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Abstract

Drop impact splashing and air entrapment

Marie-Jean Thoraval

Drop impact is a canonical problem in fluid mechanics, with numerous appli-

cations in industrial as well as natural phenomena. The extremely simple initial

configuration of the experiment can produce a very large variety of fast and com-

plex dynamics. Scientific progress was made in parallel with major improvements

in imaging and computational technologies. Most recently, high-speed imaging

video cameras have opened the exploration of new phenomena occurring at the

micro-second scale, and parallel computing allowed realistic direct numerical sim-

ulations of drop impacts. We combine these tools to bring a new understanding

of two fundamental aspects of drop impacts: splashing and air entrapment.

The early dynamics of a drop impacting on a liquid pool at high velocity

produces an ejecta sheet, emerging horizontally in the neck between the drop and

the pool. We show how the interaction of this thin liquid sheet with the air, the

drop or the pool, can produce micro-droplets and bubble rings. Then we detail

how the breakup of the air film stretched between the drop and the pool for lower

impact velocities can produce a myriad of micro-bubbles.

Keywords: drop impact; splashing; ejecta sheet; slingshot mechanism; bubble

ring; air toroid; liquid toroid; Gerris; VOF; vortex street; vortex shedding; air

entrapment; Mesler entrainment
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Chapter 1

Introduction

1.1 Background

Drop impact is a very simple experimental geometry. However, the complexity

of its outcomes has fascinated researchers for more than a century. As we will see

in this dissertation, even the simplest experiment of a water drop impacting on a

pool of water can still reveal new and unexpected dynamics. The parameter space

to study is immense, and offers a simple framework to study new phenomena in

fluid dynamics.

Depending on the impact velocity, and the properties of the liquid used, the

drop can spread, float, coalesce, bounce, or splash (Rein, 1993). They can also

make noise (Prosperetti and Oguz, 1993), entrap bubbles (Liow and Cole, 2007),

and create vortex rings (Thomson and Newall, 1885, Peck and Sigurdson, 1994)

that can carry micro-bubbles into the fluid (Carroll and Mesler, 1981, Esmailizadeh

and Mesler, 1986).

In addition to the fundamental interest of studying these phenomena, they

also have important applications in very diverse domains. In most applications

we are interested in whether the impact will splash droplets or entrap bubbles,

both producing a large range of sizes and involving different mechanisms. Recent

reviews include those of Yarin (2006) and Thoroddsen et al. (2008). This com-

plexity makes it a very challenging problem to model and reproduce numerically,

16
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see Chapter A and Tryggvason et al. (2011).

Drop impacts have important industrial applications in combustion, where fuel

droplets splashing on the walls are beneficial to the production of smaller droplets,

thus enhancing the combustion efficiency (Moreira et al., 2010). In inkjet print-

ing however, splashing needs to be avoided to improve the precision. Printing

technologies have also developed to print electronic circuits, solar cells, or biolog-

ical materials (Martin et al., 2008, Jung and Hutchings, 2012, Chatzikomis et al.,

2012). Air entrapment is also detrimental in this case, as in spray coatings, using

molten metal (Aziz and Chandra, 2000) or liquid paints. Spray coatings are for

example used in the pharmaceutical industry (Bolleddula et al., 2010), and for

granulation (Marston et al., 2010). Sprays are also used to cool hot surfaces in

nuclear reactors (Sawan and Carbon, 1975), electronics industry (Kim, 2007), and

aeronautics (Michalak et al., 2010).

On a larger scale, rain is important for marine science, as it influences the gas

transfer into the oceans (Wanninkhof et al., 2009). The smallest splashed droplets

can evaporate, leaving microscopic aerosols that can act as nucleation sites during

cloud formation, affecting climate. When the rain droplets impact on the ground,

they participate in soil erosion. The splashed droplets can also participate in

the seeds or pore dispersal, and spreading of diseases and pesticides (Fitt et al.,

1989). They are also important in criminal forensic to study blood splash patterns

Hulse-Smith et al. (2005), Knock and Davison (2007).

Interestingly, droplet splashing happening over a few hundred microseconds can

affect the growth of stalagmites in caves over thousands of years. Understanding

their formation is therefore useful in palaeoclimatology.

The interaction of the impacting drop with a granular material has important

application to produce liquid marbles (Emady et al., 2011, Marston et al., 2012b).

Similar splashing dynamics are also observed with granular flows (Thoroddsen and

Shen, 2001, Marston et al., 2012a), and constitute a meteor impact model used in
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earth and planetary science.

The correct reproduction of splashing dynamics is a challenge also in geometric

modelling and animation movies (Losasso et al., 2004, Eden et al., 2007, Thornton,

2006, Garg et al., 2007, Wojtan et al., 2010, Wojtan, 2010, Thürey et al., 2010, Yu

et al., 2012). Their capture has attracted several artists who specialize their work

in drop splashing. Splashing is one of the most common images in the beverage

advertising.

1.2 Literature review

The scientific study of splashing began with the work of Worthington (1876,

1877, 1882, 1895) who first used strobed visual observations and sketches, before

he incorporated the use of the nascent technology of photography and published

the seminal book A study of splashes (Worthington, 1908). Many studies have

followed in the subsequent century, incorporating the latest imaging technology of

each time period. Some of the most relevant studies will now be reviewed, focusing

on a single drop impact event.

Most earlier studies focused on the overall edge breakup of the corona, after it

rises out of the pool, forming what is often called the Edgerton crown Edgerton

and Killian (1939), Kayafas et al. (1987). Numerous studies are dedicated to

determining the splashing threshold, especially for impacts onto solid surfaces.

Particularly noteworthy studies are those of Stow and Hadfield (1981), Mundo

et al. (1995), Cossali et al. (1997), which proposed the importance of the splashing

parameter K =We
√
Re, where these non-dimensional numbers are defined by the

impact velocity of the drop U , the drop diameter D,

Re = UD

ν
, We = ρDU2

σ

where ν is the liquid kinematic viscosity, ρ is the liquid density and σ is the surface
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tension.

Rioboo et al. (2001) have further characterized the different splashing scenarios

and proposed the terminology of corona splash where the crown breaks up on its

edge into droplets, vs. the prompt splash which arises at the very early contact of

the drop with the solid substrate.

Most instructive imaging of the early contact have been carried out for impacts

onto glass surfaces, where the dynamics can be observed through the substrate

(Thoroddsen and Sakakibara, 1998).

An important discovery was recently made by Xu et al. (2005) where they

showed that onset of splashing can be delayed by reducing the air pressure. It has

not been determined what causes this, but recent studies suggest that it is related

to the cushioning under the drop by the air layer (Thoroddsen and Sakakibara,

1998, Thoroddsen et al., 2003, Smith et al., 2003, Mehdi-Nejad et al., 2003, Van

Dam and Le Clerc, 2004, Thoroddsen et al., 2005, Mani et al., 2010, Hicks and

Purvis, 2010, 2011, 2012, Driscoll and Nagel, 2011, Duchemin and Josserand, 2011,

2012, Palacios et al., 2012, de Ruiter et al., 2012, Mandre and Brenner, 2012,

Kolinski et al., 2012, van der Veen et al., 2012, Liu et al., 2013). This introduces

a new non-dimensional parameter, i.e. the density ratio of the air to that of the

liquid.

Another fundamental discovery was made in the last decade: the ejecta sheet

(Weiss and Yarin, 1999, Thoroddsen, 2002, Josserand and Zaleski, 2003). Fig-

ure 1.1 shows a striking manifestation of this phenomenon. This fine jet emerges

from the neck that connects the drop to the pool for high impact velocities.

The phenomenon escaped notice until recent advances in high-speed imaging

(Thoroddsen et al., 2008). The ejecta sheet is the most significant factor for

the splashing of micro-droplets. Interestingly, their first observation in numerical

simulations of Weiss and Yarin (1999) already suggested that it should produce

“a torus shaped liquid volume” and “a torus-shaped bubble” as described in their
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Figure 1.1: Ejecta sheet during drop impact onto a pool.

abstract:

“For times that are small compared to the characteristic time of

impact [. . . ], it is found that a disk-like jet forms at the neck between

the drop and the pre-existing liquid film, if the impact Weber number

is high enough. This jet can pinch off a torus-shaped liquid volume at

its tip or reconnect with the pre-existing liquid film, thus entraining a

torus-shaped bubble.”

Similar observations were reported by Davidson (2002):

“Instead of growing progressively, the jet in Fig. 5 waxes and wanes

with the jet sometimes disappearing completely.”

However, these studies did not include viscous effects in their boundary integral

calculations, and could not capture the topology changes that would have led to

this kind of splashing and bubble entrapment. Moreover, their simulations are

irrotational, and no vorticity could enter the liquid.

Experimentally, new details keep emerging with improvements in high-speed

video technology. Most recently stunning images have been presented by Zhang

et al. (2012), where they have used X-rays to see through the ejecta to reveal inner

air cavities and ejecta sheets travelling up the drop surface.

Bubble rings and bubbles located around the central bubble entrapment were

previously observed experimentally for a drop impacting on a solid surface (Chan-
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dra and Avedisian, 1991, Thoroddsen et al., 2005, Ootsuka et al., 2005, Dhiman

and Chandra, 2008, Dhiman, 2009, Dhiman and Chandra, 2010, Thoroddsen et al.,

2010, Palacios et al., 2012) or a liquid pool (Thoroddsen et al., 2003, Liow and

Cole, 2007). In numerical simulations, is also appeared naturally in axisymmetric

simulations of Mehdi-Nejad et al. (2003) for a solid surface, and Oguz and Pros-

peretti (1989), Weiss and Yarin (1999), Davidson (2002), Josserand et al. (2010)

for a liquid pool.

However, the early experimental techniques did not have sufficient time resolu-

tion to allow verification of the formation of a torus-shaped bubble before breaking

into bubble rings. Furthermore, there is still no clear experimental evidence that

the mechanism described by Oguz and Prosperetti (1989) can pinch-off toroidal

bubble, called Oguz-Prosperetti bubble rings. They suggested that their mecha-

nism could explain the bubble entrapments observed by Blanchard and Woodcock

(1957), Carroll and Mesler (1981), Esmailizadeh and Mesler (1986), instead of the

Rayleigh-Taylor instability suggested by Sigler and Mesler (1990).

1.3 Thesis outline

The atomization of liquid volumes often involves the creation of liquid sheets,

which subsequently break up into filaments and droplets (Villermaux and Clanet,

2002). Similar breakup dynamics can be observed in the bubble entrapment pro-

cess (Carroll and Mesler, 1981, Lezzi and Prosperetti, 1991, Dorbolo et al., 2005).

Herein, we will focus on the dynamics and breakup of the ejecta sheet for high

impact velocities, and the air sheet stretched between the drop and the pool at

lower impact velocities.

Different instabilities have been described in the literature that could explain

the early splashing, such as the Richtmyer-Meshkov instability (Gueyffier and Za-

leski, 1998, Krechetnikov and Homsy, 2009), the Rayleigh-Plateau capillary insta-



22 Chapter 1. Introduction

bility (Zhang et al., 2010), combinations of them (Krechetnikov, 2010, Agbaglah

et al., 2013), or waves in the sheet (Dombrowski and Fraser, 1954, Taylor, 1959a,b,

Dombrowski and Johns, 1963, Villermaux and Clanet, 2002). The possible origins

of droplets is discussed in Tryggvason et al. (2011).

Herein, we combine the latest high-speed imaging capabilities, with the state-

of-the-art numerical methods for multiphase flows, using the large computational

resources available, to identify new mechanisms leading to splashing and air en-

trapment.

In Chapter 2 we study experimentally the dynamics of the ejecta sheet, and

identify a new mechanism of splashing produced when the ejecta sheet breaks on

contact with the pool.

In Chapter 3, we focus our study on the dynamics of the base of the ejecta sheet,

with extremely high mesh refinement in numerical simulations, demonstrating that

its early interaction with the drop and the pool can splash micro-droplets and

entrap bubble rings.

Chapter 4 confirms experimentally the predictions made by the numerical sim-

ulations in the previous chapter, such as bubble rings entrapments and vorticity

shedding, and also shows the complexity of the three-dimensional instabilities that

follow.

Finally, we show experimentally in Chapter 5 how myriads of micro-bubbles

are produced by the break-up of the extremely thin air film stretched between the

drop and the pool at the lowest impact velocities.

Each chapter is based on a separate paper, specified in the abstract.
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Droplet splashing by a slingshot

mechanism

Figure 2.1: Emergence and bending of the ejecta sheet for a viscous liquid drop
impacting on a deep pool of the same liquid at a velocity U = 4.5 m/s (µ =20 cP,
Re = 1330 and We = 1830). See supplemental video.
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Abstract

When a drop impacts onto a liquid pool, it ejects a thin horizontal sheet of

liquid, which emerges from the neck region connecting the two liquid masses. The

leading section of this ejecta bends down to meet the pool liquid. When the

sheet touches the pool, at an ’elbow’, it ruptures and sends off micro-droplets

by a slingshot mechanism, driven by surface tension. High-speed imaging of the

splashing droplets, suggests the liquid sheet is of sub-micron thickness, as thin

as 300 nm. Experiments in partial vacuum show that air resistance plays the

primary role in bending the sheet. We identify a parameter regime where this

slingshot occurs and also present a simple model for the sheet evolution, capable

of reproducing the overall shape.

This chapter is based on Thoroddsen et al. (2011).
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2.1 Introduction

The splashing of a drop impacting onto a liquid layer is of great importance in

a number of industrial applications, like combustion, spray painting, cleaning and

cooling, as well as natural processes such as air-entrainment, aerosol formation

through atomization and erosion by rain (Yarin, 2006). Recent improvements in

high-speed video imaging have started to allow characterization of the finer details

of these processes (Thoroddsen et al., 2008). This has revealed numerous intricate

new fluid phenomena, not previously observed or understood. One of these is the

emergence of a fine jet of fluid following the initial contact of the impacting drop

with the pool liquid (Weiss and Yarin, 1999, Thoroddsen, 2002, Josserand and

Zaleski, 2003, Howison et al., 2005). Despite their small size these fine structures

can have dramatic effects on the overall flow and the formation of spray through

the breakup of the liquid edge.

2.2 Experimental setup

We use gravity-driven water/glycerin drops, from 0 to 90% glycerin, giving a

viscosity range up to µ =109 cP. The drops are released from a range of nozzle

diameters, generating drops with diameters D from 3.2 to 6.0 mm. The liquid

pool is always deeper than 2D, so that the bottom of the pool does not affect the

early dynamics studied herein. The impact velocity U when the drop hits the pool

is varied by changing the release heights up to 4.3 m. The Reynolds, Weber and

Ohnesorge numbers of the impact are defined as

Re = ρDU

µ
; We = ρDU2

σ
; Oh = µ√

ρσD
=
√
We

Re

where µ and ρ are the dynamic viscosity and density of the liquid and σ is the

surface tension. Gravity plays no role on these very short time-scales (< 2 ms).
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The Re and We are often rearranged to form the splashing parameter (Stow and

Hadfield, 1981, Mundo et al., 1995), encompassing inertia, surface tension and

viscous effects,

K =We
√
Re =

√
ρ3D3U5

σ2µ
.

This parameter arises naturally, from the following mechanistic considerations,

by forming a local Weℓ based on the relevant local length scale being the ejecta

sheet thickness δ ∼
√
νt ∼

√
νD/U and using the ejecta velocity which scales as

uj ∼ U
√
Re based on Thoroddsen (2002) and Josserand and Zaleski (2003). By

substitution this produces Weℓ = ρδu2
j/σ =K.

To capture the details of the rapid ejecta motions, we pursue a two-pronged

approach, using both an ultra-high-speed video camera for sufficient temporal

resolution and a dual-frame PIV camera in combination with Nd-Yag pulsed laser-

sheet, for higher spatial resolution (Thoroddsen, 2002). The video camera (Etoh

et al., 2003) is capable of 1,000,000 fps, while each clip has 102 frames of 260 ×

312 pixels. The time-counter in the online video is in µs.

2.3 Experimental results

Figure 2.2 shows details of the ejecta sheet and the slingshot mechanism, which

splashes secondary micro-droplets. The sheet emerges from the neck region be-

tween the drop and the pool, following the first contact. Then the sheet bends

characteristically downwards and touches the pool (panel 4) at an elbow where

the sheet ruptures (5). The thicker leading tip of the sheet provides a counter-

balance to slingshoot the ruptured end through pulling by the surface tension, by

momentum conservation. This mechanism shoots microdroplets horizontally at

high speed (7-10).

In Fig. 2.3 we show the region of the parameter space where the ejecta sheets

are formed and categorize their evolution. When the ejecta sheet does not break
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Figure 2.2: (Top) Typical ejecta sheet and sketch showing the slingshot mecha-
nism. (Bottom sequence) Ejecta sheet emerges, bends downwards, ruptures as it
touches the pool and then sling-shoots droplets horizontally. Frames are 50, 70,
80, 90, 100, 110, 120, 130, 140 & 170 µs after impact. See supplemental video.

in fine droplets at ejection (at low Oh), its evolution is clearly determined by the

K parameter. For K < 2 × 104 the sheet does not bend toward the pool. For K

between 2×104 and 5.5×104 it bends but does not reach the pool surface, whereas

for K > 5.5 × 104 it touches the pool surface. In this case, for Oh < 2 × 10−2 the

tip of the sheet breaks before reaching the pool (▲), while for larger Oh (▼▽), the

slingshot mechanism is observed, see Fig. 2.2. Deegan et al. (2008) have similarly

shown that K-scaling works for the crown breakup.

In the slingshot regime, the ejecta bends down sooner for higher values of K

and hits the pool closer to the impact center. When the sheet elbow touches the

pool surface, we measure the height of the trapped toroidal tent of air, H in the

inset of Fig. 2.4 and in Fig. 2.7. This height scales very well with K over a range

of 3 different fluid viscosities and 2 drop diameters.

Figure 2.5 shows the characteristic velocity of the droplets Us which are sling-

shot horizontally. Their speed increases linearly with larger K when Oh is kept
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Figure 2.3: Characterization of the ejecta sheet dynamics:
(∎) Irregular broken sheets and spray.
( ) Ejecta sheets do not bend towards pool.
(⧫) Sheets bend downwards, but do not reach the pool.

For both triangles, the sheet bends downward and reaches the pool:
(▲) Sheet breaks before impacting the pool and no slingshot.
(▼▽) Slingshot of fine droplets.
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Figure 2.4: Height of the ejecta sheet H when the elbow touches the pool, nor-
malized by the drop radius R, vs K.

(#) Oh = 0.017, µ = 10 cP, D = 4.4 mm
(∎) Oh = 0.023, µ = 14 cP, D = 4.4 mm
(▽) Oh = 0.044, µ = 30 cP, D = 5.7 mm
(▲) Oh = 0.049, µ = 30 cP, D = 4.4 mm

Lower inset: The ejecta sheet for large value of K, where it touches the pool
∼ 50 µs after impact, when the drop has penetrated only 7% of R into the pool.
Bar is 0.5 mm.
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Figure 2.5: Slingshot velocity Us of droplets and the corresponding film thickness
δ based on the relative Taylor-Culick law. For µ = 75 cP and Oh = 0.049 (open
symbols). Filled symbols show results for the largest impact velocity U = 7.8 m/s
and µ =109 cP (Oh = 0.18). Each data point is an average of 3 experimental mea-
surements (2 for the first point on the left). The extremal values are represented
by the error bars.

constant (Oh = 0.049, moving vertically in Fig. 2.3). The well-known Taylor-

Culick law gives the translational velocity of a free liquid edge as UTC =
√
2σ/(ρδ),

where δ is the thickness of the liquid sheet. However, the Taylor-Culick law refers

to the velocity of the edge relative to the internal velocity in the sheet. While we

expect the sheet to start from rest as it ruptures, the slingshot further accelerates

the edge as it approaches the tip, which is moving forward at Utip. Therefore, we

use Utip as an estimate of the sheet velocity and Us for the absolute retraction

velocity of the film. We can thereby estimate UTC = Us − Utip and thus the sheet

thickness at the location where it ruptures, i.e. δ = 2σ/ρ(Us−Utip)2 (Fig. 2.5). This

suggests that the sheet still remains intact while the film is as thin as 300 nm and

only ruptures when it touches the pool. Figure 2.6 shows higher-resolution dual-

frame images of the breakup of the sheet, where the film breaks up into tendrils,

with thicker heads, which subsequently break up into a spray of micro-droplets.
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Figure 2.6: Dualframe PIV camera images of ejecta sheet breakup in tendrils and
slingshot droplets, Re ≃ 3500. Times between image pairs (dt) are (a) 50; (b) 35;
(c) 50 and (d) 100 µs. The arrow in lower panel of (a) points out the rupture of
the film as it touches the pool. Bar is 1 mm.

Estimates of δ based on the tendril diameters also give submicron film thicknesses.

The bending of the sheet towards the pool is produced both by the kinematics

of ejection, as is shown in the below model, but more importantly by air resistance.

This was demonstrated by experiments in partial vacuum. Figure 2.7 compares

two impacts, where only the air pressure Pg is changed, by a factor of 5, showing

that at reduced air pressure the sheet does not bend downwards, but rather rises

away from the pool. Another indication of the effect of the air, is that as the

elbow approaches the pool surface, it is strongly accelerated downwards, due to

the enclosure of the rising torus of air, which in combination with incompressibility

demands that air be pulled under the elbow. This generates Bernoulli suction
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pressure as the film closes to entrap the air torus (Thoroddsen et al., 2008, Deegan

et al., 2008), with a similar mechanism as the bubble separation described in

Gordillo et al. (2005) and Gekle et al. (2010). Figure 2.8 tracks the motion of the

elbow next to the tip of the ejecta, over a range of air pressures, highlighting the

central role of the air resistance.

2.4 Theoretical modeling

The initial ejecta shown herein are characterized by highly curved shapes.

Similarly curved forms can be produced by pure kinematics. This is perhaps most

clearly demonstrated by a simple geometric model of a sheet ejected by a solid

sphere of radius Rsp impacting onto a flat free surface with velocity Vsp, see inset

of Fig. 2.9(a). In this model the ejection velocity Ve is assumed to be directed

tangentially to the sphere at its intersection with the original liquid surface, with

a speed proportional to the normal velocity of the sphere at this contact line,

i.e. Ve = CVspcos(θ), where C is the proportionality constant. Experimental

(Thoroddsen, 2002) and theoretical results (Josserand and Zaleski, 2003) show

that C = C ′Re1/2, with C ′ ≃ 0.14. If the initial contact occurs at time t = 0 and the

surface remains flat, then the location of the contact point moves outwards along

the flat surface as xc(t) =
√
Vspt(2Rsp − Vspt). The radial velocity of the contact

point

Vc(t) =
dxc

dt
=

Vsp(Rsp − Vspt)√
Vspt(2Rsp − Vspt)

∝ 1√
t

is initially infinite, dictated by the sphere geometry. The jetting velocity, in the

model, is however finite: CVSp. More realistic model, suggests that the sheet only

emerges when this velocity exceeds the outwards motion of the contact point. This

occurs when Ve = Vc, i.e. at te ≃ Rsp/2C2Vsp. This point is marked by a bead on

the curve, giving the initial angle of ejection. By pure kinematics we let each

fluid element move in a straight line after being ejected. The shape of the ejected
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Figure 2.7: Effect of air pressure on the ejecta shapes. Impact of a 73% glyc-
erin/water drop (D = 5 mm) onto a liquid layer, for different air pressures, for
Re ≃ 820 and We = 2700. (a) Pg = 0.21 bar and (b) Pg = 1.0 bar. Times shown
are ≃ 0, 150, 300, 450, 600, 850, 1250 µs. The scale bar is 1 mm.
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Figure 2.8: Effect of air pressure on the trajectory of the edge of the ejecta sheet.
We follow the elbow just behind the tip, as this point touches the pool first. The
curves correspond to air pressures of (from bottom to top curve) Pg = 1.0, 0.74,
0.47, 0.34, 0.28, 0.14 (broken line) bar. Data is for 58% glycerin/water mixture at
Re = 2450 and We = 2700. The distances are normalized by the drop radius.
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sheet can now be observed at time τ akin to the way one describes a streakline in

unsteady flow, with t as the parameter to identify each fluid element. The location

of fluid element ejected at t and observed at time τ is

x(t, τ) = xc(t) + Vecos(θ) (τ − t) (2.1)

y(t, τ) = Vesin(θ) (τ − t) (2.2)

where θ is a function of t and t < τ . Next we substitute for Ve and without loss

of generality we normalize the space coordinates by Rsp, the velocity by Vsp and

time by Rsp/Vsp. These equations thereby become:

x(t, τ) =
√
t(2 − t) +C(1 − t)2(τ − t) (2.3)

y(t, τ) = C(1 − t)
√
t(2 − t)(τ − t) (2.4)

This produces a variety of space-curves, which help explain why the sheet

appears to bend towards the pool. Figure 2.9 shows kinematic shapes for a few

values of τ and a fixed C. Related results have be obtained by Peregrine (1981) for

circular jet impacting a shallow liquid layer. However, the experiments in partial

vacuum show that the air resistance is instrumental in promoting catastrophic

bending, when considering the air resistance for motions perpendicular to the

sheet. This is shown in Fig. 2.9(b) where we add air resistance to the component

of the motion which is normal to the sheet Un, based on high Re form-drag ∝ U2
n,

giving normal deceleration∝ ρairU2
n/(ρδ). Using the same initial ejecta conditions,

when we integrate the motions including this drag, we see the axisymmetric sheet

deform into shapes more similar to the experiments.
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Figure 2.9: (a) Kinematic model of the sheet evolution for C = 14, plotted for
∆τ = 0.015. (b) Evolution of the curved liquid sheet, subjected to air resistance,
but ignoring viscous stress and surface tension, for Rsp = 2.5 mm, Vsp = 4 m/s
and δ = 30 µm. The drag coefficient is fixed at Cd = 2. The tip is kept slightly
thicker to mimic the observed bead produced by surface tension. Shapes shown
until 200 µs.
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Conclusion

In this letter we investigate a new mechanism of micro-droplet splashing through

rupturing of ejecta sheets, which differs from earlier mechanisms (Rioboo et al.,

2001, Yarin, 2006, Roisman et al., 2006, Villermaux, 2007, Lhuissier and Viller-

maux, 2009) and produces much smaller droplets than the typical crown breakup.

The influence of the air pressure arises here through changes in the gas density and

not by the compressibility of the air, as proposed by Xu et al. (2005) for droplet

splashing on a solid surface. This is clear as the value of the Mach number for the

ejecta sheet is Ma ∼ 0.1 and the fact that compressibility effects scale as Ma2. The

gas pressure does not affect the emergence of the ejecta sheet which is determined

by the early dynamic pressure inside the liquid, but greatly effects the bending of

the sheet. It remains to be determined how the gas density ρg ∝ P −1g can be incor-

porated into the non-dimensional description of the phenomenon. Keep in mind

that the gas dynamic viscosity is insensitive to the air pressure. Numerous other

intriguing but robust ejecta shapes have been observed (e.g. Fig. 8 in Thoroddsen

et al. (2008)) which require further study to shed new light on the dynamics of

rapidly stretched submicron sheets of liquid.
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von Kármán vortex street within an

impacting drop

Figure 3.1: Vortex street developing during the early contact between the drop
and the pool, for K = 7.44 × 104 and Re = 3552, at t∗ = 0.084.
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Abstract

The splashing of a drop impacting onto a liquid pool produces a range of differ-

ent sized microdroplets. At high impact velocities, the most significant source of

these droplets is a thin liquid jet emerging at the start of the impact from the neck

that connects the drop to the pool. We use ultrahigh-speed video imaging in com-

bination with high-resolution numerical simulations to show how this ejecta gives

way to irregular splashing. At higher Reynolds numbers, its base becomes unsta-

ble, shedding vortex rings into the liquid from the free surface in an axisymmetric

von Kármán vortex street, thus breaking the ejecta sheet as it forms.

This chapter is based on Thoraval et al. (2012b).
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3.1 Introduction

Liquid drop splashing is part of our daily lives, from the morning shower to

natural rain (Rein, 1993, Yarin, 2006). While it has been studied for more than

one hundred years (Worthington, 1882), it is only recently that advances in high-

speed imaging techniques (Etoh et al., 2003, Thoroddsen et al., 2008) have revealed

its early dynamics (Thoroddsen et al., 2011, Zhang et al., 2012). Splashing refers

herein to the breakup of a drop into smaller droplets during impact. Understanding

the underlying mechanism that produces the smallest droplets is important, for

example, for the number of microscopic aerosols which remain when those satellite

droplets evaporate. Such aerosols affect human health and can act as nucleation

sites during cloud formation.

For high-speed drop impact on a liquid pool, the ejecta sheet is the first stage

leading to splashing. It was first observed in the inviscid numerical simulations

of Weiss and Yarin (1999) and in the experiments of Thoroddsen (2002). When

the drop impacts at higher velocity, the speed of these ejecta sheets increases and

they become thinner. The radial stretching of the sheets reduces their thickness

even further, and they can remain intact even at thicknesses well under a micron

(Thoroddsen et al., 2011). When they eventually rupture, they can produce a

myriad of very fine spray droplets. However, this mechanism does not continue

for ever; at a critical Reynolds number, the smooth ejecta gives way to a more

random splashing, which counter-intuitively may produce fewer small droplets.

3.2 Experimental exploration

To understand the mechanisms leading from continuous ejecta sheets to ir-

regular splashing, a systematic study of the early dynamics was conducted with

ultrahigh-speed video imaging, over a range of impact velocities U , liquid viscosi-

ties µ and droplet diameters D. The liquid viscosity was varied in our experiments
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by using glycerin/water mixtures of various mass fractions: 0, 40, 50, 60, 65, 70,

75, and 80% of glycerin. The impact velocity was changed by releasing the drops

from between 0.16-2.16 m height. By varying the circular steel nozzle size, we

used four different drop diameters: 3.2, 4.6, 5.1, and 5.7 mm. Further imaging

details of the experiments can be found in Thoroddsen et al. (2011).

Figure 3.2 shows a classification of the results in terms of Reynolds number

Re = ρDU/µ, where ρ is the liquid density, and splashing parameter K, which

relates to the Weber number We = ρDU2/σ, where σ is the surface tension, as

K = We
√
Re. We are interested here in the higher K regime, where splashing

occurs (Stow and Hadfield, 1981, Mundo et al., 1995, Cossali et al., 1997).

The classification in Fig. 3.2 focuses on the ejecta shapes. In the lower range

of Re (more viscous liquids), a smooth ejecta sheet emerges between the drop

and the pool ( ). However, in the highest range of Re, isolated droplets emerge

from the neck, followed by a disturbed liquid surface, and no coherent ejecta

can be identified; i.e., irregular splashing occurs (∎). In the intermediate regime

(Re ≈ 2000 − 6000), the ejecta sheets show a large variety of repeatable shapes.

We have grouped them into 3 classes. At lower K (lower impact velocities, ⧫),

surface tension prevents the formation of an ejecta sheet. However, we observe

some protrusions travelling up along the side of the drop, without ejection of

droplets outwards (Zhang et al., 2012). At higher K (▲), the ejecta sheet is more

developed; however, it stays attached to the drop, stretching the ejecting sheet

between the expanding tip of ejecta and the drop entering the pool. This regime

is called quartering. This stretching can lead to the explosive rupturing of the

sheet, which generates fast droplets of a large range of sizes through slingshot

(Thoroddsen et al., 2011), by surface tension pulling on a free liquid sheet. In the

upper range of K (▼▽) we observe an intriguing phenomenon where the freestanding

sheet interacts strongly with the downward-moving drop surface. This is shown

in the sequence of Fig. 3.3(a), referred to as the bumping of the ejecta. The ejecta
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Figure 3.2: Characterization of the ejecta regimes.
( ) Smooth ejecta sheet (t = 145 µs, Re = 1410, K = 5.62 × 104).
(∎) Irregular splashing (t = 360 µs, Re = 1250, K = 7.11 × 104).
(▼▽) Bumping (t = 180 µs, Re = 3550, K = 7.44 × 104).
(▲) Quartering (t = 630 µs, Re = 2810, K = 3.86 × 104).
(⧫) Protrusions rising up along the side of the drop (t = 630 µs, Re = 2410,

K = 1.48 × 104).
The scale bars are all 500 µm long.
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is strongly bent by the drop, and then folds at its apex. Overall snapshot of a

bumping ejecta was included in Thoroddsen et al. (2008) [their Fig. 8(c)].

Those experimental results clearly show the effect of the Reynolds number

on the transition toward irregular splashing. Moreover, the results show new

dynamics of the ejecta sheet interacting with the drop. This suggests that those

interactions could underlie the irregular splashing.

3.3 Numerical simulations

3.3.1 Numerical method

To test this idea, we have chosen to reproduce the impact by numerical simula-

tions. It is only recently that numerical simulations managed to identify the ejecta

sheet (Weiss and Yarin, 1999, Josserand and Zaleski, 2003, Coppola et al., 2011),

because of the extreme range of scales involved and the challenges of interfacial

flow simulations (Tryggvason et al., 2011). The intricate shapes observed herein

were beyond reach in previous studies.

We use the freely available code Gerris (Popinet, 2009, Agbaglah et al., 2011,

Popinet, 2011) for its high parallelization and dynamic adaptive grid refinement,

which allow us for the first time to reach enough precision to fully resolve the

dynamics of the ejecta. This code uses the Volume-Of-Fluid method to solve the

incompressible Navier-Stokes equations. Furthermore, we start the simulation be-

fore impact, thus capturing the air-cushioning effect (Xu et al., 2005, Driscoll and

Nagel, 2011, Duchemin and Josserand, 2011, Mandre and Brenner, 2012, Kolinski

et al., 2012, van der Veen et al., 2012).

The same parameters as in the experiments were used for the numerical sim-

ulations. The air has a density of 1.21 kg/m3, and a viscosity of 1.81 × 10−2 cP .

Surface tension was kept constant, at 67.4 mN/m, neglecting the small variations

with water/glycerin mixture fraction. Gravity was also taken into account with
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a b

Figure 3.3: Comparison between experiment and axisymmetric numerical simula-
tion for a bumping case. U = 4.04m/s, D = 4.6mm, Re = 3.55×103, K = 7.44×104.
From top to bottom, observations at time 30, 80, 130, 180, and 230 µs after con-
tact. (a) Experimental observation. The static dark points correspond to dust
on the camera sensor. The video was taken at 200 000 frames per second. (b)
Numerical simulation of the drop impact for exactly the same times after impact,
same scale and same field of view as in the experiment presented in (a). In the
last image, the leading part of the ejecta sheet becomes smaller than the grid
size by stretching between the apex and the tip and thus breaks into nonphysi-
cal droplets. The axisymmetric simulations cannot include the three-dimensional
effects, such as the breakup of the tip observed in (a). The scale bar is 500 µm
long. Supplemental videos show the two evolutions.
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g = 9.81 m/s2, and the drop diameter was kept constant D = 4.6 mm. The Re and

K parameters were varied by changing the liquid viscosity, and impact velocity,

in a similar way as in the experiments. More details on the numerical simulations

are given in Appendix A.

3.3.2 Comparison with experiments

Axisymmetric simulations faithfully reproduced all of the experimentally ob-

served features, as we demonstrate in Fig. 3.3 for the bumping case. The shape

of the drop in the simulation is perfectly spherical, ruling out the hypothesis that

small deviations from spherical drop shapes in the experiments could be respon-

sible for the drop interaction with the ejecta sheet.

Numerical simulations even suggest that the bumping event (when the drop

impacts on the ejecta sheet) is responsible for the entrapment of a bubble ring

between the ejecta sheet and the drop, as shown for example in the third line of

Fig. 3.3.

3.4 Transitions to irregular splashing

To study the transition to irregular splashing we increase Re, while keeping

K constant, from a smooth ejecta sheet [Fig. 3.2( )] to irregular splashing (∎).

This was done for two different K values, corresponding to the bumping (▼▽) and

quartering (▲) regimes.

We define the base of the ejecta sheet as the points of maximum curvature,

and the angle θ it makes with the horizontal [Fig. 3.4(a)]. The curvature of the

tracer isolines was estimated by fitting a Bézier curve of order 3 through 5 points.

For smaller curvature cases, the number of points was increased to 11, improving

the estimate of the position of maximum curvature. This allowed the following

measurements of Fig. 3.4 to be extracted automatically by an octave script.
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Figure 3.4: Evolution of the base of the ejecta sheet with Re at K = 7.44 ×
104. Quantities are nondimensionalized by the drop diameter D, the drop impact
velocity U and the drop entry time τ = D/U . (a) Definition sketch. The base of
the ejecta sheet is defined as the segment between the two points of maximum
curvature of the interface (T on the drop side and B on the side of the pool). The
angle of the ejecta sheet θ is the angle between the horizontal and the normal to the
base. (b) Evolution of the ejecta base radial position rK , defined as the distance
from the axis of symmetry to the middle of TB in (a), vs the nondimensional time
t∗ = t/τ , for Re from 1000 to 6000. The solid curve is 1.23rJ , where rJ =

√
t∗(1 − t∗)

is the radius where an undisturbed drop would meet the pool. (c) Evolution of θ
(in degrees) for Re from 1000 to 6000. The sharp drops correspond to bumping
events, as the position of T suddenly moves up along the drop side. (d) Same
curves as (c), where the angle is scaled by

√
Re. (e,f) Evolution of the maximum

positive vorticity (red) and maximum absolute negative vorticity (blue) in the
liquid near the ejecta base for Re = 1000 (e) and Re = 4000 (f). The positive
maximum is located near T, and the negative maximum near B.
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The position of the base of the ejecta rK [Fig. 3.4(b)] follows very closely the

geometric relation predicted by Josserand and Zaleski (2003) rK = CrJ , indepen-

dent of Re, where rJ is the radius where an unperturbed drop would meet the

original pool surface. A simple geometric model (Thoroddsen et al., 2011) sug-

gested that θ increases as θ ∼
√
t∗, where t∗ is the time nondimensionalized by

τ = D/U , whereas the simulations show that θ grows linearly before bumping

[Fig. 3.4(c)]. However, the ejecta rises faster for higher Re. The collapse of the

curves in Fig. 3.4(d) shows that θ grows at a rate proportional to
√
Re. The angle

of the ejection-velocity vector at the middle of the base also follows a similar trend,

and increases proportionally to
√
Re.

At lower Re, θ increases slowly enough for the ejecta to escape the drop.

However, from Re ≳ 3000, the ejecta sheet rises too fast, thus impacting the

drop surface. The resulting bumping sharply decreases θ. This interaction of

the drop and the ejecta sheet observed experimentally occurs earlier at higher

Reynolds numbers, eventually breaking the ejecta sheet. This is consistent with

the interpretation that this interaction is responsible for the irregular splashing

observed at higher Re.

Therefore, the bumping and the early irregular splashing arise from the dy-

namics in the neck region rather than the subsequent deformation of the ejecta

sheet itself. Thus, bumping is the illustration of a new type of instability leading

to early irregular splashing.

3.4.1 Vorticity production

Vorticity also plays an important role in the dynamics of the ejecta sheet

[Figs. 3.4(e) and 3.4(f)]. For a stationary two-dimensional free surface, vorticity

is generated at the free surface proportionally to the interface curvature κ and

the tangential flow velocity q: ω = 2κq (see for instance Batchelor (2000, § 5.14),

and Peck and Sigurdson (1994), Cresswell and Morton (1995) for low We drop
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impacts). This vorticity is then diffused into a thin boundary layer, which can

separate to enter the liquid.

Numerical simulations indeed show concentrated vorticity near points T and B

at the base of the ejecta as the flow moves faster around the highly curved base to

enter the ejecta (Fig. 3.5). At the early stage of the ejecta formation, both sides of

the base produce a similar strength of vorticity [Fig. 3.7(a)]. This initial vorticity

scales as
√
Re as observed previously by Josserand and Zaleski (2003). However,

the difference in vorticity (absolute values) between the two sides increases initially

linearly with time, before decreasing again. Moreover, this difference is higher for

larger Re [Fig. 3.4(f)].

3.4.2 Vorticity shedding into the liquid

By looking closely at the neck region during the impact, we can identify funda-

mental changes in the vorticity structure as Re is increased (Fig. 3.5). Note that

in Fig. 3.5(a) most of the liquid in the sheet originates from the pool, in agree-

ment with dye visualizations of Thoroddsen (2002). For the lower range of Re

[Figs. 3.5(a) and 3.5(d)], the vorticity stays concentrated near the free surface at

the neck of the ejecta sheet. As there is stronger vorticity generated at the top of

the ejecta base, a vorticity layer of one sign separates the drop and the pool liquids

but it remains stable. K affects the shape of the outer part of the ejecta sheet,

as we observe by comparing Figs. 3.5(a) and 3.5(d), consistently with experimen-

tal observations of Thoroddsen et al. (2011). For intermediate Re, the interface

remains stable in its early evolution. In the bumping case (b), the rising ejecta

sheet contacts the downward-moving drop surface. This creates a shear instabil-

ity, generating a toroidal vortex structure around the entrapped bubble. In the

quartering case (e), the ejecta sheet leaves the neck region to climb up the drop,

pulled by higher surface tension. This also creates a shear instability between the

climbing liquid from the pool and the drop liquid moving down, forming a row
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Figure 3.5: Vorticity structures during drop impact near the transition regime
between a smooth ejecta sheet and irregular splashing. In the top images we
differentiate the liquids originating from the drop (red) and from the pool (blue),
from the air (green), as can be done in experiments by seeding one or the other with
fluorescent dye (Thoroddsen, 2002). The bottom images show the corresponding
vorticity in the liquid. (a-c) Bumping transition, with K = 7.44×104, for increasing
Reynolds numbers: Re = 1000, 3552, and 14500, respectively. (d-f) Quartering
transition, with K = 3 × 104, for Re = 1000, 3552, and 10000, respectively. To
allow direct comparison, the images of the first row (a-c) correspond to the same
nondimensional time (t∗ = 0.343, 0.150, and 0.066, respectively) as the ones in
the second row (d-f), with the same field of view. (c) and (f) correspond to a
water drop of D = 4.6 mm impacting at 2.84 m/s and 1.98 m/s respectively. In
both cases, a vortex street develops. However, bubbles rings are entrapped only
at higher splashing parameter (f). (g) Details of the early vortex shedding in the
same case as (c), from t∗ = 1.02 × 10−2, and then a constant ∆t∗ = 4.5 × 10−4. The
period of this shedding shown here is approximately 3 µs, over a radial distance
of 50 µm. The scale bars are 0.1D long for (a-f), and 0.01D long for (g).
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Figure 3.6: Vortex street in the same conditions as Fig. 3.5(c). The colours repre-
sent the strength of the vorticity in the liquid and the air. The vectors show the
velocity field. The thick line is the interface air/liquid, while the thinner line is
the interface between the liquid from the drop and the liquid from the pool.

of vortex rings of the same sign. These vortices near the free surface leave their

signature (Yu and Tryggvason, 1990) by creating waves below the rising sheet, a

feature also observed experimentally (Fig. 3.2) (Zhang et al., 2012). However, all

such vortical effects are absent from inviscid theory and simulations (Weiss and

Yarin, 1999, Howison et al., 2005).

3.5 Oscillations of the ejecta sheet at higher Re

3.5.1 Vortex street

At even higher Re [Figs. 3.5(c), 3.5(f) and 3.6], vorticity is shed behind the

base of the ejecta sheet, in a way reminiscent of the von Kármán vortex street,

here forming alternating-sign vortex rings. For the first 7 shedding cycles, the

local Reynolds number based on the radial speed and width of the neck takes

value around 70 and the Strouhal number St = fD/U is around 0.11 ± 0.05, in
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good agreement with related Kármán streets behind a cylinder.

During the early shedding [Fig. 3.5(g)], surface tension effects are higher be-

cause of the sharper surface geometry. As the angle of the neck increases, the

amplitude of the oscillations increases. The ejecta can then climb on the drop

at lower K (f) or impact alternatively on the drop and the pool (c) in a similar

way to the bumping, entrapping a row of bubble rings (Weiss and Yarin, 1999,

Davidson, 2002). Four bubble rings can be clearly identified in Fig. 3.5(c), with

a fifth one being created. Only well-resolved bubbles and droplets (larger area

than 30 cells) are kept in the numerics, suggesting that smaller bubbles could be

entrapped earlier.

3.5.2 Onset of Vortex Shedding

An intriguing question remains, i.e., what causes the oscillations of the ejecta

base? The analogy with the vortex shedding of a cylinder suggests that vorticity

can be responsible for the oscillations of the base (Williamson and Govardhan,

2004) and would be present even without them. However, those oscillations will

amplify the vorticity difference between the two sides of the base through surface

curvature, reinforcing the oscillations and the separation of individual vortices.

Therefore, we observe an unstable mode that involves both the jet and the vortex

street.

At a lower Reynolds number than the one shown in Fig. 3.5(c), small oscil-

lations can be identified in the early evolution of the ejecta sheet [Fig. 3.7(a)].

They are visible also in the early times of Figs. 3.4(c) and 3.4(d), with less details.

However, they stop rapidly, and do not lead to the breakup of the ejecta sheet

[Figs. 3.7(b) and 3.7(d)].

We conclude that vorticity layers can be shed, but as soon as these layers start

to break up into isolated vortices the base of the ejecta starts to oscillate. However,

the transition onset to shedding is gradual, and the first oscillations at the base
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are not sufficiently strong to break up the jet, but rather make it wiggle, leaving

slight bends in its shape [see Fig. 3.7(b)].

The analogy for vortex shedding behind solid cylinders, is the formation of

symmetric separation bubble, which subsequently at some critical Re starts oscil-

lating sideways starting the vortex shedding. The strong sideways forces due to

this shedding can then feed back to the solid structure, through aeroelastic effects,

making high-rise buildings sway from side to side.

Conclusions

From systematic experimental observations, reproduced with axisymmetric

simulations, we have detailed a new mechanism explaining the irregular splashing

of a water drop. Previously studied mechanisms have described the droplet sep-

aration from the rim of the ejecta (Gueyffier and Zaleski, 1998, Weiss and Yarin,

1999, Zhang et al., 2010), or the wave-driven instability of a liquid sheet driven by

the surrounding air (Dombrowski and Johns, 1963, Villermaux and Clanet, 2002).

Our mechanism, however, explains the breakup of the ejecta sheet by a fundamen-

tally different mechanism, based on the destabilization of its base, through vortex

shedding from the free surface.
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Figure 3.7: Vorticity structures under the drop for K = 7.44 × 104 and Re = 6000,
i.e., slightly below the critical Reynolds number for irregular splashing. (a) Time
sequence showing the small oscillations of the base of the ejecta sheet, at the
same location as Fig. 3.5(g), starting at t∗ = 1.02 × 10−2, and then with constant
∆t∗ = 4.5 × 10−4. The color scale is also kept identical to Fig. 3.5(g) to show the
weaker levels of vorticity. (b) At a later time (t∗ = 1.82×10−2), small oscillations are
visible on the ejecta sheet, at the same locations as some vorticity shed from the
base. (c) Larger view of (b), showing the first vorticity oscillations shed behind.
The base of the ejecta sheet does not oscillate after this time. (d) Later evolution
at t∗ = 2.95 × 10−2. The first vortices shed are diffusing, and the ejecta sheet does
not oscillate anymore. The thin line on the left corresponds to the air disk trapped
below the drop, later contracting into a bubble [see also Fig. 3.5(d)]. The scale
bars are all 0.02D long.
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Drop impact entrapment of bubble

rings

(b)(a)

Figure 4.1: Bubble rings entrapped between a water drop and a thin film of
ethanol within 100 µs after the first contact (Re = 11600, α = 0.86, δ ≃ 40 µm).
(a) Overview of bubble rings and vortices observed below the drop. The side of
the drop can be observed on the top and bottom right corners. The later dynamics
shows that the third dark ring from the center contains a bubble ring, that cannot
be identified here. (b) Magnification twice larger, showing the details of the first
vortices and bubble rings. The bubbles in the smallest bubble ring are about 3 µm
in diameter. Scale bars are 500 µm long.
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Abstract

We use ultra-high-speed video imaging to look at the initial contact of a drop

impacting onto a liquid layer. We observe experimentally the vortex street and

the bubble-ring entrapments predicted numerically, for high impact velocities, by

Thoraval et al. (2012b). These dynamics occur mostly within 50 µs after the first

contact, requiring imaging at 1 million frames/sec. For a water drop impacting

onto a thin layer of water, the entrapment of isolated bubbles starts through

azimuthal instability, which forms at low impact velocities, in the neck connecting

the drop and pool. For Re above about 12 000, up to 10 partial bubble-rings have

been observed at the base of the ejecta, starting when the contact is ∼ 20% of the

drop size. More regular bubble rings are observed for a pool of ethanol or methanol.

The video imaging shows rotation around some of these air cylinders, which can

temporarily delay their breakup into micro-bubbles. The different refractive index

in the pool liquid reveals the destabilization of the vortices and the formation

of streamwise vortices and intricate vortex tangles. Fine-scale axisymmetry is

thereby destroyed. We show also that the shape of the drop has a strong influence

on these dynamics.

This chapter is based on Thoraval et al. (2013a).
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4.1 Introduction

The impact of a drop onto a pool surface has been studied for over a century,

but revolutionary improvements in high-speed video technology (Etoh et al., 2003)

have recently opened up this canonical geometry to renewed scrutiny. This applies

especially to the earliest contact between the drop and the pool, where intricate

details have emerged and play a crucial role during air entrapment and splashing

(Yarin, 2006, Thoroddsen et al., 2008).

The impact of a drop always entraps a bubble under the centre of the drop,

as a disk of air is produced by the lubrication pressure and rapidly contracts into

a bubble at the centre (Thoroddsen et al., 2003, Liow and Cole, 2007, Korobkin

et al., 2008, Mani et al., 2010, Hicks and Purvis, 2010, Driscoll and Nagel, 2011,

Kolinski et al., 2012, van der Veen et al., 2012). Following this central air disk

entrapment on a liquid pool, the outer contact forms a neck, which emits an ejecta

sheet for sufficiently large Reynolds numbers (Thoroddsen, 2002, Weiss and Yarin,

1999, Davidson, 2002, Josserand and Zaleski, 2003, Howison et al., 2005). These

ejecta are the source of the finest spray droplets (Thoroddsen et al., 2011, Zhang

et al., 2012), which is of relevance to numerous processes, such as combustion and

aerosol formation.

However, at even larger impact energy, these smooth ejecta give way to ran-

dom splashing of small droplets, see Thoroddsen (2002). Numerical simulations

by Thoraval et al. (2012b) have shown that the base of the ejecta can become

unstable, bending up and down as the free surface sheds alternate sign vortex

rings into the liquid, and often entrapping bubble rings. These bubble rings al-

ternate between the top and bottom sides of the ejecta. This air entrapment has

important applications for inkjet printing and gas transfer at the liquid-air inter-

face (Wanninkhof et al., 2009, Czerski et al., 2011), as it can generate hundreds

of micro-bubbles. This regime is the focus of the current investigation.
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Figure 4.2: (a) Imaging setup. We use backlight imaging of the drop impact from
below, through a glass plate. The drop acts as a lens focusing the illumination to
a limited area on the observation window. Several lights were used in some cases
to obtain a larger illuminated area. (b) Camera viewing area shown in bottom
view, corresponding to the area in Fig. 4.12(c).

Very recent experiments by Castrejón-Pita et al. (2012) have used side-view

and laser-induced fluorescence to verify the presence of the von Kármán street for

conditions similar to those in Thoraval et al. (2012b). Herein we show the first

experimental observations of the formation and breakup of the bubble tori.

The main axisymmetric features of the vortex street and bubble rings entrap-

ments are observed experimentally. However, three-dimensional effects rapidly

break the axisymmetry. Herein, we show that even at rather modest impact ve-

locities, azimuthal instabilities can appear in the neck between the drop and the

pool. Imaging using two different liquids also reveals the shedding of streamwise

vortices and their intricate dynamics, similar to three-dimensional instabilities

of the cylinder wake (Williamson, 1996), or the shear layer (Lasheras and Choi,

1988). These intricate structures have perhaps escaped earlier experimental notice

as they develop in a sub-millimetre region and evolve in less than 50 µs.
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4.2 Experimental Setup and Numerics

4.2.1 High-Speed Video Imaging

In this work we image drop impacts onto shallow pools through a bottom glass

plate (Fig. 4.2). Limited imaging (only in Fig. 4.19(a,b)) was done from the side

above the pool surface. We use identical water drops in the entire study, while

changing the composition of the pool liquid. The pool liquids tested are water,

ethanol and methanol which are all highly miscible with the water drop. The

liquid properties are given in Table 4.1. The difference in refractive index between

the water drop and the ethanol or methanol pools allows us to image the flow

structures as they distort the interface between the two liquids.

The use of shallow pools, or thin films, is dictated by the need to change

the pool liquid following every impact as well as by the optical setup, where

the limited focal distance of the long-distance microscope rules out bottom views

through deep pools. The liquid was contained by a 10 cm diameter ring glued

onto the glass plate. The pool depth δ was varied from about 25 µm to 1 mm.

It was estimated by controlling the volume of liquid with a syringe and assuming

a uniform spreading inside the container. To minimize the effect of evaporation,

the impact experiment was done within 10 seconds after spreading the liquid.

Here we use a long-distance microscope for magnifications up to about 15 for

maximum pixel resolution of ∼ 4.1 µm/px, when using the Shimadzu Hypervision

CCD video camera (Etoh et al., 2003), at frame rates up to 1 million fps. Some

of the imaging was also done at a lower frame rate with a Photron SA5 CMOS

camera, with a magnification up to 10 and maximum pixel resolution ∼ 2 µm/px.

Using thin bottom layers restricts the vertical motion of the interface between

the drop and the pool liquid during the impact, thereby making well-focused

imaging easier with the limited focal depth. For further optical/triggering details

see Thoroddsen et al. (2012b).
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The drop is pinched from a 3 mm nozzle, to produce an effective drop diameter

of D = (DvD2
h)1/3 = 4.67 mm, where Dv and Dh are the instantaneous vertical and

horizontal diameters. We characterize the impact conditions by the Reynolds

number Re, the Weber number We and the splashing parameter K, defined as:

Re = ρDV

µ
, We = ρDV 2

σ
, K =We

√
Re,

where ρ, µ and σ are respectively the density, dynamic viscosity and surface tension

of the drop liquid, and V the drop impact velocity.

The drop velocity V was characterized in a separate set of experiments. It was

then modelled by the velocity of a sphere experiencing constant drag (Pumphrey

et al., 1989, Elmore et al., 1989, Pumphrey and Elmore, 1990, Saylor and Grizzard,

2004):

V = VT

¿
ÁÁÀ1 − exp(−2g (h −D − h0)

V 2
T

), (4.1)

where gravity is g = 9.81 m/s2, with the fitting parameters VT = 9.11 m/s and

h0 = 2.1 mm. VT corresponds to the terminal velocity of the drop, and h0 to

the effective pinch-off length of the drop when it separates from the nozzle. Here

h is the measured distance from the nozzle tip to the undisturbed pool surface,

whereas the adjusted height is defined as H = h −D − h0.

Figure 4.3(a) shows that the measured values of V are less than 0.8% away

from the formula, for our impact heights 2.5 cm < H < 55 cm. This estimate of VT

is slightly higher than the experimental observations of Gunn and Kinzer (1949),

which could be due to the drop oscillations before reaching a final oblate shape.

Indeed, the oblate shape would give a larger horizontal radius, and therefore a

larger drag. We can calculate the falling time of the drop from the falling height

as:

t = VT

g
argcosh [exp(gH

V 2
T

)]
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Figure 4.3: (a) Drop velocity V vs. falling height H. The green line corresponds
to
√
2gH, while the red line is our fitting equation. For a better accuracy, each

measurement only covered a falling height of approximately 6 cm, with an overlap
between each height. This explains the larger number of points in the overlap
regions. A total of 42 different observations were needed, with a minimum of 3
for each height. (b) Typical drop shapes in air: prolate (α > 1, H = 31.2 cm,
Re = 11300), oblate (α < 1, H = 41.8 cm, Re = 12900) and close to spherical
(α ≃ 1, H = 44.5 cm, Re = 13300). The scale bar is 2 mm long.

Liquid ρ [g/cm3] µ [cP] ν [cSt] σ [dyne/cm] n
Distilled water 0.996 1.004 1.008 72.1 1.333

Ethanol 0.789 1.19 1.51 23.2 1.363
Methanol 0.793 0.593 0.748 22.5 1.339

Table 4.1: Properties of the different liquids used in the pool. Here ρ is the liquid
density; µ is the dynamics viscosity; ν is the kinematic viscosity, n the refractive
index at λ = 532 nm, and σ the surface tension. The drop is always water.
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As D is larger than the capillary length for water, lc =
√
σ/(ρg) = 2.7 mm,

the water drop shows large oscillations that can affect the details of the impact

dynamics (see Fig. 4.3(b)). The axisymmetric vertical oscillations of the drop can

be estimated by the dominant mode (Rayleigh (1879), Lamb (1945, § 275)), giving

a radius:

R(t, θ) = R0 [1 + a cos (ωt + ϕ)P2 (cos θ)] , (4.2)

where P2 (x) = (3x2 − 1) /2 is the Legendre polynomial of degree 2, and θ is the

polar angle in the spherical coordinate system. The aspect ratio between the

vertical and horizontal diameters of the drop can thus be written:

α = Dv

Dh

= 1 + a cos (ωt + ϕ)
1 − a

2 cos (ωt + ϕ)
(4.3)

We determine a, ω and ϕ as fitting parameters: a = 0.162, f = ω/(2π) = 33.2 Hz

and ϕ = −132○. The oscillation frequency is only 2% lower than the inviscid

theoretical value fD = (4/π)
√
σ/(ρD3) = 33.9 Hz. The typical time of bubble-ring

entrapment, 50 µs, is only 0.17% of the oscillation period. Therefore the drop

shape can be considered frozen during the entrapment.

This fitting is then used to get the aspect ratio from the falling height in

the experiments. We have neglected viscous damping of the dominant mode in

this estimate of drop oscillations. The characteristic time of this damping can be

estimated as τ =D2/(20ν) = 1.08 s (Lamb, 1945, § 355). In the overall falling time

studied here (≃ 0.35 s), viscous effects can be estimated to reduce the amplitude

of the dominant mode by 27%. It is therefore too short to damp the oscillations

significantly, as is observed in Fig. 4.4.

4.2.2 Numerical method

We use the open-source software Gerris (http://gfs.sf.net; Popinet (2003,

2009), Agbaglah et al. (2011)), using the Volume-Of-Fluid method, to perform

http://gfs.sf.net
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Figure 4.4: Drop aspect ratio α = Dv/Dh vs. H. The black oscillating line
corresponds to the fitted equation (4.3).

axisymmetric simulations of the drop impacts. The liquid from the drop and the

pool are identified with different markers (drop: red, pool: blue, air: light green).

The adaptive mesh is refined dynamically based on the distance to the interface,

vorticity magnitude and geometric conditions. The interface is refined uniformly

at the maximum level in the simulations. The bubbles and droplets with area less

than 10 cells are removed during the computation, as their dynamics cannot be

captured accurately. The effects of this removal on mass conservation has been

neglected. It represents an effective cut-off diameter of Dcut = 3.57 cells.

The simulations are started with the drop 0.1R above the pool, where R =D/2

is the drop radius. Non-dimensional time is defined as t∗ = t/τ , where τ = D/V .

The origin of time is taken when the undisturbed sphere would first contact the

pool. The drop is kept at a constant effective diameter D = 4.6 mm. Air has a

viscosity of µa = 1.81×10−2 cP and density ρa = 1.21 kg/m3. The liquid is water for

both the drop and the pool, with viscosity µ = 1 cP, density ρ = 1000 kg/m3 and

surface tension σ = 72 mN/m. Gravity is included as g = 9.81 m/s2. We do not

take into account the different properties of the bottom liquid in the simulation,

and therefore do not include any Marangoni or variable-density effects between

the two liquids. More details about the adaptive grid refinement can be found in
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Popinet (2003) and Thoraval et al. (2012b).

4.3 Results and discussion

In what follows, we start by imaging water drops impacting onto water pools.

For Reynolds number up to about 12 000, no bubble rings are entrapped, but

unexpectedly we see an azimuthal undulation in the neck region, which breaks

the axisymmetry. However, above this Reynolds number, a sequence of partial

bubble rings are entrapped in the neck, which subsequently break into numerous

micro-bubbles. These micro-bubbles display random sideways motions, suggesting

underlying vortical structures.

Then we use water drops impacting on ethanol or methanol pools, which pro-

duces more regular bubble rings, and the difference in the index of refraction

reveals intricate vortical tangles with both streamwise and azimuthal components.

We characterize the radial location where the first bubble rings are entrapped,

as well as their radial spacing. We also show that the pool depth and drop shape

at impact can alter the details, but not the qualitative dynamics of the bubble

rings entrapment.

Finally, we observe experimentally the dynamics of the entrapment mechanism

that was described in the numerical simulations of Thoraval et al. (2012b), as well

as the three-dimensional effects that could not be captured by their axisymmet-

ric simulations. Detailed images are presented, showing the rotation around the

bubble rings, the splashing following ring entrapment, as well as the instabilities

and entanglement of the vortices.
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(a)

(d)

(e)

(f )

(b) (c)

Figure 4.5: Early contact of a water drop impacting a δ = 250 µm deep layer of
water, observed from below, as described in Fig. 4.2. (a-c) Neck between the drop
and the pool. No bubble entrapment is observed at low impact velocities. An
azimuthal instability develops on the ejecta, with a wavelength decreasing with
increasing Re. (a) Re = 3610, We = 39, K = 2360, α = 0.94, (b) Re = 4400,
We = 58, K = 3860, α = 1.17, (c) Re = 5470, We = 90, K = 6640, α = 0.86. (d)
For an intermediate impact velocity, individual micro-bubbles can be entrapped.
Frames are shown at 1, 13, 18, 25 & 46 µs after the first contact. Re = 11400,
We = 394, K = 42100, α = 1.05. (e) For slightly higher impact velocity, the drop
entraps one bubble ring and isolated bubbles, shown at t = 3, 11, 13, 21 & 40 µs.
Re = 13300, We = 535, K = 61800, α = 0.98. (f) Multiple bubble rings. Frames
are shown at about 5, 9, 13, 17, 21 and 32 µs after first contact. Re = 12900,
We = 506, K = 57600, α = 0.80. The scale bars are all 200 µm long. See also
supplemental videos.
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Figure 4.6: Details of individual micro-bubbles entrapments in the same conditions
as in Fig. 4.5(d). Frames are shown 2 µs apart. The top row shows the dynamics
leading to the entrapment of a ≃ 10 µm diameter bubble. On the second row, two
smaller bubbles of diameter ≃ 4 and 6 µm are separating from the right part of
the edge. While the first one stays behind the edge, and can be seen in the last
frame, the second one is re-absorbed into the neck in the last row. The scale bar
is 200 µm long. See supplemental video.

4.3.1 Isolated bubbles and multiple bubble rings for a water

pool

We start by looking at the impact of the water drop onto a water layer. Fig-

ure 4.5 shows the early evolution of the outer neck contact of the drop with the

pool. The contracting inner air disk is visible on the left side of the images in

panels (d) and (e). Note that we are only looking at the early contact when the

neck has not reached the size of the drop, as shown in the sketch in Fig. 4.2(b).

The radius of the neck in the last panel of Fig. 4.5(d) has only reached 37% of the

drop radius.

Figure 4.5 shows that even for low impact velocities the neck region between

the drop and the pool does not remain smooth and axisymmetric, but develops

azimuthal undulations. For the lowest impact velocities these undulations have

long wavelengths and do not entrap bubbles, see Fig. 4.5(a-c). However, with
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Figure 4.7: Maximum amplitude of the undulations of the front in the neck re-
gion, for water drop onto water pool. Data from three realizations, for the same
conditions as Figs. 4.5(d) and 4.6. The solid line shows formula 4.4, with C = 14.
The inset shows how the amplitude is measured.

increased impact velocity V the wavelength reduces and their amplitude grows

more rapidly. In Fig. 4.5(d) these undulations appear first in the second panel

and grow in amplitude during the radial motion, but individual bumps saturate

and are often being pulled back by surface tension. The shapes are irregular,

but we can glean a characteristic wavelength from the third panel in Fig. 4.5(d),

giving λ ∼ 53 µm, corresponding to 73 undulations around the periphery. These

undulations appear when the ejecta emerges, pulling local sheets of air under the

ejecta on both or alternating sides of it. These local sheets can be pulled along

with the ejecta base, with only occasional bubbles entrained, when these small

azimuthal air discs make contact across the thin air layer, as is shown in a longer

sequence of frames in Fig. 4.6. Individual bubble entrapments can also occur in

the troughs between the undulations.

In Fig. 4.7 we show the growth of the maximum undulation amplitude, mea-
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sured between the troughs and peaks, see inset in the figure. The growth rate

slows down with radial distance. For reference we fit a viscous-type length-scale,

Lν = C
√
ν(t − to) (4.4)

where C = 14 and to is the time of first observed undulations on the front. This

suggests that the azimuthal wavelength is significantly longer than the thickness

of the nascent ejecta, which should be of the order
√
νt, see Josserand and Zaleski

(2003). Based on this undulation lengthscale ∆R, along with the neck velocity

and water properties, the local Re∆R ∼ 700 and We∆R ∼ 100, suggesting inertia,

viscous forces and surface tension all play a role in the dynamics.

Figure 4.6 shows that the characteristic azimuthal wavelength of the undula-

tions also grows during the radial motion of the front, but this is more difficult to

quantify.

It is curious that some air entrapment in breaking gravity waves has superfi-

cially similar appearance (Kiger and Duncan (2012), their Fig. 11), but is clearly

driven by a different mechanism and is three orders of magnitude larger in size.

For slightly higher impact velocity, the entrapment of rather irregular bub-

ble arcs begins. Figure 4.5(f) shows up to 10 such partial rings. The average

radial spacing of the adjacent bubble rings is ≃ 26 µm. The air cylinders then

break up into a row of bubbles through surface-tension driven Rayleigh insta-

bility. Bubbles are often shifted sideways in the azimuthal direction during the

radial spreading (arrows in Fig. 4.5(f) and supplementary videos). For a sta-

tionary hollow cylinder of diameter db in an inviscid liquid, the most unstable

wavelength is λm = πdb/0.484. The characteristic time scale of the exponential

growth ∼ exp(t/τσ) of the breakup is given by τσ = 1.22
√
ρr3b/σ (Chandrasekhar,

1981). The radii of the bubble arcs rb for a water layer, in Fig. 4.5(f), are ∼ 3 µm

and they break up in about ∼ 3 µs, which is 4τσ.
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Thereby, the first bubble-rings entrapment for water occurs around Re ≃ 12000

and K ≃ 50000. These values are consistent with the numerical results of Thoraval

et al. (2012b), where no bubble ring entrapment is observed for Re = 10000 and

K = 30000, and a row of bubble rings is observed for Re = 14500 and K =

74400. In the former case, the ejecta sheet is thicker, because of the stronger

surface tension effects on the ejecta sheet owing to the lower value of the splashing

parameter K. It is re-absorbed on the drop or the pool during the oscillations,

and no bubble ring entrapment is predicted. However, in the latter case, at higher

K, the ejecta sheet is thinner, and its oscillations entrap a row of bubble rings at

the core of vortex rings when it impacts onto and connects with the drop or the

pool.

However, the comparison of Fig. 4.5(e) and (f) shows that more bubble rings

can be observed at a slightly lower Re and K. This suggests that the Re number

of the impact is not enough to characterize the bubble-rings entrapment. We

will show in §4.3.4 the critical effect of the drop shape. Moreover, the azimuthal

instabilities also affect the air entrapment, and individual bubble entrapments

have been observed at slightly lower Re in Figs. 4.5(d) & 4.6.

Note that in the work of Castrejón-Pita et al. (2012), the vortex street is

observed for conditions similar to Fig. 4(f) of Thoraval et al. (2012b), where no

bubble-ring entrapment was predicted. Considering the large diameter of the drop

they are using, it is not clear if the bubbles they observe are part of a bubble ring

or isolated bubbles. They are also looking at a larger view and longer time evo-

lution, that could be out of the field of view used in the current investigation

(see perspective in Fig. 4.2). However, their alternating vortices are a new ob-

servation, clearly different from the isolated vortex rings produced by much lower

impact velocities, see Peck and Sigurdson (1994).
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(a) (b) (c)

(d)

(e)

Figure 4.8: Early contact of a water drop impacting a pool of a miscible liquid
(ethanol or methanol), observed from below, as described in Fig. 4.2. (a-c) Neck
between the drop and the pool. No bubble entrapment is observed at low impact
velocities on a thin film of ethanol (δ ≃ 250 µm). Contrary to the water film,
no azimuthal instability develops on the ejecta. (a) Re = 3610, α = 0.94, (b)
Re = 4400, α = 1.17, (c) Re = 5470, α = 0.86. (d) Bubble rings for a water
drop impacting onto a methanol layer (Re = 12900, α = 0.80, δ = 50 µm). Frames
are shown at 5, 9, 11, 15, 20 & 33 µs after first contact. (e) First oscillations
of the ejecta sheet, followed by entrapment of bubble rings, for a film of ethanol
(Re = 13300, α = 0.98, δ = 250 µm). Azimuthal instabilities appear in the ejecta
sheet, before its rim detaches in a liquid toroid. The first 8 frames are shown 4 µs
apart, and then 20 µs. The scale bars are all 200 µm long. See supplemental
videos.
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Figure 4.9: Early contact of a water drop impacting a pool of methanol, observed
from below, as described in Fig. 4.2. Bubble entrapment dynamics for impact on
a methanol film (Re = 12900, α = 0.80, δ = 50 µm). The first frames shows the
entrapment of a superposition of air sheets, later breaking in patches and then
in micro-bubbles (green arrows). Three bubbles are identified in the third and
last frames by red, black and blue arrows, showing their strong sideways motion.
Bubble arcs with legs in the radial direction are identified by the yellow arrows.
Frames are shown 3, 6, 15 and 60 µs after the first one. The scale bar is 200 µm
long. See supplemental video.

4.3.2 Bubble rings for miscible liquids

The bubble ring entrapment becomes more regular for the impacts onto ethanol

and methanol pools (Fig. 4.8 and 4.9), perhaps due to the lower surface tension of

these liquids (Table 4.1). Contrary to the impacts onto water films, no azimuthal

instability develops on the neck of the ejecta, which remains perfectly smooth in

Fig. 4.8(a-c). At higher impact velocities bubble rings are entrapped. Figure 4.8(d)

shows at least 10 bubble-rings. Many of them are entrapped axisymmetrically over

the entire image view, which can span around 90o angular sector.

In some instances thin ribbons of air are entrapped and subsequently break

up into sub-rings and thereafter bubble rings, as highlighted by an arrow in

Fig. 4.8(d). The frames in Fig. 4.9 detail this sequence of air entrapments. One

air patch is identified by the green arrow in the second frame, superposed with

another air sheet behind it. In the third frame, the air patch breaks into a bubble

(identified by the green arrow), and a small air cylinder at a larger radial location,

while the air sheet behind contracts into a cylinder. The vertical superposition of

the air entrapments is clearly shown by the fact that the air bubble is observed
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Figure 4.10: Larger view of a water drop impacting onto ethanol, at times t ∼ 50,
150, 250 & 1150 µs after first contact (Re = 14500, α = 0.94, δ ≃ 125 µm). Frames
taken from videos using Photron SA-5 at 10,000 fps, with a 1 µs exposure time.
The arrow at the bottom of the second frame points at two splashed droplets
planing on the surface, as shown by the capillary wedges left behind them. The
central bubble has drifted out of the image in the last frame. The scale bar is
1 mm.
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at the same radial location as the air cylinder. This supports the mechanism that

air can be entrapped both above and below the ejecta sheet, as was shown in the

numerical simulations of Thoraval et al. (2012b).

In a similar way as for water pools, Fig. 4.9 also demonstrates strong sideway

motion of bubbles. Three bubbles are identified in the third frame by red, black

and blue arrows. Their corresponding location is marked by the same colored

arrows in the last frame. Comparison between the black and red arrows shows

that this sideways motion can be of different strength for adjacent rings. This

bubble motion in the azimuthal direction results in their clustering at isolated

locations.

Figure 4.10 shows a wider view of an impact taken at a lower frame rate of

10,000 fps but larger pixel area of 896 × 848 px, using the Photron SA-5 CMOS

camera. Each frame is frozen with a 1 µs exposure. The 100 µs interframe

time only shows us snapshots of the phenomenon, putting the earlier figures in

perspective, with most of the earlier sequences occurring before the first image.

In the second frame multitude of splashed droplets appear from underneath the

shadow of the drop, with some droplets planing on the pool surface, leaving behind

narrow capillary wedges. The first panel shows a smooth central region, followed

by a convoluted interface, suggesting the stirring by the three-dimensional vortical

structures (see §4.3.7). Similar stirring can be inferred from the side shadowgraph

imaging in Castrejón-Pita et al. (2012) (their Fig. 4). The final panel in Fig. 4.10

shows numerous isolated bubbles which have been redistributed by the vortical

motions. The bubbles are mostly concentrated within the mushroom-like remnants

of the vortical structures.

4.3.3 First onset, number and spacing of bubble rings

The first contact entraps a central air disk and forms a rapidly expanding outer

liquid edge. Bubble rings are then formed as observed above. Figure 4.11(a) looks
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Figure 4.11: (a) First onset of bubble rings for water drop impacting onto a water,
ethanol or methanol layer of different depths (see also Fig. 4.16). (b) Spacing of
adjacent rings ∆R, vs radial distance R from the impact center. Data from 8
different realizations for a methanol pool (Re = 13300, α = 0.98, δ = 250 µm).

at the radial location where the first bubble ring is entrapped. We normalize the

radius of the first ring R1 with the horizontal drop radius when it first contacts

the pool, Rh = Dh/2. The data shows large spread, but an overall trend is for

the onset to occur earlier for larger impact Re. The lowest entrapment radius is

0.18, similar to the 0.2 limit observed by Thoroddsen (2002) for the onset of the

ejecta sheet. This onset radius of the ejecta is also in agreement with the inviscid

numerics of Weiss and Yarin (1999).

Figure 4.11(b) shows the distance between the adjacent bubble rings measured

for numerous identical impact conditions. The spacing of the rings tends to in-

crease with distance and the entrapped bubbles become larger.

4.3.4 Effect of pool depth and drop shape

To ascertain the influence of the pool depth we systematically vary the layer

thickness δ, from about 25 µm to 1 mm. Figure 4.12(a-c) compares the bubble

rings for the 3 smallest pool depths δ. The ring structures are qualitatively similar

in all cases, but the shallowest pool shows the earliest and finest bubble rings,
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Figure 4.12: Effect of pool depth on the bubble rings for water drop impacting
onto methanol, with δ ≃ 25 (a), 50 (b) and 75 µm (c) (Re = 12900, α = 0.80). The
frames are all shown 24 µs after the first contact in (a-c). (d) Deeper methanol
pool with δ ≃ 500 µm. Frames shown at 10, 14 & 28 µs after first contact. The
scale bars are 200 µm long. See also supplemental videos.
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(a)

(b)

(c)

Figure 4.13: Effect of pool depth on the vortex street at t∗ = 0.0526, for Re =
13700. Pool depth δ = 800 µm (a), 200 µm (b), 100 µm (c). The top of the 3
images are at the same location, relative to the original pool surface. The pool
depth is larger than shown in the image in (a), but is completely included for (b)
& (c), where the bottom is indicated in gray. The maximum and minimum level of
refinement in the domain are respectively 12 500 and 778 cells per drop diameter
and Dcut = 1.3 µm. The bar is 200 µm long. We can observe that one part of the
ejecta sheet is climbing on the drop in (b), while the main ejecta sheet continues
to emerge below. This is similar to what was observed numerically by Thoraval
et al. (2012b) and experimentally by Zhang et al. (2012). The formation of this
higher part of the ejecta sheet can be observed in the supplemental video. It then
merges with the drop in this case. See supplemental videos.
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Figure 4.14: Contraction of the central air disk for a water drop impacting on a
thin water film (Re = 11600, α = 0.86, δ = 250 µm). The convergence of capillary
waves punctures the center of the disk, producing an air toroid in the third frame
of the second row, later contracting into a spherical bubble. Similar formation of a
central air toroid can be observed in the supplemental video of Fig. 4.5(e), as well
as in other water drop impacts on ethanol or methanol films. Frames are shown
7.1 µs apart, with an exposure time of 1 µs. See supplemental video.
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Figure 4.15: Maximum velocity Umax in the liquid from the numerical simulations
of Fig. 4.13, for 3 different pool depths.
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Figure 4.16: Experimental observation of the first bubble ring entrapment radius
(Re = 12900, α = 0.80) for different pool depths.

some of which are sub-pixel in diameter. The second ring in Fig. 4.12(a) allows

us to measure the separation of micro-bubbles, giving λ = 8.8 µm, suggesting

a diameter of the original air torus dtor ≃ 1.4 µm, and a bubble diameter of

2.9 µm. This is consistent with the smallest bubbles observed in Fig. 4.1(b) with a

larger magnification. The earliest ring appears even smaller, arrow in Fig. 4.12(a).

Figure 4.12(d) shows fewer but qualitatively similar ring entrapment, for much

thicker layer.

Previous results of Thoraval et al. (2012b) suggested that the oscillations of the

base of the ejecta sheet is responsible for the bubble rings entrapment, for a drop

impacting a deep pool at high Re and K. Figure 4.13 shows numerical results

for three different shallower pool depths. The two-liquid interface is highlighted

by colouring the drop and pool differently. It shows that the same mechanism is

also present for shallow pools, with only minor changes. However, the drop pene-

trates further into the pool for larger δ. The vortex street is therefore constrained
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in a shallower region for shallower pools, and develops more horizontally. This

constraining effect increases the maximum liquid velocity by as much as 20%, as

shown in Fig. 4.15. The boundary layer developing on the glass plate could be

important for the shallowest pools.

The first bubble ring is entrapped at R1/R of respectively 0.37, 0.31 and 0.28

for pool depths δ = 800, 200 and 100 µm respectively. This confirms the previous

experimental observation of Fig. 4.12 that earlier rings are observed for shallower

pools. Figure 4.16 also shows this experimentally in a more systematic way, but

the difference is not very pronounced. Moreover, the smallest bubble ring ob-

served in Fig. 4.13(c) has a diameter dtor 1.5 µm (only 4 cells), very consistent

with experimental observations of Fig. 4.12(a). The radial location of this first

entrapment and its diameter are both consistent between experimental and nu-

merical observations, even though the numerical simulations only consider one

liquid.

In all three cases, we can see in the numerics that the central air disk punctures

at the centre during its contraction into a central bubble, thus forming an air torus.

This is also observed in some of the experiments, as seen in Fig. 4.14, where an

air torus is formed, which later contracts into one bubble.

We observe experimentally that the most robust bubble rings are produced by

a flat-bottom drop, as shown by the comparison of Fig. 4.5(e) & (f) and Fig. 4.8(d,

e) and 4.9, with fewest bubble rings in 7(e), which is more spherical. The largest

number of rings is also produced by such oblate drops (Fig. 4.5(f) and Fig. 4.24(b)).

This is consistent with the numerical results of Fig. 4.17, showing a larger number

of rings for the oblate drop. They even suggest that a prolate drop could com-

pletely suppress the bubble ring entrapments for the same effective diameter, as

is shown in Fig. 4.17(a).
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(a)

(b)

(c)

Figure 4.17: Effect of drop shape on the early dynamics at t∗ = 0.0406, for
Re = 12900 and δ = 800 µm. The drop is modeled as an ellipsoid of revolu-
tion, where α is (a) 1.29, (b) 1, (c) 0.79. (a) and (c) correspond to the maximum
horizontal deformations of the fitting equation (4.3), with a = 0.162, keeping the
same effective diameter. The maximum and minimum level of refinement in the
domain are respectively 5240 and 655 cells per drop diameter, and Dcut = 3.1 µm.
The scale bar is 200 µm long. See supplemental videos.
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4.3.5 Edge breakup and splashing

Numerical simulations have shown that the ejecta sheet can impact alterna-

tively on the drop and the pool during the vortex shedding. The tip of the ejecta

can thus detach into a liquid torus exiting the neck region at high speed (Thoraval

et al., 2012b). Such tori are highly unstable to Rayleigh instability and break

rapidly into splashed micro-droplets of similar sizes. However, this earliest splash-

ing of micro-droplets by axisymmetric breakup of the ejecta sheet had not been

observed previously in experiments.

By looking carefully at Fig. 4.8(d, e), 4.9 & 4.10, we can identify this early

splashing by the breakup of the tip of the ejecta sheet after the entrapment of

a few bubble rings, as was suggested by the numerical simulations. The liquid

toroid in Fig. 4.8(e) separates at t∗ ≃ 25 µs after the first contact, and a velocity

of 20.5 m/s, which corresponds to 7.1 times the impact velocity. The tip velocity

of the ejecta sheet in the numerical simulations at the same non-dimensional time,

is 6.2 for Re = 12900 (Fig. 4.17(b)), and 7.4 for Re = 13700 (Fig. 4.13(b)), which

is in excellent agreement with the experimental observations.

Figure 4.18 shows more detail of the breakup of the edge at a slightly lower Re.

The ejecta sheet breaks via holes puncturing behind the rim. The thicker ejecta

rim is therefore left connected to the neck by liquid tendrils, but subsequently

becomes fully detached.

To remove the ambiguity of the bottom view, we have also looked at this

early splashing from the side above the free surface. Figure 4.19(a) confirms the

bottom view images, showing the ejecta sheet emerging from the neck, puncturing

behind the rim and separating a liquid toroid from the neck. Liquid tendril are

also observed in the fourth frame, and are slingshot ahead of the rim, creating the

protrusions observed in the last frame, similar to the last frame of the first row

of Fig. 4.8(e). The slingshot of the broken ejecta sheet can also be observed in

numerical simulation, as in supplemental video of Fig. 4.17(a), and is similar to
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Figure 4.18: Details of the ejecta sheet breakup, for a water drop impacting a
thin film of ethanol (Re = 11700, α = 0.79, δ = 75 µm). The ejecta sheet starts to
puncture on the second frame of the second row. The growth of the holes leave
tendrils connecting the neck to the liquid rim. The scale bar is 200 µm long.
Frames are shown 2 µs apart. See supplemental video.

the slingshot mechanism described in Thoroddsen et al. (2011).

Two consecutive liquid rings are observed in Fig. 4.19(b). It also shows the

emergence of a greatly disturbed ejecta sheet after this early splashing. A larger

bottom view confirms this side view observations in Fig. 4.19(c). This mechanism,

of a detachment of a thin torus of liquid, explains the synchronized emergence of

uniform sized micro-droplets observed ahead of the main irregular ejecta sheet,

see Fig. 4.19(d) as well as Fig. 2(c) in Thoroddsen (2002). The irregular sheet is

clearly shown in Fig. 4.10.

The splashing of several liquid tori is consistent with numerical simulations

showing that the ejecta sheet can breakup during the successive impacts on the

drop and the pool. Supplemental video of Fig. 4.17(a) shows such a case where

the ejecta sheet breaks first by climbing on the drop and then impacting on the

pool, thus creating two consecutive liquid tori.

After the first ring entrapment, regular spanwise instabilities can appear in
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(a)

(b)

(c) (d)

Figure 4.19: Detachment of liquid toroids by breakup of the ejecta sheet. Scale
bars are 500 µm for (a,b) and 1 mm for (c,d). All images have an exposure time
of 1 µs. (a) Side view of the liquid toroid detachment for a thin film of ethanol
(Re = 12600, α = 1.11, δ = 125 µm). The ejecta sheet punctures in the third
frame, breaking into tendrils. Those tendrils are slingshot in front of the liquid
rim which has not yet broken, as observed in the last frame. The frames are
shown 10 µs apart. (b) Side view of two liquid toroid detachments for a thin film
of methanol (Re = 12600, α = 1.11, δ = 125 µm). The frames are shown 10 µs
apart for the first 3 frames, and then 80 µs. The splashing of liquid toroids is
followed by the emergence of an irregular ejecta sheet, as can be seen also on the
larger bottom view of Fig. 4.10. (c) Larger bottom view of two consecutive rings
of liquid droplets and toroidal sections detaching for an ethanol pool (Re = 11600,
α = 0.86, δ = 125 µm). (d) First droplets emerging from underneath the drop in
the same conditions as Fig. 4.10. Image difference between two adjacent frames,
to highlight the splashing droplets. Shown in inverted gray-scale. The exposure
is 1 µs long.
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the ejecta sheet, as is clearly seen in the second panel of Fig. 4.8(d), as well as

Fig. 4.8(e) & 4.9. The fine azimuthal breakup when the ejecta bends and impacts

onto a pool have been reported by Thoroddsen et al. (2011) (their Fig. 5) and

may be of similar origin. Furthermore, the early appearance of similar azimuthal

instabilities have also been observed by Thoroddsen et al. (2012b) in a free-surface

cusp, which is formed during a drop impacting onto a solid surface. Numerical

simulations show that the ejecta sheet breaks when it impacts on the drop or the

pool, by stretching between the new connection and the faster rim. This instability

is therefore consistent with the impact of the ejecta sheet on the drop or the pool.

Similar breakup of a liquid sheet by stretching was also observed experimentally

by Roisman et al. (2007) for spray impacts.

4.3.6 Vortex shedding and rotation around bubble rings

The difference in refractive index between the drop and the pool (see Table

4.1) allows us to visualize vorticity structures inside the liquid. As the coherent

vortices bend and wrap up the interface between the two liquids, a dark line can

be observed at their edges with our back-light imaging setup.

Numerical simulations have shown that the first oscillations of the base of the

ejecta sheet have a smaller amplitude and do not entrap any bubble rings, see

Thoraval et al. (2012b) (their Fig. 4(c,f,g)) and our Figs. 4.13 & 4.17. This is

consistent with our experimental observations of Figs. 4.8(e), 4.18, 4.22(a) & 4.24,

where dark arcs form before the first bubble rings. They show the shedding of

vortices from the neck before the start of the bubble-ring entrapment.

As the neck moves outwards radially, the angle between the pool and the drop

becomes larger, and bubble rings are entrapped, as observed above. Numerical

simulations have shown that these rings are often entrapped in an alternating way

at the top and the bottom of the ejecta sheet. At the same time, they shed vortices

of alternating sign in the liquid. Bubble rings are therefore entrapped at the core
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Figure 4.20: Entrapment of a large air cylinder for a water drop impacting a thin
film of methanol (Re = 11400, α = 1.05, δ = 50 µm). The small bubble at the
bottom right of the long cylinder make a complete rotation around the cylinder
between frames 4 and 12. The frames are shown 4 µs apart. The scale bar is
200 µm long. See supplemental video.
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of vortex rings. Dark lines are indeed observed experimentally around the bubbles,

supporting this shedding of vorticity scenario. The rotation is also made apparent

by the dynamics of a micro-bubble rotating around a larger bubble cylinder in

Fig. 4.20. We can obtain an estimate of the rotation speed in the vortex rings by

tracking a 2 µm particle seeded into the pool liquid (Fig. 4.21), giving a rotation

period of 18 µs in this example.

The dynamics of the air entrapped in this vortex street is also affected by the

rotation around it. One can expect the rotation to delay the capillary breakup of

the air cylinders (Rosenthal, 1962, Ashmore and Stone, 2004, Eggers and Viller-

maux, 2008). This is indeed evident in Fig. 4.20, where the cylinder of diameter

about 29 µm can be observed for more than 94 µs before breaking, corresponding

to t/τσ ≃ 7 based on the methanol properties. The air cylinder also elongates

by about 25% between the first and the last frame, consistent with the theory

that it resides inside a vortex. The relative motion of the bottom tip of the air

cylinder and the closest micro-bubble below shows that the stretching due to the

radial motion cannot account for this elongation. Even smaller cylinders can be

stabilized, as observed in Fig. 4.12(c). Two air tori are formed next to each other,

with similar diameters dtor ≃ 8µm (see arrows in the figure), but break up at very

different times from formation, of t/τσ ≃ 4 and 12, based on the liquid properties

of the methanol. These delayed breakups show the strong stabilization effect of

the circulation around these air tubes. The breakup wavelength is also larger, as

the theory suggests (Ashmore and Stone, 2004).

The row of vortices shed in the liquid can also interact with adjacent ones.

In some realizations two closely entrapped air tori rotate around each other, with

the line of small bubbles rotating around the bigger one. Figure 4.22(b) shows

such a sequence, where we track one rotation, which takes T = 104 µs. Numerical

simulations show that vortices of different strength are created at the top and

bottom of the ejecta sheet (Thoraval et al., 2012b). The longer time evolution
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Figure 4.21: Tracking of a 2 µm particle rotating around a vortex core for a drop
impacting on a pool of ethanol (Re = 11400, α = 1.05, δ = 125 µm). ∆L is the
distance to the initial positions, minus the mean radial translation component
identified by a linear regression. The period of rotation is here about 18 µs.

shows that this difference can make the bubble rings rotate around each other

while translating (Fig. 4.22(c) and supplementary videos). These dynamics are

consistent with the experimental observation of the rotation around bubble rings.

Some of the bubble tracks simply translate past each other during their radial

motions, for example visible in the videos accompanying Figs. 4.22 & 4.24. The

bubbles are initially sitting at slightly different depths, and this difference in verti-

cal location is amplified by the vorticity, as shown above. Moreover, as the bubble

tori break into bubbles, their vertical width will slightly increase, sampling larger

mean shear. These relative translations of bubbles could therefore result from a

vertical mean gradient of horizontal velocity within the pool depth.

4.3.7 Three-dimensional instabilities

The axisymmetry of the impact is rapidly broken by different instabilities (see

Figs. 4.5, 4.8 & 4.9). For a water pool, we have observed that undulations develop

in the neck as soon as an ejecta forms (Fig. 4.5). This leads to entrapment of

isolated bubbles (Fig. 4.5 & 4.6) and creates less regular bubble rings compared
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(b) (c)

(a)

Figure 4.22: (a) Bubble rings formed during the impact of a water drop onto a
shallow pool of ethanol (Re = 13300, α = 0.98, δ = 250 µm). The frames are shown
at 8, 20, 38, 66 & 112 µs after the first one, showing a total of 7 bubble rings.
(b) Close-up view of a line of fine bubbles which circulate around another line of
slightly larger bubbles, from the video in (a). Total duration of these frames is
104 µs. See also supplemental videos. (c) Numerical simulations of a water drop
impacting on a thin film of the same liquid (Re = 13800, α = 1, δ = 800 µm). This
focused view of the interface at t* = 0.481 shows the rotation of a pair of bubble
tori at the core of adjacent vortex rings. The scale bars are all 100 µm long. See
supplemental videos.
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(a)

(b)

Figure 4.23: (a) Roll-up of isolated streamwise vortex pairs for a water drop
impacting a film of ethanol seeded with 2 µm particles (Re = 11400, α = 1.05,
δ = 125 µm). The first images show that the vortex pairs are starting at the same
azimuthal location as local disturbances in the front. The bottom vortex pair
first entraps a bubble, later splitting in two. Frames are shown 3, 6, 9, 12, 17,
23, 27, 35 µs after the first one. (b) Roll-up and sideways motion of streamwise
vortices for a water drop impacting a film of ethanol seeded with 2 µm particles
(Re = 11400, α = 1.05, δ = 125 µm). Frames are shown 3, 10, 18, 32 & 47 µs after
the first one. The scale bars are 200 µm long. See supplemental videos.
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to ethanol or methanol pools. Even in those lower surface tension liquids, the

most regular rings appear at smaller entrapment radii, where the ejecta sheet has

not broken yet and remains axisymmetric. After the breakup of the ejecta sheet,

the loss of axisymmetry is imprinted on the bubble entrapments, as shown by

the bubble arcs observed in Fig. 4.9, with legs extending in the radial direction

towards the neck.

We have already suggested in §4.3.5 that some of the azimuthal instabilities

come from the breakup of the ejecta sheet, when it bends and touches the drop or

pool surfaces. Overturning gravity waves also rebound and destabilize underlying

vortices, but at a much larger scale than herein, see Watanabe et al. (2005).

Figure 4.18 clearly demonstrates the effect of isolated neck disturbances on the

bubble entrapment. A small perturbation is visible in the first frame and develops

in time. The two first bubble rings which form in the following frames are broken

at the same azimuthal location and the ejecta ruptures there first.

Three-dimensional instabilities also develop inside the liquid, and are made ap-

parent by the difference in refractive index. Radial lines are visible in Figs. 4.8(e),

4.10, 4.22(a), 4.23 & 4.24. They show the formation of streamwise vortices be-

tween the primary spanwise vortex rings, which often reach to the free surface

in the neck. For the lower Re cases (Figs. 4.23), isolated streamwise vortices are

observed. In Fig. 4.23(a), they appear in pairs, at the same location as a front

perturbation. The lower one in the image starts at an isolated location on the side

of a vortex ring, where it entraps one micro-bubble. Two lines are then visible

on each side of this initial entrapment and extend up to the front. This suggests

that the vortex pair arises from the same vortex loop, rolling-up around the vortex

ring. The connection between the two streamwise vortex lines should then form a

vortex loop with one section in the azimuthal direction, near its origin around the

bubble. The presence of a strong vorticity around this bubble is demonstrated by

its breakup into two smaller bubbles (in the 4th panel of Fig. 4.23(a)). Moreover,
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Figure 4.24: Bubble rings and vortex entanglement (Re = 12900, α = 0.80). (a)
Frames shown are 8, 22, 41 & 58 µs from first contact on ethanol (δ = 250 µm).
(b) Careful examination of the fine bubbles, show 14 separate bubble rings, which
are pointed out by the arrows. (c) Close-up of the vortex tangles at t = 58 µs. The
scale bars are 100 µm long. See also supplementary video.
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the later dynamics shows the secondary streamwise vortex tubes roll up around

the primary spanwise vortex ring. Figure 4.23(b) shows a similar case where

streamwise vortices roll-up around a vortex ring. This roll-up can be identified by

following two micro-bubbles at the core of the vortices (black arrows).

Interesting parallels can be made with similar three-dimensional instabilities

occurring in the wake of a cylinder (Williamson, 1996). The local Reynolds num-

ber at the base of the ejecta sheet Reb will be affected by both the radial velocity

of the neck and the velocity within the liquid. Reb can be increased both by in-

creasing the impact velocity or by using a more oblate drop. Indeed, as the impact

Re increases, the ejecta sheet emerges from a faster moving neck (Josserand and

Zaleski, 2003, Thoraval et al., 2012b), and at a higher velocity (Thoroddsen, 2002,

Josserand and Zaleski, 2003), thus leading to higher Reb. A flat bottom drop also

geometrically generates a faster moving neck, and produces larger velocities in the

liquid, see Fig. 4.15. Both effects lead to a larger concentration of streamwise

vortices (Figs. 4.8(e), 4.10, 4.22(a), 4.23 & 4.24). This is similar to the onset

of three-dimensional instabilities of the vortex street behind a circular cylinder

(Williamson, 1988, 1996), where finer streamwise vortices and a smaller spanwise

wavelength are observed at higher Re. Similar vortex loops are also observed in

both cases, as described above. Moreover, rapid motion of the bubbles in the span-

wise direction along the vortices is observed in our experiments, see Figs. 4.5(f)

and 4.9. Similar lateral motion was also observed behind “vortex dislocations” in

the wake of a cylinder (Williamson, 1992, 1996).

4.4 Conclusions

Observations from below the impacting drop have herein demonstrated that

the mechanism suggested in Thoraval et al. (2012b) does indeed entrap micron

sized air tori. The oscillations of the ejecta sheet can thereby entrap a row of
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bubble rings. The vorticity entering the liquid during those oscillations and bubble

entrapments is then destabilized into complex 3D structures. The combination of

azimuthal instabilities and vertical oscillations of the ejecta sheet produces a large

range of new bubble entrapment scenarios.

Besides imaging the formation and breakup of partial bubble rings, of equal

significance is our observation that for water-on-water impacts the outer neck

is unstable to azimuthal undulations at even very moderate Reynolds numbers

(Figs. 4.5(d) & 4.6). This poses a challenge to theoretical and numerical studies,

which invariably assume axisymmetry.

We note that the bubble rings observed herein differ in fundamental ways from

the Oguz-Prosperetti rings (Oguz and Prosperetti, 1989), as the base of the ejecta

here is not driven by surface tension, but rather by the impact pressure. This high

localized pressure is indeed the mechanism responsible for driving out the ejecta

sheet.

However, the details of the air entrapment and its dependence on the impact

conditions is still not clear. Large scope exists for further work, as the present

study perhaps raises as many questions as it answers. What role do Marangoni

or Rayleigh-Taylor instabilities play in the two-liquid dynamics? The large pa-

rameter space of other liquids needs to be studied. Even for the same liquids,

in the drop and pool, the interplay between Re, We and α which allows bubble

ring entrapment, or preserves an extended axisymmetric ejecta, remains to be de-

termined. The three-dimensional instabilities of the vortex street also need to be

studied in more detail and compared to the well-known instabilities of the cylinder

wake and the shear layer. However, in the vortex street observed here, the vortices

are shed from a deformable free-surface, adding to the complexity of the analysis.

The influence of the shed vorticity on the dynamics of the neck, both vertically

and in the azimuthal direction, should also be added to the factors influencing the

stability analysis of splashing.
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Micro-bubble morphologies at low

impact velocities

Figure 5.1: Breakup of the air film in a bubble necklace for a drop of ν = 10 cSt
silicone oil on a deep pool of the same liquid, for Re = 103, We = 21, D = 2.4 mm,
U = 0.43 m/s. Frames are shown 250 µs apart. Figure selected as the cover of
Journal of Fluid Mechanics, Volume 708. See supplemental video.
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Abstract

When a drop impacts at low velocity onto a pool surface, a hemispheric air

layer cushions and can delay direct contact. Herein we use ultra-high-speed video

to study the rupture of this layer to explain the resulting variety of observed

distribution of bubbles. The size and distribution of microbubbles is determined

by the number and location of the primary punctures. Isolated holes lead to the

formation of bubble necklaces when the edges of two growing holes meet, whereas

bubble nets are produced by regular shedding of micro-bubbles from a sawtooth

edge instability. For the most viscous liquids the air film contracts faster than

the capillary-viscous velocity through repeated spontaneous ruptures of the edge.

From the speed of hole opening and the total volume of micro-bubbles we conclude

the air sheet ruptures when its thickness approaches ∼ 100 nm.

This chapter is based on Thoroddsen et al. (2012e).
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5.1 Introduction

The impact of a drop onto a pool surface can greatly enhance the gas-transfer

through the liquid-air interface and is therefore of interest in diverse fields such as

climate and marine science (Wanninkhof et al., 2009, Czerski et al., 2011). The

bursting of a sub-micron gas film is also important to understand the fundamental

mechanisms involved in film breakup (de Gennes et al., 2004, Reiter and Sharma,

2001, Reyssat and Quéré, 2006, Neitzel and Dell’Aversana, 2002) and the mi-

crobubbles generated can enhance nucleate boiling (Dhir, 1998). For low impact

velocities, the air under the drop cushions the impact and prevents immediate

contact. This layer can stretch into a submicron hemispheric film of air, which

either causes rebounding of the drop (Couder et al., 2005), or ruptures to form

a myriad of entrapped micro-bubbles. The details of this rupture are unknown,

principally due to the very rapid capillary-driven motions. Mesler and co-workers

(Esmailizadeh and Mesler, 1986, Sigler and Mesler, 1990). presented a series of

papers showing snapshots of bubble structures for water, without time-resolved

imaging.

Thoroddsen et al. (2003) imaged detailed dynamics of the entrapment of a

central bubble, along with a handful of realizations for film breakup for water

drops. However, Mills et al. (2012) showed convincingly that the water case suffers

from highly random film ruptures and is not repeatable, even if surfactants are

included. Recently, Saylor and Bounds (2012) have shown that air film formation

and breakup are much more repeatable for silicone oils than for water. We exploit

this discovery to allow for precisely triggered observations with ultra-high-speed

video imaging, at frame-rates up to 1 million fps (Etoh et al., 2003), to explain

the mechanisms underlying the variety of observed bubble morphologies, such as

bubble necklaces and bubble nets.
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Liquid Density Viscosity Surf. tens. Cap. length Capill. Velo. Crit. thick. δ∗

ρ [g/cm3] µ [cP] σ [dyn/cm] a [mm] σ/µ [m/s] 2µ2/(ρσ) [µm]

Distilled water 0.997 0.894 72.1 2.72 80.6 0.0222
Perfluorohexane 1.710 1.1 11.9 0.842 10.8 0.120
Silicone oil 0.65 0.760 0.494 15.9 1.46 32.2 0.0404
Silicone oil 1 0.818 0.818 16.9 1.45 20.7 0.0968
Silicone oil 5 0.915 4.57 19.7 1.48 4.31 2.32
Silicone oil 10 0.935 9.35 20.1 1.48 2.15 9.30
Silicone oil 30 0.955 28.6 20.8 1.49 0.726 82.6
Silicone oil 100 0.965 96.5 20.9 1.49 0.217 923
Silicone oil 350 0.970 340 21.1 1.49 0.0622 11300
Silicone oil 1000 0.970 970 21.2 1.49 0.0219 91500

Table 5.1: Properties of the different liquids used in the experiments. Properties
for Silicone oils are taken from the ShinEtsu data sheets.

5.2 Experimental Setup

We use drops of silicone oils over a wide range of viscosities from ν = 0.65 to

1000 cSt, as well as perfluorohexane liquid (C6F14), with properties given in Table

1. The impact conditions are characterized by a Reynolds number, Re = ρDU/µ

and a Weber number We = ρDU2/σ, where D is the drop diameter (1.6-3 mm)

and U is the impact velocity (∼ 0.5 m/s); ρ, µ and σ are respectively the density,

dynamic viscosity and surface tension of the liquid. The ultra-high-speed video

camera (Etoh et al., 2003) takes 102 frames with 312×260 px, irrespective of the

frame rate used. In combination with a long-distance microscope we get down to

a resolution of 2.1 µm/px.

5.3 Results

5.3.1 Bubble morphology: Hanging necklaces and bubble

chandeliers.

Figure 5.2(a) shows a typical rupture of the highly stretched air film. Here the

rupture occurs simultaneously at two points with the holes rapidly growing in size

and traveling around the periphery leaving a necklace of bubbles where the holes
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(b)

Figure 5.2: Typical formation of a hanging bubble necklace for silicone oil,
ν = 10 cSt, for Re = 103, We = 21, D = 2.4 mm, U = 0.43 m/s. (a) The air
sheet punctures at two places (arrows), the right puncture is on the back-side of
the axisymmetric air hemisphere. The frames are shown at 48, 208, 464, 656, 752
& 816 µs, relative to the time where the first rupture is observed. (b) Bubble lines
following the rupture of 6 holes (4 visible in first frame, with 2 forming later on)
as shown by the 6 final bubble lines. Frames shown at t = 192 & 800 µs after start
of first rupture. Scale bars 500 µm. See also supplemental videos.
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(a) (b)

Figure 5.3: Typical bottom ring of ruptures leading to the formation of bubble
chandeliers for D = 2.4 mm and (a) 5 cSt silicone oil, at Re = 220, We = 24, U =
0.46 m/s, shown at t = 0, 64, 160, 512 & 2656 µs after first puncture. (b) For
30 cSt silicone oil, at Re = 50, We = 43, U = 0.63 m/s. First 5 frames are spaced
by 32 µs. The bottom bubble has db =114 µm, giving an average thickness of
bottom air-cap, below the ring of ruptures, as δ ≃ 250 nm. Bars are 500 µm. See
supplemental videos.
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meet, in a vertical plane. If only two holes are formed this is the inevitable resulting

bubble structure, no matter how far apart these two holes are situated along the

periphery, as there is always a vertical plane of symmetry cutting between these

two holes. The gradual variation of bubble sizes along the necklace suggests that

the film thickness and its area is imprinted onto the necklace, i.e. where the film

is thicker, the bubbles are larger and vice-versa. This assumes the air flow within

the thin film is insignificant compared to the motion of the edge. Based on the

bubble size distribution, in Fig. 5.2(a), we infer that the film is thicker along the

bottom and ruptures first at a fixed intermediate depth along the side-wall, where

we expect the film to be thinnest, i.e. where the bubbles are smallest along the

necklace and the film area is largest. Figure 5.2(b) shows another realization with

6 holes, which leaves 6 separate branches of bubbles. The net of bubble-lines is

therefore a consequence of the original number and location of ruptures.

In Fig. 5.2 the isolated punctures in the air film appear when the impact is near

the bouncing boundary where surface tension and viscous stresses have fully de-

celerated the drop, whereas for higher impact velocities the ruptures occur during

stretching and thinning of the film. Ruptures therefore tend to occur at numerous

locations simultaneously. Figure 5.3 shows such cases, where a multitude of rup-

tures occur along an azimuthal ring. This splits the hemisphere into two sections,

one is pulled downwards to form a bottom bubble, whereas the rest is pulled up-

wards leaving faint vertical trails of micro-bubbles where the original holes meet.

The edge moves much faster up away from the ruptures, again suggesting a signif-

icantly thinner air-layer along the sides. Similar formation of multiple holes along

a ring may explain the bubble chandeliers observed in water (Sigler and Mesler,

1990, Mills et al., 2012, Liow and Cole, 2007).

Figure 5.4 shows the parameter regions, in terms of We and Ohnesorge (Oh =

µ/
√
ρσD) numbers, where the various breakup mechanisms occur. It identifies the

lower boundary between bouncing drops and film rupture. This occurs at We = 12
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Figure 5.4: Parameter space of the experiments for a range of silicone oil viscosities
and impact velocities. (-∎◻-) Upper boundary for bouncing drops. (∎◻) Isolated
holes (< 10 ruptures). ( #) Multiple ruptures along an azimuthal ring. (▼▽, ▲△)
Central jet and bottom puncture, including experiments with perfluorohexane
identified by ▲△. (⧫◊) Early entrapment of a central air disk. (+) Film ruptures
during late stage of crater rebound.

& 18 for 0.65 and 10 cSt silicone oils respectively, in good agreement with earlier

results Saylor and Bounds (2012). Figure 5.5 shows how the depth of the ring of

ruptures moves progressively closer to the original free surface, as the drop impact

velocity increases. This approaches the early entrapment of an air disk as studied

by Thoroddsen et al. (2003).

We expect the punctures to occur by van der Waals forces destabilizing the

very thin films (≃ 200 nm (Couder et al., 2005). The azimuthal spacing of the

initial holes is ∼ 200 µm (estimated from second panel in Fig. 5.3b) which is in

qualitative agreement with the wavelength λ which balances van der Waals and

capillary pressures (Dorbolo et al., 2005), i.e. λ = δ2/
√
A/(6πσ) ∼ 100 µm, where

δ ≃ 200 nm is the air film thickness, if we use 5×10−20 J for the Hamaker constant

A, following Israelachvili (2011). The strong dependence on δ is in good agreement

with new holes opening in time (Fig. 5.3), and the sharp transition from isolated
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Figure 5.5: Depth of the ring of ruptures (∎◻) and penetration velocity (▲△) at the
bottom tip of the air film at time of rupture, vs impact velocity, for 10 cSt and
Oh = 0.044.
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Figure 5.6: Horizontal hole radius vs time for silicon oils of 0.65 (⧫◊), 5 ( #) and 10
cSt (∎,▲△). The holes open up at a nearly constant velocity of 11, 3.8 & 2.5 m/s
respectively.
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Figure 5.7: Average wavelength of the edge undulations for 10 cSt.
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Figure 5.8: Horizontal rupture speed of the edge of the air film within 10 cSt
silicon oil, measured for a range of different drop impact velocities, at Oh = 0.044.
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Figure 5.9: Rupture velocity following the bottom tip rupture from a central jet,
for perfluorohexane drop, corresponding to Figure 5(a), Re = 640 and We = 15.

holes to multiple ruptures as impact velocity increases, thinning the film faster.

5.3.2 Film thickness and speed of rupture

During drop impacts the lubrication pressure in the air creates a dimple below

the drop thereby entrapping a bottom disk of air, as shown by Thoroddsen et al.

(2003). Similar film thickness distributions are observed in numerous drainage

films, as reviewed by Chan et al. (2011), and more recently by high-speed obser-

vations of van der Veen et al. (2012) for a water drop impacting a solid surface. The

thinner air film along the side of the crater is also consistent with our observations

of the film breaking on the side, and the final bubble distribution.

After rupture of the air film, it retracts under the action of surface tension.

When viscous effects can be neglected, the velocity of the edge can be estimated by

the Taylor-Culick velocity uσ =
√
2σ/(ρδ) (Oguz and Prosperetti, 1989, Brenner

and Gueyffier, 1999, Song and Tryggvason, 1999, Lhuissier and Villermaux, 2011,

Gordillo et al., 2011). This approximation is valid for films thicker than δ⋆ =
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2µ2/(ρσ). For our lowest viscosity case (ν = 0.65 cSt), the edge velocity of 11 m/s

(Fig. 5.6) would correspond to δ = 350 nm, consistent with previous estimate and

larger than δ⋆ = 40 nm (see Table 5.1). However, for more viscous drops (ν = 5

and 10 cSt), the edge velocity decreases, suggesting that viscous effects become

important. Indeed, an estimate based on micro-bubble volumes gives a thickness

on the side of δ ≃ 125 nm, for ν = 10 cSt in Fig. 5.10(a), smaller than δ⋆ ∼ 10 µm. In

this viscous dominated regime, the edge velocity now scales as the capillary-viscous

velocity uµ = σ/µ (Reyssat and Quéré, 2006, Aryafar and Kavehpour, 2008). Note

that δ no longer enters this relationship, as the driving surface tension and resisting

viscous stress have the same dependence on the characteristic length scale δ. This

is consistent with the edge velocity for 10 cSt in Fig. 5.6, where Cae = ueµ/σ = 1.16,

i.e. viscous balanced. This transition is made clear in Fig. 5.14 by comparing

experimental measurements with theory over a large range of viscosities.

5.3.3 Rupture speed is independent of drop impact velocity

As a consequence of the proposed van der Waals rupture mechanism, the local

thickness of the film when it ruptures should be the same irrespective of how

the dynamics reached this air film thickness. Moreover, for this intermediate

viscosity of 10 cSt, the edge velocity of such thin films is mostly influenced by

viscosity and will not depend strongly on the film thickness. Therefore, we expect

that the horizontal hole-opening rupture velocity will not depend on the drop

impact velocity. We have verified this over a range of drop impact velocities

where individual hole openings can be measured, showing no significant variation

in Fig. 5.8. These experiments were performed for a fixed Ohnesorge number

Oh = µ/(
√
ρσD) = 0.044, while varying the impact velocity.
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(a)

(b)

(c)
(d)

Figure 5.10: Typical formation of edge instabilities, for 10 cSt silicone oil in (a,b,c)
and 100 cSt in (d). (a) Typical formation of a bubble net, at Re = 100, We = 20.
The frames are shown 34, 130, 242, 418 & 514 µs after rupture. Bar is 200 µm.
The average thickness of the air sheet, can be estimated by assuming steady state
in the air flow and measuring the area and bubble-volume within the net at the
vertical location of the rupture, giving δ ≃ 125 nm ±25%. (b,c) Typical instability
at the edge of the growing hole, for Re = 127, We = 28. The frames are spaced by
16 µs. Some teeth shed evenly spaced bubbles in a row, while a larger bubble is
shed when two adjacent teeth merge. Micro-bubble diameters are here between 5
- 30 µm. Bar is 100 µm. (c) Regular meta-stable shark-teeth undulations, with
the edge moving to the bottom right. Bar is 100 µm. (d) Star-like sub-harmonic
undulations on the edge, for Re = 19, We = 67. Bar 200 µm. See supplemental
videos.
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(a)

(b) (c)

Figure 5.11: (a) Film puncturing for perfluorohexane, at Re = 640, We = 15. The
jet generated by the collapse of the cylindrical cavity which forms at the top of
the drop, penetrating to the bottom, where it pushes the air film downwards on
the centerline, to form a pronounced dimple (arrow in middle frame) puncturing
the film, subsequently retracting upwards towards the pool surface, breaking into
a net of bubbles. The edge velocity is shown in Fig. 5.9. (b) Close-up of the
bubble morphology, following punctures at the bottom tip, for silicone oil ν =1 cSt,
at Re = 880, We = 16. (c) Close-up of a bubble net, with a total of ∼ 5600
microbubbles produced for silicone oil ν =1 cSt, at Re = 980, We = 20. Bars are
500 µm. See supplemental videos.
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5.3.4 Edge Instability: Breakup of the growing edge

The edge of the hole in the air layer does not initially shed bubbles, but grows

thicker as it collects the air from the receding air layer and develops a spanwise

instability leading to the separation of micro-bubbles. Figure 5.10 shows typical

shapes of the expanding edge, revealing regular teeth, here spaced by about 38 µm.

For new holes the undulations are already visible 34 µs after puncture, growing

in amplitude and the first micro-bubbles are shed 250 µs after the hole opens.

For small holes, the wavelength of the teeth is approximately constant, with new

teeth growing or suddenly appearing between the old ones, as the length of the

hole periphery grows (Fig. 5.7). Closer to the bottom cap the teeth become larger

as the film is thicker. Two main mechanisms produce the bubbles, i.e. regular

shedding from the tips of the teeth and secondly by the sideways motion of two

adjacent teeth. When they merge they grow in size and pinch off a larger bubble.

Both mechanisms are present in Fig. 5.10(b). The spacing of trailing bubbles is

fairly regular, but they emerge at distinct locations along the front, often leaving

behind a bubble net.

Figure 5.10(c) is a close-up of the teeth, which are initially stable. Their base

and amplitude are about equal size, around 25 µm. They are therefore much wider

than the thickness of the air-sheet feeding them and are thereby semi-stable and

flat structures, consistent with numerical work of a retracting liquid edge (Bagué

et al., 2007). The undulations end abruptly, where the film becomes thicker as the

drop and free surface start to diverge from each other, see the arrow in the third

frame in Fig. 5.10(a). The spacing of these teeth along the edge appears related

to the local thickness of the air film. For example in Fig. 5.10(b) they are wider

closer to the bottom of the curved interface.
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Figure 5.12: Formation of a bubble cap for silicone oil of ν = 1000 cSt, for Re ∼ 2,
We ∼ 100, at t = 1.15, 1.47 and 2.69 ms after impact. Rupture starts axisym-
metrically at the outer edge (arrows) in the first frame. The volume of air in
the bottom bubble (3.3 ×10−4 mm3) and all the microbubbles (6.9 ×10−4 mm3,
estimated by counting individual bubbles) divided by the area of the bubble cap
in the first frame (3.7 mm2) gives an average δ ≃ 270 nm. Bar is 500 µm. Inset
shows rupturing of the edge. See supplemental video.
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Figure 5.13: (a) Contraction of the air cap, for ν = 30 (∎,▲), 100 (▲), 350 (∎,▲),
1000 cSt (∎). (b) Contraction velocity normalized by capillary viscous velocity.
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5.3.5 Bottom puncturing by a liquid jet

The largest deformations of a drop, as it hits the pool surface, are expected

for drops larger than the capillary length a =
√
σ/(ρg). This is indeed born

out in Fig. 5.11(a) where new dynamics emerge. In this particular configuration

(D/a ∼ 2) an air cavity is formed at the top of the drop, by its overall deformation

during the impact (Bartolo et al., 2006, Thoroddsen et al., 2007). As this air

cavity closes, it generates an internal air cylinder, and the surface deformations

also generate a liquid jet which penetrates the drop to emerge at its bottom where

it punctures the film at a pronounced dimple (arrow in second frame). For this

configuration the air film has not reached the critical rupture thickness, but is

forced by the jet to break at the axis of symmetry, making the overall breakup

dynamics essentially axisymmetric, with the edge propagating upwards towards

the pool surface. These internal drop dynamics can explain the large central

bubble appearing in some of the earlier studies (Fig. 7(a) of Mills et al. (2012)).
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The speed of the edge propagation can tell us something about the thickness

of the air film, especially for low viscosities and thicker films, where we expect

Taylor-Culick law to hold. In Fig. 5.9 we track the tangential velocity of the edge,

vs. depth. It is clear that the bottom part of the air film is also thickest as

the hole grows much slower in this region, developing a thick edge of air, until it

encounters a much thinner section on the sides. This sudden reduction in thickness

leaves a set of large bubbles along a ring, before very fast effective motion of the

breakup front (ue ≃ 7 m/s; Cae = 0.65) and production of uniform bubble nets,

in Fig. 5.11(c). Without the puncturing of the bottom jet, one would expect the

film to eventually rupture at the depth where the speed is maximum.

5.3.6 Larger liquid viscosities:

Figure 5.12 shows the contraction of the air sheet under the largest viscosity

drop of silicone oil (ν =1000 cSt). The initial rupture occurs near the upper edge,

often at isolated points, but the realization shown here ruptures axisymmetrically

along the entire periphery and the edge moves downwards leaving a uniform dis-

tribution of micro-bubbles. The initial velocity of the apparent edge of the film

ue, is about 0.6 m/s, which is 30 times larger than the capillary-viscous velocity

for this liquid, uµ = σ/µ ≃ 2 cm/s. Therefore, the classical models where the film

fluid is collecting in the rim cannot explain the motion of the edge. This is also

illustrated in Fig. 5.14, where the horizontal edge velocity does not decrease as

much as expected by the models at high viscosities. The rapid motion of the edge,

must therefore proceed through a different mechanism, manifest by strong edge

instability and radial ruptures of the air sheet, in Fig. 5.12. In a similar way,

the dewetting rates of viscous films can increase by rim instabilities (Reiter and

Sharma, 2001).
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5.4 Conclusions

Herein we have imaged the various breakup mechanisms of submicron air layers

caught under impacting drops. The systematic changes in the rupture depth give

a clear way of estimating the We−Oh regime where bubble chandeliers are formed.

The imaging of the resulting micro-bubbles gives us a direct estimate of the air film

thickness at rupture. We have also identified a different puncture mechanism with

a central jet traveling through the drop. These results will allow better estimates

of the resulting air transport through air-liquid interfaces and may be the easiest

way to repeatably produce such highly unstable submicron films of gas within a

liquid.



Chapter 6

Concluding Remarks

In this dissertation, we have described new splashing mechanisms, and observed

the breakup dynamics of the air film forming between the drop and the pool.

High speed imaging of the early dynamics of the ejecta sheet has revealed a

large variety of phenomena, such as bumping, quartering, ejecta sheets rising on

the drop and irregular splashing.

This systematic experimental study gave the overview necessary to chose the

parameters of extremely high refinement numerical simulations of the impact,

reproducing experimental features, and explaining the irregular splashing observed

at high impact velocities.

Further high-speed imaging, up to a million frames per second, were necessary

to verify experimentally some of the prediction of the numerical simulations. We

have therefore been able to make the first observations of toroidal shaped bubbles

entrapped below the drop, and liquid toroids detaching from the ejecta sheet.

This brings an answer to the long standing question of the experimental evidence

of these axisymmetric features, but may not be the only mechanisms producing

them.

Finally, we have shown that the breakup of the air film below the drop happens

through rupturing of its edge, by three-dimensional instabilities.

The results presented here may raise more questions than they answer. Many

aspects still need to be clarified or explored further, such as the effect of different

112
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liquids used in the drop and the pool, or a better modelling of these dynamics.
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Appendix A

Numerical Simulations

Abstract

Drop impact is a standard example of multiphase flow simulations, due to its

geometric simplicity, the beauty of its outcomes and the numerous applications

(See Chapter 1). It is however a very challenging problem, due to the presence

of the interface, surface tension effects, topological changes, and the very fine

features involved compared to the drop diameter. These include air entrapment

and splashing, that are the focus of this thesis.

Herein, we perform axisymmetric numerical simulations using the open source

code Gerris. This code uses a volume-of-fluid technique. Extreme adaptive grid

refinement allowed us to reach enough precision to fully resolve the fine details of

the ejecta.
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A.1 Introduction

The first numerical studies of drop impacts looked at the large deformations

of the drop, at time scales larger than 1 (t∗ = t/τ > 1, where τ = D/U) (Harlow

and Shannon, 1967a,b, Foote, 1975). This included the formation of the crown

splash, the cavity dynamics and the formation of the Worthington jet. With the

improvement of the numerical methods, finer phenomena were captured, such as

the vortex rings, air entrapment and splashing (Oguz and Prosperetti, 1989, 1990,

Pumphrey and Elmore, 1990, Morton et al., 2000). More information about the

numerical techniques and progress can be found in the reviews of Prosperetti and

Oguz (1993), Rein (1993), Yarin (2006), and the book of Tryggvason et al. (2011),

with a focus on drop impacts in their Chapter 10.

Recently, a much finer and earlier feature (t∗ < 1) was identified for high impact

velocities: the ejecta sheet. It emerges horizontally in the neck between the drop

and the pool, and then rises to give way to the crown. It was first suggested by

inviscid simulations of Weiss and Yarin (1999), and confirmed by experimental

results of Thoroddsen (2002), and direct numerical simulations of Josserand and

Zaleski (2003).

However, none of the previous numerical simulations were able to reproduce

the very complex ejecta shapes observed experimentally (see Thoroddsen (2002)

and Fig. 8 of Thoroddsen et al. (2008)). This is principally due to their extreme

thinness. Our experimental observations have indeed shown that it can become

as thin as δ = 300 nm (see Chapter 2), corresponding to D/δ ≃ 15 000. The

maximum resolution of Josserand and Zaleski (2003) had D/∆x = 150 cells per

drop diameter, thus being a factor of a 100 away from this scale. As their maximum

Reynolds number studied was 1000, they did not look at the intermediate regimes

observed experimentally in Fig. 3.2. The more recent study of Coppola et al. (2011)

went up to 1200 cells/D and Re = 5000, but did not reproduce the experimental
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observations.

Some 3D simulations have also been done (Gueyffier and Zaleski, 1998, Rieber

and Frohn, 1999, Gueyffier, 2000, Agbaglah et al., 2011, Yokoi, 2008, Gomaa et al.,

2009, Yokoi, 2011, 2013). Even though there is still an important gap to reach

realistic 3D simulations, they were able to reproduce some of the long time dy-

namics.

Recent improvements in codes and the availability of computational resources

now allows us sufficient resolution for the task in axisymmetric simulations. The

initial goal of our study was to reproduce numerically the experimental observa-

tions of Fig. 3.2, so as to understand the transition to irregular splashing. We

have chosen to use the freely available code Gerris (Popinet, 2003, 2009, Ag-

baglah et al., 2011, Popinet, 2011) because of its flexibility (dynamic adaptive

mesh refinement), and its high parallelization.

Here we give an overview of the numerical method used in Gerris, and then

detail the construction of the parameters that were necessary to achieve our goal.

A.2 Gerris code

A.2.1 Overview

Gerris is a freely available code, developed by Stéphane Popinet, and sup-

ported by NIWA (National Institute of Water and Atmospheric research) and Insi-

tut Jean le Rond d’Alembert. A community of users and developers can exchange

and contribute to the project around the wiki webpage: http://gfs.sf.net. It

includes a tutorial, examples, the bibliography of papers used to develop Gerris

or studies that have used Gerris, and connects the community through mailings

lists. We give here some general information about the numerical methods used.

More details can be found on Gerris in Popinet (2003, 2009), Agbaglah et al.

(2011), Popinet (2011), and in Ferziger and Perić (2002), Tryggvason et al. (2011)

http://gfs.sf.net
http://gfs.sf.net
http://gfs.sf.net
http://www.niwa.co.nz/
http://www.dalembert.upmc.fr/
http://www.dalembert.upmc.fr/
http://gfs.sf.net
http://gfs.sourceforge.net/tutorial/tutorial/tutorial1.html
http://gerris.dalembert.upmc.fr/gerris/examples/examples/index.html
http://gfs.sf.net/wiki/index.php/Bibliography
http://gfs.sf.net
http://gfs.sf.net
http://gfs.sourceforge.net/wiki/index.php/Mailing_lists
http://gfs.sourceforge.net/wiki/index.php/Mailing_lists
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for general numerical methods in fluid dynamics and multiphase flows.

A.2.2 Equations

The Gerris code solves the incompressible, variable-density, Navier-Stokes

equations with surface tension:

ρ (∂tu + u ⋅ ∇u) = −∇p +∇ ⋅ (2µD) + σκδsn,

∂tρ +∇ ⋅ (ρu) = 0,

∇ ⋅ u = 0,

with u the fluid velocity vector, ρ = ρ(x, t) the fluid density, µ = µ(x, t) the dy-

namic viscosity and D the deformation rate tensor defined as Dij ≡ (∂iuj + ∂jui) /2.

δs is the Dirac distribution function for the surface tension concentrated at the

interface. The domain can be 2D, 3D or axisymmetric.

These equations are called a “one-fluid” formulation (Tryggvason et al., 2011,

§2.5): the same equations apply in the whole domain, with variables ρ and µ,

and the interface term is included by adding singular distributions. The volume

fraction c(x, t) is used to define the local density and viscosity:

ρ(c) = cρ1 + (1 − c)ρ2, (A.1)

µ(c) = cµ1 + (1 − c)µ2, (A.2)

where the indices 1 and 2 represent each phase. The advection equation is therefore

equivalent to the same equation for c.

A.2.3 Discretisation

The domain is composed of adjacent boxes, stitched together. Each box is a

quadtree (octree in 3D). Spatial discretisation is done splitting the cells into two in

http://gfs.sf.net
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each directions several times. The level of refinement corresponds to the number

of times this splitting is applied to reach the size of the cell. A cell at level 14 is

thus about 16 000 times smaller than the box (214).

The finite volume approach is used with collocated variables at the centre of

the cells. The mesh is refined dynamically in specific regions at the fractional

timestep, based on flexible user defined conditions (Popinet, 2003). This allows

for instance to keep the finest refinement near the interface, or in regions of high

vorticity (see §A.4). A uniform mesh at level 16 in 2D or axisymmetric domain

would have more than 4 billion cells [(216)2], while our simulation at this level

have of the order of 20 million cells.

For simplicity in the code, the level of neighbouring cells cannot differ by more

than one. This applies for side and diagonal neighbouring cells.

The scheme to solve the equation is second order in time and space. A classical

time splitting projection method leads to the resolution of a Poisson equation. A

multigrid Poisson solver is described in Popinet (2003) for the quad/octree data

structure of Gerris.

A.2.4 Volume of Fluid method

The interface is advected by a Volume of Fluid method DeBar (1974), Noh

and Woodward (1976), Hirt and Nichols (1981), with a Piecewise Linear Interface

Calculation (PLIC) reconstruction (Scardovelli and Zaleski, 1999, Popinet, 2009).

This reconstructed interface is then used to estimate the curvature, used by the

surface tension term. The interface topology changes thus occur naturally when-

ever interfaces become closer than one cell. The drawback is that it depends on

the size of the cells, and doesn’t capture the physical mechanisms involved in these

events. It is found however, that as the effects of topology changes are limited in

space and time, they do not affect much the overall evolution, provided that the

typical scale of the surrounding features are well captured.

http://gfs.sf.net
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A.2.5 Spatial filtering

As we are simulating drop impacts with experimental parameters similar to

those in Figure 3.2, we have very large density ratios. This is known to cause a slow

convergence of the multi-grid Poisson solver (Alcouffe et al., 1981, Tatebe, 1993,

Chan and W. L. Wan, 2000, Tryggvason et al., 2011). Smoothing the interface by

a spatial filter can significantly improve this issue (Popinet, 2009, Fuster, 2013).

This is done by replacing c(x, t) in Equations A.1 and A.2, by c̃(x, t) which is the

filtered volume fraction. The spatial filtering takes the average of the four corners

(eight corners in 3D) values of each cell. These corner values are an average of the

cells around the corner.

Therefore, applying the filter once (called filter 1 here for simplicity) smoothes

the interface properties over three cells instead of just one without the filter (one

more cell in each direction around the interface). Each additional time the filter

is applied, the thickness of the interface grows by 2 cells. Cells further away from

the interface are less affected.

However, it also affects the accuracy of the solution by smearing the physical

properties around the interface. We have found that applying only one iteration

of the filtering operator gave the best results for our study (see §A.3).

A.2.6 Parallelization

The parallelization of the Gerris code is detailed in Agbaglah et al. (2011).

The domain is divided into smaller boxes, having the same quad/octrees structure,

and the same size. This can be done manually in the parameter file, or automat-

ically by a command splitting the domain (see §A.4). They are then grouped to

form a partition of sub-domains, each containing several boxes stitched together.

Sub-domains can be run on different processors. The communication between pro-

cessors is treated as boundary conditions. It creates a ghost layer at the parallel

http://gfs.sf.net
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boundaries, and swaps the values in the ghost cells sharing the same boundary

using the MPI library (Message Passing Interface).

The minimum number of boxes and sub-domains required is therefore the num-

ber of processors used. However, the adaptive mesh refinement (AMR) leads to

an uneven distribution of computational load into the domain. Since this is done

dynamically during the computation, the regions with higher requirements will

change in time. Good scalability is insured by a load-balancing algorithm. It

redistributes boxes between sub-domains to optimize the load balance and com-

munication between processors. This implies that the number of boxes has to be

much larger than the number of processors. Another constraint is that each box

has to be larger than the coarsest cells in the domain.

We follow the balancing procedure described in Agbaglah et al. (2011, p. 200).

The load balancing algorithm is applied at every time step, only if the difference

between the maximum and minimum number of elements per processor is larger

than 10%.

A.2.7 Post-processing

An interactive graphical interface has been developed for the specific data

structure of Gerris: GfsView. It takes advantage of the quad/octree structure to

allow fast visualization of the results. It also includes a parallel batch processing

to output selected information or images, during or after the computation, using

saved gfs files.

To obtain a smoother interface profile, we use the volume fraction tracer T=0.5-

isoline, instead of the VOF PLIC reconstruction (Piecewise Linear Interface Cal-

culation).

The output data generated was then analysed with Bash and Octave scripts

(see for instance Fig. 3.4).
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Figure A.1: Experimental observation at times [-5, 20, 45, 75, 100, 125, 150, 180]
µs from left to right and top to bottom, for the same experiment as in Figure 3.3(a).
The non-dimensional times of those frames are [-0.43, 1.74, 3.91, 6.52, 8.70, 10.87,
13.04, 15.65].

A.3 Building the simulation file

A.3.1 Choice of a test case

As a simulation convergence test, we have chosen to reproduce numerically the

drop impact for conditions similar to Fig. 3.3, as it is one of the key experimental

observations in the transition to irregular splashing. We show in Fig. A.1 a larger

view of the experiment in Figure 3.3(a). Times have been chosen to be the closest

to Gerris simulations presented in Fig. A.6.

This bumping case also represents an interest numerically because it involves

several interface reconnections. Connecting two interfaces is difficult numerically,

because of the large local divergence created. The first challenge thus occurs at the

first contact between the drop and the pool. The bumping adds another difficulty

to the computation, because the ejecta sheet reconnects with the drop. In some

cases, the solver was not able to converge when reaching these topological changes.

The drop does not connect with the pool on the axis of symmetry, but rather on

a circular line, thus entrapping a thin air disk, which subsequently contracts into
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a bubble. This central air entrapment has received a lot of interest (Thoroddsen

and Sakakibara, 1998, Thoroddsen et al., 2003, Smith et al., 2003, Mehdi-Nejad

et al., 2003, Van Dam and Le Clerc, 2004, Thoroddsen et al., 2005, Mani et al.,

2010, Hicks and Purvis, 2010, 2011, 2012, Driscoll and Nagel, 2011, Duchemin and

Josserand, 2011, 2012, Palacios et al., 2012, de Ruiter et al., 2012, Mandre and

Brenner, 2012, Kolinski et al., 2012, van der Veen et al., 2012, Liu et al., 2013).

However, previous numerical studies of drop impacts usually ignore it, by starting

the simulation when the drop has already contacted the pool (Weiss and Yarin,

1999, Davidson, 2002, Josserand and Zaleski, 2003, Coppola et al., 2011). For

boundary integral methods used by Weiss and Yarin (1999), Davidson (2002), this

is a necessary condition, as they cannot handle any changes in interface topology.

Our simulations start before contact between the drop and the pool (Fig. A.2),

thus capturing the air-cushioning effect [Figs. 3.7(d), 3.5(a), and 3.5(d)].

We have observed that using spatial filtering helps the computation to over-

come the difficulties of topology changes. However, this also alters the local prop-

erties of the fluids around the interface. In this section, we will show the effects

of the maximum level of refinement, and the spatial filtering. This will lead us to

the parameters chosen for our numerical studies, presented in §A.4.

A.3.2 Physical parameters

We have chosen impact parameters close to the experiment presented in Fig-

ure 3.3(a). The physical parameters and their non-dimensional counterparts in

Gerris are listed in Table A.1. This experiment has thus the following non-

dimensional numbers:

Re = 3.64 ⋅ 103

We = 1.22 ⋅ 103

K =We
√
Re = 7.38 ⋅ 104

ρliquid
ρair

= 926

µliquid

µair

= 313

All times used below are non-dimensionalized by τ = D/U = 1.15 ms. The

http://gfs.sf.net
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Experimental parameters Numerical simulation parameters
U 4 m/s 1
D 4.6 mm 0.44
L = Lx = Lz 10.45 mm 1
H 5 mm 0.478
δ 0.23 mm 0.022
ρliquid 1120 kg/m3 1
µliquid 5.66 cP 1.21 ⋅ 10−4
ρair 1.21 kg/m3 1.08 ⋅ 10−3
µair 1.81 ⋅ 10−2 cP 3.86 ⋅ 10−7
σ 67.4 mN/m 3.60 ⋅ 10−4
g 9.81 m/s2 6.41 ⋅ 10−3
τG = L/U 2.61 ms 1

Table A.1: Experimental and numerical simulation parameters. In Gerris, space
is adimensionalized by L instead of D. Non-dimensional units used in the study
can be obtained from the Gerris units by dividing space and time by 0.44
(τ = 0.44 τG).

origin of time is the theoretical contact time between the drop and the pool if

the surface were not deformed. The time can thus be expressed in percentage of

the time required for the undisturbed drop to enter the pool if it kept the same

velocity. In the experiment, the bumping (impact of the ejecta sheet on the drop)

occurs at about 10% of drop entry.

A.3.3 Computational domain and refinement

All simulations use the axisymmetric configuration of Gerris. The simulation

domain is described in Figure A.2. The liquid in the drop has an initial velocity

U towards the pool, while the pool liquid and the gas are initially stationary.

The boundary conditions are described in the last paragraph of the parameter

file (§A.4). It is an open flow boundary condition on the top of the domain

(GfsBoundaryOutflow), and a wall no-slip boundary condition on the side and

bottom of the domain (Boundary { BcDirichlet U 0 BcDirichlet V 0 }). The

default boundary condition for the pressure is used on all boundaries, i.e. a zero

normal derivative (Popinet, 2003).

http://gfs.sf.net
http://gfs.sf.net
http://gfs.sf.net
http://gfs.sf.net/wiki/index.php/GfsBoundaryOutflow
http://gfs.sf.net/wiki/index.php/GfsBoundary
http://gfs.sf.net/wiki/index.php/GfsBcDirichlet
http://gfs.sf.net/wiki/index.php/GfsBcDirichlet
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The mesh has been made uniform at the maximum level of refinement in the

regions of interest: between the drop and the pool, in the neck region after impact,

and inside the ejecta sheet (see §A.4). Better stability was observed with this

configuration than with other local refinements (interface or curvature). This

also removes possible effects of non-uniform refinement on the dynamics of the

interface.

The minimum level of refinement in the domain was kept at 9, equivalent to

a uniform grid of 512x512 cells. The grid was then refined dynamically based on

vorticity and interface conditions. The grid was also kept uniform inside the ejecta

sheet at the maximum level of refinement [Fig. A.3(c)].

A.3.4 Convergence study: maximum level of refinement

Figure A.4 shows how the bumping ejecta shapes change with increased spatial

resolution of the simulations.

We can see already that a level of refinement of at least 11 (D/∆x = 900) is

Lz

H
Lx

D
Liquid

Liquid

Gas
U

Figure A.2: Initial conditions of the Gerris simulations. The domain of computa-
tion is limited to the right half of the domain drawn above, due to the axisymmetry.
The proportions are reproduced here as in the simulations: D = 0.44, H = 0.48,
Lx = Lz = 1, and the initial gap between the drop and the pool is 0.022, i.e., 10%
of the drop radius.
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required to observe the interaction between the ejecta sheet and the drop, and 14

(D/∆x = 7 200) to capture correctly the bumping dynamics of the ejecta sheet.

This explains why previous studies could not observe these shapes.

However, differences in the dynamics are still observed up to level 16, the

a b

c

Figure A.3: (a) Overall simulation domain. (b) Zoom on the ejecta shape. (c)
Typical grid near the tip of the ejecta sheet at a level 16 of refinement. The scale
bar is 2 × 10−3D long.
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Figure A.4: Convergence study with a filter 3, in the conditions described in
Table A.1, at t∗ = 0.2. A filter 3 is used, and lmax corresponds to the maximum
level of refinement.
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maximum level of refinement reached in this study. It corresponds to the finest

cells being 216 = 65536 times smaller than the size of the computational domain.

A uniform mesh at this level of refinement would contain 216 = 65536 cells in each

direction, and thus a total of (216)2 (4.29 billion) cells. In our simulations, this

corresponds to D/∆x = 28 800 cells per drop diameter. With a drop of diameter

4.6 mm, the smallest cell is only 160 nm, which allows to identify sub-micron

structures.

At level 16 (Fig. A.3), the ejecta sheet can become as thin as 500 nm (only 3

cells) near the tip, due to the extreme stretching. This value is consistent with our

indirect experimental measurements of Chapter 2. The results presented in Chap-

ter 3 are at level 14 (D/∆x = 7 200), calculated on 64 processors, thereby allowing

a systematic investigation of the parameter space with the available computational

resources.

The simulations faithfully reproduce all of the observed features, as we showed

in Figure 3.3 by comparing experiments and numerics of the detailed evolution of

the ejecta sheet in this bumping case. The ejecta sheet emerges smoothly between

the drop and the pool and rises fast, creating a curved shape very early (Fig. A.5).

Then it impacts with the drop, creating a bump in the ejecta sheet. The tip of the

ejecta sheet then impacts the pool (see Chapter 2). This creates higher curvatures

leading to the formation of a cusp at the top arc of the ejecta, while the outer part

of the sheet is stretched between the pool and this rising cusp. The simulation

shows that a toroid of air is trapped during the bumping. It also reveals the

detailed mechanism leading to bumping. When the sheet hits the drop surface,

the ejecta sheet changes its origin to the newly connected region. Moreover, the

ejection angle drops sharply to become more horizontal. This sudden change in

emergence angle creates the characteristic bumping shape.
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Figure A.5: Velocity field intensity (colour) and vectors, for the same conditions
as Fig. 3.3. The drop is on the top left, impacting on the bottom pool. The thick
line represents the air/liquid interface. We only show a limited number of velocity
vectors to avoid clutter.

A.3.5 Effect of filtering

We show in Fig. A.6 the effect of applying the spatial filtering several times.

We compare to the highest resolution simulations we are able to achieve. It clearly

shows that the lower number of filters gives more accurate results. This is espe-

cially true for the bumping when there is a topology change on the interface: the

sharp bump is smoothed by several applications of the filter.

A.3.6 First contact between the drop and the pool

More quantitatively, we can look at the early dynamics of the impact to see

the effect of refinement and filtering.

The first contact is characterized in the numerical results by the tracer T=0.5-

isoline. We determine that the drop has contacted with the pool when there is

a change of topology of this isoline. The time of the first Gerris file saved after

contact is recorded here. At this time, the contact region already has a finite

radial extension. The contact radius is defined as the point at the centre of this
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Figure A.6: Effect of filtering. Superposition of the interface profiles starting at
non-dimensional time -5% of τ , by steps of 0.01/0.44 ≃ 2.27%: [-5.00, -2.73, -0.45,
1.82, 4.09, 6.36, 8.64, 10.91, 13.18, 15.45]. The top image has a filter 1, then 2
and 3, at a maximum level of refinement of 12 (D/∆x = 1 800). For comparison,
the bottom image shows the same simulation with a filter 3 and a maximum level
of refinement of 16 (D/∆x = 28 800).
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Figure A.7: Characterization of the first contact between the drop and the pool,
as a function of maximum level of refinement and number of filters applied. Left:
Contact time (in percentage of τ). Right: Radial position of the first contact,
normalized by the drop radius.

contact region (average of the outer and inner contact points). The results are

plotted in Figure A.7. They show that the filters significantly delay the contact

between the drop and the pool, and increase the contact radius, with a stronger

effect with more filters. This was expected, since the filter artificially increases the

density and viscosity of the gas cushioning the drop. However, even for the larger

number of filters, it rapidly converges towards the same value.

A.3.7 Emergence of the ejecta sheet

The emergence time of the ejecta sheet (Fig. A.8) is defined as the first time

when the curvature of the T=0.5-isoline changes sign in the neck region, leading to

the emergence of the ejecta sheet at later times. At this time, the tip of the ejecta

sheet defines the emergence radius (Fig. A.8(top)), showing a clear convergence.

The velocity at the tip (Fig. A.8(bottom)) shows that the initial stage of formation

of the ejecta sheet is still not fully resolved (velocity still growing at level 16).
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Figure A.8: Characterization of the emergence of the ejecta sheet, as a function
of maximum level of refinement and number of filters applied. Top left: Time of
emergence (in percentage of τ). Top right: Radius of emergence. Bottom: Tip
velocity just after emergence of the ejecta sheet.
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Figure A.9: Definition of the points used to characterize the ejecta sheet following
Coppola et al. (2011).

A.3.8 Early evolution of the ejecta sheet

The ejecta sheet has been studied at an early stage of its evolution after emer-

gence (at 4.09%: see Fig. A.10). We are following here the definitions of Coppola

et al. (2011) for the characteristic points of the ejecta sheet. These points are

represented in Figure A.9. Points A and C are at the base of the ejecta sheet,

where the interface reaches a local minimum in radial location. Point B is the tip

of the ejecta sheet, defined as the maximum in radial location, between A and C.

I is the origin of the ejecta sheet, defined as the middle of A and C. Point D is

introduced as a minimum vertical location, to identify the base of the ejecta sheet

when there is no longer a minimum in radial location (later stage).

Note that a different definition of the base of the ejecta sheet was used in

Chapter 3, as we were interested in the vorticity production.

The length of the ejecta sheet (Fig.A.10 (top left)) is defined as the distance

between I and B. The thickness of the ejecta sheet (Fig.A.10 (top right)) is defined

as the distance between A and C. The velocity of the ejecta sheet tip (Fig.A.10

(bottom left)) is the velocity at point B, and the base velocity of the ejecta sheet

(Fig.A.10 (bottom right)) is the velocity at point I.
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Figure A.10: Characterization of the early dynamics of the ejecta sheet, at t∗ =
4.09% of τ . Top left: Length of the ejecta sheet. Top right: Thickness of the
ejecta sheet. Bottom left: Velocity of the ejecta sheet tip. Bottom right: Velocity
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A.3.9 Conclusions

We see that the most accurate results are obtained for the lower number of

spatial filters. However, we observe the convergence of the results by increasing

the refinement even with 3 iterations of the filter.

The main effect of this filtering is to postpone the contact between approaching

interfaces, thus making a softer impact. If the early characteristics of the ejecta

sheet seem to be less affected by the filters, the shape of the ejecta sheet is still

changing at level 16 (see Fig. A.4). The main difference in the shape is a sharper

angle in the bumping at level 16. This smaller angle is probably due to the filtering,

as we can see by comparing filters 1 to 3 at level 12 (Fig. A.6).

The scale at which the filter affects the results is likely not correctly captured,

as it is only a few cells thick. It is therefore reasonable to use spatial filtering,

keeping in mind the drawbacks. We have chosen here to use only one filter, so as to

ensure convergence of the solver, while keeping the highest precision in the results.

This is especially important to capture the completely new features observed in

Chapter 3, where multiple topological changes occur.

This convergence test clearly shows that earlier studies had to be significantly

improved to capture the dynamics of bumping, and other dynamics of Fig. 3.2.

A.4 Gerris parameter file

Gerris uses a parameter file (“.gfs”) as input to define all the condition of each

simulation. It also contains the instructions to output information at selected time

intervals. The physical parameters in the parameter file enter the equations solved

as follows:

dÐ→u
dt
= α{−Ð→∇p +Ð→∇ ⋅ (µ(Ð→∇Ð→u +∇Ð→u T )) + σκδsÐ→n } + Source (Ð→u )
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where α is defined by GfsPhysicalParams, µ by GfsSourceViscosity, σ by Gfs-

SourceTension, κ by GfsVariableCurvature, the additional source term by Gfs-

Source, δs is the Dirac distribution function of the interface, and n is the normal

to the interface.

The details of the numerical scheme can be found in Popinet (2009). We

provide the full information necessary to reproduce our results, by adding below

the Gerris file used for this study. Its parameters correspond to the one used

for Fig. 3.5(c). The domain is a square of dimension 1. To make the file run

in parallel, the domain needs to be split into smaller sub-domains. The smaller

boxes are generated automatically with the option -s of Gerris, and then grouped

to partition the domain with the option -b. Each keyword is highlighted in blue,

and links to the Gerris website to explain in details its effect with examples.

Comments are in green, explaining the different parts of the file.

http://gfs.sf.net/wiki/index.php/GfsPhysicalParams
http://gfs.sf.net/wiki/index.php/GfsSourceViscosity
http://gfs.sf.net/wiki/index.php/GfsSourceTension
http://gfs.sf.net/wiki/index.php/GfsSourceTension
http://gfs.sf.net/wiki/index.php/GfsVariableCurvature
http://gfs.sf.net/wiki/index.php/GfsSource
http://gfs.sf.net/wiki/index.php/GfsSource
http://gfs.sf.net
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 # Title: von Karman Vortex Street within an Impacting Drop

 # File name: splash.gfs

 # Description: gfs file to generate Fig. 4(c) of

 # von Karman Vortex Street within an Impacting Drop

 # PRL 108, 264506 (2012)

 # Author: Marie-Jean THORAVAL - mariejean.thoraval@kaust.edu.sa

 # Commands: $ gerris2D -s 7 splash.gfs > splash-s7.gfs

 # $ gerris2D -b 64 splash-s7.gfs > splash-b64.gfs

 # $ mpirun -np 64 gerris2D splash-b64.gfs

 # Version: 1.3.2 (111025-074046)

 # Running time: 2 weeks on 64 processors


 1 0 GfsAxi GfsBox GfsGEdge {} {

 Global {
 /* Refinement */

 #define levelmin 9
 #define levelmax 14

 /* Physical parameters (SI) */

 #define Rho_liq 1120. /* Density liquid (kg/m^3) */

 #define Mu_liq 0.0010099 /* Viscosity liquid (kg/(s.m)) */

 #define Rho_air 1.21 /* Density air (kg/m^3) */

 #define Mu_air 1.81e−5 /* Viscosity air (kg/(s.m)) */

 #define Sig 0.0674 /* Surface tension (kg/s^2) */

 #define V0 2.8422 /* Impact velocity (m/s) */

 #define D 0.0046 /* Drop diameter (m) */

 #define g 9.81 /* Gravity (m/s^2) */

 #define PH 0.005 /* Pool depth (m) */


 /* Simulation parameters */

 #define radius 0.22 /* Radius of the drop in the simulation box of size 1 */

 #define eps 0.001 /* Refinement away from boundary */

 #define Lbox (D/(2∗radius)) /* Physical size of the box (m) */

 #define gad (Lbox∗g/(V0∗V0)) /* Gravity */

 #define xccS (PH/Lbox − 0.5) /* Pool surface position */

 #define xcc(t) (xccS + 1.1∗radius − t) /* Drop center: 0.1*radius above the pool at t=0 */

 #define ycc 0. /* Drop center */

 #define goutte(x,y,t) ((x − xcc(t))∗(x − xcc(t)) + (y − ycc)∗(y − ycc)) /* Drop shape */

 #define Quo_mu (Mu_air/Mu_liq) /* Viscosity ratio */

 #define Quo_rho (Rho_air/Rho_liq) /* Density ratio */

 #define VAR(T,min,max) (min + CLAMP(T,0.,1.)∗(max − min)) /* Make sure T is between 0 and 1 */

 #define rho(T) (VAR(T,Quo_rho,1.)) /* Density */

 #define mu(T) (VAR(T,Quo_mu,1.)) /* Viscosity */

 }

 Time { end = 0.2 } # Gerris time TG, with t*=TG/(2*radius), t*=t/tau, tau=D/V0


 # Initial refinement: refine near the pool surface

 Refine {
 if ((x >= xccS − 0.003) && (x <= xccS + 0.003)) {return levelmax;}
 else {return levelmin;}
 }
 # Initial refinement: refine near the edge of the drop

 Refine {
 if ((goutte(x,y,0) <= (radius+0.003)∗(radius+0.003)) && (goutte(x,y,0) >= (radius−0.003)∗(radius

−0.003))) {return levelmax;}
 else {return levelmin;}
 }

 # Use different tracers to identify the liquid from the drop and the pool.

 # T is the main tracer used for curvature calculations.

 # Tdrop and Tpool are passive tracers.

 VariableTracerVOF T
 VariableTracerVOF Tdrop

http://gfs.sf.net/wiki/index.php/GfsAxi
http://gfs.sf.net/wiki/index.php/GfsBox
http://gfs.sf.net/wiki/index.php/GfsGEdge
http://gfs.sf.net/wiki/index.php/GfsGlobal
http://gfs.sf.net/wiki/index.php/GfsTime
http://gfs.sf.net/wiki/index.php/GfsRefine
http://gfs.sf.net/wiki/index.php/GfsRefine
http://gfs.sf.net/wiki/index.php/GfsVariableTracerVOF
http://gfs.sf.net/wiki/index.php/GfsVariableTracerVOF
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 VariableTracerVOF Tpool
 VariableFiltered TF T 1
 VariableCurvature K T
 SourceTension T (Sig/(Rho_liq∗Lbox∗V0∗V0)) K

 # Initial conditions

 InitFraction T ({
 double drop = radius∗radius − goutte(x,y,0);
 double pool = xccS − x;
 return −union (−drop, −pool);
 })
 Init {} {
 U = ( (goutte(x,y,0) <= radius∗radius) ? −1. : 0 )
 }
 InitFraction Tdrop ( radius∗radius − goutte(x,y,0) )
 InitFraction Tpool ( xccS − x )

 Source {} U (−1.∗gad)

 # Main refinement

 AdaptGradient { istep = 1 } { maxlevel = levelmax minlevel = levelmin cmax = 1e−6 } T
 AdaptGradient { istep = 1 } { maxlevel = levelmax minlevel = levelmin cmax = 1e−6 } Tdrop
 AdaptGradient { istep = 1 } { maxlevel = levelmax minlevel = levelmin cmax = 1e−6 } Tpool
 AdaptVorticity { istep = 1 } { maxlevel = levelmax minlevel = levelmin cmax = 1e−2 }
 # Ejecta sheet refinement

 AdaptFunction { istep = 1 } { maxlevel = levelmax minlevel = levelmin cmax = 0 } ( (x > xccS+eps) && (
goutte(x,y,t) > (radius+eps)∗(radius+eps)) ? T > 0. : 0 )

 AdaptGradient { istep = 1 } { maxlevel = levelmax minlevel = levelmin cmax = 1e−6 } ( (x > xccS+eps)
&& (goutte(x,y,t) > (radius+eps)∗(radius+eps)) ? T : 0 )

 # Contact refinement 0.1

 AdaptFunction { istep = 1 } { maxlevel = levelmax minlevel = levelmin cmax = 0 } ( (y < 0.1) && (x >
xccS−eps) && (goutte(x,y,t) > (radius−eps)∗(radius−eps)) ? T > 0. : 0 )

 AdaptFunction { istep = 1 start = 0.02 } { maxlevel = levelmax minlevel = levelmin cmax = 0 } ( (x >
xccS−0.2∗radius) && (x < xccS+0.2∗radius) && (y < 0.1) ? T < 1. : 0 )

 AdaptGradient { istep = 1 start = 0.02 } { maxlevel = levelmax minlevel = levelmin cmax = 1e−6 } ( (x >
xccS−0.2∗radius) && (x < xccS+0.2∗radius) && (y < 0.1) ? T : 0 )


 SourceViscosity { istep = 1 } (Mu_liq/(Rho_liq∗Lbox∗V0))∗mu(TF) {
 tolerance = 1e−07
 nrelax = 7

 erelax = 2
 minlevel = 0
 nitermax = 4000
 nitermin = 1
 weighted = 0
 beta = 0.5
 }
 PhysicalParams { alpha = 1./rho(TF) }
 EventBalance { istep = 1 } 0.1 # Load balancing

 RemoveDroplets { istep = 1 } T 30 (1 − T) 1 # Remove small bubbles

 RemoveDroplets { istep = 1 } T 30 # Remove small droplets


 GfsAdvectionParams {
 cfl = 0.5
 gradient = gfs_center_gradient
 flux = gfs_face_velocity_advection_flux
 average = 1
 scheme = godunov
 }
 GfsApproxProjectionParams {
 tolerance = 1e−07
 nrelax = 7
 erelax = 2
 minlevel = 0
 nitermax = 4000
 nitermin = 1

http://gfs.sf.net/wiki/index.php/GfsVariableTracerVOF
http://gfs.sf.net/wiki/index.php/GfsVariableFiltered
http://gfs.sf.net/wiki/index.php/GfsVariableCurvature
http://gfs.sf.net/wiki/index.php/GfsSourceTension
http://gfs.sf.net/wiki/index.php/GfsInitFraction
http://gfs.sf.net/wiki/index.php/GfsInit
http://gfs.sf.net/wiki/index.php/GfsInitFraction
http://gfs.sf.net/wiki/index.php/GfsInitFraction
http://gfs.sf.net/wiki/index.php/GfsSource
http://gfs.sf.net/wiki/index.php/GfsAdaptGradient
http://gfs.sf.net/wiki/index.php/GfsAdaptGradient
http://gfs.sf.net/wiki/index.php/GfsAdaptGradient
http://gfs.sf.net/wiki/index.php/GfsAdaptVorticity
http://gfs.sf.net/wiki/index.php/GfsAdaptFunction
http://gfs.sf.net/wiki/index.php/GfsAdaptGradient
http://gfs.sf.net/wiki/index.php/GfsAdaptFunction
http://gfs.sf.net/wiki/index.php/GfsAdaptFunction
http://gfs.sf.net/wiki/index.php/GfsAdaptGradient
http://gfs.sf.net/wiki/index.php/GfsSourceViscosity
http://gfs.sf.net/wiki/index.php/GfsPhysicalParams
http://gfs.sf.net/wiki/index.php/GfsEventBalance
http://gfs.sf.net/wiki/index.php/GfsRemoveDroplets
http://gfs.sf.net/wiki/index.php/GfsRemoveDroplets
http://gfs.sf.net/wiki/index.php/GfsAdvectionParams
http://gfs.sf.net/wiki/index.php/GfsApproxProjectionParams
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 weighted = 0
 beta = 0.5
 }
 GfsProjectionParams {
 tolerance = 1e−07
 nrelax = 7
 erelax = 2
 minlevel = 0
 nitermax = 4000
 nitermin = 1
 weighted = 0
 beta = 0.5
 }

 # Output parameters

 GfsOutputTime { step = 0.001 } stdout
 GfsOutputProjectionStats { step = 0.001 } stdout
 GfsOutputSimulation { step = 0.001 } gouttes−bin−%5.3f.gfs { binary = 1 format = gfs }
 GfsOutputSimulation { step = 0.0001 start = 0.02 end = 0.03 } gouttes−bin−%6.4f.gfs { binary = 1 format

= gfs }
 }

 # Boundary conditions

 GfsBox { id = 1 pid = 0
 left = Boundary { BcDirichlet U 0 BcDirichlet V 0 }
 right = GfsBoundaryOutflow
 top = Boundary { BcDirichlet U 0 BcDirichlet V 0 }
 bottom = Boundary
 }

http://gfs.sf.net/wiki/index.php/GfsProjectionParams
http://gfs.sf.net/wiki/index.php/GfsOutputTime
http://gfs.sf.net/wiki/index.php/GfsOutputProjectionStats
http://gfs.sf.net/wiki/index.php/GfsOutputSimulation
http://gfs.sf.net/wiki/index.php/GfsOutputSimulation
http://gfs.sf.net/wiki/index.php/GfsBox
http://gfs.sf.net/wiki/index.php/GfsBoundary
http://gfs.sf.net/wiki/index.php/GfsBcDirichlet
http://gfs.sf.net/wiki/index.php/GfsBcDirichlet
http://gfs.sf.net/wiki/index.php/GfsBoundaryOutflow
http://gfs.sf.net/wiki/index.php/GfsBoundary
http://gfs.sf.net/wiki/index.php/GfsBcDirichlet
http://gfs.sf.net/wiki/index.php/GfsBcDirichlet
http://gfs.sf.net/wiki/index.php/GfsBoundary
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