
Kronecker Products on Preconditioning

Thesis by

Longfei Gao

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

King Abdullah University of Science and Technology, Thuwal,

Kingdom of Saudi Arabia

(August, 2013)

2

The thesis of Longfei Gao is approved by the examination committee

Committee Chairperson: Victor Calo

Committee Member: David Keyes

Committee Member: Yalchin Efendiev

Committee Member: Shuyu Sun

3

Copyright © 2013

Longfei Gao

All Rights Reserved

4

ABSTRACT

Kronecker products on preconditioning

Longfei Gao

Numerical techniques for linear systems arising from discretization of partial differ-

ential equations are nowadays essential for understanding the physical world. Among

these techniques, iterative methods and the accompanying preconditioning techniques

have become increasingly popular due to their great potential on large scale compu-

tation.

In this work, we present preconditioning techniques for linear systems built with

tensor product basis functions. Efficient algorithms are designed for various problems

by exploiting the Kronecker product structure in the matrices, inherited from tensor

product basis functions.

Specifically, we design preconditioners for mass matrices to remove the complex-

ity from the basis functions used in isogeometric analysis, obtaining numerical per-

formance independent of mesh size, polynomial order and continuity order; we also

present a compound iteration preconditioner for stiffness matrices in two dimensions,

obtaining fast convergence speed; lastly, for the Helmholtz problem, we present a

strategy to ‘hide’ its indefiniteness from Krylov subspace methods by eliminating the

part of initial error that corresponds to those negative generalized eigenvalues. For all

three cases, the Kronecker product structure in the matrices is exploited to achieve

high computational efficiency.

5

ACKNOWLEDGEMENTS

Thanks to my friends for their consistent help and support.

Thanks to KAUST for such a wonderful research opportunity.

♥ ♠ ♦ ♣

Dedicated to my parents.

6

TABLE OF CONTENTS

Examination Committee Approval 2

Copyright 3

Abstract 4

Acknowledgements 5

Table of Contents 6

List of Figures 9

List of Tables 10

List of Abbreviations 12

List of Symbols 13

1 Introduction 14

1.1 Problem Statement and Research Approach 15

1.2 Objectives and Contributions . 17

2 Background 18

2.1 Kronecker product . 18

2.2 An algebraic view of the finite element matrices built with tensor prod-

uct basis functions . 19

2.3 Isogeometric analysis and its basis functions 21

3 Mass matrix 23

3.1 The ideal case . 23

3.2 More complicated cases . 26

3.3 Preconditioning . 29

3.3.1 The simplest choice: M−1 . 29

7

3.3.2 Partial inclusion of geometric information in the preconditioners 31

3.3.3 Computational cost per iteration 37

3.3.4 Hybrid preconditioning . 38

3.4 Improving starting points . 41

4 Stiffness matrix 45

4.1 The ideal case . 45

4.1.1 Alternating direction implicit method: origin 46

4.1.2 Alternating direction implicit method: generalization 50

4.2 Orthotropic inhomogeneous coefficients 57

4.2.1 The simplest choice: (KX +KY)−1 58

4.2.2 Partial inclusion of coefficient variations in the preconditioners 62

4.2.3 Numerical results . 64

4.3 Isotropic coefficients with high contrasts 68

4.3.1 Hybrid preconditioning . 69

4.3.2 Numerical results . 70

4.4 Complicated geometry . 74

5 The Helmholtz equation 76

5.1 The ideal case . 76

5.1.1 The difficulty of indefiniteness for ADI 77

5.1.2 A direct method approach . 79

5.1.3 A stable alternative: GMRES 84

5.1.4 An obvious extension . 87

5.2 More general cases . 89

5.2.1 Approach 1: preconditioning 90

5.2.2 Approach 2: remove the indefiniteness 92

6 Miscellaneous 94

6.1 On boundary conditions . 94

6.2 On isogeometric spectral element method 101

7 Concluding Remarks 103

7.1 Summary . 103

7.2 Future Research Work . 105

References 107

8

Appendices 115

A Mass matrix 116

A.1 About the two testing domains . 116

A.2 Additional numerical results for preconditioner M−1 117

A.3 Additional numerical results for preconditioner (M ξS)−1 and (M ξM)−1 118

A.4 Complexity analysis . 120

A.5 Additional numerical results for hybrid preconditioning 121

A.6 Quarter annulus . 122

B Stiffness matrix 124

B.1 Upper bound of the error reduction rate 124

B.2 Symmetry and positive definiteness of preconditioner
(
K̄X + K̄Y

)−1
. 127

B.3 Formulae for coefficients of the numerical examples in section 4.2.3 . . 134

C Helmholtz equation 136

C.1 A better preconditioner . 136

C.2 About the physical domain in Figure 5.2 137

9

LIST OF FIGURES

3.1 Visualization of Algorithm 1. 25

3.2 Testing domains. 30

3.3 Local support property of basis functions. 32

3.4 Visualization for Algorithm 3. 33

3.5 Starting residual vs mesh size: stretched rectangle. 42

3.6 Starting residual vs mesh size: perturbed rectangle. 43

4.1 Orthotropic. 65

4.2 Low frequency oscillation. 66

4.3 Gaussian spikes. 67

4.4 ‘Island’. 71

4.5 ‘Block’. 72

4.6 ‘Borehole’. 73

5.1 Eigenvalue distribution: 1D case. 81

5.2 Layered media. 90

6.1 Boundary conditions and matrix structure. 95

6.2 Testing domains with boundary conditions. 99

A.1 Quarter annulus. 122

10

LIST OF TABLES

3.1 h-scaling: p = 4, c = 3. 30

3.2 k-scaling: N1D = 29, c = p− 1. 30

3.3 h-scaling: p = 4, c = 3. 36

3.4 k-scaling: N1D = 29, c = p− 1. 36

3.5 h-scaling: p = 4, c = 3. 39

3.6 h-scaling: p = 4, c = 3. 39

3.7 k-scaling: N1D = 29, c = p− 1. 39

3.8 h-scaling: p = 4, c = 3. 40

3.9 k-scaling: N1D = 29, c = p− 1. 40

3.10 h-scaling: p = 4, c = 3. 43

3.11 h-scaling: p = 4, c = 3. 44

4.1 Error reduction rates and upper bounds. 57

4.2 h-scaling: p = 1, c = 0, Ninner = 64. 65

4.3 Effect of inner iterations: p = 1, c = 0, N1D = 128. 65

4.4 h-scaling: p = 1, c = 0, Ninner = 64. 66

4.5 Effect of inner iterations: p = 1, c = 0, N1D = 128. 66

4.6 h-scaling: p = 1, c = 0, Ninner = 64. 67

4.7 Effect of inner iterations: p = 1, c = 0, N1D = 128. 67

4.8 Performances: p = 1, c = 0, Ninner = 16. 71

4.9 Effect of inner iterations on the hybrid preconditioner: p = 1, c = 0. . 71

4.10 Performances: p = 1, c = 0, Ninner = 16. 72

4.11 Effect of inner iterations on the hybrid preconditioner: p = 1, c = 0. . 72

4.12 Performances: p = 1, c = 0, Ninner = 16. 73

4.13 Effect of inner iterations on the hybrid preconditioner: p = 1, c = 0. . 73

4.14 Performance of
(
KX +KY

)−1
on complicated geometries. 75

5.1 Number and ratio of negative entries in D = Dx − k2Ix. 82

5.2 Number and ratio of negative entries in D = Dx − k2Ix. 82

5.3 Relative error for bp. 83

11

5.4 Relative error: 16 ADI iterations. 83

5.5 Relative error: varying number of ADI iterations. 83

5.6 Performance of GMRES(10) with starting point bp but no preconditioner. 84

5.7 Performance of GMRES(10) with starting point bp and preconditioner M−1. 84

5.8 Performance of GMRES(10) with zero starting point and preconditioner M−1. 85

5.9 CG is applicable. 87

5.10 Performance of GMRES(20): Example 5.1. 89

5.11 Performance of GMRES(50). 91

6.1 h-scaling: p = 1, c = 0. 100

6.2 h-scaling: p = 1, c = 0. 100

6.3 h-scaling: p = 1, c = 0. 100

A.1 Control points for the stretched rectangle. 116

A.2 Control points for the perturbed rectangle: x direction. 117

A.3 Control points for the perturbed rectangle: y direction. 117

A.4 p-scaling: N1D = 27, c = 0. 118

A.5 c-scaling: N1D = 27, p = 8. 118

A.6 p-scaling: N1D = 27, c = 0. 119

A.7 c-scaling: N1D = 27, p = 8. 119

A.8 h-scaling: p = 4, c = 3. 119

A.9 k-scaling: N1D = 29, c = p− 1. 119

A.10 p-scaling: N1D = 27, c = 0. 120

A.11 c-scaling: N1D = 27, p = 8. 120

A.12 p-scaling: N1D = 27, c = 0. 121

A.13 c-scaling: N1D = 27, p = 8. 121

A.14 Control points and weights for quarter annulus. 123

B.1 Quadratic convergence behavior. 126

C.1 Possibility of a better preconditioner. 137

12

LIST OF ABBREVIATIONS

Acronym Meaning

ADI Alternating Direction Implicit

CAD Computer-Aided Design

CG Conjugate Gradient

dofs degrees of freedom

FEA Finite Element Analysis

FEM Finite Element Method

GLL Gauss-Lobatto-Legendre

GMRES Generalized Minimal Residual

IGA Isogeometric Analysis

NURBS Non-Uniform Rational B-Spline

PDE Partial Differential Equation

SPD Symmetric Positive-Definite

13

LIST OF SYMBOLS

Symbol Meaning First appearance

Operators

, Partial differentiation Page 15

⊗ Kronecker product Page 18

V ec Reshape a vector to a matrix Page 23

Mat Reshape a matrix to a vector Page 24

‖ · ‖M M -norm Page 53

Mathematical quantities

wi Weight for the ith NURBS basis function Page 27

vi The ith (generalized) eigenvector Page 47

λXi /λ
Y
i The ith (generalized) eigenvalue Page 47/47

Numerical parameters

p Polynomial order of B-spline basis functions Page 30

c Continuity order of B-spline basis functions Page 30

h Mesh size Page 30

N1D Number of 1D elements Page 30

r(k) Acceleration parameter of the kth ADI iteration Page 46

Ninner Number of inner iteration steps Page 64

Physical parameters

κ/κ Diffusivity Page 57/67

k Wavenumber Page 76

ρ Density Page 87

B Bulk modulus Page 87

Other symbols
s Symbol for stagnation Page 70

— Symbol for reaching maximum iterations Page 70

14

Chapter 1

Introduction

High dimensional basis functions are needed for various scientific purposes, particu-

larly on numerical simulation of partial differential equations (PDEs). One straight-

forward way to construct high dimensional basis functions is to build them as tensor

products of one dimensional (1D) basis functions. We call these high dimensional

basis functions the tensor product basis functions.

Despite of the conciseness, tensor product basis functions are not very popular for

finite element method (FEM) due to the limitation that they can only be constructed

on rectangular domains.

However, with the rise of isogeometric analysis (IGA), where a rectangular compu-

tational domain is linked with the complicated physical domain by a global mapping,

tensor product basis functions are getting more and more attention in recent days. In

fact, one of the motivations of this work is to develop fast iterative solvers for linear

algebraic systems arising from IGA.

In simple cases, FEM matrices built with tensor product basis functions possess

the Kronecker product property. (Kronecker product is a specific terminology for

tensor product with restricted use on matrices.) This leads to efficient algorithms

on matrix operations, among which the inversion for Kronecker product matrices is

particularly appealing due to its low computational cost.

However, this nice Kronecker product structure is easily destroyed by the com-

15

plexities of PDEs, for instances, complicated geometry, complicated coefficients, com-

plicated operators and so on. To obtain efficient PDE solvers that can take these com-

plexities into account, we resort to preconditioned Krylov subspace methods where

the Kronecker product property is exploited when applying the preconditioners.

1.1 Problem Statement and Research Approach

Mass matrices and stiffness matrices arise from finite element discretization of various

PDE related problems. The attempt to understand the physical phenomena described

by these PDEs often leads us to the computational challenge of inverting a mass

matrix, a stiffness matrix or a linear combination of these two. We give several

simple model problems in 2D as examples in the following to demonstrate the origins

of these matrices and the Kronecker product structure they inherited from tensor

product basis functions. These model problems can be generalized to 3D easily.

Model Problem 1.

Heat equation (2D):

u,t = u,xx + u,yy + f (1.1)

defined on a rectangular domain, where ‘,’ indicates partial differentiation.

Discretizing (1.1) using (Galerkin’s) finite element method with 2D tensor product

basis functions B = By ⊗ Bx, the term ut leads us to the 2D mass matrix: M =

My⊗Mx while u,xx and u,yy lead us to matrices KX = My⊗Kx and KY = Ky⊗Mx,

respectively. The sum of KX and KY gives us the 2D stiffness matrix K.

In the above expressions, Mx and My stand for the 1D mass matrices built with

Bx and By, respectively; Kx and Ky stand for the 1D stiffness matrices built with

Bx and By, respectively.

Different approaches for solving PDE (1.1) lead to different linear algebraic prob-

lems. For instance, explicit time integration schemes lead to the problem of inverting

16

mass matrix M ; implicit time integration scheme lead to the problem of inverting

a linear combination of M and K: M + δK; if only the steady state solution is

concerned, where u,t = 0, inversion of K becomes the linear algebraic problem.

Model Problem 2.

Membrane vibration (2D):

u,xx + u,yy + λu = 0 (1.2)

defined on a rectangular domain.

After finite element discretization, (1.2) leads us to the following generalized eigen-

value problem:

Kb = λMb,

where K and M have the same definitions as in Model Problem 1 while b is a vector

with compatible size. Most numerical algorithms for generalized eigenvalue problems

require inverting the mass matrix M , see [6, 61, 71].

Model Problem 3.

Helmholtz equation (2D):

− (u,xx + u,yy)− k2u = f (1.3)

defined on a rectangular domain.

After finite element discretization, the matrix to be inverted in the linear algebraic

problem is: (K − k2M) , where K and M have the same definitions as in Model

Problem 1. The indefiniteness of this matrix adds significant numerical challenge, see

[31, 34, 39].

The purpose of this work is to develop fast iterative solvers to apply the inverses

of these matrices efficiently. The Kronecker product structure in M , KX and KY can

be exploited to develop fast iterative solvers by direction separation.

17

However, most real life problems cannot be modeled by these simple model prob-

lems and the Kronecker product structure of these matrices cannot be maintained

even if tensor product basis functions are used. This is due to the appearances of

complicated physical domains, non-constant coefficients or other factors that couple

the different spatial directions together. In these scenarios, we resort to precondi-

tioned Krylov subspace methods and exploit the Kronecker product property when

applying the preconditioners.

1.2 Objectives and Contributions

Efficient algorithms for inverting matrices arising from finite element discretization of

PDEs with tensor product basis functions can be designed by exploiting the Kronecker

product structure in these matrices, inherited from the basis functions.

The contributions of this thesis include:

• Preconditioning techniques for mass matrices.

• Preconditioning techniques for stiffness matrices.

• Preconditioning techniques for matrices arising from the Helmholtz equation.

18

Chapter 2

Background

2.1 Kronecker product

The Kronecker product operator, denoted by ⊗, is a special case of the tensor product

operator that is restrictively used on matrices. Symbolically, for matrices A and B

with arbitrary sizes,

A⊗B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB

 ,
where aij is an entry of A at the ith row and jth column with i ranging from 1 to

m and j ranging from 1 to n. Every entry in the first matrix A is replaced by the

second matrix B and then scaled by that replaced entry.

Kronecker product has mathematically elegant and practically useful properties.

We list several of them in the following:

• Mixed-product:

(A⊗B)(C ⊗D) = AC ⊗BD

• Inverse:

(A⊗B)−1 = A−1 ⊗B−1

19

• Transpose:

(A⊗B)T = AT ⊗BT

• Associative:

(A⊗B)⊗ C = A⊗ (B ⊗ C).

In the mixed-product and associative properties, the matrices need to have compatible

sizes so that multiplication makes sense; in the inverse property, both A and B need

to be invertible.

For derivations of the above properties and more information about Kronecker

products, see [75, 79]. [81] also serves as a valuable review on Kronecker products.

2.2 An algebraic view of the finite element matri-

ces built with tensor product basis functions

For derivations of matrices M , KX and KY from the model problems described in

the introduction, one can consult, for instance, [15, 20, 50, 76]. Here, we only point

out the entries of these matrices and the structure they inherited from tensor product

basis functions.

With a set of basis functions B, listed as a column vector, the mass matrix M

can be expressed in the following concise form:

M =

∫
Ω

BBTdΩ. (2.1)

Denote the partial derivative of B with respect to x as B,x and its derivative with

respect to y as B,y, also listed as column vectors, KX and KY can be expressed as:

KX =

∫
Ω

(B,x)(B,x)
TdΩ and KY =

∫
Ω

(B,y)(B,y)
TdΩ, (2.2)

20

correspondingly.

Take the 2D case as an example, assume B is built as: B = By⊗Bx, where By and

Bx are 1D basis functions, listed as column vectors. We readily have B,y = By
,y ⊗Bx

and B,x = By ⊗ Bx
,x, where Bx

,x and By
,y stand for the derivatives of Bx and By,

respectively. After substituting these relations into (2.1) and (2.2) and applying the

mixed-product property, we have

M =

∫
Ω

(
By(By)T

)
⊗
(
Bx(Bx)T

)
dΩ, (2.3)

and

KX =

∫
Ω

(
By(By)T

)
⊗
(
Bx
,x(B

x
,x)

T
)
dΩ,

KY =

∫
Ω

(
By
,y(B

y
,y)

T
)
⊗
(
Bx(Bx)T

)
dΩ.

(2.4)

Realizing that the integration domain Ω is rectangular in the model problems, the

integrals in (2.3) and (2.4) can be separated into products of 1D integrals:

M =

(∫
y

By(By)Tdy

)
⊗
(∫

x

Bx(Bx)Tdx

)
, (2.5)

and

KX =

(∫
y

By(By)Tdy

)
⊗
(∫

x

Bx
,x(B

x
,x)

Tdx

)
,

KY =

(∫
y

By
,y(B

y
,y)

Tdy

)
⊗
(∫

x

Bx(Bx)Tdx

)
.

(2.6)

Notice that

∫
y

By(By)Tdy and

∫
x

Bx(Bx)Tdx are simply the 1D mass matrices

built with By and Bx respectively while

∫
y

By
,y(B

y
,y)

Tdy and

∫
x

Bx
,x(B

x
,x)

Tdx are the

corresponding 1D stiffness matrices, we can express M , KX and KY in the following

concise forms:

M = My ⊗Mx, KX = My ⊗Kx, KY = Ky ⊗Mx, (2.7)

21

with the help of the following notations:

My =

∫
y

By(By)Tdy, M
x =

∫
x

Bx(Bx)Tdx, K
y =

∫
y

By
,y(B

y
,y)

Tdy, K
x =

∫
x

Bx
,x(B

x
,x)

Tdx.

However, we need to bear in mind that this separation is not valid whenever

there is a coupling term inside these integrals, even when the integration domain is

rectangular.

2.3 Isogeometric analysis and its basis functions

Isogeometric analysis (IGA) was first introduced by Hughes et al [51] in 2005 with

the attempt of bridging the two communities of computer-aided design (CAD) and

finite element analysis (FEA) together.

The existing gap between these two communities is that the geometry generated

by CAD is not necessarily suitable for FEA. The procedure of translation from CAD-

generated geometry to FEA-suitable geometry might take much longer time than it

takes for FEA. IGA is proposed to resolve this issue by using only one geometric

model for both CAD and FEA. One approach is to adopt the basis functions for

CAD directly for FEA.

B-splines and non-uniform rational B-splines (NURBS) are perhaps the most pop-

ular basis functions in CAD community, see [27, 40, 65, 69]. There has been a tremen-

dous effort in the IGA literature on using these basis functions for FEA, for instance,

see [3, 9, 16, 22, 23, 57]. Higher dimensional B-spline basis functions are built as ten-

sor products of 1D B-spline basis functions while higher dimensional NURBS basis

functions are built as weighted B-spline basis functions. Thus the algorithms that we

developed for tensor product basis functions can naturally be applied on IGA.

Under the IGA framework, restricted by their tensor product structure, basis

functions are built on a rectangular computational domain while the PDEs are posed

22

on a more complicated physical domain. As a linear combination of these basis func-

tions, our approximate solution is also constructed on this rectangular computational

domain. A global mapping links these two domains together. Change of variables in

the integrals is needed when assembling the linear algebraic systems and this natu-

rally introduces a coupling term inside the integrals, for instance, determinant of the

Jacobian matrix for mass matrices.

23

Chapter 3

Mass matrix

As mentioned in the introduction, for PDE related problems, the need for inverting

mass matrices can come from explicit dynamic evolution for time dependent PDEs or

generalized eigenvalue problems. There are various techniques on inverting mass ma-

trices, among which the most well-known one is probably the lumped-mass method,

for instance, see [42, 49, 50]. Despite of its simplicity, lumped-mass method suffers

from its inaccuracy. Here we propose an iterative method that can invert the original

mass matrices accurately and efficiently.

3.1 The ideal case

For model problems, if tensor product basis functions are used, the 2D mass matrix is

the Kronecker product of two 1D mass matrices: M = My ⊗Mx. Fast algorithm for

inverting Kronecker product matrices can be developed by exploiting this structure,

for instance, see [26, 63]. We restate this algorithm here for completeness. For

simplicity, we first introduce operators V ec and Mat, which will become handy in

the upcoming discussion. These two operators are borrowed from [81] and [58].

Definition 3.1. Let B ∈ Rm×n, V ec(B) is the operator that returns a column vector

24

at length mn by stacking all the columns of B together under the natural order:

V ec(B) ≡


B(:, 1)

...

B(:, n)

 . (3.1)

Definition 3.2. Let b be a column vector at length mn, Mat(b,m, n) is the operator

that returns a matrix of size m×n by chopping b into n pieces at length m and putting

these pieces into the matrix under the natural order:

Mat(b,m, n) ≡ [b(1 : m), · · · , b ((n− 1)m+ 1 : nm)] . (3.2)

In the above definitions, we also borrowed the colon notation ‘:’ from MATLAB [59].

With the above notations, we now present an algorithm to solve the following

linear system:

(My ⊗Mx)x = b, (3.3)

where My has size Ny×Ny and Mx has size Nx×Nx while x and b are column vectors

at length NyNx. Since M and b are built from basis functions By ⊗ Bx, the entries

in x and b have the corresponding order as in By ⊗Bx.

Algorithm 1.

1: B = Mat(b,Nx, Ny);
2: T = zeros(Nx, Ny);
3: X = zeros(Nx, Ny);
4: for j = 1 : Ny do
5: T (:, j) = Mx\B(:, j);
6: end for
7: for i = 1 : Nx do
8: X(i, :)T = My\T (i, :)T ;
9: end for

10: x = V ec(X);

In Algorithm 1, we also borrowed the commands ‘zeros’ and ‘\’ from MATLAB.

25

If we use a direct method to apply the inverses of Mx and My in the above algo-

rithm, and further, ifMx andMy are dense, the factorization cost isO ((Nx)
3 + (Ny)

3)

while the substitution cost is O ((Nx)
2Ny + (Ny)

2Nx); However, if Mx and My are

banded diagonal matrices with bandwidth independent of matrix size, which is com-

mon if they arise from finite element discretization due to the local support of ba-

sis functions, the factorization cost is O (Nx +Ny) while the substitution cost is

O (NxNy). In other words, for the case when Mx and My are banded diagonal, the

computational cost for solving (3.3) with Algorithm 1 is linear.

An illustration of Algorithm 1 is shown in Figure 3.1: We apply first Mx for all

the columns of the original data matrix from the vertical direction and then apply

My for all the rows of the intermediate data matrix from the horizontal direction.

Figure 3.1: Visualization of Algorithm 1.

Algorithm 1 can be generalized to solve linear systems involving higher dimen-

sional Kronecker product matrices:

(
Md ⊗ · · · ⊗M1

)
x = b, (3.4)

where M i has size Ni×Ni for i = 1, · · · , d while x and b are column vectors at length(
d∏
i=1

Ni

)
, as shown in Algorithm 2. Again, M, x and b are related with the set of

26

basis functions Bd ⊗ · · · ⊗B1.

Algorithm 2.

1: B = Mat(b,N1, · · · , Nd);
2: T = zeros(N1, · · · , Nd);
3: X = zeros(N1, · · · , Nd);
4: T (:, i2, i3, · · · , id) = M1\B(:, i2, i3, · · · , id);
5: T (i1, :, i3, · · · , id) = M2\B(i1, :, i3, · · · , id);
6:

...
7: T (i1, · · · , id−1, :) = Md\B(i1, · · · , id−1, :);
8: x = V ec(X);

Corresponding generalizations of V ec and Mat to higher dimensions are implied in

Algorithm 2. Again, for the case when all the M i are banded diagonal, the compu-

tational cost for solving (3.4) with Algorithm 2 is linear.

3.2 More complicated cases

However, the nice Kronecker product property of the mass matrix: M = My ⊗

Mx is only true for simple cases, like those model problems. For more complicated

situations, this property does not hold. Here we give several examples where coupling

terms appear in the integrals, preventing it from being separated by directions.

Complicated geometry. Lots of real life PDEs are posed on complicated do-

mains instead of rectangles. One approach to deal with complicated domains is iso-

geometric analysis (IGA) where the same set of basis functions are used to represent

both the geometry and the solution.

Under this IGA framework, basis functions are defined on a rectangular compu-

tational domain (denoted as 2) and a geometric mapping constructed as a linear

combination of these basis functions is defined to map this computational domain to

the complicated physical domain (denoted as Ω), where the PDE of interest is posed.

The approximate solution we are searching for is also a linear combination of these

27

basis functions, undergoing this geometric mapping.

When assembling the mass matrix, change of integration variables (from variables

on physical domain to variables on computational domain) is required, which intro-

duces an extra term in the integrals: the determinant of the Jacobian matrix, denoted

by J , associated with the geometric mapping. In general, this extra term J cannot

be separated as products of two functions, each of which depends only on one spatial

variable, thus these integrals cannot be broken down as we did in (2.5). Therefore,

this J becomes a coupling term that keeps the 2D integrals unfactorizable.

Non-constant coefficient. This case is relatively straightforward. Model Prob-

lem 1 deals only with ut while in some problems a coefficient ρ appears in front of ut.

When assembling the mass matrix, ρ arises as a coupling term in the integrals.

Rational basis functions. Under the IGA framework, non-uniform rational

B-spline (NURBS) basis functions are very popular due to their capability of repre-

senting complicated geometries. We briefly introduce NURBS basis functions in the

following. For more details, one can consult [21, 40, 51, 64, 65, 69].

A NURBS basis set is built from a B-spline basis set in the following procedure:

Given a B-spline basis set: B = {B1, B2, . . . , BN}, assign weight wi to each B-spline

basis function Bi, for i = 1, · · · , N , where wi is a positive real number. Define the

weight function WN as:

WN =
N∑
i=1

wiBi.

The NURBS basis set is then defined as:

R = {R1, R2, . . . , RN},

where

Ri =
Bi

WN

. (3.5)

NURBS basis functions are more powerful than B-splines on representing complicated

28

geometries due to the freedom of choosing the weights.

Remark 3.1. (3.5) is not the traditional definition of NURBS basis functions as one

might find, for instance, in [21] or [65], where the definition is given as:

Rtra = {Rtra
1 , Rtra

2 , . . . , Rtra
N },

where

Rtra
i =

wiBi

WN

.

Apparently R and Rtra are equivalent in the sense that they span the same function

space. We prefer R because it leads to a simpler form of the mass matrices.

Along with bringing more flexibility and capacity on representing complicated ge-

ometries, these weights wi also brings complexities to NURBS basis functions. Higher

dimensional NURBS basis functions are not tensor product of 1D NURBS basis func-

tions. However, they can be understood as weighted B-spline basis functions with

WN serving as the common weight for all basis functions. In this way, the numerators

of higher dimensional NURBS basis functions (according to (3.5), they are actually

B-splines) can be viewed as tensor products of 1D B-spline basis functions.

When assembling the mass matrix,
1

W 2
N

becomes an extra term that appears inside

the integrals, comparing with the case of assembling with B-spline basis functions. In

general, this weight function is not separable, thus
1

W 2
N

becomes a coupling term.

Remark 3.2. There are cases where complicated geometries and NURBS basis func-

tions are involved, but the 2D mass matrix still possesses the Kronecker product prop-

erty. See Appendix A.6 for the example of a quarter annulus.

Remark 3.3. In the following section, we only concentrate on the first case, i.e., cou-

pling due to complicated geometry. However, coupling due to non-constant coefficient

or rational basis functions can be dealt with in exactly the same manner.

29

3.3 Preconditioning

In cases like the three examples shown above where coupling terms arise in the inte-

grals, the mass matrix, for instance, in the case of complicated geometry:

MJ =

∫
2

(
Bη(Bη)T

)
⊗
(
Bξ(Bξ)T

)
Jd2,

cannot be written as the Kronecker product of 1D mass matrices as we did in (2.5).

Therefore, Algorithm 1 cannot be applied on MJ directly.

Here, we use variables ξ and η in stead of x and y in order to distinguish between

the parametrical domain (ξ and η) and the physical domain (x and y). Bξ and Bη

stand for the sets of 1D basis functions, defined on the parametrical domain. Denote

by Nξ and Nη the sizes of Bξ and Bη, respectively.

3.3.1 The simplest choice: M−1

The similarity between MJ and M urges us to think the following question:

Can we still exploit the simple structure of M on the task of inverting MJ?

The answer is yes and the approach is rather natural: to use an iterative method with

M−1 serving as the preconditioner for inverting MJ .

Among the various iterative methods, we choose the conjugate gradient (CG)

method for our specific matrix MJ due to its symmetric positive definiteness. For

more information about Krylov subspace methods and in general, iterative methods

and preconditioning techniques, see [5, 30, 41, 46, 47, 70, 77, 83]. [4, 10, 45, 72] also

serve as elegant review papers on relevant topics.

In Tables 3.1 and 3.2, we show some numerical results regarding the performance

of CG with the preconditioner M−1 on two testing domains, namely, the stretched

rectangle and the perturbed rectangle shown in Figure 3.2. Detailed information

about these two testing domains can be found in Appendix A.1. The iteration process

30

is stopped when the relative residual (in `2 norm) is less than 1e-12. Numerical results

with the lumped-mass preconditioner are also shown in these tables for comparison.

Stretched rectangle. Perturbed rectangle.

Figure 3.2: Testing domains.

In Table 3.1, polynomial order (p) and continuity order (c) of the basis functions

are fixed while mesh size (h = 1/N1D) is varying; in Table 3.2, mesh size is fixed

while polynomial order and continuity order of the basis functions are varying with

relationship: c = p− 1, i.e., the so called k-refinement [22, 24, 51].

N1D 23 24 25 26 27 28 29 210

Stretched
M−1 31 32 32 32 33 33 33 33

Lumped-mass 168 418 516 413 320 254 206 151

Perturbed
M−1 29 34 39 40 42 44 44 45

Lumped-mass 289 512 463 380 306 245 200 152

Table 3.1: h-scaling: p = 4, c = 3.

p 1 2 3 4 5 6 7 8

Stretched
M−1 33 33 33 33 33 33 33 33

Lumped-mass 25 54 107 206 373 650 682 728

Perturbed
M−1 44 45 44 44 44 44 44 44

Lumped-mass 26 55 105 200 346 459 505 599

Table 3.2: k-scaling: N1D = 29, c = p− 1.

Loosely speaking, iterative methods will have their best performances on identity

matrix. Most effective iterative methods, if not all, will converge after their first

31

iteration step for this case. To solve a linear system, the deviation of the matrix

from identity matrix requires iterative methods to iterate. And apparently, the more

variance there is between these two matrices, the more iteration steps are required to

remove this difference.

The role of a preconditioner is to bring the matrix closer to the identity matrix so

that less variance is left for the iterative method to remove, thus a faster convergence,

in terms of number of iteration steps, can be expected. The art of designing a good

preconditioner is to put into it as much correction as possible and meanwhile maintain

the ability to apply it efficiently.

Simple as it is, the preconditioner M−1 is actually quite powerful in the sense

that it corrects the part of deviation that corresponds to the structure of the matrix,

which eventually comes from the complexity of basis functions. The deviation left

for the conjugate gradient method to remove mainly comes from the complicated

geometry. This is why we observed a performance, in terms of number of iteration

steps, independent with mesh size in Table 3.1 and independent with polynomial

order in Table 3.2.

Additional numerical results can be found in Appendix A.2. In Table A.4, mesh

size and continuity order are fixed while polynomial order is varying; In Table A.5,

mesh size and polynomial order are fixed while continuity order is varying.

3.3.2 Partial inclusion of geometric information in the pre-

conditioners

Based on the above observations, the following question is natural:

Can we put the geometric information, at least partially, into the preconditioners

so that the difficulty of the task left for iterative methods is further reduced?

The answer is, again, yes and the ingredient is the local support property of basis

32

functions. Considering a representative entry of MJ :

MJ
AB =

∫
2

(Bη
i B

η
k)(Bξ

jB
ξ
l)Jd2,

where A = (i − 1)Nξ + j, B = (k − 1)Nξ + l. If basis function Bη
i only has local

support, then the integration region forMJ
AB on η direction is restricted on the support

region for Bη
i and the 2D integration domain is restricted on a thin strip of the whole

rectangle, illustrated in Figure 3.3.

Figure 3.3: Local support property of basis functions.

It is somehow plausible to assume that Jη|i, meaning J restricted on the ith thin

strip, does not have much variation on η direction, simply due to the shortness of the

support region. Under this assumption, we approximate MJ
AB by

MJ
AB ≈

(∫
η

Bη
i B

η
kdη

)(
1

Lηi

∫
2

Bξ
jB

ξ
l Jη|id2

)
,

where Lηi is the length of the support region for Bη
i . By introducing the following

notations:

M ξ
i =

1

Lηi

∫
2

Bξ(Bξ)TJη|id2, (3.6)

for i = 1, · · · , Nη, we can write down the corresponding approximation of MJ in the

33

following generalized Kronecker product form:

MJ ≈M ξ =


Mη(1, :)⊗M ξ

1

...

Mη(Nη, :)⊗M ξ
Nη

 . (3.7)

A similar generalization of Kronecker product can be found in [68].

A fast algorithm can be developed to invert M ξ, as shown in Algorithm 3 and

illustrated in Figure 3.4.

Algorithm 3.

1: B = Mat(b,Nξ, Nη);
2: T = zeros(Nξ, Nη);
3: X = zeros(Nξ, Nη);
4: for j = 1 : Nη do

5: T (:, j) = M ξ
j \B(:, j);

6: end for
7: for i = 1 : Nξ do
8: X(i, :)T = Mη\T (i, :)T ;
9: end for

10: x = V ec(X);

Figure 3.4: Visualization for Algorithm 3.

Algorithm 3 might be easier to understand if we apply the mix-product property of

34

Kronecker products and reformulate M ξ as following:

MJ ≈M ξ =


Mη(1, :)⊗M ξ

1

...

Mη(Nη, :)⊗M ξ
Nη



=


(
I1Mη(1, :)

)
⊗
(
M ξ

1I
ξ
)

...(
I1Mη(Nη, :)

)
⊗
(
M ξ

Nη
Iξ
)


=


(
I1 ⊗M ξ

1

)(
Mη(1, :)⊗ Iξ

)
...(

I1 ⊗M ξ
Nη

)(
Mη(Nη, :)⊗ Iξ

)


=


M ξ

1

. . .

M ξ
Nη




Mη(1, :)⊗ Iξ
...

Mη(Nη, :)⊗ Iξ



=


M ξ

1

. . .

M ξ
Nη


 Mη ⊗ Iξ

 .

In the above derivation, Iξ stands for the identity matrix of the same size of M ξ and

I1 stands for the identity matrix of size 1× 1, i.e., the scalar 1.

It is now readily seen that applying the inverse of M ξ can be decomposed to two

stages: The first stage is to apply the inverse of the block diagonal matrix composed

by M ξ
i , which is taken care of by lines 4-6 in Algorithm 3. The second stage is to

apply the inverse of the tensor product matrix Mη ⊗ Iξ, which is taken care of by

lines 7-9 in Algorithm 3.

Although an efficient algorithm is at hand for exploitation, M ξ cannot be combined

with CG due to its asymmetry. Some modification is needed in order to regain the

35

symmetry. We turn to Cholesky decomposition factors for help.

Denote Lη as the lower Cholesky decomposition factor for Mη and Lξi as the lower

Cholesky decomposition factor for M ξ
i . We present two symmetrized variants of M ξ,

namely, M ξS in (3.8) and M ξM in (3.9). Corresponding algorithms to apply their

inverses can be found in Algorithm 4 and Algorithm 5.

M ξS =


Lξ1

. . .

LξNη


 Mη ⊗ Iξ



(
Lξ1
)T

. . . (
LξNη

)T
 . (3.8)

Algorithm 4. (For M ξS)

1: B = Mat(b,Nξ, Nη);
2: T = zeros(Nξ, Nη);
3: X = zeros(Nξ, Nη);
4: for j = 1 : Nη do

5: X(:, j) = Lξj\B(:, j);
6: end for
7: for i = 1 : Nξ do
8: T (i, :)T = Mη\X(i, :)T ;
9: end for

10: for j = 1 : Nη do

11: X(:, j) =
(
Lξj
)T
\T (:, j);

12: end for
13: x = V ec(X);

We show some numerical results regarding the quality of M ξS in Table 3.3 and

Table 3.4. Again, numerical results with the lumped-mass preconditioner are shown

for comparison. Additional numerical results are provided in Appendix A.3, including

the performance of M ξM .

M ξM =

 Lη ⊗ Iξ



M ξ

1

. . .

M ξ
Nη


 (Lη)T ⊗ Iξ

 . (3.9)

36

Algorithm 5. (For M ξM)

1: B = Mat(b,Nξ, Nη);
2: T = zeros(Nξ, Nη);
3: X = zeros(Nξ, Nη);
4: for i = 1 : Nξ do
5: X(i, :)T = Lη\B(i, :)T ;
6: end for
7: for j = 1 : Nη do

8: T (:, j) = M ξ
j \X(:, j);

9: end for
10: for i = 1 : Nξ do

11: X(i, :)T = (Lη)T \T (i, :)T ;
12: end for
13: x = V ec(X);

N1D 23 24 25 26 27 28 29 210

Stretched
(M ξS)−1 10 8 6 6 5 4 4 3

Lumped-mass 168 418 516 413 320 254 206 151

Perturbed
(M ξS)−1 21 16 12 10 8 7 6 5

Lumped-mass 289 512 463 380 306 245 200 152

Table 3.3: h-scaling: p = 4, c = 3.

p 1 2 3 4 5 6 7 8

Stretched
(M ξS)−1 3 4 4 4 4 4 4 4

Lumped-mass 25 54 107 206 373 650 682 728

Perturbed
(M ξS)−1 5 5 6 6 6 7 7 7

Lumped-mass 26 55 105 200 346 459 505 599

Table 3.4: k-scaling: N1D = 29, c = p− 1.

In Table 3.3, the number of iterations corresponding to M ξS is decreasing as we

refine the mesh. This is because the assumption we made before: Jη|i does not have

much variation on η direction, becomes more valid since the support region of Bη
i

decreases as the mesh size gets smaller.

In Table 3.4, the number of iterations corresponding to M ξS is increasing as we

increase the polynomial order p. This is because the same assumption we made

before becomes less valid since the support region of Bη
i increases as we increase p

37

while keeping c = p− 1.

Analogically to M ξ, we can also approximate MJ by partially putting the geo-

metric information into the η direction.

3.3.3 Computational cost per iteration

Tables 3.1 - 3.4 tell us only one side of the story: the number of iteration steps

required for convergence is indeed reduced by the preconditioners. In the following,

we briefly investigate the computational cost at each iteration step, including the cost

for applying different preconditioners and the cost for matrix vector multiplication.

In this section, we only deal with the special case where c = p−1. More general cases

are dealt with in Appendix A.4.

For the preconditioner M−1, the factorization cost is merely for the two 1D matri-

ces, M ξ and Mη, thus can be neglected. The major computational cost for applying

M−1 is associated with the backward and forward substitutions, roughly at 4(2p+1)·N

operation counts. It is not competitive when comparing with the lumped mass pre-

conditioner, which only requires 1 ·N operations to apply. However, it turns out that

the computational cost for matrix vector multiplication is dominating at each itera-

tion step: roughly at 2(2p+ 1)2 ·N operation counts. Thus, the total computational

cost per iteration is barely increased by a factor around
2

2p+ 1
. As we increase p,

the preconditioner M−1 actually becomes ‘cheaper’ in a comparative sense.

For the preconditioner
(
M ξS

)−1
, the computational cost for backward and forward

substitutions is the same as M−1. However, the factorization cost becomes more

expensive. All of M ξ
i and Mη, in total (Nη + 1) 1D matrices, need to be factorized,

which amounts to roughly (3p+1)(p+1) ·N operation counts. Since (3p+1)(p+1) <

2(2p+1)2, we can conclude that, roughly, the factorization cost for
(
M ξS

)−1
amounts

to 1 additional iteration cost. Similar results can be obtained for
(
M ξM

)−1
.

To sum up, the additional computational cost for applying the preconditioner

38(
M ξS

)−1
or
(
M ξM

)−1
is marginal.

Remark 3.4. When generalized to the 3D case, the computational cost for backward

and forward substitutions is roughly at 6(2p+ 1) ·N while for matrix vector multipli-

cation, it becomes 2(2p+1)3 ·N . Therefore, the factor of the additional computational

cost per iteration is even smaller:
3

(2p+ 1)2
.

Remark 3.5. Our purpose of this discussion is merely to qualitatively demonstrate

the marginal additional cost for applying these preconditioners. That is why in the

above, we treat the four elementary arithmetic operations: addition, subtraction, mul-

tiplication and division, equivalently for simplicity, which may deviate from the reality.

3.3.4 Hybrid preconditioning

Despite of the acceleration of convergence speed, the extra factorization cost and

associated memory requirement are somehow unpleasant, particularly when it comes

to time-dependent nonlinear problems, where the mass matrix can change from step

to step. In this case, sometimes even the mass matrix is not explicitly formed due

to the prohibitively high assembly cost. The assembly of M ξ acquires 2D global

information as well. Although dissected into different strips, it can still be prohibitive.

This observation motivates us to look for an alternative strategy for preconditioning,

which requires lower assembling cost.

Recall the numerical results in Table 3.1 and Table 3.2, where iteration steps

corresponding to M−1 exhibit independent behavior with respect to mesh size and

polynomial order. The complicated matrix structure is well ‘preconditioned’ by M−1.

If in addition, we can find another preconditioner to ‘precondition’ the complicated

geometry solely, we might be able to achieve fast convergence speed by hybridizing

these two preconditioners together.

In searching for such a preconditioner, let us first look at the numerical perfor-

mance of the Jacobi preconditioner, shown in Table 3.5. Despite of its slow con-

39

vergence speed comparing with M−1, there is some nice feature about the Jacobi

preconditioner: it works better as we refine the mesh. This indicates that the Jacobi

preconditioner might be able to ‘precondition’ the complicated geometry, in contrast

with M−1. For a detailed discussion on the effect of the Jacobi preconditioner on

mass matrices, one can consult [89, 90].

N1D 23 24 25 26 27 28 29 210

Stretched
M−1 31 32 32 32 33 33 33 33
Jacobi 168 414 516 387 328 301 287 269

Perturbed
M−1 29 34 39 40 42 44 44 45
Jacobi 276 500 458 378 327 308 292 275

Table 3.5: h-scaling: p = 4, c = 3.

Based on the above observation, the following question naturally arises:

Can we combine these two preconditioners, M−1 and Jacobi, together to achieve

faster convergence than with each one individually?

The answer is, again, yes, but some extra effort is needed. If we simply put the

square root of the Jacobi preconditioner on both sides of M−1 (splitting the Jacobi

preconditioner into its square roots is to preserve symmetry), instead of improvement

on the performance, deterioration happens, as shown in Tables 3.6 and 3.7.

N1D 23 24 25 26 27 28 29 210

Stretched
Hybrid 48 43 41 38 35 35 34 31
M−1 31 32 32 32 33 33 33 33

Perturbed
Hybrid 56 51 48 45 42 40 37 36
M−1 29 34 39 40 42 44 44 45

Table 3.6: h-scaling: p = 4, c = 3.

p 1 2 3 4 5 6 7 8

Stretched
Hybrid 10 17 25 34 40 47 56 66
M−1 33 33 33 33 33 33 33 33

Perturbed
Hybrid 12 21 29 37 46 54 61 72
M−1 44 45 44 44 44 44 44 44

Table 3.7: k-scaling: N1D = 29, c = p− 1.

40

The reason behind is that M−1 already provides a fairly good correction on the

deviation from matrix structure. Adding the Jacobi preconditioner on top results in

overcorrection on the deviation from matrix structure.

Some adjustment is thus needed. Our approach is to remove the information of

basis functions from the Jacobi preconditioner: when assembling the Jacobi precon-

ditioner, we replace the involved basis functions with constant 1, and then rescale

with respect to the sizes of their support region.

In Tables 3.8 and 3.9, we show some numerical results regarding the quality of

this newly designed hybrid preconditioner. This time, the hybrid preconditioner

demonstrates competitive performance even when comparing with M ξS.

Moreover, when it comes to time-dependent nonlinear problems where the mass

matrix changes from step to step, we only need to update a diagonal matrix (the

modified Jacobi preconditioner) in order to maintain fast convergence speed at each

time step. The other component of the hybrid preconditioner, M−1, can be used for

all steps as long as the basis functions are unchanged. The assembling cost is thus

maintained at low level. Additional numerical results are provided in Appendix A.5.

N1D 23 24 25 26 27 28 29 210

Stretched
Hybrid 11 9 7 6 5 4 4 3
(M ξS)−1 10 8 6 6 5 4 4 4

Perturbed
Hybrid 26 20 15 12 10 8 7 6
(M ξS)−1 21 16 12 10 8 7 6 5

Table 3.8: h-scaling: p = 4, c = 3.

p 1 2 3 4 5 6 7 8

Stretched
Hybrid 3 4 4 4 4 4 4 4
(M ξS)−1 3 4 4 4 4 4 4 4

Perturbed
Hybrid 5 6 7 7 7 8 8 8
(M ξS)−1 5 5 6 6 6 7 7 7

Table 3.9: k-scaling: N1D = 29, c = p− 1.

Remark 3.6. Although only 2D preconditioners, algorithms and numerical examples

are presented in Section 3.3, their extensions to 3D case are straightforward.

41

3.4 Improving starting points

Not only the quality of the preconditioner affects the performance of the Krylov Sub-

space method, but also the quality of the starting point. A carefully chosen starting

point can reduce the computational cost substantially. In this section, we propose an

economic strategy to construct starting points that are close to the solutions.

Still take the complicated geometry case as an example. Suppose we are interested

on solution of the following linear system:

MJbJ = FJ , (3.10)

where MJ and FJ are the mass matrix and right hand side built for the complicated

physical domain with basis functions {Bi}Ni=1. We propose solution of the following

linear system:

Mb = F (3.11)

as the starting point for linear system (3.10), where M and F are the mass matrix

and right hand side built with the same basis functions {Bi}Ni=1, but as if the physical

domain is identical with the parametrical domain, i.e., a rectangle. Since M possesses

the Kronecker product property, solution of linear system (3.11) is easy to obtain.

Motivation behind this proposed starting point is explained in the following. So-

lution of linear system (3.10) is identical to solution of minimization problem (3.12):

arg min
{bJi }

∫
2

(f −
N∑
i=1

bJi Bi)
2Jd2 (3.12)

while the solution of linear system (3.11) is identical to the solution of minimization

problem (3.13):

arg min
{bi}

∫
2

(f −
N∑
i=1

biBi)
2d2. (3.13)

42

Solutions of these two minimization problems, (3.12) and (3.13), get closer and

closer as the space of basis functions {Bi}Ni=1 gets richer and richer. Therefore, at

least when the space of basis functions is rich enough, solution of linear system (3.11)

should serve as a good starting point for linear system (3.10). In the following, we

refer to this starting point the ‘improved starting point’.

We demonstrate some numerical results to verify this claim. Figure 3.5 and 3.6

record the initial residual (in `2 norm) of linear system (3.10) with the improved

starting point. Figure 3.5 corresponds to the stretched rectangle while Figure 3.6

corresponds to the perturbed rectangle shown in Figure 3.2.

Different lines in Figure 3.5 and 3.6 correspond to different types of B-spline basis

functions. For instance, P2C1 corresponds to quadratic B-spline basis functions with

continuity order 1. We see from both figures that as we refine the mesh, the initial

residual indeed decreases as predicted.

Figure 3.5: Starting residual vs mesh size: stretched rectangle.

43

Figure 3.6: Starting residual vs mesh size: perturbed rectangle.

Tables 3.1 and 3.2 record the number of iteration steps required for convergence

with the improved starting points, in comparison with zero starting points, for pre-

conditioned conjugate gradient method with the preconditioners M−1 and (M ξS)−1,

respectively.

The iteration process is stopped when relative residual (in `2 norm) is less than

1e-12. In both tables, polynomial order (p) and continuity order (c) of the basis

functions are fixed while mesh size (h = 1/N1D) is varying.

M−1 N1D 23 24 25 26 27 28 29 210

Stretched
I.S.P. 28 20 8 4 2 1 0 0
Z.S.P. 31 32 32 32 33 33 33 33

Perturbed
I.S.P. 27 31 29 23 19 16 12 8
Z.S.P. 29 34 39 40 42 44 44 45

Table 3.10: h-scaling: p = 4, c = 3.
I.S.P.: improved starting points; Z.S.P.: zero starting points.

44

(M ξS)−1 N1D 23 24 25 26 27 28 29 210

Stretched
I.S.P. 8 5 4 2 1 1 0 0
Z.S.P. 10 8 6 6 5 4 4 4

Perturbed
I.S.P. 19 15 9 6 4 3 2 1
Z.S.P. 21 16 12 10 8 7 6 5

Table 3.11: h-scaling: p = 4, c = 3.
I.S.P.: improved starting points; Z.S.P.: zero starting points.

Similar to the complicated geometry case, for the case of complicated coefficient,

the resulting linear system Mβbβ = Fβ corresponds to minimization problem

arg min
{bβi }

∫
2

(
f

β
−

N∑
i=1

bβi Bi)
2βd2.

We propose solution of the following minimization problem:

arg min
{bi}

∫
2

(
f

β
−

N∑
i=1

biBi)
2d2

as our ‘improved starting point’. For the case of complicated basis functions, the

resulting linear system Mwbw = Fw corresponds to minimization problem

arg min
{bwi }

∫
2

(fWN −
N∑
i=1

bwi Bi)
2 1

W 2
N

d2.

We propose solution of the following minimization problem:

arg min
{bi}

∫
2

(fWN −
N∑
i=1

biBi)
2d2

as our ‘improved starting point’. Moreover, for the situation where more than 1 of the

above difficulties are involved, one can easily write down the minimization problems

and the corresponding ‘improved starting point’.

45

Chapter 4

Stiffness matrix

Comparing with mass matrices, stiffness matrices are numerically more challenging

due to their increasing condition number as the computational mesh gets refined

[30, 38]. There are plenty of existing works offering efficient algorithms for solving

the Poisson type equations, see for instance, [7, 17, 48, 53, 60, 73, 78]. Here we

propose a specific approach by exploiting the Kronecker product structure in the

stiffness matrices.

4.1 The ideal case

Let us first focus on the linear algebraic system arising from the stationary state of

Model Problem 1. In Section 3.1, we presented Algorithm 1 to invert the mass matrix

M . However, for the stiffness matrix K = KX +KY arising from Model Problem 1,

this simple algorithm does not work anymore. This is because albeit KX = My⊗Kx

and KY = Ky ⊗Mx have the Kronecker product structure individually, their sum

does not possess this structure anymore.

Thus we need a more sophisticated strategy to exploit the structures in KX and

KY . Early attempts can be found in [8] and [82], for instance. Here we find our

strategy by shifting towards iterative methods again. Specifically, we resort to the

alternating direction implicit algorithm.

46

As the name of the algorithm indicates, we split the stiffness matrix K into two

parts: KX and KY , and deal with only one of them at a single iteration step. The

iterative scheme couples these two parts together and leads us to the convergence of

solution with respect to the original matrix K.

4.1.1 Alternating direction implicit method: origin

The Alternating Direction Implicit (ADI) method was proposed in [62] as a numerical

method for parabolic and elliptic PDEs. Thorough explanations of the ADI method

can also be found in [11, 83, 87, 88, 92]. Here we only sketch the general idea briefly.

For the linear algebraic system:

(KX +KY)b = F , (4.1)

the following scheme can be used to solve (4.1) iteratively:

(r(k)Σ +KX)b(k+ 1
2

) = (r(k)Σ−KY)b(k) + F , (4.2a)

(r(k)Σ +KY)b(k+1) = (r(k)Σ−KX)b(k+ 1
2

) + F . (4.2b)

The motivation behind the development of this iterative scheme is that if KX and

KY come from the finite difference discretization of u,xx and u,yy, respectively, with

the five-point stencil, they can be reformulated as tridiagonal matrices after suitable

permutations. An efficient algorithm (the tridiagonal matrix algorithm, also knows as

the Thomas algorithm, see [66, 67]) can be applied to invert non-singular tridiagonal

matrices efficiently.

Therefore, if adding the extra term r(k)Σ does not destroy this tridiagonal struc-

ture in KX and KY , (4.2a) and (4.2b) can be solved efficiently. This is why in most

early literatures on ADI, Σ is chosen as the identity matrix, or diagonal matrices [88].

47

Adding r(k)Σ can ensure that the matrices to be inverted in (4.2a) and (4.2b) are

non-singular, but more importantly, it accelerates the convergence speed.

To see why it is so, we set Σ to the identity matrix I and subtract the following

equivalent forms of (4.1):

(r(k)I +KX)b = (r(k)I −KY)b+ F ,

(r(k)I +KY)b = (r(k)I −KX)b+ F ,

from (4.2a) and (4.2b), respectively, obtaining:

(r(k)I +KX)e(k+ 1
2

) = (r(k)I −KY)e(k), (4.3a)

(r(k)I +KY)e(k+1) = (r(k)I −KX)e(k+ 1
2

), (4.3b)

where e(i) = b(i) − b for i = k, k + 1
2

and k + 1.

Substituting e(k+ 1
2

) from (4.3a) into (4.3b), we get

e(k+1) =
[
(r(k)I +KY)−1(r(k)I −KX)(r(k)I +KX)−1(r(k)I −KY)

]
e(k). (4.4)

Defining P(k) = (r(k)I +KY)−1(r(k)I −KX)(r(k)I +KX)−1(r(k)I −KY), we have

e(k+1) =

(
k∏
j=0

P(j)

)
e(0), (4.5)

where
(∏k

j=0P(j)
)

= P(k) · · · P(0).

Now let us further simplify the problem by making the following assumption:

there exists a set of orthonormal eigenvectors {vi}Ni=1 such that KXvi = λXi vi and

KY vi = λYi vi, where N × N is the size of KX and KY . Under this assumption, we

have:

Theorem 4.1. If KX and KY are N ×N symmetric positive definite matrices that

48

share a same set of orthonormal eigenvectors {vi}Ni=1 with corresponding eigenvalues

{λXi }Ni=1 and {λYi }Ni=1, respectively, and {r(j)}k+1
j=0 is a set of positive real numbers,

then ∥∥e(k+1)
∥∥

2
≤

∥∥∥∥∥
k∏
j=0

P(j)

∥∥∥∥∥
2

·
∥∥e(0)

∥∥
2

(4.6)

with ∥∥∥∥∥
k∏
j=0

P(j)

∥∥∥∥∥
2

= max
1≤i≤N

{
k∏
j=0

∣∣∣∣r(j) − λXi
r(j) + λXi

∣∣∣∣ · ∣∣∣∣r(j) − λYi
r(j) + λYi

∣∣∣∣
}
< 1 (4.7)

and ∥∥∥∥∥
k+1∏
j=0

P(j)

∥∥∥∥∥
2

<

∥∥∥∥∥
k∏
j=0

P(j)

∥∥∥∥∥
2

. (4.8)

The requirement on KX and KY in Theorem 4.1 can be relaxed so that only one

of them is symmetric positive definite while the other can be symmetric positive semi-

definite. Allowing this relaxation is important for the case when Neumann boundary

conditions are imposed, for instance, on two parallel edges of a rectangular domain.

For proof of Theorem 4.1 and further discussions, please refer to [83]. We also

include two comments from [83] here:

1. The requirement that KX and KY share a same set of eigenvectors is not needed

for (4.8);

2. If either {λXi }Ni=1 or {λXi }Ni=1 is known a priori, a direct method for (4.1) can be

designed by letting r(j) going through all elements of the known eigenvalue set.

(4.6) and (4.7) motivates the investigate on the following min - max problem in

order to accelerate the convergence:

{s(j)}kj=0 = arg min

{r(j)}kj=0

{
max

1≤i≤N

{
k∏
j=0

∣∣∣∣r(j) − λXi
r(j) + λXi

∣∣∣∣ · ∣∣∣∣r(j) − λYi
r(j) + λYi

∣∣∣∣
}}

. (4.9)

However, (4.9) is not practical since it is hard to obtain all the eigenvalues {λXi }Ni=1

49

and {λXi }Ni=1. Instead, the following relaxed problem:

{s(j)}kj=0 = arg min

{r(j)}kj=0

{
max

0<α≤x≤β

{∣∣∣∣∣
k∏
j=0

r(j) − x
r(j) + x

∣∣∣∣∣
}}

(4.10)

is thoroughly discussed in [85] under the assumption that lower bound α and upper

bound β for {λXi }Ni=1 and {λXi }Ni=1 can be found such that 0 < α ≤ λXi , λ
Y
i ≤ β, 1 ≤

i ≤ N. In the sense of (4.10), a set of optimal parameters {s(j)}kj=0 can be selected,

based on the following theorem (again from [83]):

Theorem 4.2. A unique set of distinct parameters {s(j)}kj=0 can be found as the

solution of the min - max problem (4.10).

For proof of Theorem 4.2, please consult [83], or [85, 87] for direct information and

[1, 19] for background knowledge on approximation theory.

More importantly, [85] gives a theoretically sound and numerically elegant algo-

rithm to find these optimal parameters for the special case where k = 2i with i a

nonnegative integer. [83] is also a good reference for understanding the algorithm

and the effects of these optimal parameters.

In reality, the assumption that KX and KY share a same set of eigenvectors is

rarely satisfied, see [83]. There are various attempts on extending the theory and

practice of ADI to more general cases, among which we find the ‘compound iteration’

idea presented in [86] particularly appealing. In [86], ADI is used for the ‘inner

iteration’ to approximately invert an approximate matrix of K that satisfies this

assumption. This iteration scheme serves as the preconditioner while the conjugate

gradient method is used for the ‘outer iteration’ to solve the preconditioned linear

algebraic system. It is worth mentioning that this compound iteration idea might

be the first attempt to use an iterative scheme as a preconditioner for the conjugate

gradient method, see [45].

50

4.1.2 Alternating direction implicit method: generalization

A brief introduction to ADI has been given in Section 4.1.1, focusing on the linear

algebraic systems arising from finite difference discretization with a five point stencil.

However, the linear algebraic systems that we are dealing with are slightly differ-

ent from those in the finite difference discretization case. Coming from finite element

discretization, KX and KY are generally not tridiagonal matrices (even after permu-

tations), thus the Thomas algorithm is not applicable to these matrices.

Nevertheless, KX and KY possess the Kronecker product structure if tensor prod-

uct basis functions are used in the finite element discretization. Thus the inverses of

KX = My ⊗Kx and KY = Kx ⊗My (both are assumed to be symmetric positive-

definite here) can still be applied efficiently with Algorithm 1.

Now, we need an appropriate matrix Σ to accelerate the convergence speed (also

ensure the non-singularity), but without destroying the Kronecker product structure.

Identity matrix is not an option anymore. Luckily, the mass matrix M = My ⊗Mx

is ready to be summoned. Preservation of the Kronecker product structure can be

easily verified using the following properties of Kronecker product, see [75]:

(cA)⊗B = c(A⊗B) = A⊗ (cB),

(A+B)⊗ (C +D) = A⊗ C + A⊗D +B ⊗ C +B ⊗D,

where c is a scalar while A, B, C, D are matrices with compatible sizes.

With the ability of solving linear algebraic systems (4.2a) and (4.2b) efficiently,

the following question is: how to choose a set of parameters {r(k)} to accelerate the

convergence speed. Fortunately, all the theories developed for the finite difference case

in Section 4.1.1 are still applicable after a slight modification on the measurement.

Under the same procedure as in Section 4.1.1, but setting Σ to the mass matrix

51

M in (4.2) leads us to the following relationship:

e(k+1) =
[
(r(k)M +KY)−1(r(k)M −KX)(r(k)M +KX)−1(r(k)M −KY)

]
e(k). (4.11)

Adapting the definition of P(k) to

P(k) = (r(k)M +KY)−1(r(k)M −KX)(r(k)M +KX)−1(r(k)M −KY),

we can still write:

e(k+1) =

(
k∏
j=0

P(j)

)
e(0). (4.12)

To determine a set of acceleration parameters {r(k)} for the case Σ = M , we

assume that there exists a set of M -orthonormal generalized eigenvectors {vi}Ni=1

such that

KXvi = λXi Mvi, (4.13a)

KY vi = λYi Mvi, (4.13b)

where N × N is the size of KX , KY and M . For two vectors vi and vj to be M -

orthonormal, we mean:

(vi)
TMvj =

{
1 if i = j,

0 if i 6= j.

For matrices arising from the model problems: M = My ⊗Mx, KX = My ⊗Kx

and KY = Ky⊗Mx, the above assumption is actually satisfied. We demonstrate this

in a constructive manner:

Lemma 4.1. Assume KxV x = MxV xDx and KyV y = MyV yDy where Dx and Dy

are diagonal, then for matrices M = My⊗Mx, KX = My⊗Kx and KY = Ky⊗Mx,

52

we have the following relationships:

KXV = MVDX ,

KY V = MVDY ,

with V = V y ⊗ V x, DX = Iy ⊗Dx and DY = Dy ⊗ Ix where Ix and Iy stand for the

identity matrices with the same sizes as Dx and Dy, respectively.

If we further have

(V x)TMxV x = Ix, (4.14a)

(V y)TMyV y = Iy, (4.14b)

then V TMV = Iy ⊗ Ix is also true.

Proof.

KXV = (My ⊗Kx)(V y ⊗ V x)

= (MyV y)⊗ (KxV x)

= (MyV yIy)⊗ (MxV xDx)

=
(
(MyV y)⊗ (MxV x)

)
(Iy ⊗Dx)

= (My ⊗Mx)(V y ⊗ V x)(Iy ⊗Dx)

= MVDX ;

KY V = (Ky ⊗Mx)(V y ⊗ V x)

= (KyV y)⊗ (MxV x)

= (MyV yDy)⊗ (MxV xIx)

=
(
(MyV y)⊗ (MxV x)

)
(Dy ⊗ Ix)

= (My ⊗Mx)(V y ⊗ V x)(Dy ⊗ Ix)

= MVDY ;

53

V TMV = (V y ⊗ V x)T (My ⊗Mx)(V y ⊗ V x)

=
(
(V y)T ⊗ (V x)T

) (
(MyV y)⊗ (MxV x)

)
=

(
(V y)TMyV y

)
⊗
(
(V x)TMxV x

)
= Iy ⊗ Ix.

To clarify, in the following, when using the terminology ‘generalized eigenval-

ue/eigenvector’ of KX or KY , we refer to the generalized eigenvalue/eigenvector de-

fined by (4.13a) or (4.13b), respectively. Similarly, the generalized eigenvalue/eigen-

vector of Kx or Ky corresponds to the eigen-decomposition KxV x = MxV xDx or

KyV y = MyV yDy, respectively.

Lemma 4.1 also tells us that the generalized eigenvalues of KX are repeated: KX

has the same set of distinct generalized eigenvalues as Kx. The analogical result holds

for KY and Ky.

Moreover, coming from the finite element discretization, Kx and Ky are symmet-

ric positive semi-definite while Mx and My are symmetric positive definite. This

guarantees that all the diagonal entries of Dx and Dy are non-negative real numbers

and there exist full rank matrices V x and V y such that (4.14a) and (4.14b) are sat-

isfied, see [46, 71]. Additionally, this also tells us that columns of V form a basis for

vector space RN . When this happens, we refer to V as the generalized eigen-matrix.

With all these properties established above, we can now proceed to analyze the re-

lationships between errors at different iteration steps and the selection of acceleration

parameters. We first introduce the M -norm:

Definition 4.1. Given a symmetric positive definite matrix M , the M-norm of a

vector v with compatible size is defined as:

‖v‖M =
(
vTMv

) 1
2 .

54

For matrix A with compatible size, the induced matrix M-norm is defined as:

‖A‖M = sup
v 6=0

‖Av‖M
‖v‖M

.

For brevity, we omit the verifications of whether the above definitions meet the re-

quirements of a norm. See [77] if one has concerns.

The above definitions immediately lead us to the following inequality, analogous

to (4.6): ∥∥e(k+1)
∥∥
M
≤

∥∥∥∥∥
k∏
j=0

P(j)

∥∥∥∥∥
M

·
∥∥e(0)

∥∥
M
. (4.15)

Now we can focus on the term

∥∥∥∥∥
k∏
j=0

P(j)

∥∥∥∥∥
M

. For any generalized eigenvector vi (a

column of V), we have the following relations that can be easily verified:

(r(k)M −KX)vi = (r(k) − λXi)Mvi,

(r(k)M −KY)vi = (r(k) − λYi)Mvi,

and
1

(r(k) + λXi)
vi = (r(k)M +KX)−1Mvi,

1

(r(k) + λYi)
vi = (r(k)M +KY)−1Mvi,

given that r(k) is a positive real number. These relations enable us to look through

the effect of applying P(k) on a generalized eigenvector vi:

P(k)vi =

(
r(k) − λXi
r(k) + λXi

)
·
(
r(k) − λYi
r(k) + λYi

)
vi; (4.16)

and similarly for
k∏
j=0

P(j):

(
k∏
j=0

P(j)

)
vi =

(
k∏
j=0

(
r(j) − λXi
r(j) + λXi

)
·
(
r(j) − λYi
r(j) + λYi

))
vi. (4.17)

55

Since {vi}Ni=1 are M -orthonormal with each other, we have the following relationships,

analogous to (4.7) and (4.8):

∥∥∥∥∥
k∏
j=0

P(j)

∥∥∥∥∥
M

= max
1≤i≤N

{
k∏
j=0

∣∣∣∣r(j) − λXi
r(j) + λXi

∣∣∣∣ · ∣∣∣∣r(j) − λYi
r(j) + λYi

∣∣∣∣
}
< 1 (4.18)

and ∥∥∥∥∥
k+1∏
j=0

P(j+1)

∥∥∥∥∥
M

<

∥∥∥∥∥
k∏
j=0

P(j)

∥∥∥∥∥
M

. (4.19)

We summarize the above results in the following theorem:

Theorem 4.3. If KX , KY and M are N ×N symmetric positive definite matrices

and there exists a generalized eigen-matrix V such that KXV = MVDX and KY V =

MVDY hold, then ∥∥e(k+1)
∥∥
M
≤

∥∥∥∥∥
k∏
j=0

P(j)

∥∥∥∥∥
M

·
∥∥e(0)

∥∥
M

(4.20)

with ∥∥∥∥∥
k∏
j=0

P(j)

∥∥∥∥∥
M

= max
1≤i≤N

{
k∏
j=0

∣∣∣∣r(j) − λXi
r(j) + λXi

∣∣∣∣ · ∣∣∣∣r(j) − λYi
r(j) + λYi

∣∣∣∣
}
< 1 (4.21)

and ∥∥∥∥∥
k+1∏
j=0

P(j+1)

∥∥∥∥∥
M

<

∥∥∥∥∥
k∏
j=0

P(j)

∥∥∥∥∥
M

. (4.22)

Once again, the requirement on KX and KY in Theorem 4.3 can be relaxed so

that only one of them is symmetric positive definite while the other can be symmetric

positive semi-definite. The same as for Theorem 4.1, we have the following two

analogical comments for Theorem 4.3:

1. The requirement that KX and KY share a same set of generalized eigenvectors

is not needed for (4.22);

2. If either {λXi }Ni=1 or {λXi }Ni=1 is known a priori, a direct method for (4.1) can

be designed by letting r(j) going through all elements of the known generalized

56

eigenvalue set. Based on Lemma 4.1, r(j) only need to go through all the

generalized eigenvalues of Kx or Ky.

Theorem 4.3 also shows that min-max problem (4.9) and its relaxed version: (4.10)

can still provide valuable information on selecting acceleration parameters for the

case Σ = M . Specifically, the set of acceleration parameters provided by (4.10) is

still optimal, but in terms of error reduction under the M -norm.

Remark 4.1. For linear algebraic system
(
δM +KX +KY

)
b = F , δ > 0, which

arises, possibly, from a finite element discretization in space coupled with an implicit

time discretization for Model Problem 1, or from a reaction diffusion equation, the

above ADI algorithm, along with the associated theories, is still applicable. The only

adjustment needed is a shift of the acceleration parameters according to δ.

Remark 4.2. The generalization of ADI presented in Section 4.1.2 has already been

discussed in [28], where Tensor Product Generalized Alternating Direction Implicit

(TPGADI) iterative method is proposed for linear algebraic systems having the form

(A1 ⊗ B2 + A2 ⊗ B1)C = F. There are only minor differences in between [28] and

what we presented in 4.1.2:

1. We adopt a slightly different approach for the derivation and proof of the method,

namely, we use the generalized eigen-pairs while [28] uses eigen-pairs of the

transformed matrices B−1
1 A1 and B−1

2 A2;

2. We obtain the relationships between errors at different steps in terms of vector

norms (Theorem 4.3) while [28] obtains the relationships in a component-wise

sense;

3. Selection of acceleration parameters is not discussed in [28] while we discuss it

as a natural following up of Theorem 4.3 and show that the solution of min-max

problem (4.10) is still optimal in the M-norm sense.

57

In the next section, we will use the solution technique developed in Section 4.1.2

for the ideal Model Problem 1 as a preconditioning technique for more general cases.

But first, let us show some numerical results for the ideal case. We apply the ADI

algorithm to linear algebraic systems (M +KX +KY)b = F discretized with 32× 32,

128× 128 and 512× 512 elements meshes with tensor product linear basis functions

for various numbers of optimal acceleration parameters, denoted as k.

The actual error reduction rates (columns tagged as ‘observed’) and their upper

bounds provided from [85] (columns tagged as ‘predicted’) for these optimal accelera-

tion parameters are recorded in Table 4.1. Appendix B.1 provides a brief description

of this upper bound. If one has further interest, a thorough discussion can also be

found in [83].

32× 32 128× 128 512× 512
k observed predicted observed predicted observed predicted
1 9.75E-01 9.75E-01 9.94E-01 9.94E-01 9.98E-01 9.98E-01
2 6.35E-01 6.35E-01 7.98E-01 7.98E-01 8.93E-01 8.93E-01
4 1.28E-01 1.28E-01 2.48E-01 2.48E-01 3.80E-01 3.80E-01
8 4.16E-03 4.16E-03 1.58E-02 1.58E-02 3.89E-02 3.89E-02
16 4.33E-06 4.33E-06 6.25E-05 6.25E-05 3.78E-04 3.78E-04
32 5.03E-12 4.68E-12 9.74E-10 9.75E-10 3.56E-08 3.57E-08
64 3.03E-13 5.49E-24 9.69E-13 2.38E-19 1.10E-10 3.19E-16

Table 4.1: Error reduction rates and upper bounds.
Zero initial points and random right hand sides are used.

From Table 4.1, we can see that upper bound for the error reduction rate provided

from [85] is extremely tight, thus can serve as a good indicator for deciding how many

optimal acceleration parameters shall be selected, given a desired error reduction rate.

4.2 Orthotropic inhomogeneous coefficients

Model Problem 1 is a simplification for more general cases, for instance:

ut = ∇ ·
(
κ(x, y)∇u(x, y)

)
+ f(x, y), (4.23)

58

where κ(x, y) is a 2× 2 tensor:

κ(x, y) =

 κ11(x, y) κ12(x, y)

κ21(x, y) κ22(x, y)


with κ12 = κ21. In this section, we concern ourselves with the static solution of (4.23),

governed by

−∇ ·
(
κ(x, y)∇u(x, y)

)
= f(x, y), (4.24)

with orthotropic coefficients, i.e., κ12 = κ21 = 0.

Discretized with the finite element method using tensor product basis functions

By ⊗Bx, (4.24) leads to the following linear algebraic system:

(K̃X + K̃Y)b = F , (4.25)

where

K̃X =

∫
2

(
By(By)T

)
⊗
(
Bx
,x(B

x
,x)

T
)
κ11d2, (4.26a)

K̃Y =

∫
2

(
By
,y(B

y
,y)

T
)
⊗
(
Bx(Bx)T

)
κ22d2. (4.26b)

Similar as the term J in the mass matrix case (see Section 3.3), κ11 and κ22 are now

the coupling terms that prevent splitting the 2D integrals. Thus K̃X and K̃Y do not

possess the Kronecker product structure and the ADI method shown in Section 4.1.2 is

no longer applicable. Once again, we resort to iterative methods and preconditioning.

4.2.1 The simplest choice: (KX +KY)−1

The simplest idea would be: Construct KX and KY from (4.26a) and (4.26b), re-

spectively, by replacing κ11 and κ22 with constants; Apply (KX + KY)−1 with ADI

59

method (the inner iteration) to precondition linear system (4.25); Solve the precondi-

tioned system with Krylov subspace methods (the outer iteration). This is precisely

the idea of compound iteration that has been proposed in [86].

A clarification of terminology is necessary here. (KX +KY)−1 is actually not the

preconditioner in the strict sense; instead, the approximate inverse of (KX + KY)

induced by ADI iterations is the preconditioner. However, for simplicity, we still call

(KX +KY)−1 the preconditioner if there is no ambiguity. Besides, we may also refer

to the ADI iterations (or the inner iterations in general) as the preconditioner.

There are still several questions left regarding this compound iteration idea:

1. What are we really using as the preconditioner and does it have a matrix form?

2. If so, is the matrix symmetric positive definite such that conjugate gradient

method can be applied for the outer iteration?

3. How many inner iteration steps are needed?

Let us answer these questions one by one in the following.

1. Matrix form of the preconditioner. Recall the relationship between errors

at different ADI iteration steps, as shown in (4.12):

e(k+1) =

(
k∏
j=0

P(j)

)
e(0).

Denote by b the true solution of (KX +KY)b = F , we have:

e(0) = b(0) − b,

e(k+1) = b(k+1) − b.

Substituting these two equations to (4.12) gives that:

b(k+1) =

(
I −

(
k∏
j=0

P(j)

))
b+

(
k∏
j=0

P(j)

)
b(0).

60

If we start with zero initial guess for the inner iteration, i.e., b(0) = 0, the above

relation can be simplified to:

b(k+1) =

(
I −

(
k∏
j=0

P(j)

))
b. (4.27)

Substituting the true solution b = (KX +KY)−1F into (4.27) leads to:

b(k+1) =

(
I −

(
k∏
j=0

P(j)

))
(KX +KY)−1F . (4.28)

Now it is clear that the matrix form of the preconditioner can be written as:

(
I −

(
k∏
j=0

P(j)

))
(KX +KY)−1. (4.29)

If we fix the number of inner iteration steps k for each outer iteration step, this

preconditioner is fixed as well, thus suitable for Krylov subspace methods. Relevant

discussions can be found in [91], where the concept of ‘linear preconditioner’ is intro-

duced. With a fixed number of inner iteration steps and zero initial guess for each

compound of inner iterations, (4.29) is a linear preconditioner.

2. Symmetry and positive definiteness of the preconditioner. Now it

comes the question of choosing a method for the outer iteration. Since matrix (K̃X +

K̃Y) is symmetric positive definite (SPD), the conjugate gradient (CG) method is

the most desirable one. However, CG requires the preconditioner to be SPD as well,

which is yet unclear for this inner iteration preconditioner.

Recall the effect of applying

(
k∏
j=0

P(j)

)
on a generalized eigenvector vi, as shown

in (4.17): (
k∏
j=0

P(j)

)
vi =

(
k∏
j=0

(
r(j) − λXi
r(j) + λXi

)
·
(
r(j) − λYi
r(j) + λYi

))
vi.

61

Therefore, vi is an eigenvector of

(
k∏
j=0

P(j)

)
. Denote by DP the diagonal matrix with

its ith diagonal entry the eigenvalue of

(
k∏
j=0

P(j)

)
corresponding to vi, we have:

(
k∏
j=0

P(j)

)
V = V DP . (4.30)

Similarly, we can write: (
KX +KY

)
V = MVD (4.31)

where D = (Iy ⊗Dx +Dy ⊗ Ix) is also diagonal.

We can rewrite (4.30) and (4.31), respectively, as

(
I −

(
k∏
j=0

P(j)

))
= V (I −DP)V −1

and (
KX +KY

)−1
= V D−1V −1M−1,

which together lead us to:

(
I −

(
k∏
j=0

P(j)

))(
KX +KY

)−1
= V

(
(I −DP)D−1

)
(MV)−1.

Recall the relation V TMV = I from Lemma 4.1. We have:

(
I −

(
k∏
j=0

P(j)

))(
KX +KY

)−1
= V

(
(I −DP)D−1

)
V T . (4.32)

From (4.32), it is clear that if all the diagonal entries of (I −DP) and D are positive,

the preconditioner, as shown in (4.29), is SPD. Since all the acceleration parameters

are positive, the above assumption is actually satisfied and (4.29) is indeed SPD.

62

To sum up, the preconditioner obtained from applying a fixed number of ADI

iterations with zero initial guess to
(
KX +KY

)−1
is symmetric positive definite, thus

can be combined with the conjugate gradient method.

3. Number of inner iteration steps. Yet to be answered is the number of

inner iteration steps. Apparently, (KX+KY) is just an approximation of (K̃X+K̃Y).

Applying its inverse super-accurately will not benefit us much on eliminating the

‘outer-error’. Rather, only an approximate inverse is needed.

Our experience is that a number of ADI iterations that can achieve error reduction

rate around 1e-3 is enough for most cases and adding more inner iteration steps can

hardly help reducing the number of outer iterations.

Given matrix (KX + KY), we go through the following procedures to determine

the number of inner iteration steps: Estimate its smallest and largest generalized

eigenvalues and set them as the lower bound α and upper bound β in min-max

problem (4.10), respectively; Choose the number of inner iteration steps such that

the upper bound of error reduction rate associated with the solution of (4.10) is

smaller than 1e-3.

4.2.2 Partial inclusion of coefficient variations in the precon-

ditioners

Now let us examine a more sophisticated idea. Similar as in the mass matrix case (see

Section 3.3.2), we can construct approximations of K̃X and K̃Y by taking advantage

of the local support property of the basis functions, as shown in the following:

K̃X ≈ K̂X =


My(1, :)

...

zeros(1, Ny)

⊗Kx
1 + · · ·+


zeros(1, Ny)

...

My(Ny, :)

⊗Kx
Ny , (4.33)

63

and

K̃Y ≈ K̂Y = Ky
1 ⊗


Mx(1, :)

...

zeros(1, Nx)

+ · · ·+Ky
Nx
⊗


zeros(1, Nx)

...

Mx(Nx, :)

 , (4.34)

where Kx
i , i = 1, . . . , Ny, each contains partial information of κ11 while Ky

j , j =

1, . . . , Nx, each contains partial information of κ22.

An inner iteration preconditioner for
(
K̃X + K̃Y

)
can be constructed by apply-

ing the compound iteration idea to its approximation:
(
K̂X + K̂Y

)−1

. However, due

to the asymmetry of
(
K̂X + K̂Y

)
, the induced inner iteration preconditioner is also

asymmetric, thus cannot be combined with CG. We need to use some other Krylov

subspace method, for instance, the generalized minimal residual method, or to sym-

metrize the preconditioner. We choose the second path due to the efficiency of CG

on SPD matrices.

It takes two steps to symmetrize the preconditioner. First, similar as in the mass

matrix case (see Section 3.3.2), we obtain the symmetrized approximations of K̂X and

K̂Y , with the help of the Cholesky factors of My and Mx, respectively and denoted by

K̄X and K̄Y , respectively. Second, we want to ensure that the preconditioner, induced

from the symmetrized approximation
(
K̄X + K̄Y

)
by ADI iterations, still possesses

the symmetry. For this purpose, given a set of selected acceleration parameters, we

apply the cycle of ADI iterations twice, with a reversed order in the second time.

More details regarding the mentioned preconditioner and proof of its symmetry

and positive definiteness can be found in Appendix B.2.

Moreover, the selection of acceleration parameters becomes a question again since

the condition in Theorem 4.3 that K̄X and K̄Y share the same set of generalized

eigenvectors is no longer satisfied. Besides, estimation of the smallest and largest

generalized eigenvalues also becomes tricky.

64

However, what we need is merely to apply
(
K̄X + K̄Y

)−1
approximately. Certain

amount of deviation from the dogma shall not undermine the hope completely. In

this case, we estimate the smallest and largest generalized eigenvalues of KX and KY ,

scaled by the magnitude of κ11 and κ22, respectively, and then choose the lower bound

α and upper bound β for min-max problem (4.10) accordingly. The corresponding

solution of (4.10) is selected as the set of acceleration parameters.

4.2.3 Numerical results

In this section, we show some numerical results to demonstrate the performances

regarding the preconditioners discussed in Sections 4.2.1 and 4.2.2. We apply the

compound iterations to linear algebraic system

(K̃X + K̃Y)b = F

discretized from (4.24) with full Dirichlet boundary conditions for different orthotropic

coefficients κ, as shown in Figures 4.1 - 4.3; different mesh sizes h = 1/N1D, as shown

in Tables 4.2, 4.4 and 4.6; and different numbers of inner iteration steps (denoted by

Ninner), as shown in Tables 4.3, 4.5 and 4.7.

Exact formulae for those coefficients shown in Figures 4.1 - 4.3 can be found in

Appendix B.3.

Tables 4.2, 4.4 and 4.6 record the numbers of outer iteration steps required for

convergence with respect to different mesh sizes. Two choices of inner iteration pre-

conditioners, induced from (KX +KY) and (K̄X + K̄Y), respectively, are tested. To

illustrate better the behaviors of these two preconditioners undergoing h-refinement,

the number of inner iteration steps is fixed at 64 for all mesh sizes, which is very high.

Tables 4.3, 4.5 and 4.7 record the numbers of outer iteration steps required for

convergence with respect to varying numbers of inner iteration steps. Mesh size is

65

fixed at 1/128. The last rows in these Tables, tagged as ‘bound’, show the upper bounds

of the error reduction rates associated with the selected acceleration parameters for

linear algebraic system (KX +KY)b = F .

In all the demonstrated numerical results, CG is applied as the method for the

outer iteration and forced to stop whenever the relative residual (in `2 norm) is smaller

than 1e-7 or 200 iteration steps has been reached.

Figure 4.1: Orthotropic.

N1D 32 64 128 256 512(
KX +KY

)−1
11 12 12 13 13(

K̄X + K̄Y
)−1

6 5 5 4 4

Table 4.2: h-scaling: p = 1, c = 0, Ninner = 64.

Inner iterations 4 8 16 32 64(
KX +KY

)−1
18 13 12 12 12(

K̄X + K̄Y
)−1

12 8 5 5 5
Upper bound 1.21E-01 3.66E-03 3.35E-06 2.81E-12 1.97E-24

Table 4.3: Effect of inner iterations: p = 1, c = 0, N1D = 128.

66

Figure 4.2: Low frequency oscillation.

N1D 32 64 128 256 512(
KX +KY

)−1
43 58 76 88 93(

K̄X + K̄Y
)−1

6 5 4 4 3

Table 4.4: h-scaling: p = 1, c = 0, Ninner = 64.

Inner iterations 4 8 16 32 64(
KX +KY

)−1
79 77 77 77 77(

K̄X + K̄Y
)−1

8 5 4 4 4
Upper bound 1.21E-01 3.66E-03 3.35E-06 2.81E-12 1.97E-24

Table 4.5: Effect of inner iterations: p = 1, c = 0, N1D = 128.

67

Figure 4.3: Gaussian spikes.

N1D 32 64 128 256 512(
KX +KY

)−1
200 200 200 200 200(

K̄X + K̄Y
)−1

16 10 10 9 10

Table 4.6: h-scaling: p = 1, c = 0, Ninner = 64.

Inner iterations 4 8 16 32 64(
KX +KY

)−1
200 200 200 200 200(

K̄X + K̄Y
)−1

200 200 19 13 10
Upper bound 1.21E-01 3.66E-03 3.35E-06 2.81E-12 1.97E-24

Table 4.7: Effect of inner iterations: p = 1, c = 0, N1D = 128.

In Table 4.2, we can see that for coefficient shown in Figure 4.1, both precondition-

ers work very well. The high orthotropic ratio is well handled by both preconditioners.

For the case of (K̄X + K̄Y), we see a slight decrease of the outer iteration numbers

as we refine the mesh. This is due to a better approximability of the preconditioner

since it is constructed based on the local support property.

Part of the reason that (KX + KY)−1 works so well for the coefficient shown in

Figure 4.1 is because of the high frequent uniform oscillation. Recall Figure 3.3, in

68

this case, the coefficient variation inside different strips that correspond to support

regions of different basis functions are similar to each other, thus using (K̄X +K̄Y)−1,

a preconditioner adapts itself towards the coefficient variation from strip to strip, does

not show significant benefit. The coefficient shown in Figure 4.2 is manufactured such

that (K̄X + K̄Y)−1 will show obvious advantage against (KX +KY)−1.

The coefficient shown in Figure 4.3 is designed to show that (K̄X + K̄Y) has the

ability to handle rougher situations.

On the other hand, from Tables 4.3, 4.5 and 4.7, we can tell that little can be

gained by further increasing the number of inner iteration steps after the recorded

upper bound of error reduction rate has been pushed to the level of 1e-3, except for

the very rough case shown in Figure 4.3.

4.3 Isotropic coefficients with high contrasts

In this section, we focus on the Poisson equation with isotropic inhomogeneous coef-

ficients in the following form:

−∇ ·
(
κ(x, y)∇u(x, y)

)
= f(x, y), (4.35)

where κ(x, y) is a scalar function. The simplification from orthotropic coefficients to

isotropic coefficients enables us to use the hybrid preconditioning technique, similar

to what we did to the mass matrices in Section 3.3.4.

Our interest is particularly focused on the cases where coefficient κ has high

contrast variation among different regions. In these cases, the 2D preconditioner

(K̄X + K̄Y)−1 is ill-conditioned due to the high contrast coefficient and therefore,

require a significant amount of ADI iterations. Thus (K̄X + K̄Y)−1 is no longer an

economic choice and we shift our attention to hybrid preconditioning.

For more information on numerical techniques for high contrast problems, one can

69

consult [2, 29, 43, 44, 84] and the references therein.

4.3.1 Hybrid preconditioning

After finite element discretization with tensor product basis functions By⊗Bx, (4.35)

leads us to the following linear algebraic system:

(K̃X + K̃Y)b = F , (4.36)

where

K̃X =

∫
2

(
By(By)T

)
⊗
(
Bx
,x(B

x
,x)

T
)
κd2, (4.37a)

K̃Y =

∫
2

(
By
,y(B

y
,y)

T
)
⊗
(
Bx(Bx)T

)
κd2. (4.37b)

In order to build the hybrid preconditioner, (KX + KY)−1 is definitely one nec-

essary component. Next, we want to find another preconditioner that can capture

the variation in the coefficient κ. Denote this preconditioner as D−1
κ . We build Dκ

in a similar manner as we did in the mass matrix case, that is, assemble the diagonal

of the stiffness matrix, but with the basis functions and their derivatives replaced by

constant 1, and then rescale with respect to the sizes of their support region.

Due to the complexity of the high contrast stiffness matrix, the following sym-

metrically hybridized preconditioner D
−1/2
κ (KX+KY)−1D

−1/2
κ does not work. Instead,

we define our hybrid preconditioner as D−1
κ (KX + KY)−1 and combine it with the

Generalized Minimal Residual (GMRES) method. Specifically, we use right precon-

ditioning since in this way, residual of the original linear system is minimized in the

`2 norm.

The order of D−1
κ and (KX + KY)−1 in the hybrid preconditioner is chosen in

accordance with the choice of right preconditioning. Since D−1
κ contains high contrast

70

variation, we want to apply it after (KX+KY)−1 in order to ease the affect of round-off

error.

4.3.2 Numerical results

In this section, we test the quality of the hybrid preconditioner on three examples,

namely, the ‘Island’, ‘Block’ and ‘Borehole’, with the comparison of applying precon-

ditioner (KX + KY)−1 or D−1
κ individually. In order to have a clear comparison, we

incorporate (KX+KY)−1 and D−1
κ with GMRES as well, albeit they can be combined

with the computationally more economic method: CG.

For all the numerical results demonstrated in this section, GMRES restarts every

30 iteration steps and stops whenever one of the following conditions is satisfied:

1) the `2 norm of the relative residual is lower than the tolerance 1e-7;

2) maximum number of iteration steps 5× 30 has been reached;

3) the iterative process has stagnated.

In all the following tables, the number of iteration steps is denoted as A(B) where

A stands for the number of restarts while B stands for the number of GMRES it-

erations after the latest restart. Therefore, the total number of iterations can be

calculated as (A− 1)× 30 +B. The superscript s, which appears occasionally, means

the iterative process has been stopped due to stagnation; The dash ‘—’ means the

iterative process has reached the maximum number of iteration steps.

In Table 4.8, 4.10 and 4.12, Nouter columns show the number of outer iteration

steps, Rres columns show the relative residual in the `2 norm while Rerr columns show

the relative error in the energy norm. Ninner stands for the number of inner iteration

steps.

Example 4.1. As shown in Figure 4.4, in the center of the whole computational

domain, we have a smaller rectangular domain where the coefficient κ is very high

71

(102 in case A, 104 in case B and 106 in case C), in contrast with the rest of the

domain, called the background, where κ is 1. The same example can be found in [2],

where it is referred to as the ‘one island’ problem.

Figure 4.4: ‘Island’.

(
KX +KY

)−1
(Dκ)

−1
Hybrid

N1D Nouter Rres Rerr Nouter Rres Rerr Nouter Rres Rerr

A
128 1(13) 2.3E-08 2.0E-09 — 8.2E-02 8.8E-01 1(10) 4.2E-09 8.9E-10
256 1(14) 5.1E-08 4.8E-09 — 5.1E-02 9.2E-01 1(10) 6.5E-08 1.5E-08
512 1(15) 2.9E-08 6.7E-10 — 1.7E-01 9.5E-01 1(11) 9.1E-08 1.7E-09

B
128 1(17) 6.1E-08 5.9E-09 — 8.3E-02 8.9E-01 1(11) 9.0E-09 2.3E-09
256 1(18) 5.0E-08 6.5E-09 — 5.1E-02 9.2E-01 1(11) 7.5E-08 1.4E-08
512 1(20) 6.3E-08 1.1E-09 — 1.7E-01 9.5E-01 1(11)s 8.3E-06 1.9E-07

C
128 1(21) 9.0E-08 9.8E-08 — 8.3E-02 8.9E-01 1(12) 6.7E-08 9.4E-08
256 1(23)s 1.5E-07 7.5E-08 — 5.1E-02 9.2E-01 1(12)s 2.9E-06 3.1E-07
512 1(24)s 7.2E-06 1.4E-06 — 1.7E-01 9.5E-01 1(13)s 8.5E-04 1.5E-05

Table 4.8: Performances: p = 1, c = 0, Ninner = 16.

N1D 2 4 8 16 32 64

A
128 1(25) 1(13) 1(10) 1(10) 1(10) 1(10)
256 2(1) 1(16)s 1(11) 1(10) 1(10) 1(10)
512 2(18)s 1(16)s 1(11)s 1(11) 1(11) 1(11)

B
128 1(28)s 1(14)s 1(11) 1(11) 1(11) 1(11)
256 2(18)s 1(16)s 1(11)s 1(11) 1(11) 1(11)
512 3(26)s 1(18)s 1(12)s 1(11)s 1(12) 1(12)

C
128 2(21)s 1(16)s 1(11) 1(12) 1(12) 1(12)
256 3(11)s 1(18)s 1(12)s 1(12)s 1(12)s 1(12)s

512 — 1(21)s 1(13)s 1(13)s 1(13)s 1(13)s

Table 4.9: Effect of inner iterations on the hybrid preconditioner: p = 1, c = 0.

Example 4.2. In this example, the whole computational domain, as shown in Figure

4.5, is partitioned uniformly into small pieces of rectangles. In each small rectangle,

72

coefficient κ is assigned with a specific value that differs from the other rectangles.

These numbers are printed on each of the rectangles. For instance, 3e3 means 3×103.

The coefficient κ varies from 1e1 to 4e3 in In case A, 1e1 to 4e6 in case B and 1e1

to 4e9 in case C.

Figure 4.5: ‘Block’.

(
KX +KY

)−1
(Dκ)

−1
Hybrid

N1D Nouter Rres Rerr Nouter Rres Rerr Nouter Rres Rerr

A
128 — 2.5E-02 5.0E-02 — 4.6E-03 1.1E-02 1(20) 1.8E-08 1.7E-08
256 — 2.9E-02 5.4E-02 — 2.5E-02 1.2E-01 1(21) 2.6E-08 2.8E-08
512 — 5.0E-02 5.8E-02 — 1.8E-01 5.9E-01 1(22) 7.6E-08 1.5E-08

B
128 — 5.5E-01 9.8E-01 — 4.0E-03 9.9E-03 1(21) 2.1E-08 2.1E-08
256 — 5.6E-01 9.8E-01 — 3.8E-02 9.5E-02 1(22) 3.8E-08 4.2E-08
512 — 8.1E-01 1.0E+00 — 1.8E-01 5.6E-01 1(24) 5.4E-08 1.2E-08

C
128 — 7.2E-01 1.0E+00 — 4.0E-03 9.9E-03 1(21) 2.9E-08 2.8E-08
256 — 7.2E-01 1.0E+00 — 4.1E-02 1.1E-01 1(22) 5.7E-08 6.2E-08
512 — 8.4E-01 1.0E+00 — 1.8E-01 5.5E-01 1(24) 6.8E-08 1.5E-08

Table 4.10: Performances: p = 1, c = 0, Ninner = 16.

N1D 2 4 8 16 32 64

A
128 1(27) 1(20) 1(20) 1(20) 1(20) 1(20)
256 2(5) 1(21) 1(21) 1(21) 1(21) 1(21)
512 2(16) 1(24)s 1(23) 1(22) 1(22) 1(22)

B
128 1(29) 1(21) 1(21) 1(21) 1(21) 1(21)
256 2(7) 1(23) 1(22) 1(22) 1(22) 1(22)
512 2(20) 1(30)s 1(24) 1(24) 1(24) 1(24)

C
128 1(29) 1(22) 1(21) 1(21) 1(21) 1(21)
256 2(7) 1(23) 1(22) 1(22) 1(22) 1(22)
512 2(20) 1(28)s 1(24) 1(24) 1(24) 1(24)

Table 4.11: Effect of inner iterations on the hybrid preconditioner: p = 1, c = 0.

73

Example 4.3. In this example, the whole computational domain is combined by four

horizontal layers with a thin vertical layer in the middle, which resembles the transver-

sal surface of a borehole. The numbers showed in Figure 4.6 are the reciprocals of κ,

called the resistivity.

Figure 4.6: ‘Borehole’.

(
KX +KY

)−1
(Dκ)

−1
Hybrid

N1D Nouter Rres Rerr Nouter Rres Rerr Nouter Rres Rerr

A
128 2(6) 8.9E-08 6.7E-08 — 7.4E-03 4.1E-02 1(15) 5.0E-08 3.3E-08
256 2(7) 8.9E-08 7.0E-08 — 2.6E-02 3.7E-01 1(16) 5.1E-08 3.2E-08
512 2(12) 6.6E-08 1.8E-08 — 1.5E-01 7.0E-01 1(17) 7.4E-08 7.5E-09

B
128 3(4) 9.6E-08 9.0E-08 — 9.0E-03 5.8E-02 1(16) 3.3E-08 3.1E-08
256 3(27) 9.8E-08 2.1E-08 — 2.8E-02 1.3E-01 1(16) 8.4E-08 8.4E-08
512 4(2) 7.6E-08 3.2E-08 — 1.6E-01 1.5E-01 1(18) 7.6E-08 1.5E-08

C
128 — 4.5E-01 9.4E-01 — 1.0E-02 1.9E-02 1(20) 4.7E-08 3.6E-08
256 — 4.5E-01 9.3E-01 — 3.2E-02 4.1E-02 1(21) 6.4E-08 4.8E-08
512 — 6.7E-01 9.9E-01 — 1.7E-01 4.0E-01 1(23) 3.5E-08 4.9E-09

Table 4.12: Performances: p = 1, c = 0, Ninner = 16.

N1D 2 4 8 16 32 64

A
128 1(23) 1(16) 1(15) 1(15) 1(15) 1(15)
256 1(27) 1(17) 1(16) 1(16) 1(16) 1(16)
512 2(11)s 1(19)s 1(17)s 1(17) 1(17) 1(17)

B
128 1(24) 1(17) 1(16) 1(16) 1(16) 1(16)
256 1(28) 1(17) 1(16) 1(16) 1(16) 1(16)
512 2(8)s 1(20)s 1(22)s 1(18) 1(18) 1(18)

C
128 1(27) 1(21) 1(20) 1(20) 1(20) 1(20)
256 1(30) 1(23) 1(21) 1(21) 1(21) 1(21)
512 2(10)s 1(25)s 1(24)s 1(23) 1(23) 1(23)

Table 4.13: Effect of inner iterations on the hybrid preconditioner: p = 1, c = 0.

74

From Tables 4.8, 4.10 and 4.12, we see that the hybrid preconditioner brings signif-

icant improvement on the convergence speed, comparing with applying preconditioner

(KX + KY)−1 or D−1
κ individually. Meanwhile, when increasing the contrast in the

coefficient, or refining the computational mesh, the number of iteration steps corre-

sponding to the hybrid preconditioner is growing, but only very mildly. Moreover,

despite of the ill-conditioned linear system, reduction on energy norm of the solution

is satisfactory.

From Tables 4.9, 4.11 and 4.13, once again, we observe that the effect of the

number of inner iteration steps is diminishing as it increases and eventually, it plays

no role on the number of outer iteration steps required for convergence.

4.4 Complicated geometry

An important motivation for our investigation on tensor product basis functions is

Isogeometric analysis (IGA). It is natural to consider the preconditioning techniques

developed above for solving stiffness matrices arising from IGA.

For instance, we consider the Poisson equation with isotropic homogeneous coef-

ficients defined on the two testing domains shown in Figure 3.2. Numerical results

concerning the performance of preconditioner
(
KX +KY

)−1
are demonstrated in

Table 4.14, where CG is used for the outer iteration while ADI is used for the inner

iteration. The number of inner iteration steps is fixed at 64. The whole iteration pro-

cess is stopped whenever the relative residual (in `2 norm) is lower than 1e-7 or the

number of outer iterations reaches 200. Row ‘Stretched’ and row ‘Perturbed’ record

the number of outer iterations needed for convergence on the stretched rectangle and

the perturbed rectangle shown in Figure 3.2, respectively.

75

N1D 32 64 128 256 512
Strected 57 63 70 78 85

Perturbed 28 38 44 50 55

Table 4.14: Performance of
(
KX +KY

)−1
on complicated geometries.

Preconditioner
(
KX +KY

)−1
does not work well in this case as we see a growing

number of outer iterations required for convergence when refining the mesh. This

is due to the numerical anisotropy introduced by the complicated geometries. In

general, direction splitting algorithms do not work well for anisotropic cases. This is

easier to understand from a physical perspective: anisotropy simply means the two

directions are coupled together. The application of direction splitting preconditioner

on IGA stiffness matrix is therefore, not successful.

76

Chapter 5

The Helmholtz equation

5.1 The ideal case

In this section, we consider the following linear system:

(
KX +KY − k2M

)
b = F , k2 > 0 (5.1)

arising from finite element discretizations of the Helmholtz equation (Model Problem

3) with tensor product basis functions.

(5.1) has a similar looking with the following linear system:

(
KX +KY + k2M

)
b = F , k2 > 0 (5.2)

which might come from numerical discretization of a reaction-diffusion problem, or a

time-dependent heat equation. However, these two equations present totally different

numerical difficulties. We have discussed numerical techniques for (5.2) in Chapter

4 as a byproduct of the discussion for stiffness matrices. The issue back there is the

growing condition number as we refine the mesh.

On the other hand, the numerical difficulty of (5.1) lies in its indefiniteness brought

by the negative sign in front of the mass matrix term. A detailed discussion on why

77

most classical iterative methods do not work well for Helmholtz problem can be found

in review paper [39].

From a numerical point of view, due to its indefiniteness, (5.1) is very sensitive

in the sense that given the same right hand side F , a slight perturbation of the

matrix can lead to a totally different solution. This sensitivity makes it very hard to

design a good preconditioner that is purely algebraic-based. Instead, preconditioners

based on simulating the physical effects are typically better choices. For instance,

it is mentioned in [39] that analytic incomplete LU (AILU) works much better than

incomplete LU (ILU) as a preconditioner for Helmholtz problem.

For more information and advances on numerical methods for Helmholtz problem,

one can consult, for instance, [14, 32, 33, 34, 39] and the references therein.

5.1.1 The difficulty of indefiniteness for ADI

Due to the similar lookings between (5.1) and (5.2), one might think that ADI is

readily applicable for (5.1) as well. However, this is far from true.

According to (4.16):

P(k)vi =

(
r(k) − λXi
r(k) + λXi

)
·
(
r(k) − λYi
r(k) + λYi

)
vi,

when both λXi and λYi are negative, setting r(k) to a positive number will increase

the error associated with vi. Figuratively, the errors associated with negative and

positive generalized eigenvalues are playing a teeterboard when ADI iterations are

applied, that is, when one side of the error is pushed down, the other side rises up.

The usually leads to a blowing up of the error.

As an attempt to fix this, recall from Chapter 4 that if all the generalized eigenval-

ues {λXi }Ni=1 or {λYi }Ni=1 are known a priori, a direct method for (5.2) at computational

cost O(N
3
2) can be derived based on ADI iterations. This is still valid for (5.1).

78

Aside from Theorem 4.3, here we provide a different explanation based on trans-

formations of the equations, which may offer some extra insight on the effect of ADI

iterations for linear systems like (5.1) and (5.2). Recall the relationship between

errors at different ADI iteration steps:

(r(k)M +KX)e(k+ 1
2

) = (r(k)M −KY)e(k),

(r(k)M +KY)e(k+1) = (r(k)M −KX)e(k+ 1
2

).

If we express the errors in terms of columns of the generalized eigen-matrix V :

ej = V εj, j = k, k +
1

2
, k + 1,

these relationships can be rephrased as:

(r(k)M +KX)V ε(k+ 1
2

) = (r(k)M −KY)V ε(k),

(r(k)M +KY)V ε(k+1) = (r(k)M −KX)V ε(k+ 1
2

).

Left multiplying V T on both sides of these equations, we end up with:

(r(k) + Iy ⊗Dx)ε(k+ 1
2

) = (r(k) −Dy ⊗ Ix)ε(k), (5.3a)

(r(k) +Dy ⊗ Ix)ε(k+1) = (r(k) − Iy ⊗Dx)ε(k+ 1
2

). (5.3b)

If we set r(k) = λYi , then (5.3a) simultaneously eliminates errors associated with all the

generalized eigenvectors corresponding to λYi . Similar for (5.3b) if we set r(k) = λXi .

Moreover, due to the diagonal structure of the matrices in (5.3a) and (5.3b), once

these errors (in the sense of ε) are eliminated, they shall stay at zero during the

subsequent iterations if exact arithmetic were performed.

Furthermore, for (5.1), positive generalized eigenvalues often outnumber their op-

ponents quite a lot in practice, particularly for low wavenumber cases.

79

All the above observations are motivations of a potential solution for the teeter-

board dilemma: Eliminate all the errors corresponding to the negative generalized

eigenvalues by setting r(k) to these values in ADI iterations, then apply ADI itera-

tions with optimal acceleration parameters to eliminate errors corresponding to the

rest positive generalized eigenvalues.

Unfortunately, this idea fails as well due to two reasons: 1) The presence of round

off error perturbs the eliminated errors and eventually leads to a catastrophic blowing

up; 2) By the time all the errors corresponding to negative generalized eigenvalues

are eliminated, errors corresponding to positive generalized eigenvalues have been

amplified quite a lot, which leaves a big space for round off error to play a role.

Calling columns of V the eigen-modes, the above understanding makes us wonder

whether or not it is possible to pick certain eigen-modes and solve them, but without

messing up the rest. The answer is yes, as explained in the following section.

5.1.2 A direct method approach

We start from transforming (5.1) as shown in the following:

(
KX +KY − k2M

)
b = F

⇒ V T
(
KX +KY − k2M

)
V V −1b = V TF

⇒ (Iy ⊗Dx +Dy ⊗ Ix − k2(Iy ⊗ Ix))V −1b = V TF .

This further leads us to the explicit formula for solution of linear system (5.1):

b = V
(
Iy ⊗Dx +Dy ⊗ Ix − k2(Iy ⊗ Ix)

)−1
V TF . (5.4)

Recall that V = V y ⊗ V x. The multiplications involved in (5.4) can be dealt with in

a Kronecker product manner at computational cost of O(N
3
2). For 3D, the computa-

tional cost sounds even better: O(N
4
3). Therefore, (5.4) itself serves as a good direct

80

method for solving (5.1).

Calculations of the generalized eigen-pairs, albeit in 1D, can be costly if high

accuracy is demanded. However, in lots of real life applications, problem (5.1) is

often presented with multiple sources (right hand sides) or multiple wavenumbers (k)

where these generalized eigen-pairs can be reused.

The direct method (5.4) solves all the eigen-modes simultaneously. The following

questions arise natural: do we really need that many eigen-modes to represent the

solution? What if we only want a decent approximation?

To simplify notation, we define

D =
(
Iy ⊗Dx +Dy ⊗ Ix − k2(Iy ⊗ Ix)

)
.

(5.4) can then be written as:

b = VD−1V TF . (5.5)

Symbolically, (5.5) can also be applied for the 1D case, after adapting the definition of

D to D = Dx− k2Ix. For simplicity, we first discuss this 1D case as a motivation. In

the following, for diagonal matrices like D, we use ‘entry’ as a short term for ‘diagonal

entry’ if there is no ambiguity.

To illustrate the varying importance of different eigen-modes on representing the

solution, we present a simple 1D numerical experiment here. For wavenumber k = 50,

setting mesh size h =
1

80
such that kh ≈ 2π

10
(roughly 10 elements per wavelength),

we plot the entries of D and D−1 in Figure 5.1, where zero abscissa corresponds to

the first entry in Dx that is bigger than k2. (Linear basis functions are used in the

finite element discretization.)

From Figure 5.1, we have the following observations: for entries in Dx that are

around k2, cancellation happens and the corresponding entries in D−1 are large; on

the contrary, for entries in Dx that are much larger than k2, the corresponding entries

81

in D−1 are close to zero.

Figure 5.1: Eigenvalue distribution: 1D case.

Thus, eigen-modes corresponding to entries around k2 in Dx are likely to be more

important on representing the solution. Just picking these eigen-modes while igno-

rantly throwing the rest away may already provide a decent approximation for the

solution.

To test this idea, we pick eigen-modes with the following procedure: For the 1D

case, we pick the eigen-modes corresponding to all the negative entries and the next

consecutive positive entries in D = Dx − k2Ix at the same amount; For the 2D case,

we first pick the 1D eigen-modes in the same manner according to entries in Dx− k
2

2
Ix

and Dy − k2

2
Iy. Their tensor products are picked as the 2D eigen-modes; The 3D

case is dealt with in a similar manner, except that we consider entries in Dx − k2

3
Ix,

Dy − k2

3
Iy and Dz − k2

3
Iz instead.

It is interesting to check how much does this cost. The number of negative entries

in D has major dependence on the wavenumber k (almost proportional) while minor

82

dependence on mesh size h, as illustrated in Tables 5.1 and 5.2 for the 1D case. In

these tables, Nneg stands for the number of negative entries in D = Dx − k2Ix. We

set kh = 0.625 in Table 5.1 and k = 40 in Table 5.2.

k(1/h) 10(16) 20(32) 40(64) 80(128) 160(256) 320(512)
Nneg 4 7 13 26 51 101
ratio 23.5% 21.2% 20.0% 20.2% 19.8% 19.7%

Table 5.1: Number and ratio of negative entries in D = Dx − k2Ix.

k(1/h) 40(16) 40(32) 40(64) 40(128) 40(256) 40(512)
Nneg 11 13 13 13 13 13
ratio 64.7% 39.4% 20.0% 10.1% 5.1% 2.5%

Table 5.2: Number and ratio of negative entries in D = Dx − k2Ix.

If we keep kh = 0.625, for the 1D case, the ratio of the negative entries in D is

roughly 20% as shown in Table 5.1. Therefore, roughly 40% of the total eigen-modes

are picked. For the 2D case, the ratio is roughly 8% while for the 3D case, roughly

1.3% only.

From 1D to 3D, the ratio gets smaller and smaller mainly because the eigen-modes

are picked in a tensor product manner. Far more importantly, due to the same reason,

bp = VpD−1
p V T

p F (5.6)

can be performed in a tensor product manner by exploiting the Kronecker product

structures in Vp and V T
p , where Vp is constructed by retaining only the picked eigen-

modes in V while replacing the rest with zero vectors and D−1
p is constructed similarly

from D−1; bp is the approximate solution obtained.

Therefore, the cost for performing (5.6) is still at O(N
3
2) in 2D and O(N

4
3) in 3D,

same as performing (5.5), but with much smaller constants.

Table 5.3 shows some numerical results regarding the quality of this approximate

solution bp, in terms of the relative error ep (in `2 norm). Linear system (5.1) dis-

83

cretized from the 2D Model Problem 3 with tensor product linear basis functions is

considered; The right hand sides are generated randomly. We set kh = 0.625 for

Table 5.3.

k(1/h) 10(16) 20(32) 40(64) 80(128) 160(256) 320(512)
ep 4.27E-02 5.40E-02 6.22E-02 4.80E-03 7.83E-03 4.59E-03

Table 5.3: Relative error for bp.

If higher accuracy is demanded, ADI iterations can now be applied to (5.1) using

bp as the starting point. Since the error associated with the selected eigen-modes

are already eliminated by bp, we only need to choose the acceleration parameters

according to the remaining generalized eigenvalues, which are all positive. Table 5.4

shows some numerical results with 16 ADI iterations following the starting point bp,

where relative errors (in `2 norm) before and after the ADI iterations are recorded.

We set kh = 0.625 for Table 5.4.

k(1/h) 10(16) 20(32) 40(64) 80(128) 160(256) 320(512)
ep 1.03E-01 8.35E-02 7.17E-02 7.08E-03 1.19E-02 3.89E-03
e 1.85E-10 4.79E-09 2.73E-08 2.20E-09 3.14E-09 9.50E-10

Table 5.4: Relative error: 16 ADI iterations.

From Table 5.4, we see that 16 ADI iterations work very well this time. However,

large number of ADI iterations is still not recommended due to the presence of round

off error. This is because of the unstable nature of the ADI iterations for indefinite

problems. We show some numerical results in Table 5.5 with varying number of ADI

iterations to demonstrate this. We set k = 160, h = 1
256

for Table 5.5.

ADI iterations 2 4 8 16 32 64
ep 1.02E-02 8.53E-03 7.84E-03 8.58E-03 7.11E-03 8.84E-03
e 1.36E-03 1.70E-04 3.65E-06 2.23E-09 3.80E-09 9.48E-03

Table 5.5: Relative error: varying number of ADI iterations.

84

5.1.3 A stable alternative: GMRES

Due to the results shown in Table 5.5, a robust alternative to ADI iterations is

preferred. Our choice is the Generalized minimal residual method (GMRES), [70].

Simply applying GMRES to linear system (5.1) with starting point bp, but with

no preconditioner, the convergence speed is slow, as shown in Table 5.6, where GM-

RES(10), which restarts after every 10 iterations, is applied with maximum number

of restarts set as 10 and tolerance of relative residual set as 1e-6.

In Table 5.6, row ep and row e record the relative errors (in `2 norm) before

and after the GMRES iterations, respectively while row Niter records the number of

iteration steps that has been performed.

k(h) 10(16) 20(32) 40(64) 80(128) 160(256) 320(512)
ep 2.07E-02 9.70E-02 5.97E-02 7.71E-03 1.60E-02 4.20E-03
e 7.71E-04 2.44E-03 1.66E-03 1.50E-04 2.18E-04 4.32E-05

Niter 10(10) 10(10) 10(10) 10(10) 10(10) 10(10)

Table 5.6: Performance of GMRES(10) with starting point bp but no preconditioner.

The results in Table 5.6 justify the need of a good preconditioner. We propose the

inverse of mass matrix M = My ⊗Mx as the preconditioner, originally motivated by

its cheap application cost. Applying GMRES(10) to linear system (5.1) again, but

with starting point bp and preconditioner M−1, the convergence speed is significantly

improved, as shown in Table 5.7.

k(h) 10(16) 20(32) 40(64) 80(128) 160(256) 320(512)
ep 4.27E-02 5.40E-02 6.22E-02 4.80E-03 7.83E-03 4.59E-03
e 1.75E-07 4.33E-07 7.11E-07 5.50E-08 8.54E-08 4.65E-08

Niter 3(10) 5(1) 6(2) 6(2) 6(1) 6(1)

Table 5.7: Performance of GMRES(10) with starting point bp and preconditioner M−1.

However, if we apply GMRES(10) with preconditioner M−1, but with zero starting

point, the convergence speed is disastrously slow, as shown in Table 5.8.

85

k(h) 10(16) 20(32) 40(64) 80(128) 160(256) 320(512)
ep 1.58E-02 6.25E-02 6.31E-02 1.05E-02 1.02E-02 5.29E-03
e 9.93E-01 9.72E-01 9.83E-01 9.99E-01 9.99E-01 1.00E+00

Niter 10(10) 10(10) 10(10) 10(10) 10(10) 10(10)

Table 5.8: Performance of GMRES(10) with zero starting point and preconditioner M−1.

Results shown in Tables 5.6 - 5.8 reveal that the combination of starting point bp

and preconditioner M−1 can speed up the convergence rate for GMRES significantly.

We explain this in the following by theory of Krylov subspace methods.

For brevity, we denote the matrix KX + KY − k2M in (5.1) as A. According to

Lemma 4.1, we have:

AV = MVD,

where V = V y ⊗ V x and D = Iy ⊗Dx +Dy ⊗ Ix − k2(Iy ⊗ Ix).

After applying m iteration steps of any Krylov subspace method to linear system

Ab = F , the relation between current error and initial error can be written in the

following polynomial form:

e(m) = p(m)(A)e(0), (5.7)

where p(m)(z) is a polynomial of degree m satisfying p(m)(0) = 1. For more details,

one can consult [30, 41, 47, 70]. Different Krylov subspace methods lead to different

forms of polynomial p(m)(z). For example, CG leads to the polynomial that minimizes

A-norm of the error while GMRES leads to the polynomial that minimizes `2 norm

of the residual. Nevertheless, specific form of the polynomial is not the concern here.

If we precondition the linear system Ab = F , matrix A in relation (5.7) shall be

replaced by the preconditioned matrix. For instance, if we left precondition (5.1) with

M−1, the error relationship becomes:

e(m) = p(m)(M−1A)e(0). (5.8)

86

Next, we express the error at each iteration step in terms of the columns of the

eigen-matrix V as the following form:

e(i) =
N∑
j=1

ε
(i)
j Vj = V ε(i), i = 0, 1, . . . ,m. (5.9)

Substituting (5.9) into (5.8), we obtain:

e(m) = p(m)(M−1A)V ε(0). (5.10)

Recall that AV = MVD. We have M−1A = VDV −1. Therefore, (5.10) leads us to:

e(m) = V
(
p(m)(D)ε(0)

)
, (5.11)

i.e.,

ε(m) = p(m)(D)ε(0), (5.12)

where p(m)(D) is diagonal since D is diagonal.

According to (5.11) and (5.12), if in the initial error e(0) = V ε(0), some components

of ε(0) are zeros, they will remain at zeros in the subsequent iterations if exact arith-

metic were used. In other words, those eigen-modes that are eliminated by bp never

come back and play a role in the subsequent iterations. Therefore, if bp eliminates

all the negative eigen-modes, the indefiniteness of linear system (5.1) is effectively

‘hidden’ to the Krylov subspace methods. Similarly, if bp also eliminates eigen-modes

corresponding to small positive entries in D, the performances of Krylov subspace

methods will be further enhanced due to smaller effective condition number.

Remark 5.1. Due to the inaccuracy in the eigen-pairs used to construct bp, their cor-

responding components can be small numbers initially, instead of exact zeros. These

small numbers can have influences in the subsequent iterations.

87

Remark 5.2. Right preconditioning Ab = F with M−1 can be analyzed in a similar

manner by using the following algebraic relation: M−1p(k)(AM−1) = p(k)(M−1A)M−1.

Remark 5.3. Since the indefiniteness is ‘hidden’ by the starting point bp, CG may

be a better alternative than GMRES for symmetric linear systems. For instance, we

apply CG to linear system (5.1) with tolerance of relative residual set as 1e-6 and

record the numerical results in Table 5.9.

k(h) 10(16) 20(32) 40(64) 80(128) 160(256) 320(512)
ep 4.88E-02 6.54E-02 6.27E-02 6.33E-03 1.05E-02 1.05E-02
e 5.97E-08 9.52E-08 1.19E-07 1.18E-08 1.89E-08 2.32E-08

Niter 30 41 49 49 49 48

Table 5.9: CG is applicable.

Comparing the results in Tables 5.7 and 5.9, CG takes less iteration steps with

less computational cost per iteration, therefore seems to be a better choice comparing

with GMRES. However, in general, linear systems arising from Helmholtz problems

are typically non-symmetric due to complicated boundary conditions. Therefore, in

the following content, we still show numerical results with GMRES.

Remark 5.4. Recall the relation V TMV = I. We can express M−1 as: M−1 =

V I−1V T . It is possible to have a preconditioner better than M−1 by replacing I−1

with a different diagonal matrix that approximates D−1 better. More detail can be

found in C.1.

5.1.4 An obvious extension

The techniques developed in Sections 5.1.2 and 5.1.3 for Model Problem 3 can be

easily extended to the heterogeneous case where the heterogeneity depends only on

one direction. In this section, we consider the following PDE:

−∇ ·
(

1

ρ
∇u(x, y)

)
− k2

B
u(x, y) = f(x, y), (5.13)

88

defined on a rectangular domain. In (5.13), ρ and B are scalar functions depending

on x-direction only, possibly with discontinuities.

After finite element discretization with tensor product basis functions, (5.13) leads

us to linear algebraic system:

(
KX
ρ +KY

ρ − k2MB
)
b = F , k2 > 0, (5.14)

where KX
ρ = My ⊗Kx

ρ , KY
ρ = Ky ⊗Mx

ρ and M = My ⊗Mx
B . Matrices My and Ky

have the same definitions as before while Mx
ρ , Kx

ρ and Mx
B are defined as:

Mx
ρ =

∫
x

1

ρ
Bx(Bx)Tdx, K

x
ρ =

∫
x

1

ρ
Bx
,x(B

x
,x)

Tdx and Mx
B =

∫
x

1

B
Bx(Bx)Tdx.

With the above notations, (5.14) can be rewritten as:

(
My ⊗

(
Kx
ρ − k2Mx

B
)

+Ky ⊗Mx
ρ

)
b = F , k2 > 0. (5.15)

Meanwhile, we assume the following relations among these 1D matrices:

(
Kx
ρ − k2Mx

B
)
V x = Mx

ρ V
xDx;

KyV y = MyV yDy,

where Dx and Dy are diagonal matrices while relations (V x)T Mx
ρ V

x = Ix and

(V y)T MyV y = Iy hold. Define V = V y⊗V x. The matrix in linear system (5.15) can

still be diagonalized by left multiplying with V T and right multiplying with V while

the solution b can still be expressed as (5.4). Therefore, the techniques developed in

Sections 5.1.2 and 5.1.3 can still be applied to solve linear system (5.15), with the

adapted definitions of V x and Dx.

We show a simple example in the following where piecewise constant coefficients

on x-direction is considered.

89

Example 5.1. In this example, we apply GMRES(20), which restarts after every 20

iterations, to linear system (5.14) built from (5.13) with coefficients:

B(x) =



5 0 ≤ x ≤ 0.25;

1 0.25 < x ≤ 0.5;

10 0.5 < x ≤ 0.75;

2 0.75 < x ≤ 1,

and ρ(x) =



0.5 0 ≤ x ≤ 0.25;

1 0.25 < x ≤ 0.5;

2 0.5 < x ≤ 0.75;

1 0.75 < x ≤ 1.

(5.16)

The maximum number of restarts for GMRES(20) is set as 10 while tolerance of the

relative residual is set as 1e-6. M−1 = (My)−1⊗
(
Mx

ρ

)−1
is used as the preconditioner

while bp constructed as in (5.6) is used as the starting point. Numerical results are

shown in Table 5.10 where row Npicked records the number of picked eigen-pairs in

order to construct bp.

k(h) 10(16) 20(32) 40(64) 80(128) 160(256) 320(512)
ep 6.18E-01 3.74E-01 1.97E-01 1.21E-01 1.20E-01 9.29E-02
e 8.47E-06 1.70E-06 2.80E-06 2.29E-06 2.69E-06 1.57E-06

Niter 3(1) 2(15) 3(2) 3(10) 3(10) 3(10)
Npicked 4 10 18 32 62 126
ratio 5.5% 9.2% 7.7% 6.2% 5.8% 6.0%

Table 5.10: Performance of GMRES(20): Example 5.1.

From Table 5.10, we can see that both the number of iterations and the ratio of

selected eigen-modes are approaching constants for the coefficients shown in (5.10).

5.2 More general cases

For most real life problems, ρ and c in (5.13) typically depend on more than one

spatial direction, which leads us to the more realistic linear system:

(
K − k2M

)
b = F , k2 > 0, (5.17)

90

where both K and M are entangled due to either ρ or c. As a result, the calculation

of 2D generalized eigen-pairs cannot be decomposed into 1D problems anymore.

However, for certain problems that are close enough to those ideal cases examined

in Section 5.1, we can resort to the idea of preconditioning. One example about the

Helmholtz equation on layered media with curved interfaces is shown in Section 5.2.1.

On the other hand, when wavenumber k in (5.17) is small enough such that

calculation of the 2D/3D eigen-pairs is affordable, we can still tackle the problem by

removing the indefiniteness with these 2D/3D eigen-pairs. Further discussion on this

approach can be found in Section 5.2.2.

5.2.1 Approach 1: preconditioning

In this section, the Helmholtz equation with layered media coefficients, shown as the

physical domain in Figure 5.2, is considered. Detailed information about this physical

domain can be found in Appendix C.2, including formulae of the curved interfaces

and boundaries, as well as the mapping from the parametric domain to the physical

domain. Images on the physical domain of the finite elements on the parametrical

domain under this mapping are conforming with these interfaces and boundaries.

Parametrical domain Physical domain

Figure 5.2: Layered media.

If these curved interfaces are replaced with straight lines, as shown as the paramet-

rical domain in Figure 5.2, we know how to solve (5.17) efficiently, already demon-

91

strated in Example 5.1. Here, we exploit this ability for preconditioning, i.e., we

use the solution for Helmholtz problem defined on the parametrical domain as the

approximate solution for Helmholtz problem defined on the physical domain.

To solve the Helmholtz problem on parametrical domain, or in another word, to

apply the preconditioner, we use the direct method with formula shown in (5.4), albeit

we can improve the computational efficiency by using a starting point bp constructed

as (5.6), followed with a fixed number of ADI iterations, validated by the results

shown in Table 5.4. It can be shown that in either way, the resulting preconditioner

has a fixed form, as long as we pick the same eigen-pairs to construct bp at each

iteration. We choose the first one such that the numerical tests reflect more accurate

information about the approximation we make on the layered media coefficients.

Numerical results are demonstrated in Table 5.11 for different wavenumber k and

mesh size h(= 1/N1D). GMRES(50), which restarts every 50 iterations, is applied with

maximum number of restarts set as 10 and tolerance of relative residual set as 1e-7.

N1D 16 32 64 128 256 512

k=10
Niter 1(15) 1(17) 1(17) 1(17) 1(18) 1(18)
Rerr 6.3E-07 1.5E-07 1.4E-07 1.3E-07 9.9E-08 1.2E-07
Rres 2.0E-07 2.6E-08 2.9E-08 3.3E-08 1.0E-08 2.1E-08

k=20
Niter 1(26) 1(28) 1(29) 1(28) 1(28)
Rerr 2.4E-07 3.5E-06 6.1E-07 9.6E-07 9.9E-07
Rres 2.9E-08 2.1E-08 1.9E-08 3.3E-08 3.0E-08

k=40
Niter 1(49) 1(48) 1(46) 1(45)
Rerr 1.1E-06 1.8E-06 2.7E-06 3.6E-06
Rres 2.9E-08 3.2E-08 7.1E-08 1.7E-07

Table 5.11: Performance of GMRES(50).

Due to the indefiniteness of the discrete Helmholtz equation, this preconditioning

approach only works for relatively low wavenumber, even just for this special case.

92

5.2.2 Approach 2: remove the indefiniteness

This approach is rather straightforward: calculate the 2D/3D generalized eigen-pairs

and construct the starting point bp accordingly to remove the indefiniteness of (5.17).

Therefore, we are presented with the following generalized eigenvalue problem:

Kvi = λiMvi for i = 1, 2, (5.18)

We are only interested in those generalized eigenvalues that are smaller than k2 in

order to remove the indefiniteness and possibly several extra generalized eigenvalues

that are slightly bigger than k2 in order to improve the condition number.

Moreover, we can obtain good starting points for generalized eigenvalue problem

(5.18) cheaply, that is, the generalized eigenvectors corresponding to the homogeneous

media case (5.1). It is also worth mentioning that the generalized eigen-pairs of (5.18)

can be reused for different right hand side F and different wavenumber k. Besides,

these generalized eigen-pairs do not have to be stored simultaneously and therefore

do not impose a burden on the memory.

However, recall the results shown in Table 5.1 where for the 1D case, the number

of negative generalized eigenvalues for (5.1) is almost proportional to wavenumber

k. For the 3D case, it is almost proportional to k3, which makes the situation even

worse. Thereby, for high wavenumber, this approach is not effective either based on

current technology.

Remark 5.5. The numerical challenge of solving discrete Helmholtz equation with

iterative methods mainly comes from its indefiniteness. Even the currently most pow-

erful family of iterative methods, Krylov subspace methods, cannot handle indefinite

linear system efficiently. A strategy to resolve the indefiniteness of the linear system is

therefore crucial for a successful iterative solving. In a lot of occasions, the difficulty

of indefiniteness is first transformed into another form; then a solution technique is

93

proposed for the new difficulty.

Normal equation. An obvious approach following this process is: instead of

the original equation Ab = F , solve the normal equation ATAb = ATF . Indeed,

the normal equation delivers the same solution while we only have to deal with a

positive definite matrix. However, the price is also dramatic: condition number of

ATA is squared comparing with A. Therefore, the difficulty of indefiniteness is trans-

formed into ill-condition. Of course, one would rarely apply iterative methods without

a preconditioner. If it is easier to precondition the normal equation, then this trans-

formation is worthwhile.

Shifted Laplace. Another example is the class of shifted Laplace precondition-

ers, which eases the indefiniteness of the discrete Helmholtz equation by driving the

generalized eigenvalues towards the right half of the complex plane with a Laplace-

like preconditioner. For detail about shifted Laplace preconditioners, one can consult

[37, 80]. The difficulty of indefiniteness is transformed into repeatedly applying the

preconditioner, which can be expensive. Extensive research has been done on efficiently

applying these preconditioners, see for instance, [35, 36, 74].

Our approach. In comparison, our approach also shares some similarity. By

constructing a starting point that hides all the negative eigen-modes from the Krylov

subspace methods, the difficulty of indefiniteness is transformed into a series of gen-

eralized eigenvalue problems. For general cases, whether or not this transformation

is worthwhile depends on the techniques for the generalized eigenvalue problem, which

is left for future work.

94

Chapter 6

Miscellaneous

6.1 On boundary conditions

In this section, we discuss the effect of boundary conditions on matrix structure

and how to adapt those matrix structure based algorithms accordingly. Two most

commonly used boundary conditions, Dirichlet and Neumann boundary conditions,

are considered.

Matrix structure is unchanged under explicit imposition of Neumann boundary

conditions since they only affect the right hand side. However, explicit imposition of

Dirichlet boundary conditions delete those involved degrees of freedom (dofs) from

the linear system, therefore may change the matrix structure.

Take the model problems presented in section 1.1 as examples, it is clear that as

long as each edge of the domain is imposed with only 1 type of boundary condition,

either Dirichlet or Neumann, matrices arising from these model problems still possess

the Kronecker product structure.

The tricky case comes when different types of boundary conditions are imposed

on the same edge, for instance, when only half of an edge is imposed with Dirichlet

boundary condition while all the rest is imposed with Neumann boundary condition,

as illustrated Figure 6.1.

95

Figure 6.1: Boundary conditions and matrix structure.

The corresponding matrices do not possess the Kronecker product structure for

missing some pieces due to the Dirichlet boundary condition. In order to restore

the Kronecker product structure, we need to put these missing pieces back, which

leads to ‘wrong’ matrices. In the following, we present a tactic to adjust the iterative

methods accordingly such that these ‘wrong’ matrices can be used to calculate the

‘right’ solution.

Consider the following abstract PDE:

L(u) = f on Ω, (6.1a)

∇u · −→n = gN on ∂ΩN , (6.1b)

u = gD on ∂ΩD, (6.1c)

where L is a second order elliptic operator, −→n is the outward normal vector and

∂ΩN ∪ ∂ΩD = ∂Ω.

Suppose (6.1a) and (6.1b) lead us to the following linear system after finite element

discretization with basis functions {Bi}ni=1:

Ax = b, (6.2)

in which A is an n× n matrix while x and b are n× 1 vectors.

96

Yet we still need to impose the Dirichlet boundary condition (6.1c). Without loss

of generality, we assume that the first nN basis functions in {Bi}ni=1 correspond to

Dirichlet boundary condition (6.1c), therefore need to be deleted from linear system

(6.2). Denote the first nD components of x and b as xD and bD, respectively; Denote

the rest components of x and b as xR and bR, respectively, at size nR = n− nN . We

also decompose the matrix A accordingly as follows:

A =

 ADD ADR

ARD ARR

 . (6.3)

Explicit imposition of Dirichlet boundary condition (6.1c) leads to prescription of

values for xD. Denote these values as GD, an nD × 1 vector originated from gD in

(6.1c). With the above notations, the linear system that corresponds to (6.1a), (6.1b)

and (6.1c) can be written as:

 ADD ODR

ARD ARR


 xD

xR

 =

 ADDGD

bR

 , (6.4)

where ODR stands for a zero matrix with the same size as ADR. Linear system (6.4)

is equivalent to

ARRxR = bR − ARDGD (6.5)

in the sense that they deliver the same solution for xR.

To distinguish, we refer to (6.2) as the original linear system; refer to (6.4) as the

modified linear system; refer to (6.5) as the reduced linear system. Analogically, we

refer to the matrices in (6.2), (6.4) and (6.5) the original matrix, the modified matrix

and the reduced matrix, respectively.

At the first stage, we want to have an iterative method to solve the desired linear

system by performing operations with the original matrix at each iteration. As an

97

example, we present a modified conjugate gradient method in Algorithm 6.

Algorithm 6.

1: Initial guess: x(0) = [GT
D, (x

(0)
R)T]T

2: Initial residual: r(0) = [OT
D, bR − ARDGD − ARRx(0)

R]T ∗

3: Initial direction: p(0) = r(0)

4: Initial measure of the residual: tol = norm(r(0))
5: k = 0
6: while (tol is not small enough) do
7: αnum = (r(k))T r(k)

8: αden = (p(k))TAp(k)

9: α(k) =
αnum
αden

10: x(k+1) = x(k) + α(k)p(k)

11: r(k+1) = r(k) − α(k)Ap(k)

12: Set the first nD components of r(k+1) to 0: r(k+1)(1 : nD) = OD
∗

13: tol = norm(r(k+1))
14: βnum = (r(k+1))T r(k+1)

15: β(k) =
βnum
αnum

16: p(k+1) = r(k+1) + β(k)p(k)

17: k = k + 1
18: end while

∗ OD stands for a zero vector with the same size as GD.

In Algorithm 6, we manually change the searching direction at each iteration (line

12) such that xD, i.e., dofs corresponding to the Dirichlet boundary condition, never

get updated. Therefore, if the initial guess satisfies the Dirichlet boundary condition,

all the approximate solutions at subsequent iterations will do so.

Moreover, with some simple algebraic derivation following the lines, it is easy to

show that Algorithm 6 is just a special approach to apply the usual conjugate gradient

method on the reduced linear system (6.5) in the sense that, parameters α(k), β(k) and

the last nR components of vectors r(k), p(k), x(k) produced in these two approaches

coincide with each other at every iteration.

Next, we bring preconditioning into the picture. Instead of Ax = b, we consider

the preconditioned linear system PAx = Pb. Consistent with the decomposition of

98

A as in (6.3), P can also be decomposed as

P =

 PDD PDR

PRD PRR

 ,
where every block matrix has the same size as their correspondence in (6.3). We

present a modified preconditioned conjugate gradient method in Algorithm 7 to solve

the modified linear system (6.4), which only requires performing operations with A

and P at each iteration.

Algorithm 7.

1: Initial guess: x(0) = [gT , (x
(0)
R)T]T

2: Initial residual: r(0) = [OT
D, bR − ARDGD − ARRx(0)

R]T ∗

3: Initial assist vector: z(0) = Pr(0)

4: Set the first nD components of z(0) to 0: z(0)(1 : nD) = OD
∗

5: Initial direction: p(0) = z(0)

6: Initial measure of the residual: tol = norm(r(0))
7: k = 0
8: while (tol is not small enough) do
9: αnum = (r(k))T z(k)

10: αden = (p(k))TAp(k)

11: α(k) =
αnum
αden

12: x(k+1) = x(k) + α(k)p(k)

13: r(k+1) = r(k) − α(k)Ap(k)

14: Set the first nD components of r(k+1) to 0: r(k+1)(1 : nD) = OD
∗

15: tol = norm(r(k+1))
16: z(k+1) = Pr(k+1)

17: Set the first nD components of z(k+1) to O: z(k+1)(1 : nD) = OD
∗

18: βnum = (r(k+1))T z(k+1)

19: β(k) =
βnum
αnum

20: p(k+1) = z(k+1) + β(k)p(k)

21: k = k + 1
22: end while

∗ OD stands for a zero vector with the same size as GD.

Similar to Algorithm 6, one can show that Algorithm 7 is just a special approach

to apply the usual preconditioned conjugate gradient method on the reduced linear

99

system (6.5) with preconditioner PRR.

Remark 6.1. Algorithm 6 and 7 can still be applied when the matrix or the precon-

ditioner is not explicitly formed since no surgery on the linear system is needed for

imposing Dirichlet boundary condition. Instead, these algorithms themselves guaran-

tee that the approximate solution is always compatible with the Dirichlet boundary

condition.

In the following, we show some numerical results to demonstrate the effect of

boundary conditions on the convergence speed. Inversion of mass matrices built on

complicated geometries is considered. The concerned geometries, shown in Figure

6.2, are exactly the same ones in Figure 3.2. The blue lines indicate the part of

boundary that is imposed with Dirichlet boundary condition while the rest are im-

posed with Neumann boundary condition. Each blue line is mapped from half of the

corresponding edge in the parametrical domain.

Stretched rectangle Perturbed rectangle

Figure 6.2: Testing domains with boundary conditions.

Table 6.1 - 6.3 record the number of iteration steps required for convergence with

preconditioner M−1, preconditioner M ξS and the hybrid preconditioner, correspond-

ingly. The iteration process is stopped when relative residual (in `2 norm) is less

than 1e-12. In all these tables, bilinear basis functions (p = 1, c = 0) are used while

100

the mesh size is varying. Row ‘boundary’ corresponds to Figure 6.2 while row ‘—’

corresponds to the full Neumann boundary condition case, shown here for comparison.

M−1 N1D 23 24 25 26 27 28 29 210

Stretched
Boundary 19 26 31 34 35 35 36 36

— 26 31 32 33 33 33 33 33

Perturbed
Boundary 22 31 36 40 42 43 43 44

— 25 31 36 39 42 44 44 45

Table 6.1: h-scaling: p = 1, c = 0.

M ξS N1D 23 24 25 26 27 28 29 210

Stretched
Boundary 10 10 9 8 8 8 7 6

— 8 6 5 5 4 4 3 3

Perturbed
Boundary 13 12 10 10 8 8 7 7

— 12 10 9 8 7 6 5 4

Table 6.2: h-scaling: p = 1, c = 0.

Hybrid N1D 23 24 25 26 27 28 29 210

Stretched
Boundary 10 9 8 7 7 7 7 6

— 8 7 5 5 4 4 3 3

Perturbed
Boundary 14 13 11 10 9 9 8 7

— 14 13 10 9 7 6 5 5

Table 6.3: h-scaling: p = 1, c = 0.

From Table 6.1 - 6.3, we see that for bilinear basis functions, the proposed precon-

ditioners can handle the mixed boundary conditions shown in Figure 6.2 fairly well.

The convergence speed is not heavily affected by these mixed boundary conditions.

Remark 6.2. When highly continuous basis functions are used, the proposed pre-

conditioners do not work as nicely as with bilinear basis functions for the boundary

conditions shown in Figure 6.2. This is because, due to the broad interactions be-

tween high continuous basis functions, the Kronecker product structure in the matrix

is damaged more severely for losing those dofs corresponding to the Dirichlet part of

the boundary.

101

6.2 On isogeometric spectral element method

Transformation. Kronecker product properties can also be used on transforming

geometry from one representation to another.

For instance, suppose originally we have a 2D B-spline represented function: f =

bTB, where B = By⊗Bx, and we want to represent it with Lagrangian basis functions

L = Ly ⊗ Lx. If Lx and Bx are built with the same polynomial order on the same

mesh, we have Bx ⊆ Lx. Under the same condition, By ⊆ Ly and therefore, B ⊆ L,

i.e., f can be represented by L without losing any accuracy.

To find the coefficients of f corresponding to L, we recall the properties of Kro-

necker product in section 2.1, particularly the mixed product property. Suppose we

have 1D relations Bx = AxLx and By = AyLy, then,

B = (AyLy)⊗ (AxLx) = (Ay ⊗ Ax)(Ly ⊗ Lx).

Define A = Ay⊗Ax, we have B = AL and subsequently, f =
(
AT b

)T
L. Multiplying b

with AT is cheap due to its Kronecker product structure. A fast algorithm similar to

Algorithm 1 can be designed for this job. Thus, transforming a B-spline representation

to a Lagrangian representation is conceptually easy and computationally cheap.

This simple transformation process can be generalized to NURBS represented

function as well. Suppose we have NURBS basis functions RB =
B

WN

, where WN =

wTB, and function f is represented as f = bTRB. Since B = AL, WN can also

be written as WN =
(
ATw

)T
L. Moreover, define RL =

L

WN

, we have RB ⊆ RL

since B ⊆ L. Therefore, f can be represented by RL without losing any accuracy.

Specifically, f =
(
AT b

)T
RL. We refer to RL as rational Lagrangian basis functions.

Spectral element method. The reason that one might want to go through

this transformation, rather than using B-spline basis functions directly as FEM basis

functions, is that there are existing efficient techniques developed for Lagrangian basis

102

functions, which may overpay the transformation cost.

As an example, spectral element method [18, 52, 54] is based on Lagrangian ba-

sis functions. By using Gauss-Lobatto-Legendre (GLL) quadrature rule [25, 55, 56]

and collocating the interpolating points of Lagrangian basis functions with the GLL

quadrature points, the resulting mass matrix is diagonal, based on which a fast explicit

dynamic solver can be developed. This result also extends to the induced rational La-

grangian basis functions. We refer to these (rational) Lagrangian basis functions, with

their interpolating points collocating with the GLL quadrature points, as (rational)

GLL basis functions.

With the ability of transforming a B-spline/NURBS represented geometry to a

GLL/rational GLL represented geometry efficiently, we are able to have a smooth

interface between CAD program and spectral element simulation. Moreover, since

this transformation does not lose any accuracy of the geometry, the resulting spectral

element method also inherits the isogeometric feature.

103

Chapter 7

Concluding Remarks

7.1 Summary

In this work, we present efficient iterative algorithms to invert matrices arising from

finite element discretization of various partial differential equations with tensor prod-

uct basis functions by exploiting the Kronecker product structure in these matrices,

inherited from the basis functions.

We start from efficient algorithms for ideal model problems where the matrices

therein possess the Kronecker product structures. Then we move to more general

cases and presents various preconditioning techniques. Those algorithms developed

for the ideal cases, or their variants, are exploited on applying the preconditioners

efficiently.

Specifically, we deal with three different types of matrices that present different

difficulties, namely, the mass matrices, the stiffness matrices and matrices arising

from the Helmholtz equation.

For the mass matrices, the computational complexity inherent with the basis func-

tions used in isogeometric analysis raises concern on their numerical efficiency. Higher

continuous basis functions are shown to be harder to deal with using direct methods.

We thus turn to iterative methods and focus on designing effective preconditioners.

First, we propose a ‘plain’ preconditioner that addresses the issue of the basis func-

104

tions. Numerical performance of this preconditioner is shown to be independent of

mesh size, polynomial order and continuity order when combined with the conjugate

gradient method. However, this ‘plain’ preconditioner does not provide correction

for complicated geometries, which arise in virtually all applications of isogeometric

analysis. We then propose preconditioners that provide partial correction for com-

plicated geometries, achieving better performances than the ‘plain’ preconditioner.

Meanwhile, we also present a hybrid preconditioner that is numerically competitive

with better adaptivity on nonlinear or inverse problems.

For the stiffness matrices, the increasing condition number as we refine the mesh

is the major numerical concern. We propose a compound iteration preconditioner to

mitigate the mesh dependence for iterative methods. For inhomogeneous orthotropic

media, this preconditioner works very well when combined with the conjugate gradient

method. For fully anisotropic media, it does not provide satisfactory results due to

the strong physical coupling of different directions or distortion of the mesh. We also

consider the isotropic media with high contrast, for which a hybrid preconditioner is

proposed, whose performance only depends on the contrast mildly.

For matrices arising from the Helmholtz equation, the numerical challenge mainly

comes from the indefiniteness. Krylov subspace methods, or in general, polynomial

based iterative methods, do not work efficiently for indefinite problems. We provide a

strategy to ‘hide’ the indefiniteness from the Krylov subspace methods by constructing

a starting point that eliminates the error corresponding to all the negative generalized

eigen-modes. This strategy can also be used to improve the condition number.

However, the cost is also sizable since the number of negative generalized eigen-

pairs is proportional to kd where k is the wave number and d is the spatial dimension

of the problem. For 3D heterogenous problem with high wave number, removing the

indefiniteness in this approach can be very expensive. Thus this strategy is now only

effective for low wave number case.

105

7.2 Future Research Work

Mass matrix

On the direction of preconditioning mass matrix, the author would like to focus on

the applications of the algorithms developed in Chapter 3. For instance, crash testing,

turbulence modeling and wave propagation are all potential application areas.

Stiffness matrix

On the direction of preconditioning stiffness matrix, the author would like to continue

the investigation on the methodologies in order to tackle more complicated physical

equations.

The first target would be the fully anisotropy with application on isogeometric

analysis. Multigrid algorithms seem to be good candidates due to their success on

elliptic problems. On the other hand, the tensor grid enabled by isogeometric analysis

makes it very simple for multigrid algorithms to apply.

Moreover, the extension towards advection-diffusion equation is also very inter-

esting. The extra advection operator leads to asymmetric linear system, boundary

layer and instability, which makes it very challenging for preconditioning. A further

extension will be the Navier-Stokes equations.

Helmholtz equation

Helmholtz equation, particularly when it comes to high wave numbers, remains in-

vincible for decades. Its indefiniteness makes it a subtle object when it comes to

preconditioning. Designing a good preconditioner for Helmholtz equation requires a

radical understanding on virtually everything related: physics of wave propagation,

mathematical analysis, numerical techniques and so on. The author hopes to further

106

investigate on this problem in the future due to its intriguing difficulty, as well as its

broad application areas. However, no clear path has been realized so far.

Parallel computing

All the algorithms presented in this work are designed in a serial computing environ-

ment. Research on adapting these algorithms to parallel computing environment is

necessary.

107

REFERENCES

[1] N. I. Achieser. Theory of approximation. Courier Dover Publications, 2011.

[2] B. Aksoylu, I. G. Graham, H. Klie, and R. Scheichl. Towards a rigorously justified

algebraic preconditioner for high-contrast diffusion problems. Computing and

Visualization in Science, 11(4-6):319–331, 2008.

[3] F. Auricchio, L. B. Da Veiga, A. Buffa, C. Lovadina, A. Reali, and G. Sangalli.

A fully locking-free isogeometric approach for plane linear elasticity problems:

a stream function formulation. Computer Methods in Applied Mechanics and

Engineering, 197(1):160–172, 2007.

[4] O. Axelsson. A survey of preconditioned iterative methods for linear systems of

algebraic equations. BIT Numerical Mathematics, 25(1):165–187, 1985.

[5] O. Axelsson. Iterative solution methods. Cambridge University Press, 1996.

[6] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. Van Der Vorst. Templates

for the solution of algebraic eigenvalue problems: a practical guide, volume 11.

Society for Industrial Mathematics, 1987.

[7] A. Banegas. Fast Poisson solvers for problems with sparsity. Mathematics of

Computation, pages 441–446, 1978.

[8] R. Bank. Efficient algorithms for solving tensor product finite element equations.

Numerische Mathematik, 31(1):49–61, 1978.

[9] Y. Bazilevs, L. B. Da Veiga, J. Cottrell, T. Hughes, and G. Sangalli. Isogeomet-

ric analysis: approximation, stability and error estimates for h-refined meshes.

Mathematical Models and Methods in Applied Sciences, 16(07):1031–1090, 2006.

[10] M. Benzi. Preconditioning techniques for large linear systems: a survey. Journal

of Computational Physics, 182(2):418–477, 2002.

[11] G. Birkhoff, R. S. Varga, and D. Young. Alternating direction implicit methods.

Advances in Computers, 3:189–273, 1962.

108

[12] J. M. Borwein and P. B. Borwein. The arithmetic-geometric mean and fast

computation of elementary functions. SIAM review, 26(3):351–366, 1984.

[13] J. M. Borwein and P. B. Borwein. Pi and the AGM: a study in the analytic

number theory and computational complexity. Wiley-Interscience, 1987.

[14] Y. Boubendir, X. Antoine, and C. Geuzaine. A quasi-optimal non-overlapping

domain decomposition algorithm for the Helmholtz equation. Journal of Com-

putational Physics, 231(2):262–280, 2012.

[15] D. Braess. Finite elements: Theory, fast solvers, and applications in solid me-

chanics. Cambridge University Press, 2001.

[16] A. Buffa, G. Sangalli, and R. Vázquez. Isogeometric analysis in electromag-

netics: B-splines approximation. Computer Methods in Applied Mechanics and

Engineering, 199(17):1143–1152, 2010.

[17] B. L. Buzbee. A fast Poisson solver amenable to parallel computation. IEEE

Transactions on Computers, 22(8):793–796, 1973.

[18] C. Canuto, Y. Hussaini, and A. Quarteroni. Spectral Methods: Evolution to Com-

plex Geometries and Applications to Fluid Dynamics. Scientific Computation.

Springer-Verlag Berlin Heidelberg, 2007.

[19] E. W. Cheney. Introduction to approximation theory, volume 3. McGraw-Hill

New York, 1966.

[20] P. Ciarlet. The finite element method for elliptic problems, volume 4. North

Holland, 1978.

[21] J. Cottrell, T. Hughes, and Y. Bazilevs. Isogeometric analysis: toward integration

of CAD and FEA. John Wiley & Sons Inc, 2009.

[22] J. Cottrell, T. Hughes, and A. Reali. Studies of refinement and continuity in

isogeometric structural analysis. Computer Methods in Applied Mechanics and

Engineering, 196(41):4160–4183, 2007.

[23] J. Cottrell, A. Reali, Y. Bazilevs, and T. Hughes. Isogeometric analysis of struc-

tural vibrations. Computer Methods in Applied Mechanics and Engineering,

195(41):5257–5296, 2006.

109

[24] L. B. da Veiga, A. Buffa, J. Rivas, and G. Sangalli. Some estimates for h–p–

k-refinement in isogeometric analysis. Numerische Mathematik, 118(2):271–305,

2011.

[25] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Courier Dover

Publications, 2007.

[26] C. de Boor. Efficient computer manipulation of tensor products. ACM Transac-

tions on Mathematical Software (TOMS), 5(2):173–182, 1979.

[27] C. de Boor. A Practical Guide to Splines. Number v. 27 in Applied Mathematical

Sciences. Springer, 2001.

[28] W. R. Dyksen. Tensor product generalized ADI methods for separable elliptic

problems. SIAM Journal on Numerical Analysis, 24(1):59–76, 1987.

[29] Y. Efendiev, J. Galvis, and X.-H. Wu. Multiscale finite element methods for high-

contrast problems using local spectral basis functions. Journal of Computational

Physics, 230(4):937–955, 2011.

[30] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and Fast

Iterative Solvers: with Applications in Incompressible Fluid Dynamics: with Ap-

plications in Incompressible Fluid Dynamics. OUP Oxford, 2005.

[31] B. Engquist and O. Runborg. Computational high frequency wave propagation.

Acta numerica, 12(1):181–266, 2003.

[32] B. Engquist and L. Ying. Sweeping preconditioner for the Helmholtz equation:

hierarchical matrix representation. Communications on Pure and Applied Math-

ematics, 64(5):697–735, 2011.

[33] B. Engquist and L. Ying. Sweeping preconditioner for the Helmholtz equation:

moving perfectly matched layers. Multiscale Modeling & Simulation, 9(2):686–

710, 2011.

[34] Y. A. Erlangga. Advances in iterative methods and preconditioners for

the Helmholtz equation. Archives of Computational Methods in Engineering,

15(1):37–66, 2008.

[35] Y. A. Erlangga and R. Nabben. On a multilevel krylov method for the helmholtz

equation preconditioned by shifted laplacian. Electronic Transactions on Numer-

ical Analysis, 31(403-424):3, 2008.

110

[36] Y. A. Erlangga, C. Vuik, and C. Oosterlee. Comparison of multigrid and in-

complete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz

equation. Applied Numerical Mathematics, 56(5):648–666, 2006.

[37] Y. A. Erlangga, C. Vuik, and C. W. Oosterlee. On a class of preconditioners for

solving the Helmholtz equation. Applied Numerical Mathematics, 50(3):409–425,

2004.

[38] A. Ern and J.-L. Guermond. Evaluation of the condition number in linear systems

arising in finite element approximations. ESAIM-Mathematical Modelling and

Numerical Analysis, 40(1):29–48, 2006.

[39] O. G. Ernst and M. J. Gander. Why it is difficult to solve Helmholtz problems

with classical iterative methods. Numerical Analysis of Multiscale Problems,

pages 325–363, 2012.

[40] G. E. Farin. NURBS: from projective geometry to practical use. AK Peters, Ltd.,

1999.

[41] B. Fischer. Polynomial Based Iteration Methods for Symmetric Linear Systems,

volume 68. Society for Industrial and Applied Mathematics, 2011.

[42] I. Fried and D. S. Malkus. Finite element mass matrix lumping by numerical

integration with no convergence rate loss. International Journal of Solids and

Structures, 11(4):461–466, 1975.

[43] J. Galvis and Y. Efendiev. Domain decomposition preconditioners for multiscale

flows in high-contrast media. Multiscale Modeling & Simulation, 8(4):1461–1483,

2010.

[44] J. Galvis and Y. Efendiev. Domain decomposition preconditioners for multi-

scale flows in high contrast media: reduced dimension coarse spaces. Multiscale

Modeling & Simulation, 8(5):1621–1644, 2010.

[45] G. H. Golub and D. P. O’Leary. Some history of the conjugate gradient and

Lanczos algorithms: 1948-1976. SIAM review, 31(1):50–102, 1989.

[46] G. H. Golub and C. F. Van Loan. Matrix Computations, volume 3. Johns

Hopkins University Press, 1996.

[47] A. Greenbaum. Iterative Methods for Solving Linear Systems, volume 17. Society

for Industrial and Applied mathematics, 1987.

111

[48] L. Greengard and J.-Y. Lee. A direct adaptive poisson solver of arbitrary order

accuracy. Journal of Computational Physics, 125(2):415–424, 1996.

[49] E. Hinton, T. Rock, and O. Zienkiewicz. A note on mass lumping and related

processes in the finite element method. Earthquake Engineering & Structural

Dynamics, 4(3):245–249, 1976.

[50] T. Hughes. The Finite Element Method: linear static and dynamic finite element

analysis. Dover Publications, 2000.

[51] T. J. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite

elements, NURBS, exact geometry and mesh refinement. Computer Methods in

Applied Mechanics and Engineering, 194(39):4135–4195, 2005.

[52] G. Karniadakis and S. Sherwin. Spectral/hp Element Methods for Computa-

tional Fluid Dynamics: Second Edition. Numerical Mathematics and Scientific

Computation. OUP Oxford, 2005.

[53] D. E. Keyes and W. D. Gropp. A comparison of domain decomposition techniques

for elliptic partial differential equations and their parallel implementation. SIAM

Journal on Scientific and Statistical Computing, 8(2):166–202, 1987.

[54] D. Kopriva. Implementing Spectral Methods for Partial Differential Equations:

Algorithms for Scientists and Engineers. Scientific Computation. Springer Sci-

ence+Business Media B.V., 2009.

[55] V. I. Krylov and A. H. Stroud. Approximate Calculation of Integrals. Courier

Dover Publications, 1962.

[56] P. Kythe and M. Schäferkotter. Handbook of Computational Methods for Inte-

gration, volume 1. CRC Press, 2005.

[57] S. Lipton, J. A. Evans, Y. Bazilevs, T. Elguedj, and T. J. Hughes. Robustness of

isogeometric structural discretizations under severe mesh distortion. Computer

Methods in Applied Mechanics and Engineering, 199(5):357–373, 2010.

[58] C. D. Martin. Higher-order Kronecker Products and Tensor Decompositions.

PhD thesis, Cornell University, 2005.

[59] MATLAB. Version 7.10.0 (R2010a). The MathWorks Inc. Natick, Massachusetts,

2010.

112

[60] A. Mayo. The fast solution of poisson’s and the biharmonic equations on irregular

regions. SIAM Journal on Numerical Analysis, 21(2):285–299, 1984.

[61] B. Parlett. The Symmetric Eigenvalue Problem. Classics in Applied Mathemat-

ics. Society for Industrial and Applied Mathematics, 1980.

[62] D. W. Peaceman and H. H. Rachford, Jr. The numerical solution of parabolic

and elliptic differential equations. Journal of the Society for Industrial & Applied

Mathematics, 3(1):28–41, 1955.

[63] V. Pereyra and G. Scherer. Efficient computer manipulation of tensor products

with applications to multidimensional approximation. Mathematics of Compu-

tation, 27(123):595–605, 1973.

[64] L. Piegl. On NURBS: a survey. Computer Graphics and Applications, IEEE,

11(1):55–71, 1991.

[65] L. A. Piegl and W. Tiller. The NURBS Book. Springer Verlag, 1997.

[66] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes 3rd Edition: the art of scientific computing. Cambridge University Press,

2007.

[67] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics, volume 37.

Springer, 2006.

[68] P. A. Regalia and M. K. Sanjit. Kronecker products, unitary matrices and signal

processing applications. SIAM review, 31(4):586–613, 1989.

[69] D. F. Rogers. An Introduction to NURBS: with historical perspective. Morgan

Kaufmann, 2000.

[70] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and

Applied Mathematics, 2003.

[71] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Classics in Applied

Mathematics. Society for Industrial and Applied Mathematics, 2011.

[72] Y. Saad and H. A. Van Der Vorst. Iterative solution of linear systems in the

20th century. Journal of Computational and Applied Mathematics, 123(1):1–33,

2000.

113

[73] J. Schröder, U. Trottenberg, and K. Witsch. On fast Poisson solvers and appli-

cations. Numerical Treatment of Differential Equations, pages 153–187, 1978.

[74] A. Sheikh, D. Lahaye, and C. Vuik. On the convergence of shifted laplace pre-

conditioner combined with multilevel deflation. Numerical Linear Algebra with

Applications, 2013.

[75] W. Steeb and T. Shi. Matrix Calculus and Kronecker Product with Applications

and C++ Programs. World Scientific, 1997.

[76] W. Strang and G. Fix. An Analysis of the Finite Element Method. Prentice-Hall,

1973.

[77] L. Trefethen and D. Bau. Numerical Linear Algebra. Miscellaneous Bks. Society

for Industrial and Applied Mathematics, 1997.

[78] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Pr, 2001.

[79] D. Turkington. Generalized Vectorization, Cross-Products, and Matrix Calcu-

lus. Generalized Vectorization, Cross-products, and Matrix Calculus. Cambridge

University Press, 2013.

[80] M. Van Gijzen, Y. Erlangga, and C. Vuik. Spectral analysis of the discrete

Helmholtz operator preconditioned with a shifted Laplacian. SIAM Journal on

Scientific Computing, 29(5):1942–1958, 2007.

[81] C. F. Van Loan. The ubiquitous Kronecker product. Journal of Computational

and Applied Mathematics, 123(1):85–100, 2000.

[82] C. F. Van Loan and N. Pitsianis. Approximation with Kronecker products.

Technical report, Cornell University, 1992.

[83] R. S. Varga. Matrix Iterative Analysis, volume 27. Springer, 2009.

[84] C. Vuik, A. Segal, and J. Meijerink. An efficient preconditioned CG method

for the solution of a class of layered problems with extreme contrasts in the

coefficients. Journal of Computational Physics, 152(1):385–403, 1999.

[85] E. L. Wachspress. Optimum alternating-direction-implicit iteration parameters

for a model problem. Journal of the Society for Industrial & Applied Mathemat-

ics, 10(2):339–350, 1962.

114

[86] E. L. Wachspress. Extended application of alternating direction implicit iter-

ation model problem theory. Journal of the Society for Industrial & Applied

Mathematics, 11(4):994–1016, 1963.

[87] E. L. Wachspress. Iterative Solution of Elliptic Systems. Prentice-Hall, 1966.

[88] E. L. Wachspress and G. Habetler. An alternating-direction-implicit itera-

tion technique. Journal of the Society for Industrial & Applied Mathematics,

8(2):403–423, 1960.

[89] A. Wathen. Realistic eigenvalue bounds for the Galerkin mass matrix. IMA

Journal of Numerical Analysis, 7(4):449–457, 1987.

[90] A. Wathen. On relaxation of Jacobi iteration for consistent and generalized mass

matrices. Communications in Applied Numerical Methods, 7(2):93–102, 1991.

[91] A. Wathen and T. Rees. Chebyshev semi-iteration in preconditioning for prob-

lems including the mass matrix. Electronic Transactions on Numerical Analysis,

34:125–135, 2009.

[92] D. Young. Iterative Solution of Large Linear Systems. Dover Books on Mathe-

matics Series. Dover Publ., 2003.

115

APPENDICES

116

Appendix A

Mass matrix

A.1 About the two testing domains

The stretched rectangle and the perturbed rectangle shown in Figure 3.2 are mapped

from square parametrical domains. The mappings can be represented as linear com-

binations of B-spline basis functions as follows:

x =

Nξ∑
i=1

Nη∑
j=1

Cx
ijBij,

y =

Nξ∑
i=1

Nη∑
j=1

Cy
ijBij.

(A.1)

In (A.1), Bij = Bξ
iB

η
j where {Bξ}Nξi=1 and {Bη}Nηi=1 are the sets of 1D basis functions,

respectively, on the horizontal direction and vertical direction of the parametrical

domain. Cx
ij and Cy

ij are called the control points.

For the stretched rectangle, {Bξ}Nξi=1 and {Bη}Nηi=1 are both defined by knot vector

[0,0,1,1], which yields 2 linear basis functions. The corresponding control points are

listed in Table A.1.

Cx
ij Bξ

1 Bξ
2 Cy

ij Bξ
1 Bξ

2

Bη
1 0 1 Bη

1 0 0
Bη

2 0 5 Bη
2 1 5

Table A.1: Control points for the stretched rectangle.

117

For the perturbed rectangle, {Bξ}Nξi=1 and {Bη}Nηi=1 are defined by knot vector

[0,0,0,1,2,3,4,5,5,5], which yields 7 quadratic basis functions with continuity 1 across

the knots. The corresponding control points are listed in Table A.2 and Table A.3.

Cx
ij Bξ

1 Bξ
2 Bξ

3 Bξ
4 Bξ

5 Bξ
6 Bξ

7

Bη
1 -0.3142 0.7899 1.2358 2.0241 3.3905 4.5477 4.8925

Bη
2 0.4367 1.4064 2.2922 2.9479 3.9269 4.4844 5.3394

Bη
3 0.4665 1.5038 1.9556 2.7903 3.3913 4.6600 5.5869

Bη
4 0.4961 0.9212 1.2594 2.8849 4.1303 4.8637 5.3697

Bη
5 0.0596 0.7995 1.6432 2.3276 3.4461 4.9565 5.0942

Bη
6 0.4818 1.2737 1.8799 2.6568 3.9682 4.9108 5.3195

Bη
7 0.2539 1.1095 2.5355 3.4629 4.4784 4.6660 5.4954

Table A.2: Control points for the perturbed rectangle: x direction.

Cy
ij Bξ

1 Bξ
2 Bξ

3 Bξ
4 Bξ

5 Bξ
6 Bξ

7

Bη
1 0.6342 0.2239 0.1948 0.1525 -0.9304 -0.3156 -0.6165

Bη
2 1.0204 1.0852 0.7924 0.6019 0.1027 -0.0380 -0.0487

Bη
3 1.8142 1.5583 1.6155 1.7423 0.7937 0.7314 0.7311

Bη
4 2.8017 2.6391 2.7418 2.6091 1.6442 1.7947 2.0765

Bη
5 4.1169 3.2819 4.0476 3.7363 2.9908 3.1530 2.8399

Bη
6 4.7886 4.4857 4.7162 4.4456 3.8017 3.9477 3.6096

Bη
7 5.6561 5.2585 5.1921 5.2091 4.6306 4.6299 4.3596

Table A.3: Control points for the perturbed rectangle: y direction.

A.2 Additional numerical results for preconditioner

M−1

In this section, we present some additional numerical results to demonstrate the

performance of preconditioner M−1, in comparison with lumped-mass preconditioner.

Conjugate gradient method with both preconditioners are applied on the stretched

rectangle and perturbed rectangle shown in Figure 3.2. The iteration process is

stopped when relative residual (in `2 norm) is less than 1e-12.

Numbers of iteration steps required for convergence are presented in Table A.4

118

and Table A.5. In Table A.4, mesh size, h, and continuity order, c, are fixed while

polynomial order, p, is varying; In Table A.5, mesh size and polynomial order are

fixed while continuity order is varying.

p 1 2 3 4 5 6 7 8

Stretched
M−1 33 33 33 33 33 33 33 33

Lumped-mass 31 86 200 431 766 798 932 828

Perturbed
M−1 42 43 44 44 45 45 45 45

Lumped-mass 31 86 196 406 748 742 930 1334

Table A.4: p-scaling: N1D = 27, c = 0.

c 7 6 5 4 3 2 1 0

Stretched
M−1 33 33 33 33 33 33 33 33

Lumped-mass 4040 7664 2983 3990 4757 3449 6059 828

Perturbed
M−1 42 44 44 44 44 45 45 45

Lumped-mass 4246 7357 2312 4050 4327 3103 4884 1334

Table A.5: c-scaling: N1D = 27, p = 8.

A.3 Additional numerical results for preconditioner

(M ξS)−1 and (M ξM)−1

In this section, we present some additional numerical results to demonstrate the per-

formance of preconditioner (M ξS)−1 and (M ξM)−1, in comparison with lumped-mass

preconditioner. Conjugate gradient method with these preconditioners are applied on

the stretched rectangle and perturbed rectangle shown in Figure 3.2. The iteration

process is stopped when relative residual (in `2 norm) is less than 1e-12. Numbers of

iteration steps required for convergence are presented in Table A.6 - A.11.

Table A.6 and Table A.7 are related with preconditioner (M ξS)−1. In Table A.6,

mesh size, h, and continuity order, c, are fixed while polynomial order, p, is varying; In

Table A.7, mesh size and polynomial order are fixed while continuity order is varying.

119

p 1 2 3 4 5 6 7 8

Stretched
(M ξS)−1 4 4 5 5 5 5 5 5

Lumped-mass 31 86 200 431 766 798 932 828

Perturbed
(M ξS)−1 7 7 8 8 8 9 9 9

Lumped-mass 31 86 196 406 748 742 930 1334

Table A.6: p-scaling: N1D = 27, c = 0.

c 7 6 5 4 3 2 1 0

Stretched
(M ξS)−1 6 7 6 6 6 6 5 5

Lumped-mass 4040 7664 2983 3990 4757 3449 6059 828

Perturbed
(M ξS)−1 10 16 15 14 14 14 12 9

Lumped-mass 4246 7357 2312 4050 4327 3103 4884 1334

Table A.7: c-scaling: N1D = 27, p = 8.

Table A.8 - A.11 are related with preconditioner (M ξM)−1. In Table A.8, poly-

nomial order, p, and continuity order, c, are fixed while mesh size, h, is varying; In

Table A.9, mesh size is fixed while polynomial order and continuity order are varying

with the relation c = p− 1.

N1D 23 24 25 26 27 28 29 210

Stretched
(M ξM)−1 12 9 7 6 5 4 4 4

Lumped-mass 168 418 516 413 320 254 206 151

Perturbed
(M ξM)−1 21 20 15 12 10 8 7 6

Lumped-mass 289 512 463 380 306 245 200 152

Table A.8: h-scaling: p = 4, c = 3.

p 1 2 3 4 5 6 7 8

Stretched
(M ξM)−1 4 4 4 4 4 4 4 4

Lumped-mass 25 54 107 206 373 650 682 728

Perturbed
(M ξM)−1 6 6 7 7 7 8 8 8

Lumped-mass 26 55 105 200 346 459 505 599

Table A.9: k-scaling: N1D = 29, c = p− 1.

In Table A.10, mesh size, h, and continuity order, c, are fixed while polynomial

order, p, is varying; In Table A.11, mesh size and polynomial order are fixed while

continuity order is varying.

120

p 1 2 3 4 5 6 7 8

Stretched
(M ξM)−1 4 5 5 5 5 5 5 5

Lumped-mass 31 86 200 431 766 798 932 828

Perturbed
(M ξM)−1 8 8 8 8 8 8 9 9

Lumped-mass 31 86 196 406 748 742 930 1334

Table A.10: p-scaling: N1D = 27, c = 0.

c 7 6 5 4 3 2 1 0

Stretched
(M ξM)−1 6 5 5 5 5 5 5 5

Lumped-mass 4040 7664 2983 3990 4757 3449 6059 828

Perturbed
(M ξM)−1 13 11 10 9 9 9 9 9

Lumped-mass 4246 7357 2312 4050 4327 3103 4884 1334

Table A.11: c-scaling: N1D = 27, p = 8.

A.4 Complexity analysis

In this section, we continue our discussion on the computational cost at each iteration

step for preconditioner
(
M ξS

)−1
or
(
M ξM

)−1
, as a following-up of section 3.3.3. Here,

we deal with more general cases where c is not necessarily equivalent to p− 1.

Multiplication cost is heavily affected by the varying continuity, c, due to the

change of sparsity in the matrix. Roughly, it requires 2(p+c+2)2 ·N operation counts.

Factorization cost and substitution cost are also affected. However, for simplicity, we

still use the estimates obtained for the case where c = p− 1, which are overestimates

when c < p− 1.

Again, since (3p+ 1)(p+ 1) < 4(p+ c+ 2)2, the factorization cost for
(
M ξS

)−1
or(

M ξM
)−1

is still marginal, roughly amounts to 2 additional iteration cost.

Denote r(p) =
4(2p+ 1) ·N

2(p+ c+ 2)2 ·N
, r(p) is an upper bound for the ratio of the

substitution cost versus the multiplication cost. After some simple calculus, it can be

shown that r′(p) ≤ 0 for p ≥ 1, where r′(p) denotes the derivative of r(p). Moreover,

since r(1) ≤ 2

3
, we have r(p) ≤ 2

3
for any p ≥ 1 and 0 ≤ c ≤ p− 1, i.e., per iteration,

121

the additional computational cost does not exceed two thirds of the multiplication

cost. Actually, when p or c is high, this ratio can be much smaller.

Recall the numerical results shown in Table A.6 - A.7 and Table A.10 - A.11, these

additional costs are worthwhile considering the significant reduction of the number

of iteration steps.

A.5 Additional numerical results for hybrid pre-

conditioning

In this section, we present some additional numerical results to demonstrate the

performance of the hybrid preconditioner presented in section 3.3.4, in comparison

with preconditioner (M ξS)−1. Conjugate gradient method with both preconditioners

are applied on the stretched rectangle and perturbed rectangle shown in Figure 3.2.

The iteration process is stopped when relative residual (in `2 norm) is less than 1e-12.

Numbers of iteration steps required for convergence are presented in Table A.12

and A.13. In Table A.12, mesh size, h, and continuity order, c, are fixed while

polynomial order, p, is varying; In Table A.13, mesh size and polynomial order are

fixed while continuity order is varying.

p 1 2 3 4 5 6 7 8

Stretched
Hybrid 4 4 5 5 5 5 5 5
(M ξS)−1 4 4 5 5 5 5 5 5

Perturbed
Hybrid 7 8 9 9 10 10 10 10
(M ξS)−1 7 7 8 8 8 9 9 9

Table A.12: p-scaling: N1D = 27, c = 0.

c 7 6 5 4 3 2 1 0

Stretched
Hybrid 6 7 6 6 6 6 6 5
(M ξS)−1 6 7 6 6 6 6 5 5

Perturbed
Hybrid 13 17 18 16 17 17 14 10
(M ξS)−1 10 16 15 14 14 14 12 9

Table A.13: c-scaling: N1D = 27, p = 8.

122

A.6 Quarter annulus

In this section, we show that the 2D mass matrix built on a quarter annulus with

NURBS basis functions can still possess the Kronecker product property.

A quarter annulus, as shown in Figure A.1, can be mapped from a unit square.

Figure A.1: Quarter annulus.

The mapping can be represented as a linear combination of NURBS basis functions

as follows:

x =

Nξ∑
i=1

Nη∑
j=1

Cx
ij

Bij

WN

,

y =

Nξ∑
i=1

Nη∑
j=1

Cy
ij

Bij

WN

(A.2)

with WN =

Nξ∑
i=1

Nη∑
j=1

wijBij. In (A.2), Bij = Bξ
iB

η
j where {Bξ}Nξi=1 and {Bη}Nηi=1 are

the sets of 1D B-spline basis functions, respectively, on the horizontal direction and

vertical direction of the parametrical domain. Cx
ij and Cy

ij are called the control points

while wij are the weights for NURBS basis functions.

To construct the mapping for the quarter annulus, {Bξ}Nξi=1 is defined by knot

vector [0,0,0,1,1,1] while {Bη}Nηi=1 is defined by knot vector [0,0,1,1]. Corresponding

control points and weights are listed in Table A.14.

123

Cx
ij Bξ

1 Bξ
2 Bξ

3 Cy
ij Bξ

1 Bξ
2 Bξ

3 wij Bξ
1 Bξ

2 Bξ
3

Bη
1 0 1 1 Bη

1 1 1 0 Bη
1 1

√
2/2 1

Bη
2 0 2 2 Bη

2 2 2 0 Bη
2 1

√
2/2 1

Table A.14: Control points and weights for quarter annulus.

After substituting the basis functions and coefficients into (A.2), x, y and WN can

be expressed explicitly as follows:

x =
(1 + η)

(
(
√

2− 1)ξ −
√

2
)
ξ

−1− (−2 +
√

2)ξ + (−2 +
√

2)ξ2
,

y =
(1 + η)(ξ − 1)

(
(−1 +

√
2)ξ + 1

)
−1− (−2 +

√
2)ξ + (−2 +

√
2)ξ2

,

WN = 1 + (−2 +
√

2)ξ + (2−
√

2)ξ2.

Moreover, determinant of Jacobian with respect to this mapping can be written as:

J =

√
2(1 + η)

(1 + (−2 +
√

2)ξ + (2−
√

2)ξ2)
.

It is clear that WN only depends on ξ while J can be separated as product of two

functions, each of which depends on either only ξ or η. Therefore, the resulting 2D

mass matrix still possesses the Kronecker product property.

124

Appendix B

Stiffness matrix

B.1 Upper bound of the error reduction rate

In this section, we briefly describe the upper bound of error reduction rate for ADI

iterations with optimal acceleration parameters, as mentioned in section 4.1.2.

Suppose the set of optimal acceleration parameters {r(j)}kj=1 has been chosen as

the minimizer of optimization problem (4.10). Denote DO
k as the observed error

reduction rate, then we have, according to (4.20) and (4.21) in Theorem 4.3,

DO
k ≤ max

1≤i≤N

{
k∏
j=0

∣∣∣∣r(j) − λXi
r(j) + λXi

∣∣∣∣ · ∣∣∣∣r(j) − λYi
r(j) + λYi

∣∣∣∣
}
≤

{
max

0<α≤x≤β

∣∣∣∣∣
k∏
j=0

r(j) − x
r(j) + x

∣∣∣∣∣
}2

. (B.1)

Define dPk [α, β] as:

dPk [α, β] = max
0<α≤x≤β

∣∣∣∣∣
k∏
j=0

r(j) − x
r(j) + x

∣∣∣∣∣ ,
then DP

k =
(
dPk [α, β]

)2
is an upper bound of the observed error reduction rate DO

k .

Denote gk
(
x; {r(j)}kj=1

)
as:

gk
(
x; {r(j)}kj=1

)
=

∣∣∣∣∣
k∏
j=0

r(j) − x
r(j) + x

∣∣∣∣∣ ,
we have the following corollary based on Theorem 4.2:

125

Corollary B.1. For any r(j) ∈ {r(j)}kj=1,
αβ

r(j)
also belongs to {r(j)}kj=1. Moreover,

gk
(
x; {r(j)}kj=1

)
= gk

(
αβ

x
; {r(j)}kj=1

)
.

Based on Corollary B.1, we also have the following corollary:

Corollary B.2.

dP2k [α, β] = dPk

[√
αβ,

α + β

2

]
. (B.2)

We omit the proof of Corollary B.1 and Corollary B.2. For detail, please refer to [83]

or [85]. We also borrow the following Lemma from [83]:

Lemma B.1. If k = 1, then r1 =
√
αβ is the single optimal parameter and corre-

spondingly,

dP1 [α, β] =
1−
√
αβ

1 +
√
αβ

. (B.3)

Corollary B.2 and Lemma B.1 together lead us to the following theorem:

Theorem B.1.

d2m [α, β] =
1−

√
αm/βm

1 +
√

αm/βm
, (B.4)

where αm =
√
αm−1βm−1 and βm =

αm−1 + βm−1

2
with α0 = α and β0 = β.

Proof of Theorem B.1 is straightforward based on (B.2) and (B.3).

According to Theorem B.1, given α and β, d2m [α, β] only depends on αm and

βm. Both sequences, {αm}∞m=0 and {βm}∞m=0, monotonically converge to the Gauss

arithmetic-geometric mean of α and β very quickly. See Table B.1 for an example

where α = 1 and β = 107. For more detail on Gauss arithmetic-geometric mean, one

can consult [12, 13].

In Table B.1, we observe a quadratically decreasing behavior of d2m [α, β] and

DP
2m = (d2m [α, β])2, the upper bound of error reduction rate DO

2m , when αm and βm

are close to each other. This is explained in the following.

126

m αm βm d2m [α, β] DP
2m

0 1.0000000E+00 1.0000000E+07 9.99E-01 9.99E-01
1 3.1622777E+03 5.0000005E+06 9.51E-01 9.04E-01
2 1.2574335E+05 2.5015814E+06 6.34E-01 4.02E-01
3 5.6085401E+05 1.3136624E+06 2.10E-01 4.39E-02
4 8.5835471E+05 9.3725819E+05 2.20E-02 4.83E-04
5 8.9693923E+05 8.9780645E+05 2.42E-04 5.84E-08
6 8.9737274E+05 8.9737284E+05 2.92E-08 8.52E-16

Table B.1: Quadratic convergence behavior.

For αm = µ > 0 and βm = µ(1 + δ) where δ > 0 is a small number comparing

with 1, it can be shown that on one hand:

d2m [α, β] ≤
1−

√
1/(1+δ)

1 +
√

1/(1+δ)

(
1 +

√
1

1 + δ

)2

= 1− 1

1 + δ
≤ δ;

on the other hand:

d2m [α, β] =

√
1 + δ − 1√
1 + δ + 1

=
δ(√

1 + δ + 1
)2 ≥ C1δ.

Therefore, d2m [α, β] = Cmδ for some constant Cm.

Similar results exist for d2m+1 [α, β] where αm+1 and βm+1 can be expressed as:

αm+1 =
√
αmβm = µ(1 + δ)

1
2 and βm+1 =

αm + βm
2

= µ(1 +
δ

2
).

On one hand, we have:

d2m+1 [α, β] ≤ 1− αm+1

βm+1

≤ 1−
(
αm+1

βm+1

)2

= 1− (1 + δ)(
1 + δ

2

)2 ≤ C2δ
2;

On the other hand, we have:

d2m+1 [α, β] =
1−

√
αm+1/βm+1

1 +
√

αm+1/βm+1

·
1 +

√
αm+1/βm+1

1 +
√

αm+1/βm+1

≥ 1

4

(
1− αm+1

βm+1

)
=

1

4
· βm+1 − αm+1

βm+1

· βm+1 + αm+1

βm+1 + αm+1

≥ C3δ
2.

127

Therefore, d2m+1 [α, β] = Cm+1δ
2 for some constant Cm+1.

Now, it is easy to understand the quadratically decreasing behavior of d2m [α, β]

and DP
2m in Table B.1 since d2m [α, β] = Cmδ and d2m+1 [α, β] = Cm+1δ

2.

B.2 Symmetry and positive definiteness of precon-

ditioner
(
K̄X + K̄Y

)−1

To clarify, by preconditioner
(
K̄X + K̄Y

)−1
, we actually mean the preconditioner

induced by the ADI iteration process applied on matrix
(
K̄X + K̄Y

)
with a zero

starting point. In this section, we call it preconditioner
(
K̄X + K̄Y

)−1
for simplicity,

despite of the potential ambiguity.

We use K̄X to approximate K̃X and K̄Y to approximate K̃Y , where K̄X and K̄Y

are symmetric. With a set of positive acceleration parameters {r(j)}kj=0, we apply

preconditioner
(
K̄X + K̄Y

)−1
in the following manner.

First a forward cycle:

(r(0)M + K̄X)b(0+ 1
2

) = (r(0)M − K̄Y)b(0) + F ,

(r(0)M + K̄Y)b(0+1) = (r(0)M − K̄X)b(0+ 1
2

) + F ,
...

(r(k)M + K̄X)b(k+ 1
2

) = (r(k)M − K̄Y)b(k) + F ,

(r(k)M + K̄Y)b(k+1) = (r(k)M − K̄X)b(k+ 1
2

) + F .

(B.5)

Then a backward cycle:

(r(k)M + K̄Y)b̃(0+ 1
2

) = (r(k)M − K̄X)b(k+1) + F ,

(r(k)M + K̄X)b̃(0+1) = (r(k)M − K̄Y)b̃(0+ 1
2

) + F ,
...

(r(0)M + K̄Y)b̃(k+ 1
2

) = (r(0)M − K̄X)b̃(k) + F ,

(r(0)M + K̄X)b̃(k+1) = (r(0)M − K̄Y)b̃(k+ 1
2

) + F .

(B.6)

128

b(0) and b̃(k+1) are the initial guess and final result of the above iteration process,

respectively.

Regarding symmetry of the preconditioner, we present a proof for a more general

case in the context of matrix splitting algorithms.

Consider linear system Ab = F where symmetric positive definite matrix A can

be split as A = D − E − F such that D − E and D − F are invertible while D, E

and F are all symmetric. We start from the following simple iterative process:

Forward cycle:

(D − E)b(1
2

) = Fb(0) + F ,

(D − F)b(1) = Eb(1
2

) + F .
(B.7)

Backward cycle:

(D − F)b̃(1
2

) = Eb(1) + F ,

(D − E)b̃(1) = F b̃(1
2

) + F .
(B.8)

The forward cycle gives us:

b(1) = (D−F)−1E(D−E)−1Fb(0) +
[
(D − F)−1E(D − E)−1 + (D − F)−1

]
F . (B.9)

Define P1 = (D−F)−1E(D−E)−1F and Q1 = (D−F)−1E(D−E)−1 + (D−F)−1,

the following relation between P1 and Q1 can be easily verified:

I − P1 = Q1A, (B.10)

where I stands for the identity matrix at compatible size. Therefore, (B.9) can be

simplified as:

b(1) = P1b
(0) +Q1F . (B.11)

Moreover, after some simple linear algebra, Q1 can be written in the following form:

Q1 = (D − F)−1D(D − E)−1. (B.12)

129

Analogically, the backward cycle gives us:

b̃(1) = P2b
(1) +Q2F , (B.13)

where P2 = (D−E)−1F (D− F)−1E and Q2 = (D−E)−1F (D− F)−1 + (D−E)−1.

Moreover, P2 and Q2 satisfy a similar relation to (B.10):

I − P2 = Q2A (B.14)

while Q2 can be written in the following form:

Q2 = (D − E)−1D(D − F)−1. (B.15)

Recalling that D, E and F are all symmetric, we have QT
1 = Q2.

Combining (B.11) and (B.13) together, we have

b̃(1) = P2P1b
(0) + (P2Q1 +Q2)F . (B.16)

Denote P = P2P1 and Q = P2Q1 + Q2, it is easy to derive the following relation

between P and Q from (B.10) and (B.14):

I − P = QA. (B.17)

Moreover, according to (B.12), (B.15) and the fact that D, E and F are all symmetric,

we have:

Q = QT

since Q = P2Q1 +Q2 = Q1 +Q2 −Q2AQ1.

To sum up, for iterative process defined by forward cycle (B.7) and backward cycle

130

(B.8), we have the following relation between the inputs b(0), F and the output b̃(1):

b̃(1) = Pb(0) +QF , (B.18)

where I − P = QA and Q = QT . Relation (B.18) will serve as the basis of the

induction proof for the following more general iterative process.

Forward cycle:

(D(0) − E(0))b(1
2

) = F (0)b(0) + F ,

(D(0) − F (0))b(1) = E(0)b(1
2

) + F ,
...

(D(k) − E(k))b(k+ 1
2

) = F (k)b(k) + F ,

(D(k) − F (k))b(k+1) = E(k)b(k+ 1
2

) + F .

(B.19)

Backward cycle:

(D(k) − F (k))b̃(1
2

) = E(k)b(k+1) + F ,

(D(k) − E(k))b̃(1) = F (k)b̃(1
2

) + F ,
...

(D(0) − F (0))b̃(k+ 1
2

) = E(0)b̃(k) + F ,

(D(0) − E(0))b̃(k+1) = F (0)b̃(k+ 1
2

) + F .

(B.20)

Theorem B.2. For the iterative process defined by (B.19) and (B.20), the following

relation between the inputs b(0), F and the output b̃(k+1) holds:

b̃(k+1) = Pb(0) +QF , (B.21)

for some P and Q that satisfy I − P = QA and Q = QT .

Proof. The assertion is certainly true for the case k = 0 according to (B.18). We

131

prove the general case by induction.

Suppose the assertion is true for iterative process composing k − 1 steps in both

forward and backward cycles, i.e., we have

b̃(k) = P0b
(1) +Q0F (B.22)

for some P0 and Q0 that satisfy I − P0 = Q0A and Q0 = QT
0 .

Analogical to (B.10), with the following definitions: P1 = (D(0)−F (0))−1E(0)(D(0)−

E(0))−1F (0) and Q1 = (D(0) − F (0))−1D(0)(D(0) − E(0))−1, we have

b(1) = P1b
(0) +Q1F (B.23)

from the first pair of equations in the forward cycle (B.19). Moreover, we have

I − P1 = Q1A.

Similarly, define P2 = (D(0) − E(0))−1F (0)(D(0) − F (0))−1E(0) and Q2 = (D(0) −

E(0))−1D(0)(D(0) − F (0))−1, we have

b̃(k+1) = P2b̃
(k) +Q2F (B.24)

from the last pair of equations in the backward cycle (B.20). Moreover, we have

I − P2 = Q2A and Q1 = QT
2 .

Combining (B.22), (B.23) and (B.24) together, we have the following relation

between b(0), F and b̃(k+1):

b̃(k+1) = P2P0P1b
(0) + (P2P0Q1 + P2Q0 +Q2)F . (B.25)

Define P = P2P0P1 and Q = P2P0Q1 + P2Q0 +Q2, it is easy to verify that

Q = Q0 +Q1 +Q2 −Q2AQ1 −Q0AQ1 −Q2AQ0 +Q2AQ0AQ1. (B.26)

132

Since we have QT
1 = Q2 and Q0 = QT

0 , it is easy to see that Q = QT . Moreover,

it is also easy to verify that I − P = QA by substituting relations I − P0 = Q0A,

I − P1 = Q1A and I − P2 = Q2A into the definition of P .

Thus, by induction, the assertion in the theorem is true for any integer k ≥ 0.

From Theorem B.2, we naturally have the following corollary:

Corollary B.3. Applying the iterative process defined by forward cycle (B.5) and

backward cycle (B.6) with a zero starting point is equivalent to applying a symmetric

matrix.

Proof. With the following definitions

D(j) = 2r(j)M,

E(j) = r(j)M − K̄X ,

F (j) = r(j)M − K̄Y

(B.27)

for j = 0, . . . , k, matrix
(
K̄X + K̄Y

)−1
can be split as D(j) − E(j) − F (j). Since D(j),

E(j) and F (j) are all symmetric, the iterative process defined by (B.5) and (B.6) can

be viewed as a special case of the iterative process defined by (B.19) and (B.20).

Applying Theorem B.2, we have the following relation between the inputs and

output of the iterative process defined by (B.5) and (B.6):

b̃(k+1) = Pb(0) +QF , (B.28)

where Q is a symmetric matrix. If the starting point b(0) is zero, (B.28) leads us to

b̃(k+1) = QF . Therefore, applying the iterative process defined by (B.5) and (B.6)

with b(0) = 0 is equivalent to applying matrix Q, which is symmetric.

So far now, we have proven the symmetry of preconditioner
(
K̄X + K̄Y

)−1
. Next,

we want to show the positive definiteness of this preconditioner.

133

Theorem B.3. For iterative process defined by (B.5) and (B.6), matrix Q in (B.28)

is always positive definite for any integer k ≥ 0.

Proof. For the case k = 0, with definitions Q1 = (D(0) − F (0))−1D(0)(D(0) − E(0))−1

and Q2 = (D(0) − E(0))−1D(0)(D(0) − F (0))−1, we have

Q = Q1 +Q2 −Q2AQ1

= Q2Q
−1
2 Q1 +Q2Q

−1
1 Q1 −Q2AQ1

= Q2

(
Q−1

2 +Q−1
1 − A

)
Q1.

(B.29)

The invertibility of Q1 and Q2 are obvious once we substitute (B.27) into the definition

of Q1 and Q2:

Q1 =
(
r(0)M + K̄Y

)−1 (
2r(0)M

) (
r(0)M + K̄X

)−1
,

Q2 =
(
r(0)M + K̄X

)−1 (
2r(0)M

) (
r(0)M + K̄Y

)−1
.

Recall that A = K̄X + K̄Y , for
(
Q−1

2 +Q−1
1 − A

)
, we have(

Q−1
2 +Q−1

1 − A
)

=
(
r(0)M + K̄Y

) (
2r(0)M

)−1 (
r(0)M + K̄X

)
−
(
r(0)M + K̄Y

)
+

(
r(0)M + K̄X

) (
2r(0)M

)−1 (
r(0)M + K̄Y

)
−
(
r(0)M + K̄X

)
+ 2r(0)M

=
(
r(0)M + K̄Y

) [(
2r(0)M

)−1 (
r(0)M + K̄X

)
− I
]

+
(
r(0)M + K̄X

) [(
2r(0)M

)−1 (
r(0)M + K̄Y

)
− I
]

+ 2r(0)M

=
(
r(0)M + K̄Y

) [1

2r(0)
M−1K̄X − 1

2
I

]
+

(
r(0)M + K̄X

) [1

2r(0)
M−1K̄Y − 1

2
I

]
+ 2r(0)M

= r(0)M +
1

2r(0)
K̄XM−1K̄Y +

1

2r(0)
K̄XM−1K̄Y

It is obvious now that as long as M is positive definite while K̄X and K̄Y are semi

134

positive definite,
(
Q−1

2 +Q−1
1 − A

)
is positive definite. Moreover, Q is congruent with(

Q−1
2 +Q−1

1 − A
)

since Q1 = QT
2 . Thus, Q is also positive definite, i.e., the assertion

is true for k = 0.

Suppose the assertion is also true for iterative process composing k − 1 steps in

both forward and backward cycles, i.e., Q0 in (B.22) is positive definite. Then, for

the iterative process composing k steps, according to (B.26), we have

Q = (Q1 +Q2 −Q2AQ1) + (Q0 −Q0AQ1 −Q2AQ0 +Q2AQ0AQ1) .

From the proof for the k = 0 case, we know that (Q1 +Q2 −Q2AQ1) is positive

definite. Moreover, we have

(Q0 −Q0AQ1 −Q2AQ0 +Q2AQ0AQ1) = (I −Q2A)Q0(I − AQ1).

Since (I −Q2A)T = (I −AQ1), based on the assumption that Q0 is positive definite,

(I−Q2A)Q0(I−AQ1) is at least semi positive definite. Thereby, Q is positive definite.

Thus, by induction, the assertion in the theorem is true for any integer k ≥ 0.

B.3 Formulae for coefficients of the numerical ex-

amples in section 4.2.3

Figure 4.1 (Orthotropic):

κ11 = 100

{
1 + 0.1

[
1 + 0.99 cos

(
50(x− y)

)]
+ 1 + 0.1

[
1 + 0.99 cos

(
50(x+ y)

)]
+
[
1.01 +

e100(x+y−1)−1

e100(x+y−1)+1

]}
;

κ22 = 105

{
1 + 0.1

[
1 + 0.99 cos

(
50(x− y)

)]
+ 1 + 0.1

[
1 + 0.99 cos

(
50(x+ y)

)]
+
[
1.01 +

e100(1−x−y)−1

e100(1−x−y)+1

]}
.

135

Figure 4.2 (Low frequency oscillation):

κ11 =
[
1 + 0.99 cos

(
5(x− y)

)]
+
[
1 + 0.99 sin

(
5(x+ y)

)]
;

κ22 =
[
1 + 0.99 sin

(
5(x− y)

)]
+
[
1 + 0.99 cos

(
5(x+ y)

)]
.

Figure 4.3 (Gaussian spikes):

κ11 =
5∑
i=1

Ae−(a(x−xi)2+c(y−yi)2)

with A = 100, a = 75, c = 75 and (x1, y1) = (0.25, 0.25); (x2, y2) = (0.25, 0.75);

(x3, y3) = (0.5, 0.5); (x4, y4) = (0.75, 0.25); (x5, y5) = (0.75, 0.75).

κ22 =
5∑
i=1

Ae−(a(x−xi)2+c(y−yi)2)

with A = 100, a = 150, c = 150 and (x1, y1) = (0.5, 0.25); (x2, y2) = (0.5, 0.75);

(x3, y3) = (0.5, 0.5); (x4, y4) = (0.75, 0.5); (x5, y5) = (0.25, 0.5).

136

Appendix C

Helmholtz equation

C.1 A better preconditioner

As mentioned in Remark 5.4, M−1 can be expressed as M−1 = V I−1V T while it is

possible to have a better preconditioner than M−1 by replacing I−1 with a different

diagonal matrix. We explore this idea in this section.

Denote this diagonal matrix as D−1
pre. Its corresponding preconditioner can be

written as V D−1
preV

T . Similar to relation (5.12), with some simple algebra, one can

find the following relation for the case of left preconditioning with V D−1
preV

T :

ε(m) = p(m)(D−1
preD)ε(0). (C.1)

According to (C.1), if D−1
pre can approximate D−1 better, the performance of GMRES

is very likely to be improved. However, it is also important that the Kronecker product

structure in the preconditioner is still maintained.

For instance, we can build Dpre in the following manner. First, find the smallest

and largest unpicked entries in Dx and Dy, denotes as λxmin, λxmax, λ
y
min and λymax,

respectively; Then, build diagonal matrices Dx
C and Dy

C such that their entries are

roots of Chebyshev polynomials on interval
[√

λxminλ
y
min,

√
λxmaxλ

y
max

]
with order Nx

and Ny, respectively; Finally, Dpre is built as Dpre = Dx
C ⊗D

y
C .

137

DenoteM−1
C = (My)−1

C ⊗(Mx
C)−1, where (Mx

C)−1 = V x (Dx
C)−1 (V x)T and (My

C)−1 =

V y (Dy
C)−1 (V y)T , applying VD−1

preV
T is equivalent to applying M−1

C , which is cheap

due to its Kronecker product structure. Numerical results comparing the perfor-

mances of GMRES(20) with M−1 and M−1
C are shown in Table C.1. Maximum

number of restarts is set as 10 while tolerance of relative residual is set as 1e-6.

k(h) 10(16) 20(32) 40(64) 80(128) 160(256) 320(512)
ep 5.26E-02 9.49E-02 2.79E-01 1.58E-02 3.21E-02 1.32E-02

M−1 e 7.36E-07 2.55E-06 3.66E-04 2.02E-05 9.25E-04 2.33E-03
Niter 3(19) 6(5) 10(20) 10(20) 10(20) 10(20)

M−1
C

e 1.45E-07 3.41E-07 1.86E-06 1.46E-07 2.12E-05 3.48E-04
Niter 2(5) 3(5) 9(4) 9(4) 10(20) 10(20)

Table C.1: Possibility of a better preconditioner.

From Table C.1, we can see that GMRES with M−1
C indeed performs slightly

better than with M−1.

C.2 About the physical domain in Figure 5.2

Formulae of functions representing the five curved boundaries and interfaces in Figure

5.2 , from bottom to top, are listed in the following:

f1 = 0.00 + 0.050 sin(2πξ);

f2 = 0.25 + 0.025 sin(3πξ + 0.5π);

f3 = 0.50 + 0.050 sin(4πξ + π);

f4 = 0.75 + 0.025 sin(3πξ + 1.5π);

f5 = 1.00 + 0.050 sin(2πξ).

The mapping from the parametrical domain to the physical domain is constructed as:

x = ξ,

138

y =



4
(
(0.25− η)f1 + ηf2

)
if 0 ≤ η ≤ 0.25;

4
(
(0.5− η)f2 + (η − 0.25)f3

)
if 0.25 < η ≤ 0.5;

4
(
(0.75− η)f3 + (η − 0.5)f4

)
if 0.5 < η ≤ 0.75;

4
(
(1− η)f4 + (η − 0.75)f5

)
if 0.75 < η ≤ 1.

where ξ and η denote the horizontal and vertical variables in the parametrical domain

while x and y denote their counterparts in the physical domain. Constructed in this

way, the five horizontal straight lines in the parametrical domain are mapped into

the five curved ones in the physical domain, shown in Figure 5.2.

139

Papers submitted and under preparation

• L. Gao, V. M. Calo, “Fast Isogeometric solvers for explicit dynamics”, Submitted

to Computer Methods in Applied Mechanics and Engineering, Oct. 2013.

• L. Gao, V. M. Calo, “Preconditioning the 2D diffusion equation with orthotropic

heterogeneous coefficients based on the alternating direction implicit algorithm”, Un-

der preparation for Journal of Computational and Applied Mathematics.

• L. Gao, V. M. Calo, “Isogeometric spectral element method. Methodology”, Under

preparation for Computer Methods in Applied Mechanics and Engineering.

	Examination Committee Approval
	Copyright
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Problem Statement and Research Approach
	Objectives and Contributions

	Background
	Kronecker product
	An algebraic view of the finite element matrices built with tensor product basis functions
	Isogeometric analysis and its basis functions

	Mass matrix
	The ideal case
	More complicated cases
	Preconditioning
	The simplest choice: M-1
	Partial inclusion of geometric information in the preconditioners
	Computational cost per iteration
	Hybrid preconditioning

	Improving starting points

	Stiffness matrix
	The ideal case
	Alternating direction implicit method: origin
	Alternating direction implicit method: generalization

	Orthotropic inhomogeneous coefficients
	The simplest choice: (KX + KY)-1
	Partial inclusion of coefficient variations in the preconditioners
	Numerical results

	Isotropic coefficients with high contrasts
	Hybrid preconditioning
	Numerical results

	Complicated geometry

	The Helmholtz equation
	The ideal case
	The difficulty of indefiniteness for ADI
	A direct method approach
	A stable alternative: GMRES
	An obvious extension

	More general cases
	Approach 1: preconditioning
	Approach 2: remove the indefiniteness

	Miscellaneous
	On boundary conditions
	On isogeometric spectral element method

	Concluding Remarks
	Summary
	Future Research Work

	References
	Appendices
	Mass matrix
	About the two testing domains
	Additional numerical results for preconditioner M-1
	Additional numerical results for preconditioner (MS)-1 and (MM)-1
	Complexity analysis
	Additional numerical results for hybrid preconditioning
	Quarter annulus

	Stiffness matrix
	Upper bound of the error reduction rate
	Symmetry and positive definiteness of preconditioner (X+Y)-1
	Formulae for coefficients of the numerical examples in section 4.2.3

	Helmholtz equation
	A better preconditioner
	About the physical domain in Figure 5.2

