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Abstract

As circuit non-idealities inevitably worsen with technology scaling, more design

resource has to be incorporated to ensure integrated circuit (IC) timing correctness.

Such worst-case-oriented design methodology results in pessimistic designs with

considerable power and performance overheads, lessening the benefits provided

by technology scaling.

Better-than-worst-case (BTWC) design methodology that allows reliability to

be traded off against power and performance was proposed to dramatically im-

prove the computation energy-efficiency. The basic idea behind BTWC design

methodology is that, since circuit non-idealities mainly manifest themselves as

infrequent timing errors on critical paths of the circuit, we can over-clock oper-

ating frequency and/or over-scale supply voltage of the chip to a critical point,

where timing errors occur, and achieve error-resilient computations by perform-

ing timing error detection and correction. This approach is generally referred to

as timing speculation, with which it is not necessary to guarantee “always cor-

rect” operations. Unfortunately, there is usually a “wall of critical paths” in the

final implementation of a circuit caused by conventional worst-case-oriented de-

sign methodology, suggesting that, given a fixed circuit design, the effectiveness

of timing speculation is limited by a fixed threshold beyond which the circuit per-

formance/energy efficiency will drop significantly.

To address the above problem, this thesis first proposes to study the premises
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and prospects of timing speculation by analyzing the minimum and maximum po-

tential benefits that are achievable by timing speculation techniques. After an-

swering the question posed by the conflict between conventional techniques and

timing speculation, this thesis investigates multiple design and optimization prob-

lems in timing-speculative circuits. Firstly, as introducing timing speculation ca-

pability into circuits can naturally extend the flexibility of multi-supply voltage

(MSV) designs to a new horizon, this thesis formulates the MSV design problem

for timing-speculative circuits and develops a novel algorithm based on dynamic

programming to solve it. Secondly, this thesis develops a general formulation of

clock skew scheduling (CSS) problem for timing-speculative circuits, wherein tim-

ing error rate and its corresponding impact are explicitly considered, and proposes

novel algorithms to tackle this problem. Finally, considering the impact of timing

uncertainties caused by process variation and wearout effects, which is very diffi-

cult to be modeled and addressed at design stage, this thesis also develops a novel

online clock skew tuning framework for timing-speculative circuits. By utilizing

an elaborately-designed hardware architecture to collect timing error information

and tune clock skews at runtime, variation effects can be effectively mitigated.
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摘要 
 
隨著半導體工藝技術的不斷進步 (technology scaling) ，更多的設計資源
不得不用於確保集成電路的時序正確性。這種“面向最壞情況”(worst-
case-oriented) 的芯片設計方法導致了悲觀保守的芯片設計方案，增加了
性能及功耗開銷，減少了工藝進步帶來的效益。 
 
“優於最壞情況”(better-than-worst-case) 的芯片設計方法允許犧牲一定
的芯片可靠性 (reliability) 來提高性能以及降低功耗，從而提高計算的能
量效率 (energy efficiency) 。“優於最壞情況”設計方法的核心思想在於放
松對芯片可靠性的硬性需求。既然時序錯誤 (timing error) 在關鍵路徑中
的發生頻率並不高，我們可以允許錯誤發生，從而節約用於防止錯誤發

生所需要的高額開銷。而當錯誤發生時，再利用錯誤檢測和更正方法 
(error detection and correction) 來消除錯誤造成的影響。這種無須保證計
算過程永遠正確無誤的方法通常被稱作“時序推測” (timing 
speculation) 。然而，不幸的是，由於傳統的“面向最壞情況”的設計方
法往往導致芯片中存在所謂的“關鍵路徑壁壘”(wall of critical paths) ，
時序推測技術的有效性在一定程度上受限。 
 
為了解決上述問題，我們首先研究了時序推測技術的前提與前景，也就

是研究了如何估計時序推測技術能夠帶來的最小和最大效益。此外，我

們也研究了時序推測芯片 (timing-speculative circuit) 中的若幹設計優化問
題。首先，由於引入時序推測技術能夠提高多電壓 (multi-supply voltage) 
技術的靈活性，我們闡述了時序推測芯片中的多電壓設計問題，並創造
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性地提出了一種基於動態規劃 (dynamic programming) 的算法來解決這個
問題。此外，我們提出了時序推測芯片中的時鐘差異規劃 (clock skew 
scheduling) 問題。在考慮了時序錯誤率 (timing error rate) 等因素的影響
後，我們設計了新穎有效的方法來解決該問題。最後，鑒於工藝差異 
(process variation) 和老化效應 (wearout effect) 對芯片時序的影響，而且
這種影響很難在設計階段被消除，我們提出了一種實時的時序差異調整 
(clock skew tuning) 架構。利用精心設計的硬件結構，我們可以實時地收
集時序錯誤的信息，相應地調整時鐘差異，從而極大地減弱了時序不確

定性對芯片性能的影響。 
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Chapter 1

Introduction

1.1 Preface

This thesis presents my research work in the past four and a half years, for the

partial fulfilment of the requirements of my Ph.D. degree in Computer Science

and Engineering at The Chinese University of Hong Kong (CUHK).

This thesis primarily consists of two parts. The first part (including Chapter 2)

investigates the premises and prospects of timing speculation techniques, building

up the fundamental of this thesis research and revealing its feasibility. The sec-

ond part (including Chapter 3⇠5) studies the design and optimization problems

for timing speculation that provide both offline and online solutions to realize a

practical implementation of timing-speculative circuit. Every chapter in this thesis

is largely self-contained. The notations defined in each chapter is applicable for

that chapter only.

The first part of this thesis originates from the following work:

• R. Ye, F. Yuan and Q. Xu, “On the Premises and Prospects of Timing Spec-

ulation”, submitted to ACM/IEEE Design Automation Conference (DAC),

2014.
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CHAPTER 1. INTRODUCTION 2

The second part is mainly comprised of the following works:

• R. Ye, F. Yuan, H. Zhou and Q. Xu, “Clock Skew Scheduling for Timing-

Speculative Circuits”, submitted to IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (TCAD).

• R. Ye, F. Yuan and Q. Xu, “Online Clock Skew Tuning for Timing-Speculative

Circuits”, submitted to IEEE Transactions on Computers (TC).

• R. Ye, F. Yuan, Z. Sun, W.-B. Jone, and Q. Xu, “Post-Placement Voltage Is-

land Generation for Timing-Speculative Circuits”, Proc. ACM/IEEE Design

Automation Conference (DAC), June 2013.

• R. Ye, F. Yuan, H. Zhou and Q. Xu, “Clock Skew Scheduling for Timing

Speculation”, Proc. IEEE/ACM Design, Automation, and Test in Europe

(DATE), Mar. 2012.

• R. Ye, F. Yuan and Q. Xu, “Online Clock Skew Tuning for Timing Spec-

ulation”, Proc. IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), Nov. 2011.

In addition, there are a number of research works/publications that are not

included in this thesis. They are:

• R. Ye and Q. Xu, “Learning-Based Power Management for Multi-Core Pro-

cessors via Idle Period Manipulation”, submitted to IEEE Transactions on
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Paper Nomination)



CHAPTER 1. INTRODUCTION 4

1.2 Background

With the continuous downscaling of transistor feature size, a significant amount

of research effort has been attracted by the increasingly severe uncertainties of the

timing behavior of today’s integrated circuits (ICs), mainly manifesting themselves

as infrequent timing errors on speed-paths (i.e., critical or near-critical paths).

There are multiple factors that contribute to this effect: (i) inevitable static process

variation caused by manufacturing imperfection leads to the mismatch of timing

performance between the designed value and the actual one; (ii) dynamic varia-

tions in supply voltage, temperature, and multiple-input switching cause varying

circuit delay at runtime; (iii) circuit aging mechanisms such as hot carrier injection

(HCI) and negative-bias temperature instability (NBTI) lead to gradual increase of

circuit delay over its lifetime.

Facing these timing uncertainties, conventional IC designs try all means to

achieve error-free computations, even under worst-case combinations of process,

voltage, and temperature (PVT) variations and wearout effects [1, 2]. As the above

circuit non-idealities inevitably worsen with technology scaling [3], more design

guardband has to be incorporated to ensure IC timing correctness. Consequently,

such worst-case-oriented design methodology results in pessimistic designs with

considerable power and performance overheads [4], lessening the benefits pro-

vided by technology scaling. As can be seen in Fig. 1.1, even though a particular

circuit may operate at point B without timing errors, during the design phase we

have to conservatively let the circuit work at point A with lower frequency and/or

higher supply voltage to ensure its timing correctness throughout its service life.

The significant performance/energy difference between Point A and Point B is

used as design guardband.

To address the above problem of pessimistic designs, better-than-worst-case

(BTWC) design methodology that allows reliability to be traded off against power
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c

(a) Error rate of timing-speculative circuits.

c

(b) Energy efficiency of timing-speculative circuits.

Figure 1.1: Motivation of timing speculation.

and performance was proposed to dramatically improve the energy efficiency of

computations [5, 6]. The basic idea behind BTWC design methodology is that,

since circuit non-idealities mainly manifest themselves as infrequent timing er-

rors on critical paths of the circuit (if sufficient design guardband is not incorpo-
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rated) [7], we can over-clock the operating frequency and/or over-scale the supply

voltage of the chip to a critical point, where timing errors occur, and then achieve

resilient computations (instead of error-free computations) by performing timing

error detection and correction. This approach is generally referred to as timing

speculation (TS). As can be seen in Fig. 1.1, a timing-speculative circuit (i.e., a

circuit that is equipped with timing speculation capability) can operate at point C

with much higher frequency or much lower supply voltage, thus greatly improv-

ing the circuit’s energy-efficiency even after compensating the performance and

energy penalties caused by timing detection and correction. Due to this significant

benefit, timing speculation techniques have attracted lots of research interests from

both academia and industry [8].

As the necessary components of timing speculation, both timing error detec-

tion and correction techniques (including error recovery and error masking) should

be elaborately designed. These techniques presented in the literature would be dis-

cussed as follows.

1.2.1 Timing Error Detection

There are many timing error detectors presented in the literature (e.g., [9, 10]),

and most of them are based on monitoring signal transitions on speed-paths for a

specified clock period after the clock edge.

Without loss of generality, let us discuss one of the most representative timing

speculation techniques, Razor [9, 10], to illustrate how error-resilient computations

can be achieved with timing speculation. To detect timing errors on critical paths,

the receiving ends of critical paths, referred to as suspicious flip-flops (SFF), are

replaced with Razor flip-flops (RFFs), which includes a main flip-flop (FF), an

additional shadow latch and some control logic (see Fig. 1.2). The main flip-flop

latches the output signal at the clock edge with possible timing error, while the
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Figure 1.2: The design of Razor flip-flop.
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Figure 1.3: The short path problem of timing speculation.

shadow latch, controlled by a delayed clock signal, latches the signal a fraction of

a clock cycle later, which guarantees to receive the correct value. Consequently,

when the values of the shadow latch and the main flip-flop do not agree with each

other, indicated by the comparator, a timing error is detected.

To detect timing errors on speed-paths as above, obviously, all the receiving

ends of speed-paths, i.e., suspicious flip-flops, should be equipped with Razor-like



CHAPTER 1. INTRODUCTION 8

timing error detectors. There require, however, extra hardware resources to enable

such double-sampling-based error-detection techniques. As discussed earlier, a

certain checking period (or timing window) right after the clock edge is set to

monitor late transition on suspicious flip-flops, and any transition in this timing

window is regarded as timing error. It is therefore a critical issue to distinguish the

late coming transitions caused by timing errors from those transitions generated by

short paths, as shown in Fig. 1.3, so that every timing error detection is assured to

be correct and reliable. Such a problem is known as short path problem of timing

speculation, which can be solved by padding short paths [11] with buffers until the

delay of a suspicious flip-flop is long enough to satisfy the hold time constraint of

the delayed clock, for any path that connects to this suspicious flip-flop.

1.2.2 Timing Error Recovery

One widely-used error recovery scheme is to restore the system to a known-good

pre-error state when timing error is detected. Razor [9] first implemented such a

recovery scheme for timing errors with microarchitectural support. That is, when

a timing error is detected in a Razor flip-flop, the processor pipeline is flushed and

the correct result from the shadow latch is inserted back into the pipeline. Then,

by replaying instructions (at possibly lower operating frequency), the processor

operates correctly with little performance penalty. Furthermore, by taking timing

error rate into consideration, voltage-scaling is utilized to allow processor to run

robustly at the edge of minimum power consumption, with occasional timing error

recovery for heavyweight computations. With the above techniques, Razor enables

better than worst-case design by removing design guardband that is used to guar-

antee “always correct” operations, and has inspired a large amount of subsequent

research work (e.g., [12–14]).



CHAPTER 1. INTRODUCTION 9

Figure 1.4: The conceptual framework of logical error masking.

1.2.3 Timing Error Masking

Albeit Razor-like timing speculation techniques are very effective for timing error

correction in microprocessors with the help of instruction replay, they are very

difficult, if not impossible, to be applied to general logic circuits, due to the high

cost to checkpoint error-free states in them. It is therefore imperative to develop

in-situ timing error correction techniques that are able to mask errors without any

rollback. There are a few such techniques presented in the literature and they

can be classified into two categories: logical error masking and temporal error

masking.

1.2.3.1 Logical Error Masking

Logical error masking is based on synthesizing a circuit, referred to as error-

masking circuit, that correctly predicts the outputs of the circuit upon application

of inputs that sensitize the speed-paths of the circuit [15]. As demonstrated in

Fig. 1.4, a redundant logic block is constructed to predict the outputs of the origi-

nal circuit. With this exact sensitization constraint, the error-masking circuit tends

to have more timing slack when compared to the original circuit, and hence is

immune to timing errors. Albeit the idea is very interesting, to synthesize such
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error-masking circuits, we need to obtain the characteristic function for the set of

all speed-path activation patterns, which is only practical for small circuit blocks.

1.2.3.2 Temporal Error Masking

Temporal error masking techniques correct timing errors by delaying the arrival

time of the correct data to the next logic level. There have been several temporal

error masking techniques proposed in the literature (e.g., [16–18]).

To be specific, in [16] Kurimoto et al. proposed to stall the clock for one cycle

after detecting a timing error to correct the circuit states. The assumption that the

clock signal can be safely stalled within one clock cycle without corrupting circuit

states, however, is usually impractical due to the fact that the latency involved in

consolidating error signals can be much larger than the cycle time for reasonable-

sized design. In [17], Hirose et al. used a delayed clock to re-sample and correct

the data-path value by borrowing time from the next logic level when a timing er-

ror is detected. This technique assumes that all the sensitizable paths in the next

logic level of a suspicious FF are non-critical and they can lend sufficient time for

timing error correction, which is often not the case in practical circuits. To tackle

this problem, Choudhury and Mohanram [18] proposed a so-called TIMBER tech-

nique that is able to recover from two-stage timing errors. Two kinds of sequential

elements, namely TIMBER flip-flop and TIMBER latch, are implemented in this

architecture to replace suspicious flip-flops with time-borrowing capability.

Albeit the above time-borrowing techniques are able to mask timing errors in

suspicious flip-flops occurred during the checking period (i.e., the difference be-

tween the original clock signal and the delayed clock signal), the timing slack of

their successive logic levels is reduced, and hence some initially non-suspicious

flip-flops may become suspicious ones and need to be replaced by sequential el-

ements with time-borrowing capability. Due to this propagation effect, the hard-
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ware cost for such temporal error masking techniques can be quite high. In addi-

tion, there is clearly a trade-off between timing error detection capability and the

area/power overhead of time-borrowing based error masking techniques. That is,

higher timing error detection capability requires larger checking period, therefore

increasing the number of suspicious flip-flops.

1.3 Motivation and Contributions

Timing error correction inevitably incurs extra performance loss and energy con-

sumption. As can be observed in Fig. 1.1, further increase of frequency and/or de-

crease of voltage beyond point C will hurt system performance/energy efficiency,

because too many system rollbacks are required to correct the massive timing er-

rors. It is therefore very essential to optimize timing-speculative circuits by reduc-

ing timing error rate (TER) [12].

Various techniques have been presented for optimizing timing-speculative cir-

cuits in the literature. The key issue for this optimization problem is to reshape

the path delay distribution of the circuit so that those frequently-sensitized timing

paths are optimized to have more timing slack while the other paths are allowed to

have less timing slack and even suffer from timing errors. EVAL [13] proposes a

so-called high-dimensional dynamic adaptation technique that trades error rate for

processor frequency by tilting, shifting, or reshaping the path distributions of var-

ious functional units. Blueshift [14] identifies and optimizes the most frequently

sensitized critical paths by on-demand selective biasing and path constraint tun-

ing. DynaTune [19] optimizes the most frequently sensitized critical paths of the

circuit by assigning low threshold voltage to those critical gates that are strongly

related to the occurrence of timing errors.

The above techniques are helpful for TER reduction, but one common limita-

tion is that they conduct optimization on top of a given circuit netlist and hence
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are not capable of manipulating the logic structure of the circuit. In [20], the au-

thors attempted to conduct logic synthesis for BTWC designs. They constructed

a simple timing error probability model and used it to guide the “balance” logic

optimization step, which is a logic decomposition method initially used for delay

minimization [21]. The effectiveness of this solution, however, is not very im-

pressive from their experimental results, likely due to the lack of accuracy of the

unvalidated timing error model and the simple strategy to include timing errors

into optimization cost function only.

Unfortunately, there is usually a “wall of critical paths” (i.e., timing wall) in the

final implementation of a circuit caused by the conventional worst-case-oriented

design methodology. This is due to the nature of today’s IC design and optimiza-

tion flow, e.g., gates on those initially non-critical paths are often downsized to

trade off gate delay for power and area, making many non-critical paths become

critical. This suggests that, given a fixed circuit design, the effectiveness of tim-

ing speculation techniques is limited by a fixed threshold beyond which the circuit

performance/energy efficiency will drop dramatically.

To address the above problem of “timing wall”, this thesis first studies the

premises and prospects of timing speculation, as it is not orthogonal to other

circuit-level power optimization techniques. For example, given a circuit netlist,

we could downsize those gates on non-critical paths for power reduction [22],

which, however, increases the height of the timing wall with more speed-paths

in the circuit. Alternatively, we could as well upsize those gates on frequently-

sensitized speed-paths and turn them into non-critical paths for effective timing

speculation. Since both methods can reduce power consumption and their impacts

are interrelated, an interesting question is emerging. That is, given a circuit netlist,

whether the potential energy efficiency gains provided by timing speculation (over

conventional circuit-level power optimization techniques) is significant enough to
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warrant the effort to make it timing-speculative? This fundamental problem, al-

though important and relevant, has not been explicitly investigated in the literature,

motivating this thesis to directly investigate it first.

After that, this thesis also presents and addresses a number of design and op-

timization problems to realize a practical implementation of timing-speculative

circuit as follows.

Voltage Island Generation: Motivated by the fact that individual blocks of

a circuit can have timing/power characteristics unique from the rest of the de-

sign, the concept of multi-supply voltage (MSV) design was leveraged to trade off

power consumption and performance. Introducing timing speculation capability

into circuits can naturally extend the flexibility of MSV designs to a new horizon.

Consequently, this thesis formulates the post-placement MSV problem for timing-

speculative circuits and develop a novel algorithm based on dynamic programming

to solve it. The proposed algorithm can guarantee larger solution space is explored

with similar algorithm runtime and meanwhile the optimization result is always

improved step by step.

Clock Skew Scheduling: Clock skew Scheduling (CSS), treating clock skew

as a manageable resource instead of design liability, is an effective technique to

improve IC performance, by assigning intentional clock arrival times to flip-flops

(FFs). This thesis develops a general formulation of clock skew scheduling (CSS)

problem for timing-speculative circuits, wherein timing error rate and its corre-

sponding impact are explicitly considered, and proposes novel algorithms to tackle

this problem. The proposed algorithms are based on gradient-descent method

(GDM) and steepest-descent method (SDM) that are classic techniques used to

solve non-linear optimization problems.

Online Clock Skew Tuning: Considering the impact of process variation,

which is really difficult to be modeled and addressed at design stage, this thesis
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also develops a novel online clock skew tuning framework for timing-speculative

circuits. Specifically, a novel hardware architecture is designed to collect timing

error information and tune clock skews at runtime. By elaborately compensating

process variation and/or aging effects, significant performance improvement can

be achieved when compared to a fixed skew setting that is optimized at design

stage.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 investigates the

premises and prospects of timing speculation by studying the minimum and maxi-

mum potential benefits that are achievable by conducting timing speculation. This

work answers the question posed by the conflict between conventional techniques

and timing speculation, and identifies which one is preferable for a given circuit

netlist in terms of energy efficiency. Chapter 3 presents the post-placement voltage

island design problem of timing-speculative circuits, wherein individual voltage is-

land has its own supply voltage that is not necessary to satisfy timing constraint.

Next, the offline clock skew scheduling and online clock skew tuning problems

are detailed in Chapter 4 and Chapter 5, respectively. By explicitly considering

timing error rate and its corresponding impact, assigning intentional clock skews

is exploited to be an effective technique to improve timing speculation. Finally,

Chapter 6 concludes this thesis and points out the directions of future research.

2 End of chapter.



Chapter 2

The Premises and Prospects

2.1 Introduction

Power minimization is a primary objective in the design of integrated circuits (ICs)

nowadays, which is achieved with CMOS technology scaling and low-power de-

sign techniques at various levels. With techniques such as multi-threshold logic,

gate sizing for power reduction, clock and power gating, dynamic power man-

agement, and dynamic voltage and frequency scaling (DVFS) already adopted in

commercial IC products for power optimization [23], designers mainly rely on

technology scaling to further improve the energy efficiency of VLSI circuits.

However, energy efficiency from aggressive technology scaling itself is show-

ing diminishing improvements. This is because, even though the power consump-

tion of individual devices continues to reduce with technology scaling, the increas-

ing static and dynamic variation effects (e.g., manufacturing variability, tempera-

ture/voltage fluctuations, and circuit aging) associated with scaling [24, 25] require

us to reserve increasingly large design guardband to ensure “always correct” oper-

ations, even under the worst-case combinations of the above variation effects.

Prior works suggest that the best and probably the only effective way to achieve

15
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power reduction at design time is to eliminate waste whenever possible. In exist-

ing worst-case oriented designs, much energy is wasted to guarantee “error-free”

computations. If we can over-clock the frequency and/or reduce the supply voltage

of the circuit with correct computational results under nominal timing conditions

while conducting online error detection and correction when timing errors occur

under worst-case conditions, the potential circuit energy efficiency gain can be sig-

nificant. Such better-than-worst-case (BTWC) design methodology [26] thus re-

ceived lots of research attention, wherein the key enabling technique used to effec-

tively tradeoff reliability with performance/power of the circuit to achieve “error-

resilient” computations is called timing speculation (TS) [9, 12, 14, 19, 27, 28].

For a well-tuned circuit, there usually exists a large number of speed-paths

(i.e., critical or near-critical paths) after timing and power optimization, which

manifest themselves as a wall in the timing slack histogram, referred to as “timing

wall” [29]. Such phenomenon, however, limits the effectiveness of timing spec-

ulation due to the performance/energy penalties associated with timing error cor-

rection [30]. That is, when errors occur in a timing-speculative circuit, the system

needs to be rolled back to a pre-error state for re-computation (usually with slower

frequency), which incurs both performance penalty and extra energy consumption.

Consequently, a timing-speculative circuit needs to operate at a voltage-frequency

combination with small timing error rate (TER). The timing wall basically dictates

the threshold beyond which there are massive amount of timing errors and the as-

sociated penalties would outweigh its benefits. To mitigate this issue, a number of

optimization techniques for timing-speculative circuits were proposed to reshape

the circuit path delay distribution for effective timing speculation [11, 13, 31–33].

Timing speculation is not orthogonal to other circuit-level power optimiza-

tion techniques. For example, given a circuit netlist, we could downsize those

gates on non-critical paths for power reduction [22], which, however, increases the
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height of the timing wall with more speed-paths in the circuit. Alternatively, we

could upsize those gates on frequently-sensitized speed-paths and turn them into

non-critical paths for effective timing speculation. As both methods can reduce

power consumption and their impacts are interrelated, an interesting question is

that, given a circuit netlist, whether the potential energy efficiency gains provided

by timing speculation (over conventional circuit-level power optimization tech-

niques) is significant enough to warrant the effort to make it timing-speculative?

To the best of our knowledge, this problem, although important and relevant, has

not been explicitly investigated in the literature.

As it is not possible to derive an optimal timing-speculative circuit for evalu-

ation purpose, in this work, we try to answer the above question by studying the

premises and prospects of timing speculation instead. To be specific, we develop

novel algorithms to obtain the minimum and maximum potential benefits achiev-

able with TS techniques which facilitate designers to explore preferred power opti-

mization techniques. Experimental results on various benchmark circuits demon-

strate the efficacy of the proposed methodology.

The remainder of this chapter is organized as follows. In Section 2.2, we

present the preliminaries and motivation of this work. The general optimization

problem for timing-speculative circuits is formulated in Section 2.3. The premise

problem and prospect problem on the potential benefit of TS are then detailed in

Section 2.4. Next, Section 2.5 presents our experimental results on various bench-

mark circuits. Finally, Section 2.6 concludes this chapter.
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2.2 Preliminaries and Motivation

2.2.1 Timing Speculation

Circuit-level timing speculation, being able to detect timing errors online, react to

the error quickly and recover from it by rolling back to a known-good pre-error

state, is one of the most promising solutions to deal with process, voltage, and

temperature (PVT) variations and aging effects.

Various online timing error detectors were proposed in the literature. Without

loss of generality, let us consider the representative Razor flip-flop [9] to demon-

strate how timing error detectors work. A Razor flip-flop, is comprised of a main

flip-flop, a shadow latch and some control logic. The main flip-flop latches the

output signal at the clock edge with possible timing error, while the shadow latch

guarantees to receive the correct value, by latching the signal a fraction of a cycle

later. Consequently, when the shadow latch and the main FF values do not agree,

the timing error is detected. To make use of TS technique, it is necessary to re-

place all critical flip-flops that are driven by speed-paths of the circuit with Razor

flip-flops (or other timing speculators).

For microprocessor pipelines, timing error recovery can be achieved with mi-

croarchitectural support [34]. That is, when a timing error is detected, the proces-

sor pipeline is flushed and the correct result from the shadow latch is returned back

into the pipeline. Then, by replaying instructions (possibly at lower frequency), the

processor is able to recover from timing errors [27].

2.2.2 Related Work

Various optimization techniques for timing-speculative circuits have been pre-

sented in the literature for TER reduction under a specified voltage-frequency

combination. EVAL [13] uses a so-called high-dimensional dynamic adaptation
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technique that trades error rate for processor frequency by tilting, shifting, or re-

shaping the path distributions of various functional units. Blueshift [14] identifies

and optimizes the most frequently exercised critical paths by on-demand selective

biasing and path constraint tuning. DynaTune [19] optimizes the most frequently-

sensitized critical paths of the circuit by assigning low threshold voltage to those

critical gates that are strongly related to the occurrence of timing errors. To miti-

gate the impact of timing wall, Kahng et al. [31, 32] proposed a slack redistribution

strategy to achieve a gradual delay distribution that is able to better serve TS tech-

niques.

The above solutions conduct optimization for timing speculation with a fixed

circuit netlist. Recently, several logic synthesis techniques were proposed [11, 20,

28]. By intentionally manipulating the circuit structure for timing speculation, the

circuit energy efficiency can be further improved.

2.2.3 Motivation

In Fig. 2.1, we plot the circuit path delay distribution under conventional power

optimization and timing speculation, wherein the vertical lines represent the oper-

ational clock periods of the circuit.

The case of conventional power optimization is depicted in Fig. 2.1(a). Point

B is the point where maximum path delay equals to operational clock period and

hence has zero timing slack1. Considering variation effects, the actual operational

clock period is usually set to be Point A, with the timing slack between Point

A and Point B reserved as design guardband. By trading off delay and power

consumption on non-critical paths, the path delay distribution is reshaped from

the solid curve to the dotted one after power optimization, form a timing wall, as

shown in Fig. 2.1(a). As for the TS case, because infrequent timing errors can be
1We simply assume the setup time is zero here for simplicity.
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Figure 2.1: Path delay distributions for conventional power optimization and tim-

ing speculation.
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detected and corrected in timing-speculative circuits, we can reduce operational

clock period from Point B to Point C (see Fig. 2.1(b)). Clearly, such performance

improvement can be easily translated into energy efficiency gain by simply scaling

down supply voltage. By reshaping path delay distribution as shown in Fig. 2.1(c),

we can further improve the energy efficiency of timing-speculative circuits.

Considering the non-trivial design effort to make a circuit timing-speculative, it

is essential to evaluate the potential benefits at early design stage. In [12], Kruijf et

al. presented a system-level analytical framework for timing speculation, wherein

technology nodes, CMOS design styles (i.e., high-performance or low-power) and

different fault recovery schemes are considered. While informative and inspiring,

this general analytical framework lacks one important feature. That is, the potential

energy efficiency gain provided by timing speculation may vary a lot for different

circuits because it depends heavily on the given circuit structure. This important

issue, however, is not taken into consideration in prior analytical works.

The above motivates us to study the minimum and maximum potential benefits

achievable with TS techniques for a given circuit, which facilitates designers to

make decisions on whether to adopt timing speculation or not, without paying

much design effort to actually implement it.

2.3 General Problem Formulation

Before introducing how to obtain the minimum and maximum potential benefits of

TS, let us first formulate the optimization problem for a given timing-speculative

circuit.

Problem: Given the netlist of a timing-speculative circuit, equipped with tim-

ing speculators such as Razor flip-flops [9], and a performance constraint fc, de-

termine the size wi and the threshold voltage vi of each gate Gi, and the supply
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voltage vdd and operational clock frequency f of the entire chip, so that the energy

consumption Etotal is minimized under performance constraint.

As re-computation is needed when timing errors occur, the energy consump-

tion of timing-speculative circuits is:

Etotal(~w,~v,vdd, f ) = P · 1
f
· (1+ error · penalty) , (2.1)

where ~w is the vector whose element represents the size of each gate,~v is the vec-

tor whose element represents the threshold voltage of each gate, P is the power

function, error is the function of timing error probability, and penalty is the cost

including both the cycles of wasted execution that must be discarded and the time

spent on checkpointing and re-execution. Meanwhile, we need to ensure the per-

formance constraint:

feq =
f

(1+ error · penalty)
� fc , (2.2)

where feq is the equivalent clock frequency considering performance penalty of

timing error correction.

Note that, without loss of generality, we only consider the optimizations on

gate size, threshold voltage and supply voltage in this work. The optimization ob-

jective function (see Eq. 2.1) requires the models of power consumption and timing

error probability that have been discussed in Appendix 2.7.1 and Appendix 2.7.2.

The proposed methodology, however, is applicable for any optimizations that have

a closed-form objective function of energy consumption.

2.4 Premises and Prospects of Timing Speculation

As it is impossible to obtain an optimal solution for the problem defined in Sec-

tion 2.3, we, instead, propose to investigate the minimum and maximum potential

energy benefits of TS techniques. The minimum potential benefit establishes the
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premise for timing speculation while the maximum potential benefit presents the

prospects of timing speculation.

2.4.1 The Premises

The premise problem to calculate the minimum potential benefit can be tackled

by conducting an effective optimization method onto the general formulation in

Section 2.3. In this work, we develop a novel technique consisting of two stages to

solve it. The first stage is based on gradient-descent method (GDM) [35] consid-

ering continuous solution space of parameter setting, while the second stage opti-

mizes the discrete parameters with the help of steepest descent method (SDM) [36].

2.4.1.1 Exploring Continuous Space by GDM

GDM is a first-order optimization algorithm that utilizes the gradient vector O f (~x)

to determine the search direction for each iteration. The simplest and most fa-

mous GDM algorithm takes steps proportional to the negative/positive of the gra-

dient (or, the approximate gradient) of the function at current iteration to mini-

mize/maximize f (~x).

With the timing error probability discussed in Appendix 2.7.2, we can now

compute the gradients of objective function (see Eq. 2.1) with respect to parame-

ters. For the sake of clear presentation, we use~x to represent all the parameters (~w,

~v, vdd and f ) without distinguishing them from each other. As we would like to

minimize energy consumption, we use the negative of the computed gradients to

update the parameters at each iteration as follows:

xnew
` = x`+h · (�∂Etotal(~x)

∂x`
), 8x` 2~x = (x1, · · · ,xn) , (2.3)

where h is the learning rate.



CHAPTER 2. THE PREMISES AND PROSPECTS 24

# f (~x), the objective function for optimization

# eg and e~x, the convergence tolerances

# ~x⇤, the output of parameter setting

1. Initialize~x

2. REPEAT for each iteration

3. IF k O f (~x) k< eg

4. Set~x⇤ =~x

5. Break

6. ELSE
7. Compute~g =�O f (~x)

8. Update parameters~xnew =~x+h ·~g
9. IF k~xnew�~x k< e~x
10. Set~x⇤ =~xnew

11. Break

12. ELSE
13. Go for next iteration

Figure 2.2: The proposed GDM-based optimization in continuous space.

The algorithm flow of the proposed GDM-based method is described in Fig. 2.2.

Firstly, we initialize the parameters~x randomly. Then, we repeat the procedure (see

Line 3 ⇠ 13) to compute gradients and update parameters until the convergence

criterion is satisfied. To be specific, we have two convergence criterion: (i) the

gradient tolerance eg to determine whether the algorithm has arrived at a critical

point, and (ii) the step tolerance e~x to determine whether significant progress is

achieved. Once either of them is satisfied, the optimization process is terminated;

otherwise, it continues to compute gradients (See Line 7) and update parameters

(see Line 8).
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2.4.1.2 Exploring Discrete Space by SDM

The above GDM-based technique can effectively optimize timing-speculative cir-

cuits in continuous space. However, it is not practical to assume arbitrary contin-

uous values are allowed for parameters such as gate size ~w and threshold voltage

~v, since a look-up table gate model with only a few number of discrete parameter

values is the standard in most industrial designs. The GDM-based technique is

used to achieve the setting of supply voltage vdd and clock frequency f . Its output

on ~w and~v would be further optimized by a novel SDM-based technique discussed

as follows.

Given a set of discrete values for gate size and threshold voltage, we first dis-

cretize the output of GDM-based technique to the closest value within the set, pro-

viding an initial solution in discrete space. Then, we formulate a discrete search

problem and resort to heuristic search algorithm based on SDM.

The solution representation is naturally described using the vector of parame-

ter setting ~x = (x1, · · · ,xn), wherein each element is either gate size or threshold

voltage of a certain gate. As for the move, it is simply defined as the change of xi

(1 im). This definition of move guarantees the completeness of traversing the

entire discrete solution space.

To evaluate solutions during search process, we use the objective function de-

fined by Eq. 2.1. It is worth noting that the change of xi affects only a small part

of the calculation of objective function. For example, when conducting gate sizing

to a gate, only its preceding gates and itself are influenced. Therefore, we only

have to update the calculation under influence, dramatically saving computational

effort.

With the above definitions, this problem can naturally be solved by search

algorithms (e.g., random search, simulated annealing) [36]. In this work, we resort

to SDM, a discrete analogue of GDM, because it is typically able to converge in a
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# ~x0, initial solution generated by GDM-based method

# ~xc and~xn, current solution and next solution

# metric(·), the calculation of objective function

1. Initialize setting~xc =~x0

2. REPEAT for each iteration until convergence

3. Initialize~xn =~xc

4. FOR each neighbor solution~xi of~xc

5. IF metric(~xi)< metric(~xn)

6. ~xn =~xi

7. IF~xn ==~xc // No better solution found
8. Break

9. ELSE
10. ~xc =~xn

11. Go for next iteration

Figure 2.3: The proposed SDM-based search algorithm in discrete space.

few steps.

Basically, an SDM search starts at an initial state and takes search steps in solu-

tion space, reducing a given objective function with the maximum rate of descent.

Instead of computing a gradient in GDM, the best move of SDM is determined

using a local minimization. The algorithm flow is demonstrated in Fig. 2.3. After

initialization, the search optimization repeats iteratively (see Line 3 ⇠ 11). For

each iteration, we find out the move leading to the neighbor solution with smallest

objective value (see Line 4 ⇠ 6). The search process continues until convergence

or a termination condition is reached.



CHAPTER 2. THE PREMISES AND PROSPECTS 27

2.4.2 The Prospects

As we are to estimate the maximum potential benefit to find the prospect of timing

speculation, we can simplify the original problem as long as the solution of the

simplified problem will still be an upper bound of the original one.

2.4.2.1 Estimation Algorithm

The proposed algorithm to estimate the minimum energy consumption is described

in Fig. 2.4. We start the estimation from the setting with the minimum power/energy,

i.e., the setting with all the gate sizes set to the minimum allowed value and all the

threshold voltage set to the maximum allowed value (see Line 1 ⇠ 3). In such

case, it is very likely to have rather large error probability that exceeds the error

constraint specified by performance constraint in Eq. 2.2 , and hence owe an “er-

ror debt” that is defined as the difference between the current error probability and

the specified error constraint (see Line 4 ⇠ 6). To ensure the error constraint is

satisfied and the eventually-estimated TS benefit is an upper bound, we have to

guarantee that such “error debt” is paid off in the most energy-efficient manner.

That is to say, we want to reduce error probability until it reaches error constraint

at the minimum expense of energy increase.

To achieve the above, we define a metric sensitivity to describe the ratio of

energy increase over error reduction due to the change of a certain parameter:

S =� DE
Derror

=
E�E0

error0� error
, (2.4)

where E0 and error0 are the energy consumption and error probability with initial

setting, and E and error are the energy consumption and error probability after the

parameter change. If we can ideally obtain the minimum sensitivity of each gate

(see Line 7 ⇠ 10) and then take action to the gates one by one in the sensitivity-

ascending order until error debt is paid off (see Line 11 ⇠ 18), it is definitely the
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# Wmin, the minimum allowed gate width

# Vmax, the maximum allowed threshold voltage

# S, sensitivity

1. Initialize wi =Wmin and vi =Vmax, 8i
2. Compute power consumption P

3. Initialize estimated energy consumption E = P/ f

4. Compute error constraint ec = ( f/ fc�1)/penalty

5. Compute error probability e with current setting

6. Compute error debt ed = e� ec

7. FOR each gate Gi

8. Compute Gi.S = min(�DE/Derror)

9. Record Gi.E = DE when achieving minimum S

10. Record Gi.error =�Derror when achieving minimum S

11. REPEAT for each iteration until ed  0

12. FOR each gate Gi with Gi.visited == 0

13. IF Gi.S < S

14. S = Gi.S

15. m = i

16. ed�= Gm.error

17. E+= Gm.E

18. Set Gm.visited = 1

Figure 2.4: The proposed algorithm to estimate the minimum energy consumption.

most energy-efficient way and the estimated value would be guaranteed to be a

lower bound of TS energy consumption. Note that, the methodology of obtaining

the minimum sensitivity of each gate would be detailed in the following.

2.4.2.2 Problem Simplification

One of the difficulties to efficiently obtain the minimum sensitivity of each gate

is due to the complex impact of the parameter change. For example, the size of
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a gate would influence not only its own load capacitance (and hence energy con-

sumption) but also that of its preceding gates. More importantly, assuming there

are k parameter choices for each gate, the size of solution space is kn, exponen-

tially increased with respect to gate number n. Obviously, such solution space is

too large to efficiently explore. To tackle this problem, we propose to eliminate the

influence between gates and simultaneously reduce solution space by simplifying

the problem.

We simplify the calculation of energy consumption, on the basis of an obser-

vation that the gates impact each other’s energy consumption through affecting

the load capacitance. For instance, if we downsize a gate, all the load capaci-

tances and hence the energy consumption of its preceding gates would be reduced.

Therefore, when calculating the load capacitance of a gate, if we always use the

minimum sizes of its succeeding gates no matter what sizes they actually have, the

load capacitance would be affected by only the gate itself but not its succeeding

gates any more. With such a model that intentionally underestimates load capaci-

tances, the estimated value of energy consumption can be less than the actual one,

ensuring that it is still a lower bound of TS energy consumption. Note that, using

similar methodology we can also simplify the calculation of error probability.

With the above simplifications, the energy consumption and error probability

of a gate are both influenced by the parameters of the gate itself. Consequently,

the calculation of the minimum sensitivity becomes very easy, as we only need to

consider the impact locally. Especially in the scenario of discrete space, as the size

of solution space for each gate is only equal to its choice number k (typically, k

can be about 100), we can even enumerate all the combinations of parameters to

achieve its minimum sensitivity. It is worth noting that the size of solution space

for the entire chip is now reduced to k⇥n, only linearly increased with respect to

gate number n.
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2.5 Experimental Results

2.5.1 Experimental Setup

We conduct experiments on several large ISCAS’89 and ITC’99 benchmarks. Par-

ticularly, these ITC’99 benchmarks are the subsets of processors. We synthesize

these circuits and obtain timing information using Synopsys EDA tools. To take

process variation effects into consideration, we perform Monte Carlo simulation

to inject gate-level delay variation following Gaussian distribution with standard

deviation equal to 8%. Random inputs are used in our experiments and each sim-

ulation is performed with 100,000 cycles. All the experiments are conducted on a

2.8GHz PC with 4GB RAM.

For comparison, we provide two baseline solutions: (i) conventional technique

without TS [37] , denoted as CTbaseline; and (ii) TS technique without conventional

optimization [9], denoted as T Sbaseline. The proposed optimization technique in

Section 2.4.1 is denoted as T Sopt and the estimation algorithm in Section 2.4.2 is

denoted as T Sbound . To equip some of the flip-flops as timing speculators, we can

simply resort to a simple scheme that equips all the flip-flops whose timing slacks

are less than 20% of operational clock period. The hardware cost to equip a timing

speculator is assumed to be 10 gates. The penalty of error recovery in Eq. 2.1 is

assumed to be 10 clock cycles according to [12].

2.5.2 Results and Discussion

We report the results on hardware cost and algorithm runtimes in Table 2.1. As

can be seen, the average hardware costs for T Sbaseline and T Sopt to equip timing

speculators are 5.32% and 5.66%, respectively. The hardware cost for T Sopt is a

little higher than T Sbaseline, but still within an acceptable range. The runtimes of

T Sopt and T Sbound are all less than one hundred seconds, both listed in Table 2.1.
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Bench. TG# TFF#
T Sbaseline T Sopt

RTopt (s) RTbound (s)
T T S# Cost (%) T T S# Cost (%)

s1494 680 6 2 2.94 2 2.94 10.91 0.21

s5378 3042 179 20 6.57 21 6.90 22.06 1.32

s9234 5866 228 22 3.75 25 4.26 23.65 1.99

s13207 8803 638 10 1.14 15 1.70 27.06 5.58

s15850 10470 597 89 8.50 92 8.79 33.25 9.67

s35932 18148 1728 144 7.93 151 8.32 39.25 15.42

s38584 21021 1426 168 7.99 179 8.52 44.05 21.24

s38417 24341 1564 91 3.74 115 4.72 48.22 18.38

b20 20226 490 121 5.64 116 5.42 45.13 13.65

b21 20571 490 119 5.47 125 5.73 52.56 15.16

b22 29951 735 153 4.86 156 4.95 57.88 19.41

AVERAGE 5.32 5.66

TG#: total gate count; TFF#: total flip-flop count; TTS#: total timing speculator count;

Cost: hardware cost ratio for equipping timing speculators;

RTopt : runtime of T Sopt ; RTbound : runtime of T Sbound .

Table 2.1: Hardware cost and algorithm runtimes.

To demonstrate the effectiveness of T Sopt , in Table 2.2 we present the energy

consumptions2 that have considered both the penalties of error recovery and the

costs of equipping timing speculators. When compared to T Sbaseline, T Sopt fur-

ther reduces energy consumption by 0.306 on average. The improvement room

between T Sopt and T Sbound is only 0.091, showing that the proposed optimization

technique T Sopt is rather close to the “optimal”.

Next, we take s38417, the largest benchmark circuit in ISCAS’89, as an ex-

ample to demonstrate more details. In Fig. 2.5, we show the trends of both the

energy metric estimated according to Eq. 2.1 and the actual energy consumption

achieved by timing simulation, with respect to GDM/SDM iteration numbers. Ob-
2For clear presentation, all the energy consumptions are normalized to that of the case

without any conventional and TS optimizations.
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Bench. T Sbaseline
T Sopt T Sbound

En. D1 En. D2

s1494 0.708 0.468 -0.240 0.420 -0.048

s5378 0.859 0.578 -0.281 0.506 -0.072

s9234 0.822 0.495 -0.327 0.375 -0.120

s13207 0.726 0.480 -0.246 0.346 -0.134

s15850 0.871 0.533 -0.338 0.445 -0.088

s35932 0.866 0.596 -0.270 0.458 -0.138

s38584 0.862 0.505 -0.357 0.405 -0.100

s38417 0.709 0.455 -0.254 0.342 -0.113

b20 0.810 0.525 -0.285 0.420 -0.106

b21 0.854 0.473 -0.381 0.400 -0.073

b22 0.825 0.436 -0.389 0.428 -0.009

AVERAGE 0.810 0.504 -0.306 0.413 -0.091

En.: energy consumption;

D1: energy difference of T Sopt over T Sbaseline;

D2: energy difference of T Sbound over T Sopt .

Table 2.2: Energy consumptions of TS techniques with the cost of timing specula-

tors included.

viously, the GDM and SDM methods optimizing towards the estimated metric

can simultaneously reduce the actual energy consumption, proving their effective-

ness. In Fig. 2.6 (a) and Fig. 2.6 (b), we present the delay distributions before and

after the optimization by T Sopt , while the change of delay distribution between

them is shown in Fig. 2.6 (c). As can be seen, after optimization the number of

paths with delay in the range of [0.5,0.8] (see the solid ellipse) is substantially

increased, while the number of paths with larger or smaller delay are decreased

(see the dotted ellipses). This is because, T Sopt trends to shorten long paths for

further over-clocking clock frequency (and then scaling down supply voltage for

energy reduction) and prolong short paths for directly reducing energy. Such an

observation on the change of delay distribution is consistent with the motivation
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Figure 2.5: Energy consumption with respect to optimization iterations.
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Figure 2.6: The change of delay distribution after optimization.
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discussed in Section 2.2.3.

Bench. CTbaseline
T Sopt T Sbound

En. MB En. MPB

s1494 0.522 0.468 0.053 0.420 0.102

s5378 0.544 0.578 -0.034 0.506 0.038

s9234 0.505 0.495 0.010 0.375 0.130

s13207 0.706 0.480 0.227 0.346 0.360

s15850 0.506 0.533 -0.027 0.445 0.061

s35932 0.525 0.596 -0.071 0.458 0.066

s38584 0.616 0.505 0.111 0.405 0.211

s38417 0.585 0.455 0.130 0.342 0.243

b20 0.573 0.525 0.048 0.420 0.153

b21 0.557 0.473 0.084 0.400 0.157

b22 0.544 0.436 0.108 0.428 0.117

AVERAGE 0.562 0.504 0.058 0.413 0.149

MB: The minimum benefit of TS;

MPB: The maximum potential benefit of TS.

Table 2.3: TS benefits in terms of energy consumption.

Finally, we take the energy cost, simply considered as same as hardware cost

in Table 2.1, of equiping timing speculators into account to calculate the minimum

benefit and maximum potential benefit. It can be found in Table 2.3 that, after

considering such costs, the minimum benefit achieved by T Sopt is about 0.058

on average, while the maximum potential benefit estimated by T Sbound is about

0.149 on average. Assuming an amount of benefit h (h = 0.1) is considered to

deserve design efforts by IC designers, we can conclude that: (i) TS is preferred for

the optimization of the benchmarks s13207, s38584, s38417, b22, since they are

proved by T Sopt to have a benefit more than 0.1; and (ii) conventional technique is

preferred for the benchmarks s5378, s15850 and s35932, because their maximum

potential benefits, indicated by T Sbound , are all less than 0.1. As for the other

benchmarks, the proposed methodology, unfortunately, is not able to conclude the
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applicability of TS on it, if the criteria h = 0.1 is given.

2.6 Conclusion

Timing speculation is a promising solution to combat the ever-increasing variation

effects, but how much benefits can be provided is strongly related to the circuit

structure itself. Considering the non-trivial design effort to make a circuit timing-

speculative, for a given circuit, it is essential to evaluate the potential benefits

at early design stage. In this work, we propose novel algorithms to study the

premise and prospects of timing speculation to tackle this problem. Experimental

results based on various benchmarks demonstrate the effectiveness of the proposed

methodology.

2.7 Appendix

2.7.1 Power and Delay Models

The total power consumption of an electronic system is comprised of two compo-

nents: dynamic power consumption and static power consumption [38].

Dynamic power [39] is due to the switching activities, manifesting as charging

and discharging of the load capacitance. A widely-used model of dynamic power

can be written as:

Pdyn = as ·C · v2
dd · f , (2.5)

where as is switching activity, C is load capacitance, vdd is supply voltage and f is

clock frequency. To calculate dynamic power, one of the critical issues is to model

load capacitance that is usually considered to consist of four components: (i) gate-

drain capacitance of driver transistor; (ii) diffusion capacitance of driver transistor;

(iii) gate capacitance of load transistors; and (iv) wiring capacitance depending on
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the length and width of connecting wires. The details on these capacitances can be

found in [22, 40].

Static power [39, 41] is primarily caused by subthreshold and gate-oxide leak-

age currents which are present even when no logic operations are performed. It

can be modeled as:

Pst = vdd · Ist , (2.6)

where Ist is the cumulative leakage current of all the leakage mechanisms, espe-

cially the subthreshold and gate-oxide leakages that are described by:

Isub = K1 ·W · e�v/(nvq)(1� e�vdd/vq) ,

Iox = K2 ·W · (vdd

Tox
)2 · e�gTox/vdd ,

(2.7)

where Isub is subthreshold leakage, Iox is gate-oxide leakage, K1, K2, n and g are

experimentally derived parameters, W is gate width, v is threshold voltage, vq is

thermal voltage, and Tox is oxide thickness.

The gate delay can be modeled as follows:

Delay =
K · vdd ·C

W · (vdd� v)a , (2.8)

where K and a are fitting parameters (see [38]), C is load capacitance, v is thresh-

old voltage, and W is gate width.

2.7.2 Timing Error Probability

To solve the optimization problem defined in Section 2.3, one of the most critical

problems is to calculate the timing error probability error, a function with respect

to a number of variables (e.g., ~w,~v, vdd , and f ) that can be expressed as:

error = 1�
|V |

’
j=1

(1� error j) , (2.9)

where error j is the error probability of a flip-flop FFj during one single clock

cycle.
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Figure 2.7: Timing error probability of a path considering variation effects.

As for the calculation of error j, the error probability of each flip-flop, we need

to know the path sensitization probability, which can be acquired by performing

functional simulation of the circuit with representative workloads or calculated

according to some models [28, 31].

As demonstrated in Fig. 2.7, when considering variation effects, the path delay

(indicated by Point A) becomes a random variable [33], therefore the cumulative

probability for path delay to exceed operational clock period is the error probability

of this path. We can have

error j = Â
i2B j

Â
k

Ni jk ·Pr{eSi jk  0} ,

eSi jk , T �Tsetup� eDi jk ,

(2.10)

where Ni jk is the probability for the kth path from FFi to FFj to be sensitized, eDi jk

is the corresponding path delay variable of the kth path, eSi jk is the variable of timing

slack as defined in Eq. 2.10, T is the operational clock period (i.e., T = 1/ f ), Tsetup

is the setup time of flip-flop, B j is the set of flip-flops that serve as the beginners of

the paths ending at FFj, and Pr{eSi jk  0} is the probability to have timing errors
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in the kth path. Note that, as the problem of hold time constraints can be solved by

delay padding [42], we only consider the setup time constraints in this work.

To apply GDM, we need to ensure the path error probability Pr{eSi jk  0} (see

Eq. 2.10) to be differentiable. We express the impact of parameter change (e.g.,

downsizing gates, lowering supply voltage) to timing slack variable eSi jk as:

eSi jk = eSr
i jk +Sd

i jk , (2.11)

where eSr
i jk is the timing slack varaible under reference condition and Sd

i jk is the

change of timing slack due to parameter change. Therefore, we have

Pr{eSi jk  0}= Pr{eSr
i jk �Sd

i jk} , (2.12)

implying that the increasing of timing slack on a path would reduce its error prob-

ability. By defining the Cumulative Distribution Function (CDF) of eSr
i jk as:

Fi jk(t) = Pr{eSr
i jk  t} , (2.13)

where t = �Sd
i jk, the path delay probability becomes differentiable. Note that,

similar to prior works (e.g., [33]), we assume path delay variable eDi jk and timing

slack variable eSr
i jk to follow Gaussian Distribution.

2 End of chapter.



Chapter 3

Voltage Island Generation

3.1 Introduction

Motivated by the fact that individual blocks of a circuit can have timing/power

characteristics unique from the rest of the design, the concept of multi-supply

voltage (MSV) design was introduced to trade off power consumption and per-

formance, and has attracted lots of interests from both academia and industry [43–

51]. In MSV designs, circuits are partitioned into multiple ”voltage islands” and

each island operates at a specified supply voltage that satisfies its performance

requirement.

In conventional MSV designs, to meet the timing requirement of each voltage

island, the corresponding supply voltage has to be high enough to drive the most

timing-critical cell, even though the rest of cells may have much more relaxed

timing requirements. Moreover, with the ever-increasing variation effects (e.g.,

process variation effects due to manufacturing imperfection and dynamic variation

effects caused by voltage and temperature fluctuations) in nanometer technology,

a large design guard band needs to be reserved to tolerate timing uncertainty. Due

to the above, we have to be rather conservative when assigning voltages for each

39
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island, reducing the possible power savings that can be achieved with MSV de-

signs.

Recently, timing speculation (TS) techniques that allow the occurrence of in-

frequent timing errors and employ error detection and correction techniques to

recover from them have emerged as a promising solution to achieve error-resilient

computing [4, 7, 9, 12, 13]. Such ”better than worst-case” designs allow the trade-

off between reliability and performance/power, thereby being much more energy-

efficient when compared with conventional ”worst-case-oriented” designs. In-

tel [52] has recently demonstrated in their test chip that a timing-speculative mi-

croprocessor is able to achieve more than 30% throughput gain when compared to

a conventional microprocessor design.

Introducing timing speculation capability into circuits can naturally extend the

flexibility of MSV designs to a new horizon, since we do not need to guarantee

”always correct” operations any longer and the voltage assignment of islands can

avoid being dominated by certain sparse timing-critical cells. How to conduct

MSV design for timing-speculative circuits is hence an interesting problem, which,

to the best of our knowledge, has not been explored in the literature yet.

Motivated by the above, in this work, we formulate the MSV problem for

timing-speculative circuits and develop a novel algorithm based on dynamic pro-

gramming to solve it. The proposed technique naturally supports ”recovery island”

design methodology described in [53], wherein each island can recover indepen-

dent of the rest of the circuit. Experimental results on various benchmark circuits

demonstrate that the proposed technique is able to achieve significant power re-

duction when compared to exiting MSV design techniques.

The remainder of this chapter is organized as follows. In Section 3.2, we

present the preliminaries and motivation of this work. The problem formulation

and the corresponding algorithms are then detailed in Section 3.3 and Section 3.4,
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respectively. Next, Section 3.5 presents our experimental results based on various

benchmark circuits. Finally, Section 3.6 concludes this chapter.

3.2 Preliminaries and Related Work

3.2.1 Power and Delay Models

The total power consumption of an electronic system consists of two components:

dynamic power and static power [38, 43]. Dynamic power is due to the switching

activities, manifesting as charging and discharging of the load capacitance, while

static power is primarily caused by subthreshold leakage current which is present

even when no logic operations are performed. They can be described as

Pd = a ·C ·V 2
dd · f ,

Ps = Is ·Vdd ,
(3.1)

where Pd is dynamic power, a is switching activity, C is load capacitance, Vdd

is supply voltage, f is clock frequency, Ps is static power and Is is the cumulative

leakage current of all kinds of leakage mechanisms (refer to [54] for details). From

Eq. 3.1, it can be found that both dynamic and static powers are strongly related to

supply voltage Vdd . This observation gives the basic motivation to generate voltage

islands to reduce power consumption.

However, with supply voltage scaling down, the gate delay of circuits will be

increased as follows,

D =
Ki ·Vdd

(Vdd�Vt)a , (3.2)

where D is gate delay, Vt is threshold voltage, Ki and a are fitting parameters as

defined in [38]. That means, the power consumption of a circuit is reduced with

voltage scaling down at the expense of timing performance.
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3.2.2 MSV Design

A large amount of work has been devoted to MSV designs in the literature and

they are applied in various design stages, e.g., floorplanning stage [43, 44], post-

floorplanning stage [45], placement stage [46, 47], and post-placement stage [48–

51].

As pointed out in [48], conducting region-based MSV design before place-

ment based on their logic boundaries, while “natural”, is usually far from optimal.

Instead, by using placement proximity (instead of logical) information for MSV

design, the acquired solution can achieve much better power savings. Motivated

by this observation, the authors proposed to utilize dynamic programming (DP)

to generate voltage islands considering placement proximity. While DP provides

optimal results, the computational complexity and memory requirement to con-

duct it at fine-grained granularity is not acceptable for a reasonable-sized circuit.

Consequently, a heuristic algorithm is used to partition the circuit into p⇥q coarse

grids first and DP is conducted at the coarse-grained level. While being more effi-

cient, the effectiveness of this technique is inevitably constrained by the heuristic

partitioning algorithm. In [50], the authors investigated how to generate an ini-

tial voltage assignment considering the physical proximity of high voltage cells

as the input of [48]. After that, to tackle the problem that the freedom of voltage

assignment is limited by the amount of available slacks on timing-critical paths,

[49] performed incremental placement to improve timing on these paths. All the

above works try to generate voltage islands with the guarantee that the timing re-

quirements of all cells are satisfied.

3.2.3 Timing Speculation

Circuit-level timing speculation technique, being able to detect timing errors at

online stage, react to the error quickly and recover from it by rolling back to a
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known-good pre-error state, has become one of the most promising solutions for

variation-aware designs. Without loss of generality, let us discuss one of the most

representative timing speculation techniques, Razor [9], to illustrate how resilient

computation can be achieved with timing speculation. To detect timing errors on

a critical path, the receiving end of the critical path, referred to as suspicious flip-

flop, is replaced with Razor flip-flop (Razor-FF), which includes a main flip-flop

(FF), an additional shadow latch and some control logic. The main flip-flop latches

the output signal of the critical path at the clock edge with a possible timing error,

while the shadow latch (controlled by a delayed clock signal) latches the signal

a fraction of a cycle later, which guarantees to receive the correct value. Conse-

quently, when the shadow latch and the main FF values do not agree, indicated by

the comparator, timing error is detected. Then, by replaying instructions at lower

frequency, the processor is able to recover from the timing error with a small re-

execution cost.

Recently, Intel has demonstrated a timing-speculative microprocessor test chip

in [52]. Their measurement results show that the resilient design enables 25%

throughput gain over a conventional design by eliminating the guardband from

circuit dynamic variations and an additional 7% throughput increase from exploit-

ing the path-activation probabilities for timing error rate reduction. The above

benefits have motivated a large amount of recent research efforts on design and

optimization techniques for timing-speculative circuits (e.g., [55–58]).

3.2.4 Motivation

Fig. 3.1 presents an example MSV design, wherein the black cells have critical

timing requirement and hence need high Vdd to eliminate timing errors, while the

white cells with low timing requirement only need low Vdd . The solid-line rect-

angles represent the voltage islands assigned with high-Vdd , while the dashed-line



CHAPTER 3. VOLTAGE ISLAND GENERATION 44

(a) MSV design without timing speculation (b) MSV design with timing speculation

Figure 3.1: An example to motivate MSV design for timing-speculative circuits.

rectangles represent those assigned with low-Vdd .

Assuming only four voltage islands are allowed in this MSV design, with-

out timing speculation we can only have the voltage island design as shown in

Fig. 3.1(a), leading to limited power savings. With timing speculation, however,

we can have the MSV design as shown in Fig. 3.1(b) that has much less power

consumption by allowing timing-critical cells residing in low-Vdd islands. In other

words, with the capability of online timing error correction, the new MSV designs

allow more aggressive voltage scaling, and the associated power savings are usu-

ally much higher than the power penalties paid to correct infrequent timing errors.

The above considerations have motivated the MSV design for timing-speculative

circuits investigated in this chapter.

3.3 MSV Design for Timing-Speculative Circuits

3.3.1 Problem Formulation

The MSV design problem for timing-speculative circuits investigated in this work

can be formulated as follows:
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Problem: Given

• A timing-speculative circuit C , equipped with timing speculators, such as

Razor [9];

• A circuit placement P with m⇥ n grids , where each grid gi j is placed at

position (i, j);

• The probability function Fi j(Vdd)1 for timing errors to occur in grid gi j with

respect to Vdd , where Vdd is the supply voltage;

• The number of voltage islands NV I;

• The performance degradation constraint caused by re-execution, represented

by throughput degradation ratio h%;

to determine a circuit partitioning P and a voltage assignment V for voltage is-

land generation, such that the power consumption Ptotal of targeted circuit C is

minimized under the performance constraint.

As it is essential to conduct re-computation when timing errors occur, the

power consumption of timing-speculative circuits is:

Ptotal(P,V) = P(P,V) · (1+ error(P,V) · penalty) , (3.3)

where P(·) is the power function (including dynamic power Pd and static power Ps)

of circuit C in one clock cycle after circuit partitioning P and voltage assignment

V are given, error(·) is the error probability function, penalty is the cost including

both the cycles of wasted execution that must be discarded and the time spent on

checkpointing and re-execution. Meanwhile, we need to ensure the performance
1The error probability function Fi j(Vdd) of each grid gi j can be acquired by timing

simulation of the targeted circuit with representative workloads.
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Figure 3.2: Design flow for MSV design.

constraint:

T h(P,V) =
1

(1+ error(P,V) · penalty)
> 1�h% , (3.4)

where T h(·) is the equivalent circuit throughput considering performance penalty

for timing error correction.

Similar to prior works (e.g., [48–50]), we assume that only rectangular voltage

islands are allowed, because voltage islands with arbitrary shapes generally lead to

difficulty in power-supply network design. Note that, the hardware cost of MSV

design (e.g., the overhead of voltage level shifters [44, 59]) is strongly related to

the number of voltage islands, which is also considered in this work.
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3.3.2 MSV Design Flow

Generally speaking, the MSV design process consists of two components: circuit

partitioning and voltage assignment. For conventional “error-free” circuits, the

effectiveness of MSV design is inevitably limited by the amount of available slack

on each timing path. Consequently, the so-called ”outliers” (the circled cells in

Fig. 3.1) would cause disproportionately expensive penalty to final voltage island

generation. In order to mitigate this issue, previous work proposed an incremental

placement method to eliminate these unwanted ”outliers” whenever possible. This

design flow (see Fig. 3.2(a)) results in high design complexity, and its effectiveness

is also not guaranteed.

For timing-speculative circuits, however, such ”outliers” can be naturally tol-

erated since circuit timing error rate is now a trade-off parameter (instead of a

hard constraint) in design space. Consequently, it is not necessary to employ a

complex incremental placement procedure. The simple design flow of our pro-

posed methodology is depicted in Fig. 3.2(b), wherein we partition the circuit into

voltage islands first and then assign voltages to them with timing error rate consid-

erations.

3.4 Voltage Island Generation

3.4.1 Partitioning Model

How to partition a circuit into rectangular voltage islands has been well studied

in [48, 60]. As described in Fig. 3.3, arbitrary partitioning allows any partitioning

with rectangular tiles, slicing partitioning performs slicing through recursive cuts,

and p⇥q partitioning cuts the circuit into p⇥q coarse grids. [48] proved that the

optimal slicing partitioning result is a 2-approximation for the optimal arbitrary

partitioning. As a special type of slicing partitioning, p⇥ q partitioning is used
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(a) Arbitrary partitioning (b) Slicing partitioning (c) p×q partitioning

Figure 3.3: Three types of rectangular partitioning.

in [48] to provide the initial grids that are merged later to form voltage islands,

which is also used in our work.

3.4.2 DP-Based Voltage Island Generation

To solve the proposed voltage island generation problem for timing-speculative

circuits, we resort to a DP-based algorithm that enumerates all combinations of

the horizontal and vertical cuts.

Given the error probability function Fi j(Vdd), we can have the power consump-

tion of each grid gi j considering power penalties,

Pi j(Vdd) = (Pd(Vdd)+Ps(Vdd)) · (1+Fi j(Vdd) · penalty) , (3.5)

where Pd(·) is dynamic power function and Ps(·) is static power function. By

solving Eq. 3.5, we can easily obtain the optimal supply voltage V ⇤dd for which the

power consumption of gi j has the optimal value P⇤i j.

Let an m⇥n array A with Ai j = P⇤i j represent the optimal power consumptions

of all the grids, and R(x1,y1;x2,y2) represent a rectangular region covering the

grids {gi j|x1  i  x2,y1  j  y2}. For a region R(x1,y1;x2,y2), we can just

replace the power and error probability functions in Eq. 3.5 with the corresponding
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W ⇤s (R(x1,y1;x2,y2)) =
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>=

>;

�
.

(3.6)

terms of this region, and then use such an equation to describe the relationship

between power and supply voltage. Similar to the case of a grid gi j, we can also

find out the optimal supply voltage Vopt for such a region. By denoting the optimal

total power consumption of this region with all the grids in it driven by Vopt is P⇤R,

we define the power wastage of a region R(x1,y1;x2,y2) as,

W (R) = P⇤R� Â
gi j2R

P⇤i j . (3.7)

Therefore, we can have the power wastage of a partitioning P = {Ri} as follows,

W (P) = Â
1iNV I

W (Ri) , (3.8)

where NV I is the specified voltage island number.

With the above definitions, we can have the recursion under slicing partition-

ing as shown in Eq. 3.6. A simple example is described in Fig. 3.4 to show the

enumeration procedure. In the 9⇥ 5 grids with s islands allowed, we can choose

an either vertical (e.g., i = 5) or horizontal (e.g., j = 2) cut to partition it, and allow

t and (s� t) voltage islands in the newly-cut rectangular regions, respectively. This

enumeration ensures DP to find the optimal partitioning.

Note that, since the error probability functions of grids {gi j} and regions {Ri}

are fed into the DP solver as inputs to calculate the optimal power consumptions,

we assume the error occurrences in different grids are independen2. This allows
2This is a simple approximation to reduce computational complexity, and its impact is
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Figure 3.4: An example to show the enumeration process.

us to calculate the error probability function FR(Vdd) of a region R, given the error

probabilities of the grids {gi j|gi j 2 R}. For example, we can calculate the error

probability of a region R consisting of two regions R1 and R2 according to Eq. 3.9

as follows,

FR = FR1 +FR2�FR1 ·FR2 . (3.9)

3.4.3 Coarse Grid Reconstruction

The circuit partitioning problem under slicing partitioning can be solved by DP

optimally [48]. However, the placement size m⇥ n at the cell-level is usually too

large to employ DP directly in practical applications. To avoid the huge time and

memory costs, one intuitive and viable method is to partition the m⇥n grids into

p⇥q coarse grids as shown in Fig. 3.3(c), and then apply DP to the coarse grids.

Clearly, the effectiveness of the MSV design is limited by the heuristic coarse grid

construction algorithm due to search space reduction. In [48], a heuristic-based

partitioning algorithm according to [60] is used to construct the p⇥q coarse grids

reflected in our experimental results.
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(a) Voltage islands (b) Coarse grid reconstruction

Figure 3.5: An example to show the coarse grid reconstruction process.

metric(L) =Â
i
(sd(Ri)� sd(Ri1) ·

A(Ri1)

A(Ri)
� sd(Ri2) ·

A(Ri2)

A(Ri)
) · A(Ri)

Âi A(Ri)
. (3.10)

before voltage island generation. With such fixed coarse grids, only a constrained

MSV design solution space can be explored. Different from their solution, we pro-

pose a novel coarse grid reconstruction algorithm to explore more solution space

by reconstructing coarse grids and applying DP iteratively.

As discussed in Section 3.4.2, given an array A consisting of many grids, DP

can achieve an optimal solution for this array A if enough runtime is allowed.

With this property, if we ensure the optimal voltage island design of the last p⇥q

partitioning is still kept as a solution point in a newly-constructed coarse grids, it

is guaranteed to achieve a solution not worse than the last one. Let us explain it

using the following example.

Suppose we would like to generate 8 voltage islands based on a 16⇥16 place-

ment and we decide to use 7⇥8 coarse grids to save runtime, we can perform any

partitioning to divide this 16⇥16 placement into coarse grids and then use the DP
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A B
C

Figure 3.6: Solution space changes with iterative coarse grid reconstruction.

algorithm in Section 3.4.2 to generate voltage islands. By doing so, we can achieve

an optimal voltage island design with the current 7⇥8 coarse grids. Without loss

of generality, we assume the generated voltage island design3 is the one depicted

in Fig. 3.5(a). To construct a new 7⇥ 8 coarse girds for further exploration, it is

obvious that we need to determine how to partition the 16⇥ 16 placement using

6 vertical lines and 7 horizontal. It is worth noting that, if we keep all the grid

lines going through the boundaries of voltage islands as the new coarse grid lines

(see the solid lines in Fig. 3.5(b)), we can make sure the current generated voltage

islands (see Fig. 3.5(a)) is still achievable with newly-constructed coarse grids. In

other words, given the 3 vertical lines and 4 horizontal lines that go through the

boundaries of voltage islands, no matter how we assign the other 3 vertical lines

and 3 horizontal lines (see the dashed lines in Fig. 3.5(b)) to partition the 16⇥16

placement, the voltage island design in Fig. 3.5(a) is one possible solution with the

reconstructed coarse grids. As DP can always find out an optimal solution with

given coarse grids, we should at least find a solution as good as the previous one

and hence it is guaranteed to get a solution not worse than the design in Fig. 3.5(a)

under the new 7⇥8 partitioning.
3The voltage islands are represented by rectangular blocks and plotted out using solid

lines.
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The above optimization process can be clarified using Fig. 3.6. The rectangle

represents the entire solution space for DP to explore based on the original m⇥n

fine-grained grids, and the ellipses represent the sub-spaces after partitioning into

p⇥ q coarse grids. Once the p⇥ q coarse grids are obtained, we can use DP

to achieve the optimal solution in the corresponding sub-space. Therefore, by

reconstructing the sub-space and applying DP iteratively, we can get the optimal

solution in each sub-space one by one: Point A, Point B, Point C, etc.

3.4.4 Reconstruction Algorithm

To keep the previous partitioning inside the reconstructed solution space, we would

like to use those lines going through the boundaries of voltage islands as coarse

grid lines. However, in most cases, there are still some vertical and horizontal lines

(see the dashed lines in Fig. 3.5(b)) left to obtain a different p⇥ q partitioning,

which can be used to explore new solution space. We propose a heuristic-based

algorithm to obtain new p⇥ q partitionings, which selects (p� 1� p0) vertical

coarse grid lines out of (m� 1� p0) candidate lines and (q� 1� q0) horizontal

coarse grid lines out of (n�1�q0) candidate lines. Here, p0 and q0 are the number

of vertical and horizontal lines determined by the boundaries of voltage islands.

The proposed heuristic algorithm is based on the intuition that, for MSV de-

sign, it tends to group those grids with similar voltage requirement together, in

order to achieve more power savings. In previous works (e.g., [48, 51]), voltages

that guarantee no timing violations are chosen. However, for timing-speculative

circuits, it is preferable to use the ”optimal” voltage values obtained by trading

off reliability with power (see Section 3.4.2). In this work, to support the proposed

heuristic algorithm, we use an evaluation metric to reflect the similarity of the grids

that are partitioned into the same islands and we tend to select those grid lines with

larger metric values during the coarse grid line selection process.
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# Sp and Sq, the grid line sets for p⇥q partitioning;

# |Sp| and |Sq|, the set sizes; a, convergence tolerance.

1. Initialize p⇥q partitioning randomly;

2. REPEAT for each iteration

3. Apply DP to generate voltage islands;

4. IF |DW ⇤s |< a
5. Break;

6. ELSE // reconstruct p⇥q partitioning

7. Set Sp = /0, Sq = /0;

8. Put the vertical lines of island boundaries! Sp;

9. Put the horizontal lines of island boundaries! Sq;

10. Use e-greedy to select (p�1� |Sp|) lines! Sp;

11. Use e-greedy to select (q�1� |Sq|) lines! Sq;

12. END REPEAT

Figure 3.7: The overall algorithm flow of proposed voltage island generation

methodology.

Given a circuit partitioning P, if the grid line L intersects n original islands

{Ri|1 i n} to cut them into 2n new islands {Ri j|1 i n,1 j 2}, metric(Lk)

is defined as in Eq. 3.10, wherein Ri = Ri1[Ri2, sd(Ri) is the standard deviation

of all the optimal voltage values of the grids in region Ri, and A(Ri) is the number

of grids in it.

Note that, to avoid being trapped in local optimal points, we use e-greedy to

select the coarse grid lines for p⇥ q partitioning. That is, we set up a probability

parameter e (e.g., e = 10%), and hence we have the probability of e to select a grid

line randomly, instead of the one with largest metric defined in Eq. 3.10.

The overall algorithm flow is summarized as shown in Fig 3.7. The optimiza-

tion procedure is repeated until the terminal condition is satisfied (see Line 4). In

each iteration, we use DP to get the optimal solution in the current solution space
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Bench. TG # TFF # Tcp (ns) (m,n, p,q) Island # Cost(%)

38584 21021 1426 6.96 (20,20,10,10) 5 5.14

s38417 23949 1636 6.12 (20,20,10,10) 5 6.76

des perf 155746 9105 13.7 (30,30,15,15) 10 6.63

ethernet 164912 10752 11.28 (30,30,15,15) 10 7.46

AVERAGE 6.50

TG #, total gate count; TFF #, total FF count; Tcp, the operating clock cycle period;

Island #, the specified voltage island number.

Table 3.1: Experimental setup.

(see Line 3) and then employ the proposed reconstruction algorithm to reconstruct

the solution space to be explored in the next iteration (from Line 7 to Line 11).

3.5 Experimental Results

3.5.1 Experimental Setup

To evaluate the effectiveness of the proposed voltage island generation methodol-

ogy, we conduct experiments on several large ISCAS’89 and IWLS’05 benchmark

circuits. We synthesize these circuits on a 90nm technology, conduct physical

design, and obtain timing information using commercial EDA tools. To take pro-

cess variation effects into consideration, we perform Monte Carlo simulations to

inject gate-level delay variations following Gaussian distribution.We conduct sim-

ulations with random inputs and each simulation is performed with 100,000 cycles.

By performing simulation for representative workloads and recording error rates

occurring in the grids under various operational clock periods, we achieve error

probability function Fi j(Vdd) for each grid. We employ the power and delay mod-

els used in [38, 43, 54] in our experiments. All the experiments are conducted on

a 2.8GHz PC with 4GB RAM.

We perform offline timing analysis with false paths excluded according to [61]
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Bench.
MSVbaseline MSVreconstruction MSVts MSVproposed

power s power s D1(%) power s DT h(%) D2(%) power s DT h(%) D3(%) D4(%) Runtime (s)

s38584 0.852 0.014 0.813 0.015 -4.58 0.793 0.014 -4.28 -6.92 0.689 0.016 -3.55 -13.11 -19.13 2.75

s38417 0.857 0.013 0.835 0.016 -2.57 0.825 0.018 -3.56 -3.73 0.781 0.020 -4.09 -5.33 -8.87 1.92

des perf 0.862 0.019 0.806 0.017 -6.50 0.674 0.014 -5.52 -21.81 0.598 0.015 -7.03 -11.28 -30.63 17.35

ethernet 0.778 0.018 0.723 0.019 -7.07 0.631 0.015 -6.32 -18.89 0.581 0.012 -5.63 -7.92 -25.32 15.04

AVERAGE -5.18 -4.92 -12.84 -5.08 -9.41 -20.99

s: standard deviation of power; D1: power difference ratio between MSVreconstruction and MSVbaseline;

D2: power difference ratio between MSVts and MSVbaseline; D3: power difference ratio between MSVproposed and MSVts;

D4: power difference ratio between MSVproposed and MSVbaseline; DT h, performance degradation ratio.

Table 3.2: Results on the proposed reconstruction-based p⇥q partitioning.

and use the reported maximum path delay as the operating clock cycle period

during timing simulation. For reasonable comparison, a widely-accepted voltage

island generation algorithm proposed in [48] is used as the baseline solution and

denoted as MSVbaseline. Because our proposed reconstruction-based p⇥ q parti-

tioning algorithm is also applicable for the non-TS voltage island generation prob-

lem in [48], we replace the corresponding p⇥ q partitioning algorithm in [48]

with ours and keep the rest of algorithm unchanged. This MSV design scheme

is denoted as MSVreconstruciton. We apply timing speculation directly to the MSV

design of MSVbaseline, and denote this solution as MSVts. That means, in MSVts

we keep the MSV design of MSVbaseline and then perform timing simulation with

different voltage assignments to obtain the error probability functions, so that we

can achieve the ”optimal” voltage assignment and power consumption considering

timing speculation. Our proposed solution is denoted as MSVproposed . The range

of supply voltages allowed for voltage islands to operate is 0.7V to 1.0V in our

experiments.

In timing-speculative circuits, we need to add timing error detectors to the

receiving end of critical paths. A simple scheme is to transform all the FFs, whose
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Figure 3.8: Monte Carlo simulation results.

maximum path delays are larger than b of the clock period (e.g., b = 80%), as

Razor-FFs. Then, to avoid hold time violation on the shadow latch of Razor-FFs,

we need to conduct short path padding and this is achieved by constraining paths

that drive Razor-FFs with at least g of the clock period (e.g., g = 50%) during

synthesis. In this work, once a voltage island design is generated, we perform

timing analysis using timing information with voltage scaling considered and then

set up Razor-FFs and conduct short path padding using the obtained path delays.

Both of these hardware costs are accounted for in our experiments and b and g

are set to be 80% and 50%, respectively. The hardware cost for equipping each

Razor-FF is assumed to be 10 gates. The penalty in Eq. 3.3 is assumed to be 10

clock cycles similar to prior works (e.g., [12]).
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3.5.2 Results and Discussion

In Table 3.1, we report the operating clock period obtained by excluding false

paths according to [61], the used parameters (m,n, p,q), the specified voltage is-

land number and the hardware cost to enable timing speculation for each bench-

mark circuit. To be specific, we set up the values of (m, n, p, q) as (20,20,10,10)

for small-scale circuits (e.g., s38584 and s38417) and as (30,30,15,15) for large-

scale circuits (e.g., des per f and ethernet). The average hardware cost to equip

the circuits with TS capability (including timing speculator and short path padding

cost) is about 6.5%.

To verify the effectiveness of the proposed voltage island generation methodol-

ogy, we, first of all, perform Monte Carlo simulation to produce 100 sample chips

with different variation patterns for each benchmark circuit. In Table 3.2, we re-

port the average power consumption4 and its standard deviation s for MSVbaseline,

MSVreconstruction, MSVts and MSVproposed , respectively. It is important to note

that, the reported results includes the power overhead of MSV design (e.g., level

shifters) and power penalties to correct timing errors.

As can be seen from Table 3.2, when compared to MSVbaseline, the proposed

MSVreconstruction can achieve 5.18% power saving on average. This improvement

comes from using our proposed p⇥ q partitioning algorithm to replace the cor-

responding one in MSVbaseline only, which demonstrates the effectiveness of our

reconstruction algorithm. In other words, even for non-TS conventional circuits,

our proposed solution lead to much more power-efficient MSV designs.

Besides, MSVts can achieve 12.84% power reduction on average when com-

pared with MSVbaseline. This improvement reflects the efficacy of timing specula-

tion itself, since in MSVts we just apply timing speculation directly to the MSV de-
4Each power value has been normalized by using the power consumption of the case

without MSV design as unit value.
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sign of MSVbaseline. Compared with MSVts, our proposed methodology MSVproposed

can further achieve 9.41% power reduction on average, which reflects the efficacy

of explicitly considering timing speculation during the MSV design process. The

runtime of the proposed algorithm (see Fig. 3.7) is quite small.

MSVproposed achieve better results because (i) the proposed partitioning model

and DP-based voltage island generation method facilitate to identify voltage is-

lands with optimal supply voltages based on circuit slack distribution, which gives

the first-level of power saving; (ii) once a voltage island has been formed, an-

other level of power saving can be achieved by minimizing the timing error rates.

Any voltage island with only a small number of critical paths (i.e., most circuit

paths have relatively large slacks) can fully take advantage of this power saving

while maintaining the performance. At the same time, we can observe that the

power reduction ratios of these four benchmark circuits are quite different, and we

attribute this phenomenon to the unique timing characteristic of each circuit. Gen-

erally speaking, if a circuit has gradually-decreasing path delay distribution, the

benefit brought by timing speculation can be larger than that of those circuits with

a sharply-declining delay distribution. This is because, in the latter case, a large

number of paths may fail at the same time in the design when voltage overscaling

exceeds a critical point, which causes a steep increase of timing error rate [62].

MSVts and MSVproposed would suffer from performance degradation caused by

infrequent timing errors. We report this performance degradation in Table 3.1 and

denote it as DT h, compared to the case that the circuit uses the maximum path

delay as its operational clock period. On average, MSVts and MSVproposed have

4.92% and 5.08% throughput degradation, respectively. However, it is important

to note that, for MSVbaseline without timing error correction capability, designers

usually have to reserve a large timing guard band (e.g., 15% of maximum path

delay) to tolerate variation-induced timing uncertainty and hence system through-
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Figure 3.9: Power wastage and power consumption wrt. optimization iteration

number.

put is degraded due to lower operational frequency [52]. From this perspective,

if we consider the timing guardband existing in the non-TS solution MSVbaseline,

the performance of MSVts and MSVproposed would be actually better than that of

MSVbaseline.

To get more details of the proposed methodology, we take s38417 as an exam-

ple in the following experiments. In Fig. 3.8, we show the results of MSVts and

MSVproposed with process variation effects after performing Monte Carlo simula-

tion. The corresponding mean value of power consumption and standard deviation

for each case are depicted in the figure in the form of (µ,s), which, again, demon-

strates the benefits of MSVproposed . In Fig. 3.9, we plot the curves to reflect the

changes of both the power wastage provided by DP and the power consumption

evaluated by timing simulation with error penalties taken into account. As can be
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seen, the power wastage is decreased all the time, which proves the effectiveness

of the reconstruction algorithm to explore new solution space and guarantee the

power wastage to be optimized step by step, as discussed in Section 3.4.3. Note

that, this can be used to trade off the algorithm runtime with optimization quality

during design process. Moreover, with respect to the optimization iteration num-

ber, the two curves descends in the same manner. The similar trends of these two

curves can prove the effectiveness of our proposed optimization process.

To investigate the effects with different specified voltage island number, we

vary the number of islands and get the power consumption curves of MSVbaseline,

MSVts and MSVproposed as described in Fig. 3.10. Clearly, with different number

of voltage islands, MSVproposed always outperforms the other solutions. It can be

also observed that, with increasing number of allowed voltage islands in the MSV

design, the power savings of all these solutions increase in the beginning, but de-
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crease in the end. This is because, more voltage islands allow fine-grained voltage

assignments that satisfy the performance constraint of each individual island, lead-

ing to better power savings. However, more voltage islands also incur higher cost

for the supporting circuitries (e.g., level shifters). Consequently, when the num-

ber is too large, the benefit provided with fine-grained voltage assignment cannot

compensate the associated power cost.

3.6 Conclusion

Region-based MSV design has been used as an effective technique to reduce power

consumption and attracted lots of research interests. However, all of the previous

MSV works try to guarantee ”always correct” operations, which greatly limits the

design flexibility. In this work, we formulate the MSV design problem for timing-

speculative circuits, and propose a novel DP-based algorithm to generate voltage

islands. Experimental results based on various benchmark circuits demonstrate

that the proposed methodology is able to significantly reduce power consumption

of timing-speculative circuits with acceptable performance degradation.

2 End of chapter.



Chapter 4

Clock Skew Scheduling

4.1 Introduction

Clock skew scheduling (CSS), which treats clock skew as a manageable resource

instead of design liability, is an effective technique to improve IC performance, by

assigning intentional clock arrival times to internal flip-flops (FFs). Earlier works

in this domain (e.g., [63–66]) focused on clock period reduction to maximize IC

timing performance. With technology scaling, process variation has become a se-

rious concern for circuit design and the earlier performance-driven CSS solutions

may result in low manufacturing yield due to timing uncertainty caused by process

variation. Consequently, various yield-driven CSS techniques (e.g., [67–69]) were

developed to maximize timing yield under a certain clock period.

Despite the different design objectives and optimization methods, a common

design constraint of existing CSS techniques is that they need to guarantee the

timing correctness of the circuit after skew adjustment, even in the worst case sce-

nario. The ever-increasing process variation effects hence pose serious challenges

for these techniques since a large timing guard band has to be reserved to tolerate

timing uncertainty, leading to rather limited performance improvement room for

63
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CSS techniques.

By allowing infrequent timing errors and achieving timing error resilience with

error detection and correction techniques, timing speculation techniques such as

Razor [9] enable highly energy-efficient “better than worst-case” designs, and

hence have attracted lots of attention from both academia and industry [5, 7, 11–

13, 70]. For circuits equipped with timing speculation capability (i.e., timing-

speculative circuits), since there is no need to guarantee “always correct” oper-

ation in such designs, we can afford to have more aggressive skew optimization

strategies to improve circuit performance without necessarily reserving large tim-

ing guard bands. Recently, a post-silicon clock skew tuning framework [71] has

been proposed to manipulate timing slacks of different FFs according to collected

timing error information at runtime. However, how to conduct pre-silicon clock

skew scheduling at design stage for such timing-speculative designs, to the best

of our knowledge, has not been studied in the literature yet. The pre-silicon clock

skew scheduling work investigated in this chapter can be easily combined with the

post-silicon clock skew tuning work.

Motivated by the above, in this chapter, we first develop a general formulation

of CSS problem for timing-speculative circuits, wherein timing error rate and its

corresponding impact are explicitly considered. We then propose a novel clock

skew scheduling algorithm that consists of two phases to tackle this problem. The

first phase is based on gradient-descent method (GDM), considering arbitrary con-

tinuous skew values can be assigned to FFs. Such assumption leads to a large num-

ber of skew values. In reality, it is very difficult, if not impossible, to implement

so many different skews. CSS therefore has to be constrained to a limited num-

ber of skew values, and such an optimization problem is known as multi-domain

clock skew scheduling (MDCSS) [72–76]. To seriously take this practical concern

into consideration, in the second phase we develop a novel algorithm based on
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steepest-descent method (SDM) that uses the output of the first phase as an ini-

tial solution. As shown in experimental results on various benchmark circuits, our

proposed CSS algorithms are able to significantly reduce the overall timing error

rate of the circuit, thus dramatically improving its throughput.

The remainder of this chapter is organized as follows. In Section 4.2, we

present the preliminaries and related work. The CSS problem in timing-speculative

circuits is then formulated in Section 4.3. The corresponding GDM-based CSS al-

gorithm and SDM-based MDCSS algorithm are then detailed in Section 4.4 and

Section 4.5, respectively. Next, Section 4.6 presents our experimental results on

various benchmark circuits. Finally, Section 4.7 concludes this chapter.

4.2 Preliminaries and Motivation

4.2.1 Background

A synchronous circuit (see Fig. 4.1 for a simple example) with edge-triggered stor-

age elements (e.g., flip-flops) can usually be modeled as a directed graph G(V,E)

as depicted in Fig. 4.2. In Fig. 4.1, the squares represent FFs and the circles repre-

sent combinational logics. In the timing constraint graph as shown in Fig. 4.2, each

node (vi 2V ) represents a FF and each arc (ei j 2 E) represents the longest/shortest

path from FFi to FFj.

Let si be the clock arrival time of vi, and Di j and di j be the maximum and

minimum path delays of ei j respectively, the setup-time and hold-time constraints

of traditional CSS problem without timing speculation are as below:

si� s j  Tcp�Tsetup�Di j ,

si� s j � Thold�di j ,
(4.1)

where Tcp is the clock period, and Tsetup and Thold are the setup time and the

hold time of FFs, respectively. In order to solve this CSS problem using a graph-
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Figure 4.1: A simple example of synchronous digital circuit.
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Figure 4.2: Timing constraint graph of circuit example.

theoretic approach, these timing constraints would usually be presented in timing

constraint graph (see Fig. 4.2) by replacing the hold time constraint of the path

from FFi to FFj with edge weight w ji = �(Thold � di j) and replacing the corre-

sponding setup time constraint with edge weight wi j = Tcp�Tsetup�Di j. The solid

directed lines in Fig. 4.2 imply the setup time relation and the dashed directed lines

imply the hold time relation1.
1Interested readers may refer to [77] for more background about CSS.
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4.2.2 Clock Skew Scheduling

The clock signals in synchronized sequential circuits can arrive at storage ele-

ments at different times, and such delay difference of clock signals is referred to

as clock skew. Conventionally clock skews should be minimized when designing

clock distribution network, however, properly assigning clock arrival times to FFs,

known as CSS, can help solve the problem that the maximum achievable opera-

tional frequency is limited by the maximum datapath delay in the circuit. There

has been significant effort to explore CSS to improve performance. Generally

speaking, clock skew scheduling can be classified into two categories by different

optimization objectives: performance-driven ones [63, 64] to achieve the highest

operational frequency and timing yield-driven ones [65–69] to maximize yield un-

der a given clock period.

Some early works [63, 64, 66] laid a foundation by formulating the CSS prob-

lem and solving it optimally. Huang el al. [42] argued that these optimal solutions

do not achieve the lower bound of clock period, since the hold time constraints

often limit the feasible clock period, and proposed delay insertion into the logic

network as a post-processing step to solve the hold time violations and help im-

prove the feasible timing schedule.

However, even after delay insertion, it is known that the minimum clock pe-

riod of a synchronous circuit achievable through CSS is still limited by the un-

certainties of the data-propagation times on local data paths, caused by the ever-

increasing process variations. Considering this variability of critical path delays,

some prior works (e.g., [63, 64]) allocated a safety margin with both upper and

lower bounds to each feasible region of clock skews in advance to minimize clock

period. Intuitively, since it seems more reasonable to target a skew close at the

middle of skew feasible region, Kourtev and Friedman [65] proposed an original

formulation of this problem and solved it using quadratic programming to mini-
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mize the total least square of skews. Wei et al. [67] optimized clock slacks using

an incremental slack distribution method to tolerate process variation. Albrecht et

al. [66] modeled the variations on critical path delays with a single variable and

transformed the yield optimization problem to a minimum mean cycle problem

to guarantee safety margins. Tsai et al. [68] modeled the problem as a minimum

cost-to-time ratio problem by introducing variance of path delay distribution into

the feasible skew region to consider the statistical difference of critical path delays.

Recently, Wang el al. [69] argued that all prior works cannot handle non-Gaussian

critical path delays, and hence proposed a formulation of yield-driven clock skew

scheduling technique under non-Gaussian variations.

As mentioned earlier, one practical concern regarding CSS is that due to the

high vulnerability to process variations, a wide spectrum of dedicated clock skews

is very difficult to implement in a reliabile manner [72–76]. Therefore, the concept

of MDCSS that allows only a few number of clock skew domains and assigns

each flip-flop onto one of the domains is first proposed in [72], whererin it is

formulated as a mixed integer programming problem and solved by a SAT-based

algorithm. In [75], the method based on multi-level clustering algorithm with a

skew affinity metric is proposed to reduce the complexity. In [73], a heuristic

algorithm is used to minimize the number of skew domains for a clock period with

runtime reduction. In [76], an initial solution is given at first, and then iteratively

optimized. In [74], the hardness of MDCSS problem is formally studied, and an

optimal search algorithm is proposed together with pruning techniques to save the

effort of feasibility check.

The above works all try to conduct CSS with the guarantee that there would

never be timing errors to occur. With this serious promise, the traditional CSS has

to reserve a rather large timing guard band, which limits the benefits brought by

conducting CSS.
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4.2.3 Timing Speculation

Circuit-level timing speculation technique, being able to detect timing errors at

online stage, react to the error quickly and recover from it by rolling back to a

known-good pre-error state, has become one of the most promising solutions to

deal with the ever-increasing static and dynamic variation effects with technology

scaling. With timing speculation, timing error is no longer the evil that has to be

avoided at the cost of timing guard band. It provides designers the opportunity to

trade off error rate with operational clock period.

Various techniques [9, 18, 78] are presented for online timing error detection.

Without loss of generality, let us consider Razor flip-flop [9], one of the represen-

tative techniques, to demonstrate how timing error detectors work. A Razor-FF

contains a main flip-flop, a shadow latch and some additional control logic, to de-

tect timing errors. The main flip-flop latches the output signal at the clock edge

with possible timing error, while the shadow latch guarantees to receive the cor-

rect value, by latching the signal a fraction of a cycle later. Consequently, when

the shadow latch and the main FF values do not agree, a timing error is detected.

To make use of timing speculation technique, it is necessary to replace all critical

FFs that are driven by speed-paths (i.e., critical or near-critical paths) of the circuit

with Razor-FFs (or other timing speculators).

For microprocessors, timing error recovery can be achieved with microarchi-

tectural support [34]. That is, when a timing error is detected, the processor

pipeline is flushed and the correct result from the shadow latch is returned back

into the pipeline. Then, by replaying instructions (at possibly lower frequency),

the processor is able to recover from the timing error [27].

Timing error recovery inevitably incurs some performance loss and extra en-

ergy consumption. Therefore, it is essential to reduce timing error rate (TER) to

optimize timing-speculative circuits [12]. Various optimization techniques (e.g., [11,
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13, 14, 19, 28]) have been presented for timing-speculative circuits in the literature.

The key issue in this optimization problem is to reshape the path delay distribution

of the circuit so that those frequently-exercised timing paths are optimized with

more timing slack while other paths are allowed to have timing errors.

4.2.4 Motivation

As discussed above, in this work we formulate the CSS problem targeting timing-

speculative circuits and present both a GDM-based CSS algorithm and a heuristic

search-based MDCSS algorithm to maximize circuit performance. On the one

hand, the proposed technique is motivated by the observation that a large design

guard band needs to be reserved for the traditional clock skew optimization tech-

niques, due to the increasing process variation. With timing speculation, we do not

need to guarantee “always correct” operations any longer, dramatically increasing

design flexibility and improvement room of CSS techniques. On the other hand,

CSS can manipulate the timing slacks of different FFs, so that those frequently-

sensitized critical FFs serving as receiving ends of critical paths can be better taken

care of by allocating more timing slacks. By doing so, the error rate of such a

timing-speculative circuit can be reduced and its performance would be improved.

Obviously, these two techniques can naturally complement each other to im-

prove system performance, motivating this work to study how to effectively con-

duct CSS in timing-speculative circuits.

4.3 Problem Formulation

The CSS problem formulation for timing-speculative circuits is quite different

from traditional one (e.g., [69]), because our optimization objective is not the ab-

solute clock period and we need to differentiate the contributions of various circuit
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paths to the system’s overall timing error rate. We detail our problem formulation

as follows.

Generally speaking, in timing-speculative circuits, we roll back the system

once timing error is detected and then lower system frequency for a short while

to re-compute the result in the failure cycle. Similar to [12], we trade off timing

error rate with operational clock period to minimize the equivalent clock period

Tecp that can be expressed as follows:

Tecp = (1+ error(Tcp,~s) · penalty) ·Tcp , (4.2)

where Tcp is the operational clock period,~s is the vector for skew setting, error(Tcp,~s)

is the error cycle rate function with regard to Tcp and~s, indicating the probability

for timing error to occur, and penalty is the penalty due to error occurring. This

penalty includes both the cycles of wasted execution that must be discarded when

an error occurs and the time spent on checkpointing and re-execution.

To achieve the above optimization objective, if a certain Tcp is given, the prob-

lem in Eq. 4.2 can be equivalently developed as minimizing the following error

probability:

error(~s) = 1�
|V |

’
j=1

(1� error j(~s)) , (4.3)

where error j(~s) is the error probability of FFj during one clock cycle, and |V | rep-

resents the node number (i.e., FF number) in graph model of the circuit. By solving

above optimization problem, we can finally select the best operational clock period

Tcp to minimize the equivalent clock period as indicated in Eq. 4.2.

To calculate error j(~s), the error probability of each FF, we need to know the

path sensitization probability, which can be acquired by performing functional

simulation of the circuit with representative workloads. Note that, we only need to

record the sensitized delay information of FFs during this simulation process, but

not all the sensitized path delays.
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Besides, considering process variation, the path delay becomes a random vari-

able [69], therefore we have

error j(~s) = Â
i2Pj

Â
k

Ni jk ·Pr{si� s j � eWi jk} ,

eWi jk , Tcp�Tsetup� eDi jk ,

(4.4)

where Ni jk is the probability for the kth path from FFi to FFj to be sensitized, eDi jk

is the corresponding path delay variable of the kth path, si is skew value of FFi,

eWi jk denotes a random variable as defined in Eq. 4.4, and Pj is the set of FFs that

serve as the beginners of the paths from FFi to FFj. Note that, since the problem

of hold time constraints can be solved by delay padding [42], we only consider the

setup time constraints in this work. Pr{si� s j � eWi jk} implies the probability for

timing error to occur if the setup time constraint as specified in Eq. 4.1 is violated.

By defining the Cumulative Distribution Function (CDF) of eWi jk as

Fi jk(x) = Pr{x� eWi jk} , (4.5)

where x = si� s j, we have

error j(~s) = Â
i2Pj

Â
k

Ni jk ·Fi jk(si� s j) . (4.6)

Note that, if we consider the path delay between FF pair as a variable following

a certain distribution, we can have a general form for error probability calculation

using an integral form, instead of the summation in Eq. 4.6,

error j = Â
i2Pj

Z +•

�•
Ni j(x) ·Fi j(si� s j,x)dx ,

Fi j(si� s j,x) = Pr{si� s j > Tcp�Tsetup� x} ,

(4.7)

where Ni j(x) is the probability function with regard to sensitized path delay x.

Based on Eq. 4.3 and Eq. 4.6, we can formulate the CSS problem in timing-

speculative circuits as an optimization problem that aims at minimizing the fol-
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lowing objective:

error(~s) = 1�
|V |

’
j=1

(1� Â
i2Pj

Â
k

Ni jk ·Fi jk(si� s j)) . (4.8)

The optimization targeting this objective is expected to reduce the error cycle rate

of overall system so that it can improve circuit throughput.

Finally, we develop the above general CSS problem to an MDCSS one wherein

clock skews are contrained to only a number of discrete values. This MDCSS

problem in timing-speculative circuits can be formulated as follows:

Problem: Given

• A timing-speculative circuit, equipped with timing speculators, such as Ra-

zor [9];

• The lower bound and upper bound of skew range, slower and supper;

• The skew domain number, K;

• The penalty to recover from a timing error, penalty;

to determine: (i) the skew set C = {c1,c2, · · · ,cK} of K skew domains, and (ii)

how to assign each FF to one of these domains, such that the overall error rate is

minimized, i.e., the performance is maximized.

4.4 GDM-Based Skew Scheduling Algorithm

In this work, we first develop a novel GDM-based algorithm to solve the general

CSS problem in timing-speculative circuits, serving as the first phase of the pro-

posed CSS technique. The simplest version of GDM (refer to [35] for details) is

usually formulated as the following unconstrained optimization problem:

min
{~s}

f (~s),~s 2 Rn , (4.9)
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where f (~s) is a scalar objective function, Rn is the n-dimensional real Euclidean

space, and ~s is a vector of n real components, {si|1  i  n}. It is assumed that

f (~s) is differentiable so that the gradient vector O f (~s) exists everywhere in Rn.

The solution of above problem is denoted as~s⇤.

GDM is a first-order optimization algorithm that uses the gradient vector O f (~x)

to determine the search direction for each iteration. The simplest and most famous

GDM algorithm is the method of steepest descent, which takes steps proportional

to the negative/positive of the gradient (or, the approximate gradient) of the func-

tion at current iteration to minimize/maximize f (~s).

The targeted CSS problem with timing speculation in this work is how to

determine clock skew setting and hence allocate timing slack as resource to the

most critical paths to reduce error cycle rate of overall system and improve system

throughput. This is strongly relevant to both sensitization probability and expected

error probability for each timing critical/sub-critical path. From this viewpoint,

GDM is just applicable to our targeted problem. How to apply GDM in targeted

CSS problem will be detailed in the following.

4.4.1 Proposed Optimization Metric

From Eq. 4.2, we can see that the system error cycle rate must be reduced and kept

within a small number to achieve a higher throughput, otherwise the penalty caused

by error occurrence would greatly reduce the benefit of clock period decrease and

even worsen the throughput.

Based on this observation, we can simplify the original optimization objective

described in Eq. 4.8 by assuming error j(~s), the error probability for each FF, is

so small that there would not be more than one error occurring at the same time.

Therefore, after expanding Eq. 4.3 we can ignore the high order terms and obtain
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the following approximation,

error(~s) = 1�
|V |

’
j=1

(1� error j(~s))⇡
|V |

Â
j=1

error j(~s) . (4.10)

This simplified optimization objective is used in our GDM-based skew scheduling

algorithm as a metric to guide the reduction of system error cycle rate. After

substituting Eq. 4.6 into Eq. 4.10, the proposed optimization metric is written as

error(~s) =
|V |

Â
j=1

Â
i2Pj

Â
k

Ni jk ·Fi jk(si� s j) . (4.11)

4.4.2 Skew Constraint

In practice, the assigned skew values should be constrained in a specified range

with a lower bound and an upper bound (e.g., [slower,supper]). This constraint

requirement is beyond the basic unconstrained formulation of GDM in Eq. 4.9.

In order to tackle this problem, we can use such a function,

S(xi) = slower +(supper� slower) · (1�
1

1+ eµxi
) , (4.12)

to constrain the assigned skew values within specified range [slower,supper] all the

time. Here, µ is a parameter to control the function shape. As a result, by substi-

tuting Eq. 4.12 into Eq. 4.11, we obtain the optimization objective written as

error(~x) =
|V |

Â
j=1

Â
i2Pj

Â
k

Ni jk ·Fi jk(S(xi)�S(x j)) , (4.13)

where ~x is the new vector variable. Obviously, once ~x⇤ is determined, the skew

value ~s⇤ can be easily calculated according to Eq. 4.12. The transformation from

a constrained problem to an unconstrained version makes GDM applicable to tar-

geted CSS problem.
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4.4.3 Proposed Skew Scheduling Algorithm

After approximating optimization metric in Section 4.4.1 and applying the trans-

formation in Section 4.4.2, it is now ready for GDM to determine the clock skew

setting.

We compute the gradient of objective function. For 8 ` 2 {1,2, · · · ,n},

∂error(~x)
∂S(x`)

=�Â
i2P̀

Â
k

Ni`k ·F 0i`k(S(xi)�S(x`))

+ Â
`2Pj

Â
k

N` jk ·F 0` jk(S(x`)�S(x j)) ,
(4.14)

dS(x`)
dx`

= (supper� slower)
µeµx`

(1+ eµx`)2 , (4.15)

where F 0i jk(·) is the probability density function. Based on Eq. 4.14 and Eq. 4.15,

we can finally get the gradient according to

∂error(~x)
∂x`

=
∂error(~x)

∂S(x`)
· dS(x`)

dx`
. (4.16)

Since we would like to minimize the error cycle rate, we update the parameters

using the negative of the computed gradient at each iteration as below,

xnew
` = x`�h∂error(~x)

∂x`
, (4.17)

where h is the learning rate that determines step size towards optimized solu-

tion point and maintains a balance between convergence speed and avoiding di-

vergence. How to determine effective learning rate, in fact, has been studied by

many machine learning works. As this problem is not the focus of this work, in

our implementation we simply set h to be a typical value 0.05. By updating the

parameter ~x periodically until the procedure converges, we can obtain the skew

setting~s⇤ = S(~x⇤) according to the definition in Eq. 4.12.

The algorithm flow of the first phase for general CSS problem is described

in Fig. 4.3. First of all, we initialize the variables ~x as same as the case with
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# f (~x), the objective function for optimization

# eg and e~x, convergence tolerances

1. Initialize~x

2. REPEAT for each iteration

3. IF k O f (~x) k< eg

4. Set~x⇤ =~x

5. Break

6. ELSE
7. Set~g =�O f (~x)

8. FOR the iteration i from 1 to |V |
9. Update parameters xnew

i = xi�h ·gi

10. IF k~xnew�~x k< e~x
11. Set~x⇤ =~xnew

12. Break

13. ELSE
14. Go for next iteration

Figure 4.3: The proposed GDM-based skew scheduling algorithm.

zero-skews. Then, we repeat the procedure (see Line 3 ⇠ 14) to compute the

gradient and update parameters until the convergence criterion is satisfied. To be

specific, we have two convergence criterions: (i) the gradient tolerance eg (see

Line 3 ⇠ 5) to determine whether the algorithm has arrived at a critical point,

and (ii) the step tolerance e~x (see Line 10 ⇠ 12) to determine whether significant

progress is achieved. Once either of them is satisfied, the optimization process

is terminated; otherwise, it continues to compute the gradient (See Line 7) and

update parameters (see Line 9).
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4.5 Multi-Domain Skew Scheduling Algorithm

In the second phase of our proposed CSS technique, we tackle the MDCSS prob-

lem using the output of the first phase as initial solution. This MDCSS algorithm is

based on SDM, including two stages: (i) initial stage: based on the result given by

our GDM-based CSS algorithm, we resort to K-means clustering [79] to achieve

the skew set S and also the initial skew scheduling ~s0; and (ii) refinement stage:

using~s0 as the initial solution, we employ search-based algorithm to explore better

solution in the discrete solution space.

4.5.1 Initial Stage

Figure 4.4: An example of grouping 8 one-dimensional sample points into 3 clus-

ters by K-means clustering.

K-means clustering [79] is a method of clustering analysis that groups some

given sample points into K cohesive clusters. As shown in Fig. 4.4, the 8 one-

dimensional sample points represented by black spots are partitioned into 3 clus-

ters, each of which has a red cross representing its center. Formally, given the

n sample points P = {p1, p2, · · · , pn} and an integer K, K-means clustering tries

to find K points C = {c1,c2, · · · ,cK} as the centers of K clusters, such that the

following objective function is minimized:

h(P,K) =
K

Â
i=1

Â
p j2Ci

||p j� ci||2 , (4.18)

where Ci is the set of points which are the closest to the center ci, and h(P,K) is the

sum of the squared distances between all the points to their closest cluster center.
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# {s0i|1 i |V |}, the set of skews

# {Cj|1 j  K}, the set of clusters (i.e., skew domains)

# {c j|1 j  K}, the set of cluster centers

1. Initialize C = {c1,c2, · · · ,cK} randomly

2. REPEAT for each iteration until convergence

3. Initialize Cj =?,81 j  K

4. FOR each skew element s0i
5. j = argmint ||s0i� ct ||
6. Assign the skew s0i to the cluster Cj

7. FOR each cluster Cj

8. Compute its center c j = (Âpi2Cj pi)/|Cj|

Figure 4.5: The proposed algorithm based on K-means at intial stage.

Accordingly, given the |V | elements of the skew vector ~s0 = (s01,s
0
2, · · · ,s0|V |)

generated by our GDM-based algorithm in continuous space as the sample points

and the skew domain number K, we would like to find K skew values of skew

domains that representatively describe the |V | skew values and assign each sample

point to a certain domain. Consequently, this problem can be naturally solved

using K-means, as shown in Fig. 4.5. The cluster centers are used as the skews of

K skew domains, and the skew of each FF is assigned as same as the skew of its

associated domain.

4.5.2 Refinement Stage

After initial stage, we achieve the discrete skew set C = {c1,c2, · · · ,cK} and an

initial skew setting ~s0 in discrete space. To further improve the solution, we for-

mulate the refinement stage of MDCSS problem as a discrete search problem and

resort to a heuristic search algorithm based on steepest descent method [36].



CHAPTER 4. CLOCK SKEW SCHEDULING 80

4.5.2.1 Solution Representation and Move

An effective solution representation together with the corresponding move is very

important for any discrete search algorithm. In refinement stage of the MDCSS

problem, the solution representation is naturally described using the skew vector

~s, wherein each element (e.g., si) is the skew value of a FF defined in the discrete

skew set C . As for the move, we simply define it as the skew change of a certain

FF. When moving to a neighbor solution, we start with the original solution and

choose a FF to change its skew value. This definition of move can guarantee the

completeness of traversing the entire solution space.

4.5.2.2 Objective Function

To evaluate solutions during search process, we can simply use the metric defined

in Eq. 4.11 as the objective function. However, we have such an observation that

the change of the skew of a certain FF affects only a small part of the metric

calculation. To clarify, let us consider the example demonstrated in Fig. 4.6. If

the skew of FF3 is changed, only the timing slacks between FF3 and its neighbors

(i.e., FF1, FF2 and FF5) would be affected, consequently we only have to update

the metric calculation related to these FFs.

Formally, if the skew of FF̀ is changed from s` to s0`, the metric difference

between these two solutions should be:

D = Â
i2P̀

Â
k

Ni`k · (Fi`k(si� s0`)�Fi`k(si� s`))+

Â
`2Pj

Â
k

N` jk · (F̀ jk(s0`� s j)� F̀ jk(s`� s j)) ,
(4.19)

By calculating the metric of initial solution and extracting metric difference be-

tween two neighbor solutions according to Eq. 4.19, we can achieve the metric

of each solution with much less computations, compared to computing Eq. 4.11

directly.
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Figure 4.6: The change of the skew of a certain FF impacts only a small part of the

metric calculation.

# ~s0, initial solution generated by initial stage

# ~sc and~sn, current solution and next solution

1. Initialize skew setting~sc =~s0

2. REPEAT for each iteration until convergence

3. Initialize~sn =~sc

4. FOR each neighbor solution~si of~sc

5. IF metric(~si)< metric(~sn)

6. ~sn =~si

7. IF~sn ==~sc // No better solution found
8. Break

9. ELSE
10. ~sc =~sn

11. Go for next iteration

Figure 4.7: The proposed search algorithm based on SDM at refinement stage.

4.5.2.3 Heuristic Search Algorithm

With the above definitions of solution representation, move, and objective func-

tion, the refinement stage of MDCSS problem can be naturally solved by search

algorithms (e.g., random search and simulated annealing) [36]. In this work, we
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cp

Final Skew Vector

Tcp

Skew Vector

Skew Vector

Figure 4.8: The overall flow of MDCSS algorithm.

simply employ steepest descent method (SDM), a discrete analogue of GDM in a

space involving discrete components, since it is typically able to converge in a few

steps.

Basically, an SDM search starts at an initial state and takes search steps in

solution space, reducing a given objective function with the maximum rate of de-

scent. Instead of computing a gradient in GDM, the best move of SDM is deter-

mined using a local minimization. As demonstrated in Fig. 4.7, after initialization,

the search optimization repeats iteratively (see Line 3 ⇠ 11). For each iteration,

we find out the move leading to the neighbor solution with smallest metric (see

Line 4 ⇠ 6). The search process continues until convergence or a termination

condition is reached.
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4.5.3 Overall Flow of MDCSS Algorithm

The overall flow of our proposed MDCSS algorithm is depicted in Fig. 4.8. First of

all, we perform binary search on the operational clock period Tcp. Then, for each

selected Tcp, we use GDM-based algorithm to achieve a vector of skew setting in

continuous skew space. K-means clustering is employed to group the elements

of such a skew vector into clock skew domains and provide the initial solution.

Finally, SDM-based algorithm is utilized to explore the discrete skew space and

further improve the solution.

4.6 Experimental Results

4.6.1 Experimental Setup

To evaluate the effectiveness of the proposed CSS method, we conduct experi-

ments on several large ISCAS’89, IWLS’05 and ITC’99 benchmarks. We syn-

thesize these circuits and obtain timing information using Synopsys EDA tools.

To take process variation effect into consideration, we perform Monte Carlo sim-

ulation to inject gate-level delay variation following Gaussian distribution with

standard deviation equal to 8%. We conduct simulation with random inputs in our

experiments and the simulation is performed with 100,000 cycles. All the experi-

ments are conducted on a 2.8GHz PC with 4GB RAM.

For reasonable comparison, we provide a reference via offline timing analy-

sis with false paths excluded according to [61], denoted as CSSnonrazor. We ap-

ply timing speculation directly without CSS and denote this solution as CSSnoncss.

That means, we assign all the FFs with zero-skew in CSSnoncss. A yield-driven

CSS work [69] is used as the baseline solution for comparison and denoted as

CSSbaseline. Our proposed CSS based on GDM is denoted as CSSgdm, CSS with K-

means clustering at initial stage is denoted as CSSkmeans and CSS based on SDM
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at refinement stage is denoted as CSSsdm. All these solutions mentioned above

with timing speculation select the operational clock period of circuits according to

Eq. 4.2 to minimize the equivalent clock period Tecp which considers the penalty

for error occurring. Note that, for fair comparison, in CSSbaseline we apply the

algorithm in [69] to determine skew setting and then find out the optimal clock

period since timing speculation capability is equipped. By doing this, the skew

setting output by [69] would not be impacted by timing speculation, and its effec-

tiveness is actually improved due to the tradeoff between performance and error

rate. The comparison between CSSbaseline and CSSgdm can reflect the benefit of

explicitly combining CSS with timing speculation, since CSSgdm consider timing

speculation capability in the optimization procedure of CSS technique explicitly.

Usually, which FF to be equipped as Razor-FF lies on its timing pressure. In

the case without CSS, a simple scheme is to equip all the FFs that serve as the

ends of critical paths as Razor-FFs. If the delay of a path is larger than b of clock

period (e.g., b = 80%), such a path is critical path. As for the case with CSS,

because pre-silicon CSS discussed in this chapter is performed offline at design

stage and its effect is just to manipulate timing slacks between FFs, we can simply

set up those FFs, whose timing slacks are less than (1�b) of clock period after

conducting CSS, as Razor-FFs. In our experiments, the timing threshold b is set to

be 80%, and the hardware cost for equipping each Razor-FF is assumed to be 10

gates. The penalty in Eq. 4.2 is assumed to be 10 clock cycles according to [12],

and we sweep the operational clock period to select the one with best performance.

4.6.2 Results on GDM-Based Algorithm

In this subsection, we discuss the results on the GDM-based CSS algorithm (see

Section 4.4).

We report the results on hardware cost and algorithm runtime of the proposed
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Bench. TG# TFF#
CSSnoncss CSSbaseline CSSgdm

RT1 (s)
RFF# Cost (%) RFF# Cost (%) RFF# Cost (%)

s1494 680 6 2 2.94 2 2.94 3 4.41 0.17

s5378 3042 179 22 7.23 18 5.92 32 10.52 1.20

s9234 5866 228 22 3.75 25 4.26 18 3.07 1.15

s13207 8803 638 10 1.14 10 1.14 10 1.14 2.06

s15850 10470 597 89 8.50 89 8.50 81 7.74 3.33

s35932 18148 1728 144 7.93 144 7.93 144 7.93 13.76

s38584 21021 1426 168 6.90 180 7.39 182 7.48 16.30

s38417 24341 1564 87 4.14 106 5.23 108 5.14 10.29

wb conmax 73233 3316 657 8.97 699 9.54 698 9.53 23.93

des perf 154204 9105 668 4.33 887 5.75 870 5.64 46.83

ethernet 157841 10752 1553 9.84 1602 10.15 1584 10.04 34.87

b17 32326 1415 363 10.10 349 9.74 356 9.92 6.10

b18 114643 3320 653 5.39 676 5.57 678 5.58 25.00

b19 231364 6642 1383 5.64 1406 5.73 1398 5.70 31.54

b20 20226 490 192 8.67 189 8.55 193 8.71 13.59

b21 20571 490 170 7.63 209 9.22 192 8.54 13.81

b22 29951 735 198 6.20 215 6.70 207 6.46 17.10

AVERAGE 6.43 6.72 6.91

TG#: total gate count; TFF#: total FF count; RFF#: Razor-FF count;

Cost: hardware cost ratio for equipping Razor-FFs;

RT1: runtime of the proposed GDM-based algorithm.

Table 4.1: Experimental results on hardware cost and algorithm runtime with con-

tinuous skew space.

CSS technique CSSgdm in Table 4.1. As can be seen, the average hardware cost for

CSSnoncss, CSSbaseline and CSSgdm to enable timing speculation are 6.43%, 6.72%

and 6.91%, respectively. Although the hardware cost after conducting CSS seems

a little higher than CSSnoncss, the additional cost is still within an acceptable range.

The runtime of CSSgdm is listed in Column 10 of Table 4.1.

Next, we perform Monte Carlo simulation to produce 100 sample chips with
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Bench.
CSSnonrazor CSSnoncss CSSbaseline CSSgdm

Tecp(ns) Tecp(ns) s(ns) D1(%) Tecp(ns) s(ns) D2(%) Tecp(ns) s(ns) D3(%) D4(%) D5(%)

s1494 2.72 2.38 0.068 -12.63 2.29 0.067 -3.73 2.19 0.070 -4.32 -7.89 -19.52

s5378 1.86 1.58 0.017 -15.21 1.36 0.024 -13.45 1.35 0.024 -1.13 -14.43 -27.44

s9234 4.58 4.05 0.086 -11.61 3.84 0.068 -5.16 3.39 0.064 -11.65 -16.21 -25.94

s13207 5.57 4.12 0.080 -25.97 4.09 0.081 -0.72 4.05 0.048 -1.07 -1.78 -27.29

s15850 6.22 5.28 0.035 -15.12 4.75 0.046 -9.95 4.55 0.063 -4.38 -13.89 -26.91

s35932 3.68 3.57 0.07 -2.99 3.53 0.071 -1.03 3.49 0.073 -1.13 -2.15 -5.07

s38584 6.96 6.39 0.145 -8.10 6.21 0.129 -2.87 6.07 0.106 -2.29 -5.09 -12.78

s38417 6.12 5.73 0.065 -6.48 5.17 0.062 -9.76 4.57 0.042 -11.56 -20.20 -25.36

wb conmax 6.43 5.97 0.078 -7.20 5.53 0.063 -7.28 4.91 0.107 -11.21 -17.68 -23.60

des perf 13.70 13.44 0.340 -1.90 12.23 0.309 -9.00 10.88 0.275 -10.99 -19.00 -20.54

ethernet 11.28 10.53 0.055 -6.65 10.28 0.05 -2.35 9.96 0.057 -3.11 -5.39 -11.68

b17 20.03 18.16 0.093 -9.33 16.83 0.092 -7.32 14.09 0.089 -16.28 -22.41 -29.65

b18 26.56 24.65 0.135 -7.19 23.64 0.133 -4.11 22.69 0.136 -4.02 -7.96 -14.57

b19 57.29 52.42 0.287 -8.49 49.64 0.242 -5.31 46.91 0.263 -5.49 -10.51 -18.11

b20 15.02 12.94 0.112 -13.83 12.25 0.115 -5.39 10.88 0.114 -11.13 -15.92 -27.55

b21 14.98 12.86 0.108 -14.14 11.98 0.106 -6.89 10.75 0.110 -10.26 -16.44 -28.25

b22 17.46 15.07 0.116 -13.71 14.63 0.114 -2.92 12.83 0.112 -12.26 -14.82 -26.50

AVERAGE -10.62 -5.72 -7.19 -12.46 -21.81

Tecp: mean equivalent clock period considering error penalty;

s: standard deviation of equivalent clock period Tecp;

D1: Tecp difference ratio between CSSnoncss and CSSnonrazor;

D2: Tecp difference ratio between CSSbaseline and CSSnoncss;

D3: Tecp difference ratio between CSSgdm and CSSbaseline;

D4: Tecp difference ratio between CSSgdm and CSSnoncss;

D5: Tecp difference ratio between CSSgdm and CSSnonrazor .

Table 4.2: Experimental results on equivalent clock period Tecp with continuous

skew space.

different variation patterns for each benchmark. In Table 4.2, we report the equiv-

alent clock period Tecp and its standard deviation s for CSSnoncss, CSSbaseline, and

CSSgdm, respectively. This clock period Tecp has taken both the selected opera-
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tional clock period and the penalty for error occurring into account. As can be

seen, CSSnoncss can achieve 10.62% reduction in Tecp in average when compared

with CSSnonrazor. This improvement reflects the efficacy of Razor technique it-

self without CSS, which is not the main contribution of this work. After apply-

ing CSSbaseline, a yield-driven CSS proposed in [69], another 5.72% improvement

can be achieved in average, which shows that conducting CSS is beneficial for

timing speculation. Compared with CSSbaseline, CSSgdm can obtain 7.19% further

improvement. This reflects the efficacy to consider timing speculation in CSS op-

timization procedure explicitly. The improvement for CSSgdm over CSSnoncss and

CSSnonrazor are demonstrated in Column 12-13 of Table 4.2.

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2
0

10

20

30

Clock Period (ns)

O
p

tim
iz

a
tio

n
 M

e
tr

ic

Proposed Optimization Metric

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2
0

5

10

15

Clock Period (ns)

E
rr

o
r 

C
yc

le
 R

a
te

 (
%

)

Error Cycle Rate Obtained by Timing Simulation

Figure 4.9: Experimental results of CSSgdm with respect to the operational clock

period.

To get more details about CSSgdm, we take s38417, the largest circuit in IS-

CAS’89, as an example in the following. In Fig. 4.9, we show the trends of both

the proposed optimization metric in Eq. 4.11 and the error cycle rate obtained by
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Figure 4.10: Performance penalty and equivalent clock period with respect to the

operational clock period.

timing simulation with respect to the operational clock period. We also present the

performance penalty due to timing errors and the equivalent clock period consid-

ering the penalty in Fig. 4.10. It can be found that with the scaling down of clock

period, the penalty increases slightly at first, therefore the equivalent clock period

decreases gradually. However, when the clock period scales down to a point (indi-

cated by the vertical line in Fig. 4.10), the penalty starts to increase significantly,

leading to the minimum point of the equivalent clock period. In such manner,

CSSgdm selects the operational clock period with a reasonable error cycle rate to

minimize the equivalent clock period (i.e., maximize throughput). In Fig. 4.11, the

trends of the proposed optimization metric and the error cycle rate with respect

to GDM iteration number under the optimal operational clock period are plotted

out. This figure shows how CSSgdm optimizes the proposed metric and hence re-

duces the error cycle rate at the same time. The similar trends of these two curves
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in Fig. 4.11 prove the effectiveness of our proposed optimization algorithm and

metric.
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Figure 4.11: Experimental results of CSSgdb with respect to the GDM iterations.

4.6.3 Results on MDCSS Algorithm

In this subsection, we discuss the results on the proposed MDCSS algorithm (see

Section 4.5). In the experiments, the domain number is set to be 3.

We report the experimental results of MDCSS algorithm in Table 4.3. The

hardware costs of CSSkmeans and CSSsdm are about 6.8%, almost the same with

that of CSSgdm. Compared to CSSgdm, CSSkmeans at initial stage suffers from 2.45%

performance degradation. This is because CSSkmeans clusters the skews generated

by CSSgdm into only a small number of skew domains, and assigns clock skews

in a coarse-grain manner. Fortunately, by using CSSsdm at refinement stage, we

achieve 2.22% reduction in equivalent clock period, when compared to CSSkmeans.
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Bench.
CSSkmeans CSSsdm

RT2 (s) RT3 (s)
RFF# Cost (%) Tecp(ns) D1(%) RFF# Cost (%) Tecp(ns) D2(%) D3(%)

s1494 2 2.94 2.20 0.26 3 4.41 2.2 0 0.26 0.01 2.03

s5378 30 9.86 1.36 0.52 27 8.88 1.35 -0.52 0 0.01 7.25

s9234 17 2.90 3.42 0.94 14 2.39 3.32 -2.88 -1.97 0.02 9.98

s13207 10 1.14 4.07 0.49 10 1.14 4.01 -1.48 -0.99 0.04 23.14

s15850 83 7.93 4.80 5.39 83 7.93 4.69 -2.29 2.97 0.52 53.91

s35932 139 7.66 3.55 1.74 135 7.44 3.51 -1.13 0.59 1.39 136.65

s38584 173 8.23 6.19 2.06 185 8.80 5.88 -5.05 -3.10 1.94 125.92

s38417 114 4.68 4.87 6.65 111 4.56 4.65 -4.60 1.75 1.86 144.53

wb conmax 712 9.72 5.42 10.4 701 9.57 5.38 -0.83 9.48 2.09 234.18

des perf 875 5.67 11.04 1.43 869 5.64 10.88 -1.41 0 2.09 438.12

ethernet 1629 10.32 10.30 3.38 1596 10.11 9.43 -8.45 -5.35 2.37 384.12

b17 361 10.05 14.24 1.03 359 10.00 14.09 -1.02 0 1.13 89.33

b18 664 5.47 23.14 1.97 675 5.56 22.79 -1.51 0.43 1.84 261.37

b19 1385 5.65 47.67 1.61 1389 5.66 46.96 -1.48 0.11 2.58 523.13

b20 198 8.92 11.01 1.19 192 8.67 10.83 -1.65 -0.48 1.16 97.36

b21 185 8.25 10.88 1.25 179 8.01 10.72 -1.54 -0.31 1.18 113.66

b22 203 6.35 13.01 1.37 198 6.20 12.76 -1.95 -0.61 1.22 108.73

AVERAGE 6.81 2.45 6.76 -2.22 0.16

RFF#: Razor-FF count; Cost: hardware cost ratio for equipping Razor-FFs;

Tecp: equivalent clock period considering error penalty;

D1: Tecp difference ratio between CSSkmeans and CSSgdm;

D2: Tecp difference ratio between CSSsdm and CSSkmeans;

D3: Tecp difference ratio between CSSsdm and CSSgdm;

RT2: runtime of the proposed MDCSS algorithm including both initial and refinement stages;

RT3: total runtime of the overall design flow shown in Fig. 4.8.

Table 4.3: Experimental results of MDCSS algorithm with discrete skew space.

This is the benefit of our SDM-based search algorithm by exploring better solution

in the discrete skew space. Taking this improvement into account, the overall

performance degradation due to the constrained discrete skew space is reduced

to only 0.16%. The runtime of our MDCSS algorithm including both initial and
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refinement stages, as shown in Table 4.3, is very low. The total runtime of the

overall design flow that is shown in Fig. 4.8 is also presented.
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Figure 4.12: Experimental results of CSSsdm with respect to the SDM iterations.
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Figure 4.13: Experimental results with respect to the allowed domain number.
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Figure 4.14: Experimental results to show variation effects.

Finally, we use s38417 as an example to demonstrate the details of our pro-

posed MDCSS algorithm. In Fig. 4.12, we show the trends of both the proposed

optimization metric and the error cycle rate when conducting CSSsdm. As can be

seen, CSSsdm can effectively reduce the proposed metric that is used as optimiza-

tion objective, and hence decrease the error rate iteratively. Besides, we vary the

allowed domain number and plot out the equivalent clock periods normalized to

that of CSSgdm in Fig. 4.13. We find that, with the increase of domain number

the clock periods of CSSkmeans and CSSsdm both decrease significantly at first and

then keep almost constant. This is because, the design flexibility is limited in the

case of small domain number. When domain number is large (e.g., 4 domains in

s38417), the proposed methodology only further improves performance slightly

with respect to the increase of domain number. In addition, in Fig. 4.14, we show

the results with variation effects after performing Monte Carlo simulation. The

corresponding mean of Tecp and standard deviation s are depicted in the form of

(Tecp, s).
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4.7 Conclusion

Clock skew scheduling has been exploited as an effective technique to improve

timing performance and yield of ICs and attracted lots of research interest. How-

ever, with the ever-increasing process variations, a large timing guard band has to

be reserved to tolerate variations and guarantee “always correct” operations. In this

work, we formulate the CSS problem for timing-speculative circuits, and propose

a GDM-based skew scheduling algorithm and a MDCSS algorithm to determine

skew setting effectively. Experimental results on benchmark circuits demonstrate

that the proposed CSS technique is able to significantly enhance circuit perfor-

mance.

2 End of chapter.



Chapter 5

Online Clock Skew Tuning

5.1 Introduction

Clock skew optimization (CSO) [63], which treats clock skew as a manageable

resource instead of design liability, has been exploited as an effective technique

to improve the timing performance of integrated circuits (ICs), by assigning in-

tentional clock arrival times to flip-flops (FFs) in synchronized sequential circuits.

Earlier works in this domain [63–67] try to find a good clock schedule that max-

imizes the timing slack of all paths. Recently, with the introduction of tunable

clock tree to combat process variation [80], researchers have also presented var-

ious post-silicon clock skew tuning techniques to improve circuit timing perfor-

mance [68, 81–86].

All the above works ensure that circuits can always operate correctly, even in

the worst case scenario. With the ever-increasing static process variation effects

due to manufacturing imperfection and dynamic variation effects such as volt-

age and temperature fluctuations, however, there is an increasing uncertainty for

circuit timing behavior. Consequently, a large guard band needs to be reserved

when conducting clock skew optimization, leading to rather limited performance

94
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improvement room for such conservative approaches.

The growing circuit timing uncertainties often manifest themselves as timing

errors on speed-paths (i.e., critical or near-critical paths) of the circuit. Instead of

embedding a large design guard band to guarantee “always correct” operation, tim-

ing speculation technique such as Razor [9] allows infrequent occurrence of timing

errors and achieves timing error resilience by employing error detection and cor-

rection techniques. This “better than worst-case” design methodology enables the

tradeoff between reliability and performance/power and hence can achieve much

better energy efficiency when compared to that of traditional “worst-case” design

methodology. It has thus received lots of research attention from both academia

and industry [4, 5, 7, 9, 12, 13].

CSO and timing speculation techniques naturally complement each other and

combining them together is able to achieve much better timing performance [57,

87]. On the one hand, with timing speculation, we do not need to guarantee “al-

ways correct” operation during clock skew optimization, which significantly en-

larges the improvement room of skew optimization techniques. On the other hand,

clock skew tuning can be used to manipulate the occurrence of timing errors in the

circuit in such manner that those frequently sensitized paths are with larger timing

slack and hence the overall timing error rate of the circuit can be reduced, resulting

in better throughput of the circuit.

Motivated by the above, in this chapter, we propose a novel online skew tuning

framework for timing-speculative circuits. To be specific, we develop novel hard-

ware architecture to collect online timing error information and use it to guide our

proposed clock skew tuning procedure to achieve better timing performance. Ex-

perimental results on various benchmark circuits demonstrate the effectiveness of

our proposed methodology. Note that, our framework focuses on post-silicon skew

tuning, and hence it can easily be combined with prior pre-silicon skew scheduling
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works.

The remainder of this chapter is organized as follows. In Section 5.2, we

present the preliminaries and motivation of this work. The proposed hardware

architecture of online error collection and skew tuning is detailed in Section 5.3.

The algorithms for block grouping and skew tuning are presented in Section 5.4

and Section 5.5, respectively. Next, Section 5.6 discusses our experimental results

on various benchmark circuits. Finally, Section 5.7 concludes this chapter.

5.2 Preliminaries and Motivation

5.2.1 Pre-Silicon Clock Skew Scheduling

Generally speaking, pre-silicon clock skew scheduling can be classified into two

categories by different optimization objectives: performance-driven ones [63, 64]

to achieve the highest operational frequency and timing yield-driven ones [65–

69, 81] to maximize yield under a particular clock period. Considering the vari-

ability of critical path delays, some prior works (e.g., [63, 64]) allocated a safety

margin with both upper and lower bounds to each feasible region of clock skews

in advance in order to minimize clock period. Intuitively, since it seems more rea-

sonable to assign the skews close to the middle of the feasible region, Kourtev and

Friedman [65] solved the targeted problem using quadratic programming to mini-

mize the total least square of skews. Wei et al. [67] optimized clock slacks using

an incremental slack distribution method to tolerate process variation. Albrecht et

al. [66] modeled the variations on critical path delays with a single variable and

transformed the yield optimization problem to a minimum mean cycle problem

to guarantee safety margins. Tsai et al. [68] modeled the problem as a minimum

cost-to-time ratio problem by introducing variance of path delay distribution into

the feasible skew region to consider the statistical difference of critical path delays.
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Recently, Wang et al. [69] argued that all prior works cannot handle non-Gaussian

critical path delays, and hence proposed a formulation of yield-driven clock skew

scheduling technique under non-Gaussian variations.

The above works try to assign a good clock schedule at design stage, rely-

ing on static timing analysis results and process variation models. These offline

estimation/analysis techniques, however, cannot provide very accurate timing in-

formation and hence limit the effectiveness of pre-silicon clock skew scheduling

solutions.

5.2.2 Post-Silicon Clock Skew Tuning

Recently, post-silicon tuning capability has been introduced to clock tree design

to remove unintentional skews and boost timing yield under increasing process

variations [82]. A representative example is Intel’s dual-core Itanium processor,

which places tunable delay buffers (TDBs) in the clock distribution network to

cancel clock skew variations [80]. In the second level of clock network of Itanium

processors, there exist about 15,000 clock vernier devices (CVDs) for post-silicon

skew tuning. These TDBs can be programmed from the test access port (TAP).

To realize post-silicon skew tuning, the design of tunable delay buffers is im-

portant and various design schemes have been presented in the literature. In [83],

a chain of inverters feeding a multiplexer was used to extract fine-grained timing

information. In [84], two kinds of delay circuits, a tapped delay line and a mir-

ror delay line, are used to provide tuning capability. One drawback of the above

design is the significant power consumption caused by the continuous switching

of inverter chains. To tackle this problem, a so-called programmable delay ele-

ment [81] using a pair of inverters with a set of capacitive loads in between them is

proposed. The loads, consisting of transmission gates and NMOS transistors, can

be activated via control signals.
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With the help of TDB designs, Takahashi et al. [85] proposed a post-silicon

clock timing adjustment strategy, but how to program the tunable elements and

determine their locations was not addressed. Tsai et al. [81] and Nagaraj et al. [86]

combined a statistical timing driven skew scheduling algorithm with a post-silicon

clock tuning scheme.

The above works rely on offline testing to obtain timing information and use it

for post-silicon clock tuning. Path delay test generation, however, is an extremely

difficult problem and the coverage is usually quite low. More importantly, with

technology scaling, the discrepancy between circuits’ timing behavior in func-

tional mode and that in structural test mode has dramatically increased [88, 89].

Recently, Lak and Nicolici [90] made use of aging sensors to predict NBTI ag-

ing effects and correspondingly tuned clock skews to combat lifetime performance

degradation. Although online timing information is provided by aging sensors, it

still has to be guaranteed that there are no timing violations to occur. Due to the

above, the effectiveness of existing post-silicon clock skew tuning techniques is

also limited.

5.2.3 Timing Speculation

Circuit-level timing speculation technique, being able to detect timing errors at

online stage, react to the error quickly and recover from it by rolling back to a

known-good pre-error state, has become one of the most promising solutions to

deal with the ever-increasing static and dynamic variation effects with technology

scaling.

Various techniques have been presented for online timing error detection. With-

out loss of generality, let us consider the representative Razor flip-flop [9] to

demonstrate how timing error detectors work. A Razor-FF, contains a main flip-

flop, a shadow latch and some additional control logic, to detect timing errors.
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The main flip-flop latches the output signal at the clock edge with possible timing

error, while the shadow latch guarantees to receive the correct value, by latching

the signal a fraction of a cycle later. Consequently, when the shadow latch and the

main FF values do not agree, the timing error is detected. To make use of timing

speculation technique, it is necessary to replace all critical FFs that are driven by

speed-paths (i.e., critical or near-critical paths) of the circuit with Razor-FFs (or

other timing speculators).

For microprocessors, timing error recovery can be achieved with microarchi-

tectural support [34]. That is, when a timing error is detected, the processor

pipeline is flushed and the correct result from the shadow latch is returned back

into the pipeline. Then, by replaying instructions (at possibly lower frequency),

the processor is able to recover from the timing error [27].

Timing error recovery inevitably incurs some performance loss and extra en-

ergy consumption. Therefore, it is essential to reduce timing error rate (TER) to

optimize timing-speculative circuits [12]. Various optimization techniques (e.g., [11,

13, 14, 19, 28]) have been presented for timing-speculative circuits in the literature.

The key issue in this optimization problem is to reshape the path delay distribution

of the circuit so that those frequently-exercised timing paths are optimized with

more timing slack while other paths are allowed to have timing errors.

5.2.4 Motivation

Targeting timing-speculative circuits, this work presents a novel online clock skew

tuning technique to maximize circuit performance. The proposed technique is

motivated by the following observations:

• A specific manufactured circuit has its unique characteristics (e.g., path de-

lay distribution), which is difficult to estimate during design stage or costly

to characterize with delay testing techniques accurately. Consequently, a
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large design guard band needs to be reserved for conventional clock skew

optimization techniques. With timing speculation, however, we do not need

to guarantee “always correct” operation, which dramatically increases the

flexibility and improvement room of clock skew optimization techniques.

• While existing timing speculation techniques are able to apply dynamic volt-

age/frequency scaling to achieve better energy-performance tradeoff using

timing error rate information, this is conducted at the entire circuit level.

With online clock skew tuning capability, we can manipulate timing error

rate in a fine-grained manner so that those frequently sensitized paths are

with larger timing slack, and hence reduce the overall timing error rate of

the circuit.

The above motivates us to design a novel online clock skew tuning framework,

as shown in Fig. 5.1, wherein we collect runtime timing error information and use

it to guide our clock skew tuning process to achieve better circuit performance, as

detailed in the following sections.

5.3 Design for Online Clock Skew Tuning

Timing-speculative circuits can detect and correct infrequent timing errors, but

they do not support the collection of timing error information, let alone clock skew

tuning. Consequently, we need to add additional circuitries into the design to

achieve this objective.

5.3.1 Basic Tuning Block

To monitor and manage system timing behavior as shown in Fig. 5.1, the most

aggressive design would be to record the timing errors occurred on each Razor-FF
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Figure 5.1: The proposed online skew tuning framework.

1

2

n

Figure 5.2: Conceptual basic tuning block.

and conduct clock skew tuning individually. Clearly, such design will introduce

unaffordable hardware cost, and complicate the clock skew tuning procedure. A

more practical approach is hence to group adjacent Razor-FFs together to form a

basic tuning block, wherein we collect timing errors occurred in it together and we

insert only one tunable delay buffer for each block to apply skew tuning.

The proposed grouping procedure is a bottom-up approach based on the phys-

ical layout of the synthesized clock tree structure (detailed in Section 5.4). Within

each block, all FFs receive the same clock signal, whose skew is controlled by the
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control unit (see Fig. 5.1). Note that, due to the above, clock skew tuning will only

affect paths between blocks.

Without loss of generality, we assume that the error signal will be set as 1 once

timing error is detected by the corresponding Razor-FF. These error signals are

“ORed” together and connected to a counter (see Fig. 5.2). Since the system has

to recover from timing error whatever how many errors are encountered in a single

cycle, the actual concern during optimization is error cycle rate, rather than timing

error number. Besides, the likelihood for multiple Razor-FFs in a block to have

timing errors simultaneously is quite low. Therefore, our tuning block design can

save area cost with little accuracy loss. The carry-out signal of counter can be used

to indicate whether the counter is full.

5.3.2 Timing Error Collection and Clock Skew Tuning Mecha-

nism

One challenging issue in the proposed framework is how to online collect timing

error information from all the distributed blocks to the system-level control unit.

The most straightforward solution would be to connect the error counter of every

block to the control unit. This strategy, however, incurs unaffordable routing cost

to the system.

To tackle this problem, we propose a serially shifting mechanism and the pro-

posed architecture is depicted in Fig. 5.3. In this mechanism, the distributed error

counters can be reconfigured to work as a shift register by adding some addi-

tional control logic. In other words, the error counter has two operational modes:

counting mode and shifting mode. In counting mode, the number of timing errors

occurred in the corresponding block is accumulated. Whenever an error counter is

full (indicated by the carry out signal), the system-level control unit will receive
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Figure 5.3: Block diagram for timing error collection and clock skew tuning.

a “full” signal from this block1 and then set all the counters into shifting mode

to collect timing errors from all blocks. In shifting mode, the FFs in all counters

are serially linked as a shift register and their values are shifted out to control unit

without disturbing the normal operation of the system.

c1 s1 cn sn

1 n

Figure 5.4: Counter mode during tuning period T .

1Carry out signals from all distributed blocks are “ORed” together and send to the control unit.

To save routing cost, we can “OR” neighboring signals together in a staggered fashion.
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With this mechanism, we are able to collect timing error information in a sam-

pling way during a certain period T (referred as “tuning period” in the following)

as shown in Fig. 5.4. The tuning period T can be divided into several time seg-

ments t1, t2, · · · , tn. Each time segment (e.g., t1) has one subsegment for counting

mode (e.g., tc1) and one subsegment for shifting mode (e.g., ts1). By recording

the number of timing errors in each block during tc1, tc2, · · · , tcn respectively, we

simply estimate the total number of errors of each block during the whole tuning

period T as follows:

ENtotal = (Â
i

ENi) ·T/(Â
i

tci) , (5.1)

wherein ENtotal is total number of errors number during tuning period T , ENi is

the number of timing errors during tci. Note that, with the above equation, timing

error rate in shifting mode is assumed to be the same as that during counting mode.

This is not entirely accurate. However, since the fraction of time for error counters

to operate in shifting mode is usually very small, it leads to negligible accuracy

loss.

At the end of each tuning period T , control unit determines the skew setting

for each block based on the collected timing error information, and sends out the

corresponding control signals to the tunable delay buffers equipped with each basic

tuning blocks, using a similar shifting mechanism. In other words, control signals

are serially shifted into the configuration registers and they are applied in parallel

when ready for applying skew tuning.

At runtime, control unit periodically determines intentional skews to manip-

ulate timing slacks of different blocks using a heuristic approach for each tuning

period T . The online tuning algorithm is detailed in Section 5.5, and it can be

implemented using either hardware or software.
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5.4 Tuning Block Formation

5.4.1 Problem Formulation

Since each tuning block is equipped with only one tunable delay buffer, we would

like to have all the FFs within a block to lie in the same subtree2 from the viewpoint

of clock tree structure, so that we can simply insert the TDB in the root node of

this subtree. The grouping problem studied here is formulated as follows:

Problem: Given

• A circuit with timing speculation and its critical path distribution3;

• The corresponding clock tree T = (N,E) with tree height h, wherein each

node in N = {Ni j : i = 1, · · · ,h; j = 1, · · · ,mi} represents a buffer (i 6= h) or

FF (i = h), mi is node number in tree level i, and E is the set of directed arcs

representing precedence relationship;

• A pre-defined parameter b to constrain the total number of blocks;

to determine a grouping plan with maximum system controllability satisfying nb/n f <

b, wherein nb is the total number of blocks after grouping and n f is total FF count.

Here, system controllability is defined as (1� Pinside/P), wherein Pinside repre-

sents the number of critical paths inside blocks and P is the total number of critical

paths in the whole circuit. Larger controllability means that more critical paths are

outside of blocks after grouping, whose delays can be affected by clock skew tun-

ing. How to obtain a grouping outcome with reasonable balance between system

controllability and hardware cost should be explored.
2The concept “subtree” used in the context of clock tree means the same concept with “block”,

which will not be explicitly explained in the following.
3The receiving ends of critical paths are implemented as Razor-FFs.
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5.4.2 Grouping Algorithm

The proposed grouping procedure is a bottom-up approach based on the physical

layout of the synthesized clock tree structure. To explain our grouping algorithm

better, we use a simple example shown in Fig. 5.6 to present the key idea. In

Fig. 5.6, the non-leaf nodes (represented as circles) are buffers in clock tree, while

leaf nodes (represented as squares) are FFs. The grouping algorithm flow is de-

tailed in Fig. 5.5.

# Ti j: the subtree using Ni j as root

# T: the set of subtrees

# B: the resulting set of blocks

1. Initialize p = 0

2. Repeat
3. p++

4. Initialize all leaf nodes as Th j

5. T {Th j : j = 1, · · · ,mh}
6. For tree level iteration i from (h�1) to 1

7. For node index iteration j from 1 to mi

8. If all the children subtrees of Ti j 2 T AND
critical path number(Ti j)< p

9. T Include(Ti j)

10. Else B Include(all children subtrees of Ti j)

11. Exclude all the B-type and C-type blocks from B
12. Until nb/n f < b

Figure 5.5: The proposed grouping algorithm.

First of all, we initialize all the leaf nodes as subtrees (Line 4⇠5), and then

try to merge them together to form larger subtrees (Line 6⇠10). The decision on

whether to merge subtrees or not depends on the critical path count in the merged

subtree. Assuming we only perform merging when the merged subtree has no
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critical path inside, this grouping scheme will finally exclude all the critical paths

out of blocks, and hence clock skew tuning is able to take effects to all the critical

paths and have the strongest controllability in manipulating timing slacks.

00

10 11

20 21 22 23

30 31 32 33 34 35 36 37

(a) B-type and C-type blocks included.

00

10 11

20 21 22 23

30 31 32 33 34 35 36 37

(b) B-type and C-type blocks excluded.

Figure 5.6: Tuning block formation: an example.
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Such an aggressive grouping scheme may lead to a large number of blocks and

hence introduce unaffordable hardware cost. To trade off system controllability

and hardware cost, we allow a certain number (specified as parameter p) of critical

paths inside subtrees. Consequently, the criterion used to decide merging becomes

whether the number of critical paths within a subtree is less than a parameter p

(see Line 8): if the critical path count in the new subtree is less than p, we merge

its children subtrees together; otherwise, we have to treat its children subtrees as

different blocks. By doing so, in the case with p = 1, we obtain subtrees without

any critical path inside them as shown in Fig. 5.6 (a), where the subtrees are out-

lined by the dash line rectangles. We can see that the two ends of any critical path

are separately included in different subtrees.

Block Type
FF Type Equipment

BR-type FF R-type FF B-type FF C-type FF Tuning Mechanism Observing Mechanism

BR-type Block
p

� � � Yes Yes

R-type Block ⇥
p

� � No Yes

B-type Block ⇥ ⇥
p

� No No

C-type Block ⇥ ⇥ ⇥
p

No No
p

: contained; ⇥: not contained;�: do not care.

Table 5.1: Categorization for tuning block formation.

However, it is not necessary to collect timing errors and add tunable delay

buffer for every block shown in Fig. 5.6 (a). For the ease of discussion, let us first

define four types of FFs according to their relationships to critical paths: (i) BR-

type FFs, serving as both beginner and receiver of critical path; (ii) R-type FFs,

serving as only receiver of critical path; (iii) B-type FFs, serving as only beginner

of critical path; (iv) C-type FFs, common FFs, serving as neither beginner nor

receiver of critical path. Based on this, we define four types of subtrees/blocks as

listed in Table 5.1 according to the FF types these blocks contain. For example,

if a certain block contains no BR-type FF but R-type FF inside, it is defined as
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R-type block no matter whether it has B-type or C-type FF.

Based on this categorization, we have the following observation: for those

FFs that are not included in BR-type blocks, their optimal skews can be easily

determined offline at design stage. For example, as shown in Fig. 5.6 (a), since

N33 is only an R-type FF, tuning its skew backwardly to the greatest extent within

constrained maximum skew (defined in Section 4.2) must be beneficial for itself

and at the same time does not worsen its successor N34. As for B-type FF N35,

tuning forwardly within maximum skew constraint can benefit its successor N36

but never worsen itself. Therefore, for FFs in R-type/B-type blocks, there is no

need to tune their skews at runtime since their optimal skew setting can be obtained

at design stage. C-type blocks are not of concern and hence are ignored for skew

tuning.

With the above, we can conclude that only BR-type block needs to be equipped

with both timing error collection and tuning capabilities, R-type blocks requires to

have timing error collection capability only, while the other two types do not need

to be observed or tuned at runtime. Therefore, we can get the final set of tuning

blocks as shown in Fig. 5.6 (b) (again, for the case with p = 1).

By incrementing parameter p, we can obtain grouping outcome with less blocks

until satisfying the pre-defined requirement nb/n f < b. To get proper grouping

faster, a binary search method can be used to set the parameter p, instead of incre-

menting its value by one each time.

5.5 Clock Skew Tuning Algorithms

5.5.1 Tuning Algorithm for Tackling Process Variation

Our proposed clock skew tuning technique for tackling process variation is com-

prised of two phases: (i) offline phase (see Fig. 5.7) and (ii) online phase (see



CHAPTER 5. ONLINE CLOCK SKEW TUNING 110

Fig. 5.8). By taking online timing error information into consideration, online

clock skew tuning can optimize the circuit’s timing performance based on the vari-

ation characteristics of a specific chip and the actual path sensitization of applica-

tions.

5.5.1.1 Tunable Skew Setting

Before introducing our algorithms in detail, let us discuss how to setup the skew

tuning step for each block first. To guarantee that there exist no silent errors (i.e.,

timing errors occurring on those FFs that are not protected with Razor-like detec-

tors), we constrain the maximum tunable skew values of TDBs to ensure enough

timing margin is kept for non-Razor FFs. If the timing threshold g (e.g., g = 80%

of clock cycle period) is used to set up Razor-FFs, the maximum tunable skew is

Smax = [(1� g) ·Tc�d]/2 , (5.2)

wherein Tc is the operational clock cycle period and d is a safety margin. Note

that, in reality, it is very difficult, if not impossible, to implement a large number

of tunable delay values into clock tree. Consequelty, in this work only five tuning

skew levels4 as shown in Table 5.2 are used in our implementation. Initially, the

skew levels of all the TDBs are set to be 3.

Skew Level 1 2 3 4 5

Skew Value �Smax �Smax/2 0 Smax/2 Smax

Table 5.2: Tunable skew set.

5.5.1.2 Proposed Algorithm

As discussed in Section 5.4, for all those FFs that are not included in BR-type

blocks after grouping procedure, their optimal skew tuning can be simply deter-
4Tuning forwardly/backwardly means decreasing/increasing the skew level.
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# C: the set of BR-type blocks, C⇢ B
# Ci: BR-type block, Ci 2 C
# n f : total FF count

# Offline Phase
1. For the iteration i from 1 to n f

2. If FFi /2Cj, for 8Cj

3. If FFi is B-type FF

4. Set skew level of FFi = 1

5. Else if FFi is R-type FF

6. Set skew level of FFi = 5

Figure 5.7: The proposed algorithm in offline phase.

mined at design stage, as shown in Fig 5.7.

The most important part of proposed tuning algorithm is online phase (see

Fig. 5.8), a heuristic approach targeting the FFs in BR-type blocks beyond the

above offline phase.

It is, however, rather difficult to determine the skew setting of BR-type blocks,

because any action taken to a block is possible to be a double-edged sword: either

worsen the block itself to benefit the blocks as the receivers of critical paths starting

from this block or improve itself to worsen the receivers. Consequently, we need

to determine it at online phase (see Fig. 5.8). To tackle the above problem, we first

define the benefit for block k as below,

bene f it(k) = Â
i2Uk

(error(i)� error(i)new) , (5.3)

wherein error(i) is error rate of block i, and Uk is the block set including block k

itself and all the blocks as the receivers of critical paths starting from block k. If

bene f it(k) � 0, the tuning action to block k in last tuning period is considered to

be beneficial, otherwise it is not beneficial.
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# C: the set of BR-type blocks, C⇢ B
# Ci: BR-type block, Ci 2 C
# Online Phase
1. Initialize Ci! skew = 3, for 8Ci

2. Initialize error(Ci) after 1st tuning period T1, for 8Ci

3. For 8Ci : error(Ci) = 0
4. Set Ci! tunable = true
5. Ci! skew��
6. Repeat for each tuning period Tk1 (k1 = 2,3, · · · )
7. For 8Ci : error(Ci) = 0
8. If Ci! tunable = true
9. If bene f it(Ci)� 0
10. If Ci! skew 6= 1
11. Ci! skew��
12. Else set Ci! tunable = f alse
13. Else Ci! skew++ // cancel last action
14. Set Ci! tunable = f alse
15. Until Ci! tunable = f alse, for 8Ci : error(Ci) = 0
16. Set Ci! tunable = true, for 8Ci : Ci! skew 6= 5
17. Select Ci with largest error(Ci) AND Ci! tunable = true
18. Ci! skew++

19. Cold  Ci

20. Repeat for each tuning period Tk2 (k2 = k1 +1, . . . )
21. If bene f it(Cold)< 0
22. Cold ! skew�� // cancel last action
23. Cold ! tunable = f alse
24. Select Ci with largest error(Ci) AND

Ci! tunable = true
25. Ci! skew++

26. Cold  Ci

27. Until Ci! tunable = f alse, for 8Ci

Figure 5.8: The proposed algorithm in online phase.
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First of all, we consider those blocks that do not have timing errors during

the last tuning period (Lines 1⇠15). Since these blocks do not encounter errors,

it is very likely that they have extra timing budgets. Therefore, we tune their

skews forwardly until their skews have been the lowest level “1” or the tuning is

judged to be not beneficial any longer. If bene f it(k) � 0 (Line 9), we consider

it to be beneficial and keep the applied action to block k in last tuning period;

otherwise, the applied action is canceled (Line 13) and the block is marked as

“untunable” (Line 14). The above tuning process decreases the timing budgets of

blocks without errors, while relaxing the timing stress of blocks with errors.

After that, our focus is changed to those blocks with errors (Line 16⇠27).

For each tuning period, we first evaluate whether the applied action in last tuning

period is beneficial or not (Line 21). If not, we will cancel this action (Line 22) and

mark this block as “untunable” (Line 23); otherwise, we keep the action, select the

“tunable” block with largest error rate (Line 24) and tune its skew backwardly by

one level (Line 25). This procedure is repeated periodically.

The proposed online tuning algorithm can be seen as a greedy heuristic, which

tries to handle the block with the highest error rate each time. The mechanism to

cancel those tuning actions that do not bring any benefits can guarantee to reduce

the timing error rates of the overall system step by step. Note that, this skew tuning

process tries to minimize timing error rate with a given clock period. We resort

to binary search to sweep operational clock period and find a better solution. For

each clock period, the online phase of tuning algorithm is repeated.

5.5.2 Tuning Algorithm for Mitigating Aging Effects

The above tuning algorithm is able to tackle static variation effects (e.g., process

variation) at time0 (fresh after manufacturing). However, because the online phase

of tuning algorithm (see Fig. 5.8) would terminate when all the blocks are marked
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as “untunable” in a certain number of tuning periods, unfortunately it cannot han-

dle the variation effects that do not exisit originally at time0 but accumulate after

the termination of tuning algorithm in the long term, such as aging effects caused

by Negative Bias Temperature Instability (NBTI) [91, 92]. Without loss of gen-

erality, we take NBTI-induced delay degradation into consideration and further

develop the tuning algorithm to mitigate it. Note that, the proposed tuning algo-

rithm can actually be utilized to tackle any other long-term variations.

5.5.2.1 NBTI Effects

NBTI, occurring with PMOS devices stressed under nagative gate voltage and re-

sulting in the increase of PMOS threshold voltage, has emerged as a major threat

to system reliability with technology scaling, since it can lead to delay degradation

as high as 10% within three years under 90nm technology [91].

There have been a large number of research works (e.g., [91, 92]) trying to

tackle NBTI problems. For example, Vaidyanathan et al. [92] modeled the im-

pact of intrinsic NBTI variability on pipeline delay and proposed to conduct clock

skew tuning (also known as dynamic cycle time stealing) to handle intrinsic NBTI

variability. As indicated in [92], by inserting TDBs and tuning their skews af-

ter experiencing ten-year NBTI degradation, timing guard band to tolerate NBTI

effects can be reduced by 30%. However, because the aim of [92] is simply to

motivate the benefit of skew tuning for such a problem, in fact there is no skew

tuning algorithm provided in [92].

5.5.2.2 Proposed Algorithm

An intuitive method to tackle NBTI problem is to repeatedly execute the tuning

algorithm discussed in Section 5.5.1, triggered by the events that timing error rate

of a tuning period exceeds a threshold due to delay increase of critical paths. Such
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a simple scheme, however, requires many tuning periods for tuning algorithm to

converge, leading to much more penalties for correcting errors that occur during

the tuning process before convergence. Instead, a novel algorithm that tunes the

skews is designed to mitigate NBTI effects, as detailed in the following.

Frequency scaling 

down

Delay diversity tackled 

by skew tuning

Figure 5.9: Delay degradation of critical paths.

As demonstrated in Fig. 5.9, the critical paths suffering from NBTI effects

have delay degradation represented by the blue bars. Clearly, these paths may

experience different aging environments (e.g., temperature, voltage, duty cycle),

causing diverse delay degradations. Such diversity calls for skew tuning technique

to re-allocate timing slacks of critical paths.

Besides, as discussed earlier the skew setting of TDBs are not arbitrary but

actually constrained to some discrete values with a maximum tunable skew, which

confines the flexibility of skew tuning to some extent. Suppose delay degradation

of critical paths is so significant that it exceeds the maximum tunable range, skew

tuning may not work at all. Consequently, to mitigate NBTI effects our skew
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tuning algorithm should explicitly take clock frequency scaling into account. As

shown in Fig. 5.9, frequency scaling can relax timing to a point with common

delay degradation, and then skew tuning is performed based on new operational

frequency to tackle the diversity of delay degradation.

Due to the above, we develop our tuning algorithm as described in Fig. 5.10.

Firstly, we initialize the skews using the output generated by online phase algo-

rithm described in Fig. 5.8. Secondly, we scale down clock frequency (see Line

2⇠4) step by step and monitor the change of error rate via the propose error col-

lection mechanism. If error rate with lower frequncy is decreased, we keep current

frequency; otherwise, we terminate frequency scaling and start to perform skew

tuning. Next, we consider those blocks without timing errors (see Line 5⇠16).

Their skews are tuned forwardly one by one. Error rates of the blocks are observed

to calculate bene f it(Ci), the criteria determining last action should be cancelled or

not. Finally, different from online phase algorithm, we handle the blocks with in-

creasing error rate (see Line 17⇠28). This is because, since skew tuning in last

tuning period has effectively balance timing slacks of critical paths and the delay

degradation is simply an additional delay, skew tuning in current tuning period, in

fact, needs to tackle the newly-emerged errors only. Consequently, we calculate

the increase of error rate of each block:

Derror(Ci) = error(Ci)
new� error(Ci) , (5.4)

select the block with largest change of error rate, and tune its skew backwardly. If

this action is observed to be not beneficial in next tuning period, we would cancel

it. By doing so, tuning algorithm requires much less tuning periods to converge

when compared to online phase algorithm.
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# C: the set of BR-type blocks, C⇢ B
# Ci: BR-type block, Ci 2 C
# f : operational clock frequency
# D f : decrease of clock frequency in each scaling
1. Initialize Ci! skew, for 8Ci

# Frequency Scaling
2. Repeat for each tuning period Tk3 (k3 = k2 +1, . . . )
3. Scaling down frequency f new = f �D f
4. Until error(C)new > error(C)

# Skew Tuning
5. Set Ci! tunable = true, for 8Ci : Ci! skew 6= 1
6. Select Ci with error(Ci) = 0 AND Ci! tunable = true
7. Ci! skew��
8. Cold  Ci
9. Repeat for each tuning period Tk4 (k4 = k3 +1, . . . )
10. If bene f it(Cold)< 0
11. Cold ! skew++ // cancel last action
12. Cold ! tunable = f alse
13. Select Ci with error(Ci) = 0 AND

Ci! tunable = true
14. Ci! skew��
15. Cold  Ci
16. Until Ci! tunable = f alse, for 8Ci
17. Set Ci! tunable = true, for 8Ci : Ci! skew 6= 5
18. Select Ci with largest Derror(Ci) AND Ci! tunable = true
19. Ci! skew++
20. Cold  Ci
21. Repeat for each tuning period Tk5 (k5 = k4 +1, . . . )
22. If bene f it(Cold)< 0
23. Cold ! skew�� // cancel last action
24. Cold ! tunable = f alse
25. Select Ci with largest Derror(Ci) AND

Ci! tunable = true
26. Ci! skew++
27. Cold  Ci
28. Until Ci! tunable = f alse, for 8Ci

Figure 5.10: The proposed skew tuning algorithm to tackle aging effects.
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Binary Search on Clock 
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Offline Phase Algorithm

Online Phase Algorithm

Frequency Scaling Down

Tackling Process 

Variation

Binary search 

has converged

Not converged yet

Clock Frequency

Skew Setting

Skew Setting

Aging-Aware Algorithm

Tackling Aging 

Effects
Clock Frequency

Skew Setting

NBTI Aging Effects

Figure 5.11: The overall flow of skew tuning algorithm.

5.5.3 Overall Flow

The overall flow of our proposed skew tuning algorithm is depicted in Fig. 5.11.

First of all, we perform binary search on the operational clock frequency. Then,

for each selected frequency, we repeatedly use offline phase and online phase algo-

rithms to optimize skew setting, until binary search has converged. After that, due

to NBTI aging effects, delay degradation fails the original skew setting and leads

to the increase of error rate. To tackle this problem, we scale down clock frequency

in a heuristic manner and then perform the proposed aging-aware algorithm.
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5.6 Experimental Results

5.6.1 Experimental Setup

To evaluate the effectiveness of the proposed online skew tuning methodology, we

conduct experiments on several large ISCAS’89 and IWLS’05 benchmarks. We

synthesize these circuits, generate clock tree structures, and obtain timing informa-

tion using Synopsys EDA tools. To take process variation effect into consideration,

we perform Monte Carlo simulation to inject gate-level delay variation following

Gaussian distribution with standard deviation equal to 5%. NBTI-induced delay

degradation is injected according to [91]. We consider 10 aging periods, each of

which has 3⇥107 seconds.

We set the top 5% longest paths as critical paths and treat their receivers as

Razor-FFs, and we assume with the help of error recovery mechanism, we can roll

back the system once timing error is detected and we can lower system frequency

for a short while to re-compute the result in the failure cycle. Similar with [12],

we can trade off timing error rate with clock cycle period to achieve a higher

throughput according to the following equation,

min
Tc

[(1+ error(Tc) · penalty) ·Tc] , (5.5)

wherein Tc is clock cycle period, error(Tc) is the percentage of cycles to have

timing errors, and penalty is the penalty due to error cycle occurring. This penalty

includes both the cycles of wasted execution that must be discarded when an error

occurs and the time spent on checkpointing and re-execution. According to [12],

we assume the penalty to be 10 cycles.

We assume there are five discrete tuning levels and we conduct simulation with

random inputs in our experiments. The tuning period for the proposed algorithm

is set as 100,000 cycles. Note that, longer period can be used in practical applica-

tions. The experiments are conducted on a 2.8GHz PC with 4GB RAM.
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Bench. TG# TFF# RB# BRB# Cost(%) Runtime(s)

s38584 21021 1426 4 15 2.62 0.010

s38417 23949 1636 5 22 3.30 0.026

des perf 155746 9105 0 39 0.83 2.458

ethernet 164912 10752 17 36 0.76 9.070

TG#: total gate count; TFF#: total FF count;

RB#: R-type block count; BRB#: BR-type block count;

Cost: hardware cost for equipping R-type and BR-type blocks.

Table 5.3: Experimental results on hardware cost.

To provide a reasonable baseline reference, we utilize the Useful Skew Tech-

nique of IC Compiler to optimize the skews during the CAD process. The mini-

mum clock cycle period reported by IC Compiler considering non-Razor case is

denoted as CSOnonrazor. The optimal clock cycle period with reasonable error cy-

cle rate, selected according to Equation 5.5, is denoted as CSObaseline and used as

the baseline solution. Note that, any design-phase clock skew scheduling algo-

rithm can be combined with our post-silicon skew tuning framework as an initial

solution. The offline phase of our proposed skew tuning algorithm in Section 5.5.1

is denoted as CSOo f f line and the online phase is denoted as CSOonline. The aging-

aware skew tuning algorithm proposed in Section 5.5.2 is denoted as CSOaging.

5.6.2 Results and Discussion

5.6.2.1 Results on grouping algorithm

In Table 5.3, we present the result for our grouping algorithm. The parameter

b used to constrain the total number of blocks (see Section 5.4) is set to be 2%

for small scale benchmarks (s38584 and s38417), and 0.5% for large benchmarks

(ethernet and des perf ). Assuming skew tuning algorithm is implemented with

software, the proposed architecture (see Fig. 5.3) is implemented and the addi-
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Bench.
CSOnonrazor CSObaseline CSOo f f line CSOonline

CP(ns) T h.(MHz) CP(ns)Err.(%) T h.(MHz)D1(%) CP(ns)Err.(%) T h.(MHz)D2(%) CP(ns)Err.(%) T h.(MHz)D3(%)D4(%)

s38584 8.24 121.36 7.86 0.042 126.69 4.40 7.72 0.047 128.93 1.76 7.31 0.081 135.70 5.25 7.11

s38417 7.93 126.10 7.59 0.097 130.49 3.48 7.47 0.122 132.26 1.36 7.17 0.131 137.67 4.09 5.50

des perf 15.52 64.43 14.38 0.064 69.10 7.24 14.2 0.047 70.09 1.44 13.25 0.062 75.01 7.01 8.55

ethernet 13.52 73.96 12.64 0.093 78.38 5.98 12.34 0.088 80.33 2.48 11.45 0.106 86.42 7.58 10.25

CP: clock period; Err.: error cycle rate under selected clock period; T h.: throughput;

D1: throughput difference ratio between CSObaseline and CSOnonrazor; D2: throughput difference ratio between CSOo f f line and CSObaseline;

D3: throughput difference ratio between CSOonline and CSOo f f line; D4: throughput difference ratio between CSOonline and CSObaseline.

Table 5.4: Experimental results on tackling process variation.

tional hardware cost to enable online tuning is presented in Column 6 of Table 5.3.

As can be seen, the costs are within 4% for small benchmark circuits and within

1% for larger ones, and they are strongly related to the number of basic tuning

blocks in the circuit. The runtime to finish grouping procedure is illustrated in

Column 7.

5.6.2.2 Results on tackling process variation

Firstly, we consider one particular instance of the benchmark circuits (i.e., under

a specific variation pattern). In Table 5.4, CP is the optimal clock period selected

according to Equation 5.5. Err. is the corresponding error cycle rate under se-

lected clock period CP, and T h. is the corresponding throughput. We can see

that, for s38584, the baseline CSObaseline can obtain 4.40% throughput improve-

ment compared with CSOnonrazor, a non-Razor solution optimized by IC Compiler.

This improvement reflects the efficacy of Razor technique, which is not the main

contribution of this work. With error information collection and clock skew tun-

ing capabilities, offline phase CSOo f f line has 1.76% improvement compared with

CSObaseline, and online phase CSOonline, again, can achieve extra 5.25% improve-

ment compared with CSOo f f line. Similarly, the results of other benchmark circuits
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Figure 5.12: Error cycle rates with respect to clock cycle period and tuning period

number.

are also listed in Table 5.4, and we can see that relatively larger improvement can

be achieved with larger benchmark circuits.

To have a closer look into the clock tuning process, we present experimental

results in Fig. 5.12, using benchmark circuits s38584 and ethernet as the repre-

sentative of small and relatively larger benchmarks, respectively. Fig. 5.12 (a)

and Fig. 5.12 (c) show that the three curves in each figure have similar trend

with respect to increasing cycle period, while the lowest error cycle rate is al-

ways achieved by CSOonline. Using the skew setting of CSOo f f line as initial state,

CSOonline tunes the skews periodically (see Section 5.5 for details). The error cycle
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Figure 5.13: Variation effects.

rates of first 10 tuning periods under the optimal clock period selected by CSOonline

are illustrated in Fig. 5.12 (b) and Fig. 5.12 (d) to present the change of error cycle

rate during online tuning. One notable finding from these figures is that proposed

skew tuning can achieve similar decreasing effect of error cycle rate with that of

clock period increasing. In other words, by tuning skews we can achieve the error

cycle rate as low as the case with laxer clock period.

We conduct Monte Carlo simulation to produce 100 sample circuits5 with dif-

ferent variation patterns. Fig. 5.13 indicates that the mean of selected clock pe-

riod after applying CSOonline is much smaller than that of CSObaseline, thanks to
5Due to computational complexity in our experiments, we cannot afford to have more Monte

Carlo simulations.
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Figure 5.14: Error cycle rate with respect to aging period number.

clock skew tuning. More importantly, with the same process variation distribution,

the clock period distribution of CSOonline is with much smaller standard deviation

when compared to CSObaseline. This is expected, because, unlike offline solutions

that can at best optimize the circuit according to a given process variation model,

online clock skew tuning takes advantage of the knowledge on each individual

chip by timing error collection and facilitates to obtain an optimized chip-specific

skew assignment. The corresponding mean clock period and standard deviation of

each case are indicated in Fig. 5.13 in the form of (µ, s).

5.6.2.3 Results on mitigating aging effects

We take the largest benchmark ethernet as an example to demonstrate how NBTI

affects the performance of timing-speculative circuits. Given the skew setting that
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Figure 5.15: Throughputs with respect to aging period number.

is generated by the online phase in Section 5.5.1 and then fixed without any opti-

mization technique during all the aging periods, the error cycle rate is significantly

increased with respect to aging period number, as shown in Fig. 5.14. We can see

that, after 10 aging periods the error rate is as high as 10%, motivating this work

to mitigate aging effects.

Next, we show the throughput degradation of ethernet in Fig. 5.15. The green

curve without optimization technique is presented as a reference of throughput

degradation with respect to aging period number. CSObaseline is repeatedly scaling

down frequency for each aging period, while CSOonline is repeatedly conducting

online phase algorithm without frequency scaling. As can be seen, all the three

techniques can achieve significant throughput improvement, and CSOaging outper-

forms the others. When comparing CSObaseline and CSOonline, it is interesting to
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Bench.
CSObaseline CSOonline CSOaging

T h.(MHz) T h.(MHz) D1(%) T h.(MHz) D2(%) D3(%)

s38584 124.15 126.51 1.90 128.49 3.50 1.57

s38417 130.02 118.41 -8.93 131.14 0.87 10.75

des perf 62.96 59.16 -6.03 67.86 7.78 14.70

ethernet 81.64 82.29 0.80 84.28 3.24 2.42

AVERAGE -3.06 3.85 7.36

D1: throughput difference ratio between CSSonline and CSSbaseline;

D2: throughput difference ratio between CSSaging and CSSbaseline;

D3: throughput difference ratio between CSSaging and CSSonline.

Table 5.5: Experimental results on mitigating aging effects.

note that CSOonline is better than CSObaseline in the case of smaller aging period

number and worse in the case of larger aging period number. This observation jus-

tifies our argument that skew tuning can tackle the diversity of delay degradation

while frequency scaling can tackle the common delay degradation. When delay

degradation exceeds the maximum tunable range of TDBs, skew tuning would not

work.

Finally, we show the average throughput of four benchmarks within 10 aging

periods in Table 5.5. As can be seen, when compared to CSObaseline, CSOonline

has even worse throughput, again justifying our argument earlier. CSOaging can

achieve 3.85% and 7.36% throughput improvement when compared to CSObaseline

and CSOonline, respectively.

5.7 Conclusion

Clock skew optimization is a widely-used technique to improve circuit timing per-

formance, in which we assign intentional clock arrival times to FFs in synchro-

nized sequential circuits. Traditionally, a large timing guard band needs to be

reserved due to various variation effects. In this work, with the support of elab-
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orately designed hardware architecture, we propose an online clock skew tuning

framework for timing-speculative circuits. By observing the occurrence of timing

errors at runtime and tuning clock skews accordingly, the proposed technique is

able to achieve much better timing performance when compared to existing clock

skew optimization solutions, as demonstrated in our experimental results.

2 End of chapter.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

With the continuous downscaling of transistor feature size, the ever-increasing tim-

ing uncertainties caused by various variation effects often manifest themselves as

infrequent timing errors on speed-paths. Timing speculation, a better-than-worst-

case design methodology, serves as one of the most promising solutions to mit-

igate the variation effects in nanometer technologies and has attracted a signifi-

cant amount of research effort. However, as timing speculation is not orthogonal

to conventional worst-case-oriented design techniques, the “timing wall” built by

conventional techniques would significantly limit the effectiveness of timing spec-

ulation to a critical point beyond which a massive number of timing errors will

occur, leading to considerable performance degradation and/or energy loss.

As a consequence, this thesis first investigates the premises and prospects of

timing speculation by studying the minimum and maximum potential benefits that

are achievable by conducting timing speculation. This work specifically answers

the question posed by the conflict between conventional techniques and timing

speculation, and is able to identify which methodology is preferable for a given

128
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circuit netlist in terms of energy efficiency. As timing error correction incurs

non-trivial performance/energy overhead, it is very essential to reshape the delay

distribution of critical paths in timing-speculative circuits to reduce timing error

rates. This thesis also investigates multiple design and optimization problems, in-

cluding post-placement voltage island design, offline clock skew scheduling and

online clock skew tuning, in order to realize a practical implementation of timing-

speculative circuit.

After conducting the above research work, we explore the potential of timing

speculation in performance improvement and energy reduction by trading off relia-

bility against performance and power. As reliability problem is becoming increas-

ingly critical in nanometer technologies, this thesis research provides a promising

alternative for the development of future electronic industry.

6.2 Future Work

To realize practical timing speculation, there are still several important topics that

should be explored in the future.

First, one of the fundamental problems for timing speculation is how to syn-

thesize timing-speculative circuits from the ground up without significant impact

on the original design flow. Particularly, as the delay distribution of a circuit af-

ter optimizations is changed dramatically, the originally non-suspicious flip-flops

can become suspicious ones that need to be replaced with timing speculators.

This problem requires iteratively re-synthesizing the timing-speculative circuits

and may lead to a significant increase of design time.

Second, with the ever-increasing process variations, especially in the context of

dark silicon that poses much severer variation effects, a larger speculation window

is necessary to assure the functionalities of current timing error detectors. How-

ever, larger speculation window dramatically increases the hold time constraint
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and also the associated overheads. How to design more effective and efficient tim-

ing speculation techniques is therefore an interesting and important problem in the

near future.

Last but not least, timing error correction requires additional hardware that are

very likely to be complex and application-specific. As the system has to roll back

the system to recover from timing errors in pipelined structures or mask timing

errors in general non-pipelined circuits, effective and efficient timing error correc-

tion mechanisms should also be investigated for general-purpose applications.

2 End of chapter.
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