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SUMMARY 

 Fluid-structure interaction (FSI) is an important physical phenomenon in many 

applications and across various disciplines including aerospace, civil and bioengineering. 

In civil engineering, ocean structures such as drilling risers, mooring lines, undersea 

piping and tension-leg platforms can be subject to strong ocean currents, and such 

structures may suffer from Vortex-Induced Vibrations (VIV’s) leading to large amplitude 

vibrations. Over the past years, many experimental and numerical studies have been 

conducted to comprehend the underlying physical mechanisms. However, to date there is 

still limited understanding of the effect of oscillatory interactions between fluid flow and 

structural behavior though such interactions can cause large deformations. 

 This research proposes a mathematical framework to accurately predict FSI for 

elastically supported rigid structures. The numerical method developed solves the Navier-

Stokes (NS) equations for the fluid and the Equation of Motion (EOM) for the structure 

and employs Finite Differences (FD) on Cartesian grids together with an improved, 

efficient and oscillation-free Immersed Boundary Method (IBM), the accuracy of which 

is verified for several test cases of increasing complexity. In particular, forced and a free 

vibration of a rigid cylinder including VIV of an elastically supported cylinder are 

presented and compared with reference simulations and experiments. Then, the 

interference between two cylinders in tandem arrangement at two different spacing is 

investigated. In terms of VIV, three different scenarios were studied for each cylinder 

arrangement to compare resonance regime to a single cylinder. Finally, the IBM is 

implemented into a three-dimensional Large-Eddy Simulation (LES) method and two 

high Reynolds number (Re) flows are studied for a stationary and transversely oscillating 

cylinder. The robustness, accuracy and applicability of the method for high-Re number 

flow is demonstrated by comparing the turbulence statistics of the two cases and 

discussing differences in the mean and instantaneous flows. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Statement of the Problem 

 In many engineering applications, fluid-structure interaction (FSI) phenomena 

play a key role in the dynamic behavior of a structure (eg. Aircraft, wind turbines, 

suspension bridges…etc). Many natural and man-made transportation systems and/or 

machinery involve FSI. In civil engineering, examples include large scale applications 

which are design of wind turbines, pipelines, suspension bridges and offshore platforms. 

Design of aircraft wings, bridges, offshore wind farms, prosthetic heart valves, turbo-

machinery, jet engines, floating of boats on the ocean and river and sloshing in the 

flexible containers are some other engineering applications. Therefore, the area of FSI is 

a part of a number of disciplines associated with fluid mechanics, acoustics, structural 

mechanics, Computational Fluid Dynamics (CFD), statistics and vibrations. 

 The flow over structures creates vortices that may induce vibrations in the 

structure. Vortex-Induced Vibrations (VIV’s), where vortex shedding of the flow 

interacts with the structural properties, may result in large amplitude vibrations in both 

in-line and cross-flow directions. Indeed, VIV’s are encountered today in many different 

fields of engineering as they occur in a large number of structures, principally in air or 

water flows. For instance, chimney stacks, buildings, airplane wings, and offshore 

structures all experience VIV. In civil engineering, ocean structures such as drilling 

risers, mooring lines, cables, undersea piping and tension-leg platforms can be subject to 

strong ocean currents, and such structures may suffer from VIV. 
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 VIV triggers the cross-stream excitation of structures due to vortex shedding and 

this can result in a condition of resonance, where the vortex shedding frequency locks-in 

with the natural frequency, resulting in large amplitudes of cross-stream excitation of the 

structure. Over the past years, many experimental and numerical studies have been 

conducted in order to understand the underlying physical mechanism. However, there is 

only limited research considering the effect of oscillatory interactions which can result in 

large deformation of structures. 

 One of the design considerations of modern suspension bridges is to assess the 

influence of the wind forces on the structural response. The need for such analysis arose 

from the evolution of designs to progressively longer and more slender structures. The 

collapse of Tacoma Narrows Bridge in 1940’s (see Figure 1-1a and b) showed engineers 

that resonance can cause disastrous influences on existing structures and cannot be 

underestimated in design calculations. It was also realized after this catastrophe that 

flexible bridges are susceptible to the dynamic effects of wind action. Only then was it 

revealed that these violent aerodynamic oscillations could not have been predicted by 

pseudo-static analysis. Therefore, research has mainly been directed towards the 

understanding of the phenomenon, its modeling and its reduction.  

 Applications in structural engineering are numerous and mainly concentrate on 

tall buildings like towers, masts, and skyscrapers and on bridges of flexible nature. The 

study of the collapse of the Tacoma Narrows Bridge, among them the works of Von 

Kármán (1938), Amann et al. (1941) and Farquharson and Vincent (1950) who first 

applied the airfoil theory to bridge decks  in structural engineering. 
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(a) 

 

(b) 

Figure 1-1 Tacoma Narrows Bridge collapse in 1940: (a) onset of twisting by 
VIV (b) total collapse. Source: http://www.math.utah.edu/~gustafso/tnarrows/tnarrows_intro.html 
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 Another application in structural engineering that deals with FSI is offshore wind 

turbines. Wind turbines that harvest wind energy and convert it to electrical power play 

an increasingly important role and are receiving much attention from governments and 

industry around the world while meeting rapidly increasing demand for energy and 

ensuring security of supply (Bazilevs et al. (2011)). The dynamic analysis of offshore 

wind turbines which are large-floating and/or slender-fixed structures is today one of the 

main areas of interest in ocean and offshore engineering. Figure 1-2a and b show an 

individual turbine and an array of wind turbines in an offshore wind farm, respectively. 

 

 

  

a)  b) 

Figure 1-2 (a) Individual Wind Turbine (b) Wind Farm. Source: 
http://www.energyacuity.com/blog/bid/198593/Vague-Maritime-Laws-Preventing-U-S-Offshore-Wind-
Development 
 

 

 The offshore oil & gas industry is particularly faced with the problem of dealing 

with VIV. Since many of the onshore and shallow-water regions are reaching a peak in 

terms of reserves and production growth, exploration and production are moving to 
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deeper waters. In the offshore industry the long, slender, flexible pipes (risers) used to 

convey fluids from the sea bed to the surface experience wave-induced, vessel-induced 

movement as well as VIV. Due to the exploration and production in deeper waters, these 

risers become more flexible and vibrate producing fatigue damage and may ultimately 

fail. In addition, as water depths increase, wave and vessel motion-related damage remain 

at roughly the same level or even diminish, but as currents can act over the full length of 

the riser, VIV may be the the largest contributor to the overall riser fatigue damage 

(Bourdier (2008)). 

 The state of the art concerning the topic of VIV of rigid circular structures is now 

well advanced. FSI principles and their influence on the vortex wake have been largely 

investigated. However most of the studies consider the structures stationary (Mittal et al. 

(1997); Mohd-Yusof (1997); Papaioannou et al. (2006, 2008); Sumner (2010)) and little 

is known about the influence of the dynamics of the structure on the VIV. As the oil 

industry moves into deeper water in the search for additional supplies of oil and gas, new 

concepts are being used investigated for offshore platforms. The height of conventional 

fixed leg platforms is approaching the economic limit due to the very large amount of 

steel required and limitations imposed by fabrication and installation methods (Bourdier 

(2008)). On the other hand, the Tension Leg Platforms (TLPs) are floating structures 

whose mooring system is constituted by vertical tethers. This characteristic makes the 

structure very rigid in the vertical direction and very flexible in the horizontal plane. The 

vertical rigidity helps to tie in wells for production, while, the horizontal compliance 

makes the platform insensitive to the primary effect of currents and waves. In Figure 1.3 

a floating tension leg offshore platform with 4 rigid cylinders (yellow) is depicted.  
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Figure 1-3 A Tension Leg Platform (TLP).Source: 
http://www.nd.edu/~nathaz/research/Luigi.html 

 

 

1.2 Research Objective and Scope 

 The main objective of the present research is to better understand the interaction 

between fluid flow and non-static bodies in the context of civil engineering structures. 

This research herein will develop a rigorous mathematical framework to accurately 

predict VIV. While the FSI mechanism is a general process, this dissertation will focus 

on oscillatory interactions between moving structures and fluid flow since such 

interactions can cause large deformations and eventually failure. 
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 To achieve these objectives of this dissertation, the following research tasks are 

conducted: 

• Develop a robust, fully-coupled numerical method that solves the Navier-

Stokes equations for the fluid and the equation of motion for the structure 

that allows calculation of hydrodynamics and the resulting excitation of 

elastically-mounted single, multiple and coupled circular structures. 

• Perform a variety of two and three-dimensional FSI simulations to 

demonstrate the accuracy and the range of applicability of the method, 

such as forced vibration including in-line, transverse oscillation and VIV 

of a rigid, circular cylinder. 

• Investigate the interference between two circular cylinders in tandem 

arrangement and at two different spacing by studying three different 

scenarios for each cylinder arrangement, and investigate how the 

resonance regime is affected in each scenario. 

• Implement a three-dimensional methodology for the Large-eddy 

simulation (LES) method of turbulent flows interacting with a stationary 

and  dynamically moving structure, hence demonstrate the robustness, 

accuracy and applicability of the method for high Reynolds number (Re) 

flows by comparing the turbulence statistics of these two cases and 

discussing differences in the mean and instantaneous flows. 
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1.3 Organization of Dissertation 

 The organization of this dissertation which includes 7 chapters is briefly described 

below: 

Chapter 2 gives much of the background information on vortex shedding and a 

literature review of existing methodologies that are used to assess vortex-induced 

vibrations.  

In Chapter 3, the basic fluid solver is described in detail. The governing 

equations, spatial discretization and time advancement schemes are documented. This 

chapter also presents the structural formulation, the strong coupling scheme for fluid-

structure interaction problems, and the parallelization of the code. 

In Chapter 4, fundamental tools for the immersed-boundary formulation are 

introduced. For the proposed formulation, the establishment of particular choice of 

regularized delta functions is discussed. Then, the two dimensional flow around a 

rectangle and a cylinder is computed to demonstrate the formal accuracy of the method. 

A series of two-dimensional cases of increasing complexity are presented in 

Chapter 5. First, laminar flow problems involving prescribed motions of two-dimensional 

bodies including the flow induced by the harmonic in-line and transverse oscillations of a 

circular cylinder in a quiescent flow and free-stream respectively are simulated. Next, 

vortex-induced vibrations of circular cylinders are used to evaluate the accuracy and 

efficiency of the proposed fluid-structure interaction scheme. Then, the interference 

between two circular cylinders in tandem arrangement and at two different spacings is 

investigated. In terms of VIV, three different scenarios are studied for each cylinder 

arrangement: 1) the upstream cylinder is fixed and the downstream cylinder is free to 
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oscillate 2) both cylinders are free to oscillate 3) cylinders are rigidly connected to each 

other and are free to oscillate in the cross-stream direction. 

In Chapter 6, two three-dimensional high Reynolds number simulations are 

presented. The first case is the classical stationary Re = 3900 cylinder flow for which 

extensive laboratory and previous Large-eddy simulation (LES) data are available to 

validate the LES method. The second case is a one-way coupled fluid structure 

interaction flow, here with prescribed motion of the cylinder at small oscillation 

amplitude (A = 0.2D) and at frequencies which are close to the frequency of the vortex 

shedding frequency of the stationary flow. 

Chapter 7 summarizes the conclusions of this work, highlights the main results 

and findings obtained from this study and finally gives recommendations for future work. 
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CHAPTER 2 

INTRODUCTION TO VORTEX-INDUCED VIBRATIONS (VIV’S) 

 

 Vortex Induced Vibrations (VIV’s) for flow past structures which are immersed 

into the flow has been studied extensively and observed for centuries.  Leonardo Da 

Vinci observed this phenomenon and named it as “Aeolian Tones”, circa 1500 A.D., a 

phenomenon that has been studied ever since. Strouhal (1878) conducted one of the first 

aero acoustical work in history. The study was on the Aeolian tones generated by a wire 

in an air flow. He came up with a functional relationship of the frequency fn of the sound 

produced by that wire and the wind speed U divided by the wire diameter D, that is, fn = 

0.185 U / D. In addition, he noticed that the sound volume was greatly influenced by the 

concurrence of the natural tones of the wire and the Aeolian tones. One year later Lord 

Rayleigh (Rayleigh (1879)) showed that the vibrations occurred mostly in the cross-flow 

direction. However, the flow visualizations of Benard (1908) together with the stability 

analysis of Von Karman and Rubach (1912) showed that these vibrations were attributed 

to the shedding of vortices by the structure, hence the name Vortex-Induced Vibrations. 

 Vortex-induced vibrations are seen in various fields of engineering where a 

separated flow is generated by the immersed structure over a large proportion of its 

surface in a fluid flow. Under appropriate conditions, flow separation causes an unsteady 

flow, which generates the alternating shedding of vortices from one side of the structure 

to the other (Gerrard (1966)). The periodic pattern of vortices is called Von Karman 

Vortex Street. The shedding of vortices induces an oscillating pressure field around the 
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structure, resulting in vibration of the structure. Different forms of structures such as 

plates, sharp-edged or square cross-section bodies can be found in the study of VIV, 

however, circular cross-section bodies are attracting particular attention from the 

researchers as the cylinder is an important shape in many structural applications. The 

studies by Bearman (1984) and Parkinson (1989) and the book by Blevins (1990) discuss 

various immersed structures. As discussed in the previous section, Von Karman studied 

the Tacoma Narrows bridge collapse in 1940 and asserted that the cause of the 

destruction was as a consequence of VIV. 

2.1 Review of Previous Work 

2.1.1 Fluid-Structure Interaction 

 The formation of the vortex street is explained by Abernathy and Kronauer (1962) 

as the growth of two parallel shear layers. In a fluid flow, the presence of a structure such 

as a circular cylinder induces the separation of the flow and that causes the appearance of 

shear layers and triggers the alternative shedding of vortices behind the structure. The 

vortex-shedding frequency is usually characterized by the dimensionless Strouhal 

number, St; 

∞

=
U

Df
St e          (2-1) 

 fe being the vortex shedding frequency at which pairs of vortices are shed from the 

structure, U∞ being the free stream velocity and D the width of the structure. The Strouhal 

number depends on the Reynolds number as discussed in Blevins (1990), but it is almost 

constant and equal to 0.2 which is close to the value deduced by Strouhal in the 
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subcritical range of flow around circular cylinder (300 ≤ Re ≤ 150000) where most of 

engineering problems occur (Bourdier (2008)). 

 If one of the natural frequencies of the structure subjected to a flow is close to the 

vortex-shedding frequency and the system has low damping which does not sufficiently 

affect the amplitude of oscillations in an oscillatory system, self-excited vibrations can 

occur. The self-excited vibrations may induce destructive forces in designing structures 

or equipment. For instance, Sainsbury and King (1971); Wootton et al. (1972) discussed 

problems due to vortex-induced vibrations during construction of a large offshore oil 

platform at Immingham, England, in the tidal flow of the Humber estuary. They found 

out that these oscillations occurred when the frequency of the cylindrical structure was 

twice the vortex shedding frequency. 

 Bourdier (2008) defines Vortex-excited vibration as a “fluid-structure interaction 

phenomenon in which temporal synchronization of the evolutions of the flow field and 

the structure oscillation is dominant”. This phenomenon is crucial not only in the sense of 

the intensity of forces but also the simultaneity of evolution of fluid and structure 

(Facchinetti, 2003). As fluid passes over a structure, large vibration of the structure can 

be observed when the fluid dynamic forces on the body increase through a nonlinear 

interactive process. The structure can vibrate if it is movable as the shedding of vortices 

creates an oscillating pressure field around the body. The magnified vibration can control 

the flow pattern and can be further increased. Berger and Wille (1972) and Parkinson 

(1973) discussed these self-oscillatory, nonlinear body-wake systems.  

 When the vortex shedding frequency fe and the natural frequency of the structure 

fn are of the same order, the fluid-structure interaction becomes stronger. In this case, a 
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non-dimensional parameter called the reduced velocity, Ured is often used as a guide to 

determine if vortex-induced vibration is possible. The reduced velocity is defined by: 

)
1

()(
St

O
Df

U
O

Df

U
U

en

red === ∞∞           (2-2) 

where U∞ is the velocity at far boundary, fn and D is the natural oscillation frequency and 

the diameter of the structure, respectively. It reflects the synchronization of flow and the 

structure. Bourdier (2008) found that reduced velocity takes values close to 5 when 

synchronization occurred. 

 The simultaneous behavior of vibrations between vortex and vibration frequencies 

is a characteristic of fluid-structure interaction and is often referred to as “lock-in”. In this 

situation, the structure can be subject to large amplitude oscillations. Fluid-structure 

interaction can induce high amplitude oscillations of the structure over a whole range of 

flow velocities by driving the frequency of shedding of vortices to synchronize with the 

structure’s oscillation. This means that when the amplitude of structural oscillation passes 

a critical threshold, the structural vibration frequency becomes identical to the vortex-

shedding frequency fe, which differs from that estimated by the Strouhal relationship. In 

other words, synchronization occurs as the natural Strouhal frequency which is a 

characteristic of vortex shedding from a stationary cylinder is suppressed by the structural 

frequency.  

 In addition, the lock-in effect produces strong correlation of vortex-shedding with 

the structural motion. The structure can oscillate in both in-line and cross-flow directions 

as it is set free to move. However, the frequency of in-line oscillations is usually twice as 

high as that of cross-flow oscillations and the magnitude of in-line displacements are 

much smaller than those of the transverse direction. Therefore, most engineering 
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applications are concerned with cross-flow oscillations. This is the reason why the 

majority of the research conducted on VIV of a rigid circular cylinder considers the 

structure restrained to move only in the cross-flow direction although some researchers 

such as Jauvtis and Williamson (2003, 2004); Jeon and Gharib (2001); Sarpkaya (1995) 

studied cylinders with two degrees of freedom. Jauvtis and Williamson (2004) have 

shown that restriction on two dimensional movement of the cylinder does not 

significantly affect the VIV of the structure as long as the mass ratio, m* = m/ρD
2 (ρ 

being the fluid density and m the system mass) is greater than 6. 

 When the cross-stream directional oscillation of the structure is large enough, 

fluid-structure interaction can lead to an increase in the strength of the vortices or the 

mean drag on the structure. However, the phase, sequence and the pattern of the vortices 

in the wake region are altered by the motion of the cylinder (Blevins, 1990). This effect is 

also seen when a cylinder is forced to oscillate in a sinusoidal manner under a uniform 

current. Here, lock-in takes place either when the oscillation frequency on cross-stream 

direction becomes equal to the Strouhal frequency or when the driving frequency in the 

streamwise direction approaches twice the Strouhal frequency (Anagnostopoulos and 

Bearman, 1992). Therefore, nonlinear behavior of the body-wake is noticed as the 

cylinder vibrates transversely to the fluid flow. 

2.1.2 Numerical Modeling of VIVs  

 Computational Fluid Dynamics (CFD) typically involves flow through complex 

domains. Solving fluid dynamics equations in such geometries can be extremely 

challenging, and methods based on body-fitted grids which conform to the geometry can 

be difficult to implement. Especially for moving bodies, at every time step a new mesh 
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has to be generated. This requires a lot of computing time. Therefore, body conformal 

grids are being used less when studying fluid-structure interaction problems. Today, 

research has shifted towards fixed Cartesian grid arrangements with immersed boundaries 

for which special numerical treatment is employed. Figure 2-1 illustrates two different 

configurations of a numerical grid around a cylinder.  

  

 

(a) 

 

(b) 

Figure 2-1 Grid around a cylinder (a) Traditional body fitted grid (b) Cartesian 
grid with an immersed boundary. 
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 An increasingly popular approach is to solve the fluid on an Eulerian (i.e. 

Cartesian) grid while the moving structure is tracked in a Lagrangian fashion. Thus, the 

grid is not aligned with the immersed boundary.  This approach has been employed in a 

variety of inviscid (Bayyuk et al., 1993; Dezeeuw and Powell, 1991; Quirk, 1994) and 

viscous (Udaykumar et al., 2001; Udaykumar et al., 1996; Ye et al., 1999) flow 

computations. The main advantage of a Cartesian grid is that there is no need for grid 

regeneration or grid deformation as the boundary moves. Elimination of the grid 

generation saves time in numerical studies. Therefore, an immersed boundary method 

uses less memory and CPU compared to a body fitted grid and its corresponding 

transformations. The boundary conditions on the structure are imposed using a variety of 

different immersed boundary strategies with different accuracy and efficiency. However, 

ensuring the accuracy and the conservation of mass of such numerical schemes are not 

straightforward. 

 An immersed boundary with an arbitrary shape can be modeled on a fixed 

Cartesian grid by imposing an external force field using immersed boundary methods. 

The method was first introduced by Peskin (1972) and has been applied in various 

problems, most of which contain biological flows including computations of flow 

patterns around heart valves (McQueen and Peskin, 1997; Peskin, 1977, 1982). Peskin’s 

method is a mixed Euler-Lagrangian finite difference method for computing the flow 

interaction with a flexible immersed boundary. In this method, the fluid flow governed by 

the incompressible Navier-Stokes equations is solved on a Cartesian grid. The structure is 

represented by a set of massless elastic fibers and a collection of massless forcing points 

which are movable with the local fluid velocity which track the location of those fibers. 
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Goldstein et al. (1993), Saiki and Biringen (1996) modeled the flow around rigid bodies 

using a feedback forcing approach. In this approach, the force exerted by the body on the 

fluid is specified as a function of the velocity of fluid around it. This force adapts itself 

such that the no-slip boundary condition is retained on the body. The main drawback of 

this approach is the presence of two flow-dependent constants which need to be modified 

according to the frequencies of the flow. For an unsteady flow simulation, these constants 

take large values which lead to smaller time steps and hence increase the computational 

cost. Khadra et al. (2000) introduced a penalty method in which an additional term of 

volume drag is added to the governing equations. The so-called “Darcy Drag” term 

accounts for the action of the porous medium on the flow. The disadvantage of this 

method is that the proposed methodology may induce spurious oscillations. The ‘direct 

forcing method’ introduced by Mohd-Yusof (1997) utilizes a forcing term in the 

discretized momentum equation. It is equivalent to enforcing the boundary condition in 

the flow field by using a direct forcing term in the momentum equation as follows;  

 2/12/1
1

)( ++
+

+=
− nn

nn

fRHS
dt

uu
      (2-3) 

where RHS contains convective, viscous and pressure gradient terms, u is the velocity, 

and f is the forcing term. This term is then calculated at the intermediate time step n+1/2 

(where n, n+1 being current and the next time step, respectively), by imposing the 

boundary conditions where the structure and the fluid have the same velocity in 

magnitude. An interpolation is needed when the boundary is not aligned with the grid in a 

Cartesian grid. The interpolation proposed by Peller et al. (2006) is a least squares 

interpolation with third order accuracy. They use a polynomial so that the sum of the 

squares of the distance from the curve to the values at the fluid points is minimal. The 
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methodology utilizes a pseudo-forcing function calculated at discrete points with a stable 

second order least squares interpolation scheme for fixed and moving boundaries. It is 

directly applied to the right hand side of the momentum equation in order to satisfy the 

boundary conditions at the location of the structure. Bomminayuni (2010) utilized this 

immersed boundary technique for three dimensional turbulent flows over embedded 

boundaries. Figure 2-2 shows an example sketch of 2D implementation of an 

interpolation strategy which utilizes three fluid cells in two directions for a cut cell which 

has a cell center outside of the cylinder boundary. 

 

 

 

Figure 2-2 Typical 2D Stencil showing an interpolation strategy using three fluid 
cells in in-line and cross-flow directions for the cell cut by the cylinder boundary in (x,y) 
plane.  
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 Fadlun et al. (2000) provided second order accuracy and also a better 

representation of the boundary for the distribution of forcing to neighboring grid points. 

Fadlun et al. (2000) also compared the efficiency and accuracy of the proposed approach 

to the feedback forcing approach of Goldstein et al. (1993), and suggested that for flow 

past complex geometries, his methodology provided better efficiency and accuracy. 

However, a limitation of this approach is that it requires huge clustering of grid points 

close to the body for a stable linear interpolation that yields accurate values. Hence, many 

researchers have worked on improving the interpolation procedure while simultaneously 

employing the direct forcing method. 

 Tseng and Ferziger (2003) employed a ghost-cell method where forcing was 

applied to grid cells inside the body such that the boundary condition is implicitly 

satisfied at the surface of the structure. A 2D linear interpolation scheme using two 

nearest fluid points was implemented and therefore, a more accurate representation of the 

boundary was achieved than by Fadlun et al. (2000), where interpolation was performed 

in x or y directions using only one neighboring fluid point. A major drawback of this 

interpolation scheme was the occurrence of large negative weighting coefficients, in 

cases where the inside (ghost-cell) points are very close to the boundary, leading to 

numerical instability. Overall, this ghost-cell method proposed by Tseng and Ferziger 

(2003) was efficient and fairly accurate in simulating flow past immersed bodies. 

Uhlmann (2005a) presented an improved Immersed Boundary Method (IBM) with a 

direct formulation of fluid-solid interaction force.  The regularized delta function of 

Peskin (2002) is utilized for connecting arbitrary Lagrangian and discrete Eulerian 

positions. Su et al. (2007) proposes a new implicit force formulation on the Lagrangian 
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marker to satisfy the no-slip boundary condition at the immersed boundary. According to 

their methodology, the boundary forces are first computed on the Lagrangian markers 

and then distributed to the Eulerian grid via a discrete delta function. Their numerical 

results show that the proposed formulation does not change the stability limit. 

 In the literature, it is clearly seen that most of the researchers use finite difference 

techniques with reconstruction methodologies for simulations over flow in complex 

geometries (Kim et al. (2001); Yang et al. (2008); Yang and Balaras (2006)). These 

reconstruction procedures around the immersed structures can produce accurate results 

for stationary structures while the method produces unphysical pressure oscillations due 

to the violation of global mass conservation once the structure starts moving (Seo and 

Mittal (2011); Uhlmann (2005a)).  

 The unphysical oscillations in the forcing coefficients observed for the boundary 

motion were first pointed out by Uhlmann (2005a). In his study, a fictitious domain 

method was developed to smoothly transfer the forcing term and other quantities between 

Lagrangian and Eulerian positions. The proposed method produces less instability than 

the existing discrete forcing methods in calculation of the forces around the immersed 

boundaries and the oscillations due to a fixed grid are overcome. Later, Uhlmann (2005b) 

further reduced the velocity error which results in instability by introducing points over 

the entire structure in addition to points defined on the surface of the boundaries. 

 Seo and Mittal (2011) have recently analyzed these unphysical peaks in the 

forces, and they described those as the pressure oscillations resulting from the violation 

of the local mass conservation near the immersed boundary. They state that the primary 

source for this error is that for moving boundary problems, some grid cells (or grid 
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points) in the computational domain change from fluid to immersed boundary cells in 

time leading to spurious mass sources/sinks. According to IBM based on sharp interface 

treatment introduced by Mittal et al. (2008) the governing equations (mass and 

momentum conservation) are solved only on the cells in the fluid domain and for moving 

immersed boundaries, this results in the generation of fresh cells (cells that go from being 

inside the solid domain to being in the fluid domain) and dead cells (cells that go from 

being inside the fluid domain to being inside the solid domain). Luo et al. (2009) pointed 

out that the abrupt change of the stencils (a geometric arrangement of a nodal group that 

relate to the point of interest by using a numerical approximation routines as seen in 

Figure 2-2) for the flow reconstruction and a finite-differencing of the governing 

equations associated with these cells causes unphysical oscillations in the pressure field. 

Similar behavior is seen in IBM’s using a direct forcing method (Lee et al. (2011); Liao 

et al. (2010); Uhlmann (2005a, b); Yang et al. (2009)) as numerical stencils for applying 

forcing terms are changing as the structure moves. Lee et al. (2011) defines two sources 

of the pressure oscillations in a discrete forcing IBM which are the temporal discontinuity 

in the velocity at the dead cell and the spatial discontinuity in the pressure across 

immersed boundary caused by the fresh cells. In order to reduce the spurious pressure 

oscillations, Seo and Mittal (2011) propose a strategy which incorporates mass 

conservation through a well-known cut-cell approach (Udaykumar et al. (2001); Ye et al. 

(1999)) into their ghost cell method (Mittal et al. (2008)). In this method, the boundary 

cells that are cut by the immersed boundary are restructured into non-rectangular control 

volumes. Moreover, a finite volume method is used to ensure the strict conservation of 

volume of the defined geometry using equations proposed by Kamakoti and Shyy (2004) 
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in addition to conservation of mass. With the help of this proposed strategy, no 

significant spurious pressure oscillations for moving boundary problems are encountered.  

  

 
 

Figure 2-3 Time histories of pressure drag coefficient for horizontally oscillating 
cylinder; comparison between the original sharp-interface IBM and the regionally 
conservative cut-cell method by Seo and Mittal (2011) 
 

  

 In order to demonstrate the efficiency of their method, Seo and Mittal (2011) 

considered a cylinder with a diameter D oscillating sinusoidal in streamwise direction. 

Figure 2-3 shows the time series of the pressure drag coefficient for the original proposed 

ghost cell method and the method with the improved mass conservative cut cell approach. 

As seen from this figure, the pressure oscillations are significantly reduced although there 
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are still some local extremes (discontinuities on the results of their proposed method) in 

the plot. Their results confirm that the major cause of the spurious pressure oscillations is 

due to the fluid mass/volume loss. However, the implementation of this method is 

complex and increases the computational time. 

2.2 Research Gaps and Objectives of this Study 

 A review of the existing literature, summarized in the previous section, identified 

several research gaps in current numerical simulation of vortex induced vibrations. 

Among those, the following appear to be particularly significant: 

• Recent studies on moving immersed boundaries require knowledge of 

implementation of the boundary conditions in irregular cells which needs a 

large number of “special treatments”, resulting in complex coding logistics 

(Mittal et al. (2008); Peller et al. (2006); Seo and Mittal (2011)). 

Especially when using cut-cells, these cells should not become too small; 

otherwise this could not only result in stability problems, but also lead to 

slow convergence of the Poisson solver (discussed in later chapters). 

Finally, an iterative solution procedure may be required due to some 

irregular stencil near the embedded boundary (Choi et al. (2007)), which 

results in substantial increase in computational time. 

• Existing studies mainly have considered static single structures (Fadlun et 

al. (2000); Kim et al. (2001); Mohd-Yusof (1997); Peller et al. (2006); 

Peskin (2002); Sarpkaya (1995); Udaykumar et al. (2001); Yang and 

Balaras (2006)). In such cases, the correlation between structure and the 

flow is manageable computationally because the structures are fixed in 
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location and relatively small in number. However, studying multiple 

structures such as structures in tandem arrangement along with analysis of 

the coherent structures and the interaction between them is rarely 

determined although it is formidable and interesting to understand in the 

context of flow dynamics. Investigation of coupled and uncoupled systems 

of structures and their response to the hydrodynamic forces is still missing 

in the research.  

• Only a limited number of research studies have considered moving 

structures as fluid-structure interaction problem. While some of these 

studies have accounted for the motion of structures (Mittal et al. (2008); 

Seo and Mittal (2011); Uhlmann (2005a); Yang et al. (2009)), the 

configurations were limited to mainly two dimensional validations low Re 

flows. However, current research needs to extend the investigation of FSI 

phenomena from two-dimensional with low Re to three-dimensional with 

high Re. 

 As stated previously, the main research tasks of this dissertation are: 

1) To employ a robust, efficient, oscillation free and fully-coupled numerical method 

which can handle problems that are unique to boundary formulations and are 

consequences of the boundary motion on a fixed grid without introducing any 

additional complexity in the solver. 

2) To perform a variety of simulations with increasing complexity to demonstrate 

the accuracy and the range of applicability of the method, such as forced vibration 

including in-line, transverse oscillation and VIV of a rigid, circular cylinder. 
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3) To apply the numerical method into multiple structures in order to investigate the 

interactive flow structures between cylinders in tandem arrangement and at two 

different spacing by studying three different scenarios for each cylinder 

arrangement, and check how the resonance regime is affected in each scenario. 

4) To extend the proposed method and implement it into a three-dimensional 

methodology for the Large-eddy simulation (LES) method of turbulent flows 

interacting with a stationary and dynamically moving structure, hence 

demonstrate the robustness, accuracy and applicability of the method for high-Re 

number flows by comparing the turbulence statistics of the two cases and 

discussing differences in the mean and instantaneous flows with respect to the 

experiments. 
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CHAPTER 3 

NUMERICAL METHODOLOGY 

 

 The purpose of this study is to develop a computational tool for simulations of 

laminar and LES of turbulent flows interacting with moving boundaries. Rigid structures 

undergoing motion that is either prescribed or governed by additional Ordinary 

Differential Equations (ODEs) that have to be solved as a coupled system together with 

the Navier-Stokes equations are considered. In this chapter, the coupled solver will be 

introduced in two parts; the basic fluid solver in Cartesian coordinates and the structural 

solver which is capable of solution of the Equation of Motion (EOM). Both solvers are 

discussed in detail. In addition, the fluid-structure coupling scheme is provided at the end 

of this chapter. The treatment of the immersed boundary method and its validation will be 

discussed in detail in chapter 4. 

3.1 Basic Navier-Stokes (NS) Solver 

3.1.1 Formulation in Cartesian Coordinates 

3.1.1.1 Governing Equations 

 In Cartesian coordinates, the governing equations for an unsteady, 

incompressible, viscous flow of a Newtonian fluid with constant density can be written as 

follows: 
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where ui and uj (i,j = 1,2,3) are the velocity vector components in the corresponding 

directions (i.e. u1 = U, u2 = V and u3=W denoting the velocity components in x, y and z 

directions, respectively. See Figure 3-1 for the staggered variable arrangement), 

normalized by a reference velocity U∞, t is the time which is normalized by L/U∞ with L 

being the reference length scale, p is the pressure normalized by ρU
2 with ρ being the 

density of the fluid, and Re is the Reynolds number defined as Re = ρU∞L/µ with µ being 

the dynamic viscosity of the fluid. Similarly, xi and xj represent the spatial location 

vectors in global X, Y and Z axis directions, respectively. In equation 3-2, fi represents an 

external body force field which is, in this case, designed to enforce the proper boundary 

conditions on an arbitrary immersed body (this will be discussed in detail in the next 

chapter).  

 For laminar flow cases, the fluid flow governing equations, Eqs (3-1) and (3-2) 

are directly integrated in time and space without introducing any model. On the other 

hand, the Large Eddy Simulation (LES) approach of 3D turbulent flow cases introduces a 

spatial filtering operation in order to separate the large, energy carrying eddies that are 

directly resolved and modeled. The present finite difference solver uses a top-hat filter by 

discrete operators. In the LES approach, scales smaller than the grid size are not resolved 

but accounted for through the subgrid scale (SGS) tensor given by 

    jijiij uuuu −=τ      (3-3) 

 The resulting governing equations governing the evaluation of the large scales 

become: 
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where the overbar denotes an appropriately chosen low-pass filter and incompressibility 

is assumed. 

 

  
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3-1 Schematic representation of a grid cell (i,j,k) in Cartesian coordinates 
and its staggered variable arrangement with u, v and w being the velocity components in 
global X, Y and Z direction, respectively at the cell face centers and p being the pressure 
at the cell center.  
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 All calculations are conducted using Large-Eddy Simulation (LES). The WALE 

model (Nicoud and Ducros (1999)) is employed to compute SGS stresses and to close the 

filtered Navier-Stokes equations. Its advantage lies in the fact that it does not require near 

wall damping and hence makes it an ideal candidate for immersed boundary LES, in 

which the solid boundary is not sharply defined. 

3.1.1.2 Spatial Discretization and Local Mesh Refinement (LMR) 

 The solver is implemented using a finite difference method on a Cartesian grid 

with staggered arrangement where the scalar variables such as pressure and density are 

stored in the cell centers of the control volumes, whereas the velocity or momentum 

variables are located at the cell faces (See Figure 3-1). A second-order central 

differencing scheme (CDS) on a staggered grid is used in the present study in order to 

approximate the convection (
j

ji

x

uu

∂

∂ )(
) and diffusion terms (

jj

i

xx

u

∂∂

∂ 2

Re

1
) in the 

momentum equations as shown in Eqs (3-1) and (3-2). The second-order accuracy is 

ensured such that the error is proportional to the square of the spacing between grid lines. 

A typical grid cell and the staggered variable arrangement is shown in Figure 3-1, with 

the pressure and scalar variables located at the center of the grid cell and velocity 

components at the cell face centers.  

 In order to perform engineering applications that involve complex geometries, it 

becomes necessary to develop techniques for implementing refined grid methods on the 

computational domains to ensure better representation of boundaries of those geometries. 

One approach called Local Mesh Refinement (LMR) focuses on the decrement of 

computational effort by placing more grid points around critical regions to get higher 
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resolution and fewer grids to regions where coarse grid is adequate. In this research, a 

second-order accurate LMR methodology is implemented. In the developed software, 

refinement is performed as a block-based structure. In other words, blocks that are near 

critical regions are finer than other blocks. The refinement factor r, which is equal to the 

ratio of fine to coarse grid spacing, is set to two as seen in Figure 3-2.  

  

 

 

 

Figure 3-2 A partial grid example with 2 levels of refinement, r. Pressure cells 
are shown at the center of each grid cell. 
 

 For local mesh refinement, the most important point is to satisfy the conservation 

laws between blocks which have different resolutions. In order to prevent the 

discontinuities between the coarse-fine interfaces, there are several options which can be 

applied. As a first option, conservation can be maintained by the use of local corrections 

to these fine-coarse interfaces after the computations are performed. Secondly, a special 

numerical operator which is approximate projection operator can be applied to enable a 

composite solution across the boundary to solve the divergence free velocity field (Berger 

and Colella, 1989; Martin and Colella, 2000; Minion, 1996; Popinet, 2003; Zuzio and 

Estivalezes, 2011). Thirdly, higher order spatial and temporal interpolations can be 



  31

applied. In the present study, space is refined according to all of the options explained 

above but there is no refinement in time. 

3.1.1.3 Time Advancement Scheme 

 In the present work, there are several choices of time advancement schemes. The 

convective terms are advanced in time using either the second-order Adams-Bashforth 

(AB2) or the low-storage third-order explicit three steps Runge-Kutta (RK3) scheme in 

which the governing equations are discretized in time providing second-order accuracy in 

time where all terms in the right hand side of momentum equations are advanced 

explicitly, while the diffusive terms are discretized in time via the second-order Crank-

Nicolson (CN) scheme. In particular, the momentum equation is solved to find the 

intermediate velocity and first guess of the velocity field such as: 
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where k is the substep index, which ranges from 1 to 3 for Runge-Kutta scheme (RK, 

RK2, RK3) and equals to 1 for Adams-Bashforth scheme, k

iû is the intermediate velocity, 

1−kp  is the pressure field. C and D are the spatial operators for convective, diffusive and 

SGS terms, respectively. t∆  is the time step. The RK3 coefficients are 

   α1 = β1 = 1/3       α2 = β2 = 1/2 α3 = β3 = 1  (3-8) 

and the AB2 coefficients are 

   α1 = 3/2       β1 = -1/2     (3-9)

 The following stability criterion, in other words the generalized Courant-
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Friedrichs-Levy (CFL) number which is a necessary condition for convergence while 

serving partial differential equations and ,thus includes the time step constraint from the 

viscous terms which can be adopted as described in Akselvoll and Moin (1995): 
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 Although the theoretical limit for the three step Runge-Kutta scheme is 3 , the 

actual CFL number in the simulations is lower since the cross-terms are not included in 

the calculation of this criterion. A value of 0.3 for CFL is used in most of the simulations 

in this work. On the other hand, for the second order Adams-Bashfort scheme, the 

theoretical stability limit is CFL<1. However, the actual CFL number in the simulations 

has to be lower, CFL = 0.2 in order to prevent the code from crashing since higher CFL 

values cause instability in the simulations. In the present work, the three steps Runge 

Kutta scheme is used together with Crank-Nicolson scheme in two-dimensional studies 

including flow over stationary structures and prescribed motion, Vortex-Induced 

Vibration of single and multiple structures. On the other hand, three dimensional 

stationary and prescribed motion cases utilize the Adams-Bashforth scheme for 

convective terms and the Crank-Nicolson scheme for diffusive terms. 

3.1.2 Poisson Equation and the Solution Procedure 

 A parallel multigrid solver mgd2 and mgd3 originally written by Bunner (1998) is 

implemented in the present code which solves the non-separable Poisson equation: 
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  It uses a domain decomposition technique and employs staggered grids with cell-

centered operations. It uses full weighting for the restriction and bilinear interpolation for 

the correction. The discrete form of the above equation in 3D Cartesian coordinates for 

uniform grid spacing can be written as: 

   )(
1

)( 1,,,,,1,,,,,1,,
,,2

2

2

2

2

2

z

ww

y

vv

x

uu

tzyx

kjikjikjikjikjikji

kji ∆

−
+

∆

−
+

∆

−

∆
=++ −−−φ

δ
δ

δ
δ

δ
δ

 (3-12) 

 The solver developed for the calculation of the flow field utilizes the SIMPLE 

algorithm which stands for Semi-Implicit Method for Pressure-Linked Equations. The 

procedure adopted has been described in Patankar et al. (1975); Patankar and Spalding 

(1972) and used to integrate the governing equations in time. In particular, the important 

operations of the solution procedure in the order of their execution can be described in 

the following sequence of steps (a to e): 

 Step a: Store the velocity and pressure fields obtained at the end of previous time 

step. 

 Step b: The momentum equation is solved to find the intermediate velocity and 

first guess of the velocity field as in Eqs (3-6) and (3-7). 

 Step c: The pressure correction equation is solved to find the pressure scalar,φ . 

 Step d: The pressure and velocity field is corrected employing the following 

equations. 
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 Step e: Treat the corrected pressure *p  as a new guessed pressure, return to step c 

and repeat the whole procedure until convergence for the momentum and pressure-

correction equations is reached 
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 As explained before, the solver employs a finite difference discretization on a 

Cartesian staggered grid and makes use of local mesh refinement (LMR) algorithm 

together with a multi-grid method to efficiently solve the Poisson equation. As discussed 

in the previous section LMR ensures adequate resolution in the region of interest at 

manageable computational costs by placing more grid points around critical regions to 

get higher resolution. 

3.1.3 Implementation of Boundary Conditions 

 In the current study, ghost cells are used to impose the proper external boundary 

conditions (i.e. inlet, outlet, south, north, top and bottom boundaries). Its advantage lies 

in the fact that grid spacing near the boundary is continuous and the software can have 

generalized form for all grid points at which the equations are solved. Moreover, it makes 

the domain decomposition technique easier for parallelization. 

3.1.3.1 Dirichlet and Neumann Boundary Conditions 

 A schematic representation of the Dirichlet and Neumann boundary conditions 

and their layout is shown in Figure 3-3, in which the lower-left corner of a X-Y plane of 

the computational domain and the collocation of the variables such as streamwise, 

transverse directional velocities, u, v along with pressure and viscosity, p, υ are given. For 

the given velocity component which is normal to the wall, e.g., u to the lower boundary 

and v to the left boundary in Figure 3-3, the Dirichlet condition can be written as 

    bkj uu =,,1    and bki vv =,1,        (3-14) 

where bu  and bv are the prescribed normal velocity components on the lower wall and 

left wall, respectively. 
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 The no-slip conditions for the wall-tangential components are directly enforced 

through the use of ghost cells: 

    kiki uu ,2,,1, −=    and  kjkj vv ,,2,,1 −=       (3-15) 

 On the other hand, a homogeneous Neumann boundary condition for an arbitrary 

variable, φ can be implemented as 
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Figure 3-3 The implementation of proper Dirichlet and Neumann boundary 
condition on XY plane of the computational domain 
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3.1.3.2 Convective Boundary Condition 

 This study utilizes Orlanski (1976)’s proposed convective boundary condition for 

outflow boundaries. He found very successful in convecting coherent structures such as 

vortices out of the domain without distorting the flow in the computational domain. In 

other words, mass is conserved through the whole computational domain. In that case, the 

following equation can lead to a conservative boundary velocity as follows: 

    0=
∂

∂
+

∂

∂
∞

i

ii

x

u
U

t

u
       (3-17) 

in which iu  is any velocity component, and ∞U is the convective velocity which is set to 

the mean streamwise velocity at the exit plane (this study sets ∞U = 1.0 in free-stream 

flow simulations). The proposed equation is discretized using an explicit Euler scheme in 

time, one-sided difference for the streamwise velocity component and central difference 

for the other two velocity components in space. In addition, the streamwise velocity 

component is adjusted every time step to globally conserve mass. 

3.1.3.3 Periodic Boundary Condition 

 As shown in Figure 3-4, the periodic boundary condition through ghost cells is 

implemented simply by copying values such as velocities (u,v,w) and pressure (p) on the 

left side directly to the ghost cells on the right side of the local domain and vice versa in 

such a way that: 

 kjkjni uu ,,2,, =   ,  kjkjni vv ,,2,, =     ,  kjkjni ww ,,2,, =     ,  kjkjni pp ,,2,, =  

 kjnikj uu ,,1,,1 −=  ,  kjnikj vv ,,1,,1 −=   ,  kjnikj ww ,,1,,1 −=   ,  kjnikj pp ,,1,1 −=     (3-18) 

where ni stands for the number of cells in X,Y and Z directions of the computational 

domain. 
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Figure 3-4 The implementation of proper periodic boundary condition on XY 

plane of the computational domain for pressure cells. Arrows show the directions of data 
duplication. 
 

3.2 Structural Solver 

3.2.1 Problem Definition 

 The Equation of Motion (EOM) that generally governs the motion of the structure 

for modeling elastically mounted rigid body oscillating in the transverse stream direction 

can be written as; 

   )()()()( tFtyKtyCtyM y=⋅+⋅+⋅ &&&      (3-18) 

where )(ty&  and )(ty&&  denote the first and second derivative of the cross-stream 

displacement of the structure with respect to time t, respectively. In addition, M is the 

mass matrix, C is the damping matrix and K is the stiffness matrix (see Figure 3-5) and 

)(tFy  is the vector of generalized hydrodynamic forces as a function of time per unit 

spanwise length. 
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Figure 3-5 Schematic representation of the translation of a cylinder (yc(t)) with an 
incoming flow, U∞ , mass M,  spring constant K, damping C and diameter D. 
  

 

 While Eqs (3-1) and (3-2) govern the dynamics of the fluid, Eq (3-18) governs the 

dynamics of the structure. These equations must be solved in a coupled fashion. The 

overall algorithm to predict the the coupling mechanism will be given later. 

3.2.2 Ordinary Differential Equation (ODE) 

 In situations where the location of the structure is determined by the fluid forces, 

additional ODEs governing the motion of the structure have to be considered. Also the 

coupling between the Navier-Stokes equations and ODEs become an important aspect.  

 The equation of motion is a system of 2n first-order, nonlinear, ordinary 

differential equation where n stands for the number of degree of freedoms of the 
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structure. Then, Eq (3-18) can be rewritten in a non-dimensional form to match the same 

reference scales as in N-S equations (the cylinder diameter, D, and the freestream 

velocity, U∞) as follows: 

   )()()()2(
)( 2 tatytv

dt

tdv
y=⋅+⋅+ ωξω    (3-19) 

where 
dt

tdy
tv

)(
)( =  is the velocity of the structure in cross-stream direction with the 

displacement y(t) in the corresponding direction, and 
π⋅

⋅
=

*

2
)(

m

C
ta L

y   is the  acceleration 

of the rigid body in y-direction with CL being the lift coefficient. 

 For a cylinder freely oscillating in the cross-stream direction, which is modeled as 

a mass-damper-spring system, the non-dimensional equation of motion (Eq (3-19)) in y-

direction can be rewritten as; 

  
π

ππ
ξ

∗
∗∗∗∗∗∗ =++

m

C
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U
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2
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where      

4

2
2 L

D

m

m

m
m

f πρ
==∗   is the mass ratio 

                
Df

U
U

N

red
∞=   is the reduced velocity 

         
m

k
f N π2

1
=   is the natural vibration frequency of the cylinder. 

with 
fm  the mass of fluid replaced by the bluff body, ρ the fluid density,  

        
D

ty
ty

)(
)( =∗∗   the non-dimensional vertical displacement,         

          
km

c

2
=ξ     the damping and 
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       ( )
DLU

tF
tC

y

L
2

2

1

)(

∞

∗
∗ =

ρ

   is the lift coefficient 

 In the equations above, t* is the nondimensional time, m is the system mass, c is 

the damping coefficient, k is the spring constant, )(ty  is the cross-stream displacement of 

the system center, L is the span length of the cylinder and )( ∗tFy  is the instantaneous lift 

coefficient.  It is noticed that the same references such as approach flow velocity, ∞U  and 

cylinder diameter, D, are also used to derive the non-dimensional form of the equation of 

motion. 

3.3 Strong Coupling Scheme using Hamming’s 4
th

 Order Predictor-Corrector 

Method 

 In the present research, the fluid and the structure will be treated as elements of a 

single dynamical system, and all governing equations will be integrated with respect to 

time in an iterative manner. In such, a fundamental complication with the application of a 

time-domain approach to fluid-structure interaction problems is introduced and it can be 

explained as the necessity of the knowledge of the motion of the structure over the 

prediction of hydrodynamic loads and vice versa. In order to overcome this complication, 

an iterative predictor-corrector scheme that considers the interaction between the 

hydrodynamic loads and the motion of the structure has been developed. The algorithm is 

based on Hamming’s 4th order predictor–corrector method (Carnahan et al., 1969). In the 

following paragraphs the structural solver and the coupling scheme will be discussed in 

detail. 
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 According to the equilibrium conditions, the right hand side of the Eq (3-19) 

vanishes, i.e. 0
)(
=

dt

tdv
  and 0

)(
=

dt

tdy
 once equilibrium occurs. 

 Then, the right hand side and the left hand side of the system become: 
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tq      (3-21) 

 Now, the non-dimensional form of the equation of the motion can be written as 

follows; 

     )()( tFtq =
•

      (3-22)  

in which generalized displacements and the corresponding generalized velocities are 

represented in the first row of vectors F and q whereas the second row of vectors describe 

the generalized velocities and the accelerations which are simply the generalized forces 

divided by the corresponding inertias, respectively. In order to integrate Eq. (3-22) in the 

time domain, Hamming’s 4th order predictor-corrector method is implemented 

(Preidikman and Mook, 2000). 

 A schematic of the strong-coupling algorithm is shown in Figure 3-6 and details 

of it are presented below: 

1. Given a time step, ∆t , let tjt j ∆⋅=  denote the time at jth time step and  
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Figure 3-6 A schematic representation of the strong coupling scheme 
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where  
j

q
•

is the vector containing generalized velocities and the accelerations at jth time 

step of the computation.  
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 ,where )(

~

jy ta  is the 

generalized force divided by the corresponding inertias in y direction. 

2. Now, predict displacement and velocity of the structure,
jp q , and modify it 

(initial guess), 
j

q1 ,using a measure of the truncation error (i.e. the deviation 

from the exact solution from the approximate solution) from the previous time 

step. 
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3. Find the predicted fluid velocity and pressure fields using Navier-Stokes 

equation with the boundary conditions provided by step (2). Then compute the 

resulting loads on the structure 

   )(~)( j

k

j

k tata →     , where k is the sub-iteration index 

4. Calculate the new location and velocity of the rigid body by 
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5. Do a convergence check between sub-iterations before moving forward to 

next time step. If j
q∆  is greater than a prescribed tolerance, ɛ, go back to step 

(3) otherwise if convergence is achieved, move to step (6) where velocity and 

displacement values are updated. 
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where a tolerance is defined as 810−=ε  here and in Yang et al. (2008) for all the 

computations in the analysis of one-directional strong coupling of fluid-structure 

interactions. In all computations presented in this research, the number of iterations at 

each time step ranged from 2 to 4 depending on the problem. 

6. Finalize the algorithm by finding the displacement and velocity of the 

structure with the final velocity and pressure fields from the N-S equations. 

Compute the local truncation error (Hamming (1959)) to be used for the next 

time step as well. 
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 Note that in order to start up the strong-coupling algorithm; a four-step Runge- 

Kutta Algorithm is implemented to initiate the first four values of displacement and 

velocity of the immersed boundary. The same algorithm is also used in the studies of 

Yang et al. (2008) 

3.4 Parallelization 

 The investigation of Vortex-Induced Vibration and forced vibration of an 

oscillating structure needs very small scales in order to understand the physical 

phenomena in the area of Fluid-Structure Interactions. In fact, Large Eddy Simulation 

(LES) on such scales requires a three-dimensional computational domain with extremely 

high resolution. Therefore, a big amount of computer memory and computing time is 

necessary to run these simulations. Hence, usage of massively parallel high-performance 

computers is a must for FSI problems in two and three space dimensions especially for 

high Reynolds numbers (Re > 800). 

 Parallelization of the present software is based on a classical domain 

decomposition method using the Message Passing Interface (MPI) (Gropp et al., 1999). 

The exchange of relevant information during the computation between different 

processors is obtained through one ghost cell slice as shown in Figure 3-7. As each 

domain has uniform grids only, the decomposition of the computational domain and the 

resulting communication is straightforward and can be found in (Croce et al. (2004); 

Griebel et al. (1997)). However, the communication volume is dependent purely on the 

employed finite difference method. The width of the finite difference stencils we employ 

in the software is one grid cell. This requires attaching one slice of boundary ghost cells 

to each neighboring subdomain. These values are not directly available to the processors 
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performing the computations. They are sent to the neighboring processors in a 

communication phase inside the time-stepping loop. Hence, the values for all ghost cells 

are being communicated in the FSI solver. 

 

 
 

 

Figure 3-7 Exchange of pressure and velocity values for one ghost cell slice. 
White bricks denote ghost cell values and black bridges refer to subdomain values (Croce 
et al., 2004) 
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CHAPTER 4 

IMMERSED BOUNDARY METHOD (IBM) AND ITS VALIDATION 

 

 

 In Chapter 2 of this research, several schemes for simulation of fluid-structure 

interaction problems by means of imposing the boundary conditions were compared and 

discussed. It is reported that the immersed boundary method as presented in Lai and 

Peskin (2000) is capable of producing satisfactory results in various test cases of moving 

boundary problems. However, the presence of some of the parameters which control the 

stiffness and damping characteristic of virtual forces that govern the motion of each 

element at the fluid-solid interface introduces a complexity in imposing boundary motion. 

In addition, this characteristic leads to quite severe restrictions of the time step during the 

simulation. 

 Uhlmann (2004) discusses alternative methods where additional forces which 

impose rigid body motion upon the fluid are determined directly. Those methods offer a 

clear advantage in terms of efficiency. However, their disadvantage lies in the fact that 

they present a different type of serious drawbacks in moving boundary computations in 

terms of mass conservation. For instance, the implicit method introduced by Fadlun et al. 

(2000) as well as the explicit method developed by Kim et al. (2001) both result in 

unacceptably strong oscillations in the force term as soon as the solid structure moves and 

is in motion with respect to the fixed (Eulerian) grid. This situation occurs due to 

insufficient smoothing techniques used during the interpolation procedure. On the other 
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hand, the “rigidity” method introduced by Kajishima and Takiguchi (2002) remedies this 

problem only partially via using the solid fraction of a grid cell as a weight factor for the 

forcing term. 

 In the present research, an efficient solid-domain direct forcing immersed 

boundary method is utilized. Here, the approach originally developed by Uhlmann 

(2005a) for fixed and moving boundaries is refined and employed. Uhlmann’s 

methodology utilizes a direct forcing method; however instead of formulating the force at 

(Eulerian) grid nodes of the fluid, it is calculated at (Lagrangian) locations on and in the 

immersed boundary for which the motion of the body is known. The forces are then 

transferred from Eulerian to Lagrangian and vice versa using a regularized Dirac delta 

function proposed by Peskin (2002), which provides a smooth transition between fluid 

and solid body movement. A couple of refinements to Uhlmann’s original method are 

adopted in this study: a) the Dirac delta function due to Yang et al. (2009) is employed 

and b) instead of restricting the Lagrangian forcing locations to the surface of the 

immersed structure, Lagrangian force points are also placed inside the structure, which is 

why Uhlmann (2005b) refers the improved method as “solid-domain forcing” in his 

study. Obviously, for stationary structures, this method may not be as accurate as sharp 

interface methods; however the method results in less non-physical pressure oscillations 

in the case of moving boundaries. The application of this scheme to several 2D and 3D 

benchmark problems presented in the following chapters demonstrate its feasibility and 

efficiency. 
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4.1 Direct Forcing Method 

4.1.1 Geometric Definitions 

 According to the present method, a number of NL elements are defined depending 

on the forcing method either around the circumference of a circular structure or in the 

entire solid domain. These points are called Lagrangian force points (LFP) (Uhlmann 

(2005a)). As shown in Figure 4-1, the elements are equi-partitioned sectors of a single or 

collections of an annulus with inner and outer radii r1, r2, respectively. For a single ring: 

     
2

12 rr
rc

−
=        (4-1) 

where cr  is the actual ring radius which is located at the midpoint of these two radii, i.e., 

the circumference of the ring.  

 In practice according to Uhlmann (2005a), the number of marker elements is 

chosen so that the marker volume matches the Eulerian grid cell surface as closely as 

possible, in other words, the volume of fluid cell is equivalent to a volume force point, 

∆Vl, as defined below gives the surface of an element (l refers to each LFP): 

     
L

c

l
N

hr
V

⋅
=∆
π2

    (4-2) 

 In Eq (4-2), h is the mesh size, which is chosen to be 12 rrh −= . Requiring that 

2hVl ≈∆ results in the following condition for the number of force points per each ring: 

     
h

r
N c

L π2≈      (4-3) 

 Therefore at a given time, the forcing points are located at: 
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 Due to rigid body motion of the structure, the following velocities are assigned for 

these points: 

    )( clccl xXuU −×+= ω     (4-5) 

where cx , cu , cω , cθ  and cr  are the center locations, linear and angular velocities, 

angular position and radius, respectively, of a circular structure. 

 

 

  
 

 

 

Figure 4-1 The definition of marker elements along the circumference of a 
circular structure for interface forcing scheme (Left graph) and in the entire solid domain 
for solid domain forcing scheme (Right graph). Small solid circles indicate the 
(equidistant) locations of marker points.  
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 The inside of the solid structure (Figure 4-1) is also forced by simply adding 

supplementary rings of marker elements throughout the solid structure. Each ring will 

eventually have a different number of elements; however, each element will satisfy the 

condition of equivalent volume which is 2hVl ≈∆ .  

 For three dimensional structures such as cylinders or spheres, the extension of the 

method is relatively straightforward. In that case, the marker points have to be distributed 

evenly on the surface for interface forcing and throughout the entire structural domain for 

the solid domain forcing scheme, respectively. In that case, the Lagrangian volume of 

each element lV  becomes the product between the surface volume and the height of the 

cylinder. 

4.1.2 Force Formulation 

 For clarity and simplicity, the present concept of the proposed algorithm is 

presented in the framework of a single-step time discretization, uniform grid. According 

to the momentum equation (Eq (3-2)) in the following form 

    2/12/1
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+=
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uu
    (4-6) 

where 2/1+n

irhs  includes convective, viscous and pressure-related terms in the N-S 

equations and 2/1+n

if  are the fluid-solid coupling terms, which are evaluated at some 

intermediated time level. The direct forcing employed by Fadlun et al. (2000) can be 

expressed by simply rewriting Eq (4-6) as: 
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in which d

iu  is the desired Eulerian velocity component at any point where forcing is to 

be applied either on the surface or inside the structure depending on the scheme chosen to 

impose proper boundary conditions. Eq (4-7) is characteristic for direct forcing schemes. 

However, interpolation is required to obtain an adequate representation of the interface 

since the solid-interface does not coincide with the Eulerian grid lines. According to 

Uhlmann’s methodology, the force term is defined at Lagrangian positions attached to the 

surface of the structure as: 

    2/12/1 ++ −
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−
= n

l

n

l

d

ln

l RHS
t

UU
F    (4-8) 

 In the above equations, upper-case letter denote quantities evaluated at 

Lagrangian coordinates while small-case letter indicate quantities evaluated at Eulerian 

grid cells. The desired velocity, d

lU  in the structural domain is simply given by the solid-

structure motion in Eq. (4-5). 

 Finally, the transfer of the velocity from Eulerian to Lagrangian positions as well 

as the inverse procedure which is transfer of the forcing term to Eulerian grid positions is 

utilized as the final element of the method of Uhlmann (2005a). For this purpose, a 

uniform mesh with mesh width h in all three directions is considered. In addition to that, 

discrete Lagrangian force points are distributed evenly on the particle. The regularized 

delta function (...)hδ  of Peskin (2002) is utilized to transfer both quantities as: 
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where ijkx designates Cartesian grid, lV∆  indicates the forcing volume assigned to the lth 

force point. In the next section, particular choice of function (...)hδ which has the 

properties of continuous differentiability and second order accuracy will be discussed. 

4.2 Choice of the Regularized Delta Functions 

 A discrete delta function is used as a kernel in order to transfer quantities between 

Lagrangian and Eulerian locations in the present immersed boundary method. This 

function determines the accuracy of the immersed boundary method. The salient 

properties of the kernels described by Peskin (1972); Peskin (2002) are the following: 

• (...)hδ is a continuously differentiable function leading to a smoother transfer than  

a specified linear interpolation. 

• Utilizing such kernels introduces second-order accuracy into force estimations 

along with smoother fields. 

• For all real shifts: 

   ∑ =−
ijk

lijkh hXx 1)( 3δ     (4-11) 

    ∑ −−
ijk

lijkhlijk hXxXx 3)()( δ     (4-12) 

which are discrete analogues of basic properties of the Dirac delta function. As a 

result, it can be concluded from Peskin (2002) that the total amount of force and 

torque added to the fluid is not changed by the transfer operations in Eqs. (4-11) 

and (4-12) in the following form: 

   m
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N
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N

l

m

l
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3 )()(     (4-13) 
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l

ijk

ijkijk VXFXhxfx
p L

∆×=× ∑∑∑
= =1 1

3 )()(    (4-14) 

 As a consequence, it is shown that the “spreading” operation (Eq. (4-10)) from the 

Lagrangian to Eulerian grid does not alter the total amount of force and torque which is 

added to the fluid.  

4.2.1 Regularized Discrete Delta Function (RDDF) 

 In the present research, the regularized delta function with a support of 3 mesh 

widths of reference Roma et al. (1999) is utilized first. The three dimensional discrete 

delta function used in the present immersed boundary method is constructed in the 

following form (Peskin (2002)): 

  )()()(
1

)(
3 h

Zz

h

Yy

h

Xx

h
Xx lijkh

−−−
=− φφφδ    (4-15) 

where h
h

Xx
/)(

−
φ  is a one-dimensional discrete delta function, x, y and z are the 

Eulerian components of ijkx  and X, Y and Z are the Lagrangian components of lX . In 

that respect, the one dimensional 3-point RDDF is written as (Peskin (2002)): 
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4.2.2 Smooth Discrete Delta Function (SDDF) 

 This section describes a smooth discrete delta function with 3 mesh widths 

support points. The smoothed 3-point function is formulated by Yang et al. (2009) as 

follows: 
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 The new function is shown to have wider supports than the RDDF as shown in 

Figure 4-2. However, as discussed in Uhlmann (2005a), the wider supports are not 

sufficient to reduce the non-physical oscillations entirely. The related properties of the 

smooth Dirac delta function is the moment conditions, which are described by Yang et al. 

(2009) as: 

1. The SDDF has one higher derivative than the RDDF which increases the 

continuous properties of the proposed functions. 

2. The SDDF satisfies the zeroth and first discrete moment conditions.  

3. The derivatives of the SDDF satisfy the zeroth, first and the second discrete 

moment conditions as compared to the derivatives of the RDDF which only 

satisfy the zeroth and the first discrete moment conditions. 



  56

 As a result, the smoothing technique that is developed by Yang et al. (2009) can 

significantly suppress force oscillations in moving boundary problems in the context of 

Uhlmann’s IB method (Uhlmann (2004, 2005a, b)). The derivatives of the RDDF do not 

satisfy certain moment conditions as described above. On the other hand, the SDDF has 

one higher derivative which is helpful in reducing non-physical oscillations and lead to a 

significant improvement in the force prediction. 

 The implementation of this technique is not equivalent to a post-processing 

procedure that other studies (Anagnostopoulos and Bearman (1992); Beaudan and Moin 

(1994); Yang and Balaras (2006)) used for smoothing the force. Especially, in prescribed 

and vortex induced vibration validation cases that are studied in the next chapters, an 

accurate force prediction is crucial in the context of interaction between structural 

dynamics and the fluid flows. Under such circumstances, the post-processing of the force 

prediction becomes inaccurate and impractical and should be avoided. 

 

 

Figure 4-2 Comparison of a regular discrete delta function ϕ3 and its 
corresponding smooth function ϕ3

*  (This figure is taken from Yang et al. (2009)) 
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4.3 Validation of the IB Method 

  

 The flow past immersed structures has been the subject in fluid-structure 

interaction applications for a long time. Most of these studies were concerned with the 

circular cylinder case under free flow conditions. However, there are numerous 

applications of square structures in many technical areas such as aerodynamics (Franke et 

al. (1990); Suzuki et al. (1993)) that have not been investigated to the same extent as flow 

past circular cylinders. Breuer et al. (2000) states in their study that fluid mechanical 

coefficients of square cylinders such as CD, CL are less dependent on the Reynolds 

number than for circular ones due to fixed separation points for sharp-edged structures. 

Unfortunately, no experimental data for model comparison can be found in the literature 

for the square cylinder. 

 The proposed method is first validated through 2D simulations of flow around a 

cylinder with square cross-section which is mounted inside a plane channel with a 

blockage ratio, B = 1/8. This case was investigated by Breuer et al. (2000) in detail by 

two different numerical techniques, namely a Lattice-Boltzmann Automata (LBA) 

(Aidun and Clausen (2010)) and a finite-volume method (FVM).  The present simulation 

results for Re = 30 and Re = 100 are compared with the computations by Breuer et al. 

(2000). In addition, the effect of two different forcing methods, interface and solid 

domain forcing, on the accuracy of velocity profiles and force calculations, is carried out 

for this flow. 

 The 2D laminar flow around a square cylinder with diameter D mounted centered 

inside a plane channel with height H is investigated by Breuer et al. (2000) as shown in 
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Figure 4-3. The blockage ratio B = H / D, which is defined as diameter to height ratio, is 

kept at 1/8. As shown in Figure 4-4, the simulation domain length is set to L = 48D in 

order to reduce the influence of inflow and outflow boundary conditions while the height 

of the domain is kept at 8D. For the present Finite Difference computations, l = L/4 is 

chosen. Breuer et al. (2000) used different inflow lengths in their LBA simulations in 

order to investigate the influence of different inflow and outflow lengths and showed that 

there were only negligible deviations in the results. The solver employs a local mesh 

refinement (LMR) algorithm as shown in Figure 4-4. This ensures adequate resolution in 

the region of interest at manageable computational costs. The LMR algorithm was 

developed by my colleague Mehtap Cevheri as part of her PhD study (Cevheri (2012)). 

 

 

 

 

 

Figure 4-3 Definition of the geometry and integration domain by Breuer et al. (2000) 
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 The resolution near the square is 0.0125D i.e. 80 grid points on each side of the 

square. The no-slip wall boundary condition is imposed at south and north boundaries of 

the computational domain. In order to simulate a fully developed laminar channel flow 

upstream of the square cylinder, a parabolic velocity profile with a maximum velocity U∞ 

is prescribed at the channel inlet. At the outflow boundary, a convective boundary 

condition is used so that vortices can exit the outflow boundary without significant 

disturbances or reflections into the inner domain. The convective boundary condition was 

proved to work very well in other researchers’ studies (Breuer et al. (2000); Breuer and 

Pourquie (1996); Breuer and Rodi (1994)). 

 

 
 

 

Figure 4-4 Geometry of the computational domain around a rectangular structure. 
Local Mesh Refinement (LMR) is used to increase the resolution around the immersed 
structure (every 5th grid point is shown). 
 

 A similar marker point construction strategy is implemented in defining the 

geometry of the square cylinder as in the circular cylinder case (see Figure 4-1) as shown 

in Figure 4-5. In this case the marker points are defined either along the circumference of 

the square structure or in the entire solid domain depending on the forcing scheme used. 
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Figure 4-5 The definition of marker elements along the circumference of a square 
structure for interface forcing scheme (Left graph) and in the entire solid domain for solid 
domain forcing scheme (Right graph). Small solid squares indicate the (equidistant) 
locations of marker points. 
  

  

 Figure 4-6 shows computational results of the finite difference code in the vicinity 

of the cylinder by streamlines at Reynolds number 30. At this Re, the wake comprises a 

steady recirculation region of two symmetrical vortices located on each side of the 

centerline. However, the top figure which is a result of interface forcing only shows a 

shift in the recirculation length while the lower one being a result of solid domain forcing 

shows the separation region starting at the back edge of the cylinder. Obviously, solid 

domain forcing leads to a sharper representation of the corners of square structures where 

the separation point is fixed at the trailing edge and the flow is attached at the side walls. 
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Figure 4-6 Streamlines around the square cylinder at Reynolds number 30. Top 
figure corresponds to results through interface forcing while the bottom one is the result 
of the simulation through solid domain forcing. Recirculation is depicted in the top figure 
in black. 
 

Lr 
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 An empirical relationship for the length of the closed near-wake, in other words, 

the recirculation length, Lr, at a blocking ratio B = 1/8 was proposed by Breuer et al. 

(2000) as follows: 

  Re0554.0065.0 +−=
D

Lr    for   60Re5 <<      (4-18) 

 Therefore, at Re = 30, DLr /  becomes equal to 1.597. This parameter is found to 

be 1.64 using the present IB method through interface forcing while it is also equal to 

1.64 when solid domain forcing is utilized. Both of the results overestimate the 

recirculation length approximately by 2%, on the other hand, the latter eliminates the 

reattachment of the vortices ensuring a sharper interface representation behind the 

structure. 

 The pressure contours for both types of force-point distributions are visualized in 

Figure 4-7. In both cases a smooth transition of contours is seen on the fluid side of the 

interface. In the solid region, however, the pressure fields are fundamentally different. 

With interface forcing an approximately constant pressure is generated inside the 

cylinder, i.e. a strong jump across the interface is observed. Solid domain forcing, on the 

other hand, leads to a continuous pressure across the interface resulting in a much 

smoother spatial distribution and thereby its divergence is greatly reduced.  

 Figure 4-8 shows comparison of computed drag and lift coefficients with the two 

different forcing configurations around the structure. As seen in this figure, the lift 

coefficient magnitudes and the frequencies for both interface forcing and solid forcing 

cases are similar. However, the magnitude of the former is 6 % greater than the latter one. 

Uhlmann (2005a) noted that interface forcing can lead to overestimation of the drag 

coefficients which can be overcome by “solid domain forcing” (Uhlmann (2005b)) as 
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shown here. On the other hand, the lift coefficient is not significantly influenced by the 

forcing method. 

 

 

  

  
 

 

 

Figure 4-7 Iso-contours of the pressure field of the channel flow around a fixed 
cylinder at Re = 30 (top row) and Re = 100 (bottom row). Interface forcing around the 
circumference (left column) and solid domain forcing including interior (right column) of 
the structure. 
 

  

Interface forcing 

Interface forcing 

Solid domain forcing 

Solid domain forcing 
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Figure 4-8 Time series of drag and lift coefficients at Re = 100 using two 
different forcing configurations. 
  

  

 Table 4-1 provides CD, CL and also the Strouhal number St (see Equation (2-1)) 

for flow around a square cylinder at Re = 100 in comparison to quantities obtained by 

Breuer et al. (2000). Table 4-1 illustrates that the present results are in good agreement 

with the numerical data of (Breuer et al., 2000) . 
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Table 4-1 Time-averaged drag and amplitude of lift coefficients, and the Strouhal 
number for flow around a stationary square cylinder at Re = 100 
 

Solutions 
DC  CL’ St 

    
Breuer et al. (2000) 1.36 0.19 0.139 

Present IB method (interface forcing) 1.47 0.20 0.137 

Present IB method (solid domain forcing) 1.39 0.19 0.138 

 

 

 Figure 4-9 shows flow visualizations of velocity and vorticity fields for flow 

around a square cylinder at Re = 30 and 100. These figures are the results of 

computations using solid domain forcing. It is evident that in the unsteady 2D flow 

regime, the near wake becomes unstable and a sinusoidal oscillation of the shear layers 

commences, later forming the well-known phenomenon von Karman Vortex Street.   

 Despite the lack of experimental data for square cylinders, compared with the 

numerical results of Breuer et al. (2000), the steady and unsteady flow computations 

demonstrate the capability of the finite difference code to deal with instantaneous flows. 

As compared to interface forcing, solid domain forcing results better predict the flow 

field. As a consequence, the present method provides reliable and accurate results for this 

kind of confined flow. The extension to other stationary or moving structures and 3D 

computations with higher Reynolds number is investigated in the following chapters. 
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Figure 4-9 Flow visualization of U velocity, V velocity and Z vorticity contour 
plots for Re = 30 (top) and Re =100 (bottom) via solid domain forcing. 
 



  67

4.4 Summary 

 In this chapter, an efficient solid-domain direct forcing immersed boundary 

method introduced by Uhlmann (2005b) is utilized. Here, the approach originally 

developed by Uhlmann (2005a) for fixed and moving boundaries is refined and 

employed. Uhlmann’s original methodology utilizes a direct forcing method; however 

instead of formulating the force at (Eulerian) grid nodes of the fluid, it is calculated at 

(Lagrangian) locations on and in the immersed boundary for which the motion of the 

body is known. The forces are then transferred from Eulerian to Lagrangian and vice 

versa using a regularized Dirac delta function, which provides smooth transition between 

fluid and solid body movement. A couple of refinements to Uhlmann’s original method 

are adopted: a) the Dirac delta function due to Yang et al. (2009) is employed and b) 

instead of restricting the LFP locations to the surface of the immersed structure, this 

study also placed LFP inside of the structure as in Uhlmann (2005b) .  

 The accuracy of the proposed immersed boundary method presented in this 

chapter has been demonstrated via numerical studies for the confined laminar flow past a 

square cylinder inside a channel (B = 1/8). The length of recirculation length for two 

different forcing collocations is investigated first. It is shown that solid-domain forcing 

leads to a sharper boundary treatment around the immersed structure as a result of 

continuous pressure contours across the interface resulting in a much smoother spatial 

distribution. Then, drag, lift coefficients and Strouhal numbers are computed and 

compared to results of Breuer et al. (2000) and it is showed that present method provides 

reliable and accurate results for the steady and unsteady flow past a confined square 

cylinder simulation. 
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CHAPTER 5 

TWO-DIMENSIONAL (2D) VALIDATION CASES ON FREE AND 

FORCED VIBRATION OF CYLINDERS 

 

 In this chapter, two-dimensional viscous flows past stationary and oscillating 

cylinders are considered to evaluate the accuracy of the proposed methodology by testing 

several cases with increasing complexity. The first numerical study is the simulation of 

flow past a circular cylinder. Although no analytical solutions are available for this 

problem, there are numerous numerical and experimental studies reported in the 

literature. For comparison, the experimental data from Tritton (1959) and other numerical 

results such as Zdravkovich (1997), Silva et al. (2003) and Shu et al. (2007) are available. 

The second numerical study is the forced vibration of a cylinder. This study involves 

prescribed motion of a two-dimensional cylinder which has a harmonic cross-streamwise 

displacement of the cylinder in a free-stream. The numerical parameters used here are the 

same as by Guilmineau and Queutey (2002), Uhlmann (2005a) and Yang et al. (2009). 

The third study is the vortex-induced vibration of a cylinder. The purpose of this case is 

to test the validity of the presented immersed boundary approach in simulating Fluid-

Structure Interaction (FSI) problems. To further demonstrate the accuracy and efficiency 

of the method for FSI problems, a test case of a circular cylinder undergoing free 

transverse oscillation is studied. Experimental data by Anagnostopoulos and Bearman 

(1992) and numerical results by Williamson and Govardhan (2004) are available for 

model comparison. This test case has been also used for validation of other numerical 
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simulations (Liu et al. (1998); Nomura (1993); Schulz and Kallinderis (1998); Wei et al. 

(1995); Yang and Balaras (2006)). Finally, flow induced vibration of a circular cylinder 

subjected to wake interference is studied. Two dimensional numerical simulations of the 

flow around two circular cylinders in tandem arrangements are performed. The in-line 

center-to-center distance is kept constant at 2.5 and 6.0 diameters, and the results are 

compared to that of a single elastically mounted isolated cylinder with the same structural 

characteristics. The main goal of this study is to investigate the flow induced vibration of 

the downstream cylinder in tandem arrangement in order to identify the physical 

mechanisms involved. The results of the simulations for this case show that significant 

changes occur in the dynamic behavior of the cylinders, when comparing the flow around 

the tandem arrangements to that around an isolated cylinder. 

 The second-order finite difference formulation is used for the spatial 

discretization in the momentum equation.  The third-order 3 step Runge-Kutta scheme 

and the Crank-Nicholson scheme are used for the explicit terms (convection) and the 

implicit terms (diffusion) in Navier-Stokes equations, respectively. Computations were 

done on a locally refined grid with a total of 900 thousand cells (see Figure 5-1). The cell 

size of all cells at the immersed interface is ∆x = ∆y = 0.0156D, so that the resolution is 

higher than Uhlmann (2005a) and Yang et al. (2009).  Again, a local mesh refinement  

method is employed. The domain size is 52DX36D, where D is the diameter of the 

cylinder. A uniform velocity boundary condition is specified at the inlet; a convective 

boundary condition is applied at the outlet. At the far field in transverse direction, shear-

free boundary conditions are implemented. 
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Figure 5-1 A sketch of the grid employed in the vicinity of the cylinder for 
current simulations. The domain size is 52D X 36D. A uniform velocity boundary is 
specified at the inlet; a convective boundary condition is used at the outlet; symmetric 
boundary (every 6th grid point is shown) 
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5.1 Flow Around a Stationary Cylinder 

 

 The unsteady flow around a cylinder is a popular test case for validation of the 

IBM at moderate Reynolds numbers. In this situation, the well-known phenomenon 

called Karman Vortex Street occurs as a consequence of alternating separation of vortices 

triggered by shear layer formation near the cylinder. A visualization of this flow at Re = 

100 is provided in Figure 5-2. In this figure, instantaneous streamwise and cross-

streamwise velocity fields along with contours of the Z vorticity are shown, from which 

the occurrence of the well-known Karman Vortex Street can be seen.  In the present 

method, the drag and lift forces on the cylinder are evaluated as the summation of the 

volume force, details are discussed in Appendix A, in streamwise and crosswise 

directions, respectively. For the moving boundary problems, the inertial force of the 

“pseudo fluid” enclosed by the immersed boundary needs to be subtracted. The details of 

the hydrodynamic force calculations can be found in Uhlmann (2003). Table 5-1 

compares the present results with those from other researchers (Kara et al. (2012); Kim et 

al. (2001); Lai and Peskin (2000); Liu et al. (1998); Shu et al. (2007); Tseng and Ferziger 

(2003); Uhlmann (2005a); Yang et al. (2009)) for Re = 100. From this table, it can be 

seen that the current method produces reasonable results in estimating time averaged 

drag, the amplitude of lift fluctuations and the Strouhal number. 
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Figure 5-2 Contour plots and flow visualization around cylinder at Re = 100. 
Top: U-velocity contour. Middle: V-velocity contour. Bottom: Z-Vorticity Contour 
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Table 5-1 Time-averaged drag and amplitude of lift coefficients, and the Strouhal 
number for flow around a stationary cylinder at Re = 100. 
 

Authors 
DC  CL’ St 

    
Lai and Peskin (2000) 1.447 0.330 - 

Kim et al. (2001) 1.330 0.320 - 

Tseng and Ferziger (2003) 1.420 0.290 - 

Shu et al. (2007) 1.383 0.350 - 

Liu et al (1998) 1.350 0.339 0.165 

Uhlmann (2005) 1.501 0.339 0.169 

Yang et al. (2009) 1.393 0.335 0.165 

Kara et al. (2012) 1.360 0.340 0.164 

Present (interface forcing) 1.431 0.310 0.166 

Present (solid domain forcing) 1.367 0.338 0.165 

 

 

 The Strouhal number is a parameter to quantify the oscillation of the fluid flow in 

the wake region. The Strouhal number as a function of the Reynolds number is presented 

in Figure 5-3. The results from Kara et al. (2012); Norberg (2003); Shu et al. (2007); 

Williamson (1988, 1989) are also plotted in this figure. For instance, Kara et al. (2012) 

solved the Navier-Stokes equations through a 2D finite volume method which uses a 3-

step Runge-Kutta time integration scheme to advance convective and diffusive terms. 

Figure 5-3 also shows the grid dependency of the simulations. As a guide to grid 

generation, the mesh must be sufficiently fine to provide an adequate resolution of the 

important flow features and geometrical structures. For that reason, the present results 

with two grid resolutions 0.05D and 0.0156D around the cylinder are also shown in the 

figure. The resolution of the grids around the cylinder is kept to be uniform and local 

mesh refinement is utilized in two directions toward boundaries of the 2D domain (see 
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Figure 5-1 for the problem set up). The finer grid used in the present study is also 

consistent with the grid resolution used by Uhlmann (2005a). Figure 5-3 shows that the 

present results with a grid resolution of 0.0156D near the cylinder are in a very good 

agreement with the experimental data (Williamson (1988)).  

 

 

 

Figure 5-3 Distribution of Strouhal Number (St) versus Reynolds number (Re) 
(logarithmic scale is used on the horizontal axis) 

 

5.2 Forced Vibration of a Cylinder 

 The efficiency of the proposed immersed boundary method on the force 

prediction in moving boundary problems is first tested through simulations of the flow 

past an oscillating cylinder. The first case is simulation of the two-dimensional laminar 

flow involving harmonic in-line oscillation of a circular cylinder in a quiescent flow, i.e. 

flow at rest. Then, laminar flow from a transversely oscillating cylinder in a free-stream 
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is investigated. Both of the cases present a challenge to non-boundary conforming 

formulations. In addition, those cases are validated through detailed experimental data 

and numerical results from boundary-fitted methods that are available in the literature, 

which in return provides validation of the proposed algorithms. 

5.2.1 Flow over an in-line oscillating cylinder 

 The two characteristic parameters for the flow at rest are the Reynolds number, Re 

= Umax D /ν and the Keulegan-Carpenter number, KC = Umax / fD based on the cylinder 

diameter, D, maximum velocity of the cylinder, Umax, the kinematic viscosity of the fluid, 

ν, the characteristic frequency of the in-line oscillation, f. A simple harmonic in-line 

oscillatory motion of the cylinder is prescribed as: 

    )2sin()( ftAtx π−=             (5-1) 

where x(t) is the position of the cylinder center in the direction of oscillation, A is the 

amplitude of oscillation. The parametric space in this study corresponds to LDA 

experiments and numerical studies reported by Dutsch et al. (1998). In particular, the two 

characteristic parameters are selected as Re = 100 and KC = 5. For this setup the flow 

remains two-dimensional with periodic vortex shedding. The same domain size, 52D X 

36D is used as in stationary cylinder simulations if not otherwise stated. However, in 

order to predict the quiescent flow, Neumann boundary conditions for the velocity and 

pressure field are used at all far-field boundaries. 

 All computations were started from a quiescent flow field and once periodic 

vortex shedding was formed, time integration was halted. Figure 5-4 shows the pressure 

and vorticity contours at three different phase-angles (θ=2πft). As the cylinder moves 

left, two thin boundary layers develop on the upper and lower part of the cylinder as can 
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be clearly seen in Figure 5-4a. This separating flow produced two identical counter-

rotating vortices downstream of the cylinder. The vortex production stops once the 

structure reaches its extreme left position. As the cylinder moves to the opposite 

direction, the same process takes place. These results are in very good agreement with the 

data reported in Dutsch et al. (1998), which shows the robustness of the present method 

in capturing the dynamics of the vorticity field.  

 In order to further examine the accuracy of the present method, a quantitative 

comparison is made with respect to the experimental results. Figure 5-5 shows the 

computed velocity profiles in the axial and transverse directions at four different x 

locations and three different phase-angles, in comparison with the experimental data of 

Dutsch et al. (1998). The present simulation shows very good agreement with the 

experimental data. The results are very similar to those obtained by other researchers in 

their numerical studies (Choi et al., 2007; Dutsch et al., 1998; Yang and Balaras, 2006).  

Figure 5-6 shows the time evolution of the in-line (drag) force, Fx(t), acting on the 

structure in comparison with the reference boundary conforming simulation results of 

Dutsch et al. (1998). The agreement with the reference computations is very good 

implying that the forces on the structures can be predicted very accurately with the 

proposed approach. 
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(a)  

  
(b)  

  
(c)  

  
(d)  
 

 

Figure 5-4 In-line oscillating cylinder in a quiescent fluid at Re = 100, KC = 5. 
Pressure and vorticity contours at four different phase-angles. -1.1 < P < 0.6 with 
intervals of 0.09 and 26.0 <  ωz  <  26.0 (a) 0° (b) 96° (c) 192° (d) 288° 
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(a) 

 
(b) 

            Figure 5-5 For Caption see next page 
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(c)                                U/Umax    V/Vmax 

 

 

Figure 5-5 In-line oscillating cylinder in a quiescent fluid at Re = 100 and KC = 
5. Velocity Profiles at three different phase angles (a) 180° (b) 210° (c) 330°. Lines are 
the present computation, symbols are the experimental data of Dutsch et al. (1998) at x = 
-0.6D, x = 0.0D, x = 0.6D and x = 1.2D. 
 
 

 
 

 

Figure 5-6 Evolution in time of the drag force on a cylinder oscillating in a 
quiescent flow at Re = 100 and KC = 5. (o) boundary confirming simulation (Dutsch et 
al., 1998); (---) present computation 
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5.2.2 Flow over a transversely oscillating cylinder 

 The flow over a transversely oscillating cylinder at Re = 185 is investigated next. 

The cylinder is forced to displace in a sinusoidal manner in transverse direction to the 

flow with an amplitude of A = 0.2D and a frequency of fo = 0.8fe in which fe is known as 

the natural frequency of the stationary cylinder at Re = 185 based on the cylinder 

diameter, D. The structural motion of the cylinder with fo = 0.156 is prescribed as 

follows; 

             )2sin()( tfAty oπ=                                                           (5-2) 

 The same amplitude and frequency are also utilized in Uhlmann (2005a) and 

Yang et al. (2009). For instance, Uhlmann (2005a) uses the class of 3-point regularized 

delta functions introduced by Peskin (2002) as kernels in the transfer steps between 

Lagrangian and Eulerian locations whereas Yang et al. (2009) introduces a smoothing 

technique with a new 3-point discrete delta function. In this study, we utilize the 

smoothed discrete delta function introduced by Yang et al. (2009) that guarantees a 

second order accuracy in interpolation and thereby reducing the non-physical oscillations 

and improving the force prediction. The same domain size of 52D X 36D and boundary 

conditions (West = Inlet, East = Convective, North = Symmetric and South = Symmetric) 

as in the stationary cylinder simulations are used if not otherwise stated. The time step 

(∆t) is selected to be 3x10-3 to ensure CFL = 0.2 for the moving cylinder cases. All other 

parameters remain the same as in the corresponding stationary case above. 

 The results are summarized in Table 5-2. It is observed that the simulations using 

solid domain forcing produce reasonably good results of the time-averaged forces, using 

either the smoothed discrete delta functions or the regular ones. However, if the plots of 
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time variations of the lift and drag coefficients are carefully investigated, the effect of the 

smoothed discrete delta functions on the force predictions is noticeable. As shown in 

Table 5-2, the results using interface forcing over predict the force predictions. Uhlmann 

(2005a) states that his interface method yields a higher drag than the computations using 

the method of Kajishima and Takiguchi (2002). The use of 4-point delta function in 

Uhlmann’s study further increases the mean drag as shown in Table 5-2. This table also 

shows that the present solid forcing method overcomes the overestimation in drag force. 

The present method via interface forcing yields a higher drag than one predicted by 

Uhlmann (2005a). 

  

Table 5-2 Dimensionless coefficients for flow around an oscillating cylinder at Re = 185 
which has near the natural shedding frequency. Resolution near the structure is ∆x = ∆y = 
0.0156D and the time step ∆t is 3x10-3

 

Authors 
DC  rmsDC )(  rmsLC )(  

    
Uhlmann (2005), 3-point δh 1.354 - 0.166 

Uhlmann (2005), 4-point δh 1.402 - 0.172 

Yang et al. (2009) 1.276 0.043 0.073 

Guilmineau and Queutey (2002) 1.195 0.036 0.080 

Present (interface forcing) * 1.389 0.049 0.055 

Present (solid domain forcing)* 1.268 0.043 0.071 

Present (solid domain forcing)** 1.273 0.043 0.072 

* 3-point δh    

** 3-point smooth δh      

 

 In Figures 5-7 and 5-8, the periodic variations of the drag and lift coefficients as a 

function of the cylinder’s vertical position are presented. Figure 5-7 shows the results of 

drag force coefficients obtained using 3-point smooth and regular delta functions side by 

side for comparison with method of Kajishima and Takiguchi (2002) implemented into 
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Uhlmann (2005a)’s finite difference Navier-Stokes solver which utilizes interface forcing 

method. It is obvious that the current direct forcing method reduces unphysical 

oscillations in the drag force. However, small kinks still exist especially near the peak 

value of the drag coefficient. The usage of smooth dirac delta function further reduces 

and/or significantly suppresses these kinks (large wiggles are also clearly seen in Figure 

5-7 in Kajishima and Takiguchi (2002)) completely. Yang et al. (2009) shows that the 

smoothed discrete delta functions become continuously differentiable up to second order, 

which helps in the reduction of non-smooth errors. 

 In Figure 5-8, the periodic variations of lift coefficient based on the present solid 

domain forcing and it’s comparisons to interface forcing method with different usage of 

discrete delta functions are shown. It can be observed that the spurious oscillations are 

less recognizable than those in the time series of the drag force coefficient. However, 

utilizing 3-point smooth discrete delta function in the present method sufficiently 

diminishes the spurious oscillations in the lift force compared to using a 2-point hat 

function for that oscillating cylinder. Large wiggles are clearly seen in Figure 5-8. 

Therefore, with the use of the smoothed discrete delta function, the quality of force 

prediction is greatly improved. Similar behavior is noticed in calculations of Yang et al. 

(2009). 
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Figure 5-7 Time-periodic variation of the drag coefficient in the case of a 
transationally oscillating cylinder in uniform cross-flow at Re = 185 and CFL = 0.2. Top 
left: present method using interface forcing with 3-point smooth Dirac Delta function 
with 0.05D X 0.05D uniform grid throughout the domain. Top right and Bottom left: 
present method using solid domain forcing with 3-point regular and smooth dirac delta 
function, respectively with 0.0156D X 0.0156D grid resolution near cylinder. Bottom 
right: method of Kajishima and Takiguchi (2002) implemented into Uhlmann (2005)’s 
solver which utilizes interface forcing method. 
 
 

 The solid domain forcing by Uhlmann (2005b) together with the smooth discrete 

delta function by Yang et al. (2009) gives good estimations of drag and lift coefficients as 

compared to results using interface forcing method in terms of not only elimination of 

high frequency ‘noises’ but also by reducing the uncertainty in the estimation of the 
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magnitude of forces. The curves of drag and lift coefficients are reasonably smooth, 

which demonstrated the present approach’s ability to handle arbitrary motion with respect 

to the fixed grid. 

 

 

  

 
 

 

 

Figure 5-8 Time periodic variation of the lift coefficients for flow past an 
oscillating cylinder at Re = 185 and CFL = 0.2. Top left: present method using interface 
forcing with 3-point smooth dirac delta function with 0.05D X 0.05D uniform grid 
throughout the domain. Top right and Bottom left: present method using solid domain 
forcing with 3-point regular and smooth dirac delta function, respectively with 0.0156D 
X 0.0156D grid resolution near cylinder. Bottom right: results of Yang et al (2009) using 
a 2-point hat function for the oscillating cylinder. 
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 Figure 5-9 shows pressure contours for an oscillating cylinder in the transverse 

direction to the flow under prescribed motion. The figures are obtained at an instant 

corresponding to displacement amplitude shown on bottom left corner of each figure. For 

both of the forcing methods, the pressure contours on the flow part of the simulations are 

very smooth and regular. This yields a very similar pattern of contours throughout the 

fluid region. However, the irregular pressure contours are evident inside the cylinder in 

case of interface forcing. On the other hand, solid forcing estimates a smooth pressure 

field throughout the surface and inside of the structure as also mentioned in steady 

cylinder case results before. This leads to a continuous pressure across the interface and 

thus results in a sharper interface in terms of velocity fields around the immersed 

boundary. Similar observations have been made by Uhlmann (2005b) in his study. 

 

  

Figure 5-9 Pressure contours around cylinder at an arbitrary instant of time 
during the transverse oscillation of the cylinder at Re = 185. The location of the cylinder 
is shown at the bottom left of each figure. Left: Present method via Interface forcing. 
Right: Present method via Solid domain forcing. Both figures are produced utilizing 
smooth 3-point delta function. 
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 Figure 5-10 shows snapshots of the instantaneous velocity and vorticity field by 

the present solid domain forcing method near the solid body at an arbitrary instant of time 

during the transverse forced displacement of the circular cylinder at Re = 185. At that 

instant of time, the cylinder reaches the maximum amplitude of displacement (A=0.2D) 

in crosswise direction. It can be seen from the Z-Vorticity contour that there occurs a 

clear shedding activity behind the oscillating cylinder. 

 

 

 

Figure 5-10 Contour plots around cylinder at an arbitrary instant of time during 
the transverse oscillation of the cylinder at Re = 185. The location of the cylinder is at X 
= 22 D and at Y = 18.2D. Top: U-velocity contour. Middle: V-velocity contour. Bottom: 
Z-Vorticity Contour 
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5.3 Vortex-Induced Vibration (VIV) of a Cylinder 

 

 To further demonstrate the accuracy and efficiency of the method for fluid-

structure interaction problems, a test case of a circular cylinder undergoing free 

transverse oscillation is studied. A cylinder is allowed to oscillate only in the crosswise 

direction and is modeled as a mass-damper-spring system. Experimental data by 

Anagnostopoulos and Bearman (1992) and numerical results by Williamson and 

Govardhan (2004) are available for model comparison. Figure 5-11 shows a schematic 

representation of a cylinder allowed to move in the transverse direction and elastically 

mounted at both ends which ensures that the response is uniform along its length. 

 In order to be able to compare the simulations with the experiments conducted by 

Anagnostopoulos and Bearman (1992), a mass ratio of 150 and a damping ratio of 0.0012 

are needed in the validation process (see Figure 5-11). A series of experiments with 

Reynolds numbers ranging from 90 to 140 where the corresponding reduced velocity 

ranged from 5.02 to 7.81 were conducted by Anagnostopoulos and Bearman (1992). In 

the numerical analyses, the regime for the fixed cylinder was fully laminar. For all cases 

the flow over a stationary cylinder for the same Reynolds number was initially computed. 

Then the cylinder was allowed to move in one direction (cross-stream) and initially held 

rigid until the state of fully developed flow was reached.  Integration in time was stopped 

as soon as a periodic state of constant maximum amplitude is reached. The test case has 

been also used for validation in other numerical simulations (Kara et al. (2012); Nomura 

(1993); Schulz and Kallinderis (1998); Wei et al. (1995); Yang et al. (2008)). The domain 

size is the same as above (Section 4.1) and the grid dimension was 1344 x 736 with a 
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time step of ∆t = 0.003. Making use of local mesh refinement enables a resolution near 

the cylinder of 0.0156D x 0.0156D. The 3-point discrete smooth dirac delta function is 

used during the transfer of forces between fluid and the structure. 

 

 

Figure 5-11 Experiment conducted by Anagnostopoulos and Bearman (1992) (k 

= 69.48 kN/m, c=0.0039 Ns/m, D=1.6 mm, fN =7.016 Hz, m=35.75 g., ξ=0.0012) 

  

 The large mass ratio used in these numerical simulations makes the problem fairly 

stiff and very long integration times are needed for most cases, especially where 

resonance occurs. Figure 5-12 and 5-13 show time history of the displacements for the 

oscillating cylinder in the transverse direction with Reynolds numbers ranging from 90 to 

140. Specifically, the former shows the start-up phase and the latter shows the steady 

phase of the cylinder displacements. Outside the resonance regime, such as at Re = 90 

and 95, drastic changes in the amplitude of vibration can be observed. In that range, the 

steady state can be reached with a very small magnitude of the oscillation. Also the time 

histories of cylinder do not change much even after reaching stable phase as shown in 
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Figure 5-12a. Similar behavior can be observed at Re = 130, 135 and 140, however, the 

time history of the displacement appears to be more irregular than for the cases with Re = 

90 and 95. The results in Figure 5-12 and 5-13 represent the lower end of lock-in regime 

which needs less computational time in order to reach a periodic steady state compared to 

the other cases inside the lock-in regime (see Figure 5-13). It is clearly seen in Figure 5-

13c that within the lock-in range, the vibration amplitude increases. Furthermore, the 

amplitudes of the oscillations monotonically grow at Reynolds number 105. Similar 

observations have also been done by Li et al. (2002); Yang et al. (2008)). 

 

(a) 

(b) 

(c) 

           Figure 5-12 For Caption see next page 
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(e) 

(f) 

(g) 

(h) 

           Figure 5-12 For Caption see next page 
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(i) 

(j) 

(k) 

 

 

Figure 5-12 Time histories of the displacements for the freely vibrating cylinder 
in the cross-stream direction at Re = 90~140 at start-up phase. (a) Re = 90, (b) Re = 95, 
(c) Re = 100, (d) Re = 105, (e) Re = 110, (f) Re = 115, (g) Re = 120, (h) Re = 125, (i) Re 
= 130, (j) Re = 135, (k) Re = 140 

 

 

 

 



  92

(a) 

(b) 

(c) 
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           Figure 5-13 For Caption see next page 
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(g) 

(h) 

(i) 

(j) 

           Figure 5-13 For Caption see next page 
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(k) 
 

 

 

Figure 5-13 Time histories of the displacements for the freely vibrating cylinder 
in the cross-stream direction at Re = 90~140 at steady phase. (a) Re = 90, (b) Re = 95, (c) 
Re = 100, (d) Re = 105, (e) Re = 110, (f) Re = 115, (g) Re = 120, (h) Re = 125, (i) Re = 
130, (j) Re = 135, (k) Re = 140 

  

  

 The pressure contours for a few selected cases in the lock-in range and beyond the 

resonance regime are shown in Figure 5-14. It is evident that the pressure contours are 

smooth throughout the interface which ensures the accuracy and smoothness of the fluid 

field around the immersed structure. For the resonance cases where a noticeable 

displacement occurs in the cross-wise direction, Figure 5-14b,c,d also include the 

position of the structure incorporated into the drag force figures at the lower bottom of 

the pressure contours.  

 The close snapshots of contours of the swirl strength which is basically the angle 

between velocity and vorticity vectors inside and outside of the lock-in regime are shown 

in Figure 5-15. It is also seen that eddies that are formed behind the circular cylinder 

change in shape compared to the steady flow results with lower Reynolds numbers 

discussed in the previous section. Moreover, the eddy structures are fluctuating in the 

downstream flow region. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 
 

Figure 5-14 Instantaneous pressure contours of a freely vibrating cylinder in the 
cross-stream direction (a) Re = 95, (b) Re =100, (c) Re = 105, (d) Re = 110, (e) Re = 120, 
(f) Re = 130 
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(a) 

(b) 

(c) 

           Figure 5-15 For Caption see next page 
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(d) 

(e) 

(f) 

 

 

 

Figure 5-15 Instantaneous swirl strength contours of a freely vibrating cylinder in 
the cross-stream direction (a) Re = 95, (b) Re =100, (c) Re = 105, (d) Re = 110, (e) Re = 
120, (f) Re = 130 
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(a) 
 

(b) 

           Figure 5-16 For Caption see next page 



  99
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(d) 
 

           Figure 5-16 For Caption see next page 
 



  100

(e) 
 

(f) 
 

           Figure 5-16 For Caption see next page 
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Figure 5-16 Instantaneous contours of U velocity, V velocity and spanwise 
vorticity for a freely vibrating cylinder in the cross-stream direction (a) Re = 95, (b) Re 
=100, (c) Re = 105, (d) Re = 110, (e) Re = 120, (f) Re = 130 

 

  

 The 2S mode pattern (two single vortices per cycle of motion) can easily be seen 

in the wake in Z vorticity contours in Figure 5-16b, c and d. This is in agreement with the 

observations of Williamson and Roshko (1988). In this figure, the contours of U velocity, 

V velocity are also shown. In addition, the smoothness of the vorticity contours near the 

cylinder is a further indication that the method properly captures the complex dynamics 

of the flow near the immersed structure. 

 The comparison of drag and lift force coefficients of the freely oscillating cylinder 

cases are shown in Figure 5-17 and Figure 5-18. It is observed that in the lock-in regime 

there is a significant different plot presented with increased magnitudes of forces, while 

outside the lock-in regime, there is a little difference between fixed and the freely 

oscillating cases. As Reynolds number increases throughout the lock-in range, the 

magnitudes of drag forces tend to decrease with diminishing values of cross-streamwise 

displacement of the freely vibrating cylinder. Similar behavior is evident in the lift force 

coefficient time series in Figure 5-17b, d and f. Figure 5-18 includes time series of the 

forces acting on oscillating cylinder beyond lock-in regime (Re = 95, 120 and 130) at 

start-up (left column) and steady(right column) phases. 
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(a) (b) 

(c) (d) 

(e) (f) 

 

 

Figure 5-17 Time periodic variation of the drag and lift coefficients for flow past 
a freely vibrating cylinder in the cross-stream direction at steady phase in the lock-in 
regime (a) Cdrag  at Re = 100, (b) Clift at  Re =100, (c) Cdrag at Re = 105, (d) Clift at Re 
= 105, (e) Cdrag at Re = 110, (f) Clift at Re = 110 
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(a) (b) 

(c) (d) 

(e) (f) 

 

 

Figure 5-18 Time periodic variation of the drag and lift coefficients for flow past 
a freely vibrating cylinder in the cross-stream direction at start-up and steady phases 
beyond lock-in regime (a) start-up at Re = 95, (b) steady at Re = 95, (c) start-up at Re = 
120, (d) steady at Re = 120, (e) start-up at Re = 130, (f) steady at Re = 130  
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 The lock-in or synchronization regime in which the frequency of the wake 

matches the natural frequency of the immersed body can be seen more quantitatively in 

Figure 5-19. In this figure, the maximum oscillation amplitudes and frequencies as a 

function of oscillation and vortex shedding frequencies at the steady state are shown. In 

addition to the experimental study conducted by (Anagnostopoulos and Bearman, 1992), 

previous computations (Li et al. (2002); Nomura (1993); Schulz and Kallinderis (1998); 

Wei et al. (1995); Yang et al. (2008)) are also included in this figure.  All of the 

references except Yang et al. (2008) used body conformal formulations in their studies. 

Particularly, Nomura (1993); Wei et al. (1995) implemented an arbitrary Lagrangian-

Eulerian (ALE) finite element methodology. The grid was deformed and regenerated 

during the computations and in order to conform to the body. Similarly, Schulz and 

Kallinderis (1998) used finite volume formulation of a body conformal grid strategy. In 

Figure 5-19, the lock-in regime ranges from Re = 100 to Re = 120. It shows the 

maximum oscillation amplitude with respect to the Reynolds number. The results in 

Figure 5-19 show a scatter in data due to different approaches in numerical methods or 

grid resolutions used in the analysis. The present results agree well in estimating the 

resonance regime (approximately Re = 103 in the experiment); however they 

underestimate the amplitude of the oscillations in the experiment by about 20%.  Besides, 

almost all of the references claim good agreement on the critical Reynolds number for the 

lock-in regime, but as opposed to the present results, Li et al. (2002); Nomura (1993) 

underestimate the amplitude of the oscillation frequency by 30% whereas Schulz and 

Kallinderis (1998); Yang et al. (2008) show too early resonance regime in their studies.  

Schulz and Kallinderis (1998) stated the reason for the difference is due to three-
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dimensional effects caused by the presence of end-plates in the experiment, an effect that 

cannot be captured by a 2D method. Our results are in good agreement with other 

computations, which indicated the accuracy of the proposed methodology. 

 

 

 
 

 

 

Figure 5-19 Comparison of maximum oscillation amplitude Amax (top) and 
frequency of the oscillation (bottom); o, present results; -----, experiment in 
Anagnostopoulos and Bearman (1992);  �, computation in Nomura (1983);�, 
computation in Yang et al. (2008); +, computation in Wei et al. (1995); �, computation 
in Schulz and Kallinderis (1998); ∆,  computations in Li et al. (2002) 
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5.4 Flow Past Two Cylinders in Tandem Arrangements 

 The flow around cylinders has been studied extensively because of its importance 

in practical engineering and scientific problems in structural and fluid mechanics. 

Circular cylinders are used in a number of engineering applications such as offshore 

platforms, chimneys and heat exchangers. On the other hand, the flow around circular 

cylinders possesses various important physical and scientific phenomena such as 

separation and vortex shedding at relatively low Reynolds numbers. 

5.4.1 Unsteady Flow Past Two Stationary Cylinders in Tandem Arrangement 

 Experimental results with flow past two cylinders in-line and staggered 

arrangements have been introduced by Chen (1987); Kiya et al. (1980); Kiya et al. 

(1992); Zdravkovich (1977). The pioneering studies of the tandem configurations of 2 

cylinders are presented by Igarashi (1981) and Igarashi (1984) and six different flow 

patterns were identified (Figure 5-20). This classification of the flow patterns has been 

widely referenced in other studies in the literature. According to this classification six 

different regimes can be identified: 

A. The cylinders are very close together and free shear layers that originate 

from the separation on the surface of the upstream cylinder do not re-

attach to the surface of the downstream cylinder (Figure 5-20a); 

B. The cylinders are close together and shear layers that come from the 

upstream cylinder are captured by the downstream one, but there is no 

vortex formation in the gap between the bodies (Figure 5-20b); 

C. As the distance between cylinders increases, symmetric vortices are 

formed between the cylinders (Figure 5-20c); 
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D. Further increase in distance between cylinders result in the symmetric 

vortices become unstable and start to grow in proximity to the downstream 

cylinder (Figure 5-20d); 

E. The cylinders are spaced far apart so that shear layers originating from the 

upstream cylinder roll up very near the downstream cylinder (Figure 5-

20e); 

F. The cylinders are spaced further and the near wake region (formation 

region) ends before the downstream body and vortices are shed in the gap 

region in a regular way (Figure 5-20f). 

 

 

 

 

Figure 5-20 Classification of flow patterns for two tandem circular cylinders in 
cross-flow, from Igarashi (1981)  (Figure taken from Sumner (2010))  

  

 Many other numerical studies on 2 cylinders with tandem cylinders in steady 

cross-flow have been carried out. Sumner (2010) recently published a review on the 

current understanding of the flow around two circular cylinders of equal diameter in a 
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steady cross-flow. In his study, focus is put on the key experimental and numerical 

studies and cylinders arranged in tandem configurations are discussed thoroughly.  

 As circular cylinders are placed together in close proximity (Figure 5-20c), the 

flow field and the forces encountered by the structures can differ from those when 

structures are isolated in the flow. The presence of other structures affects the flow and it 

is called flow interference (Carmo et al. (2011)), which has very important impact in 

aerodynamics and hydrodynamics. In this section, computational results for flow past two 

cylinders in tandem arrangements at Reynolds number 100 are reported. From the 

previous section, it has been found out that the critical resonance occurred at Re = 100 

for a single, freely vibrating cylinder and the reason for that selection of specific 

Reynolds number is due to investigation of the effects of different configurations of 

cylinders on start of resonance and that will be discussed in the next section. The findings 

from the results of stationary cylinders in tandem arrangements will enlighten future 

investigations of vortex induced vibration cases. The first case involves two stationary 

cylinders in tandem arrangements with a distance of 2.5 diameters between their centers 

(Figure 5-20c), at Re = 100, which results in a steady vortex structure in the space 

between the cylinders. In the second set of computations, the distance between the 

centers of cylinders is increased to 6.0 diameters (Figure 5-20f). It is expected that the 

flows for these two cylinder arrangements is qualitatively different regarding vortex 

shedding. Mittal et al. (1997) also reported results of a systematic study involving 

cylinders in tandem arrangements with their centers separated by 5.5 diameter and 2.5 

diameter. In order to study the fluid dynamic interference effect of two cylinders, the 

solutions are also compared with flows past a single cylinder at the respective Reynolds 
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numbers. The flow past a circular cylinder at Re = 100 has been a standard benchmark 

problem and various researchers in the past have reported computed results which are in 

good agreement with the experimental observations (Behr et al. (1995); Behr et al. 

(1991); Tezduyar et al. (1992)). 

 

 

 
 

Figure 5-21 A close snapshot of the grid employed in the vicinity of 2 cylinders 
for laminar flow past 2 structures in tandem arrangement, spaced relatively at 6.0D (Top) 
and 2.5D (Bottom). The domain size is 50D X 36D. A uniform velocity boundary is 
specified at the inlet; a convective boundary condition is used at the outlet; symmetric 
boundary (every 3th point is shown) 
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5.4.1.1 Re=100 Flow Past Two Stationary Cylinders in Tandem Arrangement Lx = 6.0D 

 Our computations indicate an unsteady solution for Re = 100 when the spacing 

between two tandem cylinders is 6.0 diameter (Figure 5-21). Figure 5-22 presents 

velocity and vorticity contours for this case. The vorticity contour in Figure 5-22 and a 

close snapshot picture of the swirl strength, depicted in Figure 5-23, reveal that vortices 

are shed from upstream cylinder in this gap and the separated shear layers from upper 

cylinder form a short Karman vortex street between the cylinders.  

 The velocity contours in Figure 5-22, pressure contours in Figure 5-23 and 

streamlines in Figure 5-24 show that the flow behind the downstream cylinder becomes 

more unstable due to the impact of vortices. Mittal et al. (1997) explains the vortex 

shedding from the two cylinders as “antiphase”, which means that once the first cylinder 

sheds a vortex from the upstream  interface, the downstream cylinder sheds a counter-

rotating vortex from the lower surface. The contour pictures are in good agreement with 

results of Mittal et al. (1997) such that both results show a violent movement of 

stagnation point for the downstream cylinder. 

 Figure 5-25 shows the time histories of the lift and drag coefficients for two 

cylinders in tandem arrangement. In this figure, “1” refers to the upstream cylinder and 

“2” refers to the downstream one. First of all, the Strouhal number for both of cylinders is 

very close to that of a single cylinder (From Table 5-1, St = 0.165). The drag and lift 

coefficients for the upstream cylinder (cylinder 1 in Figure 5-25) are comparable with the 

values for a single cylinder case. As the downstream cylinder feels the effect of wake of 

the first cylinder, the force coefficients are affected significantly. Cylinder 2 feels very 
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strong lift force (CL2' = 1.25) while experiencing a relatively lower magnitude of drag 

force ( 2DC = 0.05) compared to a single cylinder case ( DC = 1.27; CL' = 0.34). 

  

 

 
 

 

Figure 5-22 Instantaneous contours of U velocity (top), V velocity (middle) and 
spanwise vorticity (bottom) for flow over two tandem cylinders at Lx = 6.0D at Re =100  
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Figure 5-23 Instantaneous pressure (Top) and Swirl Strength (Bottom) contours 
of flow over two tandem cylinders at Lx = 6.0D at Re = 100 

 

 

 
 

Figure 5-24 Streamlines for flow over two tandem cylinders at Lx = 6.0D at Re 
=100 
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Figure 5-25 Time histories of lift and drag force coefficients for flow over two 
tandem cylinders at Lx = 6.0D at Re = 100. Top: Forces acting on upstream cylinder; 
Bottom: Forces acting on downstream cylinder 
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5.4.1.2 Re=100 Flow Past Two Stationary Cylinders in Tandem Arrangement Lx = 2.5D 

 As the spacing between cylinders is decreased to 2.5 diameter, it has been 

reported in the literature that there is no distinct vortex shedding behind the upstream 

cylinder (Chen (1987); Kiya et al. (1980); Mittal et al. (1997); Zdravkovich (1977)). Our 

results from the simulations lead to a similar conclusion. A steady separation bubble in 

the gap is foreseen in this arrangement and it converges to the initial steady solution 

when it is perturbed (Mittal et al. (1997)).  

 Figure 5-26 presents velocity and vorticity contours for this case. The vorticity 

contour in Figure 5-26 and a close-up snapshot picture of swirl strength in Figure 5-27 

reveal that vortices are absorbed by the downstream cylinder at this arrangement. From 

the flow pictures in Figure 5-26, it is noticeable that the shear layer is separated from the 

upstream cylinder and it reattaches to the downstream cylinder. This prohibits vortex 

shedding because the shear layer cannot roll up. The pressure field and streamlines 

around cylinders are also shown in Figure 5-27 and Figure 5-28, respectively. According 

to Figure 5-27, a low pressure region is formed in front of the upstream cylinder whereas 

a negative pressure field is evident behind and in front of the downstream cylinder. 

Shown in Figure 5-29 are the time histories of the lift and drag coefficients for the two 

cylinders. It is observed that the downstream cylinder experiences a ‘negative drag’, 

which Mittal et al. (1997) explains this as that cylinder is attracted towards the upstream 

cylinder. Due to full submergence in the relatively low pressure wake region of the 

upstream cylinder as visualized in pressure field plot in Figure 5-29, the downstream 

cylinder undergoes a negative drag force. Besides, the presence of the downstream 

cylinder results in the pressure increase in this region, leading to a reduction in the 
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upstream cylinder drag force. In addition, the downstream cylinder feels more lift than 

the upstream one because of the dominance of wake interference effect at this 

arrangement. Also, the combined drag of the two cylinders is less than the mean drag for 

the flow past a single cylinder (Table 5-1, results for Re = 100 flow past a single 

cylinder). This observation is also made by other researchers in their studies (Chen 

(1987); Mittal et al. (1997); Zdravkovich (1977)). It is also evident in Figure 5-29 that the 

converged solution needs 6 times more computational time compared to previous case. 

From this figure, it is noticed that the transient initial solution reaches a steady state and 

amplitude variation of the lift and drag forces take a constant value.  

 The results of two arrangements of cylinders imply that as the spacing increases, 

the wake interference effects reduce due to the presence of the downstream cylinder. 

However, the downstream cylinder feels significant changes in its force coefficients as it 

lies in the full wake of the upstream one. At Lx = 6.0 D, the variations of hydrodynamic 

forces tend to follow an oscillating trend as a result of vortex shedding triggered by both 

cylinders. The drag force becomes positive due to the intensified pressure field created by 

the upstream cylinder. On the other hand, at Lx = 2.5D, the drag force takes negative 

values as the downstream is fully submerged in the wake of the upstream cylinder. In 

addition, the lift force coefficient tends to decay and approach to zero values in terms of 

it magnitude. However, as the gap between cylinders are increased at Re = 100, more 

unstable behavior can be seen and the vortices caused by the upstream cylinder can 

induce more lift fluctuations on the downstream one. Vortices are shed from both 

cylinders in counterwise direction and they are not synchronized. Also, at that distance of 
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arrangements of tandem cylinders, the upstream cylinder shows the same behavior as a 

single cylinder in terms of drag and lift force coefficient calculations shown in this study. 

 A summary of the aerodynamic coefficients for the computed flows is given in 

Table 5-3. The mean values of drag and lift coefficients are calculated by integrating data 

at fully developed flow condition. Strouhal numbers reported in this table corresponds to 

the dominant frequency in the time history of the lift coefficients. 

 

 
 

 

Figure 5-26 Instantaneous contours of U velocity (top), V velocity (middle) and 
spanwise vorticity (bottom) for flow over two tandem cylinders at Lx = 2.5D at Re =100 



  117

 

 
 

Figure 5-27 Instantaneous pressure (Top) and Swirl Strength (Bottom) contours 
of flow over two tandem cylinders at Lx = 2.5D at Re = 100 
 
 
 

 
 

Figure 5-28 Streamlines for flow over two tandem cylinders at Lx = 2.5D at Re =100 
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Figure 5-29 Time histories of lift and drag force coefficients for flow over two 
tandem cylinders at Lx = 2.5D at Re = 100. Top: Forces acting on upstream cylinder; 
Bottom: Forces acting on downstream cylinder 
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Lx = 6.0D Lx = 2.5D 

Case 1 Case 2 Case 3 

Table 5-3 Summary of the aerodynamic data for flows past a single cylinder (Case 1), 
two cylinders in tandem arrangement at Lx = 2.5D (Case 2) and Lx = 6.0D (Case 3) at Re 
= 100. 
 
 
 

  Cylinder 1 Cylinder 2 Cylinder 1 Cylinder 2 

      

DC  1.273 1.167 -0.069 1.297 0.589 

rmsDC )(  0.043 - - 0.010 0.051 

LC  0.000 0.000 0.000 0.000 0.000 

rmsLC )(  0.239 0.006 0.035 0.253 0.923 

St 0.165 0.114 0.114 0.155 0.153 
 

 

5.4.2 Vortex Induced Vibration (VIV) of Two Cylinders in Tandem Arrangement 

 In Section 5.4.1, numerical results of unsteady incompressible flow about fixed 

cylinder pairs, an important design problem in constructing structures such as offshore 

platforms and risers, are presented. It was shown that the numerical results from two 

dimensional simulations present a rich variety of complex interference phenomena.  

 Free vibrations of two elastically mounted cylinders in tandem (see Figure 5-30) 

have been studied not as extensively as single-cylinder oscillating cases. Zdravkovich 

(1988) conducted a review of the vibrations of two cylinders and discussion of the 

underlying vibration mechanism in different interference regions. In the literature, there 

have been also other experimental studies such as the works of Bokaian and Geoola 

(1984a, 1984b) in which they considered one of the two cylinders always held fixed. 
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Bokaian and Geoola (1984b) concluded that the downstream cylinder showed a VIV, a 

galloping, a combination of VIV and galloping or separated VIV and galloping 

depending on the gap size between cylinders when the upstream cylinder is fixed. Blevins 

(1990) described ‘galloping’ as vibrations caused by the variation of the hydrodynamic 

forces triggered by the motion of the structure in the flow when the force is in the 

direction of the motion and tends to increase as the structures moves away from the 

equilibrium position. However, the flow dynamics and structural motion are affected by 

the spacing between the structures. According to Zdravkovich (1985), the oscillation 

amplitude of the upstream cylinder can be larger than the downstream one in some cases. 

Similar observations were made by other researchers (Allen and Henning (2003); King 

and Johns (1976); Laneville and Brika (1999)). Fontaine et al. (2006) observed that 

oscillation amplitude of the downstream cylinder can be more than twice as large as that 

of the upstream cylinder in some cases. All of the previous experiments conducted 

dealing with two elastically mounted cylinders has focused on the oscillation amplitudes 

of the cylinders and a few on the forces excited by VIV. The experiments to date lack 

identification of the flow patterns and characteristics of the structural vibration. However, 

as stated in Borazjani and Sotiropoulos (2009), flow visualization and identification of 

the flow patterns are critical prerequisites for understanding the fluid mechanics of not 

only stationary but also vibrating multi-cylinder arrangements. In the context of 

identifying various phenomena under the complexity of two-cylinder VIV, numerical 

simulations can provide the necessary physical insight. So far, three important numerical 

studies have been reported which focus on VIV of two cylinder configurations at low 

Reynolds numbers. Among them, Mittal and Kumar (2001) studied two dimensional 
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simulations for two elastically mounted cylinders in tandem with Lx/D = 5.5 at Re = 100. 

Also Jester and Kallinderis (2004) considered two dimensional simulations of free 

vibrations of two cylinders in tandem at Re = 1000 and Lx/D = 5.0. Both of the studies 

showed that the downstream cylinder experiences large, flow-induced oscillation over a 

wide range of flow velocities while the upstream cylinder behaves as an isolated cylinder. 

On the other hand, Borazjani and Sotiropoulos (2009)  conducted two and three 

dimensional FSI simulations for two elastically mounted cylinders in tandem placed Lx/D 

=1.5 apart at Re = 200. All of the above mentioned references considered low mass ratios 

(m*≈2) for the circular structures. Specifically, Borazjani and Sotiropoulos (2009); Mittal 

and Kumar (2001) chose no damping for the VIV cases. In their studies, the damping 

coefficient was assigned to zero in order to obtain the most intense vibrations, as 

damping has been shown to decrease the vibration amplitude (Fontaine et al. (2006)).  

 In this section, the results obtained from the stationary cylinder cases are extended 

to cylinder pairs oscillating transversely to the flow. In fact, the present study focuses on 

wake interference and investigates the effect of spacing of cylinders in tandem on the 

ensuing VIV dynamics, especially at the start of the resonance regime (i.e. Re = 100) for 

an oscillating single cylinder. Therefore, to understand how the approaching wake 

interacts with another structure, the flow around a circular cylinder mounted on an elastic 

basis, allowed to move only in the transverse direction which is immersed in the wake of 

an upstream circular cylinder of the same diameter D placed at a streamwise center to 

center distance Lx as sketched in Figure 5-31 is investigated.   

 Other researchers conducted studies for two-dimensional laminar simulations with 

Reynolds number ranging from 100 to 200 (Borazjani and Sotiropoulos (2009); Carmo 
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and Meneghini (2006); Mittal and Kumar (2001); Papaioannou et al. (2006, 2008); Ryan 

et al. (2007)). A three dimensional study for that this Reynolds number is not necessary 

as the results of Borazjani and Sotiropoulos (2009) showed that three-dimensional 

instabilities are so weak that they did not alter the dynamic FSI response of the system, 

which for all simulated cases was found to be essentially identical to that of the two-

dimensional system. Although the experimental literature is conducted at significantly 

higher Reynolds number, the significant aspects of the VIV dynamics can be reproduces 

numerically at lower Re.  

 

 

 

 

 

 

Figure 5-30 Schematic drawing of arrangement studied which is tandem 
arrangement of two identical, elastically mounted cylinders (k = 69.48 kN/m, c=0.0039 

Ns/m, D=1.6 mm, fN =7.016 Hz, m=35.75 g., ξ=0.0012). 
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Figure 5-31 6 different VIV Cases studied in the current research for two 
cylinders in tandem arrangement at Re = 100 (k = 69.48 kN/m, c=0.0039 Ns/m, D=1.6 

mm, fN =7.016 Hz, m=35.75 g., ξ=0.0012). 
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The configurations tested in this section include two different separations: 

A. Lx/D = 2.5 

B.  Lx/D = 6.0  

 Then, the interference between two circular cylinders in tandem arrangement and 

at two different spacing is investigated. In terms of VIV, three different scenarios are 

studied for each cylinder arrangement:  

1. the upstream cylinder is fixed and the downstream cylinder is free to oscillate 

2. both cylinders are free to oscillate 

3. Cylinders are rigidly connected to each other and are free to oscillate in the cross-

stream direction.  

 As shown in Figure 5-31, 6 cases in total are reported of two dimensional 

numerical simulations of flow-induced vibrations of two cylinders in tandem. Case1A to 

Case 3A considers scenario 1 to 3 with separation distance Lx/D = 6.0, Case1B to Case3B 

refer to oscillating scenario 1 to 3 with separation distance Lx/D = 2.5. 

 The non-dimensional parameters governing the response of the two-equal sized 

cylinders are the same as for the single cylinder VIV simulation (m* 
= 150, ξ = 0.0012, 

Ured = 5.58). The simulations are carried out for one degree of freedom (1 DOF), only 

lateral displacement, to investigate the effect of different scenarios on the VIV. For all 

cases, the size of the computational domain, boundary conditions, distribution of the grid 

and the size of the time step which corresponds to a CFL number of 0.3 are kept identical 

to those used for stationary tandem arrangement discussed in Section 5.4.1. In addition, 

all computations for the 3 different scenarios reported here are initialized from the same 

instantaneous snapshot of the simulations that was obtained from fully developed 
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unsteady solution past stationary cylinders in the same arrangement and at the same 

Reynolds number. The integration in time is continued until the quasi-steady state is 

reached. 

 For Case3A and Case3B, numerically, the rigid coupling is simulated by summing 

up the computed lift force of the two cylinders and computing a single structural response 

with the obtained total lift force. As mentioned in the previous section, we will refer to 

the upstream cylinder as cylinder 1 and to the downstream one as cylinder 2. Also, the 

quantities in the figures with suffix 1 are associated with cylinder 1, whilst those with 

suffix 2 are for cylinder 2.   

 In the previous section, the solution for flow past two stationary cylinders at Re = 

100 in tandem arrangement at six diameters distances (Lx = 6.0D) has been discussed. 

The wake was found to be organized and a periodic vortex structure was observed in the 

fully developed unsteady solution. It was also noted that the vortex shedding is not in 

phase, i.e. as the upstream cylinder sheds a vortex from it upper surface, the downstream 

one generates a counter-rotating vortex from its lower surface. For that configuration, 

frequency of the vortex shedding for both of the cylinders is found to be 0.154 which is 

5% less than that for a single cylinder (f0 = 1.165) at the same Reynolds number. For 

Case1A, the approximate value of the amplitude of the cross-flow oscillation of the 

downstream cylinder is measured to be 0.018 times the cylinder diameter.  Having the 

downstream cylinder lying in the unsteady wake of the upstream cylinder does not cause 

any type of instability; hence, no resonance is captured at that configuration. However, 

compared to the stationary cylinder (CL
' = 0.34; DC  = 1.27), the oscillating downstream 

cylinder exhibits larger values of the mean and amplitude of the time-varying component 
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of the lift coefficient (CL2
' = 1.35) and smaller amplitude of the drag coefficient ( 2DC  = 

0.60) (See Figure 5-32) at steady-state phase. 

 

 

 

 

 

 

Figure 5-32 Re = 100 flow past two cylinders in tandem arrangement at Lx = 6.0D in 
Case1A in which the upstream cylinder is fixed and the downstream cylinder is free to 
oscillate. Time-histories of the response (Top) of cylinder 1 and drag and lift coefficients 
(Bottom) of both of the cylinders. The quantities with suffix 1 are associated with 
upstream cylinder, while those with suffix 2 are for downstream cylinder. 
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 The results of Case1B which includes time histories of approximate value of the 

amplitude of the cross-flow oscillation and lift and drag coefficients are presented in 

Figure 5-33. As shown in this figure, the amplitude of the oscillation of the downstream 

cylinder is very small and negligible in terms of its magnitude. As a result of a steady 

vortex field formed between the structures placed at 2.5 diameters distance, there is still 

no sign of shedding vortices which may result in resonance during the free vibration of 

the downstream cylinder. As compared to Case1A, the magnitude of oscillation is almost 

zero for cylinder 2. In terms of force coefficients, there is almost no change in the 

amplitude estimation of drag and lift components of the force coefficients compared to 

stationary cylinder case at the same Reynolds number. Therefore, it is reasonable to 

postulate that in Case1B where the upstream cylinder is fixed and the downstream 

cylinder is free to oscillate at Lx = 2.5D and at Ured =5.58, there is no mechanism 

producing vortex shedding since the flow field is identical to flow past stationary cylinder 

results. 

 Free oscillations of two cylinders in tandem arrangement are simulated through 

Case2A and Case 2B. The results for time histories of cross-flow oscillation, drag and lift 

coefficients are shown in Figure 5-34 and 5-35, respectively. The strong lift force acting 

on the downstream cylinder is captured in Case2A. Our results indicate that resonance is 

affected significantly with strong vortex magnitudes as discussed in VIV of single 

cylinder case. The present results in Case2A also show that resonance (oscillation 

amplitude still developing and it has a value of A = 0.1D) occurs for both of the 

cylinders. On the other hand, as discussed in the results of Case1B above, in Case2B at Lx 

= 2.5D, there is no mechanism producing strong vortex structures which induces 
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vibration of the cylinder. As seen in Figure 5-35, the amplitude of it (A = 0.0004D) is 

close to zero, although the amplitude of the oscillation tends to increase. 

 

 

 

 

  
 

 

Figure 5-33 Re = 100 flow past two cylinders in tandem arrangement at Lx = 
2.5D in Case1B in which the upstream cylinder is fixed and the downstream cylinder is 
free to oscillate. Time-histories of the response (Top) of cylinder 1 and drag and lift 
coefficients (Bottom) of both of the cylinders. The quantities with suffix 1 are associated 
with upstream cylinder, while those with suffix 2 are for downstream cylinder. 
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Figure 5-34 Re = 100 flow past two cylinders in tandem arrangement at Lx = 
6.0D in Case2A in which both cylinders are free to oscillate. Time-histories of the 
response (Top) of cylinder 1 and 2, and drag and lift coefficients (Bottom) of both of the 
cylinders. The quantities with suffix 1 are associated with upstream cylinder, while those 
with suffix 2 are for downstream cylinder. 
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Figure 5-35 Re = 100 flow past two cylinders in tandem arrangement at Lx = 
2.5D in Case2B in which both cylinders are free to oscillate. Time-histories of the 
response (Top) of cylinder 1 and 2, and drag and lift coefficients (Bottom) of both of the 
cylinders. The quantities with suffix 1 are associated with upstream cylinder, while those 
with suffix 2 are for downstream cylinder. 
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Figure 5-36 Re = 100 flow past two cylinders in tandem arrangement at Lx = 
6.0D in Case3A in which they are rigidly connected to each other and are free to oscillate 
in the cross-stream direction. Time-histories of the response (Top) of cylinders, and 
independent (Middle) and total (Bottom) drag and lift coefficients of the cylinders. The 
quantities with suffix 1 are associated with upstream cylinder, while those with suffix 2 
are for downstream cylinder. 
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 Flow-induced oscillation of rigidly-connected tandem cylinders are simulated 

through Case3A and Case3B with Lx = 6.0D and 2.5D, respectively. In these cases, 

structures are mechanically coupled so that they both experience identical transverse 

response.  Both studies with different space arrangements indicate that VIV occur for 

cylinders 1 and 2 at the same Reynolds number as an isolated cylinder near Ured = 5.58. 

The results are reported in Figures 5-36 and 5-37.  As the figure clearly shows, in Case3A 

and Case3B, structures reach maximum constant amplitude at y/D = 0.34 and 0.27, 

respectively while this value is 0.42 for the isolated cylinder case at Re = 100.  Although 

the oscillation amplitude of rigidly connected structures for Case3A (20%) and Case3B 

(35%) is less than that of the isolated cylinder, resonance occurs at reasonable oscillation 

amplitude (A = 0.34D and A = 0.27D in Case3A and Case3B, respectively).  

 To further elucidate the dynamic response of the system, time-histories of force 

coefficients are plotted in Figures 5-36 and 5-37. In Case3A, compared to stationary 

cylinders, the oscillating rigidly coupled cylinders exhibit larger values of the mean and 

the amplitude of time varying component of the drag and lift coefficients. In addition, 

peaks can be observed in the time-histories of the drag coefficients which also affect the 

behavior in total lift coefficient as seen in Figure 5-36. On the other hand, in Case3B, 

time histories of individual and total drag and lift coefficients show a smoother behavior 

and the amplitudes of the force coefficients are larger than that of stationary cylinders. 

Interestingly, due to the vortices produced by cylinder 1, the downstream cylinder is now 

in a positive pressure region and experiences a positive drag force.  
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Figure 5-37 Re = 100 flow past two cylinders in tandem arrangement at Lx = 
2.5D in Case3B in which they are rigidly connected to each other and are free to oscillate 
in the cross-stream direction. Time-histories of the response (Top) of cylinders, and 
independent (Middle) and total (Bottom) drag and lift coefficients. The quantities with 
suffix 1 are associated with upstream cylinder, while those with suffix 2 are for 
downstream cylinder. 
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 It is also interesting to note that the non-dimensional frequency associated with 

the variation of the lift coefficients and the cross-flow oscillations in Case3A and Case3B 

is 0.177. This detuning between the structural frequency and the shedding frequency has 

been observed not only for a single oscillating cylinder but also for other numerical 

studies conducted by different researchers. For instance, Mittal and Kumar (1999, 2001) 

studied this phenomenon and explained  it as “soft lock-in” and they have pointed out 

that it is one of the mechanisms of the nonlinear oscillator to self-limit its vibration 

magnitude. 

 Figure 5-38 shows the time variation of the total drag and lift coefficients with 

respect to the oscillation magnitude and their power spectra for the transverse oscillation 

of the rigidly coupled cylinders in Case 3B. The mean value for the total drag force is 

found to be 1.476. The root mean square values of total drag and lift force components 

are 0.097 and 1.391, respectively. It is evident from the power spectra for both force 

coefficients that only one dominant frequency (StDrag = 0.350, Stlift = 0.176) exists, 

demonstrating the time periodic variation of drag and lift force coefficients (Top Left and 

Top Right figures in Figure 5-38) with respect to the cylinder’s displacement with only 

one period of oscillation. The phase portrait of the sum of the drag and lift coefficients 

acting on the coupled cylinders with respect to transverse displacement of the cylinders is 

also included in Figure 5-37. This phase portrait looks like an inverse figure-eight and it 

is symmetric with respect to the origin which is known as the initial rest positions of the 

rigidly coupled structures. This also implies that only half of the cycle is adequate enough 

in order to post-process and analyze the flow dynamics since the other half of the cycle is 

the mirror image of the first half. Another feature in these figures is that the total lift and 
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drag forces are in phase and in the same direction throughout the transverse displacement 

of the structures. 

 Figure 5-39 shows the time variation of the total drag and lift coefficients with 

respect to the oscillation magnitude and their power spectra for the transverse oscillation 

of the rigidly coupled cylinders in Case 3A. Due to the wake of upstream one interacting 

with the downstream cylinder, the force coefficients are affected significantly. The mean 

of the total drag force is found to be 2.270. The root mean square values of the total drag 

and lift force components are 0.2632 and 1.76, respectively. Clearly, mean drag and rms 

values of drag and lift are significantly larger for this case. Compared to Case3B, the 

power spectrum of the drag coefficient exhibits peaks at additional frequencies. It is 

interesting to note that these peaks do not appear in the lift coefficient. This could be 

attributed to vortices shed from the upstream cylinder which trigger strong oscillations. 

The strongest frequencies occur at StDrag = 0.348, Stlift = 0.174 for total drag and lift 

coefficients, respectively. Those values are close to the ones obtained in Case 3B. 

 

 

 

 



  136

  

 

 
 

Figure 5-38 Flow past rigidly coupled cylinders in tandem arrangement (Lx = 
2.5D) at Re = 100: Time periodic variation of drag and lift force coefficients (Top Left 
and Top Right) with respect to cylinders’ displacement; power spectra of the time 
histories of drag coefficient (Middle) and lift coefficient (Bottom), respectively. 
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Figure 5-39 Flow past rigidly coupled cylinders in tandem arrangement (Lx = 
6.0D) at Re = 100: Time periodic variation of drag and lift force coefficients (Top Left 
and Top Right) with respect to cylinders’ displacement; power spectra of the time 
histories of drag coefficient (Middle) and lift coefficient (Bottom), respectively. 
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 As the resonance is suppressed for the first two configurations where the upstream 

cylinder is fixed and the downstream cylinder is free to oscillate and both cylinders are 

free to oscillate, it makes the study of vorticity dynamics important for the last 

configurations where the oscillation response of the structures are critical. Figure 5-40 

shows 8 snapshots of the flow field between cylinders spaced at Lx=6.0D during a period 

of resonant response. This figure includes both the pressure and vorticity field around 

rigidly coupled structures. The frames are chosen at regular intervals of the oscillatory 

cycle, at different phase angles (θ’s). The instances are chosen at θ’s ranging from 0° to 

315° so that the constructive interference occurring in the unsteady wake region is 

illustrated as clearly as possible. The formation and shedding of vortices behind cylinder 

1 show standard, regular features which allow formation of a short Von Karman vortex 

street in between structures. However, the downstream cylinder experiences a different 

flow field which is a chaotic regime since it is colliding with the vortices created by the 

upstream cylinder. This leads to a reduction in the oscillation forces on the downstream 

cylinder. Also, this may be the cause for the decreased overall response in terms of the 

magnitude of the oscillation as compared to the single cylinder case. These figures seem 

to indicate that the primary reason for the existence of lower oscillation amplitude is due 

to the development and collision of vortex shedding between structures. 
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Figure 5-40 For Caption see next page 
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Figure 5-40 Pressure Contours (Left Column) and streamlines with vorticity 
contours (Right Column) for rigidly coupled cylinders in tandem arrangement at Lx = 

6.0D, transversely oscillating at Re = 100 with m*
 = 150, ξ = 0.0012 and Ured = 5.58.  

The horizontal red dash-dotted lines for pressure and vorticity plots in Phase angles (θ) 0° 
to 315° indicate the initial rest positions of the cylinders. The discussions in the text 
reveal an important vorticity interaction. The phase instants (θ = 0° .. 360°)  are specified 
as black color filled red circles on the time-history of displacement at the bottom of the 
figure along with time histories of total drag and lift coefficients during one cycle of 
oscillation. Cdrag (black solid line) and Clift (blue solid line) refer to total drag and lift 
coefficients acting on the structures; Yc(t)/D is the position of the coupled cylinders in 
cross-stream direction.  
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 Figure 5-41 shows the flow pattern for Case3B in which rigidly coupled cylinders 

are free to oscillate in cross-stream direction at a spacing of Lx = 2.5D. This figure 

visualizes the pressure and vorticity field around and in between structures at regular 

intervals of the oscillatory cycle, at different phase angles (θ’s) similar to flow 

visualization discussed in the previous configuration of structures, Case3A. It can be 

easily observed that the vortices shed from the top and bottom of the upstream cylinder 

do not enter the gap region due to the relatively short spacing difference between 

structures. Those vortices induced by cylinder 1 wrap around the top and bottom sides of 

the downstream one and disrupt its shedding.  

 Due to the presence of recirculating flow in the gap as a result of small velocity 

field and the passage of vortices around top and bottom of the downstream cylinder, a 

different pressure distribution is formed around both of the cylinders. Therefore, a 

smaller lift force on cylinder 2 and smaller amplitude of the overall oscillation relative to 

single cylinder oscillation are observed, which is due to the low pressure field emerging 

around the downstream cylinder. In other words, cylinder 2 always remains within the 

wake of the upstream cylinder and is never exposed to a region of high pressure as a 

result of slow recirculating flow in the gap region. The wake pattern in the downstream 

part of the domain resembles a regular Von Karman Street with a 2S mode. Similar 

observations were made by Borazjani and Sotiropoulos (2009)  in the analysis of vorticity 

and pressure fields in a closely spaced, independently oscillating two-cylinder system. 
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Figure 5-41 For Caption see next page 
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Figure 5-41 Pressure Contours (Left Column) and streamlines with vorticity 
contours (Right Column) for rigidly coupled cylinders in tandem arrangement at Lx = 

2.5D, transversely oscillating at Re = 100 with m*
 = 150, ξ = 0.0012 and Ured = 5.58.  

The horizontal red dash-dotted lines for pressure and vorticity plots in Phase angles (θ) 0° 
to 315° indicate the initial rest positions of the cylinders. The discussions in the text 
reveal an important vorticity interaction. The phase instants (θ = 0° .. 360°)  are specified 
as black color filled red circles on the time-history of displacement at the bottom of the 
figure along with time histories of total drag and lift coefficients during one cycle of 
oscillation. Cdrag (black solid line) and Clift (blue solid line) refer to total drag and lift 
coefficients acting on the structures; Yc(t)/D is the position of the coupled cylinders in 
cross-stream direction. 
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5.5 Summary 

 

 In this chapter, the accuracy of the utilized immersed boundary method presented 

in the previous chapter was demonstrated first via numerical studies involving flow past a 

single stationary cylinder. After the establishment of the formal accuracy of the present 

method, the study concentrated on moving structures. First, forced harmonic in-line 

oscillation of a circular cylinder in a quiescent fluid, and then the flow from a 

transversely prescribed vibration of a circular cylinder in a free-stream are studied. Both 

the cases are well documented in the literature, experimentally and numerically. The 

present method was shown to reproduce all features of the flow, including the drag and 

lift forces acting on the structure as the similar studies.  

 Next, vortex-induced vibration of an elastically mounted single cylinder with one 

degree of freedom was investigated in order to prove the strong coupling scheme for 

fluid-structure interaction problems. For that case, the lock-in regime was captured 

accurately and the numerical results were compared with experimental data and other 

simulations with reasonable accuracy.  

 Afterwards, a numerical study was carried out to study the interference effect on 

the onset of resonance (Re = 100) in flows involving a pair of cylinders in in-line 

arrangements. First of all, the flow dynamics were investigated for stationary tandem 

cylinder arrangement. The results compare quite well with computational results from 

other researchers. The flows at this Reynolds number with two tandem arrangements 

exhibit very significant qualitative and quantitative differences. This point to the fact that 

the flows dealing with two cylinders show a strong dependence on the arrangement of the 
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structures in terms of force estimations and flow field visualizations compared to flows 

past a single cylinder. For instance, it was observed that the downstream cylinder, which 

lies in the wake of the upstream cylinder, experiences very large unsteady forces that may 

trigger wake-induced vibrations. Also, the downstream cylinder was found to experience 

a negative drag force when the structures were closely spaced. Finally, the numerical 

simulations were extended to vortex-induced vibrations of a pair of cylinders in tandem 

arrangement. Among other things, it was found that resonance is suppressed when both 

cylinders are allowed to move transversely and independently, whilst two rigidly-

connected cylinders show the same behavior as a single cylinder, irrespective of the 

distance between the two cylinders, i.e. resonance between flow and structure and hence 

large amplitudes of excitation. 
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CHAPTER 6 

THREE-DIMENSIONAL (3D) VALIDATION CASES ON 

STATIONARY AND FORCED VIBRATION OF A CYLINDER 

 

 In this chapter, the present immersed boundary methodology is extended to three 

dimensional studies, implanting the newly developed modules into a three-dimensional 

Large-eddy simulation (LES) method. Two high Re FSI flows are investigated: the first 

case is a stationary cylinder flow at ReD = 3900 for which extensive laboratory and 

numerical simulation data is available. This allows validating the LES method. The 

second case is a one-way coupled fluid structure interaction flow, here with prescribed 

motion of the cylinder at small oscillation amplitude (A = 0.2D) and at frequencies which 

are close to the frequency of the vortex shedding frequency of the stationary flow. The 

robustness, accuracy and applicability of the method for high-Re number flows and VIV 

is demonstrated by comparing the turbulence statistics of the two cases and by discussing 

differences in the mean and instantaneous flows. 

6.1 Large-Eddy Simulation (LES) of the Flow over a Circular Cylinder at Reynolds 

Number 3900 

 A numerical simulation is performed for a sub-critical circular cylinder flow at 

Reynolds number ReD = 3900. This flow is well-documented in the literature. 

Experimental and numerical results are used for comparison for this sub-critical regime. 

In particular, experimental results for this test case disclose important flow features such 
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as velocity, vorticity and higher order turbulence statistics. In addition, other important 

features such as forces, wake dynamics, separation angle and recirculation length are also 

acquired through the experimental studies. All of those important flow features allow 

accurate assessment of numerical results in terms of qualitative and quantitative 

comparisons.  

 Pioneering experimental work was done by Lourenco and Shih (1993) who 

managed to accurately measure velocity fields and their fluctuations in the recirculation 

region behind the cylinder using the techniques of particle image velocimetry (PIV). 

Those results are often used as a reference for validation of numerical studies in the 

literature (Beaudan and Moin (1994); Breuer (1998); Kravchenko and Moin (2000); 

Lysenko et al. (2012); Meyer et al. (2010); Mittal and Moin (1997)).  Ong and Wallace 

(1996) successfully measured velocity and vorticity vectors in the near wake outside the 

recirculation region and introduced turbulence statistics at several locations. Data of 

mean pressure measurements at the surface of the cylinder is also available for 

comparison. Norberg (1994) provided mean pressure data at the surface of a cylinder at 

ReD = 4020. The pressure data of Norberg (1994) provide the only experimental surface 

pressure measurements known in the literature. In addition,  the Particle-Image 

Velocimetry (PIV) data of Parnaudeau et al. (2008) is also used for comparisons by 

researchers in terms of numerical validations Lysenko et al. (2012); Meyer et al. (2010). 

 As discussed, the flow over a circular cylinder at Re = 3900 based on the cylinder 

diameter D is a well-known test case in LES. At this Reynolds number, a laminar shear 

layer forms and separates from the boundary of the structure and then undergos transition 

in the near wake of the cylinder. Therefore, the flow physics should be formed correctly 
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in order to predict the separation of shear layers. In addition, the grid resolution should be 

sufficient enough to capture the turbulence phenomena in the transition and turbulent 

wake region. 

 The computational domain in the X-Y plane is shown in Figure 6-1, which has 

dimensions of 48D in streamwise direction (X), 24D in the transverse direction (Y). A 

zoom-in plot of the grid near the cylinder is also shown in Figure 6-2. The spanwise 

domain length used in this simulation is 4D. The structure is located at a distance of 15D 

from the upstream end of the domain. Symmetric boundary conditions are applied at the 

north and south sides of the domain; periodicity (since the cylinder is infinitely long) is 

assumed in spanwise direction. At the inlet, a uniform velocity is prescribed and at the 

outlet a convective boundary condition is employed. The computational grid used in the 

simulation consists of approximately 17.6 million grid points. The flow is parallelized 

with 64 AMD processors. In the vicinity of the cylinder, the computational grid is fine 

with 110 points over its diameter with grid spacing of 0.009D and then it gets coarse 

further away from it. The grid has a homogenous spanwise resolution of 0.0625D. The 

resolution used near the cylinder in this simulation is slightly coarser than other 

numerical studies which employ both a Curvilinear and Cartesian grids. For instance, 

Meyer et al. (2010) utilized a grid spacing of 0.0025D for both of the grids. The LES of 

Franke and Frank (2002) use similar grid resolution to resolve the viscous sublayer at the 

cylinder. 

 A second order accurate Central Differencing Scheme (CDS) is used for the 

discretization in space. For the time advancement, Adams-Bashfort (AB) for convection 

and second order accurate Crank-Nicholson (CN) for diffusion is implemented. 
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Computations are carried out with a CFL number of 0.2. Finally, all calculations are 

conducted using Large Eddy Simulation (LES). The WALE model (Nicoud and Ducros 

(1999)) is employed to compute SGS stresses and to close the filtered Navier-Stokes 

equations. Its advantage lies in the fact that it does not require near wall damping and 

hence makes it an ideal candidate for immersed boundary LES, in which the solid 

boundary is not sharply defined as in cut-cell immersed boundary methods which are 

discussed in Chapter 2. 

 

 

 

 

 
 

 

Figure 6-1 Computational setup and boundary conditions for the flow over a 
circular cylinder at Re = 3900. 
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Figure 6-2 Top: Cross-sectional (X-Y plane) grid employed with Local Mesh 
Refinement (LMR) (every fifth computational cell of a locally-refined Cartesian grid is 
shown) for the flow over a circular cylinder at Re = 3900; Bottom: zoom into the cylinder 
region. 
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 In the following paragraphs, a quantitative validation of the present results for 

flow over a cylinder at Re=3900 is presented and comparisons are being made with 

respect to experimental results. To do so, turbulence statistics are sampled after steady 

vortex shedding is established. The results are compared with pressure measurements of 

Norberg (1994), the Particle-Image Velocimetry (PIV) data of  Lysenko et al. (2012) 

(both of them are extracted from Meyer et al. (2010)), the hot-wire measurements of  Ong 

and Wallace (1996) and  the PIV data of Parnaudeau et al. (2008). 

 The length of the recirculation region (Lr) behind the cylinder is compared with 

existing numerical and experimental studies. It is defined as the distance between the 

base of the cylinder and the sign change of centerline mean streamwise velocity. The 

quality of Lr may be affected earlier laminar-turbulence transition in the separating shear 

layers of the experiment (Kravchenko and Moin (2000)). In the present LES, the 

recirculation zone length is predicted by WALE model as Lr/D = 0.85 which is in fairly 

good agreement with  the data of Lourenco and Shih (1993) (Lr/D = 0.9). PIV by 

Parnaudeau et al. (2008) who recently reported a sensitivity analysis of recirculation 

bubble with respect to the averaging time interval produces a more extended recirculation 

zone length with Lr/D = 1.67. The predicted recirculation zone in the present study is 

evident in Figure 6-3 where the time averaged streamlines from the present simulation 

with numerical studies of Breuer (1998) are also shown. 
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Figure 6-3 Streamlines showing recirculation region behind the cylinder at Re = 
3900; the top and bottom figures correspond to LES results of Breuer (1998) and present 
numerical method, respectively 
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 Figure 6-4 demonstrates the time histories of the present lift (CL) and drag (CD) 

coefficients for the current LES run with WALE model. The drag and lift coefficients per 

unit length are calculated as CD = 2 Fx / (ρU
2

∞D) and CL = 2 Fy / (ρU
2

∞D), where Fx and 

Fy are the forces acting in the streamwise and transverse directions at the boundary of the 

structure, respectively (See Appendix A for force calculations). Figure 6-4 also includes 

time history results of drag and lift force coefficients from Breuer (1998) who utilized a 

Dynamic model in the LES. It can be noted that the overall behavior of force components 

in the present results are comparable with respect to Breuer (1998) in terms of the 

magnitudes and the irregularity of the forces. The latter may be explained by the irregular 

three-dimensional break-up of the vortices which are formed around the boundary of the 

structure ( Lysenko et al. (2012)).  

 Table 6-1 shows flow parameters collected from available experimental and 

reference numerical (LES) results. The mean drag coefficient DC  = 1.1 by WALE model 

is in good agreement with results of Lysenko et al. (2012). On the other hand, it is 

noticeable in Table 6-1 that most of the values of the drag coefficient obtained in other 

research are slightly lower ( DC = 0.99 - 1.07). The root mean square value of time 

variation of the lift forces which is predicted by WALE model is (CL)rms= 0.39. This 

value is under predicted by Lysenko et al. (2012) who calculated (CL)rms equal to 0.44. St 

= 0.21computed in this study is in good agreement with the available experimental and 

numerical studies as seen in Table 6-1. 
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Figure 6-4 Time history of the lift coefficient CL and drag coefficient CD for the 
flow past a circular cylinder at Re = 3900. Top: Results of Breuer (1998). Bottom: 
Results from present computation. 
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Table 6-1 Comparison of flow parameters of the experimental and LES studies for flow 
around circular cylinder at Re = 3900 
 

Authors Method 
DC  (CL)rms St Lr/D 

      
Lourenco and Shih (1993) EXP 0.99 - 0.22 1.19 

Norberg (1994) EXP 0.98 0.04-0.15 - - 

Breuer (1998) LES 1.02 - 0.22 1.37 

Kravchenko and Moin (2000) LES 1.04 - 0.21 1.35 

Parnaudeau et al. (2008) LES - - 0.21 1.56 

Meyer et al. (2010) LES 1.07 - 0.21 0.83 

Lysenko et al. (2012) LES 1.18 0.44 0.19 0.90 

Present LES 1.10 0.39 0.21 0.85 

  

 The instantaneous streamwise, transverse and spanwise velocity fields in the wake 

of the circular cylinder through a center plane are shown in Figure 6-5.  An unsteady 

recirculation region is evident for the instantaneous streamwise velocity in this figure. 

Alternating positive and negative regions of instantaneous cross-flow velocity that 

correspond to Karman vortices can be observed clearly in Figure 6-5. This figure shows 

that the wake becomes highly turbulent and three dimensional due to presence of both 

large and small coherent structures in the wake.  It is also observed in this figure through 

the instantaneous spanwise velocity that flow structures increase in size as further 

towards the downstream of the cylinder. There are formations of small scale fluctuations 

even ten diameters downstream. Similar observations are also made by Kravchenko and 

Moin (2000) at this Reynolds number and Moser et al. (1998) at Re = 2000. 
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Figure 6-5  Instantaneous velocities in the (x-z, y=0) plane in the wake of a 
circular cylinder at ReD = 3900.  Top: (Color) Instantaneous streamwise velocity with 
contours from -0.2 to 1.0. Middle: (Color) Instantaneous cross-flow velocity with 
contours from -1.0 to 1.0. Bottom: (Color) Instantaneous spanwise velocity with contours 
from -0.5 to 1.0. 
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 Figure 6-6 shows iso-surfaces of vortex structures in the wake of the cylinder 

using a parameter called the “Q-criterion” JCR et al. (1988). It is defined as Q=0.5(||Ω|| -

||S||)
2 where ||Ω|| is the vorticity tensor and ||S|| is the rate of strain tensor. “Q-criterion” 

identifies vortex structures and provides a good representation of them through 

visualization. The turbulent nature of the flow comprising of complex three dimensional 

vertical structures is clearly visible in this figure. Figure 6-6 also includes results of 

Lysenko et al. (2012) with TKE and Smagorinsky models via λ2criterian which is defined 

by Jeong and Hussain (1995). In this figure, the transition from a two-dimensional to a 

three-dimensional flow can be seen very close to the boundary of the structure. Lysenko 

et al. (2012) explains this observation trend to affect the drag and lift forces. 

 Figure 6-7 shows an iso-surface of the fluctuating pressure p' = 2 (p- <p>) / ρ∞ 

U2
∞ and thus, the formation of the vortices downstream of the circular cylinder. This iso-

surface demonstrates the vortex cores originating from the upper and lower parts of the 

cylinder. It is observed that the vortex cores are parallel to the cylinder axis and the 

formation continues towards the downstream of the cylinder. Lysenko et al. (2012) 

explains the convection of vortices as a result of mean flow. 
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Figure 6-6 Iso-surfaces in the wake of a circular cylinder at ReD = 3900. Top: 
Iso-surface of normalized λ2 = 0.004 obtained by Lysenko et al. (2012) via models (a) 
TKE b) SMAG. Bottom: Iso-surface of Q-criterion through present method with WALE 
model. 
  

3D Vortex Structures 
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Figure 6-7 Iso-surface of the fluctuating pressure at p’ = −0.1 (WALE) for the 
flow over a circular cylinder at Re = 3900. 
 

  

 Contours of instantaneous vorticity magnitude are shown in Figure 6-8. It is 

noticed that two long shear layers separate from the boundary of the cylinder and a 

Karman vortex street is formed in the wake. According to observations of PIV 

experiments of Chyu and Rockwell (1996) and numerical results of Kravchenko and 

Moin (2000), the instability of shear layers result in vortices which mix in the near wake 

of Karman vortices before they propagate towards downstream. Similar observations are 

also seen in Figure 6-8.  
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Figure 6-8 Separating shear layers and development of Karman vortex street in 
the flow over a circular cylinder at Re = 3900. Shown are contours of instantaneous 
vorticity from ωD/U∞ = 5.0 to ωD/U∞ = -5.0. 
 

 

 
 

 

Figure 6-9 The pressure coefficient Cp along the surface of a circular cylinder at 
Re = 3900 (θ=0° in the stagnation point, � experimental data of Norberg (1994) at Re = 
4020, published in Meyer et al. (2010), - - numerical results of Kravchenko and Moin 
(2000), … numerical results of Lysenko et al. (2012), ----Present results). 
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 The pressure coefficient can be written as Cp = 2 (p- p∞) / ρU2
∞ where p∞ is the 

time-averaged pressure at the inlet plane and known as the reference pressure. The 

distribution of Cp along the circumference of the cylinder of the present LES is shown in 

Figure 6-9. Simulated pressure values agree well with the experimental data of Norberg 

(1994). Figure 6-9 also includes numerical results of Kravchenko and Moin (2000); 

Lysenko et al. (2012) which show a similar distribution of Cp as the current simulation. 

 The mean streamwise velocity along the centerline is shown in Figure 6-10. It is 

evident that the experiments are quite different from each other. It is also clear that the 

recirculation length in the experiments of Lourenco and Shih (1993) is shorter than that 

of Parnaudeau et al. (2008). The present calculations on a Cartesian grid shows an 

excellent agreement with the experimental results of Lourenco and Shih (1993) close to 

the boundary of the structure. However, present results do not match up well in the wake. 

It is noted that a higher grid resolution than the present one can improve the current 

results in that region. Interestingly, the dip at X/D = 3.0 of the experiments of Lourenco 

and Shih (1993) was not reproduced by experiments of  Parnaudeau et al. (2008) and 

other numerical studies (Breuer, 1998; Kravchenko and Moin, 2000; Lysenko et al., 

2012; Meyer et al., 2010) in the literature. 

 As seen in Figure 6-10, the present calculations are found to be close to the PIV 

measurements of Lourenco and Shih (1993). Therefore, Figures 6-11 to 6-14 include the 

statistics for the very near wake of the cylinder compared to experiments of Lourenco and 

Shih (1993) at three different downstream locations (X/D = 1.06, 1.54, 2.02).  Figure 6-

11 shows mean streamwise velocity <u>/U∞ at different locations including very close to 

cylinder at X/D = 0.58, where an excellent match between the LES and the data of 
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Lourenco and Shih is obtained. The mean velocity profile exhibits a U-shape at that 

distance while it evolves towards a V-shape further downstream of the structure. The 

same profiles are also obtained by Kravchenko and Moin (2000); Lysenko et al. (2012)  

and shown in this figure. At X/D = 1.06, the former produces a longer recirculation 

length while the latter one show a narrower profile which is in agreement with the 

experiment. 

 

 
 

Figure 6-10 Mean streamwise velocity on the centerline of the cylinder for the 
flow over a circular cylinder at Re = 3900 (∆: experimental data of Lourenco and Shih 
(extracted from Meyer et al. (2010)), o: experimental data of Parnaudeau et al. (2008) , - - 
-: numerical results of Kravchenko and Moin (2000), ….: numerical results of Lysenko et 
al. (2012), ----- Present results. 
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Figure 6-11 Mean streamwise velocity at different locations in the wake of a 
circular cylinder at Re = 3900 (∆: experimental data of Lourenco and Shih (extracted 
from Meyer et al. (2010)), - - -: numerical results of Kravchenko and Moin (2000), ….: 
numerical results of Lysenko et al. (2012), ----- Present results. 
 
 

 The results of mean transverse velocity <v>/U∞ are shown in Figure 6-12. It is 

important to point out that results of Lourenco and Shih (1993) are shifted so that <v> = 

0 is recovered for larger Y/D. The same strategy is also implemented in figures of other 

researchers in order to compare the statistics of the flow field. In general, the calculations 

agree better with the experimental data close to the boundary near the wake. Present 

results at X/D = 1.06 estimates the Reynolds stresses well, however, underestimates them 

towards the far field of the wake at X/D = 1.54 and 2.02.  
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Figure 6-12 Mean transverse velocity at different locations in the wake of a 
circular cylinder at Re = 3900 (∆: experimental data of Lourenco and Shih (extracted 
from Meyer et al. (2010)), - - -: numerical results of Kravchenko and Moin (2000), ….: 
numerical results of Lysenko et al. (2012), ----- Present results. 
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Figure 6-13 Mean streamwise velocity fluctuations at different locations in the 
wake of a circular cylinder at Re = 3900 (∆: experimental data of Lourenco and Shih 
(extracted from Meyer et al. (2010)), ….: numerical results of Lysenko et al. (2012), ----- 
Present results. 
 

 Reynolds normal stresses, <u'u'>/U
2
∞ are shown in Figure 6-13. At X/D = 1.06, 

there appears two sharp peaks which result from the transitional state of shear layers. 

Meyer et al. (2010) explains that the formation of these peaks show a “flapping behavior” 

due to primary vortex formation. The two peaks are matched in the present results fairly 

well in position. However, in magnitude, the present LES overestimates with respect to 

the experiment. Overall, the present results agree well with the experiment and are 

comparable with the numerical data of Lysenko et al. (2012).   
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Figure 6-14 Mean transverse velocity fluctuations at different locations in the 
wake of a circular cylinder at Re = 3900 (∆: experimental data of Lourenco and Shih 
(extracted from Meyer et al. (2010)), ….: numerical results of Lysenko et al. (2012), ----- 
Present results. 
 

 In terms of cross-flow normal Reynolds stresses, <v'v'>/U
2

∞, simulation shows 

reasonable agreement with the experiment as seen in Figure 6-14.  However, again, the 

present results show an overestimation at X/D = 1.06 and 1.54. This may be a result of a 

relatively coarse mesh being employed in the present simulations as compared to 

numerical studies in which curvilinear grids are utilized. A shorter length of recirculation 

bubble produced in the current study may also lead to an overestimation of the results.  
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Figure 6-15 Mean streamwise velocity at different locations in the wake of a 
circular cylinder at Re = 3900 (o: experimental data of Ong and Wallace (1996) 
(extracted from Meyer et al. (2010)), - - -: numerical results of Kravchenko and Moin 
(2000), ….: numerical results of Lysenko et al. (2012), ----- Present results. 
 

  

 Figures 6-15 to 6-18 compare the statistics for the near wake (X/D = 4.00, 6.00, 

7.00, 10.0) with the experiments of Ong and Wallace (1996) and numerical results of 

Lysenko et al. (2012). In this region of the wake, the grid is fairly coarse and it is 

apparent that the numerical simulation suffers from inaccuracies in estimating the flow 

field. Figure 6-15 shows the mean streamwise velocity at four different locations near the 

wake. It can be observed that the recirculation length in the experiment is longer than the 

one from the present computation. Therefore, the streamwise Reynolds stress calculations 
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are over predicted in the present numerical simulation with respect to the experimental 

Reynolds stress as seen in Figure 6-16.  This discussion is similar to the simulation 

results of Kravchenko and Moin (2000); Lysenko et al. (2012); Meyer et al. (2010).  The 

mean streamwise velocity fluctuations and the cross-flow normal stresses are also plotted 

in Figures 6-17 and 6-18, respectively. There is a slight over prediction of the Reynolds 

stresses at different locations in the latter one, while present computations agree fairly 

well with the experiments in the former one. 

 

 
 

Figure 6-16 Mean transverse velocity at different locations in the wake of a 
circular cylinder at Re = 3900 (o: experimental data of Ong and Wallace (1996) 
(extracted from Meyer et al. (2010)), ….: numerical results of Lysenko et al. (2012), ----- 
Present results. 
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Figure 6-17 Mean streamwise velocity fluctuations at different locations in the 
wake of a circular cylinder at Re = 3900 (o: experimental data of Ong and Wallace 
(1996) (extracted from Meyer et al. (2010)), ….: numerical results of Lysenko et al. 
(2012), ----- Present results. 
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Figure 6-18 Mean transverse velocity fluctuations at different locations in the 
wake of a circular cylinder at Re = 3900 (o: experimental data of Ong and Wallace 
(1996) (extracted from Meyer et al. (2010)), ….: numerical results of Lysenko et al. 
(2012), ----- Present results. 
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6.2 Large-Eddy Simulation (LES) of the Flow over an Oscillating Circular Cylinder 

at Reynolds Number 3900 

 

 There are only few 3D numerical studies of an oscillating cylinder in a turbulent 

cross-flow. Blackburn et al. (2001) show that it is required to have three dimensional 

numerical simulations to capture the structural response correctly. In their study, the flow 

past a freely vibrating cylinder at Re = 550 was carried out. Moreover, that study shows 

that 2D simulations are inadequate in order to capture the response envelope and the 

vortex shedding mechanics at higher Re. At Re = 1000, Evangelinos et al. (2000) studied 

the vortex dynamics and flow structures for turbulent flow over rigid and flexible 

cylinders which are subject to VIV. The DNS results show that as compared to laminar 

wakes, the structural response amplitude is as much as a cylinder diameter due to three-

dimensional effects. At the same Reynolds number, Lucor et al. (2001) considered a long 

flexible cylinder under two different approach flows including linear shear approach and 

exponential shear flow profile. Flow past a forced oscillating cylinder at a higher 

Reynolds number (Re = 24000) was conducted by Tutar and Holdo (2000). They 

observed that the results of the 3D LES using the Smagorinsky model show a better 

agreement with the experimental results than that of a 2D LES. Dong and Karniadakis 

(2005) conducted DNS for turbulent flows past a stationary circular cylinder and past a 

rigid cylinder undergoing forced harmonic oscillations at Re = 10000. The 3D numerical 

results show that comparisons with the available experimental data are captured with 

reasonable accuracy. 
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 The present section focuses on the flow past a rigid cylinder undergoing forced 

harmonic oscillations in the cross-flow direction at Re = 3900. The reason for choosing 

this Reynolds number is to compare flow statistical quantitates with results of flow past a 

stationary cylinder case, the data of which are discussed in the previous section. 

Emphasis is placed on the discussion of the influence of the cylinder oscillation on the 

physical quantities and the comparison between simulation results and that of the 

stationary cylinder case at the same Reynolds number. The forced sinusoidal oscillation 

in the cross-flow direction is chosen from experiments conducted by Gu et al. (1994). In 

the experimental study, high Reynolds number (Re=5000) flow past a transversely 

oscillating cylinder where the vertical cylinder position varies according 

to yc(t) = −A cos(2πfot) with maximum amplitude of vibration, A = 0.2D and f0 being the 

amplitude and the excitation frequency of the oscillation, respectively is considered. 

 Gu et al. (1994) studied six different configurations, i.e., frequency ratios, f0 / fe 

∈ (0.8, 0.9, 1.0, 1.1, 1.12, 1.2) where fe corresponds to the vortex formation frequency 

from the stationary cylinder. In the present simulation, the oscillation frequency ratio of 

0.85 is considered. The reason behind this choice is due to largest-scale vortex in the 

wake of the cylinder obtained in the locked-in region for an oscillating cylinder at this 

frequency. Figure 6-19 shows time histories of this prescribed displacement, velocity, and 

acceleration in flow past an oscillation cylinder at Re = 3900 over two periods of 

oscillation with frequency ratio, fo/fe=0.85 and maximum amplitude of vibration, A/D = 

0.2. The same locally refined mesh as in flow past stationary cylinder at Re = 3900 case 

with the same grid resolution and numerical schemes in space and time is used in this 

case as well. The nondimensional time step is chosen as ∆t = 0.8x10
-3.  
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Figure 6-19 Time histories of prescribed displacement, velocity, and acceleration 
in flow past an oscillation cylinder at Re = 3900 over two periods of oscillation with 
frequency, foD/U∞ = 0.178 and maximum amplitude of vibration, A/D = 0.2. 
  

  

 In Figure 6-20, the time histories of drag and lift coefficients as a function of the 

nondimensional time over 50 cycles from the present simulation is plotted. The results of 

the simulation show that as compared to the stationary cylinder, force coefficients at this 

Reynolds number, the overall change in the drag coefficient is moderate with only about 

5% increase in the magnitude. On the other hand, the lift coefficient shows a dramatic 

increase (tripled in magnitude) at this oscillation frequency with respect to stationary 

cylinder case. This can be explained by the contribution of high turbulent inertial effects 

to force component in transverse direction due to cross-streamwise oscillation of the 

cylinder.   
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Figure 6-20 Time histories of drag and lift coefficients in flow past an oscillating 
cylinder at Re = 3900 with oscillation frequency, foD/U∞ = 0.178 and maximum 
amplitude of vibration, A/D = 0.2. 
 

  

 The instantaneous contours of vorticity at three different Phase angles are shown 

in Figure 6-21. In this figure, Phase 0° corresponds to cylinder’s initial rest position while 

Phase 270° and 90° designate the maximum positions of the structure at downward and 

upward directions, respectively. Close to the cylinder, Kelvin-Helmholtz (KH) vortices 

which are also pronounced in Gu et al. (1994)’s study at the same excitation frequency 

ratio are evident in these figures. At this locked-in response, similar observations can be 

made as in Gu et al. (1994) such as center location of the large-scale vorticity both from 

bottom and top sides of the cylinder is found to be at the same location in all of the Phase 

angles. 
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Figure 6-21 Vorticity contours for flow over a transversely oscillating cylinder at 
Re = 3900 with oscillation frequency, foD/U∞ = 0.178 and maximum amplitude of 
vibration, A/D = 0.2.  The horizontal red dash-dotted lines for the vorticity plots in Phase 
angles (θ) 270° (Top), 0° (Middle) and 90° (Bottom) indicate the initial rest position of 
the cylinder. 
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Figure 6-22 Mean streamwise velocity on the centerline of the cylinder for the 
flow over a stationary and oscillating circular cylinder at Re = 3900 (∆: experimental 
data of Lourenco and Shih (extracted from Meyer et al. (2010), -----; Present results from 
flow over a stationary cylinder, -----; Present results from flow over an oscillating 
cylinder) 
 
  

 A comparison of the mean streamwise velocity along the centerline between 

results of flow over an oscillating cylinder and that of the flow over the stationary 

cylinder is shown in Figure 6-22. It is evident that both results are quite different from 

each other. At this locked-in response, it is found that mean streamwise velocity is higher 

in magnitude and positive in direction as compared to stationary cylinder results 

throughout the downstream of the structure. Interestingly, the existence of the 

recirculation in the near wake behind the stationary cylinder is not reproduced by the 

results of the oscillating cylinder simulation. The wake is being swept out during the 

movement towards the two extreme ends of the excitation. 
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Figure 6-23 Mean streamwise velocity at different locations in the very near 
wake of a circular cylinder at Re = 3900 (-----; Present results from flow over a stationary 
cylinder, -----; Present results from flow over an oscillating cylinder). 
 

  

 Figures 6-23 to 6-28 include the statistics for the very near and far wake of the 

oscillating cylinder compared to stationary cylinder results at seven different downstream 

locations (X/D = 1.06, 1.54, 2.02, 4.00, 6.00, 7.00 and 10.00). Figure 6-23 shows mean 

streamwise velocity <u>/U∞ at different locations including very close to cylinder at X/D 

= 0.58. At that distance, the mean velocity profile shows a U-shape at that distance while 

it evolves towards a V-shape at further downstream of the stationary structure. On the 

other hand, results of LES of transversely oscillating cylinder cause the existence of the 
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U-shape profile for all locations while showing higher velocity magnitudes in the wake as 

a result of transverse motion of the cylinder. In addition, due to locked-in response at this 

Reynolds number, the profiles appear to be wider than that of stationary cylinder, which 

is because the turbulence is being distributed over a wider area.  

 Figure 6-24 shows the mean streamwise velocity at four different locations near 

the wake. It can be observed that mean velocity profiles in the present computation are 

higher in magnitude than the one from the stationary cylinder computation.  

 

 
 

Figure 6-24 Mean streamwise velocity at different locations in the far wake of a 
circular cylinder at Re = 3900 (-----; Present results from flow over a stationary cylinder, 
-----; Present results from flow over an oscillating cylinder). 
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Figure 6-25 Mean transverse velocity at different locations in the near wake of a 
circular cylinder at Re = 3900 (-----; Present results from flow over a stationary cylinder, 
-----; Present results from flow over an oscillating cylinder). 
 

  

 The results of mean transverse velocity <v>/U∞ are shown in Figure 6-25 and 

Figure 6-26 in the near and far wake, respectively. In general, the oscillating cylinder 

calculations agree better with the numerical results of stationary cylinder close to the 

boundary near the wake, however the former show higher velocity amplitudes. On the 

other hand, the results do not show any scatter in velocity profiles in the far wake of the 

cylinder and hence flat profiles are observed as illustrated in Figure 6-26. 
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Figure 6-26 Mean transverse velocity at different locations in the far wake of a 
circular cylinder at Re = 3900 (-----; Present results from flow over a stationary cylinder, 
-----; Present results from flow over an oscillating cylinder). 
 

  

 Reynolds normal stresses, <u'u'>/U
2
∞ are shown in Figure 6-27. At X/D = 1.06, 

there appears two sharp peaks which resulted from transitional state of shear layers as 

stated in stationary cylinder results. However, in magnitude, present LES of oscillating 

cylinder shows an overshoot with respect to the stationary cylinder results. Similar 

observations in terms of magnitude can be made for the cross-flow normal Reynolds 

stresses, <v'v'>/U
2

∞, as seen in Figure 6-28. 
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Figure 6-27 Mean streamwise velocity fluctuations at different locations in the 
wake of a circular cylinder at Re = 3900 (-----; Present results from flow over a stationary 
cylinder, -----; Present results from flow over an oscillating cylinder). 
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Figure 6-28 Mean transverse velocity fluctuations at different locations in the 
wake of a circular cylinder at Re = 3900 (-----; Present results from flow over a stationary 
cylinder, -----; Present results from flow over an oscillating cylinder). 
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6.3 Summary 

 In this chapter, the immersed boundary method presented in Chapter 4 is extended 

to 3D and implemented into three-dimensional cases for Large-eddy simulation (LES) 

method of turbulent flows interacting with a stationary and dynamically moving 

structure.  

 LES of the turbulent flow past a stationary cylinder as well as past a cylinder 

undergoing harmonic oscillations at Reynolds number Re = 3900 is conducted. First, the 

stationary cylinder case has been compared with the available experimental data and 

other numerical simulations in the literature. This case showed that the simulation has 

captured the flow quantitates such as drag, lift and pressure coefficients along with 

Strouhal number accurately. In addition, comparison of the flow statistics to experimental 

data showed the efficiency and accuracy of the present implementation for stationary 

three dimensional structures at high turbulent flows. 

 The second case is a one-way coupled fluid structure interaction flow, here with 

prescribed motion of the cylinder at small oscillation amplitude (A = 0.2D) and at 

frequencies which are close to the frequency of the vortex shedding frequency of the 

stationary flow. The robustness, accuracy and applicability of the method for high-Re 

number flows and FSI are demonstrated by comparing the turbulence statistics of the two 

cases and discussing differences in the mean and instantaneous flows with the 

experimental data that are available. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

 

7.1 Summary 

   This thesis presents a numerical strategy to solve 2D and 3D Fluid-

Structure Interaction (FSI) problems for rigid and elastically mounted structures. The FSI 

includes Vortex-induced Vibration (VIV) which may induce large amplitude oscillations 

causing resonance in both in-line and cross-flow directions. This thesis has produced 

significant original contributions in three areas: (i) the development, refinement and 

validation of an efficient, oscillation-free and fully coupled mathematical framework that 

overcomes numerical artifacts of moving boundary formulations in a Cartesian grid; (ii) 

comprehensive numerical studies on VIV of single and multiple cylinders to investigate 

the interaction of the flow with moving structures in and outside and the onset of the 

resonance regime; (iii) the extension of 2D method into 3D with high-Reynolds number 

flows including the determination and analysis of turbulence statistics of turbulent flows 

interacting with stationary and dynamically moving structures. 

7.2 Conclusions 

 This thesis presents an accurate numerical strategy to study FSI using the 

Immersed Boundary Method (IBM) (Uhlmann (2005a, b)) on a Cartesian grid. The 

implementation of this numerical framework has been validated through numerical 
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simulations of a wide range of challenging problems in civil engineering. Although there 

have been many numerical studies conducted in the past, this thesis contributes to the 

research in the following aspects: 

7.2.1 An Improved Immersed Boundary Method (IBM) 

 The improved immersed boundary method proposed by Uhlmann (2005a, b) was 

implemented successfully into a fluid solver which is capable of solving the Navier-

Stokes equations in Cartesian coordinates with a staggered variable arrangement. The 

present method together with the strong coupling scheme in which the governing 

equations of fluid and the structural domains are integrated simultaneously and 

interactively in time, provides a smooth transition in estimating hydrodynamic loads and 

the motion of the structure. It was shown that the proposed method for non-boundary 

confirming grids is more accurate than methods used in previous numerical studies. 

Additionally the current method was implemented successfully into a three-dimensional 

LES code to enable simulation of moving boundaries at high Reynolds number. The 

method eliminates numerical problems that are unique to moving boundary formulations 

but without introducing additional complexity to the solver. The method provides an 

improved, efficient and oscillation-free algorithm to predict FSI problems at low and high 

Reynolds numbers. 

7.2.2 A Simple and Better Boundary Definition 

 The immersed boundary method utilized in this study is capable of dealing with 

arbitrary geometries which can be easily implemented using specified Lagrangian forcing 

point (LFP) locations. Moreover, deforming and moving boundaries as a function of time 

can be tracked easily through the LFP’s. 
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7.2.3 Validation of the Method for Moving Boundary Problems 

 In order to validate the proposed methodology, a variety of two dimensional 

problems with increasing complexity were considered. First of all, the accuracy of the 

method was established for different stationary geometries including square and circular 

cylinders. Secondly, simulations of flow interacting with moving cylinders were 

considered. These simulations included the flow induced by the harmonic in-line 

oscillation of a circular cylinder in a quiescent fluid and the flow around a transversely 

moving cylinder in a free-stream. For those cases, experimental and numerical results 

were used for model comparison. The Immersed Boundary Method with solid domain 

forcing has shown to reproduce accurately all features of such flows including velocity 

fields in the wake and detailed, smooth force distributions on the structure. Thirdly, 

vortex-induced vibration of an elastically mounted single cylinder in cross-stream 

direction was investigated. The simulated results are in good agreement with the 

reference experiments and simulations. 

7.2.4 Flow Interference between Multiple Stationary and Oscillating Cylinders  

 The immersed boundary method was then applied to multiple structures in which 

the interference between two stationary and, then oscillating cylinders in tandem 

arrangement was investigated. Three different scenarios for two different cylinder 

arrangements were considered. In each case, interactive flow structures as well as 

structural displacements were observed in order to investigate the resonance regimes. The 

main finding of this study is that resonance is suppressed when both cylinders are 

allowed to move transversely and independently, while two rigidly-connected cylinders 

show the same behavior as a single cylinder, irrespective of the distance between the two 
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cylinders, i.e. resonance between flow and structure and hence large amplitudes of 

excitation. 

7.2.5 LES of Turbulent Flow Past a Stationary and Oscillating Cylinder 

 Lastly, the developed method was extended and implemented into a fully three-

dimensional Large-Eddy Simulation (LES) code so that high Reynolds number, fully 

turbulent flows interacting with stationary and dynamically moving structures can be 

studied. The robustness, accuracy and applicability of the method for high-Re number 

flows and FSI are demonstrated by applying the method to flows past a stationary and 

oscillating cylinder at ReD = 3900 for which experimental and numerical data are 

available for comparison. It was found out that simulated quantities agreed well with the 

experimental data. The turbulence statistics of the two cases were then compared to 

investigate the effect of cylinder oscillation and the flow field and it was found out that 

the transverse motion of the cylinder resulted in higher flow field magnitudes in the wake 

as compared to the stationary cylinder case. 

7.4 Unique Contributions 

 The unique contributions of this research are summarized below: 

1) The method employed herein has been validated extensively for the first time 

for a variety of different cases with increasing complexity to show the 

accuracy and efficiency of the proposed method.   

2) This is the first study that deals with effect of different arrangement of 

cylinders on the onset of resonance in terms of VIV. In particular, rigidly 

coupled cylinder cases shown in this study which trigger resonance 
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independent of the cylinder arrangement have not been investigated in the 

literature. 

3) This research is the first study that incorporates an immersed boundary 

method successfully into a fully LES code using the WALE model. The 

accuracy of the implementation into three dimensions has been investigated in 

high Reynolds number validation including flow past stationary and 

oscillating cylinders. 

4) The 3D oscillating cylinder case has never been studied before in the literature 

at this Reynolds number (ReD = 3900). The comparison of the turbulent 

statistics compared to stationary cylinder case is unique in that respect. 

7.5 Recommendations for Further Research 

 Future studies should investigate using (a) different forcing point densities i.e., the 

ratio of forcing point location distance to the grid resolution near the structure (∆L/∆x) 

and (b) different regular and smooth dirac delta functions proposed by Peskin (2002); 

Roma et al. (1999) and Yang et al. (2009), respectively. 

 In the near future, the current study may be extended to dynamic grid dealing with 

large oscillation of the structures. As the structure displaces more, the location of the 

boundary becomes unpredictable. Therefore, it becomes crucial to have a successful 

implementation of adaptive grids. The accuracy and efficiency of the immersed boundary 

method should be maintained at the same time. 

 In many fields where the fluid flow is dominant, moving interfaces are seen. For 

instance, floating offshore platforms such as Tension Leg Platforms (TLP’s) are affected 

by not only strong ocean currents but also unpredictable waves with different crest 
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heights and approaching frequencies. Some of the problems can be solved through 

implementations of new boundary conditions at the interface, such as free surface and 

interfacial flows. Through implementation of new models, a large variety of problems in 

FSI can be overcome. 

 In the context of ocean structures, deepwater cables and risers may suffer from the 

effect of the spanwise vortex shedding due to non-uniform currents and approach 

velocities. Having a slender formation of geometry and being flexible in deepwater, the 

dynamic behavior between those flexible structures and the high Reynolds number wake 

makes the problem fairly challenging. Further investigation of fluid dynamics along with 

experimental techniques is needed to clarify these interactions. In addition, numerical 

simulations dealing with the interaction between flow and these flexible structures should 

also performed. 
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APPENDIX A 

COMPUTATION OF THE HYDRODYNAMIC FORCES 

 

 As discussed in previous research (Lai and Peskin (2000); Uhlmann (2003); Yang 

and Balaras (2006)), there have been many ways used to obtain hydrodynamic forces 

acting on a solid structure which are immersed into a fluid. The proposed solid domain 

forcing IBM provides computation of hydrodynamics forces as a volume force during the 

numerical integration of term 2/1+n

if  (see Eq (4-7)).  Important steps in evaluation of the 

hydrodynamic forces acting on a rigid oscillating structure are explained below. 

 According to Cauchy’s principle (Aris (1990)), the hydrodynamic force term can 

be calculated as: 

   ∫∫∫ +−=•
∂ SSS

udx
dt

d
fdxndστ             (A-1) 

where the term on the left hand side of the Eq (A-1) is the hydrodynamics stress tensor 

and the first term on the right hand side of this equation is simply the negative of the sum 

of the fluid-solid coupling force with the volume integral (Eq (4-7)). 

 The rate of change term in the force relation (Eq (A-1)) satisfies the rigid-body 

motion on the interface ∂S and can be written as:  

    
⋅

=∫ cc

S

uVudx
dt

d
         (A-2) 

where Vc stands for the volume S enclosed by the immersed structure and  
⋅

cu  represents 

acceleration of the rigid structure. 
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