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Single-microphone speech separation requires to reconstruct two or more sources

from only one speech mixture. It can serve as the front-end for speech applications

that demand for robustness against interfering signals, such as information extrac-

tion from sound streams of multimedia. As an extreme case of under-determined

source separation problem, a unique solution for source reconstruction is unlikely

to be achieved, but the most probable source observations can be obtained through

statistical inference given their prior information in a statistical model-based setting.

The performance of statistical model-based methods has been progressively im-

proved by the use of graphical models to organize the prior information. In this thesis,

the performance of the exact and the approximated statistical inference algorithms on

single-microphone speech separation with factorial Hidden Markov models (HMM)

are evaluated in terms of speech quality and computational complexity. The impor-

tant role of state transitions in the source models is also investigated.

Model mis-specification is a major problem in model-based speech separation.

These mis-specifications are caused by various factors, including limited amount of

training data and finite number of acoustic states. Compared with generative ap-
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proach such as factorial HMM, direct models like conditional random fields (CRF)

are considered to be more robust to model mis-specification due to the inherent dis-

crimination ability. In this thesis, the application of conditional random field (CRF)

for single-microphone speech separation is investigated. The posterior probabilities

of acoustic states given the mixture, which are essential to minimum mean-square

error estimation of the sources, are modeled in a maximum entropy probability dis-

tribution. The performance of CRF formulations is further improved with a large-

margin approach of parameter estimation.

Experimental results confirm that CRF formulations achieve the improved objec-

tive quality measures and automatic speech recognition accuracy of the reconstructed

sources, especially when the sources are competing with similar signal-to-signal ra-

tio. Even with a simplified CRF formulation, the performance is still comparable to

factorial HMM.
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摘要 

單麥克風語音分離的目標是從一個語音混合 (speech mixture) 中重建

兩個或更多的語音源 (source)。這技術可作為語音應用的前置處理，例如

從多媒體音軌中抽取資訊。雖然作為欠定 (under-determined) 語音分離的

極端例子，基本上沒可能確切地還原語音源，但透過語音源的統計模型，

仍可重構出最有可能的語音源。 

語音分離的性能藉著圖模式 (graphical modeling) 的應用而得以提升。

本論文比較了因子隱馬爾可夫模型(factorial Hidden Markov Model (HMM) )

的精確算法和近似算法的複雜度和對語音分離性能的影響，並且調查語音

源統計模型中的狀態轉移機率 (state transition probabilities) 對語音分離性能

的影響。 

統計模型錯配在語音分離中時有發生。有限的訓練資料和使用有限

的狀態空間 (acoustic states) 對語音源建模都會導致錯配。本論文研究了使

用條件隨機域 (conditional random field (CRF) ) 來對語音源狀態空間的後驗

概率直接建模。計算語音源的最小均方差估計  (minimum mean-square error) 

時，這後驗概率是必須的。條件隨機域是一種判別模型 (discriminative 

model)，比生成模型 (generative model) 例如隱馬爾可夫模型對模型錯配有

更高的耐受性。使用大間隔 (large-margin) 參數估計更進一步提升語音分

離的效能。 

實驗結果證明當不同語音源的功率比 (signal-to-signal ratio) 相近時，

使用條件隨機域作語音分離可以獲得更好的語音音質客觀測量參數 

(objective quality measures) 和語音識別結果。即使使用簡化了的條件隨機

域，結果仍和使用因子隱馬爾可夫模型相當。 
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Chapter 1

Introduction

1.1 Single-microphone speech separation

Speech is a fundamental and an important form of daily communication for human

beings. Speech is produced by human articulatory system and propagates across an

open space via vibration of air molecules. The acoustic vibration may be picked

up by human auditory system, or by electronic devices such as microphones which

convert the acoustic signals into electrical signals, referred to as speech signals.

It is unavoidable to deal with corrupted speech signals. For example, in mobile

voice communication, the telephone handset may pick up additional audio sources

from background, such as babble sound of a crowd, engine sound of a vehicle. The

interfering sources may also be from other speakers. If the interfering sources are

perceptually undesirable, they are referred to as noise [1].

The interfering sources usually corrupt the target speech source by superposition.

Computational processes can be applied to improve the listening experience on the

corrupted speech signals. Listening experience accounts for the comfort of listen-

ing and the understanding of the spoken content, which are measured in terms of

perceptual speech quality and speech intelligibility respectively. Single-microphone

speech separation is one of the computational processes, aiming at reconstructing all

the speech sources from a single corrupted speech signal with multiple sources.

Single-microphone speech separation is a challenging problem. It operates un-

der highly non-stationary interfering condition. It also tries to reconstruct at least two
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Chapter 1. Introduction

sources with only one corrupted signal, which is an extreme case of under-determined

source separation. Although unique source reconstruction is unlikely to be achieved,

different approaches have been proposed to improve perceptual speech quality and

speech intelligibility of the reconstructed sources. A recent development is the in-

corporation of machine learning techniques to the problem, such as the application

of hidden Markov models (HMM) in statistical model-based methods [2][3] and the

pattern classification approach in computational auditory scene analysis (CASA) [4].

1.2 Motivations

The motivation of this work comes from the variety of applications of speech sepa-

ration. A speech separation algorithm can serve as the front-end for speech applica-

tions that demand for robustness against interfering signals, e.g., speech recognition

on mobile hand-held devices, audio information retrieval from live recordings. Ex-

periments show that the performance of a conventional automatic speech recognition

system degrades significantly when there is an interfering source [5]. A speech sep-

aration algorithm helps to reconstruct the acoustic features of the target signal, and

serves as a preliminary step for robust speech processing such as pitch tracking in

noise [6] and periodicity enhancement [7]. The recent advances in graphical models

[8] lead to significant improvement on the state-of-the-art speech separation algo-

rithms. It is shown that factorial hidden Markov model (HMM) with loopy belief

propagation are able to produce “super-human” performance [9][10][11], i.e., fewer

recognition errors than human subjects in the Speech Separation Challenge (SSC)

[5][12]. The task is to compare the speech separation and speech recognition perfor-

mance of computer algorithms and human subjects.

Speech separation is also useful in cochlear implant systems for improving the

quality of listening of hearing-impaired people [13][14]. A person with normal hear-

ing is good at extracting information from a specific speech source under a noisy

environment with multiple sources, but it is not the case for hearing-impaired people.

Incorporating single-microphone noise reduction algorithms into cochlear implants

helps to improve the target speech intelligibility [13][14]. It is also becoming more

2
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practical to implement sophisticated machine learning algorithms into speech pro-

cessors, due to their improvement on the computational power and energy efficiency.

The cochlear implant users can build statistical models for their friends or relatives,

and select the corresponding models to perform statistical model-based speech sepa-

ration for the improved hearing condition.

Single-microphone speech separation is a hard problem for computers, but hu-

man performance is surprisingly good. It is a good application for which powerful

machine learning techniques are required. The recent advances of machine learn-

ing techniques have led to significant performance improvement on many speech

and language applications. For example, discriminative graphical models like condi-

tional random fields (CRF) [15][16] have been successful in the tasks such as phone

recognition [17][18] and part-of-speech tagging [19]. However, there are not many

works for speech separation with CRF [20]. Motivated by the success in other lan-

guage applications, the application of discriminative models may lead to improved

speech separation performance over the state-of-the-art factorial HMM formulations.

1.3 Research objectives

This thesis focuses on separation of two speech sources from different speakers with

single corrupted speech signal. We follow the statistical model-based approach and

consider single-microphone speech separation as a classification problem. We adopt

a soft-decision scheme to minimize the effect of mis-classification. It is equivalent to

minimum mean square error (MMSE) estimation of the sources. The prior statistical

information of the sources are assumed to be available. All the necessary training

data are prepared for statistical model training. The speaker identity and signal-to-

signal ratio of the sources are assumed to be known.

The main theme of the thesis is to explore the application of conditional ran-

dom fields (CRF) [15] on single-microphone speech separation. We apply CRF for

the statistical inference of the MMSE estimator of the sources. Several CRF for-

mulations have been developed. They are based on different graphical structures,

parameter estimation criteria and methods, and the choice and organization of the

3
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observations. We have also built up the factorial HMM baseline systems for the eval-

uation of CRF formulations. Various factorial HMM configurations are evaluated,

including different source interaction models and inference algorithms. We also jus-

tify the application of graphical models by emphasizing the importance of modeling

speech dynamics for single-microphone speech separation.

1.4 Outline of the thesis

In the next Chapter, there is a review on existing single-microphone speech enhance-

ment and separation algorithms. The metrics for performance evaluation, including

the objective metrics of perceived speech quality and machine intelligibility are in-

troduced. The design of the training and evaluation data, and the experiments are

described. The procedures for preparing the required statistical models are discussed.

Statistical model-based approach is described in Chapter 3. The derivation of the

minimum mean square error estimator of the sources is presented. The statistical

relationship between the sources and corrupted speech signal, referred to as an inter-

action model, is described and verified with experimental data. The application of

Gaussian mixture models (GMM) in modeling the interaction between the observed

corrupted speech signal and the source statistics is also discussed.

The application of graphical models for single-microphone speech separation is

discussed in Chapter 4. After a review on graphical modeling approach for speech

applications, the importance of modeling speech dynamics for single-microphone

speech separation is discussed. The exact and approximated inference algorithms of

factorial HMM are reviewed and evaluated. We also compare the separation perfor-

mance of factorial HMM with analytically derived interaction model and the GMM

modeling approach, in which the latter one becomes our baseline system.

Conditional random field (CRF) for single-microphone speech separation is in-

vestigated in Chapter 5. While CRF formulations can be considered as the discrim-

inative counterpart of factorial HMM, their relationship and fundamental difference

are discussed. The application of averaged stochastic gradient descent and approx-

imated inference for conditional maximum likelihood parameter estimation are de-

4
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scribed. We also discuss the design of feature functions for CRF formulations. The

performance of CRF formulations is further compared with that of factorial HMM

baselines.

Extensions of CRF formulations are discussed in Chapter 6. A large-margin cri-

terion for parameter estimation is introduced and evaluated. A simplified CRF for-

mulation is proposed. Exact statistical inference can be performed effectively in the

simplified CRF formulation. We also evaluate the CRF formulations and factorial

HMM on corrupted speech signals under different signal-to-signal ratios.

Towards the conclusion in Chapter 7, we compare our best experimental results

with the oracle results. The oracle results assume the availability of the model pa-

rameters of the underlying sources. The conclusion of this thesis is drawn and the

potential future directions are discussed.

5



Chapter 2

Background of research

2.1 Established methods

The development of single-microphone speech separation algorithms can be traced

back to the studies of single-microphone speech enhancement. In this Chapter, we

review the major approaches. Model-based methods for speech enhancement will be

discussed separately in Chapter 3. Unless otherwise specified, a corrupted speech

signal is represented by the following instantaneous linear additive mixing model,

y(t) =
∑
k

akxk(t) (2.1)

where y(t) is a noisy speech or speech mixture, xk(t) is the kth source and ak is

the gain factor. We refer the corrupted speech signal to as noisy speech when the

interfering source is noise, and to as speech mixture when the interfering sources are

other speech sources.

2.1.1 Stationary noise suppression algorithms

Spectral subtraction

The basic idea of spectral subtraction [21] is to remove the noise spectrum from

the spectrum of noisy speech. To perform spectral subtraction, the speech and non-

speech segments of a given utterance are first identified, e.g., by voice activity de-

tection [22]. The noise spectrum is estimated from the non-speech segments and
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subtracted from the spectra of the speech segments. Spectral subtraction was com-

monly used in robust speech recognition [23].

Spectral subtraction may introduce low-frequency tones, known as musical noise,

into the enhanced speech signals. The musical noise is perceptually even more an-

noying than the additive noise itself [24][25]. If the musical noise problem is treated

properly, the perceived quality of the enhanced speech signals can be improved [24].

Improved spectral subtraction algorithms, such as using multi-band [26], spectral

harmonics [23], and geometric approach [24] were developed to minimize the mu-

sical noise. Spectral subtraction is designed to deal with stationary noise. It is not

suitable for single-microphone speech separation, since interfering speech source is

non-stationary.

Subspace methods

Subspace method assumes that the Euclidean space of noisy speech is composed

of a clean signal subspace, and a noise subspace [27]. Decomposition in subspace

is performed by applying singular value decomposition (SVD) to the time-domain

noisy signal [28] or eigenvalue decomposition (EVD) to the covariance matrix of the

noisy signal [27]. The EVD approach is equivalent to Karhunen-Loève transform

(KLT) in a second-order stationary process. The noise subspace is removed from the

noisy speech to obtain an enhanced speech signal. The noise subspace is identified

from the covariance matrix of the noise. Spectral subtraction can be considered as a

special case of subspace method, in which discrete Fourier transform (DFT) instead

of KLT is applied [27].

The subspace method requires that the noise is stationary and uncorrelated with

the signal. If the noise is not white, whitening process can be applied. For system

implementation, a voice activity detector is used to gather the noise statistics for

updating the noise covariance matrix and other parameters. The dimension of signal

subspace is not known in advance. Methods such as the minimum description length

(MDL) principle [29] were proposed to estimate the model complexity.

Subspace method does not cause signal distortion since only the subspace con-

taining interfering sources is identified and nulled [27]. In practice, the “clean
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subspace” may contain residual components of the interfering source. Moreover,

subspace method is unable to identify the subspace components of different speak-

ers. These difficulties make the subspace method not suitable for single-microphone

speech separation.

2.1.2 Algorithms based on dictionary learning

Independent component analysis (ICA)

Although the spectral subtraction and subspace approaches are not suitable for single-

microphone speech separation, it is generally a good idea to decompose a noisy

speech into clean and noise components. If an orthogonal basis is not required, an

over-completed dictionary can be prepared for the reconstruction of speech sources.

The dictionary entries referred to as the basis functions are learned from clean train-

ing data and labeled with the speaker identities, resolving the problem of the subspace

method.

Several techniques have been developed for learning the basis functions for

single-microphone speech separation. An attempt of dictionary learning was re-

ported to apply independent component analysis (ICA) for time-domain basis func-

tions [30]. ICA is originally proposed for over-determined blind source separation

(BSS) [31][32]. By assuming that the sources are statistically independent and follow

non-Gausssian distribution, ICA aims at finding the mixing matrix that minimizes the

mutual information between the sources. For BSS with linear additive model, ICA

usually operates in the time domain. Moreover, if the assumptions are fulfilled, exact

solution for an over-completed BBS problem is possible [33].

In [30], a source signal is modeled as a linear combination of time-domain basis

functions ai with coefficient si, i.e, x = ∑
i aisi. By defining the basis functions

as the column vectors of a matrix A and rewriting x = As , ICA algorithm learns

the inverse of the matrix, W = A−1, which is referred to as the ICA basis filter.

The coefficients are then obtained by matrix multiplication of the basis filter and

the source vectors, i.e., s = Wx. Single-microphone speech separation problem is

then formulated as a maximum a posteriori (MAP) problem to determine the most
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probable sources that generate the speech mixture.

There is a major problem of using ICA for single-microphone speech separation.

Speech signals are non-stationary in time-domain. Short-time analysis is applied

for quasi-stationary speech frames. The speech frames have to be sufficiently short

to satisfy the quasi-stationary assumption. However, source independence is ques-

tionable when the analysis frame is getting shorter [34]. Other dictionary learning

methods, such as non-negative matrix factorization (NMF) [35][36][37], has since

been investigated.

Non-negative matrix factorization (NMF)

Let N be the observation dimension and T be the number of frames in speech mix-

ture Y . Single-microphone speech separation with NMF requires Y ∈ RN×T to be

non-negative. The condition can be fulfilled in spectral domain approximately in the

minimum mean square error sense. The observed speech mixture spectrum is mod-

eled as the summation of the basis functions of the source spectra, i.e., Y ≈ BW ,

where B ∈ RN×J is an over-complete dictionary containing J non-negative basis

functions of the sources, and W ∈ RJ×T is a matrix of non-negative weighting co-

efficients. The basis functions are learned from the spectral domain (either power or

magnitude spectrum) of the source training data.

In the reconstruction process, only a few basis functions are dominated in the

reconstructed signals. Most of the coefficients are close to zero. This promotes

the formulation of single-microphone speech separation as a sparse signal recovery

problem [38]. The prior assumption of sparseness is useful to improve the separa-

tion performance [37]. Sparsity constraints are applied to minimize the number of

non-zero coefficients. However, the cardinality problem is generally NP-hard. The

weighting coefficient matrix W is typically approximated from a convex `1-norm

minimization problem with regularization factor c and the learned dictionary B,

min
W

∥∥∥Y −BW∥∥∥2

F
+ c

∑
ij

|Wij| ,∀Wij ≥ 0 (2.2)

where
∥∥∥X∥∥∥

F
is the Frobenius Norm. Equation 2.2 is solved efficiently by algorithms

such as matching pursuit [39][40], or genetic convex optimization solvers [41].
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Separation performance is further improved by applying temporal continuity con-

straints. In [37], temporal continuity is imposed as a cost function of neighbour

frames. The cost function can be integrated into the sparse signal recovery problem

for determining the weighting coefficient matrix W .

2.1.3 Computational auditory scene analysis

Computational auditory scene analysis (CASA) aims at recovering speech sources in

an attempt of mimicking human auditory neural processing [42]. For speech sepa-

ration, CASA operates on time-frequency representations such as a cochleagram or

correlogram [43]. The goal of CASA is to estimate the binary time-frequency masks

for the target sources [44]. The frequency components under the time-frequency

mask are preserved while those outside the mask are considered as interference and

removed. It is showed that when the ideal binary time-frequency masks are obtained,

the reconstructed speech sources has much better intelligibility than the corrupted

speech [45][46][47].

Traditionally, the estimation of ideal binary mask is done by grouping low-level

acoustic cues of the time-frequency representation [42]. Recently it is suggested

to consider binary mask estimation as a classification problem [4]. Machine learn-

ing and pattern recognition techniques such as supporting vector machine (SVM)

[48][49], spectral clustering [50], and graphical models [20] have been applied to

determine the binary masks. In [51], N -best outputs from speech recognition were

utilized to the estimate ideal binary mask.

Multi-pitch tracking plays an important role in the CASA approach of single-

microphone speech separation. It facilitates the retaining of spectral and tempo-

ral continuity of a source. A major problem of CASA is the assignment of time-

frequency units to specific speakers. One of the solutions is to apply multi-pitch

tracking to identify the fundamental frequencies of different speakers, and assign the

time-frequency units according to the harmonic patterns corresponding to different

fundamental frequencies. An early effort of incorporating multi-pitch tracking into

single-microphone speech separation was proposed by Weintraub [52]. This work

set up the foundation of CASA. In this study, the pitch period of each speaker at
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each time frame was tracked by dynamic programming. The source spectra were es-

timated based on the periodicity information from multiple-pitch tracking results. A

Markov model was applied to determine the voiced or unvoiced status, which helped

to determine the spectral continuity of a source signal.

In [53], text transcription of the sources was assumed to be available. HMM

forced alignment was performed on the speech mixture to determine the statistics of

the sources based on phone-based acoustic models. Wiener filtering was performed

with these source statistics. Comb filters derived from multi-pitch tracking were

applied to further remove interfering harmonics. The impulse responses of the comb

filters are derived from the fundamental frequencies of target speakers.

More recently, multi-pitch estimation was done with hidden Markov Models

(HMM) [54][55][56][57]. In [54], a simple HMM with only three states, namely

pitch decrement, constant pitch and pitch increment, was proposed. After the funda-

mental frequency of an individual speaker was obtained, the frequency components

located at this fundamental frequency and its harmonics were assigned to the cor-

responding speaker. A more comprehensive algorithm of HMM based multi-pitch

tracking was proposed in [55]. The paper also described a signal processing algo-

rithm to determine the multiple hypotheses on pitch candidates. The posterior prob-

ability of the number of candidates was determined by an HMM with K + 1 states,

which represented the state spaces of K pitches plus zero pitch. The pitch tracking

results were integrated into a CASA system for speech separation. However, this

algorithm did not resolve the speaker identity of an estimated pitch value [57]. A

statistical method was proposed to model the interaction of the sources with factorial

HMM . A 200-state HMM was used to represent a range of F0 from 80 Hz to over

1 kHz. The multi-pitch tracking algorithm was integrated with a model-based speech

separation system based on source-filter model of speech generation [58]. In [56],

prosodic observations of each speaker was modeled by HMM with multi-dimensional

observations, including voiced or unvoiced pattern, pitch value, harmonics in voiced

portion and constant amplitude for unvoiced portion. Discriminative training was ap-

plied to further improve the pitch tracking accuracy. The pitch tracking results were

used with the spectral clustering algorithm for speech separation [50].
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2.2 Performance evaluation of speech separation

algorithms

The effectiveness of speech separation or speech enhancement algorithms can be

measured by the improvement of perceived speech quality and speech intelligibility.

An improvement on one criterion does not necessarily imply an improvements on

the other [59]. Perceived speech quality focuses on the ease and comfort of listening.

Speech intelligibility can be indicated by the recognition accuracy on the spoken

content [59]. Subjective evaluation by human subjects is a well-recognized method.

It is however very costly and time consuming. Objective performance metrics are

designed for evaluating the reconstructed sources. The commonly used objective

metrics are described below.

2.2.1 Perceptual Evaluation of Speech Quality (PESQ)

Perceptual Evaluation of Speech Quality (PESQ) is designed to predict perceived

quality of speech from acoustic signals [60]. It was proposed for evaluation of differ-

ent speech codecs and network distortions over telecommunication channels [61]. It

is accepted as a suitable performance metric for speech enhancement [62] and speech

separation [63]. The procedures of computing PESQ for reconstructed speech are de-

scribed in [61]. The reconstructed speech signals and their references are first aligned

to a suitable listening level. After time alignment, auditory transform is performed

to obtain a set of distortion parameters in the time-frequency domain. The perceived

speech quality is computed from a cognitive model with the distortion parameters.

The PESQ score lies in the range of -0.5 to 4.5. A higher score indicates better

perceived speech quality.

2.2.2 Blind Source Separation Evaluation Metrics

(BSS_EVAL)

Blind Source Separation Evaluation Metrics (BSS_EVAL) were designed to be

generic measure for different mixing conditions and separation algorithms [25]. They
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are applicable to either over-determined, under-determined or single-microphone

speech separation. The metrics require the availability of the reference source sig-

nal. A reconstructed source signal are compared with the reference source signal. As

suggested in [25], the recovered source x̂k is expressed as x̂k = x̂k,target + ek,interf +

ek,artif + ek,noise, where x̂target is the target signal, ek,interf , ek,artif and ek,noise are

the interferences, signal artifacts and noise error terms respectively. These terms are

obtained by applying orthogonal projections on the reference signal and the recon-

structed signal.

In single-microphone speech separation, we assume the noise error is zero, i.e.,

ek,noise = 0, and the source-to-noise ratio (SNR) tends to∞. The other three evalua-

tion metrics, source-to-distortion ratio (SDR), signal-to-interferences ratio (SIR) and

source-to-artifacts ratio (SAR) are defined as,

SDR := 10 log10
||x̂k,target||2

||ek,interf + ek,artif + ek,noise||2
(2.3)

SIR := 10 log10
||x̂k,target||2

||ek,interf ||2
(2.4)

SAR := 10 log10
||x̂k,target + ek,interf + ek,noise||2

||ek,artif ||2
. (2.5)

SDR can be regarded as a global performance measure of the output signal. SIR

measures the ability of a separation or enhancement algorithm in suppressing inter-

fering signals. For speech separation algorithms operating in the frequency domain,

SIR evaluates the degree of suppressing on the frequency components of interfering

sources. SAR quantifies the burbling artifacts introduced by a separation or enhance-

ment algorithm. These artifacts are caused by spectral attenuation or amplification

of the reconstructed sources. Spectral attenuation occurs when the magnitude of en-

hanced frequency component is smaller than that of the reference component. Spec-

tral amplification occurs when the magnitude of enhanced component is greater than

that of the reference component [64][65].

2.2.3 Speech recognition accuracy

A few objective measures were proposed to evaluate speech intelligibility of recon-

structed speech [66][65]. PESQ is considered representative indication of speech in-
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Table 2.1: Sentence structure of the GRID Corpus. Adapted from [67]

command colour preposition letter digit adverb

bin blue at A-Z 1-9 again

lay green by excluding W zero now

place red in please

set white with soon

telligibility [66]. Speech separation performance can also be evaluated from the per-

spective of machine understanding of reconstructed speech sources. In fact, speech

separation is often used as a preprocessing step of many speech applications, includ-

ing speech recognition.

Word Error Rate (WER) is a standard measure of speech recognition perfor-

mance. It measures the Levenshtein distance (the minimum numbers of insertion,

deletion and substitution) between the recognized word sequence and the reference

one. A speech recognition system that makes fewer word errors is considered to have

better performance. In speech separation, automatic speech recognition can be per-

formed on a reconstructed source. In this way, WER becomes a performance metric

for speech separation system.

2.3 Corpus and experiment setting

In this thesis, single-microphone speech separation experiments are performed with

speech data from the GRID Corpus [67]. This corpus consists of speech materials

from 34 speakers, including 18 male and 16 females. It was created as a controlled

corpus for small-vocabulary command recognition. The grammar and the vocabulary

are listed in Table 2.1.

Three sets of speech mixtures, namely Male+Male, Male+Female and Fe-

male+Female, are prepared from the speech of 3 male and 3 female speakers accord-

ing to the instantaneous additive model at the desired signal-to-signal ratios. The

speaker combinations are shown in Table 2.2. The signal-to-signal ratio (SSR) is
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defined as the power ratio between the target source and the masking sources,

SSR (dB)=10 log10
averaged power of the target source

averaged power of the masking sources
. (2.6)

All speech data are sampled at 16 kHz. For each speaker, 450 clean utterances

are used as training data, and 50 unseen utterances are used for evaluation. Each set

of mixture data consists of 2500 speech mixtures for evaluation, and over 200,000

speech mixtures for model training.

Table 2.2: Configuration and speaker ID of 3 sets of speech mixtures

Male+Male Male+Female Female+Female

Speaker 1 1 (Male) 17 (Male) 24 (Female)

Speaker 2 2 (Male) 18 (Female) 25 (Female)

The choice of speaker pairs is made with considerations on pitch range differ-

ences. Pitch range is defined as the range from the lowest fundamental frequency

to the highest fundamental frequency produced by a speaker. Figure 2.1 shows the

histograms of pitch ranges of the three speaker pairs. The Male + Male pair repre-

sents the case that the pitch ranges of the two speakers are overlapped. The Male

+ Female pair represents the case with distinct pitch ranges. The Female + Female

pair lies in the middle of the two extremes. For single-microphone speech separation,

speech sources with overlapped pitch range are expected to be the most difficult for

separation.

Two tasks are designed for evaluating speech separation algorithms. The first

task is to reconstruct individual speech sources from a speech mixture of two dif-

ferent speakers. The speaker identities and the signal-to-signal ratio are assumed to

be known. Speaker-dependent acoustic models are also available. The speech qual-

ity of reconstructed sources is evaluated in terms of the objective quality measures,

including PESQ [60] and BSS_EVAL metrics [25]. The PESQ values of the speech

mixtures at 0 dB signal-to-signal ratio are given in Table 2.3. The results are obtained

by averaging the PESQ values of the speech mixtures with respect to the two refer-

ence sources over the entire evaluation set. Bad speech quality with possibly very
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Figure 2.1: Fundamental frequency distribution of the speaker pairs

Table 2.3: The PESQ of the speech mixtures at 0 dB signal-to-signal ratio

Speaker pair M (1) + M (2) M (17) + F (18) F (24) + F (25) Overall

PESQ 1.68 1.64 1.55 1.62

annoying impairment of the speech mixtures is indicated by PESQ values below 2

[68].

The second task is a speech recognition experiment with reconstructed sources.

A standard automatic speech recognition system is used. The system is prepared

with the HTK [69]. The acoustic models are trained with clean speech. The acoustic

features are standard Mel-frequency cepstral coefficients. A grammar network speci-

fying the command recognition task of GRID Corpus is used for speech recognition.

For clean speech, the word error rate is less than 1% with standard implementation.
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2.4 Acoustic model training

Two types of acoustic models are prepared to support speech separation and speech

recognition applications. For each speaker, 450 clean utterances are used for training.

Short-time feature extraction is done with Hamming window of 32 ms and frame shift

of 10 ms.

2.4.1 Speaker-dependent acoustic models for speech separa-

tion

For model-based speech separation, speaker-dependent acoustic models are devel-

oped for all of the 6 speakers. The acoustic features are 257-dimension log-

magnitude spectrum, which results from 512-point fast Fourier transform. The

speech data of an individual speaker are clustered. Each cluster corresponds to a

state in the acoustic model. The emission probability of each acoustic state therefore

follows a multivariate Gaussian distribution with diagonal covariance matrix. The

prior probabilities of the acoustic states are estimated according to the size of the

clusters. For each speaker, 3 acoustic models with 16, 128 and 512 states are pre-

pared. Due to the large feature dimension of the speech data, each frame is typically

dominated by only one acoustic state [70].

The transition between acoustic states is unrestricted as shown in Figure 2.2.

The transition probabilities are estimated by Viterbi decoding procedure. The initial

state sequences are first obtained by decoding the source training data with the prior

probabilities. The transition probabilities are updated by computing the conditional

probability of the current state given the previous state. The state sequences are then

updated with the new HMM model parameters. This process is repeated several

times. The final acoustic state sequences of the sources are used as the reference

labels for subsequent model training tasks.

2.4.2 Speaker-independent models for speech recognition

Standard GMM-HMM based speaker-independent acoustic models are developed

for speech recognition. Speech data from all 34 speakers in the GRID corpus are
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2

3 4

1

Figure 2.2: An HMM model of 4 states with unrestricted transition

1 2 3 4

Figure 2.3: An conventional left-to-right HMM topology for speech recognition

used for training the speaker-independent models. Word models are trained with 39-

dimensional Mel-frequency cepstral coefficients (MFCC) features (12 coefficients

+ log-energy + delta and delta-delta coefficients). Conventional left-to-right HMM

topology as shown in Figure 2.3 is employed. There are 4 to 8 acoustic states in

each word model depending on the number of phonemes in the word. There are 32

Gaussian components with diagonal covariance matrices at each state.

2.5 Terminology and notations

There are three basic elements in statistical model-based single-microphone speech

separation. They are the speech mixture y, the sources x, and the acoustic states s

that generate the sources. The speech mixture y and the sources x are vectors and s
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are labels to index the states. The subscript k is used to index the source and K to

denote the number of sources, the subscript t to index the frame, the subscript f to

denote the component of a feature vector. For examples, xk,t,f denotes the frequency

component f of source k at frame t, and yt,f represents the frequency component f

of the speech mixture at frame t.

We use bold-face symbol to represent a time sequence. For example, y =

(y1, y2, . . . , yT ) is an observation sequence of length T and y1...t is a sub-sequence

from 1 to t. Indices in sets are omitted for brevity, e.g., {xk}Kk=1 = {x1, x2, . . . xK}

abbreviated as {xk} by assuming that the total number of the members of the set

is known. A constant index is parenthesized, i.e., {xk,(t)} = {x1,t, x2,t, . . . , xK,t}.

Other short-hand notations includes dx1...K = dx1dx2 · · · dxK .

We use p(·) to denote probability distribution, p(·|·) to denote conditional

distribution and E(·) to denote expectation. For indexing of operators, we use

the following conventions, for example
∑
sk p(sk) = ∑Sk

sk=1 p(sk) where Sk

is the total number of acoustic states for speaker k, and
∑
{sk} p({sk}|y) =∑S1

s1=1

∑Sk
s2=1 . . .

∑SK
sK=1

p(s1, s2, . . . , sK |y) for the operation over a sequence. We

use the notation \ to represent exclusion of indices, for example,
∑
k\k=2 p(sk) =

p(s1) + p(s3) + p(s4) + . . .+ p(sK).

19



Chapter 3

Statistical model-based methods

3.1 Overview

Speech enhancement and source separation are classical problems of statistical signal

processing. Minimum mean square estimation (MMSE) is a common criterion for

source estimation. It can be achieved by Wiener filter [71] or Kalman filter [72]. In

[73], an MMSE source estimator was derived by measuring the noise statistics from

non-speech portion of noisy speech. This work also showed that the phase spectrum

of noisy speech is the MMSE phase estimator given the MMSE magnitude estimator.

A statistical model-based method is designed to recover speech sources by mod-

eling the relation between the sources and the mixture. The method assumes the

availability of prior knowledge, including but not limited to, the spectral and tempo-

ral characteristics of each speech source. These characteristics are specified in the

form of probability distributions at the states of acoustic models. Use of HMM for

speech enhancement was proposed in [2] and further developed in [3]. An HMM can

be unfolded in time as a linear Markov chain, leading to the graphical modeling ap-

proach to single-microphone speech separation. Factorial HMM [74] was proposed

in [9][10][11]. The linear Markov chains of individual sources are coupled to produce

the observed speech mixture. In log-spectral domain, the process is usually modeled

by approximations such as ALGONQUIN [75] based on the log-sum-exp expression

or the mixture-maximization (MIXMAX) model [76][77][78]. Other graphical mod-

els investigated include restricted Boltzmann machine [79], and conditional random
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fields (CRF) [80][81]. For single-microphone speech separation, statistical model-

based methods do not require multi-pitch tracking. This is an advantage over the

CASA approaches.

The use of HMM makes a close connection between speech separation and other

speech processing problems. HMM-based speech synthesis can be used to recon-

struct the speech sources [82]. The noisy spectrum was first analyzed with the miss-

ing data approach [83]. The frequency components that were dominated by only

one source were identified as the “reliable part”. The unreliable parts of the recon-

structed sources were re-synthesized with the statistics of the acoustic models and

the constraints from the reliable parts.

Various techniques of robust speech recognition are also based on statistical

speech models. The missing data approach [83] was shown to resemble a mean-

field approximation of the MIXMAX model [84]. In cesptral domain, the Vector

Taylor Series (VTS) [85] and parallel model combination (PMC) [86] were based on

a log-sum-exp expression of mixing speech and noise. PMC assumed that the power

spectra of the speech mixture, the source and the noise all followed log-normal dis-

tribution (or Gaussian distributions in log-spectral domain). The speech mixture dis-

tribution were derived by moment matching from the distributions of the source and

the noise. VTS approaches did not assume a specific distribution of speech mixture,

but attempted to linearize the log-sum-exp expression with a Taylor series approxi-

mation.

Figure 3.1 illustrates the flow diagram of a typical model-based single-

microphone speech separation system. Given prior information of the sources, the

sources can be reconstructed with the minimum mean square error (MMSE) or the

maximum a posteriori (MAP) criteria. In the MAP criterion, the sources are obtained

by filtering the speech mixture with the statistics of the most probable sources. The

most probable acoustic state sequences are required. In the MMSE criterion, the

reconstructed source is the mean of the statistical filter outputs. The posterior proba-

bilities of the acoustic states are obtained by statistical inference.
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Speech mixture

Reconstructed source 2

Reconstructed source 1
Statistical 

inference

Acoustic models 

of the sources

State sequences 

or posterior 

probabilities

Statistical filter

Feature 

(Observation) 

extraction

Figure 3.1: A flow diagram of a typical single-microphone speech separation system

based on statistical model-based methods

3.2 Conditional MMSE estimation

Let (y, {xk}) be the set of observation sequences from the speech mixture and K

speech sources. The sources {xk} are unobserved, but their characteristics are de-

scribed by the acoustic models. A statistical model-based method aims at computing

E(xk|y) by modeling p({xk}|y) as,

p({xk}|y) =
∑
{sk}

p({xk}|y, {sk})p({sk}|y) . (3.1)

At each frame, we have

p({xk,(t)}|y) =
∑
{sk,(t)}

p({xk,(t)}|y, {sk,(t)})p({sk,(t)}|y) . (3.2)

After marginalizing p({xk,(t)}|y, {sk,(t)}) into p(xk,(t)|y, {sk,(t)}), the sources x̂k,t

are reconstructed by either MMSE estimator

E(xk,t|y) =
∑
{sk,(t)}

p({sk,(t)}|y)× E(xk,t|y, {sk,(t)}) . (3.3)

or the MAP estimator

x̂k,t = E(xk,(t)|y, {s∗k,(t)}) , (3.4)

from the most probable state sequences {s∗k} = arg max{sk}p({sk}|y). For HMM-

based acoustic models, the observations are conditionally independent. By the

22



Chapter 3. Statistical model-based methods

Bayes’ theorem, p({xk,(t)}|y, {sk,(t)}) is expressed as

p({xk,(t)}|y, {sk,(t)}) = p(yt|{xk,(t)})
∏
k p(xk,t|sk,t)

p(yt|{sk,(t)})
, (3.5)

where p(xk,t|sk,t) is the emission probability from the acoustic model of xk. The

likelihood p(yt|{xk,(t)}) is referred to as an interaction model [11], which is the con-

ditional probability of the mixture observations given the sources. The state-level

likelihood p(yt|{sk,(t)}) is also derived from the interaction model as

p(yt|{sk,(t)}) =
˙ ∞

−∞
p(yt|{xk,(t)})

∏
k

p(xk|sk)dx1,t · · · dxK,t . (3.6)

We refer p(yt|{sk,(t)}) to as state-level interaction model.

The computation of E(xk,t|y, {sk,(t)}) and p({sk,(t)}|y) are the key problems

in speech separation. In this chapter, we review the methods of computing

E(xk,t|y, {sk,(t)}), especially when the observations are in log-spectral domain. The

computation of the frame-level posterior probability p({sk,(t)}|y) is the main focus

of the subsequent chapters.

3.3 Interaction model

3.3.1 Derivation of exact interaction model

Instantaneous additive mixing model in the time domain, i.e., y(t) = ∑
k xk(t) is

assumed. After short-time frame processing, {Xk} and Y are the Fourier transform

of the sources and the mixture at a specific time frame. Let |Y |, {|Xk|} denote the

magnitude spectra of the speech mixture and the sources. The power spectrum of the

speech mixture is given as (the frame index t and frequency index f are dropped for

brevity),

|Y |2 =
∑
k

|Xk|2 +
∑

jk\j=k
|Xj||Xk| cos(θj − θk) , (3.7)

where θk and θj are the phase spectrum of sources k and j. It is noted that the phase of

a speech source is uniformly distributed [87]. The probability density function of the

phase difference ∆θjk = θj − θk is therefore assumed to be symmetric at ∆θjk = 0.
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Figure 3.2: The shape of the “two-wave envelope pdf” p(|Y |
∣∣∣|X1|, |X2|) at |Y | = 50

For the exact interaction model, the effect of superposition is considered. The

general form of the interaction model p
(
|Y |

∣∣∣{|Xk|}
)

is derived by [88],

p(
(
|Y |

∣∣∣{|Xk|}
)

= |Y |
ˆ ∞

0
J0(|Y |q)

[∏
k

J0(|Xk|q)
]
qdq , (3.8)

where J0(u) = 1
2π

´ π
−π e

−j(−u sin(τ))dτ is the zeroth-order Bessel function of the first

kind. The derivation is provided in Appendix A. In the two-source case, the exact

interaction model is given by [88],

p
(
|Y |

∣∣∣|X1|, |X2|
)

=


2|Y |

π
√

4|X1|2|X2|2−(|X1|2+|X2|2−|Y |2)2
for

∣∣∣|X1| − |X2|
∣∣∣ < |Y | < |X1|+ |X2|

0 otherwise .

(3.9)

This function is referred to as “two-wave envelope probability density function (pdf)”

in communication [88]. Figure 3.2 illustrates the shape of this function for a specific

frequency component.

The function has a geometric interpretation. The square root term is the area of

a triangle with |X1|, |X2| and |Y | being the three edges. The function is singular

when the area of the triangle becomes arbitrarily small. This happens when the two
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(a) (b)

Figure 3.3: Illustrations of the “devil function” p(y|x1, x2) at y = 0 dB ; a) the 3D-

viewpoint, horizontal axes are the power of the sources (in dB), vertical axis is the

probability densities, b) the projected view of the function

sources are perfectly in phase (∆θ1,2 = 0), i.e., |Y | = |X1| + |X2| or totally out of

phase (∆θ1,2 = π), i.e., |Y | =
∣∣∣|X1| − |X2|

∣∣∣, or when there exists only one source,

i.e., the amplitude of the other source is zero.

The interaction model may also be expressed in the log-power domain. By sub-

stituting xk = log(|Xk|2), y = log(|Y |2) and applying change of variables for prob-

ability density functions, the following distribution is obtained,

p
(
y
∣∣∣x1, x2

)

=


ey−

x1+x2
2

π

√
1− 1

4 (ey−
x1+x2

2 −e
x1−x2

2 −e−
x1−x2

2 )2
for

∣∣∣ex1
2 − e

x2
2

∣∣∣ < e
y
2 < e

x1
2 + e

x2
2

0 otherwise

(3.10)

which is referred to as the “devil function” in [89], as illustrated in Figure 3.3. Note

that in [89], the “devil function” is derived by assuming uniform distribution of the

phase difference ∆θ1,2. However, since the phases are uniformly distributed between

[−π, π] [87], the phase difference should follow a triangular distribution,

p(θ) =


1

2π (1− | θ2π |) for |θ| ≤ 2π

0 otherwise .
(3.11)

The derived “devil function” is the same.
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Similar to the “two-wave envelope pdf”, there are singularity points in the “devil

function”, making it computationally intractable. Different deterministic approxi-

mations are made on the exact interaction model. In the log-spectral domain, the

MIXMAX model [76][77], ALGONQUIN [75] and its phase-sensitive variation [90]

are the most common approximations.

3.3.2 The mixture-maximization interaction model

If the speech sources have distinct pitch ranges, their spectra are not expected to

have much overlap. The terms |Xj||Xk| in Equation 3.7 become negligible. This

is referred to as W-disjoint orthogonality [91]. It is the foundation that supports

the use of ideal binary time-frequency masks in CASA [44]. The observation that

a frequency component of the speech mixture is usually dominated by the stronger

source also motivates the mixture-maximization (MIXMAX) model for robust speech

applications [77]. In log-spectral domain, let xk = log(|Xk|2) and y = log(|Y |2),

Equation 3.7 is re-written as,

ey =
∑
k

exk +
∑

jk\j=k
exp(xj + xk

2 ) cos(θj − θk) . (3.12)

Since cos(·) is an even function, we have E{cos(∆θjk)} = 0. By taking expectation

on Equation 3.12, a non-linear MMSE estimator of the speech mixture given the

sources is obtained [87],

ŷ = log(E(ey|{exk})) = log(∑k e
xk) . (3.13)

The MIXMAX model is obtained by applying the soft-maximum approximation [77],

ŷ = log(∑k e
xk) ≈ max({xk}) . (3.14)

The corresponding interaction model is

p(y|{xk}) = δ(y −max({xk})) (3.15)

where δ(·) is the Dirac delta function. The MIXMAX model assumes that there

is only one dominating source at each frequency component in the speech mixture.

The amplitude of the dominating source is the same as the observed value of the
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frequency component. Following [77][78][11], p(yf |{sk}) is derived as (t is omitted

for brevity),

p(yf |{sk}) =
∑
k

gxk(yf |sk)
∏
j\j=k

Gxj(yf |sj) (3.16)

where
gxk(yf |sk) =p(xk,f = yf |sk) ,

Gxk(yf |sk) =p(xk,f < yf |sk)

=
ˆ yf

−∞
p(xk,f = u|s)du .

Assuming independence among frequency components, p(y|{sk}) is expressed as,

p(y|{sk}) =
∏
f

∑
k

gxk(y|sk)
∏
j\j=k

Gxj(yf |sj) . (3.17)

By observing that p(yf |{sk}) = p(yf , xk,f = yf |{sk}) + p(yf , xk,f < yf |{sk}),

p(xk,f |yf , {sk}) is obtained as,

p(xk,f |yf , {sk})

=


gxk (yf |sk)

∏
j\j=k Gxj (yf |sj)∑

k
gxk (yf |sk)

∏
j\j=k Gxj (yf |sj)

if xk,f = yf

1−
gxk (yf |sk)

∏
j\j=k Gxj (yf |sj)∑

k
gxk (yf |sk)

∏
j\j=k Gxj (yf |sj)

otherwise ,

(3.18)

where p(xk,f = yf |yf , {sk}) represents the probability that xk,f dominates in the

speech mixture given {sk} and yf , p(xk,f < yf |yf , {sk}) is the probability that xk,f

is masked by other sources given {sk} and yf . According to the MIXMAX model,

the maximum value of xk,f is yf , and we have p(xk,f < yf |yf , {sk}) + p(xk,f =

yf |yf , {sk}) = 1. The conditional expectation E{xk,f |yf , {sk}} is expressed as

[78][11],

E(xk,f |yf , {sk}) = ρk,fyf + (1− ρk,f )E(xk,f |xk,f < yf , {sk}) (3.19)

where ρk,f = p(xk,f = yf |yf , {sk}).

When the emission probabilities of the acoustic states follow multivariate Gaus-

sian distributions with mean µk,f and variance (σk,f )2, the expectation E(xk,f |xk,f <

yf , {sk}) = µk,f −
(σk,f )2gxk,f (yf |sk)

Gxk,f (yf |sk) follows a truncated Gaussian distribution [11].

The corresponding linear spectrum of the sources follows a log-normal distribution.

The mean in log-spectral domain corresponds the median in linear spectral domain,

which is a robust estimator.
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By relaxing Equation 3.15 as a zero-mean Gaussian distribution with an arbitrary

small variance σ2, there is an approximation for E(xk,f |yf , {sk}) referred to as soft-

mask filtering [92]. Soft-mask filtering approach approximates

E(xk,f |yf , {sk})

=


σ2
k,f

σ2
k,f

+σ2yf + σ2

σ2
k,f

+σ2µk,f for k = arg maxµk,f ({µk,f})

µk,f otherwise .

(3.20)

with mean vector µk and diagonal covariance Σk = diag[σ2
k,1 . . . σ

2
k,f . . . σ

2
k,F ]. Soft-

mask filtering is generally inferior to the MMSE estimators of Equation 3.19.

3.3.3 GMM modeling approach to state-level interaction

model

As discussed in the previous section, the state-level interaction p(yt|{sk,(t)}) plays

an important role in computing the conditional mean E(xk,t|y, {sk,(t)}). In addition

to analytical derivation, an empirical p(yt|{sk,(t)}) can also be learned from training

data. If we model p(yt|{sk,(t)}) for each pair of {sk,(t)} with multivariate Gaussian

distribution, the probability p(yt) of the current frame can be represented by Gaussian

mixture models (GMM),

p(yt) =
∑
{sk,(t)}

p({sk,(t)})p(yt|{sk,(t)}) , (3.21)

where the prior probabilities p({sk,(t)}) = ∏
k p(sk) can be regarded as the weights

on the Gaussian components. The maximum number of Gaussian components is SK .

A large amount of training data for a well-trained statistical model is expected.

3.4 Empirical statistics from experimental data

In this section, we study the empirical interaction model with speech data from the

GRID Corpus [67]. We compare the empirical interaction model with the exact in-

teraction model and the MIXMAX model. Following [89], we create 6000 speech

mixtures from the source signals of 3 speaker pairs (Male + Male, Male + Female
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and Female + Female ). The mixing process is based on the linear additive model

at 0 dB signal-to-signal ratio. Assuming the frequency components are independent,

the empirical likelihood p(yf |x1,f , x2,f ) is shown as in Figure 3.4, at 0 dB log-power

for speech mixtures.

The result from Figure 3.4 indicates that when two sources have sufficiently dif-

ferent power level (over 25 dB in our data) at a given frequency component, the

source with higher power dominates the mixture. The empirical probability that the

log-power of the mixture is equal to the dominating source approaches to one, i.e.,

the MIXMAX model is a good and practical approximation of the sources in this

situation. However, when the power of the two sources are close, the MIXMAX

model deviates significantly from the empirical distribution. In this case, the shape

of empirical probability density function reflects the exact interaction model.

The next question is whether the log-amplitudes of the sources always differ sig-

nificantly, such that the condition of the MIXMAX model is satisfied. The frame-

level posterior probability p(x1,f , x2,f |yf ) is shown in Figure 3.5. It is shown that

p(x1,f , x2,f |yf ) is peaked at the position where the log-powers of the sources are sig-

nificantly different (∼30 dB). These empirical results indicate that the MIXMAX

model is a practical model with reasonable accuracy.

The short-time log-power spectra of a speech mixture at 0 dB signal-to-signal

ratio and the corresponding sources (Male + Female) are shown in Figure 3.6. The

red circle indicates a frequency component dominated by source 1. At this frequency,

the power of source 1 is higher than that of source 2 by 37 dB. Similarly, the square

in brown indicated a frequency component dominated by source 2. The power of

source 2 is higher than source 1 by about 21 dB. By inspection, the MIXMAX model

is quite accurate in these two cases. However, in the third case marked with purple

triangle, the MIXMAX model becomes inaccurate. The power of the two source are

close to each other (only about 1 dB difference). The power of the resultant speech

mixture is 5 dB greater than the stronger source.
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(a) (b)

Figure 3.4: 3D plot of empirical likelihood p(yf |x1,f , x2,f ) at 0 dB log-power for

speech mixtures; a) the 3D-plot of the density function; b) projected view of the

probability density function

(a) (b)

Figure 3.5: a) 3D plot of empirical posterior probability p(x1,f , x2,f |yf ) with speech

mixture yf = 0 dB log-power; b) projected view
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(b) Source 2 (Female)
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(c) Speech mixture

Figure 3.6: Speech frames in log-power spectra of (a) the speech mixture and the

corresponding (b) male and (c) female sources
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Single-microphone speech

separation with factorial HMM

4.1 Posterior probabilities of source states

Recall that the MMSE estimator E(xk,t|y) = ∑
{sk,(t)} p({sk,(t)}|y)E(xk,t|y, {sk,(t)}),

the posterior probability p({sk,(t)}|y) can be considered as a non-negative weight on

E(xk,t|y, {sk,(t)}). Let (y, {sk}) be the observed mixture and the underlying state

sequences. The Bayesian approach attempts to compute p({sk,(t)}|y) by conditioning

and marginalizing the joint probability

p({sk},y) = p(y|{sk})p({sk}) (4.1)

in a generative modeling setting, where p(y|{sk}) and p({sk}) are the likelihood and

the prior respectively. The computation of p(y|{sk}) = ∏
t p(yt|{sk,(t)}) is known as

acoustic inference, where p(yt|{sk,(t)}) was derived in Chapter 3. The computation

of p({sk}), referred to as temporal inference, is the main focus of this chapter.

In the simplest case, the acoustic states within the same source are assumed to be

statistically independent. With this assumption, p({sk}) is given by

p({sk}) =
∏
t

∏
k

p(sk,t) (4.2)

where p(sk,t) = p(sk) is the state prior probability in the acoustic models. The
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posterior probability is

p({sk,(t)}|y) = p(yt|{sk,(t)})
∏
k p(sk,t)∑

{sk,(t)} p(yt|{sk,(t)})
∏
k p(sk,t)

. (4.3)

However, it is poor to assume that the states within the same source are independent.

The coming section will explain the reasons.

4.2 The importance of speech dynamics

A speech utterance is composed of continuously produced speech units such as

phonemes. The duration of a speech unit typically spans over a number of short-time

frames. These frames are overlapped in short-time frame processing. The assumption

that the acoustic states are independent is obviously invalid. The state dependency

within the same source represents the temporal continuity of a speech signal, which

is commonly known as speech dynamics [11].

Single-microphone speech separation is an ill-posed problem. Resolving the am-

biguities is a major problem in the separation process. For a specific frequency com-

ponent, the ambiguity refers to the difficulty in determining the correct amplitude of

each individual source. Figure 4.1 illustrates an example with the MIXMAX model.

A source cannot be determined uniquely if it is masked by another source.

The speech dynamics is determined by the spoken content. It is unlikely to be

affected by the mixing process. The temporal continuity is an important cue to be

exploited by many speech separation algorithms [5], including non-negative matrix

factorization [37][93] and computational auditory scene analysis [43][94].

With hidden Markov models (HMM) [95], speech dynamics is reflected by the

state transition probabilities p(sk,t|sk,t−1). A recent study confirms the usefulness

of transition probabilities in improving speech recognition performance [96]. For

single-microphone speech separation, speech dynamics can be modeled by graphi-

cal models such as factorial HMM [74]. The posterior probability p({sk,(t)}|y) are

computed accordingly from the graphical structures.
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Figure 4.1: An illustration showing the ambiguity of the speech sources given only

one speech mixture; a) a speech mixture; b) a possible configuration of the sources,

frequency components which are dominated in the speech mixture are in blue, while

those are masked by the other source are in red or purple; c) another configuration

of the sources which are also resulted in the same speech mixture of (a) according to

the MIXMAX model

4.3 Graphical models for speech processing

4.3.1 Overview of graphical model

A graph (V , E) is defined as the collection of a set of M nodes, V = {1, 2, . . . ,M},

and a set of edges E ⊂ V × V . An edge connects a pair of nodes a, b ∈ V . A

graphical model is defined by associating each node with a random variable [8]. For

a directed graph, each edge is defined with a specific direction. The edge (a, b) is

different from (b, a). For undirected graph, (a, b) and (b, a) refer to the same edge.

A directed graphical model based on directed acyclic graph (DAG) is also known as

a Bayesian network [97].

In a Bayesian network, a directed edge connected from node a to node b repre-

sents the conditional probability densities p(sb|sa), where sa and sb are the random
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1s 2s 3s 4s

1y 2y 3y 4y

(a)

1s 2s 3s 4s

1y 2y 3y 4y

(b)

Figure 4.2: (a) A linear-chain directed graphical model which represents the state se-

quence generated by a hidden Markov model (HMM); (b) A linear-chain undirected

graphical model which is referred to as a Markov random field (MRF)

variable on node a and b respectively. An undirected graphical model is also known

as a Markov random field (MRF). The edge (a, b) is associated with potential func-

tion Φ(sa, sb). Figure 4.2a shows a linear-chain directed graphical model with node

variable st and observation variables yt at time t. The model represents a random

process generated from a hidden Markov model (HMM), where s = (s1, s2 · · · , sT )

denotes the hidden state sequence for generating the observation y =(y1, y2 · · · , yT ).

The joint probability corresponding to the linear-chain HMM is given as,

p(s,y) =
T∏
t=1

p(yt|st)×
[ T∏
t=1

p(st|st−1)
]
, (4.4)

where p(st|st−1) is the transition probability, p(s1|s0) = p(s) is the prior probability

of the states and p(yt|st) is the emission probability of observation given a state. The

corresponding posterior probability p(s|y) = p(s,y)∑
{s} p(s,y) is obtained by the Bayes’

rule. A linear-chain Markov random field is illustrated as in Figure 4.2b, with the

joint probability

p(s,y) = 1
Z

T∏
t=1

Φ(st, yt)×
[ T∏
t=2

Φ(st−1, st)
]
, (4.5)
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where Z is a normalizing factor known as the partition function, Φ(yt, st) is the joint

potential function of the observation and the state and Φ(st, st−1) is the potential

function for co-occurrence of the states. One may notice that by setting

Φ(s1, y1) = p(y1|s1)p(s1)

Φ(st, yt) = p(yt|st)

Φ(st−1, st) = p(st|st−1)

and Z = 1, the two graphical models are equivalent.

Given the observation sequence y, the graphical model in Figure 4.2b represents

a conditional random field (CRF), which is a special case of Markov random field.

Instead of joint probability, the graphical model represents a conditional probability

p(s|y) = 1
Z(y)

T∏
t=1

Φ(st, yt)×
[ T∏
t=2

Φ(st−1, st)
]
, (4.6)

where Z(y) = ∑
s
∏T
t=1 Φ(st, yt)×

[∏T
t=2 Φ(st−1, st)

]
is the partition function.

4.3.2 Moralization of directed graphical model

A directed graphical model is moral when there is an edge connecting the parent

nodes that have the same child node. Moralization is a process of converting a di-

rected graphical model into an undirected one, by adding the edges over or “marry-

ing” the parent nodes and dropping the arrows in an undirected graph representation

[98]. It is an essential step to maintain the joint distribution between the directed and

the converted undirected graphical models.

Figure 4.3 shows the moralization rules. For the chain and the parent with two

children, the joint probability p(W,X, Y ) is expressed as

p(W,X, Y ) =p(Y |X)p(X|W )p(W )

= 1
Z

Φ(W,X)Φ(X, Y ) ,

in which each conditional probability involves at most two objects. Hence a maximal

clique (complete subgraph) of two is sufficient to express the join potentials in the

undirected graphical model. The term Z is the normalizing term to ensure the sum-

to-one property of probability. For the case of two parents with single child as in
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Figure 4.3: The rules for moralization; a) a chain; b) X is the parent with 2 children,

W and Y ; c) two parents W and Y with single child X

Figure 4.3c, p(W,X, Y ) is expressed as

p(W,X, Y ) =p(X|W,Y )p(W )p(Y )

= 1
Z

Φ(W,X, Y )
.

The term p(X|W,Y ) involves three objects. A maximal clique of three is required in

the undirected graphical model. An edge is added to fulfill this requirement.

Figure 4.2b is a moral graph of Figure 4.2a. There exists some parameters for

these two graphical models to produce the same joint probability p(s,y). Note that

if the arrows are ignored, their graphical structures are the same. It is a special

characteristic of tree-structured graphical models.

4.3.3 Representing speech with graphical model

A speech signal can be represented by a graphical model. Let yt be the observation

vector at frame t, e.g., the short-time log-spectrum. A speech unit, which may be

a phoneme, a syllable or a word, is modeled by an HMM models. Each state is

associated with an emission probability distribution. The transition from the current

state to the next state is described by a probability. Figure 4.4 illustrates how a

speech unit is modeled by an hidden Markov model (HMM) represented by a directed

graphical model. The directed graphical model is interpreted as follows. At time t,

the observation yt is generated by state iwith emission probability p(yt|st = i). State

i of node St at time t can make transition to state j of node St+1 at time t + 1 with
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Bin1 Bin1 Bin2 Bin2 Bin3 Bin3 Bin4 Bin4 

b) 

c) 

d) 

e) 

1 2 3 4 a) Bin 

Figure 4.4: An illustration of applying graphical model on speech processing (not

in scale); a) a 4-state HMM acoustic model for the word “Bin”; b) emission prob-

abilities of the spectral observations of c) the spectrogram of the speech signal; d)

the time-domain waveform of the speech signal; e) a linear-chain graphical model

representing the acoustic state sequence which generates the speech signal

transition probability p(st+1 = j|st = i).

Undirected graphical model (Figure 4.2b) is also applied to speech processing.

For example, conditional random fields (CRF) were used for speech recognition

[15][17][18]. The conditional probabilities of the label sequences given the obser-

vations are obtained from the joint potential in association with the states st and the

observation yt of the node St, and the co-occurrence of the state pair (st, st+1).

4.4 Modeling speech dynamics

Speech sources are represented by Markov chains generated by the corresponding

acoustic models. The speech sources are interacted to generate the observed mixture
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Figure 4.5: A factorial HMM for single-microphone speech separation with two

speech sources.

via a mixing process. Since the mixing process does not affect the speech dynamics,

the sources are independent to each other. The temporal inference is expressed as,

p({sk}) =
∏
t

∏
k

p(sk,t|sk,t−1) , (4.7)

where p(sk,1|sk,0) = p(sk) is the prior probability of the corresponding acoustic state.

The joint probability of source state sequences and the mixture observation is

p({sk},y) =
T∏
t=1

p(yt|{sk,(t)})×
[

T∏
t=1

K∏
k=1

p(sk,t|sk,t−1)
]
, (4.8)

which can be represented by a directed graphical model referred to as factorial HMM

[74] (Figure 4.5). Factorial HMM is a promising approach to single-microphone

speech separation [9][99][10][58]. In the Speech Separation Challenge [5], factorial

HMM system achieved the best target word recognition results in the mixtures [10].

The accuracies were even better than human recognition accuracy.

The conditional probability p({sk}|y) is computed by Bayes’ rule. The frame-

level posterior probability p({sk,(t)}|y) is obtained by marginalizing the posterior

probabilities p({sk}|y) with dynamic programming known as the message-passing

algorithm. Forward-backward algorithms on HMM is an example. It is tempting

to group a pair of state variables {sk,(t)} into a single state variable st to form a

39



Chapter 4. Single-microphone speech separation with factorial HMM

linear-chain HMM and compute the posterior probability p(st|y) as in [3]. However,

scalability is the main concern. The exponential growth of the number of grouped

states imposes a challenge in statistical inference. With K sources and S states per

source, the number of the states for linear-chain HMM is SK . The number of tran-

sitions is as large as SK × SK . The complexity of forward-backward procedure

would become O(TS2K), which is the same as a naive message-passing algorithm

on factorial HMM. This may not be a major problem if the interfering signal is noise,

because a few acoustic states are sufficient to describe the noise statistics, as in [3].

The problem becomes critical in speech separation, in which highly variable content

of speech requires a large number of acoustic states.

4.5 Exact inference of factorial HMM

Exact inference can be performed with dynamic programing when a generalized

graphical model is represented in a tree-structured graph. Junction tree algorithm

is exactly the algorithm based on this idea [100][97]. The mapping, which is referred

to as tree decomposition, can be performed if the graph is chordal [101]. A graph is

chordal if every cycle of four nodes or more has a chord. A chord is an edge con-

nected to the nodes that are not adjacent to each other. In junction tree algorithm,

the procedure to convert a graph into a chordal graph is referred to as triangulation.

The result of tree decomposition is referred to as a junction tree. A junction tree

is a maximum spanning clique tree which satisfies the junction tree property, which

states [102]:

“For each pair U ,V of cliques with intersection S, all cliques on the path

between U and V contains S.”

The forward messages αt = p(s1,t, s2,t,y1...t), α?t = p(s1,t, s2,t−1,y1...t−1), and

the backward messages βt = p(yt+1...T|s1,t, s2,t), β?t = p(yt+1...T|s2,t, s1,t+1) are

derived from the junction tree updates [74]. The detailed derivation of junction tree

algorithm is given in Appendix B. The complexity of junction tree algorithm is

exponential to the size of the largest clique. For single-microphone speech separation
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of K sources, the complexity is O(TKSK+1) [10][74]. For a two-source case, the

update rules for forward messages and backward messages are as follows:

• Forward messages:

α?t =
∑
s1,t−1

p(s1,t|s1,t−1)αt−1 (4.9)

αt = p(yt|s1,t, s2,t)
∑
s2,t−1

p(s2,t|s2,t−1)α?t (4.10)

• Backward messages:

β?t =
∑
s2,t+1

p(yt+1|s1,t+1, s2,t+1)p(s2,t+1|s2,t)βt+1 (4.11)

βt =
∑
s1,t+1

p(s1,t+1|s1,t)β?t . (4.12)

Once the forward message and the backward message are obtained, p(s1,t, s2,t|y) is

computed as

p(s1,t, s2,t|y) = αtβt∑
{s1,t,s2,t} αtβt

. (4.13)

Empirically, also observed in [11], p(s1,t, s2,t|y1...t−1,yt+1...T) seems to achieve

a slightly better objective quality than p(s1,t, s2,t|y) on reconstructed sources, and

similar speech recognition accuracy. A possible reason is the duplicated information

of yt in yt−1 and yt+1 due to frame overlapping. The current state is predicted from the

previous state and the next state, which prevents the abrupt change of reconstructed

source spectrum. The continuity is hence further improved. The heuristic posterior

probability p(s1,t, s2,t|yt−1
1 ,yT

t+1) is expressed as,

p(s1,t, s2,t|yt−1
1 ,yT

t+1) = α̂tβt∑
{s1,t,s2,t} α̂tβt

, (4.14)

where α̂t = ∑
s2,t−1 p(s2,t|s2,t−1)α?t .

4.6 Approximated statistical inference

Approximated inference algorithms are preferred for non-tree-structured graphical

models. Exact computation of posterior probabilities requires a complexity that is

exponential to the size of the largest clique of a junction tree. For factorial HMM, the
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Figure 4.6: The message-passing paths for factorial HMM

size of the largest clique isK+1. When the graphical model becomes more complex,

e.g., with increased number of sources, exact inference would become intractable. In

fact, exact solution is not always necessary, and an approximated solution can be

sufficiently accurate in many cases.

4.6.1 Loopy belief propagation

Loopy belief propagation (LBP) is able to reduce the complexity of temporal infer-

ence of factorial HMM to quadratic time [103]. Loopy belief propagation ignores the

potential loops in a generalized graphical model and performs message-passing as in

a tree-structured graphical model. LBP attains satisfactory results in many graphical

modeling problems [103], including single-microphone speech separation [99].

For a directed graphical model, LBP is performed on the corresponding moral

graph. The messages m(·) and the frame-level posterior probability p({sk,(t)}|y) of

factorial HMM are defined according to the moral graph as shown in Figure 4.6,

mFW (sk,t)← κ
∑
sk,t−1

p(sk,t|sk,t−1)mFW (sk,t−1)mP (sk,t−1)

mBW (sk,t)← κ′
∑
sk,t+1

p(sk,t+1|sk,t)mBW (sk,t+1)mP (sk,t+1)

mP (sk,t)← κ′′
∑

{sj,(t)\j=k}
p(yt|{sk,(t)})

∏
j

mFW (sj,t)mBW (sj,t)

(4.15)
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p({sk,(t)}|y) ≈ κ′′′p(yt|{sk,(t)})
∏
k

mFW (sk,t)mBW (sk,t) . (4.16)

where κ, κ′, κ′′, κ′′′ are normalization constants. The heuristic posterior probability

is approximated as p(s1,t, s2,t|y1...t−1,yt+1...T) ≈ κ′′′
∏
kmFW (sk,t)mBW (sk,t).

A message-passing algorithm may not compute the exact solution due to the po-

tential loops in the graphical model after moralization [104]. Moreover, there is no

guarantee on the convergence of the solution with LBP, suggesting that the algorithm

may fail in some occasions.

4.6.2 Structured mean field method

From graphical modeling point of view, the difficulty of inferring factorial HMM

is due to the coupling of the Markov chains by p(yt|{sk,(t)}) from the mixing pro-

cess. As discussed earlier, the speech dynamics of a source is unlikely to be af-

fected by the mixing process. In designing an approximated inference algorithm,

we aim to to keep the internal structure of each source. As shown in Figure

4.7, we can decouple the chains by replacing the posterior probability distribution

p({sk}|y) with a tractable distribution Q({sk}) = ∏
kQ(sk). This tractable dis-

tribution should be as close as the original p({sk}|y). The similarity between the

distributions can be measured in terms of Kullback-Leibler (KL) divergence D, as it

is the difference between log p(y) and its lower bound L by Jensen’s inequality, i.e.

D(Q({sk})||p({sk}|y)) = log p(y)− L [105],

log p(y) = log
∑
{sk}

Q({sk})
p({sk},y)
Q({sk})

≥
∑
{sk}

Q({sk}) log p({sk},y)
Q({sk})

= L .
(4.17)

Maximizing L is equivalent to minimizing the KL divergence D. By differentiating

L with respect to Q(sk) and evaluating from its zero-gradient point, an expression

of Q(sk) is obtained. Note that the solution is only locally optimal. The mean field

approximation is in general a non-convex problem,

Q(sk) ∝
T∏
t=1

[ ∑
{sj\j=k}

∏
j

p(sj)p(yt|{sk,(t)})
]

×
T∏
t=1

p(sk,t|sk,t−1) .
(4.18)
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Figure 4.7: In structured mean field method, the Markov chains in a factorial HMM

are decoupled with the variation parameters ask,t = p̃(yt|sk,t) resided on the node to

minimize the distance between the approximated distribution and the original distri-

bution represented by the factorial HMM.

Denoting p̃(yt|sk,t) = ∑
{sj\j=k}

∏
j p(sj)p(yt|{sk,(t)}) as the variational param-

eter, Q(sk) ensembles the conditional probability computed from a linear-chain

HMM. This algorithm is referred to as structured mean field method in the literature

[8], as p̃(yt|sk,t) = Ep(∏
sj\j=k

p(sj))p(yt|{sk,(t)}). The variational parameter p̃(yt|sk,t)

can be considered as a mixture model, with
∏
j\j=k p(sj) as the component weight

and p(yt|{sk,(t)}) as a mixture component. Specifically when p(yt|{sk,(t)}) is mod-

eled with multivariate Gaussian distribution, p̃(yt|sk,t) is a Gaussian mixture model

which is widely used in automatic speech recognition. Forward-backward algorithm

can be applied to infer individual chains efficiently with quadratic complexity for the

frame-level marginal probabilities Q(sk,t). Note that for speech application, p(sj)

can be substituted with the prior probability of acoustic states. As there is no param-

eter dependency across different Markov chains, a single iteration is sufficient for

Q(sk,t), which is the major distinction from loopy belief propagation. The outline of

this algorithm is given in Algorithm 4.1.
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Algorithm 4.1 Structured mean field method for single-microphone speech separa-

tion with factorial HMM
function FHMM_SMF(y,{AMk})

for t = 1 : T do

Compute p(yt|{sk,(t)}),∀{sk} = {s1 . . . sK}.

end for

for t = 1 : T do

for k = 1 : K do

Compute p̃(yt|sk,t) = Ep(∏
j\j=k p(sj))

p(yt|{sk,(t)}).

Perform forward-backward on Q(sk) for p̂(sk,t).

end for

end for

for t = 1 : T do

p({sk,(t)}|yt) =
∏
kQ(sk,t),∀{sk} = {s1 . . . sK}

end for

return p({sk,t}|yt),∀{sk} = {s1 . . . sK}, t

end function

While the complexity of temporal inference is reduced to quadratic in the struc-

tured mean field method, the complexity of acoustic inference with the MIXMAX

model, i.e. the complexity of computing p(yt|{sk,(t)}), is still exponential to the

number of sources. The acoustic inference would take up considerable run time dur-

ing the separation process, but the overall complexity has reduced from O(SK+1) to

O(SK) with the approximated inference algorithms. Parallelizing the computation

of p(yt|{sk,(t)}) helps to speed up the the exact acoustic inference. The structured

mean field method further promotes parallelization of the inference algorithm of fac-

torial HMM. As the Markov chains are decoupled, forward-backward algorithm can

be performed independently for each chain. The process can be parallelized straight-

forwardly. If limited computational resource is available, a further approximation to

acoustic inference is possible. A linear-time algorithm is developed to approximate

the acoustic inference in [84]. However, speech separation performance is sacrificed.
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4.7 Experiments

Speech separation experiments with factorial HMM are performed. The purpose of

the experiments is to define a factorial HMM baseline for the later speech separation

development. The signal-to-signal ratio of the mixtures is set to 0 dB. The log-spectra

of the speech sources are estimated with MMSE. The waveforms are generated using

the phase spectrum of the mixture by the overlap-add method. The experiments are

performed with speaker-dependent acoustic models of 16, 128 and 512 states.

The experiments are performed with both the exact and approximated inference

algorithms. Three inference algorithms: junction tree algorithm (JTREE) [97], loopy

belief prorogation (LBP) [99] and structured mean field method (SMF) are investi-

gated. We also compare the performance of using GMM modeling approach and the

MIXMAX model for modeling the state-level interaction. For GMM modeling ap-

proach, two sets of training data, namely ENTIREDATA with all of the 200k training

mixtures, and DATA_1% in which only 2k mixtures (about 1% of the entire set) are

prepared for model training. For the MIXMAX model, we further include the speech

separation results without speech dynamics. The results help to verify the importance

of speech dynamics in speech separation.

The key results in terms of PESQ and WER for the MIXMAX model and

ENTIREDATA with different inference algorithms are shown in Figure 4.8. The re-

sults are averaged over 2500 trials with different speech mixtures of two speakers.

4.7.1 Comparison the inference methods

The separation performance of different inference algorithms are on the same trend

across the MIXMAX model and the ENTIREDATA. The structured mean field (SMF)

achieves the similar PESQ and WER as the junction tree algorithm (JTREE). SMF

also achieves the similar performance as LBP. For ENTIREDATA, all three inference

algorithms achieve similar PESQ. In terms of recognition accuracy, it is natural that

junction tree algorithm achieves the lowest word error rate (WER) since it is an ex-

act algorithm. However, the relative difference of WER between the junction tree

algorithm and the structured mean field method is only 4% in the worst case, and on
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Figure 4.8: PESQ and WER (%) of the three inference algorithms
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Table 4.1: The complexity of the temporal and acoustic inference and the averaged

runtime of the three algorithms with 512 acoustic states, where T,K, S are the num-

ber of frames, sources and states respectively.

Algorithm Temporal Acoustic Runtime (s)

JTree O(TKSK+1) O(TSK) 489.54

LBP O(TKS2) O(TSK) 137.42

SMF O(TKS2) O(TSK) 136.57

average it is less than 2%. The separation results of SMF is slightly better than LBP

in terms of WER, although the relative improvement is small (overall less than 4%

in WER in both settings). We conclude that the choice of inference algorithms is not

a significant factor on the separation performance of factorial HMM.

The complexity of the algorithms and the average runtime for separating one

speech mixture in the case of 512 acoustic states are shown in Table 4.1. The runtime

is measured on a Linux machine, running on an Intel Core 2 Duo 3 GHz processor,

with single CPU core allocated to the program. The runtime of SMF is only one-third

of JTREE, and about the same as LBP. Considering the saving of the runtime and the

small trade-off in accuracy, the results suggest that an exact inference algorithm is

not necessary for a practical speech separation system. In the following contents,

unless otherwise specified, SMF method is adopted for approximated inference of

factorial HMM.

4.7.2 The choice of state-level interaction models

Figure 4.8 also reveals that when there are sufficient amount of training data, the em-

pirical distribution from ENTIREDATA achieves slightly better overall performance

than the MIXMAX model. The absolute improvement of PESQ is small (<0.1),

but there is WER reduction (8.4% and 6.6% relatively with SMF) for 128 and 512

states respectively. For the case with 16 acoustic states, the relative WER reduction

is less significant (3.5% maximum). This may indicate the performance saturation of

factorial HMM. Nevertheless, the overall separation results of the MIXMAX model
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Table 4.2: Speech separation results in terms of PESQ and WER (%) with the MIX-

MAX model, ENTIREDATA and DATA_1%

PESQ WER PESQ WER PESQ WER PESQ WER 

MIXMAX 2.39 8.16 2.65 3.69 2.55 3.83 2.53 5.23

Data_1% 2.01 19.03 2.42 6.83 2.26 9.42 2.23 11.76

EntireData 2.49 7.55 2.71 3.42 2.62 3.70 2.61 4.89
MIXMAX 2.25 11.41 2.53 4.94 2.34 6.43 2.37 7.59

Data_1% 2.30 11.91 2.54 5.24 2.37 6.15 2.41 7.77

EntireData 2.34 10.62 2.58 4.63 2.42 5.61 2.45 6.95
MIXMAX 1.96 23.36 2.27 9.59 1.90 19.08 2.04 17.34

Data_1% 2.02 23.58 2.29 9.47 1.93 18.96 2.08 17.34

EntireData 2.02 23.48 2.28 9.54 1.93 18.79 2.08 17.27

512

128

16

S
M (1) + M (2) M (17) +  F (18) F (24) + F (25) Overall

Table 4.3: The separation results of different state-level interaction models in terms

of BSS_EVAL (SDR, SAR, SIR)

SDR SAR SIR SDR SAR SIR SDR SAR SIR SDR SAR SIR
MIXMAX 6.17 9.63 9.54 9.75 12.13 14.26 8.93 11.79 12.66 8.28 11.19 12.15
Data_1% 4.13 8.76 6.76 8.69 11.00 13.36 7.70 10.57 11.48 6.84 10.11 10.53

EntireData 6.36 10.39 9.14 9.96 12.40 14.34 9.21 12.17 12.79 8.51 11.65 12.09
MIXMAX 5.62 9.09 9.02 9.03 11.32 13.92 8.03 10.75 12.02 7.56 10.39 11.65
Data_1% 5.55 9.57 8.44 9.04 11.35 13.86 8.18 10.95 12.06 7.59 10.62 11.45

EntireData 5.79 9.83 8.63 9.26 11.59 14.03 8.34 11.15 12.18 7.80 10.86 11.62
MIXMAX 4.26 8.27 7.34 7.78 10.09 12.85 5.73 8.69 9.69 5.92 9.01 9.96
Data_1% 4.25 8.83 6.88 7.92 10.32 12.73 5.85 8.92 9.64 6.01 9.35 9.75

EntireData 3.99 8.47 6.71 7.72 10.19 12.50 5.48 8.57 9.28 5.73 9.08 9.50

512

128

16

M (1) + M (2) M (17) + F (18) F (24)+ F (25) Overall

are still comparable to those of the GMM modeling approach. There are fewer re-

quirements on training data for the MIXMAX model. It only requires source training

data for the acoustic model, which is also the prerequisite of the GMM modeling ap-

proach. The slightly lower performance of the MIXMAX model can be considered

as the trade-off for the convenience of model preparation.

When there are insufficient training data, the GMM modeling approach performs

poorly. The separation results of DATA_1% are shown in Table 4.2. The case with

512 acoustic states is completely disastrous, with double of WER compared with

the MIXMAX model. For the case with 128 acoustic states, the overall WER is

slightly worsen (-2.3%). For the case with 16 acoustic states, the results are nearly

the same as ENTIREDATA. This confirms that the GMM modeling approach requires
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Chapter 4. Single-microphone speech separation with factorial HMM

Table 4.4: PESQ and WER (%) of the reconstructed speech sources with or without

speech dynamics during speech separation. Factorial HMM is denoted as FHMM.

The setting without speech dynamics is denoted as PRIOR

PESQ WER PESQ WER PESQ WER PESQ WER 

Prior 2.10 10.30 2.57 4.03 2.33 5.33 2.33 6.55

FHMM 2.39 8.16 2.65 3.69 2.55 3.83 2.53 5.23

Prior 1.97 13.45 2.42 5.44 2.15 8.31 2.18 9.07

FHMM 2.25 11.41 2.53 4.94 2.34 6.43 2.37 7.59

Prior 1.70 26.90 2.14 11.46 1.72 21.76 1.85 20.04

FHMM 1.96 23.36 2.27 9.59 1.90 19.08 2.04 17.34

M (1) + M (2) M (17) +  F (18) F (24) + F (25) Overall

512

128

16

a significant amount of training data with the increased number of acoustic states.

By further analyzing the separation results with the BSS_EVAL metrics (Table

4.3), the higher SAR of ENTIREDATA reveals that the improvement is mainly due

to the reduction of artifact in source reconstruction. Although the MIXMAX model

performs better in suppressing the inferencing components with higher SIR, it is

not enough to compensate the negative effects of more reconstruction artifacts, as

indicated by the lower SDR.

4.7.3 Speech separation with or without speech dynamics

We also include the separation results without using speech dynamics in Table 4.4.

The results clearly show that applying speech dynamics significantly and consistently

improves speech separation performance in terms of PESQ and WER. Further inves-

tigation on the results of individual speaker pairs supports the claim that applying

speech dynamics helps to resolve the ambiguity due to the close pitch ranges of the

speakers. The Male + Male set has the closest pitch range between two speakers.

The improvement in terms of PESQ and WER is the largest, followed by the Female

+ Female set. The improvement of Male + Female set, in which their pitch ranges

are generally non-overlapped, is the smallest.

The results in terms of BSS_EVAL metrics (SDR, SAR, SIR) are shown in Table

4.5. The metrics reveal that applying speech dynamics helps to reduce the recon-

struction artifacts and improve suppression of the frequency components of the inter-
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Chapter 4. Single-microphone speech separation with factorial HMM

Table 4.5: BSS_EVAL metrics (SDR, SAR, SIR) of the reconstructed speech sources

with (FHMM) or without (PRIOR) speech dynamics

SDR SAR SIR SDR SAR SIR SDR SAR SIR SDR SAR SIR
Prior 5.31 8.70 8.80 9.50 11.98 13.87 8.14 11.04 11.86 7.65 10.57 11.51

FHMM 6.17 9.63 9.54 9.75 12.13 14.26 8.93 11.79 12.66 8.28 11.19 12.15
Prior 4.86 8.25 8.38 8.73 11.12 13.47 7.27 10.04 11.30 6.95 9.80 11.05

FHMM 5.62 9.09 9.02 9.03 11.32 13.92 8.03 10.75 12.02 7.56 10.39 11.65
Prior 3.51 7.43 6.74 7.37 9.77 12.35 4.87 8.29 8.42 5.25 8.49 9.17

FHMM 4.26 8.27 7.34 7.78 10.09 12.85 5.73 8.69 9.69 5.92 9.01 9.96

512

128

16

M (1) + M (2) M (17) + F (18) F (24)+ F (25) Overall

fering sources. The metrics further confirm the usefulness of speech dynamics on the

speaker set with close pitch ranges. For Male + Male set with 512 acoustic states,

SAR has improved by nearly 1 dB when speech dynamics is applied. In contrast,

SAR of Male + Female set is only slightly improved with speech dynamics.

4.7.4 Samples of reconstructed speech frames

Figure 4.9 shows the speech sources recovered from the mixture in Figure 3.6c. The

harmonicity of the sources are generally recovered. However, some distortions are

still observed. The harmonic components at 2500-3000 Hz in the female source

are lost. At some frequency components, the interfering sources are not attenuated

sufficiently, such as the points marked with red circle for female speaker, and the

points marked with brown square for male speaker.
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(b) Recovered source 1 (Male)
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(c) Recovered source 2 (Female)

Figure 4.9: Speech frames in spectral domain of the reconstructed (a) male sources

(b) female sources by factorial HMM with the MIXMAX model
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Speech separation with conditional

random fields

5.1 Direct modeling and conditional random fields

5.1.1 Direct modeling for speech separation

In the previous chapter, the posterior probability p({sk}|y) is obtained from the joint

probability p({sk},y) by a generative approach. Since the observation is always

available, it is more straightforward to model p({sk}|y) directly from training data.

Direct modeling is an inherently discriminative model. It estimates the posterior

probability p({sk}|y) without involving the joint probability p({sk},y). Compared

with a generative model estimated with the maximum-likelihood criterion, a dis-

criminative model is less sensitive to model mis-specification [106][107]. A well-

matched generative model has good performance with a small amount of training

data [108][109][110]. A discriminative model generally achieves better classification

results for real-world data such as speech, where model mis-specification is common.

For single-microphone speech separation, several limitations lead to model mis-

specification. They include the finite number of states in the acoustic models, and

the use of approximated interaction model for p(yt|{sk,(t)}) in factorial HMM. When

p(yt|{sk,(t)}) is modeled with training data, inaccurate distribution is often assumed

to allow tractable maximum likelihood parameter estimation. Moreover, insufficient
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Chapter 5. Speech separation with conditional random fields

training data can be a problem in both generative and discriminative models, as dis-

cussed in Section 4.7.2.

For simplicity, let (s,y) be the training data set, where {sk} is denoted by s. The

problem is the estimation of p(s|y). The distribution should be consistent to the suf-

ficient statistics of (s,y). There are a few principles accounting for the estimation.

The principle of minimum cross-entropy states that, given the constraints (from suf-

ficient statistics and other knowledge) and a prior distribution of the class labels p(s),

we should choose p(s|y) with the least cross-entropy
∑

s p(s|y) log p(s|y)
p(s) [111]. If

p(s) is a uniform distribution, the principle of minimum cross-entropy is equivalent

to the principle of maximum entropy [112]. The estimation of p(s|y) is formulated

as an entropy maximization problem,

maximize
p

H(p(s|y))

subject to E{fi(s,y, t)} = µi, ui ∈ µ,∀i∑
s
p(s|y) = 1,

p(s|y) ≥ 0, ∀p(s|y) ∈ p

(5.1)

where H(p(s|y)) = −∑s p(s|y) log p(s|y) is the Shannon entropy, fi(s,y, t) is the

ith feature function or sufficient statistics associated with y and s at time instant t, and

µ is a set of mean parameters. If the problem is strictly feasible, i.e., p(s|y) > 0, the

solution would be a member of the exponential family [8]. The distribution p(s|y) is

modeled as a log-linear model,

p(s|y) = exp∑t

∑
i λifi(s,y,t)
Z(y) (5.2)

which is known as the maximum entropy probability distribution [8]. If the exact

canonical parameters λi are evaluated, this distribution is consistent with the suffi-

cient statistics of y and s. The exponential terms exp(λifi(s,y,t)) are referred to

as potential functions. The normalization term Z(y) = ∑
s exp∑t

∑
i λifi(s,y,t) is

referred to as the partition function.

The probability distribution in Equation 5.2 can be represented by an undirected

graphical model. Since the distribution is conditioned on the observations, this graph-

ical model is a conditional random field (CRF) [15].
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Chapter 5. Speech separation with conditional random fields

5.1.2 Dynamic conditional random fields

As discussed in Section 4.4, applying linear-chain CRF is basically infeasible for

single-microphone speech separation. To improve the tractability, factorial struc-

ture is adopted. Figure 5.1 illustrates the CRF applied to a two-source case. It is

not a linear-chain graphical structure. The graphical structure also repeats over the

time axis. In [113], this type of CRF is referred to as dynamic conditional random

field (DCRF)1. Since the conditional independence of {sk,(t)} on yt is generally in-

valid, edges connecting the nodes of different sources are used to model this potential

dependence. We further elaborate the feature functions into the state feature func-

tions fα(·) which describe the sufficient statistics between the states of the individual

sources and the observations, and the edge feature functions fβ(·) which describe the

co-occurrence of the states, either within the same sources or across different sources.

By defining the corresponding λα and λβ , we rewrite (5.2) as

p({sk}|y) = 1
Z(y) exp

(∑
k

∑
t

∑
α

λαfα(sk,t, yt)
)

× exp
( ∑

(a,b)∈E

∑
β

λβfβ(sa, sb)
) (5.3)

which can define arbitrary graphical structures. The complexity of the modeling

process is controlled by the corresponding graphical structure and the choice of the

state and edge feature functions, depending on the amount of training data and the

nature of the problem.

5.1.3 Relationship with factorial HMM

The DCRF described in Section 5.1.2 is a moral graph of factorial HMM. Given the

same graphical structure after moralization, there exists a set of canonical parameters

and feature functions of a DCRF corresponding to the parameters of a factorial HMM

that are discriminative trained with maximum mutual information (MMI) criterion

for the same posterior probability p({sk}|y) [17][16][114][115],

1We specifically refer DCRF to the type of CRF with the same graphical structure as the moral

graph of factorial HMM.
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)(βf

)(αf

Figure 5.1: An example of DCRF for single-microphone speech separation with two

sources. DCRF is defined according to an undirected graphical model. Examples of

a state feature function fα(·) and an edge feature function fβ(·) are highlighted.

p({sk}|y) =

∏T
t=1 p(yt|{sk,(t)})×

[∏T
t=1

∏K
k=1 p(sk,t|sk,t−1)

]
∑
{sk}

∏T
t=1 p(yt|{sk,(t)})×

[∏T
t=1

∏K
k=1 p(sk,t|sk,t−1)

] . (5.4)

We may consider the parameter estimation for DCRF with the conditional

maximum-likelihood criterion as a discriminative training technique for factorial

HMM with the MMI criterion. However, there are some fundamental differences.

Parameter estimation with the MMI criterion is a constrained optimization prob-

lem. The terms (yt|{sk,(t)}) and p(sk,t|sk,t−1) in Equation 5.4 are constrained to be

valid probability distributions (sum to one) at frame-level. Computing the denomi-

nator also requires the exploration of the whole search space. In automatic speech

recognition research, the use of extended Baum-Welch algorithm and word lattices

have been proposed to solve this problem [116][117][115]. The loopy graphical

structure of factorial HMM further increases the difficulty of discriminative mod-

eling with MMI criterion.

On the contrary, parameter estimation of DCRF is an unconstrained optimization

problem. Each exponential term in Equation 5.3 is not necessary sum to one. Since
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the problems are constrained differently, the parameters in factorial HMM with MMI

criterion do not necessarily maximize the DCRF objective function with the cor-

responding feature functions. CRF requires the partition function to normalize for

a valid probability distribution on sequence level. Conventional optimization tech-

niques such as gradient descent can be applied. The gradient of the partition function

can be computed effectively with forward-backward algorithm in a tree-structured

graphical model, leading to a convex optimization problem for parameter estimation.

In a generalized graphical model, there are some effective approximations for the

gradient, although the convexity is generally lost.

Another interpretation of the discriminative capability of CRF is the possibility of

integrating different types of observations or “evidence” to improve the classification

performance. In HMM, the observations and the underlying labels are associated

with the emission probability p(ot|st) = p(ot,1, · · · , ot,f , · · · , ot,F |st), where F is

the dimension of the observation vectors. When F is increased, the computation of

p(ot,1, · · · , ot,f , · · · , ot,F |st) becomes challenging. Conditional independence of the

observations on the class labels, i.e., p(ot,1, · · · , ot,f , · · · , ot,F |st) = ΠF
f p(ot,f |st), is

assumed, which is an example of model mis-specification. Although de-correlation

methods such as principle component analysis (PCA) [118] may help to satisfy the

conditional independent assumption, model mis-specification is still unavoidable.

In CRF, an observation is modeled as a linear combination of the feature func-

tions. The feature functions do not necessarily correspond to the model parameters of

HMM. The assumption of conditional independence is also not necessary. With ap-

propriate feature functions, both continuous-valued and discrete-valued observations

are combined in the log-linear terms. This leads to a potential advantage of flexible

incorporation of different types of observations which are dependent to each other.

Preliminary experiments on integrating different observations for single-microphone

speech separation were performed in [80]. Although the improvement of the sepa-

ration performance is marginal, this type of observation integration is shown to be

feasible. Moreover, normalization of CRF at sequence level allows acoustic and tem-

poral inference to be performed in a unified manner, with their contributions rescaled

by the corresponding canonical parameters.
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5.2 Statistical inference of conditional random

fields

5.2.1 Parameter estimation of DCRF

The canonical parameters {λα} and {λβ} are estimated by minimizing the

negative conditional log-likelihood of the correct state sequences. Let Λ =

[ λα1 · · · λαN λβ1 · · · λβM ]T be a vector of canonical parameters, with M

and N are the total number of the state and the edge feature functions respectively.

The objective function for parameter estimation is written as,

L(Λ) =−
R∑
r=1

[∑
k

∑
t

∑
α

λαfα(s(r)
k,t , y

(r)
t, )

+
∑

(a,b)∈E

∑
β

λβfβ(s(r)
a , s

(r)
b )− logZ(y(r))

]
+ c||Λ||22 ,

(5.5)

where r is the index of R training instances, c is the regularization factor and ||Λ||22
is the regularization term. The reference state sequences are obtained during HMM

acoustic model training as described in Chapter 2. The minimization of L does not

have a closed-form solution. The optimization is therefore performed by numeri-

cal optimization techniques such as gradient descent. The gradient descent method

requires the gradient ∇Λ logZ(y(r)),

∇Λ logZ(y(r)) =



Eλα1
(fα1(·))
...

EλαN (fαN (·))

Eλβ1
(fβ1(·))
...

EλβM (fβM (·))


. (5.6)

The gradients for λα and λβ for each training sample are expressed as

∂L(r)

∂λα
= −

∑
t

∑
k

fα(s(r)
k,t , y

(r)
t, ) +

∑
t

∑
k

∑
sk,t

Bk,t(s(r)
k,t)fα(s(r)

k,t , y
(r)
t, ) + 2cλα

∂L(r)

∂λβ
= −

∑
(a,b)∈E

fβ(s(r)
a , s

(r)
b ) +

∑
(a,b)∈E

∑
{sa,sb}

Bab(s(r)
a , s

(r)
b )fβ(s(r)

a , s
(r)
b ) + 2cλβ ,

(5.7)
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where Bk,t(sk,t) = p(sk,t|y) and Bab(sa, sb) = p(sa, sb|y) are the the marginal prob-

abilities. The marginal probabilities are subject to local marginalization constraints,

i.e.,
∑
sa Ba(sa) = 1,

∑
sa Bab(sa, sb) = Bb(sb) and

∑
sb Bab(sa, sb) = Ba(sa). Since

logZ(yr) and its gradient ∇Λ logZ(yr) are updated at each iteration, approximated

inference is a trade off of accuracy and tractability in the training process. The neg-

ative log-partition function − logZ is approximated with loopy belief propagation

(LBP) as [104],

− logZ

≈
∑

(a,b)∈E

∑
{sa,sb}

Bab(sa, sb)[logBab(sa, sb)− log η(sa, sb)]

−
∑
a

(qa − 1)
∑
sa

Ba(sa)[logBa(sa)− log Φ(sa, ya)] ,

(5.8)

where qa is the number of neighbours of node a and η(sa, sb) =

Φ(sa, sb)Φ(sa, ya)Φ(sb, yb). The edge potential function Φ(sa, sb) and the state po-

tential function Φ(sa, ya) are computed from the related edge feature functions and

state feature functions. Loopy belief propagation is an attempt to solve the Bethe

variational problem [104],

logZ = sup
µ
{ΛTµ− (−HBethe(B))} , (5.9)

where µ = [ µα1 · · · µαN µβ1 · · · µβM ]T is a vector of mean parameters of

the corresponding feature functions. The mean parameters are defined as µα =∑
a

∑
sa Ba(sa)fα(sa, ya) and µβ = ∑

(a,b)∈E
∑
{sa,sb} Bab(sa, sb)fβ(sa, sb). The Bethe

entropy HBethe(B) is defined as [104],

HBethe(B) =
∑
a

(qa − 1)
∑
sa

Ba(sa) logBa(sa)

−
∑

(a,b)∈E

∑
{sa,sb}

Bab(sa, sb) logBab(sa, sb) .
(5.10)

There is no guarantee on the convergence of loopy belief propagation solution. How-

ever, from the experience of factorial HMM for single-microphone speech separation,

the convergence of loopy belief propagation is a minor problem on speech separation

performance. If loopy belief propagation converges, the marginals B = {Ba,Bab}

are the zero gradient points of the Bethe variational problem and − logZ is re-
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ferred to as the Bethe free energy [119]. Since logZ and negative Shannon en-

tropy −H(B) is a conjugate function pair, LBP is considered as a variational method

[105][8]. However, the Shannon entropy is not the same as the Bethe entropy, i.e.,

H(B) 6= HBethe(B) except for a tree-structured graphical model. Even when loopy

belief propagation converges, the approximated logZ is neither a upper-bound nor

a lower-bound of the exact solution. As the convexity is lost, a suitable numerical

optimization method is thus required.

5.2.2 Computing the posterior probabilities

The marginals Bk,t(sk,t) and pairwise marginals Bab(sa, sb) are required in both

parameter estimation and the computation of the frame-level posterior probability

p({sk,(t)}|y). Recall that the posterior probability p({sk}|y) is expressed with po-

tential functions Φ(·),

p({sk}|y) = 1
Z(y)

∏
t

Φ(yt, {sk,(t)})
∏
k

Φ(sk,t, sk,t−1) . (5.11)

The transition potential functions Φ(sk,t, sk,t−1) for temporal inference are computed

from the edge feature functions within the same source. For acoustic inference,

Φ(yt, {sk,(t)}) = ∏
k Φ(yt, sk,t)

∏
u,v∈K\u=v Φ(su, sv) are obtained from clique factor-

ization, where Φ(su, sv) are the cross-chain edge potential functions and Φ(yt, sk,t)

are the state potential functions. The clique size of each potential function is only

two, leading to quadratic complexity with approximated inference algorithms such as

loopy belief propagation. For a two-source case, the acoustic inference is expressed

as Φ(yt, s1,t, s2,t) = Φ(yt, s1,t)Φ(yt, s2,t)Φ(s1,t, s2,t).

Loopy belief propagation in CRF is similar to that of in factorial HMM. Figure

5.2 shows the propagation of messages in an undirected graph. Let mab(sb) be a

message passing from node Sa to node Sb about a state variable sb in node Sb. Belief

propagation performs the following updates,
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)( aea sm

)( ada sm

Figure 5.2: Loopy belief propagation in a general undirected graphical model. Note

that every node is conditioned by observation y which is not shown in the figure

mab(sb)←κ
∑
sa

Φ(sa, sb)Φ(sa, ya)
∏

j∈N(a)\b
mja(sa)

Ba(sa)←κ′Φ(sa, ya)
∏

j∈N(a)
mja(sa)

Bab(sa, sb)←κ′′η(sa, sb)
∏

j∈N(a)\b
mja(sa)

∏
k∈N(b)\a

mkb(sb)

(5.12)

where N(a)\b denotes set of nodes neighbouring to Sa except Sb and κ, κ′, κ′′ are

normalization constants.

Given the marginals Bk,t(sk,t) of each sources k and B(u,t)(v,t)(su,t, sv,t) for u, v ∈

K, u 6= v covering all the sources, p({sk,(t)}|y) can be approximated by B({sk,(t)})

as [8],

B({sk,(t)}) =
∏
u,v∈K,u6=v B(u,t)(v,t)(su,t, sv,t)∏

k Bk,t(sk,t)|E|−1 , (5.13)

where |E| is the number of connections to other sources, which is equal to |K| − 1.

For a two-source case, the posterior probability p(s1,t, s2,t|y) = B(1,t)(2,t)(s1,t, s2,t) is

the pairwise marginal across different sources at the same time instant. When there

are more than two sources, since the marginals are only approximations due to the

loops in the graphical structure, p({sk,(t)}|y) can be simply approximated as

p({sk,(t)}|y) ≈
∏
k

B(k,t)(sk,t) . (5.14)
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Table 5.1: Speech separation results of DCRF with L-BFGS and ASGD by soft-mask

filtering

(a) BSS_EVAL results

SDR SAR SIR SDR SAR SIR SDR SAR SIR SDR SAR SIR

L-BFGS 6.19 9.83 9.37 9.58 11.96 14.22 8.81 11.57 12.74 8.19 11.12 12.11

ASGD 6.32 10.07 9.35 9.78 12.19 14.28 8.99 11.74 12.91 8.36 11.33 12.18

L-BFGS 5.78 9.29 9.14 8.86 11.23 13.82 8.11 10.75 12.25 7.58 10.43 11.74

ASGD 5.87 9.49 9.10 9.05 11.42 13.98 8.27 10.96 12.35 7.73 10.62 11.81

M (1) + M (2) M (17) + F (18) F (24)+ F (25) Overall

512

128

M (1) + M (2) M (17) + F (18) F (24)+ F (25) Overall

L-BFGS 2.41 2.67 2.58 2.56

ASGD 2.48 2.72 2.63 2.61

L-BFGS 2.37 2.58 2.43 2.46

ASGD 2.41 2.62 2.46 2.50

512

128

(b) PESQ results

5.2.3 Averaged stochastic gradient descent

In [113], the canonical parameters of DCRF are estimated by limited-memory Broy-

den–Fletcher–Goldfarb–Shanno method (L-BFGS), which is a quasi-Newton method

[120]. We opt for the averaged stochastic gradient descent (ASGD) [121][122] as our

optimization algorithm. During our development of the CRF formulations for single-

microphone speech separation, we note that the parameters estimated by ASGD can

achieve better separation performance in terms of objective quality measures, when

compared with the parameters estimated by L-BFGS. We include the comparison

of [81] in Table 5.1 for reference. Note that the source reconstruction is imple-

mented with soft-mask filtering [92]. Our separation performance presented at the

end of this Chapter has since been improved significantly with the estimators from

the MIXMAX model introduced in Chapter 3.

The outline of the algorithm is given in Algorithm 5.1. ASGD has been suc-

cessful in parameter estimation of CRFs [123][17]. The use of ASGD is justified

by the following reasons. In speech processing, the training data contain a lot of

redundancies. By updating parameters with each training sample, ASGD effectively
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makes use of these redundancies to reduce the number of iterations. Due to the non-

convexity with loopy belief propagation, we expect that ASGD helps to escape away

from local extrema for better optimal points due to its stochastic nature. By choosing

a suitable step-size and averaging the estimated parameters, the convergence rate of

ASGD further improves [121]. We have applied the following step-size η(m) accord-

ing to [124],

η(m) = η(0)

(1 + cmη(0)

R
)0.75

(5.15)

where η0 is the initial step-size,m is the current iteration count, c is the regularization

factor and R is the number of training samples. Let a(m)
(·) be the averaged parameters.

By initializing a(0)
(·) = 0, the averaged parameters is simply

a
(m)
(·) = (1− 1

m
)a(m−1)

(·) + 1
m

Λ(m)
(·) . (5.16)

5.3 The choice of feature functions

5.3.1 By sufficient statistics of observations

Conditional random field provides the flexibility in choosing suitable feature func-

tions. The choice is critical to speech separation performance. When designing state

feature functions fα(·), a straight-forward way is to associate the acoustic states with

speech mixture observations. For example, a state feature function is designed for

dimension f of observation yt and state sk,t at frame index t,

f (M1)
αi,f

(sk,t, yt,f ) =


yt,f , if sk,t = i

0 otherwise

f (M2)
αi,f

(sk,t, yt,f ) =


(yt,f )2 , if sk,t = i

0 otherwise

where i denotes the specific state in the acoustic model, and (M1) and (M2) label the

feature functions. The two feature functions correspond to the sufficient statistics for

the first and second moments of the observations. For discrete-value observations,
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Algorithm 5.1 Averaged stochastic gradient descent for CRF parameter estimation

Input: {y}, {sk}, η(0), c

Output: Λ,a . Stacked for element-wise operation

function ASGD({y},{sk},η(0),c)

m = 1 . Counter for parameter update

for epoch = 1:MaxItr do . MaxItr: Maximum number of iteration

rndOrder=randPerm(1:R) . Randomize the order of the training instances

for i = 1:R do

r=rndOrder(i)

[f,g]=Loglikelihood_and_gradient(y(r),sk(r),Λ) . g = ∇Λ logZ(y(r))

g = g + c∇Λnorm(Λ) . norm(Λ): the norm function

sumLoss = sumLoss+ f . accumulate the conditional log-likelihood

η=adjustStepSize(η(0),c,m, R)

Λ = Λ− ηg

a = (1− 1
m)a + 1

mΛ

m = m+ 1

end for

histSumLoss(epoch) = sumLoss . Store the log-likelihood

if epoch < period&& sumLoss < histSumLoss(epoch− period) then

break . Reach a (local) mimimun

end if

sumLoss = 0

end for

return Λ,a

end function
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the sufficient statistics are represented with count-based feature functions,

f (COUNT )
αi,f

(sk,t, yt,f ) =


1 , if sk,t = i

0 otherwise
.

5.3.2 With non-linear transformations

Non-linear transformation such as a Gaussian kernel K(u) = 1√
2πe
− 1

2u
2

and a sig-

moid function G(u) =
´ u
−∞K(v)dv can be incorporated with the feature functions.

Given the multivariate Gaussian emission probability density for each acoustic state

i with mean µi,f and standard derivation σi,f at dimension f , the following state

feature functions are defined,

f (KN)
αi,f

(sk,t, yt,f ) =


1
σi,f

K(yt,f−µi,f
σi,f

) , if sk,t = i

0 otherwise

f (SM)
αi,f

(sk,t, yt,f ) =


G(yt,f−µi,f

σi,f
) , if sk,t = i

0 otherwise
.

When yt and sk,t are modeled in log-spectrum, the kernel 1
σi,f

K(yt,f−µi,f
σi,f

) is equiva-

lent to p(xk,t,f = yt,f |sk,t = i), and the sigmoid function G(yt,f−µi,f
σi,f

) is equivalent to

p(xk,t,f < yt,f |sk,t = i). They carry significant physical meanings according to the

MIXMAX model [77][78]. The non-linear transformations map the speech mixture

observations from real space R to probability space [0, 1]. We consider the applica-

tion of these transformations as the revival of the idea of integrating initial separation

results from factorial HMM in CRF formulations [80].

5.3.3 Defining edge features

For the edge feature functions, a count-based indicator is defined to collect the statis-

tics of the state pair connected by an edge (a, b),

fβi,j(sa, sb) =


1 , if sa = i and sb = j

0 , otherwise
(5.17)

65



Chapter 5. Speech separation with conditional random fields

where i, j denote the states of the corresponding acoustic models. The state pairs

sa and sb can be within the same source with frames a and b adjacent to each other.

This type of edge feature functions effectively models the transitions between the

states along the time axis. The cross-chain edge feature functions correspond to the

occurrence of a state pair of different sources but at the same time instant, as appears

in Figure 5.1. They are part of the potential functions for acoustic inference in DCRF.

5.4 Experiments on DCRF

Speech separation performance with DCRF formulations is evaluated. Speech sepa-

ration and automatic speech recognition experiments are carried out by following the

same procedures in Chapter 4. The signal-to-signal ratio of mixtures is also set to

0 dB. The DCRF formulations are compared with the factorial HMM baseline with

the GMM modeling approach. The GMM modeling approach achieves the best sep-

aration results in the previous experiments. The GMM modeling approach is a more

appropriate baseline as both approaches require parameter estimation from training

speech mixtures.

The results from factorial HMM ENTIREDATA and DATA_1% inferred with

structured mean field (SMF) method are compared with those from DCRF formu-

lations. Recall that ENTIREDATA is trained from 100 times more training data (200k

training mixtures) than DATA_1%. For DCRF, the parameters are estimated from the

same training set as DATA_1%, i.e., with 2k training mixtures. Statistical inference

is performed with loopy belief propagation (LBP). Note that SMF performs slightly

better than LBP in factorial HMM. The experiment setup is thus slightly favorable to

factorial HMM.

Table 5.2 shows the configuration of different DCRF formulations in our experi-

ments. DCRF formulations follow the same set of edge feature functions as defined

in Section 5.3.3. To further demonstrate the benefits of integrating different obser-

vations, the 39-dimensional MFCC feature vectors from the speech mixtures are in-

cluded as additional observations. MFCC observations and the log-spectra are in fact

highly dependent. To apply non-linear transformations, the mean and the diagonal
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Table 5.2: The settings of CRF formulations for single-microphone speech separa-

tion. State feature functions suffixed with “log” correspond to log-spectrum observa-

tions, “mfcc” correspond to MFCC observations of the speech mixtures

ID State feature functions applied

DCRFMAG M1-LOG, M2-LOG

DCRFTRANS KN-LOG, SM-LOG

DCRFMFCC KN-LOG, SM-LOG, KN-MFCC, SM-MFCC

covariance of the clean MFCC vectors from the sources are estimated for each state.

The number of parameters is an indicator of complexity. The empirical number of

parameters of DCRF and factorial HMM for two-source case, and the corresponding

theoretical maximum are given in Table 5.3. When applying the GMM modeling ap-

proach, the number of parameters in factorial HMM can be over 100 times of DCRF

formulations. This implies that a large amount of training data may be required.

The BSS_EVAL metrics and PESQ are used to evaluate the objective speech

quality of the reconstructed sources. Standard word error rate (WER) is adopted as

the performance metric for the automatic speech recognition. Experimental results in

terms of PESQ and WER are shown in Figure 5.3. The results in terms of BSS_EVAL

metrics are shown in Table 5.4. The results are averaged from 2500 reconstructed

sources for each speaker pair.

5.4.1 Comparison with factorial HMM

Almost all DCRF formulations achieve higher PESQ and significantly lower WER

than those by factorial HMM ENTIREDATA. The exceptions are the cases with 512

states, and 128 states with DCRFMAG. This trend is consistent across different num-

ber of states and different speaker pairs. DCRF also demonstrates substantial im-

provement in terms of BSS_EVAL metrics in the successful cases. The improvement

on SIR and SAR suggests that DCRF formulations perform better in suppressing the

interfering sources and reducing the reconstruction artifacts. As the same conditional

mean estimator E(xk,t|y, {sk,t}) is applied for the source reconstruction in both fac-
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Table 5.3: The numbers of parameters of different DCRF and factorial HMM for-

mulations. The number of sources is denoted as K, the number of acoustic states

is denoted as S , the dimension of speech mixture observations is denoted as F ,

and G = 2KSD is the number of parameters from the emission probabilities of the

acoustic states. The statistics are averaged from the 3 evaluation sets

ID
Max. # of

parameters

# parameters for 2 sources

S = 16

G = 16.4k

S = 128

G = 132k

S = 512

G = 526k

DCRFMAG
KSF +KS2

+ 1
2K(K − 1)S2

15.6k 128k 498k

DCRFTRANS KSF +KS2

+ 1
2K(K − 1)S2

+G

15.6k+G 128k+G 498k+G

DCRFMFCC 17.9k+G 146k+G 559k+G

Factorial

HMM

2SKD +KS2 132k 8.45M 135M

Table 5.4: Separation results of different DCRF formulations and factorial HMM in

terms of BSS_EVAL with 16, 128 and 512 acoustic states

SDR SAR SIR SDR SAR SIR SDR SAR SIR SDR SAR SIR

EntireData 6.36 10.39 9.14 9.96 12.40 14.34 9.21 12.17 12.79 8.51 11.65 12.09

Data_1% 4.13 8.76 6.76 8.69 11.00 13.36 7.70 10.57 11.48 6.84 10.11 10.53

DCRFmag 6.52 10.29 9.54 10.31 12.64 14.76 9.48 12.30 13.21 8.77 11.74 12.50

DCRFtrans 6.49 10.27 9.51 10.18 12.59 14.62 9.41 12.29 13.07 8.69 11.72 12.40

DCRFmfcc 6.48 10.22 9.54 10.23 12.65 14.64 9.51 12.43 13.11 8.74 11.77 12.43

EntireData 5.79 9.83 8.63 9.26 11.59 14.03 8.34 11.15 12.18 7.80 10.86 11.62

Data_1% 5.55 9.57 8.44 9.04 11.35 13.86 8.18 10.95 12.06 7.59 10.62 11.45

DCRFmag 6.21 9.83 9.42 9.77 11.87 14.78 8.79 11.33 12.95 8.26 11.01 12.38

DCRFtrans 6.29 10.24 9.16 9.69 12.09 14.24 8.82 11.61 12.62 8.27 11.31 12.01

DCRFmfcc 6.43 10.04 9.59 9.71 12.04 14.41 8.87 11.62 12.72 8.34 11.23 12.24

EntireData 3.99 8.47 6.71 7.72 10.19 12.50 5.48 8.57 9.28 5.73 9.08 9.50

Data_1% 4.25 8.83 6.88 7.92 10.32 12.73 5.85 8.92 9.64 6.01 9.35 9.75

DCRFmag 5.50 8.92 9.00 8.60 10.91 13.62 7.01 9.36 11.66 7.03 9.73 11.42

DCRFtrans 5.55 9.33 8.67 8.47 10.79 13.49 6.91 9.69 10.94 6.98 9.94 11.03

DCRFmfcc 5.63 9.26 8.86 8.52 10.82 13.60 7.04 9.80 11.10 7.06 9.96 11.19

16

128

M (1) + M (2) M (17) + F (18) F (24)+ F (25) Overall

512
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PESQ

(i) 512 states
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(iii) 16 states
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Figure 5.3: Separation results of different DCRF formulations and factorial HMM in

terms of (a) PESQ and (b)WER (%) with (i) 512, (ii) 128 and (iii) 16 acoustic states
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torial HMM and DCRF formulations, the performance improvement is purely due to

the improved inference of the posterior probabilities of the source acoustic states.

As a discriminative models, DCRF demonstrates its robustness against insuf-

ficient training data which is a kind of model mis-specification with 512 states.

All the formulations maintain reasonable performance (slightly better PESQ than

ENTIREDATA) even with much fewer training data than ENTIREDATA. With this

amount of training data, factorial HMM (DATA_1%) is completely a failure with

significant drop of objective quality metrics PESQ and BSS_EVAL.

5.4.2 Comparison among DCRF

DCRF formulations with non-linear transformations (DCRFTRANS and

DCRFMFCC) attain slightly better PESQ, and significantly lower WER than

the formulation without non-linear transformations (DCRFMAG). DCRFTRANS

and DCRFMFCC achieve considerable WER improvement with 128 states. With

512 states, the performance is slightly worse than factorial HMM. In contrast, the

performance improvement with DCRFMAG reduces dramatically with increased

number of states. The results of DCRFMFCC show the benefits of integrating

multiple observations. It performs slightly better than DCRFTRANS in terms of both

PESQ and WER.

We suspect that over-fitting with insufficient training data begins to affect the

performance of DCRF. A syndrome of over-fitting is observed in Male + Male set

with DCRFTRANS and DCRFMFCC. Under these formulations, WER with 128

states is even lower than WER with 512 states. For DCRFMFCC, the performance

degradation is as large as 11.5%. We expect that the problem will be disappeared

when the amount of training data increases. In Chapter 6, we also investigate a large-

margin parameter estimation method to minimize the effect of over-fitting.

5.4.3 Samples of the reconstructed sources

An example from Male + Female evaluation set is presented. The spectrograms of the

speech mixture and the reference speech sources are shown in Figure 5.4. The spec-
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(a) speech mixture

(b) Reference male

(c) Reference Female

Figure 5.4: Spectrograms and waveforms of a speech mixture and the reference sig-

nals from the Male + Female set

trogram of the reconstructed speech sources by factorial HMM and DCRFTRANS

are shown in 5.5. Some residues of the harmonic structure of the competing source

are still remained in the reconstructed source by factorial HMM (for example at time

0.6 s of the Male speaker) . These residues are much reduced in DCRFTRANS.
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(a) Factorial HMM - male

(b) DCRFTRANS - male

(c) Factorial HMM - female

(d) DCRFTRANS - female

Figure 5.5: Spectrograms and waveforms of the reconstructed speech sources.

Acoustic models with 512 acoustic states are applied
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Chapter 6

Extensions of conditional random

fields for speech separation

6.1 Large-margin training for CRF

Motivated by the success of supporting vector machine (SVM) [125], margin-based

discriminative classifiers have gained much attention in various pattern recognition

problems. Large-margin modeling aims at finding the decision boundaries which

separate different classes with maximum distances. It has been applied to automatic

speech recognition [126][127][128], hand-written digit recognition [129] and many

other tasks. The success of large-margin classifiers is supported by strong theoretical

guarantee on generalization [130][131]. Recently, large-margin technique has been

extended for sequential classifications. Formulations such as max-margin Markov

networks (M3) [131] and large-margin hidden Markov models (HMM) [132] were

proposed. Similar to large-margin HMM [132], a large-margin CRF formulation

can be established with minimal modification from conditional maximum-likelihood

criterion.

6.1.1 Objective function for large-margin CRF training

In speech separation with CRF, the classification output is represented by the acous-

tic state sequences {sk}, which maximizes p({sk}|y) = 1
Z(y) exp

(
Φ({sk}|y)

)
or
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log p({sk}|y) = Φ({sk}|y)− logZ(y). Denote {sk} as s for simplicity. LetH(s, s′)

be a distance metric for the sequences s and s′, e.g., the hamming distance [131].

Given that the correct sequence of rth training sample is s(r), large-margin crite-

rion aims at finding the canonical parameters Λ such that the log-potential function

Φ(s(r)|y)1 of the correct sequence is greater than Φ(s|y) of any incorrect sequences

byH(s, s(r)),

minimize
Λ

∑
s\s=s(r),r

c||Λ||22

subject to Φ(s(r)|y(r))− Φ(s|y(r)) ≥ H(s, s(r)) ,∀s 6= s(r), r .

(6.1)

The parameters can be rescaled to produce arbitrary large margins [132]. The prior

distribution of the parameters is defined by the regularization term c||Λ||22 to limit the

“size” of the parameters. Moreover, there are exponential number of constraints due

to exponential number of possible sequences. As suggested in [132], the constraints

can be rewritten into a single constraint for each training sample

Φ(s(r)|y(r))− max
s6=s(r)

{
Φ(s|y(r)) +H(s, s(r))

}
≥0, ∀r . (6.2)

When we include the trivial case Φ(s|y(r))−Φ(s(r)|y(r)) = 0 for s = s(r), we get an

equality constraint,

Φ(s(r)|y(r))−max
s

{
Φ(s|y(r)) +H(s, s(r))

}
=0, ∀r . (6.3)

Since the max{·} function is non-differentiable, soft-max approximation is applied.

Moreover, since max{·} ≤ logsumexp{·}, slack variables ζr ≥ 0, ∀r are introduced

to the constraint set such that max{·} = logsumexp{·}−ζr. We should minimize the

slack variables ζr such that logsumexp{·} is as close to max{·} as possible. A small

ζr also implies that Φ(s(r)|y(r)) is much larger than Φ(s|y(r)) +H(s, s(r)), ∀s 6= s(r)

when (6.3) is satisfied. When (6.3) is not satisfied, the slack variables allow the

violation of the constraint as in soft-margin formulation of SVM [125]. The violation

should be minimized in hope that Φ(s(r)|y(r)) is still greater than Φ(s|y(r)), ∀s 6=

s(r). The optimization problem is now formulated as

1Here we re-define Φ(·) as a log-potential function for simplicity.
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minimize
ζ,Λ

∑
r

ζr + c||Λ||22

subject to − Φ(s(r)|y(r)) + log
∑

s
eΦ(s|y(r))+H(s,s(r)) = ζr, ∀r

ζr ≥ 0, ∀r .

(6.4)

The slack variable ζr is the conditional negative log-likelihood of the correct se-

quence s(r) of rth training data. Hence, (6.4) is transformed into an unconstrained

minimization problem with objective function

L(Λ) =
R∑
r=1

(
− Φ(s(r)|y(r)) + log

∑
s
eΦ(s|y(r))+H(s,s(r))

)
+ c||Λ||22 . (6.5)

An identical objective function was derived in [133], but our derivation emphasizes

the bounding property of soft-maximum. The probability distribution p(s|y(r)) is

derived as

p(s|y(r)) =
exp

[
Φ(s|y(r)) +H(s, s(r))

]
∑

s exp
[
Φ(s|y(r)) +H(s, s(r))

] . (6.6)

Similar to CRF training and MMI discriminative training for HMM, large-margin

CRF training resembles boosted MMI discriminative training [134][135]. For speech

separation, the large-margin objective function is expressed as

L̃(Λ) =
R∑
r=1

[
−
(∑

k

∑
t

∑
α

λαfα(s(r)
k,t , y

(r)
t, ) +

∑
(a,b)∈E

∑
β

λβfβ(s(r)
a , s

(r)
b )
)

+ log Z̃(y(r))
]

+ c||Λ||22 ,
(6.7)

where Z̃(y(r)) = ∑
s exp

[
Φ(s|y(r)) + H(s, s(r))

]
is the modified partition function

and

H(sk,t, srk,t) =


1, sk,t 6= srk,t

0, sk,t = srk,t

,

which is the error count of recognized states. The gradients of L̃ are exactly the same

as the ones in Equation 5.7 and hence the procedures for parameter updates. The only

modification is to include H(sk,t, s(r)
k,t) in the computation of the potential functions.

No modification is required for computing the posterior probability p({sk,(t)}|y) dur-

ing the separation process.
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6.1.2 Separation performance

The experiments with DCRFTRANS and DCRFMFCC are repeated, except that the

parameters are obtained from the large-margin criterion. The new results suffixed

with “-LM” are listed in Figure 6.1.

For the cases with 16 and 128 acoustic states, the large-margin method slightly

improves WER (up to 8.24% relative WER reduction) for the speech recognition task

on the reconstructed sources. The improvement on PESQ is insignificant. For 512

states, the improvement on speech recognition accuracy becomes more noticeable. A

relative WER reduction up to 16.57% is observed. There is also some improvement

on PESQ. For Male + Male set, the WER with 512 states is now lower than that with

128 states under DCRFTRANS-LM and DCRFMFCC-LM. This indicates that the

over-fitting problem is alleviated by better generalization abilities of large-margin

training. Moreover, DCRF with large-margin criterion finally achieves the lowest

word recognition error.

6.1.3 Convergence analysis

The effects of different initial step-sizes η(0) and regularization factors c are investi-

gated. Two initial step-sizes η(0) = 0.00781 ≈ 1
128 and η(0) = 0.00781

4 are evaluated

on the Male + Female set with 128 states. For both initial step-sizes η(0), ASGD

terminates before reaching the maximum number of iterations (1000 iterations), sug-

gesting that the algorithm converges successfully. The separation results with canon-

ical parameters Λ obtained from different number of iterations are shown in Figure

6.2. The results show that the choice of initial step-size does not seriously affect

the speech separation performance. Similar PESQ and WER (< 3% difference) are

achieved with different η(0). However, the number of iterations varies significantly

with different η(0). For η(0) = 0.00781
4 , 550 iterations are required for convergence,

but only 90 iterations are required for η(0) = 0.00781.

The results further confirm that ASGD requires much fewer iterations to reach

reasonable separation performance. The results with the parameters obtained suring

the mid-way of the gradient descent (50 and 250 iterations for η(0) = 0.00781 and
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Figure 6.1: Separation results in terms of (a) PESQ and (b) WER (%) of large-margin

CRF formulations
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Figure 6.2: Separation results of different step-sizes η = 0.00781 and η
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DCRFTRANS-LM formulation
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Figure 6.3: Separation results of different regularization factors c =

{2, 0.2, 0.02, 0.002, 0.0002} on Male + Female set with 128 states according to

DCRFTRANS-LM formulation

η(0) = 0.00781
4 respectively) are already comparable to the results with parameters

obtained after the termination of ASGD. The difference in terms of WER is less than

3%. The difference in terms of PESQ is insignificant.

We also evaluate the separation performance with different regularization factors

c = {2, 0.2, 0.02, 0.002, 0.0002}. As shown in Figure 6.3, the speech separation

performance generally is not affected by the choice of the regularization factors when

large-margin parameter estimation is applied.

6.2 Simplified CRF formulations

The computational problem in DCRF is due to the loopy structure made up by the

edges across different sources. A relaxation is possible by removing these cross-
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chain edges and retaining the edges within the same source. This formulation is

referred to as JOINTCRF and was proposed in [80]. The underlying assumption is

that the source states are conditionally independent given the speech mixture. With

this assumption, p({sk}|y) is defined as

p({sk}|y) =
∏
k

p(sk|y)

=
∏
k

exp∑t

∑
i λifi(sk,y,t)
Zk(y) .

(6.8)

By removing the cross-chain edges, the graphical structure can be considered as

a forest of two linear-chain CRFs conditioned on the same observations, as shown

in Figure 6.4. Observation integration can be performed as if conventional CRF.

Parameter estimation of JOINTCRF is effective given a modest amount of training

data, since the partition function Zk(y) of each linear-chain CRF can be computed

exactly with the forward-backward algorithm [95]. Forward-backward algorithm is

also applied for exact computation of the posterior probabilities of the source states

during speech separation. Since the partition function and the marginal probabilities

can be computed exactly with respect to the graphical model structure, statistical

inference of JOINTCRF is a convex optimization problem.

JOINTCRF also reduces the complexity of statistical inference. The overall com-

plexity is O(TKS2), which increases linearly with the number of sources. In con-

trast, DCRF formulation with the loopy belief propagation requires quadratic com-

plexity with the number of sources. Moreover, without the cross-chain edge feature

functions, JOINTCRF requires fewer canonical parameters. This may lessen the re-

quired amount of training data.

6.2.1 A discussion on the “correct” model

JOINTCRF is a typical example of mis-specified model. The conditional indepen-

dence assumption of the source states given the speech mixture are sometimes vio-

lated. A counterexample is that given a speech mixture of two sources, if we know

that one of the sources is silent, conditional independence assumption is broken as

we immediate know that the another source is the same as the speech mixture.
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Figure 6.4: A two-source single-microphone separation problem modeled in

JOINTCRF formulation. It is a forest of 2 linear-chain CRFs sharing the same obser-

vations of speech mixture.

Both factorial HMM and DCRF model the potential state dependency and achieve

quite good speech separation performance. However, we cannot claim that factorial

HMM and DCRF are the canonical models for speech separation. We cannot guar-

antee that all the properties of single-microphone speech separation are included in

these models. As we generally do not know the underlying true model, discrimina-

tive modeling is justified in statistical model-based methods to handle the potential

model mis-specification.

The choice of JOINTCRF and DCRF should be better described as a trade-off in

practical situation. DCRF is a more accurate model but also more complex due to the

additional constraints for potential state dependency. When the training condition is

well-matched with speech separation condition, e.g., with the same signal-to-signal

ratio, DCRF formulations are expected to achieve better separation results. However,

the performance of DCRF may be limited by insufficient training data due to more

parameters and the locally optimal solution from approximated inference. Although

JOINTCRF is a simpler model, the estimated parameters are (near) globally optimal

due to the convexity of the parameter estimation problem. Observation integration is
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always feasible for JOINTCRF, which also helps to compensate the potential perfor-

mance loss.

When the training condition are mis-matched with speech separation condition,

such as under different signal-to-signal ratios. The input observations are perturbed

with respect to the parameters obtained in training stage. In this case, the non-convex

approximated inference algorithms of DCRF can be problematic. There may be sev-

eral locally optimal solutions and the algorithm may converge to a solution far from

the true one. Algorithms such as loopy belief propagation may even fail to con-

verge with the perturbed input, resulting a poor solution. In contrast, the statistical

inference of JOINTCRF is a convex problem, which always converges to a unique

solution. JOINTCRF is hence considered as a more stable model [136]. Compared

with DCRF, JOINTCRF may achieve better performance when mismatch becomes

more serious.

6.2.2 Experimental results

In the experiments, we compare the speech separation results from large-margin for-

mulation of JOINTCRF denoted as JOINTCRF-LM. We also include the settings in-

tegrated with MFCC speech mixture observations denoted as JOINTCRFMFCC-LM.

We compare the separation results with factorial HMM baseline ENTIREDATA, and

large-margin DCRF formulations DCRFTRANS-LM and DCRFMFCC-LM. Fol-

lowing the settings of DCRF formulations, the speech mixture observations con-

sist of 257-dimension log-spectrum for JOINTCRF-LM and DCRFTRANS-LM, and

additional 39-dimensional MFCC feature vectors for JOINTCRFMFCC-LM and

DCRFMFCC-LM. Non-linear transformations are applied on all the CRF formula-

tions. The empirical number of parameters of DCRFTRANS-LM and JOINTCRF-LM

formulations are listed in Table 6.1. The numbers of parameters of JOINTCRF-LM

with 16 and 128 acoustic states are fewer than those of DCRFTRANS-LM formula-

tions by 1% and 5% respectively. When the number of acoustic states grows to 512,

the number of parameters of JOINTCRF-LM reduces more significantly by about

15%.

The speech separation results are listed in Figure 6.5. While JOINTCRF-LM
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Figure 6.5: Separation results of JOINTCRF in terms of (a) PESQ and (b) WER (%)
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Table 6.1: The numbers of parameters between DCRF and JOINTCRF formulations

S = 16 S = 128 S = 512

JOINTCRF-LM 15.4k 122k 427k

DCRFTRANS-LM 15.6k 128k 498k

achieves similar PESQ (< 0.1 difference) as DCRFTRANS-LM, the performance

of JOINTCRF-LM in terms of WER is generally poorer (about 10% WER differ-

ence). Nevertheless, JOINTCRF-LM still performs better than factorial HMM in

terms of PESQ and WER with 16 and 128 states. For 512 states, the performance

of JOINTCRF-LM is still reasonable (about 5% WER). Note that factorial HMM

ENTIREDATA is trained with 100 times more training data. With the same amount

of training data, JOINTCRF-LM performs much better than factorial HMM HM-

MDATA_1% as shown Chapter 4. The results of JOINTCRF-LM demonstrate the

robustness of discriminative models for withstanding model uncertainties.

The integration of MFCC speech mixture observations is more effective in

JOINTCRF than DCRF. For 128 and 512 states, about 10% relative WER reduc-

tion is observed after the observation integration. For DCRF, less than 5% relative

WER reduction are observed. The performance gap between JOINTCRFMFCC-LM

and DCRFMFCC-LM becomes smaller with the increased number of acoustic states.

JOINTCRFMFCC-LM finally achieves similar WER as DCRFMFCC-LM with 512

states. The results show that observation integration helps to compensate the poten-

tial performance loss in JOINTCRF.

6.3 Different signal-to-signal ratios

We further evaluate the speech separation algorithms under different signal-to-signal

ratios. We define the ratio between the power of current source and the reference

power level in the acoustic model as the gain. For speech separation problem, the

gain of the sources can be estimated by algorithms such as [10] and [137]. In this

experiment, we assume that the gain factor is known as a priori.

When the sources are modeled in log-power spectral domain, the model parame-
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ters can be easily adjusted given the gain of the sources. Let |X|2 be the linear power

spectrum of the training data, |X̂|2 be the linear power spectrum of the observed

data, a2 ∈ R+ be the gain in linear power spectral domain, i.e., |X̂|2 = a2|X|2. In

log-power spectral domain, we have

log |X̂|2 = log |X|2 + log a2 . (6.9)

If the gain is fixed, the mean parameter of the observed source is a shifted version of

the original one. The covariance of the observed source is unchanged. For a state with

multivariate Gaussian distributed emission probability N (x;µ,Σ), the distribution

becomesN (x;µ+log a2,Σ) after the adjustment. This relationship is also applicable

in log-magnitude domain since log |X̂| = log |X|+ log a.

For factorial HMM, the MIXMAX model makes use of this relationship to per-

form speech separation under different signal-to-signal ratios. GMM modeling ap-

proach is not suitable since it requires a new model for each signal-to-signal ratio.

For CRF formulations, the adjusted acoustic model parameters can be applied with

state feature functions using non-linear transformation.

6.3.1 Experiments

The speech mixtures are created from two sources in 5 different signal-to-signal ra-

tios, i.e., −6 dB,−3 dB, 0 dB, 3 dB and 6 dB. The results at 0 dB have been reported

in the previous experiments. The mixing procedures are described as following. For

signal-to-signal ratios greater than 0 dB, the target source is kept at the same power

level as in the acoustic model, but the power of the interfering source is scaled down.

Similarly, for signal-to-signal ratios smaller than 0 dB, the power of the target source

is scaled down, the power of the interfering source remains unchanged.

The experiment is performed with acoustic models of 128 states. At this set-

ting, both factorial HMM and CRF formulations have reasonable performance.

CRF formulations with large-margin parameter estimation DCRFTRANS-LM and

JOINTCRF-LM are compared with factorial HMM with the MIXMAX model. The

separation performance of the target sources at different SSR in terms of PESQ and

WER are shown in Figure 6.6 and 6.7 respectively.
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Figure 6.6: The separation results in terms of PESQ of the individual speakers in

different signal-to-signal ratios

DCRFTRANS-LM and JOINTCRF-LM consistently achieve higher PESQ than

factorial HMM at different SSR from −6 to 6 dB. The greatest improvement is at 0

dB SSR, which is the training condition of the current CRF parameters estimation.

PESQ of DCRFTRANS-LM and JOINTCRF-LM are similar (< 0.1 PESQ difference)

throughout the 5 different SSR. For factorial HMM, PESQ improves consistently and

linearly with the increased SSR of the target sources. At -6 or 6 dB SSR, PESQ of

factorial HMM is just slightly lower than that of CRF formulations.

When the sources are competing with similar signal power, DCRFTRANS-LM

achieves lower WER than factorial HMM, and JOINTCRF-LM lies in the middle.

For factorial HMM, WER decreases linearly with the increase of SSR. At −3 and 0

dB SSR, CRF formulations achieve significantly lower WER than factorial HMM.

At 3 dB SSR, CRF formulations only achieve slightly better WER. When the aver-

85



Chapter 6. Extensions of conditional random fields for speech separation

WER (%)

27.99

21.23

15.20
11.27

9.11
26.55

15.71
11.21 10.04 10.25

26.87

18.19

12.79
10.16

8.67

0.0

5.0

10.0

15.0

20.0

25.0

30.0

-6 -3 0 3 6

Speaker 1

14.75

7.07

4.54

3.67 3.63

13.69

8.12
5.35

3.66
2.81

13.56
10.18

7.91
5.28

3.73

0.0

5.0

10.0

15.0

20.0

-6 -3 0 3 6

Speaker 2

Factorial HMM

DCRFtrans-LM

JointCRF-LM

8.82

6.45

4.81
3.64

2.80

7.19

5.41

4.06
3.39

3.01

7.43

4.75
3.69 3.19 3.05

0.0

2.0

4.0

6.0

8.0

10.0

-6 -3 0 3 6

Speaker 17

14.24

6.25
4.08 3.03 2.93

12.01

6.68
4.47

3.31
2.47

13.15

8.37
5.49

3.79 2.40

0.0

5.0

10.0

15.0

20.0

-6 -3 0 3 6

Speaker 18

15.32 10.77

7.12 4.59

2.94

15.78

7.66
4.96

4.69

4.94

16.08

9.02

5.61 4.34
3.35

0.0

5.0

10.0

15.0

20.0

-6 -3 0 3 6

Signal-to-signal ratio (SSR)

Speaker 24

12.09

8.53

5.93 3.90

2.55

14.74

6.31

3.80
3.11

3.44

14.96

7.14

4.44 2.93

2.40

0.0

5.0

10.0

15.0

20.0

-6 -3 0 3 6

Signal-to-signal ratio (SSR)

Speaker 25

Figure 6.7: WER (%) of the separated speeches of the individual speakers in different

signal-to-signal ratios

aged power of the sources are significantly different, the assumption that the speech

mixture is dominated by single source is satisfied. The MIXMAX model becomes

more accurate. The performance improvement of factorial HMM finally overwhelms

the benefits from the discriminative ability of CRF formulations. Factorial HMM

now achieves lower WER than DCRFTRANS-LM at -6 dB or 6 dB SSR.

At -6 dB or 6 dB SSR, JOINTCRF-LM generally performs better than

DCRFTRANS-LM with slightly lower WER. As discussed previously, a possible rea-

son is that the convex statistical inference procedure of JOINTCRF-LM begins to gain

advantage when the mismatch of the training stage (SSR=0 dB) and the speech sep-

aration stage (SSR6=0 dB) becomes more serious.
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Conclusion and future directions

7.1 How far is here to the oracle?

Towards the conclusion of this work, there are several important questions. How

good are the proposed CRF formulations? How much potential room is there for

improvement? In order to answer these questions, an oracle experiment is carried out

to determine the performance upper-bound. In this experiment, it is assumed that the

source state sequences are known. They are obtained by decoding the clean reference

sources with speaker-dependent acoustic models. With the oracle state sequences, the

sources are recovered from speech mixtures. We compare the oracle results with the

best separation results obtained in previous experiments. The best separation results

are achieved mostly by CRF formulations. Figure 7.1 shows the results in terms of

PESQ and WER, at 0 dB signal-to-signal ratio.

When the underlying state sequences are correct, the perceptual speech quality

and speech recognition accuracy of the reconstructed sources can be greatly im-

proved. Nevertheless, distortion still exists, as the mixture phase spectra are used

for the source reconstruction. It is hard to achieve the extreme low WER in the clean

sources, but a WER of 1.57% with 512 states is reasonable for many practical ap-

plications. It is observed that separation performance in terms of PESQ are similar

among the three evaluation sets with 512 acoustic states. This suggests that with

accurate and sufficient number of source states, the perceptual quality of the recon-

structed sources tends to be independent of speakers.
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(a) 512 states

(b) 128 states

(c) 16 states
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Figure 7.1: PESQ and WER (%) of the reconstructed speech sources of the oracle

and from the best experimental setup

In terms of PESQ, the speech separation performance attained by the proposed

methods are quite close to the oracle. The results are about 0.2 points lower than the

oracle in most of the cases. For the Male + Female set with 16 acoustic states, PESQ

of the best experimental results (which is by DCRFMFCC-LM) are only slightly lower

than the oracle. For speech recognition task, there is still a significant performance

gap between the experimental results and the oracle results. For the case with the

smallest performance gap in PESQ (Male + Female with 16 states), the WER is still

24.4% higher than that of the oracle. For other cases, WER can be double or even

triple of the oracle results. The baseline speech recognition system is sensitive to the

distortion due to mis-classification of the source states.
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7.2 Conclusion

Two types of graphical models, namely factorial hidden Markov models (HMM) and

conditional random fields (CRF) are investigated for statistical model-based single-

microphone speech separation. Graphical models are utilized to compute the pos-

terior probabilities of source states given the speech mixture. The state posterior

probabilities are required for MMSE source estimation.

For factorial HMM, we aim at building a comprehensive baseline system for CRF

formulations. To achieve the goal, the performance of factorial HMM on single-

microphone speech separation has been evaluated in detail. We have compared an

analytical model from log-spectrum approximation (the MIXMAX model) and an

empirical model obtained from training speech mixtures (GMM modeling approach)

for modeling the state-level interaction of the sources. Experimental results show that

the MIXMAX model can achieve reasonable performance on speech separation and

recognition tasks in terms of PESQ and WER respectively. The GMM modeling ap-

proach gives better results when there are sufficient amount of training data. Factorial

HMM with the GMM modeling approach is henceforth considered as our baseline.

The results also confirm the importance of speech dynamics in single-microphone

speech separation. Incorporating speech dynamics information can improve speech

separation performance significantly. Applying approximated inference algorithms

on factorial HMM can significantly speed up the computation at the cost of mild per-

formance degradation. We thus conclude that the choice of inference algorithm is not

critical for speech separation performance.

A generalized version of CRF, referred to as dynamic conditional random field

(DCRF), has been investigated for single-microphone speech separation. A special-

ized graphical structure is chosen such that DCRF formulations resemble discrim-

inative modeling of factorial HMM. DCRF and discriminative training of factorial

HMM are different in the choice of sufficient statistics and the constraints for param-

eter estimation. DCRF formulations achieve better separation performance than fac-

torial HMM baseline with much fewer training data. Lower speech recognition word

error rate on reconstructed sources is also achieved by DCRF formulations. MFCC

observations which are highly correlated with the log-spectral observations are ap-
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plied in DCRF. Improvement on the separation results is observed. This demonstrates

the advantage of CRF formulations in integrating multiple and correlated observa-

tions. Applying non-linear transformations on feature functions further improves the

separation performance, and allows DCRF to handle speech mixtures with signal-

to-signal ratios different from the training condition. Averaged stochastic gradient

descent (ASGD) and loopy belief propagation are applied for approximated parame-

ter estimation. Large-margin criterion on CRF parameter estimation further improves

the separation performance by improving model generalization. In one of the evalu-

ation set, large-margin formulation successfully relieves the over-fitting problem due

to insufficient amount of training data.

JOINTCRF is proposed as a simplified CRF formulation. The forest structure

of JOINTCRF promotes exact statistical inference. JOINTCRF assumes that the

source states given the speech mixture are conditional independent. The assump-

tion is sometimes violated, causing a major model mis-specification on the graphical

structure. The inherent discriminative ability of CRF still leads to the comparable

performance of JOINTCRF to factorial HMM. The performance of JOINTCRF is

also comparable to DCRF after integrating MFCC speech mixture observations. The

exact statistical inference is a convex optimization problem which leads to a unique,

globally optimal solution for both parameter estimation and speech separation.

Single-microphone speech separation algorithms are evaluated under different

signal-to-signal ratios. With parameters obtained at 0 dB signal-to-signal ratio, CRF

formulations (DCRF and JOINTCRF) achieve better speech separation performance

when the sources are competing with similar signal power. When the power differ-

ence between the target and the interference sources further increases, the assumption

of the MIXMAX model is better satisfied, leads to a more accurate factorial HMM

formulation. The performance of factorial HMM begins to catch up and finally out-

performs CRF formulations.
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7.3 Contributions

The main contributions of this work are summarized as follows.

1. Conditional random field (CRF) formulations for single-microphone speech

separation are developed.

• The application of dynamic conditional random fields (DCRF) has

demonstrated the idea of discriminative modeling and integration of mul-

tiple observations for speech separation. Large-margin parameter esti-

mation further improves the model generalization and separation perfor-

mance.

• Different feature functions for CRF formulations are evaluated. Fea-

ture functions with non-linear transformations inspired from the mixture-

maximization (MIXMAX) model are proposed. In addition to improving

separation performance, non-linear transformations allow CRF formula-

tions to perform speech separation on mixtures with signal-to-signal ra-

tios different from the training condition.

• A simplified CRF formulation JOINTCRF is proposed. JOINTCRF

demonstrates the power of discriminative modeling although the formu-

lation is less accurate. The simplified graphical structure of JOINTCRF

allows exact and efficient statistical inference, which is a convex problem.

A unique, globally optimal solution is achievable for parameter estima-

tion and speech separation. The performance of JOINTCRF is compara-

ble to factorial HMM. After integrating MFCC speech mixture observa-

tions, the performance of JOINTCRF is also comparable to DCRF.

2. A factorial hidden Markov model (HMM) baseline is developed for single-

microphone speech separation.

• Exact and approximated inference algorithms are evaluated with differ-

ent speaker combinations. The results show that the choice of inference

algorithms is not critical to factorial HMM for speech separation. The
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experimental results also show that modeling speech dynamics can im-

prove speech separation performance significantly. The speech dynamics

can be modeled as the state transition probabilities in the source acoustic

models.

• An empirical distribution of source interaction is modeled in Gaussian

mixture model (GMM). The empirical distribution is compared with the

distribution derived from the MIXMAX model. The experimental results

confirm that the MIXMAX model can achieve reasonable separation per-

formance. The empirical distribution from the GMM modeling approach

achieves better separation performance only given sufficient amount of

training speech mixtures. The experimental results also reveal that the

performance gap between factorial HMM and CRF formulations reduces

with the increased number of source acoustic states.

• We also evaluate the separation performance of factorial HMM with the

MIXMAX model on speech mixtures of different signal-to-signal ratios.

We found that the separation performance improves linearly with in-

creased signal-to-signal ratio. When the power difference of the sources

further increases, the MIXMAX model becomes more accurate and fac-

torial HMM can perform better than CRF formulations.

7.4 Future directions

The current experiments are based on speech mixtures with two competing speak-

ers. A more realistic scenario is that the speech source is corrupted by background

noise. Both factorial HMM and CRF formulations are capable to perform speech en-

hancement under other noisy conditions such as babble noise or speech-shape noise,

but in this thesis we have not evaluated the corresponding performance. A further

evaluation on these noisy conditions is thus preferred.

In terms of human perceptual speech quality, the oracle experiments in Section

7.1 reveal that reasonable performance is achieved by CRF formulations. In terms of

machine intelligibility which is presented by word error rate, there is still a significant
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performance gap between the best separation results and the oracle results. Moreover,

an important future work is to improve CRF parameters adaptation to different signal-

to-signal ratios.

The CRF formulations can be incorporated with several recent advances of ma-

chine learning techniques. The current CRF training set consists of only about 2000

training speech mixtures for each speaker pair, which is only about 1% of the avail-

able training data. Semi-supervised learning [138][110] may help to improve the

performance by making use of the training data unlabeled with acoustic state se-

quences. Semi-supervised learning also fits to the true scenario since most of the real

world speech mixtures are unlabeled.

The integration of more effective observations is always a topic of machine learn-

ing. There is no exception in single-microphone speech separation. With the gigantic

improvement of the computational power, the use of deep learning is a recent trend

of many pattern recognition problems [139]. A method to integrate the output of

multilayer perceptron into CRF was proposed in [140]. Deep learning architecture

for speech separation is already being investigated [79].

There are also rooms to further improve the perceptual quality of the recon-

structed sources. Currently, the waveform of the source is reconstructed with the

phase spectrum of the speech mixture. Distortion from the interfering sources are

brought back to the reconstructed sources. There are researches on estimating the

source phase spectrum [141][142]. An alternative approach is to perform post-

processing on the reconstructed sources, such as by comb filtering [53] and peri-

odicity enhancement [7]. Periodicity enhancement requires a robust pitch tracking

algorithm. Our recent study shows that higher pitch tracking accuracy is achievable

on the sources reconstructed from CRF formulations than those reconstructed by fac-

torial HMM [6].
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Derivation of the exact interaction

model

A.1 Derivation from characteristic functions

The exact interaction model can be derived from the complex Fourier domain. After

discrete Fourier transform, the instantaneous additive mixing model is Y = ∑
kXk

for each frequency component, whereXk and Y are complex with a and b are the real

part and the imaginary part respectively. Let Φ(·)(ã, b̃) be the characteristic functions

of p(·)(a, b). They form a double Fourier transform pair,

Φ(·)(ã, b̃) =
ˆ ∞
−∞

ˆ ∞
−∞

p(·)(a, b)e−jãae−jb̃bdadb (A.1)

p(·)(a, b) = 1
4π2

ˆ ∞
−∞

ˆ ∞
−∞

Φ(·)(ã, b̃)ejãaejb̃bdãdb̃ . (A.2)

Let p(.)(r) be the probability density function of the magnitude r. We follow the

proof in [88]. The variables are firstly transformed into a polar coordinate system.

By expressing

a+ jb = rejθ

ã+ jb̃ = qejφ
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and
a = r cos θ

b = r sin θ

r =
√
a2 + b2

ã = q cosφ

b̃ = q sinφ

q =
√
ã2 + b̃2

then we obtain

p(·)(a, b) = p(·)(r, θ) = 1
2πrp(·)(r)

by assuming the phases are uniformly distributed. By substituting the above equa-

tions into Equation A.1 and A.2, the characteristic function Φ(·)(q) and the probability

density function p(·)(r) are a transform pair of zeroth-order Hankel transform,

Φ(·)(q) =
ˆ ∞

0
p(·)(r)J0(qr)dr (A.3)

p(·)(r) = r

ˆ ∞
0

Φ(·)(q)J0(qr)qdq, (A.4)

where J0(u) = 1
2π

´ π
−π e

−j(−u sin(τ))dτ is the zeroth-order Bessel function of the first

kind. If the random variables {Xk} are independent, by the fundamental of random

process [143], the characteristic function of Y is

ΦY (q) =
∏
k

ΦXk(q) . (A.5)

The corresponding probability density function is thus,

pY (r) = r

ˆ ∞
0

J0(qr)
[∏

k

ΦXk(q)
]
qdq . (A.6)

Given that the magnitude of source Xk is |Xk|, pXk(r) of source Xk is trivial,

pXk(r) = δ(r − |Xk|) (A.7)

where δ(·) is a Dirac delta function. The corresponding characteristic function is,

ΦXk(q) = J0(|Xk|q) . (A.8)
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The exact interaction in magnitude domain p
(
|Y |

∣∣∣{|Xk|}) = p(
(
r = |Y |

∣∣∣{|Xk|}
)

are derived from Equation A.5 and A.6,

p(
(
|Y |

∣∣∣{|Xk|}
)

= |Y |
ˆ ∞

0
J0(|Y |q)

[∏
k

J0(|Xk|q)
]
qdq . (A.9)

With the help of an integral table [144, Eq. 6.578.9], the two-source case is derived

as,

p
(
|Y |

∣∣∣|X1|, |X2|
)

=|Y |
ˆ ∞

0
J0(|Y |q)

[
J0(|X1|q)J0(|X2|q)

]
qdq

=


2|Y |

π
√

4|X1|2|X2|2−(|X1|2+|X2|2−|Y |2)2
for

∣∣∣|X1| − |X2|
∣∣∣ < |Y | < |X1|+ |X2|

0 otherwise .
(A.10)

By substituting xk = log(|Xk|2) and y = log(|Y |2), the interaction model can be

expressed in log-power domain by change of variables. As we obtain

|Xk|2 = exp(xk)

|Y | = exp(y2)

g−1
i (y) = (−1)i exp(y2) for i = 1, 2

dg−1
i (y)
dy = (−1)i12 exp(y2) for i = 1, 2,

the derived interaction model in log-power spectral domain is,

p
(
y
∣∣∣x1, x2

)
=
∑
i

∣∣∣∣∣dg
−1
i (y)
dy

∣∣∣∣∣p(ey∣∣∣ex1 , ex2
)

=


ey−

x1+x2
2

π

√
1− 1

4 (ey−
x1+x2

2 −e
x1−x2

2 −e−
x1−x2

2 )2
for

∣∣∣ex1
2 − e

x2
2

∣∣∣ < e
y
2 < e

x1
2 + e

x2
2

0 otherwise .

(A.11)

A.2 Derivation from the first principle

This derivation is specifically for the two-source case. Recall Equation 3.7 for a

two-source case,
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|Y |2 = |X1|2 + |X2|2 + 2|X1||X2| cos(θ) (A.12)

where θ = θ1 − θ2 is the phase difference. Given |X1|, |X2| and θ, |Y | can be

determined analytically, hence p(|Y |
∣∣∣|X1|, |X2|, θ) is represented by the Dirac delta

function δ(·),

p(|Y |
∣∣∣|X1|, |X2|, θ) = δ

(
|Y | −

√
|X1|2 + |X2|2 + 2|X1||X2| cos(θ)

)
, (A.13)

and the interaction model p(|Y |
∣∣∣|X1|, |X2|) is obtained by marginalizing θ, i.e.,

p
(
|Y |

∣∣∣|X1|, |X2|
)

=
ˆ ∞
−∞

p(θ)δ(|Y | −
√
|X1|2 + |X2|2 + 2|X1||X2| cos(θ))dθ

=
∑
i

p(θi)
|g′(θi)|

(A.14)

where θi are the roots of g(θ) = |Y | −
√
|X1|2 + |X2|2 + 2|X1||X2| cos(θ). By

observing that the phase of the individual sources are uniformly distributed at [−π, π],

the distribution of the phase difference is

p(θ) =


1

2π (1− | θ2π |) for |θ| ≤ 2π

0 otherwise
(A.15)

and for g(θi) = 0, g′(θi) =
√

4|X1|2|X2|2−(|X1|2+|X2|2−|Y |2)2

2|Y | . Since

θi =


− cos−1

∣∣∣∣∣ |Y |2−(|X1|2+|X2|2)
2|X1||X2|

∣∣∣∣∣+ (i− 1)π for i is odd

cos−1
∣∣∣∣∣ |Y |2−(|X1|2+|X2|2)

2|X1||X2|

∣∣∣∣∣− (i− 2)π for i is even,

and there are four roots at [−2π, 2π], ∑i p(θi) = 1
π

. Hence

p
(
|Y |

∣∣∣|X1|, |X2|
)

= 2|Y |
π
√

4|X1|2|X2|2 − (|X1|2 + |X2|2 − |Y |2)2 . (A.16)

Similarly for log-power spectral domain, g(θ) = y− log(ex1 + ex2 + 2e
x1+x2

2 cos(θ))

and g′(θi) =

√
1− 1

4 (ey−
x1+x2

2 −e
x1−x2

2 −e−
x1−x2

2 )2

ey−
x1+x2

2
, the interaction model is the same as

Equation A.11.
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Proof of forward-backward updates

B.1 Forward-backward algorithm on factorial

HMM

A junction tree can be constructed from an undirected graph or the moral graph of

a directed graph if and only if the graph is triangulated [145]. Figure B.1 and Fig-

ure B.2 shows the moral graph and the chordal graph after triangulation of factorial

HMM respectively.

Let X , Y be the clique nodes (denoted in circles) in the junction tree and M

be a separator (denoted in rectangles) as illustrated in Figure B.4. The separator

M contains a set of random variables sM which are the intersection of the random

variable sets sX and sY of X and Y , i.e. sM = sX ∩ sY . Let ΦX(sX) be the potential

function of the clique node X , m(sM) be the potential function of the separator M .

An asterisk “∗” is added to the potential function at each update. Notably if we apply

the update as in forward-backward algorithm, m∗(·) is a forward message and m∗∗(·)

is a backward message.

The junction tree of a factorial HMM with two sources is shown in Figure B.3. By

setting the initial condition of m(·) = 1, the forward-backward algorithm of factorial
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Figure B.1: The factorial HMM in Figure 4.5 after moralization
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Figure B.2: The factorial HMM in Figure 4.5 after moralization and triangulation

1, 2,t 1 2,t
{ , , }

t
s s s

−1, 2, 1{ , }
t t

s s
−

2 1, 2, 2, 1
({ , , })

t t t t
s s s

−
Φ

1 1, 1 1, 2, 1
({ , , })

t t t t
s s s

− −
Φ

*

1, 2, 1
({ , })

t t
m s s

−

*

1, 2,
({ , })

ty t t
m s s

1, 2,
({ , , })

ty t t t
s s yΦ

1 1, 1 2, 1 1
({ , , })

ty t t t
s s y

−
− − −

Φ

2 1 1, 1 2, 1 2, 2
({ , , })

t t t t
s s s

− − − −
Φ

11
1, 2 1, 1 2, 2

({ , , })
ts t t t

s s s
−

− − −
Φ

*

1, 2,({ , })
t t

m s s

1 1 1, 1, 1 2,
({ , , })

t t t t
s s s

+ +
Φ

2t
C

1, 2,
{ , }

t t
s s

1, 1 1,t 2,t
{ , , }

t
s s s

+

1 1t
C

+

1, 1 1,t 2,t 1
{ , , }

t
s s s

− −

1t
C

1, 1 2, 1
{ , }

t t
s s

− −1, 1 2, 1 2, 2
{ , , }

t t t
s s s

− − −

2 1t
C

−

1, 1 2, 2
{ , }

t t
s s

− −1, 2 1, 1 2, 2
{ , , }

t t t
s s s

− − −

1 1t
C

−

1, 2 2, 2
{ , }

t t
s s

− −

1, 2 2,t 2
{ , }

t
s s

− −

2 2t
C

−

1, 1 2, 1
{ , }

t t
s s

− −

1, 2 2,t 2
{ , }

t
s s

− −

1, 2,
{ , }

t t
s s

1, 2,
{ , ,y }

t t t
s s

ty
C

1, 1 2, 1 1
{ , ,y }

t t t
s s

− − −

1ty
C

−

1, 2 2, 2 2
{ , ,y }

t t t
s s

− − −

2ty
C

−

**

1, 2, 1
({ , })

t t
m s s

−

**

1, 2,
({ , })

t t
m s s

**

1, 2,
({ , })

ty t t
m s s

Figure B.3: The junction tree of factorial HMM in Figure 4.5.
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Figure B.4: A message is passing from clique X to clique Y in a junction tree

HMM can be derived from the junction tree update. By setting

Φt(s1,1, s2,1) = p(s1)p(s2)

Φyt(y1,t, s1,t, s2,t) = p(y1,t|s1,t, s2,t)

Φt(s1,t, s2,t, s2,t−1) = p(s2,t|s2,t−1)

Φt(s1,t−1, s1,t, s2,t−1) = p(s1,t|s1,t−1)

m∗yt(s1,t, s2,t) = Φyt(y1,t, s1,t, s2,t)

and applying dynamic programming on the junction tree, the update rules for the

forward messages α?t and αt are derived as,

αt = m∗(s1,t, s2,t)

=
∑
s2,t−1

m∗(s1,t, s2,t−1)Φyt(y1,t, s1,t, s2,t)Φt(s1,t, s2,t, s2,t−1)

= p(y1,t|s1,t, s2,t)
∑
s2,t−1

m∗(s1,t, s2,t−1)︸ ︷︷ ︸
α?t

p(s2,t|s2,t−1)

= p(y1,t|s1,t, s2,t)
∑
s2,t−1

p(s2,t|s2,t−1)α?t �, (B.1)

α?t = m∗(s1,t, s2,t−1)

=
∑
s1,t−1

m∗(s1,t−1, s2,t−1)︸ ︷︷ ︸
αt−1

Φt(s1,t−1, s1,t, s2,t−1)

=
∑
s1,t−1

αt−1p(s1,t|s1,t−1) �. (B.2)

The update rules for the backward messages β?t (st) and βt(st) are derived as,
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βt = m∗∗(s1,t, s2,t)

=
∑
s1,t+1

m∗∗(s1,t+1, s2,t)︸ ︷︷ ︸
β?t

Φt(s1,t, s1,t+1, s2,t)

=
∑
s1,t+1

β?t p(s1,t+1|s1,t) �, (B.3)

β?t =
∑
s2,t+1

Φt(s1,t+1, s2,t+1, s2,t)Φyt(y1,t+1, s1,t+1, s2,t+1)m∗∗(s1,t+1, s2,t+1)︸ ︷︷ ︸
βt+1

=
∑
s2,t+1

p(s2,t+1|s2,t)p(yt+1|s1,t+1, s2,t+1)βt+1 �. (B.4)

The joint probability hence is derived as

p(s1,t, s2,t,y) = Φyt(y1,t, s1,t, s2,t)
∑
s1,t−1

m∗(s1,t, s2,t−1)m∗∗(s1,t, s2,t)Φt(s1,t, s2,t, s2,t−1)

= βt p(y1,t|s1,t, s2,t)
∑
s2,t−1

p(s2,t|s2,t−1)α?t︸ ︷︷ ︸
αt

= αtβt �.

(B.5)
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