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SUMMARY

A desire to advance humanity’s presence in space prompts the need for improved

technology to send crew to places such as the Moon, Mars, and nearby asteroids. Landing

at these locations will require vehicle capabilities greater than that previously used during

the Apollo program or in Low Earth Orbit. Safely placing a crewed vehicle in any landing

condition requires a design decision regarding the distribution of tasks between the crew

and automation. A joint human-automation system is hypothesized to provide several ad-

vantages to an all-automation or all-human system by leveraging the computational power

of automation with the creativity and flexibility of humans. However, knowing when and

what to automate is a difficult question. A number of function allocation strategies have

been suggested through the literature, but many are applicable to nominal, baseline opera-

tions only. Furthermore, these strategies provide little guidance for specific applications. As

such, functions may be automated or assigned to the human without fully understanding

the human’s needs, limitations, and capabilities, or the impact of the allocation on mission

performance.

In this thesis, the use of a cognitive process model is proposed for determining the

necessary automated functionality to support astronaut decision making. A process model

lacks the detailed modeling applied in cognitive architectures, focusing instead on the com-

posite behavior and interactions of individual cognitive processes. This model formulation

informs design suggestions suitable for the requirements analysis design stage. To construct

this model, however, the current literature lacks sufficient detailed knowledge regarding

astronaut decision making during the landing point designation task, and observations of

astronauts landing on the Moon are not readily available. Therefore, the most feasible op-

tion is conducting a human-in-the-loop (HITL) experiment to examine two representative

human-automation function allocations. The data collected in the HITL study informs the

cognitive process model and also the requirements analysis.
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The research conducted in this thesis is comprised of three complimentary research en-

deavors. The first endeavor consisted of characterizing landing point designation (LPD)

through three HITL experiments, one of which was conducted with the NASA Astronaut

Office at Johnson Space Center. The data from this experiment was used to characterize

the decision making strategies employed by the astronauts and observe the effects of auto-

mated assistance, trajectory, and scenario on landing performance. The second endeavor

was focused on developing a computational, rule-based cognitive process model of astronaut

decision making through a variety of function allocation, environmental, and mission oper-

ations parameters based on empirical data. The model was validated by comparing model

and experiment results and on a set of one thousand randomly generated landing scenarios.

The third endeavor was concerned with developing system requirements for an automated

system to assist astronaut decision making during both nominal and off-nominal landing

scenarios and the analysis of cockpit display usage and information needs. A normative

model is suggested for future space exploration.

The thesis has provided the following contributions:

1. Characterize human-system decision making during landing point designation and

provide a quantitative database of this performance.

2. Develop a cognitive process model to establish performance benchmarks and expected

achievements during conceptual design

3. Provide system requirements regarding information needs and cockpit design require-

ments for humans and automated systems during landing point designation.
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CHAPTER I

INTRODUCTION AND MOTIVATION

A desire to advance humanity’s presence in space prompts the need for improved technol-

ogy to send crew to places such as the Moon, Mars, and nearby asteroids. Landing at

these locations will require vehicle capabilities greater than that previously used during the

Apollo program or in Low Earth Orbit. In particular, automation needs to be capable of

working in tandem with onboard astronauts in high-stakes, time-critical situations. Since

the last crewed landing on another celestial body during the Apollo program, there have

been substantial technological improvements, particularly in the area of automation. Sensor

technology can now scan, process, and map landing terrain for navigational use, increasing

vehicle state forecasting ability and improving knowledge of ownship state. Smart guid-

ance algorithms are now placing vehicles within meters of the intended target. Improved

display functionality is streamlining information and easing pilot workload. However, these

automation systems may fail or work less robustly when operating beyond their design

boundaries - a legitimate problem facing potential landing sites where the accuracy of in-

formation cannot be verified. The poles and the dark side of the Moon are dimly lit -

resulting in poor contrast conditions - and are punctuated by large obstacles such as craters

and rocks [1]. The Martian atmosphere is not dense enough to fully decelerate a vehicle but

imposes enough friction on the vehicle that extensive heat shielding or dissipating designs

are necessary for survival. Strong winds, craters, and rocks, challenge the vehicle’s descent

to the surface [2]. Lastly, low atmospheric densities and significant topographical features

of asteroids threatens the safety of crew and vehicle alike. These challenges require careful

attention to the allocation of functions between the crew and automation.

Safely placing a crewed vehicle in any landing condition requires a design decision re-

garding the distribution of functionality between humans and automation. A joint human-

automation system is hypothesized to provide several advantages to an all-automation or
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all-human system, by leveraging the computational power of automation with the creativity

and flexibility of humans. However, knowing when and what to automate is a difficult ques-

tion. A number of function allocation strategies have been suggested through the literature,

but many are applicable to nominal, baseline operations only. Furthermore, these strategies

provide little guidance for specific applications. As such, functions may be automated or

assigned to the human without fully understanding the human’s needs, limitations, and

capabilities. For challenging tasks such as landing point designation (LPD), the event of

deciding where to land the vehicle, poorly designed function allocations can result in failure

or severe retardation in system performance. Therefore, the primary research question is

posed: How should the functionality of automated landing systems and crew be assigned

to support mission operations during landing point designation? Answering this question

also demands understanding, how does landing point designation performance vary in each

of these function allocations?

1.1 Using Cognitive Models Within Systems Design

These research questions can be answered in a number of ways, such as ethnographies,

operations observations, and historical analysis. In this thesis, a cognitive process model

is proposed to determine the necessary automated functionality to support astronaut deci-

sion making. A number of models could be used during this design process, ranging from

primitive models (low-level cognitive phenomena) to process models (high-level cognitive

processing functions) to cognitive architectures (precise modeling of both low- and high-level

behaviors). Cognitive process models are the most appropriate for this thesis. The focus

is on establishing design guidelines for requirements analysis, the earliest stage of design,

with the goal of determining functions appropriate for humans and automation systems as

to support mission operations.

This cognitive process model also provide predictive capability early in the design cycle.

Understanding how performance varies with respect to changes in automation or mission

operations allows for better forecasting ability and iterative design cycles. In the case of
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this thesis, the cognitive process model allows for prediction of the distribution of poten-

tially chosen landing sites at a specific place on the Moon. Developing this model, however,

requires an improved understanding of function allocation during lunar landing point desig-

nation. Current literature lacks sufficient detailed knowledge regarding astronaut decision

making during this task, and observations of astronauts landing on the Moon are not read-

ily available. Therefore, this work conducts several human-in-the-loop (HITL) experiments

to examine the impact of representative function allocations on system performance and

selected landing site safety. The data collected in these HITL studies informs the cognitive

process model and also the requirements analysis.

The inclusion of the cognitive process model within the design cycle differs from con-

vention by accounting for human decision making in a realistic and sophisticated manner.

Furthermore, the use of a cognitive process model allows mission designers to anticipate

potential behavior in a variety of scenarios and develop additional training regimina to en-

hance mission performance. Inadequate designs of human and automation functionality has

led to training humans to account for system deficiencies, along with training to achieve

best performance. Specifically, this work examines astronaut decision making and varia-

tions in their cognitive processes due to different function allocations, landing trajectory,

and mission operations. It accounts for the different decision making cues, or elements that

are sensed from a display or through a window, the relative importance of such cues, and

the different search methods used to find solutions. This thesis also examines cognitive

processes that happens prior to and during operation, setting operator expectations for an

anticipated future state or operation, and the incorporation of such expectations in the

actual event.

The research contained in this thesis is composed of three complementary research en-

deavors. The first endeavor characterizes LPD by decomposing this main task into five

fundamental subtasks. Each task can be allocated to either human or automation, allowing

analysis of several function allocation combinations. Three allocation cases were chosen for

further investigation in this thesis: Apollo-like, moderate, and robotic. Three HITL exper-

iments were conducted to understanding the timing and interactions between human and
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automation. The main experiment conducted for this thesis was completed in conjunction

with the NASA Astronaut Office and evaluates the changes in astronaut decision making

due to function allocation (moderate, Apollo-like), trajectory (baseline, shallow), and sce-

nario (nominal, off-nominal). Both qualitative and quantitative data are collected, in terms

of performance and astronaut decision making strategies.

The second endeavor developed and validated the cognitive process model. This rule-

based computational cognitive process model is developed from literature, experimental

data, observations, and debriefings with members of the Astronaut Office describing the

task sequencing, the decision making cues, cue preferences, and search methods used by the

astronauts. The cognitive functions reported by participants in the main experiment were

codified and established in a rule-based algorithm. The model focuses on decision making

behavior with appropriate assumptions for motor functions, memory, and task management.

The model is validated by comparing participant site selection with cognitive model site

selection based on the same decision making cue usage, preferences, and search method.

The model was further validated by evaluating trends over 1000 simulated data points.

The third endeavor applies the cognitive process model to examine the information needs

and cockpit design requirements to support the responsibilities of the human and the au-

tomation system at the Apollo-like, moderate, and robotic function allocations. Historical

data, literature, experimental data, cognitive model development, and display evaluations

from members of the Astronaut Office are used to inform the system design requirements

and provide suggestions for training topics. System requirements for the automation func-

tionality are proposed. Additionally, a normative model is prescribed for future automated

landing systems that adjusts functionality of humans and automation between nominal and

off-nominal scenarios. All of these analyses establish guidelines for requirements analysis

and conceptual design.

1.2 Contributions

The research presented in this thesis is envisioned to provide three major contributions:

1. Characterize human-system decision making during landing point designation and
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provide a quantitative database of this performance.

2. Develop a cognitive process model to establish performance benchmarks and expected

achievements during conceptual design.

3. Provide system requirements regarding information needs and cockpit design require-

ments for humans and automated systems during landing point designation.

1.3 Research Overview

There are seven chapters in this thesis, as seen in Table 1. Chapter 1, this chapter, presents

an introduction and poses the motivation for this body of work. Chapter 2, Literature

Review, provides the necessary background to understand the methodology proposed in

this research. Topics covered in this chapter include a discussion on the known limitations

of crewed spaceflight; the definition and attributes of a cognitive architecture; the different

methodologies of function allocation; and relevant studies. Chapter 3 discusses landing

point designation and visualizing this task through task decomposition and task analysis.

The major results of two HITL experiments related to this field are discussed, and the design

of a third HITL experiment intended to inform the cognitive process model is presented.

Chapter 4 discusses the results of the main HITL experiment conducted with the NASA

Astronaut Office and the observed human-system decision making in the simulated lunar

environment. Chapter 5 presents the development of the cognitive process model from

experimental data and the validation. Chapter 6 highlights the information needs, display

design suggestions, cockpit arrangements, desired function allocation, training topics, and

derived system requirements for use in future crewed lunar landing. Lastly, Chapter 7

summarizes the entire thesis, with a discussion of future work.
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Table 1: Thesis Organization

Ch. 1 Introduction and Motivation
Ch. 2 Literature Review
Ch. 3 Decision Making during Landing Point Designation
Ch. 4 Changes in Astronaut Decision Making
Ch. 5 Cognitive Process Model Development
Ch. 6 Suggested Automation Responsibilities and Crew Training Objectives
Ch. 7 Conclusions and Future Work
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CHAPTER II

LITERATURE REVIEW

Determining automation system functionality for a crewed landing system requires an ap-

preciation of several related topics. Fundamentally, this thesis touches on the topics of

function allocation, cognitive modeling, and crewed spacecraft design. First, function allo-

cation for any task can be performed using one of many available schema. Second, a number

of modeling techniques have been designed to model human-automation interaction which

can be used for a variety of purposes through the design cycle. Several of these techniques

are validated and effective for design use. Third, decades of human spaceflight experience

have established well-known standards and limitations for crewed spaceflight, especially for

the safety of the onboard crew. In addition to these general design heuristics, there are

a number of related studies in this area of human-automation function allocation during

landing point designation (LPD). This chapter will review the major contributions within

each of these particular fields.

2.1 Function Allocation

In this thesis, the term function allocation refers to the distribution of tasks between a

human operator and an automated system. Other authors in literature have provided addi-

tional insights on function allocation. Feigh and Dorneich [3] categorize function allocation

as task sharing and task offloading. Bailey [4] takes a broader perspective, and includes the

analysis and description of system functions within this division of responsibilities between

human and automation. Pritchett et al. [5] note that function allocation must account for

the activities of both human and automation, rather than in broad terms such as levels of

automation [6].

The task of function allocation is a critical step within any design process, particularly

so during the design of human-automation systems. Generally, this task occurs once sys-

tem objectives and performance specifications are set, and answers the question, “What
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responsibilities should be performed by the user or the system?” [7]. Sequentially, function

allocation is performed during the conceptual design stage, if one subscribes to the four-

stage model of systems engineering: conceptual, preliminary, detailed, and final design.

However, the activity itself does not occur once, but iteratively [4]. Pritchett et al. note

that function allocation “is also often the only issue with human-automation interaction

that can be addressed at the earliest design stages, that is before the interface and machine

logic have been established” [5]. As discussed in Chapter 1, this thesis is focused on de-

veloping system requirements for function allocation and is intended for the early stages of

design. This subsection discusses different allocation strategies and considerations for this

design activity.

2.1.1 Allocation Strategies

Several methods have been proposed on how to divide work between humans and automa-

tion. These methods fall into four distinct families, with a fifth family representing the most

current and advanced method of function allocation. These five families, sometimes referred

to by different terms, are 1) comparison, 2) leftover, 3) economical, 4) humanized, and 5)

flexible or adaptive allocation [4]. Comparison allocation is the assignment of functions

based on known human and automation strengths. Leftover allocation prescribes an “auto-

mate what you can” approach, with remaining, or “leftover”, tasks assigned to the human.

In economical allocation, responsibilities are assigned as to minimize the overall system

cost. Humanized allocation is the conjugate of leftover; humans are assigned meaningful

tasks first, with remaining functions assigned to automation. Lastly, adaptive allocation

provides a framework for the humans to allocate tasks in real-time, rather than assigning

functions during system development. Adaptive allocation can be achieved by modifying

the function allocation, the task scheduling, the interaction, or the content [3].

The concept of comparison function allocation was first introduced in the 1950s. Basic

lists, such “Fitts’ List” or MABA-MABA (Men Are Better At, Machines Are Better At),

detailing human and automation strengths were proposed and applied to function alloca-

tion. Table 2 describes the MABA-MABA list proposed by Fitts. This list has evolved
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over the years to reflect the maturation of computing capabilities. These comparison lists

provide simplistic guidelines to partition work, but should be utilized as an initial approach

to function allocation, rather than the sole basis. There are several shortcomings to com-

parison allocation. First, this practice does not provide comparable measures of interest

beyond system performance (such as workload, human performance effects) [3]. Second,

MABA-MABA lists assume that there are fixed strengths and weaknesses of humans and

automation, thus, tasks can be easily substituted by humans or automation [8]. As Dekker

and Woods writes, “Capitalising on some strength of automation does not replace a human

weakness. It creates new human strengths and weaknesses - often in unanticipated ways”

[9, 8]. As mentioned previously, the tasks assigned to automation result in transformed

tasks for humans. Third, the human operator is ultimately responsible for the system, es-

pecially in failure. Comparison allocation assumes that humans are capable of taking over

tasks assigned to automation (while maintaining their own responsibilities) at any point of

operation.

Table 2: Fitts’ List: Men Are Better At, Machines Are Better At. Adapted from
Fitts [10].

Human Machines

Detection Speed
Perception Power

Improvisation Routinization
Long-Term Storage Short-Term Storage

Induction Deduction
Memory Performance of Simultaneous Operations

The growing computing capabilities as recognized by the MABA-MABA list is reflected

in the leftover allocation approach. This approach recommends that all functions that

could be automated thus should be. The remaining functions are assigned to the human.

As with comparison allocation, there are several shortcomings to relying on this single

strategy. First, the human is assumed to be capable of completing the remaining tasks.

Furthermore, the human is also assumed to want or have the motivation to do so [4]. Second,

this allocation strategy neglects the interactions between different types of tasks such as

implementation and planning. For example, in order to implement a course of action, one
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must have involvement in the planning, or at minimum, be given the opportunity to review

and comprehend the intended set of actions. Limiting or removing the human from these

critical stages leaves unrealistic expectations during automation failure [3, 9].

A slight improvement over the leftover and comparison allocation strategies is the eco-

nomic allocation, where tasks are assigned to achieve the minimum cost associated with

selecting, execution, training, etc. While an intuitive approach, as most systems are con-

strained by a limited budget, this approach has its disadvantages. First, this approach,

like the others, is too simplistic and 1-dimensional and can place the human operator in a

precarious position, as the system is designed for minimizing costs, rather than an optimal

or robust level of performance. Furthermore, just design costs are considered, instead of

design and operational costs. The gains associated with shortening the life cycle may not

counter those induced from operational or maintenance costs [4]. Second, economically al-

locating functions does not account for the workload imposed on the human or situation

awareness requirements, leading to poor performance.

The humanized allocation strategy mirrors function allocation with the actual operation

and assigns tasks to humans based on reasoning and logic. Each responsibility assigned to

the human must be justified; that is, the task must have purpose to retain user motivation

and leverage human strengths. Remaining functions are allocated to automation. Slight

variations of humanized allocation are recommended for general practice. Chapanis argues

that functions that must be allocated to humans or automation due to safety, human or

technological limitations, or system requirements should be assigned first. The remaining

functions should be analyzed and several different alternative human-automation configu-

rations proposed. These configurations are then ranked based on scoring against different

weighting criteria. The most effective configuration is based on the results of the weighting

criteria and one that is most cost-effective [11].

2.1.2 Current Methodology

Three major function allocation methodologies exist in current practice today: the work

proposed by Parasuraman et al.; Endsley and Kaber’s levels of automation; and NASA’s

10



FLOAAT utility. This three research exemplars and others often describe the allocation

as levels of automation. However, levels of automation is misleading, as the relationship is

non-linear [12, 13] and one-sided. That is, the focus is strictly on automation functionality

whereas the human’s role is also evolving. The uni-dimensional scale is too coarse suffi-

ciently describe the distribution of work between both agents [5, 6]. Parasuraman et al.

[12] introduced a second dimension, a four-stage model of human information processing.

They propose that automation (and human capability) can be applied to four classes of

functionality: information acquisition; information analysis; decision and action selection;

and action implementation. Acquisition refers to sensing and registering data. Analysis is

defined as inference and utilizing memory across data to establish predictions. Decision is

the generation of action options, and action is the selection of the best choice amongst the

options. Implementation is the execution of the chosen set of actions. As such, automation

can be ranked as high or low across these four classes. Aspects of this work are based on

Sheridan and Verplanck’s levels of automation [14] (Table 3).

Table 3: Levels of Automation of Decision and Action Selection. Adapted from
Parasuraman et al. [12].

Role of Automation

10 The computer decides everything, acts autonomously, ignoring the human.
9 informs the human only if it, the computer, decides to
8 informs the human only if asked, or
7 executes automatically, then necessarily informs the human, and
6 allows the human a restricted time to veto before automatic execution, or
5 executes that suggestion if the human approves, or
4 suggests one alternative
3 narrows the selection down to a few, or
2 The computer offers a complete set of decision/action alternatives, or
1 The computer offers no assistance: human must take all decisions and actions.

Parasuraman et al. recommends a four-criterion set for primary evaluation of various

combinations of human-automation allocation. These criteria are standard human perfor-

mance evaluation metrics. a) Mental workload; b) Situation awareness; c) Complacency;

d) Skill degredation. Full application of the model also requires the consideration of two

other criteria, which composes of a secondary evaluation set: 1) Automation reliability; and
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2) the cost of decision and action outcomes.

Endsley and Kaber [13] developed a ten-point automation scale that also allocates work

across four-subfunctions: 1) Monitoring; 2) Generating; 3) Selecting; and 4) Implementing.

This scale is different from Sheridan and Verplanck’s scale as combined efforts of human

and automation are considered, instead of just allocating functions to just one or the other.

Table 4 lists these levels, including the allocations of work.

Table 4: Endsley and Kaber’s Ten-Point Levels of Automation. The allocation of
responsibilities is indicated by Human (H) or Computer (C) [13].

Level Monitor Generate Select Implement

1: Manual Control H H H H
2: Action Support H/C H H H/C
3: Batch Processing H/C H H C
4: Shared Control H/C H/C H H/C
5: Decision Support H/C H/C H C
6: Blended Decision Making H/C H/C H/C C
7: Rigid System H/C C H C
8: Automated Decision Making H/C H/C C C
9: Supervisory Control H/C C C C
10: Full Automation C C C C

Lastly, NASA has developed a Level of Autonomous Assessment Scale of eight com-

binations of human and automation control [15]. This scale are based on Boyd’s OODA

(Observe, Orient, Decide, Act) loop [16] (Table 5). When used in tandem with the Func-

tional Level of Autonomy Assessment Tool (FLOAAT), a spacecraft system designer should

be able to determine the appropriate level of autonomy. FLOAAT is a 35-question ques-

tionnaire that determines two level of autonomy limits: one for trust and the other a

cost/benefit limit. The system designer’s results to the questionnaire are mapped to the

eight-point scale and a recommendation for function allocation is provided. While this ap-

proach conveniently describes function allocation in a quantitative manner, it is insufficient

based on the arguments presented by Pritchett et al [5, 6]. Automation levels provides a

one-sided account of the distribution of tasks to multiple entities and implies there is a

natural linear progression of activity. Two systems at the same level of automation may be

very different with regards to their functionality.
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Table 5: Level of Autonomy Assessment Scale. H stands for Human; C for computer.
Adapted from Proud et al. [15].

Observe Orient Decide Act

8 C gathers, filters,
prioritizes data; not
displayed to H

C predicts, inter-
prets, integrates
data; not displayed
to H

C performs fi-
nal ranking; not
displayed to H

C executes automat-
ically, no H input

7 C gathers, filters,
prioritizes data; not
displayed to H; “pro-
gram functioning”
flag displayed

C analyzes, pre-
dicts, interprets,
integrates; displays
to H only if within
programmed context

C performs final
ranking; displays
reduced set of op-
tions to H without
decision logic

C executes automat-
ically, informs H if
required; allows for
emergency override

6 C gathers, filters,
prioritizes data, dis-
played to H

C overlays predic-
tions with analysis,
interprets data; dis-
play all to H

C performs final
ranking; displays
decision logic to H

C executes automat-
ically, informs H; al-
lows for emergency
override

5 C gathers info;
displays non-
prioritized, filtered
info to H

C overlays predic-
tions with analysis,
interprets data. H
shadows for contin-
gencies

C performs final
ranking, all and de-
cision logic displayed
to H

C allows H time to
veto and emergency
override

4 C gathers info; dis-
plays highlights non-
prioritized, relevant
info to H

C analyzes, predicts;
H responsible for in-
terpretation

H/C perform final
ranking; C results
are prime

C allows H time to
veto and emergency
override

3 C gathers info;
displays unfiltered,
unprioritized H; H
prime monitor for
info

C prime source of
analysis, predictions;
H responsible for
data interpretation

H/C perform final
ranking; H results
are prime

C executes decision
after H approval

2 H gathers and moni-
tors info;

H prime source of
analysis, predictions;
H responsible for
data interpretation

H performs final
ranking; C used as
tool for assistance

H prime source of ex-
ecution

1 H only gathers and
monitors info

H responsible
for data analy-
sis, predictions,
interpretation

C doesn’t assist or
perform final rank-
ing; H does all

H alone executes

13



2.1.3 Considerations for Function Allocation

Allocation of functions to automation and humans is not a simple, absolute division of

work. This activity may require multiple iterations throughout the overall design process

as the system evolves. There are several considerations that must be taken into account.

Function allocation does not necessarily increase or decrease work for the human operator,

but modifies the type and frequency of work [3, 9]. For example, if an automated system is

tasked with gathering information regarding an unexpected landing terrain, the astronaut

is not abstractly removed from the process, although he may not be performing the specific

work itself. Instead, the astronaut is monitoring the data collected by the automation - he is

still performing observable and quantifiable work, but it has been transformed from sensing

and filtering to monitoring. Additionally, allocation of functions between different agents

can results in induced work, or new tasks created due to the collaboration between different

entities. Induced functions do not necessarily require extra resources such as workload or

physical utilities, but are a remnant of agents having only partial knowledge of all states

and aspects of the system [17].

The evolution of human operator work is one of many considerations regarding human-

automation interaction. Others include the “responsibility-authority-double-bind”, where

the automation has sole authority, but the human is responsible for the automation’s actions

[18]; automation trust (too much reliance or lack of trust in its capabilities) [19]; or brittle

automation (the automation’s inability to operate reliably outside of its designed boundary

conditions) [20]. Pritchett et al. [5] conducted a review of these concerns and have suggested

five requirements when designing an effective function allocation:

1. Each agent must be allocated functions that it is capable of performing.

2. Each agent must be capable of performing its collective set of functions.

3. The function allocation must be realizable with reasonable teamwork.

4. The function allocation must support the dynamics of the work.

5. The function allocation should be the result of deliberate design decisions.
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Regardless of the allocation strategy, overall mission performance due to specific function

allocations need to be evaluated for effectiveness. To do so, the work, the agents, and the

system must all be cohesively modeled and extensive analysis be applied [21]. Pritchett et al.

developed eight metrics to evaluate the efficacy of a function allocation. These issues concern

workload, stability of the work environment, mismatches of responsibility and authority,

incoherency, interruptive automation, automation boundary conditions, function allocations

limiting human adaptation to context, and mission performance [5]. Quantitative measures

of function allocation such as these allow designers to understand the capability of both

human and automation roles, further improving overall design of functionality in terms

understood by system designers.

2.2 Cognitive Modeling

Modeling cognition is difficult. Unlike other activities or behaviors, cognition is not directly

measurable, each individual is different, and people demonstrate inconsistent behavior. In

an attempt to characterize cognition, different types of models have been developed for

specific levels of analysis. Cognitive models can be grouped into three broad categories:

primitive models, process models, and cognitive architectures. Primitive models are focused

on describing the science behind specific cognitive phenomena (e.g., memory, perception).

Process models explain the interaction between these specific cognitive phenomena and the

resulting actions, but are less focused on the science (e.g., decision making, judgment).

Cognitive architectures are composed of both primitive and process models, designed to ac-

curately portray all aspects of the human body from low- to high-level cognitive and behav-

ioral functions. Gray et al. describes three major differences between cognitive architectures

and traditional cognitive models. First, cognitive architectures focus on integration, rather

than “building microtheories of isolated phenomena or mechanisms.” Second, in this shift

to integration, designers have subsequently emphasized more on cognitive control, rather

than just these phenomena. Lastly, cognitive architectures were intended for computational

use, thus developing a virtual human in a simulated setting. The powerful capability of cog-

nitive architectures allows designers to to simulate human performance, supporting design
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activities such as rapid prototyping and supplementing evaluation or human-in-the-loop

studies [22]. Sun points out that developing cognitive architectures forces logical, detailed

explanations of phenomena rather than vague, theoretical concepts [23]. Furthermore, re-

searchers must develop general theories, rather than specific, limited-application concepts

[23].

Depending on the design cycle, certain models are more appropriate than others. As-

suming a generic, four step systems design process consisting of 1) requirements analysis,

2) concept generation, 3) preliminary design, and 4) detailed design, the complexity of

the cognitive model grows as the system design proceeds. While a cognitive architecture

can be used during any stage of design, the rigor required for model development reduces

its efficacy in requirements analysis. Similarly, primitive and process models are effective

during the detailed design stage but may lack the modeling accuracy necessary for design

refinement during the detailed design phase.

2.2.1 Primitive Models

Primitive models are derived from a wide variety of fields and may explain cognitive phe-

nomena from the level of synapses firing and passing neurons to the psychological descrip-

tions of how the brain processes information. These models describe both cognitive and

physiological behavior. Several prominent examples from psychology and computer science

explain primitive modeling. The work of Card et al. [24] with the Model Human Processor

relates the functionality of the human brain to a computer. Timing estimations for funda-

mental, low-level actions have been solicited from experimental data. Fitts’ Law provides a

for hand pointing movement that can be extended for human-computer interaction. Based

on the physical dimensions of the activity, one can determine a timing approximation for

when this movement will be completed. On the psychological end, Miller’s law notes that

humans can store about seven pieces of information (with a standard deviation of two) in

working memory [25]. The Gestalt principles explain how humans perceive visual elements

and synthesize such elements [26]. These methods are a selection of many specific theories

of cognitive and behavioral phenomena.
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2.2.2 Process Models

Process models are cognitive models that focus on the overall process, less on the character-

ization of individual cognitive phenomena. They overlap with primitive models, specifically,

in the discussion of certain information processing elements such as judgment and decision

making. As with primitive models, multiple methodologies exist in literature. An exam-

ple of process models includes the Man-Machine Integration Design and Analysis System

(MIDAS). MIDAS, developed at NASA Ames Research Center, supports rapid-prototyping

of human performance and assists in the design and evaluation of new operational systems

and environments [27]. MIDAS is composed of several models: input, cognitive, output,

and processing. The input model includes a model of the information flow that describes

the elements exchanged between human and machine. The perception of information is

explained by the cognitive model, which includes the perception and memory models. The

perception model contains theories on visual and auditory perception. Once this informa-

tion is acquired, it is filed in one of MIDAS’ three types of memory: short-term, long-term,

and long-term working. As the human interacts within the direct and indirect environment

- described by the domain model - MIDAS’ output model produces displays of the task

network, anthropology metrics, and the overall mission performance. Designers use this

stream of data to assess the efficacy of proposed designs and set expectations for nominal

human performance. Lastly, MIDAS uses a processing model to manage simulated sce-

narios. The processing model is comprised of a task manager model, a model state, and

a library of primitive models. The task manager model schedules and monitors human

activities - continuously updating the model state. The primitive models are effectively

fundamental models describing basic functions [28]. MIDAS is written in a combination of

C/C++ and Lisp [27].

Another well-known model that could be considered a process model is the Lens Model

[29] relates a known set of environmental cues and human judgment using multiple linear

regressions. Correlations between the environment cues and the judgment provide com-

mentary on the judgment quality, the knowledge of the judge, and the predictability of the

environment. The Lens Model provides the mechanism to mathematically model how the
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human uses cues in the environment and in his or her judgments. Recently, Rothrock and

Kirlik have revisited Hammond’s work and created a non-compensatory equivalent to the

Lens Model, a method named Genetics-Based Policy Capturing (GBPC) [30]. GBPC uses

a genetic algorithm (GA) to determine non-compensatory heuristics used by a judge in a

defined scenario. GBPC postulates on a wide set of heuristic candidates and uses the GA

to determine the one most likely to match the behavior of the judge.

Lastly, one such process-model particularly relevant to this work is the Recognition-

Primed Decision Model (RPDM), which focuses specifically on the decision making behavior

of experts. Developed by Klein [31], RPDM notes that experienced decision makers tend to

generate, analyze, and select or reject possible decision options serially instead of in parallel.

They select an acceptable rather than optimal decision option. The theory derives its name

because the chosen decision option is generally derived from similar experiences recalled

and recognized by the decision maker. RPDM is characterized by mentally simulating the

decision option outcome, diagnosing potential shortcomings, and modifying the course of

action as necessary.

2.2.3 Cognitive Architectures

Since the 1980s, cognitive architectures have been developed and matured or discarded.

Gray, in his 2008 study, suggests there are at least 50 different architectures available [32].

However, there two that have developed as prominent, well-recognized mainstays: Soar and

Adaptive Control of Thought-Rational (ACT-R). Soar and ACT-R are rule-based cognitive

architectures that determine a set of actions apropos to human thinking based on user-

established goals [33].

Soar, developed by the University of Michigan, is a production-based, deterministic

system that models problem-solving. Driven by Principle P9 of the Model Human Processor

[34], Soar assumes that humans apply knowledge in a rational manner and rely on symbolic

information [33]. The problem, or task, is composed in a problem space where a large

number of states exists. States contain descriptors of an aspect of the problem space. Soar

models problem-solving by beginning with knowledge of an initial state and a goal state
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and uses operators to move between states. Decision cycles are used to select operators

and contains five phases: input, elaboration, decision, application, and output. Within this

cycle, which last about 50 ms [35], Soar takes input from changes in perception to update

the current state. Next, current knowledge contained within working memory is compared

against procedural memory. All rules that match are fired in parallel, or implemented to

change working memory. Included in these rules are preferences for which operator to select.

The elaboration phase is complete when all matches have been fired. Soar then determines

which operator to use, based on the preferences set by the elaboration phase. After selecting

the appropriate operator, the current state shifts to a new space within the problem space,

where an output, or feedback, is received. The decision cycle continues until the goal state

is obtained [36].

On occasion, the architecture may reach an impasse, or when the decision cycle cannot

select a new operator - there may be equal preferences or a lack thereof. During an im-

passe, Soar creates a substate with a new subgoal of selecting between operators. Instead

of comparing working memory to procedural memory, Soar uses knowledge to compare dif-

ferent operators. After an operator is selected, a new rule is created in order to avoid this

particular situation in the future. The subgoal is achieved and Soar continues the rest of

the decision cycle. Essentially, Soar learns during impasses and improves its knowledge

deficiency. The framework of Soar allows for flexibility, particularly for dynamic goals in

complex environments. The learning during impasses makes Soar unique compared to other

cognitive architectures. Soar is written in Python and Tool Command Language/Tk.

ACT-R, developed by Carnegie Mellon University, is another production-based, but

probabilistic system that models problem-solving. The foundations of ACT-R is in psy-

chological theory, with the functionality primarily based on experimental data. ACT-R

produces quantitative measures such as time to perform a task and accuracy of task in

order to compare against true human performance data. ACT-R consists of two modules:

a perception-motor module contain visual and manual components; and a memory module

that consists of declarative and procedural elements. Similar to Soar, ACT-R consists of

production firing and matching. First, ACT-R searches for a rule, or a production, that
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matches elements within declarative memory. A production rule is then selected based on

the calculation of its expected utility. Lastly, the production rule is fired, and the appropri-

ate actions are carried out in progressing towards the intended goal. One production rule

is fired per cycle, thus, actions are completed serially. If more than one production rule

matches the declarative memory, then conflict resolution must be carried out. The rules

are assigned an expected utility based on three components: the probability that the goal

is achieved if the rule is fired; the expected utility of the goal; and the cost of achieving

the goal. The rule with the highest utility is selected [33] [35] [37]. ACT-R was originally

developed in Lisp, but contains variants in Java and Python [37].

2.2.4 Validation

Traditional techniques such as statistical validation are effective and used for modeling the

entirety or aspects of cognitive models. However, the more complex the cognitive model, the

more ineffective these techniques. In statistical validation, a high correlation between actual

and model data, or a strong goodness of fit, implies that the model is valid. However, one

cannot conclusively state based on this heuristic alone that the model is fully validated, as

high correlation may also be a result of overfitting, or where models fit both systematic and

error variance within the same set [38]. Additionally, achieving such an amount of statistical

accuracy involves focused, narrow, and limited models. While such models are critical in

most scenarios, cognitive architectures are designed to allow for generalization, to be capa-

ble of multiple scenario applications. Kase et al. also points out that manual optimization,

or fitting a model to human data, can be quite effective if modeling an individual or average

performance across subjects, but requires significant computational resources [39]. In lieu

of traditional manual optimization, Kase et al. proposed a new validation approach using

genetic algorithms (GAs). With this approach, the GA is trying to determine the cognitive

architecture parameters (i.e., independent variables) that best fits human data. In other

words, the GA attempts to minimize the absolute difference in model and actual perfor-

mance by varying cognitive architecture input parameters [39]. Since validation techniques

require extra data in addition to the original dataset that informed the model, validation
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is limited in small sample sizes. The validation scheme performed for the cognitive process

model in this thesis is primarily focused on matching the simulation’s chosen landing site

with the landing site selected by a participant, assuming the same cue used as reported by

the participant.

2.3 Crewed Spaceflight

A substantial amount of guidance exists for crewed spacecraft, with a primary focus on the

health and sustainability of humans in extreme environments. These standards, or design

guidelines, are captured in government documents (e.g. NASA-STD-3001 [40] [41], the Hu-

man Integration Design Handbook (HIDH) [42], the NASA Bioastronautics Databook [43],

MIL-HDBK-761A [44], and MIL-STD-1472D [45]) and cover topics such as the human body

capabilities, appropriate environments, habitats, hardware/equipment, and interfaces. Of

these topics, the impact of human performance on trajectory design is of most relevance to

this research. Already, aspects of this relationship are well-characterized: the constraints in

induced acceleration, the range of viewing angles for ground observation by the crew, and

the geometry of the Sun, Earth, and Moon for operable terrain contrast. Although much

is known regarding the impact of environment and human performance on crew interface

design, as evidenced by the presented government standards and literature regarding eco-

logical interface design and user-interface design, these relationships are beyond the scope

of this investigation.

The crew’s role during descent and landing establishes direct constraints on several

factors: the acceleration profile; the vehicle orientation and approach angle; and the launch

window. The acceleration profile is primarily affected by the need to maintain human

health, while providing sufficient reaction time and visual processing capability. The vehicle

orientation and approach angle is driven by the dominance of the crew’s role as a sensor

and/or data interpretor. The launch window is also influenced by the responsibilities of

the crew during data acquisition and processing. In addition to these direct constraints,

general indirect constraints exist in order to achieve nominal human performance. Humans

require minimum processing times for both audio and visual modalities and especially for
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decision making. While these audio and visual modalities are known for most general cases,

additional modeling is necessary to determine application-specific initial estimations on

decision making time requirements.

2.3.1 Acceleration

Two sources of acceleration exist in spaceflight: those that occur naturally (i.e., Earth,

Moon, Mars, etc), and those that are induced by the vehicle’s movement (i.e., launch, land-

ing, etc.). The human body is subject to both. In natural environments, the minimum

acceleration that occurs is 0g, or while in space, to 1g, while on Earth’s surface. Moon

and Mars are fractions of Earth’s gravity, at 0.17g and 0.38g respectively. The vehicle’s

trajectory, however, can impose even greater accelerations on the human body. For exam-

ple, during launch, the crew may experience a maximum acceleration between 3-6g. During

Earth re-entry, the peak deccelerations may be even higher at 1.5-11.1g [42]. Spatial disori-

entation and other vestibular effects are the result of these changes in acceleration. Clark et

al. analyzed this problem of astronaut spatial disorientation for several reference trajectories

using a proposed Altair vehicle design [46]. The analysis illustrated significant differences

in perceived and actual orientations, for example. Because of somatogravic illusions, the

astronaut perceived a pitch angle of 0◦ when in reality, the vehicle was pitched forward

90◦. The somatogravic illusion affects roll as well - the pilot commanded a roll angle of 45◦

but perceived an angle of 15◦. The gross mis-estimation of vehicle angles has potentially

negative consequences on pilot behavior. He may over-correct based on false perceptions

and enter Pilot-Induced-Oscillation during landing, posing stability risks to the vehicle [46].

To minimize these risks, Clark et al. suggest careful consideration of pilot head placement

within the vehicle.

The accelerations sustainable by astronauts are dependent on the type (linear, rota-

tional), the duration (sustained: ≥ 0.5s, transient: < 0.5s), and the direction with respect

to the body (through the head, laterally, etc). Three axes are used to describe linear acceler-

ation: Gx, Gy, and Gz. Gx is an axis parallel to the surface; directly through the chest, with

the positive direction from the back to the chest (“eyeballs in”, opposite is “eyeballs out”).
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Gy is also an axis parallel to the surface, but laterally positioned; the axis connects the

two shoulders (“eyeballs left/right”). Gz is the axis perpendicular to the surface; directly

through the head to the toe, with the positive direction from feet to head (“eyeballs down”,

opposite is “eyeballs up”). The body can withstand different accelerations at varying du-

rations depending on the direction. Figure 1 illustrates the maximum limits for nominal

conditions, assuming the astronaut has been conditioned to partial or excessive sustained

accelerations.

Figure 1: Linear and Rotational Acceleration Limits. Adapted from NASA-STD-3001
[41].

Further limitations may be placed on the vehicle trajectory and vehicle design if the pilot

assumes additional responsibilities. Accelerations of large magnitudes or long durations

affect several aspects of human performance: visual and audio perception capabilities and

reaction time. At +3Gx, astronauts may have trouble focusing; at +7Gx, targets need

to be twice as large in order to be seen [42]. Chambers and Hitchcock found two other

benchmarks of human performance: at +5Gx, a 50% increase in contrast is required and

at +6Gx, delayed reaction times occur. Thus, changes to the vehicle’s trajectory may be
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necessary, or the internal cockpit design must account for these human limitations once

thresholds are crossed (e.g., displays, seats, etc).

2.3.2 Landing Site Visibility

Another defining attribute on automation design is the crew’s role in perceiving the ter-

rain. If the crew requires terrain visibility (assuming the lander has windows), then the

vehicle must hold a specific orientation and approach relative to the targeted landing site.

Otherwise, no additional constraints are imposed. The trajectory constraints are based on

the position of the velocity with respect to the landing site and the vehicle configuration.

Sostaric 2 defines two angles: the look angle and the depression angle. The look angle is

defined as the angle between the vehicle’s vertical axis and the line of sight to the landing

point (a line connecting the center of mass and the site). The depression angle is measured

between the horizontal and the line of sight, and is also known as the glide angle [1], de-

scent trajectory elevation angle [47], or the visibility phase elevation angle [47]. Given the

alignment of the velocity vector and the line of sight, this angle is also the same as the flight

path angle. In his analysis of an Apollo-like reference vehicle, Sostaric determined that the

limiting look angle was 25◦ (Figure 2).

The limiting look angle represents the case where the targeted landing site is at the

edge of the window. At smaller angles, the landing site would not be visible to the crew.

For reference, Apollo flew at a look angle of 51.9◦. Intuitively, the optimal look angles

for crew visibility and sensor operation are in direct conflict - more vertical approaches

(decrease look angle) reduce the slant angle that increases sensor error and more horizontal

approaches (incrase look angle) improve visibility for the crew. Additionally, the direction

of landing site redesignation is constrained based on the approach. Vertical approaches

allow for downrange diverts, whereas horizontal approaches improve reverse downrange, or

uprange, diverts. The direction of landing site redesignation is dependent on the window

configuration within the reference vehicle. Visibility of the landing site and alternative

options may be improved with a different window geometry or location.
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Figure 2: Reference Approaches to Landing Site. Adapted from Sostaric [48]

2.3.3 Lighting Effects

While landing site visibility can be improved by maneuvering the vehicle, visibility is also

highly dependent on the terrain contrast, historically from the external lighting environ-

ment. Generally, the human eye can perceive objects within a range of 25-30 dB. Below

this range, the eye sees darkness; above this range, the eye sees too much light. Within the

range, the eye can discern differences of 0.1 dB. Stronger contrasts are preferred, particu-

lar during the landing sequence [1]. In order to meet this requirement, the sunlight must

coming from a particular angle and direction. In preparing for the Apollo mission, NASA

determined that the sun must be behind the vehicle (but not directly behind) [47] as to

produce the necessary visible shadows for the crew. Additionally, the elevation angle had

to be such that enough contrast could be discerned through the window without producing
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Table 6: Sun Angles and Flight Path Angles for each Apollo landing.

Mission Sun Angle Range [47] Sun Angle Used Flight Path Angle

11
5-13◦

10.8◦

16◦12 5.1◦

14

15
7-23◦ 25◦16 15◦

17

too much glare. Ideally, these objectives are met when the look angle is greater than the

sun angle by more than two degrees in elevation or azimuth [47]. Contrast is worsened as

the sun angle approaches the look angle [49]. In general for Apollo, the acceptable sun angle

range is from 7-23◦. Below this range, illumination may be difficult to achieve, as evidenced

during Apollo 12 (terrain orientation difficulties). Above this range, the illumination is

too great, and insufficient contrast is achieved [50]. Table 6 lists the sun angles used for

the specific Apollo landings [1]. Achieving these sun angles meant waiting for the proper

geometry between the Moon, Earth, and Sun, which occurred in one launch opportunity

per month. The 7◦ range was selected primarily to allow for a 24-hour launch window.

An important consideration for landing on the South Pole is the lack of natural light.

Recent studies such as the one conducted by Paschall et al. [51], suggest the use of external

lighting, especially if the crew plays a significant role in landing site identification and

terrain perception. The specific tradeoff between mass and external illumination is not

explored in this thesis. Instead, the focus is on the effects of terrain contrast conditions

on LPD performance, with three subsets - idealized, nominal, and poor - investigated in

further detail.

2.3.4 Effects on Trajectory Design

NASA’s Autonomous Landing and Hazard Avoidance Technology (ALHAT) team has also

performed a trajectory trade during the ALHAT approach phase to understand the impact

on the ability to detect hazards, the interactions of the crew with the automation, and the

time to react to a hazard. Three parameters were varied: Flight Path Angle (discretized

at 15 deg from 15-90 deg); six candidate Slant Ranges (0.5, 0.667, 0.8, 1, 1.5, 2km); and
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the Engine Acceleration Profile (1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 2.0 lunar gs). Table 7 [51]

summarizes the results of their findings.

Table 7: Summary of Impact of Trajectory Parameters on Sensor, Crew, and
Vehicle Capabilities. This table is the results of a trade space parameter study performed
by the ALHAT team and is adapted from Paschall et al. [51]

Flight Path Angle Slant Range Acceleration

Sensor Shallower angles are
harder for sensors to scan
site because of shadowing
and pixel distortion

Closer slant ranges give
better resolution but
harder to obtain field of
view

Lower accelerations pro-
vide more time for scan-
ning and there is also less
of an altitude change dur-
ing a scan

Crew Shallower angle allows for
better view of the landing
site out the window

Closer slant ranges give
better resolution

Lower accelerations pro-
vide more time for scan-
ning

Vehicle Lower trajectory path an-
gle have better nominal
dV, but worse divert dV

Decisions made at higher
slant ranges give more
time to perform diverts
which saves dV

Higher accelerations pro-
vide better dV character-
istics

The trends noted by Paschall et al. also agree with the analysis of Cappellari in 1972, for

the Apollo program. Cappellari calculated contours of constant ∆V cost for redesignations

at 1200m (Figure 3). At this high up within the trajectory, reverse downrange diverts

actually save propellant, as the time required to reach the site is shortened. The lower the

redesignation occurs, the more propellant is required for any sort of divert, especially reverse

downrange. In general, the mission was penalized by two kilograms of payload capacity for

every additional kilogram of propellant alloted for redesignation [47].

Lastly, indirect constraints are imposed on the overall mission sequence due to minimal

performance. Extensive testing has established minimal times for audio, visual, and infor-

mation processing. The HIDH cites a number of studies for generally accepted response

times. A college-age individual needs approximately 190 ms to react to visual stimuli, par-

ticularly light [42]. Auditory stimuli require slightly more processing time, at 160 ms. The

stimuli will be registered in short-term memory for an approximate period of time. To avoid

superimposing two different chunks, the visual register requires 300 ms for clearance [42],

whereas auditory requires 20000 ms (20 s) [42]. Other reaction response times have been

recorded beyond the auditory and visual modalities. Welford determined that 93 ms are
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Figure 3: Constant ∆V penalty for landing site redesignations at 1200m altitude.
Reproduced from Cappellari [47]

.

required for each inspection [52]. Cavanaugh found a series of rates at which items could

be matched against memorized objects: digits (27-39 ms/item), colors (38 ms/item), letters

(24-65 ms/item), and words (36-52 ms/item) [53]. Additionally, Card et al. developed

a methodology for estimating task completion times for standard computer interactions.

While astronauts are not expected to interact with a keyboard, mouse, and computer mon-

itor, there may be display interfaces involving button presses (500 ms); moving a joystick

(1100 ms); or mentally prepare (1350 ms) [34].

2.4 Related Studies

Current literature presents a number of studies related to function allocation for LPD,

evaluation of specific functions or displays for LPD, and the first instances of LPD during

the Apollo program. Additionally, NASA has revisited the problem of landing on the

Moon and attempted to improve the landing technology. The ALHAT project is focused
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on leveraging technological advancements in terrain sensing and alleviating crew workload.

Much of the work described in Chapter 3 is derived from this literature.

2.4.1 Apollo

After almost ten years of development work, three days in transit to the Moon, the fledgling

United States space program finally made the first visit to the Moon in 1969. However,

the voyage from lunar orbit to the ground was far from epic: a diversion to avoid terrain

obstacles and the threat of fuel exhaustion. The Lunar Excursion Module (LEM) separated

from the Command Service Module in lunar orbit and embarked on a 30 minute traverse

[54], with the intention of landing at predesignated landing areas. The Apollo astronauts

performed LPD at what is considered, by today’s standards, a low level of automation.

However, for the men who were test-pilots-converted-to-astronauts, they felt like “spam in

a can” [55], delegated to being a passive component of the vehicle. The astronauts’ feelings

were best summarized by John Glenn: “We don’t want to just sit there and be just like a

passenger aboard this thing. We will be working the controls [56].” Glenn’s mentality was

most likely a result of the test pilot culture and the desire to retain control in a potentially

life-threatening situation. The risks and uncertainties associated with this new mission

demanded the development of a digital autopilot. Thus, biological and digital pilot shared

responsibilities during descent, especially during LPD.

LPD began after Powered Descent Initiation (PDI) and shortly after entering “high

gate” (Program 64/P64) [57][58]. At high gate, the LEM was at a range of 26000 ft [59],

an altitude of 7515 ft, had a descent rate of -145 fps, and an inertial velocity of 506 fps

[58]. The terrain was visible to the crew during this approach phase. The vehicle entered

“low gate” (P65/P66) at a range and altitude of 2000 ft [59] and 500 ft, respectively, with

a descent rate of 16 fps, and an inertial velocity of 55 fps. The terms high and low gate were

derived from aircraft pilot terminology, particularly for approach to an airport [58]. During

this time, the LEM flew at a flight path angle of 16◦ for Apollo 11-14, and 25◦ for the

later missions [47]. This orientation allowed astronauts to view the lunar terrain from the

LEM window, a requirement to land on the Moon, based on the allocated responsibilities.
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After performing LPD, or several instances of redesignation, the pilots, with automated

assistance, performed a vertical touchdown. Overall, Apollo had a landing ellipse of about

20km downrange and 5km crossrange [51], with terminal conditions listed in Table 8.

Table 8: Apollo LEM Touchdown Limitations. Replicated from Paschall et al. [51]

.

Vehicle State Value

Vertical Velocity VV 10 ft/s

Horizontal Velocity Vh
For VV ≤ 7 ft/s, Vh = 4 ft/s

For 7 ≤ VV ≤ 10 ft/s, Vh = 40
3 −

4
3VV ft/s

The Apollo astronauts performed LPD at a relatively high degree of control, relying

predominantly on their perception of the lunar terrain as seen through the LEM window.

Both the Commander (who piloted the LEM) and the Lunar Module Pilot (LMP) (who

operated the other space systems and informed the Commander of vehicle and mission

status) [60] participated in LPD, with very specific roles. The Commander worked primarily

with the landing point designator (Figure 4). The landing point designator is a reticle-etched

window located on the left side of the LEM. The Commander would align the reticles etched

on the outer and inner windows and view the lunar terrain across 2◦ (vertical) and 5◦

(horizontal) scales. A representative example of this terrain is presented in Figure 5. The

digital autopilot would indicate where to find the designated landing site, which the LMP

would then read to the Commander. If the Commander opted to land at an alternative

location, he would call in this decision by moving the control stick in the direction and

number of “clicks” as proportionate to the landing point designator. Nudges fore or aft

would move the landing site up or down (relative to the Commander’s field of view) by

0.5◦. Lateral nudges would shift the landing site by 2◦ [55] [58]. This process continued for

several iterations, with the LMP reading until the LEM reached the predesignated time-to-

go and performed terminal descent.

In general, the pilots were tasked with collecting and interpreting information regard-

ing the lunar terrain, creating landing site options, selecting the option that, given current

information, was most appropriate, and executing the maneuvers necessary to bring the

vehicle to the final destination. In parallel, the digital autopilot was also collecting (or
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(a) Landing Point Desig-
nator [54].

(b) Schematic of Operation [47].

Figure 4: Landing Point Designation for Apollo.

sensing) the lunar terrain and executing aspects of the vehicle maneuvers. Major et al.

analyzed the Apollo transcripts and determined that the crew spent 50% of the time during

PDI (and before touchdown) communicating with mission control. This time was spent

discussing: vehicle position (43%); vehicle status (27%); mission schedule (17%); and other

topics (13%) [61]. In general, the crew was concerned with monitoring, diagnosing, schedul-

ing, and terrain assessment. Terrain assessment proved to be a particular challenge to the

crew, with a number of redesignations occurring for most of the Apollo landings. Table 9

summaries these redesignations and the range displacements from the initially targeted site.

Table 9: Number of Redesignations and Range Displacements during Apollo.

Mission Number of Redesignations
(in P64)

Range Redesignations displaced
LM from Landing Site

Apollo 11 Switch to P66 early to avoid boul-
der field

–

Apollo 12 7 –
Apollo 14 1 2000 ft downrange, 300 ft north
Apollo 15 18 1110 ft uprange, 1341 ft north
Apollo 16 10 620 ft uprange, 635 ft south
Apollo 17 8 –

The digital autopilot was tasked with processing data from the radar and orienting

the LEM to ensure clear communication channels with Mission Control. During LPD,
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Figure 5: Out-the-Window View for Apollo 11. The image is a screenshot taken from
the film ”The Final Approach” by Cantin and Cantin [62]. The image on the left is from
the Commander’s window; the image on the right is an top-down map of the lunar surface.
At this instant, the LEM is 350 ft from the surface, a downward velocity of 9 ft/s, moving
forward at 58 ft/s.

the autopilot was also loaded with a series of guidance computer programs, including the

Landing Maneuver Approach Phase or Program 64 (P64) and the Velocity Nulling Guidance

or Program 65 (P65). The crew also had optional programs, such as P66, Rate of Descent,

or P67, Manual Guidance. P66 had several options: the flight computer controls the vertical

speed and nulls the horizontal speed; the flight computer controls only the vertical speed

and the crew controls the final attitude; the flight computer nulls the horizontal speed while

the crew controls the engine throttle (i.e., the descent rate); the crew controls the rate of

descent and the attitude and lands the LEM themselves [59]. P67 was only to be used if

P66 failed and permitted complete crew control of the engine throttle. All Apollo landings

were flown using P66, with the crew dialing in this program before the automatic switch to

P65. To interface with the digital autopilot, the crew used the Display and Keyboard unit

(DSKY), to dial in two-digit numbers that represented verbs and nouns.

Tasking the crew with such a large responsibility during landing has interesting conse-

quences. The crew can adapt to unforeseen situations, such as the 1202 alarm that kept
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misfiring during the Apollo 11 landing. Additionally, the crew can correct for accumulating

errors, such as Commander Neil Armstrong taking over manual control to avoid a rough area

of terrain. However, the crew may be unpredictable, and deviate from initial plans based on

their own preferences. Figure 6 illustrates altitude/altitude-rate profile for Apollo 11. As

illustrated in this figure, there are significant deviances between the actual and predicted

profiles. When asked, Armstrong responded that he was “just absolutely adamant about

my God-given right to be wishy-washy about where I was going to land” [58]. While these

types of maneuvers are necessary, the pilot must calculate the tradeoffs between achieving

the mission, landing in a safe region, and fuel expenditures (another contribution to mission

safety).

Figure 6: Altitude/Altitude rate profile for Apollo 11. Replicated from Bennett [58].

2.4.2 Autonomous Landing and Hazard Avoidance Technology

The ALHAT project was formed in 2006 in response to the growing need for improved

landing technology. The mission statement for the ALHAT project is to ”develop and

mature to technology readiness level 6 an autonomous lunar landing GNC and sensing
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system for crewed, cargo, and robotic lunar descent vehicles. The ALHAT System will be

capable of identifying and avoiding surface hazards to enable a safe precision landing to

within tens of meters of certified and designated landing sites anywhere on the Moon under

any lighting conditions” [63]. The ALHAT system itself consists of a sensor package, an

autonomous flight manager (AFM), and a human-systems interface for supervisory control.

ALHAT is operational during low lunar orbit, the transfer orbit to the surface, and powered

descent - the later of which contains LPD. LPD is referred to as Landing Point Redesignation

(LPR) by the ALHAT team as a change in landing site destination is redesignation from the

pre-selected baseline site. This thesis uses Designation, as a baseline site is not necessarily

in place.

The powered descent mission segment takes approximately 7-14 minutes to complete,

with LPR lasting about 30-120s. Initiation of powered descent is selected so the respective

trajectory meets a targeted altitude and range from the landing site, given the specific

thrust-to-weight ratio of the landing vehicle. Once the braking burn is initiated, the vehicle

will perform a pitch-up maneuver (approximately 1km altitude) to allow for sensor and

human visibility of the landing site, approach the site at a fixed orientation to allow for

landing point redesignation, and then perform terminal descent (about 30m altitude) [64]

once a final site is selected. Nominally, the approach phase begins at a slant range and angle

of 1029m and 44.9◦ respectively. These initial conditions leave about 67s of time available

for hazard detection and avoidance, with about 695m of available altitude for diverts [65].

During this approach phase, ALHAT conducts LPR similar to Apollo: terrain sens-

ing, data processing, alternative site planning, site selection decision making, and vehicle

execution. However, the main difference between ALHAT LPR and Apollo LPR is the

distribution of authority between the crew and the AFM. ALHAT operates under a much

higher level of automation, relegating the crew to a supervisory role. The AFM performs

hazard detection and avoidance by using a LIght Detection and RADAR (LIDAR) sensor

to map the terrain (approximately 5s). The LIDAR data is then processed and the AFM

produces a map of the landing area with hazardous areas indicated (approximately another

5s). Additionally, a cost map is generated based on vehicle safety, fuel consumption, and/or
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points of interest and three regions of favorable costs are selected as alternative sites. These

sites are presented to the crew, who are then able to choose an alternative site within the

alloted time (30s). Once the crew makes a final decision, the AFM reassigns the new target

conditions to the guidance system, and automatically flies the vehicle to the target site,

concluding with terminal vertical descent.

Overall, the crew performs more of a managerial role within the ALHAT framework,

in lieu of being an integral and crucial component of the system. The crew monitors the

ALHAT system and checks for abnormalities. If a change is necessary, the crew may “reach-

into” the AFM system and make necessary conditions. In particular, target conditions may

be adjusted to satisfy the crew’s needs [66]. For example, during LPR, the crew’s role is no

longer conducting various subsystems and piloting the vehicle, but, rather, is determining

the best landing site of three alternatives.

Regardless of whether crew is present or not, the AFM is part of the ALHAT System

and thus, always present. Many of the traditional crew roles have now been assigned to the

AFM, such as supervising the GNC software and sensor situations. The ALHAT system

is uploaded with sets of target conditions prior to launch. During the mission, the AFM

monitors and ensures these target conditions are met while permitting a safe landing plan

[66]. To fulfill these roles, the AFM communicates with several sensors. The ALHAT sensor

suite consists of an inertial measurement unit (IMU), a star tracker, a laser altimeter, a flash

LIDAR sensor (which acts as the hazard detection and avoidance sensor), and a Doppler

LIDAR sensor [64]. The sensors are operable at different altitude ranges, the IMU having

the largest range to the flash LIDAR with the shortest range. The IMU is operable from

100km altitude and through the rest of the trajectory; the altimeter can be initiated at

about 15km to ground; the Doppler LIDAR velocimeter at 2km to ground; and the HDA

sensor begins operation at approximately 1km slant range from the landing site.

2.4.3 Function Allocation and Evaluation for LPD

Several key studies have focused on various elements of LPR. Forest, et al. developed a

landing site selection algorithm that, when given terrain data, would highlight key hazards
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and suggest alternative sites based on the cost function preference of the crew. This study

provided an initial reference LPR display, but did not model human interaction with such

a system [67]. Needham investigated the impact of varying levels of automation on human

performance during LPR, concluding that higher automation allowed for quicker time to

complete [68]. In addition, Needham developed a set of icons that would overlay landing site

terrain characteristics on a top-down synthetic map. An experiment was also performed to

observe the impact of varying levels of automation. However, the subjects used in this exper-

iment were graduate students with little piloting experience and not closely representative

of astronauts. Wen et al. [69, 70] also performed a similar study on LPD and included the

task of piloting to touchdown. These results include comments on system performance and

variability of measures such as fuel usage and landing accuracy. This study was completed

with students and examines one function allocation. Lastly, Chua, et al. have derived a

task model and used this model to examine bottlenecks of LPR [71]. These bottlenecks were

addressed by redesigning the LPR display to simplify the information layout and to utilize

new symbolism to represent site characteristics. This LPR task model also incorporates

expert decision making theory [31] to account for specialized astronaut behavior [72]. How-

ever, this study is based on theory and lacks observations from equatable subjects. Duda

et al. [73] have also designed lunar lander manual control modes that are analogous to,

but improvements on, the original Apollo control modes. Additionally, several evaluations

have been conducted with the ALHAT team regarding interface usage and display design

[74] [75, 76]. The results have evaluated the use of synthetic vision or different viewpoints

and suggested symbology for efficient information gathering and processing. Major et al.

[77] have also outlined an approach for the design and testing of technology developed to

support crew tasks during space exploration.
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CHAPTER III

DECISION MAKING DURING LANDING POINT DESIGNATION

Landing Point Designation (LPD) is a critical landing task that poses a unique challenge

to mission designers. During this task, the vehicle performs a pitching maneuver, operates

sensors to scan the expected landing area, and chooses a final landing site, factoring in

criteria such as fuel consumption, site safety, and proximity to points of interest (e.g., sci-

entific phenomena or previously landed assets). Mission designers have two main issues to

address when designing for LPD: the allocation of functions between crew and automation;

and the information and environment requirements associated with different allocations. In

order to logically allocate functions and therefore design the most appropriate automation

system for these tasks, mission designers need to understand the crew’s judgment and deci-

sion making process, the capabilities of the automation, and the information requirements

for both crew and automation. Ascertaining this information requires decomposition of the

LPD task and to determine the necessary information to develop a cognitive process model

of human-automation decision making. Since evaluating the full spectrum of function allo-

cation combinations is impractical, this thesis focuses on a smaller subset of cases - three

representations of potential function allocations. The crew is modeled as a single astronaut,

but may consist of two or more astronauts working together. This chapter discusses the

task decomposition, function allocations examined in this thesis, and a series of human-in-

the-loop (HITL) experiments conducted to characterize the human-automation interaction

during LPD.

3.1 Task Decomposition for Landing Point Designation

All tasks are composed of several fundamental subtasks, such as sensing, interpreting, cre-

ating, selecting, executing. Specifically within LPD, the agent (human, automation) senses

information through the vehicle window in addition to, or in lieu of, sensing the terrain

with a LIght Detection And Radar (LIDAR) sensor; the agent interprets the sensed data
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and assesses the situation and data significance; the agent creates landing site options; the

agent selects an appropriate landing site; and then the agent commands the vehicle to the

chosen landing site. Generally, there are three different options for completing each of the

subtasks: human does all; automation does all; or human and automation share the sub-

task. Therefore, 243 combinations of completing LPD exist. Three of these combinations

were chosen as candidate function allocations and described in Table 10: the Apollo-like,

moderate, and robotic cases. Performance is expected to change dependent on the owner of

the task. To provide context to a known function allocation framework, the corresponding

Endsley and Kaber [13] ten-point levels of automation are approximately Level 3 for the

Apollo-like function allocation, Level 7 for moderate; and Level 10 for robotic.

Table 10: LPD Task Decomposition and Function Allocation.

Allocation Sensing Interpreting Creating Selecting Executing

All Crew Human Human Human Human Human

Apollo-like Human/Auto Human/Auto Human Human Auto

Moderate Human/Auto Human/Auto Auto Human Auto

Robotic Auto Auto Auto Auto Auto

Using this framework and current literature, one can use cognitive task analysis to

develop a model of LPD. Figure 7 illustrates the three function allocations and the tasks

completed by human or automation. Each processing cycle is iterative. As the vehicle

approaches the ground, the human or automation may continue to receive information

regarding the landing area, therefore repeating the following subtasks as necessary. Aspects

of the sequence may be iterative, such as within the Apollo-like function allocation with

creating and selecting sites and continuing to refine that final decision. Astronauts may also

skip steps within this sequence. If the results of the sensor scan match expectations, then

the astronaut immediately selects a site without further consideration. These expectations

are set prior to the task, a cognitive phenomenon known as a mental model. Mental models

are the models held by the human regarding the task. In this thesis, the mental model is

assumed to be an expectation of where to land within a given landing location. Training

is assumed to establish this particular mental model, although environmental factors and

user experience are also influences.
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Figure 7: Task analysis for Apollo-like, moderate, and robotic function alloca-
tions. Gray boxes are fundamental tasks that can be completed by a human or a computer.
White boxes are tasks completed by the reference automation. Green boxes are tasks com-
pleted by the human.
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There are several key differences between each of the function allocations. Overall,

the LPD task is expected to be completed fastest in the robotic case, finishing the task

in 5s. The site chosen is always the optimal site. With the crew relegated to payload

status, the vehicle is less constrained by viewing angles. The only major considerations on

the trajectory are optimizing fuel consumption and ensuring the best approach for sensor

operation. For purposes of equal comparison, the robotic case is assumed to fly the same

trajectory prior to LPD as the other two cases and begins the task at the same initial

conditions outlined for the Apollo-like and moderate cases. The LPD algorithm in this

case places equal weighting on fuel and safety, unlike the other cases, where the crew may

prefer one criterion over another. Second, the humans in the moderate function allocation

are not permitted to suggest a landing site or to revise their final decision. Once a landing

site is chosen, it is finalized. This function allocation simplifies the LPD task for the user

by limiting the search region to the top landing sites. The reference automation in both

the robotic and moderate function allocations choose sites based on priorities established by

mission designers and coded into the automation. Lastly, the Apollo-like function allocation

permits redesignation, or multiple opportunities to select or adjust the chosen landing site.

The automation in all three function allocations pilots the vehicle to each designated site

until terminal touchdown conditions are met. Given the limited time, high stakes, and

highly rehearsed nature of the task, under nominal conditions, it is more likely that the

crew will settle on one landing site that has proven itself during training, than generate a

series of alternatives and cross-compare. However, as of this thesis, the appropriate training

for LPD is unknown.

What is still unknown about this task is the specific interaction between the crew and the

Apollo-like and moderate automation systems, in particular, the decision making strategy

used for both. This strategy is composed of the criteria used to create and select a final

landing site, the priorities associated with those criteria, and the mechanisms for finding the

landing site. Additionally, it also unknown as to how these strategies change with respect

to different function allocations. As no humans are involved with the robotic case, these

changes are only captured in the Apollo-like and moderate function allocations. Current
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literature does not provide enough data to support these questions and observing the LPD

task is not practical. Therefore, HITL experiments were needed to characterize the human-

automation interaction that occurs during LPD, provide data for the development of a

cognitive model, and ultimately derive system requirements for automation system design.

These specific elements - which decision making criteria, the number of criteria, the relative

importance, the site search method - are useful in determining which aspects of the task

or the environment need to be presented on displays, or brought to the crew’s attention.

Effectively, these criteria are piece of information needed by the crew to complete LPD.

Two experiments were conducted specifically for this thesis, based on the results of

an earlier experiment. All three experiments were designed to further understanding of

human decision making during LPD, but with slight variations associated with the reference

automation and independent variables. Table 11 illustrates the differences between each of

these experiments. Summaries of the experiment designs and results of Experiments 1 and

2 are presented in 3.2 and 3.3. The design of experiment 3, or the main thesis experiment,

is explained in detail in Section 3.4. The results are discussed in Chapter 4. For a more

thorough discussion on Experiment 1, see Chua, Feigh, and Braun [78, 79] and Chua and

Feigh [80]. For further information on Experiment 2, Chua and Feigh [81] reports the design

and results.

3.2 Experiment 1

The first experiment in this series was conducted in 2009. This experiment involved nineteen

fixed-wing pilots, who performed the LPD task in a simulated lunar lander cockpit at

Georgia Tech. The reference automation was considered moderate and the functionality

was the same as defined in Section 3.1, but this automation was not used in any of the other

studies. The system that featured “hot keys”, a series of buttons which allow the crew to

choose a predesignated weight distribution for the landing objective function. Three sites

would be suggested with each hot key. Pilots needed to land near one or two points of

interest (POIs) and saw either 1, 3 or 2, 4 identifiable terrain markers. Additionally, some

of the runs featured terrain that differed from what the pilots were prepared for, to account
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Table 11: Experiment sequence and differences.

Experiment 1 Experiment 2 Main

When 2009 2011 2012
Facility Georgia Tech Georgia Tech NASA JSC, ROC 1

Demographics Fixed wing pilots Helicopter pilots Astronaut Office
Number 19 15 13

Function Allocation Moderate 2 Moderate Apollo-like, Moderate

Independent variables

Terrain markers x
Point of interest x

Terrain expectancy x
Lighting x
Scenario x

Automation x
Trajectory x

Dependent variables

Pilot performance score x x x
Landing Site Score x x
Time to complete x x x

Situation awareness x
Strategy: criteria x x x

Strategy: preferences x x x
Strategy: search method x x

Strategy: sequence x x x
Workload x
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for changes in terrain expectancy.

Overall, the experiment results showed that none of the independent variables had any

significant effect on the quantitatively measured dependent variables. The analysis and

observations of the debriefing session after each participant, however, illuminated a number

of key insights to the decision making process. First, pilots commented on generating a

mental map of the expected landing area and mentally highlighting favored “sweet spots”,

“zones”, or “quadrants” of where ideal landing sites were thought to manifest. This mental

map was created pre-scenario briefing (represented as satellite photography) provided before

every run, or during initial evaluation of the LIDAR sensor scan results. This mental

modeling exercise was thought to occur during terrain orientation only, not specifically for

site selection. The discussion of these highlighted areas also led to the hypothesis that

participants narrowed choices by eliminating sites that did not belong in these areas.

Second, pilots illustrated two different strategies for selecting a landing site. Several

pilots reported “sharing” responsibilities with the reference automation. These pilots be-

longed to the single/double-button party, preferring to optimize on only one landing metric

(fuel, safety, proximity to POI), and expecting the automation to optimize on the other

qualities. Pilots that employed the multiple objective function strategy also utilized vari-

ous landing site search methods. Several pilots treated the hot key buttons as a binning

system rather than a filtering mechanism. As one pilot stated, “[the researchers] could’ve

labeled [the buttons] as anything, I didn’t pay much attention to what they actually stood

for”. Generally, these pilots found the hot key arrangement to be impeditive - several pilots

suggested a “see all button”; a method of flagging sites for further investigation; or a means

to eliminate undesirable options. Although workload was not measured in this experiment,

these pilots commented that recalling each site and the affiliated hot key, was a challenge.

Even the order of hot key use was varied. Some pilots used every hot key to quickly scan

the site alternatives; hot keys containing sites of interest would be returned to for further

investigation. Other pilots engaged the hot keys, as intended, based on their site criteria

priority. For example, one pilot regarded the order of safety, fuel, and then proximity to

POI as his preference of priority (greatest to least), and the order of hot key use reflected
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this preference. Other pilots engaged the hot keys in the same order they were presented,

but with a purpose. One pilot believed that more critical objective functions should be

physically closer to the pilot. He also felt that a cockpit interface designer should arrange

the hot keys in a similar fashion, so pilots who were new to the vehicle (he regarded himself

as such a pilot) would comprehend that this construction was the order of objective function

importance. The pilot’s attitude, while most likely not universal, reinforces the significance

of the cockpit display interface. Some pilots attempted to circumvent the hot keys. Several

pilots engaged only the balanced or a priori hot keys and further optimized within those

options on one criterion. Most selected a site that required the least amount of fuel and

consistently made this decision quickly. One pilot explained he was more confident in his

abilities to optimize fuel consumption than the automation. Another pilot stated a desire

to maximize his control over this complicated task by restricting his options to a select few.

Experiment 1 established the foundation on which Experiment 2 was built. First, the

use of terrain markers (e.g., hazards) was determined to be an ineffective measure of terrain

difficulty. Observations showed that this representation of distinct items of interest was

not universal between participants. The map may not have established an appreciable dis-

tinction between low (1,2) or high (3,4) numbers of hazards. Second, participants mentally

modeled where sites would be, but how those mental models were developed was unclear.

Additionally, this concept of discarding “bad” zones (and sites that appeared in those bad

zones) hinted at different decision strategies. Lastly, during debriefing sessions with par-

ticipants, it became clear that more than five criteria (corresponding to the hot keys) were

used during the decision making process. Subsequently, another experiment was necessary

to provide more details on these findings.

3.3 Experiment 2 Overview

The second experiment was conducted in 2012. This experiment involved fifteen helicopter

pilots, who performed the LPD task in the same simulated lunar lander cockpit as the

previous experiment, but with a different reference automation. The automation was con-

sidered to be a moderate function allocation, but the functionality differed from the first
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experiment. The system did not use “hot keys”, but instead provided three landing site

options to the pilot, based on safety and fuel consumption criteria. This functionality is

the same used in the main experiment. Pilots were asked to choose one of the three sites in

two lighting conditions: poor, ideal. Quantitative measures such as landing site score, pilot

performance score (PPS), and time to complete were recorded and a debriefing session was

conducted with each pilot. The PPS formulation differed in Experiment 2 from Experiment

1.

Statistical analysis indicated that there was no significant effect due to lighting on the

dependent variables, therefore establishing the lighting conditions that LPD performance is

reasonably consistent. The qualitative analysis, however, reaffirmed the initial observations

made in Experiment 1. With moderate automation, participants were observed to belong in

one of two types of decision strategies: reranking or eliminating. This framework was used in

the Main experiment and definitions are provided in Chapter 4. Follow-up analysis demon-

strated that neither strategy provided a significant advantage in overall LPD performance.

Questions on mental modeling were also posed to the participants. If used, participants

were asked to annotate a map of the expected landing area, marking the areas of what they

considered to be good and bad. Statistical analysis showed that participants who performed

mental modeling significantly decreased the time to complete, but the performance was not

significantly altered.

In addition to inquiring the overall decision making strategy, participants were polled

on the criteria used and the relative weighting associated with each criterion. Nine criteria,

or cues, prompted actions (preferences for sites) from the participants. Additionally, the

relative importance of these cues was assessed, with participants asked to provide a numeri-

cal weighting or a ranking of the cues. Participants were also asked for definitions on vague

descriptors such as large, buffer, good, bad. This type of data is useful for establishing

a rule-based cognitive process model of decision making for the LPD task. A prototypi-

cal model was developed based on these experiment results, with integrating the cues, the

weightings, and codifying the cognitive actions and decisions made by participants. Initial

modeling results showed reasonable model agreement with experiment results.
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Experiment 2 furthered understanding of decision making during LPD and established

an effective pilot study prior to the main thesis experiment. Many of the qualitative analyses

conducted in this experiment were refined and used again. An effective range of lighting

conditions was determined, allowing for the main experiment to focus on one lighting type.

Additionally, comments made during the debriefing helped determine which characteristics

differentiated terrain. Figure 11 illustrates these characteristics: perceived hazards (based

on Gestalt principles) and shadowing.

Understanding the types of search methods possible with a moderate level of automation

allows for contextual framing of questions to further elucidate the decision making options.

However, Apollo-like automation was not tested in this experiment, nor were there variations

to the environment. Experiments 1 and 2 also focused on nominal operations. No data

existed to examine the potential changes due to off-nominal scenarios, or a comparison of

human-automation interaction. Furthermore, Experiment 1 and 2 focused on fixed-wing or

helicopter pilots. It was not known if astronauts would exhibit different behavior due to

their specialized training.

3.4 Main Experiment Overview

The main purpose of this experiment was to understand how astronauts make decisions

during LPD, especially when interacting with an automated decision making aid. Pilots

and commanders were the targeted demographic, however, due to the limited availability

of these experts and the possibility of mission specialists engaging in such activities, all

astronauts were evaluated in this study. It was hypothesized that the astronauts would use

different strategies to complete the LPD in response to the role of automation. Other factors

such as landing trajectory or scenario type are likely to prompt different strategy use, but

it is unclear the amount of change. The extremes of each independent variable was tested:

landing trajectory (shallow, baseline); scenario type (nominal, LIDAR sensor warning);

and function allocation (moderate, Apollo-like). Landing trajectory and scenario type were

used in this experiment as within-subject independent variables. Limitations in resources

resulted in the function allocation used as a between-subjects variable. Therefore, each
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participant saw four of the eight possible scenarios. The order of the runs within-subjects

was balanced to reduce any potential bias in run order.

The baseline and shallow landing trajectories were chosen to encapsulate the range of

possible LPD times presented to the onboard crew. The baseline trajectory assumes a lunar

acceleration limit of 1.1 lunar-g’s beginning at a slant range of 1000m and a flight path angle

of 30◦, providing a 50.4◦ look angle. These conditions provide 78s prior to the final vertical

descent maneuver. The shallow trajectory, assuming the same acceleration limit, begins at

500m slant range and 15◦ flight path angle, resulting in a 45s for the LPD task. Figure 8

illustrates the differences between the two trajectories.

0 

100 

200 

300 

400 

500 

0 100 200 300 400 500 600 700 800 900 

A
lti

tu
de

 (m
) 

Range (m) 

Baseline Trajectory  
1000 m Slant Range 

30o Slant Angle 

Shallow Trajectory  
500 m Slant Range 

15o Slant Angle 

Figure 8: Baseline and shallow trajectories.

Under nominal conditions, the automation, sensors, and other systems perform without

error. Most automation systems are designed and work well in these circumstances. How-

ever, as illustrated in several commercial aviation incidents and notable spacecraft flights

(e.g., Apollo 11 and 12 landings 3), the unexpected may occur and require human inter-

vention. A malfunctioning sensor was chosen to represent a feasible scenario that exceeds

the nominal bounds of automation performance. The LIDAR scan is taken of another site

different from what the crew is expecting. The sensor performance scenario represents a

31201 guidance alarm almost caused an abort on Apollo 11 and slosh issues persistently disrupted guidance
calculations on Apollo 12.
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damaged LIDAR sensor. The cause for this degraded performance is not specified, the par-

ticipants were told the LIDAR scan may misidentify hazardous and non-hazardous regions.

The function allocations were selected to represent two potential automation systems

designed for different responsibilities of the human. The moderate function allocation pro-

posed in this thesis is equivalent to the ALHAT design. Three landing sites are suggested to

the crew by the reference automation system in addition to identification of hazardous sites.

The participants can only select once and cannot suggest an alternative site. In contrast,

the Apollo-like function allocation represents a technological improvement over the Apollo

era. No sites are suggested, but the identified hazards are presented to the crew. The crew

must choose where to land and are able to modify this decision through the end of LPD.

The reference automation system for both function allocations pilots the vehicle to the end

of LPD.

Five dependent measures were collected and two derived from collected measures. Time

to complete (s) was measured by the start of the LPD task and the time elapsed until the

participant selected a landing site. In the case of the low automation, where the participants

could select sites multiple times, the last site selection was used. Fuel consumed is measured

by the change in fuel from the start and end of LPD. Since the AFM is steering the vehicle

to the participant’s intended location, fuel consumption is dependent on the final landing

site, the time to complete, and the current state of the vehicle. Landing site location (m)

are the coordinates relative to the baseline site (i.e., the center of the map). These three

measures are collected without researcher intervention.

The last two measures were solicited during a debriefing session via a semi-structured

interview. After the practice session, pilots were asked questions regarding their overall

strategy. Strategy was defined as the course of action and associated weightings and pref-

erences in determining where to land. Participants were asked to describe their decision

making process, denote which scenario attributes were factored into the process, and the

relative importance of each cue. Workload was self-reported using the Bedford Workload

Scale [82] (Appendix A, Figure 42). Lower values denoted less workload. Both of these

measures were collected after each run (six total per participant).
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At the end of the experiment, participants were also asked to provide feedback on the

displays. As human performance is dependent on the environmental context [83] [84], partic-

ularly as communication between humans and automation is through displays. Participants

noted which display elements were used, with special emphasis on elements that factored

into the decision making process, and suggested display improvements. Chapter 6 discusses

the results of this analysis in greater detail.

Two dependent measures were calculated from the original set of data. Landing Site

Score (LSS) is based on the results of Chua and Feigh [81]. A score is devised based on

penalties each site receives with respect to certain site safety properties. A site can score

from 0 to 1, with smaller scores denoting safer sites. The derivation of LSS is described in

Equation 4. The participants were told that the vehicle was intending to land in the center

of the map. An exact reason why the vehicle was landing there was not given. Therefore,

the proximity to point of interest is defined as the Euclidean distance from the selected site

and the center point of the map. Participants were asked to clearly state any assumptions

they made regarding the vehicle operational performance and available utilities prior to and

after touchdown.

3.4.1 Apparatus and Software

3.4.1.1 Hardware

The experiment was conducted in the Reconfigurable Operational Cockpit (ROC) at NASA

Johnson Space Center in Houston, TX. To simulate the perspective of a true expansive

environment, the ROC projects images from eight projectors on the side of its domed walls.

The center of this dome holds a mock Orion vehicle cockpit, complete with three displays

and one joystick for human input (Figure 9). The three displays can be individually set to

present displays of any size and dimension, allowing for multiple configurations.

Two software programs, both run on Linux, were used for vehicle performance, display

representation, and scenario simulation. The ALHAT Simulation, written in Trick [85],

simulates vehicle performance and parts of the scenario. The ALHAT Simulation contains

various elements including the AFM, the sensors, and Guidance, Navigation, and Control
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Figure 9: ROC configuration.

algorithms. Chapter 5 discusses this algorithm in greater detail, including a description of

the reference vehicle.

NASA’s Engineering DOUG 4 Graphics for Exploration (EDGE) software was used to

simulate the displays and the lunar terrain perspective as seen from the cockpit. EDGE is

written in Tool Command Language (tcl). The displays are modified from the designs de-

veloped by the ALHAT team [87, 88]. Each of the three displays is equipped with a progress

bar; two clocks, Phase Time remaining and Time To Landing (TTL); Fuel remaining, as a

mass and time measure; and Range, as a distance and time measurement.

The overview display (Appendix A, Figure 48), located on the far left (Figure 9), presents

a profile view of the vehicle and the trajectory through a ground range - altitude plot.

Figure 48 illustrates a grayscale schematic of the diagram. The actual display is green

lettering and lining on black. Breadcrumbs (filled squares) are “dropped” every five seconds

to denote the previous state; predictors (empty squares) mark the projected state at five

second intervals. This display also provides other state information, such as the altitude,

4The Dynamic Onboard Ubiquitous Graphics (DOUG) software is a NASA software product used for
modeling, analysis, and training of International Space Station activity [86].
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range, forward, and lateral velocities. All measurements on this display are listed in English

units, based on the feedback of the last ALHAT crew evaluation [89].

The LPD display, located in the center, presents LPD-specific information on a top-

down perspective of the expected landing area. This perspective features a photograph

of the expected landing area and contains several overlays. The semi-transparent hazard

identification overlay marks all hazardous craters, rocks, and slopes, in red. The fuel re-

maining overlay projects a blue ellipse. The area encircled by the ellipse represents the

obtainable landing area based on the remaining fuel. The elliptical area shrinks in size as

fuel is expended. The landing site overlay displays either three landing site options and a

white circular marker or one landing site, depending on the automation role. In the high

automation role, three numbered and colored sites are presented to the crew (Figure 10a).

A white circular marker encircles a site when the corresponding button is selected. Each

circle is equivalent to the lander footprint. When the “ENGAGE” button is pressed, the

site options are removed, signaling the end of the participant’s role in LPD. In the low au-

tomation role, a white landing site is provided (Figure 10b). Using the joystick, participants

can move this site until they find a feasible spot. The flight computer follows this cursor

around, updating the targeted location each instance the landing site changes. Participants

can adjust the step size (large - 1000 in; medium - 500 in; small - 100 in) of the cursor by

using the joystick buttons. This display also provides altitude information and a scale.

The PFD shares much of the same information as the LPD, but from a perspective.

This viewpoint represents the feedback from a camera mounted on the front of the vehicle,

angled at the intended landing site. The hazard identification, fuel remaining, and landing

site overlays are all included, in addition to the altitude information. The PFD also includes

a pitch ladder and a vertical speed indicator. Figure 47 is located in Appendix A, but does

not include multi-toned shading as represented in the figure (stylistic change for presentation

to the participants during the debriefing session).
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(a) High Automation Role.
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(b) Apollo Automation Role.

Figure 10: Landing Point Designation Display.

3.4.1.2 Scenario Generation

The lunar terrain was simulated using the Johns Hopkins University Applied Physics Labo-

ratory’s Digital Elevation Map maker (DEMmaker) software. DEMmaker was used to create

the lunar maps and the associated shading. The DEMmaker software takes several inputs:

the latitude and longitude of a central location anywhere on the Moon; a resolution (m/px);

an x− and y− distance (km) or conversely, width and height (px). With this information,

DEMmaker creates a DEM. The software refers to an internal database of major craters

from the Goldstone Lunar Data and the Clementine mission and then uses mathematical

models to random populate a distribution of smaller rocks and craters. The resultant DEM

can be opened in APLNav for 3-D viewing (with correct latitude and longitude placement

on a Moon grid) with lighting and slope analyses applied to the map. The user supplies a

date-time string (e.g., 2011-288T12-00-00.000) and the map will be shaded according to the

celestial geometry and elevation of the mapped terrain. Similarly, the program calculates

the changes in slope and colorizes the map based on the slope degree. This map making

suite was used to generate 35 landing sites. The landing sites were shaded and analyzed

regarding their slope profile. Candidate maps were eliminated based on several round of

criteria. First, all maps with less than 30% or greater than 50% hazardous coverage were
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Figure 11: Approximate perception of terrain by participants.

eliminated. The remaining maps were evaluated based on the type of hazards at the point

of interest (center of map), the shadowing of the photograph, and the perception of haz-

ards. The shadow criterion was included based on participant comments from the study

conducted by Chua et al. [90]. The last criterion is based on Gestalt principles [26], stating

that disparate items placed closely together are perceived as one composite item. Maps were

arranged based on quantity (hazard/no hazard; more/less shadowing; more/less perceived

hazards) and similar maps were culled from this final group. The latitude and longitude of

the four maps used in this experiment are listed in Table 12. All maps are 180× 180m with

a resolution of 0.2m per pixel. Figure 11 illustrates the properties of these maps.
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The landing sites for the high automation maps were selected using the terrain sensing

and recognition algorithm developed by NASA Jet Propulsion Laboratory [91] [92]. This

algorithm uses LIDAR data to determine the probability of success in the landing area.

The first three sites reported using this algorithm were used in this map for the nominal

case. Since the LIDAR malfunction is based on erroneous data, sites were manually selected

using the TSAR results as a guide.

The slope analysis provided by the APLNav software does not include any noise as-

sociated with sensor performance. Additional hazard scans were developed to account for

changes in sensor performance due to two landing trajectories and two off-nominal scenarios.

A LIDAR sensor cannot “see” past obstacles, meaning sensor noise is a function of position

relative to the scan area. An algorithm was developed to determine the occlusion effects due

to the baseline or shallow trajectory. Figure 12 describes the relationship between length of

a shadow and position of the sensor. The premise of this algorithm is determining whether

objects behind an arbitrary spot are in shadow. The viewing angle of point i, θ on the

landing map is calculated using the arctangent of the LIDAR sensor position (y) relative to

point i. The viewing angle, along with the altitude of point i, yshadow, is used to determine

the length of the shadow projected along the ground, xshadow. The altitude of each point

i + 1 behind point i is checked to determine whether it is less than the expected shadow

altitude. If the altitude of point i + 1 is greater than the expected shadow altitude, the

algorithm begins anew with this point.

As evidenced in Figure 13, the LIDAR sensor scan of the terrain is more obscured

in the shallow than the baseline trajectory. The LIDAR malfunction scenario required

the development of an extra hazard identification map. The LIDAR malfunction scenario

was developed by overlaying two hazard scans, one associated with the location and the

other from a different location. Both scans are truth scans; no performance effects due to

trajectory were added. The composite hazard scan did not miss hazards, only adding falsely

identified hazards. Participants were told however, that the LIDAR could have missed

craters or slopes. The purpose for leaving true data rather than providing a completely

erroneous scan was to prevent a complete disregard of the LIDAR scan. Participants were
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Table 12: Landing site locations.

Scenario Lat, Long5 El., m Site #1, m Site #2, m Site #3, m

Baseline, nominal -89.74, -240.02 770.5 -36.4, 2.3 26.7, -6.9 46.6, 39.5
Baseline, LIDAR -89.74, -254.55 629.7 -34.5, 23.5 -47.3, -57.9 63.5, 72.5
Shallow, nominal -89.66, -248.74 851.4 37.3, 51.5 -18.3, 45.9 -33.3, -23.9
Shallow, LIDAR -89.70, -251.26 662.5 -30.5, -39.9 24.5, 56.2 -23.9, 35.5

x 

y 

 

xshadow 

yshadow 

Figure 12: LIDAR sensor position and occlusion effects.
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Figure 13: Hazard scan and landing area photograph changes. Four different landing
areas were used in the actual experiment, but this example illustrates the differences due
to the trajectory and the scenario. The baseline and shallow trajectories cause differences
in LIDAR hazard identification. The LIDAR warning scenario identifies the major craters
but also misidentifies hazards by excluding and including terrain attributes. The most
distinctive mistake exists in the upper right and left hand corners in the LIDAR rows: two
craters appear where there are none.

alerted to this sensor malfunction with a warning at the start of LPD: “LIDAR Sensor

Warning”. An example of the different maps and hazard scans produced for each landing

area is presented in Figure 13.

In addition to generating realistic photographs and scans of all the landing areas, feed-

back materials were needed to prepare the participants for the experiment itself. It is

difficult to train astronauts on a task that is still in infancy. Furthermore, the purpose of

this experiment was to improve understanding of the astronaut decision making process

during this task. Therefore, a delicate balance was necessary to provide sufficient feedback
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to the participants without biasing their overall performance. For this experiment, partic-

ipants received feedback on only the safety characteristics of the site. At the end of each

practice run, participants were shown a contour map (gradient between green, yellow, and

red - best to worst) of the safe regions. They were explicitly told this map represented

“partial” feedback, and not meant to represent the criteria that their performance would

be judged against. However, the same algorithm used to produce these contour maps was

also used to define the Landing Site Score (LSS).

LSS is a function of three safety features: the induced slope due to roughness within

the lander footprint, the proximity to hazards outside of the footprint, and the amount of

hazards within the footprint. Induced slope is approximately calculated based on the largest

slope produced by each of the lander pads. Figure 14 illustrates this geometry. Footprints

with slopes greater than or equal to 10◦ are given a score of 1, the maximum penalty.

All other footprints are assigned a score of 0 to 1, with zero penalty assigned to an ideal

footprint of no slope. The proximity to hazards outside of the footprint is defined as the

distance to the closest hazard. Footprints achieve no penalty if the closest hazard is at least

one footprint, or one vehicle diameter, away. The amount of hazards within the footprint

is calculated by determining the percentage of hazards within the footprint. Footprints

are penalized corresponding to the percentage of hazards. Each of these attributes were

weighted equally. Equations 4 summarize these penalty relationships.

hNE 

hE 

hSE 

hS 
hSW 

hW 

hNW 
hN 
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∆
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N
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Figure 14: Calculation of induced slope, or roughness, on lander due to terrain.
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Induced Slope =


S
10 S ≤ 10◦

1 S > 10◦
(1)

Proximity to Hazard =


1− minDH

Dvehicle
minDH ≤ Dvehicle

0 minDH > Dvehicle

(2)

Percentage of Hazards = AHazards/Atotal (3)

LSS =
Induced Slope + Proximity to Hazard + Percentage of Hazards

3
LSS ∈ [0, 1] (4)

This experiment design was implemented over the course of three weeks in August 2012.

The results and data analysis are discussed in the following Chapter.
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CHAPTER IV

CHANGES IN ASTRONAUT DECISION MAKING

The creation of astronaut decision making models required understanding the strategies

performed by astronauts during the Landing Point Designation (LPD) task, in two types

of function allocation, trajectory, and operational scenarios. A strategy is defined as the

search method, the combination of cues, and their relative importance used to reach a

final conclusion. The study described in Chapter 3 discussed the design of a human-in-

the-loop (HITL) experiment conducted to satisfy this main objective. Both qualitative and

quantitative data were collected continuously through the experiment and during debriefing

sessions conducted after each experiment run. The results of the qualitative analysis is

presented first, followed by the statistical analysis of overall system performance. Lastly,

this section concludes with discussion of the experiment design and a summary of the

major findings. Chapter 5 discusses the incorporation of the experimental data within the

cognitive process model.

Fourteen participants were involved in this study. As of the experiment start (July 2012),

80 former and current astronauts [93, 94] were active in the NASA Astronaut Corps. Ten

participants were current members of the Corps, representing approximately 1/6th of the

overall targeted population. Two participants were experienced military helicopter pilots,

and one participant was a recreational fixed wing pilot. All participants were employed in

NASA Astronaut Office in administrative roles, as design engineers, or as cockpit designers.

Only twelve participants provided data for the analysis presented in this chapter.

4.1 Qualitative Analysis and Results

4.1.1 Analysis of Observed strategies

The participants’ decision making strategies were solicited through the debriefing questions,

which were designed based on the previous work of Chua [78]. The individual answers were

examined for similarity and combined in an attempt to demonstrate a universal strategy
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Table 13: Distribution of Participants Across Function Allocation and Decision
Making Search Methods.

Automation Search Method Participants Total

Apollo-like
Local 105, 107, 112 3
Areal 101, 108, 110 3

Moderate
Reranking 102, 106, 111, 113 4

Eliminating 104, 109, 115 3

with several adaptations, accounting for the observed non-linear task order, iteration, and

differences in task emphasis by individual pilots. As seen in Figure 15, all participants

shared the centralized tasks of receiving data, interpreting data, searching and selecting

an option. However, the search method varied depending on the automated assistance.

Those using the automation system within the Apollo-like function allocation (henceforth

shortened to “Apollo-like automation”) reported using the areal or local search method.

The areal method is conducted in two rounds. The first round consists of finding “good”

regions where candidate sites may exist. In the second round, the participant then selects a

landing site only from these regions. The local search method is focused on evaluating the

entire landing area and finding a landing site. When using the automation system within

the moderate function allocation (i.e., “moderate automation”), participants completed the

task using either reranking or eliminating. The reranking search method evaluates all three

candidate sites simultaneously and selects the best site of the three. The eliminating method

is focused on eliminating sites until one site remains. Generally, only one elimination round

is necessary. These definitions were self-assigned by participants, answering the debriefing

question (listed in Appendix A). Table 13 illustrates this distribution of automation, search

method, and participant.

Another common subtask completed by participants of both function allocations is the

development of a mental model. One type of a mental model of the LPD task consists of

determining where “good” and “bad” regions were located. Others may be models of the

vehicle state and the LPD sequence. However, the focus is strictly on anticipated choice of

landing areas. This exercise was completed by half of the participants with a photograph

of the expected landing area prior to each experiment run. Most participants defined good
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Receive LIDAR 
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Identify 
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Select a site 

101, 108 
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NO LI 
Away from Craters X X 

Uniform Color X X 
No Hazards in Site X X 

NO LI 
Lowest Hazard Density  X X 

Away from Craters X 
Uniform Color X 

Not in darkness X 
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No Hazards in Site 

104, 109, 115 

102, 106, 111, 113 

NO LI 
Lowest Hazard Density  X X 

Uniform Color X 

Apollo-like Automation  

Moderate Automation  

Figure 15: Landing Point Designation Strategy for Apollo-like and Moderate
Function Allocations. The chart denotes the start of the LPD task with the leftmost dots
- there are two entry points depending on whether the participant used the photograph of
the expected landing area. The task ends at the rightmost dot. Shaded boxes in bold outline
are subtasks used by at least half of the participants within each automation sequence. This
condition is defined as at least three participants in the Apollo automation and at least four
participants in the moderate automation. Each automation is colored differently - yellow
for Apollo and green for moderate. Boxes in white and in thin outline are subtasks used
by a small portion of the participants. Participant identifiers (10N number) along the
task sequence are those who demonstrated that particular subtask. Dashed lines indicate
simulation/automation activity concurrent with participant activity.
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regions as those with relatively uniform shading distribution (interpreted as low slope), away

from major craters and large shading gradients (interpreted as significant altitude change).

Bad areas are essentially hazards or unknowns: craters, large shading gradients, and dark

regions. After each run, participants who stated that they had formulated this mental map

were asked to mark these regions on the respective photograph. The annotations provided

by the fourteen participants were superimposed on each other to form Figures 16a-16d,

which illustrates the combined opinions. The location of the three automation-suggested

sites are also shown in these figures, but were not initially shown to the participants until

the simulation began. Plots of participant selections with respect to the combined mental

models are listed in Figure 16. Plots with respect to the printed LIDAR scan are shown

in Appendix A, Figure 49. Generally, participants selected sites near good areas. This

development of the mental model is analogous to the action of “gating” as performed by

the Apollo astronauts. During high and low gates, the Commander and Pilot were expected

to make checks associated with the vehicle state, health, and mission status. Knowing when

to establish these checks, or gates, is an aspect related to training that must be carefully

decided.

Participants using the Apollo-like automation had the option of refining, or adjusting,

their initially selected landing site. Since the start of refinement was not directly measured

(the participant did not indicate entering a refinement mode), this time duration was in-

ferred from timestamped joystick maneuvers. The start of refinement was characterized by

a reduction of the step size used to maneuver the designated landing site icon on the display.

However, minimizing the step size was not always a clear indicator of refinement, as the

minimum step size was used through the entire run. The second indicator was the path of

the designated landing site icon. Generally, if the participant backtracked more than one

step or circled around the initial landing site, he was performing refinement. The difference

in timestamps was equivalent to the refine process. An example of these two refinement

start conditions is presented in Figure 17. The left movement pattern represents a partici-

pant who moved the designated site icon upwards on his display, then left two units, then

downwards, and circled a central area that contained his final landing site. The downward
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(a) Fargo: nominal, baseline trajectory. (b) Annapolis: nominal, shallow trajectory.

(c) Tulsa: LIDAR warning, baseline trajectory. (d) Vegas: LIDAR warning, shallow trajectory.

Figure 16: Representation of the astronaut mental model. Red spots are participant-
identified bad areas; green are good areas. The three white landing sites ranked by the
moderate automation are shaded according to the percentage of participants who selected
this site. The yellow landing sites are those selected by participants with the Apollo-like
automation.
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Figure 17: Example of projected landing site movements during two separate
experiment runs. The final landing site chosen by participants is marked by a red dot
and the time stamped movements are in black circles. A blue line traces the path of the
icon.

movement of the designated site icon is the refinement start. The right movement pattern

is representative of two designations and no refinement. The first initial decision making

period is indicated by a change in step size. However, he does contain himself to this area

and uses this minimum step size to find another site. He is observed to overshoot his landing

site by one unit and does not refine.

Figure 18 illustrates the distribution of time spent during the initial decision making, the

refinement, and the automation executing the final participant decision. This analysis was

used to determine if more or less refinement time was induced by a scenario, a trajectory

type, a search method, or background. No significant correlations were observed. The

distribution of activity indicates that participants did not aim to select an initial landing

site early and then refine the site as the vehicle touched down, as hypothesized. However, if

the participants were maneuvering the vehicle to the intended landing site, it is likely refine

would occur through the entire process.
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Figure 18: Distribution of activities during landing point designation. The naming
convention is as follows: Function Allocation (ap - Apollo-like/mo - Moderate), Trajectory
(b - Baseline/s - Shallow), Scenario (no - Nominal/li - LIDAR Warning).
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4.1.2 Analysis of the Relative Importance of Decision Making Criteria

As seen in Figure 15, participants using different function allocations and search methods

placed emphasis on different decision making cues. Based on previous experiments [78,

81], participants could use any combination of sixteen different cues, ten of which can be

further defined by quantity (“have/did not have”), six of which are threshold (“within/by”).

Table 14 represents this full spectrum.

Participants reported using ten of these cues, which can be categorized into three general

groups: system safety (no hazards within landing area, away from craters, lowest hazard

density, uniform color, not in complete darkness, minimize fuel consumption, work faster),

mission objectives (located near point of interest (POI)) and automation rank. An eleventh

cue, located in the upper two-thirds of the display, was reported and is considered as part

of system safety.

Participants were most concerned with attributes of system safety. Generally, partici-

pants preferred and actively sought sites that contained no hazards within the landing area.

However, if no such site existed, participants focused on the distribution and location of

hazards within the landing site. Almost all participants assumed that the lander feet would

be at the vertices of a perfect square contained within the landing circle. The lander would

not rotate around the central body axis. Subsequently, some participants preferred sites

with hazards widely distributed, or not on the edge of the landing circle, or conversely, not

in the center of the landing site. The possible collision of a central hazard with the main

engine was of particular concern to a few participants. One participant commented on the

lack of visible lander pads from either the display or the window. He believed that without

this feedback, the LPD task could not be successfully completed. The final maneuvers prior

to vehicle touchdown are minute adjustments to the vehicle position, as to avoid landing

on any rocks or craters.

The structural design of the lander vehicle and the camera angles provided to the partic-

ipants resulted in additional landing site criteria. The participant who required lander pad

visibility stated that his landing performances were arbitrary - he was effectively guessing

at where to land. Subsequently, his quantitative performance has not been included in this
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statistical analysis. Another participant was frustrated with the limitations in the camera

angle. As the vehicle drew closer to the surface, the terrain immediately underneath the

vehicle became obscured by the main frame in both the PFD and the window view. This

lack of continuous visual information was factored in by the participant. He reported only

selecting sites that were located in the upper two-thirds of the display.

Landing sites away from craters were also of interest to participants. Previous stud-

ies [78] illustrated that participants preferred landing sites that were at least a landing site

diameter, D, away from large craters. In this study, some participants agreed with this

definition (a buffer of one landing site diameter), but many participants were comfortable

with landing near craters. At least two participants mentioned scientific value of landing

near large craters. The definition of a large crater also differed between participants. Seven

participants provided definitions on what constituted a large crater; large craters were de-

fined as between 0.25 D to 1.5 D. About half of the participants focused on identifying good

regions prior to selecting a specific landing site. These good regions were characterized by

low hazard density. Low hazard density regions typically do not have many large hazards

and minor hazards are widely distributed.

The shading of the maps revealed a great deal of information regarding the terrain.

This information was available as a background overlay with the hazard identification, out

the window, and with the photograph of the expected landing area presented prior to each

run. Participants were particularly concerned with the slope of the terrain, both within the

landing site and immediate outside. Since slope information was not explicitly given to the

pilots (in terms of a degree or a contour line), the change in pixel shading was used as an

indicator. In general, participants preferred sites with a uniform shade within the landing

site. Since the sun is at an angle relative to the surface, different altitudes will be lit to

differing degrees. A uniform shade denoted flat terrain, or low gradients. The shading tone

itself was critical: participants preferred sites of a lighter shade (interpreted as higher in

altitude), or gray to white, as it was believed to have greater visibility. Participants also

searched for sites that were not in complete darkness. Dark landing sites were not appealing

as the participant could not assess the terrain; these sites were typically eliminated from
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consideration. Participants were not informed, nor did any ask, if the lunar lander was

equipped with external lighting capabilities. Half of the participants ignored sites that were

in complete darkness.

Participants were also concerned with fuel consumption. The Guidance, Navigation, and

Control (GNC) algorithms within the simulation were robust enough within the 180 × 180

m landing area. The participant, unbeknownst to them, were not threatened by lack of fuel

at any point within the landing sequence. Despite having this information available to them

through the entire LPD sequence, no participant indicated a sense of the total kilograms

of fuel consumed during the LPD task. However, several participants still factored in fuel

consumption. They attempted to make short diverts from the center point, or landing close

to the center of the map. Additionally, several participants reported trying to work faster,

as to save fuel. Some participants opted to land short (bottom half of the map), especially

during off-nominal situations. Their reasoning was to land quickly and avoid any further

complications with the vehicle. Participants felt rushed more in the off-nominal scenarios.

Unsurprisingly, all participants were concerned with system safety and no participant

chose a landing site strictly on mission objectives. Criteria use differed based on the function

allocation and scenario. Table 15 illustrates criteria used by the number of participants.

Different scenarios resulted in different cue usage. In the nominal scenario, the Apollo-

like pilots were particularly concerned with finding sites in areas with fewer hazards that

matched training expectations. This behavior is expected of well-trained, experienced astro-

nauts. In contrast, the LIDAR warning scenario shifted reliance on expectations to finding

a site that is in an area free of hazards and of uniform color. The participants were ac-

counting for faulty LIDAR data by avoiding all identified hazards and uneven terrain. The

difference in participant role between the Apollo-like and moderate function allocation is

reflected in the cue usage. Since the moderate mode provides only three choices that are

clearly marked on the display, the participants focused more on the sites themselves, rather

than areas. The difference is most prominent as they sought hazard-free sites, rather than

areas of lower hazard density. These same preferences remained constant across both types.

In general, participants used between one and five cues to decide where to land, with
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Table 15: Distribution of Cue Usage per Scenario.

Apollo-Like Moderate

Nom. LI Nom LI

Lowest hazard density 3 3 No hazards in landing 7 7
No hazards in landing 3 3 Away from craters 5 6

Meets expectations 3 2 Uniform coloring 4 5
Uniform color 2 3 Located near POI 2 2

Located near POI 2 1 Not in darkness 1 3
Not in darkness 2 2 Meets expectations 2 2

Located upper 2/3 1 1 Lowest hazard density 2 1
Away from craters - 1
Automation Rank N/A N/A Automation Rank 1 1

an average of three cues for every scenario. Relative importance, or ranking, rather than

weightings, were assigned to each cue. Patterns in cue usage are listed in Table 16. A

comprehensive summary of each participant’s cues is listed in Appendix A, Table 27.

4.2 Quantitative Analysis and Results

This experiment was designed to determine whether automation, trajectory, and scenario

had a significant effect on overall system performance. All tests were conducted at α = 0.1

to determine significant trends as the number of participants was particularly low. Unless

otherwise noted, a Mixed Measures ANOVA was used for the analysis.

4.2.1 Overall statistical results

Overall, participants completed the LPD task in µt = 28.66s (σt = 15.15), with a range

of 8.63 to 74.95s. During this task, they were able to achieve an average Landing Site Score

(LSS) of µLSS = 0.5803 (σLSS = 0.132). On average, the Proximity to Point of Interest

(POI) score was µPOI = 0.459 (σPOI = 0.135). Both POI scores and LSS were on a range

between 0 and 1, with 0 equaling a perfect score and 1 being the worst score. Participants

used an average of µfuel = 544.77 kg (σfuel = 137.01) on a fuel consumption range of

331.30 to 702.49 kg. Overall, participants perceived this task to be a mean workload of

µwork = 3.712 (σwork = 1.576). Varied opinions were expressed on the workload intensity

of the task, with participants ranging from 1 (“Workload insignificant”) to 9 (“Extremely

high workload. No spare capacity. Serious doubts as to ability to maintain level of effort”).
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Table 16: Cue usage patterns.

Apollo-like automation, nominal

1. No hazards in landing is ranked highest
2. No hazards in landing and meets expectations are usually used together (baseline

trajectory only)
3. No hazards in landing is equal to or more important than expectations (baseline

trajectory only)
4. Located near POI, if used, is generally ranked low
5. No hazards in landing and lowest hazard density cannot be used in the same round

of evaluation.

Moderate automation, nominal

1. No hazards in landing is always used.
2. No hazards in landing and Away from craters are ranked highest
3. No hazards in landing and away from craters are usually used together
4. No hazards in landing and lowest hazard density cannot be used in the same round

of evaluation.

Apollo-like automation, LIDAR warning

1. No hazards in landing area and uniform coloring are usually ranked highest

Moderate automation, LIDAR warning

1. Away from craters is always used.
s
2.

No hazards in landing and away from craters are usually used together

3. Away from craters and uniform color are usually used together (shallow trajectory
only)
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Figures 19 and 20 illustrate the distribution of these values.

Figure 19: Distribution of participant performance scores with respect to landing
site selection, proximity to POI and fuel consumption.

Figure 20: Distribution of participant workload scores.

4.2.2 Impact of Function Allocation, Trajectory, and Scenario on LPD Perfor-
mance and Astronaut Workload

This experiment was designed to examine the effects of function allocation, trajectory,

and malfunctioning LIDAR on overall LPD performance (task completion time, fuel con-

sumption, LSS, POI) and astronaut workload. Results from the MANOVA illustrated that

automation (Λ = 0.549, p < 0.000), trajectory (Λ = 0.008, p < 0.000), and sce-

nario (Λ = 0.344, p < 0.000) all had an effect on overall performance (Figure 21).

Mixed measures ANOVA was used as a follow up to the MANOVA, to determine the

specific effect of each independent variable. Function allocation significantly affected LSS
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Figure 21: Distribution of landing site score across function allocation, trajectory,
and scenario type.

(F (1, 11) = 5.372, p < 0.041) and fuel (F (1, 11) = 10.167, p < 0.009). Participants gener-

ally chose safer sites when using the Apollo-like automation compared to moderate automa-

tion and also consumed less fuel (534.5 kg to 553.6 kg). Trajectory had a significant effect on

the fuel consumption (F (1, 11) = 6224.606, p < 0.000). The baseline trajectory consumed

more fuel than the shallow trajectory. However, participants chose safer sites in the baseline

(F (1, 11) = 19.189, p < 0.001, µb = 0.519) than in the shallow trajectory (µs = 0.642).

The type of trajectory also had a significant impact on the completion time. Participants

performed the task faster in the shallow (F (1, 11) = 9.791, p < 0.010, µs = 23.07s)

than in the baseline trajectory (µb = 34.25s). Lastly, participants chose sites closer to

the POI in the baseline (F (1, 11) = 5.344, p < 0.041, µb = 0.420s) compared to the shallow

trajectory (µs = 0.4977s). The type of scenario was also observed to have a significant

effect on performance. Participants chose less safe sites in the LIDAR warning scenario

than in the nominal (F (1, 11) = 105.567, p < 0.00).

Interactions between the main effects were observed to be significant on overall per-

formance and workload. The interaction between trajectory and scenario indicated that

sites selected during a nominal baseline approach were the most safe (F (2) = 4.101, p <

0.05, µLSS-b-no = 0.440) and as expected, the sites selected during the shallow approach dur-

ing the LIDAR warning scenario were the least safe (µLSS-s-li = 0.695). These trends are
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Figure 22: Distribution of fuel consumption across trajectory types.

Figure 23: Distribution of time to complete across trajectory types.

seen in Figure 24. Similarly, sites were picked closer to the POI of interest due to trajectory

and scenario interactions (F (2) = 8.210, p < 0.005). Sites selected on a baseline approach

during the LIDAR warning scenario were closest to the center (µprox-b-li = 0.380) whereas

the shallow approach in the same scenario are farthest (µprox-s-li = 0.575) (Figure 24).

The interaction between trajectory and scenario and function allocation was marginally

significant on the overall LPD performance.

Workload was examined separately from the other dependent variables as it was self

reported. None of the individual main effects - function allocation, trajectory, or scenario -

Figure 24: Distribution of LSS due to trajectory-scenario interaction.
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Figure 25: Distribution of Proximity to POI score due to trajectory-scenario
interaction.

significantly impacted workload, with respective powers of 0.294, 0.056, and 0.138.

Pearson correlations were also performed to determine whether relationships between

cue usage and task completion time exist, based on the results presented in Table 15. There

was no significant correlation between number of cues and completion time, nor was there

a significant correlation between the types of cues and completion time.

4.2.3 Impact of Participant Background on LPD Performance and Astronaut
Workload

Since the participants had a variety of astronaut training, fixed-wing, rotorcraft, and space-

craft flight experience, it was hypothesized that certain demographics would perform the

LPD task differently. Results from an ANCOVA showed that a participant’s highest level

of training was not significant on LPD performance. However, this level of training is sig-

nificant on the self-reported workload score. Pilots and commanders rated the LPD task

low (µpilots = 1.5), whereas MS/Astronaut Candidacy graduates (defined as having com-

pleted Astronaut training but no spaceflight experience) and helicopter pilots ranked the

task higher (µMS/AsCan = 3.85 and µheli = 3.67, respectively).

4.2.4 Impact of Variable Weightings on Performance

The statistical analysis was completed on individual dimensions of performance (fuel con-

sumption, time to complete, LSS, POI), with a MANOVA test to examine the dependencies
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between these dimensions. However, performance is often defined as a weighted combina-

tion of these dimensions. The relative importance of each criterion for future missions to the

Moon has not been defined. Subsequently, it is of interest to mission designers to examine

the changes in performance as criteria priorities are shifted. This particular analysis consid-

ered performance based on LSS and POI. The GNC algorithm employed in this experiment

was robust to landing site selections within the expected landing area and trajectory profile,

thus rendering fuel consumption and time to complete differences between groups negligible.

Figures 26, 27, 28, 29 and 30 were each plotted on a POI weighting - performance

score plot. A value of 0.1 on the x-axis implies that the POI weighting is 0.1 and LSS, or

safety, is at 0.9. Axes labels indicate greater emphasis on safety or proximity and whether

performance is better or worse. The central thick line is the mean score of all points

within the specified group, using that particular combination of safety and proximity to

POI weights. The dashed lines are 1-σ from the mean. The thinner, spotted lines are the

minimum scores within the data set for that particular group.

Figure 26 compares the overall performance of the automation system in a robotic

function allocation and participants. The automation data are derived from the proximity

to POI and safety score of the highest ranked site in the Moderate automation runs. It is

the equivalent of a fully robotic case wherein the automation system operates the LIDAR

and selects a site within 5s. There are four points overall, to reflect the robotic selection at

a) nominal operations, baseline trajectory; b) nominal operations, shallow trajectory; c) off-

nominal operations, baseline trajectory; d) off-nominal operations, shallow trajectory. The

participants’ data include all runs, across all of the independent variables. As illustrated

in this graph, some participants were better at choosing sites closer to the POI than the

robotic function allocation. In general, however, participants do not choose better sites

than the robotic function automation, particularly when safety is the highest priority. The

difference between means is less than one sigma in standard deviation.

Figure 27 examines the changes in performance as split between Apollo-like and moder-

ate function allocation. The data are from the respective participants’ performances during
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Figure 26: Performance changes between participants and automation with vari-
able weighting.

the simulated LPD landing. There are 24 data points for Apollo-like and 28 points for mod-

erate. As seen in this figure, both groups performed about equally as proximity becomes a

greater priority. However, participants using the Apollo-like automation performed slightly

better when safety was the primary measure of performance. The difference in the mean

of the performance scores is not one-sigma or greater, and they are approximately equal as

they are within 0.1 along the LSS 1.

Figure 28 evaluates the performance differences between the baseline and shallow tra-

jectories. Each trajectory group includes data from both Apollo-like and moderate function

allocation groups, resulting in an even split of 26 data points per trajectory. The perfor-

mance during the baseline trajectory is better than the shallow trajectory, regardless of the

priority between proximity and safety.

Figure 29 illustrates the performance differences between the two scenario types: nom-

inal and LIDAR warning. Each scenario type includes data from both Apollo-like and

moderate function allocation, in addition to both trajectories. There are 26 data points in

1see Chapter 5 for an explanation of this derivation
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Figure 27: Performance changes across function allocation with variable weight-
ing.

Figure 28: Performance changes across trajectory profiles with variable weight-
ing.
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Figure 29: Performance changes between different scenarios with variable weight-
ing.

each scenario. As evidenced in this figure, the changes in weighting result in varied perfor-

mance. Participants appear to pick less safe sites during the LIDAR warning scenario, but

their sites tend to be near the POI. Participants under the nominal scenario pick sites that

are both equally acceptable in terms of safety and proximity to POI. Likewise, the LSS in

both scenarios is effectively equivalent based on the site safety equality principle.

Figure 30 provides a comparison of participant performance (moderate and Apollo-

like function allocations) and robotic function allocation performance against all scenarios.

Each graph illustrates data of the participant within that specific scenario. Seven data

points are included in the Apollo-like function allocation, and six are in the moderate

function allocations. The robotic datum is one point, the top point suggested by the

moderate automation sequence. A number of interesting trends are distinctive in this figure.

There are several scenarios where the robotic function allocation clearly outperforms the

participants. In the nominal, baseline cases, the robotic automation system routinely picks

a site that is both safer and closer to the POI than the participants. This result implies that

despite having the top site available to them, participants employing the moderate function

allocation did not select it. However, in shallow trajectories, the participants select sites

closer to the POI than the robotic automation. This result suggests that in short timelines,
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participants are more likely to select an acceptable safe site that is close to the intended

target. There is one instance where the participants outperform the robotic automation. In

the baseline, LIDAR warning scenario, participants using the Apollo-like automation were

capable of selecting a site better than the robotic automation. It may be that participants

had sufficient time and control to determine a solution within the off-nominal scenario. The

trends seen in the other three LIDAR warning plots illustrate that if the LIDAR sensor

data is accurate, the automated landing site selection performs better than a human pilot.

However, if the LIDAR data is inaccurate, the human pilot selects sites that are safer and

closer to POI than the robotic case. The results presented in this section are sensitive to

the quantitative scoring of landing site safety. As such, if weightings on specific factors such

as terrain roughness or proximity to hazard change, or even using a probability density

function of failure in lieu of a weighted sum, one should expect different results. Since the

landing site score and the site option generation algorithm used in the experiment are not

the same, it is possible for the automation systems in the robotic and moderate function

allocations to select sites that are not the type sites within the landing area.

4.2.5 Impact of Search Method and Mental Modeling on Performance

Section 4.1.1 described the equal split of participants who used the areal and local search

methods, and the near equal split of participants who used the reranking and eliminating

methods. Table 17 compares the performance between the two groups, to determine if the

search methods resulted in differential performance. Mann-Whitney tests illustrated that

only time to complete was significantly impacted by search method, separated by function

allocation. All other measures - LSS, Proximity to POI, Fuel, Workload - the strategies

performed equally as well. Participants who used the areal search method, on average, took

over 10 seconds longer than those who used the local method (Z = − 2.364, p < 0.018).

Participants who employed the reranking search method needed about 12 seconds more than

those who used eliminating (Z = − 2.800, p < 0.005). Boxplots of these distributions

are illustrated in Figure 31.

A number of participants reported using the training photograph to develop a mental

80



F
ig

u
re

30
:

P
e
rf

o
rm

a
n

c
e

ch
a
n

g
e
s

b
e
tw

e
e
n

d
iff

e
re

n
t

sc
e
n

a
ri

o
s,

tr
a
je

c
to

ri
e
s,

a
n

d
fu

n
c
ti

o
n

a
ll
o
c
a
ti

o
n

s.

81



Table 17: Comparison of areal/local and eliminating/reranking strategies.

Apollo-like function allocation

Mean (std)
Measure Areal Local Z p-value

TC (s) 37.42 (12.64) 26.63 (17.46) -2.339 0.017*
LSS 0.567 (0.153) 0.522 (0.120) -0.664 0.514

Proximity to POI 0.456 (0.171) 0.451 (0.163) -0.029 0.977
Fuel 531.73 (150.39) 537.25 (143.05) -0.058 0.977

Workload 4.5 (2.355) 4.25 (0.452) -0.181 0.887

Moderate function allocation

Mean (std)
Measure Eliminating Reranking Z p-value

TC (s) 20.85 (13.57) 29.48 (13.78) -2.043 0.042*
LSS 0.602 (0.105) 0.618 (0.135) -0.304 0.767

Proximity to POI 0.446 (0.119) 0.476 (0.100) -0.630 0.537
Fuel 548.55 (135.65) 557.35 (135.56) -0.743 0.478

Workload 3.50 (1.243) 2.88 (1.258) -1.014 0.347

Figure 31: Distribution of time to complete across different strategies.
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map of the landing area. A bivariate correlation shows that no correlation exists between

participants who performed mental modeling and the reranking or eliminating search meth-

ods. However, a significant correlation (r = 0.707, p < 0.00) exists between areal and

local search methods and mental modeling. Almost all participants who used the local

search method developed expectations of the landing area and vice versa. The exception to

this pattern is participant 107, a local searcher who formed a mental map for one of the six

experimental runs. Participants using the Areal search method required 10s more than the

local searchers. It may be that the first step of the Areal search method - finding a good

region - is the analogous real-time action of mental modeling.

An ANOVA illustrates that the act of developing a mental model significantly effected

the performance of both participants in the Apollo-like and moderate function allocations.

The workload of the Apollo-like participants significantly increased ((F (1, 33) = 6.699, p <

0.014, µworkload-mmYes = 4.88) for those who developed mental models compared to those

who did not (µworkload-mmNo = 3.75). No other performance measure was effected. The

additional workload may come from the act of searching for a specific landing site while

integrating new information (LIDAR scan results) with preconceived perceptions of the

terrain (mental map). For the participants using the moderate function allocation, both

workload and time to complete were effected by mental modeling use. Workload significantly

decreased ((F (1, 38) = 6.176, p < 0.017, µworkload-mmYes = 2.67)) for those participants who

developed mental models compared to those who did not (µworkload-mmNo = 3.63). Mental

modeling may have allowed participants to quickly prefer or disregard sites in predefined

good or bad areas. Timing was also significantly effected by mental modeling use. Partici-

pants who used mental modeling with the moderate function allocation performed the task

significantly faster ((F (1, 38) = 20.402, p < 0.046, µworkload-mmYes = 29.796)).

4.3 Discussion and Concluding Remarks

An experiment was designed to understand astronaut decision making during lunar landing

and the associated changes in performance due to variations in function allocation, landing
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trajectory profile, and sensor failure. Qualitative and statistical analyses of this experi-

ment have elicited several major conclusions. First, depending on the function allocation,

astronauts perform the landing point designation task in different but similar ways. Sec-

ond, astronauts consistently used specific criteria with relative importance to generate their

decisions. Third, the landing point designation task, with this hardware and software de-

sign, requires low workload regardless of the function allocation or mission characteristics,

but gains in performance are achieved when astronauts are assigned responsibilities within

the Apollo-like function allocation. Lastly, the astronaut experience, or flight background,

significantly impacts performance.

Users of both the Apollo-like and moderate function allocations illustrated an equal

split between holistic or individualistic search methods. Both the areal and reranking search

methods evaluate all options on a whole (the map, the three sites) compared to the local and

eliminating methods, which evaluated local sites (specific location, preferring the best or

eliminating the worst). The task completion time is correlated with the search method used

- the holistic methods required at least ten seconds more than the individualistic methods.

However, neither search method provided an advantage over its counterpart within the same

function allocation. Participants using the Apollo-like and moderate function allocation

were also observed to use mental models, or pre-execution preparation, setting expectations

for LIDAR scan results and candidate landing sites. While other mental models were likely

used, this model was the only one measured. The frequency of mental modeling use was

equal across the two search methods within the humans of the moderate function allocation.

Interestingly, for those who were tasked with the Apollo-like automation, only astronauts

who used the local search method also employed mental models of landing site expectations.

It is possible that forming a mental model allows astronauts to skip the first step of areal

searching, or the selection of good regions. Mental models allow for pre-identification of

these sites and faster selection of the final landing site. However, forming mental models did

not provide any gains in site selection or safety. The workload for Apollo-like local searchers

was reported as greater than the Apollo-like Areal searchers. A possibility exists that the

act of placing a landing site requires greater workload. As one participant commented,
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“there’s almost no place here [between the results of the LIDAR scan] where the circle

will fit”. This observation is reinforced by the behavior reported in the moderate function

allocation. The workload for mental model users within the moderate function allocation

actually decreases. Completion time also decreases for these same users. The limitation of

three landing site options simplifies the decision making task and provides a visual anchor

for the astronauts.

In addition to these observations with the search method, astronauts also used a series of

decision making criteria to decide where to land. Generally, most astronauts used the same

decision criteria, with differences accounting for the function allocation and the scenario.

Astronauts were particularly focused on safety criteria, features that could be gleaned from

the photograph of the expected landing area and the LIDAR scan results. Generally, opting

to land away from and not on top of craters. The users of the Apollo-like function allocation,

especially those using the areal search method, were more focused on least hazard density in

lieu of the more localized away from craters and not within the landing site. Unsurprisingly,

moderate function allocation users did not use least hazard density. The identification and

limitation to three landing options allowed the users to focus in greater detail the hazards

inside and within the neighborhood of the landing sites. Astronauts, on a whole, were also

concerned with landing in areas of little visual information. Despite being removed from

the actual execution of landing the vehicle, sites that were unfavorable for manual piloting

were eliminated. Astronauts preferred sites that were well lit (only one astronaut had no

preference within this category) and most aimed to land at sites of uniform color. Uniform

color on the photograph was interpreted as flat terrain. While normally a reliable indicator

of terrain grade, shadowing of lunar surfaces is heavily reliant on the approach angle and

the sun angle. The trajectories were representative of optimal viewing conditions at the

South Pole. It is quite possible to have landing sites that are uniformly colored and well

lit, but on an incline. In the LIDAR off-nominal scenario, these visual cues were of greater

importance than in the nominal scenario, an expected result due to the unreliability of the

sensor data. Many participants, however, still opted to exclude LIDAR-identified hazardous

areas, despite clear terrain directly beneath the overlay. These four criteria were generally
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marked most important. Other criteria such as meeting expectations, fuel consumption,

and proximity to POI were of less importance. Often, they were used as secondary criteria

meant to distinguish between similar sites.

Overall, the landing point designation task was considered a low workload task. All as-

tronauts had assumed at least one other astronaut would onboard the same crew, assisting

him or her with the task of choosing a landing site. Up to three additional crewmem-

bers were included in astronauts’ assumptions of the cockpit environment. The roles were

very clear, as universally described by the participants. The commander would be the

sole decision maker and executor of the task. However, the other astronauts acted as sen-

sory extensions, or decision support systems. These other crewmembers would call out

state information during the allotted task time, recall procedures in off-nominal scenarios,

watch for overlooked hazards, provide landing site suggestions, and maintain perspective of

the mission objectives. In particular, these crewmembers would ensure that the comman-

der would have only this task to focus on, regardless of the scenario. This comment was

made by several astronauts and further confirmed with the minimal changes in workload

between the nominal and LIDAR warning scenarios. The reported change in workload be-

tween scenarios, however, may be the result of the off-nominal scenario complexity. While

the workload stayed fairly consistent between all the runs and the participants, aspects of

performance were significantly effected by the function allocation, trajectory profile, and

scenario. In general, astronauts chose safer sites with the Apollo-like automation compared

to the moderate automation users. They completed the task proportionally to the time

allotted. The additional thirty seconds due to the baseline trajectory resulted in safer sites

chosen. Unsurprisingly, the safeness of the landing site was affected by the LIDAR warning

scenarios. Astronauts felt more rushed and opted to land sooner rather than finding an

optimally safe site. Additionally, in comparison to fully robotic systems (represented in the

analysis as 0s designation time and selection of the highest ranked suggested landing site),

neither the Apollo-like or moderate mode users performed any better. Even across vari-

able weighting combinations of proximity to POI and landing site safety, the performance

between robotic, moderate, and Apollo-like human-machine systems is equitable.
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Pilots and commanders were observed to make minute changes until the very last pos-

sible designation moment, allowing for any possible incoming data. With the moderate au-

tomation, this behavior manifested as pressing the designation buttons at the final minute.

In the Apollo-like function allocation, the selected site was continuously refined and adjusted

until the end of the designation period. One participant, a commander of multiple Shuttle

missions, declared the task impossible in the current configuration. Since the participant

could not see the lander feet, the actions of the participant was effectively guesswork. He

believed the role of the astronaut was to fine-tune and adjust the lander vehicle until the

last minute, only building upon the majority of the work done by the automated landing

system. Mission specialists, cockpit designers, and helicopter pilots were not observed to

exhibit this behavior. Instead, they chose the landing site and allowed the vehicle to land

at the intended site. Although no other participant explicitly asked for an allocation of

responsibilities as this particular commander, many participants conveyed similar desires

for continued involvement with the landing sequence.
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CHAPTER V

COGNITIVE PROCESS MODEL DEVELOPMENT

The development of a cognitive process model allows for integration of such a subsystem

with other working systems (e.g, automation, vehicle, landing trajectory, environment), to

accurately represent a crewed landing system. This chapter discusses the development of

a comprehensive landing model that includes all of these elements, but for the analysis

conducted in Chapter 6, only the cognitive process model was used. The environment mod-

eling has been previously explained in Chapter 3. The human cognitive process and the

appropriate changes due to different function allocations is described in this chapter. This

comprehensive landing model has been developed independently. The cognitive process

model - accounting for both the moderate and Apollo-like function allocations - was devel-

oped as thesis work. The other models were built for NASA’S Autonomous Landing and

Hazard Avoidance Technology (ALHAT) team and adapted for use in this thesis. Chapter 2

describes in greater detail the purposes of ALHAT.

For computational and development ease, the vehicle, vehicle dynamics, automation,

and lunar environment models (to be referred collectively as the “ALHAT Simulation”)

operate independently from the cognitive process model. Thus a single data collection run

contains three parts: 1) the ALHAT Simulation, then 2) the Cognitive Process Model, and

3) the ALHAT Simulation (Figure 32). The results of the cognitive process model are fed

back to the ALHAT Simulation, wherein the ALHAT Simulation is modified and recompiled

to account for these specific values. The cognitive process model reflects astronaut decision

making when interacting with the automation system during an Apollo-like or moderate

function allocation. It was not necessary to develop the decision making process for a

fully automated system, as no humans are involved in the landing process during a robotic

function allocation. Figure 32 illustrates this flow of information to each model. l.

The cognitive process model was developed from observations and analysis of the results
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Figure 32: Integration of ALHAT Simulation and cognitive process models. The
dashed lines represent aspects of the model that are executed, but not critical to the main
operation. The boxes are colored according to their affiliation.

89



from the experiment, as described in Chapter 4. Twenty-eight data points were used to

develop the interaction with the automation system of the moderate function allocation

(i.e., moderate automation) and twenty-four for the Apollo-like function allocation (i.e.,

Apollo-like automation). The data points were evaluated to determine any outliers. Data

points were considered outliers if they satisfied three conditions:

1. The datum point, or location of the chosen site, does not correspond with the self-

reported criteria.

2. The chosen site is not near sites chosen by the other participants.

3. The chosen site is clearly not a good site, indicated by the availability of significantly

better sites (greater than or equal to 0.1 of the score of the chosen site).

Using these criteria, only one site was declared an outlier and removed from considera-

tion. Participant 110, while performing the LPD task under shallow, off-nominal conditions,

selected a site on the edge of the LIDAR scan. Half of the site is within the 0.18 km × 0.18

km landing area. This site is permitted within the context of the scenario, but all other

participants expressed a dislike of choosing sites close to the edge of the LIDAR scan, cit-

ing knowledge uncertainty. Participant 110, when asked about his decision making process

during this run, stated that “I realized it wasn’t the best decision but intuition... There was

not enough time yes, during the sim[ulation], but I knew it was too late to make a change

that big up to that point”. There were clearly two other regions he could have landed at,

one directly north of the southern crater, and one at the upper right corner of the map. No

sites that were chosen by other participants are near this candidate site.

In both the Apollo-like and moderate automation scenarios, the participants were ob-

served to behave in a manner similar to Klein’s recognition primed decision model (RPDM)

[31]. The premise of this model is that expert behavior relies on matching experiences

(patterns) to real-time events. They quickly eliminate options or data that is irrelevant

and only focus on the most critical aspects. Experts do not necessarily create and evaluate

decision options holistically, rather, they select a suitable solution to the dynamic, time-

pressured task. This solution may not necessarily be optimal, but it satisfies the criteria.
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The participants demonstrated three distinct attributes of RPDM. First, ten of the thir-

teen of the participants, all astronauts, in the experiment were considered experts within

the most related field. Within these astronauts, pilots and commanders were considered the

closest equivalent to astronauts who would be trained to make decisions on landing location.

These individuals performed differently, even from Mission Specialists and recent Astronaut

Candidate graduates, by carefully diagnosing and monitoring the situation within the given

experimental parameters. The landing site was adjusted accordingly. Second, half of the

participants demonstrated pattern-matching, experience-relying behavior. Since none of

the participants had previous experience landing on the Moon, photographs of the target

landing area were presented prior to the experiment to simulate training and experience.

The participants were not limited by time and could examine these photographs as long as

they desired. About half of the participants stated that they developed mental maps prior

to the each run and actively factored in this information into their decision making process.

Third, half of the participants also eliminated or discard poor areas of the map, choosing

to focus on regions they deemed preferable.

The participants that did not closely resemble RPDM followed more rational, analytical

methods of decision making. These methods aim to optimize, rather than satisfy, by deter-

mining the best possible solution for a decision making event. Both RPDM and rational

decision making features are represented in the models. However, as this model was de-

signed as a cognitive process model, rather than a primitive model or cognitive architecture,

algorithms for low-level functions such as perception and memory are not included. Rather,

appropriate assumptions are made regarding these functions. All information regarding

the task is assumed to be contained within working memory, with training elements drawn

from long-term memory. Information from the display is pulled into short-term and working

memory. The cognitive process model assumes the dominating source of perception is the

visual channel, with the auditory and tactile channels not modeled. The cognitive process

model is assumed to correctly sense, identify, and judge that the task is off-nominal.

The inputs to the cognitive process model were the landing site location (latitude and

longitudinal coordinates), a flag indicating whether the scenario was nominal or off-nominal,
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and the function allocation. The main outputs were the chosen landing site (latitudinal

and longitudinal coordinates) and the time to complete, in seconds. Secondary outputs

were internal factors that influenced the decision, such as the number and which decision

making cues were used, the relative weighting of these cues, and the search method. Figure

33 presents an overview of the entire cognitive process model, including a summary of

assumptions, theories, and empirical data usage.

5.1 Modeling the Reference Automation (Robotic)

Modeling a fully robotic automation system does not involve modeling human behavior.

Subsequently, the model does not require human in the loop experimentation, unlike the

other two cognitive process models proposed in this thesis. As described in Chapter 3, the

landing point designation task can be broken down into five fundamental tasks: sensing,

interpreting, creating, evaluating, and executing. In this function allocation, the automated

system is handling all tasks.

The vehicle is based on a representative lunar lander as described by Davis et al. [65].

This lander, as seen in Figure 34 is derived from Apollo designs, bearing four legs and a

central main engine used for both descent and ascent. The main engine is pump fed, oxygen-

hydrogen propulsion and is assumed to be fixed and aligned with vehicle x axis. This engine

has a maximum thrust of 357,081 N and a specific impulse of 440s. Sixteen reaction control

system thrusters are located 2.6m below the top most part of the vehicle. The vehicle is

approximately 10.5 m tall, a vehicle radius of 6.6m, four circular lander pads with radius

0.8m, for a total vehicle displacement approximated as a circle of 14.8m diameter.

The lander is equipped with an altimeter, velocimeter, and a LIDAR system to perform

both terrain relative navigation and hazard detection and avoidance (HDA). For HDA,

the LIDAR sensor is assumed to scan the terrain once, with the data feeding back to an

autonomous flight manager for landing site selection.

Step 1: Sensing

In this step, the automated landing system uses the onboard sensors to determine the vehicle
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Figure 34: Reference lunar landing vehicle. Reprinted from Davis et al. [65]
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state and the terrain characteristics of the expected landing area. At the end of the pitch

up maneuver, the vehicle begins a 3-D Flash LIDAR scan of the terrain, in a 0.18 km ×

0.18 km area, at a resolution of 0.2 m/pixels. There is also a star tracker, Doppler LIDAR

velocimeter, an altimeter, and an inertial measurement unit (IMU) to provide information

regarding the vehicle velocity, position, and orientation [95].

Step 2: Interpreting

The results of the LIDAR sensor scan are then processed to determine whether any terrain

safety thresholds are violated. The terrain is marked hazardous if there are rocks and

craters equal to or greater than 30 cm. Hazardous terrain also includes slopes greater than

10 degrees, as the lander will tip over [95].

Step 3: Creating

Following interpretation of the data, the automated landing system calculates cost maps

based on proximity to the points of interest (centerpoint for this scenario), hazards, and

change in velocity (i.e., fuel) costs based on the design of Cohanim and Collins [96], .

Given a set of criteria weightings and a “spread” value (proximity of candidate sites to each

other), a set of landing site options are generated from the weighted sum of all the cost

maps. Candidate sites are ranked based on their cost map score, with the global optimum

denoted with 1.

Step 4: Evaluating

In this step, the automated landing system always selects the top landing site.

Step 5: Execution

Lastly, the vehicle follows guidance laws based on the work of Fill [97]. The guidance

algorithms used to control the vehicle during landing point designation attempt to fly the

vehicle on a nominal trajectory to the start of the terminal descent phase, or strictly vertical

descent. If the divert is completed within the area of the sensor scan, the vehicle does
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not deviate substantially from the nominal path. There are two guidance laws - one for

the lateral channel (crossrange and downrange) and one for the vertical channel (altitute

descent rate). The lateral channel is governed by a bi-linear tangent steering law, in the

form of a quadratic function to control of final position, velocity, and attitude (Equation 5,

replicated from [97]. The coefficients of this function satisfy the boundary conditions.

ac = Pn(t) + Pd(t) = c0 + c1t+ c2t
2 + . . . cnt

n

Pn(t) = Cn,0 + Cn,nt
n

Pd(t) = Cd,0 + cd,1t+ cd,2t
2

(5)

Pn is the desired polynomial form on the nominal trajectory and Pd is the desired form

on the divert. Pn is known prior to flight, but Pd must be solved for in real-time. The

guidance law takes position and velocity targets (listed in Chapter 2) using Equation 6.

∆
→
rc =

→
rT −(

→
r +

→
v ·tgo)

∆
→
vc =

→
vT −

→
v

(6)

where r, rT are the current and targeted position; v and vT are the current and targeted

velocity; and tgo is the time to end of subphase. Fill describes the full derivation of the

lateral channel in his paper [97]. The vertical channel control law is given by Equation 7

and is a proportional-derivative controller that maintains a desired descent rate.

ax = ad +Gp(vx − vd) (7)

where vd is the desired descent rate, ad is the descent acceleration.

5.2 Modeling Decision Making within a Moderate Function Allocation

The moderate function allocation case in this thesis distributes the tasks of sensing and se-

lecting to a joint human-automation team as seen in Chapter 3, Table 10. Fully automated

tasks such as Executing are described in Section 5.1. A cognitive process model of human
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interaction with the automation was developed from the debriefing and experimental ob-

servations of participants. This section explains the algorithms and methods used to codify

these actions and the validation process. Figure 35 illustrates the entire process.

Step 1: Sensing

Sensing consists of gathering information regarding the scenario and the environment. At

this function allocation, the astronaut has several major sources of information: the pho-

tograph of the expected landing area (presented before and during each run), the views

from the window, the results of the LIDAR scan, and the automation’s suggested sites. As

almost no participants actively factored in the window view into their decision making, this

action was not included in the cognitive process model. The photograph of the expected

landing area is included into the cognitive process model as an 8-bit grayscale image. The

results of the LIDAR scan, especially in the off-nominal case, were not accepted literally by

the participant. This information was used to develop a representation of the perceived haz-

ards by astronauts. In some instances, astronauts were able to see past the LIDAR overlay

and recognize that the LIDAR sensor had falsely identified a region to be hazardous. The

perceived hazard visual is inputted to the cognitive process model as a matrix of binary

values, with 1 representing a hazard and 0 as no hazard.

Step 2: Interpreting

Interpreting is the step following sensing and involves making a judgment, or an assessment,

regarding the collected data. Generally, this judgment is simplified to two responses: ac-

ceptable and unacceptable or on a linear utility function. The collected data is often judged

by the same criteria used for the actual decision making, or evaluating. In the case of LPD,

the collected data is interpreted with respect to the candidate landing site (provided by

automation or generated by the participant). There are ten attributes modeled, based on

feedback from participants in the experiment: automation rank, away from craters, expecta-

tions of the expected landing site, projected fuel consumption, located near point of interest

(POI), lowest hazard density, not in complete darkness, and uniform shading. Section 4
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defines each of these attributes in greater detail. This section focuses on the codification of

these cognitive assessments for the cognitive process model. For clarification, two terms are

defined within the codification of the cognitive process model. Much of the information re-

garding the landing area was captured by matrices: row and column indexes corresponded

to coordinates within the landing area (each unit representing 0.2m), and matrix values

contained relevant information (e.g., distance of cell from another point; whether a hazard

or not, etc). Therefore, a cell, i, refers to an individual entry in a matrix whereas a landing

site refers to the area that is equivalent to a circle of a diameter 74 pixels.

Cue 1: Automation Rank

Participants using the moderate function allocation reported being influenced by the au-

tomation ranking of the landing sites. To score the three sites, the cognitive process model

assigns inversely according to the suggested rank. That is, the top ranked site receives a

score of 0, the middle ranked site receives a score 0.5, and the third ranked site receives a

score of 1.

Cue 2: Away from Hazards

Participants reported searching for sites that were away from hazards, or large craters.

When asked for additional clarification, participants defined a large crater as a crater that

is approximately 0.25D of the landing site diameter. A suitable distance from a large crater,

Rbuffer, was defined as either one landing site diameter, or 1D away from the large crater,

or none at all. Participants who reported using no buffer believed that the automated

landing system was accurate and would not deviate beyond the landing site diameter. In

the cognitive process model, both buffer distances were implemented, with a probability of

P (no buffer) = ‘0.5 defining the frequency of using no buffer. To simulate the cognitive

action of identifying a large crater, measuring the distance, and grading its acceptability,

two additional graphics were developed to represent a human’s sensing and interpretation of

the terrain. The first graphic is an overlay that identifies large craters. This graphic is the

same size as the map of the expected landing area and consists of two colors: a base color
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to represent “no hazard” and a secondary color to mark “large crater/hazard”. Any crater

larger than or equal to 0.25D (19 pixels) is highlighted in the secondary color. The second

graphic consists of points marking the edges of these large craters. The distance away from

hazards is determined by calculating the distance between each of these points identifying

the edge of a hazard and the candidate site. The minimum distance is considered the site’s

closest proximity to a hazard. The scoring for away from hazards is listed in Equation 8:

Saway =


Rbuffer−min(Ri,j→Hazard)

Rbuffer
min(Ri,j→Hazard) ≤ Rbuffer

1 min(Ri,j→Hazard) > Rbuffer

(8)

Future work may consider using a edge detection algorithm such as Hough transforms

[98] to eliminate the additional step of self-identifying the large hazards.

Cue 3: Expectations

Calculating a score for each maps on the criterion of expectations requires experimental

data. Several participants used the photograph of the expected landing area to develop

mental models of where “good” areas and “bad” areas prior to the results of the LIDAR

scan. Participants who performed this exercises were asked to identify on a map, where these

good and bad areas were. These maps, as seen in Figures 16a, 16b, 16c, 16d, were processed

into the cognitive process model. An identically sized matrix contained one of three values

to indicate these responses, corresponding to the composite expectations graphic. Good

areas were marked with a score of 0; neutral areas were marked with 0.5; and bad areas

were marked with 1.

Cue 4: Fuel consumption

Participants reported using projected fuel consumption as a decision making criterion, but

more as an approximation rather than the specific numerical value. No participant indi-

cated using the digital readout of remaining kilograms of fuel. Rather, they approximated

the fuel capacity based on the elliptical fuel ring overlay presented during the experiment.
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To simulate this behavior, two response surface equations (RSEs) were developed to ap-

proximate the fuel required to land at a specific location relative to the center of the map.

These equations are a function of time to complete (for the cognitive process model, this

value is kept constant at 0 for each run, since it was reported that participants evaluate

fuel consumption by location only, not including the temporal factor) and the x- and y-

deviation from the center of the map. The RSEs were generated using experimental data,

and diversions of 100-150m at 90 degree intervals at 20 second time steps. Forty-three

data points were used for the baseline trajectory and 39 points in the shallow trajectory.

The discrepancy is due to the 30 second increase in time in the baseline trajectory. The

maximum fuel consumption possible for the baseline and shallow trajectories was 702 kg

and 454 kg, and the minimums at 659.90 kg and 375.69 kg, respectively. To approximate a

score for fuel consumption, the fuel consumption for each candidate cell was first calculated

using Equation 9 and then scored based on 10.

mfuel =

 659.90 + 1.16(t = 0s) + 0.03x+ 0.00y if trajectory is baseline

375.69 + 4.21(t = 0s) + 0.05x+ 0.01y if trajectory is shallow
(9)

Sfuel =

 |mfuel − 659.90| /702 if trajectory is baseline

|mfuel − 375.69| /454 if trajectory is shallow
(10)

Cue 5: Located Near POI

The proximity to the POI - always the center of the map - is calculated by the distance

from the center to the candidate cell. Cells located closer to the center score better than

those farther away. The farthest cell possible from the point of interest is 450
√

2 m, or in

the corner of the map. No other information is required to calculate this measure, so long

the POI is well defined. Equation 11 gives the score for this criterion.

SPOI = (450
√

2−Ri,j→POI)/450
√

2 (11)
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Cue 6: Lowest Hazard Density

This criterion is difficult to measure as it involves determining the population of hazardous

regions around an ill-defined area around a specific landing site or potential candidate sites.

For the cognitive process model, a basic approximation was used. Lowest hazard density

requires identification of the hazards, as presented to the participants. From this data, the

hazard density of each candidate cell is calculated by the number of surrounding cells that

are identified as hazards.

1H
∼= 1 if hazard, 0 if not hazard

Sdensity = (1H(i− 1, j − 1) + 1H(i− 1, j) + 1H(i− 1, j + 1)+

1H(i, j − 1) + 1H(i, j + 1) + 1H(i+ 1, j − 1)+

1H(i+ 1, j) + 1H(i+ 1, j + 1))/8

(12)

Future work may consider determining the specific definition of hazard density consid-

ered by astronauts.

Cue 7: Not in Complete Darkness

This criterion is calculated with information only from the photograph of the expected

landing area. This photograph, in black and white, converts to a 256 grayscale image,

where low values correspond to the darker ranges. This range is representative of the

intensity of a pixel. Candidate cells that contain 13.6% (36) intensity or less receive the

worst scores. Intensities greater than this value receive a score based on Equation 13. This

threshold was chosen based on empirical observations of participants’ definition of darkness.

Sdarkness =

 1− Ci,j−36
256−36 if Ci,j > 36

1 if Ci,j ≤ 36
(13)

Cue 8: No Hazards Within Landing Area

Calculating the percentage of hazards within a landing area required consideration of the

actual area of each potential candidate site, rather than individual cells. Each landing site is
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a circular region with a diameter corresponding to 74 pixels. As most calculations were done

via matrices, an approximation of a square region 74 pixels wide was used. This landing site

area was adjusted for candidate sites on the edges of the map. The hazard map presented to

the participants was used to calculate the percentage of the landing site marked hazardous,

as an approximation for hazards within landing area. The specific geometry of the hazards

within the landing area was not considered. Equation 14 was used for scoring.

Shazards in landing area =

∑
A(1H = 1)

42
(14)

Cue 9: Uniform Shading

This criterion is also dependent on the values ocntained within a landing area. A square

region 74 pixels wide was used as an approximation for each cell calculation, with allowances

made for cells located near the edges of the map. The photograph of the expected landing

area is the only source of information for scoring the uniformity of the landing site. Uniform

shading is approximated based on the number of pixels within the landing area that fall

within ten percent of the average greyscale intensity. This threshold was approximated

based on observations of participants during the experiment. Equation 15 describes the

scoring relationship, where CA is the intensity of the cells Ci,j that are contained with in

the landing area, A, and Ca is the subset of cells that are within 10% of the mean value.

µCA
=

∑
A Ci,j

‖CA‖

Ca ∈ [0.9µCA
, 1.1µCA

]

Suniformity = ‖Ca|‖ / ‖CA‖

(15)

Step 3: Creating

Creating is the generation of decision options that are later evaluated. As the moderate au-

tomation system creates three landing sites for the participant to choose from, the cognitive

process model does not create decision options.
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Step 4: Selecting

Participants using the moderate function allocation selected one of the three landing site

options using a variable number of decision making cues and types of cues. They also

performed one of two searching strategies, reranking or eliminating. Each method requires

one round of evaluation. The cognitive process model randomly selects how many and

which cues are used for each decision making process.

The number of cues used was randomly chosen for each moderate run using roulette

wheel selection [99], with values proportioned based on Table 23 and Table 24. The relative

importance of the cues is randomly selected, within the guidelines derived from selection

patterns observed during the experiment (defined in Section 4.1.2). The relative importance

is represented in the cognitive process model as a numerical weighting. Various combinations

of weightings can be determined based on the number of cues selected. As the relationship

between each cue can take only two values, a total number of combinations of weights

per number of cues can be calculated. Table 18 illustrates the combination of weighting

combinations per cue and an example of a numerical weighting scheme.

Table 18: Relative importance combinations per number of cues used.

Number of... Example of...
Cues Combinations Relationship Numerical Weighting

1 20 = 1 C1 1
2 21 = 2 C1 > C2 (1/3, 2/3)
3 22 = 4 C1 > C2 = C3 (2/4, 1/4, 1/4)
4 23 = 8 C1 > C2 > C3 = C4 (3/7, 2/7, 1/7, 1/7)
5 24 = 16 C1 = C2 > C3 > C4 = C5 (3/10, 3/10, 2/10, 1/10, 1/10)

A generalized equation for calculating numerical weightings is presented in Equation 16.

One solves for xL, the lowest weighting fraction assigned to the least important cue. The

number of importance rankings can be defined as w (where 1 denotes the least important

and w is the most important) and the number of cues N , and i the index of a specific

cue. For example, the five cue relationship presented in Table 18 can be represented as

1 = 3xL + 3xL + 2xL + xL + xL, where w is equal to 3, N is equal to 5, there are two

cues that are considered least important (C4, C5), two that are most important (C1, C2),
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and one that is of average importance (C3). The value for x is equal to 1/10.

N =
∑
i

1 =
∑Ci∈w=1

j j(w = 1)xL +
∑Ci∈w=2

j j(w = 2)xL + · · ·+
∑Ci∈w

j jwxL

(16)

As described in Table 15, participants were observed to use some cues more often than

others. Table 19 shows the distribution of number of cues used. The search method also

influenced which cues were used. Table 20 shows the distribution of participants who used

each cue. The user count reflects those who used that particular cue for that type of search

method. For this model, the search method was randomly chosen based on an observed

probability of 50% of astronauts using the Eliminating method, P (Eliminating) = 0.5.

Table 19: Distribution of number of cues used with moderate function allocation.
These values are from experiment observations.

Number of Cues
Scenario One Two Three Four Five

Baseline, Nominal 0 users 3 1 2 1
Shallow, Nominal 0 2 2 2 1

Baseline, LIDAR warning 0 1 1 4 1
Shallow, LIDAR warning 0 0 3 3 1

Table 20: Distribution of which cues used with Moderate-like function allocation.
These values are from experiment observations.

Nominal LIDAR
Baseline Shallow Baseline Shallow

Automation Rank 1 user 1 1 1
Away from Craters 5 5 7 7

Expectations 2 1 1 1
Fuel Consumption 0 0 0 0
Located near POI 2 2 2 2
Located Upper 2/3 0 0 0 0

Lowest Hazard Density 1 2 2 2
No Hazards within Landing Area 7 7 5 6

Not in Complete Darkness 1 1 3 2
Uniform Shading 4 4 6 6

The participants were observed, during the experiment, to clearly evaluate good and

bad regions. However, participants did not differentiate, like other humans, below a certain
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Figure 36: Examples of sites within the equality threshold. This equality threshold
is based on observations of participants.

level of similarity. To model this rough equality between similar sites, the computational

cognitive process model uses an equality threshold. The equality threshold is the numerical

value of the cost score below astronauts did not differentiate between two sites. This value

is about 0.1 and derived from observations of participants’ chosen and considered candidate

sites. Figure 36 illustrates some example sites that fall within this equality threshold.

The reranking search method is represented in the cognitive process model with a cost

map. This cost map is a matrix of values from 0 (best) to 1 (worst) and is weighted

score of each criterion and its respective weighting. The average score of the three landing

sites are compared and checked for equality, i.e., having a cost score within 0.1. A site

is randomly selected from those deemed to be equally good. However, the eliminating

search method is less focused on score and more on eliminating an obviously poor site or

selecting an obviously good site. The sites were compared based on the decision criteria

used by the participant. The evaluation of each criterion follows the same schema, with

slightly modifications accounting for the criterion type. A minimum, maximum, and median

score is calculated between the three sites for a given criteria. The differences between the
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minimum, maximum and median are calculated. If the median is closer to the minimum or

maximum (defined as within the same quartile), then the incongruous site receives a score

gain (0) or a score penalty (1). The gain or penalty is dependent on the objective function

of that particular criterion. However, if the median resides in neither quartile, then no gains

or penalties are imparted (each site receives a score of 0.5). This schema is used for each of

the ten criteria.

Eliminating Cue 1: Automation Rank

As defined previously, points on the 0, 0.5, 1 scale were previously assigned to each of the

sites. No further manipulation is necessary.

Eliminating Cue 2: Away from craters

The best site is the site with the largest buffer. The elimination schema is only used if the

buffer range is greater than 10 pixels, or 2 meters. Otherwise, the buffers are indistinguish-

able.

Eliminating Cue 3: Expectations

The expectations map is input to the cognitive process model as an 8-bit grayscale image.

The intensity within each landing site is averaged. If the average intensity is between 76

and 93 intensity (on a 256 scale), then the site is declared in a bad region. If the average

intensity is between 109 and 154, then the site is declared in a good region. Other intensity

values are considered located in neutral regions. The elimination schema is modified to

account for the three possible values (good, bad, neutral) that each site can take. The full

set of combinations is presented in Table 21

Eliminating Cue 4: Fuel consumption

The best site is the site with the minimum amount of fuel consumed.

Eliminating Cue 5: Located near POI
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Table 21: Scoring Heuristics for Astronauts’ Mental Model of the Expected Land-
ing Area.

# of sites
Good Bad Neutral Scoring Outcome

1 2 good site receives score gain (0)

2 1
bad site receives score penalty (1)

1 2

2 1 neutral sites receive the penalty, the good site receives the gain.

1 1 1 good site receives gain, the bad site receives the penalty.

1 2 the bad sites receive the penalty, the good site receives
the gain.

2 1 the neutral site receives the gain, the bad sites receive the
penalty.

The best site is the site closest to the center. The elimination schema is only used if the

range is greater than 300 pixels, or 60 m, otherwise the distances are indistinguishable.

Eliminating Cue 6: Lowest hazard density

The best site is the site with the lowest hazard density. The elimination schema is only

used if the range is greater than 0.01, otherwise the densities are indistinguishable.

Eliminating Cue 7: No hazards within landing area

The best site is the site with the least number of hazards within the landing area. The

elimination schema is only used if the range is greater than 1%, otherwise the percentages

are indistinguishable.

Eliminating Cue 8: Not in complete darkness

The best site is the site that is the lightest. The elimination schema is only used if the

intensity difference is greater than 10. If only one site is considered dark, the other two

sites receive score gains and the dark site receives a penalty.

Eliminating Cue 9: Uniform shading

The best site is the site with the most uniform shading. The elimination schema is only used
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Table 22: Distributions used to estimate time to complete for moderate function
allocation users.

Scenario Distribution

Eliminating search method, baseline trajectory N (22.79, 18.55)
Eliminating search, shallow trajectory N (18.91, 7.23)
Reranking search, baseline trajectory N (36.60, 14.43)
Reranking search, shallow trajectory N (22.36, 5.00)

if the intensity difference is greater than 10, otherwise the intensities are indistinguishable.

After evaluating all of the sites, a weighted sum is calculated and the best scoring site

is selected. If there is a tie, the cognitive process model uses the relative importance of the

criterion as a tiebreaker. The site that individually scores higher for the most important

criterion is selected. If a tie still exists after all criteria have been re-examined, a site is

randomly chosen.

Step 5: Executing

The role of the automation within the moderate function allocation is to command the

vehicle. The astronaut does not actually fly the vehicle to the intended site, rather, he gives

the automation the location of the intended site. Subsequently, the fundamental task of

executing is identical to the procedure explained in Section 5.1.

5.2.1 Timing

The cognitive process model was also designed to provide an approximation of the time to

complete the LPD task. As described in Section 4.1.2, both the search method and the

trajectory profile had a significant impact on the time to complete. The number of decision

making cues or the specific types of decision making clues did not have a significant impact

on time to complete. These guidelines were built into the cognitive process model. The time

to complete the LPD task was approximated as a normal distribution. The relationships

are described in Table 22.

It is worth noting that a few participants reported working faster during the LIDAR
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sensor warning scenario, but they actually took the same amount of time. Since there

was no correlation between the time to complete between both scenarios, this cue was not

included in the cognitive process model. The participants likely felt an increase in time

pressure due to the urgency of the scenario, but their behavior did not significantly change.

5.3 Modeling Astronaut Decision Making within an Apollo-like Func-
tion Allocation

Modeling human-automation function allocation when the human is engaged in several

fundamental tasks is more difficult as the thought process is not easily observable. As a

reminder in this thesis, the Apollo-like function allocation includes the human in all tasks

except execution, or piloting the landing vehicle to the designated site.

Fully automated tasks such as Executing are described in Section 5.1. A cognitive

process model of human interaction within the Apollo-like function allocation was developed

from the debriefing and experimental observations of participants. This section explains the

algorithms and methods used to codify these five fundamental actions and the validation

process. Figure 37 illustrates the entire process.

Step 1: Sensing

At this function allocation, the astronaut receives the same data as the moderate function

allocation described in Section 5.2, except for the automation suggested sites. There is data

on the vehicle position, velocity, orientation, and results from the LIDAR scan.

Step 2: Interpreting

Since the automation within the Apollo-like function allocation does not suggest landing

sites, the computational cognitive process model must determine good landing sites as well

as choose between them. Experiment results highlighted an additional cue that emerged

from use of the Apollo-like automation: preference for sites that are located in the upper

two-thirds of the map, due to an obscuration from the landing vehicle.

Cue 10: Located in the upper two-thirds of the map
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Scoring for this cue is calculated by the y position. If the y position of the candidate cell

is located in the upper two-third of the map, then that cell receives a 0 score. Otherwise,

all cells in the bottom third of the map receive a score of 1. This scoring algorithm can

be defined, with respect to distances relative to the POI, as in Equation 17. No other

information is required to calculate this measure.

Supper 2/3 =

 0 if y ≤ -1/6 m from center

1 if y ¡ -1/6 m from center
(17)

Step 3: Creating

Participants using the Apollo-like automation used either the areal or local search methods

to explore the map in order to create landing site options. The areal search method, as

described in Section 4, is a two step searching mechanism that decomposes the landing area

into smaller sites of interest. First, the astronaut focuses on good regions of the map -

regions that score favorably on the list of criteria used in this round. Second, the astronaut

selects a landing site from one of the good regions. The local search method is similar to

the areal search method but is limited to one cost map, as only the low-level round is used.

Astronauts used decision making cues in order to create one or more landing site options and

the combinations of these cues differed based on the scenario type (nominal/off-nominal,

baseline/shallow trajectory). The number of cues used to create and evaluate options also

varied by participant and by landing scenario. To determine the number and which types of

cues are used, the cognitive process model uses the same roulette wheel selection process as

defined in Section 5.2. As described in Table 15 in Chapter 4.1.2, participants were observed

to use some cues more often than others. Table 23 shows the distribution of number of cues

used. It is clear that in each nominal scenario that most participants used three or more

cues. This distribution is also used in determining the number of cues used in the low-level

round of the areal search method. The cue selection process occurs in both the creating

and evaluating subtasks, but are introduced in this section for ease of comprehension. The

search method also influenced which cues were used. Table 24 shows the distribution of
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participants who used each cue. The user count reflects those who used that particular cue

for that type of search method. The cues used by local searchers and during the first, or

regional round, of the areal search method are included under the 1st column; the second,

or site round, cues used by the areal searchers are listed under the 2nd The search method

was randomly chosen based on an observed probability of 50% of astronauts using the areal

method, P (areal) = 0.5.

Table 23: Distribution of number of cues used with Apollo-like function alloca-
tion. These values are from experiment observations.

Number of Cues
Scenario One Two Three Four Five

Baseline, Nominal 1 0 4 1 0
Shallow, Nominal 1 0 4 0 1

Baseline, LIDAR warning 1 1 2 1 1
Shallow, LIDAR warning 1 1 3 0 1

Table 24: Distribution of which cues used with Apollo-like function allocation.
These values are from experiment observations.

Nominal LIDAR
Baseline Shallow Baseline Shallow
1st 2nd 1st 2nd 1st 2nd 1st 2nd

Automation Rank 0 users 0 0 0 0 0 0 0
Away from Craters 0 1 1 2 1 2 1 1

Expectations 3 2 3 1 3 1 2 1
Fuel Consumption 0 0 1 1 1 1 1 0
Located near POI 2 1 2 1 1 0 1 0
Located Upper 2/3 1 0 1 0 1 0 1 0

Lowest Hazard Density 3 3 3 3 3 3 3 3
No Hazards within Landing Area 3 2 4 2 3 2 3 1

Not in Complete Darkness 1 1 1 0 2 0 3 0
Uniform Shading 2 2 2 1 3 2 3 3

5.3.1 Areal Search method

The cognitive process model mimics the cognitive process of a person using the areal search

method by creating two cost maps, each representing the priorities of the astronaut during

the high- and low-level rounds. Each cost map is a matrix of values from 0 (best) to 1

(worst) and is weighted score of each criterion and its respective weighting. The cognitive
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(a) Map presented to
participant.

(b) Results of areal, re-
gional search.

(c) Results of areal, site
search.

(d) Anchoring.

Figure 38: Visualization of the areal search method. These images visually represent
intermediate steps within the cognitive process model. Fig. 38b is an example of the results
of the areal, regional search. The red points represent the good regions based on the a
set of decision making criteria. Fig. 38c illustrates the cost map based on the site search
criteria, blue representing the best areas. This figure strongly resembles Fig. 38b, but several
candidate sites have been eliminated as evidenced by the increased perforation in the same
space. In cases where there are multiple good sites (outlined in blue), an anchoring bias can
be factored in, as seen in Figure 38d. The backdrop is from Fig. 38c and the green represents
the expected good areas identified by participants. If the anchoring bias is employed, the
site closest to the expected good area is chosen as the cognitive process model’s landing
site.

process model begins searching for good regions by collecting all cells within an equality

threshold 1 of the best score on the cost map. Areas with the highest densities of “good”

cells are selected for further evaluation. This area selection process is approximated by

dividing the cost map into thirty-six equal pie sections and claiming the sections containing

the majority of these good cells. The selection of a landing site is limited to these areas

culled from the first round, or high-level search. This process is illustrated in Figure 38.

In the second round, the cognitive process model uses the cost map generated from

the cues and relative importance of the low-level search. The corresponding scores of the

candidate cells from the previous round are collected from this second cost map. The scores

of all the neighboring cells consisting of the landing area are averaged for a landing site

score. An averaged score is used rather than the score of the candidate cell to accurately

reflect the site scoring completed by participants. Sites not completely contained within

the map or are more than 20% over a large crater are discarded. The participants reported

avoiding the edges of the LIDAR scan as the information is incomplete. The crater overlap

1Definition provided in Section 5.2.
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threshold was determined based on experimental data. The final sites are ranked in order

of best score (lowest to highest). Candidate sites created during this process are defined

as sites within the equality threshold of the top scoring site. These sites are saved for final

evaluation.

5.3.2 Local Search Method

The cognitive process model collects all cells within an equality threshold of the best score

on the cost map. Once the obvious violators have been discarded (too close to edge of

LIDAR scan, overlapping with craters), this list of final candidates is ranked in order of

best score. Candidate sites falling within the equality threshold of the top scoring site are

saved for final evaluation.

Step 4: Selecting

The decision making process, regardless of the type or theory used, generally involves some

form of evaluation. The evaluation process, as observed by the researchers, seemed to

occur in one of two ways. The astronauts often chose one of the acceptable sites generated

through the creating process (with the possibility of additional, minute refinements) or

they tended to select acceptable sites that were near expected good regions, determined

prior to the run. This second phenomenon is known as anchoring, defined by Tversky

and Kahnemann as “[estimations made by people] by starting from an initial value that

is adjusted to yield the final answer” [100]. Figure 38d illustrates this anchoring process.

However, anchoring was not observed universally with all participants. The probability

of anchoring, or P (anchoring) was determined to be 4/6. This number reflects the four

participants who reported setting expectations prior to the run.

If anchoring is in use, the cognitive process model performs additional steps during

evaluation. First, the closest distance between all of the candidate sites and the good areas

of the expectations map is calculated. Second, the closest distance is selected as the final

landing spot. If multiple sites are within the same proximity (e.g., many sites tend to be

within the good area), then a final site is randomly selected. If anchoring is not in use, then
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Table 25: Distributions used to estimate time to complete for Apollo-like au-
tomation users.

Scenario Distribution

Areal search, baseline trajectory N (47.13, 9.89)
Areal search, shallow trajectory N (27.70, 5.22)
Local search, baseline trajectory N (29.68, 24.33)
Local search, shallow trajectory N (23.58, 7.51)

the cognitive process model randomly chooses between all of the candidate sites created in

the previous step. The cognitive process model randomly chooses between these sites.

Step 5: Executing

The role of the automation system within the Apollo-like function allocation is to execute

the vehicle. The astronaut does not actually fly the vehicle to the intended site, rather,

he gives the automation the location of the intended site. Subsequently, the fundamental

task of executing is identical to the procedure previously used in the moderate function

allocation.

5.3.3 Timing

The cognitive process model was also designed to provide an approximation of the time

to complete the LPD task. As described in Chapter 4, both the search method and the

trajectory profile had a significant impact on the time to complete. The number of decision

making cues or the specific types of decision making clues did not have a significant impact

on time to complete. These guidelines were built into the cognitive process model. The time

to complete the LPD task was approximated as a normal distribution. The relationships

are described in Table 25.

It is worth noting that a few participants reported working faster during the LIDAR

sensor warning scenario. Since there was no correlation between the time to complete

between both scenarios, this cue was not included in the cognitive process model. The

participants likely felt an increase in time pressure due to the urgency of the scenario, but

their behavior did not significantly change.
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5.4 Validation

Validating a computational model, especially one built from empirical observations, gener-

ally requires a subset of data to test the model accuracy. Or, if a subset is not possible,

statistical methods such as bootstrapping are used to derive statistical parameters from a

very small sample of data. Neither of these methods were feasible for this cognitive pro-

cess model. The cognitive process model of astronaut decision making was derived from 28

data points for the aspect with the moderate function allocation, and 23 data points for

the Apollo-like function allocation. Seven data points for each scenario (two trajectories,

two scenario types) were available for the moderate function allocation, whereas only six

points per scenario were available for the Apollo-like function allocation. With such a small

dataset, it was not possible to reserve a portion of the data for validation, as all data points

were necessary for model generation. Additionally, bootstrapping was not possible as many

aspects of the cognitive process model do not follow known distributions.

This cognitive process model is primarily built from the debriefing sessions with the

participants. The same participants were used to build and validate the model, but the

specific information is different. These debriefing sessions provided qualitative information

regarding the overall strategy, the cue usage and relative weightings. The model was val-

idated on the quantitative results of the experiment, on the sites selected from the same

individuals whose cue usage and preferences provided the input data.

Assuming the cognitive process model selects how many, which cues, which search

method at the same proportionality observed during the experiment and that the time

to complete value is a reasonable approximation based on the timing scores of the partici-

pants, the model should satisfy two other conditions:

1. The cognitive process model should select the same site chosen by each

participant during the experiment. The candidate sites selected by the cognitive

process model during the creating process should match the participant’s chosen site,

when using the same criteria, relative importance, and search method as reported.

2. The cognitive process model, when sampled randomly, should select sites
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physically near those chosen by the other astronauts. The cognitive process

model was run 1000 times and the spread of the selected sites was compared against

the participants’ chosen sites.

Condition 1 was examined by running the cognitive process model with the same cue

combinations, relative importance, and search method as described by the participant.

The cognitive process model could produce three quality levels of results, with respect to

matching the participant’s chosen site. These levels - correct detection, missed detection, or

false alarm - are based on signal detection theory [101]. Correct rejection cannot be defined

within this context as participants were never explicitly asked to reject sites, nor was that the

intended purpose of the cognitive process model. A correct detection is when the cognitive

process model’s selected site is the same site as the participant’s chosen site. That is, the

top scoring site as selected by the cognitive process model is the same as the participant’s

chosen. A missed detection occurs when the cognitive process model’s selected site is not

the same as the participant’s chosen site, but instead, the cognitive process model’s second

ranked site matches. A false alarm occurs when the cognitive process model’s selected and

second ranked sites do not match the participant’s chosen site.

Using these definitions of result quality, each participant’s individual runs were executed.

After each run, the candidate sites were plotted and compared to the participant’s chosen

site. Of the 28 moderate function allocation runs, the cognitive process model produced 27

correct detections, 1 missed detection, and 0 false alarms. The missed detection occurred

during the shallow LIDAR warning scenario.

This same procedure was used to validate the aspect involving the Apollo-like function

allocation, with a few differences. First, twenty-three runs were used to validate Condition

1. These runs were produced using the same decision making criteria as the twenty-three

experimental points used to generate the cognitive process model. Figures 56-59 present

the visualization of all the candidate sites and the participant’s chosen site for each run. Of

these runs, the cognitive process model produced 20 correct detections, 3 missed detections,

and 0 false alarms. All three missed detections occurred during shallow trajectories; two

happened during the nominal trajectory.
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Condition 2 was evaluated by running the model 1000 times. Each run consisted of a

random combination of decision making cues, relative importance, and search method. The

selected sites were plotted with the participants’ corresponding selection. The distribution

of selected sites matches, as seen in Figure 39. The distribution of how many, which cues,

search methods, and time to complete approximations also match (Figures 50, 51, 52).

The cognitive process model also selected sites that were not chosen by the astronauts,

suggesting that under different cue usages and their relative importance, sites may be more

or less viable.

As for the Apollo-like function allocation, the majority of the runs populated by the

cognitive process model matched common regions selected by the astronauts (Figure 40).

The cognitive process model also selected sites in regions not chosen by the astronauts,

suggesting that under different cue usages and their relative importance, other regions may

be more or less viable.

The cognitive process model provides limited predictive capability. Although the types

of cues, relative weightings, and search method are randomly assigned, the cognitive process

model can accept these values as inputs, in addition to the original three. This capability

allows mission designers to predict how these decision cues contribute to the chosen land-

ing site. Information analyses regarding availability or reliability of data are possible, to

examine performance in off-nominal situations (as demonstrated with the LIDAR warning

scenario). Likewise, mission designers can determine the spread of possible landing sites

given a specific landing area.
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Figure 39: Distribution 1,000 of randomly generated landing site decisions in
compared with experiment results. Fargo, Annapolis, Tulsa, and Vegas are nicknames
used in this thesis for the landing sites on the south pole of the Moon.
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Fargo – Baseline, Nominal Annapolis – Shallow, Nominal 

Tulsa – Baseline, LIDAR warning Vegas – Shallow, LIDAR warning 

Figure 40: Distribution of 1,000 randomly generated landing site decisions com-
pared with experiment results.
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CHAPTER VI

SUGGESTED AUTOMATION RESPONSIBILITIES AND CREW

TRAINING OBJECTIVES

Section 3 and Chapter 4 described the design, execution, and analysis of an experiment

intended to examine the impact of function allocation, trajectory, and scenario on human-

automation interaction. During this experiment, the participants were also asked to provide

feedback on the cockpit layout, the display suite, and the type of information available to

the participants. This chapter presents the results of the qualitative analysis and pro-

posed requirements for cockpit design and training. Additionally, a normative model for

automation interaction is presented for future crewed missions. This normative model is

the basis of automation system requirements necessary to support future crewed landing

point designation.

The suggestions and feedback provided by the participants touch on three areas of over-

all cockpit design: information needs, method of representation, cockpit layout. Each of

these three areas are discussed, including associated system requirements within each cat-

egory. Some of the requirements are derived directly from participant feedback; others

are from the observed collective behavior and the results of the cognitive process model

(Section 6.4). In addition to providing feedback in these areas, participants also discussed

the desired function allocation during landing point designation (Table 26). The feedback

from the participants provides perspective on the original task decomposition of Chapter 3,

resulting in an updated task decomposition and function allocation scheme (Section 6.6).

This analysis also draws on literature to support suggested design heuristics. As prescribed

by Chapanis [11], these design requirements are written to effectively incorporate human

factors issues into the design process in the standard language used by all other subsys-

tems designers. These requirements represent the work of just the human factors specialist,
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prior to consultation with other specialists such as cockpit display designers and ergonomi-

cists. Such specialists would use handbooks and regulations such as MIL-STD-1472 [45],

MIL-HDBK-761 [44], and NASA-STD-3001 [41], to mature and detail requirements to the

necessary project. Lastly, observations of participant behavior and biases are compiled to

suggest additional topics for future training programs for landing point designation.

6.1 Information needs

Analysis of the information, display, and cockpit suggestions provided by the participants

reveals a number of design requirements that can be passed to mission design. Section 6.4

contains all of these suggestions. The flow of these requirements follow the structure of this

chapter, with three categories: information needs, method of representation, and cockpit

layout.

Overall, the composite sum of information, from the reference displays found in litera-

ture, presented to the participants during the experiment was sufficient to complete Landing

Point Designation (LPD). However, participants requested additional information to sup-

port this task, improving confidence in the performance of the system and the decision of

the individual. In the experiment, the simulation was stopped after the allotted decision-

making period had expired, with confirmation that the vehicle successfully touched down

at the exact site at each designation. One participant repeatedly commented on the need to

see the vehicle landing pads, “to have a good feel for where things are. Just like a runway,

I want to see the landing zone.” He felt that the task was impossible, or even a “negative”

task, as “I just make a decision and oops, I’m out of it. I almost give up as the operator, I

have no other inputs, you’re not giving me the ability to fix what I think is the most critical

portion of the task, and that’s physically landing on the planet.” He believed that “the most

important aspects [of LPD] are accurately predicting where the vehicle is going to be at”,

and the LIght Detection and Radar (LIDAR) sensor was insufficient, especially as it had a

chance for failure. Another participant agreed with this statement by expressing his belief

that the pilot’s greatest contribution came from placing the lander pads between the rocks

and craters, rather than selecting a generalized landing zone. Requirements 1.2.1, 1.3.1,
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and the respective sub-requirements are derived from this observation. Other participants

also touched upon this theme of LIDAR insufficiency. Several participants wanted multiple

LIDAR scans, to continue getting real-time updates and to correct itself (Req. 1.1). Ad-

ditionally, they requested LIDAR scans of the landing sites itself (the three designated by

the automation, or one designated by the participant, Req. 1.1.1). While participants did

not provide a specific LIDAR scan resolution for the sites themselves, the suggested reso-

lution is based on the lander footprint size. In the experiment, participants defined large

hazards as those within a quarter of the size of the landing footprint diameter. Since the

main reference point during this exercise is the lander pads themselves, it is assumed that a

resolution of one pixel should capture a distance equal to 0.25 of the lander pad diameter.

If additional scans were not possible, then a camera tracking the landing site or a better

look angle through the camera or window was a necessity (Req. 1.2.1). Participants were

observed to be frustrated by the disappearance of the landing site as the vehicle drew closer

to the ground, with one participant actively refusing to select a site in the lower third of

the display, as to avoid losing out on such critical information. A user-controlled gimbaled

camera was suggested, especially if hover capability was provided to the crew, but with the

caveat that controlling the camera angle was another task for the operator.

The participants also commented on wanting control over the types of information pre-

sented. Almost half of the participants asked specifically for a declutter button, to remove

the results of the LIDAR scan, especially if results were poor (Req. 1.1.2). One participant

noted that having to sort through erroneous LIDAR results increased his overall workload:

“I’m trying to declutter [the display information] myself - [this secondary task] became a

distraction... If the LIDAR can sense the issue, give me the warning, don’t give me the

data... It cuts down on my workload”. Several participants also asked for gradient hazard

shading or two levels of hazard identification: “I could potentially get scared away from

this area, because it’s showing a lot of red but if you take a look at the landing zone, well

it doesn’t look all that scary, but it might be seeing stones and all” (Req. 1.1.3). Another

suggestion involved reducing the pilot’s workload by highlighting feasible landing spots in

lieu of hazards (Req. 1.1.4). Similarly, one participant asked that the vehicle mute all
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non-critical alerts during this task, and that “for this, minute and fifteen seconds [duration

of LPD], I’d expect them to run fine on their own. Because I’m busy doing something else...

All of [the other systems] would be ignored for this minute and fifteen seconds. If it couldn’t

be ignored for a minute and fifteen, then it should ring a bell and speak up.” (Req. 1.4.2)

If an alert was given, then it is the participants’ preference to have the warning (auditory

and visual) exist until dismissal (Req. 1.4.1). A high-frequency of alerts contributes to

workload and several participants reported an increased workload in off-nominal events due

to the subsequent assessment of the warning severity (and impact on primary task) and

additional decision making to compensate for the warning.

The display suite used in the experiment elicited several design suggestions. Comments

and results related to the display suite are numbered 1.1-1.42 in Section 6.4. While the

PFD and the LPD displays were used by almost all of the participants, the Overview (OV)

display was only used by one participant. Generally, participants reported that the OV

provided useful, but non-critical information, as the task did not require any piloting. They

also found the representation of the information to be confusing and difficult to monitor.

One participant suggested including the terrain profile with the OV, as to illustrate the

proximity of the vehicle to the terrain (Req. 1.3.1 and sub-requirements). One participant

commented that using the imperial system on the OV display in addition to the metric

system was appropriate for future international missions. All other participants requested

that the information be presented in all the same units, preferably in metric (Req. 1.3.13).

The breadcrumbs and 5-second projection points would be useful for piloting the vehicle

or determining if the system was not functioning normally (Req. 1.3.2.1). Unlike the OV,

the PFD was used more frequently. Eleven of the thirteen participants polled on display

usage reported using at least one element of the PFD. One participant worked solely off the

window and did not use the PFD or the OV. Another participant focused only on the LPD

display and did not use the other two displays. All participants who used the PFD said the

additional camera view provided information critical to landing site decision-making. The

time remaining, altitude, and fuel indicators were also used for situation awareness, but

did not actively factor in the decision-making process. No participants reported trying to
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make a decision by a certain state, such as a fixed altitude, time-to-go, or fuel remaining.

Several astronauts did mention wanting to work faster in shorter scenarios. Conversely,

some participants used the entire time allocated - 45 or 75s - to make their decision. Less

than five participants used the other vehicle state information - pitch, range, and vertical

velocity. As with the OV, the participants noted the utility of the information, but the lack

of piloting responsibility reduced the significance of these values (Req. 1.3.3-1.3.7, 1.3.14).

Only one participant reported actively and successfully using the window for decision

making during LPD. He reported having some initial difficulty correlating all of the images

but soon relied strictly on the window and less on the PFD. The window was useful for

determining the proximity to nearby hazards and confirming the location of the vehicle

with respect to the overall terrain. Other participants attempted to use the window -

and many commented on the need for better imaging in the simulation - but had trouble

with correlating this information to the other displays. The images and screen resolution

presented through the window and the PFD were the same within the experiment. In normal

circumstances, the resolution of each would differ, depending on the vehicle altitude (and

other occluding effects such as shadowing or dust) and the quality of the camera. There

was no particular negative or positive consequence with using or not using the window,

and its inclusion was primarily to survey the window desirability, usage, and for simulation

representation completeness.

The PFD, the LPD, and the window all provided mechanisms for viewing the terrain.

Twelve of the thirteen responses discussed difficulty with correlating all of these perspec-

tives. During debriefing, participants frequently commented on the inability to correlate

these images, often ignoring the window (most frequently occurring), one aspect, or the

entire display suite. As one participant stated, “we will find what’s most important to that

which gives us the best data at the time... If we had a really big screen TV, sitting right

here, with really accurate [information], that would be the most important [source of data],

and you could conclude, oh, they really need that stuff. Or, you could have a cockpit, with

a huge window, and no automation and that would be our primary tool of where we get our

information from. And so you come out of that thing going, wow, they really need a big
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representation of a window, or a presentation from a camera onto a screen, or something

that gives you that.” Participants reported needing this visibility and correlation as to

determine whether the vehicle was landing in the correct area, in addition to determining

the validity of the LIDAR results. One participant requested information aid in alignment,

such as identifying the same crater geometry across all of the displays (Req. 1.3.2, 1.3.8).

Several suggestions were made regarding the use of a Heads-Up Display (HUD) in combina-

tion with the window, either supplementing or replacing the PFD. In general, none of the

participants reported missing any particular piece of vehicle state information within the

bounds of the designated crew role. Several pilots requested more details on the specific

cause of the warning, such as a diagnosis. Should the crew’s role change - such as the

addition of flying the vehicle - more information must be carefully incorporated into the

displays.

6.2 Method of representation

Comments regarding the symbolism and location of information presented on the display

were frequently made throughout the experiment. Requirements 1.3-1.3.14 reflect the find-

ings of this work. In general, participants suggested presenting the information in an in-

tuitive, visual manner that required less interpretation within the context of the scenario.

For example, the consumption of resources such as time, altitude, fuel, vertical speed, and

range should be represented as tapes or gauges (Req. 1.3.6). Both methods visually show

consumption relative to resource availability, thereby eliminating the step of interpreting

the significance of a specific state value. The tape or gauge should also change color if the

vehicle is near or violating a threshold (Req. 1.4.1). To further emphasize the significance

of this state, the cockpit should provide an audible tone (Req. 1.4.2). The LIDAR scan

should be shaded in a similar fashion, with stoplight colors - green, yellow, red - to denote

the quality of the terrain (Req. 1.1.3). Red highlighting represents absolute hazards - the

lander cannot land here under any circumstances. Yellow highlighting represents terrain

that is difficult to land in, perhaps requiring additional orientation or maneuvering to avoid

rocks or smaller craters. Green highlighting denotes terrain that is clear for landing, with
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no additional maneuvering required. In situations of particularly hazardous terrain, the

participants recommended using only the green highlighting. These terrain annotations

generally improve overall situation awareness, as noted by Kramer et al. [102] [103], who

examined the use of enhanced vision or synthetic vision during the lunar landing approach.

Their experiment also featured one-color hazard highlighting, but they did not report a

need for multiple colors.

Participants also suggested retaining two symbols (the vehicle, the point of interest)

through all of the displays - OV, PFD, HUD - to illustrate the position of the vehicle

relative to the intended landing site and to support situation awareness (Req. 1.3.1, 1.3.9).

Maintaining visual momentum [104] should be a key focus of the cockpit designer, and

ensuring that transitions between displays do not significantly impact the cognitive processes

of the cockpit. The intending landing spot should also be identified at all times, whether as

a candidate of three automation suggested sites, or supplied by the participant. The color

of the circle should change with respect to the task status - one color for a designated site,

another base color for under consideration (Req. 1.3.10). To assist with vehicle orientation

and terrain alignment, one participant recommended outlining critical crater patterns on

each display (Req. 1.3.8).

6.3 Cockpit layout

The arrangement of the displays, the windows, and the use of a window, camera, HUD,

or standard displays were frequently critiqued by the participants. Generally, participants

preferred having the PFD in the center, with the LPD display to the side. A few commented

on the ability to complete the LPD task on the PFD alone, without the use of the LPD

display. The primary display should be held at eye level and be perpendicular to the floor

(Req. 1.2.5 and sub-requirement). The window - if employed - should be aligned with the

displays and be placed in front of the pilot, with emphasis on placing the window directly in

front of the pilot. The suggestion was made to angle all of the displays if the window could

not be easily reoriented within the design of the cockpit. One participant also suggested

tilting the pilot to ensure correct orientation of the window with respect to the person:
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“You can tilt me in space, for example, by having me stand one foot on a plate”. Both

participants disliked the side windows, commenting on the inability to see the terrain at

that angle. The arching terrain of the chosen location for the experiment also made one

side window ineffective, as the pilot could not see the horizon from that perspective. Four

participants suggested the use of HUD, to supplement the window visibility. One pilot

asked for a larger window, suggesting that no seats be included in the cockpit design, to

allow for closer viewing through the window.

The preference between windows and cameras was mixed, with several pilots asking

for a dual system. Participants discussed the merits and demerits of both systems. There

were three major arguments made for camera usage: flexibility with placement; visibility

capability; and affordability. First, cameras are flexible as they could be placed anywhere

on the lander and the resulting image would show up on a display to the crew members.

Camera performance is not as tightly dependent on the vehicle’s movement as using a win-

dow. Unusual vantage points can be afforded with cameras. Likewise, multiple camera

systems could be employed to provide stereometric imaging or a wide angle perspective.

All live feeds can be processed and annotated before presenting the information to the

pilot. Camera systems can improve upon their viewing angle by having a gimbal mount.

Instead of statically placing several camera systems to achieve constant visibility, especially

as the vehicle approaches the surface, a singular gimballing camera system can be used.

The gimbals can be set to automatically target and track a specific surface feature, or the

pilot can control the camera itself. While the later option provides a greater degree of

control particularly in off-nominal scenarios, participants in the experiment pointed out

the additional task involved with having to identify and to set the most appropriate cam-

era angle. Second, cameras can extend beyond the normal viewing range of a human and

increase the perception capability. Pilots can receive critical information sooner, thereby

having extra time to process information and decide on the final landing site. Lastly, cam-

era systems are reasonably affordable [105, 106] and are commonly in extreme conditions,

including surveillance, medicinal, and search and rescue [107, 108, 109]. However, there

are disadvantages associated with cameras: adaptation to the space environment, failure
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rate, depth imaging. The use of electronic sensors in space requires radiation and thermal

shielding, which can be costly in terms of money and mass. Additional costs may arise

from employing high-resolution cameras. Like all electrical systems, there is always the risk

for equipment failure. While ground and flight testing can minimize and improve the risk

for camera failure, the possibility still exists. Designers must plan for likely failure rates

and provide methods to compensate for partial or full failure. The last argument against

sole dependency on a camera system is the ability of the camera to replace the human eye.

As all casual camera users have experienced, the image perceived by the camera can be

skewed or lack depth. The perceptibility of the lunar terrain is sensitive to lighting condi-

tions. Naturally occurring lighting angles are capable of minimizing or eliminating depth

perception of the terrain. Camera systems have the potential to misrepresent terrain data.

The use of a window has been a topic of interest since the Apollo mission [55] [54] due

to the glass density. Early designs promoted large windows, but were quickly reduced to

save weight. The focus was on window design efficiency - maximum operator performance

for minimum mass and volume - rather than the modern debate of window usage. The

improvements in camera technology have countered the continued reliance on windows for

anything but backup systems. However, the participants believed that the window has three

performance advantages: Negligible risk for hardware failure; affordability; accurate visual

representation. Windows provide negligible risk for hardware failure, as they require no

power. They may not be as effective if they are obscured or manipulated in some fashion,

such as thermal or mechanical stresses, impacts from micrometeoroids, dust occlusion [110,

111]. A cracked or broken window poses the same hazards as a breach in the vehicle’s outer

hull. Likewise, because windows are not a digital system, they require chemical coatings

to protect from thermal and radiative elements as compared to multiple high-resolution

camera systems each requiring physical shields and performance benchmarking. Lastly,

a window provides depth imaging, as only a few centimeters of glass stands between the

human and the terrain. While terrain sensitivity to lighting is a problem that plagues

depth perception when humans view out the window, generally depth perception is more

readily achievable with human eyes. Despite these advantages, windows have three major
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shortcomings: required mass, subsystem dependency, performance limitations. Windows,

regardless of the material used, are dense and the achievable visibility is proportional to the

volume. Larger mass requires more fuel to move the system, leading to reduced payload

capability and increase in mission costs. Additionally, the use of windows and the size of

such window creates a substantial subsystem dependency. A large window impacts the size

and structural composition of the lander, from fuel tank sizing to vehicle asymmetry to

account for such a large center of gravity offset. The vehicle trajectory must be designed

to account for landing site visibility, possibly resulting in non-optimal fuel consumption

movements. This particular argument was strongly debated during the Apollo mission, as

the window was the only source of landing site hazard detection and avoidance imaging [48].

Lastly, windows cannot substantially improve upon the resolution capacity of the human

eye without additional strain. Subsequently, data flow is limited to the ability of the human

eye to see and interpret the perceived image.

Using a basic relationship regarding visual acuity and spatial resolution, one can de-

termine an initial approximation for the savings in time provided by the LIDAR sensor,

a camera system, and a human looking through the window. Visual acuity is measured

as the distance required for the eye to perceive an object of 5 arcminutes as compared to

standard distances. Generally, this proportionality is given in terms of a standard distance

of 20 ft or 6 m, thus, “20/20” or “6/6” vision. However, the geometry of this definition can

be extended to the lunar landing scenario for a first order comparison of human perception

and sensor spatial resolution. The standard viewing distance in the visual acuity equation

is analogous to the distance between the pilot and the hazard. The object is a 30 cm hazard

(assuming equal width and height). Therefore, the pilot must be within 206 m of this hazard

to see it. This same hazard, however, is detected by the LIDAR scan at the beginning of the

LPD maneuver, at a range of 866 m. Subsequently, information regarding hazard location

is received 35s sooner than viewing through a window. The same calculations can be made

through a camera system and compared with this approximation of human performance to

provide a measure of how soon information can be received [112].

Evaluation of analogous systems illustrate a balance between cameras and windows. The
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lunar Altair lander, part of the canceled Constellation project, proposed the use of a two

cameras and a window. The two cameras - narrow angle and wide angle - would be mounted

on a gimbal to provide optical navigation from lunar orbit insertion to touchdown. Riedel et

al [113] proposed the Mars Reconnaissance Orbiter’s Optical Navigation camera to provide

a high-resolution, narrow angle and the Charles Stark Draper Laboratory Inertial Stellar

Compass (ISC) as the lower resolution, wide angle camera system. It is assumed that

future landing systems would consider both cameras as a baseline for optical navigation

and supporting crew decision making. At the time of cancellation, the Altair team was

conducting studies on window geometry and placement [88]. The Apollo Lunar Excursion

Module used three windows - two side windows and a docking window.

Regardless of the implemented system, it is worth considering spatial disorientation

effects during lunar landing. Clark et al. [46] developed a model of disorientation and

compared the changes in perceived orientation between the Altair and Apollo landers. While

both effects are small, the Altair lander caused a greater disorientation effect than the Apollo

lander.

The discussion between the HUD and standard displays is less heavily debated com-

pared to cameras and windows, as the focus is more on information layout rather than the

method of information sensing. HUDs are often suggested for use with windows, to replace

the role of camera systems or standard displays. The premise behind these systems is to

support divided attention by improving the spatial proximity of the user and the external

environment. Other cockpit display systems have been suggested for use during the lunar

landing scenario. The participants were not questioned about these systems specifically,

nor did any mention them. Arthur et al. [114] has suggested the use of a Head-Worn

Display (HWD) in lieu of a HUD. He states that unlike the HUD, a HWD has an unlimited

field-of-view, is lighter, and is not constrained to be forward-facing. Overall, the HWD

improved situation awareness compared to Heads-Down displays (traditional), but addi-

tional training is needed to improve confidence with operating this new system. Similarly,

Highway-in-the-Sky, a means of projecting the expected future vehicle state was proposed

as another concept. Forest et al. [76] solicited pilot opinions on this flight path display and
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did not find an agreement for or against.

6.4 System requirements to support Apollo-like and moderate function
allocations

LIDAR

1.1 The System shall conduct and provide the results of multiple LIDAR scans with no

change in resolution.

1.1.1 The System shall conduct and provide the results of LIDAR scans at 0.2 m/pixel

resolution of the designated area of 180m × 180m and at 0.25 of the lander pad

diameter per pixel for zoomed in scans.

1.1.2 The System shall provide the Pilot the option to remove the LIDAR scan results from

the displays and the Visuals.

1.1.3 The System shall identify two levels of hazardous landing areas: No landing, possible

landing.

– A hazardous level of No Landing shall be defined as: A vehicle footprint that

does not have any clear areas for the lander pads and the main engine.

– A hazardous level of Possible Landing shall be defined as: A vehicle footprint

that contains enough clear area - but may still contain hazards - to support the

lander pads and the main engine. The vehicle may land there but additional

adjustments are necessary.

– A safe landing spot shall be defined as: A vehicle footprint that contains enough

clear areas to support the lander pads and the main engine without additional

adjustments.

1.1.4 The System shall provide the Pilot the option to highlight only the good landing areas.

Visuals

1.2 The System shall provide a real-time, high resolution Visual of the expected landing

area.

1.2.1 The System shall provide a continuous visual of the intended landing site until touch-

down.
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1.2.1.1 The System shall provide a visual of the landing pad placement relative to the terrain.

1.2.2 The System shall provide external lighting such that sufficient contrast (???) of the

landing area is maintained

Visual Performance

1.2.3 This Visual must provide a resolution of XX m/px or better at a rate of YY Hz. The

image contrast must be naturally occurring (sun and vehicle approach angle geometry)

or artificially provided (external lighting source).

1.2.3.1 The real-time high contrasting Visual supplied by the System must include Vehicle

state information, suggested landing sites, and hazard identification.

1.2.4 Overlays on all Visuals shall provide sufficient contrast for the Pilot.

Visual Placement

1.2.5 The System shall be arranged as such that the visuals are perpendicular to the lander

floor.

1.2.5.1 The System shall be arranged as such that visuals are placed in front of the Pilot,

with the intended Primary visual mounted at eye level.

Critical Information

1.3 The landing System shall provide task-critical information to the Pilot and the crew

relevant to Landing Point Designation.

1.3.1 The System shall provide information regarding the current position of the Vehicle

and location along the expected Trajectory.

1.3.1.1 The System shall provide a visual and audible warnings if the Vehicle is within 10s of

colliding with the terrain.

1.3.2 The System shall identify the vehicle location with respect to any visual of the landing

area.

1.3.2.1 Immediately after the LIDAR scan, the System shall provide information regarding

the current (t = 0s) and the expected (t = +5s, t = +10s) vehicle altitudes and

proximity to terrain.
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1.3.2.2 Immediately after the pitching maneuver, the System shall project terrain alignment

guides on all visuals of the cockpit until such information is dismissed by the Pilot.

1.3.3 The System shall provide information regarding the current orientation of the Vehicle.

1.3.4 The System shall provide information regarding the current velocity of the Vehicle.

1.3.5 The System shall provide information regarding the time remaining for Landing Point

Designation and the time until Vehicle touchdown.

1.3.6 The System shall provide information regarding resource consumption, where the

current value is represented as a proportionality of the total available for that resource.

1.3.7 The System shall arrange information on position, orientation, velocity, and scenario

timing on the primary display.

1.3.8 The System shall provide terrain alignment guides on all visuals of the expected

landing area, to assist in Pilot orientation.

1.3.9 The System shall identify the point of interest along all of the visuals through all

times during the Landing Point Designation task.

1.3.10 The System shall visually identify whether the landing site has been designated or is

currently under consideration.

1.3.11 The System shall identify the automation’s ranking of all suggested landing sites.

1.3.12 The System shall provide landing site scores of the designated or suggested landing

sites.

1.3.13 The System shall provide all information in SI units.

1.3.14 The System shall provide information regarding the Vehicle health and resources but

during Landing Point Designation, this information will not be present on the primary

display.

Warnings

1.4 The System shall notify the Pilot when nearing or violating threshold values.

1.4.1 The System shall alert visually and audibly, but not require acknowledgment, of any

non-critical system failure or malfunction during landing point designation and ter-

minal descent.
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1.4.1.1 A non-critical system failure is defined as failure of a subsystem that does not re-

quire immediate attention from the Pilot and can be addressed at least two minutes

after activation without significantly impacting the completion of the Landing Point

Designation task.

1.4.2 The System shall provide a visual and audible warning if the Vehicle is approaching

a critical threshold, unless the threshold violation is non-critical to Landing Point

Designation.

6.5 Proposed Function Allocation

Chapter 3 introduced a decomposition of the LPD task into five fundamental elements:

sensing, interpreting, creating, selecting, and executing. The moderate and Apollo-like

function allocations were defined based on a distribution of these tasks to the automation,

the human, or shared between both. Throughout the experiment, participants commented

on the desired role of the automation. This question was not directly posed and only

three participants made direct statements referring to the automation capability. However,

this information, in addition to an analysis of other comments and design suggestions, has

painted a picture of the necessary automation functionality to support astronaut decision

making.

Several of these five fundamental tasks were observed to lack sufficient granularity and

thereby can be decomposed to into subtasks. The task of collection information can be

performed by both the human and the automation sampling directly from the environment

(e.g., human perceiving the terrain, automation using LIDAR scans), or at a low level.

The human and automation may collect information at a meta, or high, level, by sampling

aspects of all collected information (e.g., human chooses only to focus on the altitude but

automation supplies all data). The interpreting task can also be decomposed into compar-

ison and significance. At comparison, the automation and the human identify hazards and

remaining resources by predefined safety thresholds. Significance, however, occurs in addi-

tion to comparison as the human identifies the impact of such information to the goal. A

piece of information that violates thresholds, but is not important to the goal, is effectively

136



irrelevant. If the conditions are nominal, then the goals of the human and the automation

are the same. However, in off-nominal scenarios, the goal has changed and the automation’s

pre-built definitions and states may no longer be relevant. The tasks of creating, select-

ing, and executing decision options comes in two forms: coarse and fine, which mimics the

areal/local search method used by the Apollo-like pilots. At the coarse level, the human

or the automation creates options and selects as to where is the best spot to place the

lander. After this selection, the human or automation flies to this landing site. At the fine

level, the human or the automation creates options and selects the specific orientation or

nearby landing site best suited for the vehicle. Execution of this decision selection focuses

on placing lander pads between smaller rocks and craters. However, as early as 20m alti-

tude [115], this capability may not be possible due to the dust plume caused by the engine.

Both human and automation systems would have trouble with low altitude adjustments as

visibility is effectively eliminated.

Table 26: LPD Task Decomposition and Function Allocation within Modified
Endsley-Kaber framework. Entries marked with 1 indicate that neither the automa-
tion or the human controlled the Vehicle orientation, which was fixed to windows-forward,
perpendicular to the landing surface.

Sensing Interpreting Creating Selecting Executing
Allocation Hi. Low Com. Sig. Co. Fi. Co. Fi. Co. Fi.

All Crew H H H H H H H H H H

Apollo-like H A/H H A H H H A1 A A

Moderate H A/H H A A A H A1 A A

Robotic A A A A A A A A A A

Desired Nom. A/H A H A A/H H A H A H

Desired Off-Nom. A/H A H A/H A/H H A/H H A/H H

With this new framework and the responses of the automation, Section 6.6 is rewrit-

ten to include the desired responsibilities of the human and the automation. The desired

nominal function allocation follows the distribution of tasks as prescribed in Table 26. In

this function allocation, both the sensing and interpreting tasks are completed by the au-

tomation as both entities share the same goal. In creating, selecting, and executing, the

automation handles the high level task of determining where to place the lander (Req. 2.1).

The human is in charge of determining the vehicle orientation that best accounts for the
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rock and crater distribution (Req. 2.2.1, 2.2.2). One participant stated his belief that

orienting and correcting the vehicle over small distances best leverages the pilot’s ability,

whereas determining where to best place the vehicle is the job of the automation. The

automation has more processing capability to quickly and accurately collect data and make

one optimization. If there are multiple “equally best” options (see Chapter 5 for an example

of equal sites when determining a landing area), then these options can be presented to the

pilot for a human-determined tiebreaker (Req. 2.1.1). For the final adjustments, the pilot

can correct much faster than the automation as the vehicle approaches the surface. Until

the automation can complete the cycle of collecting real-time data, identifying localized

hazards, creating and selecting an appropriate orientation or position change, and then ex-

ecuting the necessary commands, then the human is the best agent for the job. Although

no approximation currently exists for this particular task, one can estimate the timing of

the processing cycle based on related work.

Assuming nominal operations and a trained astronaut, the LPD task simplifies to a set of

rapidly occurring actions: eye movement time, visual processing, cognitive processing, and

motor processing. Based on the estimations derived from the Model Human Processor [24],

one can approximate that the human completes this processing cycle within 175-1170 ms, or

1.17s. This value exceeds the present approximation of 5s for engaging the LIDAR sensor,

processing the results, and selecting an optimal solution. Therefore, until automation can

perform this task in less than 1.17s, the human complete the task of placing the landing feet

more efficiently than the automation. However, a caveat exists with this approximation -

within 20m altitude, dust plumes due to the engine proximity to the ground causes visibility

issues.

The landing point designation task should be simplified as much as possible for the

pilot, as to reduce the number of options to evaluate and choose between. The trajectory

should be designed to minimize the importance of saving fuel by landing near the POI

or landing quickly, so the pilot does not feel compelled to account for fuel consumption

in his decision making process (Req. 2.3 and subquirements). The guidance, navigation,

and control system used by the Autonomous Landing and Hazard Avoidance Technology
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(ALHAT) team was designed to reduce the significance of fuel savings. Manuse et al. [116]

noted that a pilot could achieve a divert to the edges of a 360×360m landing area, diverting

twice as far as the LIDAR scan (180x180m grid) and have sufficient fuel. Additionally, a

map of the delta-v required to divert shows that within the areas of the LIDAR scan,

the difference is 2 m/s. If training matches expectations, then the process to finalize the

landing location will be routine, a confirmation of the correct state. However, if training

differs from expectations, then the pilot must realign his mental model to the reality of the

situation, interpret the effect of the discrepancies between his mental model and reality,

and then execute the necessary commands to reach his goal. As seen from the experiment

results (discussed in Chapter 4), the astronauts complete this task between 15-25s, with

many pilots purposefully taking the full allotted time. A similar result has been seen in

other high-stakes, time-critical scenarios such as firefighting [117]. Since the participants

“will find what’s most important to that which gives us the best data at the time” and they

are expecting updates on terrain and vehicle state as the task continues, it is reasonable

to assume that they will try to maintain control during the entire landing sequence (Req.

2.2.1).

The desired off-nominal function allocation distributes more of the workload to the

human, as the priorities of the human may have shifted. Depending on the scenario, the

human may opt to discard secondary goals or aim to reach the ground faster. Subsequently,

the human must have the control authority to adjust the information on the displays, and

to accommodate for any useful information the automation is able to provide. For example,

even within the LIDAR warning scenario modeled in the experiment, several participants

reported using the faulty LIDAR data, as it might contain valuable information. They

stated that there was some trust in the LIDAR scan, as some of the information matched

their perception and self-identification of the terrain. In the case of creating, selecting, and

executing, the human must now make critical decisions with this imperfect data. Aside

from having the option to declutter the display, the pilot should still have the opportunity

to view the raw data (e.g., the LIDAR scan with slope and vertical protrusions identified,

but no post-processing to account for lander pad and engine bell placement) (Req. 3.2.1).
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In an off-nominal scenario, the pilot has the additional task of redefining the new landing

objective and what information is necessary to support this goal. As stated by the partici-

pants, the increase in workload comes from diagnosis and filtering out non-useful data. The

automation works best by assisting the astronaut in this diagnosis. Similar to all-human

teams, the combined human-automation system will act efficiently if both members share

the same mental model. The automation must be able to anticipate the pilot’s actions, sup-

press excessive or unnecessary data, and support situation awareness. For example, a simple

mechanism to minimize workload during such situations is suppressing bad LIDAR data,

a feature most requested by the participants. Another example of supportive automation

during off-nominal scenarios is the engine warning scenario presented in the experiment.

Many participants expressed a desire to land quickly, intending to landing short of the POI

or following “the sort of rule in aviation [that] if you’re having trouble, don’t fly over a good

landing site”. A supportive automation system may suggest a “quick landing site” option,

that minimizes the amount of time required to safely place the vehicle on the ground. Or,

if the automation is aware that the engine is not producing as much thrust, the automation

may remind the pilot that the vehicle cannot decelerate as quickly as before and the easiest

site to land at is downrange of the POI (Req. 3.2). To support situation awareness of the

severity of the incident, the automation can switch camera viewpoints to the part of the

vehicle concerned. To facilitate and minimize bottlenecks of the pilot’s sensory channels,

the automation may consider using natural language [118, 119, 120, 121, 122].

Subsequently, a new set of system requirements can be written to account for this

desired functionality of future automation systems. Section 6.6 accounts for these new

system requirements, specifically for the creating, selecting, and executing tasks. These

requirements complement those presented in Section 6.4.

6.6 System requirements to support ideal nominal and off-nominal func-
tion allocations

Automation Role, Nominal

2 The Automation shall support the Pilot through nominal operations

2.1 The Automation shall suggest an optimal landing site after each LIDAR scan, based
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on mission criteria.

2.1.1 The Pilot shall be given control authority to select between multiple optimal sites.

2.2 The Automation shall control the vehicle to the intended landing site, unless the Pilot

takes command of the Vehicle by physically engaging the stick or redesignating the

landing site.

2.2.1 The Pilot shall have the authority to control the vehicle and make corrections to the

final landing site location within the landing area.

2.2.2 The Pilot shall have the authority to control the vehicle orientation.

2.3 The Vehicle should be designed such that there is sufficient fuel for the LPD task.

2.3.1 The Vehicle trajectory should be designed such that sufficient fuel exists to land at

any point of the LIDAR scan.

2.3.2 The Vehicle trajectory should be designed such that sufficient fuel exists to land late

within the designated LPD time, rendering consideration of the fuel consumption

negligible.

Automation Role, Off-Nominal

3 The Automation shall support the Pilot through off-nominal operations.

3.1 The Automation shall visually and audibly alert the Pilot if a critical malfunction has

occurred.

3.1.1 The visual and auditory alert shall persist until the Pilot has dismissed the alert.

3.2 The Automation shall diagnose the critical malfunction when thresholds have been

violated and suggest possible solutions.

3.2.1 The Automation shall present suggestions to compensate for a critical malfunction to

the Pilot through visual means.

3.3 The Pilot shall override the Automation at any point in the landing sequence.

An example of this cockpit layout, incorporating the system requirements from this

Chapter, is presented in Figure 41.
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6.7 Training

The experiment debriefing illuminated a number of biases and assumptions made by the

participants, many of which can be eliminated by designing a system to compensate for these

biases, or through training. Analysis of participant feedback illustrated two main areas of

confusion: incomplete understanding of the terrain and a misunderstanding of the vehicle

and automation’s capabilities and limitations. While only half studied the photograph of

the expected landing area, all pilots, in some manner, wanted to know more information

regarding the expected landing area. As discussed in Chapter 4, it is shown that mental

modeling reduces the amount of additional work the pilot must complete during the task

itself. Developing a mental model of the expected terrain provides a nominal solution

for sensor data. And, as several participants noted during the debriefing, knowledge of the

terrain can reduce the impact of a bias. Six participants commented on being uncomfortable

landing in areas of complete darkness, factoring this criterion into their decision making.

One participant acknowledge that “[landing in the dark spots is] an action I know I would

take if I know that I am highly trained and the sensors are reliable to do so and I’m able to

cross-check it. If that is what the mission calls for, and all safety guys say we can do this,

then that’s what I’m going to go for, that’s what I would truly do if I had the training”. Four

participants also commented that having better knowledge of the terrain would assist with

cross-checking the performance of the vehicle navigation. A known crater formation can be

used to re-orient oneself to the surface. Trusting the vehicle navigation and being oriented

to the terrain also improves situation awareness. One participant also discussed creating

3-D images in her head of the terrain. Such elevation maps would be of use to astronauts

during training. Lastly, as navigational errors are possible, astronauts should learn about

the terrain around the intended landing site, within the expected landing footprint due to

such dispersions in initial vehicle state. It is not possible for the astronauts to know each

aspect of the terrain, thereby increasing the need for a robust automation support system

and complete knowledge of the system’s capabilities and limitations.

The human-automation system acts as a unified team, requiring knowledge of each enti-

ties capabilities and limitations. Beyond this laundry list, the human must understand the
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internally programmed goals and biases of the automation. Threshold values such as “haz-

ardous” must be clearly explained, just as the automation must be provided circumstances

of which craters and when can some be safely ignored. This particular area of confusion

was highlighted several times by the participants: “it may exceed the lander tolerances...”.

Additionally, the development of the scoring algorithm (Chapter 3) and the cognitive model

(Chapter 5) proved to be instrumental in determining what logic must be made transpar-

ent to the pilot. Often, results from the cognitive model or the scoring algorithm would

be unclear in terms of the criteria employed, definitions coded, and relative importance

assigned. If this information is not clear to the operator, or a justification of differences

between expected and actual results, the pilot is unlikely to trust the automation. Like-

wise, mission preferences versus mission capabilities must be clear to the astronaut, as to

the consequences of violating thresholds. One of the most common questions posed by the

participants was, “What am I supposed to look at? What is most important here? What

are my main priorities?”. After the automation role has been defined, astronauts must be

trained on his specific roles and responsibilities. He needs to comprehend the priorities of

the mission and what attributes can be discarded if necessary.
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system. Handles seeing 

out the window 

Overview, which allows for 
designation to sites if already 

flown over and not visible 
through HUD 

Camera tracking landing site to 
ground, landing site map and 

orientation 

System state information 
- Engine/Thruster health 
- Sensor health 

Landing Point Designation 

656 kg 

1 m/s 

h: 500 m 

r: 864 m  

Overview display providing  
system state information 

Figure 41: Notional cockpit layout for desired function allocation. This display
arrangement consists of three displays and a window with a HUD. The window provides
another method for surveying the landing site and includes digital annotations to assist with
orientation and decision making. The bottom displays, from left to right: a still frame of the
expected area including degree of hazard highlights and orientation aids, with continuous
updates on expected landing site and location of POI; a camera feed of the expected landing
site including expected and intended positioning of the vehicle’s engine and lander pads;
a display presenting system state information and a trajectory profile including terrain
proximity warnings and location of point of interest.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

A study was conducted to determine the functionality for an automated system designed

to assist astronauts during lunar landing point designation. Understanding the functions

and decision making of humans helps in determining the roles of automation systems that

better leverage the strengths of both agents (human, automation) while improving overall

performance. Such a collaborative relationship is critical when landing in high-risk, time-

critical scenarios, like the south pole of the Moon, Mars, and nearby asteroids. The following

research question was posed: How should the functionality of automated landing systems

and crew be assigned to support mission operations during landing point designation? And

equally important, how does landing point designation performance vary in each of these

function allocations?

To address this question, a cognitive process model was developed based on empirical

data of astronaut decision making for use in requirements analysis. The cognitive process

model is based on current literature and designed to reflect the findings of several human-in-

the-loop experiments. The overall research task was completed in three research endeavors

and offers the following three major contributions, as proposed in Chapter 1:

1. Characterize human-system decision making during landing point designation and

provide a quantitative database of this performance.

2. Develop a cognitive process model to establish performance benchmarks and expected

achievements during conceptual design

3. Provide system requirements regarding information needs and cockpit design require-

ments for humans and automated systems during landing point designation.
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7.1 Characterizing astronaut decision making

The behavior of astronaut decision making within different function allocations was char-

acterized through two human-in-the-loop evaluations. The first experiment was conducted

with fifteen helicopter pilots and focused on identifying the different decision making cues

and search methods used by pilots during the landing point designation scenario. The sec-

ond experiment, performed with fourteen members of the NASA Astronaut Office, exam-

ined the changes in decision making behavior through various function allocations, landing

trajectory profiles, and a comparison of off-nominal and nominal operations. Both exper-

iments highlighted decision making strategies and performance differences in the landing

point designation task. The experiment results also provided initial approximations for

time to complete, landing site safety assessment, and expected changes in decision making.

The first experiment with helicopter pilots was conducted to establish the range of cues,

search methods, and techniques to incorporate empirical data into cognitive modeling. The

cognitive process model designed and simulated in this thesis is based on data collected

solely in the second experiment.

Astronauts complete landing point designation in different ways, depending on the func-

tion allocation. At a moderate function allocation, astronauts use re-ranking or eliminating

search methods to differentiate and select between three potential landing sites. Their focus

is on the terrain within and immediately outside of the landing footprint. At an Apollo-like

function allocation, astronauts use areal or local search methods to create and select suit-

able landing sites. They may opt to narrow their selection space in two rounds - focusing on

finding a good region, or a subset of the landing area, and then a good site within that good

region. These astronauts are focused less on the terrain within and immediately outside of

the landing footprint, but are more concerned with general terrain features, evaluating sub-

sets of the terrain as necessary. Within both function allocations, participants performed

the task faster when preparing a mental model prior to the task.

Function allocation of the landing point designation task is of significant importance

for future crewed missions to the Moon, Mars, and other destinations. However, very few

quantitative information exists regarding timing approximations, quantification of landing
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site safety, and decision making strategies (search method, number of cues, which cues,

and relative importance). This data provides initial approximations for mission designers,

allowing for better approximations of maintaining vehicle states to support astronaut deci-

sion making. Furthermore, this work provides an exemplar of the development and use of

cognitive models in the overall systems design process.

7.2 Developing a cognitive process model

A computational cognitive process model was developed from the data collected in the main

experiment with the Astronaut Office. This descriptive, rule-based cognitive process model

presents the spread of potential landing sites chosen by astronauts during the landing point

designation task, with search methods, cue selection, relative importance, and task time to

complete mirroring trends observed in the human-in-the-loop study. Both types of function

allocations and the associated differences in behavior are captured in this model, in addition

to the two types of trajectory profiles and performance deviations in off-nominal scenarios.

Validation of the cognitive process model was completed by evaluating each experiment run

and ensuring that the model chose approximately the same site as the participant, given the

same contributing factors. Initial results with the cognitive process model were conducted

with 1000 randomly generated model data points. The distribution of these model data

illustrate that the model selects sites at approximately the same distribution and spread of

the actual participants, but also selected sites not chosen by the participants. These points

account for the variability in astronaut decision making not immediately observed with this

participant sample.

This cognitive process model accounts for interactions between an astronaut and two

forms of automated systems: a moderate function allocation, which designates the respon-

sibility of creating a landing site to the automation and selecting from these sites to the

human, and an Apollo-like, where creation and selection are solely from the human. The

model also represents the changes in behavior during off-nominal scenarios, and the dif-

ferences in decision making with long and short trajectory profiles. When given a specific

landing spot, function allocation, and an operational scenario, the cognitive process model
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predicts where astronauts might choose to land, how many and which criteria and their

relative importance that was used to generate the decision, the search method employed to

find such a decision, and the time required to complete the overall task. This cognitive pro-

cess model can be used for further analysis of the complete human-automation interaction

during landing point designation.

7.3 Proposing design requirements for automation systems

System requirements were derived from an analysis of a cockpit evaluation conducted dur-

ing the main experiment, cognitive process model trends, and observations of participant

behavior. Participants were asked to provide feedback on the cockpit layout, the display

representation, and the information needs. These comments were compiled and used to

support the development of system requirements for the design of automation functionality.

The composite behavior of the participants was also considered and system requirements

derived to support behaviors not explicitly mentioned by participants. A normative model

of landing point designation was also derived from participant comments and the cognitive

process model results. In this normative model, the automation handles the majority of

the functionality during nominal operations, but grants control of specific functions to the

human in off-nominal scenarios.

The feedback from participants, results of the cognitive process model, and observations

of overall human-in-the-loop behavior illuminated a number of information needs, display

representations, and cockpit layouts. System requirements for automation functionality

were derived from this data analysis for use during requirements analysis and conceptual

design. Furthermore, design considerations for future missions are presented, including

training topics to counter cognitive biases and participant confusion observed in the human-

in-the-loop study. These design considerations also include a discussion of cockpits and

windows and the metrics for additional analysis beyond current literature. Lastly, these

system requirements are characterized by a fusion of human factors analysis and traditional

systems design. Requirements are written as explicitly as possible, with numerical guidelines

for automation benchmarks, and human behavior. A normative model of landing point
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designation is also provided, to describe the function allocation most suitable for leveraging

human and automation strengths during nominal and off-nominal scenarios.

7.4 Future Work

The thesis work conducted in this area provides a number of new research directions. There

are three possible future work directions: improvement on the cognitive process model; pre-

dicted landing performance; and information processing analysis. The cognitive process

model developed for this thesis is a stochastic model based on proportional distributions.

As such, the cognitive process model can be improved upon with the inclusion of probabil-

ity distribution functions that may more accurately match astronaut behavior. Frameworks

such as Bayesian inference, neural networks, or Hidden Markov Modeling use these distribu-

tions. However, these probabilities cannot be determined from the empirical data collected

in this thesis, as the experiment was not designed to solicit that type of data. Addition-

ally, the cognitive process model makes assumptions regarding cognitive phenomena such

as perception, memory, learning, and attention. For this thesis, these functions were not

needed for the requirements analysis. However, including these functions would improve

model fidelity and allow for greater generalization of the inputs to the cognitive process

model (e.g., the terrain, the automation functionality). Lastly, the cognitive process model

did not focus on the execution of the vehicle or the associated physiological and behavioral

functions associated with this subtask. For more detailed analysis, such functionality should

be included.

Even without these improvements to the cognitive process model, mission designers can

ascertain useful information regarding astronaut performance during lunar landing. The

cognitive process model can be used to predict where astronauts would land in both nominal

and off-nominal situations. The cognitive process model can be used in tandem with other

models - environment, trajectory, vehicle - and the comprehensive system simulated through

variations in terrain characteristics, vehicle state, and function allocation. Analysis of these

simulated runs can provide trends, cognitive biases, and projected system performance that

can be fed back into the design cycle for improvements to the vehicle and automation system.
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The last decade has resulted in a significant push to return to the Moon, specifically, the

South Pole. Shackleton crater, located at 89.9◦S, 0◦E has been identified as a region of

scientific [123] [124] interest. In particular, NASA has identified a region around the rim of

Shackleton that offers a number of operational advantages. This region, at 89.68◦S, 166◦W,

is in an area that is permanently within sunshine, and is lit for 86% of the year ([125],[126]).

NASA identified this location as the prime target for the Constellation architecture ([127]).

The area is approximately 1 × 5 km wide and could support a variety of missions, from

resource collection, observation, and habitation. Likewise, this area is within close proximity

to another point of “eternal light”. Bussey and colleagues determined that collectively,

these two sites are lit 94% of the year, making the tandem an ideal region for habitation

and power generation. The cognitive model can provide initial approximations of where

astronauts would choose to land, the first set of data for this particular area of future

crewed exploration.

The cognitive process model can also be used to perform an initial information processing

analysis. The cognitive process model makes decisions based on a set number of cues, which

are effectively pieces of information perceived by the astronaut from the displays and the

environment. However, as observed in this experiment, the decision quality can be affected

by the quality of the information. Since no sensors operate perfectly and redundancy is

needed both in operation and in representation, this cognitive process model can be used to

determine which information elements require the most design consideration. Such results

can improve overall display interface design, assist in decisions regarding sensor redundancy,

and anticipate human-automation interaction phenomena such as automation surprise, task

workload, and attention tunneling.
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APPENDIX A

SUPPLEMENTARY EXPERIMENTAL MATERIALS

This Appendix contains materials used during the debriefing session of the experiment and

detailed results from the analysis.

A.1 Experiment debriefing questions

These questions were used for both Apollo-like and moderate automation runs, with slight

differences.

First question: “Which statement best matches your overall strategy for

choosing a landing site?”

• Apollo-like function allocation

– “I selected a region based on a set of criteria and then picked a site based on a

second set of equal or differing criteria.” (Areal)

– “I eliminated sites based on a set of criteria and then continued until one set was

left.” (Local)

• Moderate-like function allocation

– “I eliminated one or two sites based on at least one criterion.” (Eliminating)

– “I re-ranked sites based on one or more criteria and chose the best site of this

re-ranking.” (Re-ranking)
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Figure 42: Bedford scales for assessing workload.
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Figure 43: Expectations photograph for baseline, nominal.
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Figure 44: Expectations photograph for baseline, LIDAR warning.
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Figure 45: Expectations photograph for shallow, nominal.
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Figure 46: Expectations photograph for shallow, LIDAR warning.
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Figure 47: Primary Flight Display.
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Figure 48: Overview display.
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A.2 Distribution of chosen landing sites

(a) Fargo: nominal, baseline trajectory. (b) Annapolis: nominal, shallow trajectory.

(c) Tulsa: LIDAR warning, baseline trajectory. (d) Vegas: LIDAR warning, shallow trajectory.

Figure 49: Distribution of chosen landing sites. The highlighted areas are hazards
as identified in the LIDAR scan. The three white landing sites ranked by the moderate
automation are shaded according to the percentage of participants who selected this site.
The yellow landing sites are those selected by participants with the Apollo-like automation.
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A.3 Relative importance of cues per scenario, per participant

This chart illustrates the cues used during each experiment run per participant. For partic-

ipants using the areal search method, an A is used to represent cues used for the regional,

or initial search. B is used to represent cues at the local, or second round of searching.

All other cues are marked with an A, for a one-round process. The alphabetical letter is

followed by a series of numbers from 1-N , from most important to least important, where

N is the number of cues used for that particular scenario.
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108 ap b li Areal - Region A
108 ap b li Areal - Site B1 B2
110 ap b li Areal - Region A2 A1 A1
110 ap b li Areal - Site B1 B4 B3 B2 B1
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108 ap b no Areal - Site B
110 ap b no Areal - Region A2 A1 A1
110 ap b no Areal - Site B1 B4 B3 B2 B1
112 ap b no Local A1 A1 A2
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108 ap s no Areal - Site B
110 ap s no Areal - Region A2 A1 A1
110 ap s no Areal - Site B1 B4 B3 B2 B1
112 ap s no Local A1 A1 A2
102 mo b li Reranking A2 A1 A3 A4
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APPENDIX B

SUPPLEMENTARY MODELING RESULTS

This appendix includes supplementary material related to the validation of the cognitive

model.

B.1 Moderate function allocation

Figures 50 and 51 are related to the distribution of cue type and relative importance as-

signments. Figure 52 illustrates a comparison of cognitive model derived timing estimations

and experiment records.
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Figure 50: Comparison of observed frequency of cue use and model selection.

Each of the four quadrants represents information regarding the cue proportionality within

the cognitive model and the experiment results. The exterior, larger pie chart is based

on experiment results. The interior, smaller pie chart is based off of 1000 cognitive model

runs. The close alignment of the two pie charts indicates that the cognitive model resembles

experiment results.

B.2 Apollo-like function allocation

Figures 50 and 51 are related to the distribution of cue type and relative importance as-

signments. Figure 52 illustrates a comparison of cognitive model derived timing estimations

and experiment records.
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Figure 53: Comparison of observed frequency of cue use and model selection.

Each of the four quadrants represents information regarding the cue proportionality within

the cognitive model and the experiment results. The exterior, larger pie chart is based

on experiment results. The interior, smaller pie chart is based off of 1000 cognitive model

runs. The close alignment of the two pie charts indicates that the cognitive model resembles

experiment results.

Figures 56, 57, 58, and 59 are plots comparing the cognitive model results to actual

experiment data. The dark blue region (generally containing a black circle) are top-ranked

sites chosen by the cognitive model that are within one landing site of the participant’s

selected site. The blue region are top-ranked sites chosen by the cognitive model that are

not within one landing site of the participant’s selected site. Green sites are secondary, or

second-ranked, sites from the cognitive model. The greyscale backdrop is the cost map of
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the weighted local and areal, site search criteria. Orange outlines indicate runs of missed

detection (cognitive model’s secondary site matches participant’s selected site); red outlines

are for false alarms (neither the cognitive models’s chosen or secondary sites match the

participant’s selected site).
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APPENDIX C

PUBLICATIONS

C.1 Conference Papers

C.1.1 Published Conference Papers

Relevant conference papers:

• Chua, Z.; Major, L.; and Feigh, K.; Modeling Cockpit Interface Usage during Lu-

nar Landing Redesignation, 15th International Symposium on Aviation Psychology,

Dayton, OH, April 2009.

• Chua, Z.; and Major, L.; Task Modeling for Lunar Landing Redesignation, AIAA

InfoTech at Aerospace 2009, Seattle, WA, April 2009.

• Chua, Z.; Feigh, K.; and Braun, R.; Examination of Human Performance During

Lunar Landing, 2010 IEEE Aerospace Conference, Big Sky, MT, March 2010.

• Hirsh, R.; Chua, Z.; Heino, T.; Strahan, A.; Major, L.; Duda, K.; Developing a

Prototype ALHAT Human System Interface for Landing, 2011 IEEE Aerospace Con-

ference, Big Sky, MT, March 2011

• Chua, Z.; Steinfeldt, B.; Kelly, J.; and Clark, I.; System Level Impact of Landing

Point Redesignation for High-Mass Mars Missions, Space 2011, Long Beach, CA,

September 2011.

• Feigh, K.; Chua, Z.; Current State of Human Factors in Systems Design, Human

Factors and Ergonomics Society 2011 Annual Meeting, Las Vegas, NV. September

2011. Panel Paper. Panelists: Aragones, A.; Garg, C.; Jacobsen, A.; Rogers, W.; and

Shutko, J.

• Chua, Z.; Feigh, K. Integrating Human Factors Principles into Systems Engineering.

30th Digital Avionics Systems Conference, Seattle, WA, October 2011.
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C.1.2 Planned Conference Papers

• The Effects of Terrain Contrast and Trajectory Design on Low and Mod-

erate Levels of Human Control. Collaboration with Karen Feigh. Presents the

results of the preliminary experiment performed with student pilots. Discusses the

effects of terrain contrast, trajectory design, and the Apollo-like and Moderate func-

tion allocations on pilot performance. Planned for the International Symposium of

Aviation Psychology 2014.

• Characterizing the Cognitive Process of Astronauts during Landing Point

Designation. Collaboration with Karen Feigh. Presents the results of the main

experiment performed with the Astronaut Office. Discusses the effects of terrain

contrast, trajectory design, and the Apollo-like and Moderate function allocations on

pilot performance. Planned for the Human Factors Annual Meeting 2014.

• A Computational, Rule-Based Model of Astronaut Decision Making. Col-

laboration with Karen Feigh. Presents the development of the cognitive model that

was developed based on the results of the main experiment performed with the As-

tronaut Office. Planned for the Human Factors Annual Meeting 2014.

C.2 Journal Articles

C.2.1 Published Journal Articles

• Chua, Z.; Feigh, K.; Quantifying Pilot Performance during Landing Point Redesig-

nation for System Design, AIAA Journal of Aerospace Computing, Information, and

Communication.

• Chua, Z.; Feigh, K.; Pilot Decision Making during Landing Point Designation, Cog-

nition, Technology & Work. June 2012.

C.2.2 Submitted Journal Articles

• Wilde, M.; Chua, Z.; Fleischner, A.; Effects of Multi-Vantage Point Systems on the

Teleoperation of Spacecraft Docking. IEEE Transactions on Human-Machine Systems.

In Review.
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C.2.3 Planned Journal Articles

• Survey of Cognitive Models. Surveys the range of primitive models, process mod-

els, and cognitive architectures in current literature. Planned submission to Journal

of Cognitive Engineering and Decision Making in Spring 2014.

• Developing a Comprehensive Landing Model. Discusses the development of

the models presented in Chapter 5. Planned submission to IEEE Transactions on

Human-Systems in Spring 2014.

• Systems Analysis of Landing Point Designation. Discusses the Monte Carlo

analysis of the Comprehensive Landing Model and the significance of results. Planned

submission to AIAA Journal of Spacecraft and Rockets in spring 2014.

177



REFERENCES

[1] Brady, T. and Epp, C. D., “Challenge of a Crewed Polar Lunar Landing,” Tech. rep.,
NASA Exploration Technology Development Program, 2008.

[2] Braun, R. D. and Manning, R. M., “Mars Exploration Entry, Descent, and Landing
Challenges,” AIAA Journal of Spacecraft and Rockets, Vol. 44, No. 2, March-April
2007, pp. 310–323.

[3] Feigh, K. M., Dorneich, M. C., and Hayes, C. C., “Towards a Characterization of
Adaptive Systems: A Framework for Researchers and System Designers,” Human
Factors, Vol. 54, No. 6, December 2012, pp. 1008–1024.

[4] Bailey, R. W., Human Performance Engineering: Using human factors/ergonomics
to achieve computer system usability , Prentice Hall, 1989.

[5] Pritchett, A., Kim, S., and Feigh, K., “Measuring Human-Automation Function Al-
location,” Journal of Cognitive Engineering and Decision Making , Vol. Online before
print, 2013.

[6] Pritchett, A., Kim, S., and Feigh, K. M., “Modeling HumanAutomation Function
Allocation,” Journal of Cogni , Vol. Online before print, 2013.

[7] Chua, Z. K. and Feigh, K. M., “Integrating Human Factors Principles into Systems
Engineering,” Digital Avionics Systems Conference, AIAA/IEEE, Seattle, WA, Oc-
tober 2011.

[8] Dekker, S. W. A. and Woods, D. D., “MABA-MABA or Abracadabra? Progress on
HumanAutomation Co-ordination,” Cognition, Technology and Work , Vol. 4, 2002,
pp. 240–244.

[9] Bainbridge, L., “The Change in Concepts Needed to Account for Human Behavior in
Complex Dynamic Tasks,” IEEE Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans, Vol. 27, No. 3, May 1997, pp. 351–359.

[10] Fitts, P. M., Chapanis, A., Frick, F. C., Garner, W. R., Gebhard, J. W., Grether,
W. F., Henneman, R. H., Kappauf, W. E., Newman, E. B., and Jr, A. C. W., “Human
Engineering for an Effective Air-Navigation and Traffic-Control System,” Tech. rep.,
Air Navigation Development Board, Washington, D.C., March 1951.

[11] Chapanis, A., Human factors in systems engineering , John Wiley & Sons, Inc., New
York, NY, USA, 1996.

[12] Parasuraman, R., Sheridan, T. B., and Wickens, C. D., “A Model for Types and Levels
of Human Interaction with Automation,” IEEE Transactions on Systems, Man, and
Cybernetics – Part A: Systems and Humans, Vol. 30, No. 3, 2000, pp. 286–298.

178



[13] Endsley, M. R. and Kaber, D. B., “Level of Automation Effects on Performance,
Situation Awareness and Workload in a Dynamic Control Task,” Ergonomics, Vol. 42,
No. 6, 1999, pp. 462–492.

[14] Sheridan, T. B., Telerobotics, Automation, and Human Supervisory Control , MIT
Press, Cambridge, MA, 1992.

[15] Proud, R., Hart, J., and Mrozinski, R. B., “Methods for Determining the Level of Au-
tonomy to Design into a Human Spaceflight Vehicle: A Function Specific Approach,”
Proceedings of the Performance Metrics for Intelligent Systems Workshop, 2003.

[16] Boyd, J. R., “The Essence of Winning and Losing,” Unpublished Lecture Notes.

[17] Pritchett, A. R., Kim, S. Y., Kannan, S. K., and Feigh, K., “Simulated Situated
Work,” Cognitive Models in Situation Awareness and Decision Support , 2011.

[18] Woods, D., “Cognitive Technologies: the design of join human-machine cognitive
systems,” AI magazine, Vol. 6, No. 4, 1985, pp. 86–92.

[19] Parasuraman, R. and Riley, V., “Humans and Automation: Use, Misuse, Disuse,
Abuse,” Human Factors, Vol. 39, 1997, pp. 230–253.

[20] Smith, P. J., McCoy, C. E., and Layton, C., “Brittleness in the Design of Cooperative
Problem-Solving Systems: The Effects on User Performance,” IEEE Transactions on
Systems, Man and Cybernetics - Part A: Systems and Humans, Vol. 27, No. 3, May
1997, pp. 360–371.

[21] Kim, S. Y., Function Allocation Analysis of Human-Automation Interaction: Devel-
opment and verification of the work model and the model-based metrics, Ph.D. thesis,
Georgia Institute of Technology, Atlanta, GA, June 2011.

[22] Gray, W. D., Young, R. M., and Kirschenbaum, S. S., “Introduction to This Special Is-
sue on Cognitive Architectures and Human-Computer Interaction,” Human-Computer
Interaction, Vol. 12, 1997, pp. 301–309.

[23] Sun, R., “The Challenges of Building Computational Cognitive Architectures,” Stud-
ies in Computational Intelligence, Vol. 63, 2007, pp. 37–60.

[24] Card, S. K., Moran, T. P., and Newell, A., “The Model Human Processor: An En-
gineering Model of Human Performance,” Handbook of Perception and Human Per-
formance: Cognitive Processes and Performance, edited by K. R. Boff, L. Kaufman,
and J. P. Thomas, Vol. 2, Wiley, New York, 1986, pp. 1–35.

[25] Miller, G. A., “The magical number seven, plus or minus two: Some limits on our
capacity for processing information,” The Psychological Review , Vol. 63, 1956, pp. 81–
97.

[26] Wertheimer, M., A source book of Gestalt psychology , Routledge and Kegan Paul,
London, 1923.

[27] Gore, B. and Foyle, D., “MIDAS: Man-machine Integration Design and Analysis
System,” Online, Acessed March 2011.

179



[28] Gore, B. F., “Man-Machine Integration Design and Analysis System (MIDAS) v5:
Augmentations, Motivations, and Directions for Aeronautics Applications,” Human
Modeling in Assisted Transportation, June 2010.

[29] Hammond, K. R., Hursch, C. J., and Todd, F. J., “Analyzing The Components Of
Clinical Inference,” Psychological Review , Vol. 71, 1964, pp. 438–456.

[30] Rothrock, L. and Kirlik, A., “Inferring Rule-Based Strategies in Dynamic Judgment
Tasks: Toward a Noncompensatory Formulation of the Lens Model,” IEEE Transac-
tions On Systems, Man, And Cybernetics, Vol. 33, 2003, pp. 58–72.

[31] Klein, G., Sources of Power: How People Make Decisions, MIT Press, MIT, 1998.

[32] Gray, W. D., “Cognitive Architectures: Choreographing the Dance of Mental Opera-
tions With the Task Environment,” Human Factors, Vol. 50, 2008, pp. 497–505.

[33] Johnson, T. R., “Control in ACT-R and Soar,” Proceedings of the 19th Annual Con-
ference of the Cognitive Science Society , edited by M. Shafto and P. Langley, Lawrence
Erlbaum Associates, 1997, pp. 343–348.

[34] Card, S., Moran, T., and Newell, A., The Psychology of Human-Computer Interaction,
Lawrence Erlbaum Associates, 1983.

[35] Byrne, M. D., Human Computer Interaction Handbook , chap. 5, CRC Press, 2007,
pp. 94–114.

[36] Lehman, J. F., Laird, J., and Rosenbloom, P., A Gentle Intro-
duction to Soar, An Architecture for Human Cognition, Univer-
sity of Michigan, 2260 Hayward, Ann Arbor, MI 48109-2121, 2006,
http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/GentleIntroduction-2006.pdf.

[37] “ACT-R: Theory and Architecture of Cognition,” Online., 2011, Accesed March 2011.

[38] Campbell, G. E. and Bolton, A. E., HBR Validation: Integrating Lessons Learned
from Multiple Academic Disciplines, Applied Communities, and the AMBR Project ,
chap. 10, Lawrence Erlbaum Associates, 2005, pp. 365–396.

[39] Kase, S. E. and Ritter, F. E., “A High-Performance Approach to Model Calibration
and Validation,” Proceedings of the 18th Conference on Behavior Representation in
Modeling and Simulation, Sundance, UT, April 2009, pp. 39–46.

[40] National Aeronautics and Space Administration, NASA Space Flight Human System
Standard , vol. 1 ed., September 2009.

[41] National Aeronautics and Space Administration, NASA Space Flight Human System
Standard , vol. 2 ed., September 2009.

[42] Liskowsky, D. R. and Seitz, W. W., Human Integration Design Handbook (HIDH),
Washington, DC, January 2010, Initial Release.

[43] Jr, J. F. P. and West, V. R., Bioastronautics Data Book: Second Edition. NASA
SP-3006 , National Aeronautics and Space Administration, Washington, DC, 2nd ed.,
1973, NASA SP-3006.

180



[44] Department of Defense, Military Handbook: Human Engineering Guidelines for Man-
agement Information Systems, June 1985, MIL-HDBF-761A.

[45] Department of Defense, Human Engineering Design Criteria for Military Systems,
Equipment, and Facilities, 1999, MIL-STD-1472F.

[46] Clark, T. K., Stimpson, A. J., Young, L. R., Oman, C. M., and Duda, K. R., “Analysis
of Human Spatial Perception during Lunar Landing,” IEEE Aerospace Conference,
2010.

[47] J O Cappellari, J., “Where on the Moon? An Apollo Systems Engineering Problem,”
The Bell System Technical Journal , Vol. 51, No. 5, May 1972, pp. 955–1127.

[48] Sostaric, R. R., “Powered Descent Trajectory Guidance and Some Considerations for
Human Lunar Landing,” AAS Guidance and Control Conference, No. AAS 07-051,
AAS, Breckenridge, CO, February 2007.

[49] Hamza, V., “Lunar Exploration under Earthshine Illumination,” Technical Report
B69 04017, Bellcomm, Inc., Washington, D.C., April 1969.

[50] Thompson, W. B., “Lunar Landing Site Constraints: The Arguments For and Against
One Preselected Site Versus Several Sites,” Tech. Rep. TR-64-211-4, Bellcomm, Inc,
Washington, DC, January 1964, Also listed under NASA-CR-116911.

[51] Stephen C. Paschall II, Brady, T., Cohanim, B. E., and Sostaric, R., “A Self Contained
Method for Safe And Precise Lunar Landing,” IEEE Aerospace Conference 2008 ,
IEEE, March 2008.

[52] Welford, A., “Attention, strategy and reaction time: A tentative metric,” Attention
and Performance IV , edited by S. Kornblum, Academic Press, New York, 1973, pp.
37–54.

[53] Cavanaugh, J., “Relation between the immediate memory span and the memory
search rate,” Psychological Review , Vol. 79, 1972, pp. 525–530.

[54] Jones, E. M. and Glover, K., “Apollo Lunar Surface Journal,” Online, July 2008,
accessed 23 September 2008.

[55] Mindell, D. A., Digital Apollo: Human and Machine in Spaceflight , The MIT Press,
Cambridge, MA, 2008.

[56] Aeronautics, N. and Administration, S., “Astronaut Press Conference,” Press Release
60-276, National Aeronautics and Space Administration, Cape Canaveral, Florida,
September 1960.

[57] Woods, D., O’Brien, F., Brandt, T., Waugh, L., MacTaggart, K., Vignaux, A.,
Roberts, I., Wheeler, R., McCray, R., and Jetzer, M., “Apollo Flight Journal,” Online,
August 2010.

[58] Bennett, F. V., “Apollo Lunar Descent and Ascent Trajectories,” Tech. rep., National
Aeronautics and Space Administration, Houston, Texas, March 1970, Also presented
at AIAA 8th Aerospace Sciences Meeting, January 1970.

181



[59] Noteborn, R., “Apollo GNC Software,” Online., November 2001.

[60] National Aeronautics and Space Administration, Houston, Texas, Apollo 11 Flight
Plan, July 1969, For AS-506/CSM-107/LM-5.

[61] Major, L. M., Brady, T. M., and II, S. C. P., “Apollo Looking Forward: Crew Task
Challenges,” IEEE Aerospace Conference 2008 , No. IEEEAC 1149, IEEE, Big Sky,
MT, March 2008.

[62] Cantin, R. and Cantin, J., “Final Approach,” Online., Accessed February 2011.

[63] Brady, T. and Epp, C. D., “Operational Concept For the Autonomous Landing and
Hazard Avoidance Technology (ALHAT) System,” Tech. rep., NASA Exploration
Technology Development Program, 2009, ALHAT-2.0-002.

[64] Brady, T., II, S. P., and II, T. P. C., “GN&C Development for Future Lunar Landing
Missions,” AIAA Guidance, Navigation, and Control Conference, No. AIAA 2010-
8444, AIAA, Toronto, Ontario, Canada, August 2010.

[65] Davis, J., Striepe, S., Maddock, R., Hines, G., II, S. P., Cohanim, B., Fill, T., Johnson,
M., Bishop, R., DeMars, K., Sostaric, R., and Johnson, A., “Advances in POST2
End-to-End Descent and Landing Simulation for the ALHAT Project,” AIAA/AAS
Astrodynamics Specialist Conference & Exhibit , No. AIAA 2008-6938, 2008.

[66] Forest, L., Kessler, L., and Homer, M., “Design of a Human-Interactive Autonomous
Flight Manager (AFM) for Crewed Lunar Landing,” AIAA Infotech at Aerospace,
2007.

[67] Forest, L., Cohanim, B., and Brady, T., “Human Interactive Landing Point Redesig-
nation for Lunar Landing,” Proceedings of the IEEE Aerospace Conference, Big Sky,
MN, March 2008.

[68] Needham, J., Human-Automation Interaction for Lunar Landing Aimpoint Redesig-
nation, Master’s thesis, Massachusetts Institute of Technology, 2008.

[69] Wen, H. Y., Duda, K. R., Slesnick, C. L., and Oman, C. M., “Modeling Human-
Automation Task Allocations in Lunar Landing,” IEEE Aerospace Conference, 2011.

[70] Wen, H. Y., Johnson, A., Duda, K. R., Oman, C. M., and Natapoff, A., “Decision-
Making and Risk-Taking Behavior in Lunar Landing,” PROCEEDINGS of the HU-
MAN FACTORS and ERGONOMICS SOCIETY 56th ANNUAL MEETING , 2012.

[71] Chua, Z. K. and Major, L. M., “Task Modeling for Lunar Landing Redesignation,”
AIAA InfoTech at Aerospace Conference, 2009.

[72] Chua, Z. K., Major, L. M., and Feigh, K. M., “Modeling Cockpit Interface Usage Dur-
ing Lunar Landing Redesignation,” International Symposium of Aviation Psychology ,
2009.

[73] Duda, K. R., Johnson, M. C., and Fill, T. J., “Design and Analysis of Lunar Lander
Manual Control Modes,” IEEE Aerospace Conference, 2009.

[74] Major, L. M., Duda, K. R., and Hirsh, R. L., “Crew Office Evaluation of a Precision
Lunar Landing System,” IEEE Aerospace Conference, 2011.

182



[75] Forest, L., Hirsh, R., and Cohanim, B., “ALHAT Crew Display Survey Guide,” Au-
tonomous Landing and Hazard Avoidance Technology internal presentation, 2008.

[76] Forest, L., Hirsh, R., and Duda, K., “Results from the Crew Evaluation,” Tech. rep.,
National Aeronautics and Space Administration, December 2008.

[77] Major, L. M., Duda, K. R., Zimpfer, D., and West, J., “An Approach to Address-
ing Human-Centered Technology Challenges for Future Space Exploration,” AIAA
SPACE 2010 Conference & Exposition, 2010.

[78] Chua, Z. K., Braun, R. D., and Feigh, K. M., “Analysis of Human-System Interaction
For Landing Point Redesignation,” Masters ae 8900 project, Georgia Institute of
Technology, 2009.

[79] Chua, Z. K., Feigh, K. M., and Braun, R. D., “Examination of Human Performance
During Lunar Landing,” 2010 IEEE Aerospace Conference, Big Sky, MT, March 2010.

[80] Chua, Z. K. and Feigh, K. M., “Quantifying Pilot Performance during Landing Point
Redesignation for System Design,” Journal of Aerospace Computing, Information,
and Communication, Vol. 6, No. 6, 2011, pp. 183–196.

[81] Chua, Z. K. and Feigh, K. M., “Pilot Decision Making during Landing Point Desig-
nation,” Cognition, Technology and Work , Vol. Online, 2012, pp. 1–15.

[82] Roscoe, A. and Ellis, G. A., “A subjective rating scale for assessing pilot workload in
flight: A decade of practical use.” Tech. Rep. No. RAE-TR-90019, Royal Aerospace
Establishment, Farnborough, UK, 1990.

[83] Brunswik, E., “Representative Design And Probabilistic Theory In A Functional Psy-
chology,” Psychological Review , Vol. 62, 1955, pp. 193–217.

[84] Brunswik, E., “Organismic achievement and environmental probability.” Psychological
Review , Vol. 50, No. 3, 1943, pp. 255 – 272.

[85] Hernandez-Moya, S., “NASA - Innovative Simulation Toolkit for Constructing Simu-
lations,” Online, October 2011.

[86] “METECS - 3D Graphics,” Online, September 2010.

[87] Hirsh, R. L., Abernathy, M., and Kaiser, V., “Human System Interface Development
for ALHAT,” AIAA Space 2009 Conference and Exposition, Pasadena, CA, September
2009.

[88] Hirsh, R. L., Chua, Z. K., Heino, T. A., Strahan, A., Major, L., and Duda, K., “De-
veloping a Prototype ALHAT Human System Interface for Landing,” IEEE Aerospace
Conference, 2011.

[89] Hirsh, R., “Notes from Evaluation Session,” Personal Correspondence.

[90] Chua, Z. K., Steinfeldt, B. A., Kelly, J. R., and Clark, I. G., “System Level Im-
pact of Landing Point Resignation for High-Mass Mars Mission,” AIAA Space 2011
Conference, 2011.

183



[91] Johnson, A. E., Huertas, A., Werner, R. A., and Montgomery, J. F., “Analysis of On-
Board Hazard Detection and Avoidance for Safe Lunar Landing,” IEEE Aerospace
Conference, 2008.

[92] Johnson, A. E., Keim, J. A., and Ivanov, T., “Analysis of flash lidar field test data
for safe lunar landing,” IEEE Aerospace Conference, 2010.

[93] NASA JSC Public Affairs Office Web Team, “NASA Astronauts,” Online., Accessed
August 2012.

[94] NASA JSC Public Affairs Office Web Team, “NASA Management Astronauts,” On-
line., Accessed August 2012.

[95] Striepe, S. A., Epp, C. D., , and Robertson, E. A., “Autonomous Precision Land-
ing and Hazard Avoidance Technology (ALHAT) Project Status as of May 2010,”
International Planetary Probe Workshop, 12-18 June 2010.

[96] Cohanim, B. and Collins, B., “Landing Point Designation Algorithm for Lunar Land-
ing,” Journal of Spacecraft and Rockets, Vol. 46, No. 4, 2009, pp. 858–864.

[97] Fill, T., “Lunar Landing and Ascent Trajectory Guidance Design for the Autonomous
Landing and Hazard Avoidance Technology (ALHAT) Program,” Proceedings of the
AAS/AIAA Space Flight Mechanics Meeting , 2010.

[98] Ballard, D. H., “Generalizing the Hough transform to detect arbitrary shapes,” Pat-
tern Recognition, Vol. 13, No. 2, 1981, pp. 111–122.

[99] Back, T., Evolutionary Algorithms in Theory and Practice, Oxford University Press,
1996.

[100] Tversky, A. and Kahneman, D., “Judgment under uncertainty: Heuristics and biases,”
Science, Vol. 185, 1974, pp. 1124–1131.

[101] Swets, J. A., Green, D. M., Getty, D. J., and Swets, J. B., “Signal detection and iden-
tification at successive stages of observation,” Perception & Psychophysics, Vol. 23,
No. 4, 1978, pp. 275–289.

[102] Kramer, L. J., Prinzel, L. J., Bailey, R. E., Arthur, J. J., Shelton, K. J., and Williams,
S. P., “Effects of Synthetic and Enhanced Vision Technologies for Lunar Landings,”
Digital Avionics Systems Conference, October 23-29 2009.

[103] Prinzel, L., Kramer, L., Norman, R., Arthur, J., Williams, S., Shelton, K., and Bailey,
R., “Synthetic and Enhanced Vision System for Altair Lunar Lander,” International
Symposium on Aviation Psychology , 2009.

[104] Woods, D. D. and Watts, J. C., Handbook of human-computer interaction, chap. 26,
North Holland, 1997, pp. 616–650.

[105] Johnson, A. E. and Montgomery, J. F., “Overview of Terrain Relative Navigation
Approaches for Precise Lunar Landing,” IEEE Aerospace Conference, March 1-8 2008.

[106] Mourikis, A. I., Trawny, N., Roumeliotis, S. I., Johnson, A. E., Ansar, A., and
Matthies, L., “Vision-Aided Inertial Navigation for Spacecraft Entry, Descent, and
Landing,” IEEE Transactions on Robotics, Vol. 25, No. 2, April 2009, pp. 264–280.

184



[107] GoPro, “GoPro Shows View from Inside Tunnel of Chilean Mine,” Electronic, October
2010, Accessed April 2013.

[108] Furihata, H., “Endoscope Camera with Orientation Indicator,” February 1975.

[109] Hu, W., Tan, T., Wang, L., and Maybank, S., “A Survey on Visual Surveillance of
Object Motion and Behaviors,” IEEE Transactions on Systems, Man, and Cybernetics
- Part C: Applications and Reviews, Vol. 34, No. 3, August 2004, pp. 334–352.

[110] Leger, L. and Bricker, R., “Apollo Experience Report - Window Contamination,”
Tech. Rep. NASA TN D-6721, Manned Spacecraft Center, Houston, Texas, March
1972.

[111] Pigg, O. E. and Weiss, S. P., “Apollo Experience Report - Spacecraft Structural
Windows,” Tech. Rep. NASA TN D-7439, Lyndon B. Johnson Space Center, Houston,
Texas, September 1973.

[112] Robinson, J. A., Amsbury, D. L., Liddle, D. A., and Evans, C. A., “Astronaut-
acquired orbital photographs as digital data for remote sensing: spatial resolution,”
International Journal of Remote Sensing , Vol. 23, No. 20, 2002, pp. 4403–4438.

[113] Riedel, J. E., Vaughan, A. T., Werner, R. A., Wang, T.-C., Nolet, S., Myers, D. M.,
Mastrodemos, N., Lee, A. Y., Grasso, C., Ely, T. A., and Bayard, D. S., “Optical
Navigation Plan and Strategy for the Lunar Lander Altair: OpNav for Lunar and
other Crewed and Robotic Exploration Applications,” AIAA Guidance, Navigation,
and Control Conference, No. AIAA 2010-7719, Toronto, Ontario, Canada, August
2010.

[114] Arthur, J. J., Bailey, R. E., Jackson, E. B., Barnes, J. R., Williams, S. P., and
Kramer, L. J., “Part-task simulation of synthetic and enhanced vision concepts for
lunar landing,” Proceedings of Enhanced and Synthetic Vision, Orlando, Florida, April
2010.

[115] Morris, A., Goldstein, D., Varghese, P., and Trafton, L., “Plume Impingement on a
Dusty Lunar Surface,” AIP Conference Proceedings, Vol. 1333, 2011, p. 1187.

[116] Manuse, J., “Summary Report ALDAC-2: HRN Methodology for Autonomous Land-
ing and Hazard Avoidance Technology,” Tech. Rep. ALHAT-2.0-011, NASA Johnson
Space Center, March 2010.

[117] Streefkerk, J. W., Vos, W., and nanja Smets, “Evaluating a Multimodal Interface
for Firefighting Rescue Tasks,” Proceedings of the Human Factors and Ergonomics
Society Annual Meeting , Vol. 56, 2012, pp. 277–281.

[118] Granacki, J., Knapp, D., and Parker, A., “The ADAM Advanced Design Automation
System: Overview, Planner and Natural Language Interface,” IEEE 22nd Conference
on Design Automation, 1985, pp. 727–730.

[119] Freitas, R. A., Healy, T. J., and Long, J. E., “Advanced Automation for Space
Missions,” 7th International Joint Conference of Artificial Intelligence, Vancouver,
British Columbia, Canada, August 1981.

185



[120] Parasuraman, R. and Miller, C. A., “Trust and etiquette in high-criticality automated
systems,” Communications of the ACM , Vol. 47, No. 4, 2004, pp. 51–55.

[121] Kollar, T., Tellex, S., Roy, D., and Roy, N., “Towards Understanding Natural Lan-
guage Directions,” 5th ACM/IEEE International Conference on Human-Robot Inter-
action, 2010.

[122] Knoll, A., Hildebrandt, B., and Zhang, J., “Instructing Cooperating Assembly Robots
through Situated Dialogues in Natural Language,” Proceedings of the 1997 IEEE
International Conference on Robotics and Automation, 1997.

[123] Burke, J. D., “Merits of a lunar polar base location,” Lunar Bases and Space Activities
of the 21st Century , Vol. 1, 1985, pp. 77–84.

[124] Angel, R., “A Deep-Field Infrared Observatory Near the Lunar Pole,” Proceedings of
the Seventh International Conference on the Exploration and Utilization of the Moon,
2005.

[125] Bussey, B. J., Spudis, P. D., and Robinson, M. S., “Illumination conditions at the
lunar south pole,” Geophysical Research Letters, Vol. 26, No. 9, May 1999, pp. 1187–
1190.

[126] Bussey, D. B., McGovern, J. A., Spudis, P., Neish, C., Noda, H., Ishihara, Y., and
Sorensen, S.-A., “Illumination conditions of the south pole of the Moon derived using
Kaguya topography,” Icarus, Vol. 208, 2010, pp. 558–564.

[127] Dale, S. and Cooke, D., “Exploration Strategy and Architecture,” 2nd Exploration
Conference, Vol. 6, Houston, TX, 2006.

186


	Titlepage
	Signatures
	Table of Contents
	List of Tables 
	List of Figures 
	List of Symbols and Abbreviations
	Summary
	Acknowledgements
	Chapter 1 — Introduction and Motivation
	Using Cognitive Models Within Systems Design
	Contributions
	Research Overview

	Chapter 2 — Literature Review
	Function Allocation
	Allocation Strategies
	Current Methodology
	Considerations for Function Allocation

	Cognitive Modeling
	Primitive Models
	Process Models
	Cognitive Architectures
	Validation

	Crewed Spaceflight
	Acceleration
	Landing Site Visibility
	Lighting Effects
	Effects on Trajectory Design

	Related Studies
	Apollo
	Autonomous Landing and Hazard Avoidance Technology
	Function Allocation and Evaluation for LPD


	Chapter 3 — Decision Making during Landing Point Designation
	Task Decomposition for Landing Point Designation
	Experiment 1
	Experiment 2 Overview
	Main Experiment Overview
	Apparatus and Software


	Chapter 4 — Changes in Astronaut Decision Making
	Qualitative Analysis and Results
	Analysis of Observed strategies
	Analysis of the Relative Importance of Decision Making Criteria

	Quantitative Analysis and Results
	Overall statistical results
	Impact of Function Allocation, Trajectory, and Scenario on LPD Performance and Astronaut Workload
	Impact of Participant Background on LPD Performance and Astronaut Workload
	Impact of Variable Weightings on Performance
	Impact of Search Method and Mental Modeling on Performance

	Discussion and Concluding Remarks

	Chapter 5 — Cognitive Process Model Development
	Modeling the Reference Automation (Robotic)
	Modeling Decision Making within a Moderate Function Allocation
	Timing

	Modeling Astronaut Decision Making within an Apollo-like Function Allocation
	Areal Search method
	Local Search Method
	Timing

	Validation

	Chapter 6 — Suggested Automation Responsibilities and Crew Training Objectives
	Information needs
	Method of representation
	Cockpit layout
	System requirements to support Apollo-like and moderate function allocations
	Proposed Function Allocation
	System requirements to support ideal nominal and off-nominal function allocations
	Training

	Chapter 7 — Conclusions and Future Work
	Characterizing astronaut decision making
	Developing a cognitive process model
	Proposing design requirements for automation systems
	Future Work

	Appendix A — Supplementary Experimental Materials
	Experiment debriefing questions
	Distribution of chosen landing sites
	Relative importance of cues per scenario, per participant

	Appendix B — Supplementary Modeling Results
	Moderate function allocation
	Apollo-like function allocation

	Appendix C — Publications
	Conference Papers
	Published Conference Papers
	Planned Conference Papers

	Journal Articles
	Published Journal Articles
	Submitted Journal Articles
	Planned Journal Articles


	References

