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NOMENCLATURE

3D: three-dimensional
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CFD: computational fluid dynamics
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COM: center of mass

DOF: degree of freedom
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SUMMARY

Cooperative control enables combinations of sensor data from multiple autonomous under-

water vehicles (AUVs) so that multiple AUVs can perform smarter behaviors than a single AUV.

In addition, in some situations, a human-driven underwater vehicle (HUV) and a group of AUVs

need to collaborate and preform formation behaviors. However, the collective dynamics of a fleet of

heterogeneous underwater vehicles are more complex than the non-trivial single vehicle dynamics,

resulting in challenges in analyzing the formation behaviors of a fleet of heterogeneous underwa-

ter vehicles. The research addressed in this dissertation investigates the collective dynamics and

control of a fleet of heterogeneous underwater vehicles, including multi-AUV systems and systems

comprised of an HUV and a group of AUVs (human-AUV systems). This investigation requires a

mathematical motion model of an underwater vehicle. This dissertation presents a review of a six-

degree-of-freedom (6DOF) motion model of a single AUV and proposes a method of identifying

all parameters in the model based on computational fluid dynamics (CFD) calculations. Using the

method, we build a 6DOF model of the EcoMapper and validate the model by field experiments.

Based upon a generic 6DOF AUV model, we study the collective dynamics of a multi-AUV sys-

tem and develop a method of decomposing the collective dynamics. After the collective dynamics

decomposition, we propose a method of achieving orientation control for each AUV and formation

control for the multi-AUV system. We extend the results and propose a cooperative control for a

human-AUV system so that an HUV and a group of AUVs will form a desired formation while

moving along a desired trajectory as a team. For the post-mission stage, we present a method of

analyzing AUV survey data and apply this method to AUV measurement data collected from our

field experiments carried out in Grand Isle, Louisiana in 2011, where AUVs were used to survey

a lagoon, acquire bathymetric data, and measure the concentration of reminiscent crude oil in the

water of the lagoon after the BP Deepwater Horizon oil spill in the Gulf of Mexico in 2010.

xii



CHAPTER I

INTRODUCTION

Formation behaviors, such as fish schooling, bird flocking, and insect swarming, are common in

nature. Formation behavior benefits each animal in formation, for it maximizes the detection of

predators or the more efficient foraging of food by combining their sensors [1]. Similar to the

formation behaviors of creatures in nature, the formation behaviors of artificial agents also enable

combinations of sensor data; therefore, a group of artificial agents in a formation can create smarter

behaviors than a single agent does. Numerous studies have been devoted to the investigation of the

formation control of multiple autonomous underwater vehicles (multi-AUV system) [2–10] because

of its broad applications in oceanographic research, seafloor surveys, underwater archeology and

meteorology. These studies have proven that enabling a number of autonomous underwater vehicles

(AUVs) to work cooperatively is advantageous [11]. In addition, in some situations, to execute

a task, a number of AUVs and a human-driven vehicle (HUV) need to collaborate and perform

formation behaviors. For example, a group of AUVs equipped with different tools and devices

need to be in specified positions relative to an HUV to assist the human operator, who is working

on a task that only humans can perform. In this case, the HUV and AUVs need to get into a

specified formation while they move along a trajectory together. Another example is when the

human operator of HUV needs to ensure safety by being in a particular position in the formation

formed by the HUV and AUVs, while they follow a specified course for executing a task. In both

cases, the system comprised of an HUV and a group of AUVs (human-AUV system) needs to take

on a desired formation and track a desired trajectory. This dissertation focuses on the control of

the formation behavior of a fleet of heterogeneous marine vehicles, including multi-AUV systems

and human-AUV systems. The objective of this dissertation is to develop a control methodology

that enables a fleet of heterogeneous marine vehicles to collaborate by taking on and maintaining

desired formations and going along desired trajectories as a team. To achieve this purpose, since

the dynamics of a single underwater vehicle is the basis of investigating the collective dynamics of
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all underwater vehicles, we study the dynamics of a single underwater vehicle and present a method

of modeling its motion in 3D space. Based on the dynamic model of a single AUV, we study the

collective dynamics of a multi-AUV system and present a decoupled controller design approach

for its formation dynamics. The results on multi-AUV system is then extended to a human-AUV

system so that we present the cooperative control for the human-AUV system to enable the HUV

and AUVs to cooperate to complete a task together. If the multi-AUV system or human-AUV

system are used for environmental survey, they will return survey data after they complete the task.

For the post-mission stage, we present a method of analogizing the survey data collected by marine

vehicles.

The study of the formation behaviors of a fleet of heterogeneous underwater vehicles requires

a dynamic model of a single underwater vehicle. Using the EcoMapper as an example, we propose

a method of building a dynamic model for underwater vehicles. The EcoMapper is an AUV with

broad applications such as water quality monitoring and bathymetric surveying [12–15]. To simulate

the dynamics of and precisely control the EcoMapper, we develop a mathematical motion model

based on computational-fluid-dynamics (CFD) calculations, strip theory, and open-water tests. In

modeling of marine vehicles, the hydrodynamic damping forces and moments are usually studied

through conventional towing-tank experiments [16–19] that are expensive. As the computation

technology advances, the computational fluid dynamics (CFD) method become important as a less

expensive alternative [17, 20–24]. In this dissertation, we combine both the CFD method and field

tests to study the hydrodynamic damping terms to build a practical motion model for the EcoMapper

with low cost. The complete model is validated by field experiments carried out in the west pond in

the Georgia Tech Savannah Campus.

Based on a generic six-degree-of-freedom (6DOF) dynamic model for the motions of a sin-

gle underwater vehicle, we investigate the collective dynamics of a group of AUVs and introduce a

decoupled design procedure so that formation controllers designed for particle dynamics can be gen-

eralized to formation controllers for fully-actuated AUVs with 6DOF motions in three-dimensional

(3D) space. Formation control of multiple AUVs has received much attention [2,4–6,9,25–28] due

to potentially broad applications in ocean engineering and science. Despite of the complex AUV dy-

namics, many previous results on formation control are developed assuming each agent is modeled

2



by either a single or a double integrator particle model [29–31]. Each agent cooperates with others

based on information shared through communication links that introduce time delays in the system

dynamics. [32–35] analyzed the stability of a multi-agent system with time delays. [36] proved the

input-to-state stability of a single-master-N-slave structured agent group under time delays, assum-

ing double-integrator dynamics for each agent. Formation control becomes more challenging if

more practical and complex dynamics and communication constraints are concerned. These chal-

lenges are crucial for AUVs because of their complex and coupled dynamics. In this dissertation,

we study the collective dynamics of multi-AUV system based on a complete 6DOF dynamic mo-

tion model of a single underwater vehicle. Following a standard inner-outer loop approach, we

first decouple the orientation and translation controls, and then use a geometric approach to sepa-

rate the translation dynamics into formation shape dynamics and formation center dynamics. The

coupling terms of the two portions of the dynamics are treated as perturbations and tolerated by a

robust formation-keeping controller. The controller is also robust to constant bounded time delays.

Compared to other existing approaches with similar goals, this decoupling procedure simplifies the

entire design process. To justify the effectiveness of this method, we present both rigorous theoret-

ical analysis and simulation results.

As cooperative control is often needed for interaction between an human and autonomous agents

[37–48], we extend the results of formation control of a multi-AUV system to obtain cooperative

control of a human-AUV system. In the human-AUV system we investigate, vehicles do not share

information through communication links, which is different from most results on formation control

in the literature [49–55]. Every vehicle measures the positions, velocities, and accelerations of all

other vehicles within its own coordinate system. We analyze situations when vehicles in the system

need to position themselves into a desired formation shape and track a desired trajectory as a team

and design controllers for AUVs that enable the system to achieve it. To predict the motions of an

HUV, inspired by the results in human’s emotional arousal [38–40] during human-robot interaction,

we build a dynamic model, taking the attention of the human operator of an HUV into account.

We decouple the collective dynamics of all vehicles into formation-center, formation-rotation, and

formation-shape dynamics, and then design controllers to drive the formation center trajectory and

the formation shape to desired values. For the formation center, which can be viewed as a free

3



particle after collective dynamics decomposition, we design a curve-tracking controller that enables

a free particle to track any smooth curve in 3D space. This enriches the results on curve tracking

problem, as results reported in the literature considers only 2D smooth curves, including smooth

planar curves ( [56,57]) and smooth curves constrained to a sphere surface ( [58]). For the formation

shape, we also design a controller that drives it to a desired formation shape. The formation shape

controller design takes into account the constraints of both human operator’s attention and shape

variables to prevent a human operator from being scared and vehicles from colliding, respectively.

Our method calculates control forces based on sensor measurements so that vehicles do not need

to communicate and they have freedom to choose their own coordinate system. We illustrate a

system comprised of one HUV and two AUVs and present simulation results that demonstrate the

effectiveness of our method.

Because autonomous surveys are especially attractive in situations where the marine environ-

ment is less than ideal for human-based methods, in this dissertation, we develop novel methods

for performing marine environmental surveys using a fleet of heterogeneous autonomous robotic

vehicles and present mapping algorithms that reconcile data from heterogeneous marine vehicles

on multiple different paths and create a high-fidelity visual representation of the survey data. Al-

though path following for marine vehicles is very important, and, therefore, has been widely stud-

ied [59–65], yet the performance of only few theoretical results has been evaluated and reported in

field tests [66–68], so we are motivated to evaluate the controllers on marine robots for environ-

mental surveys. In this dissertation, to demonstrate the effectiveness of our survey methods, we

performed a twenty-one-day survey in July, 2011, for a coastal lagoon in Grand Isle, Louisiana,

where heavy pollution had been reported during the DeepWater Horizon oil spill, and large scale

cleaning efforts have been performed after the spill was contained. Using a fleet of heterogeneous

marine vehicles, we evaluate the performance of our controllers, analyze the bathymetric and crud-

oil data collected by our autonomous vehicles in survey missions, and create bathymetric and oil-

concentration maps. The experimental results show the effectiveness of our method and also provide

guidance for mission design of further autonomous environmental surveys.

The reminder of the dissertation is organized as follows. In Chapter 2, using the EcoMapper as

an example, we present the dynamic modeling method for underwater vehicles. In Chapter 3, we
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develop a decoupled controller design approach for formation control of multi-AUV system with

time delays. We extend this approach and present a cooperative control design for human-AUV

system in Chapter 4. In Chapter 5, we present the method of analyzing the survey data collected by

marine vehicles during environmental surveys. Chapter 6 gives the conclusion and future work.
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CHAPTER II

DYNAMIC MODELING OF AN AUTONOMOUS UNDERWATER VEHICLE:

THE ECOMAPPER

The YSI EcoMapper autonomous underwater vehicle (Figure 1) has a large sensor payload, a small

size for rapid deployment by one person, and intuitive mission planning software. It is widely used

in environmental mapping [12–15]. Using the remote helm functionality of the EcoMapper, users

can take full control of the vehicle [69]. To precisely control the EcoMapper, a dynamic model is

needed. However, to the best of our knowledge, no dynamic model of the EcoMapper has been

reported in the literature. Our goal is to develop a mathematical dynamic model of the EcoMapper

to serve the purpose of simulation and real-time control.

Figure 1: EcoMapper on dock

As shown in Figure 1, the main body of the EcoMapper is a slender cylinder with two hori-

zontal fins for pitch angle control, and two vertical fins for yaw angle control. The thrust of the

EcoMapper is generated by a two-blade propeller. To build the dynamic model, we need to iden-

tify the rigid-body inertia matrix, the rigid-body Coriolis and centripetal matrix, the hydrodynamic

added inertia matrix, the hydrodynamic added Coriolis and centripetal matrix, the hydrodynamic

damping terms, and the propeller coefficient. We determine the rigid-body inertia matrix and the
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rigid-body Coriolis and centripetal matrix using the software “Solidworks” and calculate the hy-

drodynamic added inertia matrix and the hydrodynamic added Coriolis and centripetal matrix using

strip theory [70, 71].

The hydrodynamic damping forces and moments are usually studied through conventional towing-

tank experiments [16–18]. For example in [19], tow-tank experiments were used to build and ver-

ify a motion model of REMUS (an autonomous underwater vehicles developed by von Alt and

associates at the Oceanographic Systems Laboratory at the Woods Hole Oceanographic Institu-

tion [72]). However, tow-tank experiments are expensive. As the computation technology ad-

vances, the computational fluid dynamics (CFD) method become important as a less expensive

alternative [17,20–24]. For example in [73], CFD simulations were used to estimate hydrodynamic

coefficients of TUNA-SAND (an remotely operated underwater vehicle developed by URA Labo-

ratory, The University of Tokyo [74]). In this chapter, we combine both the CFD method and field

tests to study the hydrodynamic damping terms to build a practical motion model for the EcoMap-

per with low cost. We split the hydrodynamic damping forces and moments into two parts. The

first part is controllable by vertical and horizontal fins. We explicitly derive the form of this part,

i.e., fin-related hydrodynamic damping terms, then CFD simulations are used to identify parameters

in this part. Different from CFD experiments for TUNA-SAND in [73] and RRC ROV in [24],

which have no control surfaces, CFD experiments for the EcoMapper are performed at a range of

fin angles, so that the CFD experiments results can provide enough data to identify parameters in

the relationships between hydrodynamic damping terms and fin angles. One advantage of this ap-

proach is that the analytical analysis of the geometry of control surfaces (e.g., Chapter 5 in [75])

can be avoided. This approach also applies to other underwater vehicles with control surfaces, for

example, the Yellowfin (an autonomous underwater vehicle developed at the Georgia Tech Research

Institute [76, 77]). After the fin-related hydrodynamic damping terms are identified, the remaining

hydrodynamic damping dynamics are identified through a field test. Finally, we carry out open-

water experiments to obtain the thruster coefficient to complete the dynamic model. The complete

model is validated by field experiments carried out in the west pond in the Georgia Tech Savannah

Campus.
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The remainder of this chapter is organized as follows. Section 2.1 gives the six-degree-of-

freedom model for the EcoMapper. Section 2.2 explains the detailed procedure to calculate the

parameters in this model and the parameter identification results. Section 2.3 provides field experi-

ment results that validate the proposed model. Conclusions are presented in Section 2.4.

2.1 Derivation of the Dynamic Model for Underwater Vehicles

We apply a six-degree-of-freedom motion model [70] to the EcoMapper to describe its surge, sway,

heave, roll, pitch, and yaw motions. We set the origin of the body-fixed frame of the EcoMapper

at its center of buoyancy. Figure 2 shows the body-fixed frame, earth-fixed frame, and the elemen-

tary motions of an AUV. Because the EcoMapper is usually ballasted to neutral buoyancy in water

without control, which means that the sum of the buoyancy force and the gravitational force is zero,

there is no restoring force acting on the EcoMapper along “upright” direction. The EcoMapper has

a bottom-heavy design so the restoring moment on roll will keep the roll angle stabilized around 0,

therefore, we do not consider the control for roll moments. To simplify the problem, we assume

the EcoMapper homogeneous and completely immersed in water, so the center of buoyancy and the

center of gravity coincide. We can also infer that the density of the EcoMapper is the same as the

density of the surrounding fluid (fresh water in this paper). We define η1 = [x,y,z]T , η2 = [φ ,θ ,ψ]T ,

η = [ηT
1 ,η

T
2 ]

T , ν1 = [u,v,w]T , ν2 = [p,q,r]T , ν = [νT
1 ,ν

T
2 ]

T , τ1 = [τx,τy,τz]
T , τ2 = [τφ ,τθ ,τψ ]

T ,

τhydr = [τT
1 ,τ

T
2 ]

T , and τthrust = [ fthrust ,0,0,0,0,0]T , where [x,y,z]T represents the EcoMapper po-

sition in the earth-fixed frame; [φ ,θ ,ψ]T represents the Euler angle vector for roll, pitch, and yaw

of the EcoMapper in the earth-fixed frame; [u,v,w]T represents the body-fixed linear velocity vec-

tor for surge, sway, and heave; [p,q,r]T represents the body-fixed angular speed vector for roll,

pitch, and yaw; τx,τy,τz are fin-related hydrodynamic damping forces along x, y, and z directions,

respectively; τφ ,τθ ,τψ are fin-related hydrodynamic damping moments along x, y, and z directions,

respectively; fthrust is the thrust force of the propeller, which is along x direction. The dynamics of

the EcoMapper can be expressed by the following two equations ( [70], [71]):

η̇ = J(η2)ν , (1)

Mν̇ +C(ν)ν +Dν = τhydr + τthrust . (2)

Detailed derivations of Equations (1) and (2) are provided in Appendix A.
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Figure 2: Frames and elementary vehicle motions

In Equation (1), J(η2) is the invertible rotation matrix from the body-fixed frame to the earth-

fixed frame:

J(η2) =

 J1(η2) 03×3

03×3 J2(η2)

 , (3)

where

J1(η2) =


cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ

sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ

−sθ cθsφ cθcφ


and

J2(η2) =


1 sφ tθ cφ tθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

 .
Here, s·= sin(·) and c·= cos(·).

In Equation (2),

M = MRB +MA, (4)

where MRB denotes the rigid-body inertia matrix, and MA denotes the hydrodynamic added inertia.
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They are represented by the following two equations:

MRB =



m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 Ix −Ixy −Ixz

0 0 0 −Iyx Iy −Iyz

0 0 0 −Izx −Izy Iz


, (5)

MA =−



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


, (6)

where m is the mass of the AUV, I =


Ix −Ixy −Ixz

−Iyx Iy −Iyz

−Izx −Izy Iz

 is the inertia tensor of the EcoMapper in

the body-fixed frame, and all terms in MA are hydrodynamic added mass force coefficients.

In Equation (2),

C(ν) =CRB(ν)+CA(ν), (7)

where CRB(ν) is the coefficient matrix for rigid-body Coriolis and centripetal terms and CA(ν) is

the coefficient matrix for hydrodynamic added Coriolis and centripetal terms. They are expressed

in the following two matrices:

CRB(ν) =



0 0 0 0 mw −mv

0 0 0 −mw 0 mu

0 0 0 mv −mu 0

0 mw −mv 0 −Iyzq− Ixz p+ Izr Iyzr+ Ixy p− Iyq

−mw 0 mu Iyzq+ Ixz p− Izr 0 −Ixzr− Ixyq+ Ix p

mv −mu 0 −Iyzr− Ixy p+ Iyq Ixzr+ Ixyq− Ix p 0


,

(8)
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CA(ν) =



0 0 0 0 −a3 a2

0 0 0 a3 0 −a1

0 0 0 −a2 a1 0

0 −a3 a2 0 −b3 b2

a3 0 −a1 b3 0 −b1

−a2 a1 0 −b2 b1 0


, (9)

where

a1 = Xu̇u+Xv̇v+Xẇw+Xṗ p+Xq̇q+Xṙr,

a2 = Xv̇u+Yv̇v+Yẇw+Yṗ p+Yq̇q+Yṙr,

a3 = Xẇu+Yẇv+Zẇw+Zṗ p+Zq̇q+Zṙr,

b1 = Xṗu+Yṗv+Zṗw+Kṗ p+Kq̇q+Kṙr,

b2 = Xq̇u+Yq̇v+Zq̇w+Kq̇ p+Mq̇q+Mṙr,

b3 = Xṙu+Yṙv+Zṙw+Kṙ p+Mṙq+Nṙr.

In the proposed model, we split the hydrodynamic damping forces and moments into two parts.

The first part is τhydr in Equation (2), which is controllable by vertical and horizontal fins. The

remaining part is Dν in Equation (2), where D is a damping matrix. As the speed of EcoMapper is

usually below 2 m/s, which is relatively low, so we consider only linear damping terms in Dν , and

neglect the coupling dissipative terms. Therefore, we define

D =−diag{Xu,Yv,Zw,Kp,Mq,Nr}, (10)

where Xu,Yv,Zw,Kp,Mq,Nr are all negative scalar coefficients.

In Equation (2), τhydr includes the fin-related hydrodynamic damping terms, which are functions

of the fin angles and the vehicle speed. During operations of the EcoMapper, the two horizontal fins

keep the same angle, denoted by α , and the two vertical fins have the same angle, denoted by

β . Because the horizontal fins of the EcoMapper are always symmetric about x− z plane, their

corresponding hydrodynamic forces on right and left side of the EcoMapper produced by the flow

along x direction have the same magnitude and opposite directions, therefore, they do not affect the

total hydrodynamic forces along y direction, i.e., τy does not depend on α . Similarly, τφ , and τψ do
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not depend on α . As the vertical fins of the EcoMapper are symmetric about x−y plane, so they do

not generate moments around x and y axes and forces along z axis, therefore τz, τφ , and τθ do not

depend on β . As the EcoMapper is designed to be self-stabilized in roll angle, we assume φ = 0

and

τφ = 0 (11)

hold all the time. We also assume the velocity of the EcoMapper is parallel with the vehicle body.

Now we summarize the relationship between the fin-related hydrodynamic damping terms and the

fin angles into the following equations:

τx = τx(u,α,β ), τy = τy(u,β ), τz = τz(u,α),

τφ = 0, τθ = τθ (u,α), τψ = τψ(u,β ).

We know that when the EcoMapper is still in water, i.e., when u= 0, all the hydrodynamic terms

are zero, i.e.,

τx(0,α,β ) = τy(0,β ) = τz(0,α) = τθ (0,α) = τψ(0,β ) = 0.

As the EcoMapper is symmetric about x− z plane without considering vertical fins, and the vertical

fins are symmetric about x− y plane, it is easy to derive the following properties from physics.

τx(u,α,−β ) = τx(u,α,β ), (12)

τy(u,−β ) =−τy(u,β ), (13)

τψ(u,−β ) =−τψ(u,β ). (14)

As α-degree horizontal fins and −α-degree horizontal fins are symmetric about x− y plane, we get

τz(u,−α)− τz(u,0) =−[τz(u,α)− τz(u,0)], (15)

τθ (u,−α)− τθ (u,0) =−[τθ (u,α)− τθ (u,0)], (16)

τx(u,−α,β )≈ τx(u,α,β ). (17)

Apply the forth-order Maclaurin’s expansion to τy, we obtain

τy = Φ
T
β

bτy +Φ
T
β1b′τy

+Φ
T
β2b′′τy

, (18)
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where Φβ1 = [1,β ,β 2,β 3,β 4]T , Φβ2 = [u,β 2u,u2,β 2u2,u3,u4]T , and

Φβ = [βu,β 3u,βu2,βu3]T . (19)

bτy , b′τy
and b′′τy

are coefficient vectors. From τy(0,β ) = 0, we obtain ΦT
β1b′τy

= 0, and then from

Equation (13), we get ΦT
β2b′′τy

= 0. Therefore, Equation (18) reduces to

τy = Φ
T
β

bτy . (20)

Similarly, we can get

τψ = Φ
T
β

bτψ
, (21)

where bτψ
is a coefficient vector.

Apply the forth-order Maclaurin’s expansion to τz, we get

τz = Φ
T
αbτz +Φ

T
α1b′τz

+Φ
T
α2b′′τz

, (22)

where Φα1 = [1,α,α2,α3,α4]T , Φβ2 = [α2u,α2u2]T , and

Φα = [u,αu,α3u,u2,αu2,u3,αu3,u4]T . (23)

bτz , b′τz
and b′′τz

are coefficient vectors. From τz(0,α) = 0, we obtain ΦT
α1b′bτz

= 0, and then from

Equation (15), we get ΦT
α2b′′τz

= 0. Therefore, Equation (22) reduces to

τz = Φ
T
αbτz . (24)

Similarly, we can get

τθ = Φ
T
αbτθ

, (25)

where τθ is a coefficient vector.

Now we apply the forth-order Maclaurin’s expansion to τx and get

τx = Φ
T
1 b1 +Φ

T
2 b2 +Φ

T
3 b3 +Φ

T
αβ

bτx , (26)

where Φ1 = [1,α,α2,α3,α4,β ,β 2,β 3,β 4]T , Φ2 = [αu,αu2,αu3,α3u]T , Φ3 = [βu,βu2,βu3,β 3u]T ,

and Φαβ = [u,u2,u3,α2u,β 2u,u4,α2u2,β 2u2]T . b1, b2, b3, and bτx are coefficient vectors. From
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f1(0,α,β ) = 0, we get ΦT
1 b1 = 0, then by plugging Equation (12) into Equation (26), we obtain

ΦT
2 b2 = 0. In addition, Equation (17) leads to ΦT

3 b3 = 0. Therefore Equation (26) reduces to

τx = Φ
T
αβ

bτx , (27)

Now the fin-related hydrodynamic damping terms are fully expressed by Equations (11), (20),

(21), (24), (25) and (27), where bτy , bτψ
, bτz , bτθ

, and bτx are hydrodynamic damping coefficients.

In Equation (2), τthrust = [ fthrust ,0,0,0,0,0]T and fthrust is the thrust provided by the propeller.

It is a function of the propeller diameter, which is fixed, the density and viscosity of water, which

are assumed to be constant, and propeller rotation speed, i.e., revolutions per unit time, denoted by

n. Now fthrust can be described by the following equation:

fthrust ≈ cn2, (28)

where c is the propeller coefficient.

2.2 Parameter Identification

This section provides the procedure to calculate MRB, MA, CRB, CA, hydrodynamic damping coeffi-

cients bτx , bτy , bτz , bτθ
, and bτψ

, and propeller coefficient c for the dynamic model of the EcoMapper.

2.2.1 MRB and CRB

We use “Solidworks”, a three-dimensional mechanical computer-aided-design software, to calculate

inertia matrix MRB for the EcoMapper. In Solidworks, we draw the geometry of the EcoMapper as

shown in Figure 3 and use the “mass properties” functionality of Solidworks to calculate inertia

matrix MRB. The Solidworks geometry file of the Ecoampper will be further used as the database

file for grid generating for CFD calculations.

The mass m and density ρ of the EcoMapper are as follows:

m = 27.2 kg, (29)

ρ = 1000 kg/m3. (30)

According to the geometry of the EcoMapper, we calculate the inertia tensor I and get Ix = 0.0743,
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Figure 3: Solidworks model of the EcoMapper

Iy = 4.723, Iz = 4.7159, Ixz = Izx = 0.0011, Ixy = Iyx = Iyz = Izy = 0, with all units N·m2·s2. There-

fore I =


0.0743 0 −0.0011

0 4.723 0

−0.0011 0 4.7159

 . I is obviously diagonally dominant. The absolute val-

ues of off-diagonal elements are all less than 1.5% of the smallest absolute values of diagonal

elements. Therefore, without causing many errors, we can approximate I to a diagonal matrix

I ≈ diag{0.0743,4.723,4.7159}. As a result,

Ix = 0.0743, Iy = 4.723, Iz = 4.7159,

Ixz = Izx = Ixy = Iyx = Iyz = Izy = 0.
(31)

This approximation makes sense because the main body of the EcoMapper is a slender cylinder

with three planes of symmetry and a rigid body with three planes of symmetry has a diagonal inertia

matrix. Now Equations (29) and (31) specifies all the parameter for MRB and CRB in Equations (5)

and (8), so we can get

MRB = diag{27.2,27.2,27.2,0.0743,4.723,4.7159}, (32)

CRB(ν) =



0 0 0 0 27.2w −27.2v

0 0 0 −27.2w 0 −27.2u

0 0 0 27.2v −27.2u 0

0 27.2w −27.2v 0 4.7159r −4.723q

−27.2w 0 27.2u −4.7159r 0 0.0743p

27.2v −27.2u 0 4.723q −0.0743p 0


. (33)
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2.2.2 MA and CA

The nose of the EcoMapper is a light plastic cylindrical shell, and most spaces in the nose are empty,

so we neglect the mass of the nose when calculate MA and CA. We also neglect the four fins, and

treat the EcoMapper as a cylindrical rigid body to simplify the calculation for MA and CA. We can

see this approximation is rational from the fact that MRB is approximately a diagonal matrix.

According to the strip theory [70], [71] provides the following formulas for all non-zero hydro-

dynamic added mass force coefficients for a cylindrical rigid body with a mass m, a length L, and a

radius of the circular section r, assuming it is immersed in a fluid with density ρ .

Xu̇ =−0.1m, Yv̇ =−πρr2L, Zẇ =−πρr2L, Mq̇ =−
1
12

πρr2L3, Nṙ =−
1
12

πρr2L3. (34)

For the EcoMapper, L = 1.4 m, r = 0.0736 m, the fluid is water with density ρwater = 1000 kg/m3,

as a result, we obtain all non-zero hydrodynamic added mass force coefficients as follows:

Xu̇ =−2.72, Yv̇ =−23.8250, Zẇ =−23.8250, Mq̇ =−3.8914, Nṙ =−3.8914. (35)

Now Equations (35) specifies all non-zero parameters to calculate MA and CA from Equations (6)

and (9), so we get

MA = diag{2.72,23.8250,23.8250,0,3.8914,3.8914}, (36)

CA(ν) =



0 0 0 0 23.8250w −23.8250v

0 0 0 −23.8250w 0 2.72u

0 0 0 23.8250v −2.72u 0

0 23.8250w −23.8250v 0 3.8914r −3.8914q

−23.8250w 0 2.72u −3.8914r 0 0

23.8250v −2.72u 0 3.8914q 0 0


.

(37)

2.2.3 τhydr

To get enough data to study the hydrodynamic damping coefficients, we run CFD simulations for

the EcoMapper at four speeds, that is, 0.25 m/s, 0.5 m/s, 0.75 m/s, and 1 m/s, as the maximum

speed of the EcoMapper is designed around 1 m/s. For each speed, we change the vertical-fin
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angle from 0◦ to 35◦ and horizontal-fin angle from −35◦ to 35◦, with a step size 5◦, and calculate

the corresponding hydrodynamic damping forces and moments in the CFD software “Ansys-CFX”.

Therefore, CFD calculations are carried out at 88 data points. For each specified fin angle, we first

draw the corresponding EcoMapper geometry in Solidworks, then using the Solidworks geometry

file as the database file, we generate a mesh file for the EcoMapper in “Gridgen”, a mesh generator,

and import it into Ansys-CFX. In CFX, we specify the EcoMapper speed in the boundary condition

and calculate the hydrodynamic damping forces and moments.

To calculate the hydrodynamic damping terms corresponding to a specified EcoMapper speed,

which is along the x direction in its body-fixed frame, we set the EcoMapper static and set the

fluid flowing along the “−x” direction in CFD simulation, as the hydrodynamic damping forces

and moments depend only on the relative motion between the EcoMapper and the fluid. Therefore,

we can adopt fixed mesh generating for CFD calculation, instead of using the relatively complex

dynamic meshes.

To study the hydrodynamic damping terms on the EcoMapper in an unbounded fluid domain,

we need to use a large constant-speed flow field. In this chapter, we define a fluid domain, the

length, width, and height of which are five times of the length, width, and height of the EcoMapper,

respectively, as shown in Figure 4. In this fluid domain, we draw a small box to enclose the area

that is close to the EcoMapper, and generate fine block grids within this area. In the area far from

the EcoMapper, we use relatively coarser block grids to reduce the CFD computation time (see

Figure 5). To build block grids, we first generate surface grids on all boundaries, including the

surface of the EcoMapper and the boundary of the fluid domain. On the outer boundary of the fluid

domain, which consists of six rectangles, we generate a “structured domain”, and on the surface of

the EcoMapper, some parts of which are complex, we generate an “unstructured domain”, shown in

Figure 6, then we generate “unstructured block” based on those “domains”. In Gridgen, “domains”

mean surface grids and “blocks” mean block grids.

The block grids generated in Gridgen are imported into CFX for CFD calculation. In CFX, we

set water as the fluid, set the inlet and outlet of the flow as Figure 7, and carry out single-phase

steady-state simulations using shear-stress-transport model. Figure 8 shows one of the CFX simula-

tion results, in which the fluid flow speed is set to 1m/s, the horizontal-fin angle of the EcoMapper
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Figure 4: Fluid domain

Figure 5: Fine and coarse block grids

to 0◦, and the vertical-fin angle to 30◦. We list simulation results for all EcoMapper speeds and fin

angles in Tables 1, 2, 3, and 4. From data in Tables 1 and 2 in which β = 0, we can see that τy, τφ ,

and τψ do not change with α , and the average values of τy, τφ , and τψ are all close to zero. From

data in Tables 3 and 4 in which α = 0, we can see that τz, τφ , and τθ are all small and do not change

with β . From data in Table 1, we observe that f1(u,−α,β )≈ f1(u,α,β ). These facts all agree with

our assumption in Section 2.1.
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Figure 6: Unstructured domain on the EcoMapper surface

Figure 7: Inlet and outlet boundary condition in CFX

Now we use the least-mean-square method to estimate parameters bτx , bτy , bτz , bτθ
, and bτψ

in

Equations (27), (20), (24), (21), and (25). We use τy as an example to explain the procedure, using

the 8× 4 = 32 data points provided in Table 3. For each point (τy,i,βi,ui), where i = 1,2 · · ·32,

we calculate the corresponding Φβ ,i according to Equation (19). Define Y = [τy,1,τy,2 · · ·τy,N ]
T and

A = [Φβ ,1,Φβ ,2 · · ·Φβ ,N ]
T , the least-mean-square estimation of bτy is

bτy = (AT A)−1ATY. (38)
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Figure 8: Stream line and gauge pressure contour in CFX

Table 1: [τx,τy,τz] VS horizontal-fin angle α and the EcoMapper speed

α u=1m/s u=0.75m/s u=0.5m/s u=0.25m/s
35 [-10.9907 0.3151 -7.8490] [-6.2307 0.2211 -4.3690] [-2.7947 0.0721 -1.9100] [-0.7132 0.0161 -0.4839]
30 [-10.1951 0.3323 -7.5768] [-5.7736 0.1829 -4.1911] [-2.6082 0.1547 -1.8784] [-0.6640 0.0355 -0.4742]
25 [-9.3262 -0.2538 -7.4454] [-5.3017 -0.1216 -4.1838] [-2.3936 -0.0403 -1.8569] [-0.6123 -0.0067 -0.4659]
20 [-8.3563 0.0193 -7.0843] [-4.7641 0.0090 -3.9594] [-2.1491 0.0310 -1.7387] [-0.5484 0.0046 -0.4306]
15 [-7.5640 -0.1620 -6.0628] [-4.3034 -0.0333 -3.3790] [-1.9457 0.0053 -1.4877] [-0.4976 0.0034 -0.3670]
10 [-7.0246 0.5152 -4.7866] [-3.9966 0.2610 -2.6683] [-1.8010 0.0781 -1.1789] [-0.4628 0.0296 -0.2932]
5 [-6.7013 -0.6192 -2.5693] [-3.8337 -0.3044 -1.4390] [-1.7439 -0.1142 -0.6344] [-0.4482 -0.0241 -0.1555]
0 [-6.4592 -0.3385 -0.1455] [-3.6968 -0.1536 -0.0847] [-1.6850 -0.0605 -0.0376] [-0.4344 -0.0145 -0.0069]
-5 [-6.5714 -0.5048 2.4216] [-3.7273 -0.1481 1.3211] [-1.6842 -0.0210 0.5693] [-0.4349 -0.0058 0.1420]

-10 [-6.7161 -0.0012 4.4858] [-3.8156 0.0846 2.4496] [-1.7431 0.0169 1.0865] [-0.4506 -0.0035 0.2713]
-15 [-7.1923 -0.1177 6.1951] [-4.1091 -0.0172 3.4732] [-1.8685 0.0124 1.5326] [-0.4806 0.0027 0.3799]
-20 [-8.0637 0.9691 6.9083] [-4.5735 0.4642 3.8975] [-2.0620 0.1770 1.7356] [-0.5276 0.0337 0.4375]
-25 [-8.9998 -1.2318 7.3026] [-5.1127 -0.6601 4.1338] [-2.3047 -0.2664 1.8593] [-0.5877 -0.0528 0.4748]
-30 [-9.7131 -0.8087 7.5272] [-5.5239 -0.4435 4.2570] [-2.4731 -0.0952 1.9904] [-0.6384 -0.0426 0.4842]
-35 [-11.0082 -0.9197 7.8250] [-6.2213 -0.5140 4.4008] [-2.7833 -0.2209 1.9572] [-0.7054 -0.0488 0.4934]

Plugging the data in Table 3 into Equation (38), we get parameter bτy , which is listed in Table 5.

Using the same procedure, we get bτx , bτy , bτz , bτθ
, and bτψ

, all of which are listed in Table 5. Now

we get all parameters for functions in Equations (20), (21), (24), (25), and (27). We plot function τz

in Equation (24) and the original data points in Figure 9 to illustrate the accordance between original

data and the estimation. Other functions and their corresponding original data points are provided

in Figures 40, 41, 42, 43, and 44 in Appendix B.
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Table 2: [τφ ,τθ ,τψ ] VS horizontal-fin angle α and the EcoMapper speed

α u=1m/s u=0.75m/s u=0.5m/s u=0.25m/s
35 [-0.0113 -4.1971 0.1587] [-0.0076 -2.3353 0.1054] [-0.0020 -1.0192 0.0331] [-0.0005 -0.2582 0.0074]
30 [-0.0069 -4.0580 0.1271] [-0.0049 -2.2415 0.0725] [-0.0033 -1.0044 0.0687] [-0.0008 -0.2535 0.0163]
25 [0.0149 -3.9498 -0.1184] [0.0083 -2.2187 -0.0565] [0.0035 -0.9845 -0.0184] [0.0007 -0.2473 -0.0029]
20 [0.0134 -3.7315 0.0152] [0.0076 -2.0857 0.0054] [0.0030 -0.9170 0.0164] [0.0006 -0.2275 0.0030]
15 [0.0057 -3.1570 -0.0905] [0.0022 -1.7609 -0.0210] [0.0001 -0.7751 0.0008] [-0.0001 -0.1916 0.0015]
10 [-0.0108 -2.4687 0.2668] [-0.0048 -1.3750 0.1344] [-0.0021 -0.6061 0.0404] [-0.0007 -0.1511 0.0135]
5 [0.0140 -1.2764 -0.2536] [0.0074 -0.7140 -0.1239] [0.0028 -0.3145 -0.0460] [0.0007 -0.0773 -0.0097]
0 [0.0071 0.0510 -0.1526] [0.0037 0.0269 -0.0692] [0.0014 0.0116 -0.0283] [ 0.0002 0.0040 -0.0079]
-5 [0.0168 1.4386 -0.2422] [0.0075 0.7875 -0.0691] [0.0024 0.3399 -0.0092] [0.0007 0.0845 -0.0022]

-10 [0.0068 2.5589 -0.0312] [0.0014 1.3982 0.0225] [0.0010 0.6202 0.0028] [0.0003 0.1548 -0.0023]
-15 [0.0109 3.4891 -0.0690] [0.0058 1.9561 -0.0153] [ 0.0023 0.8631 0.0026] [0.0004 0.2137 0.0005]
-20 [-0.0436 3.8862 0.4534] [-0.0193 2.1943 0.2118] [-0.0068 0.9771 0.0788] [-0.0013 0.2458 0.0148]
-25 [ 0.0397 4.0897 -0.6343] [0.0201 2.3139 -0.3398] [0.0073 1.0399 -0.1368] [0.0012 0.2650 -0.0269]
-30 [ 0.0284 4.2146 -0.4570] [0.0152 2.3825 -0.2502] [0.0009 1.1097 -0.0589] [0.0012 0.2701 -0.0239]
-35 [0.0141 4.3591 -0.3925] [0.0078 2.4502 -0.2233] [0.0035 1.0889 -0.0978] [0.0006 0.2741 -0.0218]

Table 3: [τx,τy,τz] VS vertical-fin angle β and the EcoMapper speed

β u=1m/s u=0.75m/s u=0.5m/s u=0.25m/s
35 [-10.6025 6.8378 -0.3275] [-5.9951 3.7964 -0.1889] [ -2.6742 1.6529 -0.0850] [ -0.6796 0.4133 -0.0197]
30 [9.7767 6.4842 -0.1130] [-5.5531 3.6186 -0.0760] [-2.4999 1.5870 -0.0402] [-0.6356 0.3924 -0.0111]
25 [-8.8230 5.3011 -0.1430] [-5.0117 2.9466 -0.0785] [ -2.2622 1.2906 -0.0317] [-0.5777 0.3240 -0.0060]
20 [-7.8793 4.1621 0.1481] [-4.4812 2.3067 0.0944] [-2.0258 1.0111 0.0502] [-0.5190 0.2575 0.0158]
15 [-7.3541 2.8114 0.1495] [-4.1972 1.5897 0.0969] [-1.9057 0.7126 0.0521] [-0.4893 0.1910 0.0152]
10 [-6.9020 2.4963 0.0907] [-3.9485 1.3838 0.0586] [-1.7964 0.6074 0.0304] [-0.4622 0.1524 0.0091]
5 [-6.5234 1.1963 0.2032] [-3.7352 0.6533 0.1186] [-1.7036 0.2798 0.0522] [-0.4394 0.0709 0.0123]
0 [-6.4592 0.3385 0.1455] [-3.6968 0.1536 0.0847] [-1.6850 0.0605 0.0376] [-0.4344 0.0145 0.0069]

Table 4: [τφ ,τθ ,τψ ] VS vertical-fin angle β and the EcoMapper speed

β u=1m/s u=0.75m/s u=0.5m/s u=0.25m/s
35 [-0.0563 0.2789 -3.6706] [-0.0331 0.1594 -2.0379] [-0.0158 0.0709 -0.8868] [-0.0040 0.0166 -0.2216]
30 [-0.0464 0.1405 -3.5014] [-0.0271 0.0858 -1.9533] [-0.0127 0.0415 -0.8563] [-0.0034 0.0107 -0.2118]
25 [-0.0659 0.1700 -2.8799] [-0.0375 0.0948 -1.5997] [-0.0165 0.0405 -0.7001] [-0.0039 0.0089 -0.1755]
20 [-0.0609 0.0374 -2.2345] [-0.0333 0.0153 -1.2389] [-0.0141 0.0025 -0.5436] [-0.0032 -0.0012 -0.1386]
15 [-0.0533 0.0642 -1.5734] [-0.0289 0.0296 -0.8901] [-0.0115 0.0083 -0.3995] [-0.0026 0.0006 -0.1065]
10 [-0.0312 0.0885 -1.2991] [-0.0163 0.0459 -0.7228] [-0.0064 0.0178 -0.3185] [-0.0015 0.0033 -0.0802]
5 [-0.0284 0.0266 -0.6274] [-0.0153 0.0128 -0.3443] [-0.0064 0.0058 -0.1482] [-0.0015 0.0015 -0.0374]
0 [ 0.0071 0.0510 -0.1526] [ 0.0037 0.0269 -0.0692] [ 0.0014 0.0116 -0.0283] [ 0.0002 0.0040 -0.0079]

2.2.4 τthrust

We carry out open-water experiments in a tank (Figure 10) to identify the propeller coefficient c in

Equation (28) for propeller thrust calculation. The propeller thrusts and the corresponding propeller
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Figure 9: Horizontal-fin angle α VS τz

Table 5: Least-mean-square estimation of parameters bτx , bτy , bτz , bτθ
, and bτψ

bT
τx

[-0.0578, -7.0288, 0.7926, 0.0001, 0.0001, -0.2669, -0.0038, -0.0035]
bT

τy
[0.0038,0.0000,0.2168,-0.0002]

bT
τz

[-0.0647,-0.1238,0.0001,0.4467,-0.2689,-0.8210,-0.0072,0.3821]
bT

τθ
[-0.0377,-0.0668,0.0001,0.3624,-0.1466,-0.4481,-0.0040,0.2066]

bT
τψ

[-0.0045, 0.0000,-0.1131,0.0000]

rotation speeds (in revolutions per minutes) in the experiments are listed in Table 6. From those

data, we obtain the least-mean-square estimation of propeller coefficient

c = 1.5849×10−5. (39)

The original data points and fitted curve are plotted in Figure 11.

2.2.5 Damping Matrix D

The last term to identify is the damping matrix D, given which, we will complete the model and be

able to simulate the motion of the EcoMapper, including the linear and angular speed. To identify D,

we conduct both field experiments and simulations to obtain a least-mean-square estimation. Now

we use Xu to explain the procedure. For Xu, we design and carry out a field experiment so that the

Ecoampper goes along a straight line without turning and diving, during a time period from t = t0 to

t = tN . Then given an Xu, we can obtain a corresponding simulated forward speed of the EcoMapper,
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Figure 10: EcoMapper in tank

Table 6: Propeller thrust VS RPM

n (rpm) τthrust in experiment 1 (lb) τthrust in experiment 2 τthrust in experiment 3 τthrust in experiment 4
0 0 0 0 0

186 0 0 0 0.1
371 1 0.2 0.2 0.2
558 1.2 1 1 1
745 2 1.8 1.9 2
933 3 3 3 3
1118 4 4 4.1 4
1304 6 6 5.9 6
1490 7 8 8 8
1675 9.8 10.8 10.8 10.4
1863 11.8 13.2 11.6 13
2012 14.3 14 14.3 15

denoted by û. We choose an optimal Xu satisfying Xu = argmin
Xu

∑
N
i=0(u(ti)− û(ti))2, where u(ti) is

the sampled forward speed of the Ecoampper at sample time t = ti in the field experiment. After

we get Xu, we plot the field experiment data and simulation results in Figure 12 in blue dots and a

red curve, respectively. As the EcoMapper has anti-roll mechanism, we assume φ = 0 all the time

and do not care about Kp. All other terms are obtained in similar ways. We liste them below and

complete the dynamic model of the EcoMapper.

Xu =−7,Yv =−231,Zw =−229,Mq =−53,Nr =−48. (40)
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Figure 11: Thrust VS RPM

Figure 12: Experimental and simulated forward speed

2.3 Experiment Validation

To demonstrate the validity of the proposed model, we carry out a series of field experiments in the

west pond in the Georgia Tech Savannah Campus shown in Figure 13 (latitude:32.167◦, longitude:-

81.210◦). We present the results collected on January 27, 2013 from 14:00EST to 16:00EST. During

that time, the maximum wind speed was about 11mph pointing east, which caused intermittent wa-

ter currents. During the experiments, the EcoMapper worked in mission mode and followed pathes

specified by waypoints in mission planing software “VectorMap”. By arranging the distribution of

the waypoints, we let the EcoMapper perform turning. In addition, we specified different forward
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speeds and depths for different waypoints so that the EcoMapper achieved acceleration, deceler-

ation, diving and surfacing. During missions, the EcoMapper measured vehicle velocity, attitude

angles, and depth from surface through DVL (Doppler Velocity Log), a digital compass, and the

YSI Depth Sensor, respectively, and saved these information every one second into log files which

we can get access to after the mission completed. The information saved also includes the geograph-

ic coordinates of the vehicle position, forward speeds, lateral speeds, headings, pitch angles, depth

from surface, propeller command value, and fin-angles command value. Through the propeller rota-

tion speeds and fin angles in the experiments, which can be derived from propeller command values

and fin-angle command values in the log file, we can use the proposed model to simulate the motion

of the EcoMapper, and compare the simulation results with the experiential results. During simu-

lations, a step size ∆t = 0.0001s is used. As the propeller rotation speed and fin angles saved are

updated only once every second in the log files, in simulation there is only one set of propeller rota-

tion speed and fin angles available and used within one second (i.e., 10000 iterations of simulation

computation) before they are updated next second.

Figure 13: West Pond in Georgia Tech Savannah Campus

Figure 14 plots the simulated forward speed in red and experimental one in blue. We can see the

simulation results are in accordance with field experiment results in accelerations and decelerations.

The average of the absolute error between the simulated and experimental data is 0.1345 m/s. The
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average relative error of the simulation is 15.78%. The maximum relative error is 43.93% and it

happens at t = 101s, which is in the beginning of an acceleration. The experimental and simulated

lateral speed are plotted in Figure 15 in blue and red, respectively. We can see they roughly agree

with each other. As the lateral speed caused by the vertical fins is small, the lateral speed is more

influenced by environment disturbance, like wind and water current, which caused the oscillations

in experimental results, as shown by the blue line in Figure 15. Comparing with the field exper-

iment data, the average absolute errors of the simulated lateral speed is 0.000369 m/s. Figure 16

compares the simulated heave speeds (the red line) with experimental ones (the blue line). We can

see that they agree with each other. The average of absolute error is 0.0317 m/s. We also compared

the simulation and experimental angular velocity (roll speed is excluded as we assume φ = 0 all

the time). From the log files, we obtained the heading and pitch angle of the EcoMapper during

missions. Forward difference is used to estimate the time derivative of these Euler angles, which are

then used to calculate pitch speed q and yaw speed r according to Equation (1). The simulation and

experimental results on pitch speed and yaw speed are plotted in Figures 17 and 18, respectively,

where red lines show the simulation results and blue lines show the experimental data. We can see

that the simulations agree with field experiments, despite some subtle differences. The average of

the differences in Figures 17 and 18 are 0.0438 rad/s and 0.0147 rad/s, respectively.

Figure 14: Experimental and simulated surge speed

26



Figure 15: Experimental and simulated sway speed

Figure 16: Experimental and simulated heave speed

There are several factors causing difference between experimental data and simulation results.

First, the disturbances during experiments, including wind, water currents, cause some of the dif-

ference. Second, because the propeller rotation speed and fin angles are recorded only every second

during experiments, so in simulation we can use only one available set of these values in every

second, i.e., 10000 simulation computation iterations, while the actual propeller rotation speed and

fin angles were varying continuously within every second. This also causes some difference be-

tween the experimental data and simulation results. But nevertheless, we see a consistent match

between the field experiments and simulations, which shows that the EcoMapper model captures

the EcoMapper dynamics to a satisfactory accuracy.

27



Figure 17: Experimental and simulated pitch speed

Figure 18: Experimental and simulated yaw speed

2.4 Conclusion

This chapter proposed a dynamic model to describe the motion of the EcoMapper. Using theo-

retical calculations, computational-fluid-dynamics simulations, and field tests, we identified all the

parameters in the model. We also performed field experiments to validate the proposed model, and

the experimental data is consistent with simulation results. Therefore, the proposed model may be

used to simulate the EcoMapper motions and compute desired control input for the EcoMapper in
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real-time control. The modeling methods may also applies to other underwater vehicles with control

surfaces.
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CHAPTER III

A DECOUPLED CONTROLLER DESIGN APPROACH FOR FORMATION

CONTROL OF AUTONOMOUS UNDERWATER VEHICLES WITH TIME

DELAYS

Recently, formation control of multiple AUVs has received much attention [2, 4–6, 9, 25–28] due to

potentially broad applications in ocean engineering and science. Despite of the complex AUV dy-

namics, many previous results on formation control are developed assuming each agent is modeled

by either a single or a double integrator particle model [29–31]. Each agent cooperates with others

based on information shared through communication links that introduce time delays in the system

dynamics. [32–35] analyzed the stability of a multi-agent system with time delays. [36] proved the

input-to-state stability of a single-master-N-slave structured agent group under time delays, assum-

ing double-integrator dynamics for each agent.

Formation control becomes more challenging if more practical and complex dynamics and com-

munication constraints are concerned. These challenges are crucial for AUVs because of their com-

plex and coupled dynamics. In addition, underwater communication and positioning, which rely

heavily on acoustic systems, are plagued with limited communication bandwidth, intermittent fail-

ures, latency and multi-path effects, which causes time delays. The complex dynamics of AUVs

are considered in [25, 27, 78, 79] with various control strategies for multi-AUV systems proposed

without considering time delays. A collection of identical planar unit-speed vehicles described by a

two-dimensional Frenet-Serret motion model are investigated to integrate communication and con-

trol in [80]. Using Lyapunov theory and a switching communication topology, [81] developed a

coordinated path-following controller that can tolerate communication failures between AUVs. [82]

proposed a path-following control strategy to coordinate a group of surface vessels moving in a hor-

izontal plane. A cooperative control law which was proved robust to small communication delays

is achieved in [83]. [84] studied formation dynamics for a group of AUVs in a horizontal plane.

Through Jacobi coordinates, the formation dynamics were expressed as a deformable body and H∞
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full state feedback controllers were designed assuming the time delays negligible. There also exist

research works on formation control under time delays for unmanned aerial vehicles(UAVs) [85],

bilateral teleoperators [86], and spacecrafts [87] etc.

This chapter extends the Jacobi transform approach in [84] to decompose the formation dynam-

ics for a group of 6DOF AUVs moving in three dimensional space. According to the formation

dynamics, we propose a robust controller to achieve both path following and formation keeping

while tolerating bounded constant time delays. We propose a decoupled design approach. The ori-

entation subsystem of each AUV is separated from the formation system. The formation shape and

the formation center are also decoupled and controlled separately. In addition, we devise a two-step

approach for the robust controller design to achieve delay-dependent robust stability.

The remainder of this chapter is organized as follows. Section 3.1 reviews the 6DOF dy-

namical model of a single AUV. In section 3.2, we derive the formation dynamics of AUVs in

three-dimensional space. Section 3.3 designs a robust formation position controller and a velocity

controller to stabilize the formation system under perturbations and time delays. We demonstrate

simulation results in Section 3.4 and provide conclusions in Section 3.5.

3.1 Dynamics and Orientation Control of A Single AUV

We assume that every AUV in the formation is fully actuated, homogeneous, and neutrally buoyant,

with its center of buoyancy coinciding with its center of gravity. We set the origin of the body-

fixed frame at the center of buoyancy and assume that the hydrodynamic forces and moments are

linear. Let η1 = [x,y,z]T denote the AUV position in the earth-fixed frame. Let η2 = [φ ,θ ,ψ]T

denote the Euler-angle vector for roll, pith, and yaw in earth-fixed frame. Let ν1 = [u,v,w]T denote

the body-fixed linear velocity for surge, sway, and heave. And let ν2 = [p,q,r]T denote the body-

fixed angular velocity for roll, pith, and yaw. Then the dynamics of each AUV can be expressed as

follows [70, 71]:

η̇1 = J1(η2)ν1, (41)

η̇2 = J2(η2)ν2, (42)

Mν̇ +C(ν)ν +D(ν)ν = τ, (43)
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where ν = [νT
1 ,ν

T
2 ]

T , and τ =

[
τT

1 τT
2

]T

is the control inputs vector where τT
1 is the control-

ling force vector and τT
2 the controlling moment vector. In this model,

 J1(η2) 0

0 J2(η2)

 is the

coordinate-transform (Jacobian) matrix from the body-fixed frame to the earth-fixed frame. The

matrices M and D in this model are inertia and damping matrices, defined as

M = diag{m−Xu̇,m−Yv̇,m−Zẇ, Ix, Iy, Iz}, (44)

D(ν) =−diag{Xu,Yv,Zw,Kp,Mq,Nr}. (45)

where, m is the AUV mass. Xu̇, Yv̇, Zẇ, Xu, Yv, Zw, Kp, Mq, and Nr are hydrodynamical parameters.

The terms Ix, Iy, and Iz are the moments of inertia about the three axes of earth-fixed frame.

The matrix C(ν) represents the Coriolis and centripetal term, which contains the rigid-body

Coriolis and centripetal term CRB(ν) and the hydrodynamic added Coriolis and centripetal term

CA(ν), i.e.,

C(ν) =CRB(ν)+CA(ν), (46)

where

CRB(ν) =



0 0 0 0 mw −mv

0 0 0 −mw 0 mu

0 0 0 mv −mu 0

0 mw −mv 0 Izr −Iyq

−mw 0 mu −Izr 0 Ix p

mv −mu 0 Iyq Ix p 0


, (47)

CA(ν) =



0 0 0 0 Zẇw −Yv̇v

0 0 0 −Zẇw 0 Xu̇u

0 0 0 Yv̇v −Xu̇u 0

0 Zẇw −Yv̇v 0 −Nṙr Mq̇q

−Zẇw 0 Xu̇u Nṙr 0 −Kṗ p

Yv̇v −Xu̇u 0 −Mq̇q Kṗ p 0


. (48)
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Note that the CRB(ν) and CA(ν) satisfy the following properties:

C′RB(ν)ν =CRB(ν)ν ,

C′A(ν)ν =CA(ν)ν , (49)

where,

C′RB(ν) =



0 −mr mq 0 0 0

mr 0 −mq 0 0 0

−mq mp 0 0 0 0

0 mw 0−mv 0 Izr −Iyq

−mw 0 mu −Izr 0 Ix p

mv −mu 0 Iyq Ix p 0


, (50)

C′A(ν) =



0 Yv̇r −Zẇq 0 0 0

−Xu̇r 0 Zẇ p 0 0 0

Xu̇q −Yv̇ p 0 0 0 0

0 Zẇw −Yv̇v 0 −Nṙr Mq̇q

−Zẇw 0 Xu̇u Nṙr 0 −Kṗ p

Yv̇v −Xu̇u 0 −Mq̇q Kṗ p 0


. (51)

Now we can rewrite term C(ν)ν +D(ν)ν in Equation (43) as

C(ν)ν +D(ν)ν =C′RB(ν)ν +C′A(ν)ν +D(ν)ν =

 C11(ν2) 0

C21(ν1) C22(ν2)

ν
.
=C′(ν)ν . (52)

where

C11(ν2) =


−Xu −mr+Yv̇r mq−Zẇq

mr−Xu̇r −Yv −mp+Zẇ p

−mq+Xu̇q mp−Yv̇ p −Zw

 , (53)

C21(ν1) =


0 mw+Zẇw −mv+Yv̇v

−mw−Zẇw 0 mu−Xu̇u

mv−Yv̇v −mu+Xu̇u 0

 , (54)
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C22(ν2) =


−Kp Izr−Nṙr −Iyq+Mq̇q

−Izr+Nṙr −Mq Ix p−Kṗ p

Iyq−Mq̇q −Ix p+Kṗ p −Nr

 . (55)

Therefore, Equation (43) can be decomposed into the following two equations:

M1ν̇1 +C11(ν2)ν1 = τ1, (56)

M2ν̇2 +C21(ν1)ν1 +C22(ν2)ν2 = τ2, (57)

where

M1 = diag{m−Xu̇,m−Yv̇,m−Zẇ},

M2 = diag{Ix, Iy, Iz}. (58)

Since the mass m is always positive and its absolute value is much larger than the absolute values

of hydrodynamical parameters Xu̇, Yv̇, and Zẇ, the matrix M1 is usually nonsingular for an AUV and

M−1
1 exists.

From Equation (41), we get

ν1 = J−1
1 (η2)η̇1, (59)

and

ν̇1 = J−1
1 (η2)η̈1− J−1

1 (η2)J̇1(η2)J−1
1 (η2)η̇1. (60)

Substitute Equations (59) and (60) into Equation (56), we obtain

η̈1 = (J̇1(η2)J−1
1 (η2)− J1(η2)M−1

1 C11(ν2)J−1
1 (η2))η̇1 + J1(η2)M−1

1 τ1. (61)

Define

G (η2,ν2) = J̇1(η2)J−1
1 (η2)− J1(η2)M−1

1 C11(ν2)J−1
1 (η2), (62)

and

H(η2) = J1(η2)M−1
1 , (63)

then Equation (61) becomes

η̈1 = G (η2,ν2)η̇1 +H(η2)τ1. (64)

Now Equation (64) describes the complete translational dynamics of each AUV.
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From equation (61), we observe that if we are able to stablize η2 and ν2 at desired values η2d

and ν2d , then we can derive the control τ1 to be relying only on η1 and ν1. This idea will be used to

derive the formation control of AUVs.

In order to achieve the desired values η2d and ν2d , Equations (42) and (57) will be considered.

We rewrite Equation (57) as

ν̇2 =−M−1
2 C22ν2 +M−1

2 τ2−M−1
2 C21ν1, (65)

and make the following invertible transformation for τ2

ς = M−1
2 τ2−M−1

2 C21ν1, (66)

then we get

ν̇2 =−M−1
2 C22ν2 + ς , (67)

where C21 and C22 are given in Equations (54) and (55). Then the control effort ς can be designed

to achieve η → η2d and ν → ν2d . We omit the details here since this is just a standard feedback

linearization and pole assignment problem.

3.2 AUV Formation Dynamics

3.2.1 Formation Dynamics of AUVs

We consider a formation of N AUVs moving in a three-dimensional space. Jacobi shape theory

was used to study the shape of formation of particles [31] and AUVs in two-dimensional horizontal

plane [84]. Let η i
1 = [xi,yi,zi]

T denote the position of the i-th AUV in the earth-fixed frame, where

i = 1,2, ...,N, then the Jacobi vectors are defined by a linear transform Ξ that results in the following

equation:

[ρT
1 ,ρ

T
2 , ...,ρ

T
N−1,q

T
c ]

T = Ξ[(η1
1 )

T ,(η2
1 )

T , ...,(ηN
1 )

T ]T , (68)

where ρ j, j = 1,2, . . . ,N−1, are N−1 independent Jacobi vectors describing the geometric forma-

tion shape formed by N AUVs and qc is the formation center defined by qc =
1
N ∑

N
i=1 η i

1. The linear

transform Ξ is guaranteed to exist [31]. Our goal is to design a formation control to guarantee

ρ j→ ρ jd , ρ̇ j→ ρ̇ jd ,qc→ qcd , q̇c→ q̇cd , (69)
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where ρ jd is the desired value of the j-th Jacobi vector and qcd is the desired trajectory of the

formation center. The control goals (69) assures that the AUVs converge to the desired formation

and the formation center tracks the desired trajectory.

Take second-order derivatives on both sides of Equation (68), we get

[ρ̈T
1 , ρ̈

T
2 , ..., ρ̈

T
N−1, q̈

T
c ]

T = Ξ[(η̈1
1 )

T ,(η̈2
1 )

T , ...,(η̈N
1 )

T ]T . (70)

Substitute Equation (64) into Equation (70), and define state vector

X = [ρT
1 , . . . ,ρ

T
N−1,q

T
c ]

T , (71)

we obtain the formation dynamics as follows:

Ẍ = A([η i
2], [ν

i
2])Ẋ + Γ̃([η i

2])U, (72)

where

A([η i
2], [ν

i
2]) = ΞGΞ

−1, (73)

G = diag{G1(η
1
2 ,ν

1
2 ), ...,GN(η

N
2 ,ν

N
2 )}, (74)

Γ̃([η i
2]) = Ξdiag{H(η1

2 ), ...,H(ηN
2 )}, (75)

U =

[
(τ1

1 ) · · · (τN
1 )

]T

. (76)

3.2.2 Decoupling of the Formation Dynamics

We have shown that the formation dynamics are described by Equation (72), in which matrix A is

a nonlinear function of pi,qi,ri,φi,θi, and ψi, for i = 1,2, · · · ,N. We decompose A into two parts:

one part is a diagonal matrix, and other remaining part is viewed as a perturbation. Specifically, we

define Aλ = λe3N , where λ is a constant scalar and e3N is an identity matrix, and let

A([η i
2], [ν

i
2]) = Aλ +A∆([η

i
2], [ν

i
2]), (77)

then A∆ is viewed as a perturbation. We can find the value for λ such that the H-infinity norm of A∆

is bounded and minimized.

Since the angular speed of an AUV is small when the AUV is close to a steady state, we let

pi→ 0, qi→ 0, and ri→ 0, and find

G→G
′
. (78)
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See the details of G′
in Appendix C. As Xu

m−Xu̇
, Yv

m−Yv̇
, and Zw

m−Zẇ
in G′

are all negative, we select

λ = min(
Xu

m−Xu̇
,

Yv

m−Yv̇
,

Zw

m−Zẇ
), (79)

then the H-infinity norm of the perturbation term A∆ is minimized. Define σ2 = λmax(AT
∆

A∆), then

from Equations (73) and (74) and the expressions of the entries of G′
, we can see that σ is a function

of pi, qi, ri, and sine and cosine functions of θi, φi, and ψi. Because pi, qi, and ri are bounded as the

vehicle can not steer infinitely fast, and sine and cosine functions are also bounded, we conclude

that σ < ∞.

Note that the perturbation term A∆ is caused by asymmetries of an AUV. For AUVs with three

planes of symmetry, Xu̇ =Yv̇ = Zẇ and Xu =Yv = Zw, which will make G a constant diagonal matrix,

and then A = Aλ = Xu
m−Xu̇

e3N , therefore, A∆ = 03N , i.e., the perturbation term vanishes.

3.3 Robust Formation Controller Design

3.3.1 Formation System with Time Delay

Define Z = Ẋ and plug Equation (77) into Equation (72), we get Ẋ(t) = Z(t)

Ż(t) = Aλ Z +A∆([η
i
2], [ν

i
2])Z + Γ̃([η i

2])U.
(80)

Define error vectors Xe = X − Xd and Ze = Z − Zd , where Xd and Zd are desired values, and a

perturbation term W (t) = A∆Ze(t), we get Ẋe(t) = Ze(t),

Że(t) = Aλ Ze(t)+W (t)+µ(t),
(81)

where

µ(t) = Γ̃([η i
2])U(t)+Aλ Zd +A∆([η

i
2], [ν

i
2])Zd− Żd (82)

is the control we need to design, which will be a function of error vectors Xe and Ze. To compute Xe

and Ze, position and velocity information of all AUVs are needed. As it takes time for the controller

to get these information through communication links, the control effort is actually computed based

on delayed information, i.e., µ(t) is a function of Xe(t− h) and Ze(t− h). Here h is a time delay

satisfying 0≤ h≤ h∗ and ḣ = 0, where h∗ is the upper bound of the time delay. We rewrite Equation
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(81) as

˙̄X(t) = ĀX̄(t)+DW (t)+Bhµ(t)

Ze(t) = LX̄(t), (83)

where

X̄ =

[
XT

e ZT
e

]T

, Ā =

 0 e

0 Aλ

 , D = Bh =

 0

e

 , L =

[
0 e

]
. (84)

e is an identity matrix.

Suppose the time delay h satisfies 0≤ h≤ h∗ and ḣ = 0. Let the control law µ(t) = FX̄(t−h)

be designed where F = [k2, k1] The goal for the formation system (83) under control µ is to achieve

robust stability under the time delay h and the perturbation W (t).

For the robust stability design, given ‖A∆‖∞ < ∞, according to the Small Gain Theorem [88],

system (83) with perturbation W (t) is well-posed and internally stable for all A∆ ∈ RH∞ with

‖A∆‖∞ ≤ 1/γ if and only if ‖TZeW‖∞ < γ , where γ > 0, and TZeW is the closed-loop transfer function

matrix from W to Ze. Therefore, the following theorem provides a guidance on how to choose F to

achieve robust stability for time delay.

Theorem 1 The formation system (83) under control µ will be stable under bounded time delay

h ∈ [0,h∗], and the transfer function from W to Ze satisfies ‖TZeW‖ ≤ γ , where γ > 0, if the following

conditions hold:

(1) There exists a positive symmetry matrix Y1 = Y T
1 > 0 and scalars ε1 > 0,ε2 > 0,ε3 > 0, which

satisfy h∗ε3− γ2 < 0 and the matrix inequality:

Θ1 Y1ĀT Y1FT BT
h Y1LT

ĀY1 − 1
h∗ε1

e 0 0

BhFY1 0 − 1
h∗ε2

e 0

LY1 0 0 −e


< 0 (85)

where Θ1 = (Ā+BhF)Y1 +Y1(Ā+BhF)T +h∗(ε−1
1 + ε

−1
2 + ε

−1
3 )BhFFT BT

h + 1
γ2−h∗ε3

DDT .

(2) For any choice of the feedback gain F, there exists a positive symmetry matrix Y2 = Y T
2 > 0
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and scalars ε4 > 0,ε5 > 0, which satisfy the following LMI:
Θ2 Y2ĀT Y2FT BT

h

ĀY2 − 1
h∗ε4

e 0

BhFY2 0 − 1
h∗ε5

e

< 0 (86)

Where Θ2 = Y2(Ā+BhF)T +(Ā+BhF)Y2 +h∗(ε−1
4 + ε

−1
5 )BhFFT BT

h .

Proof The closed-loop system under delay can be converted to the following system by the ”time-

streching” transform [89]

˙̄X(t) = (A+BhF)X̄(t)−BhF{
∫ 0

−h
(AX̄(t +θ)+BhFX̄(t−h+θ)+DW (t +θ))dθ}+DW (t)

(87)

Let P = PT > 0. We define a Lyapunov-Krasovskii functional V [X̄(t)] as

V [X̄(t)] =X̄T (t)PX̄(t)+
∫ 0

−h

∫ t

t+θ

ε1[X̄T (s)ĀT ĀX̄(s)]dsdθ

+
∫ 0

−h

∫ t

t−h+θ

ε2[X̄T (s)FT BT
h BhFX̄(s)]dsdθ

+
∫ 0

−h

∫ t

t−h+θ

ε3[W T (s)DT DW (s)]dsdθ . (88)

Then take the time derivative of V [X̄(t)] along the trajectory of (87), we have

V̇ [X̄(t)] =X̄T (t)[P(A+BhF)+(A+BhF)T P]X̄(t)+W T (t)DT PX̄(t)+ X̄T (t)PDW (t)

−2X̄T (t)PBhF ·
{∫ 0

−h
(AX̄(t +θ)+BhFX̄(t−h+θ)+DW (t +θ))dθ

}
+hε1X̄T (t)AT AX̄(t)−

∫ 0

−h
ε1X̄T (t +θ)AT AX̄(t +θ)dθ +

∫ 0

−h
ε2[X̄T (t)FT BT

h BhFX̄(t)

− X̄T (t−h+θ)FT BT
h BhFX̄(t−h+θ)]dθ

+
∫ 0

−h
ε3[W T (t)DT DW (t)−W T (t +θ)DT DW (t +θ)]dθ .

Next we use the following inequality:

−2aT b≤ raT a+ r−1bT b

where a and b are vectors with compatible dimension and r > 0 is a positive real number. Apply this

inequality to terms −2X̄T (t)PBhF
∫ 0
−h AX̄(t + θ)dθ , −2X̄T (t)PBhF

∫ 0
−h BhFX̄(t − τ + θ)dθ , and
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−2X̄T (t)PBhF
∫ 0
−h DW (t+θ)dθ , we can then derive the following inequality for the time derivative

of V :

V̇ [X̄(t)]≤xT (t)[P(Ā+BhF)+(Ā+BhF)T P+h∗ε1ĀT Ā

+h∗ε2FT BT
h BhF +h∗(ε−1

1 + ε
−1
2 + ε

−1
3 )PBhFFT BT

h P]X̄(t)

+W T (t)DT PX̄(t)+ X̄T (t)PDW (t)+h∗ε3W T (t)DT DW (t) (89)

Next we construct the Hamilton-Jacobi equation to find a sufficient condition for ‖TZeW‖ ≤

γ . We define the Hamiltonian as H(X̄ ,W, t) = V̇ [X̄(t)] + ZT
e (t)Ze(t)− γ2W T (t)DT DW (t). Plug

Equation (89) into H(X̄ ,W, t), we get

H(X̄ ,W, t)≤X̄T (t)ΘX̄(t)+W T (t)DT PW (t)+ X̄T (t)PDW (t)

+h∗ε3W T (t)DT DW (t)− γ
2W T (t)DT DW (t)

=h̄T (t)Λ∗(P)h̄(t) (90)

where h̄(t) =
[

X̄T (t) W T (t)

]T

, Θ = P(Ā+BhF)+(Ā+BhF)T P+h∗ε1ĀT Ā+h∗ε2FT BT
h BhF +

h∗(ε−1
1 + ε

−1
2 + ε

−1
3 )PBhFFT BT

h P+LT L, and

Λ
∗(P) =

 Θ PD

DT P (h∗ε3− γ2)DT D

 (91)

We know that the system is robustly stable with a disturbance attenuation γ if H(X̄ ,W, t) < 0,

which is equivalent to Λ∗(P)< 0. This will imply h∗ε3− γ2 < 0 and the following algebraic Ricatti

inequality (ARI)

P(Ā+BhF)+(Ā+BhF)T P+h∗ε1ĀT Ā+h∗ε2FT BT
h BhF

+h∗(ε−1
1 + ε

−1
2 + ε

−1
3 )PBhFFT BT

h P+LT L+
1

γ2−h∗ε3
PDDT P < 0 (92)

Note that DT D = e and define Y1 = P−1. We premultiply and postmultiply (92) by Y1 and get the

following equivalent equation:

(Ā+BhF)Y1 +Y1(Ā+BhF)T +h∗ε1Y ĀT ĀY1 +h∗ε2Y1FT BT
h BhFY1

+h∗(ε−1
1 + ε

−1
2 + ε

−1
3 )BhFFT BT

h +Y1LT LY1 +
1

γ2−h∗ε3
DDT < 0. (93)
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According to the Schur Complement Theorem, the ARI (93) is equivalent to the following

matrix inequality: 

Θ1 Y1ĀT Y1FT BT
h Y1LT

ĀY1 − 1
h∗ε1

e 0 0

BhFY1 0 − 1
h∗ε2

e 0

LY1 0 0 −e


< 0 (94)

where Θ1 = (Ā+BhF)Y1 +Y1(Ā+BhF)T +h∗(ε−1
1 + ε

−1
2 + ε

−1
3 )BhFFT BT

h + 1
γ2−h∗ε3

DDT < 0.

Since the matrix inequality (94) only guarantee that TZeW ≤ γ , if we get the feedback matrix

F , we also need check whether F can guarantee the stability of the unperturbed formation system.

According the delay-dependent stability of time-delay system [90], we have the LMI (86).

Remark 1 Given this theorem, one would wish to solve the matrix inequality (85) for F and Y . But

this is not easy. The feedback gain matrix F and the unknown matrix Y both need to be computed.

But the matrix inequality is not linear, and can not be easily converted to a linear matrix inequality

(LMI) due to the term that contains FFT in Θ. This difficulty is caused by the time delay h∗. To

solve for the problem when h∗ > 0, one may make a guess for F and then try to solve for Y with LMI

tools. Note that simply making h∗ = 0 in (85) to find a guess for F will not work.

To find the gain F , we propose a procedure that contains two steps. First, we design k1 such that

µ ′(t) = k1Ze(t−h) robustly stabilizes the following velocity control subsystem:

Że(t) = Aλ Ze(t)+W (t)+µ
′(t) (95)

with delay-independent stability. Then, fix the k1, we search for k2 to robustly stabilize the full sys-

tem with delay-dependent stability. The first step is more conservative than necessary, but produces

easy to compute solutions. The second step is then used to achieve the final design.
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3.3.2 Velocity Controller Design

Theorem 2 Suppose the time delay h satisfies 0 ≤ h ≤ h∗ and ḣ = 0. Let P1 = PT
1 > 0 and P2 < 0

be solutions of the following linear matrix inequality (LMI):

Λ
∗
1 =


AT

λ
P1 +P1Aλ +Q+ e P2 P1

PT
2 −Q 0

P1 0 −γ2e

< 0. (96)

The control law µ ′(t) = k1Ze(t−h), where

k1 = P−1
1 P2 < 0, (97)

robustly stabilizes the formation velocity subsystem (95), i.e., ‖TZeW‖∞ < γ , where γ ≤ 1/‖A∆‖.

Proof Let the output of system (95) to be Ze. We define a Lyapunov-Krasovskii functional as

V1[Ze(t)] = ZT
e (t)P1Ze(t)+

∫ t

t−h
ZT

e (s)QZe(s)ds, (98)

where P1 = PT
1 > 0, Q = QT > 0, and a Hamiltonian function as

H(Ze,W, t) = V̇1[Ze(t)]+ZT
e (t)Ze(t)− γ

2W T (t)W (t), (99)

then we find the time derivative of the Lyapunov-Krasovskii functional as

V̇1[Ze(t)] =ZT
e (t)[A

T
λ

P1 +P1Aλ +Q]Ze(t)+ZT
e (t−h)KT P1Ze(t)

+ZT
e (t)P1KZe(t−h)−ZT

e (t−h)QZe(t−h)+W T (t)P1Ze(t)+ZT
e (t)P1W (t).(100)

therefore, by plugging V̇1[Ze(t)] into the Hamiltonian function, we get

H(Ze,W, t) =ZT
e (t)[A

T
λ

P1 +P1Aλ +Q]Ze(t)+ZT
e (t−h)KT P1Ze(t)

+ZT
e (t)P1KZe(t−h)−ZT

e (t−h)QZe(t−h)+W T (t)P1Ze(t)

+ZT
e (t)P1W (t)+ZT

e (t)Ze(t)− γ
2W T (t)W (t)

=h̄T
1 (t)Λ

∗
1h̄1(t), (101)

where h̄1(t)
.
=

[
ZT

e (t) ZT
e (t−h) W T (t)

]T

and

Λ
∗
1
.
=


AT

λ
P1 +P1Aλ +Q+ e P1K P1

KT P1 −Q 0

P1 0 −γ2e

 . (102)
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Let P1 = PT
1 > 0, P2 = P1K < 0 and Q = QT > 0 are feasible solutions for Λ∗1 < 0, then H(Ze,W, t)<

0. And H(Ze,W, t)< 0 implies that ‖TZeW‖∞ < γ , where γ ≤ 1/‖A∆‖∞.

3.3.3 Position Controller Design

The velocity subsystem with perturbations is robustly stable under control µ ′(t) = k1Ze(t− h) for

arbitrary bounded delays. Fixing k1, we design k2, such that µ(t) = k1Ze(t− h)+ k2Xe(t− h) can

achieve the control goals for the full system. We choose k2 as a negative definite symmetric matrix

and then check whether we can find Y,ε1,ε2, and ε3 from (85). Since F is known, the inequality

(85) becomes and LMI that can be easily solved. Also, since k1 is fixed, searching for k2 is quite

straightforward.

Note that the first 3(N−1) elements of control signal µ control the formation shape and the last

3 elements control the formation center trajectory. If the desired formation is constant, i.e., ρ̇ jd = 0

for j = 1,2, ...,N− 1, the first 3(N− 1) elements of A∆([η
i
2], [ν

i
2])Zd vanish. In addition, the first

3(N−1) elements of Aλ Zd and Żd also vanish. Therefore, there is no extra energy spent to achieve

feedback decoupling for the formation shape dynamics. For the formation center control, since q̇cd

is usually not zero, energy is required to cancel the last 3 elements of A∆([η
i
2], [ν

i
2])Zd .

Following this approach, controllers implemented on each AUV has an inner-outer-loop struc-

ture, shown in Figure 19. The orientation control system is the inner loop, where the orientation

of each AUV is driven to a desired value, and the controlled steering dynamics is much faster than

translational dynamics. In the outer loop, the formation control signal is computed in Jacobi co-

ordinate according to positions and velocities of all AUVs, and implemented through an invertible

transformation.

3.4 Simulation

To demonstrate the effectiveness of the proposed controllers, we carry out simulations for a group

of six AUVs, the parameters of which are listed as follows [70, 71].

m = 200kg,Xu =−70,Yv =−100,Zw =−50,Xu̇ =−62.5,Yv̇ =−70,

Zẇ =−50,Kp =−0.8,Mq =−0.9,Nr =−0.4,Kṗ =−200,Mq̇ =−350,

Nṙ =−500, Ix = 203Nms2, Iy = 587Nms2, Iz = 687Nms2.
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Figure 19: Block diagram for AUV formation control system

The time delay is assumed to be h∗ = 0.5s.

The simulation is to show six AUVs tracking a sinusoidal line and keeping a hexagon shape.

Initial AUV positions are randomly generated in the following interval: x ∈ (−10m,10m), y ∈

(−10m,10m), z ∈ (30m,50m). The desired formation center trajectory is (5t,0,40+ 5sin t). The

initial Euler angles of all AUVs are randomly generated around 0.1π and their desired value are

η2d = [0.3,0.1sin t,0.1cos(2t)]T . Jacobi vectors are defined as

ρ1 =
1√
2
(η2

1 −η
1
1 ), ρ2 =

1√
2
(η3

1 −η
4
1 ), ρ3 =

1√
2
(η5

1 −η
6
1 ),

ρ4 =
1
2
(η4

1 +η
3
1 −η

1
1 −η

2
1 ), ρ5 =

1
4
(η1

1 +η
2
1 +η

3
1 +η

4
1 −2η

5
1 −2η

6
1 ), (103)

and are desired to converge to the following values,

ρ1→ [0,15,0]T , ρ2→ [0,−15,0]T , ρ3→ [0,0,20]T ,ρ4→ [0,0,−15]T , ρ5→ [0,0,0]T , (104)

which implies that the desired formation shape is a hexagon. During the simulations, a 0.01s time

step is used.

To illustrate the effectiveness of both formation controller and orientation controller, we plot the

simulation results in Figures 20, 21, and 22. In Figure 20, we plot the trajectories of the six AUVs

in black and the trajectory of the formation center in green. The red line is the desired formation

center trajectory. We can see that the formation center trajectory converges to the desired sinusoidal

curve. We connect the AUV positions with blue lines to highlight the formation shape, which we
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Figure 20: Trajectory and formation of six AUVs.

can see agrees with the desired hexagon. The vertexes of the hexagon are highlighted by yellow dots

to show the formation shape. Now Figure 20 suggests that under the formation control, the AUVs

form the desired formation and keep this formation while they move along the desired trajectory.

To give a close look at the convergence of the Jacobi vectors, we take ρ2 as an example and plot it

in Figure 21, from which we can see that components of ρ2 converge to their desired values. Other

Jacobi vectors also converge to their desired value. To illustrate the convergence of Euler angles of

all AUVs, we take yaw angles as an example and plot them in Figures 22, where six colors are used

to differentiate the yaw angles for different AUVs. From Figure 22 we can see that the yaw angles

all converge to the desired value, i.e., 0.1cos(2t)rad as defined in η2d , in about 2 seconds. The roll

and pitch angles of all AUVs have the same convergence results. From all the simulation results we

can see that our controllers drive each AUV to desired orientation, drive the group of six AUVs to

the desired hexagon formation while driving the formation center to the desired sinusoidal curve.

3.5 Conclusions

This chapter presents a robust formation controller design method for AUVs to achieve delay-

dependent robust stability. A decoupled design approach is followed to reduce the complexity of
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Figure 21: Jacobi vector ρ2 (ρ2d = [0,−15,0]T )

Figure 22: Yaw angles of six AUVs.

the formation control problem caused by 6DOF single AUV dynamics. The Jacobi transform plays

an important role to decompose formation shape dynamics and formation center dynamics, so that

a simple control design can be pursued.
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CHAPTER IV

COOPERATIVE CONTROL OF A HUMAN-AUV SYSTEM

Human and robots are often need to collaborate and interact. As illustrated in [46], a set of semi-

autonomous ground vehicles commanded by a human soldier would greatly enhance the militarys

flexibility for a range of high-risk scenarios. A group of autonomous underwater vehicles (AUVs)

and a human-driven underwater vehicle (HUV) are also often required to collaborate. For example,

when an HUV is working on a task that can be performed only under the high intelligence of human,

a group of AUVs equipped with tools and devices need to be in specified positions relative to the

HUV to assist the human operator. Another example is a situation where an HUV needs to be in

some particular position relative to each AUV while they follows a specified path together, so that

the human operator of the HUV can acquire most safety. In both cases, the HUV and AUVs need

to collaborate by forming a desired formation while moving along a desired trajectory as a team. In

our work, we study a system comprised of an HUV and a group of AUVs (Human-AUV system)

and focus on cooperative controller design that enables the system to perform formation behavior

and execute a curve tracking task.

In human-robot collaboration and interaction, which is an important and growing field ( [37–

48]), safety of human is an important issue, many results are reported in the literature. For ex-

ample, in [37] an integrated human-robot strategy to ensure the safety of the human participant is

proposed. Using factors influencing the impact force during a human-robot collision, such as the

effective robot inertia, the relative distance and velocity between the robot and the human, the level

of danger is estimated and used to select a coordinated suite of safety strategies, which make actions

of the robot safer and less stressful for the human involved. In [38], an integrated motion synthesis

framework designed especially for a robot that interacts with humans is proposed. The framework is

composed of Perspective Placement, Human Aware Manipulation Planner and Soft Motion Trajec-

tory Planner, and takes into account human’s safety so that the motion of robot is safe to a human. In

addition to the safety planning for robots, there are also results in the literature on human’s response
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in human-robot interaction. In [39], it is shown that hesitation trajectories embodied in an articulat-

ed robot arm can be recognized by human observers. In [40], human’s emotional arousal is studied

based on experiments. Inspired by these work, we consider both the human’s response to robots

and safety planning of robots in this chapter. Assuming the human operator knows the task of the

entire human-AUV system and the role of the HUV in the system, we define an attention function

for the human operator to capture the human’s response to other vehicles. The attention function

is based on the distance between the HUV and AUVs, which is shown related to the safety of the

human operator [37]. Based on the attention function, we build a model to describe the motion of

an HUV, with which AUVs will be able to predict HUV motions and better interact with the HUV.

In this chapter, the safety of the human operator of the HUV is ensured during the controller design,

which takes into account constraints of human’s attention to avoid scaring the human operator, as

well as a mechanism to avoid collisions between the HUV and AUVs.

During the last decade, significant developments have been achieved in formation control of

multi-agent systems ( [49–55]). In those developments, a common underlying assumption is that

the agents in the formation system need to share a common coordinate system, or need to know what

coordinate systems other vehicles are using, which requires communications between vehicles. This

assumption is difficult to implement to the human-AUV system, as it is not not appropriate to as-

sume that an AUV can estimate to know the coordinate system the human operator is using. In

addition, communication between underwater vehicles usually relies heavily on acoustic systems

and is plagued with limited communication bandwidth, intermittent failures, latency and multi-path

effects. Therefore, we are seeking a cooperative control method so that controllers for each AU-

V do not rely on frequent communication, but depends only on its sensor measurements, such as

the relative positions, velocities, and accelerations of other vehicles, in its own coordinate system.

In [31, 91–93], the authors model the entire formation, which is comprised of a group of free parti-

cles, as a deformable body. In this work, we use the same methodology to model and decouple the

collective dynamics of the Human-AUV system. We apply geometric reduction theory to explicitly

decompose the collected motion dynamics of all vehicles into dynamics for the center, the orien-

tation and the shape of the deformable body, so that we can separately take care of the formation

center, orientation, and formation shape. We design a gauge invariant formation control law, so
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that the control is the same under different gauge convention. This allows each AUV freedom to

choose its own coordinate freedom without knowing the coordinate systems used by other vehicles.

In addition, the control calculated by each AUV depends only on its measurements of positions, ve-

locities, and accelerations of other vehicles. During the formation shape controller design, we have

incorporated mechanisms to avoid scaring the human operator and also to avoid collision between

vehicles.

After the collective dynamics decomposition, the formation center can be treated as a free parti-

cle and controlled by a curve tracking controller. We have found that some curve tracking techniques

for 2 degree-of-freedom smooth curves, including smooth planar curves ( [56, 57]) and smooth

curves constrained to a sphere surface ( [58]), can be extended to apply to a 3 degree-of-freedom

smooth curve, i.e., any smooth curve in 3D space. Based on those technologies, in this chapter we

develop a curve tracking controller to enable a free particle to track any smooth curve in 3D space,

and use it to control the formation center.

The remainder of this chapter is organized as follows. Section 4.1 introduces the dynamics of

AUVs and an HUV. In Section 4.2, we decouple the collected dynamics into a formation center,

a formation shape, and a formation orientation. In Section 4.3, we design a curve tracking con-

troller for the formation center to track any smooth curve in 3D space. In Section 4.4, we design

the formation shape and orientation controller to enable the human-AUV system to converge to a

desired formation shape. An example for a system comprised by one HUV and two AUVs and the

corresponding simulation results are presented in Section 4.5. We give the conclusion in Section

4.6.

4.1 Vehicle Dynamics

For a system comprised of one HUV and N−1 AUVs, we use r1, ...rN−1,rh to denote the positions

of all the vehicles, where subscript h indicates the HUV with mass mh and subscripts 1, ...,N− 1

indicates the N−1 AUVs. The mass of the i-th AUV is mi.
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4.1.1 AUV dynamics

We use fi to denote the force applied on the the i-th AUV, where i = 1, ...,N−1, then Newton’s law

suggests that

mir̈i = fi. (105)

Here we use (̈) to denote the second order derivative of the variable in the parenthesis with respect

to time, i.e., d2

dt2 (). Similarly, we will use (̇) to denote d
dt ().

4.1.2 HUV dynamics

For HUV, we also apply Newton’s law and get

fh = mhr̈h. (106)

Here fh is the force applied on the HUV and r̈h is the acceleration of the HUV. Unlike forces

applied on AUV, i.e., fi, i = 1, ...,N− 1, which are control forces calculated by our controller and

implemented by each AUV, the forces applied on HUV, i.e., fh, is the result of the HUV acceleration,

which is adjusted by the human operator. We assume the human operator of the HUV knows the

desired formation all the vehicles need to form and pays attention to AUV motions when cooperates

with AUVs. To form the desired formation with AUVs while moving with them as a team, the

human operator has to drive the vehicle in a way so that the HUV tracks the movements of AUVs

and meanwhile adjusts its position relative to the AUVs. Therefore, the acceleration of the HUV

can be decomposed into two parts: one part, denoted by (r̈h)1, generates the motion to follow all

AUVs, the other part, denoted by (r̈h)2, adjust position of the HUV relative to AUVs. Therefore,

r̈h = (r̈h)1 +(r̈h)2. (107)

It’s reasonable to assume

(r̈h)1 =
∑

N−1
i=1 r̈i

N−1
. (108)

It’s easy to see that in transient state, the HUV is operated to track the average acceleration of all

AUVs, and in steady state, (r̈h)1 will be the same as acceleration of each AUV, as the acceleration

of all AUVs will be identical in steady state under our control law.
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When cooperate with AUVs, the human operator of HUV pays attention to AUVs. It is reason-

able to assume that the human operator will pay more attention to an AUV if the AUV is closer to

the HUV, and pay less attention to the AUV if the AUV is further from the HUV. To describe this

property, we define the following attention function Ai to describe how much attention the human

operator pays to the i-th AUV:

Ai =
Ai0li0

li
(109)

where li is the distance between the HUV and the i-th AUV. li0 and Ai0 are constant parameters. li0

is the distance in desired formation and Ai0 is the attention when li = li0.

Attention is related to how closely the HUV operator is watching an AUV. An attention around

0 means that the human operator is uninterested in the AUV or does not notice the AUV. As the

attention increases, the human operator of the HUV will be interested in the AUV and goes towards

the AUV, and a bigger attention will cause a bigger acceleration towards the AUV. If the attention

is very large, the human operator of the HUV will be fearful of the AUV and go away from it.

To describe this property, we define a relative acceleration of the HUV towards the i-th AUV as

following:

ai = kiAi(Ai0−Ai)
ri− rh

‖ri− rh‖
. (110)

Here ‖ · ‖ is the magnitude of a vector, so ri−rh
‖ri−rh‖ specifies the direction of the relative acceleration,

which is pointing to the i-th AUV from the HUV. The term kiAi(Ai0−Ai) gives the magnitude

of the relative acceleration, where ki is a positive scalar. Note that when Ai = Ai0, i.e., when the

distance between the HUV and the i-th AUV is the same with the one in desired formation, ai = 0,

which means the relative acceleration of the HUV towards the i-th AUV is zero, so they will stay at

the desired formation. To avoid scaring of the human operator of the HUV, the attention function

Ai of the human operator can not be too large, so we assume

Ai < Ai,max. (111)

need to be satisfied all the time. To form and keep the desired formation, the human operator will

adjust HUV position through the relative HUV acceleration to all AUVs, so we assume

(r̈h)2 =
N−1

∑
i=1

ai. (112)
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The acceleration (r̈h)2 will adjust the position of the HUV until all vehicles are in the desired

formation. It’s easy to see (r̈h)2 = 0 in desired formation, i.e., (r̈h)2 vanishes in steady state.

We can see that the motion of the HUV depends on the motion of the AUVs, while the motion of

the AUVs is controlled by the forces applied on them that we will design in the following sections.

Given the dependency of HUV motions on AUV motions we just formulated, our objective is to

control the forces applied on AUVs, so that the HUV and AUVs form a desired formation and the

formation center tracks a desired smooth curve in 3D space, while the distance between vehicles

is keeping above some thresholds to avoid vehicle collisions and attentions of the human operator

are keeping below some thresholds to avoid human being scared. As we assume no communication

between vehicles and each vehicle use its own coordinate system, the designed control force for

each vehicle will be based on only sensor measurements from that vehicle in its own coordinate

system.

4.2 Collective Dynamics Decomposition

In this section, we decouple the collective dynamics of the human-AUV system. First, by the

Jacobi transform [31], the formation shape and orientation dynamics can be decoupled from the

dynamics of the center of the formation. We view the entire formation as a deformable body.

Let M = mh +∑
N−1
i=1 mi, then the center of mass is qc =

mhrh+∑
N−1
i=1 miri

M , which describe the position

of the entire formation and does not affect the formation shape or orientation. Then the N − 1

independent Jacobi vectors (ρ f i, i= 1, ...N−1) defined below make the kinetic energy of the cluster,

originally expressed as Ktot = 1
2 ∑

N−1
i=1 mi‖ṙi‖2 +mh‖ṙh‖, block diagonalized as Ktot = 1

2 M‖q̇c‖+
1
2 ∑

N−1
i=1 ‖ρ̇ f i‖2.

[rc,ρ f 1, ...,ρ f (N−1)] = [r1,r2, ...,rN−1,rh]Φ (113)
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where the linear invertible transform Φ is called Jacobi transform, expressed as a (3N×3N) matrix.

The Jacobi transform Φ is guaranteed to exist. One implementation is

Φ =



Φ11 Φ12 . . . Φ1N

...
...

...
...

Φi1 Φi2 . . . ΦiN

...
...

...
...

ΦN1 ΦN2 . . . ΦNN


(114)

Φi1 =
mi

M
e3 (i = 1,2, ...N)

Φii =
√

µi−1e3 (i > 1)

Φi j =−
√

µ j−1
mi

∑
j−1
k=1 mk

e3 ( j > 1; i < j)

Φi j = 03×3 ( j > 1; i > j)

(115)

where e is an identity matrix with dimension specified by the subscript, and

1
µi

=
1

∑
i
k=1 mk

+
1

mi+1
for i = 1,2, ...N−1. (116)

Let R3N be the total configuration space of a formation of N particles in 3D space. After the

coordinate of the center rc is removed, the space of the Jacobi coordinates is R3N−3. Since the shape

of the formation is independent of its orientation, we can view this symmetry as induced by the

rigid rotation group SO(3) acting on R3N−3 to the left as gρ f i for g ∈ SO(3) and j = 1,2, ...N−1.

After the rotational symmetry is removed from the Jacobi coordinates, we can use 3N− 6 scalar

variables, called shape variables, to describe a shape. The shape variables s j for j = 1,2, ...,(3N−6)

are rigid motion invariant. Candidates for s j are functions of dot products (ρ f i · ρ f k) and triple

products (ρ f i · (ρ f k ·ρ f l)), thus, mutual distances, mutual angles, areas and volume formed by the

line segments connecting the particles all serves as candidates for shape variables [31]. For a given

shape s = [s1,s2, ...,s3N−6], we can measure its orientation by attaching a body coordinate system to

the formation, and obtain a group element g ∈ SO(3) as following:

g =


cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ

sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ

−sθ cθsφ cθcφ


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Here, s· = sin(·) and c· = cos(·). φ , θ , and ψ represent the Euler angles for roll, pitch, and yaw,

respectively. Now the Jacobi vectors in the body coordinate system, defined as

ρi = gρ f i, (117)

are vector valued function of the shape variables s only. Then we can get ρ f i = g(Ω× ρi +

∑
3N−6
j=1

∂ρi
∂ s j

ṡ j).

Using transforms in Equations (113) and (117), we can decouple the collective dynamics of all

the vehicles into formation center dynamics, formation shape dynamics and orientation dyanmics,

in the following three equations [31]:

Mr̈c = uc (118)

d
dt
(Iϒ) =−Ω× Iϒ+ug (119)

d
dt
(Gṡ)+AT d

dt
(Iϒ) =

1
2
[
∂ I
∂ s

]∗ : (ϒ,ϒ)+([
∂A)

∂ s
]∗− [

∂A
∂ s

]) : (ṡ, Iϒ)+
1
2
[
∂G
∂ s

]∗ : (ṡ, ṡ)+us (120)

where

I(s) =
N−1

∑
i=1

(‖ρ1‖2e−ρiρ
T
i )

A j(s) = I−1
N−1

∑
i=1

ρi×
∂ρi

∂ s j

A = [A1,A2, ...,A3N−6]

G jk =−AT
j IAk +

N−1

∑
i=1

∂ρT
i

∂ s j

∂ρi

∂ sk

ϒ = Ω+
3N−6

∑
i=1

A j ṡ j

J = Iϒ

(121)

The control on formation center, formation shape, and orientation, i.e., uc, us, and ug, respectively,

have the following one-one correspondence with forces applied on the vehicles, i.e., f1,...,fN−1, fh.

f1

...

fN−1

fh


= Φ



uc

u f1

...

u fN−1


, (122)
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and

ug =
N−1

∑
j=1

ρ j×g−1u f j ,

usk =
N−1

∑
j=1

(
∂ρ j

∂ sk
)T ×g−1u f j .

(123)

Equation (123) is equivalent to

 ug

us

= Ψ


u f1

...

u fN−1

 (124)

where

Ψ =



ρ̂1g−1 ρ̂2g−1 . . . ρ̂N−1g−1

∂ρ1
∂ s1

T
g−1 ∂ρ2

∂ s1

T
g−1 . . . ∂ρN−1

∂ s1

T
g−1

∂ρ1
∂ s2

T
g−1 ∂ρ2

∂ s2

T
g−1 . . . ∂ρN−1

∂ s2

T
g−1

...
... . . .

...

∂ρ1
∂ s3N−6

T
g−1 ∂ρ2

∂ s3N−6

T
g−1 . . . ∂ρN−1

∂ s3N−6

T
g−1


(125)

and (̂·) denotes the skew symmetric matrix representation of vector (·), i.e., for vector ω
.
= [ω1,ω2,ω3],

ω̂
.
=


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

.

Equations (122) and (124) can be combined into

f1

...

fN−1

fh


= Γ


uc

ug

us

 (126)

where

Γ = Φ

 e3 03×(3N−3)

0(3N−3)×3 Ψ−1

 . (127)

Writing Γ in matrix blocks as Γ
.
=

 Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

, where Γ11, Γ12, Γ13, Γ21, Γ22, and Γ23 are

(3N−3)×3, (3N−3)×3, (3N−3)× (3N−6), 3×3, 3×3, and 3× (3N−6) matrix blocks of Γ,
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respectively, we can get 
f1

...

fN−1

= Γ11uc +Γ12ug +Γ13us (128)

fh = Γ21uc +Γ22ug +Γ23us (129)

Now we can see that if we can design formation center control uc, formation shape control us, and

formation orientation control ug under constraint in Equation (129), the forces applied on each AUV

can be calculated according to Equation (128). Note Γ22 is not invertible in general, so we cannot

solve ug as a function of uc, us, and fh, and then plug it into Equation (128) to calculate the forces

applied on each AUV. In other words, uc and us are coupled, so if an arbitrary force applied on the

HUV, we cannot achieve formation shape control and curving tracking control for the formation

center at the same time. They can be achieved at the same time only when the human operator of

the HUV is notified the required tasks and cooperates with AUVs.

Assuming the human operator of the HUV knows the desired formation all the vehicles need to

form and pays attention to AUV motions, we assumed the HUV dynamics in Equation (107), (108),

and (112). Plug Equation (105) into (108), we get (r̈h)1 =
f1+···+fN−1

N−1 . According to Equations (113)

and (117), and the fact that ρi, i.e., the Jacobi vectors in the body coordinate system, is a vector

valued function of the shape variables s only, (r̈h)2 in Equation (112) is converted to a function of

only the shape variable s and the orientation g, denoted by

(r̈h)2 = χ(s,g). (130)

We will give χ for an example system comprised of one HUV and two AUVs in Section 4.5. Now

the HUV dynamics is rewritten as

fh =
f1 + · · ·+ fN−1

N−1
+χ(s,g). (131)

From Equation (113), we have

uc =
f1 + · · ·+ fN−1 + fh

N
. (132)

In addition, its easy to calculate Γ21 in Equations (126) and (129) and get

Γ21 =
1
N

e3 (133)
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Plug Equations (132), (133), and (131) into Equation (129), we get Equation (129) is equivalent to

Γ22ug +Γ23us−
N−1

N
χ(s,g) = 0 (134)

In next two chapters, we will design uc to drive the formation center to desired trajectory, and

design us and ug under the constraint in Equation (134) to drive the formation shape to a desired

one. Once we design uc, us, and ug, the forces applied on each AUV can be calculated according to

Equation (128).

4.3 Curve Tracking Controller for Formation Center

In the previous section, the formation center is decoupled from the formation shape and orientation,

so that we can view the formation center as a free particle. In this section, we design a curve tracking

control law for the formation center, and the control law enables a free particle to track any arbitrary

smooth curve in the 3D space.

We adopt the natural Frenet frame to describe any smooth curve in 3D space. Since we only care

about the shape of a 3D curve, we assume it is a unit-speed curve, i.e., ‖dr
dt ‖= 1, where r denotes a

point on the curve. Define X to be the unit tangent vector, i.e., X = dr
dt , Y and Z to be unit vectors

that make (X,Y,Z) a right-handed orthonormal frame, the natural Frenet frame representation of a

3D curve is as follows: 
Ẋ

Ẏ

Ż

=


0 ṽ ũ

−ṽ 0 0

−ũ 0 0




X

Y

Z

 , (135)

where ũ and ṽ are natural curvatures. Unlike the Frenet-Serret frame, which can not frame a curve

with ‖d2r
dt2 ‖ = 0, the above natural Frenet frame can describe any smooth curve in 3D space. Note

that the natural Frenet frame of a curve is not unique. For a curve with ‖d2r
dt2 ‖= 0, we have ũ = 0 and

ṽ = 0, and any unit vectors Y and Z that make (X,Y,Z) a right-handed orthonormal frame will be

valid. For a curve with ‖d2r
dt2 ‖ 6= 0, a family of valid Natural Frenet frames can be determined from

the unique Frenet-Serret frame representation. The implementation is provided in Appendix D.

Using the above Natural Frenet frame representation, we can describe any smooth curve in 3D

space a particle needs to track. In similarly way, we can describe the actual trajectory of the particle.
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We list them below:

ṙc = Xc (136)

Ẋc = ṽcYc + ũcZc (137)

Ẏc =−ṽcXc (138)

Żc =−ũcXc (139)

ṙ = X (140)

Ẋ = ṽY+ ũZ (141)

Ẏ =−ṽX (142)

Ż =−ũX (143)

The first four equations with all terms subscripted by “c” belongs to the free particle, and last four

equations with all terms having no subscript belongs to the desired curve the particle is going to

track. rc denotes the trajectory of the free particle and r denotes the closest point on the desired 3D

curve to the free particle.

We define ρ as the closest distance between the formation center and the curve it tracks, and

define l as the displacement from the formation center to the 3D curve, i.e., l = rc−r, then ρ = ‖l‖.

We define θ̃ is the angle between X and Xc. We will design control law uc and vc for the particle so

that its trajectory converges to the desired one, i.e., ρ → 0 and θ̃ → 0

As X, Y, and Z are orthonormal basis of R3, we can express Ẋc by linear combination of X, Y,

and Z as

Ẋc = aX+bY+ cZ. (144)

From Equation (137) we get

ũc = Ẋc ·Zc (145)

ṽc = Ẋc ·Yc (146)

Therefore, ũc and ũc can be express as

ũc = aX ·Zc +bY ·Zc + cZ ·Zc, (147)

ṽc = aX ·Yc +bY ·Yc + cZ ·Yc. (148)
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The design of ũc and ṽc becomes finding the parameters (a,b,c.)

Define g1 = [X,Y,Z] and g2 = [Xc,Yc,Zc]. From the fact that (gT
1 g2)(gT

1 g2)
T = e, we get

(X ·Yc)
2 +(X ·Zc)

2 = 1− (X ·Xc)
2,

Y ·YcX ·Yc +Y ·ZcX ·Zc =−Y ·XcX ·Xc,

Z ·YcX ·Yc +Z ·ZcX ·Zc =−Z ·XcX ·Xc. (149)

From Equations (147) and (148), we obtain

d
dt
(cos θ̃) =

d
dt
(X ·Xc)

=Ẋ ·Xc +X · Ẋc

=(ṽY+ ũZ) ·Xc +X · (ṽcYc + ũcZc)

=ṽY ·Xc + ũZ ·Xc + Ẋc ·YcX ·Yc + Ẋc ·ZcX ·Zc

=ṽY ·Xc + ũZ ·Xc +a[(X ·Yc)
2 +(X ·Zc)

2]

+b[Y ·YcX ·Yc +Y ·ZcX ·Zc]

+ c[Z ·YcX ·Yc +Z ·ZcX ·Zc].

Applying properties in Equation (149), we get

d
dt
(cos θ̃) =ṽY ·Xc + ũZ ·Xc +a[1− (X ·Xc)

2]−bY ·XcX ·Xc− cZ ·XcX ·Xc. (150)

Later we will use this term to construct Lyapunov function for the curve tracking controller design.

As r is the closest point, which leads to l ·X = 0 (otherwise, ρ will decrease with rate l ·X if the

formation center goes in either X or −X direction, in other words, ρ is not shortest distance and r

is not the closest point), or equivalently

l · ṙ = 0. (151)

In addition, ρ = ‖l‖, which is equivalent to ρ = (l · l) 1
2 , leads to

2ρρ̇ = 2l · l̇ = 2l · (ṙc− ṙ). (152)

Equations (151) and (152) lead to

2ρρ̇ = 2l · ṙc. (153)
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As X, Y, and Z are orthonormal basis of R3, we can express l by linear combination of X, Y, and

Z, i.e., l = (l ·X)X+(l ·Y)Y+(l ·Z)Z, which simplifies to the follow equation because of the fact

l ·X = 0:

l =
d
2

Y+
e
2

Z, (154)

where

d .
= 2l ·Y, (155)

e .
= 2l ·Z. (156)

Now Equation (154) further simplifies 2ρρ̇ in Equation (153) to

2ρρ̇ = dY ·Xc + eZ ·Xc. (157)

Equation (157) will be used to construct Lyapunov function for the curve tracking controller design

later.

Define the following Lyapunov candidate function

V1 =− ln(cos θ̃)+ρ
2, (158)

where the first term aims to align the moving direction of the particle with the tangent direction of

the desired curve, the second term serves to control the particle to go to and stay on the desired

curve. Take derivative of the Lyapunov candidate function V1, we get then

V̇1 =−
1

X ·Xc
(Ẋ ·Xc +X · Ẋc)+2ρρ̇ (159)

Applying Equations (150) and (157), we get

V̇1 =(
−v

X ·Xc
+b+d)Y ·Xc +(

−u
X ·Xc

+ c+ e)Z ·Xc +
−a(1− (X ·Xc)

2)

X ·Xc
(160)

Choose

a = k3X ·Xc(1−X ·Xc) (161)

b =
v

X ·Xc
−d (162)

c =
u

X ·Xc
− e (163)
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and plug them into ũc and ṽc, we get

ũc = k3(X ·Xc)(1−X ·Xc)(X ·Zc)+(
ṽ

X ·Xc
−d)(Y ·Zc)+(

ũ
X ·Xc

− e)(Z ·Zc),

ṽc = k3(X ·Xc)(1−X ·Xc)(X ·Yc)+(
ṽ

X ·Xc
−d)(Y ·Yc)+(

ũ
X ·Xc

− e)(Z ·Yc). (164)

Plug a, b, and c into Equation (160), we get

V̇1 =−k3(1− (X ·Xc)
2)(1−X ·Xc)≤ 0, (165)

Theorem 3 Under control law (164), given θ̃ ∈ (−π

2 ,
π

2 ) initially, trajectory of the particle in Equa-

tions (136-139) converges to the desired 3D curve in Equations (140-143), i.e., ρ → 0 and θ̃ → 0.

Proof Consider the closed-loop dynamics described by Equations (136-143) and (169). According

to Equation (165), V̇1 = 0 leads to X ·Xc = ±1, i.e., θ̃ = 0 or θ̃ = π . Later we will show that if

θ̃ ∈ (−π

2 ,
π

2 ) holds initially, it holds at any time instance. Therefore, only X ·Xc = 1, i.e., θ̃ = 0, is

valid. As X and Xc are both unit vectors, X ·Xc = 1 is equivalent to X = Xc. Now by comparing X

and Xc in Equations (141) and (144), respectively, we get aX+bY+ cZ = ṽY+ ũZ, therefore

a = 0, (166)

b = ṽ, (167)

c = ũ. (168)

Plugging X ·Xc = 1 into Equation (161), we can see a = 0, i.e., Equation (166) always holds. Plug

Equation (167) into Equation (162), we obtain d = 0. Plug Equation (168) into Equation (163) we

obtain e = 0. Plug d = 0 and e = 0 into l in Equation (154), we get l = 0, which suggests ρ = 0.

In summary, V̇1 = 0 leads to θ̃ = 0 and ρ = 0. By Lasalle’s invariance principle, the state variables

converge to the maximal invariant set where V̇1 = 0 is satisfied, and in this invariant set ρ = 0 and

θ̃ = 0.

Note: given θ̃ ∈ (−π

2 ,
π

2 ) initially, the Lyapunov function V1 is finite initially. We also showed

that V̇1 ≤ 0 and V1 ≥ 0, therefore V1 is finite at any time instance. It suggests that θ̃ will never cross

−π

2 or π

2 , otherwise V1→∞ will occur. In other words, if θ̃ ∈ (−π

2 ,
π

2 ) holds initially, it holds at any

time instance.
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Based on the above 3D curve tracking control law, the formation center control force uc in

Equation (118) can be calculated by plugging Equations (164) and (137) into (118), so

uc = M(ṽcYc + ũcZc) (169)

where ũc and ṽc are defined in Equation (164).

4.4 Formation Controller

In this section, we develop the formation control to drive the vehicles to desired formation shape.

We define the shape variables s = [s1,s2, ...s3N−6] according to Section 4.2, and define their desired

value as sd = [s1,d ,s1,d , ...s3N−6,d ], then attention function depends only on the shape variables, i.e.,

Ai = Ai(s), (170)

and the constraint in Equation (111) can be converted to an equivalent constraint on shape variables,

i.e., s ≥ s1
min. To avoid collisions between the vehicles, the relative distances between vehicles

have to be greater than a safety threshold, which can also be converted to constrains on the shape

variables, so s≥ s2
min. Define smin = max(s1

min,s2
min)

.
= [s1,min,s2,min, ...,s3N−6,min], then

s≥ smin (171)

need to be satisfied all the time.

Now we introduce the following Lyapunov candidate function

V2 =
1
2

ṡT Gṡ+
3N−6

∑
i=1

hi(si) (172)

where hi is a bowl-shape function satisfying the following conditions:

• hi(si)≥ 0 and hi(si) = 0 if and only if si = sid

• hi(si,min)→+∞ and hi(+∞)→+∞,

• d
dsi

hi(si) = 0 if and only if si = sid
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From Equations (120) and (119), we get

d
dt
(
1
2

ṡT Gṡ) = ṡT (−AT d
dt
(Iϒ)+

1
2
[
∂ I
∂ s

]∗ : (ϒ,ϒ)+([
∂A)

∂ s
]∗− [

∂A
∂ s

]) : (ṡ, Iϒ)+us)

= ṡT (AT (ϒ−As)× Iϒ+
1
2
[
∂ I
∂ s

]∗ : (ϒ,ϒ)+([
∂A)

∂ s
]∗− [

∂A
∂ s

]) : (ṡ, Iϒ)+us−AT ug)

(173)

In addition, by defining H .
=



dh1
ds1

dh2
ds2

...

dh3N−6
ds3N−6


, we get

d
dt
(

3N−6

∑
i=1

hi(si)) = ṡT H. (174)

Using the simplified d
dt (

1
2 ṡT Gṡ) and d

dt (∑
3N−6
i=1 hi(si)), we get the derivative of Lyapunov candidate

function V2 as

V̇2 =ṡT (AT (ϒ−As)× Iϒ+
1
2
[
∂ I
∂ s

]∗ : (ϒ,ϒ)+([
∂A)

∂ s
]∗− [

∂A
∂ s

]) : (ṡ, Iϒ)+us−AT ug +H) (175)

We choose us and ug satisfying

us−AT ug =− (AT (ϒ−As)× Iϒ+
1
2
[
∂ I
∂ s

]∗ : (ϒ,ϒ)+([
∂A)

∂ s
]∗− [

∂A
∂ s

]) : (ṡ, Iϒ)+H+ k4ṡ) (176)

where k4 > 0, then

V̇2 =−k4ṡT ṡ≤ 0. (177)

From Equation (176) and the constraint in Equation (134), we get the formation shape control us

and the orientation control ug as following:

us =
N−1

N
AT (Γ22 +Γ23AT )−1

χ(s,g)

+(AT (Γ22 +Γ23AT )−1
Γ23− e)[AT (ϒ−As)× Iϒ

+
1
2
[
∂ I
∂ s

]∗ : (ϒ,ϒ)+([
∂A)

∂ s
]∗− [

∂A
∂ s

]) : (ṡ, Iϒ)+H+ k4ṡ]

(178)

ug =(Γ22 +Γ23AT )−1[
N−1

N
χ(s,g)−Γ23(AT (ϒ−As)× Iϒ

+
1
2
[
∂ I
∂ s

]∗ : (ϒ,ϒ)+([
∂A)

∂ s
]∗− [

∂A
∂ s

]) : (ṡ, Iϒ)+H+ k4ṡ)]
(179)
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Theorem 4 Under control law (178) and (179), formation shape converges to desired ones, i.e.,

s→ sd

Proof Equations (178) and (179) are equivalent to Equations (176) and (134). Plug Equation (176)

into Equations (119) and (120), we get the closed-loop dynamics of the formation system:

d
dt
(Gṡ)+H+ k4ṡ =

1
2
[
∂G
∂ s

]∗ : (ṡ, ṡ) (180)

By Lasalle’s invariance principle, the state variables s converge to the maximal invariant set where

V̇2 = 0 is satisfied. In this invariant set, we have ṡ = 0 according to Equation (177), and then

according to the closed-loop dynamics (180), we have H = 0, i.e., dhi
dsi

= 0, for i = 1,2, ...3N− 6.

Therefore, si = sid for i = 1,2, ...3N−6, i.e., s→ sd .

Note: given s ≥ smin initially, the Lyapunov function V2 is finite initially. We also showed that

V̇2 ≤ 0 and V2 ≥ 0, therefore V2 is finite at any time instance. It means that s will never reach smin,

otherwise V2→∞ will occur (because hi(si,min)→+∞). In other words, if s≥ smin holds initially, it

holds at any time instance. Therefore, collision between vehicles and scare of the human operator

is avoided.

Now we convert control law (178) and (179) to get the gauge invariant form of the formation

shape control. Define

Ug = ug, (181)

Us = us−AT ug. (182)

According to Lemma 3.2 in [31], Ug and Us is gauge invariant and independent of the selection of

coordinate system. From Equations (179) and (176), we get the following gauge invariant form of

the formation shape control:

Ug =(Γ22 +Γ23AT )−1[
N−1

N
χ(s,g)−Γ23(AT (ϒ−As)× Iϒ

+
1
2
[
∂ I
∂ s

]∗ : (ϒ,ϒ)+([
∂A)

∂ s
]∗− [

∂A
∂ s

]) : (ṡ, Iϒ)+H+ k4ṡ)]
(183)

Us =− (AT (ϒ−As)× Iϒ+
1
2
[
∂ I
∂ s

]∗ : (ϒ,ϒ)+([
∂A)

∂ s
]∗− [

∂A
∂ s

]) : (ṡ, Iϒ)+H+ k4ṡ) (184)

This gauge invariant formation shape control is the same under any coordinate system, and allows

each vehicle to use its own gauge convention. Therefore, the HUV and AUVs do not have to adopt
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the same coordinate system. Each AUV in the formation can calculate the actual force applied on it,

i.e., fi, using its own choice of coordinate system and Jacobi vectors. In its own coordinate system,

each AUV can estimate fh of HUV according to Equations (106), (107), (108) and (112), and uc

according to Equations (105) and (169), using only its measurements of each vehicles’s location

(which completely decide the distance between HUV and AUVs), velocity (will be converted to

natural Frenet representation for calculation of uc), and acceleration. In addition, shape variable

s which can be completely determined by vehicles locations can also be calculated based on the

same set of measurements. Therefore, our cooperative control law, including the curve tracking

controller and formation shape controller, is based only on measurements, and no communication

between vehicles is needed.

4.5 Simulation Results for One Example

In this section, we give an example of a human-AUV system comprised of one HUV and two AUVs

and the corresponding numerical simulation results. For simplicity, we assume m1 = m2 = mh = 1.

The three vehicles are desired to form a isosceles right-angled triangle, with length of cathetus to be

0.2. The formation center is desired to track a helix curve [ sin t√
2
, cos t√

2
, t√

2
]. To describe the triangle,

we choose the shape variable as s = [s1,s2,s3], where s1 = ‖r1− rh‖, s2 = ‖r1− rh‖, and s3 is the

angle between r1− rh and r2− rh, so the desired shape variables are s1,d = 0.2, s1,d = 0.2, and

s1,d = π

2 . Using the shape variable, the attention function simplifies to

Ai =
Ai0sid

si
(185)

for i = 1,2. The body frame is built as Figure 23.

For N = 3, the Jacobi transform becomes

r1 = rc−
√

2
2

ρ f 1−
1√
6

ρ f 2

r2 = rc +

√
2

2
ρ f 1−

1√
6

ρ f 2

rh = rc−
√

2√
3

ρ f 2

(186)
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Figure 23: Body Frame

therefore,

Φ =


1
3 e3 −√µ1e3 −1

2
√

µ2e3

1
3 e3

√
µ1e3 −1

2
√

µ2e3

1
3 e3 0

√
µ2e3

 , (187)

where µ1 =
1
2 and µ2 =

2
3 . In addition, we get

r1− rh =−
√

2
2

ρ f 1 +(

√
2√
3
− 1√

6
)ρ f 2

r2− rh =

√
2

2
ρ f 1 +(

√
2√
3
− 1√

6
)ρ f 2.

(188)

In the body frame, the vector (r2−r1) is (s1,0,0) and the vector (rh− r1+r2
2 ) is (s2 cos(s3),s2 sin(s3),0),

thus the Jacobi vectors in the body frame are

ρ1 =
√

µ1(s1,0,0)T

ρ2 =
√

µ2(s2 cos(s3)−µ1s1,s2 sin(s3),0)T
(189)

Now we can calculate the elements for matrix I in Equation (121) and get

I11 = µ2s2
2 sin2(s3)

I12 = I21 =−µ2s2 sin(s3)(s2 cos(s3)−µ1s1)

I22 = µ1s2
1 +µ2(s2 cos(s3)−µ1s1)

2

I33 = µ1s2
1 +µ2((s2 cos(s3)−µ1s1)

2 + s2
2 sin2(s3))

I23 = I32 = I13 = I31 = 0

(190)
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and then consequently

ρ1

s1
=
√

µ1(1,0,0)T

ρ1

s2
= (0,0,0)T

ρ1

s3
= (0,0,0)T

ρ2

s1
=
√

µ2(−µ1,0,0)T

ρ2

s2
=
√

µ2(cos(s3),sin(s3),0)T

ρ2

s3
=
√

µ2(−s2 sin(s3),s2 cos(s3),0)T

(191)

which lead to

A1 =
µ2

I33
(0,0,µ1s2 sin(s3))

T

A2 =
µ2

I33
(0,0,−µ1s1 sin(s3))

T

A3 =
µ2

I33
(0,0,s2

2−µ1s1s2 cos(s3))
T

(192)

Now A, G and ϒ can be decided by Equation (121), Γ can be decided by Equations (125) and (127).

In addition, Equations (188), (117) and (189) lead to

r1− rh =−
√

2
2

g−1√
µ1[s1,0,0]T +(

√
2√
3
− 1√

6
)g−1√

µ2[s2 cos(s3)−µ1s1,s2 sin(s3),0]T

r2− rh =

√
2

2
g−1√

µ1(s1,0,0)T +(

√
2√
3
− 1√

6
)g−1√

µ2[s2 cos(s3)−µ1s1,s2 sin(s3),0]T .

(193)

Comparing Equations (130) and (112), we get χ(s,g) = ∑
2
i=1 ai where ai, defined in Equation (110),

is a function of only s and g, and is calculated from Equations (193), (185), and (110). Now the

formation shape control Us and Ug can be calculated according to Equations (184) and (183), and

then converted to ug and us according to Equations (181) and (182).

We convert the desired helix curve to Frenet-Serret frame representation as T= [
√

2cos t
2 ;−

√
2sin t
2 ;

√
2

2 ]T ,

N = [−sin t;−cos t;0]T , B = [
√

2cos t
2 ;−

√
2sin t
2 ;−

√
2

2 ]T , κ =
√

2
2 , τ = −

√
2

2 , then one natural Frenet

frame representation can be obtained according to Equations (290) and (291), by letting ζ = 0. Now

we can calculate formation center control uc according to Equations (169) and (164). Using uc, ug,

and us, we can calculate the forces applied on each AUV, i.e., f1 and f2, according to Equation (128).

To demonstrate the effectiveness of our method, we carried out numerical simulation for the

above example. Simulation results are shown in Figures (24), (25), (26), and (27). Figure (24)
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Figure 24: Trajectory of formation center

Figure 25: Shape variable s1

shows the trajectory of the formation center, which we can see converges to the desired curve.

Figures (25), (26), and (27) show the three shape variables, which we can see all converge to their

desired values.
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Figure 26: Shape variable s2

Figure 27: Shape variable s3

4.6 Conclusion

In this chapter we developed cooperative control laws for a human-AUV system. Using a geometric

approach, we explicitly decoupled the collective dynamics of all vehicles into orientation, forma-

tion shape, and formation center. We designed a 3D curve tracking controller for the formation

center, so that the formation center can tracks any curve in 3D space. We also developed formation
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shape controller which enables the system converge to a desired formation shape while avoiding

scaring the human operator and collisions between vehicles. The proposed controller does not need

communication between vehicles and is gauge invariant, which enables each vehicle to use its own

coordinate system.
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CHAPTER V

COLLABORATIVE AUTONOMOUS SURVEYS IN MARINE ENVIRONMENTS

AFFECTED BY OIL SPILLS

Marine surveys are crucial for assessing risks of maritime disasters like the Deepwater Horizon

oil spill in 2010. After the oil spill occurred, research aimed at creating technology and tools to

effectively handle such catastrophes in future.

Autonomous surveys are especially attractive in situations where the marine environment is less

than ideal for human-based methods. During an autonomous survey, marine robots must be able to

move along a desired path in order to gather sensor data along that path, as a result, path following

for marine vehicles is very important, and, therefore, has been widely studied [59–65]. Although

theoretical work on path following is advanced [56,94], yet the performance of only few theoretical

results has been evaluated and reported in field tests [66]. The path following controllers in our

work are based on the Frenet-Serret framework [57] and the robustness of the control laws has been

theoretically justified [56]. Satisfactory performance of the controllers has been seen on mobile

robots and ocean gliders [67, 68]. Here we are motivated to evaluate the controllers on marine

robots for oil spill surveys, where the robots, the environment, and the technical challenges differ

significantly from previous mobile robots and ocean gliders experiments.

The main contribution of this work is to demonstrate a simple and effective method to carry out

marine surveys on a large area and to reconcile data from various sources to produce meaningful

representations. We use a simple unicycle model for our autonomous vehicles. Our controllers

enable the vehicle to track lines and curves reliably in the presence of natural disturbances, includ-

ing wind, water currents, and engineering limitations like sensor inaccuracy, localization errors,

and communication delays. Using the data collected by the vehicles during autonomous missions,

we demonstrate the effectiveness of a mapping algorithm for generating bathymetric maps and oil

concentration maps for the region of interest, where data are not necessarily available at all points.

Therefore, our methods for performing autonomous marine surveys are simple and can effectively
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reconcile data obtained over multiple different experimental runs from a fleet of autonomous marine

vehicles.

To demonstrate the effectiveness of our survey methods, we performed a twenty-one-day survey

in July, 2011, for a coastal lagoon in Grand Isle, Louisiana, where heavy pollution had been reported

during the DeepWater Horizon oil spill, and large scale cleaning efforts have been performed after

the spill was contained. Using a fleet of heterogeneous marine vehicles, we collected a large amount

of data to evaluate the concentration level of reminiscent oil one year after the cleanup efforts. This

chapter presents our analysis of the survey data and experimental results on parameter identification

and path following control for two marine robots we used in the survey. The organization of this

chapter is as follows. Section 5.1 describes the hardware and software systems for all the vehicles

we used in the survey and explains the dynamic model to describe vehicle motions. The control

laws and mapping algorithms are presented in section 5.2, followed by experimental results and

data analysis in Section 5.3. Section 5.4 gives the conclusion.

5.1 Marine Robots

In our survey efforts, four vehicles were employed. They were a student-built autonomous surface

vehicle (ASV), Victoria, a student-built remote operated vehicle (ROV), β , and autonomous un-

derwater vehicles (AUV’s), the Fetch 1, and the EcoMapper, shown in Figure 28. Victoria and the

Fetch 1 played a main role in the survey, while the EcoMapper and ROV-β were in an auxiliary role.

This section describes the hardware and software for each vehicle, and the mathematical models for

vehicle motions.

5.1.1 The ASV-Victoria

5.1.1.1 Hardware

ASV-Victoria (the left one in the second row of Figure 28) is developed and built by a student

robotics team supervised by Dr. Fumin Zhang. It weighs 50kg, and is approximately 1m long and

0.75m wide. The the trim is 0.5m and the overall height is 0.75m. Victoria has a twin-hull-catamaran

design, with the hulls composed of multiple layers of fiberglass sheets. The twin-hull-catamaran

design allows for a smooth ride since the turbulence in the center of the boat is reduced. The hull

spacing is optimized to produces high stability and high load carrying capability. Victoria uses a
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Figure 28: Marine vehicles used in the survey. From top to bottom: AUV-Fetch 1, ASV-Victoria
(left), ROV-β (right), and the EcoMapper.

specific layout for electronics, propulsion and power systems inside the hulls to minimize pitching

due to sudden changes in acceleration.

The electronic equipment onboard Victoria can be classified into computational units, sensors,

actuators and communication systems. Figure 29 shows a high level view of Victoria’s electrical

systems. Victoria houses two separate computational units, one supporting navigation, vision sys-

tems and the other supporting lower level thruster control and data acquisition from all other sensors
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onboard. Each computational unit is a Compact RIO (cRIO) produced by National Instruments. The

cRIO’s are chosen as they combine an embedded real-time processor, a Field Programmable Gate

Array (FPGA), and I/O modules. This provides reliability and speed of operation, and makes it easy

to swap out onboard sensors depending on survey requirements. Two thrusters from CrustCrawler

Robotics form the main actuation units and are mounted on the hulls. They are capable of produc-

ing up to 60 lb of thrust resulting a maximum linear speed of 2 m/s of Victoria. A Microstrain

3DM-GX1 inertial motion unit (IMU), an ethernet camera, a Cyclops-7 oil sensor made by Turner

Designs, and a Garmin 16x GPS receiver are the main sensors onboard Victoria during the surveys.

A long range wireless link forms the backbone of our communication system and enables remote

operation from shore. The wireless communication setup includes a Ubiquiti Rocket-M5 base s-

tation on shore, a Ubiquiti Bullet-M5 access point, and an Ethernet router on board Victoria. The

vehicle can work in both autonomous mode and remote control mode. In remote control mode, the

vehicle can be remotely controlled within a range of approximately 500m. We use an Xbox con-

troller to send commands to Victoria during remote operation. An intuitive joystick-based controller

coupled with video from Victoria’s onboard cameras contribute greatly to the ease of operation. In

autonomous mode, curve tracking controller enables Victoria to track specified path autonomously

without human intervention.

5.1.1.2 Software

National Instruments (NI) LabVIEW is used onboard ASV-Victoria. A high level schematic of

Victoria’s software architecture, shown in Figure 30, is composed of three main virtual instruments

(VI’s): Main PC, Co-operative control, Main RIO, and Main FPGA. The VI Main PC runs on the

control laptop and retrieves data from VI’s running on the cRIO’s on board Victoria, and displays

it on the on-shore laptop computer. It also receives commands from the Xbox controller and sends

the commands to Victoria, ensuring easy remote operation. The co-operative control VI runs on the

main PC and communicates over a network with other autonomous vehicles. The algorithms sub-

VI’s under the co-operative control VI receive position and orientation data from other autonomous

vehicles and send appropriate control commands that enable these vehicles to track desired curves.

This makes it very easy to enlarge the size of a survey fleet, as other vehicles can be added to the
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Figure 29: A high level schematic of Victoria’s electrical systems

Figure 30: A high level schematic of Victoria’s software architecture

fleet by simply adding a new co-operative control VI to the main computer program (one for each

added vehicle).

The VI’s Main RIO and Main FPGA run on cRIO’s onboard Victoria. The VI Main RIO has

many sub-VI’s. Based on their functions, they can be classified to sub-VI’s dealing with algorithms,

data logging, monitoring, and sensing. As the name indicates, the sub-VI’s dealing with algorithms
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perform the calculations that allow vehicle operates in the different states like GPS waypoint navi-

gation and autonomous curve tracking. The data logging VI’s record data from the sensing devices

into Victoria’s onboard memory. The monitoring VI’s help monitor critical parameters like CPU

temperature, CPU load and execution speed, in order to maintain optimal operating conditions for

the computer system. The navigation sensor VI’s query navigation equipment like GPS and LIDAR,

and provide the data to any other VI, like the algorithm and logging VI’s, requiring such data. Sim-

pler lower level sensing and control tasks are handled by the Main FPGA VI running on an FPGA

module in a cRIO. This VI handles data acquisition from the oil sensors, receives control commands

from the algorithms VI’s, and converts them into appropriate commands for the thrusters. The oil

sensors and thrusters are dedicated resources which are used on every mission, hence they are archi-

tecturally separated to ensure that system-wide code changes do not result in stray bugs that could

affect these vital systems. This improves the system reliability.

5.1.2 The Fetch 1

5.1.2.1 Hardware

The Fetch 1 (the first row of Figure 28), developed by Professor Mark Patterson of the College of

William and Mary, is an autonomous vehicle that can be used either on surface or underwater, with

maximum diving depth 500 f t . It served as an ASV for some of the experiments in our marine

survey. The Fetch 1 is aluminum hulled, 220lb, 6.5 f t long, driven by a single propeller, and steered

by two pairs of single-degree-of-freedom control surfaces. Fetch 1 is outfitted with Wi-Fi as well

as a FreeWave RF serial modem that maintains constant contact with a shore station as long as

the vehicle is on the surface. The Fetch 1 uses an assortment of sensors including GPS, water

temperature and salinity sensors, as well as a crude oil sensor.

5.1.2.2 Software

Fetch 1’s main flight computer also runs LabVIEW. For all experiments mentioned in this chapter,

Fetch 1 was operated in teleoperation mode where Victoria’s shore-side control computer sent com-

mands to Fetch. The communication setup is illustrated in Figure 31. Feedback control algorithms

operated at a frequency of 0.5Hz, with data exchange every two seconds. This is a limitation im-

posed by the operating speed of the state machine loop in the flight computer in Fetch 1. To deal
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Figure 31: Communicating with the Fetch

with the imposed delay, we use buffers, known as virtual states, on the Toughbook and the control

laptop. The GPS positions and control-surface angles are periodically received from the Fetch and

stored in a virtual state on the Toughbook. All commands from the control laptop are also stored

in this virtual state, so that they can be forwarded to the main flight computer in Fetch 1 when a

transmission is relayed to the Fetch 1. On the control laptop, a virtual state is maintained and updat-

ed every time the Toughbook is polled for data and every time a new command is generated by the

control law. Therefore, the data based on which the control law performs its calculations is at most

two-seconds old.

5.1.3 The ROV - β

5.1.3.1 Hardware

The ROV-β , shown on the right in the second row of Figure 28, is an remotely-operated underwater

vehicle built bythe student robotics team supervised by Dr. Fumin Zhang. It is 36.45in in length,

22.5in in width, 18.25in in height, weighs 125lb, and is capable of diving to a depth of 330 f t. The

sensors onboard can sample oil, measures depth, and acquire visual data. A system for collect-

ing water samples and a pneumatically powered manipulator are also housed onboard. The major
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components of ROV-β are the pressure vessel, frame, propulsion system, buoyancy system, the ma-

nipulator, the power and control systems. The body is built of aluminum and carbon steel. Black

Rustoleum paint is used to protect the carbon steel from corrosion. The cylindrical pressure vessel

has a volume of 160 in3 and is rated to a depth of 500 f t. The pressure vessel has two removable

end caps, one on each end of the cylinder. Each cap houses SEACON connectors for through-hull

electrical connections. The cap on the front end has a transparent acrylic dome which forms the

viewport for the primary camera. The carbon steel frame is welded directly to the pressure vessel.

The frame’s unique design protects the thrusters from collisions and provides a surface to mount

external subsystems like actuators and sampling tubes. The propulsion system includes four oil-

compensated thrusters made by CrustCrawler Robotics, each one is capable of producing a thrust

of 25lb. The buoyancy system is made of syntactic foam and mounted atop a rack on the frame

to offset the negative buoyancy of the ROV and place the center of buoyancy above the center of

gravity, making the ROV more stable. ROV-β has a pneumatic manipulator to grab articles of inter-

est while underwater. Power for the ROV is supplied from the surface by two deep-cycle lead acid

batteries. The control system comprises of a cRIO, a router, and an Xbox controller. The cRIO is

primarily used to send thruster commands and record sensor data. An onboard network switch pro-

vides connectivity between the ROV and the shore via a single Cat5e cable. The onshore wireless

router allows the pilot to operate away from the launch point. ROV-β improves the effectiveness of

a survey team because of its capability to go underwater at points of interest and collect samples.

5.1.3.2 Software

Similar to ASV-Victoria, NI-LabVIEW is used onboard ROV-β . The software for ROV-β is a

simplified version of the software for ASV-Victoria, as ROV-β is remotely controlled and does not

require autonomous control and navigation algorithms. We skip the explicit discussion of software

of ROV-β , as it is similar with the one of ASV-Victoria.

5.1.4 The EcoMapper

5.1.4.1 Hardware

The EcoMapper (the fourth row of Figure 28) made by YSI Inc. is an AUV for environment map-

ping. It weighs 45lb and is 152cm in length from bow to the stern. The diameter of the hull is
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14.7cm. It features four independent control planes and a two-bladed propeller. The EcoMapper is

rated for a depth of 220 f t. The maximum speed is designed at 4 knots. Onboard it uses a computer

with a processor from the x86 genre and magnetic storage for saving survey data. It communicates

with a shore station via a 802.11g Wi-Fi link. The EcoMapper’s navigation system is comprised of a

GPS for surface operations and a Doppler Velocity Log (DVL) for underwater operations. The nose

cone houses the sensors used for surveys. The EcoMapper is equipped with conductivity and tem-

perature sensors, a three-axis digital compass, depth sensor (measures depth from surface), and the

depth-sounding sonar (measures height from bottom). It is powered by rechargeable Li-ion batteries

rated at 600Wh, which lasts for about 8 hours when the speed of the EcoMapper is around 2.5 knot-

s. The EcoMapper makes it very easy to generate bathymetry maps, which facilitates autonomous-

survey-mission design for other marine vehicles.

5.1.4.2 Software

The EcoMapper is operated through Underwater Vehicle Console (UVC) under Windows XP, ac-

cessed via “Windows Remote desktop” on a user’s computer over a Wi-fi connection. The EcoMap-

per can be operated in both manual and autonomous modes. When the EcoMapper is on the surface

and within Wi-fi range, it can be driven manually. In manual mode, EcoMapper status and sensor

readings are displayed on the UVC screen but not recorded by the EcoMapper. In autonomous

mode, the EcoMapper follows a predefined course either on or below surface, and does not require

assistance from the human user. During missions, the EcoMapper acquires pertinent information

useing sensors mounted in the nose cone and saves them to log files.

5.1.5 Mathematical Model for the Vehicles

To describe the motion of our vehicle, like Victoria and Fetch 1, we view them as point particles

and use the following unicycle model to describe their kinematics:

ẋ = vcosθ , (194)

ẏ = vsinθ , (195)

θ̇ = w, (196)
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where [x,y], v, and ω represents the position, linear speed, and angular speed of the robot, respec-

tively. For Victoria, which has two thrusters, the linear and angular speed, i.e., v and ω in Equations

(194)-(196), can be written in terms of the left-thruster velocity and the right-thruster velocity:

v =
vl + vr

2
, (197)

ω =
vr− vl

2l
, (198)

vl = K1nl, vr = K2nr, (199)

where 2l is the distance between the two thrusters. nl and nr are the duty cycles of the signals sent

to the left and right thrusters, respectively. K1 and K2 are constant coefficient that will be estimated

in experiments. Substituting Equation (199) into Equations (194)-(196), we obtain

ẋ =
K1nr +K2nl

2
cosθ , (200)

ẏ =
K1nr +K2nl

2
sinθ , (201)

θ̇ =
K1nr−K2nl

2l
. (202)

Note that although the above models, which our control algorithms rely on, is simple and make

the vehicle-driving code simple and easy, they do not consider the lateral drift or any other effects.

However, we will show that our controllers are robust enough to produce satisfactory results.

5.2 Algorithms

In this section, we introduce the algorithm to identify the parameters of the vehicle model (200)-

(202), based on which we then develop the curve tracking control law. We also present the algorithm

to reconcile survey data and make maps.

5.2.1 Parameter Identification

From Equations (197)-(199), we obtain

K1 =
v+ lω

nr
, (203)

K2 =
v− lω

nl
. (204)

According to Equations (203) and (204), we perform open loop tests to identify K1 and K2. In each

open loop test, thruster commands nr and nl stay constant, and v and ω are estimated from GPS
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data. Then Equations (203) and (204) give the value of K1 and K2. This procedure is simple and

easy to implement in experiment in our survey methods, while enable us to generate a model close

to reality.

5.2.2 Curve Tracking Control Law

The model in Equations (194)-(196) is easy to implemented in order to drive the vehicle, but not

straightforward to use in curve tracking control law derivation. Therefore, we convert it to the

following equivalent model in Frenet-Serret frame [57]. Define r = [x,y]T , x = [cosθ ,sinθ ]T , and

y = [−sinθ ,cosθ ]T , then x and y are unit orthogonal vectors. Now the unicycle model in Equations

(194)-(196) can be rewrite as

ṙ = vx (205)

ẋ = vuy (206)

ẏ =−vux (207)

where u .
= ω/v. Noted that Equations (205), (206), and (207) can describe not only motions of a

vehicle but also planar curves. Given a smooth curve in the plane, we can imagine a virtual robot

moves along this curve with speed v, then x becomes the tangent vector that it is always tangent to

the curve, and y is the normal vector that it is perpendicular to x. Usually when a curve is concerned,

the symbol k is used in place of u and the speed v= 1. Now we formulate the curve tracking problem

using two Frenet-Serret equations, with r2 denoting the position vector of the robot and r1 denoting

the position of the the closest point on a curve with respect to the robot, so we get

ṙ1 = v1x1 (208)

ẋ1 = y1v1k (209)

ẏ1 =−x1v1k (210)

ṙ2 = x2 (211)

ẋ2 = y2u2 (212)

ẏ2 =−x2u2 (213)
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Figure 32: Curve tracking using two Frenet-Serret frames

where k represents the algebraic curvature of the curve that the robot is trying to track, subscript “1”

belongs to the curve, and subscript “2” belongs to the robot. Figure 32 shows two particles, i.e., the

robot (quantities having subscript 2) and its projection along the curve which the robot is trying to

track (quantities having subscript 1).

Define r = r2− r1 as the difference between the position of the robot and its projection on

the curve, ρ = ‖r‖ as the relative distance, and φ as the relative bearing between x1 and x2, then φ

satisfies cosφ = x1 ·x2 and sinφ = x1 ·y2. We call (ρ,φ) the shape variables, take the time derivative

of the shape variables, and obtain the following dynamics:

ρ̇ =−sinφ , (214)

φ̇ =

(
K1

1+K1ρ

)
cosφ −u2, (215)

where u2 is the steering control command for the robot. The following control law enables us to

perform curve tracking:

u2 =

(
±K1

1+K1ρ

)
cosφ ±Kp(ρ−ρ0)cosφ +µ sinφ , (216)

where ρ0 is the desired separation between the robot and the curve. The “±” sign provides different

versions of the same control law, depending on whether the initial position of the robot is on the left

or right of the curve. It has been theoretically justified that the controller achieves curve tracking

[57]. Note that to enable any vehicle to follow a survey path, only calculation of u2 is required

in the control law, and the only position and orientation measurements of the vehicle are required

for the control effort calculation. This makes it very easy to write computer code for performing

complicated surveys.
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5.2.3 Mapping Algorithm

An environment map is important in autonomous survey. A bathymetric map is essential to avoid

damage to marine vehicles by accidental deployment in shallow water, a oil-concentration map

explicitly shows the oil concentration data out of the autonomous survey, and we have showed a

real-time modeling of tidal current helped improving the navigation performance of gliders, in our

previous paper [95], where the ocean tidal flow around the glides is approximated by a series of

temporal base functions and RBF (radial basis function) spatial basis functions, with the coefficient

of the base functions updated in real time. In this chapter, we will use similar method as [95] and

make a bathymetric map and a oil-concentration map according to the survey data. As both the

depth and oil concentration for a location changes very slowly, if there is any change, within one

round survey missions, we neglect the time-varying part and use only spatial basis functions.

In Figure 33, we overlay a square grid on the surface of interest (the lagoon in our case). The

cells that lie outside the boundary of the lagoon are not included in our computation. Figure 33

shows two sample trajectories (red and green curves) taken by an AUV (the EcoMapper for exam-

ple). When an AUV passes through a cell (and the time that the AUV was in the cell is greater than

one sampling period), it records the sensor readings (depth or oil concentration in our case). Now

we assume at least one reading is recorded in all unshaded cells (we use the position vector of the

cell center to denote the cell) in Figure 33, and some of them might have more than one readings,

for example, cell x1 has three measurement readings, i.e., y1,1, y1,2, and y1,3, along the two AUV

trajectories. Meanwhile, as our grid is made finer in order to get a high-resolution map, it is tedious

to assign a survey path such that a vehicle passes through all the cells on our grid. Hence we may

have cells (pockets) with no sensor reading, i.e., shaded (green) cells in Figure 33. Now we will

make a map where each cell has one reading (a sensor measurement or a predicted value). In other

words, we will assign one reading yi to cell xi, i = 1, ...N, where N is the number of cells on the

map. For cells that has only one sensor measurement, yi is that sensor measurement. For cells that

has more than one sensor measurement, yi is the average of all the sensor measurements in that

cell, for example, y1 = (y1,1 + y1,2 + y1,3)/3. For the empty cells, i.e., the cells that have no sensor

measurement, we will predict the reading using measurements in non-empty cells. In other words,
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Figure 33: The EcoMapper paths on a grid in a region of interest on the lagoon surface. Shaded
squares show areas on the grid missed by the EcoMapper.

we need to predict y? for an empty cell x?, given the sensor readings y1, ...yn at non-empty cells

x1, ...xn. To achieve this objective, we build a map to predict the target value for any cell.

Similar with [95], we approximate a target value y (y can be sensor readings y1,y2,...yM or a pre-

diction y?) for location x (x will be x1,x2,...xM, or x? corresponding to y1,y2,...yM or y?, respectively)

by M basis functions, i.e., φφφ 1(x)...φφφ M(x), with weights w1, ...,wM, so that

f (x) = φφφ
T (x)w, (217)

y(x) = f (x)+ ε, (218)

where φφφ(x) = [φφφ 1(x)...φφφ M(x)]T and w = [w1...wM]T contain unknown parameters which will be

specified and solved later. ε is a Gaussian distributed measurement noise with zero mean and

variance σn, i.e.,

ε ∼N (0,σ2
n ). (219)

Variance σn is also unknown and will be decided later. Now for location xi and its corresponding

measurements yi, the following distribution holds:

P(yi(xi)|w) =
1√

2πσn
exp(−(yi−φφφ

T (xi)w)2

2σ2
n

)
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When making a map using all the survey data, all the data are available for the map making algorith-

m, which differs from real-time tidal current modeling in [95], where the measurements are updated

at some frequency and hence the weight w for basis functions is updated at the same frequency.

Hence, here we put a zero mean Gaussian prior with covariance matrix Σp on the weight w, i.e.,

w∼N (0,Σp). (220)

Note here “it is common but by no means necessary to consider Gaussian processes with a zero

mean function. The zero-mean assumption is not necessarily a drastic limitation, since the mean

of the posterior process is not confined to be zero” [96]. Now we can calculate the mean and the

covariance of the Gaussian process f (x) = φφφ(x)T w as follows:

k(x,x′) .
= E[( f (x)−E[ f (x)])( f (x′)−E[ f (x′)])]

= E[ f (x) f (x′)]

= φφφ(x)TE(wwT )φφφ(x′)

= φφφ(x)T
Σpφφφ(x′). (221)

Note here given the covariance matrix Σp, for any set of basis functions φφφ , we can compute the

covariance function as k(x,x′) = φφφ(x)T Σpφφφ(x′) according to Equation (221), and conversely, for

every (positive definite) covariance function k, there exists a (possibly infinite) expansion in terms

of basis functions, see section 4.3 in [96]. In this chapter, we specify the covariance function k for

the mapping algorithm derivation and omit the calculation of basis functions, since their explicit

forms are not directly used in our mapping algorithm. We adopt the standard form of covariance

function as follows [97]:

k(x,x′) .
= σ

2
f exp

(
−1

2
‖x−x′‖2

l2

)
(222)

where l is the length-scale parameter which defines the global smoothness of the function f , σ2
f

denotes the amplitude or the signal variance.
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Now we define y = [y1...yn]
T , XXX = [x1, ...,xn]

T , Φ
.
= Φ(XXX)

.
= [φφφ(x1), ...,φφφ(xn)], then

P(y(XXX)|w) =
n

∏
i=1

P(yi(xi)|w)

=
n

∏
i=1

1√
2πσn

exp(−(yi−φφφ
T (x)w)2

2σ2
n

)

=
1

(2πσ2
n )

n
2

exp(−|y−ΦT w|2

2σ2
n

)

i.e.,

y(XXX)|w∼N (ΦT w,σ2
n e),

where e denotes an identity matrix. As a result,

P(w|y(XXX)) =
P(y(XXX)|w)P(w)

P(y(XXX))

∝ P(y(XXX)|w)P(w)

∝ exp(− 1
2σ2

n
(y−Φ

T w)T (y−Φ
T w))exp(−1

2
wT

Σ
−1
p w)

∝ exp(−1
2
(w− w̄)T (

1
σ2

n
ΦΦ

T +Σ
−1
p )(w− w̄))

Now define w̄ = σ−2
n (σ−2

n ΦΦT +Σ−1
p )−1Φy and A = σ−2

n ΦΦT +Σ−1
p , we get

w|y(XXX)∼N (w̄,A−1)

Therefore, using P( f (x?)|y(XXX)) =
∫

P( f (x?)|w)P(w|y(XXX))dw, we get

f (x?)|y(XXX)∼N (
1

σ2
n

φφφ
T
? A−1XXXy,φφφ T

? A−1
φφφ(x?))

= N (φφφ T
? ΣpΦ(ΦT

ΣpΦ+σ
2
n e)−1y,φφφ T

? Σpφφφ ?−φφφ
T
? ΣpΦ(ΦT

ΣpΦ+σ
2
n e)−1

Φ
T

Σpφφφ ?)

.
= N (K(x?,XXX)(K(XXX ,XXX)+σ

2
n e)−1y,K(x?,x?)−K(x?,XXX)(K(XXX ,XXX)+σ

2
n e)−1K(XXX ,x?))

(223)

where K is defined as

K(XXX ,XXX)i, j = k(xi,x j),

K(x?,XXX)1, j = k(x?,x j),

K(XXX ,x?)i,1 = k(xi,x?),

K(x?,x?) = k(x?,x?).
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Now we get distribution of y? for any cell x?, given the sensor readings y1, ...yn at non-empty cells

x1, ...xn. For detailed derivation, calculation and the background theory, please refer [96].

Using Equation (223), we can predict y? for an empty cell x?, if given parameters {σ f , l,σn}. We

will calculate {σ f , l,σn} using the available measurement data {XXX ,y}. Using maximum-likelihood-

estimation method, we choose {σ f , l,σn} = argmax
{σ f ,l,σn}

∏
n
i=1 P(yi), therefore, it maximizes the prob-

ability that the measurements y appears if we use the model to predict the target value for cells

X . Many optimization algorithm can be applied to solve {σ f , l,σn}. In this chapter, we adopt

the genetic algorithm, because of its simplicity to implementation, effectiveness for both convex

and non-convex problems, and ability to avoid being trapped at a local optimal point. To reduce

the computational cost when predict the values for empty cells, we use only 400 cells which

are closest to one empty cell. In genetic algorithm, a population size 500 and a search space

σ f ∈ (0,100], l ∈ (0,500],σn ∈ (0,100] are used in this chapter. After the genetic algorithm pro-

duces {σ f , l,σn}, Equation (223) will give the distribution of the prediction y? for any empty cell

x?, and the mean value will be assigned to x?.

5.3 Experimental Results And Data Analysis

During the 21-day survey for a tidal lagoon at the Grand Isle, Louisiana, where crude oil has been

spotted along the beaches, we carried out field experiments and autonomous surveys. The exper-

iments included parameter identification for ASV-Victoria, curve following control for both ASV-

Victoria and AUV-Fetch 1, the success of which enables us to perform the later autonomous surveys.

During the surveys, collaboration between the various vehicles shown in Figure 28 was performed.

In a marine-robot survey, it is very important to know the environment and a bathymetric map is

very helpful for us to decide which spots are safe for deploying our marine vehicles, as our vehicles

could get damaged if they were deployed in extremely shallow locations. As the EcoMapper, which

is equipped with sonar system for depth measurements, is much lighter and smaller with much s-

maller chance to get stranded and damaged, comparing with other vehicles in our survey, we first

deployed the EcoMapper for autonomous missions over the entire lagoon to acquire the bathymet-

ric data, based on which we made a complete bathymetric map for the lagoon, using the method in

previous section. Once a bathymetric map was obtained, ASV-Victoria, which was equipped with
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a crude-oil sensor, was deployed in a safe region for autonomous oil survey, in which the ASV

was driven by the curve tracking controller described in previous section. We performed intense

oil survey in an area and obtained the data for crude oil concentration. Using the mapping-making

method in previous section, we made the crude-oil-concentration map to illustrate the oil concen-

tration level. During our surveys, in addition to the surface oil concentration data, we also deployed

ROV-β and collected water samples at various depths of a location. In this section, we presents the

experiment results, including parameter identification and curve curve tracking, and the survey data

analysis, including the bathymetric data and oil-concentration data.

5.3.1 Parameter Identification

We operated ASV-Vicoria in the open loop mode and sent seven sets of thruster speeds to the lower

level thruster controllers, and then calculated K1 and K2 using Equations (203) and (204). Figures

34(a) and 34(b) show the result for the seven test runs. The dotted lines show the average values,

i.e., K1 = 37.26 and K2 = 38.4.

5.3.2 Curve Tracking

To demonstrate the performance of our proposed curve-tracking control law, we carried out ex-

periments for both ASV-Victoria and AUV-Fetch 1, and commanded them to track desired curves.

Figures 35(a) and 35(b) show the straight-line-tracking-experiment results on ASV-Victoria, where

ρ0 = 6m and control gains were µ = 5 and Kp = 1. The dotted line in Figure 35(a) is the reference

(a) Estimation the parameter K1 (b) Estimation the parameter K2

Figure 34: Results of parameter identification tests
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(a) Line following using ASV-Victoria (b) Error analysis for line following using ASV-
Victoria

Figure 35: Line following using ASV-Victoria

line the ASV was trying to follow and the solid curve is the path taken by the ASV. We can see that

the ASV follows the line well, but there are some intermittent deviations. The details are shown in

Figure 35(b), where the solid line represents ρ and the dotted line represents the errors in orienta-

tion φ . From Figure 35(b), we observe that the distance ρ is maintained just above 8 on an average,

and that φ stays close to zero. When disturbances occur, φ comes back to zero very quickly. Data

analysis suggests that some faults that occurred to the electronic thruster-speed controller caused

the disturbances, despite which the vehicle recovered very soon and came back to tracking the line

again, and shows the robustness of the control law.

We also carried out circular-path-tracking experiment for ASV-Victoria, where ρ0 = 4m, µ = 5,

and Kp = 1. The radius of the desired circle was R = 1m. The vehicle motion was clockwise.

Figure 36(a) shows the experiment result overlayed on a Google map, from which we can see that

the ASV tracked the desired circle reasonably well, although the circles had a little displacement to

the right, which was caused by the current in the lagoon (approximately 20 cm/s, from southwest

to northeast). Figure 36(b) shows separation ρ and the error in orientation φ . Although the GPS

localization errors, which was on average 3m at Grand Isle, caused some oscillations, we can see

that φ was maintained close to zero and ρ was maintained around 5m on an average which equals

ρ0 +R, which suggests that the Victoria tracked the circular curve successfully in the presence of

real environmental disturbances and localization error.

Straight-line-tracking experiment was also performed on Fetch 1, where ρ0 = 8m, µ = 0.1, and
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(a) Tracking a circular curve using ASV-Victoria (b) Error analysis for curve tracking using ASV-
Victoria

Figure 36: Circular curve following using ASV-Victoria

(a) Line following using Fetch 1 (b) Error analysis for line following using Fetch 1

Figure 37: Line following using AUV-Fetch 1

Kp = 0.001. The experimental results are shown in Figure37(a), where the dotted line is the refer-

ence line Fetch 1 was trying to follow and the solid line is the actual path of Fetch 1. Because the

dynamics of the Fetch were notably slower than that of Victoria, smoother convergence is observed

in Figure 37(a). Figure 37(b) shows separation ρ and the errors in orientation φ . We can see that

the separation ρ converge to the desired value, i.e., ρ0 = 8m, and φ stays close to zero.

Form the above experimental results, we can observe that the control laws described in Section

5.2 are robust in the presence of winds, water currents, tides, and engineering constraints such as

sensor inaccuracy, localization errors, and network delays. In addition, the effectiveness of the

proposed method is also demonstrated by the fact that the algorithms can be easily applied to and

works effectively on different vehicles, such as ASV-Victoria and Fetch 1.
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(a) A compilation of actual paths taken by the EcoMap-
per while on various bathymetric surveys.

(b) A depth map of the lagoon. The color bar shows the
depth of the lagoon from the surface in meters.

Figure 38: Generating a smooth bathymetric map

5.3.3 Bathymetry of the Lagoon

In the bathymetric surveys, the EcoMapper followed a path that covered the entire lagoon, and

collected bathymetric data at a sample rate of 0.5 seconds along the path. Figure 38(a) shows the

path taken by the EcoMapper while it performed a complete bathymetric survey of the lagoon.

From Figure 38(a), we can see that the bathymetric data were not continuous (i.e., there were some

pockets which were left unsampled). Using the mapping method in previous section, we produced

a smooth depth map, by generating a square grid consisting of 22,500 cells, 150 cells along each

side, to overlay the survey area, and predicting the depth for umsampled cell by Equation (223).

To reduce the computational cost when predict the depth for a unsampled cell, instead of using the

entire set of measurements, we use only data from 400 cells which are closest to that empty cell.

After predict the depth for all empty cells, we obtain the depth map for the lagoon, shown in Figure

38(b). The dark red portions represent the unsampled parts, including the parts out of the boundary

of lagoon, and some parts in the lagoon that are too shallow and too close to the shore, so might

get the EcoMapper strand. The regions in blue are the deepest whereas the read areas are relatively

shallower. The thick black T-shaped structure shows the location of the dock, where the vehicles

were launched.
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5.3.4 Surface Crude Oil Concentration Map

The ASV-Victoria intensely surveyed an area and collected surface-crude-oil-concentration data,

based on which we generate the crude oil concentration map of that area, shown in Figure 39(a),

using the same method that generates the bathymetric map. In Figure 39(a), the oil concentrations

in red areas are higher. In order to get a better sense of the distribution of the measured surface crude

oil, we overlay a contour plot of the concentration map, shown in Figure 39(a), on top of the depth

map of the lagoon, shown in Figure 38(b). The overlays are shown in Figures 39(b) and 39(c). The

black and red colored regions correspond to the contours on the depth map, i.e., Figure 38(b), with

the black areas being deep and the red areas being shallow. Figure 39(c) provides a zoomed view of

Figure 39(b), where the contours of the oil map in Figure 39(a) are shown in yellow and white.

On-field measurements have been perform to verify the bathymetric and oil map. The results

suggest that our analysis result are close to the reality, which show the effectiveness of our proposed

method in reconciling data from marine-robot survey.

5.4 Conclusions

We have developed a method for marine environmental surveys, using a fleet of heterogeneous ma-

rine vehicles. The path following controllers, the convergence and robustness of which we have

mathematically proved, enables the vehicles to perform autonomous surveys, where the paths con-

sist of lines and curves. In our control algorithm, we use simple dynamic models and simple control

laws, which enables quick deployment of a fleet of autonomous vehicles. The mapping algorithms

reconcile survey data from a variety of heterogeneous marine vehicles, and create a high fidelity

visual representation of the desired survey data.

Using the proposed method, we performed a 21-day survey at the Grand Isle in Louisiana to

evaluate the level of crude oil remaining in the area after the Deepwater Horizon oil spill. We p-

resented the experimental results on controller performance that were tested on ASV-Victoria and

AUV-Fetch 1. The results show the effectiveness and robustness of our control law in the presence of

natural disturbances like wind, water currents, and engineering constraints such as sensor inaccura-

cy, localization errors, and network delays. With the help of the fleet of marine robots, we collected
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(a) Crude-oil-concentration map

(b) The surface crude oil contour overlayed on the depth
map of the lagoon.

(c) The surface crude oil contour overlayed on the depth
map - a zoomed view.

Figure 39: Generating a crude-oil-concentration map

large amounts of survey data, including the bathymetric data and crude-oil data. The mapping al-

gorithm successfully reconciled the survey data and created high fidelity visual representations of

them.

From the survey data, we can see that there is crude oil remaining in the water in the coastal

areas in the Gulf of Mexico after cleanup efforts. Although the concentration is low, there may be

long-term unknown effects on the entire coastal ecosystem. The knowledge on the current oil spill

disaster can help us get ready to handle possible disasters of a similar scale in the future, so we are

grateful to have this chance to assist in this process using our marine vehicles.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The main contributions of this dissertation are summarized as follows:

• Dynamic modeling of an underwater vehicle. We developed a method for the dynamic mod-

eling of an underwater vehicle with control surfaces. Applying the geometric properties of

a vehicle, we theocratically derived the relationship between fin angles and hydrodynamic

damping forces and moments. We proposed a procedure for identifying the hydrodynamic

damping coefficients based on CFD calculations. We applied the method to the modeling

of the EcoMapper, in which we used strip theory and open-water tests to identify parame-

ters in the motion model. We validated the dynamic motion model of the EcoMapper with

field experiments, the results of which were consistent with simulation results generated by

the model. Therefore, the proposed model may be used to simulate the EcoMapper motions

and to compute desired control input for the EcoMapper in real-time control. The modeling

methods in this dissertation also apply to other underwater vehicles with control surfaces.

• Formation control for AUVs with time delays. We developed a robust formation controller for

a group of fully-actuated AUVs with bounded time delays introduced by communication links

so that the AUVs form and maintain a desired formation shape and the formation center tracks

a desired trajectory. The controller design employed a generic 6DOF dynamic model for each

AUV to describe its motions in the 3D space. We developed a method of decoupling the

orientation control and the translation control for each AUV and applied the Jacobi transform

to decouple the collective dynamics of all AUVs into formation-center and formation-shape

dynamics, which can be controlled separately. Treating coupling in the formation dynamics

as perturbations, we designed a robust formation-keeping controller. Comparing to other

existing approaches with similar goals, this decoupling procedure simplified the entire design

process. We provided both rigorous theoretical analysis and simulation results that justified

94



the effectiveness of the method.

• Cooperative control for a human-AUV system. We developed a cooperative control algorithm

for a human-AUV system so that the HUV and AUVs form and maintain a desired formation

while the formation center tracks a desired trajectory. We proposed a dynamic motion model

for an HUV. The model captured human reactions to AUVs through an attention function.

Using geometric methods, we decoupled the collective dynamics of the human-AUV system

into formation-center, formation-shape, and formation-orientation dynamics. We developed

a 3D curve tracking algorithm that enables a free particle to track any smooth curve in 3D

space and used it for formation center control. We identified the dynamics constraint in the

human-AUV system when the HUV and AUVs collaborate to perform both curve-tracking

and formation-keeping tasks. We designed a formation-shape controller and a formation-

orientation controller, and proved that they enable the formation shape to converge to the

desired one. In our method, control forces are gauge invariant and calculated based only on

sensor measurements so that vehicles do not need to communicate and they have freedom to

choose their own coordinate systems.

• Marine environmental survey and data analysis method. We proposed a marine environmental

survey method using a fleet of heterogeneous AUVs and presented a mapping method that

reconciles data from heterogeneous marine vehicles on multiple different paths and creates

a high-fidelity visual representation of the survey data. We carried out field experiments

surveying a coastal lagoon in Grand Isle, Louisiana, which was polluted by crude oil during

the Deepwater Horizon oil spill. In the experiments, we validated our methods, evaluated

the performance of the controllers, analyzed the bathymetric and crude-oil data collected by

our autonomous vehicles in survey missions, and created bathymetric and oil-concentration

maps. According to the survey data, crude oil remained in the water in the coastal area in

the Gulf of Mexico after cleanup efforts. This information may help evaluate and improve

current cleanup efforts.
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6.2 Future Work

We developed a method of modeling an underwater vehicle. In future work, we will extend the

method to the modeling of a partially immersed surface vehicle that moves in a horizontal plane. In

this dissertation, time delay in a multi-AUV system was assumed to be a bounded unknown constant

for the formation control design. In future work, to obtain more general results, we will study cases

in which time delay is time varying. In addition, while current work investigated cooperative control

for a human-AUV system comprised of one HUV and multiple AUVs, future work will include

cooperative control of a system comprised of multiple HUVs and multiple AUVs.
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APPENDIX A

DERIVATION OF UNDERWATER VEHICLE DYNAMICS

We derive the dynamics in Equations (1) and (2) for underwater vehicles following the books by

Thor I. Fossen [70] and Gianluca Antonelli [71].

A.1 Rigid Body Kinematics

A.1.1 Two coordinate frames

Two orthogonal right-handed coordinate frames, shown in Figure (2), are usually used to describe

the configuration of an underwater vehicle: one is the earth-fixed frame {I}, the other is the body-

fixed frame {B}. The earth-fixed frame is denoted as ΣI,OI − xIyIzI . The origin OI is fixed at a

position at the ocean surface, e.g., the position of a mother ship. The body-fixed frame is donated

as ΣB,OB− xByBzB. The origin OB of the body-fixed frame can be selected as the center of mass

(COM) of the underwater vehicle. Note that the vertical axes zI and zB are pointing downwards.

The position, orientation, linear velocity, and angular velocity are needed for describing the

motion of the rigid body. Each of the four quantities is a 3× 1 vector. These vectors can be

described in either the earth-fixed frame or the body-fixed frame. The following four vectors are

commonly used:

η1 = [x,y,z]T ;η2 = [φ ,θ ,ψ]T ;ν1 = [u,v,w]T ;ν2 = [p,q,r]T . (224)

Here η1 and η2 describe the position and orientation of the vehicle in the earth-fixed frame, respec-

tively. ν1 and ν2 describe the linear and angular velocity in the body-fixed frame, respectively. The

reason for this convention is that we are usually interested in knowing the position and orientation of

the vehicle relative to the mother ship. Therefore it is more convenient to describe the position and

orientation in the earth-fixed frame. On the other hand, the velocities are often controlled by actu-

ators attached to the vehicle, hence it is more convenient to describe them in the body-fixed frame.

The linear velocities [u,v,w]T are referred as surge, sway, and heave, and the angular velocities

[p,q,r]T are referred as roll, pitch, and yaw.
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A.1.2 Coordinate transform for linear velocity

The orientation of an underwater vehicle is described by Euler angles, which are a special selection

of a class of angles that can be used to describe rigid body orientation. Three Euler angles used in

the earth-fixed frame are roll angle φ , pitch angle θ , and yaw angle ψ , so η2 = [φ ,θ ,ψ]T describes

the orientation of a vehicle in the earth-fixed frame. ν2 = [p,q,r]T denotes the angular velocity

in the body-fixed frame. The positive direction of rotation around one of the axes xI , yI , and zI

is determined by the following sequence x→ y→ z→ x. For example, the rotation from z to x

is positive, which corresponds to the vehicle pulling its head up, and the pitch angle θ increasing.

Each Euler angle determines a rotation matrix around its corresponding axes as follows:

Rz(ψ) =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 , Ry(θ) =


cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

 , Rx(φ) =


1 0 0

0 cosφ −sinφ

0 sinφ cosφ


(225)

The coordinate transform between the earth-fixed and the body-fixed frames are described by a

rotation matrix RIB . It is customary to describe RIB by three consecutive rotations determined by the

Euler angles. Note that the order of these rotations is not arbitrary. In this dissertation we use the

zyx-convention. First rotate a yaw angle ψ about z axis, then rotate a pitch angle θ about y axis, and

finally rotate a roll angle φ about x axis. These rotations transform the earth-fixed frame into the

body-fixed frame. The rotation sequence can be written as RIB = Rz(ψ)Ry(θ)Rx(φ). Now we get

RIB = Rz(ψ)Ry(θ)Rx(φ) =


cosθ cosψ sinφ sinθ cosψ− cosφ sinψ cosφ sinθ cosψ + sinφ sinψ

cosθ sinψ sinφ sinθ sinψ + cosφ cosψ cosφ sinθ sinψ− sinφ cosψ

−sinθ sinφ cosθ cosφ cosθ

 .
(226)

The rotation matrix RIB ∈ SO(3) has the property: RIB
−1 = RIB

T . As RB
I = RIB

−1, we have

RB
I = RIB

T =


cosθ cosψ cosθ sinψ −sinθ

sinφ sinθ cosψ− cosφ sinψ sinφ sinθ sinψ + cosφ cosψ sinφ cosθ

cosφ sinθ cosψ + sinφ sinψ cosφ sinθ sinψ− sinφ cosψ cosφ cosθ

 . (227)

Now the linear velocity of a vehicle in the earth-fixed frame can be obtained by the coordinate
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transformation

η̇1 = RIB ν1. (228)

The inverse velocity transformation can be written as:

ν1 = RIB
−1

η̇1 = RB
I η̇1. (229)

A.1.3 Coordinate transform for angular velocity

The Euler angles η2 = [φ ,θ ,ψ]T are measured in the earth-fixed frame {I}, but the angular velocity

ν2 is measured in the body-fixed frame B. Because
∫ t

0 ν2(τ)dτ does not have immediate physical

interpretation, the angular velocity vector ν2 = [p,q,r]T cannot be integrated directly to obtain the

actual angular coordinates in the earth-fixed frame. In other words, [p,q,r] 6= [ψ̇, θ̇ , φ̇ ].

For RIB ∈ SO(3), we have RIB · RIB
T = e3. Take derivative on the both sides, we get d

dt RIB =

− RIB ṘIB
T RIB . As a result, d

dt PI = d
dt RIB

BP =− RIB ṘIB
T RIB PB =− RIB ṘIB

T PI . Here PB is a fixed vector

with respect to the body-fixed frame and PI is its description in the earth-fixed frame. In addition,

it can be easily verified that

− RIB · ṘIB
T

=−Rz(ψ)Ry(θ)Rx(φ)RT
x (φ)R

T
y (θ)Ṙ

T
z (ψ)−Rz(ψ)Ry(θ)Rx(φ)RT

x (φ)Ṙ
T
y (θ)R

T
z (ψ)

−Rz(ψ)Ry(θ)Rx(φ)ṘT
x (φ)R

T
y (θ)R

T
z (ψ)

=−Rz(ψ)ṘT
z (ψ)−Rz(ψ)Ry(θ)ṘT

y (θ)R
T
z (ψ)−Rz(ψ)Ry(θ)Rx(φ)ṘT

x (φ)R
T
y (θ)R

T
z (ψ)

=


0 −ψ̇ 0

ψ̇ 0 0

0 0 0

+Rz(ψ)


0 0 θ̇

0 0 0

−θ̇ 0 0

RT
z (ψ)+Rz(ψ)Ry(θ)


0 0 0

0 0 −φ̇

0 φ̇ 0

RT
y (θ)R

T
z (ψ)

=


0 −ψ̇ 0

ψ̇ 0 0

0 0 0

+


0 0 θ̇ cosψ

0 0 θ̇ sinψ

−θ̇ cosψ −θ̇ sinψ 0

+


0 φ̇ sinθ φ̇ sinψ cosθ

−φ̇ sinθ 0 −φ̇ cosψ cosθ

−φ̇ cosθ sinψ φ̇ cosθ cosψ 0



=


0 −ψ̇ + φ̇ sinθ θ̇ cosψ + φ̇ sinψ cosθ

ψ̇− φ̇ sinθ 0 θ̇ sinψ− φ̇ cosψ cosθ

−θ̇ cosψ− φ̇ sinψ cosθ −θ̇ sinψ + φ̇ cosψ cosθ 0

 (230)
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We can observe that − RIB · ṘIB
T is a skew-symmetric matrix and it is called the angular-velocity

matrix. We know that for any skew-symmetric matrix S =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (note: ST = −S),

if we define a 3× 1 column vector ω =


ω1

ω2

ω3

, then it can be verified that SP = ω ×P, where P

is any vector and “×” denotes the vector cross product. The 3×1 vector ω , which corresponds to

the 3× 3 angular-velocity matrix, is called the angular-velocity vector. We use the notion S(·) to

represent an operator that turns a three dimensional vector into a skew-symmetric matrix. In our

case, the skew-symmetric matrix − RIB · ṘIB
T corresponds to a vector ω defined by

ω =


−θ̇ sinψ + φ̇ cosψ cosθ

θ̇ cosψ + φ̇ sinψ cosθ

ψ̇− φ̇ sinθ

 . (231)

We call this ω the angular velocity in the earth-fixed frame. Therefore, S(ω) =− RIB · ṘIB
T .

The relationship between ω and [ψ̇, θ̇ , φ̇ ]T can be obtained as follows:

ω =


cosψ cosθ −sinψ 0

sinψ cosθ cosψ 0

−sinθ 0 1




φ̇

θ̇

ψ̇

 .
= J(η1)η̇2, (232)

so the relationship between v2 = [p,q,r]T and [ψ̇, θ̇ , φ̇ ]T can be established as

ν2 = RB
I ω = RB

I · J(η1)η̇2 = Jk,oη̇2, (233)
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where

Jk,o = RB
I · J(η1)

=


cosθ cosψ cosθ sinψ −sinθ

sinφ sinθ cosψ− cosφ sinψ sinφ sinθ sinψ + cosφ cosψ sinφ cosθ

cosφ sinθ cosψ + sinφ sinψ cosφ sinθ sinψ− sinφ cosψ cosφ cosθ




cosψ cosθ −sinψ 0

sinψ cosθ cosψ 0

−sinθ 0 1



=


1 0 −sinθ

0 cosφ sinφ cosθ

0 −sinφ cosφ cosθ

 . (234)

A.2 Rigid Body Dynamics

In this section we establish the relationship between motions of a rigid body and the external forces.

When deriving the equations of motions of a underwater vehicle, we assume: (1) the vehicle is rigid

and; (2) the earth-fixed frame is inertial.

Consider the body-fixed coordinate system xByBzB rotating with an angular velocity ω = [ω1,ω2,ω3]
T

about an earth-fixed coordinate system xIyIzI , as shown in Figure 1. p0 is the position of the origin

of the body-fixed frame in the earth-fixed frame. pc is the position of COM in the earth-fixed frame.

r is the position of a point in the body relative to the origin of the body-fixed frame. The mass of a

rigid body is defined by m =
∫

V ρdV , where ρ is the density of the rigid body, dV is an infinitesimal

volume, and V is the entire volume of the rigid body. If the origin of the body-fixed frame is not at

the COM, the displacement from the origin of the body-fixed frame to the COM is

rc =
1
m

∫
V
(p− p0)ρdV. (235)

We can also get that:

pc =
1
m

∫
V

pρdV. (236)

101



A.2.1 Inertia matrix

We define a matrix called the inertia matrix as:

I0 =
∫

V
ST (p− p0)S(p− p0)ρdV, (237)

where S(p− p0) is the skew-symmetric matrix corresponding to the vector p− p0, then I0 is a 3×3

matrix:

I0 ,


Ix Ixy Ixz

Iyx Iy Iyz

Izx Izy Iz

 . (238)

Here Ix, Iy, and Iz are the moments of inertia about xI , yI , and zI axes, respectively. Ixy, Iyx, Ixz, Izx,

Iyz, and Izy are the products of inertia. They are defined as:

Ix =
∫

V
(y2 + z2)ρdV ; Ixy =

∫
V

xyρdV =
∫

V
yxρdV = Iyx

Iy =
∫

V
(x2 + z2)ρdV ; Ixz =

∫
V

xzρdV =
∫

V
zxρdV = Izx

Iz =
∫

V
(x2 + y2)ρdV ; Iyz =

∫
V

yzρdV =
∫

V
zyρdV = Izy (239)

A.2.2 Angular momentum

The angular momentum of a particle with respect to a given origin is defined as~k , (p− p0)×mṗ.

In addition, the angular velocity ω and the linear velocity ṗ is related by ṗ− ṗ0 = ω × (p− p0),

i.e., ṗ = ω × (p− p0)+ ṗ0. Therefore, the angular momentum of a rigid body about the origin of

the body-fixed frame is:

~k =
∫

V
(p− p0)× ṗρdV

=
∫

V
(p− p0)× ṗ0ρdV +

∫
V
(p− p0)× (ṗ− ṗ0)ρdV

=
∫

V
pρdV × ṗ0−

∫
V

ρdV p0× ṗ0 + I0ω

= m(pc− p0)× ṗ0 + I0ω

= I0ω +m(pc− p0)× ṗ0

= I0ω +mṗ0× (p0− pc) (240)
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If the COM coincides with the origin of the body-fixed frame, we have Ic = I0 =
∫

V ST (p−

pc)S(p− pc)ρdV. If the center of buoyancy (COB) is selected as the origin of the body-fixed frame,

we have Ib =
∫

V ST (p− pb)S(p− pb)ρdV . We will use Steiner’s theorem to calculate Ib. Steiner’s

theorem is as follows:

Steiner’s theorem:

Ibω = Icω +mST (pc− pb)S(pc− pb)ω. (241)

Proof

Ibω =
∫

V
ST (p− pb)S(p− pb)ρdV ω

=
∫

V
(p− pb)× (ω× (p− pb))ρdV

=
∫

V
(p− pc + pc− pb)× (ω× (p− pc + pc− pb))ρdV

=
∫

V
(p− pc)× (ω× (p− pc))ρdV +

∫
V
(pc− pb)× (ω× (p− pc))ρdV

+
∫

V
(p− pc)× (ω× (pc− pb))ρdV +

∫
V
(pc− pb)× (ω× (pc− pb))ρdV

=Icω +(pc− pb)× (ω×
∫

V
(p− pc))ρdV +

∫
V
(p− pc)ρdV × (ω× (pc− pb))

+(pc− pb)× (ω× (pc− pb))
∫

V
ρdV

=Icω +(pc− pb)× (ω× (mpc− pcm))+(mpc− pcm)× (ω× (pc− pb))

+(pc− pb)× (ω× (pc− pb))m

=Icω +mST (pc− pb)S(pc− pb)ω

We have derived the angular momentum about an origin that is not necessarily the COM:

~k = I0ω + ṗ0×m(p0− pc) (242)
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Using Steiner’s theorem, we can rewrite it as

~k = I0ω + ṗ0×m(p0− pc)

= Icω +mST (pc− p0)S(pc− p0)ω +mṗ0× (p0− pc)

= Icω +m(pc− p0)× (ṗc− ṗ0)+mṗ0× (p0− pc)

= Icω +m(pc− p0)× (ṗc)−m(pc− p0)× ṗ0 +mṗ0× (p0− pc)

= Icω +m(pc− p0)× (ṗc)+mṗ0× (pc− p0)+mṗ0× (p0− pc)

= Icω +m(pc− p0)× (ṗc)

= Icω +mṗc× (p0− pc) (243)

Now we can derive the relationship between I0 and Ib. Note that p− pc = RIB pB and S(p− pc) =

S( RIB pB ) = RIB S( pB ) RB
I , we get

I0 =
∫

V
ST (p− p0)S(p− p0)ρdV

=
∫

V
( RIB ST ( pB ) RB

I RIB S( pB ) RB
I )dV

= RIB Ib RB
I . (244)

Therefore, Ib = RB
I I0 RIB .

A.2.3 Rigid body dynamics

Let fi and ∑
n
i=1 fi× (pi− p0) be the external forces and torques applied to the rigid body, respec-

tively. From ω = RIB ν2, we get

ω̇ = RIB ν̇2 + ṘIB ν2

= RIB ν̇2 +S(ω) RIB ν2

= RIB ν̇2 +S(ω)ω

= RIB ν̇2 (245)
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Because pc− p0 = RIB (Brc), we get

ṗc− ṗ0 = ṘIB (Brc)+ RIB (Bṙc)

= S(ω) RIB (Brc)

= ω× RIB (Brc)

= RIB ν2× RIB (Brc)

= RIB (ν2× RIB (Brc))

= RIB S(ν2)(
Brc), (246)

in which we have used the fact (Bṙc) = 0, as the COM will not move relative to the origin in the

body-fixed frame. In addition, since ṗ0 = RIB ν1, we obtain

ṗc = ṗ0 + RIB S(ν2)(
Brc)

= RIB ν1 + RIB S(ν2)(
Brc)

= RIB [ν1 +S(ν2)(
Brc)]. (247)

Now Newton’s Law yields the following equation

∑
i

fi = m
d
dt

ṗc = m
d
dt

RIB [ν1 +S(ν2)(
Brc)]

= m
d
dt

RIB [ν1 +ν2× (Brc)]

= m[ ṘIB (ν1 +ν2× (Brc))+ RIB (ν̇1 + ν̇2× (Brc))]

= m[ RIB S(ν2)(ν1 +ν2× (Brc))+ RIB (ν̇1 + ν̇2× (Brc))]

= m[ RIB (ν2×ν1 +ν2× (ν2× (Brc)))+ RIB (ν̇1 + ν̇2× (Brc))] (248)

Define τ1 = RB
I ∑i fi, then

τ1 = mν2×ν1 +mν2× (ν2× (Brc))+mν̇1 +mν̇2× (Brc)). (249)

We have derived

~k = Icω +mṗc× (p0− pc), (250)

and we also know

Icω = RIB Ib
c RB

I · RIB ν2 = RIB Ib
c ν2, (251)
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and

mṗc× (p0− pc) = m RIB (ν1 +ν2×B rc)×B rc, (252)

so we get

~k = RIB Ib
c ν2 +m RIB (ν1 +ν2×B rc)×B rc

= RIB [Ib
c ν2 +m(ν1 +ν2×B rc)×B rc]

= RIB [(Ib
c −mS(Brc)S(Brc))ν2 +mν1×B rc]. (253)

Let

Iob = Ib
c −mS(Brc)S(Brc), (254)

then

~k = RIB (Iobν2 +mν1×B rc), (255)

as a result

~̇k = ω× RIB [Iobν2 +mν1×B rc]+ RIB [Iobν̇2 +mν̇1×B rc]. (256)

We define

τ2 = ( RIB )−1~̇k, (257)

then

τ2 = Iobν̇2 +ν2× (Iobν2)+mν2× (ν1×B rc)+mν̇1×B rc. (258)

A.2.4 General form of rigid body dynamics

Equations (249) and (258) are usually written in a component form according to the SNAMA nota-

tion ( [70]), where τ1 = [X ,Y,Z]T denotes the external forces, τ2 = [K,M,N]T denotes the moment

of external forces. ν1 = [u,v,w]T and ν2 = [p,q,r]T denote the linear and angular velocity in the

body-fixed frame, respectively, and (Brc) = [xG,yG,zG]
T denotes the center of gravity the body-fixed

frame, as before. Using these notations, Equations (249) and (258) become

MRBν̇ +CRB(ν)ν = τRB, (259)

where ν = [ν1,ν2]
T = [u,v,w, p,q,r]T is the body-fixed linear and angular velocity vector and

τRB = [τ1,τ2]
T = [X ,Y,Z,K,M,N]T is a generalized vector of external forces and moments. The
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parameterization of the rigid-body inertia matrix MRB is

MRB =

 me3×3 −mS(Brc)

−mS(Brc)) Iob

=



m 0 0 0 mzG −myG

0 m 0 −mzG 0 mxG

0 0 m myG −mxG 0

0 mzG −myG Ix −Ixy −Izx

−mzG 0 mxG −Iyx Iy −Iyz

myG −mxG 0 −Izx −Izy Iz


(260)

We can see that MRB is constant, symmetric, and positive definite, i.e., ṀRB = 0, MRB = MT
RB > 0.

CRB is given as following:

CRB(ν) =

 mS(ν2) −mS(ν2)S(Brc)

−mS(ν2)S(Brc) −S(Iobν2)


(261)

Noticing mS(ν2) −mS(ν2)S(Brc)

−mS(ν2)S(Brc) −S(Iobν2)

ν =

 03×3 −mS(ν1)−mS(ν2)S(Brc)

−mS(ν1)−mS(ν2)S(Brc) −S(Iobν2)

ν ,

we define

C′RB(ν),

 03×3 −mS(ν1)−mS(ν2)S(Brc)

−mS(ν1)−mS(ν2)S(Brc) −S(Iobν2)



=



0 0 0

0 0 0

0 0 0

−m(yGq+ zGr) m(yG p+w) m(zG p− v)

m(xGq−w) −m(zGr+ xG p) m(zGq+u)

m(xGr+ v) m(yGr−u) −m(xG p+ yGq)
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m(yGq+ zGr) −m(xGq−w) −m(xGr+ v)

−m(yG p+w) m(zGr+ xG p) −m(yGr−u)

−m(zG p− v) −m(zGq+u) m(xG p+ yGq)

0 Iyxq+ Ixz p+ Izr −Iyzr− Ixy p− Iyq

−Iyxq− Ixz p− Izr 0 Ixzr+ Ixyq+ Ix p

Iyzr+ Ixy p+ Iyq −Ixzr− Ixyq− Ix p 0


, (262)

and get

CRB(ν)ν ,C′RB(ν)ν , (263)

so we can use C′RB to substitute CRB. It can be easily seen that C′RB(ν) =−C′TRB(ν).

If Brc = 0, then MRB =

me3×3 03×3

03×3 Iob

 and CRB(ν) =

 mS(ν2) 03×3

03×3 −S(Iobν2)


A.3 Underwater Vehicle Dynamics

In Equation (259), τRB represents the external forces and moments acting on the vehicle. They

include radiation-induced forces and moments, for example, terms caused by the added inertia,

i.e., MAν̇ +CA(ν)ν , terms caused by hydrodynamic damping, i.e., Dνν , and restoring force term

g(η). They also include environmental forces and moments like ocean currents, waves, and wind.

This part is ignored in this dissertation. τRB also includes propulsion forces and moments, for

example, thruster/propeller forces and control surfaces/rudder forces, which are used to control the

vehicle. Hence the right-hand side of (259) is τRB = τH +τ , where τH =−MAν̇−CA(ν)ν−D(ν)ν−

g(η) represents the hydrodynamic forces and moments, and τ represents the propulsion forces and

moments. Therefore, 6DOF dynamic model of motions of an underwater vehicle is

Mν̇ +C(ν)ν +D(ν)ν +g(η) = τ, (264)
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where M , MRB +MA and C(ν),CRB(ν)+CA(ν). MA is a 6×6 added inertia matrix defined as

MA ,−



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


(265)

For instance, the hydrodynamic added mass force YA along y-axis due to an acceleration u̇ in the x-

direction is written as YA = Yu̇u̇, therefore, Yu̇ , ∂Y
∂ u̇ . For a rigid body moving through an ideal fluid,

the hydrodynamic Coriolis and centripetal matrix CA(ν) can always be parameterized such that

CA(ν) is skew-symmetrical, i.e., CA(ν) =−CT
A (ν), ∀ν ∈ R6. If the body is completely submerged

in water, the velocity of the vehicle is low, and the vehicle has three planes of symmetry, which are

common for underwater vehicles, MA and CA matrices have the following structure

MA =−diag{Xu̇,Yv̇,Zẇ,Kṗ,Mq̇,Nṙ}, (266)

CA =



0 0 0 0 −Zẇw Yv̇v

0 0 0 Zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0

−Zẇw Yv̇v 0 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗ p

−Yv̇v Xu̇u 0 −Mq̇q k ṗ p 0


. (267)

The viscosity of the fluid also causes dissipative drag and lift forces on the body. We call them

the damping terms. In general the damping terms for an underwater vehicle moving at high speed

will be highly nonlinear and coupled. If we approximate them by assuming that the vehicle has

three planes of symmetry and that the damping terms higher than second order can be neglected,

then D(ν) has a diagonal structure with only linear and quadratic damping terms on the diagonal,

so

D(ν) =−diag{Xu,Yv,Zw,Kp,Mq,Nr}−diag{Xu|u||u|,Yv|v||v|,Zw|w||w|,Kp|p||p|,Mq|q||q|,Nr|r||r|}

(268)
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Now we look into the gravity and buoyancy. We know that the weight of the body is W = mg

and the buoyancy force is −B = −ρg∇ (the positive direction of B points upwards) in the earth-

fixed frame, where g is the acceleration of gravity, ρ is the fluid density, and ∇ is the volume of fluid

displaced by the vehicle. We can transform the weight and buoyancy to the body-fixed coordinate

system using fG(η2) = J−1
1 (η2)


0

0

W

 and fB(η2) = −J−1
1 (η2)


0

0

B

. Consequently, the restoring

force and moment vector in the body-fixed frame is:

g(η) =−

 fG(η)+ fB(η)

rG× fG(η)+ rB× fB(η)

=



(W −B)sinθ

−(W −B)cosθ sinφ

−(W −B)cosθ cosφ

−(yGW − yBB)cosθ cosφ +(zGW − zBB)cosθ sinφ

(zGW − zBB)sinθ +(xGW − xBB)cosθ cosφ

−(xGW − xBB)cosθ sinφ − (yGW − yBB)sinθ


.

(269)
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APPENDIX B

HYDRODYNAMIC PARAMETER ESTIMATION

Figure 40: Horizontal-fin angle α VS τθ
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Figure 41: Vertical-fin angle β VS τy

Figure 42: Vertical-fin angle β VS τψ
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Figure 43: Horizontal-fin angle α VS τx

Figure 44: Vertical-fin angle β VS τx
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APPENDIX C

G′ IN EQUATION (78)

G
′
=


g′11 g′12 g′13

g′21 g′22 g′23

g′31 g′32 g′33

 ,
where

g′11 =
Xu

m−Xu̇
(cosθ cosψ)2

+
Yv

m−Yv̇
(cosψ sinθ sinφ − cosφ sinψ)2

+
Zw

m−Zẇ
(cosφ cosψ sinθ + sinφ sinψ)2,

g′12 =
Xu

m−Xu̇
(cos2

θ sinψ cosψ)

+
Yv

m−Yv̇
(cosφ cosψ + sinθ sinφ sinψ)(cosψ sinθ sinφ − cosφ sinψ)

+
Zw

m−Zẇ
(cosφ cosψ sinθ + sinφ sinψ)(cosφ sinθ sinψ− cosψ sinφ),

g′13 = − Xu

m−Xu̇
cosθ sinθ cosψ

+
Yv

m−Yv̇
cosθ sinφ(sinθ cosψ sinφ − sinψ cosφ)

+
Zw

m−Zẇ
cosθ cosφ(sinθ cosψ cosφ + sinψ sinφ),

g′21 =
Xu

m−Xu̇
cos2

θ cosψ sinψ

+
Yv

m−Yv̇
(sinθ sinφ sinψ + cosφ cosψ)(cosψ sinθ sinφ − cosφ sinψ)

+
Zw

m−Zẇ
(cosφ sinθ sinψ− cosψ sinφ)(cosφ cosψ sinθ + sinφ sinψ),

g′22 =
Xu

m−Xu̇
(cosθ sinψ)2

+
Yv

m−Yv̇
(cosφ cosψ + sinθ sinφ sinψ)2

+
Zw

m−Zẇ
(cosψ sinφ − cosφ sinθ sinψ)2,
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g′23 = − Xu

m−Xu̇
cosθ sinθ sinψ

+
Yv

m−Yv̇
cosθ sinφ(sinθ sinφ sinψ + cosφ cosψ)

+
Zw

(m−Zẇ)
cosθ cosφ(sinθ sinψ cosφ − sinφ cosψ),

g′31 = − Xu

m−Xu̇
cosθ cosψ sinθ

+
Yv

m−Yv̇
(sinφ cosψ sinθ − cosφ sinψ)cosθ sinφ

+
Zw

m−Zẇ
(cosφ cosψ sinθ + sinφ sinψ)cosθ cosφ ,

g′32 = − Xu

m−Xu̇
sinθ cosθ sinψ

− Zw

m−Zẇ
(sinφ cosψ− cosφ sinθ sinψ)cosθ cosφ

+
Yv

m−Yv̇
(cosφ cosψ + sinφ sinθ sinψ)cosθ sinφ ,

g′33 =
Xu

m−Xu̇
sin2

θ

+
Yv

m−Yv̇
(cosθ sinψ)2

+
Zw

m−Zẇ
(cosθ cosψ)2.
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APPENDIX D

IMPLEMENTATION OF NATURAL FRENET FRAME

For a curve with non-zero curvature in 3D space, we use r to denote a point on the curve and use

T, N, and B to denote the tangent vector, the principal normal vector, and the binormal vector,

respectively, i.e.,

T =
dr
ds

(270)

N =
dT
ds

‖ dT
ds ‖

(271)

B = T×N (272)

where s denotes the length of the curve, then (T,N,B) is the unique Frenet-Serret frame for the

curve, and the 3D curve can be describe by the following equation:

dT
ds

= κN (273)

dN
ds

=−κT+ τ̃B (274)

dB
ds

=−τ̃N (275)

where κ and τ̃ are curvature and torsion, respectively. In our work, we only care about the shape of

the curve, so that we assume the curve to be a unit speed curve, i.e., ds
dt = 1, therefore,

Ṫ

Ṅ

Ḃ

=


0 κ 0

−κ 0 τ̃

0 −τ̃ 0




T

N

B

 (276)
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where

T = ṙ (277)

κ = ‖Ṫ‖ (278)

N =
Ṫ
κ

(279)

B = T×N (280)

τ̃ =−Ḃ ·N (281)

Here “·” denotes the inner product. Note that a curve with zero curvature, i.e., κ = 0, does not have

Frenet-Serret representation. For any curve with non-zero curvature, Frenet-Serret representation

always exists and is unique.

For the natural Frenet frame defined in Equation (135), we have X = T, which means that we

can rotate the Frenet-Serret frame around the direction of ṙ for an angle α̃ to get the Natural Frenet

frame, i.e., 
X

Y

Z

=


1 0 0

0 cα̃ sα̃

0 −sα̃ cα̃




T

N

B

 (282)

or equivalently 
T

N

B

=


1 0 0

0 cα̃ −sα̃

0 sα̃ cα̃




X

Y

Z

 . (283)

Plug Equation (283) into left part of Equation (276), we get
Ṫ

Ṅ

Ḃ

=


0 κ 0

−κ 0 τ̃

0 −τ̃ 0




1 0 0

0 cα̃ −sα̃

0 sα̃ cα̃




X

Y

Z

=


0 κcα̃ −κsα̃

−κ τ̃sα̃ τ̃cα̃

0 −τ̃cα̃ τ̃sα̃




X

Y

Z


(284)
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From Equation (283) we also get
Ṫ

Ṅ

Ḃ

=
d
dt




1 0 0

0 cα̃ −sα̃

0 sα̃ cα̃




X

Y

Z


=


1 0 0

0 cα̃ −sα̃

0 sα̃ cα̃




Ẋ

Ẏ

Ż

+


0 0 0

0 −sα̃ ˙̃α −cα̃ ˙̃α

0 cα̃ ˙̃α −sα̃ ˙̃α




X

Y

Z


(285)

Plug equation (284) to the above equation, we get
Ẋ

Ẏ

Ż

=


1 0 0

0 cα̃ −sα̃

0 sα̃ cα̃


−1


0 κcα̃ −κsα̃

−κ τ̃sα̃ τ̃cα̃

0 −τ̃cα̃ τ̃sα̃

−


0 0 0

0 −sα̃ ˙̃α −cα̃ ˙̃α

0 cα̃ ˙̃α −sα̃ ˙̃α





X

Y

Z



=


0 κcα̃ −κsα̃

−κcα̃ 0 τ̃ + ˙̃α

κsα̃ −τ̃− ˙̃α 0




X

Y

Z

 (286)

Compare Equation (286) with Equation (135) we get

u =−κsα̃ (287)

v = κcα̃ (288)

τ̃ + ˙̃α = 0 (289)

Therefore,

α̃ =−τ̃t +ζ (290)

and then

u = κs(τ̃t−ζ ),

v = κc(τ̃t−ζ ). (291)

Here ζ is an arbitrary constant.
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