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ABSTRACT

Visual Workflows for Oil and Gas Exploration

Thomas Höllt

The most important resources to fulfill today’s energy demands are fossil fuels,

such as oil and natural gas. When exploiting hydrocarbon reservoirs, a detailed

and credible model of the subsurface structures to plan the path of the borehole, is

crucial in order to minimize economic and ecological risks. Before that, the place-

ment, as well as the operations of oil rigs need to be planned carefully, as off-shore

oil exploration is vulnerable to hazards caused by strong currents. The oil and gas

industry therefore relies on accurate ocean forecasting systems for planning their

operations.

This thesis presents visual workflows for creating subsurface models as well as

planning the placement and operations of off-shore structures.

Creating a credible subsurface model poses two major challenges: First, the

structures in highly ambiguous seismic data are interpreted in the time domain.

Second, a velocity model has to be built from this interpretation to match the model

to depth measurements from wells. If it is not possible to obtain a match at all po-

sitions, the interpretation has to be updated, going back to the first step. This

results in a lengthy back and forth between the different steps, or in an unphys-

ical velocity model in many cases. We present a novel, integrated approach to
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interactively creating subsurface models from reflection seismics, by integrating

the interpretation of the seismic data using an interactive horizon extraction tech-

nique based on piecewise global optimization with velocity modeling. Computing

and visualizing the effects of changes to the interpretation and velocity model on

the depth-converted model, on the fly enables an integrated feedback loop that

enables a completely new connection of the seismic data in time domain, and well

data in depth domain.

For planning the operations of off-shore structures we present a novel inte-

grated visualization system that enables interactive visual analysis of ensemble

simulations used in ocean forecasting, i.e, simulations of sea surface elevation.

Changes in sea surface elevation are a good indicator for the movement of loop

current eddies. Our visualization approach enables their interactive exploration

and analysis. We enable analysis of the spatial domain, for planning the place-

ment of structures, as well as detailed exploration of the temporal evolution at any

chosen position, for the prediction of critical ocean states that require the shut-

down of rig operations. We illustrate this using a real-world simulation of the Gulf

of Mexico.
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Chapter 1

Introduction

Most of today’s energy demand is fulfilled by fossil fuels, and even though

alternative and renewable energy sources are getting more important, the U.S. En-

ergy Information Administration predicts that oil and gas will still account for

more than 50% of the worldwide marketed energy in 2035 [104]. For efficient and

safe operations the oil and gas industry relies strongly on the correct analysis of

large amounts of data collected in various fields. Seismic surveys, resulting in

large amounts data of diverse kinds, are conducted to understand the properties

of the subsurface and locate oil and gas reservoirs. Based on these data, simula-

tions are computed, for example, to study the flow of liquids in the subsurface,

to predict the effects of exploiting an oil reservoir. But also in less obvious areas

scientific computing is used to aid operations. Ocean forecasts are simulated to

predict dangerous situations, requiring off shore rigs to be shut down. All these

problems can profit from visual, interactive workflows. In this thesis we present

research conducted to improve two of these workflows.

We present an interactive workflow for subsurface modeling in Chapter 3. The

workflow is based on a novel joint time/depth visualization technique, to integrate

data recorded in different domains, time and spatial depth, to guide extraction of

subsurface layers from seismic reflection tomography data. We extend this work

by a visual parameter space exploration technique for ensembles of extracted seis-
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mic horizons (Chapter 4) and techniques to enhance the visualization of the dense

and noisy seismic reflection data (Chapter 5).

In Chapter 6 we present a novel, visualization driven workflow for planning

the placement and operations of off-shore structures. Based on ensemble simula-

tions of the ocean surface, the risk for an existing structure or an area for potential

placement, can be predicted.

We implemented both workflows in a flexible visual analysis framework. We

use multiple linked views, specific to the different applications, to present the data

to the user and allow easy interaction and verification of results. The framework

is integrated as a plugin into the SimVis framework [20].

Structure

In the remainder of this chapter we present the contributions of this thesis (Sec-

tion 1.1) and give detailed introductions to the two application areas, subsurface

modeling and the analysis of ocean forecasts (Section 1.2 and 1.3, respectively).

We present the related work to both fields combined in Chapter 2. In Chapter 3 we

present our workflow for subsurface modeling. Our technique for visual parame-

ter space exploration of horizon ensembles is presented in Chapter 4. In Chapter 5

we present techniques to enhance the visualization seismic reflection data. Our

visual workflow for the analysis of ocean forecasts is presented in Chapter 6. Fi-

nally we conclude with a discussion of the contributions and open questions in

Chapter 7.

1.1 Contributions of this Thesis

This thesis introduces novel workflows for subsurface modeling and the analysis

of ocean forecasts. Section 1.1.1 presents the contributions in the field of subsurface
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modeling and seismic visualization in detail. The details for the visual analysis of

uncertainties in ocean forecasts are given in Section 1.1.2.

1.1.1 Subsurface Modeling and Seismic Visualization

We propose a novel workflow for subsurface modeling based on well positions and

joint time-depth domain views (Chapter 3). We triangulate the spatial positions of

all available wells, which divides the volume into a set of triangular prisms. In-

stead of interpreting the volume slice-by-slice in 2D, we propose performing full

3D seismic interpretation, going from prism to prism. The part of a horizon inter-

secting a given prism can be extracted by specifying as little as a single seed point,

using global energy minimization techniques to compute a horizon surface of min-

imal “cost”. We combine very fast 2D minimal cost path tracing for determining

horizon intersections along the faces of the prisms resulting from well log triangu-

lation with subsequent 3D minimal cost surface computation, which is constrained

by the 2D contours on the prism faces. By combining the optimal surfaces from the

individual prisms, we receive a piecewise globally optimized horizon. Extracting

the horizon in a piecewise manner allows for an interactive algorithm which gives

the user full control over adjusting the surface by setting an arbitrary number of

constraints, forcing the surface to pass through specified locations. Our novel joint

time/depth domain workflow, which integrates horizon extraction, velocity mod-

eling and on the fly depth conversion, for the first time enables depth-domain

ground-truth data to be integrated directly into a time domain-based workflow.

Therefore well data can be used during the interpretation process to constrain the

surface extraction.
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Furthermore we present a framework for interactively analyzing the parameter

space of the presented surface extraction technique (Chapter 4). We automatically

sample the parameter space of the cost function used for horizon extraction, to

compute ensembles of horizon surfaces. We provide an interactive system that

enables analysis and visualization of the extracted ensemble data and facilitates

real time exploration of the parameter space of these data.

Finally we present a novel shading technique, aimed at highlighting horizon

structures in seismic volume data, as well as a technique for single pass exploded

views based on extracted horizons (Chapter 5).

1.1.2 Visual Analysis of Uncertainties in Ocean Forecasts

We present a GPU-based interactive visualization system for the exploration and

analysis of ensemble heightfield data, with a focus on the specific requirements of

ocean forecasts. Based on an efficient GPU pipeline we perform on-the-fly statisti-

cal analysis of the ensemble data, allowing interactive parameter exploration. We

present a novel workflow for planning the placement and operation of off-shore

structures needed by the oil and gas industry. While we focus on the visualization

and analysis of ocean forecast data, the presented approach could also be used for

the exploration of heightfield ensembles from other areas, such as weather fore-

casting or climate simulation.

1.2 Subsurface Modeling

For the planning of production wells to drill into oil and gas reservoirs, one has to

have an exact model of the subsurface structures. These include the different geo-

logical layers, the boundaries between these layers (seismic horizons), but also faults,
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as well as other structures. The basis for creating such a subsurface model is usu-

ally a seismic survey. A typical survey contains 3D seismic reflection data(seismic

cubes), as well as additional data such as well logs and well tops.

Seismic Cube

The Seismic Cube is a regular grid of scalar values. It is acquired by sending seis-

mic waves into the ground. At a seismic horizon, part of the waves will be re-

flected, while others will proceed. The reflected waves are then measured on the

ground using a 2D grid of geophones. The result is a set of 1D traces along the

z-axis, one for each geophone, with z corresponding to the two-way travel time

of the seismic wave, and f(z) being the measured amplitude. The seismic traces

are then usually time- or depth-migrated. In this process, the actual lateral positions

of the reflection events in the (x, y)-plane have to be computed, as in the original

data one does not know from which direction the event actually arrived at the

geophone. For a 3D survey, the migrated 1D traces are combined to form a 3D

seismic cube. The dimensions of the resulting volume are lateral distances for the

geophone grid, and time or depth on the z-axis, depending on the migration tech-

nique. Even though the depth migration delivers depth on the z-axis, this value

does not directly correspond to actual spatial depth in the real world, because the

so-called provelocities used in the depth-migration do not account for the horizontal

energy in the seismic waves [22].

Well Data

Two kinds of data are aquired from exploration wells: Well logs are 1D datasets,

containing detailed records of certain properties of the subsurface structures at the

drill hole. Logs can be either geological or geophysical. The former are acquired
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by visually or chemically inspecting samples brought to the surface, but also con-

tain live drilling parameters such as the speed at which the drill bit deepens the

borehole (i.e., the rate of penetration), the latter by lowering a measurement device

into the borehole. A comprehensive survey of a drilling usually contains several

well logs, geological as well as geophysical. Typical properties besides the rate of

penetration are for example weight, porosity or resistivity. Well tops contain exact

information on the position of subsurface layer boundaries. While well log data

is usually a continuous 1D data stream along the borehole, well top data consists

only of a few discrete samples per well. A single well top is simply a point in

3D marking the depth for a defined horizon at the included (x, y)-position. Both,

well logs as well as well tops, can function as ground truth data when interpret-

ing the seismic cube. Well log and well top data come in three different types: (1)

measured in spatial depth at the drill holes, (2) measured in spatial depth, and con-

verted to the time- or depth-migration domain, or (3) measured directly in the time

domain. Unlike well data available in the time domain, the much more common

and also more accurate data only available in the spatial depth domain cannot be

used directly for interpreting a time-migrated seismic measurement. In the con-

ventional workflow for seismic interpretation, after finishing the interpretation,

the extracted features are converted into the spatial depth domain. Only then can

the interpretation be matched to the ground truth data available only in the spatial

depth domain.

Seismic Horizons

Seismic horizons define the boundaries of subsurface layers. In the seismic cube

they are represented by bands of locally extremal values, whereas most other struc-

tures like faults are primarily defined by their interaction with horizons.
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Seismic Interpretation

The extraction of seismic horizons is one of the main tasks when interpreting the

seismic cube to build a model of the subsurface structures. In most cases, the seis-

mic interpretation is not based solely on the seismic cube. Usually, well log and

top data from physical drillings provide additional information. However, since

the seismic cube and the well data are usually in different domains the well data

can not be used directly during the interpretation process, but only after a com-

plete interpretation path with subsequent depth conversion. Interpreting the seismic

cube is a cumbersome, time-consuming process. The data is dense, hard to visual-

ize in 3D, noisy, and ambiguous. It may happen that after hours of interpretation

work it becomes apparent during time-depth conversion that large parts of the

volume were misinterpreted due to a single wrong decision in what seems to be a

branching horizon. In current practice, which is mainly based on manual inline-

and crossline-slice inspection, this is very tedious, as it requires manual correction

of multiple slices. Additionally, these slices need to be adjusted according to well

log information which usually is only available for very few slices, and might be

located between interpreted slices where no interpretation has been performed.

Depth Conversion

Depth Conversion is the process of computing actual spatial depths for seismic

structures. Etris et al. [22] explain the need for depth conversion of the seismic

interpretation and why depth migration, even though resulting in a seismic cube

in the depth domain is not sufficient to get a good subsurface model. Figure 1.1

illustrates why depth conversion is necessary to get a correct impression of the

subsurface structures and why structural interpretation is hard in the time domain.
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Figure 1.1: Illustration of subsurface structures in the time domain (right) and after depth
conversion (left). Image adapted from Etris et al. [22].

While in the time domain it appears that the bottom layer is bulged, in the depth

converted model it becomes apparent that it is actually flat and the bulging in

the time domain is caused by the different velocities of the layers on top. The

depth conversion is carried out using the extracted horizons and a velocity model.

Each subsurface layer is assumed to consist of a single material only, or an equal

distribution of a mixture of materials. This makes it possible to assign an average

velocity value to each layer. In the same way subsurface layers do not intersect,

neither do their boundaries. Here, we assume that boundaries do not fold over,

and thus can be defined as a function over the lateral domain, i.e., a heightfield.

According to our domain expert collaborators, this is a reasonable assumption that

subsumes the largest part of seismic interpretation work. These two constraints

make it possible to interpret the depth conversion process as a piecewise linear

scaling of layers along the z-axis.
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1.3 Analysis of Ocean Forecasts

Oil exploration in the deep Gulf of Mexico is vulnerable to hazards due to strong

currents at the fronts of highly non-linear warm-core eddies [108]. The dynamics

in the Gulf of Mexico are indeed dominated by the powerful northward Yucatan

Current flowing into a semi-enclosed basin. This current forms a loop, called the

Loop Current, that exits through the Florida Straits, and in turn merges with the

Gulf Stream. At irregular intervals, the loop current sheds large eddies that prop-

agate westward across the Gulf of Mexico. This eddy shedding involves a rapid

growth of non-linear instabilities [17], and the occasional eddies detachment and

reattachment make it very difficult to clearly define, identify, monitor, and forecast

an eddy shedding event [16, 18, 40].

The predictability of loop current shedding events in the Gulf of Mexico poses

a major challenge for the oil and gas industry operating in the Gulf. The presence

of these strong loop currents with speeds exceeding 1 ms�1 potentially causes se-

rious problems and safety concerns for the rig operators. Millions of dollars are

lost every year due to drilling downtime caused by these powerful currents. As

oil production moves further into deeper waters, the costs related to strong cur-

rent hazards are increasing accordingly, and accurate three-dimensional forecasts

of currents are needed. These can help rig operators to avoid some of these losses

through better planning, and avoid potentially dangerous scenarios. A three-

dimensional ocean forecasting system for the Gulf of Mexico therefore becomes

crucial and highly desired by the oil and gas industry, where accurate loop current

forecasts over a time frame of one to two weeks provide a reasonable time window

for planning the drilling operations.



23

Developing efficient tools to visualize and clearly disseminate forecast outputs

and results is becoming a very important part of the forecasting process. Such tools

have to be conceived in a way that allows users to easily extract and clearly identify

the necessary information from large ensembles and the associated statistics repre-

senting the forecast and its uncertainties. In this paper, we present the first system

for the visual exploration and analysis of these kinds of forecasts. Our system han-

dles multivalued ensembles of heightfields comprising multiple time steps. A set

of statistical properties is derived from the ensemble and can be explored in mul-

tiple linked views, while the complete ensemble is always available for detailed

inspection on demand. Our system enables domain experts to efficiently plan the

placement and operation of off-shore structures, such as oil platforms.
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Chapter 2

Related Work

This thesis combines the work from several publications, covering diverse areas of

research. In this chapter we present the most important previous work.

The major theme is visualization and feature extraction from seismic data. Sec-

tion 2.1 gives an overview over applications, workflows and techniques, specific to

subsurface modeling and seismic interpretation. The following Section 2.2 focuses

on visualization in this area. A more general look at segmentation techniques, not

specific to seismic data, is given in Section 2.3. We introduce volume deforma-

tion and exploded views to seismic visualization. Section 2.4 presents common

techniques.

The simulations used for creating the ocean forecast data, just like the param-

eter sampling approach to horizon extraction, map uncertainty to variation in the

resulting ensemble data. The final two sections give an overview over other ap-

plications and techniques for ensemble visualization (Section 2.5) as well as uncer-

tainty visualization in general (Section 2.6).

2.1 Subsurface Modeling and Seismic Interpretation

The importance of oil and gas for today’s societies has resulted in a considerable

amount of previous work in the area of seismic interpretation and visualization, as
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well as commercial software packages, such as HydroVR [55], Petrel [100] or Avizo

Earth [106].

One important area is seismic interpretation and seismic horizon extraction.

Pepper and Bejarano [78] give a good overview over seismic interpretation tech-

niques.

Gao [28] presents a complete workflow in four phases for visualization and in-

terpretation of seismic volumes. The phases are data collection and conditioning,

exploration, analysis, and finally design of well-bore paths. The exploration phase,

which includes interpretation, carried by slicing the volume along the axes, results

in a conceptual model. Gao guides through the workflow using several case stud-

ies.

A lot of work has focused on fully automatic approaches for horizon extrac-

tion. These techniques usually require the definition of some parameters, but after-

wards work without user interaction. Keskes et al. [49] and Lavest and Chipot [52]

show an abstract outline of such algorithms for fully automated 3D seismic hori-

zon extraction and surface mesh generation. Tu et al. [103] present an automatic

approach for extracting 3D horizons, based on grouping 2D traces. Faraklioti and

Petrou [27] and later Blinov and Petrou [7] present real 3D surface reconstruction

using connected component analysis parameterized by the local waveform and

layer direction. However, processing the complete volume at once is a lengthy

process, thus parameter tuning is inconvenient. Additionally, optimal parameters

are not necessarily equal for all features in the volume.

Castanie et al. [15] propose a semi-automatic approach. Horizons are traced

one by one from a user-defined seed point. Interactivity in these kind of methods is

limited as the horizon extraction is costly, resulting in long waiting times between

seeding.
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Patel et al. [74] present a technique for quick illustrative rendering of seismic

slices for interpretation. They use transfer functions based on precomputed hori-

zon properties. Their method, however, only works on 2D slices. In a subsequent

publication [76] they extended their illustration technique for rendering of 3D vol-

umes to be used in a framework for knowledge-assisted visualization of seismic

data. This method still relies on slice-based precomputation.

Borgos et al. [8], as well as Patel et al. [73], propose interactive workflows for

the surface generation based on an automatic preprocessing step. Both extract

surface patches from the volume in a preprocessing step by extrema classification

and growing, respectively. This step lasts for several hours. In a second, interac-

tive step the user then builds the horizon surface using the pre-computed patches.

Where in the work of Borgos et al. the surface patches function as simple build-

ing blocks, Patel et al.’s approach is more sophisticated. The extracted patches are

subdivided and stored hierarchically. The user starts the surface generation with a

single seed patch and by climbing up the hierarchy adds connected patches. The

authors themselves target their approach to quick extraction of horizon sketches

which then need to be refined in a second step.

Kadlec et al. present a method for real-time calculation of channels [44] and

faults [45] using level sets on the GPU, an approach which grows the seismic struc-

tures from a seed point according to local properties of the volume. In a subsequent

publication [46] they present a user study to validate their techniques. Jeong et

al. [42] implemented a method based on coherence-enhancing anisotropic diffu-

sion filtering using the GPU to identify faults in real-time.
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2.2 Volume Visualization for Seismic Data

Engel et al. [21] give a comprehensive overview of the basics of volume graphics,

including slicing and ray casting-based approaches.

Kidd [50] presents basic ideas for seismic volume visualization. He argues that

volume rendering can be used to gain an overview of a seismic cube without time

consuming interpretation. Kidd proposes a fairly simple zone system that par-

titions the data range in six parts, to which then predefined colors are assigned

automatically.

Castanie et al. [14, 15] were the first to use pre-integrated ray casting for seismic

visualization. They give an overview of the special demands for visualization of

seismic data and demonstrate the advantages of ray casting compared to slicing

approaches for direct volume rendering of seismic data.

Meaningful visualization of 3D seismic data is a hard problem, since seismic

volume data are very dense and noisy. Gradients cannot be used well in large parts

of the volume, and generally have different semantics than for example in typical

medical datasets. Where a strong gradient in a computed tomography (CT) scan

usually corresponds to a material boundary, in seismic reflection data the subsur-

face boundaries are represented as local extrema, where the gradients are usually

very small. This means that volume illumination with gradient-based approaches

like the Blinn-Phong model [6] in combination with classical volume rendering

approaches does not work well for these data.

Silva [102] shows that the gradient of the so called instantaneous phase at-

tribute yields a better normal candidate, which is normal to the peak amplitudes.

He then compares the renderings of volumes shaded with standard gradients with

volumes shaded with the new gradients which give better results.
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Patel et al. [73] present a volume rendering technique that employs gradient-

free shading. They argue that local ambient occlusion as presented by Ropinski

et al. [93], a common gradient-free shading approach, is not a good fit for seis-

mic data. The reasons are not only time- and memory-intensive pre-computation,

but also the high frequency and noisy nature of seismic data. Instead, they pro-

pose a technique called forward scattering. However, since their particular ap-

proach is based on slicing, their technique cannot easily be adapted to ray casting.

Šoltészová et al. [107] investigate how shadows and shading relate to curvature

and depth perception. In addition they introduce a shading technique that repre-

sents shadows with modified luminance rather than by darkening, to avoid con-

veying information by over darkening.

Besides shading, visibility is a big problem for visualizing dense data such as

seismic volumes. There exist a lot of techniques to conquer this problem, most of

them borrowed from illustration.

Ropinski et al. [94] introduce focus+context methods to seismic visualization.

They employ different transfer function to different regions of the seismic cube.

Furthermore their system is integrated into a virtual workbench, providing stereo-

scopic visualization for a more immersive experience.

A typical example for illustrative techniques are exploded views. Exploded

views allow looking inside the data by cutting parts away, but instead of remov-

ing these parts, context is maintained by displacing the cut away objects. Bruckner

et al. [13] present exploded views for volume data. In their approach, the dataset

is first split into multiple convex parts which are then transformed using a force-

directed layout. They render these parts one by one. Therefore, the parts have to

be sorted according to their visibility and, after rendering, blended into a single

buffer. Design Principles for cutaway illustrations for visualization of 3D geolog-
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ical models are presented by Lidal et al. [54]. Birkeland et al. [5] have created a

cut plane that adapts to the volumetric data by acting like a deformable mem-

brane. This works particularly well when cutting through seismic data along the

depth axis. The membrane will then adapt itself and snap to strong reflectors as

the membrane is pushed downwards.

2.3 Image and Volume Segmentation

We propose an interactive seismic interpretation workflow exploiting global en-

ergy minimization inspired by segmentation techniques employed in computer

vision. Our method does not require any pre-computation and allows modifica-

tion of computed surface patches by adding constraints. By applying the surface

extraction on smaller chunks (i.e, prisms) instead of the complete volume at once,

we maintain an interactive workflow for extracting piecewise global optimal hori-

zon surfaces.

Typical image segmentation systems based on energy minimization can be di-

vided into two classes, based on the types of constraints they provide. Approaches

based on graph cuts [9, 10, 11] work by dividing the image in fore- and back-

ground elements. The boundary is then defined implicitly between neighboring

fore- and background image elements. Consequentially, constraints can be set by

defining specific elements as fore- or background. The second type of energy min-

imization algorithms for segmentation are algorithms like Live Wire/Intelligent

Scissors [66, 68], which trace a line through a set of given points (the constraints)

which is supposed to bound the feature which is to be extracted. Here constraints

are explicit, giving the user full control over the boundary.



30

Depending on the application, both types of constraints have their advantages.

For seismic interpretation it is crucial to be able to directly interact with the bound-

ary (representing the seismic horizon), making explicit constraints a much better

choice than implicit ones.

While graph cuts adapt naturally to 3D [3, 10], or higher dimensions in general

(the cut in an n-dimensional graph is always of dimension n-1), the application of

Live Wire/Intelligent Scissors will always produce a line. These lines can be used

as a boundary for 2D objects, but not 3D objects, which are bounded by a surface.

Poon et al. [84] exploit this property to track vessels in 3D. There are a number

of publications dealing with the extension of Live Wire to 3D to create minimal

cost surfaces. Falcão and Udupa [24, 26] propose automatic tracing in 2D using a

user-defined trace on orthogonal slices as constraints. Their approach, however,

requires considerable user supervision, especially when trying to segment objects

with a topology different from a sphere. Schenk et al. [99] introduce a combi-

nation of Live-Wire and shape-based interpolation. Poon et al. [85, 86] present a

technique similar to Falcão et al. [24, 26] which can handle features with arbitrary

topology, by defining inner and outer contours. However, all these methods are

based on creating some kind of network of lines computed using the classical 2D

Live Wire algorithm, which has several drawbacks; A set of minimal cost paths in

a 3D image does not necessarily assemble a minimum cost surface. Consider two

circles. A minimal surface connecting the circles will be a catenoid. The shortest

path connecting any two points from the two circles will however be a straight line

and will thus not lie on the surface of the catenoid (compare Figure 2.1). Another

major problem is that the placement of the key paths is crucial for the quality of

the resulting surface, especially if the topology changes between slices as might be

the case for concave objects. Additionally, from a user perspective it can be much
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a b

Figure 2.1: Illustration of the differences between shortest paths and minimal surfaces. a

shows the catenoid forming a minimal surface between two circles. The short-
est path (magenta in b ) connecting two points on the two circles does not lie
on the surface of the catenoid. (Figure reproduced from Grady [30])

harder to edit a network of minimal cost paths. For example, a constraint set in

one slice will not necessarily propagate to the next slices, etc.

The only method we know of, to find minimum cost surfaces in 3D with explicit

constraints like in the Live Wire approach was proposed recently by Grady [29].

This work formulates the minimal cost surface problem as an extension of the orig-

inal 2D minimal cost path problem and shows that it can be solved with linear pro-

gramming. In later work, Grady [30] presents an optimized solution for regular 6-

connected lattices using minimum-cost circulation network flows. This approach

results in the real minimal cost surface and is also independent of topology. The

algorithm requires a single arbitrarily shaped closed contour as input and allows

discretionary closed contours as constraints.

2.4 Volume Deformation

Westermann and Rezk-Salama [110] propose a method for free-form volume de-

formation on graphics hardware. A key element of their approach is to not deform

the volume itself, but rather the mapping into the volume. Rezk-Salama et al. [90]

describe an approach for volume deformation that works by adaptively subdivid-



32

ing the volume into blocks which can be linearly deformed. They reached interac-

tive rendering speeds for small datasets on then-available programmable graphics

hardware. Their approach, however, does not work when using advanced mem-

ory layouts like bricking. Schulze et al. [101] have presented an approach for non-

physically-based direct volume deformation. They resample the volume during

deformation and render the deformed volume with standard volume rendering.

Their technique allows deformation of moderately-sized volumes, at voxel reso-

lution, at interactive frame rates, but the affected area must be limited. Lampe et

al. [51] present a technique to deform and render volumes along curves. They il-

lustrate two applications, one of which is the visualization of seismic data along

well logs.

2.5 Ensemble Visualization

Early work on visualization of ensemble data was conducted by Pang, Kao and

colleagues [47, 48, 56, 58]. While the authors did not use the term ensemble, these

works deal with the visualization of what they call spatial distribution data, which

they define as a collection of n values for a single variable in m dimensions. These

are essentially ensemble data. The authors adapt standard visualization tech-

niques to visualize these data gathered from various sensors, e.g. satellite imag-

ing or mutli-return Lidar. Frameworks for visualization of ensemble data gained

from weather simulations include Ensemble-Vis by Potter et al. [89] and Noodles by

Sanyal et al. [97]. These papers describe fully featured applications focused on

the specific needs for analyzing weather simulation data. They implement multi-

ple linked views to visualize a complete set of multidimensional, multivariate and

multivalued ensemble members. While these frameworks provide tools for visual-
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izing complete simulation ensembles including multiple dimensions, to solve the

problem presented in this work we focus on 2.5D surfaces, i.e. heightfield ensem-

ble data.

Matković et al. [61] present a framework for visual analysis of families of sur-

faces by projecting the surface data into lower dimensional spaces. Piringer et

al. [83] describe a system for comparative analysis of 2D function ensembles used

in the development process of powertrain systems. Their design focuses on com-

parison of 2D functions at multiple levels of detail. Healey and Snoeyink [33]

present a similar approach for visualizing error in terrain representation. Here, the

error, which can be introduced by sensors, data processing or data representation,

is modeled as the difference between the active model and a given ground truth.

2.6 Uncertainty Visualization

A good introduction to uncertainty visualization is provided by Pang et al. [72],

who present a detailed classification of uncertainty, as well as numerous visual-

ization techniques including several concepts applicable to (iso-)surface data, like

fat surfaces. Johnson and Sanderson [43] give a good overview of uncertainty

visualization techniques for 2D and 3D scientific visualization, including uncer-

tainty in surfaces. For a definition of the basic concepts of uncertainty and another

overview of visualization techniques for uncertain data, we refer to Griethe and

Schumann [31]. Riveiro [92] provides an evaluation of different uncertainty visu-

alization techniques for information fusion. Rhodes et al. [91] present the use of

color and texture to visualize uncertainty of iso-surfaces. Brown [12] employs an-

imation for the same task. Grigoryan and Rheingans [32] present a combination

of surface and point based rendering to visualize uncertainty in tumor growth.
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There, uncertainty information is provided by rendering point clouds in areas of

large uncertainty, as opposed to crisp surfaces in certain areas.

Recently, Pöthkow et al. [87, 88] as well as Pfaffelmoser et al. [80] presented

techniques to extract and visualize uncertainty in probabilistic iso-surfaces. In

these approaches for visualizing uncertainty in iso-surfaces, a mean surface is ren-

dered as the main representative surface, while the positional uncertainty is rep-

resented by a ’cloud’ based on the variance around this surface. Pfaffelmoser and

Westermann [81] describe a technique for the visualization of correlation struc-

tures in uncertain 2D scalar fields. They use spatial clustering based on the degree

of dependency of a random variable and its neighborhood. They color-code the

clusters, but also allow the visualization of primary information like the standard

deviation, for example by extruding clusters into the third dimension.

Lundström et al. [57] propose the use of animation to show the effects of prob-

abilistic transfer functions for volume rendering. A system which models and vi-

sualizes uncertainty in segmentation data based on a priori shape and appearance

knowledge has been presented by Saad et al. [96].
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Chapter 3

Visual Subsurface Modeling

This chapter is based on the papers Interactive Seismic Interpretation with Piecewise

Global Energy Minimization [35] and SeiVis: An Interactive Visual Subsurface Mod-

eling Application [37] as well as the poster Seismic Horizon Tracing with Diffusion

Tensors [38].

Creating a subsurface model from a seismic survey consists of several steps.

The major tasks are extracting the relevant features from the seismic cube, fol-

lowed by the creation of a velocity model, based on the extracted features and

corresponding to the speed of the seismic waves in the subsurface. Finally using

the velocity model the extracted features can be converted from time into spatial

depth. In this chapter we describe how these steps are carried out in current prac-

tice (Section 3.1). Even though we use the same three modules, using our joint

time/depth visualization (Section 3.2) results in a completely different workflow.

The joint time/depth visualization in combination with our prism based work-

flow (Section 3.3) allows direct use of depth domain based well data during the

time domain based horizon extraction. In Section 3.4 we discuss the weaknesses

of common horizon extraction techniques based on local solvers and present our

approach to a horizon extraction using global optimization. The results and eval-

uation of this work can be found in Section 3.5.
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3.1 Current Practice

The following description of the current practice is based on the industry stan-

dard software Schlumberger Petrel [100]. While implementation details might

vary for different software tools, to our knowledge the workflow description re-

flects the common practice in the industry.

Horizon Extraction

The horizon extraction is usually carried out as a combination of 2D segmentations

on the axis-aligned slices of the seismic reflection data. The user manually, or us-

ing semi-automatic growing techniques, tags the important horizons as lines on

the slice. The auto tracer of Petrel, which is used for the semi-automatic growing,

uses a local approach, which cannot be forced through constraint points and stops

at ambiguous areas. Depending on the variation in the data, up to ten slices are

skipped between 2D segmentations, and filled by interpolation or automatic grow-

ing. The horizon extraction process is very lengthy and accounts for the major part

of the time in the typical workflow. Tagging several horizons on tens to hundreds

of slices takes at least several hours but can easily keep an interpreter busy for

multiple days, if the structures are not clearly visible or ambiguous. The output of

the horizon extraction module is a set of surfaces describing the boundaries of the

subsurface layers.

Velocity Modeling

After the horizon extraction is finished, the resulting horizon surfaces are used as

a basis for creating a velocity model. The velocity model is defined in a table view,

where for every subsurface layer the corresponding top and bottom boundaries

(horizons or other surfaces), as well as velocities are set. Once all desired layers
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are defined, a volume containing per-voxel velocities (the so-called velocity cube)

can be computed off-line.

Depth Conversion

Finally, based on the velocity cube, the depth conversion can be computed. Using

the per-voxel velocities, the original volume and the extracted horizons can be

resampled, again off-line, from top to bottom into a new, depth-converted dataset.

Integration

Creating the velocity cube, as well as the final depth conversion, requires the user

to manually create a new derived dataset, as well as lengthy computations. In

addition, the derived datasets are not coupled. An update in one of the modules

does not automatically trigger the re-evaluation of subsequent modules. Instead, a

new derived data set has to be set up manually. This results in the linear workflow

illustrated in Figure 3.1 a , where each module requires the result of the previous

module as input. Due to the lengthy computations in between, usually no interme-

Depth

Conversion

Depth
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Horizon

Extraction

Velocity

Modeling

user-steered comp.

optional reinterpretation live update loop

automatic comp.

well tops

in depth

a b

Horizon

Extraction

Velocity

Modeling

Figure 3.1: The conventional workflow a with multiple user-steered computations, com-
pared to our novel joint time/depth modeling workflow b with a fully inte-
grated, automatic live update loop.
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diate results are pushed to the next module in the pipeline. A major drawback of

this approach is that mistakes that occur during the horizon extraction often only

become visible after finishing the complete pipeline, when matching the depth

converted data to the ground truth data, which is available only in depth. In an

ideal workflow, the interpreter would go back to the interpretation and fix mis-

takes (indicated by the green arrow in Figure 3.1 a ). More commonly, however, a

shortcut is taken to save time, by locally “hot fixing” the velocity cube to match the

features, accepting a possibly unphysical velocity model.

3.1.1 Weaknesses and Proposed Enhancements

The traditional workflow has two major shortcomings.

1. The precise ground truth data gathered from drillings and only available in

the depth domain is not available while interpreting the seismic cube in the

time domain, but only after a complete interpretation cycle.

2. Since re-interpreting the seismic data after a complete interpretation cycle is

very tedious and time consuming often a shortcut is taken after a few cy-

cles, by ’hot fixing’ the velocity model locally to match the ground truth data

(indicated by the orange arrow Figure 3.1 a ).

Proposed Enhancements

In this work, we propose a novel integrated workflow as shown in Figure 3.1 b .

This workflow consists of the same three modules as the traditional workflow;

horizon extraction, velocity modeling and depth conversion, however, we propose

several modifications, which drastically alter the overall workflow, to eliminate the

weaknesses, described above.
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Our most important goal is to integrate the spatial ground truth data, gathered

from wells, into the time domain-based horizon extraction. This allows the cre-

ation of a correct model in a single pass, eliminating the need to go through mul-

tiple iterations. Therefore we propose two modifications to the traditional work-

flow:

1. Provide the user with a joint time/depth domain workflow, which integrates

the ground truth data gathered from wells into the interpretation workflow.

Therefore we propose side by side views of the time and depth domains,

where the depth domain view provides on the fly updates based on the in-

termediary results from the horizon extraction and velocity modeling.

2. To make as much use as possible of the well data, we subdivide the seismic

cube into prisms based on well positions for the horizon extraction, rather

than axis aligned slices. Each of the prisms will allow access to data from

three wells, while the availability of well data on axis aligned slices is mostly

random.

In addition, to ease the surface extraction itself, we propose the use of an inter-

active, user-steered global optimization technique instead of local solvers.

3.2 Joint Time/Depth Domain Visualization

To allow matching features extracted in the time domain to the ground truth

well data in the depth domain, we propose the use of side by side views of the data

in both domains as illustrated in Figure 3.2. The goal of these side by side views is

to allow the user to modify the interpretation in one view and immediately provide

the results of the modifications on the depth converted model in the other view.
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Figure 3.2: An example for our joint time/depth domain views. The left view shows the
original data in the time domain. A horizon was tagged wrongly in an unclear
area. The right view shows the depth converted data. Well tops are available
in this view to guide the segmentation. The user can now fix the horizon in the
time domain view and get live updates on the fit to the well top in the depth
domain view.

Interactive updates in both views are essential for this joint time/depth domain

workflow to work properly.

Converting the complete data from one domain into the other at interactive

rates is not a trivial task. State of the art commercial software, like Schlumberger

Petrel [100] convert the data from one domain into the other by resampling the

complete dataset in an off-line process. Converting the whole seismic cube can take

from several seconds to minutes, even for small datasets. Such a process makes

interactive updates impossible.

To enable interactive updates in our joint time/depth domain views, we imple-

mented a visualization pipeline specifically optimized to handle frequent updates

of the extracted horizon surfaces, as well as a volume deformation approach where
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Figure 3.3: Rendering pipeline for joint time/depth interaction. Horizon extraction 1 , ve-
locity modeling 2 and deformation 3 modules constantly update the texture
data a , b . The data is shared over all views and the different steps 4 , 5 and
6 in the rendering pipeline.

only the extracted features are deformed and saved, while the actual volume data

is converted from the time domain to spatial depth on the fly during rendering.

3.2.1 Rendering Pipeline

Figure 3.3 shows our integrated pipeline for rendering seismic volume data and

horizon surfaces with the application of deformation and exploded views. In the

remainder of this section, circled numbers and letters refer to this figure. While

the figure illustrates the pipeline for the volumetric case, we use the same pipeline

for 2D views to provide depth conversion during interpretation. The main differ-

ence is that the heightfield geometry c , as well as the boundaries texture a , are of

one dimension lower (compare Table 3.1). The pipeline is divided into two major

blocks: the interpretation block on the left, and the rendering block on the right.
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Texture /
Buffer

Dim.
3D/2D

Type Function Size 3D Size 2D

a bounds 3D/2D luminance
↵ texture

layer boundaries in
original (.r) and
deformed (.a) space

x·y·#B·2 x ·#B · 2

b velocities 1D luminance
texture

layer velocities #L #L

c heightfield
geometry

2D/1D vertex
buffer

generic vertex
buffer for horizons

x · y · 3 x · 2

Table 3.1: Textures and buffers needed in our pipeline in addition to basic volume render-
ing. a , b , and c correspond to Figure 3.3. #B and #L represent the number of
boundaries and the number of layers, respectively. Sizes are given in number of
32-bit floating point entries.

Interpretation

Interpretation comprises three modules. The horizon extraction module 1 , and

the velocity modeling module 2 , which comprise the actual surface extraction

and the definition of the velocity values for the corresponding layers. The out-

put of the horizon extraction is a 2D heightfield that covers the complete volume

domain, plus a 1D heightfield for the boundary of the current prism. Both are con-

stantly updated during the interpretation process. Each heightfield corresponds to

a single horizon, and is stored as a layer in the first channel of the 3D or 2D bound-

aries texture a on the rendering side, and is also available to the depth conversion

module on the interpretation side.

The velocity modeling module 2 outputs a velocity value for each layer, which

is stored into the 1D velocities texture b .

The surface deformation module 3 takes the updated heightfields from the

horizon extraction module 1 , and converts the values from the time to the depth

domain using the velocity model from the velocity modeling module 2 . Com-
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pared to recomputing the deformation for the complete volume, very little data

needs to be processed, allowing real time updates (compare Table 3.2 in the per-

formance discussion in Section 3.2.3).

The resulting depth-converted heightfields are stored in the second channel of

the 2D or 3D boundaries texture a . In addition, the depth conversion module

outputs the maximum scaling factor d needed to cover the depth conversion at

any (x, y)-position.

Rendering

The data is shared between all views and steps in the visualization pipeline. Ta-

ble 3.1 gives an overview of the shared textures and buffers. Basically all of our

views make use of vertex and fragment shaders to exploit the possibilities of the

programmable OpenGL pipeline. We used this, for example, to streamline the

horizon surface rendering part 4 of the pipeline. Instead of creating geometry

for each horizon, we use a single generic vertex buffer c , covering the complete

(x, y)-domain, but without the depth (z) information at the vertices. We render the

surfaces one by one and use the boundaries texture a in the vertex stage to assign

the appropriate z-values to each vertex.

Invalid fragments, i.e., the fragments belonging to triangles in the mesh that

are not yet covered by the interpretation, are discarded. Additionally, we use the

fragment shader to compute several properties of the surfaces on the fly. Using

the data which is already available for the other rendering stages on the GPU,

several properties can be plotted directly onto the surface without precomputing a

separate texture. The amplitude can be looked up directly from the volume texture.

Cost or deviation from the target amplitude can be computed on the fly based on
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data from the same texture. The distance to other surfaces can be evaluated using

the boundaries texture.

3.2.2 On the Fly Deformation

The volume deformation required for the depth conversion is highly constrained.

Deformation only needs to be applied to the depth axis of the volume, in order to

convert its unit from time to spatial depth in the subsurface. We represent hori-

zons as heightfields, and we can safely assume that no horizons intersect. Thus,

every two adjacent horizons enclose one subsurface layer. Furthermore, the veloc-

ity for each layer in the volume can be assumed to be constant, using an average

value. Thus, the deformation can be simplified to a piecewise linear stretching or

compression of the volume between each two adjacent horizons. Taking these con-

straints into account, it is possible to implement the deformation in a simple and

efficient manner. This enables depth conversion at real-time frame rates during

volume and slice rendering, without precomputing a deformed volume.

Concept

Our approach is inspired by the work of Westermann and Rezk-Salama [110]. Con-

ceptually, we never deform the original volume, but render a virtually deformed

volume, converting the look-ups in this volume into the original volume space on

the fly in the fragment shader. We do that by converting only the layer boundaries

(which are the result of the interpretation in progress) from time to depth. The n-th

deformed boundary b0
n

can be computed as

b0
n

(x, y) =

nX

k=1

(b
k

(x, y)� b
k�1(x, y)) · vk (3.1)
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from the time domain boundaries b
n

and velocities v
n

. Figure 3.4 illustrates the

deformation with this simple iterative computation of the deformed boundaries.

The boundaries have to be recomputed only when a velocity value is changed or

a horizon is modified. Computational complexity is O(n), with n the number of

vertices that need to be updated. Since the computation is independent for each

(x, y)-position, we have parallelized it using OpenMP. We measured computation

times for several surfaces and even for larger surfaces consisting of roughly a mil-

lion quads, the update time for a couple of horizons is interactive (see Table 3.3 in

the performance discussion in Section 3.2.3).

For volume rendering, we use a single-pass ray caster. The ray caster is set up

to cast into a virtual volume, resized with the scaling factor d , which is set to the

maximum value of the bottom boundary to fit the deformed volume. During ray

casting, the depth-converted boundaries are used to compute the actual look-up in

time to depth surface deformation

layer0 / v0
b0: top boundary
b1: horizon0

b2: horizon1

b3: horizon2

b4: bottom boundary

layer1 / v1

layer2 / v2

layer3 / v3

b
b

b

b

b

b́0  = b0

def.fac. = max(b́4)deformed vol
bounding box

b́1  = b́0 +(b1 - b0)・v0

b́2  = b́1 +(b2 - b1)・v1

b́3  = b́2 +(b3 - b2)・v2

b́4  = b́3 +(b4 - b3)・v3

bb
b

b

b

b
dd

Figure 3.4: Illustration of the surface deformation (Fig. 3.3 3 ) with computation of de-
formed boundaries.
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the original volume. Rendering the unfolded prism sides can be done in a similar

manner. For each side, we set up a quad that fits the size of the deformed side,

and the same indirect texture look-up as described for volume rendering is used

for the slice rendering.

Rendering Setup

In the setup step of the ray caster 5 , the extents of the bounding geometry have

to be adapted to fit the deformed volume. This is done by scaling the z-axis of the

bounding geometry with the deformation factor d .

Fragment Shader

In the ray casting stage 6 the coordinates for the volume texture look-up have to

be modified in the fragment shader. The pseudo code in Figure 3.5 illustrates the

conversion of the virtual (deformed) coordinates to the actual sampling position

in undeformed volume coordinates in the fragment shader. The sample position

in the deformed space is used to look up the id of the current layer. Using the

layer id, the layer’s upper boundary is fetched for each (x, y)-position in original

and deformed space. Using the layer’s velocity, the z-position in the layer is then

transformed back into undeformed volume space, resulting in the sample position

in volume space.

The same principle is used for the main interpretation view containing the un-

folded prism sides. To apply the depth conversion to the slice views, we simply

scale the side of the quads corresponding to the volume’s z-axis, and use the same

fragment shader code shown in Figure 3.5 to compute the position for the texture

look-ups.
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3.2.3 Performance

We have measured the rendering performance for the live deformation with two

different datasets: The first dataset, shown in Figure 3.6a is moderately sized with

240⇥240⇥1509 voxels, and at 330MB fits completely into GPU memory. The second

dataset (Figure 3.6b) comprises 1422⇥ 667⇥ 1024 voxels, resulting in roughly 4GB,

meaning the dataset does not fit the GPU memory of our test system described

below. Therefore, for rendering the second dataset, we use a multi-resolution ap-

proach as presented by Beyer et al. [4]. This approach allows rendering differ-

ent parts of the data at different resolution levels with smooth transitions using a

1 uniform sampler1D velocities;
2 uniform sampler3D boundaries;
3 uniform float scaleFactor;
4
5 convertSamplePosToVolumeSpace( x, y, z )
6 {
7 // scale from [0..1] to deformed volume coordinates

8 z *= scaleFactor;
9

10 // get the id of the current layer

11 float layerId = getLayerId( x, y, z );
12
13 // lookup layer offset in undeformed and deformed volume coordinates

14 vec2 layerOffset = texture3D( boundaries, vec3( x, y, layerId ) ).xw;
15
16 // distance to layer boundary in deformed volume coordinates

17 float posInLayer = z - layerOffset.y;
18
19 // distance to layer boundary in deformed volume coordinates

20 float velocity = texture1D( velocities, layerId );
21 posInLayer /= velocity;
22
23 // update z coordinate to sample in volume coordinates

24 z = layerOffset.x + posInLayer;
25
26 return vec3( x, y, z );
27 }

Figure 3.5: Pseudo code for live volume deformation. Virtual (deformed) coordinates are
converted to undeformed coordinates on the fly during rendering in the frag-
ment shader. The syntax is similar to GLSL.
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(a) Dataset 1 (b) Dataset 2

Figure 3.6: Volume renderings of the two datasets used for the performance measure-
ments.

multi-resolution hierarchy. We extended the system os that it can provide different

resolutions levels of the same data to different parts of the pipeline. I.e. we allow

the visualization part to fall back on lower resolution levels, if GPU memory is low,

but provide the surface extraction module always with the highest resolution data.

The surfaces cover the complete (x, y) extents of both datasets with a resolution of

one vertex per voxel resulting in 57, 600 and 948, 474 quads, respectively. Compu-

tation of the deformed surfaces was done on the CPU using a dual six-core Xeon

X5680 at 3.33Ghz. Rendering was done on a NVIDIA Geforce GTX 580 with 1.5GB

of memory, with the volume rendered screen-filling into a 1024 ⇥ 1024 viewport

with two samples per voxel.

Table 3.2 shows the performance of the surface deformation algorithm. For the

smaller dataset we can easily achieve interactive update rates with 9 and 12ms per

update for three and five surfaces, respectively. Since the performance is mostly

dependent on the size of the surface, computation for the larger dataset is signifi-
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Dataset Samples per
Surface

Number of
Surfaces

Computation
Time

240⇥ 240⇥ 1509 57, 600
3 9ms

5 12ms

3 144ms
1422⇥ 667⇥ 1024 948, 474

5 174ms

Table 3.2: Surface deformation performance for the on the fly depth conversion.

cantly slower. Computation time of 144ms for three surfaces, however still allows

for seven updates per second. While this does not quite allow updates in real

time during the surface deformation, it should be noted that the computation only

needs to be carried out when the surface geometry or the velocity model is modi-

fied and thus does not have an impact on rendering speed during regular interac-

tion. In addition in a typical workflow, where surfaces are extracted top to bottom

only the last layer needs to be updated, meaning that the case for three surfaces is

basically the worst case.

Performance for the ray casting algorithm with live depth conversion, as pre-

sented in Section 3.2.2, is shown in Table 3.3. In comparison to the standard ray

casting algorithm used for rendering the undeformed volume, this technique re-

quires three additional texture look-ups and four floating point operations per

sample to compute the sample position in the original volume (compare the source-

code in Figure 3.5). In addition, to get the layer id of the current sample, a number

of additional texture look-ups have to be performed. The actual number depends

on the search algorithm used. Right now we step through all layers from top to

bottom until reaching the current sample point. This results in the performance

loss shown in Table 3.3, when adding more layers.
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Dataset Number of
Surfaces

Base Depth
Conversion

% of
Base

240⇥ 240⇥ 1509

3
117fps

99fps 85%

5 87fps 66%

3 81fps 80%

1422⇥ 667⇥ 1024

5
101fps

77fps 76%

Table 3.3: Performance comparison of the live depth conversion. We used standard ray
casting without illumination for the comparison.

Overall, performance stays well within the limits needed for interactivity for

both datasets. For the larger dataset it can be seen that rendering speeds scale very

well, using the multiresolution representation. Since the surfaces are deformed at

full resolution there is a bigger performance penalty, however, update rates are still

interactive and updates are only needed when surfaces or the velocity model is up-

dated. In addition our visualization pipeline, described in Section 3.2.1 basically

decouples the resolution of the extracted surfaces from the geometry. Thus one

could imagine a similar multi-resolution approach for the deformation as for ren-

dering, in case surface resolution becomes too big to handle at interactive rates.

3.3 Prism-Based Workflow

With the on the fly depth conversion in place we can now show the original

and depth converted data side by side to allow adjusting the time domain based

interpretation to the depth domain based well data. However the well data is

very sparse and thus, in a slice based workflow only available on a few slices.

To maximize the availability of the additional data during the interpretation we

propose a workflow that is based on well positions rather than axis-aligned slices.
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a
aa cbc

b

Figure 3.7: The original prism (left) unfolded into a single slice (right).

Conceptually, we always work on the sub-volume that is defined by three well

positions that make up a triangle on the geological surface and form a triangu-

lar prism through the seismic volume along the z-direction. Since this approach

requires a unique (x, y)-coordinate for each prism corner only well logs that are

roughly orthogonal to the surface are used for creating prisms. For using well

tops, these limitations do not apply. We simply treat each well top separately, even

when several tops correspond to a single well and create prisms using all unique

(x, y)-coordinates.

To compute the seismic horizons, we have developed an algorithm that com-

bines the advantages of semi-automatic 2D and 3D global minimal cost path and

surface algorithms. We separate the horizon extraction algorithm into a 2D min-

imal cost path tracing on prism faces orthogonal to the (x, y) plane, and a subse-

quent 3D minimal cost surface computation, which is initialized by the previously

computed 2D contour. For more details on the tracing process refer to Chapter 3.4.



52

User interaction in this approach is mostly limited to the 2D optimization on

the sides of the prism. Therefore the prism sides are unfolded into a single 2D slice

as shown in Figure 3.7.

This approach was proposed by our collaborating domain experts. The main

advantage of this approach is that the horizon can easily be adjusted directly at

the well position, which is the point where errors in the interpretation become

visible when adjusting the horizon to the ground truth data from the well log dur-

ing time/depth-conversion of the seismic volume. In combination with our joint

time/depth domain workflow this allows direct interaction with well data from

three positions on each slice during the interpretation. After extracting a horizon

surface patch for one well prism, the horizon can then be extended by processing

the neighboring prisms, creating a set of horizon surface patches that constitute

the horizon surface. The result from one prism will therefore be transferred to the

neighbors. As a result, the interpretation itself is done triangle (prism) by trian-

gle (prism), instead of slice by slice, making ground truth data from three wells

available in every working set. To extend the horizon trace to areas not covered by

wells, additional points of interest (e.g. the corners of the volume) can be added to

the triangulation.

3.4 Horizon Extraction using Global Optimization

As discussed in Section 3.1 we identified several shortcomings in the current

practice of horizon extraction. We presented the joint time/depth domain visual-

ization in combination with the well based workflow above, to solve the issue of

integrating the depth domain-based well data into the time domain-based horizon

extraction workflow. In the following sections we will present a global optimiza-

tion technique to enhance the feature extraction itself.
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In Section 3.4.1 we discuss the requirements for the horizon extraction. We

exemplarily present a horizon extraction technique based on a local solver in Sec-

tion 3.4.2 and discuss the problems of the local solver in general as well as the

weaknesses with regard to our defined requirements. In the following Sections 3.4.3 –

3.4.5 we present our proposed approach to horizon surface computation which is

implemented in the presented workflow.

3.4.1 Requirements for Horizon Extraction

Horizon surface extraction using the conventional workflows of available state

of the art software is a very tedious process. It is done either manually or semi-

automatically using local solvers on axis-aligned slices. Fixing a mistake with

these approaches is very tedious, as it requires manual correction of multiple slices.

On the one hand, this is caused by the noisy and ambiguous seismic data, which

causes big problems for automatic solvers, on the other hand the local solvers

which are usually used, limit the possibility for semi-automatic adjustments. To

enhance the process we define a set of specifications, which are desired for a semi-

automatic horizon extraction workflow, based on the presented joint time/depth

domain views as well as the prism-based workflow:

1. The solver should always extract a complete path/surface.

2. It must be possible to force the path/surface through desired positions.

3. The user should be able to directly interact with the surface.

The first point can be achieved with local, as well as global solvers. However,

some local solvers, like ant tracking [77], which is commonly used in seismic ap-

plications, do not guarantee a complete surface. Other techniques, like level set

methods [71] do not have the same problems.
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Forcing the path or surface through a desired positions, as required by the sec-

ond point is necessary to make sure that the tracing on the prism sides results in a

closed curve, but also to allow the user to easily adjust a faulty segmentation. This

is, however, not achievable with local solvers. Since only the local neighborhood is

evaluated, it is not possible to guarantee that any point will be part of the final path

or surface, except for the seed point. Global approaches, such as shortest path al-

gorithms, allow this. These shortest path algorithms always find the optimal path

between two points. If a third point is desired to be part of the path, the algorithm

can simply search for two optimal segments, one from the start to the added point

and a second from the added point to the target.

Recently, graph based image segmentation approaches, like the described short-

est path algorithms, became very popular in computer vision. These approaches

can be divided into explicit and implicit boundary approaches. The difference be-

tween these approaches lies in the objects which are segmented. Implicit boundary

approaches, for example graph cuts [9], segment fore- and background, the result

is a set of pixels/voxels that belong to the segmented object, the boundary is im-

plicit. The result of explicit boundary approaches is a curve or surface, which

encloses the segmented object. Explicit boundary approaches map naturally to

the third requirement described above. While implicit boundary approaches can

be constrained by fore- or background pixels/voxels, the explicit boundary ap-

proaches can be constrained by curve or surface segments, meaning that user-

defined positions, which need to be part of the contour or surface map directly

to constraints for the optimization.
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3.4.2 Local Horizon Extraction: Tracing Diffusion Tensors

In this section we present a horizon extraction approach based on tracing a

diffusion tensor based vector field derived from the seismic cube. Based on this

technique we show the weaknesses, common to most local approaches.

Implementation

Edge-enhancing anisotropic diffusion [109] is a non-linear smoothing technique

which preserves edges by computing an edge direction vector for every sample

and using this vector as a parameter for the smoothing operation

@u
t

= div(D ·ru), (3.2)

where D is the diffusion tensor, and ru is the gradient of the intensity volume

u(x, y, z). Together, D ·ru determines the direction which the divergence operator

uses to smooth the image. In the general 3D case, the diffusion tensor is computed

as

D = [v1v2v3]

2

6666666666664

�1 0 0

0 �2 0

0 0 �3
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7777777777775

2
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. (3.3)

Based on the edge-enhancing diffusion tensor, in our system the first basis vector

v1 is computed by applying a 7⇥ 7⇥ 7 Gaussian derivative kernel to the volume at

each sample point. This results in the smoothed gradient ru
�

at position (x, y, z)

(Figure 3.8 b ). A vector orthogonal to v1 is then chosen as v2, and v3 is a vector or-

thogonal to both, v1 and v2. �1, �2, and �3 are scaling factors, which are responsible
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for rotating the gradient in the direction of the edge in order to prevent smoothing

across it. We define �1 as the diffusivity g(||ru||), and �2 = �3 = 1. To compute the

diffusivity, we use the Perona-Malik model [79]:

g(||ru||) = e�(
||ru||

k

)

2

, (3.4)

where k is a parameter to adapt the filter to the noise in the image. For our horizon

tracing approach, we only need the vector field computed by D ·ru (Figure 3.8 c ).

However, even though we compute the vector field for each side of the interpreta-

tion prism using the whole neighborhood in 3D, the tracing itself is done only on

the 2D slices. For this, the vectors need to be projected onto the sides of the prism

(Figure 3.8 e ). The whole procedure of creating the vector field is done in real-time

on the GPU with a shader written in the Cg language [59].

The tracing itself is then performed by numerically integrating the vector field

from a user-selected seed point. For this integration, we have implemented a

second-order Runge-Kutta method in the given vector field.

a c eb d

Figure 3.8: The different steps through the diffusion based tracing pipeline. a shows the
unfolded sided from an exemplary prism, b the corresponding smoothed gra-
dient map, c the gradients multiplied with the diffusion tensors, d shows the
result from c projected to the 2D image plane and e the result from d blended
over a . For b and c the color channels map to the volumes axes, red to the
depth axis (y in the image) and green and blue to the (x, y)-plane, x in the im-
age. For d and e red maps to the images’ x-, green to the y-axis.
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Jeong et al. [42] use coherence-enhancing anisotropic diffusion filtering as basis

for fault detection in seismic data. In that work, the tensor is computed as shown

in Equation 3.3. However, instead of directly using the smoothed gradient to create

the diffusion tensor, here the Eigenvectors of the structure tensor J(ru
�

) = rI
�

⌦

rI
�

of the smoothed image I
�

= K
�

⇤ I , with I the input image, ⇤ the convolution

operator and K
�

a Gaussian

K
�

(x) =
1p
2⇡�

e�
kxk2

�

2 , (3.5)

are used as v1, v2, and v3, in order of their contribution. The smoothed matrix J
⇢

is

computed by smoothing the structure tensor with another Gaussian

K
⇢

(x) =
1p
2⇡⇢

e
� kxk2

⇢

2 , (3.6)

resulting in

J
⇢

(rI
�

) = K
⇢

⇤ (rI
�

⌦rI
�

). (3.7)

Additionally �1 ⇡ 0 and �
i

= e�
(v

i

·rI)2

k

2 , for i = 2, 3, where v
i

is the i-th eigenvec-

tor of the structure tensor J and k is a user adjustable parameter to adjust to the

contrast of the image.

For comparison, we have also implemented a variant of our approach using the

coherence-enhancing diffusion tensor. Results showing the tracing, both with the

coherence-enhancing, as well as the edge-enhancing diffusion tensor are shown in

Figure 3.9 a .

Finally, as horizons are marked by local extrema in the scalar data, we have

implemented an additional version of both approaches that incorporates searching

the scalar field for a local maximum or minimum in the tracing algorithm. Rather



58

than using the result of an integration step directly as input for the next step, the

neighborhood of a user-defined size in the �z and +z directions is scanned for the

highest or lowest scalar value, respectively. The location of this value is then used

instead of the integration result as support for the traced horizon, as well as input

for the next integration step. Results for this method are shown in Figure 3.9 b .

Results and Discussion

Figure 3.9 shows some exemplary results of the different tracing algorithms for

three reflections in a seismic dataset. It can be seen that overall the traces match

the reflections (or ridge-lines in this case) quite well. Comparing tracing using

the edge-enhancing diffusion tensor with the coherence-enhancing tensor (Fig-

ure 3.9 a ) shows that the former is a little closer to the actual areas of maximum

amplitude and more responsive to changes in the horizon direction. The differ-

ence between both incorporating the snapping to maximum intensity values is

very small (Figure 3.9 b ) and for both the correctly traced parts are closest to the

actual horizon of all compared methods. However, the deviation from the vector

a b

Figure 3.9: Results of the different seismic horizon tracing methods we have implemented.
a edge-enhancing vs. coherence-enhancing diffusion tensor and b , just as a ,
but with snapping to the largest scalar value.
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field there introduces a much higher chance of false classification, as can be seen

on the right side of the uppermost image.

Even though promising, the results exhibit some of the typical weaknesses of

local approaches. The area highlighted by the green circle in Figure 3.9 b shows

an area where integrating the vector field, which is based on a single sample at

each step, results in a segment, where a path which is locally better, is followed

(upper part of the image), resulting in the miss of the clear reflection in the lower

part of the image, which would be the correct solution. With a global approach, a

reflection this strong would usually not be missed. A similar behavior can be seen

in the area highlighted by the blue circle in Figure 3.9 a .

The magenta circles in Figure 3.9 b show another problem, caused by the local

nature of the approach. Since the next segment of the path is only influenced by

the current sample, it is not possible to force the segmentation through any desired

points. This means that we can not guarantee a closed cycle around the prism sides

when using a local solver in our prism based workflow. In Figure 3.9 b this can be

seen at the left and right sides of the slice, which correspond to the same well

position. Ideally, the segmented path should join here, however, as indicated by

the magenta circles, the positions at both sides varies strongly. The fact that it is

not possible to force the segmentation through desired positions also makes it very

hard to edit the computed paths. When a segmentation is faulty, the only way to

fix it is to remove the faulty part from the segmentation and then retrace this area,

or even do the segmentation completely manually in this area.

We have shown that at least the second and third requirements set in Sec-

tion 3.4.1 can not be fulfilled using this approach. The biggest problem is the fact

that it can not be guaranteed that the trace results in a closed contour. In addition it

is not clear how to extend the approach to three-dimensional surfaces from the ex-
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tracted contours. In slice based approaches typically the gap between interpreted

lines on neighboring slices is interpolated. With our well prism-based approach

the area inside a prism is usually larger than the area between interpreted slices.

Simply interpolating would most likely lead to very imprecise results.

3.4.3 Minimum Cost Circulation Network Flow

Instead of interpolating the horizon surfaces in between two dimensional curves,

we propose performing full three dimensional optimization. The part of a horizon

intersecting a given prism can be extracted by specifying as little as a single seed

point, using global energy minimization techniques to compute a horizon surface

of minimal cost. We combine very fast two dimensional minimal cost path trac-

ing with subsequent three dimensional minimal cost surface computation. The

path tracing computes horizon intersections along the faces of the prisms, which

are then used to constrain the surface computation. By combining the optimal

surfaces from the individual prisms, we receive a piecewise globally optimized

horizon. Extracting the horizon in a piecewise manner allows for an interactive

algorithm which gives the user full control over adjusting the surface by setting

an arbitrary number of constraints, forcing the surface to pass through specified

locations, while the global optimization can help fixing mistakes with very little

interaction by placing a few constraints.

Algorithm

Our approach for computing horizon surfaces using global energy minimization is

based on previous work of Grady [29, 30]. In his work, Grady formulates the min-

imization problem for boundary constrained 3D minimum cost surface computation

and shows that minimal-cost circulation network flow (MCNF) is an optimized

solution for the dual of this particular problem. By circulating the maximum pos-
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sible amount of flow in the dual graph through any initial surface z0 fulfilling the

boundary constraints, eventually a set of edges will be saturated. This forms a

cut, which corresponds to the minimal cost surface in the primal. The process is

similar to the maximum flow, minimum cut method used for graph cuts, with the

type of constraints being the main difference. Graph cuts define fore- and back-

ground elements in the image as constraints, which then form the source and sink

nodes in the graph, whereas for MCNF, with no source or sink nodes present, the

constraints are added as the boundary of the initial surface z0. Hence the MCNF

approach naturally matches the third requirement from Section 3.4.1.

Our algorithm for computing minimal horizon surfaces consists of the follow-

ing main steps:

1. A closed contour bounding the desired surface within a prism has to be com-

puted. This is done in a flattened representation of the prism’s sides (see

Figure 3.7).

2. Next, the volume contained in the prism has to be represented as a weighted,

directed graph.

3. The initial surface z0 fitting the boundary acquired in the first step needs to

be inscribed in the graph.

4. The MCNF through z0 is computed.

5. The minimal-cost surface is constructed from the set of saturated edges of the

circulation, bounded by the initial contour.

6. If the surface is not satisfactory, it can be forced through desired points by

placing additional constraints. These constraints are then added as addi-

tional (inner) boundary patches in step 3. Steps 4 and 5 need to be reapplied.



62

Below, the steps of our algorithm are explained in more detail.

2D Contour Creation

The initial closed contour for each prism is computed as a minimal-cost path on the

prism sides. For any prism, the three sides are re-sampled from the volume using

texture mapping with tri-linear interpolation, and stitched together into a single

image. This image, superimposed with selected well log data from the prism cor-

ners, is shown in the main interpretation view and also used to construct the graph

used for the minimum cost path computation. Figure 3.10 shows the mapping of

an image to primal and dual graph elements. In contrast to standard approaches

in image segmentation [25, 67], where the minimal-cost path/surface computation

is done on the dual graph, resulting in a boundary in between image elements,

the seismic horizons we want to extract are represented in the data by bands of

extremal values. Thus, for seismic interpretation we do not compute the minimal-

cost path in between the voxel grid but directly on the grid. The underlying graph

Pixel Primal

node

node

edge
edge

facet

facet

Dual 2D

node

edge

facet

Dual 3D 2D Lattice

cube

cube

3D only:

Figure 3.10: Correspondence between image/volume elements and items in the primal
and dual graph. In the primal an n-dimensional pixel always maps to a node,
whereas in the dual the mapping changes depending on the dimension.
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then has to be the primal graph, instead of the dual graph. The resulting minimal

cost path will be a set of edges connecting pixels in the image instead of dividing

pixels.

Despite working on the primal instead of the dual graph, our approach is very

similar to the well known live-wire workflow [66, 68]. We have implemented the

minimal cost path computation in CUDA [69] on the GPU using a parallel variant

of Dijkstra’s algorithm [19] called delta stepping [63, 64]. The algorithm is applied

on the primal graph constructed, as a 4-connected lattice according to Figure 3.10,

from the stitched image of the prism sides. Edge weights are defined using the

cost function defined in Section 3.4.5. The minimal path has to be bounded by at

least two nodes, otherwise it will not contain any edges. To be able to compute

the minimal cost path using just a single seed point, the cyclic nature of the prism

sides has to be taken into account when creating the graph. Therefore all nodes in

the rightmost column are connected to their counterparts in the leftmost column

of the lattice. The path is forced around the prism by removing all arcs pointing

to nodes in the same columns as the seed point. That way, the single seed point

simultaneously functions as start- and endpoint of the path and it is ensured that

the path completely encircles the prism.

Dijkstra’s algorithm cannot handle constraints directly. However, constraints

can be added simply by dividing the problem. Instead of trying to compute the

complete path at once, the path can be coerced through any node (the constraint)

in the graph by computing the minimal cost path in segments. Every constraint

will then bound two connected segments, one as a start- and one as a target-node.
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3D Graph Initialization and MCNF

MCNF describes the problem of putting as much flow as possible through the

edges of a network at minimal cost, without adding or draining flow with dedi-

cated source or sink nodes. Therefore, a capacity and a cost is assigned to every

edge. As the graph does not contain a source or a sink, the incoming and outgoing

flow at every node must be equal, thus flow can only circulate in the graph. The

cost is always prioritized over the capacity of edges. If a cycle adds cost to the total

flow network, it will not be used, regardless of its capacity. The capacity of a cycle

is defined by the lowest capacity of the edges it consists of and the total flow in the

graph is defined by the accumulated flow of all cycles.

To compute the maximum flow in a prism, the dual graph is created by using

all voxels contained in the prism, according to the volume-graph scheme shown

in Figure 3.10. The graph is constructed in two steps: first, the basic graph struc-

ture of the dual is created (Figure 3.11 a ), and costs and capacities are assigned to

cost & capacity
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z0 surface
initialization

cost 1 for all edges

capacity denoted by
edge thickness
∞ on sides

initial surface
in primal graph
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Figure 3.11: The computation pipeline for our global optimization based horizon extrac-
tion approach. The pipeline consosts of five major steps. The graph structure
is defined as shown in a , costs and capacities for the edges are defined in b .
The initial surface is created as shown in c , d shows the result of the MCNF
computation and finally e the resulting optimal surface.
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each edge (Figure 3.11 b ). In this step, a cost of 1 is used for all edges (not indi-

cated in the figure). The capacities of the dual edges correspond to the costs of the

primal facets and are computed using Equation 3.19 in Section 3.4.5. The edges

contained in the outer facets in the graph, have to be treated separately. These

edges do not have all four adjacent voxels and thus the cost cannot be computed

using the cost function. We initialize these edges with infinite capacity. Edge ca-

pacities are indicated in Figure 3.11 b by the thickness of the edge. At this point,

there will be no flow in the graph, because all edges have positive cost. In the

second step, the initial surface z0 is added to the graph. The initial surface is a set

of facets in the primal, bounded by the closed contour obtained from the prism

sides. In Figure 3.11 c , the boundary is indicated by the two purple primal nodes,

the initial surface by the path between these nodes. To induce flow through the

initial surface, negative costs are assigned to the dual edges corresponding to the

primal facets of z0. To allow all possible paths, the cost is the negative of the sum

of all positive costs in the graph, such that every path through z0 is negative and

thus reducing total cost for the circulation. Additionally, we allow flow through

the surface only in one direction by cutting all edges in the opposite direction. This

guarantees that no cycles going back and forth through the surface are generated.

Here it becomes obvious why we assign infinite capacity to the outer edges in the

first step. All allowed cycles will go through the initial surface and the inner edges

in one direction, and come back on the (much fewer) edges on the faces of the

prism. If the capacity of these edges were limited, the algorithm would most likely

terminate, delivering a set of saturated edges on the outside of the prism, which

would not be helpful for finding the minimal-cost surface.

For most image segmentation approaches, the initial 2D trace will be performed

on one slice in the volume, resulting in a planar boundary. In that case, the part
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of the slice bounded by the obtained 2D trace is the simplest match for the initial

surface z0. The 2D trace in our approach, does not result in a single planar bound-

ary, however, a very simple initial surface can be constructed dividing the surface

into four planar parts. First we cut the prism above the highest point in the trace

with an orthogonal slice, resulting in a triangle shaped boundary in that slice. This

triangle functions as the cover of our surface. The other three parts are on each side

of the prism, bounded by the initial trace on the bottom, the cover slice on the top

and the prism edges on the sides. Figure 3.11 g shows a sketch of an initial surface

fitting a 2D horizon path on the sides of a prism, the cover is depicted in light, the

sides in dark cyan, the 2D trace on the prisms sides by the purple curve.

For the actual MCNF computation, we use the LEMON C++ graph library [1],

which can compute the flow for all edges in the graph. This is used to identify the

saturated edges in the graph.

3.4.4 Extracting the Surface from the Saturated Graph

The set of saturated edges does not translate directly to the desired minimal cost

surface. In real world datasets, usually a certain amount of edges not contribut-

ing to the minimum cost surface are saturated. Figure 3.11 d shows the cases of

saturated dual edges which have to be removed. Dual edges/primal facets not

connected to the initial boundary could simply be avoided by growing the surface

from the initial boundary. However, dead end paths/surface patches, connected

to the surface would not be removed by growing.

Instead, we prune facets by checking that all four of the facet’s edges are either

shared with another facet candidate, or are part of the initial boundary. By iterating

over all facets and discarding facets which do not fit these criteria, the set of surface
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candidates is gradually reduced. Once a pass over all facet candidates finishes

without finding any more facets that need to be discarded, the remaining facets

form the minimal-cost surface and the algorithm returns (Figure 3.11 e / h ). If two

alternate surfaces bounded by the initial contour exist (top left part of the path in

Figure 3.11 d ), both must be of the same cost and thus are equivalent solutions. As

the user can always force one of these we just use the first complete closed surface

found by the algorithm.

3.4.5 Cost Function

For the global optimization to produce meaningful results, a proper cost func-

tion must be designed to assign low costs to pixels/voxels with a high probability

of belonging to a seismic horizon and high costs otherwise. Horizons are marked

by strong reflections in the seismic data. These can be identified by the scalar value

only, or more precisely by looking at the local neighborhood. The seismic cube is

constructed by a set of one dimensional traces or waves. Horizons are indicated in

this data by local extrema of the waveform. In the following, we construct a cost

function which is based on the scalar values as well as the local waveform. We

use the same cost function for the contour extraction in 2D by assigning the cost

to each edge, derived from the pixels at the two ends of the edge, as well as for

the surface extraction in 3D by assigning the cost to the capacity of the dual edges.

The dual edges correspond to facets in the primal graph, connecting four voxels.

The cost is thus derived from the gray values as well as the local waveform of all

four corners of the facets.

We define edge and facet weights using a cost function containing two major

components. The first component gsnap defines the snappiness of the surface to ridge

and valley lines/surfaces in the image/volume. The snappiness term defines the
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likeliness of each of the corresponding pixels/voxels belonging to a horizon sur-

face based on the scalar value, as well as the local waveform at that pixel/voxel.

The second component gsmooth of the cost function is important for the smoothness

of the traced line/surface. The smoothness term is supposed to avoid large jumps

of the scalar value within a single edge or facet. Therefore it is defined by the sim-

ilarity of the voxels belonging to the edge/facet in question. The higher the dif-

ference of voxel grey values, the higher the cost. Both components are combined

using a linear combination. If needed, the relative weight of the two cost function

components can be adjusted to reach a smoother result or one that is closer to the

strongest reflection.

For n-dimensional images the dimensionality of the boundary items in the pri-

mal graph are always of dimension n � 1. In 2D the boundary is defined by a

start and end node, in 3D by a set of edges forming a closed contour. In the dual,

however, the bounding item is always an edge. Thus, we define the cost using

the scalar values f(x, y, z) of the set of pixels/voxels (x, y, z) in the neighborhood

N (e) of an edge e in the dual graph. The neighborhood is defined by the pixels or

voxels, which share the edge e as an outer edge (compare Figure 3.12). For the two

dimensional case N (e) contains two pixels, in 3D four voxels.

Pixel

2D 3D

Dual
Edge

Figure 3.12: The dual edges in 2D and 3D. In 2D the two adjacent pixels are used to com-
pute the cost for the edge, in 3D the four neighboring voxels.
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As described above, we define the snappiness component by a combination

of the scalar value as well as the local waveform. We define a scalar value-based

term ggray as well as a waveform-based term gwave. The cost ggray(e) for an edge e is

simply defined by the difference of the scalar values of the neighboring voxels and

a predefined target value t:

ggray(e) =
X

(x,y,z)2N (e)

|t� f(x, y, z)| , (3.8)

where t = 1 for tracing maxima and t = �1 for tracing minima, assuming a scalar

value range of [�1..1]. Figure 3.13 a shows a plot of the scalar value and the corre-

sponding normalized cost for an exemplary seismic trace.

The cost gwave(e) is supposed to map local extrema of the seismic trace to low

costs. The obvious approach to such a term would be to compute the derivative,

e.g., via central differences, to find extrema, and then use the result of the central

difference computation as the cost. In addition, one could modulate the result to

enhance the extrema; for example, using a smooth bump function such as:

�(v) =

8
>><

>>:

exp

� 1
1�v

2 for |v| < 1

0 else,
(3.9)

where v is set to the derivative f
z

(x, y, z) = @f(x, y, z)/@z scaled with a user-

defined scale factor ↵ to define the threshold for mapping the result to zero. Fig-

ure 3.13 b shows the plot of the cost defined as:

g
�

(e) =
X

(x,y,z)2N (e)

⇣
1� �

�
↵ · f

z

(x, y, z)
�⌘

. (3.10)
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Figure 3.13: Comparison of the cost obtained via the components of the snappiness term.
a shows the gray value based component ggray (Equation 3.8). The derivative-
based term is shown in b (Equation 3.10), and the final non-linear term for
gwave in c (Equation 3.11). d - f show the final snappiness term (linear com-
bination of a and c , Equation 3.15) with p0 = 0.25, p0 = 0.5 and p0 = 0.75,
respectively.
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For the plot, minima are canceled out using the second derivative. This is already

a good result. The sharp features are desired and some local maxima, that are

not assigned a low cost using ggray are tagged correctly (compare for example the

small local maximum marked by the green box). However, some problems become

obvious in the plot. While minima can be canceled out effectively using the second

derivative, this is not true for saddles, resulting in undesired low costs at the two

areas highlighted by the blue boxes. In addition, the strong maximum marked

with the magenta box was assigned a relatively high cost due to the fact that it has

two samples on its peak which results in an asymmetry of the samples around the

peak.

These shortcomings can be removed by the use of the following non-linear

waveform-based term to replace g
�

:

gwave(e) =
X

(x,y,z)2N (e)

 
1�

mX

k=1

'
s

(x, y, z, k)

!
, (3.11)

where m is a predefined 1D neighborhood size, and

'
s

(x, y, z, k) =

8
>>>>>><

>>>>>>:

'(x, y, z, k) if (k � s) or

(k < s and '(x, y, z, k + 1) 6= 0)

0 else,

(3.12)

with

'(x, y, z, k) =

8
>>>>>><

>>>>>>:

1
n

if f(x, y, z � k) < f(x, y, z) and

f(x, y, z + k) < f(x, y, z)

0 else,

(3.13)
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for maxima, or

'(x, y, z, k) =

8
>>>>>><

>>>>>>:

1
n

if f(x, y, z � k) > f(x, y, z) and

f(x, y, z + k) > f(x, y, z)

0 else,

(3.14)

for minima, respectively. This cost function is a simple step function which ba-

sically returns a smaller value the closer the current sample point is to a local

extremum in the predefined neighborhood, and 1 if there is no extremum in the

neighborhood. The additional constraint in '
s

provides an implicit smoothing,

using s to define the minimal feature size.

The resulting cost-plot is shown in Figure 3.13 c . As can be seen, the problems

for the derivative-based term are canceled out in this plot, while the sharp features

for the maxima are retained as desired.

With ggray and gwave in place, gsnap is now simply computed by a linear blending

of both normalized terms, with a user adjustable parameter p0 between 0 and 1:

gsnap = p0 · ggray + (1� p0) · gwave (3.15)

Figures 3.13 d - f show results for p0 equaling 0.25, 0.5 and 0.75 respectively. While

the sharp features of gwave are very desirable when the data is clear, the fact that

the cost is always 1.0 in between the detected features can lead to unpredictable

results in unclear regions. Adding ggray to the cost function provides additional

guidance in these areas.
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The smoothness component is much simpler. It simply describes the similarity

of all pixels/voxels adjacent to the current edge, similar to the standard deviation,

by computing the average

avg(e) =
1

|N (e)|
X

(x,y,z)2N (e)

f(x, y, z) (3.16)

with |N (e)| the number of pixels/voxels adjacent to the edge (two in 2D, four in

3D) and building the sum of the differences.

gsmooth(e) =
X

(x,y,z)2N (e)

|f(x, y, z)� avg(e)| . (3.17)

Just like the snappiness term before, gsmooth and gsnap are normalized and combined

according to a user adjustable parameter p1 between 0 and 1:

gcombined = p1 · gsnap + (1� p1) · gsmooth. (3.18)

Finally we introduce a third parameter p2, to influence the effect of the length of

the path or the area of the surface on the total cost. The path length (or surface area)

is encoded implicitly in the global optimization. Since the cost for the complete

path is the sum of all its segments, a longer path with the same average cost for

each segment is always more costly than the shorter path. p2 is designed to let the

user modify the implicit cost of the path length. Since we compute heightfields the

number of horizontal segments is constant, while vertical segments are variable

and thus define the length of the path. By adjusting the weight of vertical segments



74

we can effectively adjust the cost of longer paths and thus influence the flexibility.

The final cost function is thus

cost(e) =

8
>><

>>:

gcombined(e) when e is horizontal

p2 · gcombined(e) when e is vertical,
(3.19)

or in its complete form

cost(e) = p1 ·
�
p0 · ggray + (1� p0) · gwave

�
+ (1� p1) · gsmooth (3.20)

for the horizontal case and

cost(e) = p2 ·
⇣
p1 ·

�
p0 · ggray + (1� p0) · gwave

�
+ (1� p1) · gsmooth

⌘
(3.21)

for the vertical case.

3.5 Results

Figure 3.14 shows some exemplary surfaces extracted with the presented sys-

tem, as well as comparisons to reference surfaces extracted manually by our do-

main expert partners. While the extracted surfaces seem to be very promising re-

sults we conducted an expert evaluation as described below to find out how well

our system performs under real world conditions.

3.5.1 Evaluation

We have evaluated our system in a real-world scenario with our domain expert

partners, in order to compare our workflow with the industry standard as de-

scribed below.
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Figure 3.14: Three horizon patches computed using our algorithm. a , b and c show the
distance in pixels from a manual trace of the same horizon. d , e and f show
detailed slice view cutouts of the surface indicated by the green boxes in a ,
b and c . Manual traces are in cyan, traces computed with our method in
magenta. d shows a region of the first horizon, with > 2 pixel difference,
where the manual trace is clearly better than the automatic trace, manual and
automatic traces in e are very similar. f shows a part of the horizon with > 4
pixel difference. Here, the automatic trace is closer to the actual ridgeline.



76

Figure 3.15: A screenshot of our application illustrating our novel joint time/depth do-
main visualization for a seismic reflection dataset with two interactively in-
terpreted seismic horizons. The two 3D views on the left show volume ren-
derings of the seismic in time and depth domain, respectively, cut open at the
horizons. The two 2D views on the top right show our interpretation views
in time and depth as well. The 2D slice view on the bottom right shows the
reflection data from the top in combination with well positions.

Setup

For comparison, we asked our partners to provide us with a typical application

scenario. To avoid an interpretation session over several days with our expert

partner we asked for a rather small dataset. We were provided with a moderately-

sized dataset consisting of 325 inlines and 275 crosslines at 151 samples per trace.

The dataset covers an area of roughly 7.5 ⇥ 6.5km in western Hungary. Time be-

tween samples was 4ms. In addition to the seismic cube, we were provided with a

total of 39 well positions, with well tops for two horizons each, of which five were

available in depth and time, and the remaining 34 in depth only. A large part of the

dataset was covered by the resulting triangulation. We added 10 more positions so

that it is possible to create the interpretation up to the volume’s boundaries with-

out falling back to a slice-based approach. A screenshot of our application with the

data described above loaded is shown in Figure 3.15.
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The task for the interpreter was then to interpret the horizon defining the top

boundary of a clay layer throughout the volume. Well tops indicating the top and

bottom boundaries of this layer were provided. Velocity modeling is usually done

using well logs. Using our joint time/depth workflow, the interpreter could simply

adjust the velocity values such that the well tops available in time and depth were

matching. For comparison, we gave the expert one hour with our workflow, and

one hour with the standard workflow using the Petrel [100] software framework,

and asked to create an interpretation, as complete as possible, without sacrificing

exactness. A comparison of the resulting interpretations is shown in Figures 3.16

and 3.16. Table 3.4 shows timing comparisons of the different steps. For quality

comparison, we were provided with the actual interpretation of the same horizon

used for production, which was created manually over several working days.

Before starting the evaluation, we gave our partners an in-depth introduction to

our framework and provided guidance during a test drive with a different dataset

for several hours. Even though we also supervised the actual evaluation run, the

expert was able to work on his own and did not ask for any further assistance.

We conducted a second evaluation session to get an indication of how well our

approach scales to larger datasets. For this test, we had two students with basic

knowledge in seismic interpretation interpret a horizon in the large dataset intro-

duced above. The dataset measures 1422 ⇥ 667 ⇥ 1024 voxels and covers an area

of roughly 17.8 ⇥ 8.3km. The sampling distance in depth was 2ms. We were pro-

vided with 15 well tops in spatial depth and six in time, covering the center of a

salt dome. The outer region was covered by triangulating arbitrary positions de-

fined by the students. The task was to interpret a horizon above the salt dome. The

resulting area of interest was a rectangle above the salt dome, measuring roughly

800 ⇥ 600 pixels. For comparison, we were provided with a production surface
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of the same area which was created in roughly two working days by our domain

experts.

Joint Time/Depth Domain Workflow

After the test drive, the domain expert decided to approach the interpretation task

in the following way: First, he adjusted the velocity model to match the well tops

available in the time as well as depth domain. Then he started with seeding a

horizon at one prism and adjusted the 2D curve on the prism side. Using the

live depth conversion, he was able to directly match the interpretation to the well

tops regardless of the domain they were available in. In the background, our sys-

tem would use the intermediate interpretation to recursively create interpretations

on the neighboring prisms as well as compute the optimal surface on the inside.

After being satisfied with the current prism, the expert would then proceed to a

neighboring prism and check the precomputed curve and adjust it if necessary.

The expert was able to go over all prisms in well under one hour. After finish-

ing the complete horizon, he quickly checked the result by skimming inlines and

crosslines and looking at the extracted horizon overlaid with the amplitude. He

then proceeded to adjust a few imprecisions resulting from the 3D optimization.

After the last change, the expert had to wait only for a few seconds for the final

result, as the optimization runs continuously in the background.

Conventional Workflow

For the comparison run, the expert interpreted the same horizon using Petrel,

which is the industry standard software for geological modeling. The software of-

fers automated tracing on 2D slices, as well as in 3D. From what we could gather,

from testing these automated approaches are both local. Starting from a seed in
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2D, or an interpreted slice in 3D, the horizon is propagated into as many neighbor-

ing pixels/slices as possible. When the data is ambiguous, the auto-tracer stops. It

is also not possible to set constraints besides the initial seed. If the interpretation is

wrong, it needs to be fixed manually and 3D traces between two interpreted slices

do not necessarily connect these slices. When doing the interpretation, the expert

started out with a single slice and fully tagged the horizon on this slice using a

combination of piecewise auto-tracing and manual intervention for corrections, as

well as to connect the automatically traced parts at areas where the automatic ap-

proach stopped. After that he used the 3D auto-tracer for a first result. Besides

the described disadvantages of using a local approach, a big advantage compared

to our global approach is that the auto-tracer computes a result nearly instantly.

However, according to our expert the resulting surfaces are far from complete and

need thorough inspection. As a result they are used mostly for guidance during

a manual interpretation rather than for directly producing final results. After this

first slice, the expert gradually refined the interpretation by manually adjusting ev-

ery tenth slice followed by another 3D trace. After 60 minutes, the expert finished

18 slices in steps of ten slices, covering roughly 60% of the dataset.

Comparison

Figures 3.16 and 3.17 show comparisons of the created surfaces. For the manually

interpreted part, it can be seen that the results of both approaches are quite sim-

ilar. The lower third shows the part that was not reached within the time frame.

There, large holes and also a phase jump can be seen, which clearly shows that

the automatic tracing alone is not sufficient to reach acceptable results with the

conventional workflow. After the 60 minutes, we also measured the time for com-

puting the velocity model and the deformed seismic cube (see Table 3.4).
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a

b

Figure 3.16: Comparison of the horizons extracted during the expert evaluation. a shows
a screen capture of Petrel with the extracted surface using the conventional
workflow. b shows the result using our workflow. The relative height is
encoded in the surface coloring, but with slightly different colormaps for a

and b . We imported the result from Petrel into our application to compare it
to our result (see Figure 3.17).
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Figure 3.17: The results shown in Figure 3.16 compared to a ground truth interpretation.
a shows the result from Petrel, with gaps in the surface marked in yellow, b

shows our result.
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Task Petrel SeiVis

Initial Interpretation > 60min⇤ ⇡ 45min

Velocity Computation 21s on the fly

Depth Conversion 29s on the fly

Refine n/a+ < 10min

#Slices/Prisms 18

⇤
63

Avg. Time per Slice/Prism 3:20min 43s

⇤With the Petrel software the expert was able to finish 18 slices (about 60%
of the dataset) before the time limit of 60 minutes.
+Not reached before the time limit of 60 minutes.

Table 3.4: Timings for the interpretation process. Initial Interpretation corresponds to a
first complete extraction of the horizon. Velocity- and DC Computation corre-
spond to the time needed to compute the velocity cube and the depth conver-
sion, respectively. Refine describes the time used by the expert to refine the auto-
matic interpretation between the manually interpreted slices and inside prisms
after the first complete run.

After the interpretation, we conducted a brief interview with the expert. The

expert was impressed by the live depth conversion in combination with the prism-

based workflow. Having three well tops on each 2D slice and being able to match

the interpretation directly to the tops in the depth domain was really helpful in

finding the correct surfaces. A big advantage of the global optimization used for

the automatic tracing is the possibility to set constraints and force the auto-tracer

through defined points. Also, it will always result in a closed surface even when

the data is unclear. A point that we did not expect was made by the expert that

the prism-based approach was also very motivating in contrast to the standard

approach of going from slice to slice. The data on nearby slices is often very sim-

ilar, making slice-based interpretation a very tedious process so that subtle, but

important, changes are sometimes missed by the interpreter.
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Student Evaluation

Since the second evaluation session was carried out by students rather than experts

we do not want to make any claims regarding the quality of the extracted surfaces

besides the fact that all important structures were found by the students and are

visible in the resulting surface (compare Figure 3.18).

After a brief introduction, both students were able to work on their own. The

two students approached the dataset slightly differently. Student 1 added 25 addi-

tional pseudo well positions to cover the area of interest outside the provided well

tops. The result were rather large prisms used for the surface extraction. Student 2

added roughly 100 additional points resulting in much smaller prisms. As a result,

Student 1 spent only about two and a half hours on the extraction of the horizon

on the prism sides, but had to wait about an hour for the computation of the 3D

Saltdome

Channels

Figure 3.18: Screenshot of the 1422⇥ 667⇥ 1024 voxel dataset. The horizon surface, which
was interpreted during our evaluation, clearly shows the important features,
a large saltdome in the center and adjacent two channels, of the dataset.
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surface. Student 2 on the other hand spent about four hours tuning the horizon on

the large amount of prisms, but since the computation on the smaller prisms ran

much faster, Student 2 barely had to wait for the computation.

Conclusion

We can say that the expert was able to work with our system on his own after

a short introduction. He was able to extract surfaces close to manual interpreta-

tions in a very short time. While we used a small dataset with the domain ex-

pert, we show that the presented approach scales well for larger datasets with the

additional student evaluation. Being able to match an interpretation in the time

domain to ground truth data in the depth domain has two advantages. First it

speeds up the interpretation process significantly and secondly it allows for very

exact results without tedious back and forth between the different domains. By

using asynchronous computations in the background, it is also possible to min-

imize waiting times for the interpretation, even though the global optimization

technique is much more computationally demanding than local approaches. Fol-

lowing the evaluation, our partners installed our application on a testing system

where it is now used for experimental projects.

3.6 Conclusion

In this chapter we have presented an interactive workflow for rapid interpretation

of seismic volumes using a combination of 2D and 3D cost minimization tech-

niques. The main contributions are a novel joint time/depth domain workflow for

creating subsurface models, merging time and spatial depth domains using on-the-

fly volume deformation, and the integration of these techniques into an integrated

workflow for seismic interpretation and depth conversion. The workflow guides



85

the user through the interpretation process using a combination of multiple linked

2D and 3D views. The prism-based workflow, instead of working along inline and

crossline directions only, was received very well by our collaborators. It bounds

the size of the working volume, and allows incrementing the piecewise optimal

horizon surface bit by bit, by subsequently appending additional optimal surface

patches that were created by processing neighboring prisms. For the actual hori-

zon extraction, we presented a global optimization technique that integrates very

well into our workflow. Decoupling the interaction in 2D and the eventual compu-

tation in 3D was also perceived very well by the experts, as it simplifies user inter-

action and time expenditure considerably. Additionally, our approach is scalable

to large seismic volumes, because the time needed for computing minimal-cost

paths and surfaces depends on the size of the selected prism instead of the volume

size. We conducted an expert evaluation that clearly shows the advantages of this

new workflow.
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Chapter 4

Visual Parameter Space Exploration
for Horizon Extraction

This chapter is based on the short paper Extraction and Visual Analysis of Seismic

Horizon Ensembles [36], and in parts on the paper Visual Analysis of Uncertainties in

Ocean Forecasts for Planning and Operation of Off-Shore Structures [39].

In the previous chapter, we introduced a novel workflow for extracting seismic

horizons. Since seismic data is very noisy and often exhibits ambiguous features,

the workflow is specifically designed to allow the user to interact with the results

of the automatic computations at any time, for example by placing constraints or

changing the parameters for the cost function, triggering immediate updates of the

computed surface patches. One weakness of this approach is arguably the compli-

cated cost function. While it is very powerful, and allows the creation of very

good segmentations with the right parameter settings, tweaking three parameters

to find a good fit can overburden the user. For this reason, we propose to sample

the parameter space of the cost function automatically, and create an ensemble of

surfaces for each horizon.

Section 4.1 gives an overview of the ensemble computation. In Section 4.2 we

present the statistical analysis which builds the foundation for the visualization

of the ensemble data (Section 4.3). The computation and rendering pipeline is

explained in Section 4.4 in detail. Results can be found in Section 4.5.
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4.1 Ensemble Computation

To start the ensemble computation, only a single seed point is required. How-

ever, an arbitrary number of points can be defined as additional constraints to

force the resulting surfaces through user-specified positions. The same seed point

and set of constraints are used to compute all surfaces in the ensemble. Once the

seed point and constraints are defined, the user can define a range and sampling

rate for each parameter to compute the ensemble. For each parameter setting, the

seed point and constraints, as well as the parameterized cost function, are given

to the surface extraction algorithm. The surface extraction is then carried out for

each parameter set as described in the previous chapter, however without any user

interaction. Since the surfaces for each parameter setting are computed indepen-

dently from all others, the ensemble computation can easily be parallelized for

faster computation of the ensemble data.

The result of each surface extraction step is a single horizon surface represented

as a height field or function f : N ⇥ N 7! R, mapping each (x, y)-position on

a regular grid to a single depth value. Even though we focus on height fields

in this work, our approach would also be applicable to generic surfaces, as long

as correspondences between the ensemble members can be established. Here we

assume that the (x, y)-position defines this correspondence.

4.2 Statistical Analysis

To analyze the results of the ensemble computation, we compute a range of

basic statistical properties. The basis for these computations is provided by a 3D

histogram, h : N⇥N⇥N 7! N, mapping each volume position (x, y, z) to the number

of surfaces passing through that position. With the (x, y)-position as the correspon-
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dence between ensemble members, as described above, this 3D histogram resem-

bles a set of 1D histograms mapping each depth value at any given (x, y)-position

to the number of surfaces passing through that depth. As such, after normaliza-

tion this histogram can also be interpreted as a probability distribution. Due to the

fact that all surfaces in an ensemble share the same domain, we know that the sum

of all surfaces passing through all depth values at any (x, y)-position equals the

number of ensemble runs. We can therefore directly derive a probability for each

voxel being part of a horizon surface, by dividing the number of surfaces passing

through that voxel by the number of ensemble runs.

In addition, we estimate the probability density distribution for each (x, y)-

position by computing the kernel density estimate. Based on this data, we compute

a maximum likelihood surface. This surface is an actual surface from the ensemble,

which is chosen according to an overall likelihood value assigned to each of the

surfaces. This likelihood value is computed by taking the height- or function-value

f(x, y) at each (x, y)-position of the surface f , and summing over all the individual

probabilities on the surface, which result from a look-up in the probability density

function (pdf) at each position:

likelihood(f) =
X

x

X

y

pdf(x, y, f(x, y)). (4.1)

The ensemble member with the highest likelihood value is then defined as the

maximum likelihood surface. This surface corresponds to a global measure, in

contrast to a surface such as the mean surface, where each point is only locally the

point of highest probability.

By interpreting the 3D histogram as a set of 1D histograms, we can also com-

pute a complete set of statistical properties per (x, y)-position, such as mean, stan-
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dard deviation, or kurtosis. These properties can be divided into two sets. Mean

and median depth value, as well as the maximum mode of the pdf result in a

height value for each (x, y)-coordinate. By combining these additional surfaces

can be synthesized. Other properties, such as variance or skewness result in scalar

values which are not part of the original domain. These can be used to augment

the surfaces, for example by texturing the surface with the color-mapped scalar

field or by extracting iso contours.

4.3 Ensemble Visualization

The surface distributions resulting from the ensemble computation have signif-

icantly different properties than distributions common for ensemble data resulting

from simulations or, for example, the probabilistic iso-surfaces presented by Pfaf-

felmoser et al. [80, 81] or Pöthkow et al. [87, 88]. Whereas the distributions of the

Figure 4.1: Cut sections of all surfaces of one ensemble rendered into a single slice view
with reduced opacity. It is clearly visible that on the left side there is close
to no variation. On the right side, the surfaces spread and form several clus-
ters of very similar surfaces. This behavior is very different from a Gaussian
distribution, which is often assumed by probabilistic approaches. Here, how-
ever, a mean surface, which would be the perfect representative for a Gaussian
distribution, would lie between the clusters and would not correspond to any
desired horizon surface.
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latter can usually be modeled as a Gaussian distribution, each parameter setting in

our approach can produce a completely different surface. In fact, typically there is

very little variation as long as the surfaces tag the same horizon. In uncertain areas,

however, it often happens that different parameter settings lead to surfaces tagging

different horizons, which results in disconnected clusters of very similar surfaces

in each cluster. This behavior is clearly visible in the example shown in Figure 4.1.

Here cut sections of all surfaces from one ensemble are blended on top of a seismic

slice. The clustering is clearly visible. Thus, the visualization techniques presented

by Pfaffelmoser et al. and Pöthkow et al. [80, 87] are not applicable for our ensem-

bles. That is, the mean surface used in these approaches as a representative surface

would not correspond to a horizon surface, since it would likely result in a surface

in between two possible segmentations, but tag neither one correctly.

Instead of synthesizing a surface, we have decided to extract the maximum

likelihood surface for use as the representative of the ensemble, as described in

Section 4.2. A comparison of the maximum likelihood surface and a mean surface

can be seen in Figure 4.2. Figure 4.2a shows an example of a maximum likelihood

surface. Even though there is a somewhat large variance in the ensemble, the max-

imum likelihood surface fits the underlying data quite well. In contrast, the mean

surface shown in Figure 4.2b is basically a mixture of two large clusters of surfaces

and does not fit either one of the tagged horizons for large parts of the surface.

Even though the median surface is typically very similar to the maximum likeli-

hood surface, we prefer the maximum likelihood surface for another reason. As

this surface is an actual result of the optimization, we can use it as a basis to further

edit the surface, e.g. by adding constraints, without recomputing large parts of the

surface.
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(a) Maximum likelihood surface (b) Mean surface

seed area,
clear ridge

uncertain area,
optimization tries
[V�ÄUK�JSVZL�YPKNLZ

some traces stay on
wrong upper horizon,

mean would be in between
(c) Cut section of the complete ensemble

Figure 4.2: Comparison of the maximum likelihood surface (a) with synthetic mean sur-
face (b). The color coding indicates the difference between the amplitude at
the volume position passed by the surface and the targeted amplitude. Black
means a small difference (better), red a bigger difference (worse). It is clearly
visible why the mean surface is not suitable in this case. Whereas the maximum
likelihood surface is a good fit for the ridge line for large parts of the surface,
the front part of the mean surface shows large difference values. (c) shows cut
sections of all surfaces of one ensemble rendered into a single slice view with
reduced opacity. The multimodal distribution causing the bad results for the
mean surface shown in (b) can be seen clearly.
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However, simply displaying the maximum likelihood surface itself without

any additional information does not provide much information about the ensem-

ble. Therefore, we also depict the results of the statistical analysis described in Sec-

tion 4.2. In the standard setting, we compute what we call virtual surfaces from the

mean, median, and maximum mode from each (x, y)-position. Virtual here means

that we do not render these as surfaces, but only use them in order to compute

the distance to the maximum likelihood surface for each (x, y)-position. These dis-

tances are then color-coded and used to texture the maximum likelihood surface.

If desired by the user, however, these virtual surfaces can also be rendered directly.

We allow pseudo-coloring the surface with these results, using one of several

pre-defined, or user-defined color maps. These properties immediately provide a

good idea about how the surface extraction behaves in different areas, i.e. very

stable areas are clearly visible throughout all properties, indicated by small values

in range, standard deviation, variance, close to zero values in the skewness, or very

large values in the kurtosis. In addition, it is possible to automatically animate all

surfaces in a pre-defined range. Animating the ensemble gives a nice impression

of the parameters that result in similar surfaces, as well as of which areas in the

dataset react more or less to changes in the parametrization of the cost function.

Similar surfaces or surface parts in the ensemble will result in little variation in

the animation, whereas areas of large variance will show more movement and

thus automatically draw the user’s attention. An example for this can be seen in

Figure 4.3.

All the described techniques have in common that they can be used to visualize

the complete ensemble or any user-defined subset. Using a set of sliders, the user

can define a subrange for each parameter, and the statistical analysis is carried out

on the fly for this range. This allows an interactive exploration of the parameter
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Figure 4.3: Visualization of a horizon ensemble using the representative surface aug-
mented with the variance color-coded on the left and the histogram of a se-
lected position on the right.

space, which is helpful to define interesting ranges for each parameter. To allow

this live exploration of the parameter space, we implemented an efficient, com-

pletely GPU-based pipeline for computing the statistics as well as rendering the

results, as presented in Section 4.4.

The same pipeline also allows efficient implementation of a number of other

features. If desired, the user can choose to render any surface from the ensemble.

This requires no data transfer to or from the GPU, except for the ID of the surface

in the ensemble to render. In addition, it is possible to automatically animate all

surfaces in a predefined range. In the presented application this can be useful in

two ways; As shown by Brown [12], as well as Lundström et al. [57], animation is a

powerful tool for visualizing uncertainty. The user can choose to animate through

all members of a single time step to get an impression of the surface distribution.

The described visualization techniques can give a very good impression of the

quantitative variation in the data. Detailed information on the surface distribu-

tion can be gained by animating through or manually selecting individual surfaces

from the ensemble. However, it is hard to compare more than two surfaces this

way. We therefore provide an additional view showing the histogram and proba-
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bility distribution for a selected position. The position to investigate can be picked

directly in the 3D view. To facilitate easy comparison, we color the bin correspond-

ing to the current representative surface differently than the remaining bins. An

example for the histogram is shown in Figure 4.3 on the right.

4.4 Computation and Visualization Pipeline

To allow interactive exploration of the parameter space, all updates of the sta-

tistical analysis must be computed in real time, or at least at interactive rates. For

this reason, we employ a statistic computation and visualization pipeline that is

entirely GPU-based, as presented in the next section.

Our GPU-based analysis and visualization pipeline is illustrated in Figure 4.4.

In the remainder of this section, circled numbers refer to this figure. The pipeline

is divided into two main parts: The statistical analysis and iso surface extraction

is carried out using CUDA, while the visualization is based on OpenGL and GLSL

shaders. All data are shared between the two parts of the pipeline, so that after the

initial upload of the ensemble onto the GPU no expensive bus transfer is necessary.

1Ensemble Computation

Shared GPU data

Statistical Analysis CUDA

Visualization

OpenGL+GLSL

mean, median,
max mode surfaces

active property
(risk, variance, etc.)

parameter
setting 0

seed point
+

parameter
range

...

parameter
setting 1

parameter
setting n

OLPNO[ÄLSK

OLPNO[ÄLSK
ensemble

computation

OLPNO[ÄLSK

...
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surface
displacement

surface
texturing

volume
rendering

set of 2D
OLPNO[ÄLSKZ 3D histogram/pdf
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parameter
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JVSVY�THW
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buffer

write
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Figure 4.4: The pipeline for our framework is divided into three major blocks: The ensem-
ble computation (left), the statistical analysis part at the top, and the rendering
part shown at the bottom. The resulting surfaces of the ensemble computation
are loaded into GPU memory where they are shared between the CUDA-based
analysis and the OpenGL based visualization pipelines.
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Since usually only a small part of the ensemble is required by the visualization, a

streaming approach would be possible for datasets that are larger than GPU mem-

ory, but we currently assume that the dataset fits into GPU memory.

Ensemble Computation

The input to our system is a set of heightfields resulting from the ensemble compu-

tation 1 . Even though we focus on heightfields in this work, our approach could

also be applied to surfaces in n dimensions as long as the correspondences between

all surfaces in the dataset are known for every nD-datapoint. In our framework,

we assume the 2D spatial (x, y)-coordinate to be the correspondence between the

surfaces.

Data Representation

Before computation of statistics or visualization, the ensemble is converted into a

3D texture 2 and loaded onto the GPU. Every heightfield of the ensemble will be

represented by one slice in this texture. Additionally, space for the mean, median

and maximum mode heightfield will also be reserved in this texture. The surfaces

are indexed using the original parametrization. If there is only a single parameter,

for example the time steps in a time series, the surface ID corresponds to the texture

index. For higher-dimensional parameter spaces, as in our case the three param-

eters from the cost function (Section 3.4.5), the linear texture index is computed

from the original parameters. This allows the user to define subranges for each

parameter separately in order to examine the influence of each of the parameters

on the segmentation individually.
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Statistical Analysis

The first step in the statistical analysis is the creation of the 3D histogram 3 . Changes

in the parameter range trigger an update of the 3D histogram and subsequently of

the representative surface and property texture. Since each ensemble member pro-

vides exactly one entry to the histogram per (x, y)-position, rather than using a

thread for each member, we use one thread per (x, y)-position. Each thread then

loops over all selected surfaces and computes the complete 1D histogram for this

position. This way, write conflicts can be avoided and no critical sections or atomic

operations are needed. The kernels for the derived properties are set up in a sim-

ilar fashion. The desired statistical property is computed by one thread per (x, y)-

position. The main difference to the histogram computation is that this results in a

single scalar per thread, all of which are then assembled into a 2D texture. While

mean, median and maximum mode 4 are attached to the 3D heightfield texture

to be used as representative surfaces, the other properties 5 are copied into a 2D

texture available to the visualization pipeline for texturing the surface. Exploiting

the parallelism of the GPU and eliminating costly bus transfers between CPU and

GPU allows interactive modification of the parameter range even for ensembles

containing several hundred surfaces.

Rendering

The rendering pipeline takes advantage of the fact that all ensemble data are al-

ready stored in GPU memory, which facilitates efficient surface rendering. Instead

of creating new surface geometry every time a different surface of the ensemble

is rendered, a single generic vertex buffer of fixed size is created. This buffer cov-

ers the entire (x, y)-domain, but does not contain any height information. The
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z-value of each vertex is set later in the vertex shader. Before transforming the ver-

tex coordinates into view space, the object space (x, y)-coordinates of the vertex in

combination with the ID of the active surface are used to look up the z-value of the

current vertex in the ensemble texture. At this point, the desired surface geometry

is available. In order to be able to visualize the results of the statistical analysis, the

object space coordinates are attached to each vertex as texture coordinates (x and

y are sufficient). In the fragment shader, this information can then be used to look

up the active statistical property in the 2D texture. This texture contains the raw

information from the statistical analysis, which is then converted to the fragment

color by a look up in a 1D color map. We provide a selection of several continuous,

diverging cool-to-warm color maps, as presented by Moreland [65], but also al-

low the creation of custom color maps. These color maps minimally interfere with

shading, which is very important in this case, as shading is an important feature to

judge the shape of a surface. During testing we realized that using the continuous

version made it very hard to relate an actual value to a color in the rendering so we

decided to optionally provide a discrete version with ten steps. After the surface

geometry has been rendered, the seismic cube can be rendered on top, providing

spatial context. This is done in a second rendering pass in order to guarantee cor-

rect visibility [98].

Detailed Inspection

We enable the detailed inspection of the ensemble with the linked histogram view

as described in Section 4.3. The histogram view shows the 1D histogram of any po-

sition picked by the user directly in the main view. In fact, the histogram refreshes

automatically when the user moves the mouse cursor over the representative sur-

face. All information that is required for picking is already available in our ren-
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dering pipeline: We use the same vertex shader as described before for rendering

the surface into an off-screen buffer of the same size as the frame buffer. Instead

of using the object space coordinates to look up the scalar values in the fragment

shader, we use the coordinates directly as the vertex color. This way, we can look

up the current mouse position directly in the downloaded off-screen buffer. With

the (x, y)-part of the resulting volume position, we can then directly look up the

histogram and probability density distribution for this position.

4.5 Results

Figure 4.5 shows an example where the standard parameter setting for the cost

function produces a wrong result due to large uncertainty in the data. While the

incorrect result could be fixed by placing a constraint and recomputing the surface,

the color coding of the cost (Figure 4.5a), which could indicate an uncertain area by

large costs, gives no indication of this area. Instead of the cost, we use the standard

deviation to texture the maximum likelihood surface resulting from the ensemble

computation (Figure 4.5b). Using the standard deviation of the computed ensem-

ble immediately leads to the very prominent area in the center.

A cut section through this area is given in Figure 4.5c. The blue line corre-

sponds to the original surface and the green line to the maximum likelihood sur-

face. Once we identified this region we could find a third surface, corresponding

to the magenta line, by narrowing the parameter range and skimming through

the remaining surfaces. Even though the differences between the maximum likeli-

hood surface and this third surface are subtle (compare the overlay in Figure 4.5c),

this third surface represents the underlying data slightly better than the maximum

likelihood surface.
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(a) Original surface. (b) Maximum likelihood surface.

(c) Cut sections through the surfaces.

Figure 4.5: Surfaces extracted and visualized using our technique, described in Chapter 3
(a) and using the ensemble technique (b). While the cost (color coding in (a))
shows little variation over the surface and thus does not reveal problems in
the segmentation, the standard deviation (b) clearly highlights an area in the
center of the surface (compare the areas marked by the arrows). (c) shows
a cut section of the surfaces, the blue line corresponds to (a) the green line
to the maximum likelihood surface in (b). The magenta line corresponds to
a third surface extracted from the ensemble using the proposed exploration
framework.
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Figure 4.6 shows visualizations of different ranges for the parameter p1, with

the other two parameters fixed. The variance is depicted by color coding the max-

imum likelihood surfaces of the respective parts of the ensemble. Judging from

Figure 4.6a, which resembles the complete parameter range, it seems that there is

quite a bit of variance as there are very few dark blue areas. By splitting up the

parameter range into two sub-ranges, one from 0.9 to 1.0 (shown in Figure 4.6b),

(a) p1 = [0.0..1.0]

(b) p1 = ]0.9..1.0] (c) p1 = [0.0..0.9[

Figure 4.6: Exploration of the parameter p1. 101 samples were taken in steps of 0.01 from
0.0 to 1.0. The color coding represents the variance of the ensemble. Only
looking at (a), it seems that there is a quite large variance over the entire surface.
However, by looking at the two different parameter sub-ranges in (b) and (c),
respectively, it becomes clear that nearly all of the variation is related to the
parameter range from 0.9 to 1.0.
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and one from 0.0 to 0.9 (Figure 4.6c), it becomes clear that nearly all of the variation

is in the upper ten percent of the parameter range.

By sweeping through the different subranges of p1, we could quickly find out

that the usable parameter range for p0, for this specific dataset, is between 0.0 and

0.9, but also that a parameter in this range will have very little effect on the re-

sulting surfaces, meaning that the user does not have to be very careful with this

parameter, as long as it is between 0.0 and 0.9.

Finally, Figure 4.7 shows a selection of the computed statistical properties. Here

the visualization shows all combinations of all three parameters sampled in steps

of 0.1 from 0.0 to 1.0 for p0 and p2, while the range for p1 was limited to [0.0..0.9]

for the reasons described above. This results in a total of 1210 surfaces examined.

Figure 4.7a shows the range, Figure 4.7b shows the standard deviation, Figure 4.7c

the variance, and Figure 4.7d the skewness. For the range, standard deviation and

variance, the color map used indicates zero with blue, and large values with red.

For the skewness, zero is set to white, blue tones indicate negative skew, and red

tones positive skew. There are some notable differences between the range and the

variance. Overall, there are a lot less very small values in the range texture Also,

the large red region in the front left is not present in the variance. The variance

helps filtering out small groups of outliers most likely leading to this region in the

range texture. The highlighted area described in Figure 4.5 is also prominent in

this ensemble for all four textures, even though not as strong for the range texture.

Interesting is the distribution of the skewness. The mentioned highlight is clearly

visible as a large area of negative skew. Another interesting feature in the skewness

is also the strict clustering of negative and positive skewness.

To allow the interactive exploration of the parameter space, it is very impor-

tant that the computation of the statistical analysis is possible at interactive rates.
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With our GPU-based implementation we achieve these update rates on standard

graphics hardware for hundreds of millions of data points.

Since the features of the computation pipeline presented in this chapter basi-

cally form a subset of the features used for our ocean forecasting application pre-

sented in Chapter 6, we refer to Section 6.5.1 for a detailed performance analysis.
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Figure 4.7: Comparing statistical properties of the ensemble, varying and sampling all
three parameters.
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4.6 Conclusion

In this chapter, we have presented a novel framework for the computation,

analysis, and visualization of ensemble data consisting of extracted seismic hori-

zon surfaces. By sampling the parameter space of the cost function, underlying

the global optimization approach, presented in Section 3.4.3, we compute several

segmentations for each horizon, which are then combined into an ensemble. These

ensembles do not follow a Gaussian distribution. We perform a complete statistical

analysis of the ensemble, and present a visualization pipeline for these ensemble

data in combination with the results from the statistical analysis. The parame-

ter space of the computed ensemble can be explored interactively to find optimal

settings for the cost function. We have shown that our framework is helpful for

identifying good parameter settings for the cost function, as well as for avoiding

bad parameter settings. Our approach can also be used to find interesting features

in the data, which might warrant closer manual interactive inspection.
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Chapter 5

Enhancing Seismic Visualization

This chapter is based on the paper SeiVis: An Interactive Visual Subsurface Modeling

Application [37].

Creating meaningful visualizations of seismic volume data is a hard task. Seis-

mic volumes are dense, noisy and often exhibit ambiguous features. In this chapter

we introduce two methods to enhance the visualization of these data. By adapting

the cost function presented in Section 3.4.5 for the extraction of seismic horizons

to rendering we created a shading technique (Section 5.1) that not only highlights

these structures, but can also be used to prototype the cost function itself. In Sec-

tion 5.2 we present an interactive single pass rendering technique to employ ex-

ploded views, an illustrative rendering technique that alleviates occlusion in dense

data by cutting the data open.

5.1 Horizon Enhancing Shading

Inspired by the gradient magnitude-modulated shading presented by Levoy [53],

and based on the cost function presented in Section 3.4.5, we have developed a

shading approach that focuses on highlighting horizon structures. While in hori-

zon extraction local waveform inspection is common, to our knowledge this is the

first attempt to exploit the local waveform for enhancing volume rendering of seis-

mic data.
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a b c d

Figure 5.1: Different kernel sizes for the cost-modulated shading ( a : k = 1, b : k = 2, c :
k = 3), and comparison with Phong shading d .

Common illumination models use the gradient for shading. For visualizing

horizons, this is not suitable as the gradient vanishes at the local extrema indicating

the horizons. Instead, we compute the inverse of the wave form based component

of the local cost on-the-fly during rendering, and use it to modulate the opacity

from the transfer function, in the same way as the gradient magnitude is used for

gradient magnitude-modulated shading [53].

Using the non-linear filter gwave described by Equation 3.11 in Section 3.4.5, we

can roughly estimate the distance of the current sample to a local minimum or max-

imum in the seismic trace. While the cost function term shown in Equation 3.11

maps extrema to low cost for the rendering, we would like to assign large opacity

to the extrema and low opacity to the remaining data. Where Levoy uses the mag-

nitude of the gradient in 3D directly to modulate opacity and shading intensity, we

can use the term from Equation 3.12, describing the peakness in the trace direction,

to modulate the opacity during volume rendering. Equation 3.12 contains the pa-

rameter k, defining the neighborhood size that is considered. For rendering, this
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Figure 5.2: An example of a visualization of a seismic cube highlighting reflections of pos-
itive amplitude. With a very simple transfer function the most important fea-
tures can be highlighted (Note the strong reflection in the bottom right area, as
well as the distinct features on the left side.)

value influences the visual quality of the results, but since here the term needs to be

evaluated on the fly during raycasting, it also has a notable effect on the rendering

performance.

Figure 5.1 shows a comparison of the quality with different neighborhood sizes,

as well as a comparison to standard Phong shading without any opacity modu-

lation. The transfer function is a simple gray map with constant opacity for all

renderings. A big advantage of this approach is that horizons can efficiently be

highlighted without adjusting the transfer function. While similar results could be

achieved with a carefully designed transfer function with amplitude-based shad-

ing, using the proposed render mode requires no user interaction at all.

Figure 5.2 shows another rendering of the same dataset. We used a diverging

blue to red color map, typical for seismic applications, as transfer function with re-

duced opacity in the center. The shader was setup to only highlight local maxima.

The visualization clearly shows the classified horizons as very distinct features,
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Figure 5.3: An example of a horizon extracted using the horizon enhancing shading only,
without any preprocessing. The volume was clipped slightly above the hori-
zon. The structure is clearly visible over the complete area of the dataset.

especially on the left side. A strong reflection on the right side is also very promi-

nent in dark red. On major advantage of our waveform based classification over

amplitude only based classification can be seen in this rendering. The highlighted

features cover a wide range of amplitudes, visible in the coloring. Using a simple

amplitude based transfer function, it would not be possible to highlight a lot of the

lower amplitude features, indicated by gray coloring.

A performance comparison for k = 1, k = 2, and k = 3 is shown in Table 5.1,

compared to a shader using standard Phong shading without modulation. It can

be seen that, while there is a performance loss for neighborhoods larger than three

voxels, rates are still interactive. For the performance comparison, we adjusted

the transfer functions such that transparency was similar for the standard and
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(a) p0 = 0.25 (b) p0 = 0.5

(c) p0 = 0.75 (d) p0 = 1.0

Figure 5.4: Comparison of renderings with different settings for the parameter p0 (Com-
pare Equation 3.15). The shader was set up to highlight maxima, the same
transfer function (without any transparency) was used for all renderings. All
transparency is introduced by the cost based modulation.
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Neighborhood
Size

Base
(Phong)

Horizon
Enhancing

% of Base

3 (k = 1) 28fps 28fps 100%

5 (k = 2) 28fps 25fps 89%

7 (k = 3) 28fps 21fps 75%

Table 5.1: Performance for cost function-based, horizon enhancing rendering compared to
Phong shading (Base). See Section 3.2.3 for measurement setup.

cost-modulated shading methods, as the modulation usually results in much more

transparent images.

Prototyping the Cost Function

In addition to simply highlighting horizon structures in seismic reflection data the

approach can also be used to locally show the results of changing the cost function

parameter p0. Therefore we allow the evaluation of the complete snappiness term

(Equation 3.15) per voxel during raycasting instead of only the waveform term

from Equation 3.12. Areas of low cost, corresponding to the horizon structures, are

rendered opaque, while areas of high cost will be rendered transparently, allow-

ing an approximation of the surfaces the optimization would extract. Even though

this technique ultimately cannot replace the additional global optimization for ex-

tracting the horizons, it can give a good idea of how the global optimization will

behave.

5.2 Exploded Views

Occlusion is a common problem when visualizing three-dimensional objects. Opac-

ity adjustments are commonly used to reveal hidden structures in volume visu-

alization. However, for very dense data, such as seismic data, this is often not
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Figure 5.5: Rendering of a seismic cube with two interpreted horizons. The volume is
clipped along the upper horizon, the second horizon is used to cut open the
volume for the exploded view. The colormap for the surface geometry indicates
the position in 3D.

sufficient. Cutaways or clipping can solve this problem, but at the cost of losing

contextual information. Illustrators often employ exploded views to reveal hid-

den structures while retaining context information. An exploded view is basically

created by cutting the data into several parts, which are then shown at displaced

locations in order to reveal the structures of interest. Figur 5.5 shows an example

for a combination of clipping and exploded views.

The general approach to exploded views [13, 62, 95] for volume rendering is

setting up the bounding geometry around each part of the volume, rendering each

of the parts separately, and then compositing the results. These techniques make

very flexible exploded views possible, allowing translation and rotation of arbi-

trary cut planes along/around arbitrary axes. However, the same constraints of

our application scenario, already described in Section 3.2.2, make much of this

flexibility unnecessary. We use the seismic horizons as the cut geometry, and then

for the explosion itself compute layers of piecewise translations along the z-axis.
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Figure 5.6: Rendering of a dataset with heavily compressed top and bottom layers, using
exploded views in combination with standard direct volume rendering.
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This is sufficient to enable unobstructed views onto the surfaces. Figure 5.6 shows

a rendering of a partially interpreted seismic dataset with a combination of the

volume deformation presented in Section 3.2.2 and exploded views. The exploded

views allow inspection of the extracted horizon surfaces in context of the seismic

data.

Integration into the Rendering Pipeline

Our exploded views approach integrates seamlessly into our framework for the

on the fly volume deformation for live depth conversion (Section 3.2.2). The data

already available for the deformed rendering makes it possible to deploy exploded

views, using the z-axis for translation, and the horizons as cut surfaces. We use a

single-pass ray casting approach without any additional setup besides a modified

scale factor. Again, we set up a virtual volume with a modified size for the z-

axis. To comply with the spacing between the different layers, here the combined

spacing for all horizons is added to the scale factor for the volume’s z-axis. Adding

the spacing to the scale factor for the depth conversion allows us to combine the

exploded views with the depth conversion.

Fragment Shader

The fragment shader for rendering the exploded view is only a slight modification

of the shader described in Section 3.2.2. We interpret the spacing as empty space

preceding each horizon. Thus, the offset to get to the deformed layer is not a direct

look-up in the deformed boundaries texture, but the spacing corresponding to all

preceding horizons has to be added. Assuming a uniform spacing, this is simply

the number of preceding layers, multiplied with the spacing. To check whether

the sample position is inside the spacing or in the volume, the deformed boundary
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Dataset Number of
Surfaces

Base Expl.
Views

% of
DC

% of
Base

240⇥ 240⇥ 1509

3
117fps

68fps 69% 58%

5 46fps 53% 39%

3 50fps 62% 50%

1422⇥ 667⇥ 1024

5
101fps

27fps 35% 27%

Table 5.2: Performance comparison of the exploded views. We used standard ray casting
without illumination for the comparison. % of DC compares to rendering with
on the fly depth conversion as shown in Table 3.3.

value of the bottom boundary of the current layer has to be fetched. If the current

sample position is larger than the size of the spacing subtracted from the deformed

boundary value, the sample is inside the spacing. If that is the case, we can set the

current sample’s alpha value to zero and proceed with the next sample.

Performance

Performance for the single-pass ray casting with exploded views can be seen in

Table 3.3. Compared to the depth-conversion shader, there is virtually no differ-

ence in computational complexity (the texture fetch, described above, to decide

whether the sample is inside the spacing area can be cached when computing the

current layer). However, we currently do not employ empty space skipping in the

explosion spacing, which results in a performance loss.
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Chapter 6

Visual Analysis of Uncertainties in
Ocean Forecasts

This chapter is based on the paper Visual Analysis of Uncertainties in Ocean Forecasts

for Planning and Operation of Off-Shore Structures [39].

In this chapter, we introduce a GPU-based interactive visualization system for

the exploration and analysis of ensemble heightfield data, with a focus on the spe-

cific requirements of ocean forecasts. We propose a novel workflow for planning

the placement and operation of off-shore structures needed by the oil and gas in-

dustry, based on an efficient GPU pipeline for on-the-fly statistical analysis of the

ensemble data. While we focus on the visualization and analysis of ocean forecast

data, the presented approach could also be used for the exploration of heightfield

ensembles from other areas, such as weather forecasting or climate simulation.

The work presented in this chapter shares a foundation with the parameter

space exploration framework presented in Chapter 4. Besides the first two sections,

introducing the simulation- and application frameworks (Sections 6.1 and 6.2, re-

spectively) the structure of this chapter is identical to the structure of Chapter 4.

Statistical analysis (Section 6.3), ensemble visualization (Section 6.4) and Computa-

tion and Visualization Pipeline (Section 6.5) all extend their respective counterparts

presented in Chapter 4 with additional functionality specific to the ocean forecast

analysis application. Section 6.6 presents the results by means of use case scenarios

for planning the placement as well as the operations of off shore rigs.
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6.1 Ocean Forecast Simulation

The development of a reliable ocean forecasting system requires models capa-

ble of simulating ocean circulation and an efficient assimilation scheme that, given

enough observations, provides accurate initial conditions for forecasting. High-

resolution three-dimensional general circulation ocean models are necessary to

reproduce complex mesoscale dynamics like in the Gulf of Mexico [16] (see Fig-

ure 6.1). However, such models cannot provide accurate forecasts of mesoscale

variability, such as eddy shedding events, without data assimilation. A general

circulation ocean model is subject to several sources of uncertainties, not only

Figure 6.1: The Gulf of Mexico simulation area covered by the presented dataset. The col-
ors denote water depth in meters. The spatial domain enclosed by the thick
blue line in the Gulf of Mexico represents the area over which loop current
indices were computed [40].
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from the poorly known inputs such as the initial state, and atmospheric and lat-

eral boundary conditions, but also from the use of approximate parameterization

schemes of sub-grid physics and ocean mixing dynamics. The rapid growth of

nonlinear instabilities in the loop current shedding events amplifies these uncer-

tainties in time, which strongly limits the predictability of the system. Data assim-

ilation methods address this issue by constraining model outputs with incoming

data. This helps keeping the model evolution on a realistic trajectory and provides

optimal initial states for initializing forecast runs, taking into account the model

outputs, the available observations, and their respective uncertainties.

Data assimilation was historically cast as a weighted least-squares problem, in

which an estimate of the ocean state at a given time is computed by optimizing a

cost function measuring a weighted misfit between the model state and available

observations, and constrained by some prior information [111]. The prior term,

generally taken as a model forecast, is used as a regularization term as the ocean

state estimation problem is underdetermined by design, due to the limited amount

of available observations. A forecast is then obtained by integrating the estimated

state forward in time with a general circulation ocean model. The “optimality” of

an ocean state estimate determined by such an approach strongly depends on the

prescribed weights, and also on the accuracy of the prior which is subject to the

model uncertainties. This means that the estimate, and therefore the forecast, is

subject to uncertainties, and these need to be also computed and analyzed as part

of the forecasting step. The important role of uncertainties is now increasingly

recognized in the ocean prediction community, and also in other communities as

the weather prediction community, for proper decision making and efficient risk

management.
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New assimilation methods based on Bayesian filtering theory have been re-

cently developed by the ocean and atmospheric communities for efficient propa-

gation and quantification of uncertainties [2, 23, 40, 41, 82]. These methods, known

as ensemble Kalman filter methods, follow a Monte Carlo approach to represent

the uncertainties on a state estimate by an ensemble of model states. These are

then integrated forward in time with the general circulation ocean model to quan-

tify uncertainties in the forecast. The estimated forecast uncertainties are then com-

bined with the observation uncertainties to assimilate the new incoming data using

a Kalman filter correction step [23], before a new forecast cycle begins. Develop-

ing and implementing efficient ensemble Kalman filters with state-of-the-art ocean

and atmospheric models is a very active area of research.

With the fast-growing high performance computing resources, the implemen-

tation of ensemble Kalman filters with large ensemble members is now practically

feasible using highly sophisticated general circulation ocean models. When a fil-

ter’s ensemble is available, it is customary to calculate various statistical measures

of the ensemble spread as indicators of the uncertainties and of their evolution in

space and time, which are then used in decision making.

Recently, Hoteit et al. [40] developed an ensemble forecasting system for the

Gulf of Mexico circulation based on the Massachusetts Institute of Technology

General Circulation Model (MITgcm) [60], and the Data Assimilation Research

Testbed (DART) [2]. This system is capable of assimilating various sets of satel-

lite and in-situ ocean observations. We use this system as a real-world scenario

that illustrates the new capabilities for analysis and exploration provided by our

visualization approach. Figure 6.1 gives an overview of the area covered by the

forecasting system.



118

6.2 Application Framework

Our system targets the interpretation of forecasts from the planning phase of

an off-shore structure to its operation. Since the different phases have different

requirements, we provide a set of four main views, which are used in different

combinations depending on the application scenario. Figure 6.2 shows our appli-

cation with the main views plus a unified settings panel. The views are two spatial

views showing the surface data themselves, one in 3D a , the other one in 2D b , a

linked histogram view c as well as a time-series view d .

While the accessibility of an existing reservoir is the key factor when planning

an oil platform, ocean forecasts can provide valuable additional information. Mod-

ern drilling techniques to some extent allow flexible paths and thus considerable

flexibility for the actual placement of a platform. However, the complexity of the

path has implications on the cost of drilling. On the other hand, slight changes of

the position might move a platform from an area that is strongly affected by eddy

Figure 6.2: Our application for exploration of ocean forecast ensembles consists of four
main views. The simulated ocean surface, or a derived version, like the mean
surface for a time step, can be shown in 3D or 2D ( a and b ). The histogram
view ( c ) shows the complete distribution of the ensemble at a selected posi-
tion, while the time-series view ( d ) shows the distribution and the resulting
operational risk at a selected position for multiple time steps.
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shedding, which leads to long downtimes, to a less affected area, overall resulting

in more efficient operations.

6.3 Statistical Analysis

The input to our framework is an ensemble of heightfields representing the sea

surface height. The data is very similar to the horizon ensembles we extract and an-

alyze in Chapter 4. Therefore we use the same statistics computations presented in

Section 4.2 as the basis for our ocean forecast analysis framework and extend it by

some details, specific to the planning of off-shore structures. The main difference

to the framework presented above is the parameter-space exploration. Instead of

mapping parameters for a cost function, in this case we have different starting con-

ditions and different models for the simulation. In addition, we map time to one

of the parameters. While in the standard setting the statistics are only computed

for one time-step at a time, it would also be possible to compute the statistics over

any desired timespan. Furthermore, since the distributions of the simulation re-

sults are mostly Gaussian, here it makes sense to use the mean surface as the main

representative surface instead of the previously introduced maximum likelihood

surface. The two main additions to the statistics are a discrete probability density

function (pdf) volume for the ensemble distribution, derived from the histogram

volume, as well as a risk estimate, defining a risk value for each position with

respect to a predefined critical sea surface level.

Probability Density Function

We compute a discrete pdf for each (x, y)-position by applying a kernel density

estimate to the 1D histograms at each position. Just like for the histograms, we

combine the set of one dimensional pdfs to a 3D volume, which can be rendered
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alongside the representative surface to give an overview of the complete distribu-

tion of the ensemble.

Risk Estimate

We define and visualize a simple risk estimate as the percentage of ensemble mem-

bers above the defined critical height. This value is computed for every (x, y)-

position for every time step. The surface in Figure 6.2 a , as well as the glyphs in

Figure 6.2 d are color-mapped with such a risk estimate. The risk value is not only

dependent on the ensemble itself, but also the critical sea level. Therefore the user

can interactively modify this value, just like it is possible to constrict the parameter

range, and get live updates on the results for the defined value.

6.4 Ensemble Visualization

Similar to the statistical analysis, we base our visualization framework on the tech-

niques developed for the visualization of horizon ensembles, presented in Sec-

tion 4.3. We added a 2D view for overview, as well as a time-series view to inspect

the complete time series for a single position to the existing linked 3D and his-

togram views. Furthermore, we extended the 3D surface rendering technique by

the possibility to blend extracted iso contours onto the surface, as well as a volu-

metric cursor to locally show the distribution of the ensemble directly in the 3D

view.

3D View

The 3D view provides a spatial overview of the data. Using the same techniques

for surface rendering as described in Section 4.3, we allow rendering the represen-

tative for the sea surface, usually the mean of the ensemble, in 3D. In addition to
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Figure 6.3: 3D View Detail. a shows iso contours of the mean surfaces for all time steps
blended over the current surface. The area of interest is rendered with full
opacity, while the context is preserved by rendering the remaining parts semi-
transparently. b shows a volume rendering of the pdf around a user-selected
position. The surface is color-mapped with the variance. The large spread in
areas of high variance is clearly visible in the volume rendering.

the statistical properties described above, we can also use the risk estimate (Sec-

tion 6.3) to color code the surface. To allow visualization of a second property

resulting from the statistical analysis, or information from several time steps at

once, we also added the extraction of iso contours from any of the scalar fields

derived from the ensemble. Figure 6.3 a shows an example, where iso contours

corresponding to the critical sea level were extracted from the mean surfaces for

all time steps and overlaid on the texture.

An additional benefit of the 3D view is that it is possible to use volume render-

ing for showing details of the distribution of the ensemble. Similar to approaches

presented by Pöthkow et al. [87, 88], as well as Pfaffelmoser et al. [80], we depict

the actual distribution of the ensemble as a volume around the surface. Instead

of using a parametric representation of the data based on mean and variance, we

allow rendering the full probability density function (pdf) of the distribution, to al-

low detailed inspection of the actual data. However, since rendering the complete
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volume would most likely result in the complete occlusion of the representative

surface, we propose to render only a a small subset of the volume, which is of

adjustable size. Similar to the linked histogram view, this allows showing details

on demand, without occluding the context. The technique essentially works like a

volumetric cursor (see Figure 6.3 b ). The user can simply probe the data by hover-

ing with the mouse over a position of interest, and the probability density volume

is then rendered around the picked position.

Time-Series View

Specifically for planning the operations of a platform at a defined position, we

developed the time-series view, shown in Figures 6.2 d and 6.4. This view al-

ways shows the complete time-series for a single lateral position. Once defined,

or loaded, our application caches several positions of off-shore structures, from

which one can be selected using a drop-down menu. The selected position is high-

lighted by markers in the spatial views. The view shows the ensemble distribution

-50cm

-100cm

timesteps, color-coded
to match iso contours

red line indicates critical sea levelsea lvl

Glyphs represent ensemble
distribution: (downscaled
pdf at selected position)

mean sea
lvl over time
indicated by
connection

Risk
100%

80%
60%
40%
20%

0%

50cm

0cm
17cm

100cm

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Figure 6.4: The Time-Series View in detail. The y axis corresponds to the sea level, the x
axis to time. Each glyph shows the distribution of the selected position for one
time step. Glyphs are colored using the associated risk, i.e., the fraction of the
distribution above the selected critical sea level.
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at the selected position for all time steps side by side using a simple glyph, per

time step. To provide spatial context, the plots are arranged on the y-axis at their

original depth positions and as such can be compared directly to each other, but

also to the predefined critical sea level, which is indicated by a horizontal line.

The glyphs show the complete ensemble distribution at the selected position. Fig-

ure 6.5 shows a detailed explanation of the glyph. The glyph is based on the design

of violin plots [34]. We use the probability density function (pdf) for the outline of

the glyph and indicate the mean value by a horizontal line at the appropriate posi-

tion. To help identify the critical time steps, the glyphs are color-coded according

to the risk estimate. The risk can easily be estimated by looking at the fraction of

the glyph that is above the critical sea level. The uncertainty is also encoded in

the glyph. A wide distribution of values, indicating a large degree of uncertainty,

results in a scattered pdf and thus in a very long glyph. A certain result will exhibit

a strong clustering of surface values and this will result in a very compact glyph
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Figure 6.5: The glyph developed for visualizing the ensemble properties at a defined spa-
tial position.
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(compare for example time step t0 and time step t3 in Figure 6.4). In addition, we

can show any of the derived statistical properties by coloring the glyph.

Using the time-series view, domain experts can then easily identify the points

in time where operations should be halted. Without ensemble forecasts, rigs were

operated based on a single simulation. However, even when ensemble forecasts

are available, a visual exploration approach is necessary. Without our visualization

system, our domain experts would define the safeness by simply looking at the

mean and variance values of the ensemble. In each time step, we indicate the mean

value of the distribution by a bold black bar, providing the same information as

before, for all time steps in a single view. The user can immediately identify critical

time steps, looking at the color and position of each glyph, and possibly order an

unavoidable shutdown of operations. If the situation is unclear, the glyph provides

the complete distribution to enable the expert to make a decision.

6.5 Computation and Visualization Pipeline

As described before, the ocean forecast visualization framework presented in

this chapter and the horizon ensemble framework presented in Chapter 4 share
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Figure 6.6: The extensions to the computation and rendering pipeline presented in Sec-
tion 4.4.
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large parts of the analysis and visualization pipeline. The additions specific to the

pipeline used for the ocean forecasting are highlighted in Figure 6.6. Besides the

addition of a risk estimate, described in Section 6.3, which integrates into the statis-

tical analysis part of the pipeline, we added three major features to ease the plan-

ning of off-shore structures. We allow defining a focus area, which is highlighted

in the spatial views (Figure 6.6 a ), we added the pdf (Figure 6.6 b ) which can be

rendered as a volume on top of the representative surface to show the complete

distribution of the ensemble, and finally we added the extraction of iso contours

(Figure 6.6 c ) from all 2D scalar fields (statistical properties as well as surfaces) to

allow the inspection of multiple properties as well as multiple times teps at once.

Area of Interest Definition

The focus area, or area of interest, can be defined by painting directly on the sur-

faces in the 2D view (Figure 6.2 b ). In the pipeline, the painted area is rendered

into a texture, which is used as a mask during rendering. The focus area is then

rendered with full opacity, while the context is rendered translucently (Compare

Figure 6.3 a ).

Probability Density Volume

The pdf volume is derived from the 3D histogram when needed by applying a

kernel density estimate for each of the 1D histograms. It is stored as an additional

3D texture in GPU memory, allowing it to be rendered directly using standard ray

casting on top of the surface geometry similar to the seismic cube in the horizon

extraction application. However, here we render the volume only on demand and

only a small part of the complete volume. We use the same technique as described

under Detailed Inspection in Section 4.4 to pick the position of the mouse cursor on
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the surface. The geometry for ray casting into the pdf is then set up as a small cube,

centered around the picked position and with user adjustable size.

Iso Contouring

We have implemented marching squares using CUDA, based on the marching

cubes example from the CUDA SDK, as well as a CPU version. The result of the

iso contour extraction is a set of edges forming the contours. We keep the initial

geometric representation of the contours, for example for use in the 2D view, but

for overlaying the contours onto the 3D surfaces we render the contours into an

offscreen buffer, which is then used for texturing. Just like the rest of the analysis

pipeline, the iso contour extraction happens interactively, allowing adjustments of

the parameter range, as well as the iso value with instant feedback.

6.5.1 Performance

The performance of the statistical analysis is crucial for interactive exploration of

the parameter space. We used the dataset of the Gulf of Mexico, computed by the

simulation system described above, for measuring the performance of the statistics

computation. The dataset consists of a total of 500 surfaces spread over ten time

steps. The spatial resolution is 275⇥325, resulting in 89, 375 data points per surface.

Since usually one time step is investigated at a time, we show performance for a

single time step, consisting of 50 surfaces, as well as the complete dataset. Table 6.1

shows the resulting computation times for a single time step.

The computations were performed using an NVIDIA GeForce GTX 580 with

1.5GB of graphics memory. The timings were averaged over 1000 kernel execu-

tions. As all data stays on the GPU, no bus transfer has to be considered. For
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comparison, we also show computation times of a single time step on the CPU.

The computations were carried out on a workstation with two six-core Xeons (12

physical cores plus hyper threading) clocked at 3.33GHz and 48GB of main mem-

ory. The CPU computations were parallelized using OpenMP, utilizing 24 threads.

CUDA CPU Speedup

Property w/o w dep w/o w dep w/o w dep

1 Histogram 3.23 3.23 19.24 19.24 6.0x 6.0x

2 PDF1 12.93 16.16 45.70 64.94 3.5x 4.0x

3 Range 0.71 0.71 3.45 3.45 4.9x 4.9x

4 Mean 0.71 0.71 3.48 3.48 4.9x 4.9x

5 Median1 0.70 3.93 8.78 28.02 12.5x 7.1x

6 Mode1 1.40 4.63 4.65 23.89 3.3x 5.2x

7 Variance4 0.72 1.43 3.85 7.33 5.3x 5.1x

8 Std Dev4,7 0.02 1.45 0.14 7.47 7.0x 5.2x

9 Skewness1,4,6,7,8 0.05 6.13 0.16 31.42 3.2x 5.1x

10 Kurtosis4,7 0.74 2.17 4.05 11.38 5.5x 5.2x

11 Risk 1.70 1.70 27.93 27.93 16.4x 16.4x

12 Iso Contourany of 3�11 5.20 n/a⇤ 1.40 n/a⇤ 0.27x n/a⇤

⇤Computation time with dependencies varies, depending on the property used for
iso contouring.

Table 6.1: Comparison of computation times between GPU (CUDA) and CPU. All times
are in milliseconds. The first column shows ID and name of the property, the
supercripts indicate the IDs of the properties that are required to compute the
corresponding property. The columns titled w/o and w dep show the computa-
tion times for just this property assuming all dependencies are already cached
and the computation time including all dependencies, respectively. We note that
computing the dependencies is only needed once, after changing the parameter
range. The last two columns show the speedup from CPU to GPU.
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Compared to the CPU version, we achieved a speedup of roughly 5⇥ for all tasks

when considering the dependencies with our GPU based pipeline.

Table 6.2 shows how computation times scale with larger data. We compare

the standard case of a single time step with the complete ensemble consisting of

500 surfaces. In general, it can be seen that using the GPU even for 500 surfaces,

the slowest update including skewness and all dependencies plus the probability

50 Surfaces 500 Surfaces

Property w/o w dep w/o w dep

1 Histogram 3.23 3.23 38.56 38.56

2 PDF1 12.93 16.16 12.78 51.34

3 Range 0.71 0.71 11.09 11.09

4 Mean 0.71 0.71 10.89 10.89

5 Median1 0.70 3.93 0.70 39.26

6 Mode1 1.40 4.63 1.41 39.97

7 Variance4 0.72 1.43 10.87 21.76

8 Std Dev4,7 0.02 1.45 0.02 32.78

9 Skewness1,4,6,7,8 0.05 6.13 0.05 72.80

10 Kurtosis4,7 0.74 2.17 10.76 32.52

11 Risk 1.70 1.70 21.00 21.00

12 Iso Contourany of 3�11 5.20 n/a⇤ 23.90 n/a⇤

⇤Computation time with dependencies varies, depending on the property used for
iso contouring.

Table 6.2: Computation times for 50 and 500 surfaces. All times are in milliseconds. The
first column shows ID and name of the property, the supercripts indicate the
IDs of the properties that are required to compute the corresponding property.
The columns titled w/o and w dep show the computation times for just this prop-
erty assuming all dependencies are already cached and the computation time
including all dependencies, respectively.
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density function (which needs to be computed for the histogram and time series

views) still allows for interactive update rates.

The histogram, range, mean, variance, kurtosis and the risk estimate are cal-

culated directly from the ensemble and as such the complexity relies solely on

the number of surfaces and valid data points per surface. We would expect the

computation time for these values to scale linearly with the number of surfaces/-

valid data points, which seems to be in line with the measured numbers. For even

larger datasets, however, it would make sense to compute range, mean, variance,

kurtosis and the risk estimate using the histogram. This would result in constant

time, only depending on the size of the histogram. For the datasets here, however,

the histogram computation is the limiting factor. The probability density func-

tion, median and mode are looked up using the histogram, and therefore there is

no difference between the small and the large data set. Standard deviation and

skewness are implemented as linear combinations of other surface properties, and

thus computation times are also independent of the number of surfaces. With the

dependencies precomputed, the computation of both properties is trivial, which

results in very short computation times.

6.6 Results

The following Sections 6.6.1 and 6.6.2 illustrate workflows for planning place-

ment as well as operations of off-shore structures using a real-world Gulf of Mexico

ocean forecast dataset. The dataset covers the Gulf of Mexico basin between 8.5� N

and 31

� N, and 262

� E and 287.5� E on a 1/10� ⇥ 1/10� grid with 40 vertical layers.

Forecasting experiments were performed over a six-month period in 1999 between

May and October during which a strong loop current event occurred (Eddy “Jug-

gernaut”) [70]. The resulting dataset consists of ten time steps, each consisting of
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50 ensemble members. The lateral dimensions are represented by a grid consisting

of 275⇥ 325 samples.

6.6.1 Placement Planning

Planning the placement of an off-shore structure demands a complete overview of

the ensemble in the spatial domain, but also over all available time steps. Figure 6.7

outlines all necessary steps. First, the user defines the area of interest (defined by

factors not available in the ocean forecast, like reservoir reachability) in the 2D

view (Figure 6.7a) either by a simple bounding rectangle, or completely free by

painting directly on the map. In Figure 6.7b, the sea level of the mean surface for

a single time step is mapped to the third dimension. The standard deviation is

used for pseudo-coloring in the 3D view. By animating all time steps, the user

can now get an overview of the mean sea level at the selected area of interest, as

well as the corresponding uncertainties. Besides the 3D view, animation can also

be used in the 2D view, showing the sea level using iso contours and pseudo-

coloring (inset). While the animation is very effective to give a first impression

of the changing sea level, it is challenging to derive qualitative results. Therefore,

in the next step, the user can look at iso contours from the mean surfaces, or risk

estimates of multiple time steps in a single view. The contour for a single selected

sea level and maximum allowed risk is extracted for all time steps and rendered

on the mean surface. The selected sea level, as well as the maximum risk, can be

changed on the fly (compare the animation in Figure 6.7c). Starting with a low

sea level and zero risk, the user can gradually approach a suitable compromise of

available positions, critical sea surface height and resulting risk, to narrow down

the area of interest to a few points. Once a compromise is found, the ensemble

distribution can be probed interactively at the interesting positions, to verify the
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(a) Area of Interest Definition. (b) Sea Level and Std. Deviation.

(c) Time Series Sea Level Contours. (d) Distribution Detail.

Figure 6.7: Spatial Exploration for placement planning consists of four main steps: Def-
inition of the area of interest based for example on reservoir reachability (a),
general overview (b), time series analysis (c) and detailed analysis for verifica-
tion (d).
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results (Figure 6.7d). At this point, the potential placement is narrowed down to

a few positions. A detailed analysis of all time steps, identical to the analysis for

operations (Section 6.6.2) can be performed.

6.6.2 Final Placement / Operational Phase

Most of the ensemble analysis for planning operations and unavoidable down-

times is carried out in the time-series view shown in Figure 6.8. After definition of

a set of positions corresponding to the managed rigs, one position can be selected

at a time from a drop-down box. This location is then depicted in the 2D and 3D

views for spatial context. The critical sea level, as well as the acceptable risk, can

be defined from the user interface. We provide a set of standard color maps for col-

oring the glyphs. The color map is also freely customizable, most importantly to

adapt to the acceptable risk. A good color map should highlight three cases based

on the risk estimate: Time steps which are safe for operation with a high certainty,

time steps where the rig needs to be shut down with large certainty, and finally

uncertain time steps.

In the final phase of planning the placement, when positioning is narrowed

down to a few potential positions, the time-series view can be used to compare

these positions. Figure 6.8 shows a comparison for two close positions. While

Figure 6.8 a indicates a position which would allow minimal downtimes (actually

none of the time steps exhibits any risk) the position in Figure 6.8 b , which is very

close in space, exhibits a very different result. The sea level will certainly be above

the critical level for six of the ten time steps. In addition even the first two time

steps, which overall are less risky, expose a large amount of uncertainty. Using this
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Figure 6.8: Comparison of the time series for two very close positions (indicated by the
markers in the insets). a shows a position which does not exhibit any risk at
all over the complete time series. Moving the position slightly results in several
time steps which would definitely require a shutdown of operations b .

comparison one can immediately see that the position in a will allow much more

efficient operations.

The actual operation planning is a recurring process with only a few future time

steps available at a time. The parameters like position, critical sea level, acceptable

risk and the corresponding color map, however, typically do not change. Hence

all these settings can be loaded from a state file alongside new forecast data. As-

suming a color map as described, after loading the data the user can immediately

identify safe and unsafe time steps from the color of the corresponding glyphs.

Only uncertain time steps need further investigation. The main factor to consider

for these cases is the spread or uncertainty of the distribution. A compact glyph
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corresponds to a distribution with little uncertainty. Here, the risk estimate can

immediately be used for making a decision to shut down the rig. A large glyph

in general indicates large uncertainty. Here, the user must carefully weigh several

properties: Are ensemble members in the critical range close to the critical sea level

or far above, is the distribution skewed to either side, etc. While in general this in-

formation can be derived from the glyph, the user can also access the raw results

from the statistical analysis at this point, before making a final decision.

6.7 Conclusion

In this chapter, we have presented an interactive system for the visualization,

exploration and analysis of ocean forecasts in the form of heightfield ensemble

data. The core of our framework, which consists of statistical analysis and render-

ing, is implemented in an efficient GPU-based pipeline. We show the utility of our

framework for ocean forecasting in a case study based on real world forecast data

of the Gulf of Mexico.
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Chapter 7

Summary and Discussion

This thesis presents several visual, interactive techniques, to enhance workflows

for oil and gas exploration. We introduce novel applications for the creation of

subsurface models and the visual analysis of ocean forecasts. Both applications

help to plan safe and efficient operations for oil and gas exploration.

Our application for subsurface modeling, for the first time, allows the integra-

tion of well data, recorded in spatial depth, into the seismic interpretation work-

flows, based on seismic reflection tomography data, recorded in time. Our novel

joint/time depth domain workflow is made possible by an on the fly depth con-

version technique. Additionally, rather than axis aligned, we set up slice views

based on well positions, to maximize the availability of the information gathered

from wells. We introduce an interactive global optimization technique for hori-

zon extraction. Based on the horizon extraction technique we introduce ensemble

computation to seismic interpretation, by automatically sampling the parameter

space of the cost function, underlying the global optimization. Based on these en-

sembles, we present a framework for efficient exploration of the parameter space

of the cost function. Finally we introduce a novel shading technique, based on

the local waveform of seismic traces, to highlight horizon structures without pre-

processing and present the application of exploded views for the visualization of

seismic data.
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The second application, presented in this thesis allows planning the placement

and operations of off-shore structures, like oil rigs. We present a framework for the

interactive visual analysis of ensemble simulations of the sea surface. The frame-

work is based on an efficient, completely GPU-based framework, for statistical

analysis and visualization of ensembles of surfaces. We present a case study, based

on simulation data of the Gulf of Mexico, that shows the application of our frame-

work in a real world scenario.

Limitations and Open Questions

The presented subsurface modeling application focuses on the extraction of seis-

mic horizons only. A complete subsurface model includes additional structures,

most importantly faults. Faults are areas where the rock slipped (Compare Fig-

ure 7.1), creating discontinuities in the subsurface layers. The integration of faults

into our subsurface modeling workflow is left to future work. A possible approach

could be integrating a term, describing the likeliness of an edge belonging to a

fault, into our cost function, to guide the global optimization along faults. A good

fit for such a term could be based on the work of Jeong et al. [42].

Reverse faultNo Faulting Normal fault Strike-slip fault

Figure 7.1: Different fault types. Horizons intersected by normal and strike slip faults can
still be handled as height fields. Reverse faults would require splitting up the
volume. Figure reproduced from the USGS Earthquake Glossary [105].



137

At first glance, representing the horizons as heightfields seems a major limita-

tion for the inclusion of faults. However, our complete extraction pipeline can han-

dle arbitrary geometry. Only after extracting the optimal surface from the graph,

as described in Section 3.4.4, we convert it to a heightfield for efficient render-

ing. Additionally, as can be seen in Figure 7.1, only reverse faulting creates layers

whose boundaries can not be represented as heightfields, the more common nor-

mal faults, as well as strike-slip faults result in horizons where no (x, y)-position

maps to more than one depth value. The on the fly depth conversion, as presented

in Section 3.2.2, does only work for subsurface layers bound by heightfields. How-

ever, once faults are extracted, the reverse faults could be used to divide the dataset

into subsets, for which the depth conversion would work again.

We also use a property of heightfields for our statistical analysis of ensemble

data, presented in Chapters 4 and 6. For both we compute the statistics for each

(x, y)-position, knowing that each surface passes through each (x, y)-position ex-

actly once. Such an approach would not work for comparing arbitrary geometry.

However, if correspondences between ensemble members are known, these can be

used as the basis for the statistics computation. As long as the connectivity of the

vertices does not change even our rendering framework, which creates the final

geometry on the fly, would still work, by simply using vertex indices to lookup the

final position in the ensemble texture, instead of (x, y)-coordinates.

Finally our prism based workflow, presented in Section 3.3 approximates each

well position with a single straight line, orthogonal to the surface. Modern drilling

techniques allow complicated bore hole paths. When using well logs, we can not

handle such paths in our framework, as is. As long as wells do not intersect, and

the topology of the object, enclosed by three wells, corresponds to a prism, an

approach, where the sides of the ’prism’ are deformed for visualization and inter-
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action, would be thinkable. For the use of well tops the trajectory of the bore hole

is irrelevant. Since well tops are sparse, discrete samples along the well, we simply

treat each top separately. When two or more tops from a single well correspond to

separate (x, y)-positions we consider them separately during triangulation. While

this results in prisms, where not all corners provide information for all hroizons,

none of the well data is lost.
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[13] S. Bruckner and M. E. Gröller. Exploded views for volume data. IEEE Trans-
actions on Visualization and Computer Graphics, 12(5):1077–1084, 2006.

[14] L. Castanie, B. Levy, and F. Bosquet. Advances in seismic interpretation us-
ing new volume visualization techniques. First Break Journal, pages 69–72,
2005.

[15] L. Castanie, B. Levy, and F. Bosquet. VolumeExplorer: Roaming large vol-
umes to couple visualization and data processing for oil and gas exploration.
In Proceedings of IEEE Visualization Conference ’05, pages 247–254, 2005.

[16] E. P. Chassignet, H. E. Hurlburt, O. M. Smedstad, C. N. Barron, D. S. Ko,
R. C. Rhodes, J. F. Shriver, A. J. Wallcraft, and R. A. Arnone. Assessment
of data assimilative ocean models in the gulf of mexico using ocean color.
Circulation in the Gulf of Mexico: Observations and Models, 161:87–100, 2005.

[17] L. M. Cherubin, W. Sturges, and E. Chassignet. Deep flow variability in the
vicinity of the yucatan straits from a high resolution MICOM simulation.
Journal of Geophysical Research, 110:20–72, 2005.

[18] F. Counillon and L. Bertino. High-resolution ensemble forecasting for the
gulf of mexico eddies and fronts. Ocean Dynamics, 59:83–95, 2009.

[19] E. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[20] H. Doleisch, M. Gasser, and H. Hauser. Interactive feature specification for
focus+context visualization of complex simulation data. In Proceedings of the



141

5th Joint IEEE TCVG - EUROGRAPHICS Symposium on Visualization (VisSym
2003), pages 239–248, 2003.

[21] K. Engel, M. Hadwiger, J. M. Kniss, C. Rezk-Salama, and D. Weiskopf. Real-
Time Volume Graphics. A K Peters, 2006.

[22] E. L. Etris, N. J. Crabtree, J. Dewar, and S. Pickford. True depth conversion:
More than a pretty picture. CSEG Recorder, 26:11–22, 2001.

[23] G. Evensen. Data Assimilation: The Ensemble Kalman Filter. Springer, 2006.

[24] A. X. Falcão and J. K. Udupa. Segmentation of 3d objects using live wire. In
Medical Imaging 1997: Image Processing, pages 228–235, 1997.

[25] A. X. Falcão, J. K. Udupa, S. Samarasekera, S. Sharma, B. E. Hirsch, and
R. de Lotufo. User-steered image segmentation paradigms: Live wire and
live lane. Graphical Models and Image Processing, 60(4):233–260, 1998.

[26] A. X. Falcão and K. J. Udupa. A 3d generalization of user-steered live-wire
segmentation. Medical Image Analysis, 4(4):389–402, 2000.

[27] M. Faraklioti and M. Petrou. Horizon picking in 3d seismic data volumes.
Machine Vision and Applications, 15:216–219, 2004.

[28] D. Gao. 3d seismic volume visualization and interpretation: An integrated
workflow with case studies. Geophysics, 74(1):W1–W12, 2009.

[29] L. Grady. Computing exact discrete minimal surfaces: Extending and solv-
ing the shortest path problem in 3d with application to segmentation. In
IEEE Conference on Computer Vision and Pattern Recognition, 2006, volume 1,
pages 69–78, 2006.

[30] L. Grady. Minimal surfaces extend shortest path segmentation methods to
3d. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(2):321–
334, 2010.

[31] H. Griethe and H. Schumann. The visualization of uncertain data: Methods
and problems. In Proceedings of SimVis ’06, 2006.

[32] G. Grigoryan and P. Rheingans. Point-based probabilistic surfaces to show
surface uncertainty. IEEE Transactions on Visualization and Computer Graphics,
10(5):564–573, 2004.



142

[33] C. G. Healey and J. Snoeyink. VisTRE: A visualization tool to evaluate errors
in terrain representation. In 3D Data Processing, Visualization, and Transmis-
sion, Third International Symposium on, pages 1056–1063, 2006.

[34] J. L. Hintze and R. D. Nelson. Violin plots: A box plot-density trace syner-
gism. The American Statistician, 52(2):181–184, 1998.
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[38] T. Höllt, M. Hadwiger, L. Fritz, P. Muigg, and H. Doleisch. Seismic horizon
tracing with diffusion tensors. Poster Presentation IEEE Visualization 2009,
Atlantic City, NJ, 2009.
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[96] A. Saad, G. Hamarneh, and T. Möller. Exploration and visualization of seg-
mentation uncertainty using shape and appearance prior information. IEEE
Transactions on Visualization and Computer Graphics, 16(6):1366–1375, 2010.

[97] J. Sanyal, S. Zhang, J. Dyer, A. Mercer, P. Amburn, and R. J. Moorhead. Noo-
dles: A tool for visualization of numerical weather model ensemble uncer-
tainty. IEEE Transactions on Visualization and Computer Graphics, 16(6):1421 –
1430, 2010.

[98] H. Scharsach, M. Hadwiger, A. Neubauer, and K. Bühler. Perspective iso-
surface and direct volume rendering for virtual endoscopy applications. In
Eurovis 2006, pages 315–322, 2006.

[99] A. Schenk, G. Prause, and H. O. Peitgen. Efficient semiautomatic segmenta-
tion of 3d objects in medical images. In MICCAI ’00: Proceedings of the Third
International Conference on Medical Image Computing and Computer-Assisted In-
tervention, pages 186–195, 2000.

[100] Schlumberger Information Solutions. Petrel seismic to simulation software.
Available online at http://www.slb.com/services/software/geo/
petrel.aspx (Mar. 08 2013).

[101] F. Schulze, K. Bühler, and M. Hadwiger. Direct volume deformation. In
Computer Vision and Computer Graphics. Theory and Applications, volume 21 of
Communications in Computer and Information Science, pages 59–72. 2009.

[102] P. M. Silva, M. Machado, and M. Gattass. 3d seismic volume rendering. In
Eighth International Congress of The Brazilian Geophysical Society, pages 181–
193, 2003.

[103] P. Tu, A. Zisserman, I. Mason, and I. Cox. Identification of events from 3d
volumes of seismic data. In IEEE International Conference on Image Processing,
ICIP ’94, volume 3, pages 309–313, 1994.

[104] U.S. Energy Information Administration. International energy outlook 2010,
2010.

http://www.slb.com/services/software/geo/petrel.aspx
http://www.slb.com/services/software/geo/petrel.aspx


149

[105] U.S. Geological Survey. Earthquake glossary, 2013. Available online at
http://earthquake.usgs.gov/learn/glossary/ (Mar. 08 2013).

[106] vsg Visualizaton Sciences Group. Avizo earth. Available online at http:
//www.vsg3d.com/avizo/earth (Mar. 08 2013).
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Höllt, and Laura Fritz, Computertomographie als zerstörungsfreies Prüfverfahren
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