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Abstract

Multiple-input multiple-output (MIMO) transmission has been at the core of

wireless communication research for the past two decades. Driven by the explo-

sive increase of data demand, the development of MIMO systems has entered a

large-scale realm where there are dozens of or even more than a hundred anten-

nas and users. The large number of antennas can significantly boost the system

throughput and robustness against noise. However, the physical realization of

such a large MIMO system can be very complicated and expensive. On the

one hand, optimal signal processing algorithms usually have complexities that

increase rapidly in the numbers of antennas and users. On the other hand,

large number of antennas means increased hardware overheads, such as those of

power amplifiers and D/A converters. This thesis considers efficient precoding

and detection algorithms that can reduce implementation complexity and cost.

Specifically, the thesis consists of the following three parts:

In the first part, we consider a fundamental problem in MIMO communi-

cation, namely MIMO detection. The traditional lattice decoding methods, as

well as its efficient approximations by lattice reduction aided (LRA) methods,

relax the symbol bounds in detection and thus suffer from performance loss.

We propose a systematic adaptive regularization approach to lattice decoding

to alleviate the adverse effect of symbol bound relaxation, which is based on the

study of a Lagrangian dual relaxation (LDR) of the optimal maximum-likelihood

(ML) detector. We find an intriguing relationship between lattice decoding and

ML, which was not reported in the previous literature. Simulation results show

that the proposed LDR approach can significantly outperform existing lattice

decoding and LRA methods.

In the second part, we consider the vector perturbation approach which is a

promising technique to achieve near-sum capacity and allows simple user pro-

cessing in the multiuser multiple-input single-output (MISO) downlink scenario.

However, the conventional vector perturbation designs can have very high per-

antenna powers, which causes significant difficulty to power amplifier implemen-



tations. To tackle this problem, we propose a vector perturbation design with

per-antenna power constraints (VP-PAPC). The resulting optimization problem

is an integer program which requires a computationally demanding enumeration

process. Lagrangian dual relaxation is used to transform the VP-PAPC problem

into standard integer least square problems which may have efficient approxima-

tions. Simulation results show that the proposed method can effectively reduce

the power back-off caused by high per-antenna power in conventional vector

perturbation.

In the last part, we consider constant envelope (CE) precoding in the single-

user MISO downlink scenario. CE precoding is recently proposed as a mean

to utilize cheap but power-efficient power amplifiers in very large MIMO sys-

tems. We provide complete solutions to some fundamental signal processing

issues in CE precoding which were only partially solved in the previous litera-

ture. In addition, we enhance CE precoding with antenna subset selection for

transmit optimization and implementation cost reduction. Simulation results

reveal that the proposed method only exhibits moderate power loss compared

to non-CE beamforming but have the advantages of CE transmission and fewer

active transmitting antennas.
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摘摘摘 要要要

多輸入多輸出傳輸在過去二十多年來無線通信研究中一直處於中心地位。 人

們對信息需求的爆炸性增長導致大規模多輸入多輸出系統的出現與發展。 在

大規模多輸入多輸出系統中有幾十甚至上百的天線與用戶。 這種大規模天線

能夠極大地提高系統容量及對噪聲的魯棒性。 然而，大規模天線系統的物理

實現卻是十分困難的。 一方面，最優的信號處理算法通常需要指數增長的複

雜度。 另一方面，數目繁多的天線意味大量包括功率放大器和數模轉換器在

內的硬件開銷。 這篇論文的研究重點在於能夠降低信號處理複雜度和硬件開

銷的信號檢測和預編碼算法。 具體而言，本論文的研究包括三部分：

在第一部分中，我們考慮多輸入多輸出系統中的一個基本問題—信號檢

測。 格型解碼是信號檢測中的一種傳統方法。 但是格型解碼（以及其快速近

似算法—格基規約輔助算法)放鬆了信號檢測中的符號邊界約束因而受到性能

限制。 我們提出一種自適應的正則化方法來避免格型解碼中邊界約束鬆弛帶

來的負面影響。 這種方法是基於最大似然解碼器的拉格朗日對偶鬆弛。 我們

發現了格型解碼和最大似然解碼的一個十分有趣的關係，而這個關係在現有

的文獻中並沒有被提及。 數值仿真結果顯示拉格朗日對偶鬆弛方法比現有的

格型解碼更為優勝。

在第二部分中，我們考慮多用戶信號廣播中的矢量擾動方法。 矢量擾動是

一種能夠接近信道總容量以及簡化用戶數據處理方法。 然而，傳統的矢量擾

動會導致每根傳輸天線上都有相當大的功率， 導致天線模擬前端的硬件實現

有相當大的難度。 我們提出一種每天線功率受限的矢量擾動方法來解決這個

問題。 在這個方法中，我們需要解決一個整數規劃問題。 然而，求解這個整

數規劃問題需要用到複雜度十分高的枚舉算法。 我們用拉格朗日對偶鬆弛方

法把這個整數規劃轉化為標準的整數最小二乘問題，然後採用快速的近似算

法來求解。 數值仿真顯示提出的方法能夠顯著地降低高每天線功率造成的功

率回饋。

在最後一部分，我們考慮單用戶通信中的恆定包絡預編碼。 恆定包絡預

編碼是一種最近被提出用於超大規模多輸入多輸出系統的方法。恆定包絡預

編碼的優點在於能夠利用價格低廉但是功率效率高的功率放大器。 但是恆定



包絡預編碼中的一些信號處理問題在之前的文獻中只是得到了部分解答。 我

們為這些信號處理問題提供了一個完整的解決方案。 更進一步地，我們用天

線子集選擇來加強恆定包絡預編碼以優化天線傳輸信號及進一步降低天線成

本。 數值仿真結果顯示包絡預編碼的性能只稍遜於傳統的波束成型方法，但

是能恆定包絡傳輸和降低活動的天線數目。
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Chapter 1

Introduction

1.1 MIMO Systems

The last two decades have seen dramatic demands for high speed wireless

networks. Enormous endeavors from both academia and industry have focused

on designing new communication systems to meet such demands. Multiple-input

multiple-output (MIMO) systems, where both the transmitter and the receivers

are equipped with multiple antennas, have been recognized as a major technique

to boost system performance.

In the single-user (or point-to-point) scenario, MIMO systems are known to

provide two types of gains — multiplexing gain and diversity gain. The multi-

plexing gain reflects the ability for an MIMO system to increase the data rate.

It is shown in [1] that under an i.i.d. Rayleigh fading channel, an MIMO system

with N transmit and M receive antennas can achieve a capacity asymptotically

increasing as min{N,M} log(SNR), where SNR denotes the signal-to-noise ra-

tio. Compared with a single-antenna system whose capacity is asymptotically

close to log(SNR), we can see that the MIMO system can increase the capacity

by a factor of min{M,N} which is known as the multiplexing gain. Apart from
the ability of increasing capacity, MIMO systems are also able to reduce the sys-

tem error rate dramatically. The error rate of an MIMO system usually behaves

approximately as G
SNRd for some constant G and d. The number d is called the

diversity gain which describes the speed of the error rate approaching zero. The

maximum diversity gain of an MIMO system is MN which is far superior to the

1
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diversity of one in single-antenna systems [2]. In addition to single-user com-

munication, MIMO techniques are also very useful in multiuser communications

where a base station simultaneously serves multiple users. It is shown in [3, 4]

that in the scenario of an N -antenna base station broadcasting informations to

K single-antenna users, the sum capacity scales linearly in min{K,N}.
Owing to these salient benefits of MIMO systems, the development trend of

MIMO systems is to equip the base station with more antennas. The WLAN

802.11ac and the cellular network LTE-Advanced systems support 8 antennas at

the base station. Systems operating in millimeter wave are expected to have 10

- 60 antennas [5–7]. Samsung announced in 2013 a 64-antenna adaptive array

transceiver which is expected to be a core technology in the fifth generation of

cellar networks [8]. Field tests of linear and circular arrays of 128 elements have

been done in [9, 10]. Researchers envision that wireless communication systems

would evolve into a massive scale with hundreds of antennas [11].

1.2 Motivation and Contribution of This Thesis

The realization of the performance gains of MIMO systems promised by

theoretical results, however, is very complicated and expensive. The increas-

ingly large number of antennas also means increasing difficulty in processing the

transmit and receive signals. Typical operations of a transceiver include sym-

bol synchronization, channel estimation, signal detection/precoding and channel

encoding/decoding. Many signal processing problems for theses operations are

not known to have fast algorithms. In fact, many of the problems, such as

those in signal detection [12] and precoder designs [13,14], are known to be NP-

hard, which means that it is unlikely to find polynomial-time exact solutions

for those problems. The high complexity of signal processing also complicates

hardware implementations which in practice are highly constrained by space,

weight, power and cost. On the other hand, each antenna of an MIMO system

has its own analog frontend which includes impedance matching circuit, band-

pass filter, digital-to-analog converter, and power amplifiers. Thus, an MIMO

system requires lots of such expensive hardware. Finally, an MIMO system will

2
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draw much power in daily operations which would put a financial burden on

service providers and cause environmental impacts.

This thesis considers efficient high-performance detection and precoding al-

gorithms for MIMO systems in various communication scenarios. The proposed

algorithms also consider hardware-friendly schemes that can reduce hardware

costs and improve power efficiency.

1.2.1 MIMO Detection

MIMO detection refers to the task of separating the transmitting signals

from the observation of the receive signals. MIMO detection is a fundamental

problem in communication as it is involved in a plethora of communication sce-

narios including single-user and multiuser uplink communications. If the noise

follows a Gaussian distribution, the detection problem amounts to a least square

problem with a finite-alphabet constraint. Generally, this detection problem is

known to belong to the class of NP-hard problems. Attracted by the importance

and hardness of MIMO detection, researchers have developed several classes of

algorithms to tackle the MIMO detection problem. Notable detectors include

sphere decoders [12, 15, 16], linear detectors [17, 18], semidefinite relaxation de-

tectors [19–24], lattice decoders [15, 25–28], and lattice reduction-aided (LRA)

detectors [29–35].

In Chapter 3 of this thesis, we investigate lattice decoding under PAM con-

stellations. Our contributions lie in proposing a novel regularization approach in

lattice decoding for tackling the out-of-bound symbol effects for lattice decoding.

Specifically, our contributions are listed as follows.

❼ We propose a systematic approach for determining the regularization vari-

able in lattice decoding by considering a Lagrangian dual relaxation (LDR)

of the maximum-likelihood (ML) detection problem. We find that the LDR

is to find the best diagonally regularized lattice decoding to approximate

the ML detector, and all diagonal regularizations, including the traditional

MMSE regularization, can be subsumed under the LDR formalism. We

devise new detection algorithms which are based on the projected sub-

3
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gradient method in finding the best regularization for lattice decoding.

Simulation results show that the proposed LDR detectors can outperform

the conventional lattice decoder and LRA detectors.

1.2.2 Transmit Precoding

Transmit precoding has been recognized as a major technique in MIMO sys-

tems to reduce the error rate and to approach the capacity promised by informa-

tion theory. Some of the representative precoding strategies are space-time cod-

ing [2,36,37], beamforming [14,38], and vector perturbation [13,39]. The design

of a precoding algorithm, however, must take into account hardware constraints.

A notable one is the per-antenna power constraint (PAPC). The reason of con-

sidering PAPCs is that in practice each antenna has its own analog frontend.

Each analog frontend, which includes a D/A converter and power amplifier, has

its own operating region. If the signal input into the analog frontend exceeds

the operating region, then low power efficiency, nonlinear amplification or even

signal clipping may happen. Therefore, PAPC is an important design constraint

in transmit precoder design. Beamforming with PAPCs has been considered

in multiuser broadcast channels [40–43] and in the multicell scenario [44, 45].

Vector perturbation with PAPC is also considered in [46]. All these works focus

on putting a power upper bounds on the average or instantaneous per-antenna

power. A different form of PAPC is considered in [47–49] where the instanta-

neous power of the transmitting signal is further restricted to be constant. This

means that the transmitting signal at each antenna is of constant envelope (CE).

CE precoding, compared to beamforming and vector perturbation, can utilize

cheap but highly power-efficient power amplifiers which are a must in large-scale

MIMO systems. Following the convention in the literature, in the rest of thesis

we will refer PAPCs as the kind of power constraints that upper bound the av-

eraged or maximum per-antenna power, though literally PAPC means any form

of constraints on the per-antenna power such as CE precoding.

In Chapter 4 we consider vector perturbation with PAPCs in multiuser

multiple-input single-output (MISO) broadcast channels, and in Chapter 5 we
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consider CE precoding in single-user MISO channels. Our contribution lies in

proposing novel transmit strategies and devising fast algorithms. Specifically,

our contributions are listed as follows.

❼ We propose a vector perturbation formulation with strict maximum per-

antenna power constraint in the multiuser MISO broadcast channels. We

show that the proposed formulation can achieve full transmit diversity in

Gaussian fading channels. An efficient algorithm based on LDR and LRA

methods is proposed. Simulation results show that the proposed methods

can significantly reduce the power back-off due to high per-antenna power

and have better error rate performance than the conventional vector per-

turbation method.

❼ We consider CE precoding in single-user MISO channels. We solve a fun-

damental problem in CE precoding — characterization of the noise-free

receive signal region. We derive a simple, efficient and exact CE precoder

algorithm whose complexity is linear in the number of antennas.

1.3 Organization of This Thesis

The organization of this thesis is as follows.

Chapter 2 introduces the MIMO detection problem and reviews several major

MIMO detectors.

Chapter 3 proposes a novel MIMO detector based on the LDR of the ML

detector. We also investigate the relationship between LDR and the regular-

ized lattice decoder. The implementation of the LDR is elaborated and fast

approximations are proposed.

Chapter 4 considers the multiuser broadcast scenario where we propose the

VP-PAPC formulations. The feasibility and diversity of the VP-PAPC problems

are investigated. We also derive the efficient algorithms based on the LDR and

LRA techniques.

Chapter 5 focuses on CE precoding in the single-user MISO channels. This

chapter is divided into two parts. First, we investigate the receive signal struc-
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ture and propose a fast exact algorithm for CE precoding. We then develop two

transmit strategies based on CE precoding.

Chapter 6 summarizes this thesis and presents our perspectives on future

directions.

6 ✷



Chapter 2

MIMO Detection

This chapter reviews the MIMO detection problem.

2.1 System Model

We consider a single-user MIMO system where the transmitter and receiver

are equipped with N andM antennas, respectively. Fig. 2.1 depicts the scenario.

MIMO channel

.

.

.

.

.

.

An     -antenna transmitter   An     -antenna receiver     

Figure 2.1: A single-user MIMO system with spatial multiplexing

The transmitter sends N complex-valued information symbols, denoted by

sC,i ∈ SC , i = 1, . . . , N , where SC ⊂ C is the constellation set. Specifically, the

ith symbol sC,i is transmitted by the ith antenna. The receive signal at the mth

7
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receive antenna is given by

yC,j =
N
∑

i=1

hC,jisC,i + νC,m (2.1)

where hC,ji ∈ C is the channel coefficient from the ith transmit antenna to

the jth receive antenna, and νC,j ∈ C is the noise at the jth receive antenna.

Collecting all receive signal yC,j, we can write compactly the channel input-

output relationship as

yC = HCsC + νC , (2.2)

where yC = [yC,1, . . . , yC,M ]
T , sC = [sC,1, . . . , sC,N ]

T , νC = [νC,1, . . . , νC,M ]
T , and

HC ∈ C
M×N has hC,ji at its (j, i) position. We assume that the noise follows the

distribution CN (0, σ2
νC
I) and the constellation S is the standard (u+1)2-QAM

(u is a positive odd number), i.e. SC = S + jS with S being the (u + 1)-PAM

constellation S = {±1,±3, . . . ,±u}. This model is known as the single-user

spatial multiplexing system [50].

The signal model (2.2) can also describe the multi-user uplink scenario de-

picted in Fig. 2.2. In this case, N single-antenna users transmit simultaneously

. . .

An    -antenna base station  

User 1

User 

Figure 2.2: A multi-user MISO uplink system

to an M -antenna base station. The transmitting signal of the ith user is sC,i.

The receive signal at the jth antenna of the base station is also given by (2.1)

with hC,ji being the channel coefficient between the ith user and the jth receive

antenna. This results in exactly the same channel input-output relationship

8



Chapter 2. MIMO Detection

as (2.2). In fact, model (2.2) is not new. It has been used in a plethora

of communication scenarios, such as multiuser code division multiple access

(CDMA) [19], space-time coding [36] in multi-antenna frequency-flat channels,

space-frequency coding in multi-antenna orthogonal frequency division multi-

plexing (OFDM) [51], relay networks [52] and most recently, very large-scale

antenna systems [11].

2.2 MIMO Detectors

The goal of MIMO detection is to detect the transmitted signal given the

observation of the receive signal and the channel. For convenience in the subse-

quent development, let us convert the complex signal model (2.2) to a real one

as follows

y = Hs+ ν (2.3)

where

y =





R{yC}
I{yC}



 , H =





R{HC} −I{HC}
I{HC} R{HC}



 ,

s =





R{sC}
I{sC}



 , ν =





R{νC}
I{νC}



 .

(2.4)

The input and output problem sizes of the real model (2.3) are N = 2NC and

M = 2MC , respectively. The constellation of the information symbols s is the

(u+ 1)-PAM constellation

S = {±1,±3, . . . ,±u}.

The ML MIMO detector, which is optimal in minimizing the vector error

probability of detecting s given knowledge of the channel H , is the solution of

the following optimization problem

min
s

‖y −Hs‖22

s.t. si ∈ {±1,±3, . . . ,±u}, i = 1, . . . , N.
(2.5)

where ‖ · ‖2 denotes the 2-norm. The ML problem (2.5) is known to be NP-hard

for general (y,H). This implies that all the existing exact ML solvers, including

9
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the well-known sphere decoders [12, 15], would be computationally prohibitive

when N is large. In fact, it is shown in [53] that the sphere decoder exhibits

exponential complexity with respect to the problem size N . The computational

difficulty in solving the ML problem exactly has stimulated a number of works

that aim to approximate the ML detector in an efficient manner. In the following

subsections, we will review several major classes of MIMO detectors.

2.2.1 Linear Detector

Generally, a linear detector can be represented by

s̃ = Gy

ŝ = Q(s̃),
(2.6)

where G ∈ R
N×M , and Q is the element-wise quantization with respect to the

constellation S. It can be seen that linear detectors only involve a matrix-

vector product and a quantization process, both of which can be computed

very efficiently. Zero-forcing (ZF) and minimum-mean-square-error (MMSE)

detectors are the most common linear detectors. In ZF, the matrix G is the

channel pseudo-inverse (HTH)−1HT , which results in the following detector

s̃ZF = (HTH)−1HTy

ŝZF = Q(s̃ZF).
(2.7)

The name ZF follows from the fact that the channel pseudo-inverse

(HTH)−1HT totally eliminates intersymbol interference (ISI) in s̃ZF. To see

this, let us substitute (2.3) into (2.7) and obtain

s̃ZF = s+ (HTH)−1HTν. (2.8)

We can see that each transmitted symbol si only appears in [s̃ZF]i and zero

ISI is achieved. Though ZF avoids ISI, it also amplifies the effective noise

(HTH)−1HTν significantly, especially when H is ill-conditioned.

In order to strike a balance between ISI and effective noise, the MMSE de-

tector minimizes the mean square error (MSE) between s̃ and s. The matrix G

is obtained by the minimizer of the following problem

min
G∈CN×M

Es,ν [‖s−Gy‖22]. (2.9)

10
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This results in the matrix G = (HTH + σ2
ν

σ2
s
I)−1HT , where σ2

s and σ2
ν denote

the symbol and noise variance, respectively. Therefore, the MMSE detector is

given by

s̃MMSE = (HTH + σ2
ν

σ2
s
I)−1HTy

ŝMMSE = Q(s̃MMSE).
(2.10)

2.2.2 Decision Feedback Detector

Though the ZF and MMSE detectors are easy to implement, their perfor-

mances are far from being optimal. The decision feedback (DF) technique can

be used to enhance the performance of linear detectors. To describe the ZF-

DF detector, let us denote the QR decomposition of H as H = QR, where

Q ∈ R
M×N is orthogonal and R ∈ R

N×N is upper triangular. Then the ZF

detector can be equivalently rewritten as

s̃ZF = R−1ỹ

ŝZF = Q(s̃),
(2.11)

where ỹ = QTy. By noting that Rs̃ZF = ỹ and R is upper triangular, we can

express [ŝZF]i as

[ŝZF]i = Q
(

ỹi −
∑N

j=i+1 rij[s̃ZF]j

rii

)

(2.12)

for i = N to i = 1. The idea of DF is to replace [s̃ZF]j by its decision [s̃ZF]j =

Q([s̃ZF]j), which results in the following ZF-DF detector

[ŝZF−DF]i = Q
(

ỹi −
∑N

j=i+1 rij[ŝZF−DF]j

rii

)

(2.13)

for i = N to i = 1. The MMSE-DF detector can be obtained in a similar way by

replacing the matrix R in (2.11)-(2.13) by the Cholesky factor of HTH + σ2
ν

σ2
s
I.

It should be noted that though seemingly the ZF-DF and MMSE-DF detectors

involve more operations than the ZF and MMSE detectors, their complexities

are actually exactly the same.
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2.2.3 Semidefinte Relaxation Detector

Several semidefinite relaxation (SDR) detectors have been proposed in [19–

22, 24, 54] and analyzed in [55–57]. Here, we describe a representative SDR

detector— the bound-constrained semidefinite relaxation (BC-SDR) [54]. A key

reason why BC-SDR is representative is that BC-SDR is shown to be equivalent

to two other relaxations, namely, the polynomial-inspired SDR (PI-SDR) [22]

and virtually-antipodal SDR [21], which employ different ideas to relax and

offer different insights in ML approximation; see [58] for details. For example,

there are theoretically proven results on the approximation accuracy of VA-

SDR [57, 59], and those results apply to BC-SDR (and also PI-SDR) by using

the equivalence of the three SDRs.

To derive the BC-SDR, let us rewrite the ML detector as follows

min
s∈RN

tr(HTHssT )− 2sTHTy + ‖y‖22 (2.14a)

s.t. s2i ∈ {12, 32, . . . , u2}, i = 1, . . . , N. (2.14b)

Introducing a redundant constraint S = ssT into (2.14), we turn (2.14) equiva-

lently to

min
S∈SN ,s∈RN

tr(HTHS)− 2sTHTy + ‖y‖22 (2.15a)

s.t. S = ssT , (2.15b)

Sii ∈ {1, 32, . . . , u2}, i = 1, . . . , N. (2.15c)

where S
N denotes the set of all N × N real symmetric matrices. Both the

constraints (2.15b) and (2.15c) are nonconvex and thus are not easy to deal

with. The BC-SDR replaces these two difficult constraints with other easier

ones. Eq. (2.15b) is replaced by S � ssT and (2.14b) is replaced by 1 ≤ Sii ≤ u2

for i = 1, . . . , N , where the notation A � B means that A − B is positive

semidefinite (PSD). This results in the following convex problem

min
S∈SN ,s∈RN

tr(HTHS)− 2sTHTy + ‖y‖22 (2.16a)

s.t. S � ssT , (2.16b)

1 ≤ Sii ≤ u2, i = 1, . . . , N. (2.16c)
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Problem (2.16) can be efficiently solved exactly by available general-purpose

interior-point softwares [60, 61]. Specialized algorithm that runs much faster is

also developed in [62]. After solving (2.16), one needs to convert the optimal

solution (S⋆, s⋆) of (2.16) to a decision ŝSDR. A simple approach is a direct

quantization by

ŝSDR = Q(s⋆).

Better performance can be obtained by using the randomization technique [22].

The numerical results in [58] show that with a reasonable number of random-

izations, the performance of BC-SDR could be closed to the ML detector.

2.2.4 Lattice Decoder

The study of lattice decoding for MIMO detection has received much atten-

tion [15,25–28], owing to its good tradeoff between detection accuracy and com-

plexity. A simple version of lattice decoding is naive lattice decoding (NLD) [25],

where, instead of dealing with the ML problem (2.5), one considers a lattice de-

coding problem

min
s

‖y −Hs‖22

s.t. s ∈ 2ZN + 1,
(2.17)

where 1 denotes an all-one vector of appropriate length, and Z is the set of all

integers. The NLD problem is an unbounded relaxation of the ML problem—it

ignores the symbol bound constraints −u ≤ si ≤ u in the original ML problem,

but keeps the symbols si in the discrete set 2Z+1. The reason for doing this is to

facilitate the use of an efficient processing technique, namely, lattice reduction.

In lattice reduction, the channel matrixH is transformed to another channel

matrix

H̃ = HU , (2.18)

where H̃ is called a lattice-reduced channel, and U is a unimodular matrix; i.e.,

U ∈ Z
N×N and |det(U )| = 1. Loosely speaking, the transformation (2.18) is de-

signed such that the transformed channel matrix H̃ may be better conditioned

with short and roughly orthogonal column vectors [63,64]. A popular algorithm
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for the lattice reduction process (2.18) is the Lenstra-Lenstra-Lovász (LLL) re-

duction [64,65]. Since a unimodular U satisfies U−1
Z

N = Z
N , the symbol vector

s can be transformed to s̃ = U−1s and the domain of s̃ is s̃ ∈ 2ZN + U−11.

Subsequently, we can equivalently recast the NLD problem (2.17) as

min
s̃

‖y − H̃s̃‖22

s.t. s̃ ∈ 2ZN +U−11,
(2.19)

which is also a lattice decoding problem, but with a “better” channel H̃ . The

equivalent lattice decoding problem (2.19) is then solved by applying a sphere

decoder for unbounded integers. Empirical and theoretical results in [15] and [28,

66] show that lattice reduction can boost the speed for a sphere decoder to solve

problem (2.19).

While lattice reduction provides an attractive way to handle the NLD prob-

lem (2.17), it also transforms the symbol bound set {s | − u ≤ si ≤ u, ∀ i}
to a complicated polyhedron {s̃ = U−1s | − u ≤ si ≤ u, ∀ i}. There is no
known way for a sphere decoder to efficiently manage such a polyhedron bound

constraint, and, for this reason, the latter is ignored in NLD. As a consequence,

NLD may output an out-of-bound symbol decision. Unfortunately, the out-of-

bound symbol events can be detrimental to the system error rate performance.

It is shown that NLD fails to achieve the optimal diversity-multiplexing tradeoff

(DMT) in general MIMO system models [25,26]. This drawback has motivated

endeavors that study a regularized version of the NLD problem [25,27]

min
s

‖y −Hs‖22 + sTTs

s.t. s ∈ 2ZN + 1,
(2.20)

where T is a positive-semidefinite regularization matrix. The addition of the

regularization term sTTs penalizes symbol vectors s that are far away from the

origin, thereby attempting to constrain the optimal solutions of the regularized

lattice decoding problem (2.20) within the symbol bounds in an implicit manner.

The analysis in [27] shows that regularization can alleviate the negative effect of

having no explicit symbol bound constraints, and the regularized lattice decoding

with a positive-definite T can achieve the same DMT as the true ML detector. A
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well-known choice of T is the MMSE regularization matrix T = σ2
ν/σ

2
sI, where

I is the identity matrix. The corresponding lattice decoding is MMSE LD.

To solve the regularized lattice decoding problem (2.20), one first reformulate

(2.20) as an integer least squares problem. Let V TV = HTH + T denote a

square-root decomposition of HTH +T , where V is the corresponding square-

root factor. Consider a variable transformation s = 2z+ 1 with z ∈ Z
N . Then,

(2.20) is rewritten as

min
z

‖f − V z‖22

s.t. z ∈ Z
N ,

(2.21)

where f = 1
2
V −T (HTy − (HTH + T )1). Lattice reduction is then applied to

the matrix V to obtain

Ṽ = V U

where Ṽ is a lattice-reduced matrix and U is the corresponding unimodular

matrix. With another variable transformation z̃ = U−1z, we further rewrite

(2.21) as

min
z̃

‖f − Ṽ z̃‖22

s.t. z̃ ∈ Z
N .

(2.22)

Now, we can apply a sphere decoder for unbounded integers to solve (2.22)

exactly. The optimal solution of (2.20) can be obtained via the relationship

s = 2Uz̃ + 1.

2.2.5 Lattice Reduction-Aided Detector

Lattice reduction-aided (LRA) detectors [29–35] are fast approximations of

the lattice decoders. The most expensive operation in lattice decoding is the

sphere decoding in solving (2.22). The idea of LRA detectors is to replace sphere

decoding with other fast detectors. Two notable detectors are the linear and

DF detectors.

When linear detector is adopted, an approximate solution of (2.22) is given

by

ˆ̃zLRA−linear = ⌊Ṽ −1f⌉. (2.23)
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where ⌊·⌉ denotes the element-wise integer rounding. The resulting detectors

with zero regularization matrix T = 0 and MMSE regularization matrix T =

σ2
ν

σ2
s
I are known as ZF LRA-linear and MMSE LRA-linear respectively in the

literature.

To employ the DF detector, we first rewrite (2.22) as

min
z̃

‖f̃ − R̃z̃‖22

s.t. z̃ ∈ Z
N .

(2.24)

where R̃ ∈ R
N×N is the upper triangular square root of Ṽ T Ṽ resulting from

the Cholesky decomposition and f̃ = R̃−T Ṽ Tf . Due to the Cholesky factoriza-

tion, R̃ is upper triangular. Then, a DF operation follows to obtain a decision

ˆ̃zLRA−DF by

[ˆ̃zLRA−DF]i =

⌊

f̃i −
∑N

j=i+1 r̃ij[
ˆ̃zLRA−DF]j

r̃ii

⌉

for i = N to i = 1. The resulting detectors with zero regularization matrix

T = 0 and MMSE regularization matrix T = σ2
ν

σ2
s
I are known as ZF LRA-DF

and MMSE LRA-DF respectively in the literature.

Though LRA detectors are only approximation to the lattice decoders, it

is shown in [27] that LRA detectors with LLL reduction and positive definite

regularization T can preserve the optimal DMT in the exact lattice decoders.

2.3 Summary

In this chapter, we reviewed several classic MIMO detectors, namely the ML

detector, the linear detectors, the DF detectors, the lattice decoder, and the

LRA detectors.
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Chapter 3

Lagrangian Dual Maximum-Likelihood

Relaxation

3.1 Introduction

We have seen in the previous chapter that regularization plays a non-

negligible role in lattice decoding and LRA methods. However, no existing

works attempt to shed light on how the regularization should be optimally de-

signed. Other than the well-known MMSE regularization, no other choice of

regularization is offered in the literature.

In this chapter, we propose a systematic approach for determining the reg-

ularization variable by considering a Lagrangian dual relaxation (LDR) of the

ML detection problem. As it turns out, the proposed LDR formulation is to find

the best diagonally regularized lattice decoding solution to approximate the ML

detector, and all diagonal regularizations, including the MMSE regularization,

can be subsumed under the LDR formalism. Our analysis shows that for the

2-PAM case, strong duality holds between the LDR and ML problems. Also,

for general PAM, we prove that the LDR problem yields a duality gap no worse

than that of a representative relaxation method in MIMO detection, namely,

semidefinite relaxation. To physically realize the proposed LDR, the projected

subgradient method is employed to handle the LDR problem so that the best

regularization can be found. The resultant method can physically be viewed

as an adaptive symbol bound control wherein regularized lattice decoding is re-
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cursively performed to correct the decision. Simulation results show that the

proposed LDR approach can outperform the conventional MMSE-based lattice

decoding and LRA approach.

The rest of this chapter is organized as follows. In Section 3.2, we propose our

LDR formulation for the ML detection problem, analyze its relationship with

the ML problem, and introduce the idea of the projected subgradient method

for solving the LDR problem. This is followed by Section 3.3, where we explain

in detail the practical implementations of the LDR methods. Simulation results

are presented in Section 3.4 to demonstrate the performance of the proposed

methods. Section 3.5 concludes this chapter.

3.2 Lagrangian Dual ML Relaxation

In this section, we consider a Lagrangian dual relaxation (LDR) formula-

tion of the ML detection problem (2.5). An important motivation behind our

endeavor is that LDR can provide us with the tightest approximation to the

ML problem in a Lagrangian sense. Hence, by studying the LDR problem, we

may be able to derive an approximate ML algorithm that yields good solution

accuracy. Also, we will see that the LDR formulation shows relationship to

regularized lattice decoding.

3.2.1 The LDR Formulation

Let us rewrite the ML problem (2.5) as

min
s∈2ZN+1

‖y −Hs‖22

s.t. s2i ≤ u2, i = 1, . . . , N.

(3.1)

Here, it is important to note that we define the problem domain of (3.1) as the

discrete set 2ZN + 1. Such an attempt is significantly different from that in

many existing relaxed ML MIMO detection methods, such as semidefinite re-

laxation [19,21,22,54,58], where the problem domain is often the N -dimensional

real space RN . Our goal is to derive the Lagrangian dual problem of the above

18
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ML formulation. Let

L(s,λ) = ‖y −Hs‖22 + λT
(

s2 − u21
)

(3.2)

denote the Lagrangian function of (3.1), where λ � 0 is the Lagrangian dual

variable for the constraints s2i ≤ u2 (note that the notation λ � 0 means that λ

is elementwise non-negative), and s2 denotes the elementwise square of s. The

Lagrangian dual problem of the ML problem (3.1) is, by definition, given by

max
λ

d(λ)

s.t. λ � 0,
(3.3)

where d(λ) = mins∈2ZN+1 L(s,λ) is the dual function associated with (3.2),

which can be expressed as

d(λ) = ϕ(λ)− u2λT1, (3.4)

(Φλ) ϕ(λ) = min
s∈2ZN+1

‖y −Hs‖22 + sTD(λ)s, (3.5)

withD(λ) denoting a diagonal matrix whose ith diagonal is λi. For convenience,

we will call problem (3.3) the LDR problem.

At this point, we see several interesting observations. First, problem (Φλ), as

a constituent component of the dual function, is a diagonally regularized lattice

decoding problem. Hence, the above formulated LDR problem exhibits relation

to regularized lattice decoding. More connections between LDR and regularized

lattice decoding will be revealed later. Second, the naive and MMSE lattice

decoders can be seen as particular instances of problem (Φλ). Specifically, NLD

chooses λ = 0, while MMSE lattice decoding λ = σ2
ν/σ

2
s1. Third, the LDR

problem (3.3) can be regarded as that of finding the best regularization vector λ

among all the diagonally regularized lattice decoding instances to approximate

the ML problem.

3.2.2 Optimality and Duality Gap Analysis

In this subsection, we analyze the optimality conditions of the LDR formu-

lation in (3.3)-(3.5), that is, conditions under which the LDR problem exactly
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solves the ML problem. Moreover, we also study the approximation quality of

LDR by analyzing the duality gap f ⋆ − d⋆, where

f ⋆ = min
s∈2ZN+1, s2�u21

‖y −Hs‖22 (3.6)

d⋆ = max
λ�0

d(λ) (3.7)

denote the optimal objective values of the ML problem (3.1) and the LDR

problem (3.3), respectively. In particular, a smaller f ⋆−d⋆ would indicate better

approximation accuracy, and zero f ⋆− d⋆ means ML being achieved. Note that

f ⋆ − d⋆ ≥ 0 by weak duality (see, e.g., [67]).

We first present a simple result based on a connection between NLD and

LDR.

Fact 1 Let

ŝNLD ∈ arg min
s∈2ZN+1

‖y −Hs‖22

be an optimal solution of the NLD problem (2.17). Consider instances where

[ŝNLD]
2
i ≤ u2 for all i = 1, . . . , N . Then, the following statements hold:

1. ŝNLD is an optimal solution of the ML problem (3.1).

2. Strong duality, or f ⋆ − d⋆ = 0, holds for the LDR problem. Also, λ = 0 is

an optimal solution of the LDR problem (3.3).

3. For any optimal solution λ⋆ of the LDR problem (3.3), ŝNLD is an optimal

solution of problem (Φλ) for λ = λ⋆.

The proof of Fact 1 is given in Appendix 3.6.1. The idea behind is to exploit

the fact that NLD is a special case of LDR. Fact 1 implies that for instances

where NLD is ML-optimal, LDR is also ML-optimal. Hence, we should expect

that LDR would perform better than NLD—this will be shown to be true by

simulations later.

Next, we consider another optimality result. The following lemma will be

needed.
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Lemma 3.1 Let ŝλ be an optimal solution of problem (Φλ). Suppose that λ

satisfies

λi > γm (3.8)

for some i ∈ {1, . . . , N}, where m is an odd positive integer,

γm =
c(y,H)

(m+ 2)2 − 1
, (3.9)

c(y,H) = min
s∈{±1}N

‖y −Hs‖22 − min
s∈2ZN+1

‖y −Hs‖22. (3.10)

Then it must hold true that

[ŝλ]
2
i ≤ m2.

The proof of Lemma 3.1 is shown in Appendix 3.6.2. Lemma 3.1 is not only

useful in establishing an optimality condition of LDR, as we will see, but it is

also of independent interest as discussed in the following remark.

Remark 1: Intuitively, the idea of incorporating regularization in lattice de-

coding is based on the belief that regularization can pull the regularized lattice

decoding solution within the symbol bounds. Lemma 3.1 provides a theoretical

justification that this intuitive belief is indeed true. It quantifies, in a sufficient

manner, how much regularization is needed to achieve a desired symbol bound

constraint level in the regularized lattice decoding problem (Φλ).

Let us now turn our attention back to the optimality analysis. From

Lemma 3.1, we have the following observation: For any λ ≻ γu1, an opti-

mal solution ŝλ of problem (Φλ) always satisfies ŝ
2
λ � u21, which means that ŝλ

is a feasible solution of the ML problem. Hence, we would hope that such a λ

and the corresponding ŝλ are optimal to the LDR problem and the ML problem,

respectively. Remarkably, we show that this is indeed true for the case of u = 1.

Theorem 3.1 Consider u = 1, or the 2-PAM case. In this case, strong duality

f ⋆ − d⋆ = 0 always holds. In particular, any λ ≻ γ11 is an optimal solution

of the LDR problem (3.3), and an optimal solution ŝλ of problem (Φλ) for any

λ ≻ γ11 is also an optimal solution of the ML problem (3.1).
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The proof is relegated to Appendix 3.6.3. Theorem 3.1 indicates that in the

2-PAM constellation case, the LDR problem is ML-optimal for any given real-

ization (y,H). This further implies that in principle, one can use regularized

lattice decoding, which has no explicit symbol bound constraints, to solve the

ML problem for the 2-PAM case.

An interesting question is whether the proof we use in Theorem 3.1 can be

extended to the more general case of u ≥ 3. We found that such extension

is possible. Unfortunately, the result obtained becomes a loose bound on the

duality gap, rather than strong duality. It also fails to cover the optimality

condition in Fact 1. Herein, we give another analysis result that links to the

BC-SDR detector

g⋆ = min
S∈SN ,s∈RN

tr(HTHS)− 2sTHTy + ‖y‖22

s.t. S � ssT ,

1 ≤ Sii ≤ u2, i = 1, . . . , N.

(3.11)

One can observe that LDR and BC-SDR are quite different from one another;

the former and latter use discrete and continuous problem domains, respectively.

In the following theorem, we provide a connection between LDR and BC-SDR.

Theorem 3.2 For any realization (y,H) and any u ≥ 1, the duality gap of

LDR is better than or equal to that of BC-SDR:

f ⋆ − d⋆ ≤ f ⋆ − g⋆. (3.12)

The proof of Theorem 3.2 is relegated to Appendix 3.6.4. Theorem 3.2 is

meaningful in establishing a relationship of the approximation qualities of LDR

and BC-SDR. Specifically, it implies that LDR performs no worse than BC-

SDR in terms of relaxation tightness. In addition, it is possible for LDR to yield

strictly better duality gap than BC-SDR. For example, for the case of u = 1, we

have shown in Theorem 3.1 that strong duality always holds for LDR. However,

BC-SDR does not guarantee strong duality even for u = 1, as indicated in

previous work [59,68]. Also, owing to the equivalence of BC-SDR, PI-SDR and

VA-SDR, the same conclusion applies to PI-SDR and VA-SDR.
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3.2.3 Practical Realization of LDR via Projected Subgradient

We turn our attention to the realization of LDR. By Lagrangian duality the-

ory [67], the LDR problem (3.3) is a convex optimization problem. In particular,

its objective function d(λ) is concave. However, this does not mean that d(λ) is

easy to maximize. From (3.4), we see that d(λ) involves a minimization prob-

lem, namely, problem (Φλ) in (3.5). Thus, d(λ) is in general a nondifferentiable

function. Our optimization strategy is to employ the projected subgradient (PS)

method [69], which is a convenient approach for solving nondifferentiable convex

optimization problems.

The PS method for the LDR problem (3.3) is described as follows. Let λ(k)

denote the iterate generated by the PS method at the kth iteration. Given an

initialization λ(1), the iterates are recursively generated via

λ(k+1) = PRN
+
(λ(k) + αkg

(k)), k = 1, 2, . . . (3.13)

where g(k) denotes a subgradient of d(λ) at λ(k), {αk} is a step-size sequence
which is predetermined, and PRN

+
(λ) denotes the projection of its input λ ∈

R
N onto the set of N -dimensional nonnegative vectors R

N
+ . The projection

operator PRN
+
(λ) has a closed form; specifically, if we let µ = PRN

+
(λ), then

µi = max{0, λi} for all i. Using basic subgradient calculus results [69], the

subgradient g(k) is shown to be

g(k) = (s(k))2 − u21, (3.14)

where s(k) is a solution of the regularized lattice decoding problem (Φλ) for

λ = λ(k); i.e.,

s(k) = arg min
s∈2ZN+1

‖y −Hs‖22 + sTD(λ(k))s. (3.15)

We should discuss the convergence of the PS method. It is known in the

optimization literature [69,70] that under a few fairly mild assumptions, the PS

method is guaranteed to converge to the optimal objective value, which is d⋆

here. For the LDR problem here, we can even pin down a simplified sufficient

assumption for convergence—the PS method can achieve convergence to the
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optimal dual value d⋆ for any full column rank channel matrix H . A complete

description for the PS convergence results mentioned above will be provided in

Remark 3. Also, practical convergence issues will be discussed in Remark 4.

To summarize, we can solve the LDR problem by using the iterative PS

procedure in (3.13)-(3.15). In particular, at each iteration, we need to solve

the regularized lattice decoding problem in (3.15), and then use its solution s(k)

to update the regularization vector at the next iteration, λ(k+1). At first, this

may sound computationally more expensive than a one-shot regularized lattice

decoding method such as MMSE LD. However, we will illustrate by simulations

that with a careful initialization and implementation, a PS-based LDR detector

can be computationally comparable to the MMSE LD detector. Also, as a

practical alternative, we can consider efficient approximation schemes where we

use inexact sphere decoding or LRA-DF detection in place of an exact solver for

problem (3.15). The PS procedure provides interesting insight as described in

the following remark.

Remark 2: Physically, the PS procedure above can be interpreted as a re-

cursively regularized lattice decoding method wherein some form of adaptive

symbol bound control is performed. To explain this, let λ
(k)
i and s

(k)
i denote the

ith elements of λ(k) and s(k), respectively. Then, we can see from (3.13) and

(3.14) that if (s
(k)
i )2 > u2, then λ

(k+1)
i will be increased. Likewise, if (s

(k)
i )2 < u2,

then λ
(k+1)
i will be decreased. This means that if some symbols violate the sym-

bol bound constraints, then the PS method at the next iteration will increase

the regularization variables for those symbols. Subsequently, those larger reg-

ularization variables will tend to pull the associated symbols toward the origin

at the next iteration, or set a more stringent upper bound on those symbols, as

suggested in Lemma 3.1. Similarly, for symbols lying strictly within the symbol

bounds, the corresponding regularization variables will be reduced at the next

iteration.

We should also give some discussions on the convergence of the PS LDR

procedure.

Remark 3: Theoretically, the optimal convergence of the PS LDR procedure is
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usually guaranteed. To discuss this in more precise terms, we need to describe

one available convergence result [69, 70]: Let d
(k)
best = max{d(k−1)best , d(λ(k))}. For

certain types of stepsize rules, such as the diminishing stepsize rule 1, we have

limk→∞ d
(k)
best = d⋆ if every subgradient g(k) is bounded; i.e., there exists a finite

G such that

‖g(k)‖2 ≤ G, for k = 1, 2, . . .

In our LDR problem, the boundedness assumption above is the same as re-

quiring every regularized lattice decoding solution s(k) in (3.15) to be bounded.

Intuitively, one would argue that problem (3.15), or (Φλ), should yield bounded

solutions, except for pathological cases. In fact, this can be confirmed under a

mild assumption:

Lemma 3.2 Given a full column rank channel matrix H, any optimal solution

ŝλ of problem (Φλ) for any λ � 0 is bounded.

The proof of Lemma 3.2 is given in Appendix 3.6.5. As a corollary of Lemma 3.2,

the PS LDR procedure is theoretically guaranteed to converge to the optimal

value for full column rank (and thus overdetermined) channels.

Remark 4: While the PS method provides an effective strategy to cope with cer-

tain difficult nondifferentiable convex optimization problems, such as the LDR

problem here, it is also known to yield slow convergence in some applications.

Despite this setback, the PS convergence speed may be improved if a good ini-

tialization can be found. Fortunately, such initialization seems to be available

for LDR, as our extensive simulations have found. In Section 3.3.3, we will pro-

pose an initialization scheme that requires solving another (convex) optimization

problem, but can significantly improve the convergence speed.

While the PS LDR realization procedure described above looks quite straight-

forward, there are fine details on how we can implement the method in a nu-

merically efficient manner. This will be the focus of the next section.

1A typical example of the diminishing stepsize rule is αk = η/
√

k for some fixed positive constant

η.
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3.3 Practical Implementation

In this section, we elaborate on how we implement the PS LDR method.

3.3.1 Lattice Decoding for Problem (3.15)

The core issue with implementing the PS LDR method lies in finding the

solution of the regularized lattice decoding problem (3.15) at each iteration.

One can directly handle this issue by seeing each problem (3.15) as a stand-

alone regularized lattice decoding problem and solve it in the same as described

in Chapter 2. However, we can make the implementation more efficient by

utilizing the regularized lattice decoding solution in the previous iteration to

improve the solution search process in the present iteration. To facilitate our

description, we divide our development into three steps.

Step 1. Integer Least Squares Reformulation

Let

V T
k Vk = HTH +D(λ(k)) (3.16)

denote a square-root decomposition of HTH +D(λ(k)), where Vk ∈ R
N×N is a

corresponding square-root factor. By the transformation

s = 2z + 1, z ∈ Z
N , (3.17)

we can rewrite problem (3.15) as an integer least squares (LS) problem

z(k) = arg min
z∈ZN

‖fk − Vkz‖22, (3.18)

where fk = 1
2
Vk

−T (HTy −
(

HTH +D(λ(k))
)

1
)

. Note the relation s(k) =

2z(k) + 1.

Step 2. Lattice Reduction

We reformulate problem (3.18) to a lattice-reduced form. The popularized

LLL algorithm is chosen for lattice reduction, and some of its operational details

are concisely described as follows. Let G ∈ R
N×N be a matrix to be LLL-

reduced. Denote its QR decomposition by G = Q̄R̄ where Q̄ ∈ R
N×N is
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unitary and R̄ ∈ R
N×N upper triangular. Given (Q̄, R̄), an LLL algorithm

finds a 3-tuple (Q,R,U ) such that

QR = Q̄R̄U , (3.19)

QR is a lattice-reduced matrix of Q̄R̄ = G, and Q,R,U ∈ R
N×N are unitary,

upper triangular and unimodular, respectively. For convenience, we will use the

following notation

(Q,R,U ) = LLL(Q̄, R̄) (3.20)

to represent the LLL process. Returning to our problem, our task is to LLL-

reduce the basis matrix Vk in problem (3.18). This can be done as follows:

(Q̄k, R̄k) = QR(Vk), (3.21a)

(Qk,Rk,Uk) = LLL(Q̄k, R̄k), (3.21b)

where QR is a shorthand notation for the QR decomposition process. We can see

that QkRk forms an LLL-reduced basis matrix of Vk, with Uk being the asso-

ciated unimodular transformation matrix. By substituting QkRk = VkUk, and

introducing the transformation z̃ = U−1
k z, we equivalently turn problem (3.18)

to

z̃(k) = arg min
z̃∈ZN

‖f̃k −Rkz̃‖22, (3.22)

where f̃k = Qk
Tfk.

An Alternative Option to Step 2 by Successive LLL Update

We offer an alternative option to Step 2 that can provide computational

savings with the LLL reduction process. Essentially, if a given basis matrix G

is almost LLL-reduced, then it would generally take fewer number of iterations

for the LLL algorithm to complete the process. Now, rather than LLL-reducing

Vk as in the previous Step 2, we consider the LLL reduction of VkUk−1, where

Uk−1 is the LLL unimodular matrix of Vk−1. The idea is that if Vk and Vk−1

are not too different, which is possible when there are only small changes with

the PS update (cf. (3.13)), then VkUk−1 may already be well conditioned in
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the LLL sense. Note that a similar idea has been considered in a different

context, namely, LRA detection under time-correlated fading channels [71]. The

proposed successive LLL update process is described as follows. We replace

(3.21) by

(Q̄k, R̄k) = QR(VkUk−1), (3.23a)

(Qk,Rk, Ũk) = LLL(Q̄k, R̄k), (3.23b)

Uk = Uk−1Ũk. (3.23c)

It can be verified that QkRk is a lattice-reduced matrix of Vk, and that Uk

is the corresponding unimodular transformation matrix. Thus, the equivalent

formulation in (3.22) applies. We should note that there is a more efficient way

to compute (3.23). Let chol(·) denote the Cholesky decomposition operation;

i.e., W = chol(A)⇐⇒W TW = A,W upper triangular. It can be shown that

(3.23a)-(3.23b) can be equivalently implemented by

Wk = chol(Uk−1
T (HTH +D(λ(k)))Uk−1), (3.24a)

(Qk,Rk, Ũk) = LLL(I, W̄k). (3.24b)

In particular, by using (3.24), we do not need to compute Vk, which requires a

square-root decomposition operation (cf. (3.16)).

Step 3. Applying a Sphere Decoder

As the last step, we solve problem (3.22) by a sphere decoding algorithm.

Note that problem (3.22), which has its equivalent channel matrix Rk being

upper triangular, already takes a standard problem form for a sphere decod-

ing algorithm to run. Sphere decoding considers a within-sphere point search

process; roughly speaking, the latter may be described by

min
z̃∈ZN

‖f̃k −Rkz̃‖22

s.t. ‖f̃k −Rkz̃‖22 ≤ C(k)

(3.25)

for some given squared sphere radius C(k). More complete descriptions of the

within-sphere point processes used in various sphere decoding algorithms can be

found in [12,15]. In practice, it is generally found that a well chosen sphere radius
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may significantly narrow down the within-sphere search space, or the feasible

set of (3.25), thereby making the optimal point search more efficient [15, 28].

Here, we make use of the result in the previous LDR iteration to set the sphere

radius, namely, by

C(k) = ‖fk − Vkz
(k−1)‖22. (3.26)

The rationale is that if the previous iterate is LDR-optimal, or near LDR-

optimal, then the sphere radius choice above may eliminate a substantial number

of points that are not necessary to visit.

3.3.2 Putting Together the Algorithm

By plugging the above lattice decoding steps into the PS procedure in (3.13)-

(3.15), we construct a complete LDR algorithm. A pseudo-code form description

of the algorithm is given in Algorithm 3.1. In the algorithm, Q denotes the

elementwise quantization function to the symbol constellation set {±1,±3, . . .±
u}, and ⌊·⌉ denotes the elementwise integer rounding function. Also, note that
we adopt the successive LLL update method (Steps 5-8). In the sequel, we will

call the resultant detector the LDR lattice decoding (LD) detector.

As previously mentioned, we can also consider variations of the LDR LD

detector where efficient approximation schemes are used in place of the exact

sphere decoder. One alternative is to force the sphere decoding algorithm to

terminate when its number of nodes visited exceeds a prescribed limit— this

leads to an inexact runtime-limited LDR LD detector. Another alternative is to

apply the LRA-DF method [30, 72], or equivalently, the Babai’s nearest plane

algorithm [63], to problem (3.22). To be specific, we generate a point, denoted

by z̃
(k)
DF
∈ 2ZN + 1, via

z̃
(k)
DF,i =

⌊

[f̃k]i −
∑N

j=i+1[Rk]ij z̃
(k)
DF,j

[Rk]ii

⌉

, for i = N,N − 1, . . . , 1. (3.27)

We will name the subsequent detector the LDR LRA-DF detector.
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Algorithm 3.1: The LDR LD Detector

input : a problem instance (y,H), a starting point λ(1) � 0, a step-size

sequence {αk}, and stopping parameters Kmax, ǫ.

1 k = 1;

2 U (0) = I;

3 z̃(0) =
⌊

1
2((H

TH +D(λ(1)))−1HTy + 1)
⌉

;

4 repeat

5 Wk = chol(Uk−1T (HTH +D(λ(k)))Uk−1);

6 fk = 1
2Wk

−TUk−1T (HTy − (HTH +D(λ(k)))1);

7 (Qk,Rk, Ũk) = LLL(I,Wk);

8 Uk = Uk−1Ũk;

9 f̃k = Qk
Tfk;

10 C(k) = ‖fk −Wkz̃
(k−1)‖22;

11 run a sphere decoding algorithm, with C(k) as the squared sphere radius, to

solve for

z̃(k) = arg min
z̃∈ZN

‖f̃k −Rkz̃‖22

12 z(k) = Ukz̃
(k);

13 s(k) = 2z(k) + 1;

14 g(k) =
(

s(k)
)2 − u21;

15 λ(k+1) = P
RN
+

(

λ(k) + αkg
(k)

)

;

16 k = k + 1;

17 until k > Kmax or ‖λ(k) − λ(k−1)‖2 ≤ ǫ;

18 Find ℓ = argmini=1,2,...,k−1 ‖y −HQ(s(i))‖2
output: ŝ = Q(s(ℓ)).
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3.3.3 Box Relaxation as an Initialization

Like many other iterative optimization methods, the PS LDR method may

exhibit fast convergence if a good starting point λ(1) is given. For the initial-

ization aspect, a simple and logical choice is to employ the MMSE regulariza-

tion; i.e., λ(1) = σ2
ν/σ

2
s1. By our empirical experience, the MMSE initialization

scheme can indeed lead to reasonable improvement in PS convergence speed.

But we also found a better initialization scheme based on our extensive numeri-

cal study. The idea is to consider a further relaxation of the LDR problem (3.3)

d⋆ ≥ max
λ�0

{

min
s∈RN

‖y −Hs‖22 + λT (s2 − u21)

}

, (3.28)

where we relax the original problem domain of s from 2ZN + 1 to R
N . To be

specific, we aim at using the solution of the outer part of problem (3.28) to

initialize the PS LDR method. It is interesting to note that problem (3.28)

is related to a conventional MIMO detection method. Consider the following

problem

min
s∈RN

‖y −Hs‖22

s.t. s2i ≤ u2, i = 1, . . . , N,

(3.29)

which is a continuous box relaxation (BR) of the ML problem (3.1) and has

previously been studied in the context of multiuser detection [20, 73]. It can

be shown that problem (3.28) is equivalent to problem (3.29)—the equivalence

is in the sense that the dual of the BR problem (3.29) takes exactly the same

form as problem (3.28), and that strong duality holds owing to the fact that

the BR problem (3.29) is convex and satisfies Slater’s condition [67]. Hence, the

initialization scheme based on (3.28) may be seen as using the BR method to

warm-start the PS LDR method.

The BR initialization scheme proposed above does not have a closed form

in general. In order to implement the BR initialization scheme efficiently, we

need to build a low-complexity solver for problem (3.28). Our solution approach

consists of two steps: First, we solve the BR problem (3.29), which has a simple

structure and for which it is relatively easy to find an efficient optimization al-

gorithm. Second, by utilizing the strong duality relationship of problems (3.28)
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and (3.29), we construct a solution to problem (3.28) from the BR solution.

For the first step, we custom-build an optimization algorithm for the BR prob-

lem (3.29); the algorithm is mainly based on the active set method in [74], with

a modification to accelerate the LS procedure inside by the one-column updat-

ing method [75]. The details are heavily numerical, and are briefly explained in

Appendix 3.6.6 and 3.6.7. For the second step, we consider the Karush-Kuhn-

Tucker (KKT) conditions of the BR problem, which is shown to be

HTHs+D(λ)s−HTy = 0, (3.30a)

λi(s
2
i − u2) = 0, i = 1, . . . , N, (3.30b)

λi ≥ 0, s2i − u2 ≤ 0, i = 1, . . . , N. (3.30c)

Since (3.30a)-(3.30c) is the necessary and sufficient conditions for (s,λ) to be

optimal to problems (3.28) and (3.29), we plug the BR solution s obtained in the

first step into (3.30a)-(3.30b) to find the corresponding optimal λ. The resultant

solution is shown to be

λi =











− [H
THs−HTy]i

si
, if si 6= 0

0, if si = 0

(3.31)

for i = 1, . . . , N . To summarize, the BR initialization scheme works by run-

ning a custom-built active set algorithm to find a solution s of the BR prob-

lem (3.29), substituting the obtained s into (3.31) to construct a solution λ of

problem (3.28), and using the obtained λ as a starting point of the PS LDR

method.

3.4 Simulations

Simulations were conducted to study the symbol error rate (SER) and com-

plexity performance of the proposed LDR MIMO detection approach. We con-

sider a standard complex-valued QAM MIMO scenario

yC = HCsC + νC , (3.32)

where the channel matrix HC ∈ C
MC×NC follows an elementwise i.i.d. complex

circular Gaussian distribution with zero mean and unit variance, the symbol
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vector sC ∈ C
NC is elementwise i.i.d. uniformly distributed with each ele-

ment drawn from the standard (u + 1)2-QAM constellation set, σ2
νC
∈ C

MC

is additive white complex circular Gaussian noise with zero mean and vari-

ance σ2
νC
, and MC and NC denotes the output and input problem sizes, re-

spectively. The model (3.32) can be equivalently represented by the real-valued

model via the transformation described in Chapter 2. The SNR is defined as

SNR = E[‖HCsC‖2]/E[‖νC‖2] = NCσ
2
sC
/σ2

νC
, where σ2

sC
is the variance of the

elements of sC .

The benchmarked algorithms are the ML sphere decoding (SD) detector, the

MMSE LD detector, the NLD detector, runtime-limited inexact implementations

of the aforementioned SD and LD detectors, and the BC-SDR detector (cf.

problem (3.11) and [54]). The ML SD detector is implemented by the Schnorr-

Euchner enumeration-based SD algorithm in [12, Algorithm 2]. The MMSE LD

detector is also implemented by the same SD algorithm, and its lattice reduction

process is LLL reduction. The LLL reduction algorithm we employed follows the

pseudo-code description in [72]. The inexact MMSE LD detector is a variation of

the MMSE LD detector where we force the SD algorithm to terminate when the

number of nodes visited exceeds a prescribed worst-case limit, denoted by Nnode

here. We set Nnode = min{N3, N × SNR} (SNR is in linear scale). The same

applies to inexact ML SD and inexact NLD. For the BC-SDR detector, Gaussian

randomization rounding [22] is employed and the number of randomizations is

64.

The settings of the proposed LDR LD detector, inexact LDR LD detector

and LDR LRA-DF detector are as follows. Unless specified, the BR initializa-

tion scheme in Section 3.3.3 is used to generate the starting point. The stopping

parameters of the PS iterations are set as Kmax = 5 and ǫ = 10−9; cf. Algo-

rithm 3.1, line 17. We use the same SD implementations as in MMSE LD, both

exact and inexact, to process each regularized lattice decoding problem in LDR

LD.
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Figure 3.1: Symbol error rate comparison for the SD-based detectors. (MC , NC) =

(16, 16).

34



Chapter 3. Lagrangian Dual Maximum-Likelihood Relaxation

3.4.1 Symbol Error Rate Performance of the LDR LD Detectors

In this subsection, we illustrate the SER performance of the LDR LD de-

tector. The problem size is chosen as (MC , NC) = (16, 16). Fig. 3.1 plots the

SERs of the various detectors versus SNR under 4-QAM, 16-QAM and 64-QAM

constellations. We have several key observations. First, the LDR LD detector

achieves the same SER performance as the ML SD detector in the 4-QAM and

16-QAM cases. We are unable to verify whether the same desirable result holds

for 64-QAM, since the ML SD detector is too slow to run in the 64-QAM case.

Note that the identical performance of the ML SD and LDR LD detectors for

the 4-QAM case is expected, since Theorem 3.1 shows that LDR is theoretically

ML-optimal for 4-QAM. Second, the LDR LD detector gives SER performance

no worse than the BC-SDR detector. In fact, the SER gaps between the LDR

LD and BC-SDR detectors are significant for the 16-QAM and 64-QAM cases.

This numerical observation is consistent with the duality gap theorem in The-

orem 3.2, which suggests that LDR should provide approximation accuracies

at least no worse than BC-SDR. Third, the LDR LD detector generally yields

better SER performance than the NLD and MMSE LD detectors. Further com-

paring the LD detectors, we observe that NLD may suffer from more than 2dB

performance loss relative to LDR LD, especially for 4-QAM and 16-QAM. The

gap nevertheless reduces for 64-QAM. Another observation is that MMSE LD

is quite close to LDR LD. This suggests that MMSE regularization is a good

regularization under the exact SD implementation.

However, when we consider the runtime-limited inexact implementation,

the SER gaps between the LDR method and the MMSE regularization-based

method widen significantly. The inexact implementation results are also in-

cluded in Fig. 3.1. We first notice that an inexact detector exhibits performance

loss compared to its original exact counterpart, which is expected as a com-

promise for computational efficiency. The inexact LDR LD detector is seen to

lose less, and perform best among all the inexact detectors. We observe that

at SER= 10−5, the SNR gains of the inexact LDR LD detector over the inex-

act MMSE LD detector (the second best) are 6dB, 4dB and 2dB for 4-QAM,
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16-QAM and 64-QAM, respectively. The simulation results also show that the

inexact ML SD detector is highly ineffective.

It is further observed that the inexact LDR LD detector has more perfor-

mance advantages on small QAM sizes than large QAM sizes. This observation

may be intuitively explained as follows: For small QAM sizes, constellation

points on the symbol bounds constitute a larger portion of all constellation

points, rendering out-of-bound symbol events more likely to occur. The LDR

detector, which focuses on mitigating out-of-bound symbol effects, has more

chances to kick in and improve the performance.

It is also interesting to examine the performance-complexity tradeoffs of the

inexact LDR LD detector. Fig. 3.2 illustrates the SER performance of the

inexact LDR LD detector and the inexact MMSE LD detector under various

complexity limits. In the figure, the number c represents the power of the

complexity limit. Specifically, for a given c, we set the worst-case complexity

limit of the two inexact LD detectors to Nnode = min{NC , N
c−1 × SNR}. We

observe that the SER performance of the two detectors improves as c increases,

and that the inexact LDR LD detector for c = 4 or above achieves a reasonably

good performance. Also, for each given c, the inexact LDR LD detector is seen

to outperform the inexact MMSE LD detector.

From all the observations above, we conclude that the LDR LD detector can

yield near-ML performance, although the MMSE LD detector is also close. The

inexact LDR LD detector has considerable SNR gains over inexact MMSE LD

as well as the other inexact detectors; the gains are particularly significant for

smaller QAM sizes.

3.4.2 Convergence of the LDR LD Detector

This subsection aims at studying the convergence behaviors of the PS iter-

ations of the LDR LD detector. We start with considering the objective value

convergence for a single problem realization. Fig. 3.3 shows the result, where the

dual objective values d
(k)
best of the LDR LD detector are plotted against the PS

iteration number k (see Remark 3 for the precise definition of d
(k)
best). We tested
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Figure 3.2: Symbol error rate comparison of the inexact LD detectors under various

complexity limits. (MC , NC) = (16, 16), 16-QAM.

the three initialization schemes, namely, random initialization, MMSE initial-

ization and BR initialization. The problem size is (MC , NC) = (16, 16), and the

QAM size is 16. For reference, we also plot the optimal ML objective value,

obtained via the ML SD detector. From Fig. 3.3, we observe that the three

differently initialized LDR LD detectors converge to the same objective value.

Also, for this problem realization, they converge to the optimal ML objective

value. However, the convergence speed of the three initialization schemes has

significant differences. It is seen that random initialization is the worse, taking

more than 35 iterations to converge. MMSE initialization is better than random

initialization, but the best is BR initialization: BR initialization takes only one

iteration to converge at SNR=22dB, and three iterations at SNR=16dB.

We further illustrate the convergence speed of the LDR LD detectors by

examining the average numbers of PS iterations to terminate. The stopping

parameters of the PS iterations is set to be Kmax = 50 and ǫ = 10−9. A number

of 10, 000 independent problem realizations was run. Again, we consider 16-

QAM and MC = NC . Table 3.1 shows the average numbers of iterations with

respect to the problem size NC ; the SNR is fixed at SNR= 22dB. It is observed
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that the BR-initialized LDR LD detector takes about one iteration on average

to complete the task, while the MMSE-initialized LDR LD detector takes 2− 4

iterations. Table 3.2 shows the average number of iterations with respect to

the SNR, with NC = 16. We can see that the average numbers of iterations of

the LDR LD detectors tend to increase when the SNR decreases. Nevertheless,

the BR-initialized LDR LD detector is very efficient in terms of the number of

iterations used.
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Figure 3.3: Convergence of the LDR LD detector in one realization. 16-QAM,

(MC , NC) = (16, 16).

Problem size NC

6 10 14 18 22 26

BR init. 1.083 1.016 1.009 1.010 1.008 1.006

MMSE init. 2.040 2.000 3.000 3.000 4.000 4.000

Table 3.1: Average number of PS iterations of the LDR LD detector. 16-QAM,

SNR=22dB, MC = NC , Kmax = 50, ǫ = 10−9.
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SNR (dB)

16 17.5 19 20.5 22

BR init. 5.746 2.026 1.098 1.025 1.009

MMSE init. 23.76 9.402 5.115 4.001 3.000

Table 3.2: Average number of PS iterations of the LDR LD detector. 16-QAM,

(MC , NC) = (16, 16), Kmax = 50, ǫ = 10−9.

3.4.3 Complexity Performance of the LDR LD Detectors

In this subsection, we examine the complexities of the proposed LDR de-

tectors. Fig. 3.4 presents the average number of floating point operations

(FLOPs) of the various detectors with respect to the problem sizes, where we

set SNR=22dB, MC = NC and the QAM size to be 16. Note that the LDR LD

detector is initialized by BR, and the overhead of computing the initialization,

i.e., BR optimization, has been included in evaluating the FLOPs of the LDR

detectors. For problem sizes NC ≤ 6, the complexity of the ML SD detector is

very low, and is even faster than the suboptimal detectors. But its complexity

becomes unacceptably large as the problem size increases, rendering the ML SD

detector impractical for large problem sizes. All the other detectors have much

lower complexities than the ML SD detector for problem sizes NC ≥ 10. We can

see that the complexities of LDR LD and MMSE LD increase at a rate much

lower than that of the ML SD detector, though they still exhibit exponential

complexity behaviors eventually. Moreover, as expected, the complexities of the

inexact detectors are much lower than those of their exact counterparts when

the problem size is large.

The complexity comparison in Fig. 3.4 also reveals that for problem sizes

NC ≥ 18, the LDR LD detector can be more efficient than the MMSE LD. This

result seems counter-intuitive, since the LDR LD detector is an iterative LD

method, rather than one-shot LD as in MMSE LD. The reason for this actually

lies in the chosen initialization scheme for LDR LD, i.e., BR initialization. As

illustrated previously, the BR-initialized LDR LD detector takes very few num-

ber of iterations to converge. For the problem setting here, the average number
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of iterations is about one (cf. Table 3.1). Moreover, by empirical experience, we

found that regularization via BR is helpful in improving the SD computational

speed. To explain, in Table 3.3 we give a breakdown of the complexities of

MMSE LD and LDR LD. In the table, “SD” represents the FLOPs consumed

by the SD algorithm, and “others” the FLOPs of other operations, which in-

clude LLL reduction, BR optimization (for LDR LD only), and other matrix

operations. We can see that LDR LD is always more expensive than MMSE LD

on “others”; this makes sense because LDR LD requires solving the BR problem

for initialization. However, LDR LD is much cheaper than MMSE LD on “SD”

when NC ≥ 14. In fact, the SD complexities of both LDR LD and MMSE LD

dominates the total complexities for NC ≥ 14. As a result, the LDR LD detector

can be faster than MMSE LD for moderate to large problem sizes. As a future

direction, it will be interesting to further investigate why BR regularization can

accelerate SD so significantly.
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Figure 3.4: Average number of FLOPs of various detectors. 16-QAM, SNR=22dB,

MC = NC .
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Problem Size NC

6 14 22 26

SD
MMSE LD 4.0e2 1.9e4 7.0e6 1.0e8

LDR LD 4.1e2 5.6e3 9.7e5 9.0e6

Others
MMSE LD 9.4e3 7.2e4 2.1e5 3.1e5

LDR LD 1.1e4 8.0e4 3.5e5 5.4e5

Total
MMSE LD 9.8e3 9.1e4 7.2e6 1.0e8

LDR LD 1.1e4 8.5e4 1.3e6 9.5e6

Table 3.3: Average number of FLOPs of the operations of the LDR LD and MMSE

LD detectors. 16-QAM, SNR=22 dB, MC = NC .

3.4.4 Symbol Error Rate Performance of the LDR LRA-DF Detector

In this subsection, we test the SER performance of the LDR LRA-DF de-

tector. The 16-QAM case is considered. Fig. 3.5 shows the SERs of the LDR

LRA-DF detector and the MMSE LRA-DF detector under various problem sizes.

It can be observed that the LDR LRA-DF detector exhibits dramatic perfor-

mance gains compared to MMSE LRA-DF as the problem size increases. While

LDR LRA-DF needs about 27dB to achieve SER=10−5 for the three problem

sizes tested, MMSE LRA-DF requires a much higher SNR to achieve the same

SER level—and this is particularly true for larger problem sizes. This demon-

strates that the LDR method is also very effective in boosting the performance

of the LRA-DF receiver approach.

3.5 Summary

This chapter addressed a regularization optimization problem in lattice de-

coding, by considering the LDR of the ML detection problem. It was found

that the LDR problem can be regarded as that of finding the best diagonally

regularized lattice decoding to approximate the ML detector, and that the well-

known NLD and MMSE LD detectors can be seen as particular instances of

LDR. We proved that in the 2-PAM constellation case, lattice decoding with

a proper regularization is optimal. We also established a connection between
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Figure 3.5: Symbol error rates of the LDR and MMSE LRA-DF detectors. 16-QAM.

LDR and a previously developed semidefinite relaxation-based method, showing

that the former yields relaxation tightness at least no worse than the latter. The

projected subgradient method was derived to solve the LDR problem, thereby

obtaining the best regularization. Based on the idea of projected subgradient,

we developed the LDR LD detector, and its approximations using conventional

suboptimal lattice decoding methods. Simulation results showed that the LDR

LD approach yields promising symbol error probability and complexity perfor-

mance.

3.6 Appendix

3.6.1 Proof of Fact 1

Statement 1 is straightforward: Since the NLD problem (2.17) is a relaxation

of the ML problem (3.1), NLD is automatically ML-optimal under instances

where the NLD solution ŝNLD is a feasible point of the ML problem. For State-

ment 2, we first note that ‖y −HŝNLD‖22 = ϕ(0) = d(0) ≤ d⋆ ≤ f ⋆. Since

we have f ⋆ = ‖y −HŝNLD‖22 by Statement 1, we obtain f ⋆ = d⋆. This sub-

sequently implies that λ = 0 is an optimal solution of the LDR problem. For
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Statement 3, we prove the statement using contradiction. Suppose that ŝNLD is

not an optimal solution of problem (Φλ) for λ = λ⋆. This is equivalent to saying

ϕ(λ⋆) < ‖y −HŝNLD‖22 + ŝTNLDD(λ⋆)ŝNLD. (3.33)

Applying (3.33) to the strong duality result in Statement 2, we have

0 = d(λ⋆)− f ⋆ (3.34a)

< ‖y −HŝNLD‖22 + ŝTNLDD(λ⋆)ŝNLD − u21Tλ⋆ − f ⋆ (3.34b)

=
(

ŝ2NLD − u21
)T

λ⋆ (3.34c)

where (3.34c) is owing to f ⋆ = ‖y −HŝNLD‖22. However, since λ⋆ � 0 and

[ŝNLD]
2
i ≤ u2 for all i = 1, . . . , N , we always obtain (ŝ2NLD − u21)

T
λ⋆ ≤ 0, which

is a contradiction to (3.34c).

3.6.2 Proof of Lemma 3.1

The proof is by contradiction. Assume that (3.8) holds, and yet [ŝλ]
2
i > m2.

Then we have

ϕ(λ) = ‖y −Hŝλ‖22 + ŝTλD(λ)ŝλ

≥ ‖y −Hŝλ‖22 + λi

(

(m+ 2)2 − 1
)

+ λT1, (3.35)

where we have used the fact that [ŝλ]
2
j ≥ 1 for j 6= i and [ŝλ]

2
i ≥ (m+2)2 (recall

ŝλ ∈ 2ZN + 1). By applying (3.8) to the second term of (3.35), we get

ϕ(λ) > ‖y −Hŝλ‖22 + c(y,H) + λT1

≥ min
s∈{±1}N

‖y −Hs‖22 + λT1, (3.36)

where (3.36) is due to ‖y −Hŝλ‖22 ≥ mins∈2Z+1 ‖y −Hs‖22. From (3.36), we

can equivalently write

ϕ(λ) > min
s∈{±1}N

‖y −Hs‖22 + sTD(λ)s ≥ ϕ(λ), (3.37)

where the second inequality is by the definition of ϕ(λ), cf. (3.5). Eq. (3.37) is

clearly a contradiction. We therefore conclude that under the condition in (3.8),

[ŝλ]
2
i ≤ m2 must hold.
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3.6.3 Proof of Theorem 3.1

Our proof is based on a strong duality result for general integer programming

problems [76]. The result, for the ML problem, is stated as follows.

Lemma 3.3 [Strong Lagrangian duality [76]] Let λ � 0, and ŝλ ∈ 2ZN + 1 be

an optimal solution of problem (Φλ). If the following conditions are satisfied:

ŝ2λ � u21,

λT
(

ŝ2λ − u21
)

= 0,
(3.38)

then λ and ŝλ are optimal solutions of the the LDR problem (3.3) and ML

problem (3.1), respectively. Moreover, strong duality f ⋆ − d⋆ holds.

Suppose that λ ≻ γ11. By Lemma 3.1, we know that [ŝλ]
2
i ≤ 1 for all i.

Since ŝλ ∈ 2ZN + 1, we must have [ŝλ]
2
i = 1 for all i. Thus, the conditions in

Lemma 3.3 are satisfied, and strong duality holds. It also follows from Lemma 3.3

that any λ ≻ γ11 is LDR-optimal, and the corresponding ŝλ ML-optimal.

3.6.4 Proof of Theorem 3.2

The statement in Theorem 3.2 is the same as saying that d⋆ ≥ g⋆. To prove

this result, we first use the implication

s ∈ 2ZN + 1 =⇒ s2 � 1

to obtain a lower bound on d(λ) in (3.4)-(3.5)

d(λ) ≥ min
s∈RN , s2�1

‖y −Hs‖22 + λT (s2 − u21). (3.39)

By weak duality, the right-hand side (RHS) of (3.39) is lower-bounded by its

Lagrangian dual, which is given by

d(λ) ≥ max
µ�0

min
s∈RN

‖y −Hs‖22 + λT (s2 − u21)− µT (s2 − 1), (3.40)

where µ � 0 is the dual variable for the constraint s2 � 1. By recalling that

d⋆ = maxλ�0 d(λ), we arrive at

d⋆ ≥ max
λ�0,
µ�0

min
s∈RN

‖y −Hs‖22 + λT (s2 − u21)− µT (s2 − 1). (3.41)
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Our next step is to show that the RHS of (3.41) is equivalent to g⋆ in (3.11).

The RHS of (3.41) can be rewritten as

max
λ,µ,r

r

s.t. ‖y −Hs‖22 + λT (s2 − u21)− µT (s2 − 1) ≥ r, ∀s ∈ R
N

λ � 0, µ � 0.

(3.42)

By the lemma given in [77, p.163], we can equivalently turn problem (3.42) to

max
λ,µ,r

r

s.t.





HTH +D(λ− µ) −HTy

−yTH µT1− u2λT1− r + ‖y‖22



 � 0,

λ � 0, µ � 0.

(3.43)

Let us take a look at the dual of problem (3.43). The Lagrangian function of

problem (3.43) is written as

L(λ,µ, r,p, q,X)

=r + pTµ+ qTλ

+ trX





HTH +D(λ− µ) −HTy

−yTH µT1− u2λT1− r + ‖y‖22



 ,

where p � 0, q � 0 and X � 0 are the dual variables for µ � 0, λ � 0 and the

first constraint in (3.43), respectively. By partitioning X as

X =





S s

sT t





where S ∈ S
N , s ∈ R

N , t ∈ R, the function L can be reorganized as

L(λ,µ, r,p, q,X) =(1− t)r + (q + d(S)− tu21)Tλ

+ (p− d(S) + t1)Tµ

+ tr(HTHS)− 2sTHTy + t‖y‖22.

We note that the dual function respective to the above L is bounded only if

the first three terms above are zero; i.e., 1 − t = 0, q + d(S) − tu21 = 0 and
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p− d(S) + t1 = 0. As a result, the dual of problem (3.43) is

min
p,q,S,s

tr(HTHS)− 2sTHTy + ‖y‖22 (3.44a)

s.t. q + d(S)− u21 = 0,p− d(S) + 1 = 0, (3.44b)

p � 0, q � 0, (3.44c)




S s

sT 1



 � 0. (3.44d)

Since problem (3.44) is strictly feasible and bounded from below, by the conic du-

ality theorem [77, Theorem 2.4.1], problems (3.43) and (3.44) attain the same op-

timal objectives; i.e., strong duality holds. Furthermore, by substituting (3.44b)

into (3.44c) and applying Schur’s complement [67] to (3.44d), we show that

problem (3.44) is same as the BC-SDR problem in (3.11). The desired result

d⋆ ≥ g⋆ is therefore concluded.

3.6.5 Proof of Lemma 3.2

First, we note that

‖y −Hŝλ‖2 ≥ ‖Hŝλ‖2 − ‖y‖2 ≥ σmin‖ŝλ‖2 − ‖y‖2, (3.45)

where σmin is the smallest singular value of H , which is strictly positive for a

full column rank H . From (3.45), we obtain

‖ŝλ‖2 ≤
1

σmin

(‖y −Hŝλ‖2 + ‖y‖2) . (3.46)

Second, recall from (Φλ) that ŝλ is an optimal solution of

min
s∈2ZN+1

‖y −Hs‖22 + sTD(λ)s. (3.47)

Let

I = { i ∈ {1, . . . , N} | λi > γ1 },

J = { i ∈ {1, . . . , N} | λi ≤ γ1 },
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where γ1 has been defined in (3.9). By Lemma 3.1, ŝλ must satisfy [ŝλ]
2
i ≤ 1

for all i ∈ I. Hence, problem (3.47) can be equivalently expressed as

min
s
‖y −Hs‖22 + sTJD(λJ )sJ

s.t. s2I = 1, sJ ∈ 2Z|J | + 1,
(3.48)

where sI denotes a subvector of s whose elements are {si}i∈I , and sJ and λJ

are defined in the same way. By noting that ŝλ is optimal to (3.48), we have

‖y −Hŝλ‖22 ≤ ‖y −Hŝλ‖22 + ŝTλ,JD(λJ )ŝλ,J

= min
s2I=1, sJ∈2Z|J |+1

‖y −Hs‖22 + sTJD(λJ )sJ

≤ ‖y −H1‖22 + 1TD(λJ )1

≤ ‖y −H1‖22 +Nγ1. (3.49)

Moreover, it can be shown from (3.9)-(3.10) that

γ1 ≤
1

8
‖y −H1‖22. (3.50)

Finally, by plugging (3.49)-(3.50) into (3.46), we obtain a finite upper bound

on ‖ŝλ‖2, as desired.

3.6.6 Active Set Method for the BR problem

We consider solving the BR problem (3.29) using the active set method [74,

78]. The BR problem is

min
s

f(s) , ‖y −Hs‖22

s.t. − u ≤ si ≤ u, i = 1, . . . , N,
(3.51)

where y ∈ R
M , s ∈ R

N , and H ∈ R
M×N . We assume that H is of full column-

rank.

The general idea of active set method is to identify those s⋆i that are active

on the upper or lower bounds, i.e. s⋆i = ±u, where s⋆ is the optimal solution

of the BR problem. Let L = {i | s⋆i = −u} and U = {i | s⋆i = u} collect the
indexex of s⋆i that are −u and u, respectively. If we know L and U in advance,
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then the BR problem can be simplified as.

min
si,i/∈L∪U

∥

∥

∥

∥

∥

ỹ −
∑

i/∈L∪U
hisi

∥

∥

∥

∥

∥

2

2

(3.52)

where ỹ = y −∑

i∈L hi(−u) −
∑

i∈U hiu. The optimization variables of (3.52)

are {si}i/∈L∪U which are unconstrained. Hence, problem (3.52) is a simple least

square problem which can be easily solved. However, generally L and U are not

known. The active set method is an iterative algorithm to identify L and U .
We will briefly describe how the active set method works. Suppose at the

current iteration, we have an iterate s̃ and its bounding information

L = {i | s̃i = −u} and U = {i | s̃i = u}.

We want to find a step p ∈ R
N such that after this step, the new iterate s = s̃+p

can have a smaller objective value, but those si with i ∈ L ∪ U are still fixed at

the corresponding −u and u. This problem can be formulated as

min
p

‖y −H(s̃+ p)‖22

s.t. pi = 0, ∀i ∈ L ∪ U ,

pi ∈ R, ∀i /∈ L ∪ U .

(3.53)

Note that we do not constrain si with i /∈ L∪U to satisfy −u ≤ si ≤ u. Problem

(3.53) is a least square problem, and the solution can be easily obtained. Let us

denote the optimal solution by p⋆. Depending on whether p⋆ is zero or not, we

will take different strategies.

Case 1: p⋆ 6= 0. The case of p⋆ 6= 0 means that we can strictly decrease

the objective value from f(s̃) to f(s̃ + p⋆), since we assume that H is of full

rank and the solution of problem (3.53) is unique. But if we take a full step p⋆,

the constraint −u ≤ s̃i + p⋆i ≤ u may be violated for some i /∈ L ∪ U . (The

constraints for those i ∈ L ∪ U will not be violated as s̃i is feasible and p⋆i = 0.)

If s = s̃+ p⋆ is feasible, then we take a full step

s = s̃+ p⋆.

Update L and U according to s, and start a new iteration with problem (3.53)

with the new iterate s = s̃+ p⋆ and the corresponding bounding information L
and U .
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If s = s̃+p⋆ is infeasible, some si violates the constraint −u ≤ si ≤ u. Then

we want to take the largest step-size α ≥ 0 such that

s = s̃+ αp⋆

is still feasible . The step-size α can be easily determined as

α = min
i/∈L∪U

αi,

where αi = (u− s̃i)/p
⋆
i when p⋆i > 0 and αi = −(u+ s̃i)/p

⋆
i when p⋆i < 0. Here,

αi is the largest step-size that the ith constraint will not be violated. Then, we

take the step

s = s̃+ αp⋆.

Now, there must be one or more indexes i /∈ L ∪ U such that si is −u or u.

Choose such an index and move it to L if si = −u and to U if si = u. A new

iteration begins with the new iterate s̃ with L and U .
Case 2: p⋆ = 0. If it happens that p⋆ = 0, then s̃ is already a minimizer

of (3.53). This suggests that s̃ could be the solution of the original BR problem

(3.51). To verify, we check the KKT conditions of (3.51) which can be written

as










wi ≤ 0, i ∈ L

wi ≥ 0, i ∈ U
(3.54)

where w is the gradient of f(s) at s̃ and is given by

w = HT (y −Hs̃). (3.55)

If (3.54) holds true, then s̃ is the solution of (3.51).

If the KKT condition does not hold, we need to remove one index t from L∪U .
The reason is that s̃ has already minimized f(s) subject to s̃i = −u, ∀ i ∈ L
and s̃i = u, ∀ i ∈ U . Progress can not be made if we do not drop one index

from L∪U . To choose an index t from L∪U , let V collect those indexes with wi

violating the KKT conditions, i.e. V = {i | wi > 0, i ∈ L} ∪ {i | wi < 0, i ∈ U}.
Recall that in gradient descent method, the descent strategy is to walk along
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the negative gradient direction with some step-size β, i.e. s̃ + βw. So |wi| can
be viewed as the aggressiveness of s̃i to move. Naturally, we will choose t as

t = max
i∈V

|wi|. (3.56)

Then we remove t from L or U . A new iteration begins with the same iterate s̃,

but different L and U .
We briefly discuss the convergence here. On the one hand, we have seen

that if a full step can be taken, a strict decrease in f(s) can be assured. It can

be shown that as long as the step-size α is not zero, a strict decrease in f(s)

can be still achieved. This means that if p⋆ 6= 0, a strict decrease in f(s) is

achieved. On the other hand, it can be shown that t in (3.56) will lead to a strict

decrease in the function value f(s). This is because it can be shown that at the

next iteration, the optimal solution p⋆ of the problem (3.53) is not zero, and we

can take a positive step length. Thus, a strict decrease of function value f(s)

is achieved at every iteration, and every iteration corresponds to a particular

pair of L and U . Because there is only finitely pairs of L and U , the active set
method can find the exact optimal solution in a finite time.

Note that we can properly combine case 1 and case 2 for better efficiency.

It can be observed that in case 1 when p⋆ 6= 0 and a full step s = s̃ + p⋆ is

taken, at the next iteration p⋆ becomes zero, and case 2 will follow. Hence, we

can directly execute the operations in case 2 whenever p⋆ 6= 0 and a full step

is taken. The description of the general idea of active set method is completed.

We provide the pseudo-code in Algorithm 3.2. In Section 3.6.7, we introduce

a rank-one pseudo-inverse updating method that can significantly reduce the

complexity of the active set method.

3.6.7 One-column Pseudo-inverse Update for the Active Set Method

We describe a one-column pseudo-inverse update method [75] to speed up

the active set method. A close look at Algorithm 3.2 would reveal that the most

heavy computational cost of Algorithm 3.2 lies in Line 1, i.e. the computation
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of the least square problem (3.53) which is rewritten as follows

min
p̄

‖ȳ − H̄p̄‖2

s.t. p̄ ∈ R
n

(3.57)

where ȳ = y −Hs ∈ R
m, H̄ = [hi]i/∈L∪U , and p̄ = [pi]i/∈L∪U , m = M , and

n = N − |L ∪ U|. The optimal solution p̄ is given by

p̄⋆ = (H̄TH̄)−1H̄T ȳ,

which would cost a computational complexity O(1
3
n3 + n2m). Among all the

operation in computing p̄⋆, the computation of (H̄TH̄)−1 is the most expensive

and have complexity O(1
3
n3 + n2m). Thus, if we can speed up the computation

of (H̄TH̄)−1, the active set method can be much faster.

The introduced method exploits the fact that in two consecutive iterations

of Algorithm 3.2 the optimization problem (3.57) would not be too different. To

describe, let us denote by H̄0 the matrix in the previous iteration and H̄ in the

current iteration. Then the relationship of H̄0 and H̄ can be summarized as

follows.

❼ Removing a column. If Line 17 of Algorithm 3.2 is executed in the

previous iteration, then H̄ is a submatrix of H̄0 with one column removed.

Specifically, H̄ and H̄0 satisfy

H̄0 = [H̄ , h̄]. (3.58)

❼ Inserting a column. If Line 11 of Algorithm 3.2 is executed in the

previous iteration, then H̄ contains H̄0 and an additional column. Let h̄

denote the column to be inserting to H̄0 Then, H̄ is

H̄ = [H̄0, h̄]. (3.59)

Note that we have assumed for simplicity that the column to be removed or

inserted is the last column. The case of other column can be done via the same

operations with an additional permutation step. We can see that the difference

between H̄0 and H̄ is only an column. If we have computed H̄0 and (H̄
T
0 H̄0)

−1
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in the previous active set method iteration, then the computation of (H̄TH̄)−1

at the current iteration can accelerated.

We will use the following identity for an invertible matrix A [79].





A11 a12

aT
12 a22





−1

=





B11 b12

bT12 b22



 , (3.60)

where

B11 = F−1
11

b12 = −A−1
11 a12f

−1
22

b22 = f−122

and

F11 = A11 − a12a
T
12a

−1
22 (3.61)

f22 = a22 − aT
12A

−1
11 a12. (3.62)

By the matrix inversion lemma, F11 and f22 also satisfy

F−1
11 = A−1

11 +A−1
11 a12a

T
12A

−1
11 f

−1
22 . (3.63)

Using these identities, we can compute (H̄TH̄)−1 via (H̄T
0 H̄0)

−1.

❼ Removing a column. In this case, we are given (H̄T
0 H̄0)

−1 with H̄0 =

[H̄ , h̄] and want to find (H̄TH̄)−1. Set A = H̄T
0 H̄0 and B = A−1, we

have




A11 a12

aT
12 a22



 =





H̄TH̄ H̄T h̄

h̄TH̄ h̄T h̄



 . (3.64)

By (3.63), we have

(H̄TH̄)−1 = A−1
11

= F−1
11 −A−1

11 a12a
T
12A

−1
11 f

−1
22

= B11 − b12b
T
12b

−1
22 .

As B is known, (H̄TH̄)−1 can be easily computed by (3.64) via a rank-one

update, which costs a complexity O(2n2).
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❼ Inserting a column. In this case, we are given (H̄T
0 H̄0)

−1 and H̄0. We

would like to compute (H̄TH̄)−1 with H̄ = [H̄0, h̄]. Setting A = H̄TH̄

and B = A−1, we have




A11 a12

aT
12 a22



 =





H̄T
0 H̄0 H̄T

0 h̄

h̄TH̄0 h̄T h̄





and




B11 b12

bT12 b22



 =





F−1
11 −A−1

11 a12f
−1
22

−aT
12A

−1
11 f

−1
22 f−122



 , (3.65)

where

F−1
11 = A−1

11 +A−1
11 a12a

T
12A

−1
11 f

−1
22

f22 = a22 − aT
12A

−1
11 a12.

(3.66)

As A−1
11 = (H̄T

0 H̄0)
−1 is known and a12 = H̄T

0 h̄ can be computed easily,

B can be computed by (3.65) and (3.66) very efficiently. The complexity

is again O(2n2).

53 ✷



Chapter 3. Lagrangian Dual Maximum-Likelihood Relaxation

Algorithm 3.2: Active Set Method for the BR Broblem

input : y, H, u, and an initialization s0

1 Set s = s0 and compute the bounding information L and U .
2 repeat

3 Obtain the optimal solution p⋆ of the following least square problem

min
p

‖y −H(s+ p)‖22

s.t. pi = 0, ∀i ∈ L ∪ U ,

pi ∈ R, ∀i /∈ L ∪ U .

4 if −u1 � s+ p⋆ � u1 then

5 Update s = s+ p⋆;

6 Set w = HT (y −Hs);

7 if wi ≤ 0 for all i ∈ L and wi ≥ 0 for all i ∈ U then

8 Optimal solution is found and stop;

9 else

10 Compute t = argmaxi∈L∪U |wi|;
11 Remove t from L or U ;

12 end

13 else

14 Compute αi for all i /∈ L ∪ U ,

αi =



























(u− si)/p
⋆
i , if p⋆i > 0

−(u+ si)/p
⋆
i , if p⋆i < 0

∞, if p⋆i = 0.

15 Solve α = mini/∈L∪U αi, and set α as the objective and i⋆ as the

minimizer.

16 Update s = s+ αp⋆;

17 Update L = L ∪ {i⋆} if si⋆ = −u and U = U ∪ {i⋆} if si⋆ = u;

18 end

19 until some stopping criteria are satisfied ;

output: s
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Algorithm 3.3: Removing the jth column

1 Permute column j and row j of B to the last column and row, receptively;

2 Partition B =





B11 b12

bT12 b22



 ;

3 Set (H̄T H̄)−1 = B11 − b12b
T
12/b22;

Algorithm 3.4: Inserting a column to position j

1 a12 = H̄T
0 h̄;

2 u = A−111 a12;

3 b22 = 1/(h̄T h̄− uTa12);

4 b12 = −b22u;
5 B11 = A−111 + b22u

Tu;

6 (H̄T H̄)−1 =





B11 b12

bT12 b22



;

7 Permute column j and row j of (H̄T H̄)−1 to the last column and row,

respectively.
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Chapter 4

Vector Perturbation with Per-antenna

Power Constraint

4.1 Introduction

In this chapter, we consider the downlink scenario where the base station

broadcasts different information to different users simultaneously. The non-

cooperative nature among users in multiuser communication means that the

base station must carefully design its transmitting signal to cancel multiuser

interference. Vector perturbation [13, 39] is a promising technique to achieve

the sum capacity of the broadcast channel. One salient feature of vector per-

turbation is that the burden of signal processing goes with the base station and

the users only require simple processing such as modulo operation and scalar

quantization. Such an advantage of vector perturbation is very desirable in

mobile device communications where the battery life is a great concern. From

the signal processing point of view, vector perturbation absorbs two ingredients

from the channel inversion method [80] and Tomlinson-Harashima precoding

(THP) [81,82]. The first one is that vector perturbation inverses the channel ef-

fect at the base station so that multiuser interference is totally eliminated. The

second ingredient is the perturbation technique originated from THP. A per-

turbation vector is deliberately added to the information vector for minimizing

the power of the unnormalized transmitting signal, which results in significantly

reduced effective noise at the users. In this thesis, we will name the vector
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perturbation scheme of [13,39] as conventional vector perturbation (CVP) [83].

However, the practical implementation of CVP is hindered by its very high

per-antenna power. The CVP design only considers a total power constraint and

thus may allocate a significant portion of the total power to a single antenna.

It is difficult for the analog frontend of each antenna to meet such a high per-

antenna power requirement. When the per-antenna power exceeds the operating

region of the analog frontend, signal distortion or even signal clipping may occur

which significantly degrades the system performance. Such a problem can be

handled by introducing power back-off, but this in turn will degrade the error

rate performance.

In this chapter, we consider vector perturbation with per-antenna power

constraint (VP-PAPC). We add explicitly a PAPC into the CVP problem so

that a strict upper bound on the maximum per-antenna power is guaranteed.

We show that the resulting VP-PAPC problems, which have more stringent

constraints than CVP, are always feasible and the corresponding transmission

schemes achieve the same diversity as CVP. We develop fast algorithm to handle

the VP-PAPC problem by using the LDR and LRA-DF techniques. Simulation

results show that VP-PAPC schemes can effectively limit the per-antenna power,

thereby avoiding signal clipping and reducing power back-off in CVP.

The rest of this chapter is organized as follows. We introduce the system

model and vector perturbation in Section 4.2. Then, in Section 4.3, we pro-

pose the VP-PAPC formulation under the instantaneous power normalization

assumption and investigate its property. This is followed by Section 4.4 where

we consider VP-PAPC with short-term power normalization and propose LDR

fast approximations. We then use simulation results to demonstrate the per-

formance of the proposed methods in Section 4.5. Section 4.6 summarizes this

chapter.
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4.2 Background

4.2.1 System Model

We consider a multiuser MISO broadcast system model. A base station that

is equipped with N antennas serves M ≤ N single-antenna users. The base

. . .

An    -antenna base station  

User 1

User 

Figure 4.1: An N -antenna base station transmits to M single-antenna users.

station sends the information vector s ∈ SM simultaneously to all the users

with sm intended to the mth user. The receive signal of the mth user is

ym = hH
mx+ νm, (4.1)

where hm ∈ C
N is the channel of the mth user, νm the noise at the mth user,

and x the transmitting signal of the base station. By stacking y = [y1, . . . , yM ]
T ,

ν = [ν1, . . . , νM ]
T , and H = [h1, . . .hM ]

H , we have a compact representation of

the signal model

y = Hx+ ν, (4.2)

where the noise ν is assumed to follow CN (0, σ2
νI). The transmission signal x

is subject to the total power constraint

‖x‖22 ≤ PT, (4.3)

where PT is the available total power budget. The goal of the precoder is to

transmit reliably the information vector s to the users by designing the trans-

mitting signal x according to s, the channel H , and the total power budget

PT.

58



Chapter 4. Vector Perturbation with Per-antenna Power Constraint

4.2.2 Channel Inversion and Vector Perturbation

In the multiuser scenario, the lack of cooperative processing of the received

signals makes it impossible to cancel multiuser interference without a proper

precoding at the base station. One possible precoding strategy that can com-

pletely eliminate multiuser interference is the channel inversion method [80]. In

channel inversion method, the transmitting signal takes the following form

x =

√

PT

γ
d, (4.4a)

d = H†s, (4.4b)

whereH† = HH(HHH)−1 ∈ C
N×M is the Moore-Penrose pseudo-inverse of the

channel H , and γ is a power normalization factor that makes the transmitting

signal x satisfy the total power constraint. Here, x and d are named as normal-

ized and unnormalized transmitting signals respectively, as x alway satisfies the

total power constraint while d may not. Due to channel inversion, the receive

signal of the mth user can be written as

ym = hH
mx+ νm =

√

PT

γ
sm + νm. (4.5)

The mth user, only based on its own received signal ym, can detect the in-

tended symbol sm without multiuser interference. The detection can be done

by quantizing

s̃m =

√

γ

PT

ym = sm +

√

γ

PT

νm (4.6)

with respect to the constellation S. The problem of channel inversion is that

when H is close to being ill-conditioned, the unnormalized transmitting signal

d has a high power, i.e. ‖d‖22 is large. In this case, in order to ensure the

power constraint (4.3) on the normalized transmitting signal x is met, the power

normalization factor γ must be large. However, as seen in (4.6), a large γ

would significantly increase the effective noise power at the user, rendering the

detection more vulnerable to noise.

The conventional vector perturbation (CVP) technique proposed by Peel,

Hochwald and Swindlehurst in [13, 39] can significantly alleviate the problem

59



Chapter 4. Vector Perturbation with Per-antenna Power Constraint

encountered in the channel inversion method. Similar to the channel inversion

method, CVP uses channel inversion as a means to cancel the multiuser inter-

ference. The salient feature of CVP is the use of the perturbation technique

which originates from Tomlinson-Harashima precoding (THP) [81,82]. In CVP,

the transmitting signal x and d take the following form

x =

√

PT

γ
d,

d = H†(s+ δl),

(4.7)

where δ is a constant and l ∈ G
M is a perturbation vector to be determined.

Here, the perturbation vector l belongs to the set of Gaussian numbers GN =

(Z+jZ)N , which means that the real and imaginary parts of l are integers. The

constant δ is usually chosen such that conv(S + δl) is non-overlapping for all

l ∈ G
N , where conv(·) denotes the convex hull. For example, for the (u + 1)2-

QAM constellation (u is a positive old number), δ is chosen as δ = 2(u+ 1).

From the discussion of the channel inversion method, we have seen that the

performance bottleneck arises from the large power of the unnormalized trans-

mitting signal. To deal with this problem, CVP finds an optimal perturbation

vector that minimizes the power of the unnormalized transmitting power, i.e.,

(CVP) min
d,l

‖d‖22

s.t. d = H†(s+ δl),

d ∈ C
N , l ∈ G

M .

(4.8)

The CVP problem is an integer least square problem which can be solved opti-

mally by the sphere decoding algorithms [12,16] or approximately by the lattice

reduction aided methods [29, 63].

At the mth user, the receive signal after scaled by
√

γ/PT is given by
√

γ

PT

ym = sm + δlm +

√

γ

PT

νm. (4.9)

The effect of the perturbation lm can be canceled by applying the modulo oper-

ation

s̃m =

√

γ

PT

ym mod δ =

(

sm +

√

γ

PT

νm

)

mod δ. (4.10)
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A decision operation then follows to quantize s̃m to the constellation S. The

effective noise power γ(σ2
ν/PT) is much smaller than that of the channel inversion

method, as power normalization factor γ is small due to the minimization of the

power of the unnormalized transmitting signal. It is shown in [83,84] that CVP

can achieve the full transmit diversity N over the i.i.d. Gaussian fading channel.

4.2.3 Per-antenna Power Constraint and p-Sphere Encoder

In practical multi-antenna system implementations, each antenna has its

own analog frontend including D/A conversion and power amplifier. The analog

frontend has its own linear operation region. If the transmitting signal input

into the analog frontend has a very high power, the output signal will suffer

from nonlinear amplification or even signal clipping. Thus, it would be desirable

to constrain the per-antenna power in practice. Per-antenna power constraint

(PAPC) is also motivated by distributed antenna systems where the antennas

of a system are geographically separated and are powered by different power

supplies. However, as we can see from (4.7) and (4.8), CVP does not have any

control on the per-antenna power. As a result, CVP occasionally puts much

of its total available power to a single antenna. In [46] the p-sphere encoder is

proposed to reduce the per-antenna power. The p-sphere encoder, instead of

minimizing the ℓ2-norm of the unnormalized signal as done in CVP, minimizes

the ℓp-norm (p ≥ 2).

(p-sphere encoder) min
d,l

‖d‖2p

s.t. d = H†(s+ δl),

d ∈ C
N , l ∈ G

M .

(4.11)

As a numerical result in [46], the p-sphere encoder can reduce the probability of

a large per-antenna power. However, the p-sphere encoder does not guarantee

a worst-case per-antenna power consumption, as it does not have an explicit

control on the per-antenna power.

In this thesis, we consider the following explicit per-antenna power constraint

|x|2 � αPT, (4.12)
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where | · |2 denote the element-wise square of absolute value, and α � 0 is a

coefficient that determines the fraction of maximum allowable per-antenna power

to the total power PT. This explicit PAPC can make sure that the per-antenna

power budget is strictly satisfied. We assume that

‖α‖1 ≥ 1 (4.13a)

‖α‖∞ ≤ 1 (4.13b)

where (4.13a) ensures that the total power constraint (4.3) is not redundant and

(4.13b) guarantees that not every per-antenna power constraints in (4.12) are

redundant.

4.2.4 Power Normalization

Since the invention of CVP, there has been an undesirable assumption on

CVP. In many existing works such as [13,85–89], the power normalization factor

γ is chosen as

γ = ‖d‖22. (4.14)

This is known as instantaneous power normalization. With this choice of γ, the

total power constraint is always met. However, the power normalization factor

γ, which is essential for the receive signal detection, depends on the information

vector s. This means that the base station needs to broadcast γ to all users via

other communication link other than CVP itself. This assumption may not hold

true in practice.

A more practical assumption is the short-term power normalization wherein

a block fading channel is considered. Suppose that the channel is static for a

block of T time slots and in each time slot the unnormalized transmitting signal

is given by dt. One possible choise of the power normalization factor γ is

γ = max
t=1,...,T

‖dt‖22. (4.15)

The factor γ is then used to normalize all unnormalized transmitting signal dt for

t = 1, . . . , T . As the whole block of transmission, only one normalization factor

γ is required, it can be sent to all users at the beginning of each transmission

block.
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In the following section, we will propose vector perturbation with per-antenna

power constraint (VP-PAPC) formulations based on the instantaneous power

normalization. Then, in Section 4.4, we extend the VP-PAPC formulation to

the short-term power normalization assumption.

4.3 Vector Perturbation with Per-antenna Power Con-

straint with Instantaneous Power Normalization

4.3.1 Problem Formulation

In this subsection, we will propose the vector perturbation formulation with

per-antenna power constraint.

We consider the following form of transmitting signal

x =

√

PT

γ
d, (4.16a)

d = H†(s+ δl) + σH⊥u, (4.16b)

where H⊥ ∈ C
M×(N−M) is an orthogonal basis of the orthogonal complement

of R(H†), σ > 0 a parameter, and u ∈ G
N−M a variable to be determined.

Compared with the CVP signal (4.7), we can see that the augmented CVP

signal (4.16b) has an additional term σH⊥u. As we will see, this term is an

important augmentation of the CVP signal and plays an important role in the

VP-PAPC formulation.

As the power normalization factor γ is proportional to the effective noise

power at the user, we try to minimize γ in the VP-PAPC formulation, specifically
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min
d,l,u

γ (4.17a)

s.t. γ = ‖d‖22, (4.17b)

|x|2 � αPT, (4.17c)

x =

√

PT

γ
d, (4.17d)

d = H†(s+ δl) + σH⊥u, (4.17e)

d ∈ C
N , l ∈ G

M ,u ∈ G
N−M , (4.17f)

where (4.17b) is due to the instantaneous power normalization (4.14), (4.17c)

is the per-antenna power constraint (4.12), and (4.17e) is the augmented CVP

signal (4.16b).

Substituting (4.17b) into (4.17a) and (4.17d) into (4.17c), we can eliminate

the variables γ and x in (4.17) and obtain the following equivalent problem is

obtained.

min
d,l,u

‖d‖22 (4.18a)

s.t. d = H†(s+ δl) + σH⊥u, (4.18b)

|d|2 � α‖d‖22, (4.18c)

d ∈ C
N , l ∈ G

M ,u ∈ G
N−M . (4.18d)

Problem (4.18), which has an additional PAPC (4.18c) compared to CVP (4.8),

is not a standard integer least square problem. The traditional sphere decod-

ing (SD) algorithm [12, 16] could not be used to solve (4.18). Inspired by [46],

we tailor-design an SD algorithm to solve (4.18); details can be found in Ap-

pendix 4.7.6.

The additional PAPC (4.18c) also raises an important question on the fea-

sibility of (4.18). While CVP (4.8) must be feasible, it is not clear whether

the VP-PAPC (4.18) is feasible or not. As we will see in the next section, the

VP-PAPC problem is indeed feasible under some mild condition. We also show

in the next subsection that VP-PAPC can achieve the same diversity order as

CVP.
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4.3.2 Feasibility and Diversity

In this subsection, we investigate the feasibility condition and the diversity

order of VP-PAPC.

Figure 4.2: A geometric interpretation of the VP-PAPC problem

In order to provide intuition on the structure of the VP-PAPC problem

(4.18), we illustrate in Fig. 4.2 an example of the feasible set of (4.18). The ma-

trices H† and H⊥ belong to C
2×1. For convenience of the following description,

let us denote the translated lattice corresponding to (4.18b) by

A =
{

d = H†s+ δH†l + σH⊥u | l ∈ G
M ,u ∈ G

N−M}

. (4.19)

and the PAPC set corresponding to (4.18c) by

V = {d | |d|2 � α‖d‖22}. (4.20)

Thus, the feasible solutions of (4.18) are given the by the intersection A ∩ V .
In Fig. 4.2, the blue region represents (part of) the set V and the orange dots
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represents (part of) the translated lattice A. Therefore, the feasible set is the set
of orange points inside the blue region, and the one that is closet to the origin

is the optimal solution of (4.18).

It can be seen from Fig. 4.2 that the translated lattice A lies in the whole

space C
2 and cannot be contained in any proper subspace, as the generator

matrix [δH†, σH⊥] of A is always of full rank. The PAPC set V , which occupies
a large part of the whole space CM , must contain some points of A. This means
that (4.18) is feasible. This intuition can be made rigorous and leads to the

following proposition regarding the feasibility of the VP-PAPC problem (4.18).

Proposition 4.1 Assume that ‖α‖1 > 1. Then, the VP-PAPC problem (4.18)

is feasible for any realization of channel H and information symbol s.

The proof is relegated to Appendix 4.7.2. Proposition 4.1 shows that the

VP-PAPC problem, which uses the augmented CVP signal (4.16b), is always

feasible under the mild condition ‖α‖1 > 1. However, if the CVP signal (4.7) is

used instead, the resulting formulation could be infeasible. To be precise, let us

consider the following problem

min
d,l

‖d‖22 (4.21a)

s.t. d = H†(s+ δl), (4.21b)

|d|2 � α‖d‖22, (4.21c)

d ∈ C
N , l ∈ G

M , (4.21d)

where the augmented CVP signal is replaced with CVP signal in (4.21b). We

have the following proposition.

Proposition 4.2 Suppose that the constellation S does not contain the origin.

If there exists an index N = {n1, . . . , nM} such that

VN = {d | |d|2 � α‖d‖22, dn = 0 for n /∈ N} (4.22)

contains only the origin, then there exists an H† ∈ C
N×M such that problem

(4.21) is infeasible for all s ∈ C
M .
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The proof is relegated to Appendix 4.7.3. To provide some intuition of Propo-

sition 4.2, we illustrate in Fig. 4.3 an example that (4.21) is infeasible. The

channel inversion H† ∈ C
2×1 is tall matrix. As H† is tall, the translated lattice

ACVP =
{

d = H†s+ δH†l | l ∈ G
M
}

corresponding to (4.21b) lies in a line but

not the whole space C2. Therefore, ACVP does not intersect V , which means that
(4.21) is actually infeasible.

Figure 4.3: A geometric interpretation of CVP problem with an additional PAPC.

One implication of Proposition 4.2 is that in the case of equal PAPC coeffi-

cients α1 = . . . = αM = α, if

α < 1/(N −M) (4.23)

holds true, then the premise of Proposition 4.2 is satisfied and thus (4.21) can

be infeasible. Therefore, for the CVP signal working with an additional PAPC,

a stringent PAPC requirement (α is small) and the idea of using a large number

of antenna to serve a few users (N−M is small) are conflicting. In contrast, the

augmented CVP signal always work with any numbers of antennas and users.
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Next, we turn to the diversity aspect of VP-PAPC. The diversity of a pre-

coding method is defined as

d = − lim
SNR→∞

log Pr{ŝ 6= s}
log SNR

, (4.24)

where SNR = PT/σ
2
ν and ŝ is the decision at the users. The diversity order

d is the asymptotic slope of the SER curve in a log-log scale and describes

how fast the SER decays. It is shown in [84] that under i.i.d. Gaussian fading

channels CVP achieves a diversity order of dCVP = N , which is the highest

possible diversity for an N -antenna base station. As VP-PAPC has a higher

unnormalized transmitting signal and thus a higher power normalization factor

γ than CVP due to the additional PAPC (4.18c), the VP-PAPC formulation

could have a smaller diversity than CVP. Surprisingly, it can be shown that

VP-PAPC achieves the same diversity N as CVP.

Proposition 4.3 Suppose that ‖α‖1 > 1 and that each element of H fol-

lows an i.i.d.circular complex Gaussian distribution with unit variance and zero

mean. Then, VP-PAPC under the instantaneous power normalization assump-

tion achieves a diversity of N .

The proof is inspired by [83, 84] is relegated to Appendix 4.7.4. As VP-PAPC

and CVP have the same diversity, it would be expected that the SER of VP-

PAPC would not degraded seriously compared to that of CVP. This will be

demonstrated by numerical results in Section 4.5.

4.4 Vector Perturbation with Per-antenna Power Con-

straint with Short-term Power Normalization

4.4.1 Problem Formulation

In this subsection, we consider VP-PAPC under the short-term power nor-

malization assumption. The channel H is assumed to be fixed within a block

of T time slots. In the tth time slot, the base station transmits information
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symbols st by the augmented CVP signal

dt = H†st + δH†lt + σH⊥ut

xt =

√

PT

γ
dt

(4.25)

for t = 1, . . . , T . The total and per-antenna power constraint at each time slots

are given by

‖xt‖22 ≤ PT,

|xt|2 � αPT

(4.26)

for t = 1, . . . , T . Then, the VP-PAPC problem under the short-term power

normalization assumption can be formulated as

min
{lt,dt,ut}Tt=1,γ

γ

s.t. ‖xt‖22 ≤ PT,

|xt|2 � αPT,

xt =

√

PT

γ
dt,

dt = H†st + δH†lt + σH⊥ut,

dt ∈ C
N , lt ∈ G

M , ut ∈ G
N−M , t = 1, . . . , T.

(4.27)

which can be simplified as

min
{lt,dt,ut}Tt=1,γ

γ

s.t. ‖dt‖22 ≤ γ,

|dt|2 � γα,

dt = H†st + δH†lt + σH⊥ut,

dt ∈ C
N , lt ∈ G

M , ut ∈ G
N−M , t = 1, . . . , T.

(4.28)

We can see that (4.28) is always feasible. Regarding the diversity, we have the

following proposition.

Proposition 4.4 Suppose that each element of H follows an i.i.d.circular com-

plex Gaussian distribution with unit variance and zero mean. VP-PAPC under

the short-term power normalization assumption achieves a diversity of N .
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The proof is relegated to Appendix 4.4.

4.4.2 Lagrangian Dual Relaxation Approximation

In this subsection, we develop efficient approximation to (4.28) by using the

Lagrangian dual relaxation (LDR) proposed in Chapter 3.

Problem (4.28) involves seemingly a joint optimization of all perturbation

variables within the whole block. However, it is actually separable. We can

solve (4.28) by separately solving

min
lt,dt,ut,γt

γt (4.29a)

s.t. ‖dt‖22 ≤ γt, (4.29b)

|dt|2 � γtα, (4.29c)

dt = H†st + δH†lt + σH⊥ut, (4.29d)

dt ∈ C
N , lt ∈ G

M , ut ∈ G
N−M , (4.29e)

for t = 1, . . . , T . Let l⋆t , d
⋆
t , u

⋆
t , and γ⋆

t denote an optimal solution of (4.29).

Then, an optimal solution of (4.28) is given by {l⋆t ,d⋆
t ,u

⋆
t}Tt=1 and

γ⋆ = max
t=1,...,T

γ⋆
t .

Problem (4.29) can be solved exactly by the modified sphere encoder de-

scribed in Appendix 4.7.6. However, as we will see in the simulations, the mod-

ified sphere encoder has a very high complexity due to the integer programming

nature of (4.29). Here, we focus on deriving efficient approximate algorithm

by applying the LDR approach. To proceed, let us denote the dual variables

corresponding to (4.29b) and (4.29c) by ωt ∈ R+ and λt ∈ R
N
+ . Then, a partial

Lagrangian function of (4.29) can be written as

L = γt + ωt(‖dt‖22 − γt) + λT
t (|dt|2 − γtα)

= (1− ωt − λTα)γt + ‖D(
√

ωt1+ λt)dt‖22
(4.30)
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The dual problem by definition is given by

max
ωt≥0,λt�0























min
lt,dt,ut

(1− ωt − λT
t α)γt + ‖D(

√

ωt1+ λt)dt‖22

s.t. dt = H†st + δH†lt + σH⊥ut,

dt ∈ C
N , lt ∈ G

M , ut ∈ G
N−M .























(4.31)

To prevent the inner minimization from being unbounded below, it is required

that

1− ωt − λT
t α = 0.

Hence, (4.31) is equivalently written as

max
ωt,λt

ϕ(ωt,λt)

s.t. ωt ≥ 0,λt � 0,

1− ωt − λT
t α = 0

(4.32)

with the dual function

ϕ(ωt,λt) = min
lt,dt,ut

‖D(
√

ωt1+ λt)dt‖22

s.t. dt = H†st +H†lt + σH⊥ut,

dt ∈ C
N , lt ∈ G

M , ut ∈ G
N−M .

(4.33)

The projected subgradient (PS) method is used to handle (4.32). For the

iterate (w
(k)
t ,λ

(k)
t ) at the kth iteration of the PS method, the subgradient is

given by

g
(k)
t =





g
(k)
ωt

g
(k)
λt



 =





‖d(k)
t ‖22

|d(k)
t |22.



 (4.34)

where d
(k)
t denotes an optimal solution of (4.33) at (w

(k)
t ,λ

(k)
t ). The next iterate

(w
(k+1)
t ,λ

(k+1)
t ) is updated according to





ω
(k+1)
t

λ
(k+1)
t



 = PF









ω
(k)
t

λ
(k)
t



+ βk





g
(k)
ωt

g
(k)
λt







 , (4.35)

where βk is the predefined step-size and PF(·) denotes the projection onto the
feasible set

F = {(ωt,λt) | ωt ≥ 0,λt � 0, 1− ωt − λT
t α = 0}.
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The computation of this projection operator PF is a water-filling-type problem

and has a semi-closed-form solution; details can be found in Appendix 4.7.7.

The dual function (4.33) is a standard integer least square problem which can

be solved by a sphere decoder optimally or by the LRA-DF [29,30] approximately

and efficiently. In this thesis, we adopt the LRA-DF solver for complexity re-

duction. The resulting precoder is named as VP-PAPC LDR LRA-DF.

4.5 Simulations

In this section, we use simulations to demonstrate the performance of the pro-

posed VP-PAPC methods. The settings are described as follows. The channel

matrix H follows an element-wise i.i.d. complex circular Gaussian distribution

with zero mean and unit variance. The information symbols s are drawn in an

i.i.d. fashion from the standard (u + 1)2-QAM constellation set, where u is an

odd integer. Unless otherwise specified, we use 64-QAM constellation. The SNR

is defined as SNR = PT/σ
2
ν .

The benchmarked algorithms are the p-sphere encoder, CVP and its LRA-

DF approximation [30]. For the (u+1)2-QAM constellation, the CVP parameter

are δ = 2(u + 1) and σ = δ/10. We choose p = 10 for the p-sphere encoder.

In the short-term power normalization, the block length is T = 100. For the

PS method for the VP-PAPC LDR LRA-DF method, we set the number of

maximum iterations as Kmax = 5 and the step size as βk = 0.01/k. In the case

of instantaneous power normalization, the power normalization factors γ of all

precoding methods are chosen according to (4.14). In the case of short-term

power normalization, for all precoding methods γ is chosen as

γ = max
t=1,...,T

{‖dt‖22, ‖D(
√
α)−1dt‖2∞} (4.36)

so that both the total and per-antenna power constraints are met. Comparing

to the choice of the power normalization factor γ in (4.15), the one in (4.36)

introduces additional power back-off to avoid signal clipping. We will consider

VP-PAPC under the instantaneous power normalization assumption in the first

subsection and then short-term normalization assumption in the second subsec-
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tion.

4.5.1 Instantaneous Power Normalization
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Figure 4.4: Performance comparison under the instantaneous power normalization

assumption. (M,N) = (12, 12). αn = 0.2 for n = 1, . . . , N .

In Fig. 4.4, we present the cumulative distribution of the per-antenna power
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and SER performance of various precoding methods. The number of users and

transmitting antennas are (M,N) = (12, 12). The PAPC coefficients αn are

the same and are equal to 0.2. Fig. 4.4(a) shows the distribution of the power

at the first transmitting antenna normalized by the total power, i.e. |x1|2/PT.

Note that the results in this figure also represent the distribution of all other

antennas, as the distributions of transmitting signals at all antennas are the

same. It can be seen that CVP occasionally puts much power into a single

antenna. In extreme cases, more than 50% of the total power is consumed by

one antenna. In addition, CVP violates the PAPC α = 0.2 with probability

around 80%. The p-sphere encoder has a lower per-antenna power than CVP.

However, it still violates the PAPC with probability around 20%. The VP-PAPC

method, which has an explicit PAPC, never puts more than 20% of the total

power to one antenna. This results demonstrates the effectiveness of VP-PAPC

in reducing the per-antenna power of CVP.

In order to investigate the impact of signal clipping to the SER, we introduce

the following clipping function

clippingη(ae
jθ) =











aejθ, if |a| ≤ η,

ηejθ, if |a| > η.

The transmitting signal x̃i is given by x̃n = clipping√αnPT
(xn) for n = 1, . . . , N ,

where xn is original transmitting signal of CVP, p-sphere or VP-PAPC. This

means that when the transmitting signal has a large power, the signal is clipped

to a maximum power αnPT without affecting the signal phase.

Fig. 4.4(b) shows the SER result of VP-PAPC. It can be seen that when

signal clipping is not applied, CVP, p-sphere encoder and VP-PAPC have very

similar SER performances; CVP is 0.5dB better than p-sphere encoder and

VP-PAPC. However, when signal clipping is present, both CVP and p-sphere

encoder exhibits error floors. The error floors of CVP and p-sphere encoder are

10−1 and 10−3, respectively. As VP-PAPC never violates the strict PAPC, signal

clipping has no impact on VP-PAPC. The results in this figure also confirm that

VP-PAPC achieves the same diversity as CVP.

Fig. 4.5 shows the results of the unequal PAPC coefficients case. The settings
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Figure 4.5: Performance comparison under the instantaneous power normalization

assumption. (M,N) = (12, 12). αn = 0.05 for n = 1, . . . , 6 and αn = 0.25 for

n = 7, . . . , 12.

except the PAPC coefficient α are the same as those of Fig. 4.4; the coefficient

α is chosen as αn = 0.05 for n = 1, . . . , 6 and αn = 0.25 for n = 7, . . . , 12,

i.e. the first half of the transmitting antennas has a PAPC coefficient 0.05 and
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the second half 0.25. Fig. 4.5(a) shows the distributions of the powers at the

first and seventh transmitting antennas of VP-PAPC which have PAPC of αn

equal to 0.05 and 0.25, respectively. It can be seen that VP-PAPC can strictly

meet this PAPC requirement. Again, both CVP and p-sphere encoder frequently

violate the PAPC requirement. In fact, for the first six antennas which has a

very stringent PAPC requirement of αn = 0.05, CVP and p-sphere encoder never

satisfy the PAPC in all simulated trials. This serious violation of PAPC would

lead to heavy signal clipping, as confirmed by the SER result in Fig. 4.5. It can

be seen from Fig. 4.5 that when clipping is present, CVP and p-sphere encoder

do not work at all. In contrast, VP-PAPC only has a 3dB loss compared to

CVP without clipping.
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Figure 4.6: Average number of floating point operations (FLOPs) under instantaneous

power normalization. αn = 2/N for n = 1, . . . , N .

We investigate the complexity of solving the VP-PAPC problem in Fig. 4.6

where the settings are M = N and all PAPC coefficients are the same and are

equal to 2/N . It can be seen that VP-PAPC can be much faster than the p-

sphere encoder. The computational advantage of VP-PAPC is more significant

at larger problem sizes. It can be 10 times faster than the p-sphere encoder at

problem size (N,M) = (14, 14). CVP is less computationally demanding than
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both p-sphere encoder and VP-PAPC.

From all the observations above, we conclude that under the instantaneous

power normalization assumption, VP-PAPC can strictly satisfy the PAPC and

thus avoid signal clipping. The SER performance of VP-PAPC can be closed to

CVP without clipping. The complexity of VP-PAPC can be significantly lower

than that of p-sphere encoder.

4.5.2 Short-term Power Normalization

Fig. 4.7 shows the SER performance of VP-PAPC and its LDR LRA-DF ap-

proximation under the short-term power normalization assumption. Fig. 4.7(a)

shows the case that all PAPC coefficients αn are equal to 0.2. The settings

are the same as those in Fig. 4.4. Note that CVP and p-sphere encoder will

not suffer from signal clipping due to the choice of power normalization fac-

tor γ according to (4.36). But the power back-off due to (4.36) leads to some

performance degradation of p-sphere encoder and CVP. One can observe that

p-sphere encoder and CVP are worse than VP-PAPC by 1dB and 3dB, respec-

tively. The LRA-DF approximation versions of CVP and VP-PAPC have some

performance loss compared to their exact counterparts; the losses are 3dB. VP-

PAPC LDR LRA-DF is 3dB better than CVP LRA-DF. Note that there is no

efficient approximation of the p-sphere encoder in the literature. In Fig. 4.7(b)

we change the PAPC coefficients to αn = 0.05 for n = 1, . . . , 6 and αn = 0.25

for n = 7, . . . , 12. It can be observed that the performance advantages of VP-

PAPC over p-sphere encoder and CVP are 5dB and 7dB respectively, which are

greater than those in the equal PAPC coefficients case. Moreover, VP-PAPC

LDR LRA-DF has a 5dB gain compared to CVP LRA-DF.

In Fig. 4.8, we show the result in a large problem size (M,N) = (40, 40),

where exact CVP, p-sphere encoder, and VP-PAPC are too computationally

demanding. In Fig. 4.8(a) the all PAPC coefficients αn are equal to 0.1 and in

Fig. 4.8(b) the first half of PAPC coefficients are 0.01 and the remaining half

are 0.05. The observations are similar to those in Fig. 4.8. The performance gap

between VP-PAPC LDR LRA-DF and CVP LRA-DF is 5dB in unequal PAPC
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Figure 4.7: Symbol error rate performance under the short-term power normalization

assumption. (M,N) = (12, 12). (a) αn = 0.2 for n = 1, . . . , 12. (b) αn = 0.05 for

n = 1, . . . , 6 and αn = 0.25 for n = 7, . . . , 12.

coefficients case, which is greater than the 3dB gap in equal PAPC coefficients

case.

Fig. 4.9 presents the the average number of FLOPs of various precoding
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Figure 4.8: Symbol error rate performance under the short-term power normalization

assumption. (M,N) = (40, 40). (a) αn = 0.1 for n = 1, . . . , 40. (b) αn = 0.01 for

n = 1, . . . , 20 and αn = 0.05 for n = 21, . . . , 40.

methods. It can be seen that compared with the exact CVP and VP-PAPC,

CVP LRA-DF and VP-PAPC LDR LRA-DF have a very low complexity and

thus can be used in large antenna array systems. VP-PAPC LDR LRA-DF is
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Figure 4.9: Average number of (FLOPs) under short-term power normalization. αn =

2/N for n = 1, . . . , N .

slower than CVP LRA-DF due to the iteration nature of the LDR approach.

From the observations above, we conclude that under the short-term power

normalization assumption, VP-PAPC outperforms both CVP and p-sphere en-

coder. CVP LRA-DF and VP-PAPC LDR LRA-DF are much more efficient

than the exact CVP, p-sphere encoder and VP-PAPC. VP-PAPC LDR LRA-

DF can be better than CVP LRA-DF by more than 3dBs.

4.6 Summary

In this chapter, we considered the per-antenna power constrained vector per-

turbation under the instantaneous and short-term power normalization assump-

tions. We show that the formulated VP-PAPC can achieve full transmit di-

versity under both assumptions. A modified sphere encoder is used to solve

the VP-PAPC problems. We developed a fast approximation algorithm for the

short-term VP-PAPC by using the LDR and LRA-DF techniques. Simulation

results reveal that the performances of VP-PAPC are very promising.
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4.7 Appendix

4.7.1 Lemma 4.1

Let Br(do) denotes a closed ball with center do and radius r, i.e. Br(do) =

{d ∈ C
N | ‖d− do‖2 ≤ r}. Then, we have the following lemma.

Lemma 4.1 Suppose that ‖α‖1 > 1 and r > 0. There exists a vector do such

that Br(do) ⊂ V ∩ Bcr(0), where c is a constant depending on α only.

Let us consider the vector do in the form of do = t
√
α with t ≥ 0, where

√
α

denotes the element-wise square root. Consider the following feasibility problem

find t

s.t. Br(t
√
α) ⊂ V ,

t ≥ 0.

(4.37)

If we can find a feasible t⋆ in the form of t⋆ = c′r for some constant c′ depending

on α only, then

Br(d0) ⊂ V

with d0 = c′r
√
α. In addition, it is always true that

Br(d0) = Br(c
′r
√
α) ⊂ Bcr(0)

with c = c′‖√α‖2 + 1. Hence, we have

Br(do) ⊂ V ∩ Bcr(0)

with c depending on N and α only, and thus complete the proof.

In the remaining of the proof, our goal is to find a t⋆ = c′r that is feasible

to (4.37). Note that we can arbitrarily tighten (4.37) as long as the resulting

problem still has a feasible solution t⋆ = c′r. We first tighten (4.37) as follows

find t

s.t. Br(t
√
α) ⊂ V

t ≥ r/‖
√
α‖2.

(4.38)
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To further tighten (4.38), let us rewrite rewrite V as

V = {d ∈ C
N | |d|2 � α‖d‖22}

= {d ∈ C
N | 0 ≥ ‖D−1(

√
α)d‖2∞ − ‖d‖22}.

Then the first constraint of (4.38) is the same as

0 ≥







max
d∈CN

‖D−1(
√
α)d‖2∞ − ‖d‖22

s.t. ‖d− t
√
α‖22 ≤ r2.






,

which can be tightened by

0 ≥







max
d∈CN

‖D−1(
√
α)d‖2∞

s.t. ‖d− t
√
α‖22 ≤ r2






−







min
d∈CN

‖d‖22

s.t. ‖d− t
√
α‖22 ≤ r2






. (4.39)

Let us derive a closed-form solution of this constraint. After changing the vari-

able z = d− t
√
α, the first optimization problem of (4.39) becomes

max
z∈CN

‖t1+D−1(
√
α)z‖2∞

s.t. ‖z‖22 ≤ r2.

By noting that t is positive, the optimal objective value is given by

(

t+
r√
αmin

)2

where αmin = minn=1,...,N αn. Similarly, the second optimization problem of

(4.39) is rewritten as

min
z∈CN

‖z + t
√
α‖22

s.t ‖z‖22 ≤ r2.

By noting that t ≥ r/‖√α‖2, we obtain the optimal objective value

(t‖
√
α‖2 − r)2.

Thus, (4.39) is the same as

0 ≥
(

t+
r√
αmin

)2

− (t‖
√
α‖2 − r)2

=(1− ‖
√
α‖22)t2 + 2(1/

√
αmin + ‖

√
α‖2)rt+ (1/αmin − 1)r2.
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For convenience, let

a = 1− ‖
√
α‖22

b = 2(1/
√
αmin + ‖

√
α‖2)r

d = (1/αmin − 1)r2

denote the coefficients of the quadratic, linear and constant terms, respectively.

Then, problem (4.38) is tightened by

find t

s.t. at2 + bt+ d ≤ 0,

r/‖
√
α‖2 ≤ t.

(4.40)

By the assumption that ‖α‖1 > 1, we have a < 0. By noting that a < 0, b > 0

and d > 0, the smallest feasible solution is

t⋆ = max

{

r/‖
√
α‖2,

√

b2 − 4ad

4a2
− b

2a

}

. (4.41)

Substituting a, b and d into (4.41), t⋆ can be written as t⋆ = c′r, where c′ is given

by c′ = max
{

1/‖√α‖2,
√

(1/αmin+‖
√
α‖2)2−(1−‖

√
α‖22)(1/αmin−1)

(1−‖√α‖22)2
− (

1/
√
αmin+‖

√
α‖2

1−‖√α‖22
)
}

.

It can be seen that c′ depends on α only. Thus, we complete the proof.

4.7.2 Proof of Proposition 4.1

Let us denote G = [δH†, σH⊥] and z = [lT ,uT ]T . The covering radius of a

lattice L(G) = {Gz | z ∈ G
N} is defined as

ζ(G) = max
a∈CN

min
z∈GN

‖G(a− z)‖2. (4.42)

From the definition of ζ(G), it can be seen that ζ(G) is the maximum distance

from any point in the subspace R(G) to the lattice L(G). As G is square and

of full rank, R(G) is the same as the entire space RN . Thus, ζ(G) is simply the

distance from any point in the space to L(G). Then, for any point d′0 ∈ R
N ,

the ball Bζ(G)(d
′
0) must contain at least one point of the lattice L(G).

On the other hand, by Lemma 4.1 there exists a point do such that

Bζ(G)(do) ⊂ V ,
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because the premise ‖α‖1 > 1 is satisfied. Then, by setting d′o = d0 −H†s, we

known that Bζ(G)(d0−H†s) contains at least one point of L(G). Let us denote
this point by Gz0 with z0 = [sT0 ,u

T
0 ]

T ∈ G
N . Then we have

Gz0 +H†s ∈ Bζ(G)(d0) ⊂ V ,

or equivalently

H†s+ δH†l0 + σH⊥u0 ∈ V .

Thereby, we complete the proof.

4.7.3 Proof of Proposition 4.2

Set H† as H† = [en1 , . . . , enM
], where enm

denotes the nmth unit vector.

Then it follows that

R(H†) ∩ V

={d | |d|2 � α‖d‖22, d = H†z, z ∈ C
M}

⊂VN
={0}.

(4.43)

Noting that ACVP belongs to R(H†), we have

ACVP ∩ V ⊂ {0}. (4.44)

As the parameter δ of CVP is chosen such that conv(S + δl) is non-overlapping

for every l ∈ G
N , we have that s + δl is nonzero for any s ∈ SM and l ∈ G

M .

Noting that H† is of full column-rank, it follows that the origin does not belong

to ACVP. Thus, we have the desired result that

ACVP ∩ V = ∅. (4.45)

4.7.4 Proof of Proposition 4.3

The proof is based on [84, 90]. By Lemma 4.1, it can be seen that the point

z0 = [l0,u0] in (4.12) in the proof of Proposition 4.1 can be chosen in a way

such that d0 = H†s+Gz0 satisfies

|d0|2 � α‖d0‖22
‖d0‖22 ≤ c2ζ(G).

(4.46)
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where G = [δH†, σH⊥] and ζ(G) is the covering radius of the lattice L(G). Let
Γ denote the objective value of the VP-PAPC problem (4.18). Then we have

Γ ≤ ‖d0‖22 ≤ c2ζ2(G). (4.47)

Let us compute ζ2(G) as follows.

ζ2(G) = max
a1∈CM ,a2∈CN−M

min
l∈GM ,u∈GN−M

∥

∥

∥

∥

∥

∥

[

δH†, σH⊥

]









a1

a2



−





l

u









∥

∥

∥

∥

∥

∥

2

= max
a1∈GM ,a2∈CN−M

min
l∈GM ,u∈GN−M

‖δH†(a1 − l) + σH⊥(a2 − u)‖22
(a)
= max

a1∈GM ,a2∈CN−M
min

l∈GM ,u∈GN−M
δ2‖H†(a1 − l)‖22 + σ2‖H⊥(a2 − u)‖22

= max
a1∈GM

min
l∈GM

δ2‖H†(a1 − l)‖22 + max
a2∈CN−M

min
u∈GN−M

σ2‖H⊥(a2 − u)‖22
(b)
=δ2ζ2(H†) + σ2(N −M)/2

(4.48)

where (a) is because H† and H⊥ are orthogonal; (b) is due to the fact that H⊥

is semi-unitary.

Using Theorem 2.2 in [91], we have

λ1(H
H)ζ(H†) ≤ N, (4.49)

where λ1(H
H) is the shortest nonzero point of the lattice L(HH) defined as

λ1(H
H) = min

z∈GN\{0}
‖HHz‖2.

Substituting (4.49) and (4.48) into (4.47), we obtain

Γ ≤ c2δ2N2λ−21 (HH) + c2σ2(N −M)/2. (4.50)

When SNR is large (SNR/2 ≥ c2σ2(N −M)), we have

Pr{Γ ≥ SNR}

≤Pr{c2δ2N2λ−21 (HH) + c2σ2(N −M)/2 ≥ SNR}

=Pr{c2δ2N2λ−21 (HH) + (c2σ2(N −M)/2− SNR/2) ≥ SNR/2}

≤Pr{c2δ2N2λ−21 (HH) ≥ SNR/2}.

(4.51)
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By [84, Lemma 3], there exists a constant β such that for any ǫ > 0 it holds that

Pr{λ1(H
H) ≤ ǫ} ≤ βǫ2N ·max{−(ln ǫ)N+1, 1}. (4.52)

Using (4.52) with ǫ =
√
2cδN/

√
SNR, (4.51) is bounded by

Pr{Γ ≥ SNR}

≤β(2c2δ2N2)NSNR−N ·max{−(ln
√
2cδN/

√
SNR)N+1, 1}.

(4.53)

It follows that

− lim
SNR→∞

Pr{Γ ≥ SNR}
log SNR

≥− lim
SNR→∞

(

log β(2c2δ2N2)N

log SNR
+
log SNR−N

log SNR
+
log(ln SNR)N+1

log SNR

)

=N

(4.54)

By [90, Lemma 1], the diversity d is equal to

d = − lim
SNR→∞

log Pr{Γ ≥ SNR}
log SNR

≥ N. (4.55)

Thus, we obtain a lower bound of the diversity order.

For the upper bound, let us denote ΓCVP by the objective value of the CVP

problem (4.8). As every optimal solution l⋆ of the VP-PAPC problem (4.18) is

feasible to the CVP problem (4.8), we have ΓCVP ≤ Γ. This implies that the

instantaneous noise of VP-PAPC has higher power than that of CVP. It follows

that VP-PAPC has a higher SER and thus lower diversity than CVP. It has

been shown in [84,90] that CVP achieves a diversity of N . It follows that

d ≤ N. (4.56)

We conclude by (4.55) and (4.56) that VP-PAPC achieves a diversity of N .

4.7.5 Proof of Proposition 4.4

Let use rewrite (4.29) as follows

γ⋆
t = min

lt,dt,ut,γt
max{‖dt‖22, ‖D(

√
α)−1dt‖2∞}

s.t. dt = H†st + δH†lt + σH⊥ut,

dt ∈ C
N , lt ∈ G

M , ut ∈ G
N−M .

(4.57)
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Consider the following problem

min
lt,dt,ut,γt

‖dt‖2

s.t. dt = H†st + δH†lt + σH⊥ut

dt ∈ C
N , lt ∈ G

M , ut ∈ G
N−M .

(4.58)

Let us denote the optimal solution by d̃⋆
t . As d̃

⋆
t is feasible to (4.57), we have

γ⋆
t ≤ max{‖d̃t‖22, ‖D(

√
α)−1d̃t‖2∞}.

On the other hand, it is easy to verify that the function

max{‖d‖2, ‖D(
√
α)−1d‖∞} is a norm. Therefore, by norm equivalence in

finite dimensional vector space, it follows that there exists some constant c > 0

such that

γ⋆
t ≤ max{‖d̃t‖22, ‖D(

√
α)−1d̃t‖2∞} ≤ c2‖d̃t‖22.

Then, we have

γ⋆ = max
t=1,...,T

γ⋆
t ≤ c2 max

t=1,...,T
‖d̃t‖22 ≤ c2ζ2([δH†, σH⊥]).

The rest of the proof is similar to that of Proposition 4.3 and is omitted for

brevity.

4.7.6 Modified Sphere Encoder

We consider the following form of integer program problem

min
d,z

f(d) (4.59a)

s.t. φ(d) � 0, (4.59b)

d = r −Gz, (4.59c)

z ∈ G
N ,d ∈ C

N . (4.59d)

where φ(d) is real vector-valued function. We assume that there are positive

constants c1 and c2 such that the objective function satisfies

c1‖d‖2 ≤ f(d) ≤ c2‖d‖2. (4.60)

Both (4.18) and (4.29) can be written in the form of (4.59); see (4.29b).
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We use the Schnorr-Euchner (SE) [16] to enumerate candidate solution of

(4.59) that satisfy (4.59c) and

‖d‖22 ≤ C2, (4.61)

where C > is a radius initially set as infinity. The rationale of using the SE

strategy is that SE strategy is a very efficient way of searching for candidate

solution that minimizes ‖d‖2. By (4.60), solutions that minimize ‖d‖2 also tend
to minimize f(d). Once the SE enumeration find a candidate solution z, we

first check the feasibility of z by checking (4.59b). If z is feasible and yields a

better objective value than the best candidate solution previously found, z is

kept as the best solution found. The radius C is updated according to

C =
1

c1
f(d)

with d = r−Hz, as the optimal solution d⋆ of (4.59) satisfies ‖d⋆‖2 ≤ 1
c1
f(d⋆) ≤

1
c1
f(d). The SE enumeration continues with the updated radius C. If z is not

feasible or its objective value is worse than that of the best candidate solution

previously found, z is discarded and SE enumeration continue with the same

radius C. The SE enumeration stops when all lattice points within the radius

(4.61) has been enumerated.

4.7.7 Projector Operator

The projection of a given vector (ω0
t ,λ

0
t ) onto the set F = {(ωt,λt) | ωt ≥

0,λt � 0, ωt + λT
t α = 1} is given by the optimal solution of the following

optimization problem

min
ωt,λt

1

2

∥

∥

∥

∥

∥

∥





ω0
t − ωt

λ0
t − λt





∥

∥

∥

∥

∥

∥

2

2

s.t. ωt ≥ 0, λt � 0, ωt + λT
t α = 1.

(4.62)

For convenience, let us denote by c = (ωt,λt), c
0 = (ω0

t ,λ
0
t ), and w = (1,α).

Then (4.62) is recast as

min
c

1

2

∥

∥c0 − c
∥

∥

2

2

s.t. c � 0, cTw = 1.

(4.63)
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This problem can be solved via solving the KKT condtions

c− c0 + θw − u = 0 (4.64a)

u � 0 (4.64b)

x � 0 (4.64c)

cTµ = 0 (4.64d)

wTc = 1, (4.64e)

where θ and u are the dual variables associated with the constraints of (4.63)

It can be seen from (4.64a) - (4.64d) that for a given θ, c is given by

c = [c0 − θw]+.

By (4.64e), the variable θ can be determined by solving

f(θ) , wT [c0 − θw]+ = 1. (4.65)

To solve this equation, let us assume that c01/w1 ≤ . . . ≤ c0N/wN . As f(θ) is a

continuous nonincreasing function and f(c0N/wN) = 0, there exists an index n′

such that

f

(

c0n′

wn′

)

≤ 1 < f

(

c0n′−1
wn′−1

)

.

This means that the solution θ⋆ of (4.65) belongs to the region

c0n′−1
wn′−1

< θ⋆ ≤ c0n′

wn′
.

Thus, we have

f(θ⋆) =
N
∑

n=n′

[c0n − θ⋆wn]
+wn +

n′−1
∑

n=1

[c0n − θ⋆wn]
+wn

=
N
∑

n=n′

(c0n − θ⋆wn)wn

= 1.

It follows that

θ⋆ =

∑N
n=n′ c

0
nwn

∑N
n=n′ w

2
n

.
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Chapter 5

Constant Envelope Precoding

5.1 Introduction

In the previous chapter, we have considered per-antenna power constraint in

vector perturbation where the maximum per-antenna power is bounded. Such

a form of maximum per-antenna power constraint can help prevent signal clip-

ping as well as increase the power efficiency of the power amplifier. However,

channel inversion and vector perturbation methods, even when the maximum

per-antenna power constraint is imposed, still have transmitting signals whose

instantaneous power varies according to the channel realization and information

vector. These transmitting signals can only be amplified by linear amplifiers that

can accommodate a large signal power variation. These highly linear power am-

plifiers are expensive to implement and have lower power efficiency. On the

other hand, the base station should be cost-effective and power efficient, as the

large power consumption by the communication industry has become a global

concern. The cost and power efficiency are particularly important issues in the

emerging massive MIMO system [11, 92, 93] where the base station could have

more than a hundred antennas.

In order to overcome the cost and power efficiency issues in power amplifiers,

some very recent works [47–49] advocate the concept of constant envelope (CE)

precoding in massive MIMO systems. In CE precoding, the transmitting signal at

each antenna is restricted to have a constant amplitude irrespective of the chan-

nel and information symbol realization, and only the phases of the per-antenna
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transmitting signals are used to convey information to the receiver. Since the CE

signal has a constant amplitude, the instantaneous power is fixed as a constant

as well. Therefore, the transmitter can use nonlinear but highly power-efficient

switched-mode power amplifiers that can be cheaply implemented. While CE

precoding provides an attractive signal processing way to manage power effi-

ciency and reduce the implementation costs of power amplifiers, it also brings

new signal processing challenges.

This chapter concentrates on CE precoding for single-user MISO channels.

There are two fundamental challenges in this context. The first challenge is the

characterization of the region of all possible noise-free receive signals generated

by CE precoding. This problem is crucial in determining whether a given con-

stellation can be supported by CE precoding. Mohammed and Larsson in their

pioneering work [47] prove that the noise-free receive signal region is a doughnut

region, i.e., a region between two circles centered at the origin of the complex

plane. Moreover, the radius of the outer circle is shown to be the sum of all

channel amplitudes. However, the inner radius is not known in that reference.

The second challenge is the phase recovery problem, which is a precoder problem

at the transmitter side and plays an indispensable role in CE precoding imple-

mentations. The problem is to find the phases of the CE signals such that the

CE signals, after coherently combined by the channels, form a desired informa-

tion signal. Mathematically, the phase recovery problem amounts to solving a

highly nonlinear equation. The work in [47] handles the phase recovery problem

by formulating the problem as an optimization problem, and applying gradient

descent.

In this chapter, we develop an alternative approach to provide a complete

characterization of the noise-free received signal region. Our approach not only

provides a simple proof of the characterization results in [47], but also gives a

simple expression of the inner radius of the doughnut region. Thus, with this

new result, one can easily check whether CE precoding can support a given

constellation. More importantly, the inductive and constructive nature of our

approach leads to a direct solution to the phase recovery problem. We derive an
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efficient phase recovery algorithm that solves the phase recovery problem exactly

with a complexity linear in the number of antennas. In addition, we consider two

novel CE precoding scenarios, wherein the system has the flexibility to perform

either antenna-subset selection (AS) or unequal amplitude (UA) transmission.

We formulate SER minimization problems where imperfect CSIT, constellation

supportability and total power constraints are also taken into account. As it

turns out, the UA strategy results in optimization problems that can be trans-

formed to second-order cone programs (SOCPs) and thus have efficient exact

solutions by available algorithms [60, 61]. For the AS strategy, though the re-

sulting problems are combinatorial and nonconvex, we devise polynomial-time

exact searching algorithms. Simulation results will show that CE precoding via

an optimal AS and UA design can achieve SER performance comparable to the

representative non-CE maximum ratio transmission (MRT) method.

The rest of this chapter is organized as follows. We introduce the system

model and CE precoding in Section 5.2.1. Then, in Section 5.3, we provide the

signal region characterization and propose the exact phase recovery algorithm.

This is followed by Section 5.4, where we formulate the design optimization of

CE precoding under the AS and UA strategies, and propose optimal and efficient

algorithms for the formulated problems. Simulation results are presented in Sec-

tion 5.5 to demonstrate the performance of the proposed methods. Section 5.6

summarizes this chapter.

5.2 Background

5.2.1 System Model and CE Precoding Problems

We consider a standard single-user MISO channel model

y = hTx+ ν, (5.1)

where y ∈ C is the receive signal; x = [x1, . . . xN ]
T ∈ C

N is the transmitting

signal, with xi being the transmitting signal at ith antenna and N being the

number of antennas; h = [h1, . . . , hN ]
T ∈ C

N is the channel vector; ν ∈ C is

complex circular additive white Gaussian noise whose mean and variance are
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0 and σ2
ν , respectively. The problem is to transmit information symbols drawn

from a symbol constellation, given channel state information at the transmitter

(CSIT). To describe, let S be the symbol constellation (e.g., QAM). The set S is
assumed to have unit average power with its symbols, that is, 1

|S|
∑

s∈S |s|2 = 1.

The task is to design the transmitting signal x such that the noise-free received

signal equals

d , hTx = α · s, (5.2)

where s ∈ S is the information symbol to be transmitted, and α > 0 is a

constant. Note that the constant α describes the effective channel gain at the

receiver.
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Figure 5.1: A single-user MISO model.

A simple, convenient way to carry out the precoding task mentioned above

is channel inversion method which in the single-user scenario is normally called

maximum ratio transmission (MRT). The MRT transmitting signal takes the

form of takes the form

xMRT =
√

PT
h∗

‖h‖2
s, (5.3)

where PT is the average total transmission power. Note that the resulting effec-

tive channel gain is αMRT =
√
PT‖h‖2. It can be easily shown that the average

per-antenna power of MRT equals a constant E[|xMRT,i|2] = PT

N
for an i.i.d fading
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channel. However, the instantaneous per-antenna powers, |xMRT,i|2, are depen-
dent on the realization of h and s, and may vary dramatically from zero to

maxs∈S PT|s|2. In order to accommodate the large variations of the instanta-

neous per-antenna power, the RF amplifier built for MRT signals must have a

wide linear region, which inevitably leads to a low power efficiency. The power ef-

ficiency for such highly linear RF amplifiers is typically about 0.15−0.25 [47,94].
The difficulty in using highly power-efficient RF amplifiers for large antenna

array systems has recently motivated the use of constant envelope (CE) signals

for transmission [47]. CE precoding is a nonlinear scheme with respect to the

information symbols. In essence, we constrain the transmitting signal xi of each

antenna to take the form of

xi =

√

PT

N
ejθi , for i = 1, . . . , N, (5.4)

where θi ∈ [0, 2π) is the phase of xi. In contrast to MRT, the instantaneous

power of CE signal xi is fixed at |xi|2 = PT

N
, which is independent of the channel

and information symbols. Hence, the RF amplifiers for CE signals can have a

high power efficiency ranging from 0.75 to 0.85 [47, 94].

While the CE signal (5.4) enables the use of highly power-efficient RF ampli-

fiers, it also presents new challenges. The first challenge is the characterization

of the set of all possible noise-free receive signal, which is defined as

D ,

{
√

PT

N

N
∑

i=1

hie
jθi

∣

∣

∣

∣

∣

θi ∈ [0, 2π), i = 1, . . . , N

}

. (5.5)

The motivation for characterizing D is that it underpins the feasibility for CE

precoding to transmit, fixing a constellation S. Specifically, we must ensure that
αS ⊂ D for some α > 0, for otherwise the CE precoding scheme is unable to

generate all information symbols. To get some intuitive insight, in Fig. 5.2 we

use pictures to illustrate two cases where CE precoding is able and unable to

support a given symbol constellation, respectively. In the figure, the blue region

represents the noise-free receive signal regionD and the dots are the constellation

points of S. The 16-QAM constellation is used in the illustrations. In Fig. 5.2(a),

all the constellation points lie in D, which means that CE precoding is able to
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support the constellation. An unsupportable counterpart is shown in Fig. 5.2(b);

we see that part of the constellation points is outside D. Also, no matter how
we scale the 16-QAM constellation points, there are always some constellation

points not covered by D in Fig. 5.2(b).

Figure 5.2: The noise-free receive signal region D.

The second challenge is the phase recovery problem. For each d = αs, s ∈ S,
the CE precoder needs to find a phase vector θ = [θ1, . . . , θN ]

T that solves

find θ ∈ [0, 2π)N (5.6a)

s.t. d =

√

PT

N

N
∑

i=1

hie
jθi , (5.6b)

that is, we wish to shape a desired noise-free receive signal value d by recovering

the corresponding phase vector θ at the transmitter side. Unlike MRT which

is a linear precoding scheme, CE precoding has a highly nonlinear relationship

between the noise-free receive signal d and the phase vector θ. This nonlin-

ear phase recovery problem introduces a challenge in efficient CE precoding in

practice.

5.2.2 Prior Work

The pioneering work [47] by Mohammed and Larsson shows that D is a

doughnut region given by

D = {d ∈ C | r ≤ |d| ≤ R}, (5.7)
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where r and R are scalars depending on h. Moreover, r and R are shown in the

same reference to satisfy

r ≤
√

PT

N
‖h‖∞, R =

√

PT

N
‖h‖1. (5.8)

However, the exact value of r is not known. The work in [47] also considered the

phase recovery problem, where the phase recovery problem in (5.6) is formulated

as a minimization problem

min
θ

∣

∣

∣

∣

∣

d−
√

PT

N

N
∑

i=1

hie
jθi

∣

∣

∣

∣

∣

. (5.9)

To solve problem (5.9), the gradient descent method was proposed for large N ;

a two-step algorithm combining depth-first-search (DFS) and gradient descent

was also proposed for small N (N ≤ 10).

5.3 Signal Region Characterization and Exact Phase Re-

covery

In this section we characterize and analyze the noise-free receive signal region

D through a proof different from that by Mohammed and Larsson [47]. In

particular, it is shown that the inner radius r of D has a simple closed-form

expression. We also propose an exact and closed-form solution for the phase

recovery problem (5.9), which is derived by taking insight from our alternative

signal region characterization proof.

For notational convenience in the subsequent development, denote for i =

1, . . . , N ,

gi =

√

PT

N
|hi|, φi = θi + ϕi,

where ϕi is the argument of hi. Then, (5.6b) and (5.5) can be equivalently

expressed as

d =
N
∑

i=1

gie
jφi , (5.10)

D =

{

N
∑

i=1

gie
jφi

∣

∣

∣

∣

∣

φi ∈ [0, 2π), i = 1, . . . , N

}

. (5.11)
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Without loss of generality, we assume that g1 and g2 are respectively the first

and the second largest elements in {gi}Ni=1, i.e. g1 ≥ g2 ≥ gi ≥ 0 for i = 3, . . . , N .

We also define, for i = 1, . . . , N ,

Di ,

{

di =
i

∑

j=1

gje
jφj

∣

∣

∣

∣

∣

φj ∈ [0, 2π), j = 1, . . . , i

}

. (5.12)

Physically, Di can be interpreted as the noise-free receive signal region when

only the first i antennas are used. Note that DN = D.

5.3.1 Characterization of D

The results for our CE receive signal region characterization are summarized

in the following theorem.

Theorem 5.1 For every i ∈ {1, . . . , N}, the set Di is a doughnut region

Di = {di ∈ C | ri ≤ |di| ≤ Ri}, (5.13)

where Ri =
∑i

j=1 gj and ri = max{g1−
∑i

j=2 gj, 0}. In particular, the noise-free

receive signal region in (5.5) or (5.11) is given by

D = {d ∈ C | r ≤ |d| ≤ R},

where R =
∑N

j=1 gj and r = max{g1 −
∑N

j=2 gj, 0}, and the two radii can be

alternatively expressed as

R =

√

PT

N
‖h‖1, (5.14)

r =

√

PT

N
max{2‖h‖∞ − ‖h‖1, 0}. (5.15)

The proof of Theorem 5.1 will be described in the next subsection. Theo-

rem 5.1 completes the previous noise-free receive signal region characterization

by Mohammed and Larsson [47], where we provide an explicit expression for the

inner radius r in (5.15).

Theorem 5.1 provides several important implications. First, the inner dough-

nut radius expression in (5.15) suggests that D should be a disk region in many
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practical cases in large antenna array systems—in order for r to be strictly pos-

itive, it must hold true that there exists a channel element hi whose amplitude

|hi| is greater than
∑

j 6=i |hj|, or, simply speaking, much greater than the other
channel elements’ amplitudes. In practice, one would expect that it is not too

likely to encounter an instance in which one channel element amplitude |hi| is so
dominant over the others. In fact, for the i.i.d. Gaussian channel, the following

result can be proven.

Proposition 5.1 Suppose that each element of h follows an i.i.d. circular com-

plex Gaussian distribution with zero mean. Then,

1

NN−2 ≤ Pr{r > 0} ≤ 1

(N − 1)!
.

The proof is based on direct integration of the distribution of the ordered

statistics of {|hi|}Ni=1 [95]; the details are relegated to Appendix 5.7.2. The

pioneering work [47] has provided a similar result that Pr{r ≥ c(logN)/
√
N}

converges to zero as N goes to infinity for all c > 0. We can see that the result

in Proposition 5.1 provides a better guarantee of r being zero; this is owing to

the fact that Proposition 5.1 is proven from the explicit expression of r in (5.15),

while the previous result was not. Proposition 1 states that Pr{r > 0} decays
factorially fast in N . For example, for N = 10, we have Pr{r > 0} ≤ 3× 10−7.

For very large array systems, where N could be more than 100, it is expected

that Pr{r > 0} is virtually zero. This indicates that with high probability, the
doughnut region is essentially a disk region (for i.i.d. Gaussian channels).

Second, the proof of Theorem 5.1 provides insights into solving the phase

recovery problem (5.6) in an exact and polynomial-time manner; this will be

elaborated upon in the subsequent subsections. In this regard, we should note

that our proof of the noise-free receive signal region characterization is construc-

tive, based on induction and satisfiability of some nonlinear equations. It is the

inductive and constructive nature of the proof that allows us to transfer the

idea to the phase recovery problem. Also, we should point out that our proof is

different from the previous pioneering proof of the noise-free receive signal re-

gion characterization [47]; the latter, simply speaking, is based on an existence
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argument. Third, the simple closed-form nature of the inner doughnut radius

r in (5.15), as well as that of the outer doughnut radius R in (5.14), allow one

to easily check whether a given symbol constellation is supportable by the CE

precoding scheme. In fact, the simple doughnut radii characterization in (5.14)–

(5.15) will allow us to perform CE precoder optimization in a tractable fashion.

The latter will be considered in Section 5.4.

5.3.2 Proof of Theorem 5.1

The proof of Theorem 1 is as follows. The main idea is to show by induction

from i = 1 to i = N that Di = {di ∈ C | ri ≤ |di| ≤ Ri}. For i = 1, this holds

true obviously. For i = 2, from the definition of D2 in (5.12), we can see that

if d2 ∈ D2, then r2 = g1 − g2 ≤ |d2| ≤ g1 + g2 = R2 by triangular inequality.

Conversely, if d2 satisfies g1 − g2 ≤ |d2| ≤ g1 + g2, then we need to find (φ1, φ2)

satisfying

d2 = g1e
jφ1 + g2e

jφ2 . (5.16)

It can be easily verified that the (φ1, φ2) given below is a solution,

φ1 = arccos

(

g21 + |d2|2 − g22
2g1|d2|

)

+ ω2

φ2 = arccos

(

g21 + g22 − |d2|2
2g1g2

)

+ φ1 + π

(5.17)

where ω2 is the argument of d2. Hence, (5.13) is true for i = 2.

For i ≥ 3, we need to invoke the following lemma which reveals the relation-

ship between Di and Di−1.

Lemma 5.1 Let

A = { x ∈ C | ra ≤ |x| ≤ Ra },

B = { y ∈ C | |y| = rb },

C = { z ∈ C | z = x+ y, x ∈ A, y ∈ B },

and suppose that

Ra − ra ≥ 2rb. (5.18)
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Then, C is a doughnut region

C = { z ∈ C | rc ≤ |z| ≤ Rc },

with

rc = max{ra − rb, 0}, Rc = Ra + rb.

Moreover, for any z ∈ C, we can construct x ∈ A, y ∈ B such that z = x + y

holds. Specifically, such (x, y) is obtained by setting

y =







rbe
jφz , |z| ≥ Ra − rb

rbe
j(φz+π), |z| < Ra − rb

(5.19)

and x = z − y, where φz denotes the argument of z.

By the definitions of Di and Di−1, Di can be written as

Di = {di ∈ C | di = di−1 + d̃i, di−1 ∈ Di−1, |d̃i| = gi}. (5.20)

Suppose that Di−1 is a doughnut region with radii ri−1 = max{g1 −
∑i−1

j=2 gj, 0}
and Ri−1 =

∑i−1
j=1 gj. Then,

Ri−1 − ri−1 ≥ R2 − r2 = 2g2 ≥ 2gi,

which satisfies the premise (5.18) of Lemma 1. Applying Lemma 1 to (5.20),

we have that Di is a doughnut region with radii ri = max{ri−1 − gi, 0} =

max{g1 −
∑i

j=2 gj, 0} and Ri = Ri−1 + gi =
∑i

j=1 gj.

5.3.3 Exact Phase Recovery

In this subsection, we propose an exact phase recovery algorithm for (5.10)

which has a linear complexity in the problem size N .

The main idea of the proposed algorithm is derived from the proof of The-

orem 5.1. Assume that r ≤ |d| ≤ R, for otherwise (5.10) has no solution by

Theorem 1. Let dN , d. Observe from (5.20) that if dN belongs to DN , then

a φN exists such that dN − gNe
jφN belongs to DN−1; again, a φN−1 exists such

that (dN − gNe
jφN )− gN−1ejφN−1 belongs to DN−2. Repeating this argument, it
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can be seen that dN can be decomposed in the form of dN =
∑N

i=1 gie
jφi . Hence,

it suffices to choose φi such that

di−1 , di − gie
jφi ∈ Di−1. (5.21)

from i = N down to i = 2. At the end of the process, the resultant φ is a

solution1 of (5.10).

The proof of Theorem 1 already offers a way to determine a φi for (5.21).

By (5.19) in Lemma 1, we can see that for i ≥ 3, φi can be chosen as

φi =











ωi, if |di| ≥ Ri−1 − gi,

ωi + π, if |di| < Ri−1 − gi,
(5.22)

where ωi is the argument of di. For i = 2, by noting r1 = R1 = g1, it can be

seen that (5.21) is equivalent to the equation in (5.16). Then φ2 and φ1 can be

chosen as (5.17).

We can see that the proposed algorithm only involves N steps of operations.

Hence, the complexity of the proposed algorithm isO(N). The description of the
proposed algorithm is complete, and we provide the pseudo code in Algorithm

5.1.

5.4 Robust Transmit Optimization of CE Precoding with

Channel Uncertainty

This section turns the attention to the design optimization of CE precoding,

where we are allowed to either select a subset of antennas, or allocate power

unequally for each antenna, to maximize system performance.

In the previous system model in Section 5.2.1, we assume perfect CSIT. Here,

we consider imperfect CSIT. Under such scenarios, the single-user MISO channel

model in (5.1) should be replaced by

y = (h̄+∆h)Tx+ ν, (5.23)

1Note that φ1 is automatically obtained when choosing φ2 such that d2 − g2e
jφ2 = d1, since d1 is

of the form of d1 = g1e
jφ1 .
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Algorithm 5.1: Exact phase recovery for problem (5.6).

input : d = |d|ejω, hi = |hi|ejϕi , i = 1, . . . , N , with

|h1| ≥ |h2| ≥ |hi| ≥ 0, ∀ i ≥ 3.

1 gi =
√

PT
N |hi|, i = 1, . . . , N ;

2 RN =
∑N

j=1 gj ; rN = max{g1 −
∑N

j=2 gj , 0};
3 if |d| > RN or |d| < rN then

4 return. (There is no solution);

5 end

6 dN = |d|;
7 for i← N to 3 do

8 Ri−1 = Ri − gi;

9 if di ≥ Ri−1 − gi then

10 φi = ω; di−1 = di − gi;

11 else

12 φi = ω + π; di−1 = di + gi;

13 end

14 end

15 φ1 = ω + arccos
g21+d22−g22

2g1d2
;

16 φ2 = φ1 + π + arccos
g21+g22−d22

2g1g2
;

output: {θi}Ni=1 = {φi − ϕi}Ni=1

where h̄ is the channel estimate, of which the transmitter has full informa-

tion; and ∆h is the channel uncertainty. We consider two classic channel un-

certainty models, namely the stochastic model [96–98] and the deterministic

model [99–101]. In the stochastic uncertainty model, the channel uncertainty

∆h is modeled as a zero-mean Gaussian random vector

∆h ∼ CN (0, δ2I),

where δ2 represents the uncertainty level. In the deterministic uncertainty

model, the channel uncertainty ∆h is assumed to be deterministic unknown

and lie in the box region

‖∆h‖∞ ≤ ǫ,
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where ǫ ≥ 0 is a parameter controlling the level of uncertainty.

In the previously considered CE precoding scheme, we have each antenna’s

transmitting signal taking the plain form xi =
√

PT

N
ejθi , i = 1, . . . , N , with

{θi}Ni=1 varying in accordance with the information symbol s ∈ S for a given

channel. For convenience, this previous CE precoding strategy will be named

plain CE precoding in the sequel. Now, we are interested in extending the plain

CE precoding strategy by adopting antenna selection (AS). The rationale is to

allow the system to adapt to the channel conditions, so that power can be more

efficiently utilized over a good subset of channels. We also wish to perform the

latter in a manner that is robust against channel uncertainties. Moreover, AS is

meaningful in that the hardware overheads associated with the number of RF

chains may be reduced. The AS strategy is formulated as follows. We write

xi = aie
jθi , i = 1, . . . , N, (5.24)

where ai ∈ R+ is the signal amplitude at the ith antenna. Specifically, if the ith

antenna is not selected, then we shut down the ith antenna by setting ai = 0.

On the other hand, if the ith antenna is selected, then we set the corresponding

ai to a common amplitude value b ∈ R+. More concisely, the feasible set of the

amplitude vector a = [a1, . . . , aN ]
T can be expressed as

AAS = {a ∈ {0, b}N | b ∈ R+}. (5.25)

It should be noted that a is fixed for all transmitted information symbols s ∈ S,
or, in practice, fixed over the whole transmission period. The design task is to

choose a good a given the channel estimate h̄; the precise problem formulation

will be given in the next two subsections.

This chapter also explores an alternative transmit strategy where the ampli-

tudes ai’s can be freely selected in a soft manner; that is, the feasible set of a

is

AUA = R
N
+ . (5.26)

We will call the above strategy the unequal amplitude (UA) strategy. The UA

strategy requires that the system is able to allocate unequal power for each
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antenna, the hardware implementation of which would be more demanding than

the AS strategy. However, UA is a relaxed version of AS and hence will deliver

performance at least no worse than that of AS.

Our interest is in designing the AS and UA strategies by formulating the

design as a power-constrained quality of service (QoS) maximization problem.

In the design to be formulated, the supportability of the symbol constellation S
is also taken into consideration.

We will consider the stochastic uncertainty model in the next subsection

where we develop the problem formulations and fast algorithms. Then, in the

second subsection we extend the problem formulations and fast algorithms to

the deterministic uncertainty model.

5.4.1 Robust Design with Stochastic Channel Uncertainty

Problem Formulation

Our desired performance measure is the SER averaged over the random chan-

nel uncertainty. To derive it, we first re-examine the transmitter side’s operation.

Given an amplitude design a and a channel estimate h̄, the transmitter performs

CE precoding by satisfying the equation

αs =
N
∑

i=1

h̄iaie
jθi (5.27)

for any information symbol s ∈ S, where α > 0 is some constant [cf. (5.2) and

(5.24), as well as the counterpart for the plain strategy in (5.6b)]. From (5.23)

and (5.27), the receive signal can be written as

y = αs+

(

N
∑

i=1

∆hiaie
jθi + ν

)

. (5.28)

The receiver obtains a symbol decision, denoted by ŝ, by applying threshold

decision on y/α. By the previously laid assumptions of ∆h ∼ CN (0, δ2I) and

ν ∼ CN (0, σ2
ν), and by assuming that s is i.i.d. uniform, it can be shown that

the SER averaged over the channel uncertainty ∆h is upper-bounded by

E∆h [Pr{ŝ 6= s|∆h}] ≤ 1

|S|
∑

s,s′∈S
s6=s′

Q

(

α|s− s′|√
2
√

δ2‖a‖22 + σ2
ν

)

, (5.29)

104



Chapter 5. Constant Envelope Precoding

where |S| denotes the cardinality of S, and Q(·) is the Q-function. The upper

bound in (5.29) is obtained by following the spirit as in the SER derivations in

some other work, e.g., [83, 102]; and note that the former is well known to be

an accurate approximation of the SER. It can be easily shown that the upper

bound in (5.29) is a decreasing function of the term α2/(δ2‖a‖22 + σ2
ν)—which

will be called the effective receive SNR here. Hence, we may minimize the SER

in an accurate manner by maximizing the effective receive SNR.

Based on the aforedescribed problem setup, we formulate our desired design

(for both the AS and UA strategies) as an optimization problem

max
a∈RN

+ ,α∈R+

α
√

δ2‖a‖22 + σ2
ν

(5.30a)

s.t. αS ⊂ D(h̄⊙ a) (5.30b)

aTa ≤ PT (5.30c)

a ≤
√

PPA1 (5.30d)

a ∈ A, (5.30e)

where D(h̄⊙a) denotes the noise-free receive signal region defined by the equiv-

alent channel h̄⊙ a (whose expression will be considered soon), A is either the

AS feasible set AAS or the UA feasible set AUA, and PT and PPA are the maxi-

mum allowable total and per-antenna transmission powers, respectively. As can

seen in problem (5.30), we aim to maximize the effective receive SNR, subject

to the total transmission power constraint, per-antenna transmission power con-

straints, and supportability of the given symbol constellation S. In particular,
(5.30b) means that the doughnut region D(h̄⊙a) can support the constellation

αS.
We proceed to reformulate problem (5.30) to a more convenient form. From

the result of Theorem 1, the constraint (5.30b) can be explicitly expressed as

2‖h̄⊙ a‖∞ − ‖h̄⊙ a‖1 ≤ α|s| ≤ ‖h̄⊙ a‖1, ∀ s ∈ S. (5.31)

Let |s|max = maxs∈S |s| and |s|min = mins∈S |s| denote the maximum and min-

imum amplitudes of the symbols in S, respectively. Eq. (5.31) is equivalent
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to

2‖h̄⊙ a‖∞ − ‖h̄⊙ a‖1 ≤ α|s|min,

‖h̄⊙ a‖1 ≥ α|s|max.
(5.32)

Substituting (5.32) into problem (5.30) yields the following equivalent design

optimization problem

max
a∈RN

+ ,α∈R+

α
√

δ2‖a‖22 + σ2
ν

(5.33a)

s.t.
1

|s|min

(2‖h̄⊙ a‖∞ − ‖h̄⊙ a‖1) ≤ α (5.33b)

1

|s|max

‖h̄⊙ a‖1 ≥ α (5.33c)

(5.30c) – (5.30e). (5.33d)

Observe that at the optimum of problem (5.33), α must take the value

α =
1

|s|max

‖h̄⊙ a‖1. (5.34)

Hence, we can directly substitute (5.34) into problem (5.33) and rewrite the

design optimization problem as

max
a∈RN

+

‖h̄⊙ a‖1
|s|max

√

δ2‖a‖22 + σ2
ν

(5.35a)

s.t.
1

|s|min

(2‖h̄⊙ a‖∞ − ‖h̄⊙ a‖1) ≤
1

|s|max

‖h̄⊙ a‖1 (5.35b)

(5.30c) – (5.30e). (5.35c)

Notice that once we solve problem (5.35), we can obtain the corresponding

optimal α by the relation in (5.34). Problem (5.35) can be further simplified.

With a slight abuse of notations, let us denote

g = [|h̄1|, . . . , |h̄N |]T

to be the amplitude vector of the channel. Since both g and a are nonnegative,
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problem (5.35) can be equivalently written as

max
a∈RN

+

gTa

|s|max

√

δ2‖a‖22 + σ2
ν

(5.36a)

s.t.
2|s|max

|s|min + |s|max

max
i=1,...,N

giai ≤ gTa (5.36b)

aTa ≤ PT, a ≤
√

PPA1 (5.36c)

a ∈ A. (5.36d)

At this point, let us investigate the structure of the equivalent design opti-

mization problem in (5.36). The objective function is quasi-concave. Hence, if

A is a convex set, problem (5.36) is a quasi-convex problem which can be solved

by a bisection search methodology. In the case of the convex UA region AUA,

we can solve problem (5.36) in a smarter way via the Charnes-Cooper trans-

formation, which converts problem (5.36) into a convex problem; this will be

demonstrated in the next subsection. However, in the AS case problem (5.36)

is combinatorial and nonconvex. We will propose a polynomial-time algorithm

that solves problem (5.36) exactly.

Optimization for the Unequal Amplitude Case

To describe the Charnes-Cooper transformation [103] for the design opti-

mization problem in the UA case, let us define the following transformation

a = z/ξ (5.37)

for some z ≥ 0 and ξ > 0. Then we can turn problem (5.36), with A = AUA, to

min
z∈RN

+ ,ξ∈R+

|s|max

√

δ2‖z‖22 + σ2
νξ

2

gTz
(5.38a)

s.t.
2|s|max

|s|min + |s|max

max
i=1,...,N

gizi ≤ gTz, (5.38b)

‖z‖2 ≤
√

PTξ, z ≤
√

PPA1ξ, (5.38c)

ξ > 0, (5.38d)

where the objective function (5.38a) is the inverse of (5.36a). Since any feasible

solution of problem (5.38) can be scaled by any positive number without affecting
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the feasibility and objective value, we can impose without loss of generality an

additional constraint that gTz = 1. The resultant problem is

(CE− UA) min
z∈RN

+,ξ∈R+

|s|max

√

δ2‖z‖22 + σ2
νξ

2 (5.39a)

s.t. gTz = 1 (5.39b)

2|s|max

|s|min + |s|max

max
i=1,...,N

gizi ≤ 1, (5.39c)

‖z‖2 ≤
√

PTξ, z ≤
√

PPA1ξ, (5.39d)

ξ ≥ 0 (5.39e)

where we relax the constraint ξ > 0 in (5.38d) to ξ ≥ 0 in (5.39e). This

relaxation is actually tight; if ξ = 0, then (5.39d) implies that z = 0 which

violates (5.39b). Problem (5.39) is a second-order cone program (SOCP), which

can be efficiently solved by available algorithms [60,61]. Once problem (5.39) is

solved, an optimal solution of problem (5.36) can be recovered via (5.37).

Optimization for the Antenna Selection Case

The focus here is developing efficient algorithm for solving the AS design op-

timization problem. By substituting A = AAS, the design optimization problem

in (5.36) can be expressed as

max
a∈RN

+ ,b∈R+

gTa

|s|max

√

δ2‖a‖22 + σ2
ν

(5.40a)

s.t.
2|s|max

|s|min + |s|max

max
i=1,...,N

giai ≤ gTa (5.40b)

aTa ≤ PT (5.40c)

a ∈ {0, b}N (5.40d)

0 ≤ b ≤
√

PPA. (5.40e)

Problem (5.40) is a combinatorial optimization problem, which in the worst

case involves enumerating 2N possible solutions. However, as shown in the

following proposition, problem (5.40) has a salient property that can be used to

reduce the search space to a very manageable size.
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Proposition 5.2 Suppose that g is arranged in non-increasing order g1 ≥ g2 ≥
. . . ≥ gN . Then problem (5.40) has an optimal solution in the form of

a = [0T
i−1, b1T

k−i+1, 0T
N−k]

T (5.41)

for some 0 ≤ b ≤ √PPA and indices i, k ∈ {1, . . . , N}, i ≤ k.

Proof: Let ã ∈ {0, b̃}N be a feasible solution of problem (5.40), where 0 ≤ b̃ ≤
√
PPA. For this ã, let i be the index that indicates the first active antenna; i.e.,

to find the smallest i such that ãj = 0 for all j = 1, . . . , i− 1. Also, let n be the

number of nonzero elements of ã (or the number of active antennas specified by

ã). From ã we construct another point

a = [0T
i−1, b̃1

T
k−i+1,0

T
N−k]

T , (5.42)

and we argue that a is feasible and attains an objective value at least no worse

than that of ã. First, by the nondecreasing order of g, it can be verified that

gTa ≥ gT ã (5.43)

max
i=1,...,N

giai = max
i=1,...,N

giãi. (5.44)

By noting that ã satisfies (5.40b), and by substituting (5.43)-(5.44) into (5.40b),

we show that a also satisfies (5.40b). Second, since a is just a permutation of

ã, we have ‖a‖2 = ‖ã‖2 ≤ PT. Hence, a satisfies (5.40c). Third, the structure

in (5.42) already implies that a satisfies (5.40d)–(5.40e). Consequently, we have

proven that a is a feasible solution of problem (5.40). Moreover, by (5.43) and

the result ‖a‖2 = ‖ã‖2, we see from the objective function (5.40a) that the

objective value achieved by a is greater than or equal to that by ã.

The derivations above further implies that if ã is an optimal solution, then

we can always construct a feasible solution a which takes the structure in (5.42)

and yields an objective value no less than the optimal—which means that a

must be optimal. Proposition 5.2 is therefore obtained, as desired. ✷

Now, by assuming that g is ordered in nonincreasing order and by using the
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result in Proposition 5.2, we recast problem (5.40) as

max
i,k,b∈R+

b
∑k

j=i gj

|s|max

√

δ2b2(k − i+ 1) + σ2
ν

(5.45a)

s.t.
2|s|max

|s|min + |s|max

gi ≤
k

∑

j=i

gj (5.45b)

b2(k − i+ 1) ≤ PT (5.45c)

0 ≤ b ≤
√

PPA (5.45d)

i, k ∈ {1, . . . , N}, i ≤ k. (5.45e)

For a given pair of indices (i, k), problem (5.45) is feasible if and only if the

constraint (5.45b) is satisfied. Supposing that (5.45b) holds, the corresponding

optimal solution of b, denoted by b⋆i,k, is easily shown to be

b⋆i,k = min{
√

PT/(k − i+ 1),
√

PPA}. (5.46)

Therefore, solving problem (5.45) amounts to checking the feasibility con-

dition (5.45b), computing the optimal solution (5.46) for all pairs of indexes

(i, k), and choosing the one that has the largest objective value. The resulting

algorithm is shown in Algorithm 5.2. The complexity of the algorithm can be

computed by noting that there are N(N + 1)/2 candidate solutions to search;

and that for each candidate, checking the feasibility and computing the objective

value takes a complexity of O(N). Thus, the total complexity is O(N3). The

complexity can be reduced to O(N2) by exploiting the similarity in computing

b⋆i,k and b⋆i,k+1. Details can be found in Algorithm 5.2.

As a final remark, the proposed algorithm can be easily modified to account

for an additional constraint on the maximum number of active antennas. We

omit the technical details here, as it is straightforward.

5.4.2 Robust Design with Deterministic Channel Uncertainty

In the deterministic channel uncertainty model, we are also interested in

minimize the SER. In contrast with the stochastic model, here we are interested
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Algorithm 5.2: An optimal search for problem (5.40).

input : PT, PPA, |s|max, |s|min, g = [|h1|, . . . , |hN |]T , with
|h1| ≥ |h2| ≥ . . . ≥ |hN |.

1 ρ⋆ = −∞;

2 for i← 1 to N do

3 gsum = 0;

4 for k ← i to N do

5 gsum = gsum + gk;

6 if
2|s|max

|s|min+|s|max
gi ≤ gsum then

7 b⋆i,k = min{
√

PT/(k − i+ 1),
√
PPA};

8 ρ⋆i,k =
b⋆
i,k

gsum

|s|max

√

δ2(b⋆
i,k

)2(k−i+1)+σ2
ν

;

9 if ρ⋆i,k ≥ ρ then

10 b⋆ = b⋆i,k; ρ⋆ = ρ⋆i,k;

11 i⋆ = i; k⋆ = k;

12 end

13 end

14 end

15 end

16 a⋆ = [0Ti⋆−1, b⋆1Tk⋆−i⋆+1, 0TN−k⋆ ]
T ;

output: a⋆, ρ⋆.

in the SER under the worst channel uncertainty:

max
‖∆h‖∞≤ǫ

Pr{ŝ 6= s; ∆h}. (5.47)

Using the classical result in [102] we can upper bound the SER (5.47) by

max
‖∆h‖∞≤ǫ

Pr{ŝ 6= s; ∆h}

≤(|S| − 1) max
s6=s′,
‖∆h‖≤ǫ

Pr{|y − αs′| < |y − αs|; ∆h}

=(|S| − 1)Q(αη − 2ǫ‖a‖1).

(5.48)
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Therefore, we can formulate the worst-case SER minimization problem as follows

max
a∈RN

+ ,α∈R+

αη − 2ǫ‖a‖1

s.t. αS ⊂ D(h̄⊙ a)

aTa ≤ PT

a ≤
√

PPA1

a ∈ A.

(5.49)

Following the same reformulation as (5.30)-(5.36), we rewrite (5.49) as

max
a∈RN

+

(

η

|s|max

g − 2ǫ1

)T

a

s.t.
2|s|max

|s|min + |s|max

max
i=1,...,N

giai ≤ gTa

aTa ≤ PT

a ≤
√

PPA1

a ∈ A,

(5.50)

where g = [|h1|, . . . , |hN |], and the optimal solution α⋆ of (5.49) is given by

α⋆ =
1

|s|max

‖h⊙ a⋆‖1 (5.51)

with a⋆ the optimal solution of (5.50).

It can be observed that (5.50) is a convex optimization problem if the set A
is convex. In particular, for the UA set AUA = R

N
+ , (5.50) is an SOCP which

can be efficiently and optimally solved by available algorithms [60, 61].

Next, let us consider the AS case shown below

max
a∈RN

+

(

η

|s|max

g − 2ǫ1

)T

a

s.t.
2|s|max

|s|min + |s|max

max
i=1,...,N

giai ≤ gTa

aTa ≤ PT

a ∈ {0, b}N

0 ≤ b ≤
√

PPA.

(5.52)
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It is straightforward to see that Proposition 5.2 can be applied to (5.52) as well.

Therefore, we can turn problem (5.52) equivalently to

max
i,k,b∈R+

b
k

∑

j=i

(

η

|s|max

gj − 2ǫ

)

(5.53a)

s.t.
2|s|max

|s|min + |s|max

gi ≤
k

∑

j=i

gj (5.53b)

b2(k − i+ 1) ≤ PT (5.53c)

0 ≤ b ≤
√

PPA (5.53d)

i, k ∈ {1, . . . , N}, i ≤ k. (5.53e)

This problem can be solved optimally in the same way as that of (5.45). The al-

gorithm can be adopted from Algorithm 5.2 by changing Line 8 of Algorithm 5.2

to

ρ⋆i,k = b⋆i,k

(

η

|s|max

gsum − 2(k − i+ 1)ǫ

)

.

The complexity is also given by O(N2).

5.5 Simulations

In this section, we use simulations to demonstrate the performance of CE

precoding. Unless otherwise specified, we use the following simulation settings.

The number of transmitting antennas is N = 128. The per-antenna power is

set as PPA = PT/16, and the noise variance σ
2
ν unity. We consider two types of

channel models. In the first model, each element of the estimated channel vector

h̄ follows a circular Gaussian distribution CN (0, 1) in an i.i.d. manner. In the

second model, ten elements of the channel have a line of sight (LOS) component

and follow a distribution CN (10, 1), while the rest of the channel elements follow

CN (0, 1). The channel elements are independently distributed. The second

model is a simplified version of the experimental measurement results in [9, 10]

which show that a large linear antenna array can experience large disparity

in channel strength across antenna elements. For convenience of explaining

simulation results to be shown, the two models above will be called channel
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model one and channel model two, respectively. The simulation results are

averages of 1000 independent channel realizations.

We compare the performance of the plain CE precoding scheme in (5.4),

the proposed AS CE precoding scheme whose optimal design is obtained from

Algorithm 5.2, and the proposed UA CE precoding scheme whose optimal design

is achieved by solving the SOCP in problem (5.38) and (5.50). Also, as a minor

technical remark, the constant α of each CE precoding scheme is computed by

(5.34) and (5.51). We also benchmark the above constant envelope schemes

against the MRT scheme [cf. (5.3)], which has non-constant envelope and does

not take into account per-antenna power constraints. Their SER performances

in the perfect CSI, stochastic channel uncertainty, and deterministic channel

uncertainty cases will be considered in the first three subsections. Then, in the

fourth subsection, we will examine the performance of the proposed exact phase

recovery algorithm (Algorithm 5.1).

5.5.1 Performance in the Perfect CSIT Case

In Fig. 5.3, we present the SER performance of the various precoding

schemes. The symbol constellation S is 16-QAM. The dash and solid lines

represent the performances under channel model one and channel model two,

respectively. We see that in both channel models, MRT outperforms all the CE

precoding schemes; for example, the gap between MRT and UA CE precoding is

about 2.5dB at the SER level 10−6. This is not surprising, since CE precoding is

a more stringent way of transmission than MRT. However, it should be recalled

that the performance advantage of MRT comes at a price of higher hardware

implementation costs and lower power efficiency with the RF amplifiers. Among

the three CE precoding schemes, the UA strategy gives the best performance,

and the plain strategy the worst. In channel model one, we observe that the

performance of plain CE precoding can be quite close to that of UA CE precod-

ing; the performance difference is just 1dB. Moreover, AS CE precoding shows a

small performance gain compared to plain CE precoding (0.4dB at the SER level

10−6). This observation suggests that uniform amplitudes in CE precoding may
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provide near-optimal performance in scenarios where all the channel elements

have similar magnitudes on average. However, in channel model two where some

channel elements have stronger magnitudes, plain CE precoding does not per-

form well. Both the AS and UA CE precoding schemes are better than the plain

CE precoding scheme, specifically, by about 4dB and 5dB respectively. Also,

the performance difference between the AS and UA strategies is less than 1dB,

which is small.

In Fig. 5.4 we show another set of SER results, where the symbol constellation

is changed to 64-QAM and the other simulation settings are the same as those

in Fig. 5.3. We observe similar results as in the previous 16-QAM case: In

channel model one, the plain CE precoding scheme yields SER performance

close to that of the AS and UA CE precoding schemes. In channel model two,

the AS and UA schemes have similar SER performance and outperform the plain

scheme. Moreover, in this 64-QAM case, we notice that MRT outperforms UA

CE precoding by 3.6dB; in comparison, the gap in the 16-QAM case is 2.5dB

(see Fig. 5.3). This suggests that for larger QAM sizes, MRT exhibits higher

SNR gains than CE precoding. But please be noted that increasing the QAM

size in MRT also incurs higher PAPR, and lower power efficiency with the RF

amplifier.

We can explain why the performance gap between the MRT scheme and the

CE precoding schemes widens with the QAM size, specifically, by analysis. As

described previously, the MRT scheme in (5.3) has an effective channel gain

αMRT =
√

PT‖h‖2. (5.54)

An upper bound on the effective channel gain of the UA CE precoding scheme

is given in the following proposition.

Proposition 5.3 Assume the perfect CSIT case. The effective channel gain of

the UA CE precoding scheme is upper-bounded by

αCE−UA ≤
1

|s|max

√

PT‖h‖2. (5.55)

Also, in a setting where there are no per-antenna power constraints and h is

i.i.d. zero-mean circular Gaussian, equality in (5.55) is attained with probability
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at least

1− N

2N−1
. (5.56)

The proof of Proposition 5.3 is relegated to Appendix 5.7.3. Comparing (5.54)

and (5.55), we see that MRT is at least |s|max times better than UA CE precoding

in terms of the effective channel gain. Also, note that the argument above applies

to the AS and plain CE precoding schemes as well, since the latters are more

restrictive versions of the UA CE precoding scheme. Since a larger QAM size has

a larger |s|max, we analytically confirm that the performance difference between

MRT and CE precoding increases with the QAM size.

We then investigate how CE precoding performs in other problem sizes N

in Fig. 5.5, where Fig. 5.5 (a), (b) and (c) show the performance of N = 128,

64, and 32, respectively. It can be seen that generally in channel model one, all

CE methods perform similarly; in channel model two, both CE AS and CE UA

are close and the plain CE shows some performance degradation compared to

CE UA and CE AS. In addition, one can observe that all precoding methods

have better performances in larger problem sizes than smaller problem sizes.

For example, for all precoding methods, the powers to achieve SER level of 10−6

at problem size N = 128 are around 4dB less than those at N = 64. This

observation confirms the necessity of using large antenna array and developing

fast algorithms for it. On the other hand, it is also shown that CE precoding

also works well when the problem size is not particular large.

We then investigate the number of active antennas in the AS CE scheme.

Fig. 5.6 shows the distribution of the active number of antennas, where the

settings are N = 128, 16-QAM and PT = −4dB. In the figure, the vertical

solid line marks the average numbers of active antennas. For channel model

one and two, the average number of antennas are 96 and 16, respectively; this

means that the AS strategy has, on average, used 75% and 12.5% of the total

128 transmitting antennas in channel model one and two, respectively. We

also see that the number of active antennas spreads from 85 to 110 in the first

channel model, and is always 16 in the second channel model. This observation,

together the previous SER result, indicates that the AS strategy is effective in
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Figure 5.3: Symbol error rate in the perfect CSIT case. N = 128, 16-QAM. Dash line:

channel model one; Solid line: channel model two.
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Figure 5.4: Symbol error rate in the perfect CSIT case. N = 128, 64-QAM. Dash line:

channel model one; Solid line: channel model two.

using a smaller number of the number of antennas to achieve comparable SER

performance, especially in channels where some channel elements have stronger

contributions over the others.
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(a) N = 128
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(b) N = 64

−16 −12 −8 −4 0 4 8 12
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

PT (dB)

S
y
m

b
o

l 
E

rr
o

r 
R

a
te

CE plain

CE AS

CE UA

MRT

(c) N = 32

Figure 5.5: Symbol error rate in the perfect CSIT case. N = 128, 16-QAM. Dash

line: channel model one; Solid line: channel model two. (a) is a replica of Fig. 5.3. In

channel model two of (b) and (c), five and three channel elements are distributed as

CN (10, 1) respectively, while the rest follow CN (0, 1).
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Figure 5.6: Distribution of the active antennas in the AS CE precoding scheme. N =

128, 16-QAM, and PT = −4dB.

5.5.2 Performance in the Stochastic Channel Uncertainty Case

We show the SER performance in the stochastic channel uncertainty case

in Fig. 5.7. The simulation settings are the same as those in Fig. 5.3, and in

addition the channel uncertainty level is δ2 = 0.2. Generally, the performances of

all the precoding schemes in the stochastic channel uncertainty case are similar

to those in the perfect CSIT case. Comparing Fig. 5.7 and its perfect CSIT

counterpart in Fig. 5.3, we further observe that in channel model two, all the

precoding schemes show almost the same performance as in the perfect CSIT

case. In contrast, in channel model one, all the precoding schemes show some

performance degradation compared to the perfect CSIT case. Furthermore, in

the stochastic channel uncertainty case, the performance gaps between the plain

and UA CE precoding schemes are larger: 2dB and 5.5dB for channel model

one and channel model two, respectively. The AS CE precoding scheme is still

within 1dB in comparison to the UA CE precoding scheme.

119



Chapter 5. Constant Envelope Precoding

−20 −16 −12 −8 −4 0 4 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

PT (dB)

S
y
m

b
o

l 
E

rr
o

r 
R

a
te

CE plain

CE AS

CE UA

MRT

Figure 5.7: Symbol error rate in the stochastic channel uncertainty case. N = 128,

16-QAM, and δ2 = 0.2. Dash line: channel model one; Solid line: channel model two.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Channel Uncertainty Level δ2

S
y
m

b
o

l 
E

rr
o

r 
R

a
te

CE plain

CE AS

CE UA

MRT

Figure 5.8: Symbol error rate versus the channel uncertainty level δ2. N = 128,

16-QAM, and PT = −4dB. Dash line: channel model one; Solid line: channel model

two.

In Fig. 5.8 we show the SER performance with respect to the channel uncer-

tainty level δ2. It can be seen that in channel model one, the performances of

all the CE precoding schemes are quite close to each other, irrespective of the

120



Chapter 5. Constant Envelope Precoding

channel uncertainty level. In the channel model two, we observe that the UA

and AS CE precoding scheme can withstand a larger channel uncertainty level

than the plain CE precoding scheme under the same SER specification.

5.5.3 Performance in the Deterministic Channel Uncertainty Case

In this subsection, we investigate the performance of CE precoding in the

deterministic uncertainty model. The simulation settings are the same as those

in Fig. 5.3 with channel uncertainty level ǫ = 0.1. The observations are similar

to those in Fig. 5.7 of the stochastic uncertainty model. CE UA and CE AS are

closed in both two channel models and are much better than plain CE in channel

model two. We investigate how the SER scales with the channel uncertainty ǫ in

Fig. 5.10. We can see that in channel model one, all CE methods are quite close

to each other; in channel model two, the plain CE shows a much worse SER

than CE AS and CE UA. CE AS and CE UA exhibit almost the same SER.
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Figure 5.9: Symbol error rate in the deterministic channel uncertainty case. N = 128,

16-QAM, and ǫ = 0.1. Dash line: channel model one; Solid line: channel model two.
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Figure 5.10: Symbol error rate versus the channel uncertainty level ǫ. N = 128,

16-QAM, and PT = −4dB. Dash line: channel model one; Solid line: channel model

two.

5.5.4 Comparison between Exact Phase Recovery and Gradient De-

scent

In this subsection, we compare the proposed exact phase recovery algorithm

(Algorithm 5.1) and the previous gradient descent method [47] in terms of ac-

curacy and complexity. Channel model one with perfect CSIT is assumed, and

the plain CE precoding scheme is adopted. We use the Armijo rule [104] for the

step-size selection in the gradient descent method, and we stop the algorithm

when the objective value of (5.9) is smaller than ǫ = 0.01.

Fig. 5.11 compare the accuracies of the two algorithms by showing their

SER performance. We can see that the SER performance of the gradient de-

scent method is almost the same as that of the proposed exact phase recovery

algorithm. This observation suggests that the gradient descent method should

approach the exact solution. However, the gradient descent method is compu-

tationally more demanding than the exact phase recovery algorithm, as shown

in Fig. 5.12 where the average numbers of floating point operations (FLOPs) of

the two algorithms are compared. It can be seen that the proposed method is
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Figure 5.11: Symbol error rate comparison between two phase recovery algorithms.

N = 128 and 16-QAM.
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Figure 5.12: Complexity comparison between two phase recovery algorithms. N = 128

and 16-QAM.

much faster than the gradient descent method, and their FLOPs gap is much

more significant at larger numbers of antennas.
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5.6 Summary

In this chapter we investigated transceiver design problems in CE precoding

for single-user MISO channels. A simple and efficient precoder algorithm for

achieving exact phase recovery was devised, and optimal designs for CE pre-

coding with antenna selection and unequal per-antenna power allocation were

developed. Simulation results demonstrated that the proposed CE precoding de-

signs can outperform the previous plain CE precoding scheme, especially when

there are significant disparities among channel coefficients. The fundamental

problem of characterizing the noise-free receive signal region was also solved in

this chapter, where we complete the characterization results previously studied

by the pioneering work by Mohammed and Larsson [47].

5.7 Appendix

5.7.1 Proof of Lemma 5.1

First, we show that any z ∈ C must satisfy rc ≤ |z| ≤ Rc. For any x ∈ A,
y ∈ B, we have that

|x+ y| ≤ |x|+ |y| ≤ Ra + rb = Rc

and that

|x+ y| ≥ max{0, |x| − |y|} ≥ max{0, ra − rb}.

This means that rc ≤ |z| ≤ Rc must hold.

Next, we show that any z ∈ C, rc ≤ |z| ≤ Rc must lie in C. The proof is by
construction. We consider two cases, namely |z| ≥ Ra − rb, and |z| < Ra − rb.

For the case of |z| ≥ Ra − rb, set

y = rbe
jφz , x = (|z| − rb)e

jφz .

It holds true that z = x+y, and that y ∈ B. The question left is whether x ∈ A.
We first observe that |x| ≥ |z| − rb ≥ Ra− 2rb ≥ ra, where the last inequality is

due to (5.18). Moreover, we have |x| = |z| − rb ≤ Rc− rb = Ra. Hence, x lies in
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A. For the case of |z| < Ra − rb, set

y = rbe
j(φz+π), x = (|z|+ rb)e

jφz .

Again, since z = x+ y and y ∈ B, we seek to show x ∈ A. One can easily verify
that |x| = |z|+ rb ≥ rc + rb ≥ ra and |x| = |z|+ rb < Ra − rb + rb = Rb. Hence,

x ∈ A is true. We therefore conclude that any z ∈ C, rc ≤ |z| ≤ Rc, satisfies

z = x+ y for some x ∈ A, y ∈ B, or equivalently z ∈ C. It is also clear from the

above proof that such (x, y) can be constructed via (5.19) and x = y − z.

5.7.2 Proof of Proposition 5.1

Assume without loss of generality that the variance of each element of h is

one. Let gi = |hi|, i = 1, . . . , N and 0 ≤ g(N) < g(N−1) . . . < g(1) denote the

ordered statistics of {gi}Ni=1. As hi is circular complex Gaussian distributed with

zero mean and unit variance, gi follows a Rayleigh distribution whose PDF is

given by

fg(g; σ) =
g

σ2
e−g

2/2σ2

, g ≥ 0 (5.57)

with σ2 = 1/2.

As {gi}Ni=1 are absolutely continuous i.i.d. random variables, it follows

from [95] that the joint PDF of {g(i)}Ni=1 is given by

fg(1),g(2),...,g(N)
(g1, g2, . . . , gN)

=N !
N
∏

i=1

fg(gi; 1/
√
2)

=N !
N
∏

i=1

2gie
−g2i

(5.58)

with domain T , {(g1, . . . , gN) | 0 ≤ gN < gN−1 . . . < g1}. Hence, we can

express Pr{r > 0} as

Pr{r > 0}

=Pr

{

g(1) −
N
∑

i=2

g(i) > 0

}

=

∫ ∞

0

∫ ∞

gN

. . .

∫ ∞

g3

∫ ∞

∑N
i=2 gi

fg(1),g(2),...,g(N)
(g1, g2, . . . , gN)dg1dg2 . . . dgN−1dgN .

(5.59)
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The integral in (5.59) with respect to g1 can be computed as

∫ ∞

∑N
i=2 gi

fg(1),g(2),...,g(N)
(g1, g2, . . . , gN)dg1

=N !

(

N
∏

i=2

2gie
−g2i

)

∫ ∞

∑N
i=2 gi

fg(g1; 1/
√
2)dg1

=N !

(

N
∏

i=2

2gie
−g2i

)

e−(
∑N

i=2 gi)
2

. (5.60)

To prove the upper bound, let us define for 2 ≤ j ≤ N ,

αj(gj; gj+1, . . . , gN)

=
N !

(j − 1)!(j − 2)!

(

N
∏

i=j

2gie
−g2i

)

e−(
∑N

i=j gi)
2

e−((j
2−j−2)g2j+2(j−2)(∑N

i=j+1 gi)gj),

where 0 ≤ gN < gN−1 < . . . < gj. We first show that

∫ ∞

gj+1

αj(gj; gj+1, . . . , gN)dgj ≤ αj+1(gj+1; gj+2, . . . , gN) (5.61)

is true for 0 < gN < gN−1 . . . < gj+1. To see this, we need the following inequality

∫ ∞

c

2xe−(ax
2+bx)dx ≤ 1

a
e−(ac

2+bc), (5.62)

where a > 0, b ≥ 0 and c ≥ 0 are constant. This can be easily verified by noting

that

2xe−(ax
2+bx) ≤ 2xe−(ax

2+bc)

for x ≥ c. The left hand side of (5.61) can be computed as

∫ ∞

gj+1

αj(gj; gj+1, . . . , gN)dgj

=
N !

(j − 1)!(j − 2)!

(

N
∏

i=j+1

2gie
−g2i

)

e−(
∑N

i=j+1 gi)
2

×
∫ ∞

gj+1

2gje
−((j2−j)g2j+2(j−1)(∑N

i=j+1 gi)gj)dgj.

(5.63)

Applying (5.62) to the above equation via setting a = j(j − 1), b = 2(j −
1)(
∑N

i=j+1 gi), and c = gj+1, we obtain the desired inequality in (5.63).
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Substituting (5.60) into (5.59) and applying (5.61) for j = 2, . . . , N , (5.59)

can be upper bounded by

∫ ∞

0

∫ ∞

gN

. . .

∫ ∞

g3

N !

(

N
∏

i=2

2gie
−g2i

)

e−(
∑N

i=2 gi)
2

dg2 . . . dgN−1dgN

=

∫ ∞

0

∫ ∞

gN

. . .

∫ ∞

g3

α2(g2; g3, . . . , gN)dg2 . . . dgN−1dgN

≤
∫ ∞

0

∫ ∞

gN

. . .

∫ ∞

g4

α3(g3; g4, . . . , gN)dg3 . . . dgN−1dgN

≤
∫ ∞

0

αN(gN)dgN

=
1

(N − 1)!
.

To show the lower bound, we use the inequality
(

∑N
i=2 gi

)2

≤ (N −
1)
∑N

i=2 g
2
i . Then, (5.59) is lower bounded by

∫ ∞

0

∫ ∞

gN

. . .

∫ ∞

g3

N !

(

N
∏

i=2

2gie
−Ng2i

)

dg2 . . . dgN−1dgN . (5.64)

To compute the above integral, let us define for 2 ≤ j ≤ N − 1,

βj(gj; gj+1, . . . , gN) =
N !

N j−2(j − 2)!

(

N
∏

i=j

2gie
−Ng2i

)

e−N(j−2)g2j , (5.65)

with domain 0 < gN < gN−1 < . . . < gj. It can be shown that

∫ ∞

gj+1

βj(gj; gj+1, . . . , gN)dgj = βj+1(gj+1; gj+2, . . . , gN) (5.66)

is true for 0 < gN < gN−1 < . . . < gj+1. Indeed, we have

∫ ∞

gj+1

βj(gj; gj+1, . . . , gN)dgj

=
N !

N j−1(j − 1)!

(

N
∏

i=j+1

2gie
−Ng2i

)

∫ ∞

gj+1

fg(gj; 1/
√

2N(j − 1))dgj

=
N !

N j−1(j − 1)!

(

N
∏

i=j+1

2gie
−Ng2i

)

e−N(j−1)g2j+1

=βj+1(gj+1; gj+2, . . . , gN).
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Now, applying (5.66) to (5.64) for j = 2, . . . , N − 1, (5.64) is equal to
∫ ∞

0

∫ ∞

gN

. . .

∫ ∞

g3

βj(g2; g3, . . . , gN)dg2 . . . dgN−1dgN

=

∫ ∞

0

βN(gN)dgN

=
1

NN−2

∫ ∞

0

fg(gN ; 1/
√

2N(N − 1))dgN

=
1

NN−2 .

5.7.3 Proof of Proposition 5.3

In the perfect CSIT case, the design optimization problem under the UA

strategy can be written as

αCE−UA = max
a∈RN

+

1

|s|max

‖h⊙ a‖1 (5.67a)

s.t.
2|s|max

|s|min + |s|max

‖h⊙ a‖∞ ≤ ‖h⊙ a‖1 (5.67b)

aTa ≤ PT (5.67c)

a ≤
√

PPA1; (5.67d)

cf. the design optimization formulation in (5.35). Let us relax problem (5.67)

by removing the constraints (5.67b) and (5.67d). By the Cauchy-Schwartz in-

equality, the optimal solution of the corresponding relaxed problem is shown to

be

a⋆ =

√
PT

‖h‖2
h∗. (5.68)

Since (5.68) achieves an objective value
√
PT

|s|max
‖h‖2, we obtain the desired result

in (5.55).

To prove the result in (5.56), consider the following inequality

2‖h⊙ a⋆‖∞ ≤ ‖h⊙ a⋆‖1. (5.69)

As |s|max ≥ |s|min, (5.69) implies that (5.67b) holds for a⋆. Consequently, it

can be easily shown that the occurrence of the event (5.69) implies that a⋆ is

an optimal solution to problem (5.67) without constraints (5.67d). Thus, if the

probability of (5.69) being violated is N/2N−1 under i.i.d. zero-mean Gaussian
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channels, we obtain the desired result in (5.56). The problem can be boiled

down to that of proving that

Pr{2‖g‖∞ − ‖g‖1 > 0} = N

2N−1
, (5.70)

where g = [|h1|2, . . . , |hN |2]T . The proof follows the same spirit as in that of

Proposition 5.1. Here, we only show the key steps due to space limit. Without

loss of generality, let us assume that the variance of each hi is two. Then, all

gi = |hi|2 are exponentially distributed with the PDF given by

fg(g) =
1

2
e−g/2, g ≥ 0.

Let 0 ≤ g(N) < g(N−1) < . . . < g(1) be the ordered statistics of {gi}Ni=1. Following

the result in [95], the joint PDF of {g(i)}Ni=1 can be expressed as

fg(1),g(2),...,g(N)
(g1, g2, . . . , gN)

=N !
N
∏

i=1

fg(gi)

=
N !

2N
e−

∑N
i=1 gi/2

(5.71)

with domain T , {(g1, . . . , gN) | 0 ≤ gN < gN−1 < . . . < g1 <∞}. Therefore,

Pr{2‖g‖∞ − ‖g‖1 > 0}

=Pr

{

g(1) −
N
∑

i=2

g(i) > 0

}

=

∫ ∞

0

∫ ∞

gN

. . .

∫ ∞

g3

∫ ∞

∑N
i=2 gi

fg(1),g(2),...,g(N)
(g1, g2, . . . , gN)dg1dg2 . . . dgN−1dgN .

(5.72)

First, let us compute the integral in (5.72) with respect to g1 as follows
∫ ∞

∑N
i=2 gi

fg(1),g(2),...,g(N)
(g1, g2, . . . , gN)dg1

=
N !

2N−1
e−

∑N
i=2 gi/2

∫ ∞

∑N
i=2 gi

fg(g1)dg1

=
N !

2N−1
e−

∑N
i=2 gi .

(5.73)

Next, we define

γj(gj; gj+1, . . . , gN) =
N !

2N−1(j − 2)!
e−

∑N
i=j+1 gie−(j−1)gj . (5.74)
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Then, it can be shown that

∫ ∞

gj+1

γj(gj; gj+1, . . . , gN)dgj = γj+1(gj+1; gj+2, . . . , gN). (5.75)

This can be proved by
∫ ∞

gj+1

γj(gj; gj+1, . . . , gN)dgj

=
N !

2N−1(j − 2)!
e−

∑N
i=j+1 gi

∫ ∞

gj+1

e−(j−1)gjdgj

=γj+1(gj+1; gj+2, . . . , gN).

(5.76)

Finally, by applying (5.73) and (5.75) from j = 2 to N − 1, we have

Pr{2‖g‖∞ − ‖g‖1 > 0}

=

∫ ∞

0

∫ ∞

gN

. . .

∫ ∞

g3

γ2(g2; g3, . . . , gN)dg2 . . . dgN−1dgN

=

∫ ∞

0

γN(gN)dgN

=

∫ ∞

0

N !

2N−1(N − 2)!
e−(N−1)gNdgN

=
N

2N−1
.

We therefore have shown (5.70) and complete the proof.
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Chapter 6

Conclusion

6.1 Summary

With the increasing demand for faster wireless connectivity, wireless com-

munication systems are evolving into MIMO systems equipped with tens or

hundreds of antennas. Developing detection and precoding algorithms with low

complexity but high performance in such systems is of paramount importance

and is a tremendous challenge. The detection and precoding algorithms should

also take into account hardware constraints for cheaper and more power-efficient

implementations. In this thesis, we proposed several algorithms to meet this

challenge in various communication scenarios, including

❼ MIMO detection: We developed a regularization optimization approach to

tackle the out-of-bound symbol relaxation problem in lattice decoding. The

proposed approach is based on the study of the LDR of the ML detector.

We showed that the LDR approach, which is lattice decoding-based, is also

connected to the semidefinite relaxation-based methods. We developed

practical MIMO detectors by using the projected subgradient method for

solving the LDR problem and the LRA-DF approximation method for

reducing the complexity. Simulation results showed that the proposed

methods have promising performance-complexity tradeoffs.

❼ Multi-user MISO broadcasting: We considered per-antenna power con-

straints in vector perturbation to reduce signal clipping and power back-

off due to limited dynamic range of power amplifiers. We showed that the
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proposed VP-PAPC schemes achieve the full transmit diversity in Gaus-

sian fading channels. We developed an efficient approximation algorithm

for VP-PAPC by using the LDR and the LRA-DF techniques. Simulation

results demonstrated that VP-PAPC can avoid signal clipping in instan-

taneous power normalization and reduce the power back-off in short-term

power normalization.

❼ Single-user MISO channels: We studied CE precoding which enables cheap

but highly power-efficient power amplifiers. We provided a complete char-

acterization of the noise-free receive signal region and developed an efficient

and exact CE precoding algorithm. We formulated and solved efficiently

robust QoS maximization problems in CE precoding where antenna selec-

tion or unequal per-antenna power allocation is allowed in the transmitter.

Simulation results demonstrated that the performances of the proposed CE

precoding designs are better than that of the previous plain CE precoding

scheme.

6.2 Future Directions

While this thesis has proposed and analyzed several detection and precoding

schemes, there are a few directions worth further investigations:

MIMO Detection

❼ This thesis focuses on hard decision-based MIMO detection. Since soft

decision-based MIMO detection is important to practical systems (see the

literature, such as [105] and the references therein), it would be meaningful

to further study how the proposed LDR solutions may be used to provide

soft decisions. Such a future direction seems feasible, since some existing

soft decision generation tricks for LRA methods, such as bit flipping [106]

and K-best SD [107], are also applicable to the LDR approach. It would

also be interesting to investigate whether the structures of LDR may be

exploited to provide efficient methods for soft decision generations.
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❼ The present research endeavor demonstrated that the BR initialization

scheme developed for the LDR LD approach plays a non-negligible role.

While the LDR LD detector can converge to the optimum for any given

feasible initialization, as suggested by convergence results in optimization

theory, our extensive simulation results have shown that BR initialization

can improve both the convergence speeds and sphere decoding complexities

quite significantly. Thus, an interesting future direction would be to further

understand the merits of BR initialization via analysis.

Vector Perturbation with Per-antenna Power Constraint

❼ This thesis considered exact CSIT in VP-PAPC. However, the CSIT in

practice is not accurate due to noise corruption, feedback delay, and quan-

tization. Thus, the study of the effect of inaccurate CSIT on VP-PAPC

is very meaningful. Stochastic channel uncertainty in vector perturbation

has been considered in [83] which shows that channel uncertainty can re-

duce the system diversity. It remains interesting to see how deterministic

channel uncertainty affects the system performance.

❼ Long-term power normalization in vector perturbation is also of great im-

portance. In long-term power normalization, the power normalization fac-

tor is taken to be the power of the unnormalized transmitting signal av-

eraged over the channel and information vector. However, it is difficult to

calculate this long term power normalization factor because for a given in-

stance of the channel and information vector the computation of the power

of the unnormalized transmitting signal is hard already. The introduction

of PAPC will further complicate the computation. It would be interesting

to develop efficient ways to compute the power normalization factor.

Constant Envelope Precoding

❼ This thesis considered CE precoding in single-user MISO channels. A

very interesting extension would be to consider the scenarios of single-user

MIMO channels and multi-user MISO downlink channels [48]. In these two

scenarios, the noise-free receive signal region characterization and phase
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recovery for CE precoding seem to be hard. In fact, the phase recovery

problem can be written as a constant-modulus least squares problem, which

has been reported to be NP-hard in general [108]. Developing efficient

approximate solutions for the two scenarios mentioned above appears to

be a meaningful and appealing future direction.

❼ Another interesting direction is robust design with unequal channel un-

certainties across transmit antennas. In both stochastic and deterministic

models, unequal channel uncertainties pose no challenge to the UA case;

the resulting optimization problems are still convex problem. But for AS,

the optimization problems are again likely to be NP-hard. In fact, our

recent work [109] shows that in the deterministic uncertainty model the

power minimization formulation, which is a variant of the QoS maximiza-

tion formulation in this thesis, is NP-hard. It would be interesting to

confirm the NP-hardness of the AS QoS maximization formulation and

develop efficient approximate solutions.
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