σ2 and

component interactions ∆. Specifically, we start with a baseline framework with parameter values
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chosen according to Table 6.4.1 and conduct the simulation study for various model parameters

based on the following series of tests:

(1) Testing the effects of diffusion parameter σ2: For m1 = 0.1, 0.2, . . . , 2.0, we let θi = m1 ×

θbase
i , i = 1, . . . , 3, while holding other parameters fixed, where θbase

i ’s represent the baseline

values listed in Table 6.4.1. Recall that E(σ2
i ) = θi

ξ−1 . We test the prediction accuracy of the

RLD when the prior mean of σ2
i ’s equal 0.1, 0.2, . . . , 1.9, 2.0 times of the baseline value.

(2) Testing the effects of interaction parameter ∆: For m2 = 0.1, 0.2, . . . , 2.0, we let δi, j =

m2 × δbase
i, j for i = 1, . . . , 3 while holding other parameters fixed, where δbase

i, j ’s represent the

baseline values listed in Table 6.4.1.
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Figure 6.4.1: Prediction error for various values of parameters. “◦”: 30th lifetime percentile; “�”:

60th lifetime percentile; “∗”: 90th lifetime percentile.

In these two sequences of simulation tests, m1 and m2 represent the scales of signal noises and

component interactions, respectively. In other words, the amplitude of signal noise increases as

m1 increases, and the effect of component DRI becomes more evident when m2 increases. For

each simulation test, we simulate a sample of testing degradation signals of components from 100

systems using the procedure presented in Section 6.4.1 and compute the prediction error e for each
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system. The average prediction error over all testing signals is summarized in Figure 6.4.1. The left

plot in Figure 6.4.1 represents how the prediction accuracy of the system replacement time responds

to the increase in signal noise (m1); whereas, the right plot represents how the prediction accuracy

responds to the increase in component DRI (m2). For each plot, the horizontal axis represents the

scale of noise and DRI parameters, and the vertical axis represents the prediction error in percentage.

Within each plot, we present the prediction error at the 30th (◦), 60th (�), and 90th (∗) lifetime

percentiles of the system.

We observe from Figure 6.4.1 that: (1) the prediction error at a later lifetime percentile is lower

than an early lifetime percentile. This can be attributed to the fact that incorporating more real-time

information about the degradation process improves the accuracy of estimating the replacement

time. (2) The prediction error of replacement time increases as either the signal noise or the magni-

tude of the DRI increases. However, by comparing the two plots in Figure 6.4.1, we notice that the

prediction accuracy is less affected by the increase in the magnitude of DRI. This may be partly due

to the ability of our proposed model to capture the effects of component interactions.

6.4.4 Comparing Prediction Accuracy with a Benchmark Model

We now compare the prediction errors of our proposed DRI model with a benchmark model pre-

sented in [47], which models the degradation signal of individual components without considering

the effects of any form of degradation interactions. In particular, we study how the prediction accu-

racy of these two approaches differ for different values of model parameters, especially parameters

that govern the level of interdependencies among the components, i.e., the magnitude of the DRI

that takes place among components of a system. We also compute the corresponding prediction er-

rors at the same lifetime percentiles. We focus on this specific model for the following reasons: (1)

First of all, similar to the proposed approach in this paper, the model by [47] also utilizes real-time

degradation signals to update the degradation model and compute corresponding posterior RLDs for

fielded components. Thus, the difference between the prediction accuracy of these two approaches

are not affected by different prediction times. (2) This benchmark model is similar in spirit to our

proposed model in that it models the signal noise as a Brownian motion process, however unlike

our modeling approach it does not account for any component interdependencies and degradation
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interactions. Therefore, the comparison is efficient and fair in that any potential improvements in the

prediction accuracy of our proposed approach can be attributed to the incorporation of component

DRIs.

The model by [47] is presented as follows

S (t) = ϕ + θ exp
(
βt + ϵ(t) −

σ2
t

2

)
. (6.4.2)

[47] developed the expression for the RLD at time t∗k for a single component, which is computed as

P(T ≤ t) = Φ

 µ̃(t + t∗k) − d√
σ̃2(t + t∗k)

 , (6.4.3)

where µ̃(t + t∗k) and σ̃2(t + t∗k) represent the posterior mean and variance of S (t∗k + t), respectively. d

represents the failure threshold.

We apply Equation (6.4.3) to estimate the RLD of each component and thus the system replace-

ment time. The prediction error is computed using Equation (6.4.1) for each system. The average

prediction errors for different signal noise levels are presented in Figure 6.4.2, and the average

prediction errors for different DRI magnitudes are presented in Figure 6.4.3. Similar to previous

numerical study, the horizontal axes in both figures represent the scale of the parameter of interest,

and the vertical axes represent the prediction error in percentage. The prediction error of our pro-

posed approach is represented by “◦”, and that of the benchmark model is represented by “∗”. The

system lifetime is estimated at the 30th, 60th, and 90th lifetime percentiles.

We observe that (1) the increase in signal noise (m1) has similar impacts on the prediction

accuracy of both approaches. This is because as the signal noise increases the uncertainty in the

future evolution increases. Thus, the prediction of system replacement time increases for both

approaches. (2) The performances of our proposed approach and the benchmark model are similar

when the effect of component DRI (m2) is small. We believe this is because that when m2 is very

small, the DRI effects between components are minimal. In this case, the model by [47] becomes

a special case of our proposed DRI model. (3) However, as the effect of component DRI increases,

the performance of the benchmark model becomes significantly aggravated, whereas, that of our

approach is less affected. This is mainly because the benchmark model does not take into account

component interactions when predicting component lifetime distributions.
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Figure 6.4.2: Prediction error compared with the benchmark model. “◦”: our proposed model;

“∗”: the benchmark model.
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Figure 6.4.3: Prediction error compared with the benchmark model. “◦”: our proposed model;

“∗”: the benchmark model.



CHAPTER VII

CONCLUSIONS AND FUTURE WORK PLAN
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7.1 Conclusions

We develop a sensor-based degradation framework for modeling the degradation signals of com-

ponents in complex engineering systems. The main significance of our work is characterizing the

effects of environmental profiles and the C2C interactions on the degradation signals. Our approach

improves the prediction accuracy of component RLDs by incorporating the real-time observations

of degradation signals and environmental conditions.

This dissertation starts with a stochastic degradation model that estimates and continuously up-

dates the residual life distributions (RLD) of partially degraded components. Compared with the

conventional degradation model, as described by [47], our model significantly improves the pre-

diction accuracy of RLDs by using a first-passage time (FPT) approach. Specifically, we model

the failure threshold as an absorbing barrier of the degradation signal. In this case, the probability

of failure is equivalent to the crossing probability of the degradation signal to a crossing bound-

ary. We develop the expressions of RLDs for a base case degradation model with an exponential

functional form and investigate two types of engineering applications: (1) applications that have ex-

isting historical degradation signals (informative prior distribution); and (2) applications that have

no prior information (non-informative prior distribution). We demonstrate that the model performs

reasonably well in both cases, with the informative case outperforming the non-informative case.

We validate our model using simulation studies and real-world vibration-based degradation signals

from a rotating machinery application (rolling element thrust ball bearings). By comparing with

[47], we demonstrate that our FPT approach improved about 20% of the prediction accuracy with

real-time degradation signals from the component working in the field.

Subsequently, we propose a stochastic degradation modeling framework that computes the RLD

of partially-degraded components operating under time-varying environmental or operating condi-

tions. This framework uses historical and real-time signals related to the environmental conditions,

as well as the underlying physical degradation process. In contrast to most existing models, we

compute the components RLD in real time by utilizing the potential profile of future environmental

conditions that the component is likely to experience. Degradation models for two types of en-

vironment processes were developed. The first model assumed that the environmental profile is
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deterministic in nature while the second assumed that the environment evolves as a continuous-

time Markov chain. It was demonstrated for the first model that our proposed framework improved

the prediction accuracy when compared to similar models that do not include future environmental

changes or shocks induced by environmental transitions. To further evaluate the performance of

our approach, we conducted a series of validation experiments that generated empirical vibration-

based degradation signals with time-varying loads and speeds. The experimental results show great

promise for predicting the remaining useful lifetime of partially-degraded, critical components. For

the second model, we demonstrated, via extensive simulation experiments, that our approach can be

used to estimate the RLD if the environment has a moderate number of distinct states.

Furthermore, we present a stochastic methodology for modeling interactions among the degra-

dation processes of interdependent components of a given system and uses such knowledge to pre-

dict their respective residual lifetimes. The proposed methodology is developed on the premise

that degradation signals measured using sensors are directly correlated with the physical degrada-

tion process and any changes that occur due to degradation interactions manifest themselves in the

behavior of the degradation signal. In contrast to most existing models, which either assume inde-

pendent components or only investigate interactions caused by component failures, our framework

captures the interactions among the underlying degradation processes of components that occur in

continuous and discrete manners. For continuous component interactions, we developed an SDE-

based degradation model and estimate the RLD with the aid of Itô calculus. For discrete component

interaction, we developed a multi-state degradation model and assess the interaction mechanism

using the techniques of change-point detection. Furthermore, our proposed framework uses histor-

ical and real-time signals related to the underlying physical degradation processes to estimate the

RLDs of the constituent components. To evaluate the performance of our approach, we conducted

a series of validation experiments that generated empirical vibration-based degradation signals with

discrete and continuous component interactions. The experimental results show great promise for

predicting the remaining useful lifetime of partially-degraded, critical components in a system with

component interactions.

We would like to note that the degradation methodology presented in this dissertation is not only
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limited to characterizing the interactions among the degradation processes of interdependent com-

ponents and predicting their remaining lifetimes. Our methodology provides a formal framework

for better understanding how the performance of a complex system is affected by its constituent

components using a practical approach that relies on studying and modeling the behavior and evo-

lution of degradation-based sensor signals. To further understand the behaviors of complex systems,

additional developments are needed to model other types of component interactions, such as inter-

actions that affect signal noise, or interactions that are dependent on the component type and/or

degradation state.

7.2 Future Work

The future work includes extending the proposed stochastic degradation framework in two research

tasks:

1. The first task is to extend the degradation models in Chapter 4 and Chapter 5 to construct a

more general model that characterizes the health conditions of the constituent components in

a network system. That includes modeling the degradation signals and estimating component

residual lifetimes when the system is subject to time-varying environmental conditions and

instant replacement. In addition, the model in Chapter 5 can be further applied to characterize

the quality-reliability interactions in multi-state manufacturing systems.

2. In the second task, we will assess the network reliability using the simulation technique of

cellular automata, which is efficient in updating the network structure using real-time infor-

mation. This approach will be applied to maintain the reliability and the sustainability of the

smart grids. We will investigate two reliability hazards in smart grid systems : the degradation

of infrastructure and the volatile demands. The results of this research task will add to the

limit literature that uses real-time pricing to balance demand and supply in smart grids. In ad-

dition, the incorporation of sensory data will provide insight on facilitating demand responses

and management to mitigate net demand volatility.
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7.2.1 Task 1 – Generalizing Time-Varying and Interactions Models

This task generalizes the degradation model in Chapter 5 to characterize the degradation signals of

the constituent components in a network system, which are subject to time-varying environmental

conditions and instant replacement. In addition, we will apply the stochastic model presented in

Chapter 5 to model the interaction between tooling degradation and product quality in a multi-

station manufacturing system with the goal of estimating failure due to the degradation of tools

or the production of non-conforming products. This research task consists of the following three

subtasks.

7.2.1.1 Subtask 1.1 – Estimating the RLDs of Components With Instant Replacement.

In this subtask, we will generalize the multi-component degradation model, as presented in Chapter

5, to estimate the RLDs of components in a multi-component engineering system when the failed

components are replaced instantaneously. Specifically, we will investigate the scenario, in which

the failed component is replaced with a new component and the time of replacement is ignored. The

degradation model is generalized as follows

S i(t) =
∫ t

τi(t)
ri(κi, h(v))dv + Bi(t),

where τi(t) represents the latest replacement time for component i by t. After a component is

replaced, its degradation signal transitions to state 0, and it affects other component by decreasing

their degradation rates. Recall that the degradation model, as described in Chapter 5, focuses on

characterizing the C2C interactions that increase the degradation rates of other components. The

corresponding RLDs are estimated using the time-scale transforms by [37], which only accounts

for increasing degradation rates for each degradation signal. In this task, we will investigate the

degradation model, in which the C2C interactions can both increase or decrease the degradation

rates of other components. We will generalize the time-scale transformation by [37] for estimating

the RLDs using degradation signals, whose degradation rates may increase and decrease.
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7.2.1.2 Subtask 1.2 – RLD Estimation with Component Interactions and Time-Varying Envi-
ronmental Conditions

This subtask focuses on estimating the residual life distribution (RLD) of an engineering system,

the constituent components of which are dependent and subject to the environmental profile of the

entire system. We will incorporate our proposed models for time-varying environmental conditions

and the multi-component system for characterizing the degradation signals of components in an

n-component system. For i = 1, . . . , n, we model the the degradation signal of component i as

follows

S i(t) =
∫ t

v=0

κi(t) +
∑
i′,i

hi′,i(v)δi′,i

 dv + Bi(t). (7.2.1)

Component interactions on the degradation rates are captured by hi′,i(v)’s and δi′,i’s, as described

in Chapter 5. We will investigate the effect of operational/environmental conditions on the natural

degradation rates of each components. That is, we assume that

κi(t) = θ(t) + φi(t),

where θ(t) captures the environmental profile of the entire system, and φi(t) captures the environ-

mental condition that is specific to each component.

We will incorporate the effects of the operational conditions on the degradation processes of

components. The environmental/operational conditions generally consists of two parts: (1) the

environmental condition common to all components and (2) the operational condition specific to

each component. We assume that the independent degradation rate of each component depends on

the common environment. This also captures the dependence among the constituent components

of an engineering system. For example, as the system is subject to shocks, the degradation rates

of all components are affected. Within an engineering system, the operational condition applied to

each individual component may be different, and each component may be subject to different future

operational profile. φi(t)’s capture such operational conditions that are specific to each component.

We will investigate how to estimate the RLD of each component for various functional forms of

environmental conditions θ(t) and φi(t), including the piecewise constant function, linear function,

and others. The techniques of time-scale transformations can be applied. For example, when θi(t)

and φ(t) are both piecewise constant functions and Xi(t) evolves according to a Brownian motion
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process, the RLD of component i follows an inverse Gaussian distribution under the time-scale

transform define by

ξi(t) =
∫ t

v=0

θ(t) + φi(t) +
∑
i′,i

hi′(v)δi′,i

 dv.

In this case, the lifetime distribution of component i follows an inverse Gaussian distribution under

the time-scale transformation ξi(t). That is,

P(R0,i < t) = IG(ξ(t); di, σ
2
i ).

The RLDs can be computed using similar time-scale transforms that depend on real-time degrada-

tion signals.

7.2.1.3 Subtask 1.3 – Application: Modeling the Quality-Reliability Interactions in Multi-
Station Manufacturing Systems.

This subtask is a joint work with Ms. Li Hao and Professor Jan Shi. In this subtask, we examine

the failures of multi-stage engineering systems, in which the degradation of tools and the quality

of products affect each other. Most papers in the related literature focus on the impact of tooling

degradation on the quality of products. Very few (cf. [26]) have considered the effects of product

quality on the degradation of tools in a multi-station manufacturing system. We will investigate two

failure modes in such engineering systems : the production of non-conforming units or the failure

of tools.

We will investigate a system with m stations and n tools, in which the product performance of

station i at time t is measure by Y j(t) for j = 1, . . . ,m. In the same spirit of [26], we characterize

Y j(t) using the response model in robust parameter design, which is expressed as follow

Y j(t) = η j + α
′
j × S(t) + β′j × zt + S(t)′ × Γ j × zt, (7.2.2)

where S(t) represents the degradation states of tools, and zt represents the main effect of noise with

E(zt) and cov(zt) independent of the time index. This model can be obtained based on specific

physical process models when the physical knowledge is available or using the techniques of design

of experiments.

In the same spirit of [26], we define the quality index of products from station j, denoted by q j,

as the variation of Y j(t) from its target value. To this end, we denote the target value of the product
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quality characteristic (PQC) by γ j for j = 1, . . . ,m, where

γ j = E(Y j(t)|S(t) = 0) = η j + β
′
j × E(zt). (7.2.3)

Using Equation (7.2.3), we expresss quality index q j as follows

q j(t|S(t)) = E((Y j(t) − γ j)2|S(t)). (7.2.4)

By [26], q j can be further simplified as follows

q j(t|S(t)) = S(t)′ × B j × S(t) + d j, where (7.2.5)

B j = Γ j × cov(zt) × Γ′j + (α j + Γ j × E(zt)) × (α j + Γ j × E(zt))′

d j = β
′
j × cov(zt) × β j.

We consider the degradation signals of the tools, which are characterized by the following model

S(tk+1) − S(tk) = r(S(tk))(tk+1 − tk) + ϵk,

where r(S(tk)) the degradation rate of tools and ϵ(t) represents the noise part of the degradation

signals. As a result, the tooling degradation is driven by both of the natural degradation process of

tools and the effects of PQC from upstream stations. In particular, we assume that the degradation

rates of the tools are affected by the deviation of the product quality and express the degradation

rates in the following form

r(S (tk)) = κ + C × θ(t), (7.2.6)

where κ represents the natural rate of tooling degradation, and C characterizes the effects product

quality on tooling degradation. Here, θ(t) = (θ1(t), . . . , θm(t))′ represents the deviation of the PQC

from its target value derived from the performance model. θ j(t) can be expressed as follows

θ j(t) = E(Y j(t) − γ j|S(t)) = α′j × S(t) + S(t)′ × Γ j × E(zt) = (α j + Γ j × E(zt))′ × S(t). (7.2.7)

Hence, θ(t) = D × S(t), where

D = [(α1 + Γ1 × E(zt)), . . . , (αm + Γm × E(zt))]′

Eventually, we rewrite the differential form of the degradation model as follows

dS(t) = [κ + ∆ × S(t)] dt + Σ × dW(t), (7.2.8)
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where ∆ = C×D. W(t) = (W1(t), . . . ,Wn(t))′, where Wi(t)’s characterize the noise of the degradation

signals, which evolves according to Brownian motion processes. Σ = diag{σ2
1, . . . , σ

2
n} characterizes

the amplitude of noise in the degradation signals. We assume that failures occur as degradation

signals S(t) or quality indices q(t) cross pre-specified thresholds. This requires accurate estimation

of the future distributions of S(t) and q(t), which can be achieved by applying the SDE techniques,

proposed in Chapter 5.

7.2.2 Task 2 – Scalability to General Network Systems

In this task, we will utilize the stochastic model for individual components from the previous task to

assess the RLDs of network systems, which are subject to time-varying operational conditions and

component interactions. The structures of network systems can generally be divided into two cat-

egories : non-complex network systems and complex network systems. The non-complex systems

are referred to the systems, which can be reduced to series and/or paralleled systems. Whereas,

complex systems are referred to engineering systems, in which such decomposition is not available.

For small and non-complex systems, the reliability estimate can be obtained with the aid of system

structure functions. For large non-complex and complex systems — systems with more than 10

constituent components according to [55] — the system structure function is very difficult to com-

pute. According to [127], the exact closed-form reliability expression for such systems is extremely

difficult, if possible. Therefore, various approximation techniques and simulation techniques have

been developed to assess the reliability of large and complex network systems. In what follows, we

will investigate the simulation technique based on cellular automata (CA) and its application to the

reliability maintenance of smart grid systems.

7.2.2.1 Subtask 2.1 – Evaluating System Reliability Using a CA-Based Simulation Technique

This subtask is a joint work with Mr. Murat Yildirim. The assessment or even the approximation

of network reliability requires ascertaining the connectivity of a set of sources to a set of demands

in the network. Generally, it is equivalent to finding the minimum cut set or the minimum path

set of the network. These approaches lead to NP-hard problems, which require cumbersome and

mathematically intensive methods of solution. More importantly, in many real-world applications,

the connectivity of the network changes due to component failures. In such cases, the conventional
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algorithms requires re-evaluating the network connectivity and thus reliability from scratch.

In this subtask, we will utilize the Monte Carlo simulation technique along with the algorithm

of cellular automata to estimate and update the network reliability with real-time information. The

first application of cellular automata in network reliability estimation is presented in [105, 106]. In

these two papers, the authors use CA to estimate the network reliability when the constituent nodes

have static failure probability. We will simulate degradation signals based on the stochastic model

developed in the previous research task to characterize network system subject to time-varying

operational conditions and component interactions. When one constituent component fails, the CA

algorithm will be applied to examine the connectivity of the network. Once the connection between

the sources and the demands fails, the system fails. An advantage of our approach is that it can be

efficiently used to incorporate the connectivity change of nodes in the real-time information.

7.2.2.2 Subtask 2.2: Application – Improving the Reliability and Sustainability of Smart Grids.

The advent of alternative and renewable energy (for example, wind, solar, etc.) coupled with in-

creased interconnectivity of traditional power networks requires sophisticated monitoring and con-

trol systems that allow these complex systems to function efficiently. This has given rise to what

is, today, referred to as “smart grids”. At the heart of the efficient operation of a smart grid is a set

of tools that ensure the highest levels of reliability and sustainability. In this subtask, we will use

stochastic methodologies to develop prognostic models that can be used to predict grid degradation

and quantify the likelihood of a failure event.

Smart grids aggregate various resources, including the networks of multiple generation com-

panies and renewable resources (solar, wind, and others). The aggregation of resources, induces

significant volatility in the net demand of smart grids, which aggravates the network reliability.

Therefore, it is very important to model and predict the demand profiles of smart grids, and adjust

the price in real time to maintain the network reliability. Sensory demand data from customers

will be to processed to enhance the efficiency of data transmission and analysis. In particular, the

technique of wavelet analysis will be applied for de-noising and feature extraction. The loss of data

information can be quantified based on wavelet coefficients of data noise. The resulting processed

data will be used to model the demand profiles based on non-homogeneous Poisson processes. Each
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demand profile can be compounded by two non-homogeneous Poisson processes : one for regular

demands, and the other for rare events with peak demands. This model will be updated based on

sensory demand data in real time. Given the model of demand profiles, the future demands can

be predicted in finite horizons. The resulting demand estimates will be further used to facilitate

decision making on real-time pricing. Specifically, the price can be adjusted at each decision epoch,

based on dynamic programming, to address economics of the network and enhance network relia-

bility.

The results of this research task will add to the limit literature that uses real-time pricing to

balance demand and supply in smart grids. In addition, the incorporation of sensory data will

provide insight on facilitating demand responses and management to mitigate net demand volatility.
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