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ABSTRACT 
 

Organic Micropollutants Removal from Water by Oxidation and 

Other Processes: 

QSAR Models, Decision Support System, and Hybrids of Processes 

                                                       Sairam Sudhakaran 

 

 The presence of organic micropollutants (OMPs) in water is of great environmental 

concern. OMPs such as endocrine disruptors and certain pharmaceuticals have shown 

alarming effects on aquatic life. OMPs are included in the priority list of contaminants in 

several government directorate frameworks. The low levels of OMPs concentration (ng/L 

to µg/L) force the use of sophisticated analytical instruments. Although, the techniques to 

detect OMPs are progressing, the focus of current research is only on limited, important 

OMPs due to the high amount of time, cost and effort involved in analyzing them. 

Alternatively, quantitative structure activity relationship (QSAR) models help to screen 

processes and propose appropriate options without considerable experimental effort. 

QSAR models are well-established in regulatory bodies as a method to screen toxic 

chemicals.          

         The goal of the present thesis was to develop QSAR models for OMPs removal by 

oxidation. Apart from the QSAR models, a decision support system (DSS) based on 

multi-criteria analysis (MCA) involving socio-economic-technical and sustainability 

aspects was developed. Also, hybrids of different water treatment processes were studied 

to propose a sustainable water treatment train for OMPs removal. 

            In order to build the QSAR models, the ozone/hydroxyl radical rate constants or 

percent removals of the OMPs were compiled. Several software packages were used to 
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compute the chemical properties of OMPs and perform statistical analyses. For DSS, 

MCA was used since it allows the comparison of qualitative (non-monetary, non-metric) 

and quantitative criteria (e.g., costs). Quadrant plots were developed to study the hybrid of 

natural and advanced water treatment processes. 

          The QSAR models satisfied both chemical and statistical criteria. The DSS resulted 

in natural treatment and ozonation as the preferred processes for OMPs removal.  

       The QSAR models can be used as a screening tool for OMPs removal by oxidation. 

Moreover, the QSAR - defining molecular descriptors help in detailed understanding of 

oxidation. The DSS can be considered as an aid in assessing a multi-barrier approach to 

remove OMPs. Hybrids of natural and advanced treatment processes help to develop a 

more sustainable multi-barrier approach for OMPs removal. 

             

Key words: Organic Micropollutants, Oxidation, QSAR, DSS, Hybrids 
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1.1. GLOBAL IMPACT OF ORGANIC MICROPOLLUTANTS  

     The world pharmaceutical market was estimated at US$ 875 billion in 2010 with an 

upwelling from US$ 647 billion in 2005 to US$ 875 billion in 2010, corresponding to an 

increase of 35.2% [1]. Pharmaceuticals and personal care products (PPCPs) are designed 

to have a physiological effect on humans and animals in trace concentrations. These 

PPCPs are used yearly with different purposes such as prevention, diagnosis, cure and 

mitigation of diseases or just to improve the state of health of not only humans but also 

animals. Although the PPCPs are present at low concentrations (ng/L to µg/L) levels, 

their persistence against degradation is one of the key properties of PPCPs leading to 

their classification as pollutants. They retain their chemical structure long enough to do 

their therapeutic work and because of their continuous input they can remain in the 

environment for a long time and their presence is therefore considered dangerous in both 

low and high concentrations [2]. The PPCPs, pesticides, and endocrine disrupting 

compounds all contain organic moieties in their structure and hence can be broadly 

classified as organic micropollutants (OMPs). OMPs represent a great challenge as their 

effects depend on both the level and timing of exposure, especially when exposure occurs 

during the developmental stage. Also, several studies have shown the adverse effects of 

OMPs on animal life and these may occur in humans if exposed at a vulnerable time and 

at concentrations leading to biological modifications [3-5]. Also, exposure to a mixture of 

OMPs at the same time may result in further adverse effects. There is a global transport 

of these OMPs through natural processes (e.g., water and air) as well as commercial 

production, leading to worldwide exposure of human and wildlife to OMPs [5]. Studies 

have shown the presence of OMPs in the environment more than 30 years ago and the 

main entry pathways for the OMPs are through bathing, excretion and improper disposal 
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of pharmaceutical waste. To date, around 15 to 25 pharmaceuticals have been detected in 

treated drinking water worldwide [6, 7]. The amount of OMPs are more in untreated 

water sources, such as wastewater, surface water and groundwater [8]. 

      The U.S.EPA, in its Unregulated Contaminant Monitoring Rule 3 (2013-2015) signed 

on April 16, 2012, has included 30 contaminants (28 OMPs and 2 viruses) 

(http://water.epa.gov/lawsregs/rulesregs/sdwa/ucmr/ucmr3/methods.cfm). There have 

been several international initiatives to address the impact of OMPs. These include 

REACH (Registration, Evaluation, Authorisation and Restriction of Chemical 

substances) which is the European Community Regulation on chemicals and their safe 

use which has been in effect since 1
st
 June, 2007, and the Strategic Approach to 

International Chemicals Management (SAICM) in 2006 [5]. 

1.2. WATER TREATMENT PROCESSES FOR OMPs REMOVAL 

      As the regulations with regard to the OMPs in water are getting more stringent, great 

attention has been focused on OMPs removal by water treatment process experts. 

Conventional treatment processes which comprise activated sludge, coagulation, settling, 

filtration (biological, sand) with chlorination can remove about 50% of OMPs whereas 

the advanced treatment processes such as ozonation, advanced oxidation, activated 

carbon and membranes can remove more than 99% of OMPs.  Figure 1.1 shows the 

removal of OMPs in drinking water treatment plants. These results are from bench-scale, 

pilot-scale and/or full-scale studies [9]. Figure 1.2 shows the removal of OMPs from 

conventional and advanced wastewater treatment processes. These include raw, primary 

settled sewage, activated sludge, secondary treated and treated effluents. 

http://water.epa.gov/lawsregs/rulesregs/sdwa/ucmr/ucmr3/methods.cfm
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Figure 1.1: OMPs removal from drinking water by conventional and advanced processes [9] 

       

Figure 1.2: OMPs removal from wastewater by conventional and advanced processes [9] 

      Several countries do not have monitoring programs for OMPs in water due to 

practical difficulties, such as high costs and unavailability of analytical technologies to 
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detect the wide range of OMPs and their metabolites. The majority of present data on 

OMPs in drinking/waste water come from targeted research projects, investigations and 

surveys, which were used to either develop or fine-tune the detection and analytical 

methods. Hence, a modelling approach such as quantitative structure activity relationship 

(QSAR) models can be a suitable scientific alternative to screen for OMPs in water with 

respect to risk assessment or attenuating them from water sources using an appropriate 

water treatment process. Within the framework of this study, the present thesis focused 

on oxidative treatment with ozone and advanced oxidation processes (AOP), developing  

QSAR models for ozone and AOP. In addition, a decision support system (DSS), based 

on multi-criteria analysis (MCA), was developed to aid in the choice of an appropriate 

water treatment process for OMPs removal. 

1.3. OXIDATION BY OZONE 

      The application of ozone in drinking water treatment is widespread throughout the 

world. The main use of ozone in water treatment are disinfection and oxidation (e.g., taste 

and odor control, decoloration, destruction of OMPs, etc.) or a combination of both [10]. 

Similar to other disinfectants for water treatment (e.g. chlorine or chlorine dioxide), 

ozone is unstable in water and decomposes into hydroxyl radicals (OH) which are the 

strongest oxidants in water and result in advanced oxidation process (AOP) [11]. Thus, 

ozonation processes always involve the two species: ozone and OH radicals. However, 

for different applications of ozone the two species are of differing importance. While 

disinfection occurs dominantly through ozone, oxidation processes may occur through 

oxidants, ozone and OH radicals.   In conjunction with the benefits of disinfection and 

oxidation, undesired by-products can be formed from the reaction of ozone and OH 
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radicals with water matrix components. The stability of dissolved ozone is affected by 

pH, UV, ozone concentration and the concentration of the scavengers. The ozonation 

reaction is second-order, i.e., first order in ozone and first order in OMP [12].                       

This reaction is governed by a reaction rate constant (kO3/kOH) with the units, LMol
-1

sec
-1

. 

      Ozone reacts with the OMPs either through a ring formation, ozone insertion or 

electron transfer. In case of AOP, since it involves OH radicals, it is radical-based, 

diffusion controlled reaction and proceeds by three steps: initiation, propagation and 

termination. Thus, the oxidation of an OMP can be predicted by using change in ozone 

concentration or the second-order rate constants (kO3/kOH) or the percent-removals (%) of 

the OMPs. 

1.4. QSAR – A NOVEL METHOD 

    As discussed earlier, the analytical methods used to assess elimination of OMPs are not 

readily available and are time consuming. The OMPs are usually classified based on their 

origin/source or their ecological/health effects. A more rational way to classify them, 

however, would be based on the compound physical/chemical properties which can serve 

as indices for treatment process selection and performance. The Structure Activity 

Relationship (SAR) which is widely used in medicinal chemistry that correlates the 

structure of the medicine to the activity intended has found its application in water 

treatment as well. Such a classification permits a QSAR approach to relationally link 

compound properties (structure) to treatment process attributes and/or conditions 

(activity).   

    QSAR has found its way into the practice of agro chemistry, the pharmaceutical 

chemistry, toxicology, and other facets of chemistry. Its staying power may be attributed 



19 

 

 

 

to the strength of its initial hypothesis that activity is a function of structure as described 

by electronic attributes, hydrophobicity, and steric properties as well as the rapid and 

extensive development in methodologies and computational techniques that have ensued 

to delineate and refine the many variables and approaches that it involves [13].  

     The overall goals of QSAR retain the original essence of the science behind the water-

treatment or biological processes and remain focused on the predictive ability of the  

approach and its receptiveness to mechanistic interpretation [14]. 

1.5. RESEARCH OBJECTIVES 

The objectives of this research thesis are: 

 Identify and understand the physical/chemical properties of the OMPs that 

influence ozonation/oxidation and thereby have a greater understanding of OMPs 

ozonation/oxidation in water  

 

 Identify and develop the type of QSAR models which help to understand 

ozonation/advanced oxidation in a more comprehensive and transparent manner  

 

 Identify the best water treatment processes for OMPs removal and the most 

important socio-economic-technical and sustainability criteria  

 

 Propose hybrids of natural and advanced water treatment processes for OMPs 

removal for a more sustainable and efficient multi-barrier water treatment 

approach 

1.6. ORGANIZATION OF THESIS 

The thesis contains five chapters. The main chapters (Chapters 2 - 5) are based on peer-

reviewed scientific journal publications and conference presentations. 

     Chapter 2 deals with QSAR models to predict the percent removal of OMPs by 

ozonation and AOP for four different river water matrices. Individual models for 
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ozonation and AOP were built for each river water study and finally a global model based 

on neural networks combining all river waters was developed. The individual models 

were based on multi-linear regression in order to facilitate better understanding. 

Compound properties such as energy gap between orbitals and mean oxidation number 

were studied to understand their influence on ozonation. Internal database was used to 

develop and validate the QSAR models. Subsequently, validation with an external 

database was also performed. The models were also defined by a set of boundary 

conditions such as pH, alkalinity, dissolved organic carbon, etc. 

     Considering the good modelling results obtained in Chapter 2, Chapter 3 deals with 

the development of an extended QSAR model which predicts the ozone and hydroxyl 

radical rate constants (kO3, kOH). These models were developed for 123 OMPs.  The 

classical statistic techniques used to develop a QSAR model such as: correlation analysis, 

principal component analysis and multi-linear regression were used. Also, the influence 

of unsaturation in a compound, ionisation potential and several properties which 

influence ozonation were studied and the models were validated. Additionally, the 

classification of OMPs was carried out and a comparison study with the „Hammett-Taft 

substituents constants‟ based QSAR models was carried out. 

     Chapter 4 describes the DSS based on MCA used to dynamically evaluate the 

different water treatment processes and several socio-economic-technical and 

sustainability criteria for OMPs removal. Considering the good results obtained from 

QSAR models in Chapter 2 and Chapter 3 efforts were made to perform MCA studies 

and create a DSS purely based on computational aspects. Moreover, the chapter focuses 

on DSS based on pilot scale experimental values. Based on the MCA studies, the natural 
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systems and oxidation performed well for the OMPs removal. It was also observed that 

OMPs such as carbamazepine, oxybenzone, diazepam and dilantin were better removed 

by ozonation than natural treatment processes. In addition, among the membrane 

processes, nanofiltration (NF) can be preferred over reverse-osmosis (RO) for OMPs 

removal due to similar performance. 

     Based on the conclusions of the DSS study in Chapter 4, wherein different water 

treatment processes and criteria were considered for OMPs removal, Chapter 5 presents a 

new concept in multi-barrier treatment processes with synergies in which two coupled 

processes can function as a hybrid process. The hybrid processes include a natural 

treatment process (artificial recharge and recovery) coupled with an advanced process 

(oxidation, membrane, and adsorption). The study resulted in quadrant plots based on 

experimental percent removal of OMPs. The hybrids can help to minimize the usage of 

resources by advanced treatment processes and enhance the usage of the natural treatment 

processes thereby resulting in a more sustainable approach.  
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HIGHLIGHTS 

     Percent – removal of OMPs by ozonation/advanced oxidation was predicted 

 QSAR defining properties: Orbitals energy gap, oxygen/carbon, electron affinity  

 Regression based  localized QSAR models for individual river water matrices  

 Neural network based global QSAR models compiling all river waters data 

 

This chapter is based on the following published article: 

Sairam Sudhakaran, James Calvin, Gary Amy. QSAR models for the removal of organic 

micropollutants in four different river water matrices. Chemosphere 87 (2012) 144-150  

Sairam Sudhakaran, James Calvin, Gary Amy, QSAR models for ozonation in natural water 

matrix, European water and wastewater management (EWWM)-2011 (London) 
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2.1. INTRODUCTION 

     As discussed in Chapter 1, the OMPs are ubiquitous and are prioritized as a list of 

pollutants in water. There are several candidate water treatment processes (adsorption, 

membrane separation, river bank filtration) to eliminate the OMPs. Adsorption processes 

are less efficient with polar compounds. Reverse Osmosis (RO) is a very efficient water 

treatment process but there are problems of brine solution and expense. . River bank 

filtration, a sustainable process governed by biodegradation, is less efficient with respect 

to non-biodegradable compounds (persistent organic micropollutants) such as primidone 

and atrazine. Ozonation is a good option to remove OMPs since ozonation exhibits 

selectivity towards certain organic compounds and easily transforms them [1]. Advanced 

oxidation processes (AOP), exploiting hydroxyl radical (OH) oxidation, are generally 

considered less selective and hence may oxidize a wider range of compounds. 

      The analytical methods used to detect them are complicated, expensive, and in certain 

cases, time-consuming. Predictive models, Quantitative Structure Activity/Property 

Relationship (QSAR/QSPR) models, are a rapid and cost-effective alternative to 

experimental evaluation. The number of QSAR articles published in the scientific 

literature in water-related sciences is constantly increasing. QSAR models are recognized 

by government regulatory bodies as a method to screen toxic chemicals. Biowin, a 

software tool that predicts the biodegradability of toxic compounds in water, has its basis 

in QSAR models [2]. With the increasing growth of reliable software, it has become 

relatively easy to compute the important properties related to micropollutants. QSAR 

models are also used to study reaction mechanisms and degradation pathways of 

micropollutants [3]. QSAR models use relevant molecular physico-chemical properties 
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(molecular descriptors) to predict important treatment responses (e.g., rate constants) 

which can serve as indices for water treatment process selection and performance 

assessment. Models have also been developed for membrane separation [4, 5], adsorption 

[6], and ozonation [7]. 

    Ozone is a strong and selective electrophile. It reacts with double bonds, activated 

aromatic rings, and specific ring atoms. In general, electron-pumping groups on a 

benzene ring enhance ozonation and electron-withdrawing groups (nitro, halogens) 

decrease ozonation. However, apart from the nature of the substituents, other parameters 

such as steric factors and connectivity between the aromatic rings also need to be 

considered. Ozone is not very stable in water. It is degraded into OH radicals which are 

less selective than ozone, but increase the oxidation efficiency since the reactions are 

diffusion controlled [1]. Energy of the highest occupied molecular orbital (EHOMO), 

energy of the lowest unoccupied molecular orbital (ELUMO), and the difference between 

them, (ELUMO - EHOMO), influence ozonation at the molecular orbital level [7-12] 

In this work, QSAR models were developed for the removal of OMPs from water. 

The molecular descriptors ranged from one-dimensional (atom counts) to three-

dimensional (quantum-chemical).  The choice of appropriate quantum-chemical 

descriptors is important because they are relevant to ozonation mechanisms, and can be 

easily obtained by computation. 
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2.2. METHODOLOGY 

2.2.1. Data Sets 

The datasets were taken from bench-scale studies published in a report [13]. The 

studies were done on Colorado River (CRW), Passaic River (PRW), and Ohio River 

(ORW) water matrices and synthetic water prepared from Suwannee River (SRW), 

natural organic matter (NOM) isolate. The model water was prepared by adding 

Suwannee River Reverse Osmosis (RO) isolated natural organic matter (NOM), 

purchased from International Humic Substances Society (St. Paul, MN, USA), to de-

ionized water with sodium bicarbonate added as a pH buffer. The relevant water quality 

parameters for the different water matrices and the ozone and peroxide dosages are 

shown in Table 2.1.  

Table 2.1: Physical/Chemical conditions for the four river water matrices 

Water Code pH DOC 

(mg/L) 

Alkalinity 

(mg/L as 

CaCO3 ) 

Dosage (mg/L) 

O3             H2O2 

Time 

(mins) 

Colorado CRW 8.2 2.5 140 2.5 0.0625 5 

Passaic  PRW 6.8 3.4 52 3 0.075 5 

Suwannee SRW 7.5 4.0 400 4
*
  0.2 5 

Ohio ORW 7.9 3.5 79 3.5 0.0875 5 

*8mg/L of O3 was used for AOP studies 

Two studies were performed: one based on an ozone dosage and the other on 

ozone and hydrogen peroxide dosage, representing an AOP process. The micropollutants 

were measured at ng/L levels and their percent-removals were determined. The dataset 

consisting of the percent removals of the OMPs for the different river water matrices are 

shown in Table 2.2.  The chemical structures of the OMPs are available in Appendix A1. 
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Table 2.2: Percent removal of OMPs by oxidation from four river water matrices 

OMP CRW ORW PRW SRW 

 O3 AOP O3 AOP O3 AOP O3 AOP 

Acetaminophen 96 96 97 97 96 96 95 95 

Androstenedione 99 99 98 98 78 95 98 98 

Atrazine 45 52 71 80 17 24 96 96 

Benzopyrene 71 71 91 91 67 67 95 91 

Caffeine 99 99 99 99 83 87 95 95 

Carbamazepine 98 98 98 98 99 99 98 97 

DDT 57 61 58 71 35 27 80 85 

DEET 76 84 95 96 63 68 99 99 

Diazepam 79 86 96 96 66 69 96 99 

Diclofenac 96 96 97 97 86 86 93 95 

Dilantin 82 89 98 98 72 73 93 95 

Erythromycin 96 96 98 98 96 96 no data no data 

Estradiol 99 99 99 99 99 99 97 97 

Estriol 99 99 no data no data 99 99 no data no data 

Estrone 99 99 no data no data 99 99 no data no data 

Ethinyl estradiol 99 99 99 99 99 99 98 98 

Fluorene 94 95 94 94 83 83 no data no data 

Fluoxetine 98 98 92 97 82 81 93 95 

Galaxolide 87 89 91 91 76 77 89 89 

Gemfibrozil 99 99 98 98 99 99 96 96 

Hydrocodone 98 98 no data no data 99 99 no data no data 

Ibuprofen 82 88 94 96 56 60 97 99 

Iopromide 46 60 75 86 52 57 92 92 

Lindane 4 14 24 26 1 3 25 30 

Meprobamate 50 61 84 85 40 43 97 96 

Metolachlor 80 86 92 94 73 82 86 86 

Musk ketone 30 34 50 68 20 3 76 75 

Naproxen 94 94 95 95 92 92 95 95 

Oxybenzone 97 97 97 97 97 97 95 96 

Pentoxyfylline 98 98 98 98 86 90 95 93 

Progesterone 98 99 97 97 83 96 99 97 

Sulfamethoxazole 97 97 95 95 79 79 80 85 

TCEP 13 16 5 16 1 1 1 1 

Testosterone 99 99 98 98 83 96 99 99 

Triclosan 79 82 97 97 98 98 91 96 

Trimethoprim 99 99 99 99 99 99 99 96 

Range 95 85 94 83 98 98 98 98 

Mean 81.44 84.06 86.94 89.21 73.69 75.5 87.83 88.35 
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2.2.2. Molecular Descriptors Computation 

         The descriptors chosen for this study ranged from constitutional to quantum-

chemical. Some of the constitutional descriptors are the number of halogens; hydrogen, 

nitrogen and oxygen normalized to carbon; mean oxidation number (MON); and double 

bond equivalence (DBE). The geometric descriptors related to surface area include 

solvent accessible surface area (SASA), pi-surface area (PISA), polar surface area (PSA), 

ionization potential (IP), and electron-affinity (EA), and were computed using Qikprop, 

version 3.2, Schrodinger software. The quantum-chemical descriptor related to molecular 

orbitals, the difference in energy between lowest unoccupied and highest occupied 

molecular orbital (ELUMO - EHOMO), was computed using ChemBio3D Ultra 11.0. More 

than 30 descriptors which influence ozonation were computed for the model(s) 

development (Table 2.3). The molecular structures were geometrically optimized by the 

semi-empirical method MMFF94 (Merck Molecular Force Field) [14] in ChemBio3D 

Ultra 11.0. The optimizations were necessary to compute the quantum chemical and 

geometric descriptors. The molecular structures of the compounds were obtained using 

SMILES (simplified molecular input line entry specification) notation and the 2-D 

structures were converted to 3-D using ChemBio3D Ultra 11.0. The possible QSAR 

model-defining molecular descriptors along with their corresponding values are listed in 

Table 2.4.  

2.2.3. QSAR model and validation 

SPSS version 17.0 was used to build the QSAR models. In some models, the percent-

removal (% rmvl) of organic micropollutants was transformed to natural logarithm 

(lnrmvl) in order to handle extreme values and symmetrize the responses [6, 9, 15] 
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Table 2.3: List of molecular descriptors involved in the QSAR building process 

Descriptor/Property Description 
Quantum  

EHOMO,  ELUMO energy of  the highest occupied and lowest unoccupied molecular                 
orbitals  in eV 

ELUMO - EHOMO energy difference between the lowest unoccupied and highest  
occupied molecular orbital in eV 

Topological   

MW molecular weight in grams 

dipole dipole moment (D, debye) 

SASA 

 

FOSA,FISA, PISA,WPSA 

solvent accessible surface area using a probe with 1.4 Angstroms  

radius (A
2
)  

hydrophobic, hydrophilic, Pi, weakly polar components of SASA in  

square angstroms (A
2
) 

volume total solvent-accessible volume in cubic angstroms computed  

using a probe with 1.4 Angstroms radius  

donorHB, accptHB number of hydrogen bonds donated or accepted by the solute  

to/from water 

polrz polarizability in cubic angstroms 

logPo/w octanol/water partition co-efficient 

logS water solubility in moles per cubic decimeters 

IP, EA ionisation potential and electron-affinity in eV 

Atom counts  

#rotor # of non-trivial, non-hindered rotatable bonds   

#rtvFG # of reactive functional groups(amides, hetero atoms, azo, diazo,  
azide) 

#ringatoms,#in34, #in56 # of ring atoms, number of atoms in 3- or 4-; 5-or 6- membered  
rings   

#noncon # of ring atoms unable to form conjugated aromatic systems (sp
3
  

carbon) 

#nonHatm # of heavy atoms (non-hydrogen atoms) 

#X # of halogens 

#C=C # of carbon-carbon double bonds 

H/C, N/C, O/C hydrogen, nitrogen, oxygen to carbon ratios 

#Arom # of aromatic rings  

MON mean oxidation number  

DBE double bond equivalence 
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Table 2.4: OMPs along with the QSAR – defining molecular descriptor values 

molecule EL-EH EA #ringatoms  MON #X #in56 O/C 

Acetaminophene 8.533 -0.22 6 -0.25 0 6 0.25 

Androstenedione 8.6 0.035 10 -1.15 0 10 0.11 

Atrazine 9.00 -0.218 6 0.25 1 6 0.00 

Benzopyrene 8.50 1.289 20 -0.60 0 20 0.00 

Caffeine 8.41 0.443 9 0.75 0 9 0.25 

Carbamazepine 8.1 0.772 15 -0.26 0 12 0.07 

DDT 9.1 0.525 12 -0.28 5 12 0.00 

DEET 8.5 0 6 -1.00 0 6 0.08 

Diazepam 8.421 0.859 17 -0.25 1 12 0.06 

Diclofenac 8.381 0.355 12 -0.14 2 12 0.14 

Dilantin 8.5 0.329 17 -0.13 0 17 0.13 

Erythromycin 8.746 -0.301 26 -1.02 0 12 0.35 

Estradiol 8.5 -0.497 10 -1.11 0 10 0.11 

Estriol 8.5 -0.5 10 -1.00 0 10 0.17 

Estrone 8.5 -0.418 6 -1.00 0 6 0.11 

Ethinyl estradiol 8.5 -0.504 10 -1.00 0 10 0.10 

Fluorene 8.508 0.299 13 -0.77 0 13 0.00 

Fluoxetine 8.075 0.048 12 -0.58 3 12 0.06 

Galaxolide 9 -0.495 13 -1.33 0 13 0.06 

Gemfibrozil 8.5 -0.38 6 -1.06 0 6 0.20 

Hydrocodone 8.951 0.494 16 -0.66 0 16 0.17 

Ibuprofen 9 -0.36 6 -1.07 0 6 0.15 

Iopromide 8.606 1.759 6 0.23 3 6 0.44 

Lindane 11 0.02 6 0.00 6 6 0.00 

Meprobamate 9 -0.864 0 -0.44 0 0 0.44 

Metolachlor 9 -0.237 19 -0.93 1 10 0.13 

Musk ketone 9.272 1.659 6 -0.14 0 6 0.36 

Naproxen 8.15 0.54 10 -0.57 0 10 0.21 

Oxybenzone 8.711 0.67 12 -0.42 0 12 0.21 

Pentoxyfylline 8.391 0.321 9 0.00 0 9 0.23 

Progesterone 8.402 0.049 17 -1.23 0 17 0.10 

Sulfamethoxazole 8.626 0.592 11 -0.20 0 11 0.30 

TCEP 11 0.474 0 -1.33 3 0 0.67 

Testosterone 8.893 0.118 17 -1.26 0 17 0.11 

Triclosan 8.669 0.621 12 0.00 3 12 0.17 

Trimethoprim 8.261 0.127 12 0.00 0 12 0.21 
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Model selection techniques using multiple linear regression (MLR) and artificial 

neural networks (ANN) [4, 14, 16] were used to develop the model using the molecular 

descriptors to predict percent removal, or lnrmvl. The analysis of variance (ANOVA) 

method was used to test the model parameters. The ANOVA method is used to study the 

influence of the independent variables on the dependent variables. The result of the 

model building process is an explicit function relating the set of predictors to the 

dependent variable. The model selection process involved iterative model fitting using 

MLR with intermediate model analysis to assess the quality of the intermediate model 

and to determine the next step in the iterative process.  At each stage, the fit of the model, 

the change in the fit of the model produced by a reduction in the number of predictors, 

the model r
2
, and the significance of the individual variables were used to direct the 

process. A p-value of 0.05 was used to determine the significance of potential predictors 

in the model building process. Variables with high p-values were sequentially removed in 

order to develop a more parsimonious model. This process was performed until further 

reduction in the model significantly reduced the predictive value of the equation. r
2
, the 

proportion of variability explained by the model, was also computed. r
2
 values range  

from 0 to1 and a high  r
2
 indicates that the model explains a large proportion of the 

variability in the response.  

  

         A predictive model based on artificial neural networks (ANN) was also developed 

compiling data from all the river water matrices. A feed forward architecture, wherein the 

connections in the network flow forward from the input layer to the output layer without 

any feedback loops was employed, and multi-layer perceptron (MLP) network procedure 

was used [17].  The model defining co-variants/descriptors were the same as used in AOP 
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and ozone QSAR models. The co-variants were rescaled using the standardized method 

where, the value is subtracted by the mean and divided by the standard deviation.   

Validation of the QSAR models is performed to check the robustness and 

predictive power of the models. The validation of the final QSAR models was performed 

using leave-one-out (LOO) cross-validation and bootstrap methods using MobyDigs, 

version 11.0 (Talete, Milan). LOO internal cross-validation is well-suited for a small 

dataset [18]. With LOO, one point of the dataset is removed and a QSAR model is built 

with the remaining data and the value of the omitted point is predicted. This process is 

carried out for every data point, yielding Q
2

LOO: 

 

                                   Q
2

LOO =   
     

   
;  

 

TSS: the total corrected sum of squares, PRESS: predicted error sum of squares, 

sum of squared differences between the observed and estimated response from the model 

built without that observation 

       Q
2

LOO increases only when the added descriptors influence the QSAR equation. A 

Q
2

LOO value greater than 0.5 is generally regarded as good [19]. Additionally, an external 

validation was performed for the CRW ozone data since external data with similar 

experimental conditions, were available only for direct ozonation [7]. The data for 

external validation were obtained from a literature study [7].   

In case of the bootstrap method, theoretical samples from the same empirical 

distribution are created using the information from the original sample. The validation is 

performed by randomly generating training sets with sample repetitions and then 

evaluating the predicted responses of the samples not included in the training set. The 

model is calculated with the training set and the responses are predicted with the 
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evaluation set. All the squared differences between the true response and the predicted 

response of the objects of the evaluation set are gathered in PRESS (predictive error sum 

of squares). This procedure of building training sets and evaluation sets is repeated 5000 

times and the PRESS are summed up and the average predictive power is calculated 

(Q
2

BOOT ) [20].  

 

2.3. RESULTS AND DISCUSSION 

2.3.1. QSAR models: CRW, ORW, PRW and SRW 

      The AOP – QSAR and O3 – QSAR models for CRW, ORW, PRW and SRW along 

with the associated statistical indices such as r
2
 and q

2
 are shown in Table 2.5. The QSAR 

models for both AOP and O3 had a high goodness of fit, r
2 

> 0.8, and good internal 

validation, (Q
2

LOO and Q
2

BOOT > 0.5) which indicates that the models are very robust and 

predictive. An external validation was performed for the CRW - O3 data. The external 

dataset consisted of 22 compounds as shown in Table 2.6. The external validation 

resulted in a goodness of fit, r
2
 = 0.77. Graphs of observed vs predicted values for the 

QSAR models and external validation are shown in Figure 2.1.  

     The molecular descriptors which influenced the QSAR models were: ELUMO – EHOMO, 

EA, #ring atoms, MON, #X, #in56, O/C.  

     The frontier orbital energies are important in radical reactions such as ozonation. The 

energy of the highest occupied molecular orbital (EHOMO) indicates the susceptibility of a 

molecule to be attacked by an electrophile such as ozone [21]. Energy of the lowest 

unoccupied molecular orbital (ELUMO) indicates the susceptibility of a molecule to be 

attacked by a nucleophile [21]. The energy gap, ELUMO - EHOMO, is the energy difference 
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between the lowest unoccupied and highest occupied molecular orbitals of the 

micropollutant (Figure 2.2).  ELUMO - EHOMO is a good index for radical reaction potential 

in a hydroxyl radical system. Compounds with large gap (ELUMO - EHOMO), have low 

chemical reactivity towards ozone [8, 12, 22, 23]  

        Electron-Affinity (EA) is a measure of the affinity of the molecule towards 

electrons. In the case of ozonation, ozone is an electrophile and has a high electron-

affinity. OMPs with low electron-affinity enhance ozonation since there is no competition 

between ozone and the OMPs for the electrons.  

        Number of ring atoms (#ring atoms) and number of ring atoms in 5 or 6 membered 

ring (#in56) indicates the presence of carbon based ring systems. The presence of more 

ring structures (aromatic, double-bond) indicates high electron-density and hence can 

easily undergo ozonation [1].  

        The mean oxidation number (MON) indicates the oxidation state of the OMPs. The 

oxidation states for carbon range from -4 to 4. Compounds with low MON can easily 

undergo ozonation since the carbon is in a more reduced state [24].     

      The number of halogens (#X) in a molecule is influential towards ozonation process, 

since halogens are electrophiles. Halogens such as chlorine and fluorine when attached to 

the aromatic/aliphatic system withdraw the electrons towards them and make the OMPs 

electron-deficient for ozone, an electrophile. Overall, #X decreases ozonation capacity.  

       The oxygen to carbon ratio (O/C) indicates oxidizability of the compound. 

Compounds with high O/C values have low reactivity with ozone as compared to 

compounds with low O/C. 
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Table 2.5: QSAR models for the four – different rivers: CRW, ORW, PRW, SRW 

 

2.3.2. Statistical significance of the QSAR-descriptors  

       The F-statistic and the p-values/significance levels are used to test the null - 

hypothesis. The null- hypothesis proposes that no statistical significance exists in a set of 

given observations, therefore, the null hypothesis needs to be rejected for a linear 

relationship to exist. The F-statistic is the ratio of the two mean squares. When the F-

value is large and the p-value/significance is low, the null-hypothesis can be rejected. A 

small p-value/significance level indicates that the results are not due to random chance. 

The p-values/significance for the QSAR descriptors were less than 0.05, hence rejecting  

 

 

 

CRW 
AOP 

 

lnrml (AOP) = 9.77 - 0.63 (ELUMO-EHOMO) - 0.194 (EA) +0.02 (#ringatoms)                  

 r
2 
= 0.902, Q

2
LOO = 0.868, Q

2
BOOT = 0.819   

 

lnrml (O3) = 12.45 - 0.95 (ELUMO-EHOMO) – 0.32 (MON)                                                  

 r
2
 = 0.866, Q

2
LOO =0.792, Q

2
BOOT = 0.736 

O3 

ORW 

AOP 
 

%rml (AOP) = 318.23 – 26.52 (ELUMO - EHOMO) – 6.11 (EA) + 0.41 (#ringatoms)                  

r
2 
= 0.922, Q

2
LOO = 0.897, Q

2
BOOT = 0.838  

  

%rml (O3) = 310.31 – 25.91 (ELUMO - EHOMO) – 8.64 (EA) – 2.11 (#X) +0.66 

(#ringatoms)       

r
2 
= 0.915, Q

2
LOO = 0.853, Q

2
BOOT = 0.801 

O3 

PRW 

AOP 
 

lnrml (AOP) = 15.17 – 1.33 ( ELUMO - EHOMO ) - 0.56 (EA) +0.06 (#in56)                        

r
2 
= 0.862, Q

2
LOO = 0.790, Q

2
BOOT = 0.740 

 

lnrml (O3) = 18.15 - 1.63 (ELUMO - EHOMO) – 0.33 (MON)                                                     

r
2 
= 0.887, Q

2
LOO = 0.851, Q

2
BOOT = 0.772 

O3 

SRW 

AOP 
 

%rml (AOP) = 286.67 – 22.41 (ELUMO - EHOMO) – 52.68 (O/C)                                       

r
2 
= 0.854, Q

2
LOO = 0.702, Q

2
BOOT = 0.603 

 

%rml (O3) = 345.54 – 29.18 (ELUMO - EHOMO) – 5.59 (EA)                                               

r
2 
= 0.862, Q

2
LOO = 0.78, Q

2
BOOT = 0.65 

O3 
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Table 2.6: External validation dataset 

 

the null hypothesis and indicating a 95% confidence interval in the linear relationship and 

the F-statistic associated with the different models ranged from 80 to 130 (Table 2.7). In 

order to avoid any redundancy while choosing the QSAR-equation descriptors, the 

pairwise correlations [14] among the descriptors were evaluated. ELUMO - EHOMO and EA 

appear in all the equations but there are no intercorrelations (-0.008) between them. #ring 

atoms and #in56 describe a similar property, i.e., the ring-atoms present in a compound; 

hence an intercorrelation (0.855) exists between them. However, both #ring atoms and 

#in56 are not present in the same QSAR-equation (Table 2.8). The correlation analyses of 

the molecular descriptors with the %removals are available in Appendix B1 

 

Compound %rml lnrml predicted EL-EH MON 

Acenaphthene 90 4.50 4.86 8.24 -0.83 

Acenaphthylene 91 4.51 5.04 8.00 -0.66 

Aldrin 65 4.17 3.95 8.96 -0.16 

Anthracene 92 4.52 5.18 7.86 -0.71 

Benzo(a)anthracene 86 4.45 4.81 8.23 -0.66 

Benzo(a)pyrene 75 4.32 5.05 7.96 -0.60 

Benzo(b)fluoranthene 84 4.43 4.84 8.18 -0.60 

Benzo(k)fluoranthene 80 4.38 5.20 7.81 -0.60 

Chrysene 86 4.45 4.77 8.28 -0.66 

DDD 73 4.29 3.96 9.05 -0.42 

DDE 60 4.09 4.87 8.04 -0.28 

Dieldrin 4 1.39 2.91 10.01 0.00 

Endrin 29 3.37 3.85 9.02 0.00 

Heptachlor 53 3.97 3.84 8.96 0.20 

Methoxychlor 89 4.49 4.04 8.99 -0.50 

Naphthalene 82 4.41 4.66 8.43 -0.80 

Octylphenol-4t 93 4.53 4.07 9.26 -1.42 

Phenanthrene 95 4.55 4.85 8.21 -0.71 

Pyrene 94 4.54 4.92 8.10 -0.62 

α-BHC 12 2.48 2.58 10.34 0.00 

β-BHC 11 2.40 2.10 10.85 0.00 

δ-BHC 7 1.95 2.44 10.49 0.00 
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Figure 2.1: QSAR prediction plots for the 4 river water matrices  

Graphs of predicted vs observed OMP removals for CRW, PRW, ORW, SRW and external 

validation for CRW-O3 data (on right).  The graphs for ORW-O3, SRW (AOP and O3) are in 

percent-removals and the others are in lnrml. The bold line is the regression line and the dotted 

line is the ideal reference line 
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Figure 2.2: Schematic depiction of some QSAR defining molecular descriptors 

 

 
Table 2.7: p-values/significance levels of the descriptors 

n.a: not applicable 
 

 

 

 

 

Water CRW ORW PRW SRW 

 AOP O3 AOP O3 AOP O3 AOP O3 
ELUMO-EHOMO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

EA 0.000 n.a 0.001 0.000 0.000 n.a n.a 0.028 

#ring atoms 0.003 na 0.043 0.010 n.a n.a n.a n.a 

MON n.a 0.000 n.a n.a n.a 0.010 n.a n.a 

#X n.a 0.001 n.a 0.038 n.a n.a n.a n.a 

#in56 n.a n.a n.a n.a 0.003 n.a n.a n.a 

O/C n.a n.a n.a n.a n.a n.a 0.042 n.a 

F-statistic 98.66 67.9 180.3 53.79 64.4 91.02 102.02 120.34 
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Table 2.8: Pairwise intercorrelations among the descriptors 

 

2.3.3. Influence of water quality conditions on OMP removal 

      Water quality conditions, such as DOC (dissolved organic carbon), alkalinity and pH, 

influenced the OMPs removal. With an increase in pH and alkalinity, more O3 is 

converted into 
•
OH radicals, resulting in AOP and enhanced OMPs removal. In the case 

of high DOC, OH radicals are consumed by DOC and ozonation efficiency is decreased. 

CRW and SRW showed good removals for most of the OMPs due to high pH, alkalinity 

and low DOC as compared to PRW (low pH, alkalinity and high DOC), ORW was 

intermediate in response as shown in Table 2.1. 

2.3.4. ANN-based QSAR models: Compiled data from the four rivers  

       The data from all four rivers were compiled and QSAR-models for AOP and O3 were 

developed by artificial neural networks (ANN).  ANN was used as an alternate modeling 

approach. The dataset was split into three segments: training, test and hold-out sets. The 

test and the hold-out sets are internal and external validation sets. AOP and O3 had 73% 

and 68% training set, 19% test-set, and 8% and 13.2% hold-out set, respectively. 

Descriptors which had high correlation with % rml were chosen for the ANN analysis. 

ANN has also been used in QSAR modeling to enhance the proportion of variability [5]. 

Figure 2.3 shows the predicted vs observed plots for the ANN-based studies for AOP and 

 EL-EH EA #ringatoms #in56 #X O/C MON 

EL-EH 1 -0.008 -0.362 -0.436 0.564 0.301 -0.095 

EA 
 

1 0.135 0.233 0.211 0.168 0.479 

#ringatoms  
 

1 0.855 -0.188 -0.396 -0.128 

#in56 
   

1 -0.19 -0.550 -0.066 

#X 
    

1 -0.038 0.277 

O/C 
     

1 0.048 

 MON 
      

1 
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O3 data. In the AOP-dataset, ELUMO - EHOMO had the highest normalized importance 

(~100%), followed by #in56 (~39%), DBE (32%) and WPSA (~20%).  

      In the O3-dataset, ELUMO- EHOMO had the highest normalized importance (~100%) 

followed by #ringatoms (~38%), EA (~31%) and #X (~30%). 

 

 

 

 

 

 

 

 

Figure 2.3: ANN based prediction plots for the 4 river water matrices 

 

2.4. CONCLUSIONS 

    QSAR models focusing on AOP and O3 for four different river water matrices: CRW, 

ORW, PRW and SRW; were developed. % rmvl or lnrmvl of OMPs by oxidation were 

predicted. The energy gap, ELUMO - EHOMO, EA, #X, #in56, O/C, MON were important 

descriptors in the QSAR equations. ELUMO - EHOMO appeared in all the QSAR models 

which indicated that it was an important property in understanding ozonation mechanism. 

Finally, ANN-based models for AOP and O3 were built compiling data from all the four 

river water matrices. The proportion of variability, r
2
, for all the models were greater than 

0.8. The internal and external validations for the models resulted in good predictive 

powers, Q
2
's greater than 0.5. The MLR-based QSAR models are more localized to the 
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individual river waters whereas the ANN-based QSAR models are more global which 

include data from all the four rivers. 

    The QSAR models are boundary conditioned to the associated water quality conditions 

such as pH, DOC, and alkalinity levels. OMPs under similar experimental conditions can 

be predicted using the QSAR models.  Although, the datasets had a large number of 

percent removals at the higher end (>85%), and very few at the lower end (<50%), good 

internal and external validation values (>0.5) proved that the models were robust and 

predictive. 
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3. QSAR MODELS FOR OXIDATION OF ORGANIC 

MICROPOLLUTANTS IN WATER BASED ON OZONE AND 

HYDROXYL RATE CONSTANTS AND THEIR CHEMICAL 

CLASSIFICATION 
 

 

 

 

 

 

 

 

 

 

HIGHLIGHTS 

 Ozone and hydroxyl radical rate constants were predicted 

 QSAR defining descriptors: Pi-bonds, halogen surface area, ionisation potential 

 OMPs structural classification in prediction plots 

 Regression based  models, validated and mechanistically interpreted  
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3.1. INTRODUCTION 

       In the last chapter, QSAR models for ozonation and AOP were developed. These 

models predicted the percent removal of OMPs.  

       Apart from percent-removal which was used to predict oxidation capacity in the 

previous chapter, second order rate constants (kOH and kO3) are good indices to estimate 

the oxidation efficiency, where higher rate constants indicate more rapid oxidation. 

During the ozonation process, the rate of the reaction is indicated by a second order rate-

constant (direct ozone: kO3, AOP: kOH), which is a constant for a given reaction at a 

particular temperature. The kOH values (10
9
M

-1
s

-1
) are much higher than the 

corresponding kO3 values (~10M
-1

s
-1

) which indicate that OH radical mediated reactions 

are faster reactions since they are radical-based and diffusion controlled. The ozonation 

of OMPs is a second-order type of reaction, i.e., first order with respect to ozone and first 

order with respect to an OMP. There is plenty of scientific literature focusing on the 

ozone/hydroxyl radical rate constants which are also compiled in the kinetic data base 

Radiation Chemistry Data Center of the Notre Dame Radiation Laboratory, available at 

http://kinetics.nist.gov/solution/. The decomposition of dissolved ozone is highly affected 

by pH, ozone concentration, and the concentration of various scavengers [1]. 

       As discussed in the previous chapter, the QSAR models are based on the concept that 

the structure of a molecule influences its properties and are an interdiscipline between 

chemistry/biology and statistics. There are different statistical approaches in building 

QSAR models. The most frequently used methods are multiple linear regression (QSAR 

models developed in the Chapter 2), principal component analysis (PCA) and factor 

analysis, principal regression analysis, partial least squares, discriminant analysis, and 

neural networks.  

http://kinetics.nist.gov/solution/
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       There are also 3-D QSAR methods wherein the three-dimensional structure of the 

molecule and its interaction with its surroundings (solvent, other molecules, etc.) is 

studied, and comparative molecular field analysis (CoMFA) is the most commonly used 

approach [2]. While developing a QSAR model there are three components to focus on: 

dataset, molecular descriptors and statistical technique (Figure 3.1). The dataset for the 

QSAR should be reliable and measured in a consistent manner. The molecular descriptors 

should be mechanistically related to the predicted property/activity. In the case of 

descriptors governed by structural conformation such as molecular orbital energies, 

ionisation potential, etc., proper energy optimization methods must be used. In case of 

statistical analyses, methods that are simple, transparent and easily interpretable should 

be the first priority. Transparent models can be easily understood and updated. The 

transparency decreases with progressing from regression, to partial least squares and 

finally neural networks, however, the type of dataset also plays a role in choice of the 

statistical technique. The QSAR model should not be used to make predictions that 

extrapolate beyond the conditions associated with the model. Finally, validation ensures 

that the QSAR model can be used for prediction. For this purpose, a certain proportion of 

the training dataset called the test set (usually up to 50%) can be chosen. The test set 

should be representative of the complete dataset [3].     

       QSAR models are also developed based on correlations between rate constants and 

substituent descriptor constants such as Hammett/Taft constants. In this type of study, 

emphasis is on compounds with a common parent structure (phenol, amine etc.) and other 

parts of the molecules are considered as a substituent, and their corresponding 

Hammett/Taft (σ/σ*) constants are used and their correlations with the rate constants are 
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studied. These constants indicate the electron-donating and withdrawing properties of the 

substituents. In the case of complex structures, such as pharmaceuticals, structural 

approximations are used to compute the Hammett/Taft constants. The structural 

approximation is based on the premise that inductive/resonance effects of substituent 

atoms are attenuated with increasing distance from the reaction center. Finally, a linear 

correlation equation between the rate constants and the substituent descriptors is the 

QSAR model [4].  

     In chapter 2, the QSAR models based on percent removals were defined by a set of 

boundary conditions such as pH, DOC and alkalinity. The dataset used for the model was 

slightly skewed with more OMPs on the lower and upper range (>90% and <40%).  

Alternatively, the rate constants (kOH, kO3) are not influenced by dissolved organic matter 

present in water. The apparent rate constants are only affected by the speciation 

(positive/negative) of the OMPs due to change in pH [5]. Also, compared to the percent-

removal of OMPs, the rate constants can be readily coupled with an ideal water reactor 

(plug-flow, continuous stirred tank) to predict process performance. 

    Therefore, in this chapter, QSAR models based on ozone/hydroxyl radical rate 

constants (kO3, kOH) were developed. A sequential statistical approach was followed: 

correlation analysis, principal component analysis and finally a multi-linear regression 

equation with ozonation-relevant descriptors. Later, the models were also validated. 

Correlation analysis helps to identify the significant molecular descriptors; principal 

component analysis helps to study the data/cluster patterns and reduce redundant 

variables; and multi-linear regression creates a QSAR model in the form of an equation 

between the rate constants and the descriptors. Finally, a validation is performed to testify 
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that the QSAR model can be used to make predictions. Also, based on the substituent 

parameters associated with Hammett/Taft constants, i.e., electron-withdrawing groups 

decrease ozonation, and electron-pumping groups enhance ozonation, in this study, the 

chemical classification of the OMPs based on their functional groups was carried out. 

 

 

 

 

 

 

 

Figure 3.1: Different steps involved in developing a robust QSAR model 

3.2. METHODOLOGY 

3.2.1. Data Sets 

       In this study, the kOH values of 83 OMPs and kO3 of 40 OMPs from pH 5-8 were 

chosen for the QSAR modeling. The kOH and kO3 values were taken from published 

scientific articles and the references for all the OMPs are available in Table 3.1.  Of the 

83 OMPs for the kOH QSAR model, 55 were used for the training set and the remaining 

28 were used for the test/validation dataset. The kOH values ranged from 0.04 to 18 (10
9
) 

M
-1

s
-1

. In case of kO3 QSAR model, 27 OMPs were used for training set ranging from 

5*10
-4

 to 10
5
 M

-1
s

-1 
and 13 were used for the test sets. The chemical structures of the 

OMPs are available in Appendix A2 
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Table 3.1: OMPs and their hydroxyl (kOH) and ozone rate constants (kO3) 

COMPOUND Formula Type kOH(10
9
) Reference 

1,1,1-Trichloroethane C2H3Cl3 Organic solvent 0.04 [6] 

Dibromomethane CH2Br2 Organic solvent 0.09 [7] 

1,1,2-Trichloroethane C2H3Cl3 Organic solvent 0.11 [6] 

Bromoform CHBr3 Sedative 0.11 [7] 

1,1-Dichloroethylene C2H2Cl2 Polymerisation 0.13 [6] 

1,2-Dichloroethane C2H4Cl2 Polymerization 0.2 [6] 

1,2-Dibromoethane C2H4Br2 Pesticide 0.26 [6] 

Butanol-tert C4H10O Gasoline 0.48 [8] 

Methanol CH3OH Organic solvent 0.83 [8] 

Propan-2-ol C3H7OH Disinfectant 1.6 [8] 

Tetrachloroethylene C2Cl4 Organic solvent 2 [9] 

Butan-1,3-diol C4H10O2 Organic solvent 2.2 [10]  

Ethanol C2H5OH Organic solvent 2.2 [8] 

Dioxane C4H5O2 Organic solvent 2.5 [11] 

Propanol C3H7OH Organic solvent 2.5 [10] 

Trichloroethylene C2HCl3 Anesthetic 2.9 [9] 

dichloroethylene-cis C2H2Cl2 Organic solvent 3.8 [9] 

Diethylether C4H10O Organic solvent 4.2 [11] 

Butanol C4H9OH Fuel 4.3 [10] 

Benzene Sulfonate  C6H5O3S- Pharmaceutical 4.7 [12] 

Imidazole C3H4N2 Pharmaceutical 5.2 [13] 

1,4-Dichlorobenzene C6H4Cl2 Pesticide 5.4 [14] 

Anisole CH3OC6H5 Pharmaceutical 5.4 [15] 

Fumaric acid C4H4O4 Pharmaceutical 6 [16] 
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Maleic acid C4H4O4 Pharmaceutical 6 [16] 

Styrene C8H8 Polymerization 6 [17] 

Benzoate ion C7H5O2 Analgesic 6.2 [18] 

Ranitidine C13H22N4O3S Antibiotic 6.2 [13] 

Pyridoxine C8H11NO3 Pharmaceutical 6.3 [19] 

tert-Butylhydroquinone C10H14O2 Anti-oxidant 6.3 [20] 

1,3,5-Trimethylbenzene C9H12 Organic solvent 6.4 [21] 

Acetophenone C8H8O Pharmaceutical 6.5 [22] 

phenol C6H5OH Cosmetics 6.6 [23] 

1,2,3-Trimethylbenzene C9H12 Organic solvent 7 [21] 

xylene-p C8H10 Polymerization 7 [21] 

Azauridine C8H11N3O6 Pharmaceutical 7.2 [24] 

Chloroquine C18H26ClN3 Pharmaceutical 7.3 [25] 

Ethyl benzene C8H10 Organic solvent 7.5 [21] 

propylbenzene(iso) C9H12 Organic solvent 7.5 [21] 

xylene-m C8H10 Organic solvent 7.5 [21] 

Benzotriazole C6H5N3 Pharmaceutical 7.6 [26] 

Carnosine C9H14N4O3 Pharmaceutical 9 [27] 

4-chlorophenol C6H5ClO Pharmaceutical 9.3 [28] 

Nitrofurantoin C8H6N4O5 Pharmaceutical 9.3 [29] 

Feruloylputrescine C14H20N2O3 Pharmaceutical 10 [30] 

Nifuraldezone C7H6N4O5 Pharmaceutical 10 [29] 

Nifuroxime C5H4N2O4 Pharmaceutical 10 [29] 

Tiotidine C10H16N8S2 Pharmaceutical 10 [13] 

Dipyridamole C24H40N8O4 Pharmaceutical 12 [31] 
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Primaquine C15H21N3O Pharmaceutical 12 [25] 

Riboflavin C17H20N4O6 Pharmaceutical 12 [32] 

Quercetin C15H10O7 Pharmaceutical 15 [33] 

Epigallocatechingallate(EGCG) C22H18O11 Pharmaceutical 17 [33] 

Piroxicam C15H13N3O4S Pharmaceutical 17 [34] 

Silybin C25H22O10 Pharmaceutical 18 [35] 

Range 17.96  

Mean 6.23  

Ozone (kO3) rate constants 

Compound Formula Type kO3(M
-1

s
-1

) Reference 

Dalapon C3H4Cl2O2 Pesticide 0.0005 [36] 

Propionic acid C2H5COOH Pesticide 0.002 [37] 

Adipic acid monoethyl ester C7H12O4 Polymerisation 0.003 [36] 

Succinic acid C4H6O4 Pharmaceutical 0.003 [37] 

Tert-Butanol C4H10O Gasoline  0.003 [38] 

Methanol CH3OH Organic solvent 0.024 [38] 

Cyanic acid CHNO Organic synthesis 0.01 [39] 

Glyoxylic acid C2H2O3 Pharmaceutical 1.9 [37] 

Propan-2-ol C3H7OH Disinfectant 1.9 [38] 

Endothall C8H10O5 Pesticide 2 [36] 

Pyridine C5H5N Pharmaceutical 3 [37] 

Octanal C8H16O Perfumes 8 [38] 

Fenoprop C9H7Cl3O3 Pesticide 8.9 [36] 

Nitrosodimethylamine C2H6N2O Fuel 10 [37] 

2-isopropyl-3-methoxypyrazine C8H12N2O Odorant 50.2 [40] 
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Picloram C6H3Cl3N2O2 Pesticide 100 [36] 

Methylamine CH5N Organic solvent 280 [37] 

Beta-Alanine C3H7NO2 Pharmaceutical 310 [37] 

1-phenoxy-2-propanol C9H12O2 Pharmaceutical 320 [41] 

Oxamyl C7H13N3O3S Pharmaceutical 620 [36] 

Alpha-Alanine C3H7NO2 Pharmaceutical 640 [37] 

Atenolol C14H22N2O3 Pharmaceutical 1700 [41] 

Metoprolol C15H25NO3 Pharmaceutical 2000 [41] 

Beta-Cyclocitral C10H16O Perfumes 3890 [40] 

Dimethylamine C2H7N Pharmaceutical 20
3
 [37] 

Trimethylamine C3H9N Dye agent 50
3
 [37] 

Propanolol C16H21NO2 Pharmaceutical 10
5
 [41] 

Range 100000  

Mean 6664.67  

Median    10  

 

3.2.2. Molecular Descriptors Computation 

      All of the molecules were simulated using “ChemBio3D Ultra 12” software. The 

chemical structures were obtained using the simplified molecular input line entry 

specification (SMILES) notation. “Qikprop, Schrödinger software 2010”, “HyperChem 

8.0.6”, were also used to compute advanced 3-D descriptors which involve structural 

conformation and orbitals of the molecule such as ionisation potential, electron affinity, 

energy of molecular orbitals, etc. The semi-empirical method, parameterized model 

number (PM3) in “HyperChem 8.0.6”, was used for molecular structure optimization and 

computation of molecular orbital energies. The optimizations resulted in low energy, 
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highly stable chemical structures of the OMPs and is a pre-requisite to compute the 

descriptors such as ionisation potential (IP), electron-affinity (EA), and energy of the 

molecular orbitals. Several molecular descriptors influencing ozonation/oxidation were 

chosen for this study and they ranged from simple atom-counts to advanced molecular 

orbital energies as shown in Table 2.3 of Chapter 2. These descriptors help to understand 

the ozonation/oxidation mechanism in greater depth. 

3.2.3. QSAR model and validation 

      SPSS version 19.0 was used for the statistical analysis. In the case of the kO3-QSAR 

model, the kO3 values ranged from 5*10
-4

 to 10
5 

M
-1

s
-1

. The kO3-dataset was natural 

logarithm (ln) transformed in order to reduce the range of values and symmetrize the 

responses [42-44]. As stated earlier, the development of the QSAR model took a 

sequential approach: correlation analysis, principal component analysis, multiple linear 

regression and finally validation (Figure 3.2).  

 

 

 

 

 

Figure 3.2: Different statistical steps involved in developing the QSAR model 

 

The correlation analysis was performed to analyze the correlation between the descriptors 

and the rate constants. Next, a principal component analysis (PCA) was performed for 

variable reduction, intercorrelation and data interpretation. In PCA, variables which 
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describe the same property cluster together, hence it is easy to describe the predicted 

property with a lesser number of variables [45, 46]. Lastly, multiple linear regression 

(MLR) was used as the final step in the model building process. The model involves an 

explicit function relating the set of predictors to the dependent variable [42, 47, 48]. The 

performance-indices such as r
2
, F-statistic, and p-value were analyzed. r

2
 describes the 

proportion of variation in the dependent variable (rate-constants) explained by the 

regression model, ranging from 0 to 1. Values above 0.5 indicate that the model fits the 

data well and the model explains a large proportion of the variability in the response. The 

F-statistic and p-values are used to reject the null-hypothesis. The null-hypothesis 

proposes that no statistical significance exists in the relationship between the dependent 

and independent variables. The F-statistic is the ratio of regression and residual mean 

squares. Residuals are the difference between the observed and predicted values and are 

computed using the formula: 

                                         

  

y: the dependent variable (rate-constant);     ̂: predicted value;      ̅: sample mean 

      The p-value/significance is the conditional probability that a relationship as strong as 

the one observed in the data would be present, if the null-hypothesis is true. Therefore, a 

low p-value (< 0.05) is required to build a statistically significant MLR-based model. In 

other words, a low p-value (< 0.05) indicates a 95% confidence in the linear relationship 

between the dependent and independent variable(s) involved in the regression analysis. 

(1) 
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     Validations of the QSAR models were performed using MOBYDIGS software. The 

two different types of validation: internal and external were performed on both the 

models. The theory associated with the internal and external validations are provided in 

Chapter 2 (section.2.2.3). 

      In the case of external validation for the QSAR models, a new dataset, not involved in 

the model-building process, was used. The external data was representative of the same 

chemical domain as the training set with parameters such as the pH (5-8), and range of 

kOH values (0.04 ~18* (10
9
) M

-1
s

-1
), kO3 values (5*10

-4
 to 10

5 
M

-1
s

-1
) involved in the 

QSAR model datasets. The external validation (Q
2

ext) for the model was computed [49] 

using the formula: 

 

 

yi and   ̂ are the measured and predicted values of the dependent variable (over the 

validation set), and ȳtr   is the averaged value of the dependent variable for the training set; 

the summations cover all of the compounds in the validation set. 

     The residual plots were also studied as a measure of the validation test. Residuals are 

the difference between the experiment observed value and the QSAR-model predicted 

value. If the points in the residual plots are scattered/random without any pattern, it 

indicates that the regression model is appropriate for the data [50, 51]. 

(3) 
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3.3. RESULTS AND DISCUSSION 

3.3.1. Correlation Analysis  

     The correlations between the predicted response (kOH or kO3) and the various 

descriptors were analyzed to check the strength of relationship between the rate-constants 

(kOH, kO3) and the individual descriptors, and to identify potential collinearity among the 

descriptors themselves. There were 20 out of 35 descriptors which exhibited correlation 

coefficients (r) above 0.5 for the kOH dataset (see Appendix B2). Molecular properties 

related to atom-counts such as double-bond equivalence (DBE), number of carbon-

carbon double bonds (#C=C), number of aromatic rings, number of ring atoms, number 

of halogens (#X), number of alcoholic groups (#OH), number of non-hydrogen atoms 

(#nonHatoms), number of rotational bonds (#rotr), number of metabolites (#metab), 

number of donor hydrogen bonds (#donorHB), and acceptor hydrogen bonds (#accptHB) 

correlated well with the rate-constants. Molecular surface area based descriptors such as 

solvent accessible surface area (SASA), pi-component of SASA (PISA), weakly-polar 

component of SASA (WPSA), hydrophilic component of SASA (FISA), polar surface 

area (PSA), polarizability (QPpolrz), ionisation potential (IP), and dipole moment 

correlated well. In the case of kO3 dataset, only 3 out of 35 descriptors showed correlation 

coefficients (r) above 0.5 with lnkO3. Energy difference between lowest unoccupied and 

highest occupied molecular orbitals (ELUMO – EHOMO), oxygen-carbon ratio (O/C), and 

ionisation potential (IP) correlated well with the rate constants. 

3.3.2. Principal Component Analysis 

      A principal component analysis (PCA) was performed to further reduce the variables 

and choose the most significant variables (Figure 3.3) [45]. The PCA analysis resulted in 

final three components that help to explain 82% of variance within the kOH dataset and 
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75% within the kO3 dataset (Figure 3.3, pie-charts). Variables with correlation co-

efficients (r) greater than 0.5 with the rate-constants (kOH) were chosen for the PCA 

analysis. Upon PCA analysis for the kOH-dataset, component 1 was dominated by 

properties (red circles in the loading plot and blue color in the pie-chart) such as polar 

surface area, donor/acceptor hydrogen bonds, dipole moment, #rotational bonds etc. 

Component 2 was dominated and had clusters (blue circles in loading plots and brown 

color in pie chart) describing the double-bond nature of the OMPs (DBE, #C=C, #arom, 

PISA), ionisation potential (IP), #aromatics and component 3 described the halogens in 

the compounds (#X, WPSA) (red circles in loading plot and green color of pie chart) 

(Figure. 3.3(a, b)). In the case of the kO3-dataset, since only ionisation potential (IP), 

oxygen to carbon ratio (O/C) and energy difference between lowest unoccupied and 

highest occupied molecular orbitals had correlation coefficients (r) greater than 0.5 with 

lnkO3, the descriptors used for the kOH-dataset PCA-analysis were also considered for the 

PCA in order to study the data pattern. Component-1 was dominated by clusters 

describing the double bond nature of OMPs (DBE, PISA, #C=C, #aromatic rings), 

component 2 was dominated by polar surface area and hydrophilic surface area (FISA), 

and component 3 was dominated by clusters describing the halogens in the OMPs 

(weakly polar component of solvent accesible surface area (WPSA) and number of 

halogens (#X) (see Figure 3.3(c, d)).  

3.3.3. Multiple-Linear Regression (MLR) based QSAR models 

The MLR-based standardized QSAR model for the kOH-and kO3 datasets (Table 3.2) were 

defined by descriptors: double-bond equivalence (DBE) and weakly-polar component of 

solvent accessible surface area (WPSA) and ionisation potential (IP) (Figure 3.4). 



60 

 

 

 

Figure 3.3: Loading plots for the kOH and kO3 dataset  

(3.3a, 3.3b for kOH dataset; 3.3c, 3.3d for kO3 dataset) Pie-chart distribution of the dominant 

properties of the 3 components for kOH and kO3 dataset  

 

 

 

 

 

 

 
 

(a) (b) 

(c) (d) 
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The hydroxyl radical rate-constant (kOH)/ozone rate constant (kO3) were the dependent 

variables. In the case of ozone rate constants (kO3), the kO3 was natural logarithm „ln‟ 

transformed and the lnkO3 values ranged from -7.6 to 11.51 M
-1

s
-1

 

The natural logarithm (ln) helped to symmetrize the responses and obtain a better model-

fit response (r
2
). Double bond equivalence (DBE) helps to determine the number of rings, 

double bonds or triple bonds present in a compound. For systems which contain carbon, 

hydrogen, halogens, and nitrogen, the DBE is calculated as: 

DBE = # of carbons - 
 

 
 (#hydrogens + # halogens - #nitrogens) + 1 

For a ring system or a double-bond, DBE equals 1. For a triple-bond, DBE equals 2. The 

OMPs  which contain  electron-donating carbon systems undergo ozonation readily since 

the electrons can be readily donated to ozone, an electrophile [1, 52]. The olefins with 

high electron-density (high DBE) undergo the „Criegee mechanism‟ wherein upon ozone 

reaction, a ozonide is formed, followed by a carbonyl compound [1]. In the case of 

activated aromatics (presence of electron-donating groups such as alcohols, alkyls, 

amines, ethers), the electrophilic reaction takes place and ozone attacks at the ortho/para 

position resulting in the formation of aromatic alcohols [53]. Hence, olefins/activated 

aromatics with high DBE increase ozonation efficiency.  The weakly polar component of 

the solvent accessible surface area (WPSA) was computed using “Qikprop, Schrodinger, 

2010”. WPSA describes compound surface area which comprises halogens. Halogens are 

electrophilic and withdraw electrons from the chemical-system and thereby make the 

reactive molecular sites electron-deficient  and hence inhibit the ozonation process [52]. 

Also, due to large size of halogen atoms such as chlorine, bromine, etc., they create a 
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steric hindrance for attack by ozone on the OMPs. Hence, larger WPSA decreases 

ozonation efficiency. Ionisation potential in electron-volts (eV) is the ease with which an 

electron can be released from a neutral chemical-system. IP is negatively related to 

ozonation since ozone is an electrophile and lower IP provides greater electrons for ozone 

and hence increases ozonation [54, 55]. 

Figure 3.4: Pictorial representation of the QSAR defining molecular descriptors 

         The statistical criteria for a good model such as coefficient of determination (r
2
), F-

statistic and p-values were studied. r
2 

was 0.918 and 0.832 for kOH and kO3 QSAR models, 

respectively. The F-statistic for kOH-dataset was 290.232, while for the kO3 dataset, it was 

37.95 (Table 3.3a, 3.3b). For both models, the p-values were less than 0.05, indicating 

more than 95% confidence in the relationship between the descriptors and the rate-

constants defining the QSAR models. The high F-statistic value and the low p-value 

(<0.05) eliminate the null-hypothesis. The MLR-output for both kO3 and kOH data are 

shown in Tables 3.3a and 3.3b. In order to avoid multi-collinearity, the inter-correlations 

among the QSAR-descriptors were studied for both the models. The collinearity between 
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descriptors should be as low as possible, but must be significantly lower than the 

statistical fit (r
2
) of the QSAR model [3]. In this study, descriptors with intercorrelations 

lower than 0.5 were considered in the QSAR model. The correlation coefficient, in the 

case of the kOH-QSAR model between DBE and WPSA, was only -0.416, hence, there 

was no inter-correlation. In the case of the kO3-QSAR model, inter-correlations between 

DBE and WPSA (0.316), DBE and IP (-0.264), and WPSA and IP (-0.143) were low, 

thus eliminating inter-correlations between the descriptors. 

Table 3.2: Standardized QSAR model equations for rate constants (kO3, kOH) 

 

 

 

 

 

Units of WPSA: square Angstroms (A
2
); IP: electron-volts (eV) 

      The prediction plots for the kOH and kO3 QSAR models are shown in Figure 3.5. The 

kOH model (Figure 3.5a) has an even spread of the data comprising OMPs from low to 

high kOH values. In the kO3 plot (Figure 3.5b), the lnkO3 exhibited both positive and 

negative values and an even spread of the data throughout the plot. The dotted line is the 

ideal reference line (45
0
, r

2 
=1) and the bold line is the model-regression line. The 

reference (dotted) line is used to check the degree of over- or under-prediction observed 

by the MLR model. 

 

 

     AOP 

(kOH - data) 
kOH = 2.153 + 0.895(DBE) – 0.134(WPSA)  

r
2
 = 0.918; Q

2
LOO = 0.909; Q

2
BOOT = 0.903 

O3  

(kO3- data) 
ln kO3 = 43.765 + 0.195(DBE) - 0.28(WPSA) – 0.855(IP) 

r
2 

= 0.832; Q
2

LOO = 0.78; Q
2

BOOT = 0.72  
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Table 3.3a: MLR output for kOH data QSAR model 
 

Model Summary 

Model r r
2
 Adjusted r

2 
 

Std. Error of the 

Estimate 

1 .958
a
 .918 .915 1.3144130 

Predictors: (Constant), WPSA, DBE 

Dependent Variable: kOH(10
9
) 

 

ANOVA 

Model Sum of Squares df Mean Square F Significance 

1 Regression 1002.856 2 501.428 290.232 .000
a
 

Residual 89.839 52 1.728   

Total 1092.695 54    

Predictors: (Constant), WPSA, DBE 

Dependent Variable: kOH(10
9
) 

 

Coefficients 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Significance B Std. Error Beta 

1 (Constant) 2.153 .329  6.538 .000 

DBE 1.102 .054 .895 20.463 .000 

WPSA -.008 .003 -.134 -3.053 .004 

 Dependent Variable: kOH(10
9
) 

 

Residuals Statistics
a
 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value .333970 18.681522 6.233636 4.3094556 55 

Residual -2.4031720 3.3072865 .0000000 1.2898424 55 

Std. Predicted Value -1.369 2.889 .000 1.000 55 

Std. Residual -1.828 2.516 .000 .981 55 

Dependent Variable: kOH(10
9
) 
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Table 3.3b: MLR output for the kO3 data QSAR model 

Model Summary 

Model r r
2
 Adjusted r

2
  

Std. Error of the 

Estimate 

1 .912
a
 .832 .810 2.44 

Predictors: (Constant), IP(eV), WPSA, DBE 

Dependent Variable: lnkO3 

 

ANOVA 

Model Sum of Squares df Mean Square F Significance 

1 Regression 679.598 3 226.533 37.959 .000
a
 

Residual 137.258 23 5.968   

Total 816.856 26    

Predictors: (Constant), IP(eV), WPSA, DBE 

Dependent Variable: lnkO3 

 

Coefficients 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Significance B Std. Error Beta 

1 (Constant) 43.765 4.575  9.565 .000 

DBE .554 .263 .195 2.109 .041 

WPSA -.030 .010 -.280 -3.096 .005 

IP(eV) -4.188 .435 -.855 -9.624 .000 

Dependent Variable: lnkO3 

 

Residuals Statistics 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -5.194473 12.012854 2.461556 5.1125713 27 

Residual -3.5548961 3.9351659 .0000000 2.2976439 27 

Std. Predicted Value -1.497 1.868 .000 1.000 27 

Std. Residual -1.455 1.611 .000 .941 27 

Dependent Variable: lnkO3 
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The data-points which scatter far away from the reference line are either over- or under-

predicted whereas the data-points in close alignment to the reference line are well-

predicted.  In the case of both kOH and kO3 models, the reference and regression lines 

were very close to each other, indicating a low degree of over- or under-prediction.  

      Figure 3.5a and 3.5b also represent classifications of OMPs based on their structure 

and functional groups, and their influence on ozonation. The prediction plot for the kOH-

dataset (Figure 3.5a) is dominated by haloalkanes (trichloroethanes, dibromomethane, 

(tetra-, tri-, dichloro-), ethenes etc.), and ethers (diethyl ether, dioxane) in the lower end 

of the scatter plot. These classes of OMPs are least reactive to ozonation since the 

halogens/ethers present on the OMPs withdraw the electrons and make the system 

electron-deficient. The middle section is dominated by aromatics and alkenes (styrene, 

pyridoxine, tetra-butyl hydroquinone, etc.). The higher end is dominated by more 

activated aromatics (azauridine, silybin, piroxicam) containing functional groups such as 

primary and secondary amines (-NH2, -NH-) and alcohols (-OH) which activate (readily 

donate electrons to) the benzene molecule and hence easily undergo ozonation.  

      In case of the kO3 dataset (Figure 3.5b), the lower end is dominated by haloacids and 

esters (dalapon, adipic acid monoethyl ester, etc.), the middle section is governed by nitro 

(-NO2) (nitrosodimethylamine), cyano (-CN) (cyanic acid), aliphatic aldehydes (octanal), 

and deactivated (presence of halogens (any electron withdrawing groups) on benzene) 

aromatics (picloram, 2-isopropyl-3-methoxypyrazine, etc.). The upper section consists of 

activated aromatics, i.e., the presence of primary (1
o
) and secondary (2

o
) amines, alcohols 

((alpha-, beta-), and alanines, (di-, tri-) methylamines, propranolol).  
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Figure 3.5: QSAR prediction and chemical classification plots for kOH and kO3 data 

Prediction plots (a), (b): QSAR model values vs experimental values for kOH and kO3 data. The 

dotted line is the reference line (r
2
= 1) and the bold line is the model-regression line. The circles 

represent the QSAR - scatter-plots of OMPs based on their structural attribute 

 

3.3.4. Validation 

        The internal validations performed using “MOBYDIGS” software consisted of 

leave-one-out (LOO) and bootstrap methods. The Q
2

LOO for the kOH dataset was 0.909 

and the Q
2

BOOT was 0.903. In the case of the kO3-dataset, Q
2

LOO was 0.78 and Q
2

BOOT was 

0.72. In all of the cases, the validation performance indices, Q
2 

values, were greater than 

0.5, which indicated that the models had good predictive powers.  

     External validations were performed for both kOH and kO3 datasets. The compounds 

along with their rate constants (kOH), compound properties, and the parameters required 

to compute the Q
2

ext according to equation 3, i.e., difference between the measured and 

predicted values of the dependent variable (yi-ŷi) and difference between the measured 

and average value of the training set (yi-ȳtr) used for the external validation; are listed in 

Table 3.4. 
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Table 3.4: External validation dataset for kOH and kO3 dataset: QSAR descriptors 
COMPOUND  kOH(*10

9
)  predicted DBE WPSA (yi-ŷi)

2
 (yi-ȳtr)

2
 Reference 

Taurine 0.038 1.77 0 0.742 3.00 38.38 [30] 

Chloroform 0.05 0.38 0 213.179 0.11 38.23 [7] 

Trichloroacetic acid 0.06 1.71 1 182.926 2.71 38.11 [56] 

Spermidine 0.12 1.77 0 0 2.74 37.37 [30] 

Formaldehyde 0.76 2.99 1 0 4.96 29.95 [57] 

Butan-2-one 0.9 2.99 1 0 4.35 28.44 [10] 

Propylacetate 1.4 2.99 1 0 2.52 23.36 [10] 

MTBE 1.9 1.85 0 0 0.00 18.77 [58] 

Propanal 2.2 2.99 1 0 0.62 16.27 [59] 

sucrose 2.3 4.13 2 0 3.34 15.47 [60] 

2-Methylisoborneol  3 4.13 2 0 1.27 10.45 [61] 

Penicillamine 3.3 2.61 1 53.015 0.47 8.60 [62] 

Clofibric acid a 5 7.04 5 71.454 4.17 1.52 [63] 

Toluene 5.1 6.40 4 0 1.70 1.28 [64] 

Roxithromycin 5.4 7.54 5 0 4.59 0.69 [65] 

Chlorobenzene 6 5.90 4 71.46 0.01 0.05 [66] 

Carbofuran 7 8.68 6 0 2.83 0.59 [7] 

o-Xylene 7 6.40 4 0 0.36 0.59 [21] 

Alachlor 7 7.12 5 60.116 0.01 0.59 [7] 

Amikacin 7.2 6.40 4 0 0.64 0.94 [65] 

Ibuprofen 7.4 7.54 5 0 0.02 1.36 [67] 

Benzene 8 6.40 4 0 2.55 3.12 [66] 

Naproxen 10 10.96 8 0 0.92 14.19 [68] 

17α-ethinylestradiol 10 12.10 9 0 4.40 14.19 [67] 

Naphthalene 12 9.82 7 0 4.75 33.26 [69] 

Carmine 13 16.65 13 0 13.35 45.79 [70] 
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Benzoflavine 14 17.79 14 0 14.39 60.33 [71] 

Quinidine 18 13.24 10 0 22.69 

 

138.46 [72] 

Range 17.96 17.41          ∑ 103.44 620.35  

Mean 5.65 6.43     

External Validation kO3 dataset 

COMPOUND kO3 lnkO3 predicted DBE WPSA IP (yi-ŷi)
2
 (yi-ȳtr)

2
 Ref. 

Glutaric acid 0.008 -4.828 -3.423 2 0 11.53 1.97 51.959 [37] 

methanol 0.024 -3.729 -5.03 0 0 11.65 1.67 37.328 [38] 

Lindane 0.04 -3.218 -5.848 1 325.12 9.65 6.92 46.007 [36] 

MTBE 0.14 -1.966 1.382 0 0 10.12 11.21 18.889 [58] 

p-chlorobenzoic acid 0.15 -1.897 1.048 5 71.37 10.35 8.67 18.293 [36] 

ethanol 0.51 -0.67 -2.0936 0 0 10.95 2.02 17.955 [36] 

creatinine 2 0.693 2.081 3 0 10.35 1.93 2.130 [37] 

butylamine 340 5.828 4.235 0 0 9.44 2.54 5.129 [37] 

napthalene 3800 8.243 9.534 5 0 8.84 1.67 21.891 [2] 

glyphosate 8200 9.012 7.604 0.5 1.47 8.69 1.98 29.679 [36] 

flouranthene 9500 9.159 13.743 12 0 8.76 21.01 31.305 [2] 

phenanthrene 10000 9.21 7.509 10 0 9.98 2.89 31.88 [2] 

anthracene 27000 10.204 12.66 10 0 8.75 6.03 44.08 [2] 

Range        26999.99 15.03 19.59   ∑ 87.81 352.22  

Mean 4526.37 2.77 3.34       

 

      The external validations for kOH and kO3 datasets resulted in a Q
2

ext value of 0.83 and 

0.75, respectively. The kOH and kO3 dataset prediction plots for external data are shown in 

Figures 3.6a and 3.6b. The dotted line is the ideal-reference line (45
0
, r

2
=1) which is used 

to indicate the degree of over- or under- prediction by the model regression line. Figure 

3.6a and 3.6b also show the classification of the OMPs based on their structures. In the 

case of the kOH dataset (Figure 3.6a) the lower section consists of haloalkanes 

(chloroform, trichloroacetic acid, etc.), ethers (MTBE), and carbonyls (formaldehyde, 

propanal, buatan-2-one, etc.); the middle section consists of acids (clofibric acid) and 

several aromatics (ibuprofen, benzene, toluene etc.); and finally the upper section consists 

of activated (mainly conjugated, amines, triple bonds) aromatics (carmine, benzoflavine 
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quinidine, 17α-ethinyl estradiol). In case of the kO3 dataset (Figure 3.6b) the lower 

section consists of haloacids and ethers, and the upper section consists of aromatics and 

alkenes. The influence of these functional groups has been discussed earlier in relation to 

the classification for OMPs of the kOH and kO3 datasets (section 3.3.3). The internal and 

external validations performed on the kOH and kO3 datasets and the associated Q
2
 values 

for leave-one-out, bootstrap and the external validations are shown in Table 3.5.  

Table 3.5: Internal and external validation of the kOH and kO3 QSAR models 

DATASET INTERNAL EXTERNAL 

kOH dataset 
 

Leave-one-out: Q2
LOO = 0.909 

Bootstrap: Q2
boot = 0.903 

Q2
ext =0.856 

kO3 dataset 
Leave-one-out: Q2

LOO = 0.78 
Bootstrap: Q2

boot=0.72 
Q2

ext = 0.823 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: External validation plots for kOH and kO3 data 

(a) External validation of the kOH- QSAR models and the OMPs classification 

(b) External validation for the kO3-QSAR models and the OMPs classification 
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      The residual plots for the kOH and kO3 data were plotted (Figure 3.7). Residuals are 

the difference between the observed and the predicted values. A random scatter plot was 

observed in both of the cases which indicated that the regression model was appropriate 

for the data. 

Figure 3.7: Residual plots of kOH and kO3 QSAR models  

 

 

3.4. CONCLUSIONS 

       QSAR models for ozonation/oxidation, predicting rate-constants (kOH and kO3), were 

developed. Among the several molecular descriptors which influence (advanced) 

oxidation, DBE and WPSA chemically and statistically defined the kOH-QSAR model. 

For the kO3-QSAR model, three descriptors, DBE, WPSA and IP, defined the model. 

DBE focuses on the double-bond nature of the OMPs which enhances ozonation 

efficiency. WPSA focuses on the surface area occupied by halogens, and IP represents 

the energy required to remove an electron from a neutral atom. An increase in both 

WPSA and IP decreases ozonation efficiency. The chemical and statistical significance of 

the descriptors were studied. In the case of the kOH-QSAR model, DBE influenced the 

model more than WPSA. For the kO3-QSAR model, IP was more influential than WPSA 
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and DBE. Statistical criteria such as the co-efficient of determination, r
2
, p-values, and F-

statistic were also evaluated, and the models yielded good results. The internal 

validations (leave-one-out and bootstrap) for the kOH and kO3 models yielded high Q
2
 

values (>0.5), indicating the robustness of the models.  External validations were 

performed for both the QSAR models, resulting in a good Q
2 

EXT (>0.5). The validation 

studies helped to conclude that the models were robust and predictive. The residual plots 

were also studied and random scatter plots were obtained for both the kOH and kO3 QSAR 

models.  

        The applicability domains for kOH - QSAR models are pH (5 to 8) and kOH values 

(0.04 to 18 (10
9
) M

-1
s

-1
); for the kO3 - QSAR model, pH (5 to 8) and kO3 values (5*10

-4
 to 

10
5
 M

-1
s

-1
). 
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4. APPROPRIATE DRINKING WATER TREATMENT PROCESSES 

FOR ORGANIC MICROPOLLUTANTS REMOVAL BASED ON 

EXPERIMENTAL AND MODEL STUDIES 

A MULTI-CRITERIA ANALYSIS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

HIGHLIGHTS 

 Evaluation of eight water treatment processes for OMPs removal 

 MCA under socio-economic, ecological and technical criteria 

 River bank filtration and ozonation performed best for OMP removal in the MCA 

 RBF is only outranked by ozonation for carbamazepine, diazepam and dilantin 

 MCA based on QSAR models, nanofiltration outranked reverse osmosis  

 

This chapter is based on the published paper: 

Sairam Sudhakaran, Sabine Lattemann, Gary L. Amy. Appropriate drinking water treatment 

processes for organic micropollutants removal based on experimental and model studies – A 

multi – criteria analysis study; Science of Total Environment, 442 (2013), 478 – 488 
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4.1. INTRODUCTION 

     In the previous chapters, the impact of OMPs on the public health and environment 

was discussed and an overview provided on regulations which governments/regulatory 

agencies emphasize in risk assessments associated with OMPs.  

   Since Chapter 2 and Chapter 3 resulted in development of good/robust QSAR models, 

in this chapter, efforts were focused on developing a decision support system (DSS) 

based on multi-criteria analysis (MCA) for selection of appropriate water treatment 

processes for OMPs removal based on QSAR models and experimental studies.  

      Advanced water treatment processes such as reverse osmosis (RO), nanofiltration 

(NF), adsorption and oxidation are industry choices for OMPs removal, however, even 

natural systems such as riverbank filtration (RBF) and constructed wetlands (CW) show 

good removals of OMPs [1-3]. Usually, decision making involves choosing or judging 

between several treatment alternatives and ultimately compromising on a result. In order 

to choose a good and efficient water treatment process, decision making can be facilitated 

by a DSS based on MCA. MCA has been well-recognized by governmental agencies and 

regulatory bodies as a standard decision aid procedure [4-8]. MCA has also been used for 

decision making for pharmaceuticals removal from hospital waste waters [9]. MCA 

allows the comparison of qualitative (non-monetary, non-metric) criteria, which are often 

used in environmental contexts, as well as quantitative criteria (e.g. costs). The 

systematic and transparent approach involved in MCA helps to reproduce and scrutinize 

the results [8].  

     The study in this chapter was initiated from the necessity for an approach to decide 

upon a suitable water treatment process for OMPs removal. Accordingly, the main 

objective was to construct a DSS for comparing different water treatment processes under 
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various criteria, including percent-removal rates as predicted by QSAR models, and to 

recommend the best water treatment process. The DSS can provide useful information to 

set up a treatability experiment for emerging contaminants or support decision making in 

formulating drinking water treatment trains. However, in practice, there could be more 

variables affecting the efficiency of contaminant removal and factors related to process 

selection, which have not been covered in this study. 

4.2. METHODOLOGY 

     MCA analysis was carried out in three stages: MCA-I, MCA-II, and MCA-III. The 

objective of MCA-I was to study the influence of the various social, economic and 

technical aspects on the ranking of the different water treatment processes without any 

influence from the percent-removal rates of these processes, hence, the percent-removal 

rates have been set to a fixed, arbitrarily chosen value (i.e., 99%). In MCA-II, the 

percent-removals were selected from pilot-scale experimental studies published in the 

literature and analyzed in conjunction with the same social, economic and technical 

aspects as in MCA-I [1]. The MCA-III was built with the predicted percent-removals 

from the QSAR models created for the water treatment processes. DEFINITE 3.1 

ver.3.1.1.7 software was used to perform the MCA [10]. The different steps involved in 

developing a DSS based on MCA are listed in Figure 4.1. 

Figure 4.1: Steps involved in building a DSS 
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4.3. THEORY 

4.3.1. Performance Matrix 

      The input data (i.e., scores) to an MCA include information on all alternatives 

(different water treatment processes) and all criteria including sub-criteria (socio-

economic-technical aspects, see section 4.4.2). The alternatives are scored against the 

criteria in a performance matrix, which is shown in Table 4.2. The considered alternatives 

in this study distinguished between natural systems (RBF, CW) and advanced treatment 

processes which included the main membrane processes (RO, NF), adsorption by 

granular activated carbon (GAC), and oxidation by direct ozonation (O3) as well as 

advanced oxidation processes (AOP) which apply ozone in combination with hydrogen 

peroxide (O3-H2O2, or simply AOP) and ultraviolet (UV) light in combination with H2O2 

(UV-H2O2 or UV-AOP).  

4.3.2. Multi-Criteria Analysis (MCA) 

4.3.2.1. Weighted Summation Method 

The weighted summation method was chosen for this study since it is transparent, 

involves expert-opinions and is well-recognized for decision-making. The overall 

performance (preference) score for each alternative is the sum of the alternative‟s score 

for each criterion multiplied by the weight for that criterion. The formula used for 

weighted summation is: 

 

Where: 

A is the set of alternatives with aj (j = 1...M), 

C is the set of effects with ci (i=1…N), 

sij is the score of alternative aj for effect ci, 

ŝij is the standardized score of alternative aj for effect ci, 

wi is the weight of effect  

Score (aj) =   𝑤𝑖 ∗ ŝ𝑖𝑗
𝑁
𝑖=                                                  (1)          
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                In order to apply the weighted summation method, standardization and the 

assigning of weights are necessary. The final result is a ranking of the alternatives based 

on the overall score for each alternative.  

4.3.2.2. Standardization 

       Scores with different measurement scales (percent-removal, $/m
3
, kg/m

3
) cannot be 

compared to each other directly. Therefore, the scores must be standardized to a 

dimensionless value between 0 and 1 before the overall score for each alternative can be 

calculated. In DEFINITE 3.1 software, several standardization functions are available. In 

this study, two linear standardization functions were used: goal standardization for 

quantitative criteria and maximum standardization for qualitative criteria (Table 4.1). In 

goal standardization, an ideal or goal value (best value) and a baseline value (worst 

value) are specified. Quantitative criteria (costs, carbon footprint) are well suited for this 

method since they usually have a baseline and an ideal value. The qualitative criteria 

were standardized by maximum standardization. Apart from the qualitative/quantitative 

type, the criteria are also classified into cost or benefit. For „cost‟ criteria, which have a 

negative correlation between score and effect (e.g., for carbon footprint, the lower the 

better). „Cost‟ criteria (negative impacts) thus have a minimization effect (a standardized 

line sloping downwards). For „benefit‟ criteria which have a positive correlation between 

score and effect (e.g. percent removal, the higher the better). „Benefit‟ criteria (positive 

impacts) thus have a maximization effect (a standardized line sloping upwards).  
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Table 4.1: Types of standardization methods: Maximum and Goal 

 

4.3.2.3. Assigning Weights  

      In the MCA, weights are assigned to the different criteria to reflect different 

stakeholder perspectives and the final ranking is heavily influenced by these weights. A 

survey questionnaire was sent to two groups (academics (30 respondents) and industry 

professionals (8 respondents)). The weights were derived by the expected value method 

and entered into the DEFINITE software accordingly. The expected value method is 

based on ordinal weights wherein the decision maker ranks the criteria from most to least 

important or in certain cases gives equal ranks since they are equally important [10, 11]. 

In the survey, the main group of criteria (treatability, costs, technical, sustainability and 

time) and sub-groups were ranked from highest to lowest importance or equally ranked 

based on the personal opinions of participants. The average rank was calculated for each 

criterion within each main group and sub-groups, and the criteria were ranked 

accordingly. The rank orders of criteria were converted to quantitative weights (w) using 

the formula: 

 

Method 

 

Characteristics 

 

Formula 

 

 

Maximum 

 

 

scales the performance between 

minimum and maximum value 

 

Benefit = 
     

             
 

 

Cost =   
     

             
 

 
Goal 

 
specify the highest and lowest 

value 

 

Benefit = 
                

                  
 

 

Cost = 1 - 
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The sum of the weights for the criteria/sub-criteria within each group is 1.0. Detailed 

information regarding the expert-based and neutral-perspective surveys is given below 

and in section 4.4.3:  

  i) Expert-based survey: A concise survey consisting of six questions (see 

Appendix C) was sent to researchers (30 PhD research students and post-doctoral 

research associates) in the Water Desalination and Reuse Center at King Abdullah 

University of Science and Technology (KAUST) providing an academic 

perspective. The survey was also sent to 8 professionals/operators from reputed 

international water-related companies (consultants, operators, and manufacturers) 

providing an industrial perspective. All the respondents of the survey were 

working in water-related fields and had good information on OMPs and the 

treatment processes associated to remove them. The responses from the surveys 

were compiled separately and the weights were assigned.  

  ii) Neutral-perspective: Here all of the criteria were assigned equal weights, i.e., 

no preference was given to any criterion over another and the MCA was 

performed. 

4.3.2.4. Ranking 

      This step displays the results of the MCA in terms of ranks based on equation 1, i.e., 

the alternatives are being ranked based on the overall score. 

4.3.3. Sensitivity Analysis 

       Sensitivity analysis helps to investigate which changes in the scores or weights are 

necessary to bring about a significant change, particularly if two alternatives have only a 
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small difference in their overall score. A ranking is considered robust when it is not 

sensitive to variations in the scores or weights. In this study, the sensitivity analysis was 

performed for the scores of the quantitative criteria, i.e., unit costs and carbon footprint, 

and the assigned weights for the main groups: treatability, costs, technical, sustainability 

and time. 

4.4. RESULTS AND DISCUSSIONS 

4.4.1. Percent-removal 

(a) MCA-I 

         In Table 4.2, three criteria (percent-removal, costs, carbon footprint) are 

quantitative and the remaining eleven criteria are qualitative terms. Since this study 

consisted of a wide range of alternatives and criteria, it was very difficult to find 

representative quantitative values for all the effects in the literature, hence qualitative 

terms were used where sufficient quantitative data were not available. The percent-

removals are constant in MCA-I and an arbitrary value (99%) was chosen which does not 

influence the final ranking. 

(b) MCA-II 

       In MCA-II, the percent-removals for a selected group of OMPs were experimental 

values taken from a published report in literature [1] . The percent-removals are shown in 

Table 4.3. The main differences between MCA-I and MCA-II is that the variable percent- 

removals in Table 4.3 replace the fixed "percent-removals" in Table 4.2, and studies on 

CW are not present, all the other rows are the same as in Table 4.2.   

(c) MCA-III 

      The percent-removals for the QSAR-based MCA were taken from QSAR models 

built for  reverse osmosis [12], nanofiltration [13] , adsorption [14] , ozone [15, 16], 
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advanced oxidation [16], and river bank filtration (RBF) as represented by soil aquifer 

treatment (SAT) [3]. In the case of QSAR models some compounds were either over- or 

under-predicted compared to the experimental values. The over/under predicted values 

were rounded off to ±20 of the observed values (e.g., for carbamazepine the observed 

value: 76% and QSAR predicted value: 53%; rounded off value was 76-20= 56%). The 

predicted values of more than 100% were rounded off to 100% (for e.g., naproxen the 

observed value: 99% and QSAR predicted value: 107%; rounded off value was 100%). 

The QSAR-predicted values are shown in Table 4.4 and the modified (rounded off) 

values are highlighted in bold.  

4.4.2. Other Criteria 

(i) Natural Organic Matter (NOM) and By-product (BP) Formation 

     Some of the selected pretreatment alternatives considered in this study, i.e., oxidation, 

adsorption, and membrane processes, are greatly affected by NOM [17-19]. By-product 

formation is a major concern for the oxidation processes. In case of ozonation, bromate is 

the major concern since it is carcinogenic [20, 21]. As shown in Table 4.2, qualitative 

scores (---/0) are used to describe the effect of NOM on processes (e.g., “---“describes a 

large negative effect (NF, RO) and “0” no effect (RBF, CW). 

(ii) Costs  

     The unit costs are in US Dollar per cubic meter of product water ($/m
3
). Cost is 

variable in time, site specific and expressed in different currencies of which exchange 

rates vary. Therefore, cost data produced by the same source should ideally be used for 

comparability reasons. In this study, efforts were made to obtain cost-data from the same 

source, however, due to limitation of data availability, not all cost-data is directly 
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comparable. The sensitivity analysis was performed to analyze the fluctuations in the 

overall rankings due to the cost data. Costs were expressed as annualized value, 

combining the capital costs and the operational/maintenance costs (O/M costs). The size 

of the water treatment plants ranged from 33,000 - 99,000 m
3
/day. The costs for river 

bank filtration (RBF) [22, 23], nanofiltration (NF) [24] and reverse osmosis (RO) [25] 

were taken from journal articles, while data for ozonation [26], advanced oxidation ([27], 

ultra-violet based advanced oxidation [27]), constructed wetlands [28] and adsorption 

[27] were taken from cost-related text books.  

 

(iii) Technical Aspects 

      The technical aspects included in the criteria are reliability/maintenance, professional 

skill required and potential for modification. Reliability/Maintenance indicates the 

process stability and maintenance requirement. RBF is considered to be most reliable 

with least maintenance, followed by CW, ozonation, adsorption and membranes. Natural 

systems (RBF,CW) are easy to maintain compared to the advanced treatment systems 

such as membrane processes (RO,NF), which require regular backwashing, replacements 

etc. Systems which are more sophisticated such as membranes and ultra-violet-oxidation 

(UV-AOP) also require higher professional skill unlike natural systems, which are easier 

to operate [29]. In the case of PM, it is easier to retrofit or upgrade existing advanced 

processes than natural systems which can have hydro-geological issues [29].  
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Table 4.2: Performance matrix 

Cost (C)/Benefit (B) 
Natural 
Systems 

Adsorption and 
Membranes 

Oxidation  

TREATABILITY C/B RBF CW GAC NF RO O3 AOP 
UV-
AOP 

Ref. 

%removal* B 99 99 99 99 99 99 99 99  

Natural Organic 
Matter 

  
0 0 -- --- --- -- -- -- [17-19] 

By-Products 
formation 

  
0 0 0 0 0 -- -- - [20, 21] 

COSTS  

Unit Costs ($/m
3
) C 0.06 0.02 0.132 0.234 0.53 0.114 0.114 0.137 [22-28] 

TECHNICAL  

Reliability/ 
Maintenance 

  
++ + + -- -- - - - [29] 

Professional 
Skill 

  
+ - - -- -- - - -- [29] 

Potential for 
Modification 

  
- - + + + ++ ++ ++ [29] 

SUSTAINABILITY  

Environ Impact  

Land   -- -- + + + ++ ++ ++ [29] 

Waste discharge   0 0 - -- -- 0 0 0 [29] 

Carbon 
footprint 
(kgCO2/m

3
) 

C 0 0 0.42 0.41 1 0.053 0.053 0.053 [29, 30] 

Resource Use  

Energy Use   ++ ++ - - -- + + - [29] 
Chemical Use   ++ + - -- -- - -- - [29] 
Public 
Acceptance 

  
++ - ++ ++ ++ ++ ++ + [2, 29] 

TIME  

Residence time    --- --- + ++ ++ +++ +++ +++ [29] 

SCORES                                          ALTERNATIVES                                         CRITERIA 

0: no effect RBF: river bank filtration %removal*:  
variable in MCA-II, MCA-III  ---: large negative effect CW: constructed wetlands 

   --: intermediate effect GAC: granular activated carbon  

    -: small negative effect NF: nano-filtration  

+++: small positive effect RO: reverse osmosis  

  ++: intermediate effect O3: ozonation;  UV/H2O2: ultra violet advanced oxidation 

    +: small positive effect O3/H2O2: advanced oxidation 
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Table 4.3: Pilot–scale percent removals of OMPs based on Snyder‟s report [1]  

(iv) Sustainability 

       Sustainability of the water treatment processes was measured by the sub-group 

criteria, environmental impact (land use and waste discharge, carbon footprint), resource 

use (energy and chemical use) and public acceptance. 

      In case of land use, the amount of land space occupied for running the treatment 

process was considered. The natural systems (RBF, CW) scored worst in this regard due 

 

 RBF GAC NF RO O3 AOP UV-AOP 
Acetaminophen 99 80 50 99 99 99 97 

Androstenedione 99 85 80 99 99 99 96 

Caffeine 98 80 80 99 97 97 89 

Carbamazepine 13 80 80 99 99 99 88 

DEET 91 70 80 95 76 82 89 

Diazepam 65 70 80 95 82 85 93 

Diclofenac 99 45 80 99 99 99 98 

Dilantin 22 45 80 99 86 88 97 

Erythromycin 98 80 85 99 92 92 64 

Estradiol 99 85 80 99 99 99 98 

Estrone 99 80 80 99 99 99 99 

Ethinyl estradiol 99 95 80 99 99 99 99 

Fluoxetine 99 85 85 99 99 99 99 

Gemfibrozil 99 45 80 99 99 99 95 

Hydrocodone 99 80 80 99 99 99 99 

Ibuprofen 99 50 80 99 87 88 94 

Iopromide 95 50 85 95 61 58 91 

Meprobamate 74 50 80 85 59 60 75 

Naproxen 98 50 50 99 99 99 99 

Oxybenzone 97 90 85 99 99 99 66 

Pentoxifylline 99 80 80 99 99 99 90 

TCEP 32 40 80 99 8 9 16 

Triclosan 98 90 85 99 99 98 97 

Trimethoprim 99 80 80 99 99 99 94 

Range 86 55 35 14 91 90 83 

Mean 86.21 70.21 78.54 97.92 88.88 89.29 88.42 
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Table 4.4: QSAR model values (% removals)  

 RBF GAC NF RO O3 AOP Reference 

Atrazine no data 41 100 no data 65 67 [13, 14, 16] 

Caffeine 100 no data 85 45 85 79 [3, 12, 16, 31] 

Carbamazepine 18 56 93 78 94 100 [3, 13, 14, 16, 31] 

Diclofenac 100 32 100 no data 100 100 [3, 13, 14, 16] 

Estradiol no data 92 96 99 94 90 [12-14, 16] 

Estrone no data 91 100 no data 97 94 [13, 14, 16] 

Gemfibrozil 73 57 100 no data 90 93 [3, 13-16] 

Ibuprofen 84 42 98 62 80 93 [3, 12-14, 16] 

Lindane no data no data 82 98 7 15 [12, 13, 16] 

Naproxen 100 53 100 no data 96 84 [3, 13, 14, 16] 

Pentoxifylline 100 73 100 no data 91 88 [3, 13, 14, 16] 

Sulfamethoxazole no data 20 96 no data 87 89 [13, 14, 16] 

Testosterone no data 100 no data 95 85 96 [12, 14, 16] 

 

to high land usage compared to advanced processes such as membrane or oxidation 

processes which are more compact. For waste discharge, the membrane processes were 

least preferred due to high concentrate, backwash and cleaning solutions, compared to 

oxidation and  natural systems which do not have associated waste discharge [29].  

      The amount of carbon dioxide emitted from the processes is a major environmental 

concern, due to its high negative impact on climate change. The carbon footprint is 

usually defined as the total of the GHGs (greenhouse gases) produced from operational 

and embodied emissions. In this study, the carbon footprint was measured only in terms 

of CO2 - emissions (kilograms CO2/ m
3
).  The natural systems were preferred due to low 

CO2 emissions, followed by oxidation, adsorption, and finally membranes which release 

considerable amount of CO2 into the environment [29, 30].      
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        Energy use refers to the power consumption required to run the processes. The 

advanced processes (RO, NF, UV-AOP, GAC) are far more energy intensive than the 

natural systems (RBF, CW). Membranes require energy for generating the desired 

pressure and backwashing, adsorption for regeneration, and oxidation for electrical 

generation of ozone. In the case of natural processes, the power consumption is least. 

Chemical use implies the use of chemical agents. These include anti-scalants in case of 

membranes, ozone and peroxide in case of oxidation, etc. In this case, the natural systems 

scored best due to least chemical usage and the membrane processes scored worst due to 

heavy use of chemicals [29].       

 Public acceptance reflects how well (or poor) a process is accepted by the public as a 

water treatment process to remove OMPs. Most of the processes are already well-

accepted except CW which is slowly being considered for OMP removal [2, 29]. 

(v) Residence Time 

     The advanced processes, mainly oxidation, scored better since they remove the OMPs 

rapidly as compared to natural systems which require a longer residence time [29]. 

 

4.4.3. Weights 

(i) Academic and Industrial Survey 

The results of the survey are shown in Figure 4.2.  Both the academic and industrial 

groups had the same opinion about the sustainability criteria, i.e., environmental impact 

(land use, waste discharge, and carbon footprint), resource use (energy use and chemical 

use), and public acceptance: Environmental impact was given highest priority, followed 
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by resource use, while public acceptance was considered least important. Concerning the 

sub-criteria of environmental impact, waste discharge was considered the most  

Figure 4.2: Academic vs Industrial survey rank comparison 

Comparison of the preferences (ranks) given to the various criteria in the academic (researchers) 

and industry (professionals/operators (Pro/Opt) survey 

 important problem followed by carbon footprint and land use as the least important. In 

the case of resource use, both groups felt that energy use, in terms of power consumption, 

was more important than chemical use. 

        Concerning technical aspects, both groups considered reliability/maintenance to be 

the most important criterion. However, there was a difference in opinion for the criteria 

"professional skill" and "potential for modification": while academics considered 

potential for modification more important the industry representatives felt professional 

skill was more important.        

        Concerning treatability (i.e., percent-removal, NOM hindrance, and by-product 

formation), both academics and professionals considered by-product formation the least 
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important. The academics gave highest priority to the criterion percent-removal whereas 

the professionals considered NOM hindrance to be most important.  It is believed that 

professionals prioritized NOM hindrance because NOM presence adversely impacts most 

treatment processes by fouling, side-reactions etc. and therefore NOM removal is 

important for maintaining good operating conditions and hence for OMPs removal. 

        It was difficult to compare the two groups with regards to the main-criteria because 

the "time" criterion was included only in the survey among academics. However, from 

the five main criteria, the academic-group gave highest priority to treatability, followed 

by sustainability, time, costs and technical aspects. From the four main criteria, the 

professionals‟ decreasing order of preference was treatability followed by costs, technical 

aspects, and sustainability. The weights derived from the survey (according to equation 2) 

and which have been used in the MCA to reflect the preferences of the academic and 

professionals groups are listed in Table 4.5. 

4.4.4. MCA-I: Ranking results 

      The objective of MCA-I was to compare and rank the water treatment processes 

based on all other criteria excluding percent-removal, therefore, the percent-removal rates 

of the OMPs were assumed to be identical (Table 4.2). Figure 4.3 shows the MCA 

rankings (line chart, top) based on the weights (pie charts, bottom) that were derived from 

the academics and professional surveys and by assuming equal importance of all criteria 

(neutral perspective). In case of academics‟ and professionals‟ perspectives, RBF ranked 

highest among the different alternatives. The intermediate positions were occupied by 

oxidation (O3, AOP, UV-AOP), adsorption (GAC) and CW. The membrane processes 

(RO, NF) always remained at the lower-end of the ranking since they are less 
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environment friendly, more costly, and sophisticated to operate compared to the other 

processes. In case of neutral perspective, oxidation was the preferred process followed by 

RBF, adsorption (GAC), CW and membrane processes. 

Table 4.5: Assigned weights for criteria: academic vs industry 

 Main group                         Sub-group Sustainability-subgroup 

 Academic Industry Academic Industry Academic Industry 

Treatability 0.455 (45%) 0.520 
    

%removal 
  

0.610 0.280 
  

NOM hindrance 
  

0.280 0.610 
  

BPs 
  

0.110 0.110 
  

Costs 0.089 (9%) 0.270 
    

Technical 0.040 (4%) 0.150 
    

R/M 
  

0.610 0.610 
  

Skill 
  

0.110 0.280 
  

PM 
  

0.280 0.110 
  

Sustainability 0.257 (26%) 0.060 
    

Environmental 

Impact   
0.610 0.610 

  

Land Use 
    

0.110 0.110 

Waste discharge 
    

0.610 0.610 

Carbon footprint 
    

0.280 0.280 

Resource Use 
  

0.280 0.280 
  

Energy Use 
    

0.750 0.750 

Chemical Use 
    

0.250 0.250 

Public Acceptance 
  

0.110 0.110 
  

Residence time 0.158 (16%) 
     

Overall weight (∑) 1.0 1.0 1.0 1.0 1.0 1.0 
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Figure 4.3: MCA-I process rankings  

The rankings (line chart, top) based on scores in performance matrix (Table 4.2) and weights 

derived from survey (pie chart, bottom) 

 

4.4.5. MCA-II: Experimental Study-Ranking   

       MCA-II is based on the experimental percent-removals of OMPs [1] as given in 

Table 4.3 and the other criteria scores in Table 4.2. The weights for the criteria were 

taken from the academic survey. Twenty-four compounds were analyzed, for which RBF 

and oxidation (O3, AOP, and UV-AOP) were found to be the preferred processes under 

this set of scores and weights in MCA-II, followed by adsorption and finally the 

membrane processes as shown in Figure 4.4. In case of DEET (N, N-Diethyl-meta-

toluamide), an ozone-resistant compound, UV-AOP was found to be a better option 

compared to O3 or AOP. For erythromycin, treatment by GAC was preferable over UV-

AOP. 
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      TCEP (tris (2-chloroethyl) phosphate) is the only compound in MCA-II for which 

membrane processes (RO and NF) outranked most other treatment alternatives, except for 

RBF which was again found to be the best alternative. However, RBF has a low TCEP  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: MCA-II process rankings 

The rankings are based on experimental percent removals (Table 4.3) and the remaining criteria 

as shown in Table 4.2 
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removal rate of 32% and only performed best in the MCA because of a better 

performance in other criteria. If a minimum percent-removal rate, e.g. of 50%, is 

introduced as a cut-off criterion, RO (99% removal) and NF (80% removal) remain the 

only feasible options because all other alternatives have lower TCEP removal rates 

(Table 4.3).  

    In the case of oxybenzone, ozonation (O3 and AOP) were better processes compared to 

RBF. Finally for carbamazepine, diazepam and dilantin, ozonation/oxidation (O3, AOP 

and UV-AOP) were the best processes. In general, the decreasing trend was RBF > 

oxidation > GAC ≥ membrane, except for TCEP. 

4.4.6. MCA-III: “QSAR-based Percent-Removal”-Rankings  

      The MCA-III rankings based on the QSAR predictive models (Table 4.6) built for 

OMPs removal were assessed for oxidation (direct ozonation [15, 16], advanced 

oxidation process [16]), membranes (nanofiltration [13], reverse-osmosis [12, 31]), 

adsorption [14] and RBF [3]. The QSAR-model equations are shown in Table 4.6. All of 

the QSAR equations had good performance indices and were mechanistically interpreted, 

validated. 

In MCA-III, all the percent-removals for the OMPs are totally prediction based. The main 

advantage of MCA-III is that with further inclusion of QSAR models it can act as a good 

index to choose the best process for OMPs removal without any lab analysis, purely 

based on computational aspects. In Figure 4.5, the QSAR-based MCA-III is shown. For 

carbamazepine and ibuprofen, all six processes were compared. In general, for OMPs 
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AOP 

(ln) removal = 9.77 - 0.63 (ELUMO-EHOMO) - 0.194 (EA) +0.02 (#ring atoms) 

                r
2 
= 0.902, q

2
LOO = 0.868 

Ozone 

% removal = 67.3 + 0.0506 (PISA) + 5.2 (#metabolites) + 4.34 (#rtvFG) - 0.114 (WPSA)                                                                                                                                                    

               r
2 
= 0.858, q

2
LOO = 0.80 

(ln) removal = 12.45 - 0.95 (ELUMO -EHOMO) – 0.32 (MON) 

                r
2 
= 0.893, q

2
LOO = 0.706 

RBF 

%removal = 174.8 (#imidazoles) + 158.4 (AR) - 98.1 (#CONN) - 1830.3 (ME) + 1851.1 

               r
2
 = 0.84, q

2
LOO = 0.64 

GAC 

relative adsorbability = 0.2730 (
8
Xp) + 0.00106 (FOSA) 

                                r
2 
= 0.86, q

2
LOO = 0.82 

NF 

% rejection = 265.15eqwidth - 117.36 (depth) + 81.66 (length) - 5.23 (logD) + 1348.09 (SR) -

1447.82  

                  r
2
 = 0.75, q

2
LOO = 0.72 

RO 

% rejection = 252.714eqwidth + 35.104length + 485.839SR - 590.714 

                  r
2 
= 0.882, q

2
LOO = 0.8477 

 
MON: mean oxidation number                                                          PISA: Pi-surface area 

#rtvFG: # of reactive functional groups                                              EA: electron affinity                                                

nCONN: # of urea (-thio) derivate                                                      AR: aromatic ratio                        

eqwidth: equivalent-width                                                                   SR: salt-rejection 

ME: mean atomic sanderson electronegativity                              
8
Xp: 8

th
-order simple-path chi index 

WPSA: weakly polar component of the solvent accessible surface area 

FOSA: hydrophobic component of the solvent accessible surface area 

ELUMO - EHOMO: energy difference between lowest unoccupied and highest occupied molecular orbitals 

Descriptors in RO-ANN based model  

size of the smallest ring                 shape index kappa2 

molecular weight (Da)                   energy of the lowest unoccupied molecular orbital (eV) 

dipole moment (Cm)                     dipole hybridization (Cm) 

 

removal, oxidation (O3, AOP) and RBF were the preferred processes. In case of lindane 

(chlorinated OMP), AOP was shown as the best process although removed by only 17%. 

 
Table 4.6: QSAR equations 
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 If a minimum percent-removal rate, e.g. of 50%, is introduced as a cut-off criterion, RO 

and NF remain the only feasible treatment options for lindane (Table 4.4). However, the 

rankings are influenced by the assigned weights for the criteria, which are based on the 

academic survey (in which the other four criteria, i.e., costs, technical aspects, 

sustainability and residence time represent 55% of the total weights whereas treatability 

accounts for „only‟ 45% of the total). The ranking between AOP and NF varied only in 

the second decimal point (0.56, 0.55), however, when the weights for treatability are 

increased to 50%, NF outranks AOP. Hence in the case of lindane, NF can be considered 

as the best process rather than AOP.   

Figure 4.5: MCA – III process rankings. 

The rankings are based on percent – removals from QSAR models (Table 4.4) and the remaining 

criteria as shown in Table 4.2 

4.4.7. Ranking of three MCA studies by Neutral Perspectives   

     In this study, equal weights were assigned to all the criteria (20%) and only the 

percent removal of the OMPs were varied according to the study. MCA-I had fixed 

percent-removals of the OMPs, MCA-II had experimental values and MCA-III was based 

on the QSAR model values (Figure 4.6). In all the scenarios, natural systems and 
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oxidation processes were found to be the best option, while membrane processes were 

found to be the least favorable option. 

 

 

 

 

 

Figure 4.6: Neutral perspectives  

The comparison of process ranks are based on experimental and fixed % removals 

4.4.8. Sensitivity Analysis: Main Group Weights, Costs, and Carbon Footprint 

      A sensitivity analysis (50% - uncertainties) was performed for the weights of the 

main group criteria (treatability, costs, technical aspects, sustainability, and residence 

time) from the academic survey. There were no major changes in the rankings, i.e., RBF 

and oxidation processes were likely to rank highest whereas adsorption and membrane 

processes were likely to rank lowest, which is similar to the original MCA rankings 

(Figure 4.7a). 

      Second, the sensitivity of the ranking to changes in the scores of the cost criterion was 

investigated (Figure 4.7b). As observed, adsorption and membrane processes were not 

sensitive to changes in the cost-scores. In all cases, RBF had a high probability of about 

60% to rank at the first position. Ozonation and constructed wetlands had probabilities of 
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about 30% and 10% respectively, to rank at the first position, if the cost values were 

assumed to be up to 50% higher or lower than the original value. The oxidation processes 

(O3, AOP, UV-AOP) and CW are likely to rank on second, third and fourth positions 

(probabilities between 55-65%) followed by adsorption and membrane processes, which 

had a high probability (100%) of ranking at positions six, seven and eight, respectively. 

This is generally similar to the original MCA rankings and indicates that the original 

MCA rankings are not very sensitive to variability in the cost data.   

       A sensitivity analysis was also conducted for carbon footprint, for which a similar 

trend as cost based sensitivity analysis was observed (Figure 4.7c). There were no 

fluctuations in the rankings of adsorption and membrane processes. RBF ranked highest 

followed by ozonation, AOP, UV-AOP and CW even if 50% uncertainty in the carbon 

footprint data is to be assumed. 
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Figure 4.7a: Sensitivity analysis for main group criteria. 

Sensitivity analysis assuming 50% uncertainties of the weights assigned to the main group 

criteria. The X-axis shows the rank of the alternatives (processes, 1-8); the Y-axis shows the 

percent probability that a treatment process occupies a certain rank. For example, if the 

treatability of RBF was assumed to be up to 50% higher or lower than the actual value assumed in 

this study, RBF has a probability of 67% to rank at first position, O3 has a probability of 54% to 

rank second, etc. whereas GAC, NF and RO have a probability of 100% to rank at positions 6, 7 

and 8, respectively 
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Figure 4.7b: Sensitivity analysis for cost data scores. 

Sensitivity analysis assuming 50% uncertainty of the cost data.The X-axis shows the ranks of the 

processes (1-8); the Y-axis shows the percent probability that a treatment process occupies a 

certain rank. For example, if the cost value of RBF was assumed to be up to 50% higher or lower 

than the actual value assumed in this study, RBF has a probability of 61% to rank at first position, 

O3 has a probability of 57% to rank second, etc. whereas GAC, NF and RO have a probability of 

100% to rank at positions 6, 7 and 8, respectively 
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Figure 4.7c: Sensitivity analysis for carbon footprint scores 
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4.5. CONCLUSIONS AND RECOMMENDATIONS 

       In this study, a DSS with three types of MCA: MCA-I, MCA-II, MCA-III was 

created. MCA-I shows the ranking of the water treatment processes based on a set of 

technical and environmental criteria. MCA-II and MCA-III yield the process rankings 

with different experimental and QSAR-based percent-removals, respectively, based on 

the same technical and environmental criteria used in MCA-I.  

       In MCA-I, under the assumption of constant percent-removal rates for the OMPs, 

environment-friendly processes such as RBF were found to be preferable over advanced 

processes such as membranes or adsorption. In MCA-II, including the experimental 

percent-removal rates, the process rankings were more variable, reflecting the 

performance with regard to OMPs removal. Generally, RBF and oxidation were preferred 

alternatives compared to adsorption and membranes for the majority of the compounds. 

In case of TCEP, recalcitrant to oxidation, membranes were found to be the best option 

under the given set of criteria scores and weights. MCA-III was the most interesting and 

innovative, since it involved predicted values from validated QSAR models. Similar to 

the results of MCA-I and MCA-II, RBF and oxidation were the preferred treatment 

alternatives for most of the compounds, however, if the weight of the „treatability‟-

criterion is increased to more than 50% in the MCA; NF may become the best treatment 

option for some of the OMPs such as lindane. With the inclusion of more QSAR models 

for different treatment processes the DSS can be expanded with minimal experimental 

work.  

       The DSS would be helpful in the experimental set-up and planning of a drinking 

water treatment train for OMPs removal. The rankings obtained in this study are valid 
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only for the given set of alternatives, criteria, scores and weights, and can be 

revised/refined, if new and better data are available. 

      Sensitivity analysis was performed for the quantitative scores (costs, carbon footprint) 

and the assigned weights for the criteria. The sensitivity analysis showed that the original 

MCA rankings are not very sensitive to a 50%-change in the scores/weights, i.e., RBF 

still has a high probability to rank first followed by oxidation, adsorption and membrane 

processes even if the cost and carbon footprint data are up to 50% higher or lower than 

the original values. 

      The DSS in this study is only for prioritization of the processes for OMP removal and 

not for decision making in specific projects for process design. Therefore, it is necessary 

to combine this DSS with a general decision making process for a system design, wherein 

more detailed design criteria would be evaluated. The DSS can be appropriately used for 

OMP removal by multi-barrier systems since water treatment systems consist of several 

consecutive unit processes. The DSS opens the window for a hybrid of natural systems 

(RBF) with advanced treatment processes (oxidation) for efficient OMPs removal, 

thereby reducing energy use and creating a greener, sustainable approach. For a site 

specific analysis, more detailed information about the hydro-geological conditions and 

site-based costs need to be considered.  
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5. HYBRIDIZATION OF NATURAL SYSTEMS WITH ADVANCED 

TREATMENTS FOR ORGANIC MICROPOLLUTANT REMOVALS: 

NEW CONCEPTS IN MULTI-BARRIER TREATMENT 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HIGHLIGHTS 

 Hybrids of natural and advanced treatment processes for OMPs removal 

 Oxidation and microfiltration as pre-treatment to artificial recharge and recovery 

(ARR) 

 Ultra, nanofiltration, adsorption, chlorination as post-treatment to ARR 

This chapter is based on the following published paper and conference proceedings: 

Sairam Sudhakaran, Sung Kyu Maeng, Gary Amy. Hybridization of natural systems with 

advanced treatments for organic micropollutant removals: New concepts in Multi-Barrier 

Treatment. Chemosphere 92 (2013) 731-737 

 Gary Amy, Saroj Sharma, Min Yoon, Sung Kyu Maeng, Sairam Sudhakaran. SIWW-2011-

Singapore: Hybridization of Aquifier Recharge and Recovery (ARR): New concepts in Multi-

Barrier Treatment for wastewater reuse 
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5.1. INTRODUCTION 

        As suggested in the previous chapter on DSS, a hybrid of a natural system (e.g., 

RBF or CWs) with an advanced treatment process (e.g., oxidation, membranes, or 

adsorption) can be implemented for efficient OMPs removal, thereby reducing energy 

use, carbon footprint and creating a greener, sustainable approach. In this chapter studies 

were focused on the hybridization of these processes. 

       Advanced water treatment processes such as reverse osmosis (RO), nanofiltration 

(NF), granular activated carbon (GAC) adsorption and oxidation, which includes direct 

ozonation (O3) and advanced/ultra-violet oxidation process which involve OH radicals 

(AOP, UV-AOP), are industry choices for OMP removal; however, even natural systems 

such as  riverbank filtration (RBF), aquifer recharge and recovery (ARR) as well as 

constructed wetlands (CWs) show good removals of most OMPs [1, 2]. Although the 

advanced treatment processes remove the OMPs efficiently, they are less sustainable 

because of high greenhouse gas emissions, high power consumption, and by-

product/metabolite formation. Hybridization of advanced treatment processes with 

natural systems (ARR, CWs) can provide synergy in efficiently removing OMPs in a 

more sustainable manner. Several EU projects have focused on the removal of OMPs by 

natural and hybrid systems such as sustainable water management in the city of the future 

and water reclamation technologies for safe artificial ground recharge [3, 4]. 

      In this study, hybrids of ARR coupled with an oxidation (O3, AOP, and UV-AOP), 

membrane (NF/RO), or adsorption (GAC) process for OMP removal were studied. These 

hybrids provide a multi-barrier approach to eliminate bio-degradable and non-

biodegradable compounds. Figure 5.1 shows that OMPs which are well-removed by 

ARR obviously lead to a very sustainable approach. For compounds which are poorly 
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biodegraded, the hybridization of processes can be a suitable alternative. Oxidation and 

microfiltration (MF) can act as pre-treatments to biodegradation. Oxidation helps in OMP 

removal and, in the case of ozone, also disinfection; MF helps to reduce ARR 

infiltration/recharge basin clogging [5]. Ultra-filtration (UF), NF, GAC and 

UV/chlorination can act as post-treatment to biodegradation. NF and GAC help to 

remove refractory OMPs, and UV/chlorination can serve as final disinfection. ARR as a 

post-treatment to oxidation helps to biodegrade the oxidation by-products/metabolites 

and serves as a pre-treatment to UF, NF, and GAC to minimize membrane fouling and 

dissolved organic carbon (DOC) loading. 

Figure5.1: Potential hybridization of ARR with other processes for OMP removal  
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5.2. THEORY 

5.2.1 Natural treatment systems  

     All of the natural treatment processes such as RBF, ARR, or CWs have the same 

mode of mechanism for OMP removal, based on biodegradation. They are natural 

treatment processes which induce surface water to flow in response to a hydraulic 

gradient through soil sediments into a vertical or horizontal well. They are relatively low-

cost, efficient and sustainable technology if the system is designed and operated with 

proper guidelines in an appropriate hydro-geological location. The factors that affect the 

performance of natural systems include: (i) raw water quality, (ii) well types, (iii) 

location and alignment of wells, (iv) residence time, (v) clogging, (vi) Schmutzdecke 

(bioactive layer), and (vii) redox conditions. These natural processes have shown 

potential to remove both natural organic matter and effluent organic matter that serve as a 

precursor to disinfection by-products [6, 7]; and pathogenic microorganisms such as 

Cryptosporidium, Giardia and viruses [8, 9] as well as OMPs [2].      

5.2.2 Oxidation (O3, AOP, UV-AOP) 

O3 is a good option to remove OMPs, since O3 exhibits selectivity towards certain 

OMPs and readily transforms them. It reacts with double bonds, activated aromatic rings 

and specific ring atoms. In general, electron-pumping groups on a benzene ring enhance 

ozonation, and electron-withdrawing groups (nitro, halogens) decrease ozonation [10] . 

However, apart from the nature of the substituents, other parameters such as steric factors 

and connectivity between the aromatic rings need to be considered. O3 is not very stable 

in water, it partly decomposes into OH radicals, leading to AOP which is less selective 

and more reactive than ozone, thereby oxidizing a wider range of OMPs with higher 

oxidation efficiency.  
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5.2.3 Adsorption (GAC) 

         GAC is also well-established for OMP removal. There are several properties that 

influence adsorption, namely hydrophobicity, charge, specific functional groups, 

molecule dissociation, polarity and polarizability [11]. Hydrophobic OMPs have low 

affinity towards water; when these OMPs are dissolved in water, they rearrange 

themselves in an energetically less favorable configuration and finally are adsorbed onto 

the adsorbent [12-14]. Charge effects can result in either attraction or repulsion of OMPs 

to an adsorbent surface. OMPs of an acidic nature release an H
+
 ion and obtain a negative 

charge whereas OMPs of a basic nature obtain an H
+
 ion and consequently a positive 

charge. The amount of H
+
 dissociation/uptake depends on solution pH and the pKa or pKb 

of the OMPs. As a result, solution pH is a crucial factor in this mechanism, as both 

adsorbent and OMP charge depends on this parameter [11]. Electron-withdrawing 

functional groups on OMPs such as carbonyl and carboxyl groups reduce the adsorption 

ability as compared to electron pumping groups such as amines and aromatic rings [15, 

16]. A major limitation of GAC is reduced loading caused by background NOM. 

5.2.4 Membrane Separation (NF, RO, MF, and UF) 

         Membrane technologies are being increasingly used for OMP removal. They are the 

industry standard to remove a range of contaminants, however, membranes consume 

significant power and are less sustainable. Pressure-driven membrane processes, often 

used in water treatment, use hydraulic pressure to force water molecules through the 

membrane. Impurities are retained and concentrated in the reject, which becomes the 

reject water or concentrate stream. The permeate that passes through the membrane is 

recovered as product or pure water. The pressure-driven membranes, in order of 
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decreasing permeability, are as follows: MF > UF > NF > RO. MF and UF are used to 

remove large organic molecules, colloids and micro-organisms.  NF or RO, due to their 

small pore size, are used to remove OMPs and inorganic micropollutants such as arsenic 

and fluoride. 

5.3. METHODOLOGY 

        Experimentally determined percent-removal of OMPs were taken from a research 

report [2]. The chemical structures of the OMPs are available in Appendix A1. SPSS 

version 17 was used to build quadrant plots. These quadrant plots are scatter plots with 

four quadrants. Figure 5.2 illustrates the four quadrants. The horizontal and vertical axes 

represent the percent removal of OMPs by two different processes, usually ARR in 

hybrid with an advanced process (membrane, adsorption or oxidation). Quadrant I 

indicates poor removal of OMPs by both processes. Quadrant II and IV indicate good 

removal by one process and poor removal by the other. Quadrant III indicates good-

removal by both processes. The experimental conditions for the water treatment 

processes are summarized in Table 5.1. The percent-removal of OMPs used in the 

quadrant plots were pilot-scale experimental results (Table 5.2). 
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Figure 5.2: Quadrant plots with description of the quadrants 

 

Table 5.1: Different conditions associated with different water treatment processes 

 Residence time Dosage Membranes GAC 

ARR 36 days not applicable not applicable not applicable 

Ozone (O3) 24 min 2.5 mgL
-1

 not applicable not applicable 

AOP 

(O3/H2O2) 
24 min 2.5:0.065 mgL

-1
 not applicable not applicable 

GAC 

Empty bed 

contact time: 7.6 

min 

not applicable not applicable 

Norit Americas, 

Hydrodarco 

4000 

NF not applicable not applicable ESNA, Hydranautics not applicable 

RO not applicable not applicable 
Koch, Saehan, 

Osmonics 
not applicable 
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Table 5.2: Pilot-scale percent removals of OMPs for different treatment processes [2] 

Compound Abbreviation ARR GAC NF RO O3 AOP UV-AOP 

acetaminophen ACT 99 85 50 99 99 99 97 

androstenedione AND 99 95 80 99 99 99 96 

caffeine CAF 98 85 80 99 97 97 89 

carbamazepine CARB 13 85 80 99 99 99 88 

DEET (N,N-diethyl-

3-methylbenzamide) 

DEET 
91 85 80 95 76 82 89 

diazepam DIAZ 65 80 80 95 82 85 93 

diclofenac DICLO 99 50 80 99 99 99 98 

dilantin DIL 22 50 80 99 86 88 97 

erythromycin ERY 98 85 85 99 92 92 64 

estradiol ESTR2 99 95 80 99 99 99 98 

estriol EST 99 85 80 99 99 99 99 

estrone ESTRO 99 95 80 99 99 99 99 

ethinyl estradiol ET-ESTR2 99 95 80 99 99 99 99 

fluoxetine FLX 99 85 85 99 99 99 99 

gemfibrozil GEM 99 50 80 99 99 99 95 

hydrocodone HYDRO 99 85 80 99 99 99 99 

ibuprofen IBU 99 50 80 99 87 88 94 

iopromide IOPRO 95 50 85 95 61 58 91 

meprobamate MEP 74 50 80 85 59 60 75 

naproxen NAPRO 98 50 50 99 99 99 99 

oxybenzone OXYB 97 95 85 99 99 99 66 

pentoxifylline PENT 99 85 80 99 99 99 90 

TCEP(tris-2-

chloroethylphosphate) 

TCEP 
32 40 80 99 8 9 16 

triclosan TRICLO 98 95 85 99 99 98 97 

trimethoprim TRIMET 99 85 80 99 99 99 94 
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5.4. RESULTS AND DISCUSSION 

5.4.1 Oxidation and ARR hybrid 

     Figure 5.3a illustrates the removal of OMPs, encompassing a range of compound 

properties, by ARR and oxidation (O3, AOP, and UV-AOP). The OMPs and their 

abbreviations are shown in Table 5.2. Quadrant I comprises OMPs which are poorly 

removed by both ARR and oxidation: there are a few compounds which are resistant to 

the processes and TCEP, a chlorinated aliphatic compound and a flame retardant, is an 

example. None of the compounds appear in quadrant II, corresponding to better removal 

by ARR and poor removal by oxidation, which is consistent with the relative 

effectiveness of chemical versus (micro) biological oxidation. Nevertheless, the use of 

this hybrid system is also to eliminate the metabolites/partial oxidation products produced 

due to oxidation. Quadrant III indicates that several OMPs are well-removed by both 

ARR and oxidation although iopromide, meprobamate and N, N - diethyl - 3- 

methylbenzamide appear to be better-removed by ARR than oxidation. Carbamazepine 

and dilantin are recalcitrant towards ARR but well-removed by oxidation as seen in 

quadrant IV. The individual quadrant plots between ARR - ozone, ARR - AOP and ARR 

- UV-AOP are shown in Figures 5.3b, 5.3c, 5.3d, respectively. 

     O3 can be used in place of AOP in the hybrid process, although the percent removals 

of a few compounds decrease significantly. However, an attribute of O3 is that it is a 

better disinfectant and can act as another pathogen barrier. A potential process constraint 

is bromate formation, but any bromate formed can potentially be eliminated by ARR 

under anoxic conditions [17]. Another constraint is the high oxidant demand of the feed-

water; the alternative hybrid of ARR as a pre-treatment to O3 would result in a lower 

oxidant demand, but the role of ARR as a metabolite barrier would be lost. UV-AOP as a 
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post-treatment to ARR would also disinfect the water and, since it involves only OH 

radicals, there is no bromate formation. As seen, carbamazepine and dilantin are poorly 

removed by ARR but well-removed by UV-AOP, while TCEP is recalcitrant to both UV-

AOP and ARR. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3a: OMPs attenuation by ARR and oxidation (O3, AOP and UV-AOP).  

The blue circles indicate AOP-ARR; the green squares indicate O3-ARR; and maroon triangles 

indicate UV-AOP-ARR hybrids 
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Figure 5.3b: OMPs attenuation by ARR and ozone  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3c: OMPs attenuation by ARR vs advanced oxidation process (AOP) 
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Figure 5.3d: OMPs attenuation by ARR vs UV-AOP 

5.4.2 Adsorption and ARR hybrid 

Figure 5.4 illustrates the percent removals of a number of OMPs, encompassing a range 

of compound properties, by ARR and GAC. TCEP is poorly removed by both processes 

whereas carbamazepine is better removed by GAC than ARR as seen in quadrant I and 

IV, respectively. Compounds such as naproxen, ibuprofen and gemfibrozil are better-

removed by ARR than GAC as seen in quadrant II. Several OMPs present in quadrant III 

indicate good-removal by both GAC and ARR.  The benefit of using ARR prior to GAC 

helps to reduce the DOC loading onto the GAC 
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Figure 5.4: OMPs attenuation by ARR and GAC 

5.4.3 Membrane and ARR hybrid  

     The synergy of the ARR-NF/RO, wherein ARR functions as a pre-treatment to NF or 

RO, benefits by minimizing membrane fouling [5]. Since ARR functions as a biofiltration 

process, organic foulants (e.g., proteins and polysaccharides) and biofoulants (e.g., 

carboxylic acids and aldehydes) can be effectively eliminated, particularly over ARR 

residence times of days to months [5]. In addition to being effective barriers for OMPs, 

both processes also provide effective barriers for pathogens. The industry-standard for 

non-potable reuse is using ARR after advanced treatment including RO. However, there 

are two arguments against this approach. First, NF is a lower-pressure (and hence lower 

cost) alternative to RO which provides greater OMP selectivity over background salts. 
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Studies have shown that NF is similar in efficiency to RO with respect to OMP removal 

and also the ARR/NF hybrid is very effective in pathogen and OMP removals from water 

[18-20]. Second, the use of RO/NF before ARR does not acknowledge the (pre) treatment 

attributes of ARR and instead relegates the ARR technology to only storage. Proponents 

of the industry standard argue that, without RO, one risks groundwater contamination. 

But the counterargument is that, with proper well construction and operation, one can 

dedicate and isolate part of the groundwater aquifer as a treatment zone [21-24]. Also, NF 

can be incorporated as a second microbial (virus) barrier. Figure 5.5a shows the OMP 

elimination by ARR and NF/RO. The absence of OMPs in quadrant I indicates that none 

of the OMPs were recalcitrant to both ARR and NF/RO. Acetaminophen and naproxen 

were better removed by ARR than NF as observed in quadrant II. A majority of the 

OMPs were well-removed by both ARR and NF as seen in quadrant III. TCEP, dilantin 

and carbamazepine, recalcitrant to ARR, were well-removed by NF/RO as seen in 

quadrant IV. In the case of RO, all the OMPs were very well-removed with above 85% 

removal efficiencies. However, the removal trends of OMPs for NF and RO were 

generally similar. The individual quadrant plots of ARR-RO and ARR-NF are shown in 

Figure5.5b, 5.5c, respectively. 
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Figure 5.5a: OMPs attenuation by ARR and membranes (NF, RO).  

The blue circles indicate NF-ARR hybrid and green triangles indicate RO-ARR hybrid 
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Figure 5.5b: OMPs attenuation by ARR and RO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5c: OMPs attenuation by ARR and NF 
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5.5. CONCLUSION 

      As shown, the hybrids of processes help to establish a sustainable approach and 

compensate for the limitations of the individual processes. However, when oxidation by 

ozone is used as a treatment process, additional studies are required on the metabolites 

due to oxidation of OMPs [25]. Additionally, a cost analysis associated with operating 

the hybrids should be done, although the individual costs in operating the treatment plants 

are available in literature [26, 27]. Also, it would be interesting to study the performance 

amongst the advanced treatment processes for the OMPs removal thereby creating a 

better multi-barrier approach for sustainable and efficient removal of OMPs. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. CONCLUSIONS 

 QSAR models based on multi-linear regression and artificial neural networks 

were developed for OMPs removal; several models were developed based on 

multi-linear regression so that the constructed models could be updated for future 

use and easily reproduced for further learning and understanding. 

 New chemical descriptors such as the energy gap between the orbitals (ELUMO-

EHOMO), ionisation potential, electron affinity, mean oxidation number, and 

halogen surface area, which were integrated in the QSAR models, helped to 

understand ozonation (oxidation) in a more comprehensive manner. 

 QSAR models were developed for both the performance indices of oxidation 

(percent-removal of OMPs and ozone and hydroxyl radical rate constants (kO3, 

kOH)). It was concluded that rate constants were a better index for QSAR 

modeling purposes compared to percent removals since they were influenced by 

lesser boundary conditions. Also, the rate constants could be coupled with ideal 

chemical reactors to predict process performance. 

 A DSS based on MCA was developed for experimental and QSAR model studies. 

RBF and oxidation were the preferred processes for OMPs removal. The DSS can 

be helpful in the experimental set-up and planning of drinking water treatment 

trains for OMPs removal. However, the rankings obtained in this study are valid 

for the given set of alternatives, criteria, scores, weight and can be revised/refined, 

if new or better data are available. 
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 Hybrids of natural systems with advanced treatment processes help to develop a 

sustainable and efficient approach for OMPs removal compensating for the 

limitations of the individual processes. 

 

6.2. RECOMMENDATIONS 

 The different QSAR models built for oxidation (ozonation/AOP) in Chapter 2 and 

3 and others available in the scientific literature could be compiled and developed 

into a software program which can compute the oxidation efficiency of the OMPs 

 QSAR models for the oxidation metabolites of OMPs should be the focus of 

further research since studies have shown their negative impacts  

 The research studies in Chapter 2 have shown strong correlation between energy 

gap of the molecular orbitals (ELUMO – EHOMO; energy of the lowest unoccupied 

molecular orbital and highest occupied molecular orbitals) and ozonation 

capacity. Future research should focus on developing a comprehensive 

understanding about the molecular orbitals of OMPs and ozone interactions.  

 In the DSS developed in Chapter 4, additional percent removal rates for a wider 

range of OMPs for different water treatment processes can be incorporated based 

on QSAR modeling to expand the DSS to a wider decision-making context. 

 Based on the results obtained for the hybrid systems in Chapter 5, a cost analysis 

(both capital and operation/maintenance) in operating the hybrids should be 

performed to promote this approach. Also, for an efficient multi-barrier approach 

for OMPs removal, studies should be focused on optimal/sustainable processes 

(e.g., NF be replaced by RO) involved in the water treatment train.    
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APPENDICES 

APPENDIX A  

A1: Chemical Structures of OMPs involved in Chapters 2 and 5          
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A2: Chemical Structures of OMPs involved in Chapter 3 
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Appendix B  

B1: Correlations between molecular descriptors and %removal of OMPs from 

Chapter 2 

 

 

 

 

 

 

CRW-AOP lnrmvl CRW-O3 lnrml ORW-AOP %rml ORW-O3 %rml 

lnrmvl 1 lnrml(O3) 1 %rml(AOP) 1 %rml(O3) 1 

X(Halo) -.641** X(Halo) -.679** X(Halo) -.653** X(Halo) -.660** 

WPSA -.687** WPSA -.705** WPSA -.708** WPSA -.710** 

volume 0.108 volume 0.113 volume 0.12 volume 0.08 

SASA 0.067 SASA 0.08 SASA 0.085 SASA 0.036 

QPpolrz 0.152 QPpolrz 0.152 QPpolrz 0.175 QPpolrz 0.143 

PSA 0.089 PSA 0.098 PSA 0.163 PSA 0.114 

PISA .335* PISA .338* PISA 0.336 PISA .348* 

O_C -0.311 O_C -0.216 O_C -0.319 O_C -0.343 

N_C -0.003 N_C 0.007 N_C 0.087 N_C 0.047 

 MON -0.131  MON -0.17  MON -0.013  MON -0.05 

IP(eV) -.554** IP(eV) -.541** IP(eV) -.544** IP(eV) -.550** 

H_C -0.209 H_C -0.162 H_C -0.221 H_C -0.226 

FOSA 0.106 FOSA 0.121 FOSA 0.099 FOSA 0.077 

FISA 0.153 FISA 0.154 FISA 0.226 FISA 0.184 

EL-EH -.839** EL-EH -.895** EL-EH -.936** EL-EH -.902** 

EA(eV) -0.218 EA(eV) -0.168 EA(eV) -0.145 EA(eV) -0.218 

donorHB 0.145 donorHB 0.12 donorHB 0.202 donorHB 0.176 

dipole 0.172 dipole 0.194 dipole 0.212 dipole 0.169 

DBE .542** DBE .548** DBE .561** DBE .537** 

C=C 0.32 C=C .334* C=C 0.33 C=C 0.313 

Arom 0.211 Arom 0.232 Arom 0.235 Arom 0.223 

accptHB 0.058 accptHB 0.066 accptHB 0.084 accptHB 0.047 

#rtvFG -.592** #rtvFG -.646** #rtvFG -.600** #rtvFG -.537** 

#rotor 0.066 #rotor 0.084 #rotor 0.043 #rotor -0.008 

#ringatoms .451** #ringatoms .425** #ringatoms .456** #ringatoms .474** 

#nonHatm 0.215 #nonHatm 0.218 #nonHatm 0.225 #nonHatm 0.186 

#noncon 0.104 #noncon 0.065 #noncon 0.077 #noncon 0.114 

#in56 .491** #in56 .465** #in56 .490** #in56 .508** 

**. Correlation is significant at the 0.01 level  

*. Correlation is significant at the 0.05 level  
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B1: Correlations between molecular descriptors and %removal of OMPs from Chapter 2 

 

 

 

 

 

 

 

 

PRW-AOP lnrmvl PRW-O3 lnrml SRW-AOP %rmvl SRW-O3 rmvl 

lnrmvl 1 lnrml 1 %rmvl 1 rmvl 1 

X(Halo) -.530** X(Halo) -.630** X(Halo) -.564** X(Halo) -.612** 

WPSA -.586** WPSA -.682** WPSA -.631** WPSA -.677** 

volume 0.115 volume 0.148 volume 0.137 volume 0.157 

SASA 0.071 SASA 0.107 SASA 0.083 SASA 0.097 

QPpolrz 0.158 QPpolrz 0.191 QPpolrz 0.236 QPpolrz 0.235 

PSA 0.077 PSA 0.152 PSA 0.161 PSA 0.185 

PISA .339* PISA .353* PISA 0.328 PISA 0.284 

O_C -.373* O_C -0.271 O_C -.434* O_C -.400* 

N_C -0.025 N_C -0.025 N_C 0.163 N_C 0.165 

 MON -0.082  MON -0.07  MON 0.057 IP(eV) -.450* 

IP(eV) -.593** IP(eV) -.549** IP(eV) -.462** H_C -0.197 

H_C -0.249 H_C -0.262 H_C -0.262 glob 0.088 

FOSA 0.063 FOSA 0.094 FOSA 0.066 FOSA 0.131 

FISA 0.129 FISA 0.214 FISA 0.25 FISA 0.273 

EL-EH -.868** EL-EH -.928** EL-EH -.913** EL-EH -.912** 

EA(eV) -0.248 EA(eV) -0.105 EA(eV) -0.103 EA(eV) -0.125 

donorHB 0.213 donorHB 0.191 donorHB 0.231 donorHB 0.243 

dipole 0.124 dipole 0.135 dipole 0.15 dipole 0.157 

DBE .521** DBE .602** DBE .570** DBE .547** 

C=C 0.314 C=C .386* C=C 0.346 C=C 0.307 

Arom 0.228 Arom 0.29 Arom 0.262 Arom 0.232 

accptHB 0.073 accptHB 0.088 accptHB 0.027 accptHB 0.05 

#rtvFG -.489** #rtvFG -.628** #rtvFG -.725** #rtvFG -.724** 

#rotor 0.073 #rotor 0.1 #rotor 0.023 #rotor 0.056 

#ringatoms .467** #ringatoms .454** #ringatoms .418* #ringatoms .394* 

#nonHatm 0.218 #nonHatm 0.266 #nonHatm 0.302 #nonHatm 0.317 

#noncon 0.134 #noncon 0.069 #noncon 0.01 #noncon 0.027 

#in56 .502** #in56 .492** #in56 .445* #in56 .421* 

**. Correlation is significant at the 0.01 level  

*. Correlation is significant at the 0.05 level  
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B2: Correlations between molecular descriptors and rate constants of OMPs from 

Chapter 3 

 

 

 

 

 lnkO3  kOH(10
9
) 

lnkO3 1 kOH(10
9
) 1 

X -0.115 X -.513** 

WPSA -0.096 WPSA -.506** 

volume .385* volume .790** 

SASA 0.379 SASA .792** 

QPpolrz .415* QPpolrz .827** 

PSA -0.172 PSA .737** 

PISA 0.365 PISA .712** 

OH 0.021 OH .525** 

O_C -.555** O_C 0.19 

N_C 0.242 N_C .353** 

MON -0.262 MON 0.245 

IP(eV) -.866** IP(eV) -.704** 

H_C 0.113 H_C -.439** 

FOSA 0.365 FOSA 0.124 

FISA -0.318 FISA .705** 

EL - EH -.531** EL-EH -.424** 

EA(eV) 0.202 EA(eV) .463** 

donorHB 0.159 donorHB .620** 

dipole 0.073 dipole .520** 

DBE 0.332 DBE .950** 

C=C .456* C=C .789** 

Arom .423* Arom .670** 

accptHB 0.216 accptHB .675** 

#rtvFG -0.334 #rtvFG -0.125 

#rotor 0.255 #rotor .653** 

#ringatoms .429* #ringatoms .876** 

#nonHatm 0.345 #nonHatm .855** 

#metab .386* #metab .728** 

#acid -.426* #acid 0.003 

**. Correlation is significant at the 0.01 level  

*. Correlation is significant at the 0.05 level  
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APPENDIX C, Questionnaire  
 
The following questionnaire was created and sent to the participants (academicians/industry) and 

the results were used to assign weights to the effects. 

1. Which of the three factors are most influential during water treatment process? Rank them    

accordingly.  

 micropollutant removal 

 natural organic matter hindrance 

 by-product formation 

 

 

2. What technical aspects are important in a water treatment plant? 

 reliability and maintenance 

 professional skill required 

 potential for modification 

 

3. Rank the three environmental impacts accordingly. 

 waste and wastewater discharge 

 CO2 emission 

 Land Use 

 

4. With respect to resource use, rank the following. 

 energy use (power consumption) 

 chemical use 

 

5. Which of the sustainability criteria do you consider significant. 

 environmental impact 

 resource use 

 public acceptance 

 

6. In a water treatment process, rank the level of importance of the following. 

 treatability 

 treatment cost 

 technical consideration 

 sustainability 

 residence time 
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