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ABSTRACT

Least-squares Migration and Full Waveform Inversion

with Multisource Frequency Selection

Yunsong Huang

Multisource Least-Squares Migration (LSM) of phase-encoded supergathers has

shown great promise in reducing the computational cost of conventional migra-

tion. But for the marine acquisition geometry this approach faces the challenge

of erroneous misfit due to the mismatch between the limited number of live

traces/shot recorded in the field and the pervasive number of traces generated

by the finite-difference modeling method. To tackle this mismatch problem, I

present a frequency selection strategy with LSM of supergathers. The key idea

is, at each LSM iteration, to assign a unique frequency band to each shot gather,

so that the spectral overlap among those shots—and therefore their crosstallk—is

zero. Consequently, each receiver can unambiguously identify and then discount

the superfluous sources—those that are not associated with the receiver in marine

acquisition. To compare with standard migration, I apply the proposed method

to 2D SEG/EAGE salt model and obtain better resolved images computed at about

1/8 the cost; results for 3D SEG/EAGE salt model, with Ocean Bottom Seismometer

(OBS) survey, show a speedup of 40×.

This strategy is next extended to multisource Full Waveform Inversion (FWI)

of supergathers for marine streamer data, with the same advantages of computa-
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tional efficiency and storage savings. In the Finite-Difference Time-Domain (FDTD)

method, to mitigate spectral leakage due to delayed onsets of sine waves detected

at receivers, I double the simulation time and retain only the second half of the

simulated records. To compare with standard FWI, I apply the proposed method

to 2D velocity model of SEG/EAGE salt and to Gulf Of Mexico (GOM) field data,

and obtain a speedup of about 4× and 8×.

Formulas are then derived for the resolution limits of various constituent

wavepaths pertaining to FWI: diving waves, primary reflections, diffractions, and

multiple reflections. They suggest that inverting multiples can provide some low-

and intermediate-wavenumber components of the velocity model not available in

the primaries. In addition, diffractions can provide twice or better the resolution

as specular reflections for comparable depths of the reflector and diffractor. The

width of the diffraction-transmission wavepath is on the order of λ at the diffractor

location for the diffraction-transmission wavepath.
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Chapter 1

Introduction

1.1 Motivation and Overview

Oil and gas exploration nowadays typically demands tremendous amount of com-

putation. Consider for example a 3D velocity model with a moderate grid size

nx × ny × nz = 1000 × 1000 × 500, with Stot = 100 × 100 shots and nt = 4000 time

steps for one run of wavefield propagation. Suppose one Reverse Time Migration

(RTM) (Baysal et al., 1983; Whitmore, 1983; McMechan, 1983) requires three such

runs, and the nFLOP per grid point per time step is 25, then the total FLoating-point

OPeration (FLOP) count is nFLOP=nx × ny × nz × nt × Stot × 3 × 25 = 1.5 · 1018, or 1.5

exa. Factor in a dozen iterations and more complexity per iteration due to elabo-

rate optimization schemes, as encountered typically in FWI (Lailly, 1984; Tarantola,

1984, 2005), the total nFLOP for this moderately sized model presents a considerable

computational cost.

One approach to reduce this cost is known as the multisource technique (Mor-

ton and Ober, 1998; Romero et al., 2000; Krebs et al., 2009; Virieux and Operto, 2009;

Dai and Schuster, 2009; Tang, 2009), whereby every S sources are active (deemed

a supershot) in one finite-difference simulation and every S shot gathers are cor-

respondingly blended into one supergather. This blending of shot gathers is also

done for the many shot gathers recorded in the field, which are recorded one shot
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gather at a time. Consequently, the number of effective gathers to cope with is cut

down by S-fold. The downside of this technique, however, is crosstalk noise that

tarnishes the reconstructed model image. Think of a similar task of determining

the acoustic property of a lecture hall, while hosting a cocktail party!

1.1.1 Multisource Crosstalk

Crosstalk in the communications industry is defined in the online Merriam-Webster

dictionary as “unwanted signals in a communication channel (as in a telephone,

radio, or computer) caused by transference of energy from another circuit (as by

leakage or coupling).” As we sometimes discover with analog phones, crosstalk

can take the form of hearing someone else’s conversation s(t)2 instead of hearing

the intended signal s(t)1. Mathematically the noisy signal s(t) can be represented

by

s(t) = s(t)1 + s(t)2, (1.1)

where additive random noise can also be considered.

Sometimes, s(t)2 is also considered signal, and the efficient transmission of

both signals requires that they both be simultaneously transmitted, but should

be separated from one another after recording1. To achieve this feat, the two

signals are encoded and summed together to give s(t)′ = F[s(t)1] + F[s(t)2] prior

to transmission, and then decoded to get the separate signals F−1
1 [s(t)′] = s(t)1

and F−1
2 [s(t)′] = s(t)2. This efficient means of simultaneously transmitting two

signals and their subsequent decoding is a monumental achievement because it

greatly reduces both the cost and the number of channels required for today’s

1This process of combining several input information signals into one output signal is known as
multiplexing in the communications industry. Recovering the individual signals from the multiplex
signal is known as demultiplexing.
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multi-channel communication.

The decoder F−1
i is a device or operation2 that does the reverse of the ith channel

encoder, undoing the encoding so that the original information can be retrieved.

An example in digital electronics is where a decoder can take the form of a multiple-

input, multiple-output logic circuit that converts coded inputs into coded outputs.

Decoding is also necessary in applications such as data multiplexing, which is seen

in the oil industry with transmission of multichannel seismic data.

A more geophysically relevant model of crosstalk is to include correlation terms

that must be eliminated, i.e.,

s(t) = s(t)1 + s(t)2 + αs(t)1 ? s(t)2, (1.2)

whereα is a scalar weighting term, and?denotes correlation. For our purposes, one

might think of two shot gathers summed together and simultaneously migrated to

give the desirable sum of the individual migration images s(t)1 and s(t)2, and the un-

desirable crosstalk noise αs(t)1?s(t)2. Similar to the benefits in the communications

industry, Morton and Ober (1998) and Romero et al. (2000) tested the possibility of

simultaneously migrating a sum of encoded shot gathers (herewith known as a su-

pergather) to tremendously reduce computation time and memory+I/O demands.

Unfortunately, their early results did not show significant efficiencies because their

method did not easily annihilate the crosstalk term s(t)1 ? s(t)2.

In fact, decoding is mathematically simpler in the frequency domain where

equation 1.2 at ω is given by

S(ω) = S(ω)1 + S(ω)2 + αS(ω)∗1 S(ω)2, (1.3)

where S(ω)i is the Fourier transform of s(t)i. This frequency domain representa-

2This definition is adjusted from that in http://en.wikipedia.org/wiki/Decoder.

http://en.wikipedia.org/wiki/Decoder
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tion presents the opportunity for decoding encoded signals by Frequency-Division

Multiplexing (FDM), where interfering signals are transmitted in several non-

overlapping frequency ranges (Bates and Gregory, 2007). The distinct frequency

band of each signal means that the spectral product in the above equation is zero.

It also means that S(ω)1 and S(ω)2 can be recovered by appropriate bandpass fil-

ters applied to S(ω). One of FDM’s most common applications is cable television,

where different TV channels are FDM encoded and sent over the cable simultane-

ously. The decoding box at home then separates each channel from one another by

decoding. There are many other multiplexing schemes such as time-division, sta-

tistical, wavelength-division, orthogonal frequency-division, code-division multi-

plexing (Bates and Gregory, 2007).

1.1.2 Seismic Migration with a Stack of Encoded Shot Gathers

If there are many signals added together and many crosstalk terms then equation 1.3

can be generalized as

S(ω)′ =
∑

i

S(ω)i +
∑

i

∑
j

αi jS(ω)∗i S(ω) j. (1.4)

For seismic migration, equation 1.4 represents the migration image formed by

adding many shot gathers together and simultaneously migrating them. Unless

the input data is encoded, the crosstalk term is too strong and spoils the image.

To reduce this spoilage Morton and Ober (1998) encoded their shot gathers by

replacing the wavelet sources with random times series, summing them together
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to form a supergather, and migrating to give the migration image

S(ω)′ =
∑

i

|N(ω)i|
2S(ω)i +∑

i

∑
j

αi jN(ω)iN(ω) jS(ω)∗i S(ω) j. (1.5)

where the encoding function N(ω)i is the spectrum of the ith random time series

assigned to the ith source. Each random time series was selected to approximate

the orthonormality condition

〈N(ω)iN(ω) j〉 = δi j, (1.6)

where 〈 〉 represents ensemble averaging, which is another way of saying that we

should sum supergather migration images together, each with a distinctly encoded

supergather as the input data. Many other encoders have been proposed. For

example, Schuster et al. (2011) (see also references therein) showed that encoding

the sources with both random polarities and random phase shifts is better than

encoding with either scheme alone at reducing the crosstalk. To make equation 1.6

approximately hold, more (say a factor F×) iterations are required than the con-

ventional migration. As long as this overhead factor F is less than the reduction

factor—the number of sources included in a supergather, this multisource endeavor

leads to a speedup.

For the marine acquisition geometry, however, such crosstalk is troublesome.

The reason is that when S encoded shots are excited at nearly the same time the

computer invariably simulates a supergather as in a land geometry with fixed

receivers. In contrast, the actual marine shot gather is for a moving receiver string.

An example is shown in Fig. 1.1(c), where the marine moving receiver string is

denoted by the horizontal green bar at the top, while the fixed receivers in the
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simulated land geometry encompass the full width of the color-coded velocity

model. This implies that the computer-generated land shot gathers have too many

traces per shot compared to the actual marine shot gather. Consequently, there will

be a large residual, dpred
− dobs, at the uncommon receiver locations, even if the

true velocity model is used in the simulation. Note that if there was no crosstalk,

i.e., if every receiver could tell apart its contributing sources, then the problem of

erroneous residual would vanish, as will be explained in the next paragraph.

A receiver in a multisource simulation would receive signals from all sources

in a supershot, although in the marine case only a subset of sources are associated

with this receiver. When free of crosstalk, the receiver can determine what signals

stem from the superfluous sources in simulation, and thus it can discount those

signals before calculating the residual. In this way, no erroneous residual can arise.

1 – 3 kHz 

4 – 6 kHz 

sources 

multiplexed 

receiver 

(a) (b) (c) 

Figure 1.1: Overview of multisource frequency selection. (a) Frequency-division
multiplexing/demultiplexing used in telecommunication. (b) Frequency-encoding
three shot gathers to form a supergather, which is subsequently disentangled (in-
dicated by the dashed lines) by frequency selection. (c) FWI obtained by multi-
source frequency selection, with the resulting velocity model color-coded in the
background, and sine waves of different frequencies injected at different source
locations. Color stars in (b, c) denote sources.

This begs the question whether in multisource seismic inversion there is a



22

crosstalk-free encoding scheme. Until now, in exploration geophysics no such

scheme has been devised. In this dissertation, I have designed a crosstalk-free

encoding strategy, similar to the FDM used in the communications industry, as

depicted in Fig. 1.1(a). The idea is to assign each shot gather to a unique set of

frequencies. Careful assignment ensures no overlap in frequencies from one shot

gather to the next, as illustrated in Fig. 1.1(a and b). That is, the source signatures

are orthogonal to each other, and so the cross-talk between sources is zero. Using

this scheme with marine streamer geometry is illustrated in Fig. 3.1 on page 54, and

also in in Fig. 1.1(c). In Chapters 2 and 3, I show how this scheme, called ‘frequency

selection’ in this dissertation, can be successfully applied to multisource LSM and

multisource FWI, respectively. The benefit is that my numerical results show that

for my examples, multisource imaging with frequency selection provides a speedup

of more than 8× and 4× compared to conventional migration and FWI, respectively.

1.1.3 Resolution Limits of LSM and FWI

As far as seismic imaging and inversion with the wave equation are concerned,

the resolution limits are of fundamental interest, and understanding these limits

allows us to economically parameterize the model and design an efficient inver-

sion schedule. Although the resolution limits have been analyzed for traveltime

tomography (Kravtsov and Orlov, 1990; Williamson, 1991; Cerveny and Soares,

1992) and for reflection imaging (Berkhout, 1984; Safar, 1985; Vermeer, 1997; Chen

and Schuster, 1999), there lacks a comprehensive treatment of the resolution lim-

its associated with FWI. In this dissertation I conduct a study to fill this gap by

carrying out asymptotic analysis to the model resolution function for FWI. The

results are summarized in Fig. 4.4 on page 79. Moreover, as noted by Jannane

et al. (1989), the absence of intermediate wavenumbers recovered from diffraction

and transmission migration poses a serious challenge for waveform inversion. I
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address this problem with the aid of diffractor and interbed multiples. The results

are summarized in Fig. 4.9 on page 92. This line of work is covered in Chapter 4.

1.2 Technical Contributions

My novel contributions in this dissertation are the following:

• In iterative multisource simulations with marine streamer data, the mismatch

between the limited number of live hydrophones in the survey and the pervasive

number of live traces generated by modeling is recognized as a form of crosstalk.

This crosstalk noise is, for the first time, completely removed by the encoding and

decoding scheme of frequency selection.

• This encoding scheme is applied to multisource LSM, regularized by a Cauchy

norm in the presence of noise. Relative to conventional migration I show with

empirical simulations that multisource LSM with frequency encoding provides a

8× speedup. I also show that if starting from CSG in the time domain, then my

iterative method requires preprocessing that incurs 2× the I/O cost of conventional

migration. Afterwards my iterative method only requires a minimal fraction, say

1/12, of the I/O cost of conventional migration.

•While the preceding application uses split-step migration, formulated in the fre-

quency and wavenumber domains, for FWI I adopt the FDTD method, which is

preferred by many as the method of choice for 3D FWI. This presents new challenges

to the frequency selection scheme, such as spectral leakage, a problem mitigated by

doubling the simulation time and retaining only the second half of the simulated

records. I show that multisource FWI with frequency encoding achieves a speedup

of about 4× and 8× for synthetic and field data compared to the conventional

method.

• The resolution limits of various constituent wavepaths pertaining to FWI is
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comprehensively studied. For the first time, I show that the gap of missing recon-

structed intermediate wavenumbers is partially filled by capitalizing on diffractor

and interbed multiples.

• This dissertation has resulted in one journal paper (Huang and Schuster, 2012)

published in Geophysical Prospecting. A second paper (Huang et al., 2013) is

submitted to Geophysical Journal International, and a third paper based on this

dissertation will soon be submitted for publication. Its associated expanded ab-

stract (Huang and Schuster, 2013) was presented at the EAGE London meeting in

June 2013, and was recognized as one of the outstanding papers delivered at the

this international meeting. A special letter was sent to me in July 2013 inviting me

to publish this work in Geophysical Prospecting, the leading applied geophysics

journal in Europe. These publications are listed in Appendix H.
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Chapter 2

Least-Squares Migration with

Multisource Frequency Selection

2.1 Introduction

For large datasets, 3D prestack wave equation migration is a computationally ex-

pensive procedure. Its computational workload is proportional to both the number

of shots in a survey and the computational complexity of solving the 3D wave equa-

tion for a given velocity model. In the case of iterative methods, this workload is

proportional to the number of iterations for acceptable convergence.

An attempt to reduce this workload was proposed by Morton and Ober (1998)

by migrating one blended supergather, rather than separately migrating individ-

ual shot gathers. Here, the supergather is computed by summing a number of

shot gathers, each encoded by correlation with a distinct random time series ap-

proximately orthogonal with one another. The migration image is then formed

by applying a decoded migration operator whose imaging condition is tuned to

decode the simultaneous sum of encoded shots. Applying this migration oper-

ator to the supergather produces a migration image of good quality only if the

number of iterations is sufficiently large. In fact, their results did not show a clear

computational cost advantage over the conventional method of wave equation
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migration.

To mitigate problems associated with wavelets of long random time series, Jing

et al. (2000) and Krebs et al. (2009) proposed a polarity encoder that randomly

multiplied shot gathers by either +1 or −1. For phase-encoded multi-source migra-

tion, Jing et al. (2000) empirically concluded that the crosstalk term was adequately

suppressed when six encoded shot gathers were encoded, summed together, and

migrated. On the other hand, Krebs et al. (2009) empirically found that using this

strategy with FWI produced acceptable velocity tomograms at a cost saving of

at least one order of magnitude. In one of the few exceptions, Gao et al. (2010)

used a deterministic encoding to determine a shot’s scale factor that gave the most

significant update to the velocity model for a specified composite source. Another

form of deterministic encoding is plane-wave decomposition (see e.g. Whitmore

and Garing, 1993; Duquet et al., 2001; Zhang et al., 2003), which also aims at re-

ducing data volume. Using this method, Vigh and Starr (2008) obtained speedups

ranging from three to 10-fold. Other groups, such as Virieux and Operto (2009),

Ben-Hadj-Ali et al. (2009, 2011), Dai and Schuster (2009), Boonyasiriwat and Schus-

ter (2010), and Ben-Hadj-Ali et al. (2011) discovered similar cost savings for FWI or

least squares migration, except that they used somewhat different encoding recipes

such as exclusive use or combinations of random time shifting, frequency selec-

tion, source selection, amplitude encoding, and/or spatial randomization of the

source locations. A related inversion scheme is by Tang (2009), who used random

phase-encoding of simultaneous sources to efficiently compute the Hessian for it-

erative least squares migration. Almost all of these schemes aimed to efficiently

approximate the orthogonality between different encoders in as few iterations as

possible.

Is there an encoding scheme that can exactly satisfy this orthogonality condi-

tion? The answer is yes. The FDM scheme from the communications industry can
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be used to assign each shot gather to a unique set of frequencies. Careful assign-

ment ensures no overlap in frequencies from one shot gather to the next, thereby

eliminating the crosstalk. Just as important, FDM also mitigates the acquisition

crosstalk noise associated with a marine geometry.

The marine acquisition crosstalk is defined as the migration noise caused by

the mismatch in the modeled traces and the recorded traces. In a marine survey

the recorded traces are only alive over a moving swath of hydrophones while the

generated finite-difference traces are alive everywhere. This induces large residuals

in the data misfit functions, leading to large artifacts in the FWI or migration images.

As will be discussed later, the FDM strategy eliminates this problem. The downside

of this strategy is, however, the reduced resolving power of seismic illumination.

To enhance the resolving power, I use the LSM method (Nemeth et al., 1999; Duquet

et al., 2000; Tang and Biondi, 2009), varying each shot gather’s unique frequency

fingerprint at every 3 Conjugate Gradient (CG) updates. The resulting migration

algorithm for encoded data can be more than an order of magnitude faster than

conventional migration while producing nearly the same image quality.

The rest of this chapter is organized as follows. The theory section presents the

theory of frequency-division encoding, how it can be used to remove the crosstalk

in migrating supergathers, and the I/O implications for computing systems. The

method section, supplemented by appendices, defines the objective function for

the frequency-division multisource algorithm, discusses the implications for op-

timization, and derives the computational complexity. The numerical results for

both the 2D and 3D SEG/EAGE salt models are then presented in the numerical

results section. Here, the 2D model is used to generate synthetic data emulating

a marine survey, and the 3D model is used to test the viability of the proposed

technique for 3D data. The final section presents a summary and discussion.
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2.2 Theory

I now present the spectral encoding strategy for removing crosstalk artifacts in

multisource imaging. First, I identify the source spectrum in the forward modeling

equation. Then, I outline a typical phase-encoded multisource procedure, before

developing the proposed frequency encoding method.

In the frequency domain a seismic trace with a source at xs and a receiver at x

can be expressed (Stolt and Benson, 1986), based on the Born approximation to the

Lippman-Schwinger equation, as

d(x|xs) =

∫
G(x|x′)mo(x′)G(x′|xs)Ws(ω) dx′. (2.1)

Here, G(b|a) denotes the Green’s function from a to b; mo(x′)
def
= s(x′)δs(x′) is the

reflection coefficient-like term at x′, where δs(x′) is the slowness perturbation from

an assumed background slowness s(x′); and Ws(ω) is the spectrum of the sth source

weighted by −2ω2 and can be pulled outside the integral since it is independent

of x′. For conciseness Ws(ω) is hereafter referred to as ‘source spectrum’ or sim-

ply ‘spectrum’ for short. As the earth model is discretized into M grid points,

equation 2.1 can be recast in matrix-vector form as

ds = Ws(ω)Lsm, ∀s = 1, . . . ,S (2.2)

which is conventionally expressed as

ds = Lsm, ∀s = 1, . . . ,S (2.3)

where Ls = Ws(ω)Ls. (2.4)

Here, m ∈ RM is the reflectivity model; ds ∈ Cnh represents the sth shot gather; S is

the number of shots; nh is the number of receivers per shot; Ls ∈ Cnh×M represents the

prestack modeling operator for the sth shot gather, and Ls is Ls deprived of Ws(ω).
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Equations 2.2 to 2.4 are in the frequency domain and recognize that quantities

such as ds, Ls, and Ls all depend on ω, which is silent to reduce notational clutter;

however, ω is explicitly retained in Ws(ω), because Ws(ω) represents the proposed

frequency encoding function. Note also the subscript in Ws(ω), implying that

different sources may have different spectrums.

2.2.1 Phase Encoding

My frequency encoding scheme will now be developed in the same framework of

phase-encoding (Romero et al., 2000), which typically consists of the following three

steps. 1) Different shot gathers are uniquely phase encoded. 2) They are summed

together to form supergathers, which are then 3) migrated all at once. The first step

amounts to multiplying the sth shot gather with a unique phase encoding function

Ns, a step expressed as

d̃s = Nsds. (2.5)

In this dissertation, ◦̃ notes an encoded version of ◦. Then d̃s are summed over all

sources to give the encoded supergather d̃:

d̃ =

S∑
s=1

d̃s =

S∑
s=1

Nsds, (2.6)

= L̃m, (2.7)

where the multisource phase-encoded prestack modeling operator is defined as

L̃ def
=

S∑
s=1

NsLs. (2.8)

Finally, the third step involves applying the adjoint operator L̃† to the encoded

supergather d̃ in equation 2.6, before applying the imaging condition, to get the
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migrated image m̃ as

m̃ =
∑
ω

L̃†d̃ (2.9)

=
∑
ω

S∑
s=1

S∑
q=1

N∗sNqL†s Lqm (2.10)

= m̂ + c, (2.11)

where

m̂ def
=

∑
ω

S∑
s=1

|Ns|
2L†s Lsm (2.12)

=
∑
ω

S∑
s=1

L†s Lsm, (2.13)

and

c def
=

∑
ω

S∑
s=1

S∑
q,s

N∗sNqL†s Lqm (2.14)

=
∑
ω

S∑
s=1

S∑
q,s

N∗sNqW∗

s(ω)Wq(ω)L†s Lqm. (2.15)

Here, m̂ is the sequential shot-gather migration and c is crosstalk noise. Equa-

tion 2.13 follows assuming the phase encoding function Ns is of pure phase so that

N∗sNs = 1, and equation 2.15 follows from equation 2.4.

Note the crosstalk noise, c, is the only part of m̃ that depends on the random

phase encoding function, over which an ensemble average, denoted by 〈 〉, is taken

to produce

〈c〉 =
∑
ω

S∑
s=1

S∑
q,s

〈N∗sNq〉L†s Lqm. (2.16)

2.2.2 Frequency Selection Encoding

While existing approaches such as studied by Schuster et al. (2011) strive to reduce

the crosstalk noise by devising phase encoding functions such that 〈N∗sNq〉 = 0 for
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s , q, this chapter relies on devising source spectra Wq(ω)’s in order to eliminate

the noise term c defined in equation 2.15. To this end, I single out an arbitrary term

in equation 2.15 and investigate how to make it zero. An example of such a term is

expressed as

csq =
∑
ω

W∗

s(ω)νsq(ω)Wq(ω), s , q (2.17)

where

νsq(ω) def
= N∗sNqL†s Lqm. (2.18)

Because the dependence of νsq(ω) onω is typically spatially varying and unknown,

it is impossible to construct Wq(ω)’s that can suppress all elements of csq, unless the

source spectra are non-overlapping. Non-overlapping source spectra ensure that

W∗

s(ω)Wq(ω) = 0, for s , q, ∀ω (2.19)

and in turn reduce equation 2.15 to zero. I refer to this encoding scheme as

frequency selection. The previous analysis contrasts the different roles that the

phase encoder Ns and frequency encoder Ws(ω) play. For notational economy,

however, hereafter in the context of frequency selection I recast Ns as a frequency

encoder, on which Ws(ω) is predicated; in addition,ω is discretized, and is identified

with a frequency index j running from 1 to nω. The frequency encoder is given as

a binary vector

Ns( j) def
=


1 if the jth frequency belongs to source s,

0 otherwise.
(2.20)

Note that Ns( j)’s are no longer of pure phase; this can be regarded as a form of

amplitude encoding (Godwin and Sava, 2010). If no frequency index is shared by
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multiple sources, then equation 2.20 leads to

Ns( j)Nq( j) = 0, for s , q, ∀ j = 1, . . . ,nω. (2.21)

Thus equation 2.19 is guaranteed, in my new notation, by the choice

Ws( j) = Ns( j)W( j), ∀s = 1, . . . ,S, ∀ j, (2.22)

where W( j) is the intact source spectrum. In shorthand, equation 2.21 can be

expressed as

Ns �Nq = 0, for s , q, (2.23)

where� represents element-wise multiplication between two vectors. If, moreover,

every frequency index is assigned to some source, then equation 2.20 leads to

S⊕
s=1

Ns = 1, (2.24)

where ⊕ represents element-wise addition. Accordingly, following equation 2.22,

we have

Ws �Wq = 0, for s , q, (2.25)
S⊕

s=1

Ws = W. (2.26)

Given S sources and nω frequency indices, frequency selection endeavors to evenly

divide the latter among the former. That is, on average each source is assigned

nω/S frequency indices.

I outline next how nω is determined. Suppose the maximal travel time between

sources and their associated receivers is T, the peak frequency of the source wavelet

is f0, and the cutoff high frequency is at fhi = 2.5 f0. The Nyquist sampling theorem
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dictates dt < 1
2 fhi

= 1
5 f0

, and therefore the total number of time samples is nt = T/dt >

5T f0. For real signals devoid of Direct Current (DC), the number of independent

angular frequencies is given by

nω = 2.5T f0. (2.27)

For example, the parameters chosen for my 2D and 3D simulations are: nω = 160

as T = 2s and f0 = 32Hz, and nω = 360 as T = 9s and f0 = 16Hz, respectively. Note

that the effective number of independent frequencies is smaller than nω, because

the source spectrum W( j) is far from uniform.

2.2.3 Eliminating Marine Acquisition Crosstalk

Once sources have been assigned non-overlapping sets of frequencies, marine ac-

quisition crosstalk can be eliminated. The key idea is, after completing multisource

forward modeling by computer simulation, at each receiver h any extraneous fre-

quency component j is pruned; j is considered extraneous if j is assigned to a

source, to which, according to the marine geometry, h is not associated. I illustrate

the proposed algorithm with an example shown in Figure 2.1. Figure 2.1(a) depicts

S=3 sources, nω=5 frequencies, and a specific way of frequency selection described

by the frequency encoders Ns( j)’s identified as, from left to right, N3 = [1, 0, 0, 0, 1]T,

N2 = [0, 1, 0, 0, 0]T, and N1 = [0, 0, 1, 1, 0]T. Figure 2.1(b) depicts a towed marine

geometry, where each source is associated with nh = 5 receivers. For instance,

source s3 is associated with receivers h5–h8, but not with receivers h1–h4. Consider

for example j=5 at receiver h4. Because, according to Figure 2.1(a), j=5 is assigned

to source s3, j=5 is considered extraneous at receivers h4 and should be pruned.

The rationale is as follows. When sources are blended, all frequency components

are present (see equation 2.26) in forward modeling and consequently at every
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Figure 2.1: Frequency division of sources for one supergather of towed-marine
data. Sources and receivers are identified with their indices. (a) Unique spectra
assigned to, and hence will be emitted by, the sources. The three spectra patterns
are non-overlapping. (b) The association, signified with the same line width and
fill style, between sources and their respective receiver groups. f denotes near
offset; l denotes line length. (c) Frequencies listened to at each receiver.

receiver. Receiver h4 would have detected frequency component 5, which comes

from source s3, but h4 lies outside the aperture associated to s3, and therefore h4

should not pick up any signal stemming from s3. This explains the pruning of the

extraneous frequency component 5 at h4. This is indicated by the absence of a bar

corresponding to j=5 at h4 in Figure 2.1(c). Other unoccupied frequency slots in

Figure 2.1(c) are likewise inferred.

The pruning operation is equivalent to selective filling in as follows. Let

Fblen(frequency, receiver) of size nω × nhtot be the outcome3 in the frequency do-

main detected by receivers generated by forward modeling with blended sources

prior to pruning, and let Fprun(frequency, receiver) of the same size be the result of

3in MATLAB notation; likewise for the following arrays in this section
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pruning applied to Fblen. Here, nhtot is the total number of receivers covered by the

supergather, and nhtot = 8 in this example. Fprun is obtained by first initialization

with 0 and subsequently filling in with valid entries in Fblen; an entry Fblen( j, h) is

valid if frequency component j is not extraneous at receiver h. For instance for

j = 5, we have

Fprun( j = 5, [h5, h6, h7, h8])← Fblen( j = 5, [h5, h6, h7, h8]) (2.28)

Similarly, the encoded supergather CSGenc, of size nω × nhtot, can be formed as

follows, assuming that the observed CSGs have been transformed to the frequency

domain and are indexed as CSG(frequency, receiver, source), of size

MCSG = nω × nh × S. (2.29)

Here, nh is the number of receivers associated with each source in acquisition, and

nh = 4 in this example. First, CSGenc ← 0. Next, fill in CSGenc with the correspond-

ing entries in CSG according to the current frequency encoders. Specifically, loop j

over nω, and for a given j, find to which source s it belongs, and subsequently find

which receivers h’s are associated to this s. Then execute CSGenc( j, h’s)← CSG( j, :,

s). An example for j=3 is given as

CSGenc( j = 3, [h1, h2, h3, h4]) ← CSG( j = 3, :, s1). (2.30)

Finally, the misfit function is computed by Fprun − CSGenc. By pruning or equiva-

lently selective filling in, the mismatch problem between the limited number, nh,

of live traces/shot in observed CSG, and the pervasive number, nhtot, of traces in

simulation-generated Fblen is now resolved.

Note that since there are nω equations similar to equation 2.30, each reading nh
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entries, the total number of entries read from CSG by selective filling in is

MCSGenc = nω × nh, (2.31)

=
MCSG

S
. (2.32)

In this example MCSGenc = 5 × 4 = 20, coinciding with the number of bars in

Figure 2.1(c).

I/O implications

I/O is an important consideration when dealing with industrial-size data sets.

Contrary to the naive impression that the I/O cost of the proposed method in Kit

iterations is Kit times that of the standard migration, here I show that the actual

I/O cost of the former is only 2 + ε times4 the latter, assuming the migrations are

carried out in the frequency domain while the original data are stored in the time

domain. If, however, the data have been transformed into the frequency domain

already, then the I/O cost of the former method is only ε times the latter.

Let I/O cost be identified with the size5 of data passing through I/O, and assume

the data size is MCSG. The standard migration entails reading every shot gather,

followed by the Fourier transform and then the migration. So the I/O cost is

C0 = MCSG. On the other hand, the work flow of the proposed method consists of

two stages. (1) Preparation. All input data are read, transformed to the frequency

domain and saved to disk. The I/O cost of this stage is C1 = 2MCSG. (2) Migration.

The I/O cost per iteration is MCSGenc . In Kit iterations, the I/O cost is C2 = KitMCSGenc =

Kit
MCSG

S = εMCSG, where ε = Kit/S � 1 as Kit is typically an order of magnitude

smaller than S, which is how speedup can be gained by iterative multisource

methods. Therefore the I/O cost C1 + C2 = (2 + ε)C0 of the proposed method is a

4ε is a small fraction, for instance, 1/12.
5measured in the number of complex numbers
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little more than twice that of the standard approach for any Kit � S. If the data is in

the frequency domain already, then the work pertaining to stage (1) is unnecessary.

In this case, the I/O cost of the proposed method is only C2 = εC0.

If CSGenc can fit in a computer’s memory, C2 can be further reduced as follows.

Read the CSGs from disk to form a CSGenc, which is kept in the memory, then make

KCGit iterative updates6 to the trial model. In this scheme, C2 is reduced by a factor7

of KCGit.

2.3 Method

2.3.1 Multisource Objective Function

Due to frequency division, only a subset of the spectrum will be covered at each

source at each iteration, and so ringy migration artifacts are expected. An effective

method to reduce migration artifacts (Nemeth et al., 1999; Duquet et al., 2000) is

LSM, which works by iteratively updating a trial model in order to minimize a

data misfit function. A widely adopted misfit function is the the L2 norm squared

of data error. In addition, regularization with Cauchy norm (Amundsen, 1991;

Sacchi, 1997; Wang and Sacchi, 2007) is used in this chapter. In the Bayesian

framework (Aster et al., 2005; Debski, 2010), the regularization corresponds to a

negative logarithm of the a priori distribution of the model. The choice of Cauchy

distribution is meant to capture the sparse nature of typical reflectivity models.

6Since the Hessian of the objective function is constant given a fixed CSGenc, those KCGit iterations
are made using CG.

7As KCGit increases, Kit may also have to increase in order to produce acceptable result. Therefore
this reduction factor is a bit smaller than KCGit.
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Following the Bayesian approach, I write the regularization as

R(m) = − ln pc(m) = − ln

∏
i

c
π(c2 + m2

i )

 (2.33)

=
∑

i

ln
(
c2 + m2

i

)
+ constants, (2.34)

where pc(m) is a 0-median Cauchy distribution with parameter c; and I write the

misfit function as

e(m) = − ln gσ2 (̃d|m) =
1

2σ2 ||̃d − L̃m||2 + constants, (2.35)

where gσ2(·) is 0-mean Gaussian distribution with variance σ2. The probabilistic

formulations allow us to determine the parameters c andσ2 by maximum likelihood

estimation (MLE). In equations 2.34 and 2.35 the constants are independent of m.

In equation 2.35, d̃ ∈ CnhtotnωMga and L̃ ∈ CnhtotnωMga×M are respectively formed by

concatenating d̃(γ, j) and L̃(γ, j) along the column dimension in dictionary order of

(γ, j), where γ = 1, . . . ,Mga is the supergather index, with Mga being the number of

supergathers, and j = 1, . . . ,nω is the frequency index. Here, the descriptor (γ, j)

explicates the fact that d̃ and L̃ as defined in equations 2.6 and 2.8, respectively, are

specific to a particular supergather and frequency. Note that in the case of marine

streamer acquisition, the first dimension of d̃ and L̃ is extended from nh to nhtot. In

contrast, in the standard approach of a single shot gather, the counterparts of d̃ and

L̃ would be of sizes CnhnωStot and CnhnωStot×M, respectively, where Stot = SMga is the

total number of sources.

The objective function is then constructed as

J(m) = σ2(e(m) + R(m)) =
1
2
||̃d − L̃m||2 + σ2

∑
i

ln
(
c2 + m2

i

)
, (2.36)
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where additive constants have been dropped. Its negative gradient is given as

g def
= −∇mJ(m) = L̃†(̃d − L̃m) − 2σ2

∑
i

Q(mi)mi, (2.37)

where

Q(mi) =
1

c2 + m2
i

. (2.38)

Note that the shape of the objective function J(m) typically changes over iteration

step k because every iteration typically requires a new pass of frequency selection

encodings for the Mga supergathers to generate d̃ and to effect L̃. That the objective

function depends on k is a topic that is studied in stochastic optimization (Spall,

2003). Our problem (albeit of much larger size) is similar to the ‘stochastic bowl’

studied by Schraudolph and Graepel (2002), because as shown in Appendix A the

Hessian of the misfit function pertaining to frequency selection encoded super-

gathers consists of terms sampled from the standard full Hessian.

As frequency selection encoding could significantly alter the Hessian, the con-

jugacy condition of CG cannot be maintained if supergathers are formed with a

new frequency selection encoding at each iteration, a strategy known as ‘dynamic

encoding’. On one hand, in order to accelerate convergence, and on the other, in

order to reduce I/O cost, I adopt a strategy of a hybrid CG (termed ‘CG within mimi-

batch’ in Schraudolph and Graepel, 2002), whereby supergathers are encoded anew

every KCGit iterations. KCGit = 3 is chosen in this study. Given fixed supergathers

and a fixed Q(mi) defined in equation 2.38, KCGit iterations are carried out by a CG

scheme (outlined in Algorithm 1 in Appendix C). Then supergathers are randomly

encoded again, Q(mi)’s are updated, which is known as the ‘Iterative Reweighted

Least-Squares’ method (Scales et al., 1988), the parameters c and σ2 of the probabil-

ity distributions are re-estimated through MLE, and the search direction of CG is

reset to negative gradient.
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2.3.2 Migration Method

The migration method is considered next. I choose prestack split-step migra-

tion based on the following two reasons: first, the fact that sources are subject to

phase and/or frequency encoding demands that prestack migration is the method

of choice. Second, aside from computational efficiency and the absence of oper-

ator aliasing, the fact that phase shift migration is a spectral technique makes it

particularly convenient to perform frequency encoding. To handle smooth lateral

variations in the velocity field, I opt for the split-step migration (Stoffa et al., 1990),

as did Kuehl and Sacchi (1999). It is a straightforward procedure to adapt this to

RTM, with the finite-difference method replacing the spectral method.

The use of LSM requires both the forward modeling and the migration opera-

tions. The use of prestack migration requires both a source field and downward

continued data field. The details of this migration method are relegated to Ap-

pendix B, which is included because of the usefulness in assessing the computa-

tional complexities of the algorithms studied in this chapter.

To demonstrate the effectiveness of LSM, its performance will be compared to

that of Iterative Stacking (IS). In contrast to the iterative refinement of LSM, IS of

encoded migration images (Schuster et al., 2011) at the kth iteration produces a sum

of k realizations of migration images. For IS, dynamic encoding is used, so that

at each iteration the input supergather, specifically the source wavefield at surface

P(x, z = 0, ω) in Figure B.1(a), is formed using a new frequency assignment.

It is of interest to analyze how the proposed method would fare compared

to the standard migration in terms of saving computational cost. This analysis

is provided in Appendix C. In addition, the results in Appendix C allow us to

compare the convergence performances of LSM and IS on the basis of the same

computational cost.
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Figure 2.2: (a) The 2D SEG/EAGE salt model and (b) the associated reflectivity
model, where the red star denotes a source at X = 2.725 (km) and the appending
yellow line denotes the receiver aperture of this source. (c) The CSG from this
source. (d) This CSG corrupted by bandlimited incoherent noise such that Signal-
to-Noise Ratio (SNR)=10 dB.

2.4 Results

The proposed method of Least-Squares Migration with Multisource Frequency-

Selection (LSMMFS) is tested on the 2D SEG/EAGE salt model, of size8 nx × nz =

640 × 150, with a grid spacing of 9.144 m. The velocity and the reflectivity model

are shown in Figure 2.2(a) and (b), respectively.

The following parameters are chosen to emulate a marine acquisition geometry:

8nx is reduced from the original value of 645 to speed up the FFT.
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shot interval = 18.288 m, receiver interval = 9.144 m, near offset = 45.72 m, line

length = 2 km. The number, Mga, of supergathers dividing up all Stot = 304 sources

varies from 1,2,4, up to 8. A Ricker wavelet with a 32 Hz peak frequency is used as

the source wavelet, and 160 frequency channels equally divide the frequency range

from 0 to 80 Hz, as exemplified alongside equation 2.27. With the true velocity and

reflectivity models, a CSG for the source and receivers depicted in Figure 2.2(a,

b) is generated for example using split-step forward modeling and is presented

in Figure 2.2(c). To probe noise robustness, I contaminate the CSG’s with various

levels of random noise for a flat spectrum below 80 Hz, to yield SNR=10, 20, 30

dB. Figure 2.2(d) shows a contaminated version of (c). The noisy CSG’s are first

Wiener filtered, before being migrated. The smoothed velocity model shown in

Figure 2.4(a) is used as the migration velocity, and is obtained by applying a 3 × 3

boxcar filter to the true velocity model shown in Figure 2.2(a).

As the LSM iterations proceed, the trial reflectivity model is updated and sur-

passes the standard migration image in quality, as demonstrated in Figures 2.3

and 2.4. For comparison, migration with the subsampled CSG’s (’Subsmpl Mig’)

is also considered, which is an alternative means for data reduction and speedup.

To yield a speedup of around 8 (see Figure 2.5), comparable to that of my proposed

method, the subsampling ratio of ‘Subsmpl Mig’ is chosen as 1/8. As indicated

by the black dashed horizontal lines in Figures 2.3(a–c), the model error of ‘Sub-

smpl Mig’ always exceeds that of standard migration, indicated by the black solid

horizontal lines. As shown in Figures 2.4(g), the image produced by ‘Subsmpl

Mig’ contains many artifacts that are disruptive because they are of similar spatial

frequency and locations to those of reflectors.

Several features in Figure 2.3 are worth commenting. Larger Mga and SNR

lead to smaller model error and better convergence. Oscillations in the objec-

tive function in panel (d) are the expected behavior of hybrid CG. The objective
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Figure 2.3: Normalized model error (a-c) and normalized objective function (d)
for various SNR as a function of iteration number, in solid curves color coded for
various Mga, when minimizing by hybrid CG. For space efficiency, the legends in
(a,c) are shared among (a-c). Regarding the black horizontal solid and dashed lines
in (a-c), the dash-dot curves in (b), and the symbols �,�, N, and ◦ in (a-c), see text
for details. The alphanumeric short labels ‘4(c)’ up to ‘4(i)’ refer to in which figure
and panels the corresponding migration images are shown.
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Figure 2.4: Reflectivity distributions obtained by various methods with a smoothed
velocity model (a), in various parameter settings of Mga and Kit, the iteration
number, when applicable. 30 dB of the SNR of CSG applies to (b,c), whereas 10 dB
applies to (d-i). (c–i) are respectively referred to in Figure 2.3(a) and (c).
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function is consistently reduced by CG within every KCGit = 3 updates, but will

increase upon the presentation of newly encoded supergathers. This is because the

previous optimization efforts are targeted at reducing a differently parameterized

objective function. As the iterations proceed, however, the envelope of the oscilla-

tory objective function still decreases, validating the robust performance of hybrid

CG.

In terms of model error, the least-squares method can surpass the standard

migration in as few as two iterations (see for example the ◦ symbol at iteration

2 on the cyan curve in Figure 2.3(a)). This estimate, however, is too optimistic,

even though I have made sure to minimize the model error of standard migration

image as min
α
‖αm̆ −m‖2, where m̆ is the migration image and m is the true model.

The reason is that a standard migration image tends to be smooth and the high

frequency components are suppressed. Thus, the model error could be large. On

the other hand, the image obtained by LSMMFS tends to be sharper, matching

the true model better in terms of the L2-norm of the model error. The downside,

however, is ringy noise, as evident in the corresponding reflectivity images shown

in Figure 2.4(e) and (f). That is why it makes sense to involve human subjects in

judging the quality of resulting images.

The break-even points where the image quality of LSMMFS is comparable to

that of standard migration are indicated by the symbols �, �, and N in Figure 2.3(a-

c). Three images corresponding to such points are shown in Figure 2.4(c), (h) and

(i). To equate the quality of these images with that of the standard migration,

shown in Figure 2.4(d), tradeoffs are made. In Figure 2.4(c), (h) and (i), there is

some residual high-frequency noise, especially at shallow depths. But this noise

is quite distinct from those of reflectors and thus it hardly affects the dominant

features. On the other hand, the resolution of Figure 2.4(c), (h) and (i) is better than

that of Figure 2.4(d). It is based on these two factors that I choose the break-even
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Figure 2.5: The gains in com-
putational efficiency of the pro-
posed LSMMFS as compared
to the conventional shot-record
split-step migration plotted on a
log-log scale for various SNR’s,
as functions of shots per super-
gather, or equivalently as func-
tions of Mga (labeled atop).

points in visual quality. Once the abscissae, or Kit’s, of these break-even points

are known (from equation C.3), I calculate the relative computational cost, or, its

reciprocal, termed ‘gain in computational efficiency’, which is plotted in Figure 2.5.

Here we see that, for the parameter settings and the model under study, nearly an

order of magnitude of speedup can be achieved.

One may raise the concern that, due to the frequency selection scheme, even

with a dozen iterations of dynamic encoding, each source can hardly have the

chance to exhaust its spectrum. For example, take Mga = 2, Kit = 10, then S =

Stot/Mga = 304/2 = 152. So at any one iteration, each source only gets assigned

1/152 of the frequency channels available. With 10 iterations, in the best scenario

a source can only cover a mere 10/152 of its spectrum. In light of this analysis,

the apparent good performance of the frequency selection scheme seems therefore

rather counter intuitive. To address this concern, I maintain that due to least-

squares iterations, sources no longer act in straightforward linear superposition

as they do in the standard migration. Rather, they act cooperatively and with

collaboration between sources the model gets effectively illuminated by a wider

range of spectrum than provided by stacking migrations.

To test this idea, I examine the convergence performance of IS, where frequency
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Figure 2.6: The 3D SEG/EAGE salt velocity model, in m/s, sliced at (left panel)
x=6.7 km and (right panel) z=1.98 km.

selection encoding with multisource applies as well. Figure 2.3(b) includes the

convergence curves (the dash-dot curves are for IS), plotted according to what is

prescribed at the end of Appendix C, and Figure 2.4(b) shows a migration image of

IS, which is obtained at the same computational cost as in Figure 2.4(c). Evidently,

with this amount of computation, IS does not beat the standard migration in terms

of either model error or the quality of migration image. The explanation for this

phenomenon is precisely the concern raised earlier, aided by the realization that

by random frequency assignments, rarely can a smooth spectrum result, and fluc-

tuations in the spectrum are likely. Non-smoothness in the spectrum corresponds

to ringiness in the time domain. Therefore the migration image is always inferior

to standard migration image. Contrasting IS and LSMMFS, one can see the es-

sential role that least-squares updates play in this frequency selection multisource

method. Additional insights are reaped from a comparison study conducted in

Appendix D, where I show that iterative refinement likely leads to better solutions

than migration does.

To test the viability of the frequency selection multisource method in processing

3D data, I use a 3D SEG/EAGE salt model, of size nx × ny × nz = 672 × 672 × 185

with a grid interval of 20 m. Slices of the velocity model are depicted in Figure 2.6.

There is one receiver at each grid point, and Stot = 64 × 64 = 4096 sources are

equally distributed on the surface. A Ricker wavelet with a 16 Hz peak frequency
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is used as the source wavelet, and nω = 360 frequency channels equally divide the

frequency range from 0 to 40 Hz, as exemplified alongside equation 2.27. Here,

a fixed acquisition geometry of both the sources and receivers is assumed, as the

aim of this study is to test whether the frequency selection multisource method can

work on either land or marine 3D data.

Note that in this case the number of sources Stot is far greater than the number

of available frequency channels nω. If S = Stot/Mga > nω, then assignment of non-

overlapping source spectra is not possible, unless only a small number of sources

are turned on at a time, a practice that would discard much useful information.

Here I allow overlapping source spectra. If S � nω, each frequency channel is

shared among S/nω sources. This assignment can be implemented for example by

randomly drawing S/nω source indices in turn without replacement to be assigned

to each frequency. In addition, a random polarity ±1 is assigned to each source,

in order to reduce the crosstalk among sources sharing a frequency. A comparison

of this method with standard migration is given in Figure 2.7, where 50 steep-

est descent updates of LSMMFS in one supergather yield a result comparable to

standard migration. Equation C.5 says, based on the computational cost, that the

speedup is 2S/(4Kit − 1)= 2 ∗ 4096/199 � 41. On the I/O side, as analyzed at the end

of the Theory section, the proposed method requires either ε× or (2 + ε)× the I/O

cost of the standard approach, depending on whether or not the data have been

transformed into the frequency domain.

2.5 Conclusions

I emphasize that the mismatch between the limited number of live hydrophones

in a marine-streamer survey and the pervasive number of live traces generated

by modeling is essentially a form of crosstalk in multisource migration/inversion
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not seen in a fixed spread survey. To completely remove this marine crosstalk

I propose a frequency selection encoding scheme similar to the ones used in the

communications industry. This scheme demands that any crosstalk-prone sources

should only emit signals in non-overlapping frequency bands. This scheme allows

any receiver to selectively tune in to the valid source (the source that indeed

has made a contribution to this receiver) and to selectively disregard potentially

confounding sources. Such sources are grouped with the receiver only at the time

of multisource modeling.

I show that my frequency selection technique in a multisource framework is

similar in form to the well-studied stochastic optimization problem. In terms of

computational cost, blending groups of S sources together to form supergathers

would reduce the subsequent computational cost by a factor of S. Due to the

weakened illumination capability, iterations are usually required to produce an

image comparable to standard migration. Fast convergence with many fewer steps

than S yields an overall speed gain compared to conventional migration.

Numerical results with a 2D salt model and a marine survey show that crosstalk

is completely removed with a multisource speedup nearly an order of magnitude

faster than standard migration. In the 3D example with a fixed acquisition geometry

(a fixed OBS geometry) a speed up of 40 was achieved compared to standard

migration. In addition, better resolution was achieved.



51

Chapter 3

Full Waveform Inversion with

Multisource Frequency Selection on

Marine Streamer Data

3.1 Introduction

Multisource migration (Morton and Ober, 1998; Romero et al., 2000), LSM, and

waveform inversion (Krebs et al., 2009; Virieux and Operto, 2009; Dai and Schuster,

2009; Tang, 2009) of phase-encoded supergathers were developed to significantly

reduce the cost of migration and inversion. The key idea is to blend N encoded shot

gathers into an N-shot supergather, and iteratively migrate encoded supergathers

or, in the case of LSM or FWI, encoded supergather residuals. A representative

formula for iteratively estimating the model parameter si in the ith cell is given by

the steepest descent formula

sk+1
i = sk

i − α
∂ε
∂si
, (3.1)
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where si can represent either the reflectivity or the slowness in the ith cell, α is the

step length, and ε is the misfit function9 that is encoded after each iteration with

a different encoding function. The benefit of this approach is that wave equation

migration of each supergather costs about the same as the migration of a standard

shot gather. If the number of iterations is fewer than N, then the computational cost

of phase-encoded multisource imaging can be much less than separately migrating

each of the N shot gathers (Schuster et al., 2011).

The problem with the above approach is that it is efficiently suited for land

data where the receiver spread is fixed for each shot, but not for marine data

with a receiver array that moves with each shot. As an illustration, Figure 3.1(a1)

shows two shot gathers to be blended, where one shot is at the red source and

the other is at the dark blue source; this 2-shot supergather will be denoted as

dobs.. Typical of marine surveys, the receiver array is at a different offset for either

source so that only certain receivers are selectively listening for the red shot but

not for the dark blue shot at the uncommon receiver positions. In comparison,

the predicted 2-shot supergather dpred. generated by a finite-difference10 solution of

the wave equation does not discriminate and generates traces at every receiver, as

shown in Figure 3.1(a2). Hence, there will be discrepancies between the predicted

and observed traces at the uncommon receiver positions (indicated by the dashed

ovals in Figure 3.1). I denote this problem in multisource FWI as the aperture

mismatch problem, where the observed supergather is for a blended marine survey

while the predicted supergather is for a blended land survey.

The aperture mismatch will lead to a non-zero misfit function ε = 1
2 ||d

pred.
−dobs.

||
2

even if the exact velocity model is used for prediction. The remedy to this mismatch

9The misfit function ε = 1
2 ||d

obs.
−dre f .

||
2 relates to the L2 norm of the encoded difference between

the predicted and observed supergathers.
10A finite-difference simulation of two simultaneous sources (a red source and a dark blue source)

will compute traces everywhere on the surface that are a superposition of the wavefields from both
sources.
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is to use an encoding function in the multisource finite-difference modeling that

only activates specified receivers for any one shot. This orthogonal encoding

function strategy was developed by Huang and Schuster (2012) for wave equation

migration, and will now be tested for FWI.

The first part of the chapter provides the theory for multisource FWI with

frequency selection, and is followed by results from tests on synthetic and field

data. Speedups ranging from 4× to 8× compared to conventional FWI are obtained.

The last part presents a summary.

3.2 Theory

The formula for multisource FWI is given in equation 3.1, where the velocity model

is updated at each iteration and si represents the slowness model in each cell. The

frequency selection encoding scheme is described in Huang and Schuster (2012),

and summarized by the following steps.

1. Figure 3.1(a) illustrates the problem, and the first step is to assign a non-

overlapping frequency spectrum to each of the sources. In Figure 3.1(b), the

cyan (red) source is bandlimited around 20 Hz (10 Hz) during the multisource

simulation and the supergather is computed.

2. In Figure 3.1(c), a bandpass filter is applied to decode the (b) supergather so

that the cyan traces can be separated from the red traces. In each shot gather,

only traces recorded by receivers in a hypothetical marine survey are retained

while the others are muted.

3. In Figure 3.1(d), the decoded and muted traces are blended together to give the

bandlimited marine supergather. This procedure is iterated in equation 3.1,

except that a unique non-overlapping frequency is iteratively assigned to
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each source. For a sufficient number of iterations, the full bandwidth of the

data is employed at each source.

Aperture Mismatch Problem with Multisource Marine Data 
 and a Solution with Frequency-Selection Encoding 

a2). Simulated  
fixed-spread data 

a1). Observed  
marine data 

Freq. encode 

sources 

b). Simulation with 
 encoded sources 

c). Decode Selectively mute d). Blend  simulated marine data 

Blend 

wrong misfit 
eliminated 

10 Hz 
20 Hz 

wrong  
misfit 

10 Hz 

20 Hz 

Figure 3.1: The solution to the acquisition misfit problem illustrated in panels (a1)
and (a2), is given by the following steps: (b). the cyan (red) source is bandlimited
around 20 Hz (10 Hz) during the multisource simulation; (c). a bandpass filter
is applied to decode these traces so that the cyan traces can be separated from
the red ones. Muting of the specified traces for a marine geometry is applied.
(d). The decoded and muted traces are blended together to give the bandlimited
marine supergather. Now, there is no aperture mismatch between the simulated
and observed supergathers, except that the frequency channels of the former are a
subset of those of the latter.

To apply the frequency-selection to a FDTD simulation, what are injected at

sources (and at receivers when back-propagating the data misfit) are causal sine

waves. This causality shows up as transient in received sinusoidal seismograms,

causing spectral leakage. To mitigate this problem, assuming the impulse response
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of the Earth is active only within time nt, I run the FDTD simulations over 2nt,

and keep the responses only within the second nt, as illustrated in Figure 3.211.

The responses in the second nt are nearly identical to what is obtained by running

the simulation over nt with an input of infinitely long sine waves of period nt.

Such sine waves are the bases of the Discrete-time Fourier transform (DTFT) of

nt, if performed on the data obtained from the FDTD simulation over nt using

time-limited source wavelet.

1 nt 2nt

−1

1

(g)

1 nt 2nt

−1

1

=

(f)

1 nt 2nt
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1

*

(e)

1 nt 2nt

−1

1

(c)

1 nt 2nt

−1

1

=

(b)

1 nt 2nt

−1

1

*

(a)

Figure 3.2: Doubling the simulation time of FDTD to mitigate the transients when
causal sine waves are injected at the inputs, e.g., sources or receivers. If a (a)
causal sine wave u(t) sin(2qπt/nt), where u(t) represents a unit-step function, is
convolved with (b) a delayed impulse, the output is a delayed version of the input
signal, plotted in (c), where the black box contains the transient, while the red box
contains the steady-state. If sin(2qπt/nt), plotted in (e), is injected instead, then the
output, plotted in (g), would be a scaled and delayed sine wave. Note that the red
box in (g) is identical to that in (c). Due to periodicity in nt of the input sine wave,
in (g) the black box is identical to the red.

This transient-reduction scheme also applies when back-propagating the resid-

ual wavefield in forming the gradient of FWI, as illustrated in Figure 3.3. Note

that only the times slices from nt + 1 to 2nt of the source wavefield need to be

11Only a single δ(t)-impulse of the Earth response is shown. Linear superposition generalizes
this to an arbitrary impulse response within nt.
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Figure 3.3: Transient-reduction in forming the gradient of FWI. The residual wave-
field is back-propagated over 2nt steps, starting from step 2nt. The wavefields for
time steps from nt to 1 are steady. The steady wavefields are periodic in time with
period nt, inherited from the injected sine waves. Therefore, to form the gradient of
FWI, we take the 0-lag correlation between the back-propagated residual wavefield
(for time slices from 1 to nt) and forward-propagated source wavefield (for time
slices from nt + 1 to 2nt).

reconstructed from the FDTD boundary. The total number of time steps of FDTD

propagation thus equals 2nt+nt+2nt = 5nt, where the 2nt denotes the total time for

the forward-propagation and back-propagation of the source and residual wave-

fields, respectively, while the nt is for reconstruction of the last part of the source

wavefield. This compares to 3nt time steps in the standard approach in computing

the gradient.

In numerical optimization, after the gradient is computed, Brent’s method (Press

et al., 2007) is used for the line search. This takes on average 5 function evaluations,

namely, 5 passes of forward-propagation of the source wavefield. Therefore in the

standard approach, per iteration of FWI 8nt time steps of FDTD propagation are

required, whereas in my transient-reduction scheme, 5nt+2×5nt = 15nt time steps

of FDTD propagation are necessary. Roughly, per iteration the latter costs about

twice as much as the former does.
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3.3 Numerical Results

3.3.1 Synthetic Data

The Full Waveform Inversion with Multisource Frequency-Selection (FWIMFS)

method is tested on synthetic data computed for the SEG/EAGE salt model with

a marine geometry. The model is decimated by a factor of 3 × 3 for less overall

computational time, as shown in Figure 3.4(b). The source wavelet is a Ricker

wavelet peaking at 8 Hz. There are 60 shot gathers evenly distributed across the

top of the model with the shot spacing of 82.3 m, the receiver spacing is 27.4 m,

and the line length is 2.3 km.

The FWI method uses a preconditioned conjugate gradient method, where the

acoustic forward and backward solvers are a finite-difference solution to the 2D

space-time wave equation of constant density. The FDTD algorithm is second-order

accurate in time and fourth-order accurate in space, denoted as O(2, 8). The source

wavelet for the proposed frequency selection method is a pure cosine wave, also

employed in Nihei and Li (2007) and Sirgue et al. (2008), at a selected frequency.

The starting model is shown in Figure 3.4(a) and the standard FWI tomogram

after 69 iterations is shown in Figure 3.4(d). This result and the associated CPU

time will serve as the standard metrics by which the FWIMFS algorithm will be

measured.

The FWIMFS strategy produces the tomogram shown in Figure 3.4(c). This

result required 439 iterations to achieve the same accuracy as the Figure 3.4(d)

result in 69 iterations. This amounts to a factor of 439/69 = 6.362. The convergence

curves shown in Figure 3.5 are plotted in the way that the x-axes for the red

dashed curves have been deliberately shrunk by 6.362. With this adjustment, the

two convergence curves of velocity error in Figure 3.5(b) almost coincide with

each other. Taking this factor into account, among others such as the overhead
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Figure 3.4: (a) The initial velocity, (b) the true velocity, (c) the result of the proposed
FWI at the 439th iteration, and (d) the result of standard FWI at the 69th iteration.
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Figure 3.5: Normalized error of waveform (a) and velocity (b) as functions of itera-
tion number, for the proposed method (denoted by ‘Sinusoidal’) and the standard
FWI (denoted by ‘Ricker’). Note that the iteration numbers for the red dashed
curves are actually 6.362 times those in display. See text for details.
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of increased runtime per finite-difference run, the speedup over the conventional

FWI scheme is estimated to be about 4. This compares to the 8× speedup reported

by Huang and Schuster (2012) for RTM. One reason for this discrepancy is that the

implementation in the time domain suffers from a 2× overhead in order to reduce

the effect of transient noise in the simulated sinusoidal seismograms.

3.3.2 GOM Streamer Dataset

The FWIMFS is then tested on a GOM streamer dataset. I include 496 shots with

a shot interval of 37.5 m. The source-receiver offset ranges from 198 m to 6 km,

with a receiver spacing of 12.5 m. Trace length of 7 s is included, with a sampling

interval of 2 ms.

This test consists of the following steps:

1. Estimate the source wavelet, by integrating the direct wave.

2. Convert the 3D physical data to 2D, on which grid the simulations are run.

3. Obtain an initial velocity model, shown in Figure 3.9(a), by combining travel-

time tomography and the velocity from semblance analysis, referred in short

in this chapter simply as ‘traveltime tomography’.

4. Implement a multiscale strategy (Bunks et al., 1995) with FWIMFS.

5. To validate the accuracy of the tomogram, compute the RTM image and CIGs

using the tomogram velocity.

The source wavelet is estimated as follows. 1) Stack the direct waves from

Common Offset Gathers (COGs); 2) integrate the stacked trace along time; and 3)

set its DC component to 0. The reason for integration is because the received direct

wave is ∝ d/dt of the source wavelet, as illustrated in Figure 3.6. The estimated

source wavelet is plotted in Figure 3.7(a); a bandpass filtered version (filtered
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Figure 3.6: The direct wave and free-surface reflection combine together to give a
detected signal approximated by w(t)−w(t+∆t), proportional to the time derivative
of the wavelet w(t).
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Figure 3.7: (a) The estimated source wavelet, (b) bandpass filtered wavelet with
peak frequency 10 Hz. (c) The power spectrum of (b), which is divided into intervals
in order to make the energy of each interval comparable. (Due to discreteness of
frequencies, the interval energy cannot be made exactly equal.)

with a Ricker wavelet of peak frequency 10 Hz) is plotted in Figure 3.7(b). There

are 210 frequency components supporting the power spectrum curve plotted in

Figure 3.7(c). As the power is very small at the tails, rather than assigning each

frequency component individually, I group them into 62 frequency intervals, filled
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in alternating colors in Figure 3.7(c). The intervals are wider near the tails, so

that the area under the curve in each interval is equalized as best as one can.

Each interval of frequencies is selected as one entity in my frequency-selection

scheme. The 3D to 2D conversion is achieved by multiplying the data spectra by
√

i/ω (Barton, 1989) and then gaining in the time domain by
√

t to convert the

geometric spreading from 3D to 2D.

Aspects of frequency-selection and stochastic optimization
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Figure 3.8: Frequency-selection encoding results. Each grey spot denotes a map-
ping between its two coordinates ω j and si. Upper panels show the mappings
accrued over 3 iterations, while lower panels show those over 31 iterations. A
bright spot means there are mapping points colliding in history. Earlier mappings
are of decayed charges, explaining the varying grey scales of the grey points.
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In step 4, for the Multisource Frequency-Selection (MFS), I propose a Quasi-

Monte Carlo frequency–source encoding strategy, motivated as follows. It is desir-

able that every source has a chance of evenly sampling the frequency components

assigned to it over the many iterations of FWIMFS. An example of 10 frequency

components and 4 iteration steps for a particular source might select the indices

like 9, 2, 5, 7, where each number denotes a frequency index; 4 iterations give 4

numbers. An undesirable example is 3, 2, 2, 1, which over-represents the low fre-

quency index 2, omitting the medium and high-frequency components. Moreover,

nearby sources tend to illuminate an overlapping region of subsurfaces. Therefore

if their frequency contents differ, then they as a whole would cover a wider range of

frequency components. Back to the preferable example, its neighbor emitting sine

waves of frequency with indices like 2, 9, 5, 7 would be less desirable than emitting

a wider band of frequencies with indices 1, 10, 3, 8.

To achieve this end, I introduce repellent Coulomb forces between 2D point

charges, each point (ω j, si) denoting a mapping from ω j to source si. This elec-

trostatic system then settles, simulated through greedy optimization, into a low-

energy configuration, in which all charged points spread out as much as possible.

Examples of this encoding strategy are shown in the left column of Figure 3.8,

which appear more uniformly distributed than the counterparts of the standard

random permutation shown in the right column.

As the specific frequency-selection code changes over iterations of FWI, this

falls in the realm of stochastic optimization (Spall, 2003). While the convergence

of a line search in stochastic optimization is still a research problem, I adopt a

hybrid approach. Run a gradient descent method with line search for the first K0

iteration steps of FWI, then switch to a stochastic gradient descent method, where

the step size ∝ 1/k, k being the iteration step index. This is a lightweight and robust

algorithm that converges almost surely to a local minimum (Kiwiel, 2001). The
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problem remains in choosing the appropriate constant coefficient for this step size

formula. The recipe is, first, identify the smallest η, ηmin, resulting from the first K0

steps of line search, expressed in the form

||∆x|| = η||∇J(x)||. (3.2)

Here, x is the unknown parameter vector, such as the velocity model; ∆x is the

update of x at a step; and ∇J represents the gradient of the objective function.

Then, the constant coefficient of the step size formula can be fixed accordingly, as

∆xk = −ηmin
K0

k
∇J(xk), for k = K0 + 1, . . . . (3.3)

A similar recipe of determining the step size of stochastic gradient descent is

suggested in Bottou and Bousquet (2011).

As mentioned at the end of Section 3.2, 5 function evaluations are required

on average by Brent’s method for line search. In contrast, none is required in

a stochastic gradient descent method. Consequently, per iteration step of the

latter method, the computational cost is only due to the gradient computation,

which requires, with the transient-reduction scheme, 5nt FDTD propagation steps.

This compares to 8nt in the standard approach, which, taking advantage of the

CG method, needs an accurate line search, and therefore explains the associated

overhead. This lightweight stochastic gradient descent approach translates to more

iterations and therefore more frequency-selection codes in use.

To further reduce the amount of stochasticity in the gradient, we empirically

adopt averaging of two successive gradient calculations. Namely, perform the

multisource encoding and gradient computation twice, then stack the gradients.

This will double the computational cost. So a tradeoff exists between the size of

the number of gradients in the average and the convergence speed of the stochastic
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gradient descent. This averaging (also known as the mini-batch) scheme applies

to all 8 supergathers, which are formed by dividing up the 496 shot gathers.

I start the inversion with the data bandpass filtered from 0–6 Hz. The initial

velocity model is decimated to a grid size of nz × nx = 51 × 376. At later iterations

the band is widened to 15 Hz, and the model is upsampled (with interpolation) to

nz× nx = 101× 752. Finally the frequency band covers 0 to 25 Hz, and the velocity

model is of grid size nz × nx = 201 × 1504. I only use standard FWI for the first

two cases, because the amount of computation is negligible compared to the third

case. For example, the second case has a quarter of the model size, half of the

time samples (because of doubled time sampling interval), and half the number of

shots (due to downsampling). Therefore the computational load per iteration of

the second case is only 1/16 of the third.

Results of the GOM dataset

As shown in Figures 3.9(b) and (c), the tomograms computed by standard FWI after

20 iterations and by FWIMFS after 71 iterations appear very similar. The associated

computational cost of the latter case is 1/8 of that of the former. In both cases, there

appear to be some regions of low-velocity anomalies. One is a horizontal layer at a

depth of 0.75 km, where the velocity is slower than in water. This could be due to

out-of-plane wavepaths modeled in 2D, resulting in underestimating the velocity,

or it indicates unconsolidated sediments. Other low-velocity anomalies seem to lie

along the wavepaths of diving waves. This arises due to cycle-skipping of some

of the diving waves. Such velocities can be elevated by manual intervention, a

trial move to be accepted if it overcomes some cycle-skipping. Rather than going

into details of improving the FWI results, this chapter aims at demonstrating that

FWIMFS produces essentially the same results as standard FWI does, with the

benefit of a reduction in the computational cost. How we massage the velocity
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model to address the cycle-skipping is a separate research project.
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Figure 3.9: FWI results for the GOM dataset. (a) The initial velocity model. The
velocity tomograms obtained from (b) standard FWI after 20 iteration steps, and (c)
FWIMFS after 71 iteration steps. The encircled regions are low velocity anomalies
in the FWI results.
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In order to see how my quasi-Monte Carlo encoding scheme accelerates the

inversion, Figure 3.10 shows the velocity differences between the tomograms ob-

tained using the two alternative encoding schemes: standard random permutation

versus quasi-Monte Carlo. Surprisingly, the two velocity models are almost iden-

tical. The other results, such as RTM images and CIGs, appear indistinguishable,

and therefore further comparisons between the two are omitted. This implies that

the FWIMFS is very robust with regard to specific random codes of frequency-

selection. Figure 3.11 plots the convergence curves of the various approaches. The

reason why the red curve lies slightly above the green one is explained as follows.

By quasi-Monte Carlo encoding, the new multisource data presented to the inver-

sion algorithm is very different from what it has seen in the past, because this data

contains entirely new frequency components. In contrast, by standard random

permutation, some frequency components may have been used earlier, and thus

the new multisource data is not entirely new. So the algorithm using standard

random permutation can fare better at fitting the data.
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Figure 3.11: Reduction of data misfit (for 0–25 Hz) over FWI iterations, starting
from the model obtained from FWI of 0–15 Hz data. The iteration numbers are
labeled according to those of the standard FWI (i.e., of individual-source). The
curves of the multisource cases are scaled horizontally such that when one draws
a vertical line across this figure, the intersected red and green points represent 1/8
of the computational cost than the cost of the intersected blue point.

To probe the qualities of FWI, RTM images are shown in Figure 3.12, with
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zoomed views shown in Figure 3.13. Note that the results of standard FWI and

of FWIMFS appear identical. In the three zoomed views, the FWI results seem

more focused, showing better continuity of reflectors. In the center of the RTM

images, around (X,Depth) = (9.5, 1.5) km, however, the traveltime tomogram offers

better focusing than FWI tomograms. This is perhaps due to the overhanging low

velocity anomalies in the FWI tomograms, as remarked on Figure 3.9.

Comparing the CIGs in Figure 3.14, we see flatter events on the right part,

delimited by the red box. This coincides with the observations about the RTM

images in that the FWI results fare better (in terms of more focused and continual

reflectors) on the right part of the RTM image. In the green box of the CIGs, although

the FWI results are flatter than the traveltime counterpart, the FWI velocity is over-

corrected to be too small. This is indicated by the events curving up with larger

source–midpoint offset (larger offset is on the left side of each CIG strip). This

supports the idea that the overhanging low velocity anomalies are not authentic.

Figures 3.15 and 3.16 show CSGs from two sources, obtained by various meth-

ods. The match between the FWI results and the observed ones is generally good,

although cycle skipping can be found at offsets = 3.8 km and 6 km, while comparing

panels (a) and (c) in Figure 3.15.

3.4 Conclusions

Multisource full waveform inversion of supergathers for marine data is imple-

mented with a frequency selection strategy. The key enabling property of fre-

quency selection is that it eliminates the crosstalk among sources, thus overcoming

the aperture mismatch of marine multisource inversion. This method is now ex-

tended to the FDTD from the previous implementation with phase shift migration.

Tests on multisource FWI of synthetic marine data set and GOM data set show



68

speedups of 4× and 8×, respectively, compared to coventional FWI.
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Figure 3.15: CSGs for GOM data of one source at X = 6 km. (a) the observed
data bandpass filtered to 0–25 Hz. The predicted counterparts obtained with the
(b) traveltime tomograms, (c) standard FWI (after 20 iterations), and (d) FWIMFS
(after 71 iterations).
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Figure 3.16: CSGs for GOM data of one source at X = 12 km. (a) the observed
data bandpass filtered to 0–25 Hz. The predicted counterparts obtained with the
(b) traveltime tomograms, (c) standard FWI (after 20 iterations), and (d) FWIMFS
(after 71 iterations).
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Chapter 4

Resolution Limits for Wave Equation

Imaging

4.1 Introduction

FWI (Lailly, 1984; Tarantola, 1984, 2005), RTM (McMechan, 1983; Baysal et al., 1983;

Whitmore, 1983), LSM (Nemeth et al., 1999; Duquet et al., 2000; Tang, 2009; Dai

et al., 2012) and wave–equation traveltime inversion (Woodward, 1989, 1992; Luo,

1991; Luo and Schuster, 1991; De Hoop and van Der Hilst, 2005) are important

tools for imaging seismic data at the engineering (Buddensiek et al., 2008), ex-

ploration (Mora, 1988, 1989; Pica et al., 1990; Pratt and Goulty, 1991; Zhou et al.,

1995; Shin and Cha, 2008; Krebs et al., 2009; Virieux and Operto, 2009) and earth-

quake (Marquering et al., 1999; Tong et al., 1998; De Hoop and van Der Hilst, 2005;

Van Der Hilst and Maarten, 2005; Tape et al., 2009; Fichtner et al., 2009; Fichtner,

2011; Fichtner and Trampert, 2011b,a) scales. In all of the above methods, the

wave equation is solved to estimate the model that minimizes, in some sense, the

difference between the predicted and observed data. The main value of these

wave equation–based imaging methods is that they overcome the high–frequency

assumption of ray–based methods and use many, if not all, of the arrivals to re-

construct a finely detailed earth model. The hope is to find models with spatial
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resolution of one–half wavelength, and perhaps even better if evanescent energy

can be exploited (de Fornel, 2001; Fink, 2008; Schuster et al., 2012). The main limita-

tions of wave equation imaging are computational cost, extensive preprocessing of

the data, and extensive trial–and–error testing compared to the ray–based methods.

To optimize the use of wave equation imaging one must understand its limits of

spatial resolution. Without this understanding, models can be over parameterized

and lead to solutions that honor the data but violate the wavelength–based resolu-

tion limits of wave propagation. Such models should be avoided in our attempts

to understand the earth.

In the last 30 years there has been much progress in mathematically defining the

resolution limits of seismic images. The two most important categories of seismic

imaging and their resolution limits are for traveltime tomography and reflection

imaging.

4.1.1 Resolution Limits for Traveltime Tomography

In raypath traveltime tomography, the velocity is updated only along the raypath

that connects the source at s with the receiver at g, whereas in finite-frequency

traveltime tomography, velocity updates can be confined to the first Fresnel zone

for the specified source-receiver pair (Harlan, 1990). He states “....band-limited

waves can follow paths that are not Fermat raypaths and still cover the distance

between two points in almost the same time. All arriving waves that are delayed

by less than half a wavelength will add constructively to the first arrival.”

As an example, the raypaths and Fresnel zones for reflection and transmission

arrivals are illustrated in Figure 4.1. A point x is in the Fresnel zone (FZ) if and

only if it satisfies the following condition (Kravtsov and Orlov, 1990; Cerveny and

Soares, 1992):

|τsx + τxg − τsg| ≤ T/2, (4.1)
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Figure 4.1: a) First-Fresnel zones for the specular reflection and for the transmission
arrival excited by the mirror source at (0,2d). In the latter case, the velocity below
the reflector has been extended to be the same as the top-layer velocity. b) An

ellipse intersected by a line segment DE, where its length DE =
2ab
√

b2 cos2 θ+(a2−c2) sin2 θ

b2 cos2 θ+a2 sin2 θ
defines the resolution limit (see Appendix E).

where, T is the dominant period of the source wavelet, τsx is the traveltime for a

particular type of wave to propagate from s to the trial image point at x, and τsg is

the traveltime to propagate from s to the specified geophone at g.

In a homogeneous medium, the maximum width of the first Fresnel zone can be

shown (Williamson, 1991) to be proportional to
√
λL, where L is the source-receiver

distance and λ is the dominant wavelength. Thus, widening the distance between

the source and receiver lowers the spatial resolution of the traveltime tomogram.

More generally, Appendix E derives the formula for the length between any two

points on opposite sides of the ellipse, which provides the horizontal resolution

limit for any orientation of the ellipse.

The effective spatial resolution limits ∆x and ∆z of traveltime tomograms can

be estimated (Schuster, 1996) as the minimum width and height of the intersection

of first Fresnel zones at the trial image point. As an example, Figure 4.2 shows the

intersection zones for both a) reflection and b) transmission rays. At any point on

the central raypath, the narrowest width is along the line perpendicular to this ray,
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Figure 4.2: Same as Figure 4.1 except there is a new source (red star) along with its
red wavepath for each diagram. The minimum width and height of the red-shaded
intersection zone defines, respectively, the effective horizontal ∆x and vertical ∆z
resolution limits of the traveltime tomogram at the yellow-filled circle.

which also defines the direction of best resolution. Thus, a horizontal ray gives the best

vertical resolution while a vertically oriented ray provides the best horizontal resolution for

transmission tomography, where the velocity is updated by smearing residuals along

the first FZ (also referred to as a wavepath). As will be shown in the next section,

this rule of thumb is also true for transmission wavepaths in FWI tomograms,

except the wave f orm residual is smeared along the associated wavepath.

4.1.2 Resolution Limits for Reflection Imaging

A seismic migration image is formed by taking the reflection energy arriving at

time τsx + τxg and smearing (Claerbout, 1992) it along the appropriate ellipse in

the model-space coordinates x (see Figure 4.3a). For several traces, the migration

image in Figure 4.3b is formed by smearing12 and summing the reflection energy

along the appropriate ellipses in the model space. It is obvious that the narrowest

horizontal slice of the fat ellipse is for a trial image point at the far-left and far-right of

12The seismic amplitude is smeared over the thick ellipse shown in Figure 4.3a, where the period
T of the trace’s source wavelet determines the thickness of the fat ellipse in (x, z) space; Figure 4.3b
illustrates that the minimum thickness of the fat ellipse as 0.5λ.
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Figure 4.3: Migration is the smearing and summation of trace amplitudes along
the appropriate fat ellipses in (x, z) for each source-receiver pair s − g (Claerbout,
1992). Migration of two traces in b) has better spatial resolution than migrating
just one trace in a), and the minimum thickness of each fat ellipse is 0.5λ, where T
is the dominant period of the source wavelet.

the ellipse to give the best horizontal resolution in the reflection migration image. We also

see that the narrowest vertical slice is directly beneath the midpoint of the source-receiver

pair to give the best vertical resolution. For poststack data, these resolution limits are

given on the rightside of Figure 4.4e, which say that the far-offset (near-offset) trace

from a trial image point gives the best horizontal (vertical) resolution.

The resolution limits for migration (Berkhout, 1984; Safar, 1985; Chen and Schus-

ter, 1999; Vermeer, 1997) were later found to be equivalent to those for linearized

inversion in a homogeneous (Devaney, 1984; Wu and Toksoz, 1987) and an in-

homogeneous medium (Beylkin, 1985) with smooth velocity variations. The key

idea is that the model wavenumber vector k can be equated to the sum of the

source-scatterer and geophone-scatterer wavenumbers k = kgro +ksro shown in Fig-

ure 4.5. IfD defines the range of wavenumbers available from the source-receiver

positions, then the horizontal ∆x and vertical ∆z spatial resolution limits of the
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Figure 4.4: Migration-data kernels, associated wavepaths, and approximate res-
olution limits along the middle of the wavepaths for a-d. Here, the dashed and
solid lines in cyan represent the raypaths associated with the conjugated kernels
and the data kernels, respectively; the trial image points x and y are represented
by •; and the resolution limit perpendicular to the wavepath is denoted by 2∆r.
The resolution limits for reflection migration in e) are for poststack data, where X
corresponds to aperture width, and ∆x and ∆z correspond to the skinniest width
and thickness of the fat migration ellipse.
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erable model wavenumber k.
Solid rays define the central
raypath.

migration image are defined as

∆x = min
D

[
2π

kgx + ksx
],

∆z = min
D

[
2π

kgz + ksz
]. (4.2)

In the farfield approximation these limits are given in Figure 4.4e for poststack

migration.

The above resolution analysis have been developed for migration and traveltime

tomography, and until now, there has not been a comprehensive treatment of the

resolution limits associated with FWI. I now present such an analysis by applying

an asymptotic analysis to the model resolution function for FWI. The resulting

resolution formulas can be used to better understand and optimize the resolution

characteristics of FWI, LSM, and RTM.

This chapter is organized into three sections. The introduction heuristically ex-

plains how wavepaths are used to estimate resolution for both traveltime tomogra-

phy and migration. This leads to an intuitive description of spatial resolution as the

minimum width and height of the intersection of Fresnel zones at the trial image

point. The next section validates this heuristic definition by rigorously deriving

the resolution limits for each type of wavepath, and explains their relationship to

the acquisition geometry. Finally, a discussion and summary is given.
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4.2 Born Forward and Adjoint Modeling

The model resolution function L†L is a product of forward L and adjoint L† model-

ing operators under the Born approximation (Stolt and Benson, 1986). I now define

the equations for these modeling operators.

4.2.1 Born Forward Modeling

The trace d(g|s) excited by a harmonic point source at s and recorded by a geophone

at g is given by the Born modeling equation:

δd(g|s) =ω2
∫

Ω

G(g|x)δm(x)G(x|s)dx2 (4.3)

→ δd =Lδm,

where G(g|x) is the Helmholtz Green’s function for the background velocity model,

the model function perturbed from the background model is given by δm(x) =

2δs(x)s(x) → δm, s(x) is the background slowness model, δs(x) is the perturbation

of the slowness field, and ω is the angular frequency. For notational economy, this

equation can be represented in operator notation by δd = Lδm, where δd represents

the scattered seismic field δd(g|s) under the weak scattering approximation, L

represents the integral operator, and Ω defines the integration points in the model

region.

The integration in equation 4.3 is over the entire model space, but if the trace

is windowed about a specific event then the integration can be approximated by

that over the event’s first Fresnel zone associated with the specific source–receiver

pair. For example, if the trace only contains the transmitted arrival, then Ω = Ωtrans.

defines the points in the yellow colored wavepath in Figure 4.4a of the diving

wave’s first Fresnel zone; only velocity perturbations in this zone will significantly
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affect the character of the diving wave arrival in the trace.

4.2.2 Born Adjoint Modeling

Equation 4.3 can be inverted by the iterative steepest descent formula

δm(x)k+1 = δm(x)k
− α δm(x)mig, (4.4)

where the misfit gradient δm(x)mig is given by the Born adjoint modeling equation

δm(x)mig =ω2
∫

D
G(g|x)∗G(x|s)∗δd(g|s)dxgdxs

→ δmmig = L†δd, (4.5)

and the integration of points in D is over the range of horizontal source and

receiver coordinates along the horizontal recording line at z = 0. Here, δd(g|s) =

d(g|s)−d(g|s)obs, L† represents the adjoint of the modeling operator L, the step length

is denoted byα, d(g|s) is the trace predicted from the estimated slowness model, and

the observed trace is represented by d(g|s)obs. The misfit gradient symbol δm(x)mig

is superscripted by mig because it also represents the migration of the residual. In

fact, the first iteration k = 0 of equation 4.5 represents the reverse time migration

of the scattered data recorded at the surface.

If the windowed event is the reflection, equation 4.5 says that the velocity

model is updated by smearing the residual13 along the yellow–colored rabbit ears

in Figure 4.4b-c and the yellow ellipse in Figure 4.4e. Smearing residuals along the

rabbit ears (ellipse) with the b-c (e) migration kernel updates the low–wavenumber

(high–wavenumber) portion of the velocity model (Mora, 1989; Zhou et al., 1995;

Liu et al., 2011). The spatial resolution limits ∆x and ∆z associated with any point

13The residual can be either the traveltime residual or the waveform residual.
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along the central rays are determined by the, respectively, horizontal and vertical

widths of the first–Fresnel zone.

4.3 Model Resolution Function and FWI Resolution

Limits

In the Introduction, the model resolution limits were defined for traveltime trans-

mission tomography and reflection migration. Now they will be derived for FWI

by applying asymptotic analysis to the model resolution function that relates the

model δm to the reconstructed image δmmig.

4.3.1 Model Resolution Equation: mmig = L†Lm

The forward and adjoint modeling equations can be combined to give the equation

for model resolution, i.e., plugging equation 4.3 into equation 4.5 gives

δm(x)mig = ω4
∫

D

migration kernel︷            ︸︸            ︷
[G(g|x)G(x|s)]∗

∫
Ω

data kernel︷         ︸︸         ︷
G(g|y)G(y|s) δm(y)dy2dxgdxs, (4.6)

or in more compact notation

δmmig = L†Lδm. (4.7)

The kernel for the operator L†L is related to the model resolution matrix (Menke,

1989) and is interpreted as the point spread function (Schuster and Hu, 2000) similar

to that used in optics, except here, if δm(y) = δ(y − ro), it is the migration response

to a point slowness perturbation in the model at ro. The ideal response to a point

slowness anomaly is the same point with perfect resolution.

For a two–layer medium, the above Green’s function can be decomposed into
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its direct and reflection components:

G(g|x) = G(g|x)dir + G(g|x)rfl,

G(s|x) = G(s|x)dir + G(s|x)rfl, (4.8)

where G(g|x)dir and G(g|x)rfl are the, respectively, Green’s function for the direct

wave and upgoing reflection in the upper layer. Inserting equation 4.8 into the

migration kernel in equation 4.6 results in the five migration kernels shown in

Figure 4.4, each of which is used to smear residuals along one of the five yellow-

colored wavepaths (Liu et al., 2011; Zhan et al., 2013).

Reflection–Migration

Reflection migration smears residuals along the yellow-colored ellipse in Fig-

ure 4.4e for a specified source and receiver pair. When two traces are migrated,

Figure 4.3b suggests that the minimum width and height of the intersecting fat

ellipses defines the resolution limits of reflection migration.

The formulas for migration resolution limits were more rigorously derived (Beylkin,

1985) by applying the migration kernel to traces that only contain the diffraction

arrival from a single diffractor. For a localized scatterer14 in a background medium

with smooth velocity variations, Beylkin showed that equation 4.6 asymptotically

becomes the Fourier integral over the model wavenumbers kx and kz:

δm(x)mig = α

∫
D

e−ik·xδM(k) J−1dkxdkz, (4.9)

where α is related to geometrical spreading, J is the Jacobian, which is derived in

Appendix G, and the range of model wavenumbers D in the integral depends on

14We will assume a 2D model where the “point” source and scatterer are equivalent to a line
source and a line scatterer, with no field variations along the y–axis.
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the range of source-receiver pairs. In fact, the model wavenumber vector k can be

equated to the sum of the source-scatterer and geophone-scatterer wavenumbers

k = kgro + ksro shown in Figure 4.5. I will now show how equations 4.6 and 4.9 can

be used to estimate the resolution limits of the other wavepaths in Figure 4.4a-d.

Diving–Wave Transmission

Migration of the diving–wave residual along the yellow transmission wavepath in

Figure 4.4a provides the low–wavenumber velocity update for waveform inver-

sion (Mora, 1989; Zhou et al., 1995), or wave equation traveltime inversion (Wood-

ward, 1989, 1992; Luo and Schuster, 1991) if the trace residual is replaced by the

recorded trace weighted by the traveltime residual. The boundary of the first

Fresnel-zone wavepath15 is defined by values of x for the delayed diving wave

time τdive
sg + T/2 = τsx + τxg, where τdive

sg is the diving wave traveltime at the geo-

phone location g. As illustrated in Figure 4.2b, the minimum width and height of

the intersecting fat ellipses defines the effective resolution limits of transmission

tomography (Williamson, 1991) or transmission migration (Sheley and Schuster,

2003).

More rigorously, Appendix F shows that the model resolution equation 4.6 for

diving waves can be transformed into the Fourier integral

δm(x)mig = α

∫
Dro

e−ik·xδM(k)J−1dkxdkz, (4.10)

where α is a term related to geometrical spreading and Dro defines the range

of source-geophone pairs whose first Fresnel zone wavepaths visit the scatterer

localized at ro. The formulas for resolution limits are the same as in equation 4.2,

exceptD is replaced byDro .

The range of allowable source-geophone pairs (see Sheng and Schuster (2003))
15Dahlen (2004) refers to the shape of a diving wavepath as a banana.
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Figure 4.6: Range of sources (blue and red stars) that generate a) reflection and b)
transmission wavepaths that visit the scatterer (filled circle). Here, the wavepath is
approximated by the first Fresnel zone for the specified source and geophone pair.

in Dro is illustrated in Figure 4.6b, where only the sources between the blue and

red stars will contribute to the slowness update around the scatterer point at ro.

This differs from the Fourier integral 4.9 for diffraction imaging where all source-

geophone pairs contribute to the integration domain inD for a recorded diffraction.

Hence, the resolution limits for migrating transmission residuals with the kernel

[G(g|x)dirG(x|s)dir]∗ should be worse than migrating diffraction residuals with the

same kernel.

The precise connection between intersecting wavepaths in Figure 4.2b, the range

of available wavenumbers, and resolution limits in equation 4.2 can be made by

assuming a homogeneous medium. In this case, Figure 4.7 shows that the half–

width ∆z of the first Fresnel zone at the point midway between the source and

geophone is equal to

∆z =
√

Lλ/4, (4.11)

where L is the distance between the source and geophone, which is equal to that

given by equation 4.2. It also shows that ∆z is inversely proportional to the sum of

the source-scatterer and geophone-scatterer wavenumbers, implying that min 1/kz

is equivalent to finding the width of the wavepath intersections in Figure 4.2b.

For a single source–geophone pair, the best direction of transmission spatial reso-



87
Model Wavenumber k for 
Transmission Migrations

.

g

90-φ central ray

ro=(x,z)

φkgro ksro

|k|=4π cosφ/λ

L

z

Figure 4.7: Transmission ray and
scatterer at ro = (x, z) where x =
L/2 for a homogeneous medium.
We assume L � z and z is equal
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√
λL/4 of
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geneous medium. In this case,
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√
L2/4 + z2 ≈ 2z/L;

inserting the half–width formula
gives cosφ =

√
λ/L so kz =

4π cosφ/λ = 4π/
√

Lλ.

lution for a slowness anomaly midway between the source and geophone is perpendicular

to the central ray. This means that a slowness anomaly moved perpendicular to the

ray from the central ray will lead to the most noticeable change in the transmission

arrival. The worst direction of spatial resolution is along the ray itself because the slow-

ness anomaly can be slid along it without changing the traveltime; moreover, the

model wavenumber k = ksx + kxg is zero all along the transmission central ray.

Reflection–Transmission

Migrating the reflection arrival with any of the kernels in the first column of

Figure 4.4b–c leads to the low–wavenumber velocity update along the rabbit–ear

wavepaths16 in Figure 4.4b–c or Figure 4.1a.

The corresponding resolution formula for the rightmost rabbit–ear wavepath is

δm(x)mig = ω4
∫

Dro

[G(g|x)dirG(x|s)refl]∗
∫

Ωgs

G(g|y)dirG(s|y)refl δm(y)dy2dxgdxs, (4.12)

16There are two steps for creating an upgoing reflection wavepath: first, generate the migration
image and use the reflectors as exploding sources that explode at the traveltime from the source to
the reflector. Then, fire off these exploding reflectors to get the upgoing reflection fields U(x, t). The
upgoing rabbit ear wavepath is computed by taking the zero-lag correlation between U(x, t) and
the backpropagated data B(x, t).
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and, as before, can be analyzed for the resolution limits. However, now the asymp-

totic Green’s functions for the transmitted arrival G(g|x)dir and the reflection field

G(x|s)refl = Arefl
sx e−iωτrefl

sx , (4.13)

are plugged into equation 4.12 to give the resolution limits for updating the velocity

by smearing the reflection residual along the rabbit ears. Here, Arefl
sx accounts

for amplitude and phase effects from geometrical spreading and the reflection

coefficient, and τrefl
sx is the time it takes reflection energy to propagate from the

source at s to the listener at x = ro along the specular dashed raypath in Figure 4.1a.

Estimating the resolution limits for the rabbit–ear wavepaths will result in model

resolution formulas similar to that given in Figure 4.4a for transmission imaging.

This can be understood without going through the detailed algebra by recogniz-

ing that the upgoing reflection wavepath (rightmost rabbit ear in Figure 4.1a) is

identical to the transmission wavepath in Figure 4.1b above the interface. This

is denoted as a mirror transmission wavepath because it coincides with the first

Fresnel zone for a source at the mirror position (0, 2d) in a homogeneous velocity.

Thus, the reflection traveltime in a) is identical to the transmission traveltime in b)

for any receiver at ro. This means that the resolution limits defined by equation 4.2

are applicable to the transmission wavepaths in Figure 4.1b and the reflection

wavepaths in Figure 4.1a. However, the range of available wavenumbers for the

traces recorded at g is determined by the limited range of sources in Figure 4.6a

that allow for the intersection of their first Fresnel zones with the scatterer. For

example, the resolution limit 2∆r perpendicular to the ray at the midpoint should

be equal to the 2∆r =
√
λL in Figure 4.1a, except the total length of the reflection

ray is L =
√

X2 + 4d2.
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Figure 4.8: Wavepaths for migrating a) diffraction (red ellipse) and b) specular
reflection (black ellipse) events along their transmission wavepaths. The diffraction
resolution limit 2∆r perpendicular to the widest part of the diffraction wavepath is
about half smaller than that for the specular reflection. Dashed wavepath in b) is the
mirror image of the source–side wavepath, with the mirror source denoted by the
white star. These wavepaths were obtained by first generating acoustic data for a a)
diffractor model and a b) two-layer reflector model. Windowing about the scattered
arrivals, the diffraction and reflection traces were then migrated, respectively, with
the kernels [G(g|x)diffG(x|s)dir]∗ and [G(g|x)dirG(x|s)dir]∗.

Diffraction–Transmission

How do the resolution characteristics of the diffraction–transmission wavepaths

in Figure 4.4d compare to those for the reflection–transmission wavepaths in Fig-

ure 4.4b-c? Figure 4.8 suggests that the diffraction resolution limit will be signif-

icantly better because the diffraction propagation distance is effectively halved,

leading to a narrower wavepath. This means that, if the waveform residuals are

used to update the velocity, then the diffraction updates will have significantly

better resolution than the reflection updates.

The resolution limits for diffraction-transmission migration can be quantified

according to equation 4.11, which says that the maximum resolution limits per-

pendicular to the diffraction and reflection central rays should be, respectively,

∆rdiff
≈
√
λL/4 and ∆rrefl

≈
√
λL. In this case, L/2 is the effective length of the

central ray between the geophone and the scatterer in Figure 4.8a. These limits can
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be rigorously derived by defining the diffraction Green’s function G(x|s)diff as

G(x|s)diff =Adiff
sxoxe−iω(τsxo +τxox), (4.14)

where the diffractor is located at xo, the trial image point is at x, and Adiff
sxox accounts for

the effects of geometrical spreading, reflection amplitude, and phase changes due

to scattering. Replacing the migration kernel in equation 4.6 by [G(g|x)diffG(x|s)dir]∗

and the data kernel by [G(g|y)diffG(y|s)dir], and using the explicit expression for the

Green’s functions yields the model resolution function for diffraction imaging:

δm(x)mig = ω4
∫

D
[Adiff

sxoxAgx]∗
∫

Ω

Adiff
sxo yAgy eiω(τgx−τgy+τxox−τxo y)dy2dxgdxs. (4.15)

The salient difference between this formula and the one for reflections in equa-

tion F.4 is that τxox and τxo y replace τsx and τsy. This says that the diffraction

wavepath is generated by a “virtual” source at the diffractor xo rather than at the

actual source location s. Hence, the diffraction wavepath should be thinner than

the specular reflection wavepath in Figure 4.8. In addition, every source–geophone

pair has a diffraction wavepath that intersects the the diffractor. This means that,

similar to diffraction migration, many more diffraction wavenumbers will be avail-

able for velocity updates compared to specular reflection–transmission wavepaths.

4.3.2 λ Imaging at the Diffractor

Figures 4.4d and 4.8a illustrate that the width of the diffraction-transmission

wavepath is proportional to λ at the diffractor location. This can be mathemat-

ically proven by locating the point E on the Figure 4.1b ellipse so that the line

through it and the focus at g is perpendicular to the elliptical axis. The distance

between E and g is denoted as Eg. In the farfield approximation, L � Eg = zo so
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we can approximate the ellipse formula for the first Fresnel zone centering about g

as

λ/2 =

√
z2

o + L2 + zo − L ≈ zo. (4.16)

This suggests that the resolution limit of the updated velocity model is about λ

near the scatterer, which is much finer than the resolution limit of
√

Lλ/4 along

the middle of the Figure 4.8a wavepath. This unexpectedly high resolution limit

near the reflector boundaries can be observed in wave equation reflection trav-

eltime (Zhang et al., 2012) and migration velocity analysis (Zhang and Schuster,

2013) tomograms.

To illustrate the range of wavenumbers estimated from diffraction and trans-

mission migration, Figures 4.9 depicts the low wavenumbers (magneta dots) of

the model recovered with transmission migration (see Figure 4.7) and the higher

wavenumbers (gray dots) recovered by diffraction migration (Figure 4.5). Note the

large gap between the recovered low- and high- wavenumber spectra, which will be

denoted as the missing intermediate wavenumbers. The abscence of such interme-

diate model wavenumbers is a serious challenge for waveform inversion (Jannane

et al., 1989), which will be addressed in the next section.

4.4 Filling in the Model Spectrum with Multiples

The previous sections derived the model resolution equations for diving waves, pri-

maries, and diffractions. What are the resolution benefits for migrating multiples,

particularly prism waves or interbed multiples? The short answer is that their

associated central rays are longer than those of primaries, so their first-Fresnel

zones should be wider. This means that they can reconstruct low-wavenumber

and intermediate-wavenumber models that can only be inverted with primaries
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Figure 4.9: Wavenumbers (represented by gray dots) recovered by (i) diffraction
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curve) recovered by (ii) specular transmission migration. Blue, green and red dots
represent the wavenumbers recovered based on (iii) interbed multiples originating
from a diffractor, of multiples order 0, 1, and 2, respectively. These wavenumbers
somewhat bridge the gap between cases (i) and (ii). The acquisition geometry is a
4 km long line of geophones and sources on the top interface, with the trial image
point, denoted by •, at depth 1 km. The diffractor in case (iii) is 80 m below the
trial image point.
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Figure 4.10: Vertical reflec-
tor model along with prism
wavepath and trace computed
by a finite-difference solution to
the wave equation. RTM was
applied to the windowed events
to produce this wavepath.

at impractically wide source-geophone offsets or using sources with unrealistic

low-frequencies.

4.4.1 Lower Wavenumber Resolution with Prism Waves and Free-

surface Multiples

To demonstrate the enhanced wavenumber coverage of multiples, the point-source

response of the yellow vertical reflector in Figure 4.10 is computed by a finite-

difference method. The trace is windowed about the reflections and then migrated

by RTM to get the prism wavepath image (Dai and Schuster, 2013). As the length L

of the prism ray gets longer, the wavepath becomes thicker by
√
λL. In this way, the

deep prism-reflection wavepath provides lower wavenumber information about

the model compared to primaries. Such low wavenumbers are at the top of the

FWI wish list for providing a good starting model for subsalt imaging.

Another example is shown in Figure 4.11. Here, the prism-wave reflection

in b) achieves the same low-wavenumber resolution as the 1st-order free-surface

multiple in a), but only requires about 1/2 the source-geophone offset of a). The

deeper the reflector for the free-surface multiple, the thicker the wavepath and the

lower the wavenumber in the estimated model.
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Figure 4.11: Wavepaths for a) the 1st-order free-surface multiple and b) the prism-
wave reflection from the yellow block. Note, the source-geophone offset for b) is
about 1/2 that for a), and the dashed ellipse is the wavepath for the mirror source
at the bottom left.

4.4.2 Intermediate Wavenumber Resolution with Interbed Multi-

ples

Figure 4.9 illustrates that transmission tomography (smearing residuals along rab-

bit ears) fills in the low wavenumber part of the spectrum, while reflection migra-

tion (smearing residuals along ellipse) fills in the high wavenumbers. Now I show

that interbed multiples can fill in some of the intermediate wavenumbers denoted

by the blue dots.

Figure 4.12a depicts the interbed multiple rays for a thin-bed model with a

diffractor at the lower interface. Each order of the multiple will be associated with

a different mirror ray, where the depth of the mirror scatterer deepens with the

order of the multiple. Therefore the raypath lengthens with order of multiple, and

the wavepath thickens as well. I conclude that the mirror wavepath that intersects

the thin bed17 thickens progressively with the order of the multiple, and so should

fill in some of the “intermediate wavenumber” gap (Jannane et al., 1989) illustrated

by the blue dots in Figure 4.9.

The above analysis can be quantified as in the previous sections by analyzing the

17The sampling interval between wavenumbers associated with each order of multiple becomes
smaller with thinner beds.
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Figure 4.12: a) Ray diagram
for interbed multiples gener-
ated by a diffractor in a thin
layer and b) the associated mir-
ror sources diagram. As the or-
der of the interbed multiple in-
creases, so does the thickness
of its transmission wavepaths
at the filled circles.

model resolution function. In this case, the forward modeling kernel G(g|x)G(x|s)

is replaced by one that generates an internal multiple rather than a direct wave or

primary reflection18. The phase term in the Green’s function will be replaced by a

summation of times corresponding to each leg of the raypaths seen in Figure 4.12a.

The migration kernel is also modified by terms that will image the internal multiple

to one of its bounce points in the thin layer.

4.5 Discussion and Conclusions

Formulas are derived for the resolution limits of the migration-data kernels in

Figure 4.4, as well as those for multiple reflections. They are applicable to images

formed by RTM, LSM, and FWI. Their salient implications are the following.

1. Low- and intermediate-wavenumber information about the velocity distri-

bution is estimated primarily by transmission migration of primaries and

multiples. The intermediate wavenumbers can be supplied by interbed mul-

tiples, while the lower wavenumbers are contained in deep primaries and

free-surface related multiples. Inverting multiples can be an opportunity

for estimating subsurface velocity information not available in the primary

reflections.
18This kernel corresponds to just one of the terms in the Neummann series expansion of the

Lippmann-Schwinger equation (Stolt and Benson, 1986).
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2. Inverting diffractions can provide twice or more the resolution compared to

imaging primaries. Smearing residuals along the transmission wavepath can

achieve a resolution of λ near the diffractor. This high resolution is observed

in MVA tomograms. On the other hand, diffraction energy can be more than

an order-of-magnitude weaker than primary energy, so the diffraction data

will be noisier.

3. Diving waves that bottom out at a certain depth will have a better vertical

resolution than horizontal resolution. Therefore it is important to also in-

vert deep reflections to increase both the vertical and horizontal resolution.

Since reflections can be an order-of-magnitude weaker than diving waves,

it is recommended that diving waves be filtered from the data after a suffi-

cient number of iterations. This might constitute an iterative multi-physics

approach to FWI, where inverting a different type of wavefield should be

emphasized at different depths and iteration numbers.

4. The transmission migration kernels in Figure 4.4a–d are of the same type

as their data kernels. This leads to velocity updates along the transmission

wavepaths. In contrast, the traditional migration kernel [G(g|x)dirG(x|s)dir]∗ in

Figure 4.4e is a product of two Green’s functions for direct waves, while the

data kernel is a product of a reflection and a direct-wave Green’s function.

This mismatch in the type of kernel does not lead to the traditional wavepath

where seismic energy propagates, but gives the untraditional wavepath of a

fat ellipse. This is the zone where reflection energy could have originated,

i.e., the interface.

The limitation of this study is that it does not take into account the non-linear effects

of evanescent energy (Fleming, 2008) in determining resolution. Utilizing evanes-

cent energy with FWI could provide, in theory, resolution much better than λ. It
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is expected that multiple scattering arrivals between neighboring subwavelength

scatterers might provide the extra resolution needed, but not accounted for in this

current study.
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Chapter 5

Concluding Remarks

5.1 Summary

In Chapter 2 I proposed frequency selection to remove multisource crosstalk, aim-

ing to solve the problem of inconsistent sets of receivers in modeling compared to

in marine streamer survey. This approach requires that any crosstalk-prone sources

should only emit signals in non-overlapping frequency bands. This approach al-

lows any receiver to selectively tune in to the valid sources: the ones that indeed

have contributed to this receiver and to selectively disregard potentially confound-

ing sources, which are not associated with this receiver in the survey. Numerical

results with a 2D salt model by marine survey show that the crosstalk is completely

removed and compared to the standard migration, the speedup is nearly 10×. In

the 3D example with a fixed OBS geometry, a speedup of 40× is achieved.

In Chapter 3 I extended this research avenue to handle multisource FWI for

marine streamer data. I adopted FDTD instead of the split-step method employed

in Chapter 2. Sine waves of different frequencies are injected at sources that belong

to one supergather. Due to delays in arrival time, an injected sine wave shows up

at receivers delayed with onsets, which is no longer a pure sine wave. To mitigate

this problem of spectral leakage, the simulation time is doubled, keeping only

the second half of the duration. Numerical tests on synthetic and GOM data sets
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demonstrate speedups around 4× .

Of interest to FWI, formulae are derived for the resolution limits of migration-

data kernels associated with diving waves, primary reflections, diffractions, and

multiple reflections. The formulae suggests that inverting multiples can provide

some low- and intermediate-wavenumber components of the velocity model not

available in the primaries. Futhermore, diffractions can provide twice or better

the resolution as specular reflections for comparable depths of the reflector and

diffractor. The width of the diffraction-transmission wavepath is on the order of λ

at the diffractor location for the diffraction-transmission wavepath.

5.2 Future Research Work

The work presented in this thesis can be extended in the following directions.

• Multisource frequency selection applied to least-squares redatuming and

multiples removal.

• Plane wave and frequency selection combined so that the (reflectivity or veloc-

ity) model can be illuminated by several plane waves of different frequencies

and of different incident angles together.
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A The Effect of Frequency Selection

on the Hessian

The effect of frequency selection on the Hessian matrix is now investigated. For

ease of discussion, I restrict the attention to sources s = 1, . . . ,S that are used to

form one supergather. The Hessian can be identified as

H̃ =

nω∑
j=1

L̃†L̃ (A.1)

=

S∑
s=1

nω∑
j=1

Ns( j)|W( j)|2L†s Ls. (A.2)

Here, equation A.2 follows from equations 2.8, 2.4, 2.22, 2.21, and the fact that

N2
s ( j) = Ns( j), as Ns( j) ∈ {0, 1}; equation 2.21 ensures that all cross terms in equa-

tion A.1 when expanded by plugging in equation 2.8 will vanish.

In contrast, the Hessian in the standard case is

H =

S∑
s=1

nω∑
j=1

|W( j)|2L†s Ls, (A.3)

which is equation A.2 lacking the binary encoding function Ns( j).

Comparing equations A.2 and A.3, we see that the encoded Hessian H̃ consists

of a subset of terms in the standard Hessian H.
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B Prestack Split-Step Migration

The steps of prestack split-step migration are described in the flowcharts shown

in Figure B.1. This presentation closely follows Kuehl and Sacchi (1999), and

is included here for convenience because analysis of computational complexity

refers to it.

Consider first the forward propagation of a wavefield. The split-step operator

L per layer can be decomposed into a succession of four linear operatorsF ,P,F −1,

and C. First, the seismic wavefield P(x, z, ω) at z is transformed to the wavenumber

kx domain by the Fourier operator F . Second, the phase-shift operatorP is applied

to the wavefield in the (kx, ω) domain:

P1(kx, z, ω) = P(kx, z, ω)e−i∆z
√

(ωu0)2−k2
x , (B.1)

where u0 is the mean slowness for the current layer. Third, P1(kx, z, ω) is transformed

to the space x domain by the inverse Fourier operator F −1. Fourth, the phase

correction operator C is applied in the (x, ω) domain. This accounts for the lateral

slowness variation ∆u(x) = u(x) − u0:

P(x, z + ∆z, ω) = P1(x, z, ω)e−iω∆z∆u(x). (B.2)

Altogether, it is given that

L = CF −1
PF , (B.3)



103

F

P

P(kx,z,ω)

P1(kx,z,ω)

P(x,z=0,ω)

G
o on to deal w

ith the next 

P(x,z,ω):
Source wavefield

F-1

P

R2(kx,z,ω)

R1(kx,z,ω)

R(x,z-Δz,ω)

R(x,z,ω):
Reflected wavefield

P(x,z-Δz,ω)

m(x,z-Δz)

Go on to
deal with

F

P*

D(kx,z,ω)

D1(kx,z,ω)

R(x,0,ω)→ D(x,z=0,ω)

G
o on to deal w

ith the next 
D(x,z,ω):

Downward continued data

F-1

C

P1(x,z,ω)

P(x,z+Δz,ω)

layer [z+Δ
z, z+

2Δ
z]

F

C

R1(x,z,ω)

R(x,z=zmax,ω)=
P(x,zmax,ω) × m(x,zmax)

deal with
the  next
shallower
layer [z-Δz,
z-2Δz]

(a) (b)

F-1

C*

D1(x,z,ω)

D(x,z+Δz,ω)

layer [z+Δ
z, z+

2Δ
z]

(c)

Figure B.1: Flowcharts for prestack split-step modeling and migration. F , F −1,
P, and C denote the Fourier transform, the inverse Fourier transform, the phase
shift operator, and the phase correction operator, respectively (see text for details).
(a) The source wavefield P(x, z, ω) is propagated from the surface of the earth
to depth z in steps ∆z. (b) At each depth z of the earth, a reflected wave is
generated by m(x, z)P(x, z, ω), where m(x, z) is a reflectivity model. The wave is then
propagated upward to the surface z = 0. The total reflected wavefield R(x, z, ω)
consists of the superposition of the reflected and propagated waves originating
from below. The total reflected wavefield collected at the surface is the data, i.e.,
R(x, z = 0, ω) ≡ D(x, z = 0, ω). (c) The data are then downward continued from the
surface back to depth z in steps ∆z. Finally, the migration image I(x, z) (not shown)
is constructed by applying the imaging condition: I(x, z) =

∑
ω P∗(x, z, ω)D(x, z, ω),

or I(x, z) = 2
∑
ω>0 Re{P∗(x, z, ω)D(x, z, ω)}, assuming the DC component is 0.
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of which the adjoint is

L
† = F †P†F −1†

C
†

= F −1
P
∗
FC

∗, (B.4)

The adjoint operatorL† applies to the case of ‘backward propagation’, or down-

ward continuation of the data, as illustrated in Figure B.1(c). This ensures that the

migration operator is the adjoint of the forward modeling counterpart.
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C The Relative Computational Cost

The computational costs of the proposed method and of standard migration (and

therefore the relative computational cost) will be derived as follows, assuming the

observed CSG’s are already in the frequency domain. Since ultimately it is the

ratio between the computational costs of different methods that is of interest, I

restrict the attention to one frequency and to the S sources encompassed by one

supergather.

First, spatial FFT’s, repeatedly invoked in Figure B.1(a–c), dominate the com-

putational cost of split-step migration. Element-wise product and dot product

between two vectors of length nx (the grid size along x) incur a cost Cp that is

a small multiple of nx, and the number of times such computation is invoked is

comparable to that of FFTx. On the other hand, the cost of each FFTx in terms of

nFLOP �
34
9 nx log2(nx)(Johnson and Frigo, 2006), which & 37nx because nx is on the

order of a thousand or more for typical reflectivity models. This cost far exceeds

that of Cp. Since every flowchart in Figure B.1 contains equal number of FFTx’s,

from now on take the computational cost for each of these flowcharts as of unit 1.

Next, the computational costs for forward modeling and for migration, in cases

of whether the source field is available, are given by the following items:

1. Forward modeling

(a) The source field, P(x, z, ω) as depicted in Figure B.1(a), is not avail-

able. Therefore P(x, z, ω) needs to be computed before the reflected field

R(x, z, ω), as depicted in Figure B.1(b), can be obtained. The computa-
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tional cost is thus 2.

(b) The source field is available. Then the only task is to compute R(x, z, ω),

with a computational cost of 1.

2. Migration

(a) The source field is not available. Then both the source field and the

downward continued data field D(x, z, ω), as depicted in Figure B.1(c),

need to be computed. The computational cost is 2. Note: This applies to

standard migration.

(b) The source field is available. Then only the downward continued data

field needs to be computed, before forming the final migration image.

This computational cost is 1.

With these results in mind, I study the computational cost incurred in a CG

algorithm, as listed in Algorithm 1. For standard migration, there are S sources

covered by the supergather in question and therefore the computational cost as

remarked at the end of item 2(a) needs a factor S. Let κ0 be this cost, expressed as

κ0 = 2S, (C.1)

and let κLS be the cost for LSM, given in the comment besides line 1.25 as

κLS = Kit
3 + 2KCGit

KCGit
− 1. (C.2)

Therefore the relative computational cost is given by

ρ =
κLS

κ0
=

Kit

S
3 + 2KCGit

2KCGit
−

1
2S

(C.3)

=
3Kit − 1

2S
, when KCGit = 3. (C.4)
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Algorithm 1 Conjugate Gradient algorithm, for solving Lm = d.

1: procedure ConjGrad(m,L,d,KCGit)
2: if m = 0 then
3: g← L†d . item 2(a)⇒ cost=2.
4: else
5: g← −L†(Lm − d) . item 1(a)

and 2(b)⇒ cost=2+1. In forward modeling, the source field is not available, ∴
item 1(a); in migration, the source field has just become available, ∴ item 2(b).

6: end if
7: p← g
8: g2old ← ||g||2

9: if KCGit = 1 then . Steepest Descent
10: α← g2old

||Lp||2 . Forward modeling. Source fields have been computed in
line 3 or 5. ∴ Item 1(b)⇒ cost=1.

11: m← m + αp
12: return m . For steepest descent, if this procedure is called Kit times, the

total cost is 3 + 4(Kit − 1) = 4Kit − 1.

13: else . Conjugate Gradient
14: for k← 1,KCGit do
15: q← L†(Lp) . Forward modeling and migration. Since among CG

updates, the sources are fixed rather than encoded anew, source fields are thus
fixed and have been computed in line 3 or 5. As the trial reflectivity model m is
being updated, item 1(b) applies. For migration, item 2(b) applies. So the total
cost for this line is 2.

16: α← g2old
p†q

17: m← m + αp
18: g← g − αq
19: g2new ← ||g||2

20: p← g +
g2new

g2old
p

21: g2old ← g2new

22: end for . Taken together, for this loop, the total cost is 2KCGit.
23: return m . As this procedure is called KCG times, starting from

model 0, the total computational cost is κLS = 2 + 2KCGit + (KCG − 1)(3 + 2KCGit)
=KCG(3 + 2KCGit) − 1.

24: end if
25: end procedure. In an alternative formulation, take Kit = KCGKCGit, and express

κLS in terms of Kit as κLS = Kit
3+2KCGit

KCGit
− 1.
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In the case of steepest descent, the relative computational cost is given by

ρ̄ =
4Kit − 1

2S
, (C.5)

which follows from the comment regarding line 1.12 and equation C.1.

In the case of IS with encoded supergathers, the computational cost per iteration

is equal to that of standard migration, except without the S factor. For Jit stackings,

the cost is thus

κIS = 2Jit. (C.6)

Equating equation C.2 and C.6 leads to

Jit = Kit
3 + 2KCGit

2KCGit
−

1
2

(C.7)

=
3Kit − 1

2
, when KCGit = 3. (C.8)

Equation C.7 relates Jit, the number of iterations of IS, to Kit, the number of itera-

tions of LSM, on the condition that the computational costs incurred by these two

methods are equal. This allows us to compare two criterion functions for LSM

and for IS, respectively, on the basis of the same computational cost. Let fLSM(Kit)

and fIS(Jit) be criterion functions of iteration step Kit and Jit, for LSM and for IS,

respectively. Using equation C.7, I write fIS(Jit) = fIS(Jit(Kit)). Plotted on the abscissa

of Kit, the two curves of fLSM(Kit) and fIS(Jit(Kit)) are thus put on equal footing of

computational cost. Examples of such plots are provided in Figure 2.3(b).
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D Migration versus Successive

Steepest Descent

Given a set of sampled Hessians (or equivalently sampled modeling operators) and

the associated data generated according to an underlining model m, I investigate

two strategies, with the knowledge of these sampled Hessians and observed data,

to get an estimate of m: 1) migration and 2) successive steepest descent (SSD). The

question I intend to address is, which strategy is better in terms of producing a

more accurate estimate?

Let L1, . . . ,Ln and d1, . . . ,dn respectively be the n copies of sampled modeling

operators and the data generated according to

di = Lim, ∀i = 1, . . . ,n. (D.1)

The migration strategy forms the estimate as

mmig =

n∑
i=1

Li
†di. (D.2)

On the other hand, the SSD strategy consists of the following steps:

1. Start from m(0)
SSD = 0.

2. At the kth step, presented with Lk and dk, update the trial model once, accord-
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ing to the steepest descent formula, prescribed as :

m(k+1)
SSD = m(k)

SSD + αg, (D.3)

where

g = Lk
†(dk −m(k)

SSD), (D.4)

α =
||g||2

||Lkg||2
. (D.5)

3. Finish at k = n.

To fairly evaluate the model error, I introduce

θε(x) def
= ](x,m) = arccos(

xT
·m

||x|| ||m||
), (D.6)

a criterion that ignores the magnitudes of the vectors in question.

Unable to establish a mathematical bound onθε(mmig) in comparison toθε(mSSD),

I resort to a Monte Carlo method instead. In this study, d ∈ R10 and m ∈ R25. The

sizes are deliberately chosen to make each individual inverse problem, i.e., to invert

equation D.1, which is underdetermined. In addition, the performance of the two

strategies in the presence of noise is probed. Specifically, a line of code

di ← di + r (D.7)

follows immediately after equation D.1, and all succeeding operations are based on

the noisy di’s. Here, r is a vector of white Gaussian noise, with its power adjusted

to meet a given choice of SNR.

The results are summarized in Figure D.1. Here, the Li’s and m are generated

using a Gaussian distribution. I have varied the types of distribution, from Gaus-

sian to a sparse distribution such as binomial, and qualitatively the same trends
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are observed: SSD produces smaller model error than migration does, except for

a few rare exceptions. As the size of the random set grows (i.e., more stackings in

migration and more updates in SSD), the advantage of SSD becomes even more

apparent. As plotted in the upper right panel, θε(mmig)/θε(mSSD) ≈ 24/6. When

di’s are corrupted by noise, however, the performance of SSD deteriorates more

than that of migration. But at this level of noise in most cases SSD still outperforms

migration.

These observations are intuitively understandable. Migration can be thought of

as one step of steepest descent starting from 0. Over a set of n samples, migration

amounts to averaging n attempts of steepest descent, each starting from 0, whereas

in SSD, the trial model keeps improving. So it’s very probable that the latter

outperforms the former. It could happen that the average of these ‘first attempts’

comes very close to the true model. This explains why exceptions exist. In the

presence of white noise, averaging with equal weight over random instances, as

migration does, is the most effective means to reduce noise. In SSD, however, the

earlier updates influence the iteration trajectory more than the later updates do.

In effect, the end result senses a weighted average of the noise contained in each

update, with larger weight assigned to early samples and smaller weight to later

samples, resulting in less noise reduction than what migration is capable of.
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E Resolution Properties of an Ellipse

I first analyze the resolution of the ellipse depicted in Figure 4.1b, and then relate

the parameters of this ellipse to those defining a wavepath.

The spatial resolution limit near the point c in Figure 4.1b is related to the

reciprocal of the segment length DE. This length can be determined by noting that

the end points D and E satisfy both the equations of the ellipse and the line, written

as

x2

a2 +
y2

b2 =1, (E.1)

y = tanθ (x − c), (E.2)

where a and b are the major and minor radii of the ellipse, respectively, and θ is the

angle DE makes with the axis of the ellipse. Equations E.1 and E.2 can be reduced to

a quadratic equation of one variable y, yielding two roots yD and yE. The distance

DE is then obtained as

DE =
|yD − yE|

| sinθ|
,

=
2ab

√
b2 cos2 θ + (a2 − c2) sin2 θ

b2 cos2 θ + a2 sin2 θ
. (E.3)

Two special cases of c and θ are immediately verified. We have DE = 2a when

θ = 0, and DE = 2b when c = 0 and θ = π/2, i.e., the lengths of the major and the

minor axes of the ellipse, respectively.

Next, the parameters a and b of the ellipse are related to those defining the first
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Fresnel zone, as depicted in Figure 4.1a. Let s and g be the two foci of the ellipse,

the distance between s and g be L, and E be an arbitrary point on the ellipse. The

first Fresnel zone is delimited by points E on the ellipse that satisfy

sE + Eg = L +
λ
2
. (E.4)

Also,

sE + Eg = 2a (E.5)

is a property of the ellipse. Anther property of the ellipse relates the focal distance

to the major and minor radii by

L = 2
√

a2 − b2. (E.6)

Equations E.4—E.6 give us

a =
L
2

+
λ
4
, (E.7)

and b =

√
λL
4

+
λ2

16
. (E.8)

In the limit of L� λ, b→ 1
2

√
λL.

From equations E.7, E.8, and E.3, we see that the resolution can be written as

DE(L, λ, c, θ), a function of wavepath parameters L, λ, and intersection parameters

c and θ.
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F Resolution Limits for Imaging

Diving Wave Residuals

The resolution limits for imaging diving wave residuals are rigorously derived by

multiplying the migration kernel in Figure 4.4a by the expression for the diving–

wave arrival

δd(g|s) = ω4
∫

Ω

G(g|y)dirG(y|s)dirδm(y)dy2,

≈ ω4
∫

Ωgs

G(g|y)dirG(y|s)dirδm(y)dy2, (F.1)

where the integral over the model–space region Ω is approximated by the one

over the region Ωgs. Here, Ωgs coincides with the yellow first Fresnel zone of the

diving wave in Figure 4.4a for the source–geophone pair denoted by s and g. This

approximation recognizes that only model perturbations within the first Fresnel

zone of the diving wave will strongly affect the timing and/or amplitude of the

diving–wave arrival at g.

Plugging equation F.1 into equation 4.6 gives

δm(x)mig = ω4
∫

Dro

∫
Ωgs

[G(g|x)dirG(x|s)dir]∗G(g|y)dirG(y|s)dir δm(y)dy2dxgdxs. (F.2)

We now assume a localized subwavelength perturbation δm(y) centered at ro =

(xo, zo) that is non–zero only within a fraction of a wavelength from ro. In this

case, the range of source–geophone pairs in D is restricted to the set Dro of source–



116

geophone pairs that allow for first Fresnel diving wavepaths to visit the localized

perturbation centered at ro. These source–geophone pairs are the only ones whose

transmitted diving waves19 will be significantly influenced by the model pertur-

bations centered at ro. For example, if the image point is at y and the geophone

is at C in Figure 4.6b, then Dro is limited to the sources between A and B. If the

wavepaths are those for a specular reflection, then the range of source locations in

Ωgs is between A and B in Figure 4.6a.

For a smooth background velocity we assume the following asymptotic Green’s

function for the migration and data kernels

G(x|y)dir = Axye−iωτxy , (F.3)

so that equation F.2 becomes

δm(x)mig = ω4
∫

Dro

∫
Ωgs

AsxAgxAsyAgy eiω(τgx+τsx−τgy−τsy) δm(y)dy2dxgdxs. (F.4)

Here, τxy is the traveltime for the transmitted wave to propagate from y to x, and

Axy is its attendant geometrical spreading term that satisfies the transport equation.

Assuming that the subwavelength scatterer represented by δm(y) is located

within a fraction of a wavelength from the trial image point at x, then τsy, τgy, τsx,

19We exclude the case where the scatterer–diving wave interaction produces significant diffrac-
tions, so that all source–geophone pairs see significant diffraction energy, not just changes in the
diving–wave arrival. This would be the case where the scatterer only has a velocity contrast but no
impedance contrast.
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and τgx, can be expanded about its center point ro to give

τsy ≈ τsro + ∇τsro · [y − ro],

τgy ≈ τgro + ∇τgro · [y − ro],

τsx ≈ τsro + ∇τsro · [x − ro],

τgx ≈ τgro + ∇τgro · [x − ro]. (F.5)

Inserting these approximations into equation F.4 gives

δm(x)mig
≈ ω4

∫
Dro

∫
Ωgs

AsxAgxAsyAgye−iω(∇τgro +∇τsro )·[y−x] δm(y)dy2dxgdxs.

Under the far-field approximation, the geometric spreading terms can be taken

outside the integral to give

δm(x)mig = ω4
∫

Dro

AsxAgxAsroAgro

∫
Ωgs

e−iω(∇τgro +∇τsro )·[y−x] δm(y)dy2dxgdxs. (F.6)

Here, the gradient of the traveltime field ∇τsro is parallel to the direct wave’s

incident angle at ro, so, according to the dispersion equation, ω∇τsro = ksro can

be identified as the source–to–scatterer point wavenumber vector ksro ; similarly,

the geophone–to–scatterer wavenumber is denoted as ω∇τgro = kgro . This means

that, by definition of the Fourier transform with a restricted domain of integration

δM(k) =
∫

Ωgs
e−ik·yδm(y)dy2, equation F.6 becomes

δm(x)mig
≈ ω4A4

so goro

∫
Dro

ei(kgro +ksro )·x δM(kgro + ksro) dxgdxs, (F.7)

where Aso goro approximates the geometrical spreading for the scatterer at ro with

the range of allowable source–geophone pairs centered around the pairs denoted

by sogo, the Fourier spectrum of the model is given by δM(k), and the model
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wavenumber components k = (kx, kz) are

kx = ksxo + kgxo =ωs(ro)(sin βsro + sin βgro),

kz = kszo + kgzo =ωs(ro)(cos βsro + cos βgro), (F.8)

where βsro and βgro denote the incidence angles of the source and geophone rays,

respectively, at the scatterer’s location y = (xo, zo). As shown in the appendix, these

incidence angles are implicit functions of the source (xs, 0), geophone (xg, 0), and

scatterer ro = (xo, zo) coordinates.

The determinant of the Jacobian in equation G.2 (see Appendix G) can be used

to map the dxgdxs integration in equation F.7 to a dkxdkz integration:

δm(x)mig =Aso goro

∫
Dro

e−ik·x δM(k) J−1dkxdkz, (F.9)

where Dro is the set of wavenumbers that equation F.8 maps from the source–

geophone pairs in Dro for the scatterer at ro, and J is the determinant of the Jacobian

matrix in equation G.2.
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G Determinant of a Jacobian Matrix

The transformation between the data coordinates (xg, 0), (xs, 0) and (kx, kz) = (ksxo +

kgxo , kszo + kgzo) is given by

 dkx

dkz

 =


∂kx
dxg

∂kx
dxs

∂kz
∂xg

∂kz
∂xs


 dxg

dxs

 , (G.1)

where the 2x2 matrix is the Jacobian matrix. The scaled determinant J of the

Jacobian matrix is given by

J = ω4

∣∣∣∣∣∣∂kx

dxg

∂kz

∂xs
−
∂kx

dxs

∂kz

∂xg

∣∣∣∣∣∣ , (G.2)

so that dkxdkz = Jdxgdxs. In the case of a homogeneous medium with velocity c and

a scatterer at ro = (xo, zo), the model wavenumbers are

kx =
ω(xo − xg)

c
√

(xo − xg)2 + z2
o

+
ω(xo − xs)

c
√

(xo − xs)2 + z2
o

,

kz =
ωzo

c
√

(xo − xg)2 + z2
o

+
ωzo

c
√

(xo − xs)2 + z2
o

, (G.3)

so that the partial derivatives of the wavenumbers can be easily determined. For

a heterogeneous medium, the derivatives can be approximated by finite-difference

approximations to the first-order derivatives and the wavenumbers can be com-

puted by a ray tracing method. Under the farfield approximation z � L, where L
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is the aperture width of the source–geophone array, so equation G.3 becomes

kx ≈
ω(xo − xg)

czo
+
ω(xo − xs)

czo
,

kz ≈
2ω
c
, (G.4)

where the horizontal wavenumbers are now linear functions of the data variables

xg and xs. This means that equation F.7 represents the inverse Fourier transform of

the model spectrum.
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