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ABSTRACT

Contributions Towards Practical Cognitive Radios Systems

Mahdi Ben Ghorbel

Cognitive radios is one of the hot topics for emerging and future wireless commu-

nication. It has been proposed as a suitable solution for the spectrum scarcity caused

by the increase in frequency demand. The concept is based on allowing unlicensed

users, called cognitive or secondary users, to share the unoccupied frequency bands

with their owners, called the primary users, under constraints on the interference

they cause to them. The objective of our work is to propose some enhancements

to cognitive radio systems while taking into account practical constraints. Cogni-

tive radios requires a capability to detect spectrum holes (spectrum sensing) and a

scheduling flexibility to avoid the occupied spectrum and selectively use the empty

spectrum (dynamic resource allocation). Thus, the work is composed of two main

parts. The first part focuses on cooperative spectrum sensing. We compute in this

part the analytical performance of cooperative spectrum sensing under non identical

and imperfect channels. Different schemes are considered for the cooperation between

users such as hard binary, censored information, quantized, and soft information. The

second part focuses on the dynamic resource allocation. We first propose low-cost re-

source allocation algorithms that use location information to estimate the interference

to primary users to replace absence of instantaneous channel state information. We

extend these algorithms to handle practical implementation constraints such as dis-
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crete bit-loading and collocated subcarriers allocations. We then propose a reduced

dimension approach based on the grouping of subcarriers into clusters and performing

the resource allocation over clusters of subcarriers instead of single subcarriers. This

approach is shown to reduce the computational complexity of the algorithm with lim-

ited performance loss. In addition, it is valid for a generic set of resource allocation

problems in presence of co-channel interference between users.
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Chapter 1

Introduction

1.1 Motivation for Cognitive Radios: The Spec-

trum Scarcity Problem

The last two decades were marked by a revolution in the area of wireless communica-

tions. The great advances in research in this field lead to 1) emergence of variety of

devices/ technologies with different objectives and uses, and 2) improvement of the

performances of the wireless networks especially regarding achievable rate and energy

consumption. However, with these great advancements, the spectrum, considered as

a limited national resource, is threatened by saturation in the coming few years. As

an example, we refer to the USA spectrum allocation table in Fig. 1.1 which shows

the rarity of available empty slots.

Many approaches were investigated to tackle this problem of spectrum scarcity by

trying to enhance the efficiency of the spectrum usage. Among these techniques

• Multiple receive and transmit antennas [1], which exploits new spatial dimen-

sion in order to increase throughput and efficiency without requiring additional

spectrum.

• Adaptive multi-level modulation and coding [2], which optimizes the use of the

available slots by adapting the modulation depending on the channel condition



16

Figure 1.1: Spectrum occupancy in United States of America (Source: Federal Com-
munications Commission).
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in stead of static modulations designed to support worst-case scenario previ-

ously.

• Millimeter wave communications, where new spectrum slot of very high fre-

quency compared to the currently used spectrum bands is under study for use

in communications. The challenge consists in the high attenuation of such fre-

quencies. [3]

• Spectrum sharing which attracted research after statistics showing very low real

use of the spectrum allocated. The cognitve radio concept was firstly proposed

by Mitola in 1999. [4]

1.2 Cognitive Radios Concept

Starting from a conclusion of the Federal Communication Commission (FCC) which

states that around 90% of the licensed frequency remain idle [5], cognitive radio sys-

tems have received a great deal of attention to improve the spectrum efficiency. The

concept consists in allowing some secondary users, called cognitive users, to oppor-

tunistically access and share the spectrum with the licensed users, called primary

users, under certain interference condition. This principle requires certain intelli-

gence of the secondary users to 1) detect the primary users use of the spectrum, and

2) adapt their transmission rapidly in order to profit from the detected spectrum

holes and optimize their throughput while respecting the allowed interference levels.

1.3 Proposed Models for Cognitive Radios

In literature, proposed cognitive radios models can be classified into three main ap-

proaches:
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1. Interweave scenario [4], in which secondary users can transmit only in the

spectrum holes of the primary user. This approach requires an accurate spec-

trum sensing. It guarantees zero interference to the primary user but the sec-

ondary users throughput is limited.

2. Underlay scenario [6], in which secondary users can share the spectrum with

the primary users under a low interference constraint. This approach achieves

better performance for the secondary users and do not need spectrum sensing.

However, it requires the knowledge of the interference channel between the

secondary transmitter and the primary receiver.

3. Overlay scenario [7], in which secondary user will play the role of a relay

for the primary user transmission and simultaneously transmit its own data

without interfering the primary transmission via orthogonal multiplexing. This

approach assumes collaboration between primary and secondary users via share

of codebooks which is not always practical especially in secure communications.

In this work we will consider a generic scenario between the interweave and underlay

scenarios explained above, as follows: The secondary users perform spectrum sensing,

then

• if the primary user is not there (idle/absent), the secondary user can transmit

without any limit of interference (like the interweave scenario)

• if the primary is present and active, the secondary user can transmit under a

tolerable interference constraint (like the underlay scenario)

This approach provides higher transmission opportunities for the secondary users as

shown in Fig. 1.2. In addition, the two original scenarios could be re-obtained from

this generic scheme, the interweave by setting the interference thresholds to zero when
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Figure 1.2: Proposed cognitive radios model versus the classic models.

the user is present, and the underlay by setting the primary user occupancy to present

in all subcarriers.

This generic model can be decomposed into two main parts.

• Spectrum sensing, where detection of the spectrum occupancy is performed.

• Dynamic resource allocation, where the transmission scheduling is opti-

mized to avoid generating harmful interference to the primary users and maxi-

mize the use of the empty spectrum.

1.4 Main Challenges in Cognitive Radio Systems

Due to the nature of cognitive radios, different challenges are faced in order to achieve

a realistic model. In what follows, we summarize some particular challenges related

to each part of our system model.

1.4.1 Spectrum Sensing

Spectrum sensing consists in detecting the occupancy of the spectrum by primary

users. Thus, the reliability of this sensing is of paramount importance as high miss-

detection probability will lead to a loss of important transmission opportunities and
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on the other hand high false-alarm probability will lead to a high risk of interference

to the primary users. In order to improve spectrum sensing performance, usually

cognitive users will cooperate together in order to overcome shadowing and fading

effects. Thus, cooperation parameters should also be well selected in order to optimize

the sensing performance.

1.4.2 Dynamic Resource Allocation

Dynamic Resource allocation (DRA) is the ability of allocating the available sec-

ondary user resources, mainly spectrum and power, in order to optimize their through-

put while respecting the interference condition. Thus, proposing low-complex dy-

namic resource allocation algorithms in the context of cognitive radios is more chal-

lenging in order to take-advantage from the spectrum vacancies before the conditions

change. In addition, in absence of collaboration between primary and secondary users,

knowledge of the instantaneous interference channels towards the primary users is a

challenging problem.

1.5 Thesis Objectives

In this thesis, we target some specific problems within the cognitive radios concept

that we will focus on by taking into consideration some practical constraints in order

to achieve practical cognitive radio systems.

In particular, in chapter 2, we focus on the performance evaluation of cooperative

spectrum sensing. Specifically, we target to compute the performance of cooperative

spectrum sensing under independent but non identically distributed sensing and re-

porting channels. We consider different cooperation schemes and target derivation of

closed-form expressions for global probabilities of detection and false alarm.

In chapter 3, we target the problem of knowledge of interference channels. We
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propose the use of location information to estimate this interference. In particular,

we formulate and solve optimization problems using this location information for

downlink and uplink DRA. We propose also algorithms considering specific practical

implementation constraints such as discrete rate and collocated channels.

Next, in chapter 4, we tackle a DRA problem in presence of co-channel interference

between users. We propose an approach to reduce the complexity of the problem

using grouping of subcarriers. We study the efficiency of the approach in terms of

complexity and performance.

Finally, we draw in chapter 5 the main conclusions of this work and enumerate

some possible extensions.
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Chapter 2

Cooperative Spectrum Sensing

under Imperfect Reporting

Channels

2.1 Introduction

Spectrum sensing, in which the decision of presence or absence of a primary user is

made, is the first and the key step in cognitive radio systems. The purpose of spectrum

sensing is to guarantee no interference to the primary users while maximizing the

available spectrum for the secondary users’ use. [8, 9] review the main algorithms

employed for spectrum sensing by comparing them and highlighting the advantages

and disadvantages of each method.

Cooperative spectrum sensing has been extensively studied in the literature [10,

11, 12, 13, 14, 15]. For instance, [16] and [17] provide a detailed review of most of the

works done in this area and highlight the main advantages and the limits. Among

the elements for cooperative spectrum sensing, the process of combining local sensing

results in the fusion center, such as the ”AND” rule and the ”OR” rule, to make the

final decision is discussed in [12, 18]. In particular, the used cooperation scheme is a
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key subject for spectrum sensing due to its effect on performance. The general known

schemes are binary hard and fully soft information, [19] compares performance of these

two schemes. Other schemes are suggested such as the quantized scheme [20] and the

censored scheme (called also tertiary scheme) [21, 22, 23] where local users do not take

decision when they are not sure about their decision. In addition, [24, 18, 25] derive

optimal parameters for cooperative spectrum sensing, such as decision thresholds,

fusion rule, and number of cooperating users.

Most of the aforementioned results assume 1) fading channels from primary users

to secondary users, where local sensing is done, but perfect channels from the sec-

ondary users to the fusion center, where reporting local decisions is error free, and 2)

identical average signal-to-noise ratio (SNR) for the channel from the primary user

to the secondary users. In reality, however, errors may occur when local decisions are

transmitted over the fading channels from the secondary users to the fusion center.

These errors over the reporting channels obviously plague the accuracy of the global

decision made by the fusion center. Therefore, it is of paramount importance to

investigate the effect of imperfect reporting channels on the performance of coopera-

tive spectrum sensing techniques. In addition, average SNR for the secondary users

are not identical in general due to the difference of the distance from the primary

user to each secondary user in practice. This heterogeneous user scenario is certainly

worth being studied to evaluate its effect on the performance of cooperative spectrum

sensing techniques.

Motivated by these observations, we investigate in this work the effect of these two

common assumptions and compute closed-form expressions of the average coopera-

tive detection and the false alarm probabilities under imperfect and non-identically

distributed reporting channels under different cooperation schemes.

Imperfect reporting channel has been a subject of study in multiple related works.

In [26], cooperative spectrum sensing performance under imperfect reporting channels
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was derived for both hard binary and soft local decisions without focusing on the local

detector neither on the channels characteristics. In [27], imperfect reporting channels

were considered but with assumption of identically distributed channels.

In the remainder of this chapter, we introduce in section 2.2 the system model . In

section 2.3, we develop the cooperative error probability expressions for the different

cooperation schemes. Then, section 2.4 presents simulation results along with the

discussion analysis of these results. Finally, section 2.5 draws conclusions.

2.2 System and Channel Model

2.2.1 System Model

We consider a cognitive network that consists of a single primary user, K secondary

users, and a fusion center (ref Fig. 2.1). The objective is to cooperatively sense the

presence or absence of a primary user on a certain frequency band. We denote by H1

and H0 the states of presence/activity and absence/inactivity of the primary user.

The channels complex gains are denoted as follows. h
(s)
k , 1 ≤ k ≤ K represents the

channel from the primary user to the k-th secondary user, called “sensing channels”.

h
(r)
k , 1 ≤ k ≤ K denotes the channel from the k-th secondary user to the fusion center,

called “reporting channels”. A fusion center can be one of the secondary users or an

extra node with an external connection (i.e. a cluster head or a base station). Each

user performs spectrum sensing individually using energy detection then according to

the cooperation scheme will forward its decision or measurement to the fusion center

where a global decision based on a defined fusion rule will be taken.

The main objective of this work is to determine the performance of cooperative

spectrum sensing system by computing the analytical expressions of the global average

probabilities of detection and false alarm under imperfect and not necessarily identical

sensing and reporting channels.
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Figure 2.1: System model for cooperative spectrum sensing.
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Figure 2.2: Binary and tertiary decision for binary test hypothesis.

2.2.2 Cooperation Schemes

We will consider the following cooperation schemes between local users in order to

take global decision

• Local Binary Decision Scheme

This is the classic hard binary cooperation scheme, where each local user will

take a binary decision H0 or H1 which correspond to the inactivity (or absence)

and activity (or presence) of primary users, respectively. Then, this decision is

sent to the fusion center where a global decision will be taken.

• Local Tertiary (Censored) Decision Scheme

In this scheme, as illustrated in Fig. 2.2, an additional state Hx is added to ex-

press an uncertainty about the activity of primary users. Thus, a local decision

in tertiary scenario can take one of the three states: H0, Hx, or H1 where Hx

will represent that the user is uncertain about the presence or absence of the

primary user.

• Local Quantized Decision Scheme
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Each user performs spectrum sensing individually and take a local decision

in the format of a quantized hard decision as illustrated in Fig.2.3 and then

forwards it to the fusion center which takes the global decision based on a

certain fusion rule.

• Soft Cooperation Scheme

In this scheme, local users do not take any decision but they forward directly

the measured signal/energy to the fusion center where the global decision will

be taken based on all measurements taken at different sensing nodes.

2.2.3 Channel Model

To evaluate the performance of the cognitive radio systems in generalized fading

environments while maintaining analytical tractability of the analytical derivations,

we model the envelope of the channels by a Nakagami-m distribution [28]. Thus, the

instantaneous received power γ is modeled by a Gamma probability density function



28

(PDF) given by [29]

fγ(γ) =
γm−1

Γ(m)

(
m

γ̄

)m
exp

(
− mγ

γ̄

)
, γ > 0, m > 0, (2.1)

where m is the Nakagami multipath fading parameter and γ̄ is the average received

power.

The Rayleigh distribution can be obtained from the Nakagami-m distribution by

setting the fading parameter m = 1. In this case, the PDF of the power described

in 2.1 reduces to an exponential distribution. In addition, [30] and the references

therein show that this Gamma PDF can also model the shadowing effects by setting

m = 1/(exp(( σs
8.686

)2) − 1), where σs is the shadowing variance. It is also shown in

[30] that this PDF can fit the Generalized-K PDF and can such be used to model the

mixed effect of fading and shadowing using a simple moment matching technique.

2.3 Performance of Cooperative Spectrum Sens-

ing under Imperfect Reporting Channels

The objective of this section is to compute the global performance of a cooperative

spectrum sensing under imperfect and non-identical channels. For this goal, we first

start by developing the expressions of average probabilities of detection and false

alarm at local users, then express the average probabilities of reporting errors, and

finally deduce the global average probabilities at a fusion center as function of the

previous expressions. The development proceeds for the different cooperation schemes

stated in section 2.2.2.
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2.3.1 Binary Local Decision Scheme

Local Decision Performance

Measurements taken by the k-th secondary user at a certain time instant j can be

modeled as a binary hypothesis test as follows

H1 : yk(j) = h
(s)
k s(j) + vk(j)

H0 : yk(j) = vk(j),

(2.2)

where yk(j) is the received j-th sample of the primary user signal at the k−th sec-

ondary user, h
(s)
k is the sensing channel between the primary user and the k-th sec-

ondary user, s(j) is the unknown deterministic transmitted signal by the primary

user, and vk(j) is a zero-mean additive white Gaussian noise (AWGN) with variance

σ2
v . We assume that the sensing time is smaller than the coherence time of the chan-

nel. Then, the sensing channel h
(s)
k can be viewed as time-invariant during the sensing

process. Moreover, we assume that the status of the PU remains unchanged during

the spectrum sensing process. If prior knowledge of the primary user signal is un-

known, the energy detection method is optimal for detecting zero-mean constellation

signals [31].

Suppose that the k-th user takes measurements over a detection interval of 2N

samples, where 2N is the time-bandwidth product. Thus, the observed energy at this

user is given as

Õk =
2N−1∑
j=0

|yk(j)|2. (2.3)

The sum of the squares of 2N standard Gaussian random variables follows a chi-square
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distribution of 2N degrees of freedom as

Ok ,
Õk

σ2
v

∼


χ2

2N(ak), H1

χ2
2N , H0,

(2.4)

where ak =
|h(s)
k |

2

σ2
v

2N−1∑
j=0

|s(j)|2 is the non-centrality parameter of the non-central chi-

square.

Binary Local Decision

A local decision is taken by the binary hypothesis testing rule as follows

u
(bin)
k =


H1, if Ok ≥ λk

H0, otherwise,

(2.5)

where λk is the decision threshold for the k-th user.

The local probabilities of detection and false alarm over AWGN channels are

expressed, respectively, as [32]

P (d)
uk

(γ
(s)
k ) = P (1|1)

uk
(γ

(s)
k ) = Pr[Ok > λk|H1] = QN

(√
2γ

(s)
k ,
√
λk

)
, (2.6)

and

P (f)
uk

(γ
(s)
k ) = P (1|0)

uk
(γ

(s)
k ) = Pr[Ok > λk|H0] =

Γ(N, λk
2

)

Γ(N)
, (2.7)

where, γ
(s)
k = |h(s)

k |2Esσ2
v

the instantaneous SNR of the sensing channel between the

primary user and the k-th user, Es =
2N−1∑
j=0

|s(j)|2 is the energy transmitted by

the primary user over the 2N samples, Γ(x) =
∫∞

0
tx−1e−t dt is the Gamma func-

tion, Γ(x, a) =
∫∞
a
tx−1e−t dt is the incomplete Gamma function, and QM(x, a) =(

1
x

)M−1 ∫∞
a
tM exp

(
− t2+x2

2

)
IM−1(tx) dt is the generalized Marcum-Q function with
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IM−1(.) the modified Bessel function of first kind and of order M − 1.

P
(1|1)
uk (γ

(s)
k ) (respectively P

(1|0)
uk (γ

(s)
k )) is denoted by the probability that the k-th

user makes a local decision of H1 when the instantaneous SNR is γ
(s)
k given that the

actual state of the primary user is H1 (respectively H0).

The average probabilities of detection and false alarm for the k-th user are ob-

tained by averaging (2.6) and (2.7) over the channel SNR distribution presented in

(2.1) as

P (d)
uk

= P (1|1)
uk

=

∫ ∞
0

P (d)
uk

(γ
(s)
k )fγ(γ

(s)
k )dγ

(s)
k , FN(m

(s)
k , γ̄

(s)
k , λk), (2.8)

and

P (f)
uk

= P (1|0)
uk

=

∫ ∞
0

P (f)
uk

(γ
(s)
k )fγ(γ

(s)
k )dγ

(s)
k =

Γ(N, λk
2

)

Γ(N)
, (2.9)

We now only need to get a closed form expression of the integral

Fn
(
m, γ̄, λ

)
,
∫ ∞

0

Qn(
√

2γ,
√
λ)
γm−1

Γ(m)

(
m

γ̄

)m
e−

mγ
γ̄ dγ. (2.10)

Using [29, eq. (B.52)], Fn
(
m, γ̄, λ

)
can be determined recursively using the following

relation

Fn
(
m, γ̄, λ

)
= Fn−1

(
m, γ̄, λ

)
+

(
m

m+ γ̄

)m e−λ2 (λ
2

)n−1

(n− 1)!
1F1

(
m,n;

λγ̄

2(m+ γ̄)

)
,

(2.11)

where 1F1(a, b; c) is the confluent hypergeometric function [33].

In the case of an integer fading parameter m, Fn
(
m, γ̄, λ

)
is computed for n = m

using [29, eq. (B.51)] as

Fm
(
m, γ̄, λ

)
= e−

mλ
2(m+γ̄)

m−1∑
j=0

1

j!

(
mλ

2(m+ γ̄)

)j
, (2.12)
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and (2.12), (2.11) is deduced as a finite sum

Fn
(
m, γ̄, λ

)
= e−

mλ
2(m+γ̄)

m−1∑
j=0

1

j!

(
mλ

2(m+ γ̄)

)j

+

(
m

m+ γ̄

)m
e−

λ
2

n−1∑
j=m

1

j!

(
λ

2

)j
1F1

(
m, j + 1;

λγ̄

2(m+ γ̄)

)
.

(2.13)

For non-integer m, a closed form expression for this integral was derived in [34] but

it is expressed as a function of an infinite sum which should be capped for practical

evaluations.

Reporting Decision

When a secondary user reports its local decision to the corresponding fusion center,

the local decision may be incorrectly delivered to the fusion center in practice, which

later affects the global decision made by the fusion center.

When a user makes a binary local decision, the user can transmit this decision to

the fusion center using a binary modulated signal. A unified form for the conditional

bit error rate (BER) for various modulations in AWGN channel when the received

SNR is γ
(r)
k is written as [35, eq. (8.100)]

P (e)
c,uk

(γ
(r)
k ) =

Γ(b, aγ
(r)
k )

2Γ(b)
, (2.14)

where a and b are the parameters according to the modulation used. Table 2.1 shows

the different parameter values for binary modulations, such as binary phase-shift

keying (BPSK) or binary-frequency shift keying (BFSK).

A delivery error of the local decision made by the k-th user to the fusion center

in fading channel can be written as an average of the error probability in AWGN
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Table 2.1: Parameters for common binary modulations.

Coherent detection Non coherent detection

BPSK (a = 1, b = 1/2) (a = 1, b = 1)

BFSK (a = 1/2, b = 1/2) (a = 1/2, b = 1)

channel over the SNR distribution as follows

P (e)
c,uk

= P (1|0)
c,uk

= P (0|1)
c,uk

=

∫
P (e)
c,uk

(γ
(r)
k )fγ(γ

(r)
k )dγ

(r)
k , (2.15)

where γ
(r)
k is the instantaneous SNR of the reporting channel between the k-th sec-

ondary user and the fusion center, fγ(γ
(r)
k ) is the PDF of γ

(r)
k , and P

(e)
c,uk(γ

(r)
k ) is the

reporting error probability from the k-th user to the fusion center over AWGN chan-

nel.

Substituting (2.1) and (2.14) and using [36, eq. (15)], the equation (2.15) can be

rewritten as

P (e)
c,uk

= P (1|0)
c,uk

= P (0|1)
c,uk

=
Γ(m

(r)
k + b)

2Γ(b)Γ(m
(r)
k + 1)

(m
(r)
k )m

(r)
k (aγ̄

(r)
k )b

(m
(r)
k + aγ̄

(r)
k )m

(r)
k +b

2F1

(
1,m

(r)
k + b;m

(r)
k + 1;

m
(r)
k

m
(r)
k + aγ̄

(r)
k

)
,

(2.16)

where 2F1(a, b; c;x) is the Gaussian hypergeometric function [33].

Fusion Decision Performance

Once the local decisions are collected, the fusion center takes a global decision accord-

ing to a defined fusion rule of the received local decisions. The weights are assigned

depending on the reliability of each local decision.

We start by discussing a general weighted fusion decision rule. Then, we derive the
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performance for some special cases to compare the results with the known formulas

in literature.

Weighted Sum Fusion Decision: In this rule, the fusion center assigns a weight

for each user’s local decision and then sums all the weighted decisions to compare

them with a threshold. The weights can be based on some a-priori information about

the users’ local decisions or reporting error reliability in terms of the average sensing

SNR or average reporting SNR.

The fusion rule is as follows

c(bin) =


H1, if

K∑
k=1

ωkIu(u
(bin)
k = H1) ≥ ρ

H0, otherwise,

(2.17)

where ωk represents the weight associated with the local decision of the k-th user (i.e.∑K
k=1 ωk = 1), ρ is the threshold of the fusion decision in the range of [0, 1], and

Iu(x) is the indicator function defined as Iu(x) = 1 if x is true and 0 otherwise (i.e.

Iu(u
(bin)
k = H1) = 1 (respectively Iu(u

(bin)
k = H1) = 0) if the fusion center receives H1

(respectively H0) from the k-th user).

With this fusion decision rule and generalizing the formula in [37], the probability

that a global decision of H1 is made (i.e. primary user is present) is expressed as

Pr[c = H1] =
∑

l∈{V(ρ),W(ρ)}

∏
k1∈vl

(Pr[{c, uk1} = H1])
∏
k0∈wl

(Pr[{c, uk0} = H0]), (2.18)

where {V(ρ),W(ρ)} = {{v1,w1}, {v2,w2}, · · · , {vL,wL}} is the set containing all

combinations of users who are reporting to the fusion center and satisfying the equa-

tion ∑
k∈vl

ωk ≥ ρ, (2.19)
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vl is the set of the indices of the users who made a local decision H1 (i.e., vl = {j}, ∀j,

such that Iu(uj = H1) = 1) and wl is the set of the indices of the users who declared

a local decision H0 (i.e., wl = {k}, ∀k, such that Iu(uk = H1) = 0). By definitions,

∀l, vl ∪wl = {1, 2, . . . , K}. Note that l in the summation indicates that {vl,wl} is

selected out of {V(ρ),W(ρ)} for the subsequent products. For instance, if l = 2, v2

and w2 are used in the subsequent products. In addition, k1 is the user index in vl

and k0 is the user index in wl. In (2.18), Pr[{c, uk} = H1] is the probability that the

fusion center determines the local decision of the k-th user is H1. This probability

is not exactly equal to the probability of local decision H1 at the k-th user due to

probable errors that can occur over the reporting channel.

By conditioning (2.18) over H1 and H0, the probabilities of detection and false-

alarm at fusion center can be written respectively as

P (d)
c = Pr[c = H1|H1] (2.20)

=
∑

l∈{V(ρ),W(ρ)}

∏
k1∈vl

(P (bin)
c,uk1

[H1|H1])
∏
k0∈wl

(1− P (bin)
c,uk0

[H1|H1]), (2.21)

and

P (f)
c = Pr[c = H1|H0] (2.22)

=
∑

l∈{V(ρ),W(ρ)}

∏
k1∈vl

(P (bin)
c,uk1

[H1|H0])
∏
k0∈wl

(1− P (bin)
c,uk0

[H1|H0]), (2.23)

where P
(bin)
c,uk [H1|H1] (respectively P

(bin)
c,uk [H1|H0]) is the probability that the fusion

center estimated a decision H1 from the decision received from the k-th user when

the real state of the primary user is H1 (respectively H0). Since errors can occur in

delivering a local decision from each user to the fusion center, P
(bin)
c,uk [H1|H1] is the

sum of two possible cases: 1) the local decision is H1 and no error in reporting, and

2) incorrect local decision is made as H0 but this decision is received as H1 due to an
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error occurred over the reporting channel. Similarly, P
(bin)
c,uk [H1|H0] is the sum of two

cases when the actual state of the primary user is H0. Thus, these are expressed as

P (bin)
c,uk

[H1|H1] = P (d)
uk

(1− P (e)
c,uk

) + (1− P (d)
uk

)P (e)
c,uk

, (2.24)

P (bin)
c,uk

[H1|H0] = P (f)
uk

(1− P (e)
c,uk

) + (1− P (f)
uk

)P (e)
c,uk

, (2.25)

with

• P
(d)
uk and P

(f)
uk are the local probabilities of detection and false alarm of the k-th

secondary user defined in (2.8) and (2.9), respectively.

• P
(e)
c,uk is the probability of error when sending a local decision from the k-th user

to the i-th fusion center and is defined in (2.16).

Uniform Weighting Rule: In this case, all reported local decisions are assigned

equal weights (i.e., ωk = 1
K
,∀k ∈ {1 ≤ k ≤ K}), the fusion rule is re-written as

c(bin) =


H1, if

1

K

K∑
k=1

Iu(u
(bin)
k = H1) ≥ ρ

H0, otherwise.

(2.26)

This fusion rule can be interpreted that at least n , dρKe out of the K reporting

users need to report H1 to the i-th fusion center in order to decide globally by the

fusion center that the primary user is present. Note that dxe is the nearest integer to

x towards infinity. This fusion rule is simple and generic, the OR rule is obtained by

choosing ρ such that n = 1, the AND rule is obtained by setting ρ = 1 which gives

n = K, and 50% rule by choosing ρc = 1/2.

Following this decision rule, due to the non-identical average SNRs and variable

decision thresholds for the users, the global probabilities of detection and false alarm

are modeled as obtaining at least n successes in K independent non-identical Bernoulli
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trials. Thus, by applying the formula derived in [37], the probability that the global

decision of H1 is made (i.e. primary user is present) is expressed as

Pr[c = H1] =
K∑
l=n

∑
j1+j2+···+jK=l

K∏
k=1

(Pr[{c, uk} = H1])jk(1− Pr[{c, uk} = H1])1−jk ,

(2.27)

where the first summation adds up the possibilities that the number of users l declar-

ing H1 for their local decisions is equal or higher than n. The second summation

considers all the combinations on selecting l users out of the K users to report H1,

where jk = 1 if the k-th user declares H1, otherwise jk = 0. In total, there are

L =

(
K

l

)
=

K!

l!(K − l)! total combinations on selecting l users out of the K users. In

the subsequent product, the probabilities of reporting H1 or H0 for the users reporting

to the fusion center are multiplied.

The probabilities of detection and false alarm of the fusion center are deduced by

conditioning (2.27) over H1 and H0, respectively, as

P (d)
c = Pr[c = H1|H1] (2.28)

=
K∑
l=n

∑
j1+j2+...+jK=l

K∏
k=1

(P (bin)
c,uk

[H1|H1])jk(1− P (bin)
c,uk

[H1|H1])1−jk , (2.29)

and

P (f)
c = Pr[c = H1|H0] (2.30)

=
K∑
l=n

∑
j1+j2+...+jK=l

K∏
k=1

(P (bin)
c,uk

[H1|H0])jk(1− P (bin)
c,uk

[H1|H0])1−jk , (2.31)

where P
(bin)
c,uk [H1|H1] and P

(bin)
c,uk [H1|H0] are shown in (2.24) and (2.25), respectively.

Special Case of Perfect Reporting Channels: In this special case, the average

reporting SNR (γ̄
(r)
k ) goes to infinity and thus the reporting error probabilities are
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null (P
(e)
c,uk = 0, ∀k). Thus the probabilities of detection and false alarm of local users

received at the fusion center are exactly equal to the probabilities of decision and

false alarm of local users (i.e. P
(bin)
c,uk [H1|H1] = P

(d)
uk and P

(bin)
c,uk [H1|H0] = P

(f)
uk ). Then,

the global detection and false alarm probabilities in (2.28) and (2.30) are simplified

to

P (d)
c =

K∑
l=n

∑
j1+j2+...+jK=l

K∏
k=1

(P (d)
uk

)jk(1− P (d)
uk

)1−jk , (2.32)

and

P (f)
c =

K∑
l=n

∑
j1+j2+...+jK=l

K∏
k=1

(P (f)
uk

)jk(1− P (f)
uk

)1−jk . (2.33)

Special Case of Identical Sensing and Reporting Average SNRs: In this

special case, γ̄
(s)
k = γ̄(s), ∀k and γ̄

(r)
k = γ̄(r), ∀k. Thus, the probabilities of detection,

false alarm, and reporting error are equal for all users for each of them (P
(d)
uk = P

(d)
u ,

P
(f)
uk = P

(f)
u , and P

(e)
c,uk = P

(e)
c,u , ∀k). Then, the global detection and false alarm

probabilities in (2.28) and (2.30) are simplified thanks to this uniformity among the

users as follows

P (d)
c =

K∑
l=n

(
K

l

)
(P (bin)

c,u [H1|H1])l(1− P (bin)
c,u [H1|H1])K−l, (2.34)

and

P (f)
c =

K∑
l=n

(
K

l

)
(P (bin)

c,u [H1|H0])l(1− P (bin)
c,u [H1|H0])K−l, (2.35)

where

P (bin)
c,u [H1|H1] = P (d)

u (1− P (e)
c,u ) + (1− P (d)

u )P (e)
c,u , (2.36)

P (bin)
c,u [H1|H0] = P (f)

u (1− P (e)
c,u ) + (1− P (f)

u )P (e)
c,u . (2.37)

Special Case of Identical Average SNRs and Perfect Reporting Channels

This special case combines the two previous special cases (i.e. P
(d)
uk = P

(d)
u , P

(f)
uk =
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P
(f)
u , and P

(e)
c,uk = 0, ∀k). The global probabilities are deduced with ideal conditions

of identical channels and perfect reporting channels as [18]

P (d)
c =

K∑
l=n

(
K

l

)
(P (d)

u )l(1− P (d)
u )K−l, (2.38)

and

P (f)
c =

K∑
l=n

(
K

l

)
(P (f)

u )l(1− P (f)
u )K−l. (2.39)

2.3.2 Tertiary (Censored) Local Decision Scheme

Local Decision Performance

The tertiary local decision rule is expressed as

u
(ter)
k =


H1, if Ok > λmaxk

H0, if Ok < λmink

Hx, otherwise.

(2.40)

Since there are three states for a local decision although the actual state of the primary

user is binary, we compute the probabilities of a local decision for the k-th user with
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an instantaneous SNR γ
(s)
k as

P (1|1)
uk

(γ
(s)
k ) = Pr[Ok > λmaxk |H1] = QN

(√
2γ

(s)
k ,
√
λmaxk

)
,

P (x|1)
uk

(γ
(s)
k ) = Pr[λmink < Ok < λmaxk |H1] = 1− [P (0|1)

uk
(γ

(s)
k ) + P (1|1)

uk
(γ

(s)
k )]

P (0|1)
uk

(γ
(s)
k ) = Pr[Ok < λmink |H1] = 1−QN

(√
2γ

(s)
k ,
√
λmink

)
,

P (1|0)
uk

(γ
(s)
k ) = Pr[Ok > λmaxk |H0] =

Γ(N,
λmaxk

2
)

Γ(N)
,

P (x|0)
uk

(γ
(s)
k ) = Pr[λmink < Ok < λmaxk |H0] = 1− [P (1|0)

uk
(γ

(s)
k ) + P (0|0)

uk
(γ

(s)
k )],

P (0|0)
uk

(γ
(s)
k ) = Pr[Ok < λmink |H0] = 1− Γ(N,

λmink

2
)

Γ(N)
.

(2.41)

Similar to the binary case, using the distribution of γ
(s)
k in (2.1), we can deduce

P
(t|v)
uk as

P (t|v)
uk

=

∫ ∞
0

P (t|v)
uk

(γ
(s)
k )fγ(γ

(s)
k )dγ

(s)
k , t = 0, x, 1 and v = 0, 1, (2.42)

from which we obtain the average probabilities of a local decision for the k-th user

similarly to the binary case as

P (1|1)
uk

= FN(m
(s)
k , γ̄

(s)
k , λmaxk ),

P (x|1)
uk

= FN(m
(s)
k , γ̄

(s)
k , λmink )− FN(m

(s)
k , γ̄

(s)
k , λmaxk )

P (0|1)
uk

= 1− FN(m
(s)
k , γ̄

(s)
k , λmink ),

P (1|0)
uk

=
Γ(N,

λmaxk

2
)

Γ(N)
,

P (x|0)
uk

=
Γ(N,

λmink

2
)

Γ(N)
− Γ(N,

λmaxk

2
)

Γ(N)
,

P (0|0)
uk

= 1− Γ(N,
λmink

2
)

Γ(N)
.

(2.43)

where Fn(m, γ̄, λ) as defined in (2.13).
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-d 0 d-d/2 d/2

0 x 1

Figure 2.4: Constellation for reporting channel under tertiary decision.

Tertiary Information Reporting Probabilities

For a tertiary local decision reporting probabilities, we need to compute the proba-

bility of receiving a state t given that a state v was transmitted between 3 different

possibilities. Even if, for energy optimization reason, we do not really report the

state Hx but rather report H0 and H1 only but at the receiver side (fusion center),

the detection will be a test between three possible states (no transmission (Hx, trans-

mission of H0, and transmission of H1). We use the constellation shown in Fig. 2.4.

The probability that the state t is received when the received SNR is γ
(r)
k given that

the state v was sent for AWGN channels is written as

P (t|v)
c,uk

(γ
(r)
k ) =


Q

(
αt,v

√
γ

(r)
k

)
, if t ∈ {0, 1},

1− [P
(0|v)
c,uk (γ

(r)
k ) + P

(1|v)
c,uk (γ

(r)
k )], if t = x,

∀v ∈ {0, 1, x}, (2.44)

where Q(x) = 1√
2π

∫∞
x

exp(− t2

2
)dt is the Gaussian Q function and αt,v defined as

αt,v =


3/2
√

3/2 ; for (t, v) ∈ {(1, 0), (0, 1)},

−1/2
√

3/2 ; for (t, v) ∈ {(1, 1), (0, 0)},

1/2
√

3/2 ; for (t, v) ∈ {(1, x), (0, x)}.

(2.45)

In order to obtain the average reporting probabilities, we integrate (2.44) over the
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SNR distributed as in (2.1). Thus, we obtain an integral in the following format

G(α,m, γ̄) ,
∫ ∞

0

Q(α
√
γ)
γm−1

Γ(m)

(
m

γ̄

)m
exp

(
− mγ

γ̄

)
dγ. (2.46)

Using [29, eq. (B.6)], this integral can be solved as

G(α,m, γ̄) = (2m)m−1 Γ(m+ 1
2
)

Γ(m)

√
γ̄

π

α

(2m+ α2γ̄)m+ 1
2

× 2F1

(
1,m+

1

2
;m+ 1;

2m

2m+ α2γ̄

)
, α ≥ 0.

(2.47)

Thus, the average error probabilities for the k-th user over the fading reporting chan-

nels are given as

P (t|v)
c,uk

=



1−G(1/2
√

3/2,m
(r)
k , γ̄

(r)
k ), if (t, v) = (0, 0) and (1, 1),

G(3/2
√

3/2,m
(r)
k , γ̄

(r)
k ), if (t, v) = (1, 0) and (0, 1),

G(1/2
√

3/2,m
(r)
k , γ̄

(r)
k ), if (t, v) = (0, x) and (1, x),

1− P (0|0)
c,uk − P (1|0)

c,uk , if (t, v) = (x, 0),

1− P (0|x)
c,uk − P (1|x)

c,uk , if (t, v) = (x, x),

1− P (0|1)
c,uk − P (1|1)

c,uk , if (t, v) = (x, 1).

(2.48)

Fusion Decision Performance

For tertiary local decisions, we consider only uniform weighting fusion decision, the

generalization to the weighted case can be deduced similarly to the binary case. The

main difference of the tertiary fusion with comparison to the binary decision is that

the users who take local decisions Hx are not considered in taking the global decision

due to their high uncertainty, thus their decisions are discarded from the fusion sum.
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The fusion rule for tertiary local decisions is given as

c(ter) =


H1, if

1

T

K∑
k=1

Iu(u
(ter)
k = H1) ≥ ρ

H0, otherwise,

(2.49)

where T =
∑K

k=1

[
Iu(u

(ter)
k = H0) + Iu(u

(ter)
k = H1)

]
is the number of reporting users

who decided either H1 or H0 to discard the uncertain users (i.e. users who reported

Hx).

In order to derive the performance for this tertiary case, conditioning over the

number of certain users T allows to obtain similar expressions of the global proba-

bilities of detection and false alarm as the binary case with an additional sum which

incorporate all possible values of T

P (d)
c =

K∑
T=0

T∑
n=dρT e

∑
l∈{U(K−T ),V(n),W(T−n)}∏

kx∈ul

(P (ter)
c,ukx

[Hx|H1])
∏
k1∈vl

(P (ter)
c,uk1

[H1|H1])
∏
k0∈wl

(P (ter)
c,uk0

[H0|H1]),

(2.50)

and

P (f)
c =

K∑
T=0

T∑
n=dρT e

∑
l∈{U(K−T ),V(n),W(T−n)}∏

kx∈ul

(P (ter)
c,ukx

[Hx|H0])
∏
k1∈vl

(P (ter)
c,uk1

[H1|H0])
∏
k0∈wl

(P (ter)
c,uk0

[H0|H0]),

(2.51)

where {U(K−T ),V(n),W(T−n)} = {{u1,v1,w1}, {u2,v2,w2}, · · · , {uL,vL,wL}} rep-

resents all combinations out of K users who reported their decisions to fusion center

such that K − T users in ul decided Hx, n users in vl decided H1, and T − n users

in wl decided H0. Note that in the probabilities expressions there are three sums,

the first one is over T the number of users who took a decision H0 or H1 to cover all
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possibilities of probable number of users reporting Hx, the second sum is over n, the

number of users who decided H1, such that it satisfy the fusion rule (n ≥ ρT ), the

third sum over l to cover all permutations of users out of the K users.

In (2.50) and (2.51), the probability that the fusion center receives the local deci-

sion Ht from the k-th user when the actual state is Hv is written as

P (ter)
c,uk

[Ht|Hv] = P (t|0)
c,uk

P (0|v)
uk

+P (t|x)
c,uk

P (x|v)
uk

+ P (t|1)
c,uk

P (1|v)
uk

, ∀t ∈ {0, x, 1}, ∀v ∈ {0, 1},

(2.52)

with

• P
(t|v)
uk , ∀t ∈ {0, x, 1}, ∀v ∈ {0, 1} are the local probabilities of decision of the

k-th user and are defined in (2.43),

• P
(t|v)
c,uk , ∀t, v ∈ {0, x, 1} are the reporting probabilities that the fusion center

receives Hv given that the k-th user reports Ht and are defined in (2.48).

2.3.3 Quantized Local Decision Scheme

Local Decision Performance

The local decision rule for the quantized decision with M states, di, 1 ≤ i ≤ M , is

taken following the hypothesis testing rule

u
(quant)
k =


d1, if Ok < λk,1, for i = 1

di, if λk,i ≤ Ok < λk,i+1, ∀ 2 ≤ i ≤M − 1

dM , if Ok ≥ λk,M−1, for i = M,

(2.53)

where λk,i, 1 ≤ i ≤M − 1 are the decision thresholds for the k-th cognitive user. We

define λk,0 = 0 and λk,M =∞.

The local decision probabilities over AWGN channels, given the instantaneous
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SNR γ
(s)
k , are expressed as

Puk [di|Hv, γ
(s)
k ] = Pr[λk,i−1 ≤ Ok < λk,i|Hv, γ

(s)
k ] = F

Ok|H0,γ
(s)
k

(λk,i)−FOk|H0,γ
(s)
k

(λk,i−1),

(2.54)

∀v ∈ {0, 1}, ∀1 ≤ i ≤M − 1, ∀1 ≤ k ≤ K,

which can be rewritten, using [32], as

Puk [di|H0, γ
(s)
k ] =

Γ(N,
λk,i−1

2
)

Γ(N)
− Γ(N,

λk,i
2

)

Γ(N)
, (2.55)

Puk [di|H1, γ
(s)
k ] = QN

(√
2γ

(s)
k ,
√
λk,i−1

)
−QN

(√
2γ

(s)
k ,
√
λk,i

)
. (2.56)

Averaging (2.55) and (2.56) over the distribution of the SNR given in (2.1) , we

deduce the expression of the local average probabilities of decisions similarly to the

binary and tertiary cases as

Puk [di|H0] =
Γ(N,

λk,i−1

2
)

Γ(N)
− Γ(N,

λk,i
2

)

Γ(N)
, (2.57)

Puk [di|H1] = FN(m
(s)
k , γ̄

(s)
k , λk,i−1)− FN(m

(s)
k , γ̄

(s)
k , λk,i), (2.58)

where Fn(m, γ̄, λ) as defined in (2.13).

Reporting Decision Performance

We consider a pulse-amplitude modulation (PAM) of M symbols for the reporting of

quantized local decisions from secondary user to the fusion center as in Fig. 2.5.

Thus, the probability that symbol dj is received when di was sent over an AWGN
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Figure 2.5: Constellation for reporting channel under quantized decision.

channel can be written as

Pc,uk [dj|di, γrk] =



1√
2π

∫ νj
−∞ exp(− (t−µi)2

2
)dt, if j = 1

1√
2π

∫ νj
νj−1

exp(− (t−µi)2

2
)dt, if 1 < j < M

1√
2π

∫∞
νj−1

exp(− (t−µi)2

2
)dt, if j = M,

(2.59)

where

• µi = (−M+1
2

+ i)D, 1 ≤ i ≤ M is the position of the i-th symbol in the

constellation.

• νj = (−M
2

+ j)D, 1 ≤ j ≤ M − 1 is the position of the j-th threshold of

detection in the constellation.

The reporting energy is then Er = 1
M

∑M
i=1 µ

2
i = D2(M2−1)

12
.

Thus, (2.59) can be rewritten as

Pc,uk [dj|di, γ
(r)
k ] =



1−Q
(
αi,j

√
γ

(r)
k

)
, if j = 1

Q

(
αi,j−1

√
γ

(r)
k

)
−Q

(
αi,j

√
γ

(r)
k

)
, if 1 < j < M

Q

(
αi,j−1

√
γ

(r)
k

)
, if j = M,

(2.60)

where αi,j = 1√
Er

(µi − νj) =
√

12
M2−1

(−1
2

+ i− j), 1 ≤ i ≤M, 1 ≤ j ≤M − 1,
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The average reporting probability over the SNR is then determined by

Pc,uk [dj|di] =

∫
Pck [dj|di, γ

(r)
k ]f

γ
(r)
k

(γ
(r)
k )dγ

(r)
k , ∀1 ≤ i, j ≤M, (2.61)

which can be re-written in function of G(α,m, γ̄) defined in (2.47) as

Pc,uk [dj|di] =
1−G(αi,j,m

(r)
k , γ̄

(r)
k ), if j = 1

G(αi,j−1,m
(r)
k , γ̄

(r)
k )−G(αi,j,m

(r)
k , γ̄

(r)
k ), if 1 < j < M

G(αi,j,m
(r)
k , γ̄

(r)
k ), if j = M.

(2.62)

Fusion Decision Performance

We consider the following fusion rule for the quantized decisions

c(quant) =


H1, if

K∑
k=1

wkI
(quant)
c (uk) ≥ ρ,

H0, otherwise,

(2.63)

where I
(quant)
c (x) is a mapping function that the fusion center uses to map the local

quantized decisions to a pre-defined values αj for each decision dj (i.e. I
(quant)
c (dj) =

αj, ∀1 ≤ j ≤M), wk is a weighting factor for the decision taken by k-th user, and ρ

is the fusion decision threshold.

This decision rule can be interpreted as if the fusion center assigns a value for each

local decision then takes a weighted sum of all values of different local users decisions

and compares this weighted sum to a fusion threshold.
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Thus,

Pc[d1] = Pr[u1 = dj1 , . . . , uK = djK ,
K∑
k=1

wkαjk ≥ ρ] (2.64)

=
∑

∑K
k=1 wkαjk≥ρ

Pr[u1 = dj1 , . . . , uK = djK ] (2.65)

=
∑

∑K
k=1 wkαjk≥ρ

K∏
k=1

Pc,uk [djk ]. (2.66)

Thus, the probabilities of detection and false alarm at the fusion center are deduced,

respectively, as

P (f)
c = Pc[d1|H0] =

∑
∑K
k=1 wkαjk≥ρ

K∏
k=1

Pc,uk [djk |H0] (2.67)

P (d)
c = Pc[d1|H1] =

∑
∑K
k=1 wkαjk≥ρ

K∏
k=1

Pc,uk [djk |H1], (2.68)

with Pc,uk [dj|Hu], j ∈ {1, 2, . . . ,M}, u ∈ {0, 1} is the probability that the fusion

center estimates that the k-th user decided dj while the real state is Hu and defined

as

Pc,uk [dj|Hu] =
M∑
i=1

Pc,uk [dj|di]Puk [di|Hu],

∀u ∈ {0, 1}, ∀1 ≤ j ≤M.

(2.69)

In (2.69), Pck [dj|di] is the average reporting probability that the user k send di while

the fusion center estimate dj defined in (2.62), and Puk [di|Hu] is the local probability

of decision di by the user k given Hu defined in (2.57) and (2.58). Thus,

P (f)
c =

∑
∑K
k=1 wkαjk≥ρ

K∏
k=1

M∑
i=1

Pc,uk [djk |di]Puk [di|H0] (2.70)

P (d)
c =

∑
∑K
k=1 wkαjk≥ρ

K∏
k=1

M∑
i=1

Pc,uk [djk |di]Puk [di|H1]. (2.71)
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2.3.4 Soft Information Scheme

In this scheme, the local users will not take any decision. The measured signals are

directly forwarded to the fusion center. The fusion center is the only entity who will

take a decision based on the collected measurements from the different users.

The received signal at the fusion center from user k at instant j can be written as

yc,k(j) =


gkh

(r)
k

(
h

(s)
k s(j) + vk(j)

)
+ vc(j) if H1

gkh
(r)
k vk(j) + vc(j) if H0,

(2.72)

where gk is the k-th user amplification gain, vc(j) is zero-mean additive white Gaussian

noise (AWGN) at the fusion center with variance σ2
v .

Taking into considerations the measurements of 2N samples from K users, the

observed energy at the fusion center is written as

Oc =
K∑
k=1

2N−1∑
j=0

|yc,k(j)|2. (2.73)

The objective is to compute the average detection and false alarm and probabilities

defined respectively as

P (d)
c = Pr[Oc > λc|H1] (2.74)

P (f)
c = Pr[Oc > λc|H0], (2.75)

where λc is the decision threshold at the fusion center.

From (2.72), we deduce the distribution of yc,k(j) as
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yc,k(j) ∼


N
(
hk|(s)h(r)

k gks(j), |h(s)
k |2|h

(r)
k |2|s(j)|2g2

k + σ2
v(1 + |h(r)

k |2g2
k)

)
if H1

N
(

0, σ2
v(1 + |h(r)

k |2g2
k)

)
if H0,

(2.76)

where N (µ, σ2) is the Gaussian (Normal) distribution of mean µ and variance σ2.

Noting that the yc,k(j) have different variances due to the imperfect non identical

reporting channels, the distribution of Oc for AWGN channels is not simply a chi-

square. The problem is more challenging in this case.

The system configuration can be modeled as multiple branches relay communica-

tion. In each branch, a secondary user will behaves like a relay node who forwards its

local measurement to the fusion center over fading channels. Thus, the total observed

energy can be re-written as sum of energy observations per branch as

Oc =
K∑
k=1

Oc,k, (2.77)

where Oc,k is the observed energy coming through the user k expressed as

Oc,k =
2N−1∑
j=0

|yc,k(j)|2. (2.78)

Thus, the well known moment generating (MGF) approach can be used. In the

following, we will first derive the averaged MGF per branch then deduce the MGF of

the total signal in order to finally compute the false-alarm and detection probabilities.

Given the expression of yc,k(j) in (2.72), the observed energy at each branch Oc,k

given the SNR can be written as a central chi-square in absence of the primary

user and as a non central chi-square with a non-centrality parameter γ
(T )
k when the

primary user is present, where γ
(T )
k is the end-to-end SNR through branch k which
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can be written using [eq(20),[38]] as

γ
(T )
k =

Es
Nk

|h(s)
k |2|h

(r)
k |2, (2.79)

where Nk is the total noise over the k-th branch expressed as

Nk = σ2
v(1 + Ω

(r)
k g2

k), (2.80)

with Ωk = E[|hk|2].

Then, we redefine

Oc,k , αc,kÕc,k, (2.81)

where

Õc,k ∼


χ2

2N(1), if H1

χ2
2N(0), if H0,

(2.82)

and

αc,k =


γ

(T )
k = Es

σ2
v(1+Ω

(r)
k g2

k)
|h(s)
k |2|h

(r)
k |2, if H1

1
E[|yc,k(j)|2|H0]

= 1

σ2
v(1+Ω

(r)
k g2

k)
, if H0.

(2.83)

Thus, the moments of Oc,k are deduced as

E[Oi
c,k] = E[αic,k]E[Õi

c,k], ∀i, (2.84)

with

• using [eq(2.35) and (2.45),[29]]

E[Õi
c,k] =


2i exp

(
− 1

2

) Γ(N+i)
Γ(N) 1F1(N + i, N, 1

2
), if H1

2i Γ(N+i)
Γ(N)

, if H0,

(2.85)
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• using [eq(28), [38]]

E[αic,k] =


Γ(m

(s)
k +i)

Γ(m
(s)
k )

Γ(m
(r)
k +i)

Γ(m
(r)
k )

(
γ̄

(T )
k

β
(s)
k

)i(
γ̄

(T )
k

β
(r)
k

)i
, if H1

1

σ2
v(1+Ω

(r)
k gk)

, if H0,

(2.86)

where γ̄
(T )
k = E[γ

(T )
k ] = Es

σ2
v

Ω
(s)
k Ω

(r)
k

1+Ω
(r)
k g2

k

and βk = Γ(mk+i)
Γ(mk)

.

Then, we deduce MOc,k(s), the MGF of Oc,k in function of the moments E[Oi
c,k]

as

MOc,k(s) =
∞∑
i=0

(−1)i

i!
E[Oi

c,k]s
i. (2.87)

Although this infinite series is absolutely convergent, it converges slowly and has to

be truncated for practical computations. Pade Approximation [39] is known to give

the best approximation of this series. It can be written in this format:

M̂Oc,k(s) =

∑p
i=0 ais

i

1 +
∑q

i=0 bis
i
, (2.88)

where the coefficients ai and bi can be determined by solving the so-called Pade

equations. A detailed explanation on the use of Pade approximation and error com-

putations can be found in [40] and the references therein.

Once the expressions ofMOc,k(s) are obtained, the total observation signalMOc(s)

MGF is deduced as the product of the all the MGF of each observation’s MGF:

MOc =
K∏
k=1

MOc,k . (2.89)

Given the MGF, the cumulative distribution function (CDF) is computed using the

Inverse Laplace Transformation technique as

FOc(x) = L−1

{
1

s
MOc(s)

}
. (2.90)
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A simple derivation of the Laplace Transform can be found by re-writing the MGF

as fractional expansion in the following format

MOc(s) =
I∑
i=1

νi
s− µi

, (2.91)

where νi and µi(i = 1...I) are respectively the residues and poles of MOc(s).

Thus, the CDF is finally deduced as

FOc(x) = 1 +
I∑
i=1

νi
µi
exp(µix), (2.92)

Finally, the average cooperative detection and false alarm probabilities are con-

cluded as

P (d)
c = 1− FOc(λc|H1) (2.93)

P (f)
c = 1− FOc(λc|H0). (2.94)

2.4 Numerical Results

Consider a cognitive network composed ofK = 10 users . The users are geographically

uniformly distributed inside a circle of radius d = 1 km around the primary user. The

fusion center is selected as the closest user to the centroid of the users. The fading

parameters are taken all identical m
(s)
k = m

(r)
k = 8, ∀k (which yields to shadowing

variance σ2
s = 10 dB). The secondary users take their local decision over a sensing

interval of N = 100 samples. The noise variance at the receivers is set to σ2
v = 0 dB.

The average SNRs will be estimated using the distance-based pathloss equation

γ̄ = Et
ξ

dη
, (2.95)
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where Et is the transmitted energy, ξ is the pathloss in a reference distance (1 km) with

the transmit and receive antenna gains, d is the distance between the transmitting and

receiving user, and η the pathloss exponent. ξ and η are fixed in the simulations to 1

and 3, respectively. The primary user’s transmission energy is set to Es = 10 dB while

the reporting energy will be the main variable parameter in order to show the effect

of imperfect reporting channels on the sensing performance. The weighting factors

for local decision, wk, are set equally (i.e. wk = 1
K
, ∀1 ≤ k ≤ K). The performances

measure is the global error probability written as P (e) = αP (f) + (1 − α)(1 − P (d)),

where α ∈ [0, 1] is a weighting parameter selected to tune the effect of probability of

false alarm and miss-detection on the global error probability according to the system

requirements.

2.4.1 Effect of Imperfect Channels and Non Identical Aver-

age SNRs

Binary Local Decision Scheme

In this part, we will focus on the binary local decision scheme. Binary local decision

is considered with non coherent BPSK constellation (a = 1, b = 1) for reporting the

decisions. The binary local decision thresholds for the local hypothesis testing rule

are determined assuming equal prior probabilities of the two states H0 and H1.

Effect of Imperfect Reporting Channel

Fig. 2.6 plots the global cooperative error probability at the fusion center with α = 1/2

for different levels of the primary user transmission energy, denoted by Es, as function

of the reporting energy of the secondary users, denoted by Er, to the fusion center. It

is noted that the reporting energy highly affects the sensing performance especially for

high transmission energy of the primary user. For instance, for Es = 15 dB, the loss
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Figure 2.6: Performance of cooperative spectrum sensing function of the reporting
energy Er for different primary user transmission energy levels Es. The local decision
is binary while the fusion rule is the uniform weighting fusion rule with ρ = 0.5.

in the error probability compared to the perfect reporting case could achieve 10−7 by

selecting a reporting power Er < −10 dB and the cooperation effect becomes negative

(the error with cooperation for Es < −5 dB is higher than without cooperation).

On the other hand, this performance analysis could be exploited in optimizing the

reporting power. For example, for Es = 15 dB, Er = 10 dB is required to achieve the

perfect reporting power performance while it is only 5 dB for Es = 5 dB.

Performance Comparison between Identical and Non Identical Channels

Fig. 2.7 compares the performance of cooperative sensing techniques for identically

and independently distributed (i.i.d.) channels with that for non i.i.d. channels.

For the case of i.i.d channels, the average SNR for all users equals to the arithmetic

mean of the users’ average SNRs. The difference between the curves for perfect

and imperfect reporting channels shows the necessity of considering non identical
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Figure 2.7: Effect of identical average SNR hypothesis on the sensing performance
for binary local decision, uniform weighting fusion rule, ρ = 0.5, and Es = 10 dB.

average SNRs in computing the performance of cooperative spectrum sensing systems

in order to guarantee accurate parametrization of the cognitive system. This figure

also shows the cooperative gain by comparing the global error probability at the

fusion center and the average error probability of individual users. Even though the

cooperative gain could attain 10−2 for perfect reporting channels, in case of imperfect

reporting channels, the cooperation effect becomes negative for low reporting SNRs

(Er < −10 dB for this set up).

Tertiary Local Decision Scheme

In this paragraph we will show the advantages of tertiary local decision by comparing

its performance in terms of global error probability to the binary local decision. The

local tertiary decision thresholds λmin and λmax are chosen around the binary thresh-

old λ such that for each user k, P
(ter)
k [Hx|H1] = P

(ter)
k [Hx|H0] = ε where ε ∈ [0, 1]
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Figure 2.8: Comparison between tertiary and binary local decision schemes with
Es = 10 dB and uniform weighting fusion rule (ρ = 0.5).

is a parameter that we will use to control the interval of the uncertainty state. In

Fig. 2.8, we plot the global probability as a function of ε to compare the performance

when the tertiary decision is used versus that of the binary decision with the various

constellations presented in Table 2.1. The comparison is done for various levels of

the reporting energy Er. The simulation results show that there exists an ε0 such

that the tertiary strategy performs better than all the binary constellations for ε ≤ ε0

and that an optimal ε∗ which minimizes the global error probability exists since the

tertiary curves in function of ε are continuous and convex. We note when ε is close

to 1, the tertiary strategy become very bad and that is explained by the fact that the

interval of uncertainty is very large so most of the users will take a local decision Hx.
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Quantized Local Decision Scheme

The local decision thresholds are selected such that we obtain equal decision proba-

bilities over each interval (i.e. |Puk [di|H1] − Puk [di|H0]| = Constant, ∀ 1 ≤ i ≤ M).

The fusion mapping function for the local decisions is set to obtain symmetric weights

around 0 such that

[α1, α2, . . . , αM ] =

[
− M

2
,−M

2
− 1, . . . ,−1, 1, . . . ,

M

2
− 1,

M

2

]

The fusion decision threshold is variable in the figures in the interval [−M/2,M/2].

Due to computational complexity exponentially increasing with the number of users

and number of quantification levels, for this simulation, we use only k = 5 users.

In Fig. 2.9, we plot the the miss-detection probability versus the false alarm prob-

ability for different number of local decision levels M for the case of perfect reporting

channels. The sensing performance increases as M increases (lower probabilities of

error). Thus, increasing the number of reported decisions has a good impact on the

cooperative performance thanks to the increase of the reported information.

In Fig. 2.10, we plot the cooperative error probability with α = 1
2

in function

of the reporting energy for different number of quantification levels M . As deduced

from the previous figure, for perfect reporting channels, the higher the number of

quantification levels M , the lower the cooperative error probability. However, for

low reporting SNRs (equivalently, low reporting energy), a higher cooperative error

probability is obtained for the highest number of quantification levels due to the

reporting errors. We note also that for lower quantification levels, lesser reporting

energy is needed to achieve the same performance as perfect reporting channel. Thus,

a trade-off between the number of quantification levels for the hard decision and the

reporting energy controls our system configuration depending on the required system

performance.
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Figure 2.9: Complementary Receiver operating characteristic (CROC) curves for dif-
ferent quantization sizes (M) with perfect reporting channels and fusion decision
threshold ρ = 0.
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Soft Cooperation Scheme

In Fig. 2.11, we plot the the cooperative error probability with the soft cooperation

scheme under perfect and non perfect reporting channels. In this scheme, we observe

also the effect of imperfect reporting channels which penalize the performance of the

spectrum sensing even in high sensing SNR.

2.4.2 Applications of the Performance Analysis to System

Parametrization

Reporting Energy Optimization with Binary Local Decision Scheme

In Fig. 2.12, we plot global error probability in function of the weighting parameter α

for the different constellations of binary information reporting presented in Table. 2.1.

This figure allow us to verify the classification of the bit-error rate of the different
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Figure 2.12: Comparison between different binary reporting decision constellations
with Es = 10 dB and counting fusion rule (ρ = 0.5).

constellations as in [35]. Secondly, this figure allow us to interpret the effect of the

weighting factor α which represent the weight of the false alarm error in the global

error probability (respectively, 1 − α represents the weighting of the miss-detection

error). α is generally fixed according to the system specifications and will allow to

determine the system parameters in order to achieve targeted level of error probability.

Fusion Rule Weights Choice

Fig. 2.13 illustrates the global error probability with α = 1/2 with different fusion

rules as a function of the fusion decision threshold when Es = 10 dB. Three weighting

schemes are considered: 1) uniform weighting, 2) weighting proportional to the sens-

ing SNR, and 3) weighting proportional to the reporting SNR. With the assumption

of perfect reporting channels, the weighting based on the sensing SNR achieves the

best performance since reporting channels do not play any role in this case while
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Figure 2.13: Performance of cooperative spectrum sensing for different fusion rules
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considering the imperfect reporting channels, the weighting based on the reporting

SNR outperforms the two others which shows the higher impact of reporting SNR

on the global performance than sensing SNR. More sophisticated weightings could be

adopted which take into account both reporting and sensing SNR but in general this

figure shows that an adaptive weighting depending on the topology parameters could

further enhance the global performance.

Tertiary Local Decision Thresholds

Fig 2.14 shows that the optimal value ε∗ depends on the different parameters of

the cognitive system such as the primary user transmission energy Es, the reporting

power Er, and the fusion rule threshold ρ. This performance computation can be

exploited in a numerical optimization algorithm to determine the optimal value of ε

that minimizes the global error probability depending on the system topology.
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and the parameter α for perfect reporting channel and M = 16.

Quantized Fusion Decision Thresholds

In Fig. 2.15, we show the dependence of the cooperative error probability as function

of α in X axis and fusion decision thresholds in Y axis for the case M = 16 and

perfect reporting channels. We conclude that for each value of α, there exists an

optimal fusion decision threshold which minimizes the cooperative error probability.

This fact is seen clearly in Fig. 2.16 presenting curves of cooperative error probability

for each value of α as function of the fusion decision threshold. Since the fusion

decision threshold is a constrained value, its optimal value can be obtained by a

numerical optimization algorithm such as the bisection method.
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Figure 2.16: Cooperative error probability function of the fusion decision threshold
for different values of the parameter α with perfect reporting channel and M = 16.

2.4.3 Application of the Performance Analysis for Different

Network Topologies

A fully centralized cooperative spectrum sensing scheme with only one fusion center

as discussed above has the advantage of possibility of achieving optimal performance

but in practice it is not recommended due to its high bandwidth consumption. Thus,

decentralized models are preferred in order to simplify implementation and compu-

tational complexity. We present two examples of decentralized networks, namely the

distributed and the cluster-based models, and discuss how the performance study

shown earlier can be used to parametrize these systems and optimize their perfor-

mance.
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Figure 2.17: Distributed cooperative spectrum sensing model.

Distributed Cooperative Spectrum Sensing

In this scheme, as shown in Fig. 2.17, each user takes its local decision and simply

broadcasts it. Then each user acts as a fusion center that collects the local decisions

from its own nearest neighbors. Thus, every user not only performs a local spectrum

sensing as usual, but also behaves as a fusion center for its own neighbors while

profiting from local decisions of the neighboring users. Then, each user updates

its own decision using this new decision. Afterwards, this updated decision is re-

broadcast to help the neighbors make a fine tune of their fusion decisions. This

iterative process is repeated until a satisfactory reliability of the spectrum decision

is obtained. The cooperative detection and false alarm cooperative probabilities can

be deduced by applying the same formulas derived earlier for fusion decision and the

selected neighbors’ probabilities at the previous iteration as local probabilities.

In Fig. 2.18, distributed cooperative spectrum sensing performance is plotted by

the average error probability after different iterations of cooperation with its neigh-

bors. The total number of users in the network is 50 and each user cooperates with its
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Figure 2.18: Distributed cooperative spectrum sensing performance with different
number of iterations in collaboration between users (50 users, 5 neighbors per user,
Es = 10 dB, binary local decision, uniform weighting fusion rule with ρ = 0.5).

5 nearest neighbors. As the number of iterations increases the average error probabil-

ity falls exponentially, which shows the efficiency of this procedure. In addition, the

cooperative gain increases as the reporting energy grows (The cooperative gain is the

difference between global probabilities with and without collaboration). This type of

figure is useful for system modeling as it can be used to determine the satisfactory

number of neighbors to be used and at which iteration a satisfactory error probability

is obtained.

Cluster-based Cooperative Spectrum Sensing

Clustering is a technique employed in many domains to improve the efficiency of coop-

eration. This procedure has two main objectives, 1) reducing the energy consumption

needed for cooperation by reducing reporting operations and distances, and 2) reduc-

ing the computational overhead at fusion centers resulting from reduction of number
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Figure 2.19: Cluster-based cooperative spectrum sensing scheme.

of users per fusion center/cluster. Fig. 2.19 depicts the cluster-based spectrum sens-

ing scheme, where the users are grouped into subgroups called “clusters”. For each

cluster (group), a cluster head is chosen to play the role of the fusion center for the

cluster. This cluster head collects local decisions from the users in that cluster and

then takes the “cluster decision”. Then, depending on the objective, either clusters’

decisions are forwarded to a fusion center for a global decision if a centralized decision

is required or each cluster will use its decision for the users inside that cluster only.

The detection and false alarm probabilities of the cluster decision are deduced by

applying the fusion probabilities using local probabilities of the users inside its cluster.

Then, if a centralized decision is required, fusion center probabilities are computed

based on the fusion probabilities obtained at each cluster.

In clustering, the way users are grouped has an important impact on the cooper-

ation performance. In this study we will consider three different clustering methods

as depicted in Fig. 2.20

• Clustering based on the distance to the primary user (i.e. all the users having

similar distance to the primary user will be in the same cluster),
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• Clustering based on the relative distance between users (i.e. close users will be

grouped in the same cluster),

• Hybrid clustering strategy incorporating the two latest methods.

The fusion center for each cluster called cluster head is chosen to be the nearest

secondary user to the centroid of all the users of the cluster while the global fusion

center is chosen to be the nearest to the centroid of the cluster heads.

(a) User-to-user distance
strategy

(b) Distance to primary user
strategy

(c) Hybrid strategy

Figure 2.20: Different clustering strategies.

In Fig. 2.21, we compare the effect of the different clustering strategies on the

performance of a centralized cluster-based cognitive spectrum sensing system. In this

topology, user-to-user distance clustering strategy leads to the best performance. This

can be explained by the fact that this clustering minimizes the distance between co-

operating users. However, the distance-to-primary user strategy allows better spread

of the cooperating users inside each cluster and that will enhance the local decisions

variability (allows to avoid shadowing) but a higher reporting energy is needed for

cooperation.

2.5 Conclusion

In this chapter we studied the performance of cooperative spectrum sensing under im-

perfect reporting channels and non-identical average SNRs. The main contribution

of this chapter is the derivation of closed-form expressions of average probabilities
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Figure 2.21: Comparison between the clustering strategies on performance of cluster-
based spectrum sensing.

of detection and false-alarm considering independent but non-identically distributed

Nakagami-m fading for the sensing and reporting channels. This performance analy-

sis allowed us to conclude the effect of the reporting local decisions imperfectness on

global spectrum sensing performance. Different cooperation schemes were studied for

reporting local decisions: 1) The classic hard binary decision, 2) The tertiary (cen-

sored) decision scheme, 3) The quantized decision scheme, and 4) the soft information

scheme. This study showed that although increasing the shared information helps im-

proving the cooperation under perfect reporting assumption, the imperfect reporting

affects this property and the cooperation gain decreases and can become even nega-

tive with very low reporting SNRs. The study also employed generic weighted fusion

rules and via simulations we proved that an adaptive choice of the weights affected

to each user’s decision function of its sensing and reporting SNRs could enhance the

global performance. The derived expressions are of great importance as they could
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be used as inputs for optimization algorithms for system parametrization in terms of

performance requirements such as available energy and tolerable probability of error.

They are also easily adaptable to be applied for other network topologies such as

distributed or clustered schemes and in order to optimize them.
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Chapter 3

Location-based Resource

Allocation

3.1 Introduction

Optimizing the allocation of available resources is an important task in communi-

cation systems in order to maximize the profit. In particular, for cognitive radios

systems, this step becomes primordial due to the specificity of these systems char-

acterized by the rapid change of available opportunities. An extensive research has

been performed for cognitive radio networks [41, 42, 43]. Many of them assume that

the instantaneous channel gain or the channel state information (CSI) of the inter-

ference links from secondary transmitters to primary receivers is available. However,

since primary users need to be oblivious to secondary users, CSI estimation of the

interference links at the primary receivers is generally not possible. Furthermore, it

is impractical in cognitive radio systems to assume that primary users send feedbacks

to secondary users.

Without the CSI of the interference links, secondary transmitters can not estimate

the potential interference at primary users. Therefore, it is not possible to share the

frequency bands used by the primary users but must avoid transmission over those

frequency bands which will lead to an inefficient system (very low capacity). However,
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if the interference at the primary users can be estimated by a certain method, then

the secondary users can use some interference-free transmit power and share the

frequency bands that are being occupied by the primary users, which allows a more

efficient use of the spectrum. As such, it is of paramount importance to estimate

the interference caused to the primary users under the condition of no CSI of the

interference links and further perform resource allocation to maximize the system

capacity of the secondary network. In line with this, [44] proposes a power allocation

algorithm that requires the statistics not instantaneous CSI of the interference link

in OFDM based cognitive radio systems. [45] considers a scenario where only some

primary users’ CSI is available at the secondary transmitter and proposes an allocation

algorithm based on rate loss constraint. In [46], the authors propose a power allocation

algorithm based on the mean value of the channel gain of the interference link.

Location information represents a solution to this problem. Indeed, secondary

users will use it to estimate the interference they may cause to the primary users

as function of their transmitted power based on a pathloss and shadowing model.

Unlike the channel state information, location information is easier to obtain with

the evolution and spread of localization features such as global positioning system

(GPS). Thus, in this chapter, we introduce a resource allocation algorithm cognitive

radio systems which uses location information of the primary and secondary users

instead of the channel state information of the interference link.

The remainder of this chapter is organized as follows. Section 3.2 we introduce

the system model. In section 3.3, we detail how to estimate interference from location

information. In section 3.4, we study the resource allocation problem for downlink

and uplink scenarios. For each of them, we formulate the optimization problems, solve

them analytically using Lagrange technique, and propose adequate resource allocation

algorithms in addition to adapted algorithms for more practical implementations such

as discrete rate and collocated channels allocation. Finally, in section 3.5 numerical
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results are presented and discussed to deduce algorithms performance. Conclusions

are drawn in section 3.6.

3.2 System Model

Consider Orthogonal Frequency-Division Multiple Access (OFDMA) based cellular

cognitive radio network that consist of a secondary base station (single cell environ-

ment) and K secondary users who aim to opportunistically use the spectrum occupied

by the primary users without causing a harmful interference. For the primary users,

we consider the general case (i.e. not necessarily cellular network). Without loss of

generality, we suppose that there are N primary users occupying the subchannels to

be shared by the secondary network (i.e., more than one primary user could be using

the same subchannel).

We assume that the subchannels are orthogonal and the transmission is omni-

directional. We assume also that the primary users operate in a time division duplex

(TDD) mode, where the same frequency band is used for transmission and reception,

and the cognitive networks use OFDMA with L subchannels and a wider system

bandwidth than that of the primary users due to the interference mitigation based

on frequency diversity and the capability of a selective use of unoccupied subchannels

by the primary users, where subchannel is defined as a group of subcarriers.

Interference temperature is defined as the radio frequency (RF) power measured at

a receiving antenna per unit bandwidth and indicates the tolerable interference level

at the primary user [5]. Due to heterogeneity of the primary users, the interference

temperature may vary depending on the user, and for the same user, depending on

the subchannel. We denote Ithreshn,i the maximum amount of interference allowed by

the primary user n in the subchannel i.
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3.3 Estimating Interference from Location Infor-

mation

Location awareness [47] has realized huge advancements in the cellular networks dur-

ing the last years due to the emergence of more accurate and faster algorithms which

benefit from cooperation techniques (triangulation) [48, 49]. In cognitive radios, lo-

cation information represents a great opportunity for system optimization in various

aspects such as:

• performing more precise measurements of the spectrum occupancy even with a

less frequent spectrum sensing,

• determining the minimum transmit power level for a reliable link between the

secondary users,

• determining angle of arrival/departure toward primary users from the viewpoint

of secondary users and use beam forming techniques to reduce the interference

to the primary users if multiple antennas are available,

• optimizing the cognitive radio networks in order to maximize the spectrum

usage and the spatial reuse,

• constructing the optimal secondary network topology based on the given pri-

mary networks,

• performing more accurate spectrum sensing by adjusting the detection threshold

and an estimation of the pathloss exponent that enables a precise interference

control within resource allocation algorithms.

Among the mentioned benefits, we will focus on how the relative location between

the primary and secondary users can be exploited for resource allocation in cognitive

radio networks under pathloss and log-normal shadowing. Indeed, secondary users use
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the location information to estimate the pathloss to the primary users, which lead to

the evaluation of the interference at the primary users as a function of the transmitted

power. Then, the cognitive system determine the maximum interference-free transmit

power while sharing the frequency bands with primary users.

Location of each secondary user may be determined autonomously using GPS or

estimated based on power measurement of pilot signals from the surrounding beacons.

For the primary user, if the location information can not be delivered, a variety

of localization techniques are introduced in the literature (see [48, 49, 50] and the

references therein). Most of these works are based on a cooperative estimation of

multiple secondary users based on a receive power measurement and a triangulation

technique.

3.3.1 Interference Estimation using Location Information

Consider a 2-dimensional horizontal plane (no height elevation). Let {x(p)
n , y

(p)
n } de-

note the location of the nth primary user (1 ≤ n ≤ N), {x(c)
k , y

(c)
k } the location of

the secondary user k (1 ≤ k ≤ K), and {x(c)
0 , y

(c)
0 } the location of the secondary base

station, respectively.

Consider log-distance pathloss model where the received power can be written as

Prx(d) =
Ptx ξ 100.1X

dη
, (3.1)

where

• η is the pathloss exponent,

• d is the distance between the transmitter and the receiver,

• ξ is the pathloss in a reference distance (1 km) with transmit and receive antenna

gains and effect of wavelength,
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• 100.1X is a log-normal shadowing where X is a Gaussian random variable with

zero mean and variance σ2
x.

We assume that the measured symbols are averaged out to remove the small-scale

fading effect.

When log-normal shadowing is present, the interference constraint at the primary

user is satisfied in a probabilistic manner. In order to avoid causing a harmful in-

terference at the primary user under log-normal shadowing, we adjust the original

interference temperature such that the probability of the interference constraint vi-

olation is bounded by a probability of our choice pε. A lower pε results in a lower

adjusted interference temperature, which is more conservative way of protecting the

primary user. Thus, we formulate the following:

Pr

[
10 logPrx(d) > 10 log Ithresh

]
≤ pε, (3.2)

where Ithresh is the maximum interference level tolerable by the primary user.

Substituting (3.1) into (3.2) and using the fact that Pr[X > γ] = Q(γ) for Normal

distribution, where Q(·) is the Gaussian-Q function, we get

Ptxξ

dη
=
Ithresh

10
σxQ−1(pε)

10

. (3.3)

From (3.3), we can find the secondary transmitter’s maximum transmit power that

obeys the interference constraint with a probability (1 − pε) when log-normal shad-

owing is present.

To simplify, we denote Ĩthresh = Ithresh
10(σxQ−1(pε)/10)

the effective threshold, and thus

(3.3) can be rewritten as:

Ptxξ

dη
= Ĩthresh. (3.4)
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3.3.2 Interference Constraint in the Cognitive System

Downlink

The distance between the secondary base station and the primary user n can be

written as

d0,n =

√
(x

(c)
0 − x(p)

n )2 + (y
(c)
0 − y(p)

n )2, 1 ≤ n ≤ N. (3.5)

Given the knowledge of d0,n, the interference power at the primary user n for the

subchannel i based on the pathloss model in (3.1) is given by:

K∑
k=1

ak,ibn,i
pk,i ξ

dη0,n
≤ Ĩthreshn,i , 1 ≤ i ≤ L, 1 ≤ n ≤ N. (3.6)

where:

• A ∈ {0, 1}K×L is the subchannel allocation matrix for secondary users showing

that the ith subchannel is allocated to the user k if ak,i = 1.

• B ∈ {0, 1}N×L is the subchannel allocation matrix for the primary users. We

assume that B is known by spectrum sensing [48].

– If bn,i = 1, then the ith subchannel is being used by the primary user n and

thus the secondary users may use it but under the interference constraint

Ĩthreshn,i .

– If bn,i = 0, the primary user n is not using the subchannel i. Thus, if bn,i =

0 , ∀n ∈ {1, · · · , N}, then the secondary users can use this subchannel

without any interference constraint.

• pk,i denote the allocated power by the secondary base station to the secondary

user k on the ith subchannel in case of downlink or the transmitted power by

the secondary user k on the ith subchannel in case of uplink.
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Uplink

The distance between the secondary user k and the primary user n can be computed

as

dk,n =

√
(x

(p)
n − x(c)

k )2 + (y
(p)
n − y(c)

k )2, 1 ≤ k ≤ K, 1 ≤ n ≤ N. (3.7)

Similar to the downlink case, the interference power at the primary user n due to the

uplink signal from the secondary user k can be modeled by

K∑
k=1

ak,ibn,i
pk,i ξ

dηk,n
≤ Ĩthreshn,i , 1 ≤ i ≤ L, 1 ≤ n ≤ N. (3.8)

The pathloss exponent η is assumed to be the same for both downlink and uplink.

3.4 Resource Allocation Algorithms based on Lo-

cation Information

3.4.1 Downlink

Problem Formulation

Our goal is for the secondary base station to allocate the given power and subchannels

to secondary users in order to maximize the sum rate under the following constraints:

• No inter-secondary user interference : each subchannel can be allocated to at

maximum one secondary user,

• Total power constraint: the secondary base station has a limited power budget,

• Interference constraint: secondary users can use the subchannels being occupied

by the primary users as long as the interference constraint at the primary users

is met.
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This can be mathematically written as

Maximize
ak,i∈{0,1}
pk,i≥0

K∑
k=1

L∑
i=1

ak,i log2

(
1 +
|hk,i|2pk,i

No

)

subject to
K∑
k=1

ak,i ≤ 1, 1 ≤ i ≤ L,

K∑
k=1

L∑
i=1

ak,ipk,i ≤ Ptot,

K∑
k=1

ak,ibn,i
pk,i ξ

dη0,n
≤ Ĩthreshn,i , 1 ≤ i ≤ L, 1 ≤ n ≤ N,

(3.9)

Analytic Solution

Using the Lagrange multiplier technique, (3.9) is formulated as

L =
K∑
k=1

L∑
i=1

ak,i log2

(
1 +
|hk,i|2pk,i

No

)

+
N∑
n=1

L∑
i=1

λn,i

(
Ĩthreshn,i −

K∑
k=1

ak,ibn,i
pk,i ξ

dη0,n

)

+ ρ0

(
Ptot −

K∑
k=1

L∑
i=1

ak,ipk,i

)
,

(3.10)

where λn,i and ρ0 are Lagrangian coefficients. The Karush-Kuhn-Tucker (KKT) con-

ditions [51] are listed as

ak,i|hk,i|2
No + |hk,i|2pk,i

− ak,i
N∑
n=1

bn,i
λn,iξ

dη0,n
− ak,iρ0 = 0, (3.11a)

λn,i

(
Ĩthreshn,i −

K∑
k=1

ak,ibn,i
pk,i ξ

dη0,n

)
= 0, (3.11b)

ρ0

(
Ptot −

K∑
k=1

L∑
i=1

ak,ipk,i

)
= 0. (3.11c)

Even though the above problem is in the form of mixed-integer programming
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problem, which is in general NP-hard, a simple two-step approach provides the max-

imum capacity thanks to the fairness of the constraints regarding the different users.

In fact, allocating the power to a user k1 or k2 will have the same contribution on the

saturation of the total power and interference constraints (note that in the downlink

case, the interference constraint depends only on the distance from the base station

to the primary users and the total power budget is the budget of the base station).

Thus, the only factor that will decide on the subchannel allocation is the contribution

in the total capacity. Then, we allocate each subchannel to the secondary user with

the maximum SNR for that subchannel. Thus, the subchannel allocation index for

secondary users is simply given as ak,i = 1 for k = ki, and 0 otherwise, where

ki = arg max
k∈[1,K]

{ |hk,i|2
No

}
, 1 ≤ i ≤ L. (3.12)

The interference constraint can also be simplified. In fact, for each subchannel i, the

primary user ni is the most sensitive to the power increase of secondary users, where:

ni = arg min
n∈busedi

{
dη0,nĨthreshn,i

ξ

}
, i = 1, · · · , L, (3.13)

with busedi = {n ∈ {1 . . . N} such that bn,i = 1} is the set of primary users using the

subchannel i. Thus the interference constraint becomes

pki,i ξ

dη0,ni
≤ Ĩthreshni,i

, 1 ≤ i ≤ L. (3.14)
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The Lagrange multiplier can therefore be simplified to

L =
L∑
i=1

log2

(
1 +
|hki,i|2pki,i

No

)

+
L∑
i=1

λni,i

(
Ĩthreshni,i

− pki,i ξ

dη0,ni

)

+ ρ0

(
Ptot −

L∑
i=1

pki,i

)
.

(3.15)

Thus, the KKT conditions can be rewritten as

ak,i|hk,i|2
No + |hk,i|2pk,i

− λni,iξ

dη0,ni
− ρ0 = 0, (3.16a)

λni,i

(
Ĩthreshni,i

− pk,i ξ

dη0,ni

)
= 0, (3.16b)

ρ0

(
Ptot −

L∑
i=1

pk,i

)
= 0. (3.16c)

Let U denote the set of unallocated subchannels and Up the set of the subchannels

occupied by at least a primary user. It is assumed that Up is already known by

spectrum sensing. Thus, Uc = U − Up is the set of the interference-free subchannels.

The second step, consists in solving this optimization problem. (3.16), the optimal

transmit power can be obtained as

pki,i =

[
dη0,ni

λni,iξ + ρ0d
η
0,ni

− No

|hki,i|2
]+

, 1 ≤ i ≤ L. (3.17)

where [x]+ = max{x, 0}. From (3.11b), it is clear that λni,i = 0 for i ∈ Uc. Therefore,

(3.17) can be simplified as

pki,i =


[

1

ρ0

− No

|hki,i|2
]+

, i ∈ Uc,

min

{[
1

ρ0

− No

|hki,i|2
]+

,
Ĩthreshni,i

dη0,ni
ξ

}
, i ∈ Up,

(3.18)
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Note that (3.18) is a combination of the conventional waterfilling and the cap-limited

waterfilling both with the common water level 1
ρ0

which can be computed to saturate

the total power and interference constraints as

1

ρ0

=
1

|U|

(
Ptot −

∑
i∈Sp

Ĩthreshni,i
dη0,ni

ξ
+
∑
i∈U

N0

|hki,i|2
)
, (3.19)

where |U| denotes the size (number of elements) of the set U and Sp is the set of the

subchannels satisfying the condition: 1
ρ0
− N0

|hki,i|
2 >

Ĩthreshni,i
dη0,ni

ξ
.

Resource Allocation Algorithm

The power and subchannel allocation algorithm runs as follows

1. Initialize the sets U = {1, · · · , L} and Sp = {}.

2. Perform the conventional water filling algorithm and compute (3.19) and pk,i =

1
ρ0
− No
|hki,i|

2 .

3. • If ∃i ∈ U / pk,i < 0, then U = U − {i} and redo the above calculations.

• If
pk,iξ

dη0,ni
> Ĩthreshni,i

for any i ∈ Up, the allocated power will be saturated such

that pk,i =
Ĩthreshni,i

dη0,ni
ξ

. Then,

– Remove i from U and Up, and add it to Sp.

– Recalculate 1
ρ0

(water level) using (3.19).

– Repeat the above procedure until no subchannel i ∈ Up that satisfies

pk,iξ

dη0
> Ĩthreshni,i

is found.

This procedure is detailed in Algorithm 1.
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Algorithm 1 Optimal Downlink Resource Allocation

Require: {hk,i}1≤k≤K
1≤i≤L

, P tot, Ĩthresh, {d0,n}1≤n≤N , η, ξ, No.

pk,i ⇐ 0 , gk,i ⇐
No

|hk,i|2
, ∀k ∈ [1, K],∀i ∈ [1, L]

ki ⇐ arg max
k∈[1,K]

{gk,i},∀i ∈ [1, L],

ak,i ⇐ 0 ,∀k ∈ [1, K], aki,i = 1,∀i ∈ [1, L],
G⇐ {g1,k1 , · · · , gL,kl},
Pmax ⇐ {pmax1 , · · · , pmaxL }, where

pmaxi ⇐ min
n∈[1,N ] / bn,i=1

{ Ĩ
thresh
n,i ×dη0,n

ξ
},∀i,

Pvec ⇐ Algorithm 2 (G,Pmax, P tot)
pki,i ⇐ pveci ,∀i ∈ [1, L],
return {ak,i}1≤k≤K

1≤i≤L
, {pk,i}1≤k≤K

1≤i≤L
.

Algorithm 2 Cap-limited Waterfilling (G,Pmax, P tot)

Require: G,Pmax, P tot.
U⇐ {1, · · · , L}, Ns ⇐ L, pt ⇐ 0,
while (|P − pt| > ε and Ns > 0) do

V1 ⇐ min
i∈U
{gi +

P tot − pt
Ns

}, V2 ⇐ min
i∈U
{gi + pmax

i }
V ⇐ min(V1, V2)
wi ⇐ max(V − gi, 0), gi ⇐ gi + wi, ∀i
pi ⇐ pi + wi, pmax

i ⇐ pmax
i − wi, ∀i

pt ⇐ pt +
L∑
i=1

wi, U⇐ argi(p
max
i > ε), Ns ⇐ |U|

end while
return Pvec ⇐ {p1, · · · , pL}
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3.4.2 Uplink

Problem Formulation

The objective is to maximize the sum rate under the individual secondary user power

constraint. The problem is formulated in this case as

Maximize
ak,i∈{0,1}
pk,i≥0

K∑
k=1

L∑
i=1

ak,i log2

(
1 +
|hk,i|2pk,i

No

)

subject to
K∑
k=1

ak,i ≤ 1, 1 ≤ i ≤ L,

K∑
k=1

L∑
i=1

ak,ipk,i ≤ Pk, 1 ≤ k ≤ K,

K∑
k=1

ak,ibn,i
pk,i ξ

dηk,n
≤ Ĩthreshn,i , 1 ≤ i ≤ L, 1 ≤ n ≤ N,

(3.20)

where Pk is the transmit power budget for secondary user k.

The constraints are similar to the downlink case except the total power constraint

which is replaced by an individual power constraint for each secondary user k.

Analytic Solution

We start by simplifying the problem by selecting for each secondary user, the most

sensitive primary user in each used subchannel. Similarly to the downlink case, this

user can be determined from the interference constraint as:

nk,i = arg min
n∈busedi

{
dηk,nĨthreshn,i

ξ

}
, 1 ≤ k ≤ K, 1 ≤ i ≤ L. (3.21)

Using the Lagrangian and KKT conditions, the optimal transmit power can be
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obtained as

pki,i =

[ dηki,nki,i
λiξ + ρkid

η
ki,nki,i

− No

|hki,i|2
]+

, 1 ≤ i ≤ L. (3.22)

which can be simplified as

pki,i =


[

1

ρki
− No

|hki,i|2
]+

, i ∈ Uc,

min

{[
1

ρki
− No

|hki,i|2
]+

,
Ĩthreshnki,i,i

dηki,nki,i
ξ

}
, i ∈ Up.

(3.23)

Resource Allocation Algorithm

Unlike the downlink case, it is not optimal in the uplink case to separate subchannel

and power allocations due to the per-user power constraint. In order to solve the prob-

lem with a reduced complexity, we propose an algorithm that runs a per-subchannel

two-step procedure of user selection and power allocation for all the subchannels one

after another. A brief description of the procedure is given in what follows.

1. Initialize U = {1, · · · , L}, Uk = {1, · · · , L} and Sk = {},∀k, where Uk and Sk
are the set of the unallocated subchannels for the user k and the set of the

subchannels that their allocated power should be capped due to interference

constraint, respectively.

2. Run the waterfilling algorithm over the available subchannels for each user

independently. The water level for secondary user k is shown as

1

ρk
=

1

|Uk|

(
Pk −

∑
i∈Sk

Ĩthreshnk,i,i
dηk,nk,i
ξ

+
∑
i∈Uk

N0

|hk,i|2
)
. (3.24)

For each user k, if i ∈ Up and pk,i >
Ĩthreshnk,i,i

dηk,nk,i
ξ

, then pk,i =
Ĩthreshnk,i,i

dηk,nk,i
ξ

and

Sk = Sk + {i}.
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3. Compute the capacity for each subchannel and user as

Ck,i = log2

(
1 +

pk,i|hk,i|2
No

)
, (3.25)

and then select the pair with the highest capacity as {k∗i , i∗} = arg max
k,i∈U

Ck,i.

4. Allocate the i∗th subchannel to the user k∗i (ak∗i ,i∗ = 1).

5. Remove this subchannel from the sets U = U − {i∗} and Uk = Uk −{i∗}, where

k = 1, · · · , i∗ − 1, i∗ + 1, · · · , K.

6. Repeat the above procedure until U is empty.

This procedure is detailed in Algorithm 3.

Algorithm 3 Proposed Uplink Resource Allocation

Require: {hk,i}1≤k≤K
1≤i≤L

, {P user
k }1≤k≤K , Ĩthresh, {dk,n}1≤k≤K

1≤n≤N
, η, ξ, No.

ak,i ⇐ 1, gk,i ⇐
No

|hk,i|2
, ∀k ∈ [1, K],∀i ∈ [1, L]

while
L∏
i=1

K∑
k=1

ak,i 6= 1 do

for k = 1 to K do
G⇐ {gk,1, · · · , gk,L},
Pmax
k ⇐ {pmax

k,1 , · · · , pmax
k,L } where

pmaxk,i ⇐ min
n∈[1,N ] / bn,i=1

{ Ĩ
thresh
n,i ×dηk,n

ξ
},∀i,

Pk ⇐ Algorithm 2 (G,Pmax
k , P user

k ),
end for

Ck,i = log2

(
1 +

pk,i
gk,i

)
, ∀k, ∀i

k∗, i∗ ⇐ arg max
k,i

Ck,i

aj,i∗ ⇐ 0, ∀j ∈ [1, K], ak∗,i∗ ⇐ 1
end while
return {pk,i}1≤k≤K

1≤i≤L
, {ak,i}1≤k≤K

1≤i≤L
.

Notice that, unlike the downlink case, the user with the maximum SNR for a

subchannel can not always offer the highest rate in the uplink case. Therefore, to
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maximize the capacity, each subchannel needs to be allocated into the secondary user

with the highest capacity for the subchannel.

3.4.3 Practical Implementation Algorithms for Resource Al-

location

Collocated Subchannels Allocation

Assuming consecutive subchannels are allocated for each secondary user, we can for-

mulate the optimization problem for the uplink scenario as

Maximize
ak,i∈{0,1}
pk,i≥0

K∑
k=1

L∑
i=1

ak,i log2

(
1 +
|hk,i|2pk,i

No

)

subject to
K∑
k=1

ak,i ≤ 1, 1 ≤ i ≤ L,

K∑
k=1

L∑
i=1

ak,ipk,i ≤ Pk, 1 ≤ k ≤ K,

K∑
k=1

ak,ibn,i
pk,i ξ

dηk,n
≤ Ĩthreshn,i , 1 ≤ i ≤ L, 1 ≤ n ≤ N,

Uk = {u(1)
k , · · · , u(1)

k + u
(w)
k − 1}, 1 ≤ k ≤ K,

(3.26)

where Uk is the set of allocated subchannels for the secondary user k.

Since each secondary user is allocated with consecutive subchannels, Uk can be

characterized by the start subchannel index u
(1)
k and the number of subchannels u

(w)
k .

The optimization problem in (3.26) is similar to the uplink problem proposed in

(3.20) with an additional constraint of consecutive subchannel allocation. In order

to solve the problem with a reduced complexity, we propose an algorithm that runs

a per-subchannel two-step procedure of user selection and power allocation for all

the subchannels one after another. A brief description of the algorithm is given as

follows:
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1. Construct a capacity matrix C = {ck,i}K×L, where row is the user index and

column is the subchannel index, and a validity indication matrix V = {vk,i}K×L

and initialize all the elements as valid (vk,i = 1,∀k,∀i).

2. Each user runs an individual cap-limited waterfilling and compute C such that

ck,i = log2(1 +
|hk,i|2pk,i

No
).

3. Find the element with the highest capacity among the valid elements in the

validity indication matrix, i.e., {k∗, i∗} = arg maxk,i vk,ick,i.

4. Check if the user k∗ already has other allocated subchannel(s). If so, go to 5,

otherwise, proceed to 6.

5. Check if the subchannel i∗ is adjacent to the already allocated subchannels

for the user k∗. If so, proceed to 6, otherwise, the subchannel i∗ can not be

allocated to the user k∗. So mark the subchannel i∗ is invalid for the user k∗,

i.e., vk∗,i∗ = 0, and go back to 3 (find the next highest element).

6. Allocate the subchannel i∗ to the user k∗ and put vk,i∗ = 0 for 1 ≤ k ≤ K and

k 6= k∗.

7. Check if the surrounding (left and right) elements are invalid, i.e., vk∗,i∗+1 = 0

or vk∗,i∗−1 = 0. If they are invalid, then change them as valid.

8. Go back to 2 and repeat until all the subchannels are allocated.

Fixed Power Allocation

For practical implementations, it is more convenient to allocate the same power for

all subchannels. In this subsection, we will propose an approach to search for the
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optimal power in the downlink case. The optimization problem is reformulated as:

Maximize
ak,i∈{0,1}
p≥0

K∑
k=1

L∑
i=1

ak,i log2

(
1 +
|hk,i|2p
No

)

subject to
K∑
k=1

ak,i ≤ 1, 1 ≤ i ≤ L,

K∑
k=1

L∑
i=1

ak,i ≤
Ptot
p
,

K∑
k=1

ak,ibn,i
p ξ

dη0,n
≤ Ĩthreshn,i , 1 ≤ i ≤ L, 1 ≤ n ≤ N,

(3.27)

The optimal power is obtained as

p∗ = min

[
Ptot
|U∗| ; min

i∈U∗
{Ĩthreshni,i

dη0,ni
ξ
}
]
; (3.28)

where U∗ is the set of the used subchannels by the secondary users. The problem

is how to determine the optimal set. For that, after determining the most sensitive

primary user and the best secondary user per subchannel as in the general case,

we sort the subchannels by decreasing order of SNR. Then we intialize this set as

{1, ..., L∗} where

L∗ = arg max
l

l∑
i=1

aki,i log2

(
1 +
|hk,i|2p∗l
No

)
. (3.29)

This initialization considers that the interference is uniform for all subchannels. Since

the threshold is variable, it can affect the chosen power and thus decrease the total

capacity. For that, is the optimal power is selected to saturate the interference in

one of the subchannels, we try to remove it from the set of eligible subchannels,

redetermine the optimal L∗ and p∗, and recompute the total capacity. If it is better

than the previous capacity, we save this change and we repeat the previous test. We

keep testing until the optimal power is not an interference cap or the remove of the

subchannel does not improve the capacity.
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For the uplink scenario, we use the same procedure for each user then we insert

it in the iterative procedure described in the algorithm (3).

Discrete Rate Allocation

Since it is more interesting to see integer bit allocations in practice, the original

allocated power is reduced to the one that results in the nearest inferior integer bits

for each subchannel. Then, the total remaining power is redistributed in order to

maximize the number of total allocated bits.

In both downlink and uplink cases, for integer-bit allocation, the power allocated

for each subchannel is adjusted as

p′ki,i =
N0

|hki,i|2
(2rki,i − 1), (3.30)

where rki,i = blog2(1 +
|hki,i|

2pki,i
N0

)c. Thus, the power remaining unused is

P− = Ptot −
L∑
i=1

p′ki,i, (3.31)

which is redistributed by the greedy algorithm as follows. For each subchannel i,

calculate the amount of power needed to allocated one more bit as

p+
i = p′′ki,i − p′ki,i =

N0

|hki,i|2
2rki,i , (3.32)

where p′′ki,i = N0

|hki,i|
2 (2rki,i+1 − 1). In order to redistribute the remaining power, we

start from the subchannel that requires the minimum additional power to increment

the allocated bits (to the next integer value) while verifying that the power budget

and the interference constraints are not violated. Thus, the subchannel that requires
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the minimum power for an additional bit is given as

nmin = arg min
i
p+
i , (3.33)

which is equivalent to finding the best subchannel (the one with the highest channel

gain) among those subchannels with the lowest allocated bits and is given as

nmin = arg max
i∈S
|hki,i|, (3.34)

where S is the set of the subchannel indices with the minimum rki,i. For the sub-

channels i ∈ Uc, or the subchannels i ∈ Up satisfying pki,i + p+
i ≤

Ĩthreshni,i
dη0,ni

ξ
, update

pki,i = pki,i + p+
i and P− = P− − p+

i . For other subchannels i, no additional power

can be allocated. Then, S = S − i. Repeat the above power redistribution procedure

until P− − p+
i < 0 and then finally distribute the remaining power equally over all

the subchannels.

3.5 Simulation Results

Extensive simulations were performed, where the cognitive radio system composed of

K = 20 secondary users is assumed to have a total of L = 64 subchannels shared with

N = 10 primary users. The base station transmit power budget is Ptot = 20 dBm

and the user transmit power budget of Pk = 3 dBm. We consider two different

threshold levels (Ithreshn,i ) of −110 dBm and −130 dBm, affected randomly to users

and subchannels. We generate the secondary users’ locations randomly inside the

circle of radius 1 km while the primary users are located randomly inside a circle of

radius Dmax which will be variable in our simulations.

For performance comparison, two extreme scenarios are considered.

• OFDMA: it corresponds to absence of primary users. Thus the cognitive users
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Figure 3.1: Effect of the location information use instead of the channel state infor-
mation on the total capacity of the network.

are free to allocate their resources in the subchannels without any concern for

the interference.

• Overlay: in this scenario, no interference with primary users is allowed. The

cognitive users can only use the totally free subchannels (i.e. not used by

primary users).

3.5.1 Effect of the Use of Location Information

In Fig. 3.1, we show the effect of the use of location information (LI) instead of the

CSI. Remarking that the loss of capacity is acceptable, we conclude that the used

approximation is valid knowing that the CSI are in practical impossible to obtain.
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Figure 3.2: Comparison between the total capacity obtained using the proposed al-
gorithm and the exhaustive search algorithm.

3.5.2 Optimality of the Proposed Algorithms

In Fig. 3.2, we show the efficiency of the proposed algorithms by comparing them to

the Exhaustive Search algorithms. In fact, for the downlink case, the proposed algo-

rithm is exactly superposed with the Exhaustive search which shows its optimality.

For the uplink case, the suboptimal algorithm that we propose is very near to the

exhaustive search. The complexity reduction justifies our choice of this approach. We

note that due to the high complexity of the exhaustive search algorithm, we perform

this comparison (Fig. 3.2) with only 8 subchannels, 4 secondary users and 2 primary

users.
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Figure 3.3: Downlink capacity of various schemes as a function of pε when the distance
between the primary user and the secondary base station is 3 (km).

3.5.3 Effect of the Users’ Spatial Distribution

In Fig. 3.3, we consider two different simulation scenarios for the secondary users and

the primary user:

1. All the secondary users are located along the circle with a radius of 1 (km) and

the primary users are located at random within the cell with the radius of 8

(km).

2. The secondary users as well as the primary users are randomly distributed

within the cell. This is a more practical scenario with non-identically distributed

users in a cellular environment.

We show in this figure the impact of pε on the performance of the location-based

algorithm. As in the figure, the lower pε, the stronger protection we put in place for

the primary user and therefore the secondary users tend to avoid the subchannels

under the primary user’s band.
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Figure 3.4: Impact of interference threshold on the network capacity for the proposed
algorithm (downlink case).

3.5.4 Effect of the Interference Threshold

Fig. 3.4 shows the impact of the threshold level on the performance of the location-

based algorithm. As shown in the figure, the higher the threshold level, the stronger

protection we put in place for the primary users and therefore the secondary users

tend to avoid the subchannels under the primary users’ band which corresponds to

the overlay algorithm. Inversely, when the threshold level decreases, we allow more

freedom to secondary users to use all the subchannels which is similar to the OFDMA

case.

3.5.5 Effect of the Number of Primary Users

Fig. 3.5 shows the capacity as function of the number of primary users. The capacity

decreases with the increase of the primary users which can be explained by the increase

of the interference constraints due to the decrease of the minimal distance.
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Figure 3.5: Impact of the number of primary users on the cognitive network perfor-
mances.

3.5.6 Practical Algorithms Performance

In this paragraph, we focus on the practical instantiations of the resource allocation

algorithms presented in section 3.4.3.

Fig. 3.6 shows the capacity of the discrete rate and fixed power allocation algo-

rithms compared to the continuous case. An important rate loss is observed with the

discretization (5 levels) but this loss becomes negligible with use of high number of

discrete levels (i.e. 20 levels). For the fixed power algorithm, the rate loss is impor-

tant for long distances to the primary users and very low when this distance increases.

This can be explained by the interference constraint which do not have any effect on

the power allocation for high distances to the primary user.

Fig. 3.7 compares effect of different combinations of practical constraints as stated

in Table. 3.1 on the resource allocation achieved capacity. The collocated subchan-

nels constraint results in a loss of around 1 bps/Hz per user (Scenario 4), while a



98

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

Average Distance Between Cognitive Base Station and Affected Primary Users (Km)

C
ap

ac
it

y 
(b

p
s/

H
z)

 

 

OFDMA
Continuous
20 Discrete Levels
Fixed power
5 Discrete Levels
Overlay

Uplink

Downlink

Figure 3.6: Discrete rate and fixed power constraints effect on the performance of the
resource allocation.

combination of collocated subchannels and discrete rate constraints (Scenario 5) de-

grades more the rate to 1.5 bps/Hz per user compared to the continuous case. The

cumulation of the different practical constraints affect the achieved throughput which

shows the need to consider these practical constraints in modeling the system due to

the important difference compared to the theoretical achievable rate.

3.6 Conclusion

This chapter introduced a resource allocation algorithm based on location informa-

tion for OFDMA cognitive radio systems and showed that it achieves a near-optimal

capacity even without knowledge of the interference link. In particular, we firstly

proposed a method to estimate of the interference based on pathloss and location

information. Then, we optimized the capacity of the cognitive network under the

interference and power constraints. In addition, we proposed sub-optimal algorithms
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Figure 3.7: Effect of discretization of the capacities and allocation of collocated sub-
channels on the performance of the cognitive network.

Table 3.1: Different resource allocation scenarios for Fig. 3.7.

Scenario subchannel allocation power allocation rate (capacity)

1 no restriction waterfilling fractional

2 no restriction waterfilling discrete

3 no restriction fixed power fractional

4 collocated waterfilling fractional

5 collocated waterfilling discrete
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which solve the formulated optimization problems. The numerical results show the

efficiency of the proposed algorithms compared to the exhaustive search algorithm.

Extended algorithms considering practical implementation constraints such as dis-

crete rates or collocated channels were also proposed. Although we have shown that

the location-based resource allocation achieves close performance to the optimization

with knowledge of real channel state information, this result limited to some environ-

ments where the proposed pathloss and shadowing model which we used to estimate

the average interference based on the location information.
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Chapter 4

Reduced-Dimension Power

Allocation over Clustered Channels

under Cochannel Interference

4.1 Introduction

Due to the nature of cognitive radio requiring rapid exploitation of the opportunities

that occur before the status of the primary users change, complexity reduction of

the resource allocation algorithms remains as one of the most important challenges

for these systems. In multicarrier systems like OFDMA, the selection of the subcar-

rier bandwidth is a key factor since it controls the trade-off between computational

complexity and performance. For instance, a large subcarrier width allows to reduce

notably the computational complexity under the assumption of constant channel gains

over each subcarrier which is not usually the case in wireless channels. On the other

hand, reducing the subcarrier width results in large number of channels that have to

be optimally allocated; Hence the computational complexity of the resource allocation

problem becomes cumbersome, which is not desirable in rapidly changing channels.

In this work, we propose a complex-efficient algorithm for the channel assignment
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under cochannel interference. In the proposed scheme the available subcarriers are

grouped into clusters or blocks of subcarriers where the size of each cluster is a design

parameter. Thus, the power allocation will be performed over reduced number of

clusters instead of all subcarriers. An interpolation matrix will be defined to relate

the power allocation per subcarrier and the relevant cluster’s power. The regroup-

ing of the subcarriers will depend obviously on many factors such as the channels’

smoothness and users’ mobility. The choice of the clustering is not our main focus; we

rather work with a predefined interpolation matrix and concentrate on how to solve

the reduced dimension optimization problem and evaluate its performance and com-

plexity compared to the optimal scheme. We should note that similar ideas of reduced

dimension spectrum allocation were studied in the context of digital subscriber line

systems [52]. However, the problem here is treated with different interpolation ma-

trix in addition to the additional challenges of the wireless channels and the cognitive

radio context.

In this context, we propose a resource allocation problem were a generic utility

function is optimized under different power and target rate constraints in addition

to the interference constraint to the primary users. We formulate the optimization

problem considering the clustering of subcarriers and show that the new problem

with clustering can be still decomposed into per cluster independent sub-problems.

The complexity gain using this approach is then proportional to the average number

of subcarriers per cluster. Inherent to this interpolation, there is a performance loss

that will be evaluated using numerical simulations.

The rest of the chapter is organized as follows: We describe in section 4.2 the

cognitive system model and formulate the resource allocation optimization problem

under the clustering property in section 4.3. In section 4.4, we analyze and solve the

optimization problem. In section 4.5, we present some numerical simulation results

showing the complexity/performance tradeoffs of the reduced dimension approach.
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Figure 4.1: Block diagram for cognitive radios system with co-channel interference.

Finally, in section 4.6 we draw the main conclusions of this approach.

4.2 System Model

In this chapter, we consider a peer-to-peer network composed of Kc secondary users

and Kp primary users sharing N subcarriers in an OFDMA based transmission. We

denote by H
(n)
pl,cu the channel gain from the cognitive user u to the primary user l in

the subcarrier n, and H
(n)
ck,cu the channel gain from the cognitive user u to the cognitive

user k in the subcarrier n as depicted in Fig. 4.1.

The knowledge of the interference channels to the primary users is not the focus

of this chapter. As such, we suppose that an accurate estimation is available to the

primary users either by primary users feedback or through location information like

in the previous chapter.
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4.3 Problem Formulation

4.3.1 Utility Function

We consider for each cognitive user u a generalized utility which combines the achiev-

able rate and the consumed power expressed as the difference between the reward

associated to achieved rates and the cost of the consumed power:

max
P

(n)
u

Kc∑
u=1

ωu {αuRu − βuPu} (4.1)

where

• ωu is the weight associated to the user u,

• βu is the cost of a unit power for user u,

• αu is the reward associated to the rate of the user u,

• Pu =
N∑
n=1

P
(n)

u is the total power consumed by the user u,

• P
(n)
u is the power allocated to the user u in the sub-carrier n,

• Ru = fs

N∑
n=1

log2

(
1 + γ

(n)
u

Γu

)
is the sum-rate of user u, with fs the symbol rate in

Hz, Γu the gap to capacity of the user u which incorporates effects of coding and

other factors that may degrade the user’s rate, and γ
(n)
u the signal-to-interference

and noise ratio (SINR) of the user u over the n-th sub-carrier expressed as

γ(n)
u =

|H(n)
cu,cu|2P (n)

u

Kc∑
k=1
k 6=u

|H(n)
cu,ck |2P (n)

k +N
(n)
u

, (4.2)

where N
(n)
u is the background noise power which can incorporate interference

from primary users or other devices.
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This optimization utility is generic since by setting αu = 0, we obtain the problem of

minimization of total cost power under target rate constraints. Inversely by setting

βu = 0, we obtain the problem of maximization of the achievable rate under budget

power constraint.

4.3.2 Power and Rate Constraints

The following rate and power constraints will be considered:

1. Minimum target rate per-user Ru ≥ Řu ∀u

2. Power budget per user Pu ≤ P̂u ∀u

3. Total power budget
Kc∑
u=1

Pu ≤ P̂ (suitable for downlink scenario only)

4. Maximum power per user and per sub-carrier 0 ≤ P
(n)
u ≤ P̂

(n)
u ∀u, ∀n

5. Instantaneous interference to primary users B
(n)
l

Kc∑
u=1

|H(n)
pl,cu
|2P (n)

u ≤ Ǐ
(n)
l ∀ l, n,

where {B(n)
l }1≤l≤Kp

1≤n≤N
is an index matrix representing the activity of the primary user

(i.e., B
(n)
l = 1 indicates that the l-th primary user is active on the n-th subcarrier

and B
(n)
l = 0 otherwise).

The last constraint ensures that for each subcarrier n where the primary user

l is active, the total power received from the different cognitive users should not

exceed an interference threshold Ǐ
(n)
l . The advantage of this interference constraint

is that it ensures instanteneous protection to the primary users but it assumes an

instanteneous estimation of the interference channel to the primary users and feedback

about the tolerable interference per subcarrier. The interference threshold Ǐ
(n)
l can

be determined in function of the required bit loading or the tolerable SINR of the

primary user.
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Thus, the optimization problem is formulated as

max
P

(n)
u

Kc∑
u=1

ωu {αuRu − βuPu} (4.3)

S.t Ru ≥ Řu ∀u
Kc∑
u=1

Pu ≤ P̂

Pu ≤ P̂u ∀u

0 ≤ P (n)
u ≤ P̂ (n)

u ∀u, ∀n

B
(n)
l

Kc∑
u=1

|H(n)
pl,cu
|2P (n)

u ≤ I
(n)
l ∀l, ∀n

4.3.3 Subcarriers Clustering

The subcarriers are grouped into M ≤ N clusters. An N×M binary indicator matrix

A relates the active subcarriers to the different clusters where An,m = 1 means that

subcarrier n belongs to cluster m and otherwise An,m = 0. Since each subcarrier can

belong to only one cluster, we have
∑M

m=1 An,m = 1, ∀n. Thus, the power allocation

for each subcarrier can be deduced from the power allocated to each cluster as

P (n)
u =

M∑
m=1

An,m ·Q(m)
u = An,mn ·Q(mn)

u , (4.4)

where P
(n)
u is the power spectrum assigned to the subcarrier n of user u, Q

(m)
u is the

power assigned to subcarriers belonging to the cluster m of the user u. The index mn

of the cluster to which the subcarrier n belongs should fulfill the following constraint

∀n,∃!mn, An,m =


1 if m = mn

0 otherwise.

This indexing matrix can be generalized to an interpolation matrix where the pa-

rameters An,m can take not only binary values (0 or 1) but any positive real value
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in the interval [0, 1]. In this case, the parameters An,m will play the role of scaling

coefficients of the subcarrier power in reference to the subgroup power to which they

belong. The only constraint in this generalized case is that a subcarrier should belong

to only one cluster, i. e. 0 < An,mn ≤ 1 and An,m 6=mn = 0. Inversely, the power per

cluster can be obtained from the subcarrier powers as

Q(mn)
u =

P
(n)
u

An,mn
, ∀n. (4.5)

The scaling coefficients An,mn can be determined using e.g. empirical models of the

channel dependency versus frequency. The choice of such coefficients is beyond the

scope of this work. We rather focus on a indexing interpolation where An,mn = 1 and

An,m 6=mn = 0. We assume that the clustering is selected according to the primary

users activity in order to ensure that the primary users have the same state for all the

subcarriers of the same cluster (either active or inactive over all subcarriers in each

cluster). Thus, for each cluster m and all subcarriers {n} belonging to it, we have

B
(n)
l = B

(mn)
l , ∀ l. This assumption is realistic since in practice spectrum allocation

is generally fixed over adjacent subcarriers. For example in Long-Term Evolution

(LTE), OFDMA is used with blocks of 12 subcarriers. Thus, the primary occupation

will be the same for all subcarriers in each block.

4.4 Reduced Dimension Power Allocation

4.4.1 Optimization Problem

Using the clustering characteristic expressed in (4.4), the rate of user u can be rewrit-

ten as

Ru =
M∑
m=1

N∑
n=1

fs log2

(
1 +

γ
(m,n)
u

Γu

)
, (4.6)
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with γ
(m,n)
u defined as the SINR of the user u over the n-th subcarrier in cluster m

expressed as

γ(m,n)
u =

An,m|H(n)
cu,cu |2Q(m)

u

Kc∑
k=1
k 6=u

An,m|H(n)
cu,ck |2Q(m)

k +N
(n)
u

, (4.7)

where Q
(m)
k is the power loading in the m-th cluster for the k-th user. We note that

as postulated in the characterization of the clusters, for a subcarrier n that does not

belong to a cluster m (m 6= mn), the interpolation index is null (i.e., An,m = 0) which

leads to γ
(m,n)
u = 0 . Thus, in the expression of the rate in (4.6), only the terms

corresponding to the subcarriers belonging to each cluster m will remain in the sum.

Following this clustering relations, the problem (4.3) can be reformulated as follows

max
Q

(m)
u

Kc∑
u=1

ωu

{
αu

M∑
m=1

N∑
n=1

fs log2

(
1 +

γ
(m,n)
u

Γu

)
− βu

M∑
m=1

N∑
n=1

An,mQ
(m)
u

}
(4.8)

S.t
M∑
m=1

N∑
n=1

fs log2

(
1 +

γ
(m,n)
u

Γu

)
≥ Řu ∀u

Kc∑
u=1

M∑
m=1

N∑
n=1

An,mQ
(m)
u ≤ P̂

M∑
m=1

N∑
n=1

An,mQ
(m)
u ≤ P̂u ∀u

0 ≤
M∑
m=1

An,mQ
(m)
u ≤ P̂ (n)

u ∀u, ∀m

An,mB
(n)
l

K∑
u=1

|H(n)
pl,cu
|2Q(m)

u ≤ Ǐ
(n)
l ∀l, ∀n, ∀m.

Thus, the problem is shown to be re-rewritten in function of the new Kc ×M

optimization variables Q
(m)
u referring to the power allocation per cluster. Let us

define for each cluster m the following useful parameters:
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• Tm ,
N∑
n=1

An,m the number of subcarriers in the cluster,

• R(m)
u ,

N∑
n=1

An,m 6=0

fs log2

(
1 + γ

(m,n)
u

Γu

)
the total achievable rate per cluster,

• Q̂
(m)
u , min

n:An,m 6=0

{
P̂

(n)
u

An,m

}
the maximum power per user per cluster.

These definitions allow the optimization problem (4.8) over the clusters of subcarriers

to be rewritten in an interesting form that only depends on the clusters (except for

the interference constraint that we elaborate more in section 4.4.3):

max
Q

(m)
u

Kc∑
u=1

ωu

{
αu

M∑
m=1

R(m)
u − βu

M∑
m=1

TmQ
(m)
u

}
(4.9)

S.t
M∑
m=1

N∑
n=1

An,m 6=0

fs log2

(
1 +

γ
(m,n)
u

Γu

)
≥ Řu ∀u

Kc∑
u=1

M∑
m=1

TmQ
(m)
u ≤ P̂

M∑
m=1

TmQ
(m)
u ≤ P̂u ∀u

0 ≤ Q(m)
u ≤ Q̂(m)

u ∀u, ∀m

An,mB
(n)
l

Kc∑
u=1

|H(n)
pl,cu
|2Q(m)

u ≤ Ǐ
(n)
l ∀l, ∀ {m,n} \An,m 6= 0.

By setting M = N , the interpolation matrix is the identity matrix (A = IN×N)

and the problem (4.9), is exactly the original power allocation problem without clus-

tering.

4.4.2 Per-cluster Subproblems Decomposition

The problem (4.9) is a non convex optimization problem due to the cochannel inter-

ference between users [51]. A common way to solve this primal problem is to derive
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and solve its equivalent dual problem by moving the constraints to the objective using

a Lagrange multiplier per constraint. For non-convex problems, the duality gap is

non null but [53] has shown that for non convex optimization problems the duality

gap is 0 under a certain condition called time-sharing condition and that the time-

sharing condition is satisfied for practical multiuser spectrum optimization problems

in multicarrier systems in the limit as the number of subcarriers goes to infinity.

Thus, reformulating the problem into its Lagrangian dual, we obtain

min
λ≥0,ν≥0


max
Q

(m)
u

∑
u ωu {αuRu − βuPu}+

∑
u νu(Ru − Řu) + λ0(P̂ −∑u Pu) +

∑
u λu(P̂u − Pu)

S.t

0 ≤ Q(m)
u ≤ Q̂(m)

u ∀u, ∀m

An,mB
(n)
l

Kc∑
u=1

|H(n)
pl,cu |2Q

(m)
u ≤ Ǐ(n)

l ∀ l, ∀ (m,n).


,

(4.10)

where λ = [λ0, ..., λKc ]
T and ν = [ν1, ..., νKc ]

T , are the Lagrangian parameters.

We remark that in the dual problem we moved only the constraints involving

different subcarriers to the Lagrangian expression. The mask and interference con-

straints are per subcarrier constraints and they will form just a limit for our allocated

power space search in the optimization. The problem (4.10) can be rewritten as

min
λ≥0,ν≥0

[
g(λ,ν) + λ0P̂ +

∑
u λuP̂u −

∑
u νuŘu

]
, (4.11)

where the subproblem g(λ) is defined by

g(λ,ν) = max
Q

(m)
u

Kc∑
u=1

(
(ωuαu + νu)

M∑
m=1

R(m)
u − (ωuβu + λu + λ0)

M∑
m=1

TmQ
(m)
u

)
S.t 0 ≤ Q

(m)
u ≤ Q̂

(m)
u , ∀u

An,mB
(n)
l

Kc∑
u=1

|H(n)
pl,cu|2Q(m)

u ≤ Ǐ
(n)
l , ∀ l, ∀n,

(4.12)

which can be decomposed into sum of subproblems over each cluster of subcarriers:
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g(λ,ν) =
M∑
m=1

g(m)(λ,ν), (4.13)

where the subproblem g(m)(λ,ν) is defined by

g(m)(λ,ν) = max
Q

(m)
u

Kc∑
u=1

(
(ωuαu + νu)R

(m)
u − (ωuβu + λu + λ0)TmQ

(m)
u

)
S.t 0 ≤ Q

(m)
u ≤ Q̂

(m)
u , ∀u

An,mB
(n)
l

Kc∑
u=1

|H(n)
pl,cu|2Q(m)

u ≤ Ǐ
(n)
l , ∀ l, ∀n.

(4.14)

The previous equations, show that the optimization problem is written as a sum of per

cluster subproblems g(m)(λ,ν). Each of the subproblems is a non-convex optimization

problem in Kc variables. They can be solved optimally by exhaustive search over the

discrete set of feasible power values. Clearly, this approach is not convenient for

large users due to the exponential number of possible combinations. An alternative

approach is to iterate over the users and optimize at each iteration the power for one

user given the other users powers. This procedure has been shown to converge to a

near-optimal solution of the multidimensional search [53, 54] with reduction of the

computational cost from an exponential of the number of users pKc to only p × Kc

where p is the number of power levels per user. The set of feasible powers is obtained

by restricting the set of all affordable power levels (i.e., the powers corresponding to

discrete bit-loading) for all users to only those satisfying the maximum power per

cluster and the interference constraints to the primary users.

For the Lagrangian parameters, an adaptive step-size search algorithm will be

applied to determine their optimal values. Overall, the algorithm will consist of

two main loops. In the outer loop a search over the feasible Lagrangian parameters

using e.g. a subgradient decent method is performed. In an inner loop for each set

of Lagrangian parameters, the power allocation per subcarrier is optimized for each
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user.

The interesting part of this approach is that we show that the problem can be

solved by transforming it into M separate subproblems over each cluster of subcarri-

ers. The clustering allows reducing the complexity by a factor equal to the number of

subcarriers per cluster N
M

thanks to the decoupling between the clusters. This decou-

pling allows writing the overall problem into a sum of elementary subproblems that

can be optimized separately. The performance loss will depend on the spectral char-

acteristics of the channels and the choice of the interpolation matrix A and especially

on the number of subcarriers per cluster N
M

.

4.4.3 Interference Constraint per Cluster

We note that the interference constraints remain per subcarrier due to the different

interference channels for each user|H(n)
pl,cu|2. These constraints do not cause a harmful

increase of the algorithm complexity since we are using them to only check if a set

of power levels per cluster

({
Q

(m)
u

}
1≤u≤Kc

)
is feasible or not. Thus, we will have

for a given possible power level of the cluster, Kp · Tm constraints to check (number

of primary users multiplied by number of subcarriers in the cluster m). If at least

one of these Kp · Tm constraints is not fulfilled, the power level is discarded from the

search space. Ideally, these Kp · Tm constraints per cluster could be transformed into

Kp constraints having the following format

B
(m)
l

Kc∑
u=1

|H̃(m)
pl,cu
|2Q(m)

u ≤ Ĩ
(m)
l ∀ l, ∀m, (4.15)

where Ĩ
(m)
l and H̃

(m)
pl,cu are respectively the equivalent interference threshold of the

l-th primary user over the cluster m and the equivalent channel gain from the u-th

cognitive user towards the l-th primary user over the cluster m. Although, the exact

expressions of Ĩ
(m)
l and H̃

(m)
pl,cu do not exist due to the multipath between cognitive
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users towards primary users, modified constraints can be used. For example, we allow

the interference to exceed the interference level for a given subcarrier but the average

interference over the cluster should not exceed the average threshold levels of the same

cluster. Mathematically speaking, this requirement result in the following expressions

of the equivalent thresholds and channel gains as



Ĩ
(m)
l = 1

Tm

N∑
n=1

An,m 6=0

Ǐ
(n)
l ∀ l, ∀m

|H̃(m)
pl,cu |2 = 1

Tm

N∑
n=1

An,m 6=0

An,m|H(n)
pl,cu |2 ∀u, ∀l, ∀m.

(4.16)

Another example is to consider a worst-case interference threshold and interference

gains per cluster enforcing the interference constraint for all subcarriers are shown to

be respectively


Ĩ

(m)
l = min

An,m 6=0

{
Ǐ

(n)
l

}
∀l, ∀m

|H̃(m)
pl,cu|2 = max

An,m 6=0

{
An,m|H(n)

pl,cu
|2
}
∀u, ∀l, ∀m.

(4.17)

4.5 Numerical and Simulation Results

For the numerical evaluation, we consider only the rate maximization problem (αu = 1

and βu = 0). We consider the primary and secondary users to be uniformly distributed

in a cellular cell of radius one Km. The channel gains, distributed as multivariate

Rayleigh fading channels, are generated from multivariate complex Gaussian distri-

bution with a covariance matrix as in [55]. The covariance between two subcarriers

is exponentially decaying as a function of the distance between the subcarriers while

the average power is proportional to the path-loss with a path-loss exponent η = 4.

The budget power is set to 20 dBm per user while the maximum power per subcarrier

is −2.3 dBm. We consider single primary user (Kp = 1). We assume the primary user



114

present in ν = 50% of the subcarriers. The interference threshold is computed such

that the primary bitloading in presence of cognitive users does not decrease by more

than a degradation factor ε compared to its original bitloading in absence of cognitive

user’s interference. We run the simulations for a frequency band of N = 512 subcar-

riers with different number of clusters M and represent the results in function of the

clustering factor ρ = M
N

. We use the binary interpolation model (An,m = 0 or 1) and

equal number of subcarriers per cluster.

4.5.1 Effect of Subcarriers Clustering

In Fig. 4.2, we plot the achievable rate regions of two users while varying the number

of clusters. We first note that the reduced dimension almost has no effect on the

achievable rate even with ρ = 1% as compared to no clustering (ρ = 100%). This

proves the efficiency of the reduced dimension approach since it allows to achieve a

near-optimal performance with a much lower computational complexity that is pro-

portional to the clustering factor as shown in section 4.4.2. The figure also shows

the rate improvement for the cognitive users using the proposed hybrid scheme com-

pared to the interweave or underlay modes due to the more opportunistic use of the

available spectrum.

In Fig. 4.3, we present the power allocation over the set of subcarriers using

different values of the clustering factor ρ. The interesting part is that the shape

of the power allocation is the same independently from the clustering factor. The

allocated power to each cluster is a kind of average over the powers allocated to the

subcarriers in that cluster. This figure gave us an idea on a possible improve of the

clustering through a better choose of the number of subcarriers per cluster. Instead

of this uniform clustering, an adaptive clustering function of the channels variation

could lead to closer performance to the optimal case with the same complexity.
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Figure 4.2: Rate region of two users with reduced dimension power allocation using
different clustering factor ρ and an interference factor ε = 10%.
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4.5.2 Effect of Interference Thresholds

In Fig. 4.5, we draw the rate regions for different interference threshold levels by

varying the factor ε which indicates the allowed reduction of the bitloading in each

subcarrier. We note that a factor ε = 50% allows the secondary users to achieve

almost their maximal performance (like without interference constraint). As the in-

terference constraint become more strict (i.e., when ε decreases as in the ε = 1%

curve) the performance loss of the reduced dimension with respect to the full opti-

mization increases which can be explained by the more strict constraint especially

that this constraint should be respected for all subcarriers in the cluster(if at least

one subcarrier has a strong interference channel towards one of the primary users,

then all subcarriers in the same cluster should backoff to comply with the interfrence

threshold).

In Fig. 4.4, we compare the performance when using an interference constraint per
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Figure 4.5: Rate region of two users versus the clustering ρ and the interference
factors ε.

subcarrier to the simplified interferences per cluster: the average interference (4.16)

and the worst case interference (4.17). The received interference at the primary users

are plotted in Fig. 4.6. The average interference constraint allows to achieve better

rates but it violates the interference constraint for some carriers even-though the

average interference in the cluster is the same. The worst case interference achieves

approximately the same performance as the per carrier interference for this topology.

With a higher number of users (primary and secondary), this interference is expected

to give worse interference but for this case there is no effect due to the limited diversity

of the channels.
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4.6 Conclusion

In this chapter, we proposed a reduced dimension resource allocation for cognitive

radio by transforming the problem from an optimization over the subcarriers into

optimization over clusters of subcarriers. We proved that this approach allows a

complexity gain proportional to the average number of subcarriers per cluster of the

resource allocation algorithm while achieving close performance with comparison to

the optimization over all subcarriers at least for the evaluated scenario (rate minimiza-

tion). Obviously the performance gap between the proposed resource allocation and

optimal solution depends on the spectral properties of the channels and the different

noises.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we proposed major enhancements to cognitive radios systems taking

into consideration the practical constraints and limitations of the real applications.

Firstly, we computed the expressions of the average cooperative spectrum sensing

probabilities of false-alarm and detection in the case of non-identical and imperfect

Nakagami-m distributed sensing and reporting channels. The results allowed to ob-

serve the effect of imperfect reporting channels on performance and hence could be

useful for a better system parametrization.

Secondly, based on an interference estimation from location information, we for-

mulated a resource allocation problem for cognitive users without need of instanta-

neous estimation of the interference channel towards primary users. Low-complexity

algorithms for downlink and uplink scenarios as well as practical implementations con-

sidering collocated channels and discrete rate constraints are described and compared

in terms of performance.

Finally, we proposed a reduced-dimension approach for resource allocation prob-

lem in presence of co-channel interference based on grouping of subcarriers. This

approach allows an important gain in terms of complexity with a limited performance

loss.
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5.2 Future Research Work

This work can be extended in multiple directions. For instance, the derived perfor-

mance analysis of the cooperative spectrum sensing under non identical and imperfect

channels can be further extended to consider other channel models or cooperation

schemes. In addition, the derived results could be exploited as relevant input for

optimization algorithms where different parameters of the cognitive system will be

optimized in order to enhance spectrum sensing reliability performance with lowest

possible energy consumption. For the resource allocation, this work can be combined

by studying a joint spectrum sensing and resource allocation problem where instead

of doing the two steps of spectrum sensing and resource allocation consecutively.

Indeed, a jointly designed algorithm may lead to a better performance taking in con-

sideration probabilities of availability of primary users instead of only hard decision

of their availability or not.
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