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SUMMARY

Ambient and indoor air pollution is a major caus@m@mature mortality, and has
been associated with more than three million preatamre deaths per year worldwide.
Most of these health impacts are from the effacnffine particulate matter. It is
suspected that PM health effects vary by composition, which depeoiishe mixture of
pollutants emitted by sources. This has led torefftm estimate relationships between
sources of PMs and health effects. The health effects of,Rkhay be preferentially
dependent on specific species; however, recent haslksuggested that health impacts
may actually be caused by the net effect of theumexof pollutants which make up
PM.s Recently, there have been efforts to use saorpacts from source
apportionment (SA) studies as a proxy for thesdipullutant effects. Source impacts
can be quantified using both receptor and chentiaakport models (RMs and CTMs),
and have both advantages and limitations for thgarin health studies.

In this work, a technique is developed that redesdiifferences between source
apportionment (SA) models by ensemble-averagingceampacts results from several
SA models. This method uses a two-step processltalate the ensemble average. An
initial ensemble average is used calculate newnastis of uncertainties for the
individual SA methods that are used in the ensenN#&t, an updated ensemble average
is calculated using the SA method uncertaintieseights. Finally, uncertainties of the
ensemble average are calculated using propagdtemars that includes covariance
terms. The ensemble technique is extended to iaduBayesian formulation of weights
used in ensemble-averaging source impacts. In adtay approach, probabilistic
distributions of the parameters of interest arareged using prior distributions, along

with information from observed data.
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Ensemble averaging results in updated estimatssuwte impacts with lower
uncertainties than individual SA methods. Oveualtertainties for ensemble-averaged
source impacts were ~45 - 74%. The Bayesian appmaolcaptures the expected
seasonal variation of biomass burning and secoridargcts. Sensitivity analysis found
that using non-informative prior weighting perforneetter than using weighting based
on method-derived uncertainties. The Bayesian-baserte impacts for biomass
burning correlate better with observed levogluca&¥r0.66) and water soluble
potassium (R=0.63) than source impacts estimated using modititaal methods, and
more closely agreed with observed total mass. Pepextra of the time series of
biomass burning source impacts suggest that psifletors associated with this source
have the greatest variability across methods acatilins.

A secondary focus of this work is to examine theawts of biomass burning.
First a field campaign was undertaken to measuisestons from prescribed fires. An
emissions factor of 14+17 g RMkg fuel burned was determined. Water soluble amgyan
carbon (WSOC) was highly correlated with potass{iin(R?=.93) and levoglucosan
(R?=0.98). Results using a biomass burning sourcel@mérived from this work further
indicate that source apportionment is sensitiievels of potassium in biomass burning
source profiles, underscoring the importance ohtjiang local biomass burning source
profiles. Second, the sensitivity of ambient R various fire and meteorological
parameters in was examined using the method ofipteacomponents regression (PCR)
to estimate sensitivity of PM to fire data and, observed and forecast meteaiazbg
parameters. Pt showed significant sensitivity to PB, with a ub@sed sensitivity of
3.2+1 pg nt PM, 5 per 1000 acres burned. PMhad a negative sensitivity to dispersive

parameters such as wind speed

XiX



CHAPTER 1: INTRODUCTION

Ambient and indoor air pollution is a major caus@m@mature mortality, and has
been associated with more than three million pratamre deaths per year worldwide
[Limetal., 2012]. Most of these health impacts are fromettfiects from fine particulate
matter. Unlike most other air pollutants, fine parate matter (i.e. particles with an
aerodynamic diameter less than 2.5um, op N comprised of a heterogeneous mix of
chemical species, some of which are emitted diydaim a variety of sources and others
that are formed via atmospheric processes whiclisbgaseous species into condensed-
phase compounds. The health concern overfHds grown as associations have been
found between Pl mass and health outcom&ofkery et al., 1993;U.SEPA, 2009],
and has led EPA to regulate PMas a criteria pollutant as part of the US EPA’sidvel
Ambient Air Quality Standards (NAAQS). Controllifige particulate matter poses
unique challenges in developing strategies to imggpublic health and welfare (e.g.,
improved visibility), a major goal for states amgjional communities.

It is suspected that PM health effects vary by composition and source,raag
depend upon the mixture of pollutants, leadingftorts to estimate relationships
between sources of PMand health effectd{opke et al., 2006;lto et al., 2006;Mar et
al., 2006;Sarnat et al., 2008;Thurston et al., 2005]. The health effects of B¥may be
preferentially dependent on specific species; hanaecent work has suggested that
health impacts may actually be caused by the mettedf the mixture of pollutants which
make up PMs[Solomon et al., 2011;Solomon et al., 2012]. Traditional epidemiologic
models have generally used Pibr individual species in assessing health impacts.
Recently, there have been efforts to use sourcadgtagrom source apportionment (SA)
studies as a proxy for multipollutant effedttopke et al., 2006;1to et al., 2006;Sarnat et
al., 2008;Thurston et al., 2005]. There have been several efforts to detegmi

relationships between sources of PMnd health outcomekdden et al., 2000;Mar et



al., 2000;Marmur et al., 2006b;Sarnat et al., 2008;Solzdl et al., 2005;Thurston et al .,
2005], though with different results.

Controlling ambient PMs concentrations ultimately means controlling sosiraie
PM, s which requires techniques for estimating sourgerdautions. Source impacts can
be quantified using both receptor and chemicakpart models (RMs and CTMs), and
have both advantages and limitations for theiringeealth studies. RMs are not
computationally intensive, require observationaadeom a central monitor, and can be
used easily in time series health studies. A mlajotation of RMs is that their results
are only valid for the location of the monitor. UBce impacts, as well as central monitor
data, are proxies for exposure, an assumption whegyhnot be accurate given, that there
is much spatial variability in air pollution withim metro area. Recently, efforts to use
CTM SA results have addressed some of these isgwasise CTMs can provide results
over a large spatial domain. In addition, they peovide results at a high temporal
frequency (e.g. hourly results). They can also @hadmplex atmospheric chemistry and
have a greater number of source categories than Rideever, CTMs require large
computational resources, a major limitation whergltime series of source impacts are
required.

These different SA approaches often result in soaomtributions that can differ
in magnitude and/or are poorly correlated. Detemginvhich method’s set of source
contributions is the most accurate is further coocapéd because source impacts, in
general, cannot be directly measured. Without tdimezasurement of source impacts,
methods for estimating uncertainty vary acrossSAeapproaches, making it difficult to
directly compare uncertainties across methods.ekample, some methods (e.g. CTMs)
have not provided source impact estimate unceraimthile others utilize bootstrapping
or propagation of errors to estimate uncertainties.

In this work, a technique is developed that redesdaifferences between model

results by ensemble-averaging source impact refsattsseveral SA models. This



method uses a two-step process to calculate tlesrdahs average. An initial ensemble
average is used calculate new estimates of uncgemifor the individual SA methods
that are used in the ensemble. Next, an updatezhdiie average is calculated using the
SA method uncertainties as weights. Finally, utaeties of the ensemble average are
calculated using propagation of errors that inctuclevariance terms. The ensemble
technique is extended to include a Bayesian fortimnaf weights used in ensemble-
averaging source impacts.

Another focus of this dissertation is to examine efffects of biomass burning,
specifically prescribed fires, which are a sigrafit contributor to PMs. Biomass
burning, such as wildfires, prescribed burns, @asidential wood combustion, are
important sources of air pollutants, which can istgeealth, lead to violations of air
quality standards, and impair visibilit§s.[Lee et al., 2005;Sandberg et al., 2002].
Prescribed burning is widespread, especially irstheheastern US, and is used to
manage forest ecosystems and protect endangereédsspg controlling growth and
infestation while minimizing the risk of large-sedbrest firesflardy et al., 2001]. In
addition, the Southeast US has experienced sutastpapulation growth the last few
decadesCensus, 2012], causing significant urban sprawl in areotise heavily
forested region, making the wildland urban integfagspecially susceptible to air quality

impacts from prescribed burning.

The thesis is organized as follows:

Chapter 2: Ensemble-Trained Source Apportionment bFine Particulate
Matter and Method Uncertainty Analysis. This work updates the ensemble-averaging
approach by Lee et al. [2009]. Ensemble averaging of SA results is cateldiin two
steps. In the first step source impact estimatesweeraged together. In the second step,
the initial ensemble is used to re-estimate SA pretimcertainties, which are then used

as weights to calculate an updated average. Negértainties for the updated ensemble



source impact are calculated. In part, this caires$ concerns that the uncertainties
provided by the traditional methods are biased.

A compelling reason to quantify uncertainties @tttihhey can be incorporated into
epidemiologic studies, which can ultimately leadntproving our understanding of the
relationships between PMsources and health outcomes. Further, they caisdxto
inform policy makers of the effectiveness of cohtn@asures.

Chapter 3: Bayesian—-Based Ensemble Source Apportiment of PM2.5 In
this work, we extend the ensemble technique tadehlh Bayesian formulation of
weights used in ensemble-averaging source impé#cts.Bayesian approach,
probabilistic distributions of the parameters dénest are estimated using prior
distributions, along with information from observaata. Following this approach, we
obtain multiple realizations of ensemble-averaged e impacts, which are
subsequently used for deriving multiple realizagion source profiles. We then compare
results using this approach to results using oevipus ensemble approach as well as to

results using individual receptor models.

Chapter 4: Spectral Analysis of PM s Source Apportionment Methods Here
we use results from multiple PMsource apportionment results at three receptes.sit
Two of the three sites are Southeastern Aerosadels and Characterization
(SEARCH) network lHansen et al., 2003] sites and the third is a Chemical Speamatio
Trends (CSN) site. We compare results from SD&KIBT to assess intra-urban
differences in SA. We use results from SEARCHssi#ST and YRK, to compare
differences in urban versus rural receptor sit&& apply spectral analysis of source
impacts and important tracers at each of thesg &itgain insight into how source

apportionment methods vary temporally.



Chapter 5: Particulate and Gas Sampling of Prescbed Fires in South
Georgia, USA A major goal of this study was to update emissitactors for gaseous
compounds and PM in Georgia with regionally specific biomass bugair emissions
data. A second goal was to better understand thefavater soluble organic carbon
(WSOC) as a tracer of both biomass burning andngkzoy organic aerosol. Third,
tracers of prescribed burns were studied by chamaation of organic chemical
compounds. In addition, chemical speciation of;RMas used in a source
apportionment study to test its applicability agioaally specific biomass burning source

profile.

Chapter 6: Verification of Fire Weather ForecastsUsing PM2.5 Sensitivity
Analysis. In this work, we investigate the sensitivityamhbient PMsto various fire and
meteorological parameters in a spatial settingithgipical for the wildland urban
interface in the southeastern US. We use the rdeghprinciple components regression
(PCR) to estimate sensitivity of BMlto fire data and, observed and forecast
meteorological parameters. In PCR, principal congmbs analysis (PCA) is first run on
a data set. We ran PCA on 10 data sets that intIB&eactivity data along with
meteorological parameters of interest; the metegrohl parameters included either
observational data only, forecast data only orralmoation of observations and
forecasts. For each data set, we regressed PCGéssitom the first seven principal

components against observed RNb quantify sensitivities.

Chapter 7: Summary and Future Work. In this dissertation, a number of
inconsistencies and limitations of various soungeoationment techniques are addressed
by ensemble-averaging results from a short-terniGgifmn of three receptor-based
models and one emissions-based model. The metdsd humber of benefits over using

one model exclusively and provides a way to evaldéferent source apportionment



(SA) models, including estimating uncertaintiegioonsistent manner. A secondary
focus of this work is to examine the impacts ofb&ss burning. Future work includes
incorporating results from this work in health asseent models. Also, CTM
uncertainties from this work can be compared wittepestimates. The Bayesian
method developed here can be extended to includemgugate priors. The method can
also be extended to define selection criteria éonggling source profiles in future source

apportionment work.
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2.1. Abstract

An ensemble-based approach is applied to bettenast source impacts on fine
particulate matter (PM) and quantify uncertainties in various source afpaoment

(SA) methods. The approach combines source imfractsapplications of four
individual SA methods: three receptor-based moaletsone chemical transport model
(CTM). Receptor models used are the chemical ialssice methods CMB-LGO
(Chemical Mass Balance-Lipschitz global optimizany CMB-MM (molecular markers)
as well as a factor analytic method, Positive Magactorization (PMF). The CTM used
is the Community Multiscale Air Quality (CMAQ) moldeNew source impact estimates

and uncertainties in these estimates are calcuilat@dwo-step process. First, an
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ensemble average is calculated for each sourcgargtasing results from applying the
four individual SA methods. The root mean squarerd RMSE) between each method
with respect to the average is calculated for esachce category; the RMSE is then
taken to be the updated uncertainty for each iddati SA method. Second, these new
uncertainties are used to re-estimate ensemblees@aupacts and uncertainties. The
approach is applied to data from daily Piineasurements at the Atlanta, GA, Jefferson
Street (JST) site in July 2001 and January 200% procedure provides updated
uncertainties for the individual SA methods tha&t ealculated in a consistent way across
methods. Overall, the ensemble has lower relatheertainties as compared to the
individual SA methods. Calculated CMB-LGO uncertgss tend to decrease from initial
estimates, while PMF and CMB-MM uncertainties irase. Estimated CMAQ source
impact uncertainties are comparable to other SAau for gasoline vehicles and SOC
but are larger than other methods for other sourdasaddition to providing improved
estimates of source impact uncertainties, the eblseastimates do not have unrealistic

extremes as compared to individual SA methods aodia zero impact days.
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2.2. Introduction

Controlling fine particulate matter poses uniqualldmges in developing
strategies to improve public health and welfarg.(emproved visibility). Unlike most
other air pollutants, fine particulate matter (particles with an aerodynamic diameter
less than 2.5um, or P is comprised of a heterogeneous mix of chemigaties,
some of which are emitted directly from a varietysources and others that are formed
via atmospheric processes which convert gaseousespato condensed-phase
compounds. The health concern over.RMas grown as associations have been found
between PMs mass and health outcomé&ofkery et al., 1993;U.SEPA, 2009], and has
led EPA to regulate PM as a criteria pollutant as part of the US EPA’sidiel
Ambient Air Quality Standards (NAAQS).

Addressing PM;s levels relies on quantifying source-to-air qualigationships, a
process often termed source apportionment (SA}oHicslly, SA of PM s has been
conducted using receptor-based modeling approatlatsas chemical mass balance
(CMB) modeling Watson et al., 1984] or factor analytic (FA) approaches such as
positive matrix factorization (PMF) and UNMIXHenry, 1997; 2003Paatero and
Tapper, 1994]. Receptor-based modeling approaches tyypmalve a mass balance
equation that is used to reconstruct the massabf eeasured species (Equation 1):

C =f;S +¢ (Equation 1)

whereC;, is the measured concentration of speci{gsy species i 1), fij is the amount of
species emitted per unit amount from sourc@ig of speciesper pg of PMs emitted
fromj), S, is the impact of sourggpg PM 5 m™), ande is the error for théth species
between the measured concentrati@nand the calculated concentratify§. The most
commonly used CMB approach, using more routinebjilaisle PM s observations
(elemental and organic carbon: EC/OC, ionic anthhspecies), and EPA’'s CMB 8.2
software, is referred to here as CMB-regulaiCdiB-RG, [U.SEPA, 2004]. CMB has
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also been applied using organic molecular markefsyred to here &8SMB-MM , which
allows identification of more primary organic soesdhan are typically quantified using
CMB-RG [Cass, 1998;Zheng et al., 2002;Zheng et al., 2007]. Another CMB approach,
calledCMB-LGO , uses CMB and incorporates gaseous species measueeto
constrain resultadflarmur et al., 2005]. Positive matrix factorization (PMF, vensi3.0)
[Paatero and Tapper, 1994;Paatero et al., 2003;U.SEPA, 2008] is a commonly used
factor analytic approach. Receptor models careadily applied for long time periods
for which observational data is available.

Recently, chemical transport models (CTMs), sucthasCommunity Mulitscale
Air Quality (CMAQ), have been used to quantify source impacts opsPBaek et al .,
2005;D WByun et al., 1998;Cohan et al., 2005;Ko0 et al., 2009;Marmur et al., 20064a;
Wang et al., 2009;Yang et al., 2000;Yarwood et al., 2007]. CTMs utilize emissions
inventories and meteorological information to madahsport and atmospheric chemistry
in a three dimensional grid, and calculate sourggaicts over a large spatial domain and
over time scales that may not be available fronenlzgions. Another advantage of
using chemical transport models is that they cagcty link and quantify the impacts of
gaseous emission sources on particulate mattegainess of receptor-based approaches.

There have been several efforts to determine oglstips between sources of
PM, s and health outcomekdden et al., 2000;Mar et al., 2000;Marmur et al., 2006b;
Sarnat et al., 2008;30lzel et al., 2005;Thurston et al., 2005], though with different
results. InThurston et al., 2005] traffic sources were not significantly asated with
both CVD and non-accidental mortality, and, asat#hors note, the factor analytic
approaches were limited in their ability to sepaugdsoline and diesel fractions.
Subsequently, Sarnat et al. (2008) compared epalegic model results using a factor
analytic SA method, PMF, and an optimized CMB md{i@MB-LGO (Lipschitz global
optimizer) Marmur et al., 2005] to apportion sources for four years of sgted PM s

data in Atlanta and using individual compounds #ratviewed as reasonable tracers for
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various sources. They found good agreement in BREYD and respiratory outcomes
between using PMF, CMG-LGO and tracers, implyintedent SA methods yield

similar results when incorporated into epidemiotogiodels. However, a positive
association was shown between biomass burning &ftdtitcomes but not respiratory
outcomes, whereas a number of previous studieseshpasitive associations with
respiratory but not CVD outcomeldd et al., 2006;Mar et al., 2006]. As the authors
note, several recent studies corroborate theirfgg] but there also may be confounding
effects across source categoriBarfegard et al., 2006;Barrett et al., 2006;0stro et al.,
2007;Sarnat et al., 2008]. Thurston et al. (2005), who incorporateterfactor analytic
SA results into epidemiologic models for Phoeni¥, #&d Washington D.C., found that
variability in SA results across investigators/noeth increased 95% confidence intervals
(CI) of relative risk ratio (RR) per inter-quartilange by approximately 15%. However,
contributions from similar factors sometimes diff@iby an order of magnitude, making
intercomparisons between methods and their asgo@awith health less cleaGfahame
and Hidy, 2007].

Both receptor and emissions-based SA approacheslinaitations that can affect
their inclusion in health studies. Receptor-bas&deSults can vary substantially from
method to method, and some approaches lead tahiamcreased variability
[Barregard et al., 2006;Barrett et al., 2006;W E Christensen et al., 2006;W F
Christensen and Amemiya, 2003;Henry, 1987;Marmur et al., 2006b;Ostro et al., 2007,
Sarnat et al., 2008]. With a limited number of factors ideredi or source profiles
available, these methods assign mass from othecesoto available factors/sources,
leading to bias. Typical receptor model applicasioise source profiles, or identify
factors, associated with only about 80% of thenestied PM s emissionsBaek, 2009]..
The necessary resources required to apply CTMslomgrperiods inhibit their use, and
they are subject to uncertainties in emission aateorological inputs and model

parameterizations.
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A number of studies have evaluated SA resttsnkman et al., 2006;W F
Christensen and Gunst, 2004;D Leeet al., 2009;S Leeet al., 2008;Marmur et al.,
2006a;Marmur et al., 2006b;Rizzo and Scheff, 2007;Tauler et al., 2009]. Marmur et al.
(2006a) showed that CMAQ had significantly lessataility in fractional source
impacts, than CMB-LGO, effectively precluding itseuto provide source impact
estimates that can be differentiated in terms afthempact associations in acute
epidemiologic-based studigdgl@rmur et al., 2006aMarmur et al., 2006b]. Christensen
and Gunst (2004) evaluated the difference in CMiilts for a simulated data set using
four approaches to calculating source impacts fauhd that the weighted least squares
approach performed better than the effective vagapproach in most cases and was
“slightly superior” in cases where the source peofiariability is large. Christensen and
Schauer [2008] showed that perturbations to speciesentration uncertainties can lead
to relatively large differences in PMF results.eland Russell [2007] found that source
impact uncertainties in CMB-RG were more affectgddurce profile error contributed
than measurement error.

Using an ensemble of air quality models has praVi@eneans to evaluate air
quality models Delle Monache et al., 2006;Dennis et al., 2010;Rao et al., 2011;
Wilczak et al., 2006]. Ensemble averaging has been limited tME€&nd has often
focused on uncertainties in modeling ozone conagatrs. However, Lee et al. [2009]
showed that using an ensemble average of SA rdsuttsfour receptor models and one
CTM resulted in improved fitting statistics, reddogariability (compared to individual
receptor models) and reduced the number of daysneiimpact from sources that are
known to be present. In this work, we build oe Work of Lee et al. [2009] by
ensemble averaging results from four SA methodsaasdssing SA uncertainties in the
ensemble results. This work updates the approadteéyet al. [2009] in three ways: this
method uses a two step process to calculate tieedahs, uncertainties are calculated

using propagation of errors that includes covaeaecms, and new estimates of
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uncertainties are calculated for the individual @&thods that are used in the ensemble.
A compelling reason to quantify uncertainties @ttthhey can be incorporated into
epidemiologic studies, which can ultimately leadntproving our understanding of the
relationships between PMsources and health outcomes. Further, they caisdxbto

inform policy makers of the effectiveness of cohtn@asures.

2.3. Methods

2.3.1. Ensemble Source Apportionment

Ensemble averaging of SA results is conducted mdigps. In the first step
source impact estimates and the uncertainties fnen$A methods described above (see
Appendix A for more on how uncertainties were ckdtad for each SA method) are
averaged together. Inthe second step, thelieitigemble is used to re-estimate SA
method uncertainties, which are then used as wetghtalculate an updated average.
Next, uncertainties for the updated ensemble sdorpact are re-calculated. In part, this
can address concerns that the uncertainties prb\agéhe traditional methods are
biased. This process of re-estimating SA methagdainties and re-updating the

ensemble can be further iterated if desired.

The initial ensemble averagéi (t.), for sourcq at timety, is calculated using a

weighted average:

YW 5®)
Sj(tk)=|:1 0
ijl(tk)

(Equation 2)

wherew; (t,) is the weight for sourgefrom method, andS;(t, )is the source impact

for sourcg from method. The weights (Equation 3) are based on each rd&tlsource
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impact uncertainties and the value of N determihasd how much source impact
uncertainties weight the average:

w;, :iN (Equation 3)
s,

While there can be any choice for the weights, erdocus on using the inverse of the
individual SA methods’ uncertainty squared (i.e.2\and equal weighting (N=0). We
also evaluate a mixed case, in which we use eqeighting for the initial ensemble and
inverse square weighting for the updated ensemid¢ediscussed below, our focus is on
the mixed case since we find that it provides tb&t lbesults over both seasons. The initial
and updated ensemble average uncertainty is cedulging weighted propagation of
errors that includes covariance terms (Equaticseéd,Appendix A for derivationaylor

and Kuyatt, 1994]):

1 T B ks
N N SS SS N N
O ensie. = s Is : U s, Is (Equation 4)
ensemble ii ii 0.2 0.2 ii ii
=1 Ug =1 U;\l 55 Rl e Ug‘ =1 Ug

where $is the PM s impact of sourcg (source index not shown for clarity) from method
[. The middle matrix term in the right hand sideeqtiation 4 is a scaled uncertainty
covariance matrix which takes into account the @®impact uncertainties from the

individual SA methods as well as the covarianceanirce impacts across methods; thus,

each elemenu?

s,s,» where bothm andn index the SA methods that range from 1 to L, is

equal to (Equation 5):

) os 0 [Cov(m,n)
JS

S J/Cov(m,m) * Cov(n,n)

(Equation 5)
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Whereo and o are source impact uncertainties from methodsdn, Cov (mn) is

the covariance of source impacts from methodsidn andCov (m,m) andCov (n,n) are
the variances of source impacts from methodsdn, respectively.
The root mean square error (RMSE) for each methal@tiermined by

comparison against the ensemble average (Equdai@is

K

— 2
Z (Silk B Sik)
RMSE, =1+ " (Equation 6)

where S;, is the source impact for sourcdrom method, on dayk and §jk is the
ensemble average for soujaen dayk, andK is the total number of days used in the
ensemble. We then set the RMSE for each methtiteagodated uncertainty for each
day (Equation 7):

oy = RMSE, (Equation 7)

where g, is the re-estimate of the source impact unceiesirior sourcg, from method
[, on dayk. A major consequence of using Equation 7 isfitrah specific source the

updated source impact uncertainties are the saneabh day. We set new uncertainties

in this way because regression analyses betweened#od source impac(sjk,) and

their errors(SjkI —§,—k) from the ensemble averages found little corretatiblext, new

ensemble averages and uncertainties are calcudasedl on the weighted propagation of
errors using the updated uncertainties for eacim®&thod. The above procedure can be
done using both the absolute and fractional sounpacts and we focus here on results
using absolute source impacts (both approachestested with similar results).

Finally, we evaluate the individual SA methods #melensemble by comparing the

average source impact (by source category andrgeado compare uncertainties

between methods, we define therall method uncertainty, (E'sik, ) as the root mean

18



square average of the daily updated source impaertainties Pachon et al., 2010]

(Equation 8):

o K
gs, = /%Zaém (Equation 8)
k=1

As discussed previously, the base case was cormbtlusiieg four SA techniques.
SA impacts included previous results for CMB-MM INVALID CITATION !!l] and
CMAQ [Baek et al., 2005] were used as inputs into the ensembleyanapplied CMB-
LGO and PMF, for 1999-2004 using speciated,BNata from the SEARCH Jefferson St
(JST) monitoring siteHdgerton et al., 2005; 2006Hansen et al., 2003]. The JST data set
contains daily speciated concentrations of iondaiay nitrate, and ammonium), organic
carbon (OC), elemental carbon (EC), and trace mefahta also includes speciated
organic molecular markers for two one month peri@dsgy 2001, January 2002) used as
part of the CMB-MM work Zheng et al., 2007]. Further details on these methods can be
found in Lee et al. [2009]and references therein.

Ensemble-averaging was conducted for July 200&pgcesent summer, and
January 2002 to represent winter (SA results fradAQ and CMB-MM were available
for these months). Source impacts from individsl@lmethods used in the ensemble
were binned into nine source categoried pe et al., 2009], and included five primary
sources and four secondary sources. Primary sourckide gasoline vehicles (GV),
diesel vehicles (DV), dust (DUST), biomass burniBg RN), and coal combustion
(COAL). Secondary categories include sulfate atétrammonium and other organic
carbon (Other OC), which was treated as a surrdgatecondary organic carbon
(SOC). CMAQ simulations tended to be biased hagtstilfate, nitrate and ammonium
in winter [Denniset al., 2010]. To account for this, we did not use CMAgults for
sulfate, nitrate and ammonium to calculate the mibéeimpact in the equal weighting
case. In addition, we performed a sensitivity gsialof the ensemble by replacing

CMB-LGO with CMB-RG since this method is more wigleised. We did not use both at

19



the same time because they are very highly coelaelying on similar data. A second
sensitivity analysis was conducted by not includZdAQ results as such results may
not be as readily available or for as long of aquer However, CTM-based source
impact files are becoming increasingly availaiNegelenok et al., 2006;Yarwood et al .,

2007].

2.4. Results

2.4.1. Ensemble Source Impacts and Uncertainties

Comparison of the four methods shows the relatiasds of these methods across
sources (Figures 2.1, A.1 and Tables A.1, A.2)t éxample, CMB-LGO has
significantly higher SOC impacts, especially in tein PMF tends to have higher source
impacts for DV and BURN with lower impacts for SOCMB-MM has higher estimates
of SOC in summer and higher estimates of GV in &inlCMAQ has higher DUST
impacts in both seasons and higher BURN and COAdauts in winter. The three
receptor models, as expected, have very similattsefor ionic species while CMAQ
estimates are higher. Ensemble averaging proddi®s source apportionment that
results in no zero-impact days, reduced variabffigure 2.1) and updated uncertainties
to the daily source impacts in the five individsalrce apportionment methods.
Ensemble averaging overcomes some limitationseoirttlividual SA methods (e.qg.,
when a particular method apportions PjYhass poorly for a given source, or does not
resolve a set of sources for a given day). Tisemble avoids performing poorly for
any particular source, a major limitation of tramtial SA methods. The ensemble, for
both seasons, has the lowest estimated relativertamaty for all cases, when averaged
across all sources (i.e. the average of the ovestallive uncertainties for each source)

(Table 2.1).
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Table 2.1: Average overall relative uncertaintiegor equal weighting (EW), inverse square weighting
(ISW), and a mixed case (MIX) using both EW and ISWor summer (July 2001) and winter
(January 2002). The values shown are averaged ovalt source categories, excluding sulfate, nitrate
and ammonium. Note: For MIX, the base SA methodsdve uncertainties based on EW.

Summer
CMB- PMF CMB- CMAQ ENS.
LGO MM
Initial 97% 38% 143% 222% -
EW 81% 76% 80% 72% 45%
ISW 76% 69% 72% 93% 52%
MIX - - - - 45%
Winter
Winter CMB- PMF CMB- CMAQ ENS.
LGO MM
Initial 172% 53% 143% 388% -
EW 219% 167% 202% 282% 59%
ISW 152% 124% 88% 409% 74%
MIX - - - - 62%

In summer, the ensemble, using inverse square wegglinas the lowest overall
relative uncertainties (i.e. RMSE divided by averagurce impact) for BURN (49%),
COAL (45%), and SOC (42%) and has the second loaxestall relative uncertainties
for GV (77%), DV (36%) and DUST (62%). With equatighting, the ensemble has the
lowest overall relative uncertainties for DV (389)JST (48%) and BURN (35%), and
has the second lowest uncertainties for GV (65%)AC (39%) and SOC (40%) . With
mixed weighting, the ensemble has the lowest ovegtative uncertainties for DV
(36%), DUST (55%), BURN (33%), and SOC (29%). CMB80O has the lowest overall
relative uncertainty for GV and CMAQ for COAL.
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Figure 2.1: Ensemble with mixed weighting for dly 2001. NOTE: CMB-RG results shown here
are not included in the base ensemble, but are us@tthe sensitivity analysis (Figures A.7 and A.8).
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The ensemble overall relative uncertainties in anaire generally higher than in
summer (Figure A.1). Also, source impacts in wirgtee more varied between methods
than in summer leading to greater RMSEs betweeSmethods and the ensemble.

Choice of weighting does not result in large digigces in the overall relative
uncertainties in the ensemble averages for prirsanyces and SOC, though there can be
large differences in the magnitude of source impéeigures 2.2 and A.1 and Tables A,1
and A.2). For example, the average GV source itnfpathe summer ensemble with
inverse square weighting is 0.53 +0.24 (®) and is driven by CMB-MM which has an
average impact of 0.36g m®and an initial overall uncertainty of 0.8 m*>. With
equal weighting, the ensemble GV has an averagesaf0.40ug m>. With mixed
weighting, the average source impact for the en&einl).55+0.38ig m*. However,
source impacts across the three cases are in gty correlated, with low
correlations only for SOC in the summer and DUST 80C in winter (Table A.3).

The ensemble results, as compared to measured, Pddonstruct Pl¥s mass
between 75% and 110% over all cases (Table 2.Z30mewhat low bias may be
expected because the typical range of identifienlcas in receptor models account for
only about 80% of the inventoried BMemissionsBaek, 2009]. In the work shown
here, total mass from receptor models are biasgltlyl low in summer and slightly high
in winter. There were no results for BURN or CO#Llsummer for CMB-MM, which
may be why the predicted to observed Rvatio is low for that method. CMAQ results
for total PMy 5 are biased low by about 20% in the summer and Iygh factor of 2 in
the winter. The ensemble, when using inverse squarghting, slightly under estimates
PM, s in both seasons. The ensemble results correlate strongly with measured
PM,sin both seasons than other methods except PMFdiega of weighting, havingR
values between 0.84 and 0.96 (Table 2.2).
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Table 2.2: Ratio of calculated to observed Pl for July 2001 and January 2002. Calculated Pl

is defined as the sum of source impacts from theme source categories. Observed PMis from JST
measurements, which use a gravimetric- based methaimilar to the Federal Reference Method
(FRM). (*NOTE: Values are recalculated here becausLee et al, (2009) used a different protocol for
calculating measurement uncertainties).

CMB- CMB- Ensemble | Ensemble | Ensemble | Le et al.
LGO PMF MM CMAQ (EW) (ISW) (MIX) (2009)*

Avg. calc./obs.

July 2001 PM2.5 0.78 0.84 0.71 0.77 0.77 0.81 0.79 0.74
St. Dev.
calc./obs.
PM2.5 0.10 0.13 0.09 0.29 0.10 0.10 0.10 0.08
R? 0.94 0.97 0.93 0.58 0.96 0.96 0.96 0.96
Slope (Std. 0.68 0.66 0.71 0.53 0.63 0.68 0.65 0.65
Error) (0.03) (0.02) (0.04) (0.09) (0.02) (0.03) (0.03) (0.02)
Intercept (Std. 1.77 2.95 -0.08 4.28 2.41 2.30 2.42 1.54
Error) (0.78) (0.53) (1.10) (2.05) (0.57) (0.62) (0.61) (0.59)
Reduced Chi-
Square 9 60 54 594 158 51 83 20

January Avg. calc./obs.

2002 PM2.5 0.97 1.02 1.01 2.05 0.98 1.13 1.10 0.99
St. Dev.
calc./obs.
PM2.5 0.16 0.14 0.15 0.84 0.17 0.19 0.18 0.21
R’ 0.83 0.88 0.84 0.34 0.84 0.85 0.84 0.76
Slope (Std. 0.74 0.90 0.76 1.21 0.65 0.78 0.76 0.65
Error) (0.06) (0.06) (0.07) (0.32) (0.05) (0.06) (0.06) (0.07)
Intercept (Std. 2.53 1.26 2.84 8.86 3.61 3.78 3.68 3.69
Error) (0.83) (0.84) (0.91) (4.28) (0.70) (0.81) (0.83) (0.92)
Reduced Chi-
Square 7 107 72 1661 212 71 124 805

Sensitivity analyses were performed by re-runnivgensemble in two different
ways. First, the ensemble was run using CMB-R@lte# lieu of CMB-LGO. In both
seasons, using mixed weighting, the ensemble sesli#inge little because CMB-RG and
CMB-LGO results are highly correlated for all seiategories (Figures A.7-A.8).
Second, we also ran the ensemble without CMAQ te$ué. ensemble with CMB-LGO,
PMF and CMB-MM). In both seasons, changes arednfoleGV, DUST, BURN and
SOC since CMAQ is not always strongly correlatethweceptor model results.
Nevertheless, the changes are within the 67% cendiel intervals of the full ensemble

(Figures A.9 and A.10).
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2.5. Discussion

The ensemble gives insight into how well each SAho@ works, and provides
improved estimates of source impacts and improgéchates of source impact
uncertainties by SA method. The ensemble alsocowees poor or unrealistic
performance (e.g. high day to day variability oyslahere source impacts are zero for
sources known to present). The ensemble allowsdiaparison of uncertainties by
calculating them in a consistent manner and avbie$ieed for bootstrapping methods or
poorly characterized uncertainties in source pesfilFor example, CMB-MM and PMF
have very different GV impacts in winter (2.42 an@7 pg nt) with low overall
uncertainties when calculated using traditionalhmds (0.44 and 0.33 ug Thus,
while the average source impacts are very diffetbetoverall relative uncertainties are
similar, 26 and 31%, respectively, making it difficto determine which model provides
more accurate estimates. The ensemble reconkigemtonsistency, suggesting
uncertainties in both PMF and CMB-MM are largem.ahother study using CMB-MM,
it was shown that GV source impact uncertaintiessansitive to the percentage of high
emitting vehicles for weekend traffic; when smokehicles are assumed to be 5% of the
GV fleet, GV source impact uncertainties on Satysd#ecrease from 51% to 25% while
for other days they are below 17%oigh and Schauer, 2007]. Nevertheless,
assumptions of fleet composition, vehicle typeyidg conditions and driver behavior, all
of which are significant sources of uncertaintyeetf these types of analyses. Therefore,
the uncertainties in Lough and Schauer (2007) shbelviewed as tighter than achieved
in general applications. In PMF, uncertaintiescaieulated by bootstrapping, which
reflects how similar the bootstrapped data settsetation structure is to the original data
set, and may not reflect the actual factor contrdsuuncertainty.

Inverse square weighting leads to the ensembleylbegavily influenced by a
particular method (e.g. CMB-MM for GV), having i@t uncertainties that are apparently
biased low. This indicates that, given no oth&nmation, all methods should be
weighted equally, (i.e., using equal weighting) h&W using mixed weighting, the base

case SA methods are also treated equally, butgtiated ensemble is weighted by the
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new uncertainties to base case SA methods. Wenreend mixed weighting because
this incorporates the new uncertainties as weightise updated ensemble average and
performed well in the evaluation measures.

Ensemble averaging also allows uncertainties in &¥dged source impacts to be
readily estimated. To our knowledge, this is & fvork to estimate P source
impact uncertainties in CMAQ. As new techniquesdeveloped to estimate CTM
uncertainties, ensemble averaging can provide asmeevaluate these estimates.

Another approach to evaluating the ensemble qudintly is to compare our
results with estimates of secondary organic ca(B@C) impacts from other work
(Table 2.3). Recently, Pachon et al. (2010) fotlnad the regression method for
estimating SOC had the lowest overall relative uiadety, when compared to the EC
Tracer Method, CMB-RG and PMF. They showed thah I8MB-RG and PMF have
high overall uncertainties that ranged from 47%@é6 for CMB-RG and 59% to 120%
for PMF in summer and winter, respectively. Thgression method estimated SOC to
be 1.68 + 0.14ig m® and 0.80 + 0.11ig m* in July 2001 and January 2002,
respectively. The ensemble estimates are compgatalhe regression method’s average
impact and overall uncertainty for July 2001, na kigher for January 2002 (Table 2.3).
The correlation of the ensemble-based SOC withgheession-based SOC is very
encouraging since the regression method includeseozoncentrations, which are not
used in any of the receptor models included ireteemble. In addition, the regression
method was more strongly correlated with measurat@msoluble organic carbon
(WSOC), which is hypothesized to be primarily freetondary reactions. This indicates
a better fit with SOC than the other methods. WS&)Gkewise, not used in any of the
ensemble methods. Further, it is interesting ttiaicorrelation between the ensemble

SOC and the PMF SOC is very low’(R0.01 for July 2001).
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Table 2.3: Secondary Organic Carbon (SOC). Resulfsr July 2001 and January 2002 g m>).
NOTE: Ensemble with MIX uses EW uncertainties in lase case SA methods.

Summer Winter
Uncertainty ( +0) Uncertainty ( o)
Average Ens. Ens. Ens. Average Ens. Ens. Ens.
SOC with EW [ with ISW | with MIX SOC with EW | with ISW [ with MIX
CMB-LGO 1.93 + 0.72 1.19 - 2.43 * 1.21 2.00 -
PMF 1.06 + 1.17 0.77 - 0.69 * 1.05 0.54 -
CMB-MM 3.23 + 1.73 2.39 - 1.89 * 0.89 1.77 -
CMAQ 1.40 + 1.06 1.15 - 0.97 * 0.71 0.76 -
Ensemble
with EW 1.81 + 0.73 - - 1.45 + 0.68 - -
Ensembl e
with ISW 1.42 + - 0.60 - 0.90 + - 0.48 -
Ensemble
with MIX 1.76 + - - 0.60 1.31. + - - 0.63

To evaluate the choice of weighting, we conductedkYegressionJaylor et al.,

2006;York et al., 2004] between the ensemble and the regressidmoth&OC impacts

and found that mixed weighting reproduced regressiethod results better that equal or

inverse square weighting R 0.82 and slope = 0.87 for summer 2001) (Figu@.AA

similar analysis was performed for January 2008F&é A.10). It has been suggested

that CMB based methods overestimate SOC becausampyriOC from some sources are

not considered [!!! INVALID CITATION !!l]. Updatecemissions information that
include improved estimates of primary OC emissiorthie winter, which suggest that
gasoline vehicles emit more OC in cold weather iBaraptured in current inventories,
can significantly alter how OC is apportiondé2bhahue et al., 2009;Subramanian et al.,
2006]. Itis expected that improved source prefftr CMB based methods and
improved emissions processing in CTMs should leadhproved correlation of SOC

estimates between the ensemble and the regressihiods.

2.6. Conclusions

Commonly used methods to apportion sources of #Mve a number of issues
that complicate their appropriate use. Resultsftioe application of different SA
methods can disagree substantially. Furthermaiteulation of source impact
uncertainties varies from method to method, leattingery different uncertainty

estimates and making inter-comparisons of sourpaats and their associated
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uncertainties difficult. Here we average an enderabSA methods, which includes two
CMB methods, PMF and CMAQ to estimate updated sounpacts and uncertainties.
Three weighting cases, equal weighting, inversasgweighting and a mixed case are
evaluated.

Ensemble averaging results in source impact essthat have reduced
variability compared to individual SA methods, al®rero impact days and resolves
source impacts for all days. The choice of weiglhimpacts ensemble-based average
source impacts and uncertainties, but in generssrmable source impact uncertainties are
lower or very comparable with individual SA methaacertainties. Over both seasons,
mixed weighting in the ensemble reproduces,Phktter than equal or inverse square
weighting and agrees better with SOC estimates &@®parate approadhdchon et al.,
2010]. In the absence of any prior information ethivould indicate otherwise, mixed
weighting should be used.

The ensemble method provides updated uncertafiotie¢se individual SA
methods that are calculated in a consistent waysaanethods. In general, CMB-LGO
and CMB-MM overall uncertainties, averaged ovematiy sources and SOC, decrease
in summer and increase in winter as compared tetfmund using the traditional
approach for these methods. The ensemble methogedvides a way to estimate
source apportionment uncertainties in CMAQ. CMArse impact uncertainties are
comparable to other SA methods for GV and SOC argel than other methods for DV,
DUST and BURN.
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APPENDIX A: SUPPLEMENTARY INFORMATION FOR

CHAPTER 2

A.1l. Uncertainty Calculations

Uncertainties in receptor models are typically akdted by techniques specific to
each method. In CMB-RG and CMB-MM, uncertainties @aditionally calculated
using the effective variance approach, which inocafes both measurement and source

profile uncertaintie&rfij , [Watson et al., 1984]:

-1/2
- 1:ijz .
O cMB-RG,CMB-MM — Z 5 T (Equation Al)
i +ijlaf

i=1 O¢ | sz

In CMB-LGO, uncertainty is calculated accounting dmcertainties in
measurements (CITE CMB-LGO Lee and Russell 200i19;i$ the same as setting the

g, term equal to zero in the CM-RG effective varianakulation of uncertainty

(Equation 3):

-1/2
n fij2
O—CM B-LGO Z 2

(Equation A2)

There is no commonly accepted method for calcudatimcertainties in factor
analytic approaches such as PMF. Here, we utilizeotstrapping method to estimate
source impact uncertainty, in a manner similarrevipus work D Leeet al., 2009;
Pachon et al., 2010]. The uncertainty for each daily factor tritnution, gjx, was taken to

be the factor contribution times the standard deneof the PM s fitting species

(Tpu,.; ) from the bootstrapping results (Equation 4):
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Tgy = QikTpm i (Equation A3)

There is no generally accepted method for detengioncertainties in CTM PM
source apportionment results. In this study, wethheanethod employed by Lee et al.

(2009) to develop initial estimates of CMAQ uncerti@s (Equation 5):

2 1/2

S, - S
Oy =| 0%, cuo o + Biomo 4"CMB_RG) (Equation A4)
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Table A.1: Ensemble average source impacts andibuecertainties (as defined by eq12), for JWI2. For each SA method, overall uncertaintiessaown for (1)

the initial application of the SA method, (2) thesemble with equal weighting and (3) with invergaase weighting. For the ensemble, results shaweae source

impacts and overall uncertainties for with (2) dgueaighting, (3) with inverse square weighting ga3i mixed weighting. In mixed weighting, the imitensemble uses
equal weighting and the updated ensemble usessggguare weighting.

CMB-LGO PMF CMB-MM CMAQ
Avg. Avg. Avg. Avg.
Source unc. Unc. Unc. | Source unc. Unc. Unc. | Source unc. Unc. Unc. | Source Unc. Unc. Unc.
Summer | Impact (1) (2) (3) Impact (1) (2) (3) Impact (1) (2) (3) Impact (1) (2) (3)
GV 0.88 + 041 053 0.62 0.80 + 026 075 0.77 0.36 + 035 045 049 0.36 + 224 044 047
DV 1.03 + 137 065 061 1.71 + 09 087 1.06 0.99 + 250 044 032 1.25 + 118 052 0.64
DUST 0.37 + 029 079 0.52 0.90 + 033 065 0.62 0.51 + 102 049 0.22 1.57 + 083 089 130
BURN 0.81 + 038 038 0.60 1.61 + 017 084 0.79 - * - - - 0.61 + 174 062 0.93
COAL 0.15 + 020 0.10 0.08 - + - - - - * - - - 0.22 + 034 0.08 0.13
S04 8.00 + 083 018 0.27 7.82 + 042 018 0.16 8.45 + 184 011 0.17 6.95 + 301 271 271
NO3 0.45 + 0.07 0.06 0.05 0.32 + 008 010 0.11 0.46 + 010 0.05 0.05 0.97 + 051 101 102
NH4 2.90 + 023 018 0.12 3.10 + 058 030 0.39 2.79 + 062 031 031 2.76 + 092 086 0.83
SOC 1.93 + 280 072 1.19 1.06 + 0.59 1.17 0.77 3.23 + 0.75 176 2.39 1.40 + 182 1.06 1.15
Ensemble with
Ensemble with Inverse Square Ensemble with Mixed
Equal Weighting Weighting Weighting
Avg. Avg. Avg.
Source unc. Source unc. Source unc.
Summer | Impact (2) Impact (3) Impact (4)
GV 0.62 + 040 0.53 + 041 0.55 + 0.38
DV 1.25 + 047 1.08 + 0.39 1.15 + 0.42
DUST 0.98 + 048 0.70 + 042 0.88 + 0.49
BURN 1.02 + 042 1.01 + 0.50 0.87 + 0.33
COAL 0.19 + 0.07 0.18 + 0.08 0.20 + 0.07
S04 7.89 + 0.12 7.85 + 0.19 7.87 + 0.15
NO3 0.40 + 0.05 0.43 + 0.06 0.43 + 0.06
NH4 2.89 + 0.19 2.88 + 0.17 2.89 + 0.23
SOC 1.81 + 0.73 1.42 + 0.60 1.76 + 0.60

w
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Table A.2: Ensemble average source impacts and oaé uncertainties (as defined by eql12), for Januar 2002. For each SA method,

overall uncertainties are shown for (1) the initialapplication of the SA method, (2) the ensemble viitequal weighting and (3) with
inverse square weighting. For the ensemble, resalshow average source impacts and overall uncertdies for with (2) equal

weighting, (3) with inverse square weighting and (4mixed weighting. In mixed weighting, the initialensemble uses equal weighting
and the updated ensemble uses inverse square weiglt

CMB-LGO PMF CMB-MM CMAQ

Avg. Avg. Avg. Avg.

Source unc. Unc. Unc. | Source unc. Unc. Unc. | Source unc. Unc. Unc. | Source Unc. Unc. Unc.
Summer | Impact (1) (2) (3) Impact (1) (2) (3) Impact (1) (2) (3) Impact (1) (2) (3)
GV 1.55 + 071 0.56 0.62 1.07 + 0.33 0.78 0.85 2.42 + 044 1.33 1.35 0.33 + 297 121 1.23
DV 1.18 + 080 040 0.45 1.24 + 0.83 0.89 0.78 0.88 + 217 0.61 0.63 1.48 + 144 0.60 0.82
DUST 0.10 + 040 074 0.38 0.31 + 011 055 0.25 0.06 + 0.35 0.67 0.14 1.84 + 100 122 174
BURN 1.27 + 0.66 258 1.82 4.82 + 051 1.84 299 2.86 + 0.85 150 1.78 5.65 + 333 255 4.00
COAL 0.05 + 0.23 0.15 0.13 - + - - - - + - - - 0.23 + 036 0.09 0.16
SO4 2.21 + 0.25 0.22 0.28 1.61 + 034 0.59 0.59 2.22 + 0.46 0.24 0.29 4,95 + 203 373 3.76
NO3 1.68 + 024 010 0.11 1.47 + 034 0.15 0.17 1.65 + 0.38 0.06 0.08 5.22 + 237 478 4.76
NH4 1.28 + 010 0.02 0.03 1.32 + 0.32 0.09 0.09 1.24 + 0.26 0.10 0.11 3.33 + 129 253 252
SOC 2.43 + 099 1.21  2.00 0.69 + 0.59 1.05 0.54 1.89 + 051 0.89 1.77 0.97 + 240 0.71 0.76

Ensemble with
Ensemble with Inverse Square Ensemble with Mixed
Equal Weighting Weighting Weighting
Avg. Avg. Avg.
Source unc. Source unc. Source unc.
Summer | Impact (2) Impact (3) Impact (4)

GV 1.31 + 071 1.35 + 0.62 1.36 + 0.57

DV 1.26 + 048 1.19 + 0.49 1.21 + 0.43

DUST 0.78 + 074 0.31 + 042 0.47 + 0.65

BURN 3.63 + 1.78 2.70 + 1.81 3.58 + 1.60

COAL 0.18 + 0.10 0.17 + 0.13 0.20 + 0.09

S04 2.04 + 024 2.16 + 0.30 2.17 + 0.24

NO3 1.60 + 0.08 1.63 + 0.10 1.63 + 0.08

NH4 1.28 + 0.05 1.28 + 0.03 1.28 + 0.03

SOC 1.45 + 0.68 0.90 + 0.48 1.31 + 0.63
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Table A.3: Correlations (R?) between ensemble results using equal weighting\{, inverse square weighting (ISW), and the mixedase using EW in the initial
average, followed by ISW in the updated average, feummer (July 2001) and winter (January 2002). Vales in bold show B< 0.70.

GV DV DUST BURN COAL S04 NO3 NH4 SOC
RZ
(EW vs. | Summer 0.96 0.87 0.77 0.97 0.90 1.00 0.98 0.99 0.76
ISW) Winter 0.93 0.96 0.38 0.89 0.98 0.97 1.00 1.00 0.67
RZ
(EW vs. Summer 0.93 0.96 0.93 0.83 0.96 1.00 0.98 1.00 0.94
Mixed) | Winter 0.92 0.95 0.72 0.95 0.92 0.96 1.00 1.00 0.97
pd
R Summer 0.99 0.94 0.93 0.93 0.75 1.00 1.00 1.00 0.67
(ISW vs.
Mixed) | Winter 1.00 0.99 0.86 0.98 0.82 1.00 1.00 1.00 0.65

Table A.4: Average correlation, R, (range), between methods including ensemble usinegual weighting (EW), inverse square weighting 8W), and a mixed
case (MIX) using both EW and ISW for GV, DV, DUST,BURN, COAL and SOC. Values to the left of the diagnal and right are for July, 2001 and January,

2002, respectively. Values in bold show averageé=R0.50.

CMB- CMB- ENS ENS ENS
LGO PMF MM | CMAQ | (Ew) (ISW) (MIX)
0.30 0.47 0.23 0.53 0.52 0.56
CMB- 0.07- | (0.24- | (0.16- | (0.12— | (0.00- | (0.06 -
LGO 0.63) 0.79) 0.39) 0.89) 0.94) 0.94)
0.23 0.27 0.12 0.50 0.60 0.51
(0.02 — (0.02— | (0.00- | (0.06— | (0.46- | (0.03-
PMF 0.70) 0.56) 0.38) 0.84) 0.80) 0.86)
0.64 0.35 0.09 0.54 0.59 0.61
CMB- | (0.21- | (0.00- ©0.04- | (017- | (©21- | (0.43-
MM 0.95) 0.87) 0.20) 0.74) 0.88) 0.80)
0.07 0.04 0.09 0.50 0.21 0.44
(0.00- | (0.00- | (0.01- (0.13- | (0.00- | (0.09-
CMAQ | 0.27) 0.17) 0.18) 0.77) 0.57) 0.95)
0.48 0.56 0.70 0.27 0.78 0.87
ENS | (0.32- | (0.03- | (0.48- | (0.03- (0.42- | (0.50-
(EW) 0.64) 0.89) 0.89) 0.65) 0.98) 0.97)
0.57 0.58 0.72 0.20 0.87 0.88
ENS | (0.29- | (0.36- | (0.48— | (0.00- | (0.76 - (0.65 -
(ISW) 0.71) 0.81) 1.00) 0.33) 0.97) 0.99)
0.61 0.44 0.77 0.30 0.92 0.87
ENS (0.29- | (©.01- | (0.47- | (0.00- | (0.83- | (0.67-
(MIX) 0.88) 0.61) 0.95) 0.83) 0.96) 0.99)
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Figure A.1: Average source impacts and overall urestainties for the five SA methods and the ensemblerror bars represent one sigma)

for January 2002. For each method, the first dat@oint (1) shows source impact and initial uncertaities. The second point (2) shows source
impact and updated uncertainties using equal weigimg (EW*). The third point (3) shows source impactnd updated uncertainties using
inverse square uncertainty weighting (ISW). The esemble has three data point for the EW and ISW and mixed case (4), respectively.

The mixed case used EW the initial ensemble and ISWr the updated ensemble. *NOTE: the EW case deaot include CMAQ results for
Secondary Sulfate, Secondary Nitrate and Secondadmmonium.
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Ensemble With Equal Weighting, July 2001
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Figure A.2: Ensemble with equal weighting for Jly 2001. NOTE: CMB-RG results shown here are not
included in the base ensemble, but are used in tisensitivity analysis (Figures A.7 and A.8).

Ensemble With Inverse Square Weighting, July 2001
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Figure A.3: Ensemble with inverse square weightg for July 2001. NOTE: CMB-RG results shown heg
are not included in the base ensemble, but are us@tthe sensitivity analysis (Figures A.7 and A.8).

41



Ensemble With Mixed Weighting, January 2002
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Figure A.4: Ensemble with mixed weighting for Jauary 2002. NOTE: CMB-RG results shown here are
not included in the base ensemble, but are used tine sensitivity analysis (Figures A.7 and A.8).
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Figure A.5. Ensemble with equal weighting for Jauary 2002. NOTE: CMB-RG results shown here are no
included in the base ensemble, but are used in tisensitivity analysis (Figures A.7 and A.8).
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Ensemble With Inverse Square Weighting, January 200 2
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Figure A.6: Ensemble with inverse square weightg for January 2002. NOTE: CMB-RG results shown
here are not included in the base ensemble, but atesed in the sensitivity analysis (Figures A.7 and.8).
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Figure A.7: Ensemble Sensitivity to CMB-RG and CMBLGO, Summer.
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Winter Ensemble Senstivity for Mixed Weighting
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Figure A.8: Ensemble Sensitivity to CMB-RG and CMBLGO, Winter.
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Figure A.9: Ensemble Sensitivity to CMAQ, Summer.
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Winter Ensemble Sensitivity for Mixed Weighting
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Figure A.10: Ensemble Sensitivity to CMAQ, Winter.
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To evaluate the choice of weighting, we conductedkegression between the
ensemble and the regression method SOC imp&aof et al., 2006;York et al., 2004]
(Figures A.11, A.12 and Table A.5). Equal weigftreproduces the regression method results
with high correlation (R= 0.73) and a regression slope of 0.88. Mixedyiig had a slightly
lower slope of 0.87 but a higher correlatiorf €R0.82). Inverse square weighting in July 2001
led to a decreased slope and correlation. A siraitatysis was performed for January 2002
(Figure A.12), but wintertime SOC is expected tddwe, and winter results are impacted by

known biases to estimates of both primary and sergnOC impacts in both receptor models

and CTMs.
4.5
. y1 = 0.42(0.15)x + 0.72(0.27)
4 4 y Rz =0.42 Regression SOC
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Figure A.11: SOC estimates from the regression mievd (Pachon et al., 2010), and ensemble results ngi
equal weighting (EW), inverse square weighting (ISWW and a mixed case using both EW and ISW for
summer (July 2001) .
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Figure A.12: SOC estimates, January 2002 for theegression method (Pachon et al., 2010), equal weigth
ensemble and inverse square weighted ensemble.

Table A.5: Average correlation, B, (range), between methods mixed case (MIX) for SQCValues to
the left of the diagonal and right are for July, 2@1 and January, 2002, respectively. Values in bold
show average B> 0.50.

CMB- CMB- ENS Regression
LGO PMF MM CMAQ (MIX) Method
CMB-LGO 0.07 0.48 0.39 0.79 0.28
PMF 0.02 0.02 0.001 0.027 0.28
CMB-MM 0.89 0.002 0.20 0.74 0.05
CMAQ 0.002 0.003 0.009 0.63 0.03
ENS (MIX) 0.80 0.01 0.88 0.14 0.16
Regression
Method 0.84 0.005 0.90 0.04 0.82
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A.2. Derivation of Ensemble Uncertainty

For each source and for each day, an ensemble-baseaefesemple, IS Ccalculated

31
> S

=1 0

Based on propagation of errors:
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Where the second matrix term is the variance-canag matrix of source impacts across the

four SA methods (for each day).

Given that:
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And where the second matrix term on the right hsidd is defined by equation 4.
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3.1. Abstract

A Bayesian source apportionment (SA) method is ldgesl to provide source impact
estimates and associated uncertainties. Bayesisedlensemble averaging of multiple models
provides new source profiles for use in a chemitass balance (CMB) SA of fine particulate
matter (PM ). The approach estimates source impacts anduthegrtainties by utilizing a
short-term application of four individual SA metlsodthree receptor-based models and one
chemical transport model. For each day of thetdkaom SA application, source impact
uncertainties are stochastically sampled from Bayelsased posterior distributions. The
uncertainties for each method are then used asigeiythe ensemble-averaged source impacts.
A Monte Carlo technique is used to estimate aidigtion of Bayesian ensemble—based source

impacts for each day in the ensemble. These sauacts are then used to determine two
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seasonal distributions of source profiles thatused in SA for a long-term PM dataset. For
each day in a long-term RMdataset, 10 source profiles are sampled from thissgbutions

and used in a CMB application resulting in 10 Ssutes for each day. This formulation results
in a distribution of daily source impacts rathartta single value. The average and standard
deviation of the distribution are used as the festimate of source impact and a measure of
uncertainty, respectively. The Bayesian-basedcsomnpacts for biomass burning correlate
better with observed levoglucosarf4R.66) and water soluble potassiunf¥B.63) than source
impacts estimated using more traditional methodd,raore closely agreed with observed total
mass. The Bayesian approach also captures thetegpgeasonal variation of biomass burning
and secondary impacts. Sensitivity analysis fatmatl using non-informative prior weighting
performed better than using weighting based on atetterived uncertainties. This approach

can be applied to long-term data sets from EPAéispion network sites.

50



3.2. Introduction

Air quality standards are driven, in part, by hieathpacts of air pollutants and the
policies to control sources of air pollutants afte evaluated by improvements to human
health. Ambient air pollution has been estimatedaistribute to greater than 3,000,000
premature deaths worldwide in 2010; of this burdleea,vast majority has been attributed to fine
particulate matter (Pik) [Limet al., 2012]. PM s health impacts include both respiratory and
cardiovascular health outcomd3dckery et al., 1993;Laden et al., 2000]. Given the potential
health impacts, the US EPA has set National AmbdénQuality Standards (NAAQS) for PM
and a major goal for states and regional communisi¢o meet those standards and protect
public health. Itis suspected that Pjhealth effects vary by composition and source,raag
depend upon the mixture of pollutants, leadingftores to estimate relationships between
sources of PMs and health effectd{opke et al., 2006;1to et al., 2006;Mar et al., 2006;Sarnat
et al., 2008;Thurston et al., 2005].

Controlling ambient PMs concentrations ultimately means controlling sosir@ePM s
which requires techniques for estimating sourcdrdmtions. However, Pl sources typically
emit a mixture of pollutants, including gases aadiples, which mix in the atmosphere and can
undergo chemical transformations prior to impactargpecific receptor location, making it
difficult to quantify impacts. Source apportionm€8A) involves one or more techniques that
are used to quantify how individual sources contelio PM s concentrations. SA techniques
that rely on statistical analysis of observationsianitor sites are referred to as receptor models.
These techniques include chemical mass balance j@¥d@positive matrix factorization
(PMF). In addition, chemical transport models (CTMave utilized sensitivity parameters to
estimate source contributions. These different Bgr@aches often result in source contributions
that can differ in magnitude and/or are poorly etated. Determining which method’s set of
source contributions is the most accurate is furtbenplicated because source impacts, in

general, cannot be directly measured. Without dimezasurement of source impacts, methods
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for estimating uncertainty vary across the SA apphes, making it difficult to directly compare
uncertainties across methods. For example, sonteone(e.g. CTMs) have not provided
source impact estimate uncertainties while othaligeibootstrapping or propagation of errors to
estimate uncertainties.

In this work, we build on an approach to combindtiple SA model results to train a
CMB method for long-term applicatioB@lachandran et al., 2012;D Lee et al., 2009;Maier et
al., 2013] by extending the ensemble technique tadehlh Bayesian formulation of weights
used in ensemble-averaging source impacts. In adday approach, probabilistic distributions
of the parameters of interest are estimated ugiiog gistributions, along with information from
observed data. Bayesian analysis has been usedaiety of applications and can be especially
useful for estimating model parameters that arekiyeaformed by the observed data.

Bayesian techniques have previously been used iof M, s[Kashiwagi, 2004;Keats
et al., 2009;Lingwall and Christensen, 2007;Lingwall et al., 2008]. These approaches have
typically focused on estimating source impacts,ohtdre positive and lognormally distributed.
In this work, a method is developed that incorpesdayesian techniques to estimate SA
uncertainties. These uncertainties are then useatights to estimate an ensemble average of
source impacts similar to work by Lee et al. [20888l Balachandran et al. [2012]. The Bayesian
framework for estimating source apportionment utaieties requires first placing prior
distributions about aubjective (expert-driven) view of uncertainties associated with each SA
method. Next, the root mean square error (RMSEyd=t an initial ensemble average and each
individual method is used as the updated infornmagibout source impact uncertainties. Using
an inverse gamma prior with a normal data likelidh¢é@ads to an inverse gamma posterior
distribution of uncertainties for each SA methddese uncertainty distributions are then used
as weights to obtain an updated ensemble. One taye&nf this method is that it obviates the
need to assume lognormally distributed data sdiis. &sumption can be problematic for

receptor models which can result in zero or negatipacts. Also, the approach incorporates
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several different models and provides a way to ammmethods using a consistent estimation of
uncertainties.

The objective of this work is to refine our prevébudeveloped ensemble approach for
apportioning PM; to sources by incorporating a Bayesian techniquabtain multiple
realizations of ensemble-averaged source impatishvare subsequently used for deriving
multiple realizations of source profiles. We th@mpare results using this approach to results

using our previous ensemble approach as well esstdts using individual receptor models.

3.3 Methods

3.3.1. Ensemble Averaging

The method developed here extends the ensemblededveloped by [2009] and
[2012] and is comprised of three steps: (1) Bayesnsemble-averaging source impacts over a
short term time period, (2) using these source otgi® develop regionally and seasonal specific
source profiles, and (3) using the new source l@ofo apportion sources for a long-term data
set. We use SA results from three receptor modeloae chemical transport model for July
2001 and January 2002. We use two CMB methodsB-CRO [Marmur et al., 2005], that
incorporates gas based constraints, and CMB-MIMrg et al., 2002], which uses molecular
marker observations. We use one factor analytibatetPMF Paatero and Tapper, 1994] and
one CTM, the community multiscale air quality (CMA@odel D Byun and Schere, 2006].
We use results from previous work for CMB-MMHeng et al., 2007] and CMAQ with tracers
[Baek, 2009]. We also applied EPA CMB v8.0 (referredhéme as CMB-RG, for “regular”)
[U.SEPA, 2004;Watson et al., 1984], but these results were used for compa@asawere not
included in the ensemble.

In the work developed by Balachandran et al.[2048]ensemble average of source
impacts is calculated in a two-step process. JRrsequally weighted average of source impacts

is calculated (Equation 1 with N=0 in Equation 2):

53



(Equation 1)

[

Wy = (Equation 2)

N
Tsljk

where W, is the weight for sourgefrom method on dayk, and S;, is the source impact for

sourcg from method on dayk. Next, the root mean square error (RMSE) is ¢ated between

each method and the ensemble average (Equation 3):

K

—= 2
Z (Sjlk B Sik)
RMSE, =+ " (Equation 3)

The uncertainty is set to be equal to each metrRMSE and the square is used to weight an
updated ensemble average (Equation 2 with N=2raR#1SE). Finally, the uncertainty of the
updated ensemble average is calculated using vegigimbpagation of errors with covariance
[2012]. To compare the ensemble with the individé®a methods, we use the root mean square

average of the daily source impact uncertaintiegefiect the overall method uncertain{ﬁglk),

[Balachandran et al., 2012;Pachon et al., 2010] (Equation 4):

o K
os, = /%Z a'éjlk (Equation 4)
k=1

3.3.2 Bayesian Ensemble Averaging

One limitation of the method described above i$ ftiaany source (for any method), the
estimated source impact uncertainty is the samedohn day, since the RMSE does not change

on a daily basis. A more realistic interpretatisrhat the RMSE should be viewed as an
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“average” uncertainty and that the true uncertataiyies from a distribution whose mean is
equal to the RMSE. In Bayesian ensemble averagipgsterior distribution of uncertainties is
calculated using a prior distribution and treating estimated RMSEs as the data. For each day
of the short term application of the four SA metbogburce impact uncertainties are sampled
from the Bayesian-based posterior distribution gisirMonte Carlo technique. These
uncertainties are used as weights to calculatendiseaveraged source impacts.

It is assumed that estimates of source impactsraagomly around “true” source

impacts. Therefore§, the impact from sourgeand methodion dayk, can be viewed as a

surrogate measure of the true source impact andhthaverage of these metho8lg,, can be

treated as the true source impact. A consequsrtbat that these errors are normally distributed

so that for any dalg

S, — Sik ~ Normal (0,77,) (Equation 5)
We wish to obtain posterior sampleschfk and use them to calculate an ensemble average using

Equations 1 and 2. First we assign an inverse-gafsoaled-inverse-chi-squared) distribution
to each variance component. The inverse-gammad{EB)bution is specified by a density

function with two known parametessandg, and denoted as 1G,(5):

f (szlk‘a1 P) = %(szlk)_a_l exp(- 74) (Equation 6)

The error of the date§( (k=1) . . . §i (k=K)) with respect to the avera&sk , has a likelihood

given by the normal density:

2 1 = :
f (datdr?,) = (27%,) exp(—2—22(8j|k -5 ) (Equation 7)

jlk k=1

The posterior distribution ol‘ﬁk given the data is found from:

55



f (datdr},) O f(datdr ) x f(z},|a. B)
(Equation 8)

=) exp(—%{ﬁ +15(s, -5k f })

lek 2 k=1
The last expression is proportional to an inveraeuga distribution:
K iy -
IG[G+%’|:ﬁ+%Z(Sj|k —Sjk)zD (Equation 9)
k=1

It is important to note that the above distributiaas mean:

{/8 + ;i (Silk _gikﬂ

k=1
K
a+—
2

(Equation 10)

and for small values af andg, the mean is approximately the square of the RiMhSEquation
3. Typically, prior information aboulﬁk can be incorporated mandp. We approach this

method in two ways. To reflect a lack of knowlegdgye can use non-informative priors by
settinga = £ = 0.0001. In addition, we can use the distribution eftimod-specific uncertainties
and to have informative priors (Figure B.1). For &®l we use non-informative prior

information since uncertainties are not a direathgilable from the model application. Again,

this allows us to sample multiple realizations @ights (i.e. uncertainties) that are used in
ensemble-averaging. Ensemble-averaging is condbate& days in summer (July 2001) and

30 days in winter (January 2002). For each ddkiénensemble, we used 30 samples from the
posterior distributions, resulting in 30 ensembleraged source impact estimates for each of 30

days in the short term period.

3.3.3. Development of Seasonal Source Profiles

We develop source profiles in the same manner astal. D Leeet al., 2009]. We

solve the chemical mass balance equation for tresuared chemical speci€g by treating the
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source profile matrixj, as the unknown and treating the source contobu§i, as known by

using the ensemble based source impagts.(
C=fS +¢ (Equation 11)
We solve foifj; by minimizing the Chi-squared value:

x2= Z’: (Cik— Zj:l S, )2

i=1 acik

(Equation 12)

where aék is the square of the measurement uncertainty aiesgpieon dayk. We use ensemble

averaged source impacts from Balachandran e2@l2] to calculate ensemble-based source
profiles (EBSPs) for 30 days in July 2001 (sumnaeid January 2002 (winter) each. For the
Bayesian ensemble, source profiles are derivetddtr the non-informative prior and
informative prior cases. We sample 30 estimategenfhts for each of the 30 days in the
ensemble; this leads to 900 source profiles forrmamand winter each, which represent
distributions of two seasonal Bayesian ensembledasurce profiles (BBSPs). For the EBSPs,
the average of the 30 source profiles is useddridhg-term source apportionment and the
standard deviation is treated as the source prafitertainty. For the Bayesian ensemble,
profiles used in the source apportionment are saanfjpbm the distribution of 900 source
profiles. Since we have 30 replicates of 30 dayhe ensemble, we calculate variability for
each species in the source profiles in two way® cdlculate 30 standard deviations across the
replicatesr, for each dax (i.e., within day variation) (Equation 13) and §@ndard deviations

across the dayg, for each replicate, (i.e., between day variation) (Equation 14).

> (F (K) = T (K))
o, (k) ==
., R-1

(Equation 13)
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Z(fijk(r) _?ij (r)?
o, ()= k1 1 (Equation 14)

3.3.4. Source Apportionment for a Long-Term Data Se

Long-term SA is conducted for a nine and half yeata set (8/1/98 -12/31/07) with 3107
days of measurement data collected from the Jeffiefs. SEARCH site (JST) in Atlanta, GA
[Hansen et al., 2003]. We use a method that utilizes gas comatoins of SQ, CO and N@), to
constrain the solutions and is referred to as CMB&&d very similar to CMB-LGO, another
method that uses gas constraimtsfmur et al., 2005]. We conduct SA using measurement-
based source profiles (MBSPs), EBSPs and BBSRsrersource categories: gasoline vehicles
(GV), diesel vehicles (DV), dust (DUST), biomassring (BURN), coal combustion (COAL),
ammonium sulfate, ammonium bisulfate, ammoniumatétrand other OC, which largely
represents secondary organic carbon (SOC). Weviser EBSPs and BBSPs for November
through March and summer EBSPs and BBSPs for Apolugh October. When using BBSPs,
10 source profiles are sampled from the 900 digtidins and result in 10 source apportionments
for each day. This formulation results in a dmition of 10 daily source impacts rather than a
single value with an estimated uncertainty. Therage and standard deviation of the 10 SA
results are treated as the daily source impactuandrtainty, respectively. These are compared
with EBSP and MBSP based source impacts and uirtgttevhich are calculated using an
effective variance approactWhtson et al., 1984]. We also compare results with using theBEM
RG and PMF paatero and Tapper, 1994;Watson et al., 1984]. The CMB-RG and PMF results
were available from 1/1/99-12/31/04 and used ifie¥agnsemble studie®@lachandran et al.,

2012;D Leeet al., 2009].
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3.4. Results and Discussion

3.4.1. Ensemble averaging

We evaluate the ensemble method for each of tiee tteps. First, we evaluate all three cases
of the ensemble-averaged source impacts (stanBaygsian non-informative priors, and
Bayesian informative priors). We expect the oderaérages and uncertainties to be very
similar since the mean of the IG distribution shibappproximately equal the RMSE; however,
this may not always be the case with informativensr All three cases of ensemble averaging
result in average source impacts and overall uaiceies that are very similar, indicating that the

ensemble is stable (Table B.1).

3.4.2. Source profile variability

The distribution of species BBSPs, shown as bogplufto (r) (between day variation)

is greater tharo (K) (within day variation), indicating that between dagyiation is greater than

within day variation (Figure 3.1, summer BURN plefiusing non-informative priors). In

o, (r
addition, the average ratio of the between dayabslity to within day variation%, ranges
Uf

from 1 (e.g. Pb and Zn in DUST profiles) to morarti6 (Siin summer DUST profile) (Tables
B.2 and B.3). BBSPs are expected to be more Varatyoss days than within days because
ensemble-averaged source impacts used to deriveesprofiles have greater variability across
days than within days. This indicates that varigbih meteorology (e.g. due to changes in
source region, atmospheric processing and emissimposition) plays a more important role in
source profile variability than the uncertaintyesfsemble source impacts that were used to
derive the source profiles.

The new source profiles derived using Bayesiansaaadard ensembles are most

different from MBSPs for BURN and COAL (Figures B:2). BURN profiles show strong

seasonality for Br, Ca, NH4 and K, which are higinesummer profiles (Figure B.2d). This
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suggests that seasonal variability may be driveraim by variation in fuel type as summer
impacts from biomass burning have contributionsnftong range transport of western US
wildfires whereas winter/early spring impacts axpexted to be dominated by the local
prescribed fires that occur predominately in théyedpring. In addition, the summer BURN
profiles are enriched in Ca, suggesting entrainroéntustal material in summer BURN
emissions. Bayesian-derived COAL profiles alsoehdiferences from the MBSP profile
(Figure B.2e). Most significantly, the Bayesian 8lOprofiles have lower OC than MBSPs. In
addition, there is a distinct seasonality: higB€ in winter vs. summer. This is in contrast with
the EBSP COAL profiles derived in Lee et &.l[ee et al., 2009] which have higher OC in
summer than in winter, likely due to the abilitytbfs method to include some secondary OC
formation.

New GV source profiles have OC:EC ratios of ~ 2¢ty similar the MBSP ratio of
~2.3. For DV, the EC:OC ratio is approximately}4lightly higher than MBSP ratios of 3.7.
Some species, such as OC, have smaller variati@Ciin GV than MBSPs. In addition, the
OC:EC ratios in GV profiles do not show a distiseaisonality. DUST profiles are very similar
to MBSPs. However, DUST profiles derived in LealefD Leeet al., 2009] had ~0.2 OC,
higher than in this study (~0.07), suggesting thatDUST profiles derived in this work do not
reflect a mixed dust source containing traffic dersiissions.

Source profiles are also evaluated by analyzinglisigibutions of species in the BBSPs
(Figure B.4a-e). The limits of species concentragiwere set to be between one third and three
times the average values in MBSPs. For some spebigr values in the BBSPs are distributed
between these limits; these are typically major @ader species for a given source. However,
the modes of these distributions are typicallyltveer limit, and occasionally, the upper
allowable limit. For example, for about a thirdtbé days, the Bayesian summer BURN profiles
results in EC values of 0.003, the minimum allowedbhit (Figure B.4d). This suggests that for
those days, BURN profiles may not have convergeralistic source profile. However, since

this occurs only in a minority of days, and 10 ofu®00 source profiles are sampled for each day
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in the long-term SA, the effect is minimal. A censence of this is that uncertainties of BBSPs
are not necessarily lower than MBSPs. Neverthgfessome important tracer species such as
potassium in BURN, the distributions show distiseasonality and variation. In winter, the

distribution of potassium is tighter and has a lomean than in summer (Figure B.4d).

3.4.3. Long-term source apportionment

Both ensemble methods affect the amount of massriapped to SOC and biomass
burning by exhibiting strong seasonal differencéten using CMB-RG and CMB-GC with
MBSPs, wintertime SOC levels are comparable tdightty greater than summertime levels
(Figure 3.2, Table B.4). PMF also has little seat@ariation in SOC, but suffers from
potentially underestimating SOC in the summer. G@B has a clear summer/winter split for
SOC of 2.66/1.41 pg thwith BBSPs and 2.55/1.81 pgiwith EBSPs. The largest seasonal
difference using BBSPs and EBSPs is for biomassibgr The summer/winter split is
1.63/3.95 pg i with BBSPs and 1.21/2.26 pgiwith EBSPs. Having more biomass burning
impacts in the winter is expected because botlcpbesl fires and fireplace usage is greater in
these months. This seasonal variation is onhhdlgevident in CMB-GC with MBSPs
(1.59/1.73 pg i) and PMF (2.70/2.85 pg i Seasonal variation is also seen for GV using
BBSPs and EBSPs, which are thought to have gramagercts in winter when cold start
emissions contribute significantly to GV emissioasgd when meteorological conditions lead to
less dispersion.

In CMB, the reduced chi-square value is often wsethetric for goodness of fit. Using
BBSPs leads to comparable but higher reduced alarsgvalues than with EBSPs or MPSPs
(Table 3.1). Nevertheless, one important limitatd receptor models that is addressed with
BBSPs is that zero-impact days are drasticallycedpa consequence of averaging 10 SA
results per day. Typical of receptor models, akéhpredict total mass to approximately 90% of

measured PM.
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Source impact uncertainties using BBSPs are gdnarahller than using EBSPs and
MBSPs for all source categories, except biomassibgi(Figure B.3). Since the uncertainties in
BBSPs come for the standard deviation of 10 se&Agfthe higher uncertainties in biomass
burning are reflective of a higher variation in BNRource profiles. This indicates that biomass

burning impacts are a major source of uncertaimgource apportionment work.

3.4.4. Evaluation of Method

A major assumption in our method is that SA ertmesveen each method’s source
impact and the ensemble average are normally laiséd with a mean of 0. Three SA methods,
CMB-GC with MBSPs, CMB-RG, and PMF had results1804-2004 of which July 2001 and
January 2002 results were used in the ensemblecoipared the 1999-2004 results against the
long-term source apportionment from both Bayesiaseldd ensemble cases. Histograms of
errors between Bayesian-based source impacts ai@tG®with MBSPs, PMF and CMB-RG
(Figure 3.3) show that the errors can be reasortakbn to be normally distributed, supporting
Equation 5, a major assumption in this work. Iniadd, the error histograms are not centered at
0 for winter time SOC and BURN impacts from CMB-bedsnethods using MBSPs. This
indicates the distinct bias of traditional CMB-bdseethods: winter time SOC is overestimated
and winter time BURN impacts are underestimatedaddition, SOC impact errors from PMF
are centered at ~1 in summer, indicating an overalerestimation of summertime SOC from
PMF.

To further evaluate the various SA methods, we @mpesults for BURN and SOC
impacts with independent measurements of levoglugosater soluble organic carbon (WSOC)
and water soluble potassium’{K In 2007, a field campaign was undertaken tosuea
levoglucosan, a tracer for biomass burning, and WS4 the South Dekalb (SDK) site located
approximately 10 miles southeast of JST. Gives pinoximity, the measurements of
levoglucosan and WSOC at SDK are taken as repasanof conditions of JST. There are a

total of 55 samples, taken every sixth day, and¢@rapare BURN and SOC impacts from five
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SA methods for the corresponding days. CMB-GC M#SPs, EBSPs, two BBSPs (with non-
informative and informative priors) and PMF. losild be noted that PMF was re-run for a data
set from 1999-2007 that included fractionated O@.d&Ve make three comparisons: BURN
impacts with both levoglucosan and measurements, and the sum of BURN and SOC impacts
with WSOC (Figure 3.4, Table B.5).

All five of the SA methods apportion the sum of BNRnd SOC impacts similarly and
all methods have similar correlations. The higlestelations for CMB-GC-MBSP and PMF
(R?= ~0.7) and the lowest for CMB-GC-BBSP using infative priors (R= ~0.6) (Figure 3.4).
However, the methods split the WSOC into BURN af@{Sractions differently. The BBSPs
have the highest correlation®R-0.5-0.6), between BURN impacts and levoglucosénile the
other methods have?®f approximately ~0.02 - 0.3. The BBSPs also Haeehighest
correlation (R=~0.5-0.6) between BURN impacts and water solubtagsium (K).

WSOC is viewed as having two major sources: bienhbasning and secondary organic
aerosol (SOA) formationSullivan and Weber, 2006;Weber et al., 2007]. The Bayesian
approach produces a higher correlation betweendssrburning and both levoglucosan and
water soluble potassium, than the other methodgesiing a more accurate split between
biomass burning and SOC. Using non-informativengrproduces a higher correlation with
levoglucosan than using informative priors and mnaylue to the influence of CMAQ. There is
a greater influence from CMAQ when using non-infative priors because all SA methods are
essentially treated equally. CMAQ is weighted ben using informative priors. Since there
is no accepted method for calculating uncertainigSMAQ, we still use non-informative priors
for CMAQ while the other SA methods use informatreors. This further suggests that
uncertainties calculated by the routine-specifigrapches are not appropriate in comparing the
accuracy of the different SA methods.

One limitation of the ensemble-averaging methatias it is dependent on short term
applications of CMAQ (and CMB-MM, but it expectdtht CTMs will be used more than CMB-

MM in ensemble-averaging). As more CTM-based Séoisducted, the Bayesian method should
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be applied using short-term applications for défdrtime periods. The use of informative priors
led to lower correlations between BURN impacts arghsured levoglucosan than with non-
informative priors. However, SA results using nafermative priors are, in general, highly
correlated with informative priors. In this workewise inverse gamma priors with a normal
likelihood function, in part, because the resufpedterior distributions have closed-form
expressions that can be simulated from efficierithe use of non-conjugate priors may lead to

improved results.
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3.6. Tables

Table 3.1: Statistical metrics of CMB-GC using fourtypes of source profiles for 8/31/98 -12/31/07 (@1 days
of SA results out of 3149 total days): BBSPs witinformative priors (BBSP-I1P), BBSPs with non-informative
priors (BBSP-NIP), EBSPs and MBSPs

BBSP-| BBSP-
IP NIP EBSP MBSP
Reduced
Chi Square | 5.28 5.70 3.45 4.86
Pred./Obs.
PM Mass 0.94 0.93 0.90 0.87
Zero Impact Days
Inf. Non-Inf.
Priors Priors EBSP MBSP
GV 0 0 0 0
DV 3 6 204 154
DUST 0 0 15 54
BURN 0 0 4 5
COAL 9 9 184 267
SOC 24 25 60 25
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3.7. Figures

Within Day vs. Between Day Std. Dev. for BURN Source Profiles
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Figure 3.1: Boxplots of within-day ( ) and between-day variation (' ) for 16 species in the
BURN summer Bayesian profile using non-informativepriors (BBSP-NIP).
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Figure 3.4: Comparison of source impacts for BURN iad SOC and water soluble organic carbon (WSOC),

levoglucosan and water soluble potassium (K The first row compares BURN and levoglucosan.The

second row compares BURN and water-soluble potassiu The last row compares the sum of SOC and

BURN impacts and WSOC.
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APPENDIX B: SUPPLEMENTAL INFORMATION FOR CHAPTER 3

Table B.1: Average source impacts and overall releve uncertainties for the standard ensemble, Bayém
ensemble with non-informative priors and Bayesian@semble with informative priors for summer (July
2001) and winter (January 2002). NOTE: Uncertaint determined by taking the root mean square average

of each day’s ensemble average uncertainty

Summer

Bayesian Ens. With Bayesian Ens. With

Standard Ensemble Non-Inf. Prior Informative Prior

Avg. Avg. Avg.
Source Source Source
Impact unc. Impact unc. Impact unc.
GV 0.55 + 0.38 0.55 + 0.38 0.53 + 0.39
DV 1.15 + 0.42 1.15 + 0.43 1.08 + 0.38
DUST 0.88 + 0.49 0.89 + 0.49 0.69 + 0.41
BURN 0.87 + 0.33 0.87 + 0.34 1.02 + 0.48
COAL 0.20 + 0.07 0.20 + 0.07 0.18 + 0.09
SULFATE 7.87 + 0.15 7.87 + 0.15 7.86 + 0.30
NITRATE 0.43 + 0.06 0.43 + 0.06 0.43 + 0.06
AMMONIUM 2.89 + 0.23 2.89 + 0.24 2.88 + 0.20
SOC 1.76 + 0.60 1.76 + 0.61 1.41 + 0.60
Winter

Bayesian Ens. With Bayesian Ens. With

Standard Ensemble Non-Inf. Prior Informative Prior

Avg. Avg. Avg.
Source Source Source

Impact unc. Impact unc. Impact unc.
GV 1.36 + 0.57 1.36 + 0.58 1.37 + 0.57
DV 1.21 + 0.43 1.22 + 0.44 1.20 + 0.45
DUST 0.47 + 0.65 0.48 + 0.66 0.45 + 0.62
BURN 3.58 + 1.60 3.59 + 1.61 3.54 + 1.51
COAL 0.20 + 0.09 0.20 + 0.09 0.20 + 0.09
SULFATE 2.17 + 0.24 2.17 + 0.25 2.16 + 0.27
NITRATE 1.63 + 0.08 1.63 + 0.08 1.62 + 0.14
AMMONIUM 1.28 + 0.03 1.28 + 0.03 1.28 + 0.06
SOC 1.31 + 0.63 1.31 + 0.63 1.33 + 0.61
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Table B.2: Ratio of between day variability and wihin day variability,

fij

g, (r)

, of Bayesian-based source profiles (BBSP) usingmnformative

priors.
Summer Winter
GV DV DUST BURN COAL GV DV DUST BURN COAL
S04 5.42 4.32 4.99 5.62 6.39 1.76 1.54 1.57 3.07 2.21
NO3 1.75 1.44 1.67 1.42 1.90 2.21 1.69 1.65 2.17 1.93
NH4 2.63 2.11 - 3.51 3.08 1.52 1.44 - 4,71 2.62
EC 1.92 2.73 2.94 2.21 3.46 1.71 1.69 2.16 2.38 2.45
ocC 2.22 2.18 3.23 1.82 3.04 1.39 1.64 2.44 2.72 2.53
Al 3.29 3.20 7.75 4.23 9.05 0.96 1.01 1.00 1.38 1.14
Br 1.99 - - 5.99 2.29 1.31 - - 4.14 1.42
Ca 1.93 1.91 2.89 2.75 5.51 2.89 1.75 3.20 3.41 7.69
Cu 2.98 1.77 2.06 - 2.59 5.02 1.49 1.89 - 2.12
Fe 3.45 2.40 3.79 3.07 4.00 2.80 1.90 2.97 3.05 5.77
K 1.67 1.57 1.62 3.70 1.81 1.34 1.25 1.48 3.98 1.42
Mn 2.65 1.69 2.36 - 2.49 3.22 1.53 2.28 - 2.96
Pb 5.11 2.01 1.00 - 2.62 9.39 1.71 1.00 - 2.63
Se 2.02 1.64 - - 7.28 1.47 1.56 - - 4.95
Si 1.05 15.41 16.16 1.50 1.01 0.87 1.00 1.01 1.83 1.33
Zn 3.70 2.69 1.00 2.34 6.19 3.57 2.31 1.00 2.95 3.0
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gy (r)

Table B.3: Ratio of between day variability and wihin day variability, Uf” () ,of Bayesian-based source profiles (BBSP) using arfnative priors.
Summer Winter

GV DV DUST BURN COAL GV DV DUST BURN COAL

SO4 5.64 5.09 441 7.15 6.24 1.66 1.48 1.60 3.65 2.49
NO3 1.70 1.86 1.52 1.48 2.00 2.07 1.62 1.89 2.00 1.94
NH4 2.53 2.41 - 4.50 3.17 1.65 1.71 - 4.52 2.74
EC 1.85 2.52 1.99 2.59 3.49 1.58 1.70 2.21 2.22 2.61
ocC 2.09 1.99 2.68 2.31 3.05 1.38 1.65 2.29 2.62 244
Al 1.87 2.69 5.50 2.44 6.49 1.32 1.07 1.73 1.27 1.50
Br 1.56 - - 5.34 2.04 131 - - 3.99 1.66
Ca 1.97 1.77 2.19 2.77 4.09 2.04 1.93 3.02 3.62 6.69
Cu 2.56 1.71 2.02 - 2.61 5.01 1.38 1.82 - 2.16
Fe 5.53 4.32 6.09 4.25 6.32 2.69 2.04 3.16 3.04 6.30
K 1.85 1.48 1.52 4.55 1.83 1.42 1.29 1.50 3.72 1.51
Mn 3.40 1.69 2.72 - 2.74 3.31 1.46 2.27 - 2.77
Pb 5.32 1.83 1.00 - 3.73 9.35 1.68 1.00 - 2.57
Se 1.98 1.54 - - 6.89 1.33 1.41 - - 4.34
Si 2.09 3.00 5.86 3.74 2.90 1.13 1.03 1.01 1.89 1.21
Zn 3.51 291 1.00 2.34 5.11 3.45 2.38 1.00 3.05 3.20
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Table B.4: Average seasonal source impacts fronksSA approaches for 1999-2004.

GV DV DUST BURN COAL SOC
Bayesian
Inf. Prior | Summer | 0.68 | + |0.26|1.25| + | 049 |042| +|0.09|1.39| +|1.07|0.11| £ |0.07|262| = |0.69
Winter | 122 | + | 035|141 |+ | 065|022 |+ |0.03|388| + |165({0.18| + |0.10|1.69| £ |0.92
Bayesian
Non-Inf. | Summer | 0.69 | £+ [ 0.26 |1.27 | £+ | 049 |0.44 | £ |0.09|1.28 | £ |1.05|0.11| £ | 0.07 |2.69 | £ | 0.63
Winter | 1.23 |+ [034 (142 |+ | 062 |0.22 |+ |0.03|398| + [1.70]0.18| + |0.10|1.62| £ | 0.94
EBSP Summer | 0.74 | £ {042 |1.04| £ | 0.76 |050| £ |0.26|1.14| £ |086|0.13 | £ | 0.19|2.60 | £ | 0.93
Winter |1.60| £ | 074|156 | + | 1.32 |0.29| + |034 (229 | £+ |142[0.15| + | 0.22| 198 | £ |1.22
MBSP Summer | 0.85| + {043 |1.13| +£| 079 {037 | £ (021|095 |+ [0.72|0.10| £ | 0.16|2.66 | £ | 0.91
Winter |139| + |060|135|+ | 103 |[0.14| + |0.25|1.14| £ |093|0.10| +|0.18|290| £ | 1.15
PMF Summer | 1.21 | + | 030|144 | £ | 092 |082| £ (031|216 +|0.25| - t - 117 | £ | 1.71
Winter | 153 |+ (042|171 |+ | 118 |044| +|0.16 |3.36| = |0.40| - + - 1089 | £ |2.06
CMB-RG | Summer | 1.07 | £ |1.77 (123 | + | 136 |042 | + 031|143 | £ [169(0.15| + | 0.26|2.38| £ |2.93
Winter | 164 | + (221|132 |+ | 182 |0.25| + (038|187 | +|2.07|0.13| +|0.33|258]| = |3.67
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Bayes

Bayes Bayes Bayes Inf. Bayes
Inf. Non Inf. Inf. Bayes Pri. Non Inf. EBSP MBSP | PMF
Levogulco Pri. Prior EBSP MBSP PMF Pri. Non Inf. EBSP MBSP PMF SOC+ | Pri. SOC + SOC + SOoc+ | SOC+
san Potassium wsoc BURN BURN BURN BURN | BURN soc Pri. SOC socC socC soc BURN BURN BURN BURN | BURN
Levogulcosa
n 1 0.62 0.10 0.54 0.66 0.34 0.02 0.21 0.03 0.07 0.01 0.03 0.03 0.28 0.34 0.12 0.05 0.17
0.20
Potassium (0.021) 1 0.48 0.50 0.64 0.59 0.27 0.51 0.05 0.02 0.09 0.27 0.25 0.65 0.72 0.55 0.42 0.56
0.0034 0.029
wsoc (0.0014) (0.0044) 1 0.15 0.20 0.26 0.18 0.47 0.41 0.36 0.47 0.54 0.70 0.68 0.71 0.79 0.76 0.71
Bayes Inf. 0.014 0.051 0.65
Pri. BURN (0.0017) (0.0073) (0.211) 1 0.85 0.68 0.22 0.39 0.07 0.08 0.01 0.01 0.04 0.50 0.45 0.24 0.15 0.32
Bayes Non
Inf. Prior 0.016 0.063 0.81 1.0
BURN (0.0016) (0.0068) (0.22) (0.057) 1 0.66 0.17 0.38 0.03 0.08 0.01 0.03 0.06 0.50 0.55 0.26 0.16 0.32
0.0072 0.034 0.57 0.56 0.51
EBSP BURN (0.0014) (0.004) (0.13) (0.052) (0.050) 1 0.65 0.46 0.01 0.01 0.01 0.00 0.07 0.48 0.46 0.41 0.30 0.39
0.0014 0.013 0.41 0.28 0.23 0.71
MBSP BURN (0.0015) (0.003) (0.12) (0.072) (0.069) (0.071) 1 0.23 0.01 0.01 0.00 0.01 0.05 0.23 0.19 0.31 0.31 0.21
0.0068 0.042 0.92 0.51 0.46 0.81 0.66
PMF BURN (0.0018) (0.0058) (0.135) | (0.087) (0.081) (0.12) (0.16) 1 0.12 0.10 0.16 0.27 0.20 0.68 0.64 0.61 0.55 0.89
Bayes Inf. -0.0027 0.012 0.87 -0.22 -0.13 -0.092 0.099 0.34
Pri. SOC (0.002) (0.0083) (0.142) (0.11) (0.101) (0.164) | (0.19) | (0.13) 1 0.93 0.90 0.72 0.52 0.24 0.25 0.46 0.57 0.29
0.95
Bayes Non -0.0039 0.0067 0.80 -0.23 -0.21 -0.15 0.10 0.31 (0.037
Inf. Pri. SOC (0.002) (0.0083) (0.15) (0.11) (0.098) (0.162) | (0.19) | (0.13) ) 1 0.89 0.66 0.50 0.20 0.19 0.41 0.52 0.26
Bayes
Bayes Bayes Bayes Inf. Bayes
Inf. Non Inf. Inf. Bayes Pri. Non Inf. EBSP MBSP PMF
Levogulco Pri. Prior EBSP MBSP PMF Pri. Non Inf. EBSP MBSP PMF SOC+ | Pri. SOC + SOC + SOoc+ | SOC+
san Potassium wsoc BURN BURN BURN BURN | BURN soc Pri. SOC soc s0C soc BURN BURN BURN | BURN | BURN
0.87
-0.0010 0.015 0.847 -0.089 -0.056 -0.088 -0.016 | 0.36 (0.040 0.88
EBSP SOC (0.0019) (0.0074) (0.12) (0.10) (0.094) (0.15) (0.17) | (0.12) ) (0.041) 1 0.88 0.63 0.34 0.34 0.51 0.60 0.36
0.824
0.0026 0.029 0.96 0.087 0.13 0.052 -0.12 0.51 (0.071 0.80 1.0
MBSP SOC (0.0020) (0.0069) (0.12) (0.11) (0.099) (0.16) (0.18) | (0.11) ) (0.079) (0.050) 1 0.63 0.52 0.54 0.57 0.61 0.49
0.15 0.22 0.35
0.0012 0.014 0.55 0.080 0.090 0.16 (0.088 | (0.060 | (0.046 0.35 0.42 0.40
PMF SOC (0.00098) (0.0035) (0.050) | (0.053) (0.049) (0.0769) ) ) ) (0.048) (0.044) | (0.042) 1 0.51 0.53 0.64 0.66 0.52
Bayes Inf.
Pri. 0.011 0.063 1.51 0.78 0.72 1.13 0.88 1.12 0.66 0.62 0.87 1.01 2.0
SOC+BURN (0.0024) (0.0067) (0.143) | (0.107) (0.099) (0.162) | (0.22) | (0.11) | (0.16) (0.17) (0.17) (0.13) (0.27) 1 0.96 0.88 0.81 0.82
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Bayes Non 1.02
Inf. Pri. SOC 0.012 0.070 1.61 0.77 0.79 1.16 0.85 1.13 0.72 0.62 0.91 1.07 2.12 (0.028
+ BURN (0.0024) (0.0063) (0.14) (0.12) (0.098) (0.17) (0.24) | (0.12) (0.17) (0.18) (0.17) (0.14) (0.28) ) 1 0.86 0.79 0.80
0.82
EBSP SOC + 0.0062 0.049 1.42 0.47 0.45 0.91 0.90 0.93 0.81 0.77 0.93 0.92 1.96 (0.041 0.78
BURN (0.0023) (0.0065) (0.10) (0.115) (0.11) (0.15) (0.19) | (0.12) (0.12) (0.13) (0.13) (0.11) (0.20) ) (0.043) 1 0.96 0.82
0.77
MBSP SOC + 0.0040 0.041 1.37 0.36 0.354 0.76 0.88 0.86 0.88 0.85 0.99 0.93 1.95 (0.051 0.73 0.96
BURN (0.0023) (0.0070) (0.11) (0.119) (0.11) (0.161) (0.18) | (0.11) (0.11) (0.11) (0.11) (0.11) (0.19) ) (0.052) (0.026) 1 0.77
0.86 0.97
PMF 0.0080 0.056 1.47 0.59 0.55 0.97 0.81 1.22 0.70 0.67 0.85 0.94 1.92 (0.056 0.81 0.99 (0.073
SOC+BURN (0.0024) (0.0072) (0.13) (0.12) (0.11) (0.17) (0.21) | (0.06) (0.15) (0.15) (0.15) (0.13) (0.25) ) (0.056) (0.063) ) 1

Table B.5: Correlation (R2) between levoglucosanyater-soluble potassium, WSOC, BURN impacts, SOQ@ripacts and the sum of BURN + SOC

impacts (values on the diagonal and to the right ahe diagonal). Slope and standard error of regreson (values to the left of the diagonal).
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Figure B.1:
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Figure B.2: Source profiles derived from various asemble methods and compared with MBSP<how et al.,
2004b;Marmur et al., 2005;Zielinska et al., 1998Db] for (a) GV, (b) DV, (c) DUST, (d) BURN ande) COAL.
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Figure B.3: Comparison of uncertainties for CMB-GCusing Bayesian profiles with non-informative priors
(BBSP-NIP), standard ensemble (EBSPs) and measurentéased source profiles (MBSPSs).
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Distribution of Bayesian GV Source Profiles Using Non-Informative Priors
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Distribution of Bayesian DUST Source Profiles Using Non-Informative Priors
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Distribution of Bayesian COAL Source Profiles Using Non-Informative Priors
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Figure B.4: Histograms of Bayesian COAL source prfiles using non-informative priors for (a) GV, (b)DV,
(c) DUST, (d) BURN and (e) COAL. Red indicates sumar profile, blue indicates winter profile. Dashedine
indicates average value of MBSPs.

86



0.5

o

LI:

Bayesian GV Summer

LITELLELD

05 | | | | ? | | | | | |
S04 NO3 NH4 EC oc Al Br Ca Cu Fe K Mn Pb Se Si Zn
Bayesian GV Winter

1~ . . . . .

0.5+

o$$$g$*$$égg$é$$5

5L 1 I | ? ! I I | I hd | I I I | |
S04 NO3 NH4 EC oc Al Br Ca Cu Fe K Mn Pb Se Si Zn

Bayesian DV Summer

1 . . . .

0.8—

0.6—

04 M . .

0.2— ) él Q

. =

0.2 . . M

0.4~ : ’ : : .

06 | | | ? | | | | | | | | | | |
S04 NO3 NH4 EC oc Al Br Ca Cu Fe K Mn Pb Se Si Zn

Bayesian DV Winter

1 . . . .

0.8—

0.6—

0.4

02 * . . ’

og$$g$$ sHPonrha

02 8 . ¢ : .

0.4 | | | \: \. | | | | | | | | | | \.

S04 NO3 NH4 EC oc Al Br Ca Cu Fe K Mn Pb Se Si Zn

87



05—

-0.5

T

3

Bayesian DUST Summer

08—

06—

0.4~

02—

0.2

S04

NO3

NH4

EC

Bayesian DUST Winter

L

=

NO3

NH4

EC

Ca Cu Fe K

Bayesian BURN Summer

TR

Mn

S04

Bayesian BURN Winter

S04

NO3

NH4

EC

88



Bayesian COAL Summer
0.8
0.6
04 *
0.2

0.4

0.6 \ 1 1 1 L L 1 L 1 1 1 1 1 1 1 1
S04 NO3 NH4 EC oc Al Br Ca Cu Fe K Mn Pb Se Si Zn

Bayesian COAL Winter

#???F@ JeEL T

sl 1 | | | | |
S04 NO3 NH4 EC ocC Al Br Ca Cu Fe K Mn Pb Se Si Zn

o
T

Figure B.5: Boxplots of Bayesian source profilessing non-informative priors for (a) GV, (b) DV, (c) DUST,
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CHAPTER 4: SPECTRAL ANALYSIS OF PM ,5 SOURCE APPORTIONMENT
METHODS
Sivaraman Balachandran?, Heather A. Holmeg£, James A. Mulholland® and Armistead G.

Russell?

%Georgia Institute of Technology. School of CivildaBnvironmental Engineering. Atlanta, GA.

"Corresponding author: 311 Ferst Dr., Atlanta, GB3®; phone 206.250.6480, fax

404.894.8266; siv@gatech.edu.

4.1. Abstract

Multiple source apportionment (SA) methods are i@plpht three receptor sites that
measured fine particulate matter (Plcomposition. These methods include applicatidre o
chemical mass balance with gas constraints (CMB-@&&hod using three sets of source
profiles and positive matrix factorization (PMF3ource profiles used in CMB-GC include
measurement based source profiles (MBSPs), ensdrabésl source profiles (EBSPs), and
Bayesian-based source profile (BBSPs). The EBS@88&8%Ps are derived from ensemble
averaging multiple models using a standard andye®an technique, respectively, and then
used to derive new source profiles for use in a G&IB application. SA is conducted at the
Jefferson St. (JST) SEARCH site and the South ef@DK) CSN site, which are both in
Atlanta, GA. We also conduct SA for the rural SEARSIte in Yorkville, GA (YRK). We
compare SA method results for JST from 1/3/99-1/2/81at SDK, from 3/2/01 — 12/10/10, and
at YRK, 6/7/98 — 12/29/07. Source impacts fromfthe SA methods at three sites are compared
for temporal trends using spectral analysis. Tiabnstructed mass using PMF tends to be
biased slightly high whereas that using CMB terdise biased slightly low. The use of EBSPs

and BBSPSs lead to fewer zero impact days as weliranger seasonal splits for secondary
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organic carbon and biomass burning impacts, cangistith expectations. All power spectra
derived using the LSPM show a strong peak at oae yedependent of SA methods, species
and source profiles/factors. Statistically sigrafit peakso=0.05) are found for the frequency
associated with one week for GV impacts using CMB-# JST and both CMB-GC and PMF at
SDK. DV impacts estimated using both CMB-GC andfPAMl JST and SDK have peaks (
=0.05) for the frequency associated with one w8&KRN spectra have the greatest variation
intra and inter-method, with low frequency sigralsST and SDK and YRK having both low
frequency and weekly signals. Biomass burning [@efiactors have the greatest variability
across methods and locations, especially with BBEBRISPMF factors. Across the three sites,
OC to EC ratios vary from 3 - 5 in EBSPs, to 319:6 with BBSPs and 3.1 - 10.8 in PMF,
suggesting that biomass burning emissions haveased spatial variability as compared to

other sources.

4.2. Introduction

Ambient and indoor air pollution is a major suspeotause of premature mortality, and
has been associated with more than three millieagitative deaths per year worldwidenp et
al., 2012]. Most of the health impacts estimatedfiam@ the effects of fine particulate matter,
having aerodynamic diameter less than 2.5 um,(fMPM, s is comprised of a complex
mixture of chemical species, and emitted from aeppiof sources. As a result, the health effects
of PM, s may be preferentially dependent on specific spetiewever, recent work has
suggested that health impacts may actually be dadmgséne net effect of the mixture of
pollutants which make up PM[Solomon et al., 2011;Solomon et al., 2012]. Traditional
epidemiologic models have generally used,RbF individual species in assessing health
impacts. Recently, there have been efforts to agece impacts from source apportionment
studies as a proxy for multipollutant effecttopke et al., 2006;1to et al., 2006;Sarnat et al .,
2008;Thurston et al., 2005].
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Source impacts can be quantified using both receptd chemical transport models
(RMs and CTMs), and have both advantages and hionigfor their use in health studies. RMs
are not computationally intensive, require obseéovetl data from a “central” monitor, and can
be used easily in time series health studies. @mntanitation of RMs is that their results are
derived only for the location of the monitor duriagperiod for which sufficient measurements
exist. Source impacts, as well as central mowi#a, are proxies for exposure, an assumption
which may not be accurate given that there is gapadiriability in air pollution within a metro
area. Another issue with using RMs is that obg@wmal data may only be available every third
or sixth day, limiting their utility in epidemiolag studies that rely on daily health outcome data.
A third issue with RMs is that there are severpkyof RMs and the magnitude and variability
of source impacts differs from model to model. Relge efforts to use CTM source
apportionment (SA) results have addressed sonteesétissues because CTMs can provide
results over a large spatial domain. In addittbey can provide results at a high temporal
frequency (e.g. hourly results). They can also @hadmplex atmospheric chemistry and have a
greater number of source categories than RMs. Mew€TMs require large computational
resources, a major limitation when long time seofesource impacts are required, and the
simulated concentration typically do not agreelasaty with observations and receptor models.

Here we use results from multiple Rdsource apportionment (SA) results at three
receptor sites. Two of the three sites are SoatheaAerosol Research and Characterization
(SEARCH) network lHansen et al., 2003] sites and the third is a Chemical Speaiafieends
(CSN) site. The SEARCH sites include Jeffersar{J8T), an urban site located near
downtown Atlanta, GA and a rural site at YorkvilRaulding County, GA (YRK). The CSN
site, South Dekalb (SDK), is an urban site locatesbutheast Dekalb County in the
metropolitan Atlanta area. We compare source atgpfar the three sites calculated from
several receptor models. We compare results frbik &d JST to assess intra-urban
differences in SA estimates. We use results fr&@ACH sites, JST and YRK, to compare

differences in urban versus rural receptor si¥&& apply spectral analysis of source impacts and

92



important tracer species at each of these sitgaitoinsight into how source apportionment

methods vary temporally.

4.3. Methods

CSN network sites span the continental US and neasganic carbon (OC), elemental
carbon (EC), ionic species and a suite of elemeam@ties. In addition to P species,
SEARCH sites also measure the gaseous specieSGONO, and Q. The analytical methods
used in both of these networks are comparable, thélexception of OC and EC. OC and EC
are operationally defined parameters and their oredsvalues are consistently different
depending on which method is used: thermal olpiaasmittance (TOT), applying the NIOSH
method, or thermal optical reflectance (TOR), appythe IMPROVE methodJhow et al.,
2004a]. Prior to May 2007, CSN networks in GA u3@&@il to measure OC and EC.
Subsequently, these CSN network sites began ugdR) {6 measure OC and EC and SDK made
this change in April 2009. The entire SEARCH datthis work uses TOR. To account for the
changes within SDK dataset and to compare SA eatilisDK and SEARCH sites (JST, YRK)
with commensurate data, we utilized a regressiolnigue to adjust the TOT-based SDK data
to TOR-equivalent valuedfalmet al., 2011]. Briefly, the method uses regression coiefits
that accounts for sampler type, an additive pasiditifact and a multiplicative negative artifact.

Using this method, TOT values were converted to gRivalent values:
EC™ =13*EC™ (Equation 1)

(oc™ -03*EC™ -4
1+bge

oc™ =

(Equation 2)

where EC*™ and OC™ is the TOR equivalent value of EC and OC, respebtiandOC™" and

OC™", are the TOT-based values, accounts the additive positive artifact, for montand
b, accounts for the negative artifaMdlmet al., 2011].

In addition to OC and EC, species processed farcsoapportionment were sulfate,

nitrate, ammonium, and the elemental species: 8),B%, Br, Ca, Cl, Cu, Fe, K, Mn, Pb, Sb, Si,
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Sn and Zn. All data were processed in a manndfasito other SA work using RM$REff et al.,
2007] and in companion studies with this woBlachandran et al., 2012;Balachandran et al .,
2013]. As, Ba, CI, Sb and Sn were not includedhandource apportionment because they had a
high percentage (>50% of days) with values beloteat®n limit; however, they were included
when determining regionally specific source prafile

Two RM methods and one CTM were applied to progioerce impacts at SDK and
YRK. A chemical mass balance method (CMB) thdiags gaseous concentrations to constrain
estimated source impacts (referred to as CMB-GG)wsad with apriori measurement-based
source profiles (MBSPsMarmur et al., 2005]. MBSPs used were from previous SA work at
JST Marmur et al., 2005] for nine source categories: gasoline veki¢GV), diesel vehicles
(DV), dust (DUST), biomass burning (BURN), coal dmmstion (COAL), ammonium sulfate
(AMSULF), ammonium bisulfate (AMBSULF), ammoniuntnaite (AMNITR) and other OC,
which we take to be a surrogate for secondary ecgarbon (SOC). Second, positive matrix
factorization (PMF), a factor-analytic method, whioes not require source profiles was used
with solutions ranging from 6 to 10 factors. Hoe tYRK site, fractionated OC and EC data was
utilized in the PMF analysis, but not the CMB-GGlsis. With PMF, a GV factor was only
derived at JST; at SDK and YRK, only a total motehicle factor was derived. We used the
result from previous work using the Community Msttle Air Quality CTM; this work has
been used in two previous ensemble studies atB&XK Et al., 2005] (the SDK site is in the
same 36km grid cell as JST). For YRK, we compileslitts fromBaek et al. [2005] in a manner
similar toD Lee et al. [2009], where source categories from CMAQ wereregated into the
nine source categories used in CMB-GC. Also, at 3&Tused results from a CMB method with
molecular marker-based observations and sourcégagdCMB-MM) [Zheng et al., 2007].

The Bayesian-ensemble averaging metlgaldchandran et al., 2013] used in this work
has a three step process. First, a weighted avefagpurce impacts from several SA models is
calculated using weights sampled from a Bayesiaedb@osterior distribution. This is done for

a short term (i.e. July 2001 to represent summerJanuary 2002 to represent winter). Second,
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these ensemble-averaged source impacts are udesdtmp source profiles that can be viewed
as specific to a location (and season). We dewadopsource profiles only for primary sources:
GV, DV, DUST, BURN and COAL. For secondary politaategories (ammonium sulfate,
ammonium bisulfate, ammonium nitrate, and secondeggnic carbon), we use MBSPs. Here
as in the previous work, we develop source profilesh both the standard (non-Bayesian)
ensembleBalachandran et al., 2012] and from the Bayesian ensemiidalfchandran et al .,

2013] referred to as ensemble-based source prgEBSPs) and Bayesian-Based source profiles
(BBSPs), respectively. For the Bayesian ensemi@ajse non-informative priors
[Balachandran et al., 2013]. Third, the new source profiles are usedn application of CMB-
GC to a long-term data set. Details of this mettal be found in the companion studies to this
work [Balachandran et al., 2012;Balachandran et al., 2013;D Leeet al., 2009].

Ultimately, we wish to gain insight into how difeart SA techniques might vary spatially
(urban, near roadway and rural sites) and temporatl addition, since source impacts cannot be
directly measured, analysis of spatial and tempoealds provides an indication of the relative
reasonableness of the different estimates. Inabi&, we consider two main issues related to
variability: the impact of various methods (CMB-®E. PMF in this work) and the impact of
different source profiles on a particular methoM@&GC with MBSPs, EBSPs and BBSPs).
First, we compare source apportionment result§af 3DK and YRK. We compare these
differences over a range of metrics, including allenass closure and seasonal averages of
source impacts and source impact uncertaintiesgledions with tracer species in a manner
similar to Balachandran et al. [2013] and the défees in the derived source profiles. CMAQ
results are excluded from this analysis becausedteonly available for the short term periods
of July 2001 and January 2002.

We assess temporal variability by conducting spéaimalyses using SA results from
four methods: MB-GC with non-informative BBSPs, BER and MBSPs, and PMF. Spectral
analysis can be used to determine dominant frequesiiterns underlying noisy time series and

are typically conducted using fast Fourier transfe(FFTs) (e.g.Uiu et al., 2005]). Since JST
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has daily data, the maximum frequency that carebelved would be 2 days. However, the data
at both SDK and YRK are only gathered every thi@gsdso the power spectra generated using
FFT can resolve up to a maximum frequency of sigsdae. the Nyquist frequency). While
FFTs can be run for any length of data, the datailshbe continuous. This condition is typically
not met with environmental data and approximatelyp% of days at JST, SDK and YRK have
incomplete results. FFTs can be utilized by iméapng missing values; however, this can add
noise to the spectral analysis. For discontinuousnevenly spaced data, a commonly
employed method is to use a least squares spaatilsis technique (ed-¢mb, 1976;Vanicek,
1969]). The method developed by Lonkminb, 1976] and further refined by Scargiegqrgle,
1982] is referred to in this work as the Lomb-StaReriodogram Method (LSPM). We
implement this method following previous wolRrgss et al., 2001 ;Pytharouli and Stiros, 2008]

and by modifying a Matlab freeware codgelson, 2001].

For a data seh; =h(t;), j=1.---N, whereN is the number of samplesk_], is the mean
and o is the variance, the LSPM defines a normalizeibgegram to estimate power, , at
different angular frequencies,= 27f , [Presset al., 2001]:

1 [Zj (h; = h)cosat, —r)] .\ [Zj(hj —h)sina(t; - 1)
20° Z?cos2 wt, —T1) Zstin2 at; = 1)

P, (w)= (Equation 3)

wherert is an offset that is defined as:

>, sin(2ar )

> cost(2ar ;)

The LSPM has several properties that are appeakirgt, the method can be applied to

(Equation 4)

tan(2wr) =

unevenly spaced data. Second, if one assumeddtais composed of a sum of period signals
and white (i.e., independent or Gaussian) noigel 8PM can quantify the statistical

significance of a particular peaRrless et al., 2001]. Third, since the Nyquist frequency doet n
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represent an upper limit for unevenly spaced dhtal. SPM can give statistically significant
peaks at frequencies above the Nyquist frequelRgthdrouli and Siros, 2008].

At JST, CMB-GC was run for data that was availatldST from 8/1/98 — 12/31-07
(from Balchandran et al. [2013]). However, PMFuleswere only available starting from
January 3, 1999 since that is the start date &mtinated OC and EC data, which was needed to
separate gasoline and diesel vehicles using PMérefdre, we compare SA method results for
JST from 1/3/99-12/31/07. At SDK, results are aaa# at a three day interval from 3/2/01 —
12/10/10, with approximately 13% of days havingsimg data. At YRK, data are available at a
three day interval from 6/7/98 — 12/29/07 with ab®% of days with missing data. Also, YRK
has daily data from 9/6/98 — 1/2/00. However, samib JST, fractionated OC and EC data were
only available starting on 5/19/99; therefore, analysis uses a time period from 5/19/99-
12/29/07.

It should be noted that we limit our results anstdssion to the GV, DV, BURN and
SOC source categories because RM results are meitgrsfor sulfate, nitrate and ammonium
and the DUST and COAL contributions are relativatyall compared to GV, DV, BURN and
SOC. We define summer to be April through Septerabd winter to be October through
March.

4 .4. Results and Discussion

4.4.1. Source impacts

Receptor models typically reconstruct total masy e#se to the total measured mass
due to model constraints (Table 4.1). At all thsées, the use of BBSPs and EBSPs resulted in
higher reconstructed to measured mass ratios thiag MBSPs. At JST, the average ratio of
reconstructed to measured total mass ranges frdmuding CMB-GC with MBSPs to 0.94 with
BBSPs. At SDK, this range is from 0.88 to 0.9hgsiMBSPs and BBSPs, respectively. At
YRK, reconstructed mass is lower, ranging from Gith MBSPs and 0.81 with BBSPs. At all
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three sites, PMF total mass is biased high, witharage ratio of 1.1, 1.09, and 1.05 at JST,
SDK and YRK, respectively. All CMB-GC SA resultave similar reduced chi-square statistics,
a goodness-of-fit metric, although values are alaoutrder of magnitude higher at SDK.

BBSPs also have fewer zero impact days than EBEFB&Ps. As expected, CMB-GC source
impact results have higher correlations with eatieioas compared to PMF (Tables C.1-C.3).

At both JST and SDK, DV impacts are higher thani@yacts (Table 4.2). DV impacts
do not have the distinct seasonality shown by G@aats, which are higher in winter. This
seasonality is ostensibly attributable to increammadssions from cold weather starts in gasoline
powered engines and reduced dispersion. When &B8&Ps and MBSPs, GV and DV impacts
are higher in both seasons at JST than with BB&®P¥.RK, mobile source impacts are
significantly lower than at the JST or SDK, wheingsCMB-GC (regardless of source profiles
used), indicative of lower mobile source emissionaural areas. However, with PMF, mobile
source estimates are comparable to JST and SDKsuggest that the PMF mobile source factor
at YRK include other sources.

BURN impacts show strong seasonality at both udit@s for all methods except for
CMB-GC using MBSPs (Table 4.2). At JST, the us#8iSPs results in slightly lower BURN
impacts in summer (0.97 puginversus winter (1.12 pg M while at SDK they are
approximately equal in summer (1.01 pg)rand winter (0.95 pg ). With BBSP, EBSPs and
PMF, average BURN impacts are ~1 pg im the summer and ~3-4 pgin the winter.

BURN impacts are much lower at YRK than the urhitgssat JST and SDK. In addition, there is
not as much seasonality at YRK. The lower impattéRK are also present in CMAQ results,
suggesting that this difference is most likely dueifferent emission intensities in rural and
urban areas. CMB-GC results using BBSPs are twsslated with EBSPs and MBSPs for
BURN than other source categories.

In @ manner similar to previous worRdlachandran et al., 2013], we compare BURN
impacts to levoglucosan measured at SDK in 200{/wha part of a campaign which included

measurements of WSOC and water-soluble potassidin Biomass burning impacts using
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BBSPs and EBSPs have the highest correlatién(86 and 0.69, respectively) between BURN
impacts and levoglucosan, while SA using MBSPsRIMd have an Rof approximately of

0.30 and 0.55, respectively (Figure 4.1). All SAthoels had high correlations between BURN
impacts and water soluble potassiuni)(Kanging from R=0.79 with BBSPs and®R0.88 with
PMF. However, all SA methods sum of BURN +SOC impa@orrelated much lower with
WSOC, ranging from &0.34 — 0.51. This was surprising since the suBWRN+SOC from

JST correlated higher with WSOC?%®.68 — 0.76)Balachandran et al., 2013].

SOC impacts are comparable between JST and YRR éhé 2.41 in summer, and, 1.43
and 1.72 in winter, respectively) when using BBSRs.shown in previous ensemble studies
[Balachandran et al., 2012;Balachandran et al., 2013;D Leeet al., 2009], CMB-GC with
MBSPs seems to overestimate SOC in the winternlgavigher estimates in winter at both JST
and SDK. However, SOC should be higher in summbenithere is increased photochemistry
and higher biogenic VOC emissior&hgng et al., 2002]. With BBSPs and EBSPs, SOC impacts
are higher in summer. However, SOC impacts aretpand have greater zero impact days, at
SDK than JST, an unexpected result given the redjimature of SOC. This result is likely due
to SDK having lower adjusted OC concentrations|{glm® lower) than at JST. JST and SDK
in have 726 overlapping days in this analysis. tRese overlapping days, the TOR based OC at
JST and adjusted OC SDK have means and standaiatides of 4.05+2.17 and 3.28+1.83 ug
m3, respectively (Figure 4.2), suggesting that theaBact correction method at SDK could be
overcorrecting and leading to lower values of Ois may also explain the low correlation of
BURN +SOC impacts with WSOC at SDK.

Impacts using CMB-GC have the highest correlatanress all three sites (Tables C.1-
C.3). Zn has higher correlation at JST and SDKiargkneral, has highest correlation with GV
impacts using MBSP or BBSP. OC has higher coraatativith PMF GV than CMB-GC,
especially so at YRK. GV impacts using PMF areliilkeverestimated at YRK since they are on

the same scale as at JST and SDK, which are uitegnath much greater motor vehicle traffic
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and emissions. EC tends to have highest correlatigiin both CMB-GC with MBSPs and
BBSPs.

4.4.2. Spectral Analysis of Source Impacts

Power spectra derived using the LSPM all showangtpeak at one year, independent of
SA methods, species and source profiles/factore ifpact of methods (i.e. CMB vs. PMF) has

a greater impact than on spectral results diffesentce profiles in CMB-GC.

4.4.2.1. Gasoline Vehicles (GV)

Statistically significant peaks. (£0.05) are found for the frequency associated with
week for GV and DV at JST and SDK for most methdas,not at the rural YRK; nevertheless,
even when statistical significance was not achigspdctral peaks at one week frequency were
noticeable. CMB-GC frequency spectra show stroraglyeand weekly cycles for GV at JST
(Figure 4.3) due in part to the Zn in GV sourcefipgs, as Zn has a strong weekly peak. The
lack of a strong weekly peak in PMF GV impacts ssig that the GV factor in PMF may be
comprised of multiple collinear sources.

At SDK, the spectra has a statistically significkiajuency associated with one week for
CMB-GC with BBSPs and PMF, though, all SA methodséha noticeable peak associated with
~7 days (Figure C.1). A second peak for all SAhuods is also noticeable (but not statistically
significant atu=0.05) at ~7.6 days. This is due, in part, to alsfrequency shift from sampling
every three days along with expected weekly tragféitterns. At YRK, all GV peaks are
dominated by long term frequencies (~>90 days)eakly peak is evident, but not statistically

significant at ¢=0.05) (Figure C.2).

4.4.2.2. Biomass Burning (BURN)

BURN frequency spectra have the greatest variativa and inter-method. At JST,
CMB-GC BURN impacts using both BBSPs and EBSPdresiow frequency signals, (~73-
390 days and ~66-390 days with BBSPs and EBSRwsatgely) (Figure C.3). CMB-GC with
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MBSPs and PMF both follow the spectra of potassiama, have higher frequency signals
ranging from ~13 days. At SDK, all methods and kg long term signals (~61 days in K to
3570 days in PMF); no spectral signals were sieaiby significant when using CMB-GC with
MBSPs (Figure C.4). At YRK, CMB-GC with BBSPs show statistically significant signal at
approximately 25 days (peak at 0.04 daysCMB-GC with EBSPs and MBSPs also show this,
but not ain=0.05 significance (Figure 4.4). All methods sh@weekly signal, though not
significant atu=0.05, likely due to a weekly signal in K, (alsa aba=0.05 significance). This

weekly signal in K is not apparent at the urbaessit

4.4.2.3. Diesel Vehicles (DV) and Secondary Org&achon (SOC)

DV results at JST and SDK are more consistent @¥n At both sites, all SA methods
show strong yearly, weekly and intermediary pe&kgure C.5-C.7). This is largely driven by
the spectral signal of EC. Therefore, for majorRNonstituents that are dominated by a single
source, power spectra of source impacts are sitiass various SA methods. SOC impacts
for all methods have low frequency signals (Figuee®-C.10). These lower frequency signals,
on the order of ~75 days or greater, suggest ¢émaporal variability for SOC, as expected, is
associated with time scales indicative of regi@ral secondary sources. The consistency across

methods suggests that the temporal variability éfddd SOC impacts are reasonably captured.

4.4.3. Source Profile Comparison

Since both CMB and PMF solve the same mass batqeation, the main difference
between these two methods is that in the formeris®nducted using a priori source profiles
(MBSPs, EBSPs and BBSPs), while in the latter facitatrinsic to each data set are developed.
At each of the three sites, two seasonal EBSP8&3Ps and one PMF factor were developed
for each source. Including the MBSPs, which aeestéime at each site, a total of 16

profiles/factors were used in this study.
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Comparison of the GV profiles/factors shows th#fiedences are greater with EBSPs and
PMF than BBSPs (Figure 4.5, Table C.5). For exampC to EC ratios in GV and EC to OC
ratios in DV are similar at all three sites with 8Bs (Table 4.3). This should be expected for
GV and DV, since fleet characteristics at the thoeations should be similar. At both JST, the
EBSP OC to EC ratio is about 4 and 1.5 in the wiatel summer, respectively. This seasonal
split was also found in an earlier ensemble stii,ge et al., 2009]. However, this seasonal
split is not evident using BBSPs or with EBSPsBK®r YRK. The PMF GV factor at JST had
an OC to EC ratio of 3.7. PMF motor vehicle prcfilead OC:EC ratios of 0.98 and 2.25 at SDK
and YRK, respectively. There was also seasonaliV OC to EC ratios using EBSPs at YRK
with values of 0.2 and 0.5 in winter and summespegtively.

BURN profiles/factors have the greatest variabiityoss methods and location,
especially with BBSPs and PMF factors. Across kined sites, OC to EC ratios vary from 3to 5
in EBSPs, but vary from 3.9 to 17.6 with BBSPs aridto 10.8 in PMF (Table 4.3). This
suggests that biomass burning emissions have seulespatial and temporal variability as
compared to motor vehicles. However, for BBSPis, ity also be an artifact of the source
profile derivation, where anywhere from ~30% to 56Pthe source profiles had low values of
EC in source profiles (e.g. 0.003 ug EC/ pg-BM In addition, all BURN profiles/factors had
lower levels of potassium than in the MBSP, sugggdhat the potassium emitted from biomass

burning is overestimated in the MBSPs.

4.5. Conclusions

In this work, we conduct spectral analysis of seurspacts and related tracers at three
receptor sites to gain insight into how source afoment methods vary temporally and
spatially. PMF total reconstructed mass is bidsgt, with an average ratio of 1.1, 1.09, and
1.05 at JST, SDK and YRK, respectively, versus C@IB; which has ratios ranging from 0.77 -
0.97. The use of EBSPs and BBSPSs lead to fewirgract days as well as stronger seasonal

splits for secondary organic carbon and biomassibgrimpacts. However, SOC impacts are
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lower, and have greater zero impact days, at S@K #8T, an unexpected result given the
regional nature of SOC. This result is likely doeSDK having lower adjusted OC
concentrations (~1 pg ower) than at JST.

Source impacts from the four SA methods are contpfaretemporal trends using
spectral analysis, using a method developed by Lidmimb, 1976] and further refined by
Scargle §cargle, 1982] and referred to in this work as the Lomlas§te Periodogram Method
(LSPM). All power spectra derived using the LSPM\sta strong peak at one year, independent
of SA methods, species and source profiles/factBtatistically significant peaks £0.05) are
found for the frequency associated with one weekad at JST using CMB-GC, but not with
PMF. This suggest that the PMF factor attribute@Yomay reflect a mixture sources,
highlighting the importance of carefully evaluatiBylF factors. Statistically significant peaks
(o =0.05) are found for the frequency associated with week for DV spectra at JST and SDK.
At YRK, mobile source spectra do not have statdliycsignificant peaks associated with on
week, which contrasts with the urban JST and S¥sghat are likely impacted by weekly
commute traffic patterns. BURN spectra have tleatgst variation intra and inter-method, with
low frequency signals at JST and SDK and YRK hawath low frequency and weekly signals.
Biomass burning profiles/factors have the greatasability across methods and locations,
especially with BBSPs and PMF factors. OC to E@satary from 3 - 5in EBSPs, t0 3.9 - 17.6
with BBSPs and 3.1 - 10.8 in PMF, suggesting ti@nlass burning emissions have increased

spatial variability as compared to other sources.
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4.7. Tables

Table 4.1: Statistical metrics of SA results. NOTEPMF uses derived factors, and a different fittingstatistic, and is therefore not comparable with
CMB statistical metrics.

JST SDK YRK

BBSP EBSP MBSP PMF BBSP EBSP MBSP PMF BBSP EBSP MBSP PMF
Average
Mass Ratio
(Pred./Obs.
PM;.s) 0.94 0.91 0.87 1.10 0.97 0.90 0.89 1.09 0.81 0.81 0.77 1.05
Reduced Chi
Square 5.40 3.34 4.86 - 26.51 73.41 87.81 - 8.58 4.36 13.97 -

Zero Impact Days Zero Impact Days Zero Impact Days

GV 0 0 0 - 0 0 0 - 9 11 9 -
DV 6 195 154 - 51 181 195 - 90 400 348 -
DUST 0 15 54 - 0 13 25 - 9 43 60 -
BURN 0 3 5 - 0 1 0 - 0 1 6 -
COAL 9 214 267 - 17 100 216 - 2 24 24 -
SOC 25 78 25 - 138 44 56 - 11 23 21 -
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Table 4.2: Average source impacts (ug M for Jefferson St. (JST), South Dekalb (SDK) and Wrkville
(YRK). Uncertainties are the root mean square avexges of daily source impact uncertainties

- _1&, .
(Os, = E;JSN , for sourcej and methodl).

SUMMER (April — September)

JST BBSP EBSP MBSP PMF

GV 0.67 |+| 0.25 072 |+| 0.41 0.83 |+| 0.42 1.22 |+| 0.26

DV 1.25 |+| 048 1.05 || 0.75 1.11 || 0.78 225 |+ 044
BURN 131 | £ 1.06 1.17 | x| 0.85 098 |+| 0.73 1.70 (x| 0.15

SOC 263 |+t| 0.64 253 [ +| 093 260 [+| 091 167 || 1.84
SDK BBSP EBSP MBSP PMF

GV 0.75 |+| 0.16 0.67 |+| 0.21 0.72 |+| 0.16 1.19 |+| 0.07

DV 1.09 |+| 0.53 083 |+| 051 0.87 |+| 0.65 1.29 |+| 0.07
BURN 193 | £ 1.10 1.26 || 0.49 1.25 || 0.70 3.14 |+| 0.11

SOC 143 || 0.43 186 || 0.69 1.71 || 0.78 1.08 || 0.51
YRK BBSP EBSP MBSP PMF

GV 0.12 | +| 0.03 0.13 | +| 0.32 0.14 |+| 0.33 162 |+| 0.06

DV 0.12 |+, 0.07 0.16 [ +| 0.51 0.12 |+| 0.45 1.00 (+| 0.05
BURN 139 |+| 0.58 135 |+| 0.73 1.01 |+]| 0.65 2.04 |+| 0.06

SOC 241 | +| 031 238 | +| 0.83 255 | +| 0.80 094 |+| 0.74

WINTER (October — March)

JST BBSP EBSP MBSP PMF

GV 1.13 |+| 031 145 |+| 0.73 1.29 |[+| 0.60 1.76 |+| 041

DV 136 |+| 0.57 152 |+ 1.27 1.30 |+ | 0.98 238 |+| 0.54
BURN 3.89 |+ 1.57 222 |+ 1.36 1.12 || 0.91 255 |+ 0.23

SOC 143 |+£| 0.85 1.81 | 1.15 267 |t 1.07 135 (x| 2.59
SDK BBSP EBSP MBSP PMF

GV 1.03 |+| 0.19 1.06 |+| 0.18 1.05 |+| 0.18 136 |+| 0.08

DV 1.32 | +£| 049 1.30 || 0.55 105 |+| 0.63 148 |(+| 0.09
BURN 429 |+ 0.96 1.20 | x| 0.64 1.13 | x| 0.63 413 | x| 0.15

SOC 064 |+| 0.32 1.84 |+]| 0.65 1.76 |+| 0.71 0.85 |[+| 0.51
YRK BBSP EBSP MBSP PMF

GV 0.25 |+ | 0.05 0.23 | x| 0.35 0.29 |+| 0.27 1.10 |+| 0.02

DV 0.14 | +| 0.10 0.17 || 0.73 0.15 |+| 044 0.68 || 0.01
BURN 1.54 |+ | 0.64 204 |+]| 0.83 095 |+| 0.62 345 |+| 0.10

SOC 1.72 | +| 0.34 142 |+| 0.80 196 |+ | 0.72 0.58 |+| 0.67
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Table 4.3: Average OC:EC ratios in source profilegactors.
BBSPs, and PMF factors to the BURN MBSP is also sha.

For BURN, the ratio of K in the derived BMSPs,

EBSP EBSP BBSP BBSP PMF
GV MBSP | SUMMER | WINTER | SUMMER | WINTER | FACTOR
JST OC:EC 2.33 1.49 4.00 2.21 2.14 3.69
SDK OC:EC 2.33 1.92 1.95 2.27 2.19 0.98
YRK OC:EC 2.33 1.49 1.95 1.96 1.98 2.25
EBSP EBSP BBSP BBSP PMF
DV MBSP | SUMMER | WINTER | SUMMER | WINTER | FACTOR
JSTEC:0C 3.71 2.21 1.93 4.21 4.08 1.58
SDK EC:0C 3.71 5.25 4.78 4.11 4.81 1.02
YRK EC:0C 3.71 2.21 4.78 4.48 4.56 0.44
EBSP EBSP BBSP BBSP PMF
BURN MBSP | SUMMER | WINTER | SUMMER | WINTER | FACTOR
JST OC:EC 4.09 3.00 3.00 7.59 10.03 5.64
SDK OC:EC 4.09 5.01 4.56 17.64 10.50 10.79
YRK OC:EC 4.09 3.00 4.56 5.65 3.91 3.11
JST K ratio (to
MBSP) - 0.60 0.41 0.68 0.25 0.75
SDK K ratio (to
MBSP) - 0.79 0.87 0.50 0.23 0.39
YRK K ratio (to
MBSP) - 0.60 0.87 0.55 0.59 0.34
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Figure 4.1: Comparison of source impacts for BURN @ad SOC and water soluble organic carbon (WSOC), leglucosan and water soluble potassium
(K™). The first row compares BURN and levoglucosan.The second row compares BURN and water-soluble psium. The last row compares the
sum of SOC and BURN impacts and WSOC.
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APPENDIX C: SUPPLEMENTAL INFORMATION FOR CHAPTER 4

Table C.1: Correlations (R) of source impacts and tracer species across mettwat JST. Shaded values
indicate R* > 0.75.

JST GV BBSP EBSP MBSP PMF oC Zn

BBSP 1.00 0.91 0.97 0.19 0.29 0.56

EBSP 0.91 1.00 0.91 0.21 0.31 0.48

MBSP 0.97 0.91 1.00 0.20 0.32 0.54

PMF 0.19 0.21 0.20 1.00 0.67 0.08

o] 0.29 0.31 0.32 0.67 1.00 0.16

Zn 0.56 0.48 0.54 0.08 0.16 1.00

DV BBSP EBSP MBSP PMF EC

BBSP 1.00 0.75 0.92 0.49 0.77

EBSP 0.75 1.00 0.77 0.42 0.63

MBSP 0.92 0.77 1.00 0.47 0.75

PMF 0.49 0.42 0.47 1.00 0.62

oC 0.77 0.63 0.75 0.62 1.00

BURN BBSP EBSP MBSP PMF K

BBSP 1.00 0.77 0.38 0.51 0.15

EBSP 0.77 1.00 0.69 0.62 0.27

MBSP 0.38 0.69 1.00 0.42 0.55

PMF 0.51 0.62 0.42 1.00 0.19

0C 0.15 0.27 0.55 0.19 1.00

SOC BBSP EBSP MBSP PMF oC

BBSP 1.00 0.92 0.76 0.49 0.60

EBSP 0.92 1.00 0.89 0.53 0.71

MBSP 0.76 0.89 1.00 0.47 0.89

PMF 0.49 0.53 0.47 1.00 0.39

oC 0.60 0.71 0.89 0.39 1.00
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Table C.2: Correlations (R) of source impacts and tracer species across mettmat SDK. Shaded values
indicate R* > 0.75.

SDK GV BBSP EBSP MBSP PMF oC Zn
BBSP 1.00 0.91 0.93 0.74 0.34 0.34

EBSP 0.91 1.00 0.95 0.61 0.32 0.37
MBSP 0.93 0.95 1.00 0.68 0.33 0.38

PMF 0.74 0.61 0.68 1.00 0.43 0.26
oC 0.34 0.32 0.33 0.43 1.00 0.19
Zn 0.34 0.37 0.38 0.26 0.19 1.00

DV BBSP EBSP MBSP PMF EC

BBSP 1.00 0.90 0.93 0.52 0.84
EBSP 0.90 1.00 0.91 0.60 0.85

MBSP 0.93 0.91 1.00 0.52 0.87

PMF 0.52 0.60 0.52 1.00 0.70
0C 0.84 0.85 0.87 0.70 1.00

BURN BBSP EBSP MBSP PMF K

BBSP 1.00 0.50 0.45 0.46 0.13
EBSP 0.50 1.00 0.97 0.11 0.06
MBSP 0.45 0.97 1.00 0.11 0.12

PMF 0.46 0.11 0.11 1.00 041
oC 0.13 0.06 0.12 0.41 1.00

SOC BBSP EBSP MBSP PMF oC

BBSP 1.00 0.76 0.74 0.66 0.51
EBSP 0.76 1.00 0.99 0.56 0.86
MBSP 0.74 0.99 1.00 0.58 0.83
PMF 0.66 0.56 0.58 1.00 041
oC 0.51 0.86 0.83 0.41 1.00
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Table C.3: Correlations (R) of source impacts and tracer species across mettmat YRK. Shaded values
indicate R? > 0.75.

YRK GV BBSP EBSP MBSP PMF o] Zn
BBSP 1.00 0.91 0.96 0.00 0.00 0.05

EBSP 0.91 1.00 0.88 0.00 0.00 0.07
MBSP 0.96 0.88 1.00 0.00 0.01 0.05
PMF 0.00 0.00 0.00 1.00 0.53 0.04
0C 0.00 0.00 0.01 0.53 1.00 0.07
Zn 0.05 0.07 0.05 0.04 0.07 1.00

DV BBSP EBSP MBSP PMF EC
BBSP 1.00 0.84 0.95 0.00 0.07
EBSP 0.84 1.00 0.76 0.01 0.10
MBSP 0.95 0.76 1.00 0.00 0.04
PMF 0.00 0.01 0.00 1.00 0.38

o] 0.07 0.10 0.04 0.38 1.00

BURN BBSP EBSP MBSP PMF K
BBSP 1.00 0.89 0.87 0.45 0.46
EBSP 0.89 1.00 0.72 0.58 0.49
MBSP 0.87 0.72 1.00 0.24 0.36
PMF 0.45 0.58 0.24 1.00 0.48
oC 0.46 0.49 0.36 0.48 1.00

SOC BBSP EBSP MBSP PMF oC
BBSP 1.00 0.98 0.99 0.73 0.91
EBSP 0.98 1.00 0.96 0.73 0.86
MBSP 0.99 0.96 1.00 0.71 0.92
PMF 0.73 0.73 0.71 1.00 0.72
oC 0.91 0.86 0.92 0.72 1.00
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Power Spectra for GV at SDK

Figure C.1:

Power Spectra for GV at YRK

Figure C.2:
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Power Spectra for BURN at JST

Figure C.3:

Power Spectra for BURN at SDK

Figure C.4:
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Power Spectra for DV at JST

Figure C.5:

Power Spectra for DV at SDK
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Power Spectra for DV at YRK

Figure C.7:

Power Spectra for SOC at JST
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5.1. Abstract

Gaseous and particulate species from fwmescribed fires were sampled in situ, to better
characterize prescribed burn emissions. Measursmeasiuded gaseous and fine particulate

matter (PM ) species, particle number concentration, partieudaganic carbon (POC)
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speciation, water-soluble organic carbon (WSOC)watkr-soluble iron. Major Ppk
components included OC (~57%), EC (~10 %), chlo¢iele6%), potassium (~0.7%) and nitrate
(~0.9%). Major gaseous species include carbonidiéggxarbon monoxide, methane, ethane,
methanol and ethylene. Particulate organic tracEbsomass burning, such as levoglucosan,
dehydroabietic acid and retene, increased signifiigaluring the burns. Water-soluble organic
carbon (WSOC) also increased significantly durimg fire and levels are highly correlated with
total potassium (K) (R=0.93) and levoglucosan $80.98). The average WSOC/OC ratio was
0.51 = 0.03 and did not change significantly froatkground levels. Thus, the WSOC/OC ratio
may not be a good indicator of secondary organigsaé (SOA) in regions that are expected to
be impacted by biomass burning. Results using@ass burning source profile derived from
this work further indicate that source apportiontrisrsensitive to levels of potassium in
biomass burning source profiles. This undersctiresmportance of quantifying local biomass

burning source profiles.
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5.2. Introduction

Biomass burning, such as wildfires, prescribed suand residential wood combustion,
are important sources of air pollutants, which icapact health, lead to violations of air quality
standards, and impair visibilitys]Lee et al., 2005;Sandberg et al., 2002]. Biomass burning
emissions can be gaseous or particulates and mslpecies that lead to secondary pollutants.
Long-lived primary air pollutants from biomass bimgican travel large distances (thousands of
km), making populated areas potentially susceptiblenpacts from remote fire§gpkota et al.,
2005;Wotawa and Trainer, 2000]. In the southeastern United States, enmisawentories
estimate that biomass burning contributes sigmtigeto air pollutant emissions: ~8-20% of
PM, s (particulate matter that is aerodynamically lesstB.5um in diameter), ~8% of carbon
monoxide (CO), and ~6% of volatile organic compa(MOCs) Barnard, 2003;Kimet al.,
2004;Liu et al., 2005;Zhang et al., 2010].

Prescribed burning is widespread, especially irsthegheastern US, and is used to
manage forest ecosystems and protect endangereidspg controlling growth and infestation
while minimizing the risk of large-scale forestefir Hardy et al., 2001]. In 2006, a total of
96,385 wild land fires were reported to have bura@¥ 3,429 acres in the U.S., 125% above the
10-year averageNIFC, 2008]. Of that, 2,720,545 acres were treated pi#iscribed fires, an
increase of 410,000 acres from the previous yeatdd and the second highest since 1998. Most
of the prescribed fires occurred in the Southerodeaphic Area, which includes the area
bounded by Kentucky and Virginia to the north arkds and Oklahoma to the welstifC,

2008].

The dynamics of prescribed fires can differ sigmaifitly from wild fires and vary by
region Burling et al., 2011;Burling et al., 2010;S Leeet al., 2005;Urbanski et al., 2011].

Fuels also vary by region. Such differences afffeetcomposition and rate of emissions.
Emissions also depend upon fire stage (e.g. flamsngmoldering). Since limited data exist on

emission characteristics from active prescribeadhimgrevents in the U.S., emissions of M
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and VOCs from prescribed burning were sampledtinfsbm two prescribed burns in South
Georgia in March 2008. A major goal of this studgsto update emissions factors for gaseous
compounds and PM in Georgia with regionally specific biomass bugair emissions data. A
second goal was to better understand the role tdrvgaluble organic carbon (WSOC) as a
tracer of both biomass burning and secondary ocgagniosol. Third, tracers of prescribed burns
were studied by characterization of organic chehdompounds. In addition, chemical
speciation of PMls was used in a source apportionment study totseapplicability as a
regionally specific biomass burning source profiRVL 5 constituents were quantified, including
organic (OC) and elemental carbon (EC), ionic sggdrace elements, water-soluble organic
carbon (WSOC). water-soluble iron (FE (1)), andtjgée number concentration. PM OC
speciation identified approximately 100 organicroieal compounds. Gases that were sampled
included carbon monoxide (CO), carbon dioxide §z@ethane (Ck) and other volatile

organic compounds (VOCs).

5.3. Methods and Materials

5.3.1. Site Description

Emissions from two prescribed fires were sampletlanch 5 and March 6, 2008 at the
Joseph W. Jones Ecological Research Center in Mewa (Figure 5.1). On March 5, a 495
acre area with one year of accumulated fuel wasdzlat Ichauway - North Boundary (N 31°
14" 45.0", W 84° 23' 43.2", Figure D.1). On MaGha 225 acre area with two years of
accumulated fuel was burned at Ichauway - Dub-@a&1° 12' 4.4", W 84° 26' 35.3", Figure

D.1). Fuel characteristics are described in AppeBd(Table D.1).

5.3.2. Measurements and Instrumentation

Two-channel, filter-based, particle composition mans (PCMs), operating at a flow
rate of 16.7 L mift, were used to collect PM for quantifying metals (Teflon filters, 47 mm

diameter, Whatman, Inc., Florham Park, NJ) and {agkon filters, 47 mm diameter, Gelman
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Sciences, Ann Arbor, MI'). Each PCM used two demsidn series (URG, Inc., Chapel Hill,
NC) coated with phosphoric acid and sodium cart®t@atemove acidic and alkaline gases. In
addition, high volume Pissamplers (HVSs), operating at a nominal flow rdté.&3 n? min™
and having a pre-baked quartz filter (10 x 8 ingrevused for measuring OC/EC, WSOC, and
solvent-extractable organic compounds. Carbon mideq¥CO), carbon dioxide (G methane
(CHy), non-methane organic compounds (NMOCs) and VO€&= wollected using stainless
steel canisterdJolman et al., 2001]. Water-soluble Fe(ll) was measured by &igasinto-liquid
sampler (PILS) method that utilized the ferrozieehnique $tookey, 1970], along with a liquid
waveguide capillary flow-through optical cell (LWE@at allowed for increased sensitivity of
the instrumentQakes et al., 2010a;Rastogi et al., 2009] (see Appendix D for summary of
results). Particle number concentrations were nredsusing an optical particle counter (OPC,
Met One, Grants Pass, Oregon) (see Appendix Dr&sgD.4-D.5).

Two PCMs and HVSs were placed at each site to abloevPCM/HVS set to operate
while filters were replaced in the other set. Hieity was provided by a pair of gasoline
generators that were placed far away downwind gap@om the sampling point to minimize
any impact on the monitoring. The filter collectischedule was determined onsite, depending
on the fire stage and wind direction. On March Bnitoring started at 8:45, about three hours
before the fire, to sample for background conceioina and ended at 16:00. On March 6,
monitoring started at 7:50, about three hours leetioe fire, to sample for background
concentrations and ended at 13:15. During thediagt five samples were collected (one for
background and four during different fire stag€x).the second day, three samples were

collected (one for background and two during déferfire stages).

5.3.3. Analytical Methods

Total PM,smass was measured gravimetrically. Teflon fil{grkich were also used for
measurement of metals) were equilibrated and weligha clean room (temperature 21+1°C,

RH 35+3%) prior to and after sampling. OC and B@Goentrations were determined by taking a
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punch (1.54 x 1 cm) from the HVS quartz filter,|/éoVed by analysis using a Sunset Lab
Thermal Optical Transmittance (TOT) analyzer empigythe NIOSH 5040 methodBirch,
1998;NIOSH, 1996]. Five punch samples were taken from ea¢8 Hiter and results were
averaged. lonic species were analyzed by extracfithe soluble PM components from the
nylon filter and using a Dionex ion chromatograf®)( Metals were measured using X-ray
fluorescence (XRF) and VOCs were analyzed by gesntatography with mass spectrometry
(GC/MS). Details of these methods can be found lree et al. [2005].

WSOC was determined with a Sievers Model 800 TUi®& analyzer. A punch (1.5 x
1.0 cm) of each filter was extracted in 100 ml 8Mohm MilliQ water and sonicated for 30
minutes in a sealed 125 ml Nalgene Amber HDPE éaofihe extract was then filtered using a
0.45um PTFE syringe filter and transferred to arleottle for analysis. Water-soluble organic
carbon in the extract was then analyzed using @€ &nalyzer. The limit of detection (LOD)
of 0.33 ug C m-3 was determined by three standavdéhtions of blank filter measurements.

Organic compounds in PM were analyzed by using the method detailedamet al.
[2008] and Zheng et al., 2006]. Briefly, each filter was spiked with denatted internal standard
(IS) mixtures and then successively extracted usegne and benzene/isopropanol. After
being filtered and concentrated, one half of thieaest was silylated with BSTFA (N,O-
bis(trimethylsilyl)acetamide) and analyzed using/K§ to quantify polar organic compounds
(levoglucosan, cholesterol and 2-methyltetrols)e ©ther half was methylated with

diazomethane and analyzed by GC/MS to speciatethi®® organic compounds.

5.3.4. Source Apportionment

Source apportionment (SA) of BMlis used to quantify impacts from emissions sources
at a receptor site. The most common SA approaateefactor analytic (FA) and chemical mass
balance (CMB) methods, both based on a mass badgmreachfriedlander, 1977;Paatero
and Tapper, 1994;Watson et al., 1984]. In CMB applications, source profiles angitally taken

as known and are usually based on both laborataiyrasitu characterization of emissions,
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often termed measurement-based source profiles fBSOne limitation of MBSPs is that they
may not be representative of emissions at a péaticeceptor site, and these source profiles can
have much variability, especially for a tracer spesuch as K (total potassium as measured by
XRF), EC and levoglucosan in biomass burning pesfilFor example, potassium varied from ~
2 -12 % Chow et al., 2004b] and ~0.2 — 13%ielinska et al., 1998a], in biomass burning BM
emissions. This variability is a major source on€ertainty in source apportionment (SA) [Lee
and Russell, 2007]. Therefore, we tested the applicabilityising speciated P ratios from

this study as a regionally specific biomass burrsiagrce profile. A CMB method that utilizes
gas concentration-based constraints with a Lipsdchibbal optimizer (CMB-LGO)Yarmur et

al., 2005] was used to apportion PMmass to nine source categories: gasoline veHiGe3,
diesel vehicles (DV), road dust (DUST), biomassiimg (BURN), coal combustion (COAL),
sulfate, nitrate, ammonium and other organic cayrldmich is presumed to be secondary organic
carbon (SOC). SA was conducted for daily speci&telds data for 2007 from the Jefferson
Street (JST) SEARCH site in Atlantelgnsen et al., 2003] using both a MBSP-based biomass
burning source profile from the literaturt@How et al., 2004b] and a new biomass burning source

profile based on emission ratios for PMspecies from this study.

5.4. Results and Discussion

5.4.1. Emissions of Major PM s Species

Total PMys massand major constituents increase significantly dyitime prescribed fire
and consist mainly of OC, EC, “Other” (unidentifietaterial, determined by subtracting OC,
EC, and ions from the total PMmass, chloride, nitrate, sulfate and potassiumuiei 5.2,
Table 5.1). On March 5, the background conceminatf PM 5 (sample B1-B) was 9ugh
with concentrations increasing to 524u{ during the fire (sample B1-F2). On March 6, the

background concentration of BMwas higher than on March 5 (samples B2-B), 23 [fgand
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levels increased to 377 pgmduring the fire (sample B2-F1). At the end oftbbtirns there is a
large decrease in concentrations (samples B1-F8areR) though there was significant smoke
visible in the vicinity of the samplers. Over haffthe increase in PMmass was OC (57%)
while 10% was EC. Major ionic species measureblidenitrate (0.94%), ammonium (0.70%)
and acetate (0.41%). XRF analysis showed thatrih@ary trace elements in the fire are K (0.69
% by weight of PMs), Na (0.33%), CI (0.30%) and Mg (0.14%); tracenedats accounted for
approximately 2% of Pk mass (Table 5.2).

Total PMys, OC, EC, ionic species and metals results are aoaapwith results from Lee
et al. (2005) (Tables 5.1 and 5.2, Figure 5.3) weducted ambient measurements during April
2004 from two prescribed fires in pine-dominatee$ in other parts of Georgia (Fort Benning,
SE of Columbus and Fort Gordon, SW of Augusta). Jdrees Center is dominated by pine
(Pinus spp.) and longleaf pine (Pinus palustrigsiits are similar between the studies for OC,
Cl and K, but major differences were found for anmmm, Mg, Cu, P, Ca, and Mn, all of which
are relatively minor species and typically not uasdracers for biomass burning. While both
studies indicate that the biomass burning aergsdbminated by OC, comprising approximately
60% of PM s mass, in this study EC comprised about 10% ofrthes whereaS Lee et al.

[2005] determined EC to be about 4%.

The fractions of PMls components (i.e. mass of chemical species per aiddslh s)
during the flaming and smoldering stages are simfilaall major PM s components (sulfate,
nitrate, ammonium, OC and EC) (Table 5.3). Ratifosace elements to PM are significantly
different in the flaming versus smoldering stagaesskveral species (Table 5.3). The fractions
of Na, Mg, Ca and Fe are greater in the smoldesiage. Potassium comprises a greater fraction
of PM, 5 in flaming versus smoldering, and therefore, tl&Oratio is not consistent between
the two stages. It has been reported that theritya@ potassium emissions in a boreal wildfire
occurs during the flaming stag@dhill et al., 2008]. In this study, the OC/K ratio was 44he t
flaming stage and 121 in the smoldering stagecatdig that the majority of potassium released

in prescribed fires is released in the flaming stag
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5.4.2. Water Soluble Organic Carbon

Particulate water-soluble organic carbon (WSOGQjeiserally considered to have two
dominant sources: secondary organic aerosol (S@#)dtion and biomass burninguflivan
and Weber, 2006;Weber et al., 2007]. In the absence of significant biomassing impacts,
WSOC is often used as a surrogate of secondaryigrgarosol (SOA) since the formation of
SOA typically includes the addition of oxygen, nrakit more polar. Although OC levels in
rural areas are often dominated by SOA, the WSO&sored during the burn periods in this
study was expected to be largely primary organios® (POA) since the samples mainly
consisted of smoke from the fire.

High OC loadings, along with high levels of WSOCraveneasure during the fire. The
average WSOC/OC ratio was 0.51 + 0.033, which wagas to background levels before the
first fire (Figure 5.4). However, for the backgrausample taken before the second fire, the ratio
was 0.87. This is potentially due to residual @ignWSOC and SOA formation from prescribed
burning in the vicinity, including SOA formed frogaseous VOC emissions from the fires
measured in this study. The influence of prescrifires on Day 1 is seen from the background
samples Day 2. For example, background levels@{®97 pg rif) and levoglucosan (11.81
mg/g OC) on Day 1 are elevated to 7.75 pigand 21.27 mg/g OC, respectively, on Day 2
(Table 5.4). These results show that in regionsresb@mass burning is expected to affect air

guality, the WSOC/OC ratio is not a good traceBOA.

5.4.3. Particulate Organic Carbon Speciation

During the fire events, large increases were olesefor organic tracers of biomass
burning such as levoglucosan, resin acids, and Pidlsiding retene (Table 5.4 and Figure
5.5). Levoglucosan was the most abundant orgampound in the samples. In the field
background samples, the average levoglucosan ctratien was 47 ng it During the fire
events, the levoglucosan concentrations increaseuder 31,000 ng i a factor of

approximately 200 above background levels. Levoggan contributed, on average, 12% of the
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total OC. Concentrations of resin acids also iaseel, especially dehydroabietic acid and 7-
oxodehydroabietic acid, increasing to 3809 andiid.&i°, respectively. Resin acids increased
by approximately 60 times from background. Retangotential softwood burning tracer,
increased by a factor of about 38 from the backgipand was the dominant PAH (Figure 5.6,
Table 5.4). These ratios were higher on the fiest af the fire because the background levels for
these compounds were lower on that day comparBayd.

n-alkanes are associated with both biomass buresgeCially plant waxes) and fossil
fuel combustionfRogge et al., 1993;Yan et al., 2008]. To distinguish between the relative
impacts of both of these sources, the carbon meéerindex (CPI) was calculated since biomass
burning shows a strong odd carbon number prefereheeeas fossil fuel combustion shows a
strong even carbon number preference-alkanes §imoneit and Mazurek, 1982]. In the field
background samples;alkanes exhibited a slight odd carbon number predance with a CPI
of 1.1-1.4 Howevem-alkanes in fire samples had a strong odd carbambeu predominance
(average CPI=2.6, carbon number maximumax€31). Fom-alkanoic acids, biomass burning
has an even carbon number preference (oppositalk&nes), and both background and fire
samples showed strong even carbon number predoogrfanerage CP1=6.1,{=16),
indicative of a biomass sourcégn et al., 2008]. The concentration difference of the sim o
even minus odd carbon number series during theribes! fire was 343 ng h much larger
than in the field background samples (on averagegni).

Organic compounds were background corrected, naetato total OC, and compared
with the results fron®s. Lee et al. [2005] (Table 5.4). The OC was determined usihy/®,
which has been shown I8/Lee et al. [2005] to a have a 40% positive artifact when they
sampled two prescribed fires in Georgia. Thusytidaes in Table 5.4 can be adjusted
accordingly to proximate OC concentrations fromCiMPthat uses a carbon denuder. In general,
the organic compound to OC ratios between the tadiess are very comparable. In both studies,
the POC is dominated by levoglucosan, resin agidsa¢ékanoic acids. However, S1Leeet al.

[2005], the next dominant groups are alkenoic aams$ n-alkanes, whereas in this study n-
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alkanes are more dominant than alkenoic acids.rallyéhe organic compound-to-OC ratios are
slightly lower tharS. Lee et al. [2005] except for levoglucosan/OC and n-alkan€s/®hich are
slightly higher.

There is considerable variability between resutisnf studies designed to characterize
particulate organic emissions from biomass burfiige et al., 2002;Hays et al., 2002;S. Lee
et al., 2005;Schauer et al., 2001;Snhaet al., 2004]. While all of these studies show agreement
on which compounds are the primary organic spethey, differ widely in their organic
compound to OC ratios (Figure 5.7). These diffeesrare driven by both fuel characteristics,
which can vary between prescribed burning and easidl burning, as well as sampling

techniques (i.e. laboratory versus field sampling).

5.4.4. VOC Speciation

Emission ratios are used to determine which gasgpesies are affected by combustion
in the flaming and smoldering stages of the fCs emitted from fires are important for
regional air quality modeling since they can cdnite to increases in ozone formation and SOA.
Emission ratios of VOCs relative to G@ere determined from the slope of the least sguare
linear regressions between the mixing ratios ofindéeszidual VOC compounds and GO
measured absolutely (i.e., non-background corrgatetthe flaming and smoldering stages
(Tables S2-S3, Figures S2-S3). The VOC canistepkamvere distinguished into flaming
(<0.1) and smoldering (>0.1) stages basedGO/ACO; ratio sf. Lee et al., 2005]. The
coefficient of determination (Rn Table D.2) indicates the extent to which gasssinns are

correlated with the intensity of combustion witlire fire.

5.4.5. Emission Factors

Results from this sampling provide an opportunitgstimate a regional prescribed fire
emission factor for Georgia that can be utilizeaimquality models as well as inform air quality

management policy. Emission factors, based onotiaé carbon consumed and emitted to the
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atmosphere, were calculated using the carbon naasde method (Equation Sifha et al.,
2004]. In this method, all carbon consumed in treei§ assumed to be converted to£CO,

CHa, NMOCs, and particulate carbon (PC).

EF (X) :[ [AX] JX[ LS. J (Equation 1)
[AC]co, +[AC]eo +[AC] ey, +[AC]woc TIAC]pe ) | MaSS

where EF(X) is the emission factor for compound X in$ra&sX per mass of fuel and
the AC terms in the denominator are excess (i.e. backgroameéated) carbon concentrations of
CO,, CO, CH, NMOCs and PC respectively (th&(]pc term was ignored since it contributes
very little to total excess carbon). Emission facteese calculated separately for the gaseous
and condensed phase components due to differentisgnaplproaches.

Emissions factors for C{~1380 g /kg fuel burnt), CO (~86 g/kg) and £H3 g/kg) are
comparable to results found by Lee et al. (2005) (~13487, and ~4 g/kg, respectively) and
Sinha et al. (2004) (~1732, ~58, and ~1 g/kg, respag)i (Table 5.5). VOC emissions are
dominated by ethane, methanol and ethyne; metlambéthanol emissions were found to be
significantly greater in the smoldering phase verbBedlaming stage. To find speciated M
emission factors, theA\[C] terms for CQ, CO and CH, in Equation (1) need to be for the same
time period as the PM samples. However, GOCO and VOC were measured using canisters
that sample for only a few minutes whereas samplingge for PM s ranged from 30 to 105
minutes. Given the lack of continuous £@onitoring at the site, PM samples were
differentiated into flaming and smoldering based orfiteestage of the canisters that were
closest in time to the PM samples. Four PM samples were identified as flaming and two as
smoldering. We used this differentiation to comparetifivas of PM 5 components (Table 5.3).
For PMy s emissions factors, we calculated an overall EF (hev&rage of all samples) because
there was approximately a two order of magnitude differ@ambackground corrected (i.e.

excess) CO and C@oncentrations that skewed results for,RMFs in the smoldering phase,
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for which there were only 2 samples. The overall ERFPM, s was found to be 13.9 (+ 17.3) g
PM, s/kg fuel (Table 5.6). This is higher than the EFs fobp&. Lee et al. [2005] of 0.66 and
1.14 g PMykg fuel in the flaming and smoldering stages, respelsti Emission factors for
individual PM, 5 species were approximately one to two orders of madmidgmeater than
determined bys. Lee et al. [2005]. We also compared the EFs derived from thidystith the
Fire Emissions Production Simulator (FEPS)derson et al., 2004] and EPA’s AP42 emissions
inventory U.SEPA, 1995]. The EFs found here are comparable to bottSFHEE AP42 (Table
5.7). However, our CO emissions factor is ~2.7 highéinénsmoldering stage than in the
flaming stage, while in FEPS the CO EFs ratio is ~TIl6s is ostensibly because FEPS allocates
short-term smoldering emissions, which are enriched int€@e primary flaming stage. We
also compared our VOCs with profile 5560 (Biomass Buynikxtratropical Forest) from

EPA'’s Speciate 4.3 database. We matched SpeciasWith VOC measurements from this
study and rescaled Speciate weight percentagesesuits correlate well )R0.96, slope of
1.01+0.04) (Figure 5.8).

Efforts to estimate source impacts often rely on usiacgets specific to a source
category, or estimating source impacts using recdyased approaches, including factor analytic
and CMB-based models. CMB models require apriori kedg# of source profiles, which have
been shown to be a major source of uncertaidtige and Russell, 2007], and the results are
often most sensitive to a few key species in eactceoiliherefore, several potential tracers of
biomass burning were evaluated and emission ratiostfimnstudy were used as a new biomass

burning source profile.

5.4.6. Comparison of Biomass Burning Tracers

Studies suggest that levoglucosan and retene maggrepriate biomass burning
markers §moneit, 2002] though recent work suggests that levoglucasanphotodegrade
[Hennigan et al., 2010]. While potassium is enriched in biomass imgremissions, it may not

be an ideal biomass burning marker since local urbarces (e.g., road dust) may be significant

135



[Zhang et al., 2010] and that potassium may be a better tracer for wood gstiol than for
underbrush combustioi[et al., 2009]. However, when biomass burning impacts gpeced

to be significant, potassium can be a suitable tradés compared levoglucosan, potassium and
retene, with WSOC (Figure 5.9). WSOC is most stronglyetated with levoglucosan {R

0.98) and to a lesser extent with potassiuf(R93) and retene (R0.67) (Figures 5.9a, 5.9b
and 5.9¢). The high correlation with WSOC sugg#sdslevoglucosan may be a better marker
for prescribed fires where underbrush is primarily consumedoglucosan is well correlated
with both potassium (R= 0.90) and retene (R 0.80) (Figures 5.9d and 5.9¢) while retene and
potassium had a lower correlatior?(R0.56). Given that potassium data are generally more
available than levoglucosan data, potassium isnbst often used tracer of biomass burning in
source apportionment work, but its use during timesmdiemass burning is limited may affect

source apportionment results.

5.4.7. Source Apportionment

Applying the CMB-LGO source apportionment methdthfmur et al., 2005] to
speciated PMs data from the Jefferson St. (JST) SEARCH ditarjsen et al., 2003], we
compared results using a biomass burning profile defreaal this study with results using the
composite profile fronChow et al. [2004b]. All other source category source profilesenve
identical in the two source apportionments. The chiasgd value, an overall goodness of fit
metric, is very similar using the composite profile fr@mow et al. [2004b] (2.80) and using the
prescribed fire profile derived from this work (2.85); howetee, distribution of mass is very
different (Table 5.8). First, use of the prescribed fire prdfden this study results in higher
estimated to observed RBNmass ratios (0.94 versus 0.79). Second, the presdnibgatofile
results in substantially more mass to biomass bur(@ngrage of 5.42 + 2.62 pg M than with
the Chow et al. [2004b] composite biomass burning profile (average @ +.0.68 pg n?).

The differences in the two source apportionments arerdbdyeghe amount of potassium in the

respective biomass burning source profile. The compepsdfile fromChow et al. [2004b] has

136



potassium levels of 5.73 % + 5.63%. The prescribedfwenass burn source profile developed
here contains 0.68% + 0.33% for potassium (Figure 5thi3)has the net effect of leading to an
increase in biomass burning impacts to match the medsoncentrations of potassium. A range
of values for potassium based on fuel type have beemntegl) where measured levels on a
percent basis of PM emissions range from 0.49 % + 0.06% for Montana gma29t% + 2.6%
for Dambo grassGhen et al., 2007] and range from 0.2 — 1.8% for wood combustione et

al., 2002]. S Leeet al. [2005], studying a prescribed fire in Georgia, foundralar amount of
potassium as in this study (0.65 % £ 0.37%). Thes@teindicate that regionally specific
biomass burning source profiles should be used in saypertionment work. Another
consequence is that the chi-squared value is nossaily a good indicator of goodness of fit

since two very different SA results can lead to samdhi-squared values.

5.5. Conclusions

Prescribed burning is increasingly being used as anaaosystem management,
underscoring the need to better characterize relategiemss PM s emissions during
prescribed burn measurements consisted mainly of OCG4);3C (~10 %), chloride (~1.6%),
potassium (~0.7%) and nitrate (~0.9%). Gaseous emsssiere high in Cg CO, CH, ethane,
ethyne, propene, benzene, acetaldehyde, methanahattand acetone during both flaming and
smoldering stages.

WSOC increases significantly during the fire and is nsbrengly correlated with
levoglucosan (R= 0.98) and potassium {R 0.93) than retene R 0.67). The average
WSOC/OC ratio was 0.51 + 0.033 and did not changeifstantly from background levels.
This is likely due to the background containing S[ZRang et al., 2012], leading to similar
WSOC/OC ratios prior to and during the prescribed fireusTkhe WSOC/OC ratio may not be
a good indicator of SOA in regions that are expectdzbtompacted by biomass burning.

Organic compound to OC ratios are comparable to Lak €005) though the alkanoic

and alkenoic acids to OC ratio is lower in this stuéyl of the major organic compound to OC
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ratios fall within the broad range of values reportedtiver studiesHine et al., 2002;Hays et
al., 2002;S Leeet al., 2005;Schauer et al., 2001;Snha et al., 2004].

Source profiles derived from the fire were utilized to appo PM, s impacts in Atlanta.
The new profile has lower levels of K leading to arr@ase in the calculated amount of PM

from biomass burning.
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5.7. Tables

Table 5.1: Particulate Matter Chemical Compositionof Emissions from Prescribed Burning: This study
versus Lee et al. (2005)

This study Lee et al. (2005)

Average St. Dev. Average St. Dev.

PMzs (ug m°) 161 94 1810 680
OC and EC (weight % of PM, smass)
Organic carbon 57 3 60 18
Elemental carbon 10 0.64 3.9 1.1
WSOC 28 2.3
lonic species (weight % of PM smass)
Acetate 0.41 0.09 0.55 0.16
Formate * * 0.45 0.11
Nitrate 0.94 1.00 0.44 0.30
Sulfate 0.23 0.36 0.25 0.11
Oxalic Acid 0.19 0.19 0.069 0.014
Ammonium 0.70 0.37 0.11 0.11

*Below Quantification Limit
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Table 5.2: Metals Composition from Prescribed Burimg (weight % of PM2.5 mass): This study versus Leet

al. (2005).
This Study Lee et al. (2005)

Average St. Dev Average St. Dev
Na 0.3286 0.1610 0.0431 0.0175
Mg 0.1405 0.0028 0.0001 0.0003
Al 0.0719 0.0926 0.0229 0.0426
Si 0.0188 0.0707 0.0186 0.0258
P 0.0794 0.0729 0.0010 0.0015
S 0.0888 0.0827 0.1074 0.0403
Cl 0.3009 0.1549 0.4217 0.2295
K 0.6846 0.3336 0.5707 0.3711
Ca 0.0881 0.0138 0.0006 0.0011
Sc 0.0289 0.0002
Ti 0.0029 0.0224 0.0004 0.0006
Cr 0.0029 0.0224 BL* BL
Mn 0.0319 0.0183 0.0011 0.0010
Fe 0.0586 0.0245 0.0082 0.0137
Cu 0.0137 0.0084 0.0010 0.0010
Zn 0.0099 0.0092 0.0160 0.0089
Se 0.0097 0.0427 0.0001 0.0002
Br 0.0118 0.0003 0.0141 0.0091
Rb 0.0021 0.0093 0.0042 0.0028
Pb 0.0087 0.0220 0.0001 0.0003
Y 0.0100 0.0127 P -
Zr 0.0019 0.0296 - -
Nb 0.0024 0.0228 - -
Mo BL 0.0203 - -
Ag 0.0060 0.0355 - -
Sh 0.0182 0.0622 - -
La 0.0012 0.0076 - -
Ce 0.0102 0.0284 - -
Th 0.0037 0.0471 - -
Hf 0.0200 0.1363 - -
Ta 0.0177 0.1017 - -
Ir 0.0000 0.0758 - -
Au 0.0106 0.0673 - -
T 0.0071 0.0508 - -
\Y - - BL BL
Co - - BL BL
Ni - - BL BL
Ga - - BL BL
Ge - - BL BL
As - - 0.0002 0.0003
Sr - - 0.0002 0.0003

3BL: Below blank levels." -:

Not detected or all measured values were 0.
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Table 5.3: PM,smajor components (as wt. %) and metals ratios to tal PM, s (mg/g of total PM, ) in
flaming and smoldering stages, averaged over two escribed fires.

Flaming Smoldering
Major Components
Units (% of Total PM,) Avg. St. Dev. Avg. St. Dev.
Other 27% 0.9% 29% 0.29%
oC 55% 1.8% 58% 0.59%
EC 11 % 1.0% 10% 0.74%
Acetate 0.40% 0.16% 0.79% 0.62%
Nitrate 1.45% 0.76% 1.55% 1.36%
Sulfate 0.48% 0.08% 0.61% 0.49%
Oxalic Acid 0.35% 0.34% 0.27% 0.21%
Ammonium 0.86% 0.22% 0.81% 0.07%
PM,. (ug m°) 327.15 148.32 48.52 9.45
Metals by XRF
Units (mg/g of Total PM,5) Avg. St. Dev. Avg. St. Dev.
Na 1.32 N/A 17.54 9.25
Mg - N/A 3.87 N/A
Al 1.38 N/A 1.15 0.079
Si 0.37 0.12 2.13 N/A
P 0.34 N/A 3.88 1.38
S 1.32 0.90 - N/A
Cl 3.22 2.59 0.099 N/A
K 8.84 1.49 0.66 0.89
Ca 1.55 1.52 3.22 0.99
Mn 0.77 0.17 - N/A
Fe 0.26 0.095 2.61 4.36
Cu 0.39 0.23 0.34 N/A
Zn 0.16 0.11 0.98 N/A
Br 0.10 0.11 0.33 N/A
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Table 5.4:

Organic compounds summary and comparisowith Lee et al. (2005).

Backgrou Backgrou Lee et al.,
nd Day 1 | Day 1 Avg.* | nd Day 2 | Day 2 Avg.* | Study Avg. (2005)
Mgm®) | (ugm® | (ugm3) | (ugm®) (Mgm®) | (ugm°)
Total OC 3.97 123.89 7.75 55.88 89.88 1090.53
Lee et al.,
Backgrou Backgrou (2005)
nd Day 1 | Day 1 Avg.* | nd Day 2 | Day 2 Avg.* | Study Avg. (mg/g
(mg/g OC) | (mg/g OC) | (mg/g OC)| (mg/g OC) | (mg/g OC) 0QC)
n-alkanes 8.41 3.26 3.39 3.62 3.44 2.36
Branched
alkanes 0.00 0.05 0.04 0.09 0.07 -
Alkanoic
acids 8.10 5.58 4.99 5.76 5.67 27.38
Alkenoic
Acids 9.42 1.40 4.11 1.34 1.37 5.20
Hopanes 0.05 0.00 0.06 0.00 0.00 -
Retene 0.10 0.21 0.26 0.31 0.26 0.35
PAHs 0.18 0.93 0.49 1.01 0.97 1.47
Resin Acids 5.43 19.71 18.20 25.49 22.60 38.74
Others 0.00 2.63 0.00 4.80 3.71 -
Levoglucosan 11.81 116.53 21.27 132.57 124.55 94.75
Cholesterol 0.28 0.27 0.54 0.22 0.24 0.81

*background corrected
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Table 5.5: Emission factors for selected gaseousnponents (g per kg fuel burned), averaged over two
prescribed fires. (NOTE: See Table D.4 for completlist).

Gaseous Species Flaming Avg. | Flaming St. Dev. | Smoldering Avg. | Smoldering St. Dev.
CH, (g/kg) 2.32 1.17 3.48 1.48
CO (g/kg) 48.08 35.02 133.30 54.16
CO; (g/kg) 1425.14 63.78 1324.67 88.28
OCS (g/kg) 0.0061 0.0030 0.0088 0.0003
CS; (g/kg) 0.0014 0.0002 0.0016 0.0011
CH,CI (g/kg) 0.0167 0.0120 0.0181 0.0048
CH,CI, (g/kg) 0.0008 0.0007 0.0002 0.0003
Ethane (g/kg) 0.1459 0.0817 0.3494 0.1144
Ethene (g/kg) 1.0372 0.3747 1.1285 0.2070
Ethyne (g/kg) 0.4285 0.1609 0.4576 0.0742
Propane (g/kg) 0.0359 0.0365 0.0856 0.0551
Propene (g/kg) 0.2742 0.1108 0.3975 0.0094
Benzene (g/kg) 0.2197 0.0859 0.2625 0.0278
Toluene (g/kg) 0.1018 0.0613 0.1474 0.0178
p-Xylene* (g/kq) 0.0021 - - -
o-Xylene” (g/kg) 0.0007 - - -
Acetaldehyde (g/kg) 0.2875 0.1767 0.6771 0.2669
Methanol(g/kg) 0.6301 0.5132 2.0997 1.2559
Ethanol (g/kg) 0.1239 0.1676 0.4195 0.0514
Acetone (g/kg) 0.3111 0.2417 0.4180 0.1693
MAC g/kg) 0.0351 0.0335 0.0668 0.0301
MVK (g/kg) 0.0284 0.0350 0.0797 0.0569
Total NMOCs (g/kg) 3.08 2.43 7.14 1.94

"No standard deviation was calculated in the flamtagesbecause there was one sample with
level above detection. Also, no samples abovectletewere measured in the smoldering stage.
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Table 5.6: Emission Factors for major PM sspecies and selected trace elements (g/kg fuel bad) (NOTE:
See Table D.5 for complete list).

Avg. St. Dev.
PM2.5 (g/kg) 13.87 17.27
OC (g/kg) 7.15 9.32
EC (g/kg) 1.40 1.80
Acetate (g/kg) 0.05 0.07
Nitrate (g/kg) 0.19 0.27
Sulfate (g/kg) 0.07 0.09
Oxalic Acid (g/kg) 0.04 0.05
Ammonium (g/kg) 0.12 0.18
Na (mg/kg) 31.33 26.37
Mg (mg/kg) 12.94 2
Al (mg/kg) 2.12 2.37
Si (mg/kg) 2.76 5.52
P (mg/kg) 5.36 6.20
S (mg/kg) 35.80 43.74
Cl (mg/kg) 72.97 120.10
K (mg/kg) 116.45 180.49
Ca (mg/kg) 12.21 16.85
Ti (mg/kg) 0.01 -
V (mg/kg) BL" n/a
Cr (mg/kg) 0.04 0.02
Mn (mg/kg) 16.85 4.91
Fe (mg/kg) 3.18 5.80
Ni (mg/kg) BL® n/a
Cu (mg/kg) 6.06 9.81
Zn (mg/kg) 1.82 2.00
As (mg/kg) BL n/a
Se (mg/kg) 1.29 1.63
Br (mg/kg) 2.50 4.01

-Yonly one sample had measured concentrations greater than detection limit.
PBL: Below blank levels
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Table 5.7: Comparison of Emission Factors (EFs) (kg fuel burned) with Fire Emissions Production

Simulator FEPS and AP42

Carbon Balance Method (This

Study) FEPS® AP42°
EF Flaming Smoldering Overall Flaming [Smoldering Overall |Flaming | Smoldering | Overall
COo2 1420+64 | 1320+88 | 1380 +80 - - - - - -
Co 48 +35 130 £ 54 86 + 61 141 +5 214+ 1 166+42 45 166 126
CH, 23+12 35+15 28+14 |6.7+£02 11+ 2 78+138 1.5 7.7 5.7
VOCs 3.1+24 71+19 49+3.0 - - - 1.7 5.4 4.2
PM, s - - 14+17 12+ 0.3 17+1.3 13+ 2.7 6 16 13

#See Appendix D (Table D.6) for additional model rurinformation.

®For prescribed burning in long leaf conifer forests
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Table 5.8: Source Apportionment Results for Jeffersn St. (JST), Atlanta, GA for 1/1/07 — 12/31/07 usj two
different biomass burning profiles.

Composite
Source Biomass
Profile * Burning Profile
[Chow et from this Study
al., 2004]
X 2.80(2.23) |  2.85(2.20)
Predicted 12.05
PM2.5 (5.92) 14.06 (6.45)
PM2.5 ratio | 0.79 (0.16) 0.94 (0.20)
Gasoline
Vehicles 0.77 (0.45) 0.75 (0.44)
Diesel
Vehicles 0.96 (0.81) 0.53 (0.68)
Dust 0.34 (0.32) 0.32 (0.32)
Biomass
Burning 1.00 (0.68) 5.42 (2.62)
Coal
Combustion | 0.07 (0.07) 0.07 (0.07)
Ammonium
Sulfate 3.61 (3.55) 3.55 (3.54)
Ammonium
Bisulfate 1.86 (1.35) 1.92 (1.31)
Ammonium
Nitrate 1.01 (0.97) 0.95 (0.97)
Other OC
(SOC) 2.42 (2.24) 0.53 (1.69)

“This profile is the BURN profile fronChow et al. [2004b] and is an average of 19 vegetative
burning profiles.
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5.8. Figures

-l 0

Figure 5.1: Location of Jones Ecological Research
Center in Southwestern Georgia
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Figure 5.2: PM2.5 composition of the prescribed fes sampled in this study.
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between this study and Lee et al. (2005)
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BURN Profile Comparison
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APPENDIX D: SUPPLEMENTAL INFORMATION FOR CHAPTER 5

staff and are summarized in Table D.1. The dominantstwmg species are pine (Pinus spp.) and

D.1. Fuel characteristics

Fuel characteristics from the two burning sites werepilma by Jones Ecological Center

longleaf pine (Pinus palustri) at Ichauway - North Bougdand Ichauway - Dub-East,

respectively. The pre- and post-burn characteristicgatelithat grasses and forbs are nearly

entirely consumed whereas shrubs and pine are padaisumed. At both sites, pine cones

were only partially (Dub East) or minimally (N. Boundacgnsumed.

Table D.1: Fuel characteristics from the two burnirg areas

Table D.1.a: Ichauway — N. Boundary Fuel Charactestics

Loading Pre-burn Loading Post-burn Loading Consumption
Estimate tons/acr Estimate tons/acr | Percen
Tons/Acre +| derror e + | derror e t
Wire
Gras$ 0.32 + 0.06 0.00 + 0.00 0.32 100%
Misc.
Gras$ 0.11 +|  0.02 0.00 | =+ 0.00 0.11 100%
Forbg 0.07 + 0.01 0.00 + 0.00 0.07 100%
Litter 1.08 +|  0.11 0.89 + 0.08 0.19 18%
Pine
Coné 0.30 +| 0.2 031 | 0.13 -0.01 -3%
Woody
shrubg 0.10 + 0.02 0.05 + 0.02 0.05 50%
Down
Woody
1hr 0.00 + 0.00 0.00 + 0.00 0.00 0%
10 hr 0.33 + 0.06 0.39 + 0.12 -0.06 -18%
100 hr 0.20 + 0.08 0.12 + 0.09 0.08 40%
TOTAL 2.51 + 0.24 1.76 + 0.35 0.75 30%
Day-of-
burn
Euel
Moistur Estimate
e Percent x| derror Sample Size (n)
Litter- 22.5% +| 1.08 7 |
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Early

Litter-

Middle 19.8% + 0.39 3

Litter-

Late 13.4% H# 0.15 3
1

Grass 54.7% + 3.04 0

1hr 20.5% H 2.62 2

10 hr 71.9% 4 3.42 5

"Loading and consumption based on 20 pre-burn and @8bpeon clip plots (4 meach).

? Loading and consumption based on 20 pre-burn and@6huirn clip plots (1 feach).

Table D.1.b: Ichauway — Dub-East Fuel Characteristis

Loading® Pre-burn Loading Post-burn Loading Consumption
Estimated Estimated
tons/acre| + error tons/acre| * error tons/acre | Percent
Wire Grass 0.15 T 0.06 0.00 * 0.00 0.15 100.0%
Misc. Grass 0.22 T 0.08 0.00 + 0.00 0.22 100.0%
Forbs 0.10 4 0.07 0.01 + 0.00 0.09 90.0%
Litter 1.96 + 0.22 0.94 + 0.13 1.02 52.0%
Pine Cone 0.47 t 0.12 0.34 + 0.14 0.13 27.7%
Woody shrubs 1.92 * 0.64 0.95 + 0.25 0.97 50.5%
Down Woody
1hr{ 0.03 + 0.02 0.03 + 0.01 0.00 0.0%
10 hr| 0.18 + 0.04 0.30 + 0.06 -0.12 -66.7%
100 hr| 0.13 + 0.10 0.04 + 0.04 0.09 69.2%
Down Woody
Subtotal 0.34 |+ 0.37 + -0.03 -8.8%
TOTAL 5.16 + 0.72 2.61 + 0.30 2.55 49.4%
Day-of-burn Fuel Estimated
Moisture Percent | £ error Sample Size (n)
Litter 18.6% | + 0.46 10
Perched Litter 20.1%| ¢+ 2.42 2
Oak Foliage 12.2%| = 0.68 5
Grass 394% | =+ 2.68 10
1hr 21.3% | H 0.11 2
10 hr 53.3% | H# 4.42 5

! Loading and consumption based on 20 pre-burn an®@6kuirn clip plots (1 feach).
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D.2. VOC Speciation

Table D.2: Emission ratios relative to CQ of gaseous emissions (+ standard error, coefficieaf
determinations RZ and number of samples N) from least squares lineaegressions between mixing ratios of
individual VOCs and CO, measured in 5 flaming and 4 smoldering emission s®les, averaged over two

prescribed fires.

Flaming Smoldering
AXIACO, Std. R® AXIACO, Std. R®

Error N Error N
CH, (ppmv/ppmv) 0.0007 0.0004 | 049 |5 0.0074 0.0040 | 0.63 | 4
CO (ppmv/ppmv) 0.0241 0.0054 1087 |5 0.1705 0.0929 | 0.63 | 4
OCS (ppbv/ppmv) -0.0010 0.0007 1044 |5 0.0046 0.0006 | 097 | 4
CS (ppbv/ppmv) 0.0006 0.0001 |0.91 |5 0.0002 0.0001 |0.84 | 4
methyl chloride (pptv/ppmv) 4.6247 1.2726 | 081 | 5 11.0146 5.0080 | 0.71 | 4
dichloromethane (pptv/ppmv) 0.1283 0.0515 | 0.67 | 5 0.0103 0.0035 | 081 | 4
chloroform (pptv/ppmv) 0.0000 0.0138 | 0.00 | 5 0.0012 0.0034 | 0.06 | 4
tetrachloroethylene (pptv/ppmv) 0.0525 0.0303 | 0.50 | 5 0.0001 0.0041 | 0.00 | 4
methyl nitrate (pptv/ppmv) 0.0495 0.0179 | 0.72 | 5 0.1016 0.0759 (047 | 4
ethyl nitrate (pptv/ppmv) 0.0106 0.0056 | 0.55| 5 0.0220 0.0066 | 0.85 | 4
i-propyl nitrate (pptv/ppmv) 0.0335 0.0200 | 048 | 5 0.0405 0.0183 |0.71 | 4
n-propyl nitrate (pptv/ppmv) 0.0040 0.0016 | 0.68 | 5 0.0022 0.0005 | 092 | 4
2 butyl nitrate (pptv/ppmv) 0.0523 0.0328 | 0.46 | 5 0.0213 0.0170 | 044 | 4
ethane (ppbv/ppmv) 0.0738 0.0144 | 0.90 | 5 0.4661 0.2021 | 0.73 | 4
ethene (ppbv/ppmv) 0.4910 0.1149 | 0.86 | 5 1.2166 0.3275 | 087 | 4
ethyne (ppbv/ppmv) 0.1797 0.0524 | 0.80 | 5 0.5708 0.0810 | 0.96 | 4
propane (ppbv/ppmv) 0.0179 0.0042 | 0.86 | 5 0.0847 0.0321 | 0.78 | 4
propene (ppbv/ppmv) 0.1020 0.0199 | 0.90 | 5 0.3032 0.0104 |1.00 | 4
i-butane (ppbv/ppmv) 0.0027 0.0003 | 0.95 | 5 0.0046 0.0011 | 0.89 | 4
n-butane (ppbv/ppmv) 0.0058 0.0022 | 0.70 | 5 0.0138 0.0050 | 0.79 | 4
1-butene (ppbv/ppmv) 0.0150 0.0028 | 0.91 | 5 0.0409 0.0016 |1.00 | 4
i-butene (ppbv/ppmv) 0.0095 0.0016 | 0.92 | 5 0.0310 0.0058 | 093 | 4
trans-2-butene (ppbv/ppmv) 0.0029 0.0003 | 098 | 4 0.0134 0.0039 | 0.86 | 4
cic-2-butene (ppbv/ppmv) 0.0025 0.0005 | 091 4 0.0089 0.0024 | 0.87 | 4
i-pentane (ppbv/ppmv) 0.0032 0.0012 | 0.69 | 5 0.0061 0.0028 | 0.71 | 4
n-pentane (ppbv/ppmv) 0.0014 0.0005 | 0.73 | 5 0.0042 0.0018 | 0.72 | 4
1,3-butadiene (ppbv/ppmv) 0.0227 0.0049 | 0.88 | 5 0.0512 0.0049 |0.98 | 4
1-Pentene (ppbv/ppmv) 0.0103 0.0015 | 096 | 4 0.0939 0.0450 | 0.68 | 4
trans-2-Pentene (ppbv/ppmv) 0.0010 0.0004 | 0.73 | 5 0.0037 0.0000 |1.00 | 4
cis-2-Pentene (ppbv/ppmv) 0.0007 0.0001 | 0.96 | 4 0.0026 0.0001 |1.00 | 4
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2-Methyl-1-butene (ppbv/ppmv) 0.0014 0.0001 | 098] 4 0.0056 0.0014 | 0.89 | 4
2-Methyl-2-butene (ppbv/ppmv) 0.0020 0.0004 | 0.90 | 5 0.0148 0.0071 | 0.68 | 4
2-Methyl-1-Pentene (ppbv/ppmv) 0.0061 0.0010 | 0.93 0.0104 0.0043 | 0.75

isoprene (ppbv/ppmv) 0.0202 0.0025 | 0.95| 5 0.0372 0.0247 | 0.53

2,3-Dimethylbutane (ppbv/ppmv) 0.0003 0.0000 | 0.93 | 5 0.0002 0.0001 |0.74 | 4
2-methylpentane (ppbv/ppmv) 0.0007 0.0002 | 0.85| 5 0.0005 0.0002 | 0.68 | 4
3-methylpentane (ppbv/ppmv) 0.0003 0.0002 | 041 |5 0.0001 0.0000 |0.72 | 4
n-hexane (ppbv/ppmv) 0.0014 0.0002 | 0.96 | 5 0.0021 0.0017 (1044 | 4
n-heptane (ppbv/ppmv) 0.0006 0.0001 | 0.89 | 5 0.0018 0.0007 | 0.77 | 4
n-octane (ppbv/ppmv) 0.0000 0.0000 | 0.00 | 1 0.0012 0.0005 |0.71 | 4
2,2,4-Trimethylpentane (ppbv/ppmv) 0.0007 0.0001 | 0.98 | 5 0.0002 0.0001 | 0.68 | 4
benzene (ppbv/ppmv) 0.0307 0.0095 | 0.78 | 5 0.1009 0.0101 | 0.98 | 4
toluene (ppbv/ppmv) 0.0169 0.0033 | 0.90 | 5 0.0462 0.0053 | 097 | 4
ethylbenzene (ppbv/ppmv) 0.0016 Inf 1.00 | 2 0.0060 0.0012 | 092 | 4
m-xylene (ppbv/ppmv) 0.0017 0.0001 |1.00| 3 0.0167 0.0073 | 0.72 | 4
p-xylene (ppbv/ppmv) 0.0014 0.0001 |1.00| 3 0.0061 0.0024 | 0.77 | 4
0-xylene (ppbv/ppmv) 0.0013 0.0000 |1.00| 3 0.0047 0.0016 | 081 | 4
1,3,5-Trimethylbenzene (ppbv/ppmv) 0.0000 0.0000 | 0.00| O 0.0000 0.0000 | 0.51 | 4
1,2,4-Trimethylbenzene (ppbv/ppmv) 0.0000 0.0000 | 0.00 | 1 0.0003 0.0002 | 049 | 4
1,2,3-Trimethylbenzene (ppbv/ppmv) 0.0000 0.0000 |0.00| O 0.0001 0.0001 | 042 | 4
a-pinene (ppbv/ppmv) 0.0000 0.0000 | 0.00 | 1 0.0015 0.0013 | 041 | 4
b-pinene (ppbv/ppmv) 0.0000 0.0000 | 0.00| O 0.0002 0.0002 | 0.51 | 4
Acetaldehyde (ppbv/ppmv) 0.1365 0.0231 | 092 | 5 0.6815 0.3102 | 0.71 | 4
Methanol (ppbv/ppmv) 0.3010 0.0402 | 0.95| 5 3.2297 1.8728 | 0.60 | 4
Ethanol (ppbv/ppmv) 0.0302 0.0048 | 0.93 | 5 0.3208 0.0605 | 093 ]| 4
Acetone (ppbv/ppmv) 0.0719 0.0110 | 0.93 | 5 0.3134 0.0708 | 0.91 | 4
MAC (ppbv/ppmv) 0.0118 0.0008 | 0.99 | 5 0.0485 0.0131 | 087 | 4
MVK (ppbv/ppmv) 0.0116 0.0007 | 0.99 | 5 0.0626 0.0244 | 0.77 | 4
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Table D.3: Comparison of Gaseous and VOC Emissiorisom prescribed burning between this study and Lee

et al. (2005).

This Lee et al. This Lee et al.

Study (2005) Study (2005)
CO (ppmv/ppmv 0.024: 0.070¢ | n-heptane (ppbv/ppm 0.000¢ 0.001¢
CHy (ppmv/ppmyv 0.000: 0.00: | n-octane (ppbv/ppm 0.001:
chloroform (pptv/ppm\ 0.001¢ | ethene (ppbv/ppm 0.491( 1.241¢
Dichloromethane (pptv/ppmv 0.1283 -0.1606| ethyne (ppbv/ppmv) 0.179 0.3888
tetrachloroethylen 0.052¢ 0.007< | propene (ppbv/ppm 0.102( 0.244"
methyl chloride (pptv/ppm 4.624 8.697¢ | 1-butene (ppbv/ppm' 0.015( 0.037¢
methyl nitrate (pptv/ppm 0.049¢ 0.821¢ | i-butene (ppbv/ppm' 0.009¢ 0.02¢
ethyl nitrate (pptv/ppm\ 0.010¢ 0.057¢ | trans<-2-butene 0.002¢ 0.008:
i-propyl nitrate (pptv/ppm» 0.033¢ 0.102¢ | cic-2-butene (ppbv/ppm' 0.002¢ 0.006:
n-propyl nitrate (pptv/ppm 0.004( 0.007¢ | 1,3-butadiene 0.022: 0.023:
2 butyl nirate (pptv/ppmy 0.052: 0.053: | benzene (ppbv/ppm 0.030:" 0.095:
ethane (ppbv/ppm 0.073¢ 0.262: | toluene (ppbv/ppm 0.016¢ 0.043:
propane (ppbv/ppm 0.017¢ 0.052¢ | ethylbenzen: 0.005¢
i-butane (ppbv/ppm' 0.002: 0.002¢ | m-xylene (ppbv/ppm) 0.001" 0.00¢
n-butane (ppbv/ppm 0.005¢ 0.009: | p-xylene (ppbv/ppm\ 0.001¢ 0.004:
i-pentane (ppbv/ppm 0.003: 0.000" | o-xylene (ppbv/ppm\ 0.001¢ 0.003¢
n-pentane (ppbv/ppm 0.001¢ 0.003¢ | isoprene (ppbv/ppm 0.001
2-methylpentane (ppbv/ppmr 0.0007 0.000" | a-pinene (ppbv/ppm 0.001:
3-methylpentane (ppbv/ppnr 0.000¢ 0.000: | b-pinene (ppbv/ppm" 0.001°
n-hexane (ppbv/ppm 0.001¢ 0.002:

Smoldering AX/ACO»)

CO (ppmv/ppmv 0.170¢ 0.2337 | n-heptane (ppbv/ppm 0.001¢ 0.011¢
CHy (ppmv/ppmyv 0.007¢ 0.0107 | n-octane (ppbv/ppm 0.001: 0.009:
chloroform (pptv/ppm\ 0.001- 0 | ethene (ppbv/ppm 1.216¢ 0.856¢
dichloromethane (pptv/ppm 0.010:| -0.066¢ | ethyne (ppbv/ppm 0.570¢ 0.096¢
tetrachloroethylen 0.000: 0.003¢ | propene (ppbv/ppv) 0.303: 0.398:
methyl chloride (pptv/ppm 11.014¢ 32.67 | 1-butene (ppbv/ppm 0.040¢ 0.062:
methyl nitrate (pptv/ppm 0.101¢ 0.011: | i-butene (ppbv/ppm' 0.031 0.08¢
ethyl nitrate (pptv/ppm» 0.02: 0.004- | trans-2-butene 0.013¢ 0.029¢
i-propyl nitrate (pptv/ppm\ 0.040¢ 0.035: | cic-2-butene (ppbv/ppm 0.008¢ 0.022
n-propyl nitrate (pptv/ppm 0.002: 0.000¢ | 1,3-butadiene 0.051: 0.02¢
2 butyl nitrate (pptv/ppm: 0.021: 0.009¢ | benzene (ppbv/ppm 0.100¢ 0.188¢
ethane (ppbv/ppm 0.466: 0.909¢ | toluene (ppbv/ppm 0.046: 0.104«
propane (ppbv/ppm 0.084: 0.244! | ethylbenzent 0.00¢ 0.013:
i-hutane (npbhv/nnm' 0.004¢ 0.017. | m-xvlene (nnbhv/nnmn 0.016. 0.036:
n-butane (ppbv/ppm' 0.013¢ 0.065: | p-xylene (ppbv/ppm\ 0.006: 0.00¢
i-pentane (ppbv/ppmv) 0.0061 0.0022| o-xylene (ppbv/ppmv) 0.004 0.0127
n-pentane (ppbv/ppm 0.004: 0.025¢ | isoprene (ppbv/ppm 0.037: 0.02¢
2-methylpentane (ppbv/ppnr 0.000¢ 0.005: | a-pinene (ppbv/ppm' 0.001¢ 0.020:
3-methylpentane (ppbv/pprr | 0.000: 0.001: | b-pinene (ppbv/ppm 0.000: 0.012¢
n-hexane (ppbv/ppm 0.002: 0.016:
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Table D.4: Emission factors for gaseous componentg per kg fuel burned).

Flaming Flaming St. Smoldering Smoldering St.

Gaseous Species Avg. Dev. Avg. Dev.
CHg, (g/kg) 2.32 1.17 3.48 1.48
CO (g/kg) 48.08 35.02 133.30 54.16
CO; (g/kg) 1425.14 63.78 1324.67 88.28
OCS (g/kg) 0.0061 0.0030 0.0088 0.0003
CS2 (g/kg) 0.0014 0.0002 0.0016 0.0011
CH3CI (g/kg) 0.0167 0.0120 0.0181 0.0048
CH2CI2 (g/kg) 0.0008 0.0007 0.0002 0.0003
CHCI3 (C/D)(g/kg) 0.000007 N/A - N/A
C2Cl4 (C/D)(g/kg) 0.0000 N/A - N/A
MeONO2 (C/D)(g/kg) 0.0003 0.0001 0.0002 0.0001
EtONO2 (C/D)(g/kg) 0.0000 0.0000 0.0000 0.0000
i-PrONO2 (C/D)(g/kg) 0.0002 N/A 0.0001 0.0000
n-PrONO2 (C/D)(g/kg) 0.0000 N/A 0.0000 0.0000
2-BuONO2 (C/D)(g/kg) 0.0001 0.0000 0.0000 0.0000
Ethane (g/kg) 0.1459 0.0817 0.3494 0.1144
Ethene (g/kg) 1.0372 0.3747 1.1285 0.2070
Ethyne (g/kg) 0.4285 0.1609 0.4576 0.0742
Propane (g/kg) 0.0359 0.0365 0.0856 0.0551
Propene (g/kg) 0.2742 0.1108 0.3975 0.0094
i-Butane (g/kg) 0.0061 N/A 0.0074 0.0003
n-Butane (g/kg) 0.0122 0.0012 0.0196 0.0027
1-Butene (g/kg) 0.0475 0.0244 0.0741 0.0055
i-Butene (g/kg) 0.0353 0.0225 0.0544 0.0101
trans-2-Butene (g/kg) 0.0110 0.0055 0.0209 0.0061
cis-2-Butene (g/kg) 0.0091 0.0039 0.0131 0.0084
i-Pentane (g/kg) 0.0037 0.0045 0.0081 N/A
n-Pentane (g/kg) 0.0045 0.0030 0.0104 0.0010
1,3-Butadiene (g/kg) 0.0689 0.0269 0.0982 0.0172
1-Pentene (g/kg) 0.0473 0.0366 0.1448 0.0597
trans-2-Pentene (g/kg) 0.0064 0.0027 0.0077 0.0020
cis-2-Pentene (g/kg) 0.0039 0.0017 0.0054 0.0003
2-Methyl-1-butene (g/kg) 0.0079 0.0033 0.0112 0.0047
2-Methyl-2-butene (g/kg) 0.0078 0.0034 0.0211 0.0085
2-Methyl-1-Pentene (g/kg) 0.0262 0.0113 0.0353 0.0077
Isoprene (g/kg) 0.0576 0.0320 0.0973 0.0215
2,3-Dimethylbutane (g/kg) 0.0022 0.0013 0.0002 0.0003
2-Methylpentane (g/kg) 0.0054 0.0049 0.0004 0.0005
3-Methylpentane (g/kg) 0.0012 0.0001 0.0001 N/A
n-Hexane (g/kg) 0.0035 0.0026 0.0106 0.0020
n-Heptane (g/kg) 0.0028 0.0018 0.0059 0.0007
n-Octane (g/kg) - - - -
2,2,4-Trimethylpentane (g/kg) 0.0007 0.0009 0.0003 0.0002
Benzene (g/kg) 0.2197 0.0859 0.2625 0.0278
Toluene (g/kg) 0.1018 0.0613 0.1474 0.0178
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Ethylbenzene (g/kg) - N/A - N/A
m-Xylene (g/kg) - N/A - N/A
p-Xylene (g/kg) 0.0021 N/A - N/A
o-Xylene (g/kg) 0.0007 N/A - N/A
1,3,5-Trimethylbenzene (g/kg) - N/A - N/A
1,2,4-Trimethylbenzene (g/kg) - N/A - N/A
1,2,3-Trimethylbenzene (g/kg) - N/A - N/A
alpha Pinene (g/kg) - N/A - N/A
beta Pinene (g/kg) - N/A - N/A
Acetaldehyde (g/kg) 0.2875 0.1767 0.6771 0.2669
Methanol (g/kg) 0.6301 0.5132 2.0997 1.2559
Ethanol (g/kg) 0.1239 0.1676 0.4195 0.0514
Acetone (g/kg) 0.3111 0.2417 0.4180 0.1693
MAC (g/kg) 0.0351 0.0335 0.0668 0.0301
MVK (g/kg) 0.0284 0.0350 0.0797 0.0569

“N/A - No standard deviation was calculated becausetivas only one sample with level
above detection or no samples above detection (dibgte).
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D.3. PM, s Emission Factors

Table D.5: Emission Factors for PM 5 (g/kg fuel burned).

Avg. St Dev
PM2.5 (g/kg) 13.87 17.27
OC (g/kg) 7.15 9.32
EC (g/kg) 1.40 1.80
acetate (CH3COO-)
(g/kg) 0.05 0.07
Nitrate (g/kg) 0.19 0.27
Sulfate (g/kg) 0.07 0.09
Oxalic Acid (g/kg) 0.04 0.05
Ammonium (g/kg) 0.12 0.18
Na (mg/kg) 31.33 26.37
Mg (mg/kg) 12.94 2
Al (mg/kg) 2.12 2.37
Si (mg/kg) 2.76 5.52
P (mg/kg) 5.36 6.20
S (mg/kg) 35.80 43.74
Cl (mg/kg) 72.97 120.10
K (mg/kg) 116.45 180.49
Ca (mg/kg) 12.21 16.85
Sc (mg/kg) 2.66 -
Ti (mg/kg) 0.01 -
V (mg/kg) BL" n/a
Cr (mg/kg) 0.04 0.02
Mn (mg/kg) 16.85 491
Fe (mg/kg) 3.18 5.80
Co (mg/kg) BL® n/a
Ni (mg/kg) BL n/a
Cu (mg/kg) 6.06 9.81
Zn (mg/kg) 1.82 2.00
Ga (mg/kg) BL n/a
As (mg/kg) BL® n/a
Se (mg/kg) 1.29 1.63
Br (mg/kg) 2.50 4.01
Rb (mg/kg) 1.88 2
Sr (mg/kg) BL" n/a
Y (mg/kg) 3.02 5.97
Zr (mg/kg) 3.25 3.21
Nb (mg/kg) 1.71 2
Mo (mg/kg) 0.00 2
Pd (mg/kg) BL" n/a
Ag (mg/kg) 4.20 2
Cd (mg/kg) BL® n/a
In (mg/kg) BL® n/a
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Sn (mg/kg) BL® n/a
Sb (mg/kg) 11.30 8.21
Cs (mg/kg) BL® n/a
Ba (mg/kg) BL® n/a
La (mg/kg) 1.84 2
Ce (mg/kg) 0.68 0.51
Sm (mg/kg) BL® n/a
Eu (mg/kg) BL® n/a
Tb (mg/kg) 0.34 2
Hf (mg/kg) 0.14 2
Ta (mg/kg) 15.60 2
W (mg/kg) BL" n/a
Ir (mg/kg) 0.00 2
Au (mg/kg) 9.38 2
Hg (mg/kg) BL" n/a
T1 (mg/kg) 0.52 0.30
Pb (mg/kg) 6.95 8.02
U (mg/kg) BL" n/a

-Yonly one sample had measured concentrations greater than detection limit.
PBL: Below blank levels

Gas phase emission ratios are similar to Lee et @5(2though they tend to be
somewhat lower for both the flaming and smolderingestg&igures D.2, D.3; Table D.3). VOC
emission ratios are dominated by methyl chloride,reghathyne, propene, benzene,
acetaldehyde, methanol, ethanol and acetone duaithgflaming and smoldering stages. In the
smoldering stage, two VOC species, tetrachloroethydege3-methylpentane, are present in Lee
et al. (2005) at levels an order of magnitude higher it&ms study. Tetrachloroethylene, used
primarily for dry cleaning operations but also as amgtdal solvent, and 3-methylpentane,
indicative of liquid fossil fuel emission, reflect agtigs in the vicinity of the fires sampled by
Lee et al. (2005), which were closer to populated afdesse activities are not expected to be

significant in the vicinity of the prescribed fires g study.
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D.3.1. FEPS Simulation

Time varying CO, Chl and PM semissions were calculated using FEPS v1.1.0 using a
typical fuel loading profile for a 2 year-old fuel domiedtby shrubs and litter (Table D.6).
Meteorological data input into FEPS was obtained fkd@soWest Data
(http://mesowest.utah.edu/). Fuel moisture profile veass moderate. The flaming and short
term smoldering involvement percentages were 95% amglteyrm smoldering involvement
percentage was set as 10%, which is a typical fatiprescribed burning. The area of the burn
increased linearly for the first 2 hours of the burn, aeddbkt 15 acres were burned in the third
hour which was assumed to be in the smoldering pf&feS output emission rates (g/s) as well
as fuel consumption rate (kg/hr). EFs derived from FEP$araverages of emission rate/fuel

consumption rate for each appropriate phases of the burn.

Table D.6: 2-year-old Fuel Loading Profile used ifFEPS simulation.

FEPS Canopy | Shrub | Grass | Woody| Litter | Broadcast| Piles Duff
Parameter

Loading 0.00 1.05 0.49 2.93 2.60 0.00 0.00 1.06
(tons per
acre)
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D.4. Water-Soluble Iron

Real time soluble Fe (II) and potassium concentratisere measured using a PILS
sampler and total particles were measured using acabptrticle counter (OPCIRastogi et al.,
2009]. Very good agreement is found between all tarekthe R between soluble Fe (I1) and K
is 0.88 with an emission factor of 0.015 + 0.022 gibld Fe (I) per g K; details of this work
can be found elsewher®gkes et al., 2010b].

D.5. Figures

Figure D.1: Sampling locations. North Boundary (A and Dub-East (B)
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Figure D.3: Comparison of emission ratios relativeéo CO, of gaseous emissions during the smoldering (this
study vs.Lee et al. (2005)
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D.3. Particle Size Distribution

Particles were classified into six bins from 030 to >10um using an OPC. Both days
show similar distributions with predominance in thentner concentration as fine particles (Dp <
2.5um (Figure D.4). The volume or mass equivalentibigion, for both days is bi-modal, with

one mode for fine particles (X<Dp < 2.n) and one for coarse particles (X<Dp <.ifl)

(Figure D.5).
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Figure D.4: Particle number concentration as meaged by OPC for the prescribed fire on (a) 03/05/20®and

(b) 03/06/2008.
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6.1. ABSTRACT

Fire weather forecasts are used by wildlife manageidstermining when PB
activities are to occur. In this work here, we invgestie the sensitivity of ambient BM
to various fire and meteorological parameters in a@pseitting that is typical for the
wildland urban interface in the southeastern US. ¥éethe method of principle
components regression (PCR) to estimate sensitif/yMp s to fire data and, observed
and forecast meteorological parameters. In PCR, pahcgmponents analysis (PCA) is
first run on a data set. We ran PCA on 10 data seténttiaded PB activity data along
with meteorological parameters of interest; the metegical parameters included either
observational data only, forecast data only or a coatlan of observations and
forecasts. For each data set, we regressed PCA scoreth&dinst seven principal

components against observed RMPM;: 5 showed significant sensitivity to PB, with a
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unit-based sensitivity of 3.2+1 pghPM,s per 1000 acres burned. RPhhad a negative
sensitivity to dispersive parameters such as winddsped had positive senstivity to
winds coming from the west and the north, the oridibaih can be considered

continental.

6.2. INTRODUCTION

Fire plays an important role in the management of faessystems of the
Southeastern United States (Southeast), where prestriforing (PB) is employed to
manage more than 8 million acres of land every yWdadg et al., 2000]. Over the last
few decades, the Southeast has experienced sublspaptidation growth [U.S. Census,
2012], causing significant urban sprawl in an othenlisavily forested region, making
the wildland urban interface (WUI) especially susddptto air quality impacts from PB.
It has been suggested that PB is the third largestsf primary anthropogenic fine
PM.sin the U.S., emitting 12% of the total B¥mass Davidson et al., 2005]. In
addition, source apportionment modeling of Rjvhass concentrations from 23
Speciation Trend Network sites suggests PB may tt&rimore than 30% of the annual
PM, s mass in the Southeast during wint&arjgil Lee et al., 2007]. Further, individual
PB plume events can significantly impact air qualR®) in neighboring communities,
which can lead to short-term increases of ambient£8vd contribute to increases in
secondary air pollutants, such as ozdtheet al., 2008;S. Lee et al., 2005].

However, meeting Clean Air Act (CAA) rules mandatedhsy U.S.
Environmental Protection Agency (EPA) can be in conflith the Endangered Species
Act, which recommends the use of PB to re-create thealdire regimes needed to
protect the habitat of threatened and endangeredespagimaintaining the health of its
native forest ecosystems. Due to the suspected hegdtcts, EPA lowered the annual

PM, 5 standard from 1fg m* to 12ug mi*and retained the 24-hour standard at
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35ug m* [U.SEPA, 2011], making PMs contributions from PB emissions even more
important. Before conducting PB on a particular dayd laxanagers across the Southeast
consult the Fire Weather Forecast, which is releasiee tdaily by the National Weather
Service (NWS). Understanding the NWS fire weather forecabttee association of
individual parameters with ambient Blcan aid fire managers in making decisions
regarding when and if prescribed burning events talkeepla

In this work, we investigate the association betweabient PMsand various
fire weather forecast parameters in a spatial settiriggtgpical for the WUI in the
Southeast. Military installations are ideal locaida study such sensitivities because
Department of Defense (DoD) lands are intensely managécheighbored by relatively
large civilian communities that are mandated throlghQAA to monitor AQ. In
addition, the PB activity on military installatiorswell tracked and recorded, thereby
providing adequate data for the analyses in this watke importance of fire weather
forecasts for land management in the WUI is evidentmdoenparing the largest
installations in the southeastern US in terms of medidgrested land area with the size
of the adjacent metropolitan statistical area (MSA) nasetito monitor PMs via the

CAA (Table 6.1).

Table 6.1: Managed areas employing PB on major mthry installations in the southeastern US with
adjacent MSA population [USCensus, 2012] and active PM s monitoring site reporting to the AQS
repository. (Marine Corps Base Camp Lejeune. **Site discontinad in January 2008 with Castle
Hayne site 371290002 serving as backup)

Mil. Base | Managed| Nearest MSA Population PM2.5

Area 2010 SiteID
(acres)

Eglin AFB | 362,000 FWB-Destin FL 236,058 120730012

Stewart 270,000 Savannah A 348,830 130511002

;)

Bragg 162,000| Fayettevile NC 367,444 370510009

Campbell 140,000 Clarksville] TN 261,868 471251009

Benning 96,000 Columbus| GRA 295,741 132150008

MCBCL’ 95,000 | Jacksonville NC 179,487 | 371330005

Rucker 63,000 Dothan AL 145,892 010690003

Gordon 56,000 Augusta GA 566,781 132450091

Jackson 52,000 Columbial SC 769,819 450790007
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Land managers consult fire weather forecasts, releasee daily by the NWS,
to determine if conditions are favorable for conductiBg.PThe morning (AM) version
of the fire weather forecast provides a 24 hour forecdstethe afternoon (PM) version
provides a 48 hour forecast. Each posting providesiitapt forecast parameters that are
considered in the final preparations and decision ggoéimminent PB conduct.
Among the issued parameters, an area-specific ventiledie (VR) (i.e. the product of
wind speed and mixing height), the probability of ppéeation (POP), min/max
temperature and relative humidity (RH), inversion burnt@ffiperature (IBT), boundary
layer mixing height (BLH), transport wind speed anddimn (TWS, TWD), and Haines
Index (HAI) (a lower atmospheric stability index ugedorecast the potential for large
fire growth and/or erratic fire behavior) are considered rnmoportant in this process
(Table 6.2).

This work builds on an earlier study in a similar sgftiinvestigating sensitivities
of ambient PM s measured in Columbus, GA to burn activities at Femnrmng
(expressed in acres burned) relative to fire forecast[Batanann, 2005]. The method
bypasses individual atmospheric processes and lddtatsstical links between the
source (prescribed fires) and receptor gRMhonitoring station), by ranking the
relevance and importance of forecast parameters on thgtoes PM s concentration
relative to that of PB. Such a ranking can inform firenaggers of the most important
forecast parameters that may influence the PB impaPt\yy in their district. In other
words, the ranking allows a quantitative assessnfezdah forecast parameter’s
sensitivity on local PMls under a given PB source strength (expressed in acnesdju
Note that all available PB records used here areits ahacres that were subject to PB,
whereby the amount of fuel actually consumed remaikaawn, because post-PB

inventories do not exist.
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6.3. METHODS

This study utilizes prescribed burning, observed anectst meteorological, and
PM, s data from December 2002 to March 2007 (Table 6.2) a&Bity data were
gathered at the Marine Corps Base Camp Lejeune (MCBE&4r) Jacksonville, NC.
Figure 6.1 shows a map outlining the MCBCL arealsénaim the city of Jacksonville.
Of its total land area of 125,000 acres, MCBCL man&§e300 acres of forested land,
employing PB in a 3-year rotation with an annual trestt target of ca. 30,000 acres.
MCBCL is surrounded by managed forests outside its lbgrde. the Hofmann Forest to
the north, Croatan National Forest to the north-eastta#éfolly Shelter Game Land to
the south-west. Foresters managing these lands sippilgr tools and rely on the same
fire weather forecasts as the MCBCL foresters.

The Marine Corps Air Station (MCA in Figure 6.1) operatesiite of
meteorological sensors that are typical for most airportise U.S.; i.e. cloud ceiling and
visibility in addition to barometric pressure, temperat humidity, precipitation, wind
speed and direction. Observational data are reportie tdWS and are available
through the MesoWest Web site (http://mesowest.ufaliredex.html) run by the
University of Utah’s Department of Meteorology. Since plosted data represent
different averaging intervals and different reporting freqiesyave processed the data to
provide consistent hourly averages, allowing the detetion of daily minimum
humidity and visibility, and daily max-min temperedudifference (see Table 6.2).

Historical fire weather forecast data were extracted fronNtdtenal Climate
Data Center (NCDC) archive in Ashville, NC. The arclidata were accessed via
NCDC's Service Records Retention System in the HieieatData Storage System
Access SystemNOAA, 2012]. In addition, values of the Keetch-Byram Dybulndex

(KBDI) [ Keetch and Byram, 1968], a continuous reference scale for estimatipgeds of
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soil and duff layers presenting wildfire risks, were gattieréhe KBDI is not part of the

routine NWS fire weather forecast, but was available @GBKIL.
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Figure 6.1: Outline of Marine Corps Base Camp Lejme (MCBCL) near the NC coast with the PM 5
(FRM) monitor location at Jacksonville and the neaby meteorological observation site (MCA).

In compliance with the CAA, Jacksonville (populatibr9,487 per 2010 Census)
required regulatory monitoring of ambient RPdbeginning in 1999. The state’s
environmental agency (NCDENR-DAQ) measured 24 h integiah s filter samples to
report average 24 h (daily) PM2.5 mass concentratieryahird day. Most PB activities
occur in winter and spring, addressing both dormangaoding season management
objectives. We obtained Piddata for the several days prior to and when PB agtivéts
documented. However, days with PB activities mayioat between the Pp sampling
days and might be missed in the analysis. In oaeraximize the number of
coincidental data points subject to this exercise,2 days between each PM
measurement have been interpolated in two different;veaeswas using linear temporal
interpolation, and the other employed an air mass flependent spatial correlation with
daily averaged Pl monitoring data from another State regulatory site (E&ktyne

operating a continuous TEOM) ca. 100 km away to the S
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Table 6.2: Measured and modeled (from NWS forecasthput variables. "NOTE: Forecast
parameters are described with “_am” or “_pm” to denote AM and PM forecasts, respectively. The
“ pm” variables are not listed for brevity.

[72)

st

Parameter Variable . i
Type Name Units Description
PM jvIPM pg/nt | 24 hour average PM2.5
JVIPM_si ng/nT | 24 hour avg. spatially interpolated PM2.5
JVIPM_ti pg/nt | 24 hour avg. temporally interpolated PM2.5
Fire Data PB acr | Acres of prescribed burning
KBDI 0-800 Keech Brynham Drought Index. .Co.ntin.uous
reference scale for estimating wildfire risks.
Observations| mcaT_avg | deg. C| Daily average temperature
mcaT_diff | deg. C| Day-Night temperature difference
mcaRH_avg % Relative humidity
mcaRH_min % Daily minimum RH
mcaPCP drgzlr; Precipitation
mcaVIS_min| km Daily minimum visibility
mcaWs m/s | Wind speed
mcaSC -1to 1| N-S wind component (1 is from the south)
mcakEC _1to 1| E-W wind component (1 is from the west)
mcaWD degN | Direction (0 degrees is from the north)
Forecast POP_am pct | Probability/chance of precipitation in %
dayT_am F Daily maximum air temperature in F
nightT_am F Daily minimum air temperature in F
diffT_am F Difference in daily max-min air temperature
Inversion burnoff temperature. Temperature
IBT _am F . o . o
required to dissipate nocturnal inversion in
dayRH_am pct | Daytime average humidity
HAI am i _Haines Stability_lndex. Atmospheric stability
— index for large fire growth.
Top of the atmospheric boundary layer that i
BLH_am ft well mixed and in which smoke disperses be
during midday.
Transport wind speed as average wind spee
TWS_am mph betwe?an surface I?amd BLH ’ i
TSC am | -1to 1| N-S wind component (1 is from the south)
TEC _pm -1to 1| E-W wind component (1 is from the west)
TWD am 23- T_rans_port wind direction as average wind
- 360 | direction between surface and BLH
VR_am ftmph | Ventialation Rate = BLH*TWS
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The spatial correlation was subdivided into four dats for four main air mass
transport patterns; i.e. upwind (wind from NE), downwfmehd from SW), cross-wind
from the ocean (sea breeze from SE), and cross-wind cangimental air mass (land

breeze from NW).

6.3.1. Sensitivity Analysis using Principal Componds Regression (PCR)

PCR is a statistical analysis technique that cosdbprincipal components
analysis (PCA) with multivariate regressi¢iekedulegn et al., 2002]. PCA is often used
i) to remove multi-collinear effects of the original datgp(it variables), and ii) to reduce
dimensionality of large data sets. Details of PCAvadely available in the literature
but briefly, the first step in PCA is to normalize aggiwdata matrixXorg, SO that all
variables have a mean of 0 and standard deviatior{a#lledXyq, Or justX for
simplicity). Next, singular value decomposition i®dgo determine the principal
components, which are the matrix of eigenvectdrsf the dispersion matri¥'X. The
relative strength, or scores, of each component, for each day are therefore, a notattio

the data matrix (Eq. 1).

Z=X*V (Equation 1)

PCA results in the same number of eigenvectors as \esiabthe data matrix.
The eigenvectord/, are orthonormal, and the resulting scozeate orthogonal, which
has the net effect of removing collinearity within tteta matrixX. Also, the
components are ordered by their eigenvalues. Thehtbk eigenvalue for a particular
component, the more variability in X that componexyplains. Typically, PCA is used
for exploratory analysis of a data set and is often tsétkentify variables that vary
together and qualitatively to identify componentdalirexplain most of the variability.
There are several different ways of determining the nmggbitant components; two

often-used methods include choosing components Xipédia a certain percentage of the
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total variability or only choosing components witigeivalues greater than 1. In this
work, we use the method of choosing components digather explain at least 80% of
variability.

In standard multivariate regression, the dependeralari, is regressed against
the independent variable matrix(Eq. 2). In PCR, the dependent variable is regressed
against the scoreg, from the PCA analysis (Eqg. 3). Note tivah both equations
represents Pl (either observed or interpolated) and that the scoresrdydrom the

components determined to be most important via theneraexplained above.

Y=X*A+¢ (Equation 2)

Y=Z*B+¢ (Equation 3)

Since VV= VV "=I, the identity matrix, due to orthonormality, we cdspaderive
Eq. 3 from Eg. 2 via the following:
Y=X*A+e=X*V*VT*A+e=Z*V * A+£=7Z*B+¢.
Thus, we can derive the relationship betwaemdB (Eq. 4).
A=V*B (Equation 4)
whereA represents the unit-less sensitivity of P\b the standardized variables, dd
is the vector of regression coefficients from tl@&RPanalysis. Further, only the
coefficients in B that are less than a predeterchpm@alue are used. As explained later,
we used a p-value of 0.08 (92% confidence). Physicits can be applied back to the

unitless sensitivities by applying Eq. 5, whédgis the unit-based sensitivity of Bilto
parametek, s, _is the unit-based standard deviation of M, is the unit-based

standard deviation of parameterand A is the unit-less sensitivity of PMto parameter

k:
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_ Semys -
D, = s, A (Equation 5)

The full data set contained 635 days of observednandeled (forecast)
meteorological parameters and fire data (i.e. douesed and KBDI). Pl data was not
included in determining principal components (P&sj}his is the dependent variable in
the PCR. The 635 days spanned a period from Deseln 2002 to March 15, 2007,
largely determined by the occurrence of PB dayd,thns was limited to days during the
PB season (winter and spring). During this 4.5 yesiod, PB was conducted on 201
occasions (days) with areas burnt between 2 an@ 88@s, the daily average being 513
+575 acres (single std.dev.) and median being 8&%aWe also gathered data for two
days prior to and five days after a single burn.dalge data from two days before a fire
would capture the Pp% conditions prior to the PB, and the five daysrafteuld allow
the capture of potential effects from smolderiiRfCA was applied to several data sets
that represented a combination of exploratory Wdeg PCA was initially run on two
data sets: i) observed meteorological conditiorth wM-reported meteorological
forecast (PC-AM) and ii) observed meteorologicaiditions with PM-reported
meteorological forecast (PC-PM). Here, AM mearsftrecast in the morning of the
performed PB and PM refers to the forecast in ttenimg prior to the PB. Subsequently,
three more data sets were analyzed using PCA. iflcyde meteorological
observations with fire data (OBS only), AM forecasth fire data (AM ONLY) and PM
forecast with fire data (PM ONLY).

Due to the specific setting of the source (MCBGdlative to receptor
(Jacksonville proper) in our case (see Figure k) PCR analysis is expected to be
particularly sensitive to wind direction. Wind diten is reported in degrees for only the
observed data and in main sectors (e.g. N, NNEetdE for the forecasted data, which
were converted into degrees for the PCR analyals.tested the sensitivity of the

method to this parameter by running PCA on all fie¢a sets with both observed and
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forecast wind direction into to splitting the widdection into its north-south and east-

west vector components (Table 6.3) with the mathieadaconvention of southerly and

westerly component flows being positive, respetyivd hus, there were a total of 10

data sets, each with 635 days of data, analyzdd#y.

Table 6.3: List of data sets subject to PCA. Th&” indicates if the data subtype was used.

Name of PB Data Observed AM PM wind
PCA Run Meteorology Forecast Forecast Direction
PCA-AM X X X Degrees
PCA-PM X X X Degrees
PCA-OBS X X Degrees
ONLY
PCA-AM Degrees
ONLY X X
PCA-PM Degrees
ONLY X X
PCA-AM N-S/E-W
WD X X X Components
PCA-PM N-S/E-W
WD X X X Components
PCA-OBS X X N-S/E-W
ONLY WD Components
PCA-AM X X N-S/E-W
ONLY WD Components
PCA-PM X X N-S/E-W
ONLY WD Components

Scores from the principal components which explhin@0% of the variance (the

first seven components) were regressed againggBNdays that met two conditions:

first, there was both P data and PB activity at MCBCL and second, thers m@aPB

activity the previous two days. This allowed ugjt@antify same day effects (lag 0) of

PB on PMs The importance of one and two-day lag on sesits@$ was also examined.

Understanding lag is important because the smaigesages of a prescribed fire can last

for days, and in effect turn it into a continuoosit€e; also, potentially long transport

times (e.g. under stagnant conditions) may resuthpacts at a receptor location days

after the actual PB conduct. We reduced the ddtacsthat days with multiple lag

effects were removed. For lag 1, regression wadwcted only for days for which there
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was PB activity on dag and PM s measurement on day 1 and no PB activity on days
n-1 andn+1. Similarly for lag 2, regression was conductetydor days for which there
was PB activity on dag and PM s measurement on day2 and no PB activity on days
n+1 andn+2. The reduced data set, with no multiple lag éfeesulted in data sets of
32 days for lag 0, 16 days for lag 1 and 32 day$aip 2. The regression yielded a
standardized coefficient vectBr which was converted to unit-less sensitivitigsyia

Equation 4, and to unit-based sensitivitias,, via Equation 5. Only the components

that had regression coefficients that were sigaifiat p<0.08 were used to calculate

unit-less sensitivities (Tables 4a and b).

6.4. RESULTS

6.4.1. Principal Components and Regression

For all 10 PCA runs, the first seven principal camgnts (V in Eg. 1)
cumulatively explained at least 80 % of the totiiance. Each of the seven PCs, with
PC1 explaining the largest amount of variabilityhe PM s data set and PC7 the least,
for each PCA run, is dominated by a few importaargmeters (Table 6.4). While there
are some significant differences between thesea$8s; several of the principal
components share similarities. For example, ttst RC is dominated by relative
humidity and temperature, indicating their impodarmo the overall variability of Pp4.
The second component is typically loaded by a coatimn of temperature and
dispersive parameters, including wind (WS, WD) atrdospheric stability (HAI).
Prescribed burning (PB) is not prominent until B@4 or later; this is to be expected
because its sample size (i.e. 201 occurrenceswvaitles greater than zero of total 635
records) is far smaller than any meteorologicahpeater. Further, Pp4 is associated

with meteorological parameters even if PBs arepnesent.
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Table 6.4: Main

parameters of the first seven prinipal components.

PC1 PC2 PC3 PC4 PC5 PC6 PC7
PCA AM | Relative Temperature, | VR, WS WD, Temp | Temp Diff., | PB Precipitation,
Humidity WS, HAI Diff., WD, KBDI, BLH, HAI,
Visibility VIS
PCAPM | Relative Temperature, | VR, WS WD, Temp | Temp Diff., | PB Precipitation,
Humidity WS Diff., Precipitation, Temp Diff,
WD, KBDI, BLH, PB
VIS
PCA AM | Relative Temperature, | WS, VR KBDI, BLH, | PB, E-W T Diff, PB, mcaPCP
WD Humidity, BLH, WS (N- VR and both | wind mcaPCP, ,
Temperature| S), HAI, Wind direction mcaVIS, PB
KBDI directions (neg),
PCAPM | Relative Temperature, | VR, WS, EW | KBDI, BLH, | EW wind PB, VIS, Precipitation,
WD Humidity, BLH, WS (N- | wind T diff, WS — | dir., PB, VR, | mcaPCP, PB, BLH,
Temperature| S), HAI direction, T | both WS HAI, BLH VIS
diff PM directions
PCA Obs | Relative Wwind WS, VIS, PB, mcaPCP,| mcaPCP, T | mcaPCP, VIS, KBDI,
only Humidity, direction, KBDI, T diff, VIS diff, VIS, PB | VIS, KBDI, RH
Temperature| Temperature, | Temperature, WS
KBDI, T Diff, RH
mcaPCP
PCA AM | Relative BLH, Temp, | WS, VR, PB, WD, T PB, WD, T, WD, HAI, | BLH, KBDI,
only Humidity, KBDI, HAI, POP Diff HAI IBT POP, WS
POP, POP
IBT,HAI,
PCA PM | Relative BLH, Temp, | VR,WS, T WD, PB, T PB, WD, KBDI, HAI< | BLH, HAI,
only Humidity, HAI, IBT, Diff, BLH Diff KBDI, HAI T diff WS, WD,
Temperature| KBDI, WS, Temperature
POP, HAI, POP
WD
PCA Obs | Relative NS Wind WS, EW KBDlI, PB mcaPCP, WS, Both
Only WD | Humidity, direction, Direction, mcaPCP, Temperature,| wind
Temperature, Temperature, | KBDI, Visibility E-W Wind, direction,
RH, KBDI, KBDI, WS, Temperature, mcaPCP
VIS mcaPCP T Diff
PCA AM | Relative BLH, Temp, | VR, WS, PB EW wind EW wind Temp, PB,
Only WD | Humidity, KBDI POP dir., PB, NS | dir., KBDI, both Wind
Temperature Wwind HAI, N-S Direction
POP, various direction, wD
others VR, BLH
PCA PM | Relative BLH, Temp, | VR, WS, both| NS Wind PB, E-W EW wind HAI, BLH,
Only WD | Humidity, HAI IBT, directions direction, PB, | WD, KBDI dir., PB, KBDI, WS
Temperature| POP, E-W Temperature, KBDI, T diff,
POP, KBDI, | WD KBDI, BLH NS WD, HAI
Both WD,
HAI
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6.4.2. Unit-less sensitivities

Table 6.5: Regression p-values for the 10 casesR&EA runs. Numbers in bold highlight p-vaules<
0.08.

Intercept PC1 PC2 PC3 PC4 PC5 PC6 PC7 R?

PCA

AM 0.57 0.08 0.52 0.13 0.19 0.44 0.04 0.67 0.28

PCA

PM 0.93 0.03 0.23 0.1 0.14 0.98 0.03 0.26 0.29

PCA
Obs 0.65 0.03 0.75 0.14 0.16 0.05 0.3 0.04 0.37
only

PCA
AM 0.3 0.18 0.84 0.51 0.59 0.02 0.37 0.94 0.3
only

PCA
PM 0.23 0.43 0.95 0.45 0.81 0.01 0.28 0.7 0.29

only

PCA
AM 0.79 0.03 0.15 0.27 0.28 0.23 0.25 0.01 0.34
WD

PCA
PM 0.99 0.03 0.12 0.18 0.45 0.16 0.11 0.03 0.32
WD

PCA
Obs 0.59 0.05 0.5 0.23 0.62 0.08 0.47 0.04 0.28
wD

PCA
AM

0.31 0.25 0.28 0.73 0.57 0.56 0.14 0.03 0.37
Only

PCA
PM
Only
WD

0.22 0.54 0.77 0.25 0.86 0.12 0.11 0.31 0.29

Although the regression’s correlation coefficiewtsre low (R = 0.28 to 0.37)

and only one to three components had p valueshass0.08 (Table 6.5), indicating large
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variability in the original data, some importantg@rcal relationships were found using
the principal component vectors, V. Unitless s@nses are used to directly compare
how much relative influence individual parameteasdron PMs. Positive values
indicate they contribute to an increase in2ZMvhile negative values point to a
decreasing effect on PM The association of input parameters with,BM investigated
for the five sets where wind direction is used @gietes (Figure 6.2) and when it is split
in to N-S and E-W components (Figure 6.3). In bx#ikes, forecast parameters
characterizing atmospheric stability (e.g. Haimegek, ventilation rate, wind speed and
mixing height) have similar importance in keepimgbéent PM s levels low, contributing
to a decrease in P)M, thus exhibiting a negative sensitivity. In cast; PB and KBDI
are important when Pj4 concentration increases. Sensitivity to PB is {pasand
consistently appears to be an important contribiat®M, 5, and is similar in all four
cases where forecast meteorology is used. HowBWrs has a lower unit-less
sensitivity to PB while KBDI is more strongly asged with PM s in the PC-OBS
ONLY case. The forecast parameters IBT and dayTamsistently positive, indicating
clear sky conditions under which a preceding stnoocfurnal inversion allows PM
emissions to accumulate. Dispersive parameters aWdS/R and mcaWs are
consistently negative, pointing to their dilutinfeets on PM s concentrations.

Splitting the wind direction into N-S and W-E vectmmponents created some
notable differences in unitless sensitivities.sithe PC-PM ONLY case with wind
directions split resulted in no statistically siigant regression coefficients. Second,
splitting wind direction caused Pl sensitivity to be largest to measured precipitatio
A similar effect can be seen for the forecast teiapee difference parameter, diffT. In
addition, when wind direction was used in degrédsd a strong association with R
suggesting that continental air masses carry mbtgsPhan maritime air from easterly
directions. When wind direction is split into conmemts, PM s shows a slight positive

sensitivity to the E-W components when both obstewed forecast parameters are used
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and negative for N-S components, indicating addéid®M, s being transported to the
receptor location from westerly and northerly dii@as, respectively, both of which can
be considered continental air masses.

A number of parameters changed from a positivertegative sensitivity,
depending on if only observations, forecast pararsebr both were used. For example,
in the case with wind direction in degrees, thedast wind direction, TWD exhibits a
large positive sensitivity (higher PMin continental air masses) when only forecast
parameters are used, whereas it appears to hanallnggative sensitivity when
observations and forecast parameters are usedergiiw PM s loadings in maritime
air or sea breeze). To a lesser extent, mcaPCR p@asitive association with PiMwhen
observations and AM forecast is used, but moregiidelnegative association otherwise
(the reason for this apparently implausible conoeds discussed below). Similarly,
diffT has a positive impact when only the AM forste used, but negative otherwise.
Large temperature differences are an indicatocl@ar sky conditions causing large
difference between daytime high and nighttime lemperatures prone for shallow
nocturnal inversion layers near the ground, butataa indicate conditions for greater
afternoon dispersion.

The wind direction split has similar effects onty the forecast parameters, BLH,
TWS, and E-W wind component, such that the BLH BAY wind component positively
impact PM s when observations are combined with forecastswever, BLH yields
negative impact (pointing to P accumulation in shrinking BL) when only the AM
forecast is used. When observations are combirtbdfevecasts, PMs has a negative
sensitivity to TWS due to its diluting effect oretBL, while a less plausible positive

association is obtained when only the AM forecastsed.
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Figure 6.2: Unitless senstivities for the five cas with wind direction in degrees.
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Figure 6.3: Unitless senstivities for the four cas with wind direction in N-S and E-W components.
NOTE: PCA PM Only WD analysis did not result in ary regression p values <0.08.
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Taking the averages of the unitless sensitivit@ess all applicable runs, and
taking the standard deviation as an estimate oén@ioty, indicates which parameters
have the most significance to RMFigure 5.4). That is, unitless senstivities whose
standard deviation cross the 0 of the y-axis, @aniéwed as statistically not significant
(at ~68% confidence). Thus, of the fire data paatem senstivity of Plylsto PB is
significant, but not KBDI. For the measured metéamgy, relative humidity and wind
direction splits are significant. Positive Rbsenstivities to E-W winds indicate
importance of winds coming from the west while nagaPM, s senstivities to N-S
winds indicate importance of winds coming from tiweth, the origin of both can be
considered continental. For the forecast parase®OP, dayT, IBT, and RH have
significant postive sensitivities while HAI and Rawve significant negative senstitivities.
The postitive senstivity associated with POP waserpected but reflects the fire
managers’ actual positive consideration of POR@irtdecision to start PB on days when
precepitation might be expected in late afternobesause it acts as a natural fire break
preventing uncontrolled fire spread. Similar toasierements, the forecast southerly

wind component carried by the sea breeze leadsiézase in Pk
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Figure 6.4: Average unitless senstitives. Errordrs indicate standard deviation over all cases wher
parameter was used in the analysis.

6.4.3. Differences in AM versus PM forecasts bas@ah unitless sensitivities

Fire managers use both AM and PM weather foretaststermine if a particular
day will have ideal conditions for PB. When obsdions are included in the PCA data
set, splitting the wind direction into NS and EWhgqmonents leads to a higher correlation
between unitless sensitivities (Figure E.1), intligathat AM or PM forecasts are
similarly associated with PM. When the PCA data sets include only fire dath an
forecasts (observations excluded), splitting thedadirection into NS and EW
components leads to statistically significant wsfl sensitivities for the AM forecast only

(Figure E.2), indicating that AM forecasts are mstable to PCR analyses.
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6.4.4. Unit-based Sensitivities

Unit-less sensitivities are used for direct comgxamiof the relative importance of
different forecast parameters on the local,Rlgurden. However, it is of interest to air
guality managers to know the unit-based sensitwitl M, 5 to parameters of interest,
especially PB. Across all 10 cases, we find that @value of 0.08 (92% confidence),
there is consistency across all 10 test casedtingsin an average sensitivity of RMof
3.2+1.0 pg ni per 1000 acres burned (Table 6.6). A p-value.@8 &vas chosen
because the PB based components in the PC-OBS @B&&'had p-values slightly
higher than 0.05. However, at p-value of 0.08,,Bbknsitivities are consistent across all
cases, indicating that the PCR method employebisnviork is stable.

An increase in daily average temperature of 1 °€a(mavg) would add 0.2y
m® at MCBCL, which suggests that contribution frormaspheric SOA during the PB
season is negligible compared to the spatial sene@eptor relationship at this location.
Larger temperature differences between daytime amghnighttime low have a
decreasing effect on PM For example, an increase of 1 K in observed/aadx-min
temperature difference (mcaT_diff) leads to a deseeof PMs by 0.14 + 0.1Qug m”,
pointing to the effect of increased dilution widrder mixing heights that result from
solar heating. PWssensitivity to the forecast parameter, diffT, iglstly positive (an
increase of PMs by 0.033 + 0.1Qug m”* for every increase of 1 K in modeled daily max-
min temperature difference); however, the highdsaa deviation indicates that the

predicted temperature difference has no significalationship with measured PM2.5.
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Table 6.6: Unit-based sensitivities of PMs to various parameters. NOTE: “Number of cases” efers
to the number of datasets from Table 6.3 that a paicular parameter is included in a PCA run.

Average Unit- St. Number of
Parameter based Sensitivities Dev Cases
PB 0.0032 0.001 9
KBDI 0.006 0.006 9
mcaT_avg 0.020 0.032 6
mcaT _diff -0.137 0.096 6
mcaRH_avg 0.023 0.007 6
mcaRH_min 0.020 0.007 6
mcaPCP 0.104 0.145
mcaVIS_min -0.129 0.158
mcaWs -0.369 0.444
mcaWD -0.108 0.203 4
mcaWD_NS -0.356 0.127 3
mcaWD_EW 0.455 0.157 2
POP 0.010 0.005 7
dayT 0.021 0.006 7
diffT 0.033 0.103 7
IBT 0.019 0.005 7
dayRH 0.016 0.011 7
HAI -0.438 0.285 7
BLH 0.000 0.000 7
TWS -0.021 0.031 7
TWD 0.006 0.007 4
TWD_ NS -0.723 0.661 3
TWD_EW -0.090 0.799 3
VR 0.000 0.000 7

Since rain is the main sink for PM in the atmosphérmight be expected that an
increase measured precipitation, mcaPCP, and ftrpoabability of precipitation POP
reduces PMs mass concentration. However, we find that,BMcreases by 0.10 £
0.145ug m* for every mm increase in measured precipitatittveiathe high standard

deviation indicates that there is significant vlaility across the different cases. P
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sensitivity to forecast POP, 0.01 + 0.Q8% ni° for every percent increase in probability
of precipitation, is less variable than measurextipitation. This positive sensitivity is
most likely due to fire managers’ decision to staets on days with forecast precipitation
later in the day, after the fires are complet®etker, 2013]. This is common practice
because afternoon rain is considered a welcoméfaak preventing unwanted spread of
fires and naturally extinguishing smoldering fires.

The observed wind speed, mcaWs, has a more sigmificfluence on [PMs]
than the modeled TWS, which may be due to the grestcertainty of TWS, but fine
PM levels decrease as either increases due téogiluAn increase of 1 ni'smeasured
near the surface is associated with a reductidMgs levels by ~0.37ug mi® whereas
the same increase predicted for the entire BL weesdlt in an 0.02fuig m* reduction
on average only. Splitting the wind direction ilN& and EW components showed that
directionality is important. Our analysis showattRM, 5 is most sensitive to winds
coming from the west (positive E-W sensitivity) amatth (negative N-S sensitivity)
(Table 6.5). Although the PM monitor is located north from the MCBCL, forested
lands ca. 20 km to the north-northeast (Hoffmarebt)r 40-50 km to the east (Croatan
National Forest) and 40-50 km to the west/south\ifdslly Shelter and Angola Bay
game lands) receive PB treatment similar to MCBIGL.;foresters there employ similar
criteria in their PB decision process. Wind rokegof the lag 0 data (32 days) reveal
that the highest Pp4 occurs when winds occur from the west/southwedt an
south/southeast (Figure 6.5a). When the wind$érane the north, PMls, although not as
high as from the west/southwest and south/southisasibderate and greater thg@m
3, Easterly component winds are rare potentialliyéncing the directional sensitivity of

PMas.
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Figure 6.5: 24 hour average wind rose plots for (a0 days of (a) PMs, b) wind frequency and (c)
wind speed. Gaps indicate no data.

The wind rose of PMs corroborates our analysis that Pyt the monitoring site
is impacted by PB at MCBCL. It should be noted tha used only MCBCL's PB
activity records because this is the most readigilable PB data. However, all forested
land in the greater area surrounding MCBCL propananaged by PB. Therefore, the
MCBCL records are potentially a surrogate measoreniore wide spread PB activity in

the region. Nevertheless, is the PNnonitor in Jacksonville directly adjacent to the
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northern border of MCBCL, making this specific sejtthe most direct source-receptor
relationship. Even if there was significant amauoitacres burned in regional forests,
impact from those PB activities would not be agdiand far more dilute into the
regional background level of PM Thus, the PCR method employed in this work
provides insight into local impacts from PB.

We also assessed the feasibility of using spatiahgus temporally interpolated
PM, s data. Preliminary results with both spatially aechporally interpolated Pj4
leads to increased variability in sensitivitieshisTis most likely because the interpolation
scheme introduces noise that is propagated intoetiression results. Alternate spatial
interpolation schemes, including fusing observatiasth chemical transport model
results may be useful to reduce interpolation sfrigading to more days that can be used

in the regression analysis.

6.5. Conclusions

Fire weather forecasts are used by wildlife maragedetermining when PB
activities are to occur. In this work, we exploditferences in AM and PM forecasts,
and impacts to air quality of PB by using PCR tineste sensitivity of PMsto PB
activity and meteorological parameters. We ran RGAO data sets that included PB
activity data along

with meteorological parameters of interest; theemmlogical parameters
included either observational data only, forecasaanly or a combination of
observations and forecasts. PCR was performedeoscibres from the first seven
components, which explained greater than 80% ihGatlata sets, and BN to estimate
sensitivities of PMs to all parameters of interest. Ryshowed a significant association
to PB, with a unit-based sensitivity of 3.2+1 ug ®M, s per 1000 acres burned. RM
had a negative sensitivity dispersive parametetlsnaas senstivite to winds coming from

the west and the north, the origin of both candresered continental.
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APPENDIX E: SUPPLEMENTAL INFORMATION FOR CHAPTER 6

Table E.1: Unitless Sensitivities.

pcA | Pca PCA | PCA | PCA | PCA | PCA FC;%': 1CMA
A R R R R O R e
y y | 2y WD | wD
PB 0.298 | 0.276 | 0.128 | 0.349 | 0.322 | 0.275 | 0.184 | 0.251 | 0.164
KBDI 0.013 | 0.068 | 0.329 | 0.023 | 0.090 | 0.053 | 0.028 | 0.206 | 0.062
mcaT_avg 0.065 | 0.080 | -0.059 0.059 | 0.038 | 0.012
mcaT_diff | -0.009 | -0.056 | -0.203 -0.089 | -0.088 | -0.167
mcaRH_avg | 0.070 | 0.067 | 0.036 0.056 | 0.067 | 0.099
mcaRH_min | 0.077 | 0.084 | 0.031 0.068 | 0.071 | 0.105
mcaPCP 0.061 | -0.014 | -0.130 0.304 | 0.272 | 0.317
mcaVIS_min | -0.035| 0.004 | -0.310 -0.122 | -0.120 | 0.002
mcaws -0.021 | -0.015 | -0.114 -0.061 | -0.071 | -0.357
mcaWD 0.038 | 0.018 | -0.070
mcaWD_NS -0.064 | -0.030 | -0.059
mcawD_EW 0.054 | 0.039 | 0.078
POP 0.051 | 0.062 0.048 | 0.005 | 0.089 | 0.047 0.076
dayT 0.060 | 0.066 0.060 | 0.033 | 0.065 | 0.050 0.095
diffT -0.053 | -0.031 0.097 | -0.051 | 0.004 | 0.003 0.302
IBT 0.074 | 0.070 0.060 | 0.030 | 0.064 | 0.041 0.073
dayRH 0.083 | 0.095 0.055 | 0.016 | 0.025 | 0.021 0.029
HAI -0.063 | -0.114 -0.131 | -0.100 | -0.008 | -0.013 -0.112
BLH -0.063 | -0.088 -0.077 | -0.041 | 0.083 | 0.092 -0.039
TWS -0.012 | -0.013 -0.010 | -0.037 | -0.116 | -0.077 0.027
TWD -0.015 | -0.002 0.242 | 0.205
TWD_NS -0.056 | -0.039 -0.206
TWD_EW 0.045 | 0.045 -0.125
VR -0.061 | -0.071 -0.075 | -0.050 | -0.054 | -0.009 -0.037
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Table E.2: Unit-based Sensitivities.

PCA
pcA | Pca | Pca | Pca | pca | PCA | PC
PCA | PCA Obs AM
Obs AM PM AM PM
AM PM only [ Only [ Only [ WD | WD only | Only
WD WD
PB 0.004 | 0.004 | 0.002 | 0.004 | 0.004 | 0.004 | 0.002 | 0.003 | 0.002
KBDI 0.001 | 0.004 | 0.019 | 0.001 | 0.005 | 0.003 | 0.002 | 0.012 | 0.004
mcaT_avg 0.041 | 0.050 | -0.037 0.037 | 0.024 | 0.008
mcaT_diff -0.013 | -0.075 | -0.272 -0.119 | -0.118 | -0.224
mcaRH_avg | 0.025 | 0.024 | 0.013 0.020 | 0.024 | 0.035
mcaRH_min | 0.022 | 0.023 | 0.009 0.019 | 0.020 | 0.029
mcaPCP 0.047 | -0.011 | -0.100 0.233 | 0.209 | 0.244
mcaVIS_min | -0.046 | 0.006 | -0.413 -0.163 | -0.159 | 0.003
mcaWs -0.073 | -0.051 | -0.394 -0.210 | -0.246 | -1.239
mcaWD 0.002 | 0.001 | -0.024
mcaWD_NS -0.445 | -0.210 | -0.412
mcaWD_EW 0.432 | 0.311 | 0.622
POP 0.009 | 0.012 0.009 | 0.001 | 0.016 | 0.009 0.014
dayT 0.021 | 0.023 0.021 | 0.012 | 0.022 | 0.017 0.033
diffT -0.044 | -0.022 0.079 | -0.037 | 0.003 | 0.002 0.247
IBT 0.023 | 0.023 0.019 | 0.010 | 0.020 | 0.013 0.023
dayRH 0.029 | 0.034 0.019 | 0.006 | 0.009 | 0.008 0.010
HAI -0.358 | -0.643 -0.748 | -0.563 | -0.044 | -0.073 -0.638
BLH 0.000 | 0.000 0.000 | 0.000 | 0.000 | 0.000 0.000
TWS -0.008 | -0.008 -0.007 | -0.022 | -0.076 | -0.047 0.018
TWD -0.001 | 0.000 0.013 | 0.011
TWD_NS -0.406 | -0.281 -1.483
TWD_EW 0.361 | 0.381 -1.012
VR 0.000 | 0.000 0.000 | 0.000 | 0.000 | 0.000 0.000
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Figure E.1: Correlation of PCA_AM and PCA PM (i.e. PCA data comprised of fire data,
observations and forecasts).
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Figure E.2: Correlation of PCA_AM only and PCA PM only (i.e. PCA data comprised of fire data
and forecasts).
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK

7.1. Conclusions

In this dissertation, a number of inconsistencies lanitations of various source
apportionment techniques are addressed by ensembtaging results from a short-term
application of three receptor-based models andeamssions-based model. Individual
SA methods were evaluated for how much they sheeldh in the calculation of an
ensemble average by exploration of how these mstbaldulate uncertainties. The
method has a number of benefits over using one hecdtusively. The method
provides a way to evaluate different source appontient (SA) models, including
estimating uncertainties in a consistent manneghlyhts of this research work include:

Chapter 2: Ensemble-Trained Source Apportionment bFine Particulate
Matter and Method Uncertainty Analysis. Ensemble averaging results in updated
estimates of source impacts with lower uncertasnti@n individual SA methods.
Overall uncertainties for ensemble-averaged saumpacts were ~45 - 74%. Calculated
positive matrix factorization (PMF) uncertaintiegieased from ~40% to ~70-150%.
Calculated chemical mass balance (CMB) with mokecolarkers and Community
Multiscale Air Quality (CMAQ) model uncertaintiegcreased to ~70 - 90% in the
summer. One use of these updated uncertaintibatishtey can be incorporated into
epidemiologic studies, which can ultimately leadntproving our understanding of the
relationships between PMsources and health outcomes. Further, they caisdxto
inform policy makers of the effectiveness of cohtn@asures.

Chapter 3: Bayesian—Based Ensemble Source Apportiment of PM2.5 We
extend the ensemble method by developing a Baydsised ensemble averaging
technique. The Bayesian-based source impactsdordss burning correlate better with

observed levoglucosan $80.66) and water soluble potassiunf£R.63) than source
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impacts estimated using more traditional methond,raore closely agreed with
observed total mass. The Bayesian approach gidorea the expected seasonal
variation of biomass burning and secondary impaSemnsitivity analysis found that
using non-informative prior weighting performedteethan using weighting based on
method-derived uncertainties.

Chapter 4: Spectral Analysis of PM s Source Apportionment Methods All
power spectra derived using the Lomb-Scargle pegmm method (LSPM) show a
strong peak at one year, independent of SA metlspésies and source profiles/factors.
Statistically significant peaks £0.05) are found for the frequency associated wité
week for GV and DV at JST and SDK for most methdas,not at the rural YRK.

BURN spectra have the greatest variation intraiates-method, with low frequency
signals at JST and SDK and YRK having both low diestcy and weekly signals.
Biomass burning profiles/factors have the greatasability across methods and
locations, especially with BBSPs and PMF factor€.t0@ EC ratios vary from 3 - 5 in
EBSPs, to 3.9 - 17.6 with BBSPs and 3.1 - 10.8MifrPsuggesting that biomass burning
emissions have increased spatial variability aspaoed to other sources.

Chapter 5: Particulate and Gas Sampling of Prescbed Fires in South
Georgia, USA Major PM s components included OC (~57%), EC (~10 %), chéorid
(~1.6%), potassium (~0.7%) and nitrate (~0.9%).jdvigaseous species include carbon
dioxide, carbon monoxide, methane, ethane, metrambkthylene. Particulate organic
tracers of biomass burning, such as levoglucosaimyatoabietic acid and retene,
increased significantly during the burns. Wateubtd organic carbon (WSOC) also
increased significantly during the fire and levate highly correlated with potassium (K)
(R?=.93) and levoglucosan {R0.98). The average WSOC/OC ratio was 0.51 + ar@8
did not change significantly from background level$us, the WSOC/OC ratio may not
be a good indicator of secondary organic aerog0I9n regions that are expected to be

impacted by biomass burning. Results using a bésrbarning source profile derived
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from this work further indicate that source appmrtnent is sensitive to levels of
potassium in biomass burning source profiles. Thiderscores the importance of
guantifying local biomass burning source profiles.

Chapter 6: Verification of Fire Weather ForecastsUsing PM2.5 Sensitivity
Analysis We ran PCA on 10 data sets that included PB #gtilata along with
meteorological parameters of interest; the metegichl parameters included either
observational data only, forecast data only orralmoation of observations and
forecasts. For each data set, we regressed PCéssitom the first seven principal
components against observed RMPM; 5 showed significant sensitivity to PB, with a
unit-based sensitivity of 3.2+1 pgHhPM,.s per 1000 acres burned. RPhhad a negative
sensitivity to dispersive parameters such as wsttd and had positive senstivity to
winds coming from the west and the north, the arijiboth can be considered
continental. It is expected that fire managers lellable to utilize this information to
determine if conditions are optimal for minimizimgpacts to PM levels in surrounding

communities.

7.2. Future Work

The ensemble method was developed with the ggaloeiding source impacts
that can be included in health studies. Therefature study should look at how health
models are affected by ensemble-based source appoent. With the use of Bayesian-
based source profiles (BBSPs), multiple SA resarésrealized for each day. These sets
of SA results can be easily incorporated into rpldthealth model runs. One aspect of
this work will be to understand if and how healtipact risk ratios change depending on
the SA model used in health assessment. Anothmwriant aspect of this work would be
to incorporate uncertainties into the health mad@&scause SA is conducted 10 times

for each day, 10 different health assessments eaofducted. The variability of these
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10 health assessments can be used as an estinhaie 8A uncertainty propagates into
health studies.

The Bayesian ensemble method currently uses adatyytical framework, with
an inverse gamma prior distribution and normalliiieod function. A next step would
be to use Markov Chain Monte-Carlo (MCMC) framewtwlestimate the posterior
distribution of weights. This would obviate thesd€or conjugate priors and as a result,
more appropriate priors could be used. This cadlidress the need for modeling
lognormal or other right-tailed skewed distribugan source impacts and source
profiles. In MCMC Bayesian analysis, a selectienristic must be provided. Because
SA models result in source impacts that have aocautelation structure, selection rules
may need to account for this. For example, we earttsat day-to-day changes in sources
impacts must fall within a given range of autoctatien. Therefore previous day source
impacts can act as prior information that coulddguhe estimate of the posterior
distribution.

Ideally, this would lead to a broad realizatiorsofirce profiles that can be
selected for source apportionment of a long-terta dat. In this dissertation, source
profiles were randomly sampled 10 times for eachiddhe long-term data set. In
addition, seasonal profiles were developed for semand winter. It would be of interest
to develop source profiles for the fall and spriegisons or even profiles for each month.
These profiles could also be binned according tteorelogical conditions. Therefore,
instead of sampling from one of two seasonal siepsadiles, we could sample from sets
of profiles that reflect emissions given certain@oeological conditions. These
conditions could be based on temperature, windoars#ason. In addition, this
information could also guide SA results by inclglextra sources (e.g. a point source
that could impact a receptor site a given windaios).

Source apportionment techniques can be extende@asurements beyond RPM

speciation. For example, results from measureteehhiques such as aerosol mass
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spectrometer (AMS), can be input into PMF. This peovide an additional way to
guantify contributions from mobile, biogenic and@edary sources to organic aerosol.
It would be of to compare how CMB-GC with BBSPs qare with AMS-based
estimates of these source categories. In additienAMS-based SA results could also
be used as an input into the ensemble-averagindefglopment of new BBSPs. These
newer BBSPs can be compared against the older BBSPs

Similar ensemble methods have been applied at tacdegations in St, Louis,
MO and Dallas, TX; however, these studies did rset & Bayesian formulation for the
ensemble. It would be of interest to compare ofr&\ullts in St. Louis, Dallas and
Atlanta. In addition, major reasons for differenae SA results are the source
profiles/factors that are input into the SA modilwould also be of interest to assess the
differences in regional source profiles derivedly ensemble method. This could help
shed light on regional variability of emissions.

One aspect of the ensemble method developed idigssrtation is a framework
for estimating uncertainties in chemical transpoodels (CTMs). In this work, 32 source
categories used in the CTM were binned to matchithe source categories used in
CMB. CTM uncertainties were calculated for theseerbinned source categories and
used in both the standard and Bayesian ensembibgagdration of errors can used to
estimate uncertainties of the 32 CTM source categorThese estimated uncertainties
can then be compared with other efforts to estir@dit® uncertainties. These include
efforts to incorporate receptor models within themical transport model CTM
framework, as well as efforts to use interpolateguits CTM output for SA at receptor
locations that do not have BMIspeciation data. This work would fall into a bread
category of comparison and evaluation of SA methbdswould guide air quality policy

development.
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