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Tuovinen, Lauri, From machine learning to learning with machines. Remodeling
the knowledge discovery process
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering, Department of Computer Science and Engineering; University of
Oulu, Infotech Oulu
Acta Univ. Oul. C 499, 2014
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

Knowledge discovery (KD) technology is used to extract knowledge from large quantities of
digital data in an automated fashion. The established process model represents the KD process in
a linear and technology-centered manner, as a sequence of transformations that refine raw data
into more and more abstract and distilled representations. Any actual KD process, however, has
aspects that are not adequately covered by this model. In particular, some of the most important
actors in the process are not technological but human, and the operations associated with these
actors are interactive rather than sequential in nature. This thesis proposes an augmentation of the
established model that addresses this neglected dimension of the KD process.

The proposed process model is composed of three sub-models: a data model, a workflow
model, and an architectural model. Each sub-model views the KD process from a different angle:
the data model examines the process from the perspective of different states of data and
transformations that convert data from one state to another, the workflow model describes the
actors of the process and the interactions between them, and the architectural model guides the
design of software for the execution of the process. For each of the sub-models, the thesis first
defines a set of requirements, then presents the solution designed to satisfy the requirements, and
finally, re-examines the requirements to show how they are accounted for by the solution.

The principal contribution of the thesis is a broader perspective on the KD process than what
is currently the mainstream view. The augmented KD process model proposed by the thesis makes
use of the established model, but expands it by gathering data management and knowledge
representation, KD workflow and software architecture under a single unified model.
Furthermore, the proposed model considers issues that are usually either overlooked or treated as
separate from the KD process, such as the philosophical aspect of KD. The thesis also discusses a
number of technical solutions to individual sub-problems of the KD process, including two
software frameworks and four case-study applications that serve as concrete implementations and
illustrations of several key features of the proposed process model.

Keywords: data management, knowledge discovery, knowledge representation, process
model, software architecture, workflow management





Tuovinen, Lauri, Koneoppimisesta koneilla oppimiseen. Uudenlainen malli
tiedonlouhintaprosessille
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Tieto- ja sähkötekniikan tiedekunta,
Tietotekniikan osasto; Oulun yliopisto, Infotech Oulu
Acta Univ. Oul. C 499, 2014
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Tiedonlouhintateknologialla etsitään automoidusti tietoa suurista määristä digitaalista dataa.
Vakiintunut prosessimalli kuvaa tiedonlouhintaprosessia lineaarisesti ja teknologiakeskeisesti
sarjana muunnoksia, jotka jalostavat raakadataa yhä abstraktimpiin ja tiivistetympiin esitysmuo-
toihin. Todellisissa tiedonlouhintaprosesseissa on kuitenkin aina osa-alueita, joita tällainen malli
ei kata riittävän hyvin. Erityisesti on huomattava, että eräät prosessin tärkeimmistä toimijoista
ovat ihmisiä, eivät teknologiaa, ja että heidän toimintansa prosessissa on luonteeltaan vuorovai-
kutteista eikä sarjallista. Tässä väitöskirjassa ehdotetaan vakiintuneen mallin täydentämistä
siten, että tämä tiedonlouhintaprosessin laiminlyöty ulottuvuus otetaan huomioon.

Ehdotettu prosessimalli koostuu kolmesta osamallista, jotka ovat tietomalli, työnkulkumalli
ja arkkitehtuurimalli. Kukin osamalli tarkastelee tiedonlouhintaprosessia eri näkökulmasta: tieto-
mallin näkökulma käsittää tiedon eri olomuodot sekä muunnokset olomuotojen välillä, työnkul-
kumalli kuvaa prosessin toimijat sekä niiden väliset vuorovaikutukset, ja arkkitehtuurimalli
ohjaa prosessin suorittamista tukevien ohjelmistojen suunnittelua. Väitöskirjassa määritellään
aluksi kullekin osamallille joukko vaatimuksia, minkä jälkeen esitetään vaatimusten täyttämi-
seksi suunniteltu ratkaisu. Lopuksi palataan tarkastelemaan vaatimuksia ja osoitetaan, kuinka ne
on otettu ratkaisussa huomioon.

Väitöskirjan pääasiallinen kontribuutio on se, että se avaa tiedonlouhintaprosessiin valtavir-
ran käsityksiä laajemman tarkastelukulman. Väitöskirjan sisältämä täydennetty prosessimalli
hyödyntää vakiintunutta mallia, mutta laajentaa sitä kokoamalla tiedonhallinnan ja tietämyksen
esittämisen, tiedon louhinnan työnkulun sekä ohjelmistoarkkitehtuurin osatekijöiksi yhdistet-
tyyn malliin. Lisäksi malli kattaa aiheita, joita tavallisesti ei oteta huomioon tai joiden ei katsota
kuuluvan osaksi tiedonlouhintaprosessia; tällaisia ovat esimerkiksi tiedon louhintaan liittyvät
filosofiset kysymykset. Väitöskirjassa käsitellään myös kahta ohjelmistokehystä ja neljää
tapaustutkimuksena esiteltävää sovellusta, jotka edustavat teknisiä ratkaisuja eräisiin yksittäisiin
tiedonlouhintaprosessin osaongelmiin. Kehykset ja sovellukset toteuttavat ja havainnollistavat
useita ehdotetun prosessimallin merkittävimpiä ominaisuuksia.

Asiasanat: ohjelmistoarkkitehtuuri, prosessimalli, tiedon louhinta, tiedonhallinta,
tietämyksen esittäminen, työnkulun hallinta
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Preface

Conventional wisdom has it that one should be able to complete a doctoral dissertation
in four years; depending on where you start counting, it took me eight or nine to reach
my destination. I cannot name a single reason to account for this, but perhaps the
chief one is that I took what one might call the scenic route. A straight line may be
the shortest path between two points, but it is not always the most interesting one. I
might have finished sooner by sticking to that path, but then I would have missed a
golden opportunity to mingle with a strange mix of computer scientists, engineers and
philosophers. So I strayed, and shared ideas (as well as several bottles of wine) with
each of those worlds, and took home something from each of them, and slowly pieced
together my thesis from choice bits of this creative chaos.

I will not pretend that the path I took never got me lost or frustrated, but it got
me there eventually, and I would like to thank my supervisor, Professor Juha Röning,
for bearing with me and letting me find my own voice. My pre-examiners, Professor
Christopher Clifton and Professor Vassilios Verykios, also have my gratitude; they did
not let me off the hook easily, but I feel that the final result of my work is much better
than it would have been without their backside-kicking efforts. Dr. Pertti Väyrynen
contributed by checking my spelling, punctuation and grammar.

Doing science is teamwork, and I wish to recognize the contribution of all the good
people of Intelligent Systems Group, past and present, who have co-authored papers
with me. Everyone with whom I collaborated in the SIOUX, SAMURAI and XPRESS
projects also deserve my thanks. Special thanks are due to Dr. Perttu Laurinen, who
advised me during the first half of my winding journey, before I cut my teeth as an
independent researcher. Speaking of teeth, I want to thank everyone at work with whom
I have sat down for lunch, or a cup of coffee, or a pint — you have made the workplace
a complete hoot on the best of days and tolerable even on the worst. You know who you
are.

Several organizations have provided financial support for the completion of my
thesis. I am particularly grateful to those that have awarded personal scholarships
and grants: the Graduate School in Electronics, Telecommunications and Automation
(GETA), the Tauno Tönning Foundation, and the Nokia Foundation. The projects in
which I have created contributions included in the thesis received funding from the
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European Commission, Tekes, Rautaruukki, and Polar Electro. The support of Infotech
Oulu to the Intelligent Systems Group is also gratefully acknowledged.

In the software engineering community it is said, perhaps only half-jokingly, that
in any given project, the first ninety percent of the work takes ninety percent of total
development time, and the last ten percent takes the other ninety. I feel like something
similar has happened in my case, and I want to thank all my family and friends for their
patience in listening to my laughably optimistic estimates of when I would defend. To
my parents, I am deeply grateful for fostering my love of learning (and computers) when
I was growing up, not to mention all the material support they have given me during my
studies. The final word goes out to my special someone Elisa, to whom I owe countless
thanks for what she has done to my life since we met — I try my best every day to
return the favor.

Oulu, March 2014 Lauri Tuovinen
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1 Introduction

The word “computer” originally referred to a person, someone whose job is to perform
scientific computations (Grier 2005). Before the advent of the electronic computer, this
was a task involving a great deal of manual labor. A computer room, in those days, was
simply a room where computers worked. Since then, however, the original usage of the
word has been totally superseded by the modern one, so that in most contexts saying
“electronic computer” or “digital computer” seems redundant.

Modern computers are used for such a wide array of tasks that the English-language
legacy term hardly does them justice any more. Interestingly, in the Finnish language,
the opposite has happened: the corresponding term has become more and more apt as
the technology has progressed. The Finnish word for computer is “tietokone”, for which
a literal translation would be “knowledge machine” — certainly an exaggeration when
we consider the earliest computers, but quite accurate when we consider the ones we
have now. The computers of yesterday computed, but the knowledge machines of today
process knowledge.

This thesis is concerned with knowledge discovery, the process by which computers
generate and accumulate new knowledge. There is an established process model of
knowledge discovery, in which the process is viewed as a mostly linear sequence of
transformations, with raw data as the original input and knowledge as the final output. In
between, the data is cleaned, condensed, analyzed and converted from one representation
to another until what remains is a crystallized expression of the meaning of the data.
Experts can then use it, for example, to improve some aspect of an industrial or business
process.

The thesis argues that while the established view is a good descriptive model of
the knowledge discovery process, it represents a limited perspective. The principal
hypothesis is that knowledge discovery projects would be better supported by a less
linear process model with the following properties:

– The model is founded upon a data model that binds all the relevant states and
representations of data within a single unified framework.

– The model embodies a workflow model that recognizes the importance of human
actors in the knowledge discovery process and identifies the interactions on which the
success of the process depends.
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– The model is supported by an architectural model that enables the construction of
knowledge discovery software tools by reflecting the data model and the workflow
model.

By focusing on actors and interactions, the thesis emphasizes the collaborative nature
of knowledge discovery. The collaboration takes on many different forms: sometimes, it
takes place between humans, at other times between technological artifacts, and on
certain occasions between humans and technology. The diversity of the interactions
will necessarily be reflected in the variety of activities and tools designed to support
them. Since it is humans who drive the process and since many of the interactions
involve humans, supporting all aspects of the process requires the application of not just
hardware and software but psychology and even ethics. The thesis therefore includes a
significant cross-disciplinary component, applying methods and concepts adopted from
philosophy of computing alongside those of computer science.

The remainder of this chapter explains the approach by which the thesis aims to
validate its principal hypothesis. Section 1.1 gives definitions for certain key concepts
and specifies the scientific objectives and scope of the thesis with respect to those
concepts. Section 1.2 presents a summary of the contributions made by the thesis to the
state of the art in the field of knowledge discovery. Section 1.3 enumerates the datasets
and other materials used and the research methods applied to reach the conclusions of
the thesis. Section 1.4 outlines the order in which the discussion proceeds from Chapter
2 onward.

1.1 Objectives and scope

Before it is possible to unambiguously formulate the objectives and scope of the thesis,
it is necessary to define the terminology to be used. There are a number of relevant
computer-science concepts bound together by the use of the word “knowledge”. These
are defined here as follows:

– Knowledge Discovery (KD) is the process of extracting verified knowledge from
digitally recorded data with the help of computer software. The main phases of the
process, as commonly defined, are data acquisition and selection, pre-processing,
feature extraction, modeling, and interpretation.

– Knowledge Representation (KR) is the digital encoding of knowledge according
to a symbolic, machine-readable scheme suitable for automated interpretation and
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inference. A Knowledge Base (KB) is a body of digitally stored knowledge that
adheres to some KR scheme.

– Knowledge Engineering (KE) is the incorporation of expert knowledge in computer-
based systems with the aim of enabling the systems to apply the knowledge for
independent problem-solving.

To be entirely precise, the concept of knowledge discovery as used in this thesis
should, in fact, more properly be called knowledge discovery in databases (KDD).
However, for the sake of brevity, the less verbose form will be used.

Another widely used term, data mining (DM), is essentially a different name for
a specific subset of the steps of the KD process; it is defined here as the process of
applying computational algorithms to build a generalized model of a dataset, useful for
predicting or describing the properties or behavior of the phenomenon represented by
the dataset. It should be noted that while the thesis devotes considerable attention to data
mining as an instrument of knowledge discovery, it rejects the implicit assumption that
KD necessarily involves DM. For instance, in image classification, it may be a viable
option to employ human volunteers instead of a classification algorithm because of the
natural aptitude of humans for such tasks (Raddick et al. 2010). Making such choices is
one of the aspects of the KD process emphasized by the model proposed in the thesis.

Given the above definition of knowledge discovery, the objectives of the thesis can
be expressed as follows:

1. To identify aspects of the KD process that the established process model does not
adequately reflect.

2. To define requirements for an augmented model that responds to the identified
shortcomings.

3. To design augmentations to the established model based on the defined requirements.
4. To validate the augmented model against the requirements.

Although the objectives are all formulated with reference to KD only, the actual
scope of the thesis is somewhat broader, incorporating elements of KR and KE through
the inclusion of the data model in the augmented process model. The goal of the data
model is to support not only the task of generating knowledge, but also those of storing
and using it, which are all considered here to be part of the same higher-level process.
KD, KR and KE are, in this thesis, viewed as different expressions of the same idea,
namely that of a computer as an entity capable of creating and possessing knowledge.
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The philosophical implications of such an idea are not negligible, and they shall be
discussed at some length over the course of the thesis.

1.2 Scientific contributions

In terms of the three models listed where the principal hypothesis was introduced, the
scientific contributions of the thesis can be summarized as follows:

– Data model: a reference architecture for databases that support the KD process; a KR
scheme for method storage and retrieval based on task characteristics; implementations
of the database design principles and the KR scheme as solutions to real-world
manufacturing problems.

– Workflow model: identification of KD process actors and interactions neglected
by the established process model; description of the significance of the actors and
interactions; proposal for incorporating the actors and interactions in an augmented
process model.

– Architectural model: a software architecture designed for KD applications; an
implementation of the architecture as a software framework; real-world KD solutions
implemented using the framework.

The thesis is largely based on results published previously in a number of interna-
tional conference papers. These results are reproduced in the body text and figures as
appropriate and necessary to support the conclusions of the thesis. More specifically, the
conclusions rest on the following results:

– Development of a database for welding quality assurance (Tuovinen et al. 2007) and a
knowledge system for task-to-method transformations in reconfigurable manufacturing
systems (Tuovinen et al. 2010).

– Discussions of the ethical aspect of knowledge discovery (Tuovinen & Röning 2005)
and the significance of human interaction in the KD process (Tuovinen & Röning
2009).

– Development and application of the Smart Archive framework (Laurinen et al.

2005, Tuovinen et al. 2008, 2009a,b) and its successor, the Device-Based Software
Architecture (Kätevä et al. 2010).

Of the two papers published at computer ethics conferences, (Tuovinen & Röning
2005) and (Tuovinen & Röning 2009), the author of the thesis is the principal author in
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both. Both papers are based on the author’s own ideas and work. The co-author of
these papers, Professor Juha Röning, provided comments and advice in the manuscript
preparation phase.

Of the papers related to Smart Archive, the author of the thesis is the principal author
in (Tuovinen et al. 2008), (Tuovinen et al. 2009a) and (Tuovinen et al. 2009b), and the
lead designer and implementer of the work reported therein. Co-authors, Prof. Röning
and Dr. Perttu Laurinen, had advisory roles. Additionally, Dr. Laurinen and Dr. Ilmari
Juutilainen are the principal developers of the two Smart Archive-based applications that
form part of the work reported in (Tuovinen et al. 2008).

Dr. Laurinen is the principal author of (Laurinen et al. 2005), a paper describing
an earlier version of Smart Archive, which he developed. The author of the thesis
assisted in formulating the point of view of the paper and editing the manuscript.
The author had a similar role in the writing of (Kätevä et al. 2010), the paper on the
Device-Based Software Architecture, the principal author of which is M.Sc. Janne
Kätevä. Additionally, the author participated in the early stages of the specification and
design of the framework.

The author of the thesis is the principal author of the two papers on databases and
knowledge bases, (Tuovinen et al. 2007) and (Tuovinen et al. 2010), advised again by
Prof. Röning and Dr. Laurinen. The author also designed and implemented the database
described in (Tuovinen et al. 2007); co-authors Dr. Heli Koskimäki and M.Sc. Eija
Haapalainen assisted in the testing of the solution. The knowledge system reported in
(Tuovinen et al. 2010) was designed and implemented by the author and co-authors
Tuomas Talus and Esa Koponen, using the work of Janne Kätevä.

1.3 Materials and methods

Chapters 3–6 represent the main body of this thesis. Of these four chapters, the first
two are concerned with elaborating the principal hypothesis, whereas the other two are
dedicated to testing the hypothesis. The methods employed to accomplish these two
tasks are reviewed here.

For hypothesis elaboration, the first step was to establish a set of requirements
that a successful solution should satisfy. Literature reviews and conceptual analysis
were used to build a balanced view of the current state of KD research, from which the
requirements were derived in a manner imitating the software engineering practice of
requirements solicitation. When studying the literature, three questions were deemed of
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particular interest, corresponding again to the three component models of the proposed
process model:

– What is the relationship between knowledge discovery and epistemology, i.e., the
philosophical study of knowledge?

– Who are the stakeholders in the KD process — including those who do not actively
participate in it — and what are their contributions and expectations?

– How is the KD process reflected in the architecture of software tools created to
support the process?

The dominant approach followed in the development of the solution is constructive
research. In the case of the data model and the architectural model, the artifacts
constructed are software applications, whereas in the case of the workflow model,
the results are more abstract. Besides constructive research, some elements of action
research were included in the approach, as it was sometimes the case that the artifact
under construction was being developed within an organization as part of an effort to
improve an organizational function.

For hypothesis testing, the first approach employed was requirements tracing, again
mirroring the software engineering practice. The goal was to demonstrate through
observation and reasoning how each requirement is satisfied by a specific component
of the proposed solution. To support the requirements trace with additional evidence,
a number of case studies on the constructed software artifacts were used. For these
studies, several datasets were provided by project partners:

– The welding database was populated with data from welding experiments carried out
by Harms & Wende, Stanzbiegetechnik and Technax Industrie.

– For Smart Archive, Rautaruukki provided data and specifications for an application
for maintenance of predictive models in the steel industry; Polar Electro did the same
for an application for analyzing personal fitness data.

– Test cases for the manufacturing knowledge system were defined by KUKA Systems
and Karlsruhe University of Applied Sciences.

In addition to real-world data and applications, synthetically generated datasets and
simulation tests were used in some cases to evaluate the performance of the artifacts
studied.
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1.4 Organization of the thesis

Before the treatment of the main subject matter of the thesis begins, Chapter 2 presents a
review of related work in four major areas of research. These are data mining, software
architecture, databases and knowledge bases, and philosophy of computing. The chapter
provides both a state-of-the-art survey of relevant issues and a historical perspective on
the technologies discussed.

Chapters 3, 4 and 5 each follow a similar structure, with sections corresponding to
the data model, the workflow model, and the architectural model. Chapter 3 establishes
the requirements for each model, Chapter 4 presents the proposed models, and Chapter
5 performs a requirements trace for each model, as described in the previous section.

The case studies, four of them altogether, are presented in Chapter 6. The significance
of each case study is evaluated in terms of what it tells about the ability of the proposed
solution to respond to the established requirements. This is followed by an evaluation of
the contributions of the thesis in Chapter 7, which discusses the strengths and weaknesses
of the presented results, assesses the limits of their applicability, and highlights important
questions to which the thesis offers no answers. The thesis is then concluded by Chapter
8.
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2 Background

The technological development leading up to the current state of the art in knowledge
discovery spans a number of computing disciplines. Given the focus of this thesis, the
most important categories of prior research and development are data mining, software
architecture, database management and philosophy of computing. This chapter presents
a review of pertinent literature on these four major topics.

The relevance of data mining research is obvious, since DM technology is one
of the principal instruments of knowledge discovery. Literature on DM methods and
applications is therefore reviewed, even though the thesis does not purport to demonstrate
new results in the field of DM per se. This review, consisting of a concise history of DM
and a survey of major techniques and applications, is presented in Section 2.1.

A significant portion of the scientific contribution of the thesis is in the area of
software architectures for KD applications, which is why it is important that literature
on software architectures be reviewed here. The review, in Section 2.2, introduces the
theoretical concepts necessary for the full appreciation of the research results discussed
in Section 4.3. The section also surveys KD software architectures that will serve as
points of reference for the solution proposed in this thesis.

Management of data and knowledge is another area of KD technology where
the thesis makes a contribution. In this area, the thesis focuses on two major topics:
designing databases to support the knowledge discovery process, and representing
knowledge in digital form. Section 2.3 presents a review of literature on these topics,
along with a discussion of the concepts of data and knowledge.

The final section of this chapter reviews literature on the philosophy of computing in
general and on the philosophy of KD in particular. This is done because the thesis uses
philosophical theories and methods to study the concept of knowledge in KD and the
social and ethical implications of the KD process. To provide additional context for
these discussions, the review in Section 2.4 paints a broad picture of philosophy of
computing as an academic discipline.

2.1 Data mining

This first section of the literature review serves two purposes. One is to provide an
overview of the state of the art in the field of data mining. This overview is further
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split into two parts: one reviews the techniques of DM, while the other discusses the
applications and practical impact of DM. These areas are covered in Subsection 2.1.2
and Subsection 2.1.3, respectively.

Before the state-of-the-art review, however, the history of data mining is discussed at
some length. This discussion is also split between two perspectives: first the history of
the enabling technologies of DM is recounted, after which the history of the adoption of
DM as a new technology of practical value is briefly reviewed. Both perspectives are
presented next, in Subsection 2.1.1.

2.1.1 A historical perspective

Going back in time, the history of electronic computing merges seamlessly into the
history of mathematics, so any discussion on the history of a given field of computing
could, with some justification, be extended to antiquity. However, a moderately
recent starting point is available in Thomas Bayes’s posthumously published essay on
probabilities (Bayes 1763). Starting with the Bayesian theory of probability is still a
somewhat arbitrary choice, but not entirely, since Bayesian probability computations
underlie many DM techniques, starting with certain formulations of linear regression.
Regression analysis as such predates all-purpose electronic computers by nearly a
century and a half and thus is not at all exclusively a DM technique, but naturally the
rise of the computer has allowed it to be used to tackle much more complex problems
than could ever be solved manually. The earliest form of linear regression, the least
squares method, was invented independently by Adrien-Marie Legendre (1806) and Carl
Friedrich Gauss (1809).

Linear regression represents an early example of a mathematical model that learns
a sample dataset and outputs a function that predicts the overall distribution of data
coming from the same source as the original sample. The digital computer, pioneered in
the mid-20th century by Claude Shannon (1940), Alan Turing (1937), Konrad Zuse
(Giloi 1997) and John von Neumann (1945), among others, has radically transformed
the field of possibilities of such models. The ability to learn from data combined with
the ability to represent the learning results in the form of a stored program led to the
birth of a new computing discipline, machine learning.

Being the combination of these two main components, machine learning can be
roughly defined as experience-based self-modification of the behavior of a computer
program, where the experience is represented by a set of individual observations, the

26



training dataset. For DM, in turn, a rough definition can be composed by combining
machine learning with the ability to store, organize and search large quantities of data
efficiently in databases. In practice, it was the relational model of data that allowed
sufficiently powerful database systems to be designed and built.

The relational model has its roots in classical set theory and predicate logic, so a
thorough exploration of this topic would again lead us to plunge rather deep into the
history of mathematics. However, the use of relations to represent database structure and
content was first proposed by Edgar F. Codd (1970). Relational database management
systems began to appear as commercial products roughly a decade later, and in the
1980s, they became the predominant type of database. Although other database models
have been proposed and implemented since then, relational databases remain a popular
data management solution.

From the rise of relational database systems, it is again approximately a decade to
the origin of the term “data mining”. The details of its coinage are unclear, and it is
safe to assume that various organizations were doing data mining before the term was
invented, calling it “data analysis” or perhaps “business intelligence”. In any event,
based on its occurrence in research literature, it appears that “data mining” has been a
standard part of computing terminology since the early 1990s.

Adopting a business perspective instead of a technical one, the beginning of DM
may be placed at the late 1980s, a time when many companies were counting their
losses from having invested radically in artificial intelligence (AI) technology that was
not ready to deliver what it promised to. When investments in AI did succeed, it was
the result of moderate expectations and a solid understanding of the real capabilities
of the technology. These became the foundation of DM as a commercially viable
industry. Among the early adopters of DM were organizations operating in finance,
retail, insurance and telecommunications. (Collier et al. 1998)

The first companies specializing in DM software, such as ANGOSS Software
Corporation and Pilot Software, entered the market in the mid-1980s. The size of the
industry remained steady until the end of the decade, but in 1990 began a major growth
period; between 1990 and 1998 the total number of companies multiplied by a factor of
7. A survey in 1999 (Goebel & Gruenwald 1999) identified over 40 available software
packages for DM and assessed most of them to be of commercial strength. The first
companies offering DM services to businesses were founded in the middle of the decade,
and at the same time, traditional ICT companies began to incorporate DM into their
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information systems expertise. IBM, for example, launched its Intelligent Miner in 1996.
(Collier et al. 1998)

Integration in various forms has been a characterizing aspect in the development of
DM at and after the turn of the century. It is now common for major database vendors to
offer DM packages as optional features of their main products; IBM does this with its
DB2 Data Warehouse Edition, as does Microsoft with SQL Server Analysis Services and
Oracle with Oracle Data Mining. An example of industrywide integration is provided
by the creation of DM standards, which include consortium-defined standards for
application programming interfaces, model specification and the DM process, as well as
an extension to the ISO SQL standard (Clifton & Thuraisingham 2001, Grossman et al.

2002).

2.1.2 Data mining techniques

From linear regression, it is not a long conceptual leap to linear classification. The
objective in classification is to predict discrete class labels rather than continuous
variable values, but many of the principles of statistical regression analysis still apply;
for example, the least squares method can be adapted to construct a simple linear
classifier. Other early classification techniques include Fisher’s linear discriminant
(Fisher 1936) and the perceptron (Rosenblatt 1958). The latter is particularly interesting
in that it represents an early example of artificial neural network (ANN) modeling. Later
developments such as the multilevel feed-forward ANN proposed by Rumelhart et al.

(1986) have made it possible to develop nonlinear models. Even more recently, nonlinear
methods based on the kernel concept (Aizerman et al. 1964) have been developed;
these include support vector machines (SVM) (Boser et al. 1992) and relevance vector
machines (RVM) (Tipping 2000). ANNs, SVMs and RVMs are applicable to both
regression and classification problems.

Another important group of DM methods is used for grouping data points into
clusters, defined informally as subsets of points that are close to one another and
far from points in other subsets. Unlike classification, clustering algorithms do not
require category labels to be included in training data; instead, cluster membership is
inferred directly from the data. Two closely related clustering techniques represent the
seminal work in this area: the EM algorithm (Dempster et al. 1977) and the K-means
algorithm (Lloyd 1982). The two algorithms yield similar results but differ in that EM is
probabilistic, whereas K-means is not. These suffer from the drawback that the number
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of clusters must be specified in advance; this is avoided by a more recent method, the
QT algorithm (Heyer et al. 1999).

Agrawal et al. (1993) and Agrawal & Srikant (1994) represent the seminal work on
association rule discovery. An association rule specifies that given a large number of
sets of items, certain items occur together in the itemsets with a certain likelihood and
confidence. The standard textbook example of association rule discovery is market basket
analysis, which seeks to identify products that are frequently purchased together. The
classic Apriori algorithm given in (Agrawal & Srikant 1994) is comparably inefficient
but has served as a basis for improved algorithms such as (Mannila et al. 1994) and
(Park et al. 1995).

Mining temporal or spatial data requires modeling methods capable of capturing the
dependencies that typically exist between elements that lie close to one another in such
datasets. The earliest reports of temporal pattern discovery were published in the 1980s,
e.g. (Dietterich & Michalski 1985), but broad interest in temporal data mining did not
arise until the mid-1990s, at which time research on spatial data mining also began
to be published (Roddick & Spiliopoulou 1999). Among the methods developed for
temporal and spatial DM are algorithms for classification, association rule discovery,
trend analysis, and clustering (Roddick & Spiliopoulou 1999, 2002).

Towards the end of the 1990s and on into the 21st century, there has been a
growing interest in mining increasingly complex and unstructured types of data.
Automatic classification of text documents using a Bayesian probabilistic approach
was experimented with already in the early 1960s (Maron 1961), but as computers
began to be employed for processing images and then audio and video signals, new
challenges arose for DM. These challenges are addressed in (Zaïane et al. 1998) and
(Thuraisingham et al. 2001), among many others. Another branch of DM research
that has emerged relatively recently deals with page content, link structures and usage
patterns on the World Wide Web (Cooley et al. 1997, Jicheng et al. 1999).

2.1.3 Practical significance

A 2006 special issue of the Explorations newsletter of the ACM Special Interest Group
on Knowledge Discovery in Databases (SIGKDD) consists of ten case studies on
real-world applications of data mining (Melli et al. 2006). The case studies reflect
a broad spectrum of application domains for DM, ranging from healthcare to web
marketing. To illustrate this diversity, four general categories of applications of DM
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shall be reviewed here: science, industry, business and administration. The categories
are not necessarily disjoint and they are not meant to be exhaustive, but they form a solid
enough foundation for an assessment of the variety and scale of the benefits yielded by
the appropriate use of DM technology.

In the science category, medical applications of DM are prominent. These include
analysis of medical images (Dimitriadou et al. 2004), general diagnostics (Tan et al.

2003), detection of particular illnesses such as cancer (Li et al. 2004), arthritis (Wyns
et al. 2004) and dementia (Zaffalon et al. 2003), and classification of tumors (Antal et al.

2003, Lukas et al. 2004). Data mining techniques are useful for analyzing genomic data,
which makes DM a valuable tool for the life sciences also in a pure-research context, as
exemplified by King et al. (2000). Another example of a pure science that can be aided
by DM is astronomy (Grossman et al. 2001).

In industrial production, there are numerous examples of successfully using DM to
improve the quality of products or processes. Traditional industries that have benefited
from the application of DM methods include welding (Zhang et al. 2003a), steelmaking
(Cser et al. 1999), oil refining (Chen et al. 2004), and electronics manufacturing (Kusiak
& Kurasek 2001). A 2006 report regarding the use of DM in software maintenance
(Kanellopoulos et al. 2006) shows that the technology can also help industries that work
with nonphysical artifacts.

The business applications of DM are, to a considerable extent, focused on improving
the marketing of products. A typical textbook example is market basket analysis; see,
e.g., (Singh et al. 2006, Setiabudi et al. 2011) for case studies. Data mining can also be
used for more precise targeting of marketing campaigns and products (Chou et al. 2000,
Gersten et al. 2000). Businesses that may suffer losses due to fraudulent or otherwise
improper use of the services they provide can use DM to help minimize these losses
(Brause et al. 1999, Viaene et al. 2004, Pinheiro et al. 2006). Another non-marketing
application is customer service quality improvement, as described by Ha & Park (2006).

Fraud detection by DM works equally well for government organizations carrying
out such functions as taxation (Bonchi et al. 1999, DeBarr & Eyler-Walker 2006) and
customs (Shao et al. 2002). Law enforcement in general is an important administrative
application domain of DM: the investigation of many types of crime can be supported by
computational pattern analysis (Brown & Oxford 2001, Underson 2002, Zhang et al.

2003b, Adderley & Musgrove 2001). Security-related applications of DM, especially
ones pertaining to terrorism prevention, have raised privacy concerns, which in turn
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have spawned a new branch of DM research known as privacy preserving data mining
(Jensen et al. 2003, Wahlstrom & Roddick 2000, Verykios et al. 2004).

2.2 Software architecture

The role of software architecture in software engineering (SE) is to guide the development
of a software system by providing a set of abstract, mutually complementary views of
the composition of the system. Each view depicts a distinct aspect of the system in terms
of parts, their responsibilities and their relationships with other parts. Furthermore,
fundamental constraints, such as the decision to use a particular implementation platform,
are also included in the architectural specification of a system.

The more complex the system to be developed and the larger the team working on it,
the more important it is to have a comprehensive and thoroughly documented software
architecture. This is because the architecture consists of those decisions regarding the
design of the system with which all further design and implementation decisions must
comply. Each developer must therefore be aware of the agreed-upon architecture in
order to avoid making decisions that are incompatible with those of other developers.
If the work of an individual developer is in conflict with the architecture, either the
developer must find a different way to achieve the same outcome or the architecture
must be changed and the change propagated to all parts of the system.

A software architecture generally exhibits one or more distinct architectural styles.
Different styles have different strengths and are suitable for different tasks, so the choice
of styles depends on the requirements of the software. Architectural styles in general
are discussed in the first subsection, followed by a discussion of software frameworks,
which are reusable embodiments of software architectures, in the second. The last
subsection reviews software frameworks intended specifically for the development of
KD software.

2.2.1 Architectural styles

Defining the concept of an architectural style without resorting to something trivial such
as “a style of software architecture” is not an entirely easy task. Since the word “style”
is intuitively understandable, this is not necessarily a big problem. However, it would
still be good to have a slightly more formal definition to work with before we proceed.
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One way to define architectural style is by analogy with the design pattern concept
introduced in the seminal work by Gamma et al. (1994), or the Gang of Four as they are
colloquially known. Design patterns are abstract designs described using the concepts of
object-oriented programming — classes, class members and relationships between
classes. Each pattern represents a tried-and-true solution to a particular category of
problems, so when developers encounter a problem belonging to a category covered by
an existing design pattern, they know they can create a good design by following the
pattern. Therefore, whereas a design is a concrete solution to a problem, a design pattern
is a model that shows how to solve every problem in the category addressed by the
pattern.

Similarly, when we consider a software architecture as a solution to a particular
problem, we can define an architectural style as an abstract model that shows how
to create architectures applicable to a group of problems. Just like a software design
may employ multiple design patterns, a software architecture may exhibit multiple
architectural styles. The main difference is that instead of classes, architectural styles
are described in terms of larger entities such as components or subsystems. Bass
et al. (2003) use the term “architectural pattern” to refer to the same concept, further
emphasizing the analogy to design patterns.

The architecture of a software system is a composite of multiple complementary
structures, some depicting the static arrangement of architectural elements, others
the run-time dynamics of the system. From the run-time perspective, one of the
most important defining features of software architecture is communication: what
communicational links exist between subsystems and what roles the subsystems assume
as members of those links. We can therefore roughly categorize architectural styles
based on the communicational patterns they exhibit.

The simplest style of software architecture, from this perspective, is monolithic
architecture. In a pure monolithic architecture, there is no division into subsystems at
all, so there is also no communication among subsystems. This is a perfectly viable
option if the application being built is very simple, although it is questionable whether
any actual architectural design takes place in such cases. In the majority of software
engineering projects, it will be necessary to partition the application, for example, by its
major functions in order to create natural units of responsibility to be distributed among
the members of the development team. (Bass et al. 2003)

In architectures where there are communicating subsystems, the topology of
subsystems and communication links is often centered around a hub that plays a
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dominant role in the system. An especially common hub-based architectural style
is client-server architecture, where the hub (server) provides services that the other
subsystems (clients) can use by sending requests to the hub. Most web applications —
information retrieval services, social networking sites, browser-based games, et cetera —
are examples of client-server-style software architecture. Alternatively, the hub can be a
shared data structure accessed and manipulated by the surrounding subsystems; this is
how software architectures following the blackboard style are organized (Engelmore &
Morgan 1988).

Although hub-based architectures are popular, a hub is not necessary to coordinate
communication among system components. An alternative way to organize a system is
to have the components organize themselves through local interactions with other com-
ponents. In such architectures, no component dominates over others: each component
depends upon some components while being depended upon by others, and there is no
globally controlling entity to determine the flow of execution in the system.

Data flow architecture is an architectural style that represents software as a collection
of data streams manipulated by the system components through which they pass. The
components and the data streams connecting them form a graph structure where each
node carries an equal weight in determining the outcome of execution. There may be a
separate controlling component that alters the structure of the graph by rerouting the
streams, but it is not a hub from which the other components request services. Instead,
each component in the graph implements services for or requests services from its
neighbors, i.e., those components from which it receives or to which it sends data
streams. Another name for this style of architecture is pipes and filters (Buschmann et al.

1996).
In data flow architecture, the links between components are externally defined and

relatively stable, but there are also architectural styles where the links are made by the
components themselves and broken as soon as the relevant data has been exchanged.
The components in such architectures are independent units that seek out the services of
other components, each according to its own agenda. Well-known examples are found
among web applications that are not based on client-server architecture; peer-to-peer
architecture (Schollmeier 2001), for instance, is popular in file sharing applications such
as BitTorrent. Another notable style, agent-based architecture (Woolridge & Jennings
1995), relies on autonomous interactive components known as agents and has frequently
been proposed as an architectural solution for adaptive systems, e.g., in the field of
intelligent manufacturing (Shen et al. 2006).
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The choice of architectural style or styles for a system depends on the purpose and
requirements that the system is expected to fulfill. Although there are often multiple
alternative approaches that all lead to the same outcome, it is generally the case that
some of them are better suited than others to solving the problem at hand. Architectural
styles that are particularly suitable for KD software are discussed in Subsection 2.2.3.

2.2.2 Software frameworks

Reusability is an issue constantly on the table in software engineering. In most software
development projects, the fact is that something similar has already been done, quite
probably by the same team or at least the same organization, so it would make sense to
build on that earlier work rather than start from nothing. The goal of reusability research
is to help developers design and code with reusability in mind in order to make it more
likely that their solutions can be used again in future projects.

The earliest and most elementary form of reuse in software engineering is copying
a passage from one code file and pasting it into another one. Occasionally, this is
still justified, but in most cases, more sophisticated and elegant ways of reusing work
are favored. Code is commonly shared and reused via function and class libraries;
designs and architectures can be made reusable by codifying them as design patterns
and architectural styles. Software reuse is thus a much broader concept than mere code
reuse, referring instead to the reuse of software engineering artifacts on every level of
abstraction (Jacobson et al. 1997).

At the intersection of these diverse ways of building reusable SE artifacts lies an
interesting special case: software frameworks. A software framework combines a
reusable design with a body of reusable code, making frameworks distinct from other
types of reusables. Compared with architectural styles and design patterns, the difference
is obvious: frameworks contain code, which styles and patterns do not. Compared with
code libraries, on the other hand, the distinction is slightly more subtle.

When a developer writes a program using a code library, the developer writes the
main routine of the program and calls library functions from there. When a developer
uses a software framework, this relationship is reversed: the framework provides the
main routine, calling code written by the developer at specific points. The architecture
of the application is thus defined by the framework, whereas the solution-specific
functionality is included in the parts created by the developer. (Gamma et al. 1994)
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One could say that a software framework is the concrete manifestation of a software
architecture, considered in isolation of any specific problem to be solved. Before details
of functionality are fixed, an architecture defines not just one solution, but a class of
solutions, and the same is true of a software framework that implements the architecture.
Adopting a framework therefore means that the application will have all the qualities of
the generic architecture embodied in the code of the framework. (Gamma et al. 1994)

Choosing the right framework for a software engineering project is not a trivial
task: the framework should be reliable, suitable for the application domain, powerful
enough for the application, and understandable to the developers. Provided that these
requirements are satisfied, however, a framework brings considerable benefits to the
development process. Since only the application-specific parts need to be designed,
coded and tested, developing with an appropriate framework is faster than without one,
and the architectural similarity of applications based on the same framework improves
maintainability across the product line (Gamma et al. 1994).

In practice, almost all graphical applications developed for modern desktop platforms
are programmed using an event-based software framework. These frameworks make it
simpler for developers to implement windowed applications by providing an intuitive
interface to various user interface elements and the events they generate when activated.
Currently popular frameworks include .NET for Microsoft Windows, Swing and SWT
for Java, and the cross-platform framework Qt. These are fairly generic frameworks,
not focused on any specific application domain, but domain-specific frameworks have
also been developed for various purposes. The next subsection gives examples of
domain-specific software frameworks for KD.

2.2.3 Software architectures for knowledge discovery

The nature of the knowledge discovery process is such that intuition immediately
suggests certain architectural styles for KD applications. If one takes the essential
elements of the KD process and maps them to components in a software architecture,
there are not many fundamentally different architectures at which one can arrive. As a
consequence, the same basic patterns tend to be found in architectures designed for KD
software, although there is still room for considerable variation when one examines
these architectures in more detail.

The KD process has not been properly discussed yet in this thesis, apart from the
short definition of KD given in Section 1.1. However, at this point, it is sufficient to
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describe the KD process as a progression of data transformations for refining a set of
observed data points into a predictive or descriptive model. A more comprehensive
treatment of this topic is given later, in Section 3.2.

The model of knowledge discovery as a process of stepwise refinement of data
translates naturally into a software architecture where the transformation steps are
represented by system components. Through the components, the data proceeds in the
manner of a stream. In other words, the result is a pipes-and-filters architecture, and
unsurprisingly, this is usually the primary architectural style of software frameworks
intended for the development of KD applications. Some notable examples are listed
below:

– RapidMiner, formerly known as YALE (Mierswa et al. 2006), is an open-source
KD environment originally developed at the University of Dortmund. Filters in
RapidMiner are referred to as operators and arranged into an operator tree, a structure
designed as a trade-off between the restrictive simplicity of an operator chain and the
arbitrary complexity of an operator graph. The software emphasizes rapid prototyping
of KD solutions via a graphical user interface (GUI), but it can also be operated on
the command line or through an application programming interface (API).

– KNIME (Konstanz Information Miner) (Berthold et al. 2006) is another open-source
platform for KD applications, originally developed at the University of Konstanz.
KNIME filters are known as nodes, but apart from terminology, its application
architecture is a standard pipes-and-filters one. The software is based on the Eclipse
platform (des Rivières & Wiegand 2004) and is primarily a GUI application, although
it also offers an API for developing extensions to the basic KNIME package.

– D2K (Data2Knowledge) (Data2Knowledge 2005) is a proprietary KD tool developed
by the eponymous Data2Knowledge Corporation. The company markets data analysis
as a service, but also offers developers the option to license the D2K analysis engine
for inclusion in their own applications. Details on the architecture of D2K are not
available to the public, but the white paper for prospective developers indicates
that it follows the standard pipes-and-filters pattern, although it has again its own
terminology, referring to filters as data transformation components.

– Chipster (Kallio et al. 2011) is an open-source analysis platform for high-throughput
data developed at CSC, the Finnish IT center for science. The particular focus of the
software is on bioinformatics, which is reflected in its selection of analysis tools and
default workflows. Another distinguishing feature of Chipster is its client-server
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architecture: workflows (processing pipelines) are created using a client application
running on the user’s desktop, but the actual processing takes place on a remote server
that has the required analysis packages installed.

– Weka (Hall et al. 2009) is a library of KD algorithms developed at the University of
Waikato. The algorithms can be called from the user’s own code, but the library also
comes with a suite of text-based and graphical interfaces for applying the algorithms
and arranging them into pipelines. Weka has become a popular resource among
developers of KD software; the complete library has been integrated to RapidMiner
and KNIME.

The increasing computational difficulty of KD problems, especially in certain
fields of science, has made it necessary to develop KD solutions that harness the
power of distributed computing resources. Grid computing is the umbrella term
under which these are gathered. Grid computing platforms come in two basic flavors,
distinguished more by terminology than by functionality: some are branded as knowledge
discovery frameworks, while others use the term scientific workflow management
instead, emphasizing the scientific applications of KD. Within the latter category, there
are some deviations from the architectural archetype. Examples of grid computing
platforms are given below:

– Discovery Net (AlSairafi et al. 2003) and Knowledge Grid (Cannataro et al. 2004) are
grid computing frameworks designed for knowledge discovery. Both are based on
visual composition of KD process graphs to be executed on the grid.

– Taverna (Oinn et al. 2004) is a grid computing framework for bioinformatics applica-
tions; Pegasus (Deelman et al. 2004), GridNexus (Brown et al. 2005) and Kepler
(Ludäscher et al. 2006) are generic scientific workflow management frameworks.
MagentA (Walton & Barker 2004) is similar in purpose but uses an agent-based
architecture.

– Triana (Taylor et al. 2003) is based on a grid composed of resources owned by
individuals rather than organizations. The participation of non-expert individuals in
the KD process as providers of computing resources is an important theme in the
thesis, discussed at length in Section 4.2.

– MapReduce (Dean & Ghemawat 2008, 2010) is a programming model inspired by
functional languages that is suitable for solving various data analysis problems. The
Hadoop platform provides a popular open-source implementation, with applications,
e.g., in the field of bioinformatics (Taylor 2010).
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Since databases play a crucial role in the KD process, database-centered architecture
is another appropriate architectural style for KD software. This style is characterized by
the presence of a central data repository in the role of a hub via which other subsystems
exchange information. The style is not explicitly addressed by KD frameworks, but they
do enable it to be used in conjunction with the pipes-and-filters style. The distributed
computing application described in Subsection 6.2.2 gives an example of using multiple
instances of a pipes-and-filters framework to build a database-centered KD system.

Besides suggesting particular ways of composing the software architecture of KD
applications, the KD process imposes some additional quality requirements that the
architecture must be able to satisfy. Processing data in very large quantities or in real
time requires considerable performance and constrains, for instance, the choice of
implementation technologies. Efficient and comprehensive interfaces to data sources
and stores are also essential, so it is important for the architecture to make appropriate
provisions for them.

Another use for external interfaces in a KD application is making it interoperable
with other applications. This makes it easier to build a KD system composed of multiple
specialized tools, each dedicated to a particular step in the KD process. On the other
hand, it may be desirable to be able to extend the application with new processing
modules after initial deployment, in which case an internal interface must be specified
for this purpose. It is thus beneficial for the architecture of KD software to be open, both
externally and internally.

2.3 Databases and knowledge bases

One of the most basic functions of the digital computer is the ability to keep large
quantities of data in permanent storage. What is considered a large quantity depends
heavily on context; the high-end hard drive units sold to consumers today are capable of
storing one terabyte or more. A large organization with highly data-intensive functions,
such as a major research institute, may require thousands of terabytes of storage capacity.
For example, the Large Hadron Collider at CERN produces 15 petabytes of data during
one year of operation (CERN 2008).

The ability to store data is useless unless paired with the ability to find and retrieve
desired data with sufficient ease and speed, a problem that grows ever more difficult as
the body of searchable data increases in size and complexity. Database management
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systems (DBMS) provide the solution to this problem by keeping track of each data item
and providing an interface that helps users identify and locate the items they need.

The evolution of database models and database management systems has made it
reasonable to ask whether it would be possible to use computers to store not just data but
knowledge. The first step toward an answer is clearing up what exactly is the difference
between data and knowledge. This question is examined in the first subsection. The
second subsection reviews various types of DBMSs, and the third one discusses the idea
of representing knowledge as data in a database.

2.3.1 The data-knowledge distinction

Data, etymologically speaking, is the plural form of the Latin word datum, meaning
“something given”. Incidentally, this is not that bad as an informal definition of data as
the concept is understood in knowledge discovery: data is the starting point, accepted as
it is, and everything else is derived from there. From this, it follows that if the quality of
the data is poor, any knowledge extracted from it is suspect at best.

Implicit in the above is that for any given body of data, there is a way to determine
the quality of the data. The data was recorded for a purpose, so the quality of the data
is determined by how well the data serves that purpose. Another way to put this is
that the data carries a meaning, and its quality is determined by how accurately and
comprehensively it conveys that meaning. This is what distinguishes data from mere
noise, which by definition contains no information and therefore means nothing.

It should be noted that the situation is not always as straightforward as indicated in
the previous paragraph. A dataset collected for a specific purpose may later be adopted
for a considerably different purpose, or the purpose of the data may be vague to begin
with and clarified later. The meaning and quality of a dataset are therefore not entirely
intrinsic but depend on the context in which the dataset is placed.

The notion of data carrying a meaning brings us to the concept of knowledge,
specifically digitally stored knowledge. The philosophical concept of knowledge will be
covered later, in Subsections 3.1.1 and 4.1.1; here, the focus is on a much narrower
issue, namely the distinction between digital knowledge and digital data. Clearly, the
two are related, but we need to make explicit the exact nature of the relationship.

As an initial step, we will adopt the following working definition: a digital represen-

tation of knowledge is a body of data that has the meaning of the data encoded as part of
the data. This definition rests on the following premises:
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– Everything that is stored digitally, including representations of knowledge, is com-
posed of data. Therefore, the relationship of data to knowledge is that of a set to its
subset. In other words, all knowledge is data, but not all data is knowledge. The
task of distinguishing knowledge from data is thus reduced to finding the defining
attributes of this particular subset.

– Any useful body of data has a meaning, but the meaning is contingent on the context
within which the data is interpreted. If the context has not been determined, neither
can the meaning be.

– A knowledge representation should be self-contained rather than dependent upon
externally imposed context. A representation of the intended context should therefore
be included, along with the data itself.

The question of how to digitally encode the meaning of data is examined in other
parts of the thesis, most importantly, Subsection 4.1.2 and Subsection 6.1.2.

2.3.2 Database systems

The earliest database management systems emerged in the 1960s. The dominant database
modeling approaches at the time were the network model and the hierarchical model.
In both models, a database consists of records, which in turn consist of data fields
and pointers to other records. The hierarchical model is more strict in how it allows
records to be linked, but with both hierarchical and network databases, it is up to the
programmer to navigate the pointers to find the desired record. These types of databases,
collectively known as navigational databases, are considered the first generation of
database management systems. (Connolly & Begg 2005)

The invention of the relational model and the introduction of DBMSs based on it
transformed the scene quite radically. The great impact of relational databases (RDBs)
was due not only to the relational model itself, but also, perhaps even more importantly,
to the relational query languages developed for manipulating these databases. One
such language, Alpha (Codd 1971), was proposed by E.F. Codd himself, but the SQL
language, or SEQUEL as it was originally abbreviated (Chamberlin & Boyce 1974),
eventually supplanted this and all other RDB languages, becoming the undisputed
standard in all major implementations of the relational model, which constitute the
second generation of DBMSs (Connolly & Begg 2005).
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SQL transformed database programming in two important ways. First, unlike the
procedural interfaces that were used to access navigational databases, SQL queries are
declarative, meaning that the programmer only needs to declare the desired result, not to
specify in detail how the result should be arrived at. This is done by describing the result
set in terms of relational and logical operations applied to the relational tables that make
up the database. It is then the task of the query optimizer, a component of the DBMS, to
determine the optimal way to build the result set.

The second thing that makes SQL attractive from a programmer’s point of view is its
ubiquity, which enables programmers, in theory at least, to make their software interop-
erable with all relational DBMSs without having to code separate query statements for
each DBMS they wish to support. In practice, the situation is not quite so straightforward,
because every SQL implementation has its own small idiosyncrasies and deviations
from the ISO standard. The problem of accounting for multiple DBMS vendors, each
with their own database APIs and SQL dialects, is alleviated by higher-level wrapper
APIs such as Microsoft’s Open Database Connectivity (ODBC).

With several good options entering the market in the late 1970s to mid-1980s,
relational DBMSs soon became the database management solution of choice for most
purposes. Most likely they are still the most commonly used type of database in the
world, given that widely recognized brands such as Oracle, Microsoft SQL Server and
MySQL are all relational (albeit not necessarily purely relational) systems. However, the
development of new database models and technologies has not ceased there. In the 1990s,
software engineering underwent a paradigm shift where object-oriented programming
supplanted procedural programming as the dominant programming paradigm. This, in
turn, spurred interest in a new type of DBMS: object-oriented databases (OODB).

An object in an object-oriented programming language is an entity that encapsulates
data (the attributes of the object) with functions that operate on the data (the methods
of the object). Object-oriented databases are based on the notion of making objects
persistent, i.e., storing them in such a manner that their state can be restored even after
they have been erased from the RAM of the original host computer. A persistent object
in an OODB is equivalent to a record or table row in earlier types of databases.

An interesting feature of OODBs is that persistent objects may contain references
to other persistent objects. For instance, a collection object such as a list contains
references to the members of the collection, and the member objects can be accessed by
following references from the collection object. Therefore, OODBs are, in a sense,
navigational databases, although object-oriented DBMSs typically also provide a search
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function in the form of a query language such as OQL (Cattell et al. 2000). Moreover,
since objects contain functions as well as data, objects containing other objects can
implement search functions of their own to help programmers find specific member
objects.

Although pure object-oriented DBMSs have not gained widespread popularity
comparable to that of relational DBMSs, the object-oriented paradigm has nevertheless
had a significant impact on database management. Recognizing the benefits of the
object-oriented approach, several major DBMS vendors have created best-of-both-
worlds type hybrid solutions by including object-oriented features in their RDB products.
There are also object-to-relational mappers that provide an OODB-style interface to
applications while using a relational DBMS to store the state of persistent objects.

Object-oriented thinking has also affected the way relational databases are modeled.
The standard relational modeling method is to draw entity-relationship (ER) diagrams
(Chen 1976), where the data domain of a database is represented by entities (domain
concepts), relationships that connect entities, and attributes that characterize entities and
relationships. There is a set of rules for deriving a database structure directly from an
ER model, and several RDB modeling tools are capable of doing this automatically.

One of the shortcomings of the ER method is that it does not acknowledge inheritance,
a very important concept in object-oriented SE. With the introduction of inheritance, the
monolithic entities of pure ER models are replaced by nested hierarchies of supertypes
and subtypes. This is a useful concept even when using a non-object-oriented DBMS,
but ER notation provides no means for representing it. The enhanced entity-relationship
(EER) modeling method addresses this problem by including all ER concepts as a subset
and adding new ones for expressing inheritance relationships and other object-oriented
concepts such as aggregation (Connolly & Begg 2005). Additional rules have been
devised for translating supertype-subtype hierarchies into relational table structures.

Document-oriented databases are the latest type of database to gain significant
popularity. XML databases such as Sedna (Fomichev et al. 2006) use the XML document
format to store data and provide query languages such as XPath (Berglund et al. 2010)
or XQuery (Boag et al. 2010) for searching and manipulating document collections.
XPath and XQuery, like the XML format itself, are standards developed by the World
Wide Web Consortium (W3C). Even more recently, database systems employing less
syntax-heavy document formats such as JSON have increased in popularity, e.g., as
database backends for web-based applications. Couchdb (Apache Software Foundation
2012), for example, stores and manages data in the form of JSON documents and
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provides an API based on the REST paradigm that allows the database to be queried via
HTTP requests.

2.3.3 Knowledge representation

Above, in the discussion concerning the data-knowledge distinction, it was stated
that digital knowledge is basically a special category of digital data. After that, in
the subsection on database systems, we saw that there are several powerful solutions
available for the management of digital data. These two facts put together would seem
to suggest that the management of digital knowledge should not pose a great difficulty.

In a certain sense, this is true: given the multitude of available options, it is more than
likely that a satisfactory storage solution will be found for any body of data. However, it
is not the actual storage that makes knowledge representation difficult. Translating
knowledge into a digital dataset is the real challenge here.

The problem of knowledge representation is akin to the classic beginner program-
mer’s problem: one knows what one wants the computer to do, but the computer does
not understand. The only way to make it understand is to break down the solution into
primitives, operations so simple that their meaning can be precisely defined on the
execution platform without relying on other concepts. In practice, this means expressing
the solution in terms of operands, operators, conditions, loops and standard library
function calls when using a modern imperative programming language.

Similarly, it is relatively easy to teach another person something one knows, but
much more difficult to teach it to a computer. This is because natural language is a
highly effective way of communicating knowledge, thanks to its high information
density — a single word is enough to communicate a complicated abstract concept in
such a way that the listener immediately knows what the speaker is talking about. It
takes many years for a human individual to build up the necessary cognitive skills and
background knowledge, but once fully developed, this system is far beyond our current
ability to teach knowledge to computers.

Incidentally, one usage of the term “knowledge base” refers to systems that are
essentially databases containing passages of text in natural language, possibly enhanced
with multimedia. Such systems can indeed be said to contain knowledge in the same
sense that a book contains knowledge. In other words, the content has meaning, but only
to a human interpreter with the required background knowledge. While content search
and presentation in these systems are interesting issues themselves, the central problem
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of digitizing knowledge is circumvented, so this is a relatively uninteresting category in
the context of this thesis.

The problem with knowledge representation by means of natural language, from
a computing point of view, is that as a result of being very well suited for conveying
information to a human, it is very poorly suited for conveying it to a machine. We are
therefore primarily interested in knowledge encodings designed to be machine-readable.
A popular approach is to employ an ontology of some kind.

In philosophy, ontology is the metaphysical study of being, dealing with such
fundamental questions as what it means for an entity to exist. In computer science,
however, the term has been adopted to refer to a systematic description of a set of
concepts and relationships between them (Chandrasekaran et al. 1999). An ontology is
expressed in a formal notation that allows automated or computer-assisted reasoning
about the domain represented by the ontology. A medical ontology, for instance, might
represent knowledge related to various diseases and could be used as a diagnostic aid
(Rodríguez et al. 2009).

To construct an ontology, one typically uses an ontology language; early examples
include F-Logic (Kifer & Lausen 1989), CycL (Lenat et al. 1985, Lenat & Guha 1991)
and KIF (Genereseth & Fikes 1992). These are usually declarative, as opposed to
imperative, which means that the languages are only used to describe the ontology,
not to specify computing operations on the ontology. They are thus analogous to SQL,
which in its original form is a pure declarative language, although there are extensions
(both standard and proprietary) for procedural programming that follow the imperative
paradigm instead.

As one would expect for a field much younger than relational database management,
there is no single established standard language for knowledge representation, although
there have been efforts towards standardization. KIF, short for Knowledge Interchange
Format, failed to reach this stage, but a later contender, the Common Logic (CL)
framework, was adopted by ISO in 2007 (ISO 2007). Particularly interesting in this
respect are technologies such as RDF (Klyne & Carroll 2004) and OWL (W3C OWL
Working Group 2009), which are being promoted by the W3C as KR languages for the
Semantic Web.

The Semantic Web is a proposed machine-readable extension to the currently
existing human-readable World Wide Web. The intent of the proposal is to make it
possible to represent knowledge on the Web such that software agents can access and use
it to provide more sophisticated services to human Web users than current technology
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allows. This would be accomplished by using semantic notation to create descriptions of
Web content and attaching them to human-readable pages as machine-readable metadata.

The intriguing thing about the Semantic Web is how it would popularize knowledge
representation. The idea of KR-based services being available to Internet users as
universally as the regular Web is today seems almost revolutionary in comparison with
the current state of the art, in which KR applications are specialized and relevant only
to a relatively small number of people working in knowledge-intensive professions.
However, although several technologies for the Semantic Web exist already, it remains
to be seen when the vision will be fully realized.

Another ambitious effort in this area is the development of so-called commonsense
knowledge bases. These aim to be comprehensive machine-readable collections of
standard everyday knowledge, giving computers access to the body of knowledge
possessed by a typical human being. A computer system armed with such a knowledge
base could then, theoretically, reason about any matter at the level of a human being.
(Davis 1990)

This idea, taken to its logical conclusion, brings us very close to the concept of
universal AI, a notorious tangle of technical and philosophical difficulties. We shall take
a closer look at AI in the next subsection, but at this point, it is worth noting that while a
truly intelligent and knowledgeable computer is still an unrealized dream, there are
some remarkably good approximations already in existence. In a recent example, the
Watson system (Ferrucci et al. 2010) created by IBM defeated two human champions at
the game show Jeopardy!.

IBM had previously won fame when its Deep Blue chess computer beat the Russian
grandmaster Garry Kasparov in 1997, but the nature of Jeopardy! makes it a much more
difficult game for a machine to play competently. The strict formality of chess is in
stark contrast with the quiz show format of Jeopardy!, which requires the computer to
employ natural language processing and probabilistic reasoning to evaluate the clues.
Additionally, Jeopardy! adds an extra twist to the conventional format by giving the
players answers to which they must give the right questions, not the other way around.
Despite these difficulties, which would seem to put the machine at a disadvantage, the
two human players lost the game to Watson by a wide margin.

The knowledge base used by Watson in the match against its human opponents
consisted of a vast collection of natural-language texts, including, e.g., a complete copy
of Wikipedia. Knowledge representation, in the sense discussed here, was therefore not
involved: the software used probabilistic analysis of human-readable data to determine
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the most likely correct result. From this, it follows that while Watson’s knowledge
look-up algorithm is certainly impressive, the results mean nothing to Watson itself.
Nevertheless, it is interesting to contemplate the idea put forward by IBM of using
software based on the Watson query engine to find answers from professional literature
to questions posed by experts in fields such as medicine.

Since the overall topic of the thesis is knowledge discovery, it makes sense to
conclude this section by reviewing representation schemes designed specifically for
knowledge generated through KD. Some systems, such as the chemical reaction KB
of Wang et al. (2001) and the cerebrovascular diseases KB of Včelák et al. (2010),
use ontology-type structures to represent the discovered knowledge. Others favor a
rules-based approach: Fan et al. (2001) propose using decision logic to represent the
rules, and the PYTHIA-II system (Houstis et al. 2000) supports several types of rules,
including logic rules, if-then rules and decision trees. The web mining KB of Velásquez
& Palade (2007) is composed of two repositories, one for patterns discovered from web
data and another for inference rules that specify how to utilize the patterns.

Of the examples cited above, the KR scheme put forward in this thesis is closest
to the last one in that it also uses a separate repository of programs that perform
operations on the content of the main repository. The most obvious difference is
that the programs in the KB system presented in the thesis are considerably more
complex than the if-then rules of the web mining system. The thesis argues that this
style of dynamic knowledge representation is more natural for KD than static KR
based on ontologies, since knowledge acquired using KD is typically procedural rather
than descriptive, representing a method for achieving a specific objective in a specific
situation. Furthermore, it is suggested that the question of whether a computer-based
system knows something can be considered equivalent to the question of whether the
system is able to apply the knowledge independently. Subsections 4.1.2 and 6.1.2
discuss a KR scheme and KB system based on this idea.

2.4 Philosophy of computing

To understand what philosophy of computing is and why it matters, let us consider the
academic study of philosophy and the diversity inherent therein. There is philosophy as
a standalone discipline, but there are also infinitely many flavors of “philosophy of X”,
where X is some human endeavor. These philosophies of X concern themselves with
such questions as “What is X?”, “Why do we do X?” and “How should we do X?”.
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Philosophy of computing, then, explores these questions in the context of the digital
computer, its possibilities and limitations. What is and what is not a computer? What
can and what cannot be computed? How do computers and computing relate to other
aspects of humanity? These are all questions that can and should be studied primarily
outside the confines of any physical manifestation of the concept of computer.

As the study of computing has progressed, certain areas of it have attracted more
attention from philosophers than others. The study of AI, for instance, has been and is
the source of much philosophical debate, owing to the controversial nature of the notion
of a machine possessing intelligence, perhaps even consciousness. KD has close ties
with AI, and the philosophical questions pertaining to KD bear a strong resemblance to
those surrounding AI research.

Parts of the thesis discuss KD from a philosophical perspective. To provide
background for these discussions, literature on philosophy of computing is reviewed
in this section. Subsection 2.4.1 establishes an overview of philosophy of computing
as an academic discipline by examining its history and branches on a general level.
Subsection 2.4.2 focuses on computer ethics, arguably the most important branch from
a practical point of view, and also an important factor in KD as the thesis will show.
Subsection 2.4.3 takes a closer look at the ethical aspect of KD, and also gives a brief
overview of other branches of philosophy that are relevant to KD.

2.4.1 Origins and branches

Although it may not be immediately obvious, the two disciplines discussed here —
philosophy and computing — have something important in common: logic. Logic, the
study of argumentation and reasoning, is both a major branch of philosophy and a major
component of the theoretical foundation of the computer, and the founders of computer
science as an independent discipline were logicians. Some of the questions studied by
computing pioneers such as Alan Turing were, in fact, deeply philosophical in nature, so
arguably philosophy deserves to be counted among the parent disciplines of computer
science as much as mathematics does.

Turing, among other early computer scientists, took a keen interest in the idea of a
thinking machine. In his seminal paper on the subject (Turing 1950), he proposed a test
based on an imitation game played by a computer against a human player. Another
human assumes the role of an interrogator who communicates with both players via
typed messages and tries to tell them apart based on their communications only. If the
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interrogator fails, the computer wins the game and passes the test, which has come to be
known as the Turing test.

Turing motivated his paper by pointing out that it is impossible to give a simple
answer to the question “Can machines think?” because the terms “machine” and “think”
are ambiguous and hard to define in a manner that would satisfy everyone. His reaction
to the intractability of the original question was to replace it with a less ambiguous one,
namely “Is it possible to build a computer that consistently passes for a human in the
imitation test?” If the answer is yes, then the computer is capable of demonstrating, if
not true intelligence, at least something that for some practical purposes is equivalent to
intelligence.

Although Turing specifically sought to eliminate the inherent philosophical com-
plexity of the question of whether thinking machines are possible, there is no denying
that even his proposed replacement question has profound philosophical implications.
Generalizing from the basic set-up of the Turing test, one might well ask whether there
is any real difference between intelligence and the ability to imitate intelligence so well
that no outside observer can tell the difference. The actual computers Turing worked
with were extremely primitive by modern standards, but he and his contemporaries had
the foresight to realize that given enough processing power and memory capacity, this
thought experiment could be turned into a real working machine.

We shall return to the notion of intelligent machines and its philosophical conno-
tations in the next subsection, which discusses computer ethics. First, however, we
shall briefly review other major lines of investigation within philosophy of computing.
These can be roughly divided into two categories: some focus on what is philosophically
interesting about computers and computing as such, whereas others are more concerned
with the philosophical aspect of the effects of computers on other things.

A prominent area of study in the first category is philosophy of computer science.
Philosophy of science in general is a major sub-discipline of philosophy, studying
fundamental questions concerning the nature of the scientific method and scientific
knowledge. Philosophy of computer science studies these questions in the context of
computer science specifically, starting with the question of whether computer science is
a science at all or just a branch of engineering (Hartmanis 1993, Loui 1995, Denning
2005).

Another aspect of computing that interests philosophers because of what it is rather
than what it causes is the relationship between the physical and the virtual. Virtual
objects in computer memory have dual modes of existence: they have a manifestation in
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the physical world — a configuration of electromagnetic bit states, fairly unremarkable
in itself — but at the same time, they exist in the virtual world in a way that mirrors the
relationship between physical objects and the physical world. The tension between these
two modes spawns questions such as whether computer programs that mimic life forms
should be considered life if they satisfy the criteria commonly used to define biological
life (Bedau 2008). Aesthetical issues, such as the debate on whether programmatically
generated artworks should be considered proper art, can also be included in this category
(Lopes 2008).

In the second category, a topic that has received considerable attention from
researchers is the role of computers in philosophy education and research (Bynum &
Moor 1998). In contrast to the other topics reviewed here, the focus of this work is not
on what is philosophically interesting about computers specifically, but rather on how
computers can advance the study of philosophy in general. This emphasizes the nature
of philosophy of computing as an intersection discipline that covers a relatively wide
range of topics, defined mainly by the property that they are somehow relevant to both
philosophy and computing.

The effect of information and communication technologies on philosophy education
and research is a special case of the broader phenomenon of ICTs affecting the acquisition
and dissemination of information in general. The increasing capabilities of computers
are a powerful driver of change in society and therefore a rich source of phenomena that
call for philosophical analysis. Being able to predict and control the ill effects of this
change is especially important, so the triumph of the digital computer has given rise to a
new branch of applied philosophy: computer ethics.

2.4.2 Computer ethics

Aristotle famously defined ethics as practical philosophy, the art and science of living
the good life (Broadie 1993). Since we all surely want to have a good life, then
by this definition, a good knowledge of ethics is of great practical significance to
everyone. On the other hand, the musings of academic ethicists may sometimes seem
somewhat removed from real life, which would appear to contradict their alleged
practical importance.

This apparent contrast can be explained when we recall that it is in the nature of
philosophy to anticipate future issues. Such concepts as representative democracy,
civil liberties and free-market economy — all of them hallmarks of modern Western
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societies — were originally thought up by philosophers, some of them centuries before
they became a reality. Similarly, even though some of the ideas being discussed by
today’s philosophers may not seem very relevant to us now, the time may yet come
when they are a crucial part of what is widely considered to be good life.

To illustrate this point, let us consider the ethics of AI. At the moment, we do not
know whether we will ever be able to create machines with true intelligence, let alone
consciousness, and there are many who are quite convinced that the answer is no. Many
therefore probably consider it a waste of resources to think and talk about what rights
and responsibilities we should assign to such machines. However, if it ever does turn out
that the answer is yes after all, it is certainly better that somebody has already given such
questions due consideration than to start creating policies on AI without any research
whatsoever to rely on.

The AI example shows why it is necessary to study computer ethics. The processing
power and other capabilities of computers continue to increase at an astonishing pace,
and with the capabilities expands the space of potential applications. The application
space contains many ethically unsound possibilities, which computer ethics research can
help predict and restrain, but perhaps even more importantly, there is a gray area between
acceptable and unacceptable where our everyday ethical instinct fails us. Computer
ethics has an important role in determining what stance we should adopt on these
applications of computers. The remainder of this subsection shall explore some of the
most prominent themes in the study of computer ethics.

Malicious behavior facilitated by computers is an obvious research topic for computer
ethics. Actions that are clearly wrong such as electronic theft of money or wilful
destruction of data are one aspect of this, but from a philosophical perspective, this
category is not particularly interesting. However, with some forms of behavior, it is
harder to define why they should be considered morally questionable. A classic example
is breaking into an information system without touching anything — hackers who do
this argue that they are not doing any harm, or even that they are doing a valuable service
by exposing weaknesses in system security (Hollinger 1991, Spafford 1992). Another
source of controversy is the use of cyber-attacks as a means of pursuing political goals, a
phenomenon known as hacktivism (Manion & Goodrum 2000).

Another interesting aspect of malicious activity is that while computer networks
enable new types of attacks, they also enable ways for the targeted people and organiza-
tions to respond to them. There are various examples of creative self defence and even
vigilantism on the Internet, presumably stemming from the insufficient ability of the
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proper authorities to deal with the cybercrime problem. For instance, the activity known
as scam baiting, which has evolved as a countermeasure to email scams, shares many
properties with traditional vigilantism and is ethically problematic for the same reasons
(Tuovinen & Röning 2007).

The ability of malicious individuals to execute new kinds of attacks — as well as
the ability of technically competent net users to defend themselves — is an example
of the more general pattern that information and communication technologies tend to
change the rules we expect to be in effect in our dealings with other people. In the case
of cybercrime, ICTs enable the perpetrators to evade traditional means of control. At the
same time, however, the same technologies enable new forms of control, leading to
ethical problems related to privacy and surveillance.

In the physical world, surveillance by technology is typically done for security
purposes using equipment such as closed-circuit television cameras and motion sensors.
This is generally not considered objectionable; a department store, for instance, is
thought to be justified in using such means to protect its employees and property from
crime. Meanwhile, the same store may be using tracking software to monitor the
browsing behavior of its online customers, not for protection but to increase its profits,
e.g., through more precisely targeted special offers (Schafer et al. 2001). Even this is
usually not considered particularly invasive and may even be praised by the customers
as improved service, but there are other, less benign ways to earn money with personal
information.

The most talked-about example of this at the moment is probably Facebook. The
popular social networking service is provided free of charge, so the company relies
almost exclusively on advertising for revenue. Advertisers are willing to pay for
the ability to reach specific focus groups, making the users’ personal information
valuable merchandise. It is therefore in the interest of Facebook that the users reveal as
much information about themselves as possible. Consequently, the company has been
criticized for failing to appreciate the privacy concerns of the users of the service. On
the other hand, there are also indications that many users are not particularly concerned
about their privacy and place themselves at risk through their own lax attitude rather
than the unethical behavior of Facebook or a third party. (Jones & Soltren 2005, Debatin
et al. 2009, Boyd & Hargittai 2010)

A major factor in why ICTs and privacy are such a difficult combination is that
traditional conceptions of privacy, derived from concrete and intuitive notions such as
freedom from observation, fail when transferred to the abstract world of information.
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Introna (1997) offers a comprehensive discussion of the significance of privacy in the
information society; Clifton et al. (2002) do the same in the context of knowledge
discovery specifically. Privacy issues associated with KD are discussed further in the
next subsection.

The failure of conventional ways of thinking to capture complications introduced by
new technology is a recurring theme in computer ethics. In the context of intellectual
property, the complications arise from the fact that an indefinite number of copies can be
made of a digital object quickly, inexpensively and without loss of quality. Moreover,
the copies can also be distributed worldwide quickly and inexpensively via the Internet.
This appears to be a challenge that established copyright principles, formulated under
the assumption that creative works are distributed on physical media that are relatively
costly to copy, are unable to cope with. Hettinger’s paper on the subject (Hettinger
1989), while not recent, captures the difficulty of defining and justifying intellectual
property well.

Given the significant financial interests associated with intellectual property, it
is hardly surprising that the topic has been explored intensely, also by philosophers.
However, not all research on the subject start with the premise that authors want to
earn profit with their creative works. Work on topics such as open source software and
free licensing models (e.g., Creative Commons) emphasizes sharing instead, either
of the creative process or of the results. Privacy is also an important theme here, as
demonstrated by the outcry that followed the discovery of a secret rootkit in Sony’s
digital rights management software (Mulligan & Perzanowski 2007).

Social networking was mentioned above in the context of privacy issues, but the
broader theme of life online spans a number of other topics. For example, trust in online
interactions is an important issue that is also relevant to certain forms of knowledge
discovery, as discussed in Subsection 4.2.2. The digital divide and the ability of
individuals to participate in society’s decision-making processes via ICTs is another
major topic (Bélanger & Carter 2009, Helbig et al. 2009). Somewhat more marginal, but
nevertheless interesting, are issues such as antisocial behavior in online multiplayer
video games (Foo & Koivisto 2004, Ku & Gupta 2008).

Most branches of computer ethics deal, in one way or another, with the responsible
application of information and communication technologies. However, it is also
recognized that creators of ICTs, like all engineers, are professionals with obligations
to their employers, to their clients, and to society. One branch of computer ethics is
therefore devoted to clarifying the responsibilities of computing professionals and
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creating ethical guidelines for them to follow. The concrete outcome of this work is
exemplified by the software engineering ethics code adopted jointly by the ACM and the
IEEE Computer Society (Gotterbarn et al. 1999).

2.4.3 Philosophy of knowledge discovery

“Knowledge is power”, goes a famous saying; “Power corrupts”, goes another. While the
latter saying is perhaps too pessimistic as an unconditional statement, the former is
certainly true given the classical definition of power as the ability to achieve one’s goals,
either through one’s personal actions or through influence on the actions of others. In
either case, possessing the right knowledge can be of great instrumental value.

Regrettably, it is also true that those with power, from knowledge or otherwise,
sometimes use it unethically. Even more sadly, it is sometimes possible to get away with
this because the world is changing so fast that our ethical and social norms are unable to
keep pace with the change. A major aspect of this change, from an ICT point of view,
is the increasing wealth of digital information available in various databases and the
similarly increasing variety of potential ways of using that information. Particularly
problematic from the perspective of ethics is information representing properties or
behavior of human individuals.

In a modern technological society, it can be very difficult, if not impossible, for
individuals to keep track of, let alone control, what information is being recorded about
them, who is recording it and for what purpose it is used. Fortunately, governments have
picked up on the privacy concerns arising from this bewilderment and implemented
legislation to alleviate them. In Finland, for example, the Personal Data Act of 1999
regulates the collection, maintenance and use of records containing personal data and
prohibits the inclusion of sensitive data in such records (Finnish Ministry of Justice
1999). A special independent authority, the Data Protection Ombudsman, is appointed to
protect citizens’ rights concerning their personal data.

The protection of sensitive data is made more difficult by the fact that even data
that is entirely non-sensitive, when each data item is considered in isolation, may yield
sensitive information when processed using methods capable of discovering hidden
connections and patterns (Clifton & Marks 1996, Tavani 1999). Knowledge discovery
methods do just that, prompting concerns for their potentially detrimental effect on
privacy. This has not escaped the attention of researchers, and privacy issues are now a
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central topic in the study of the ethical aspect of KD and the anchor point for most lines
of investigation.

The field of privacy-preserving data mining was already touched upon in Subsection
2.1.3. Here, the objective is to develop techniques for mining personal data that are able
to discover interesting patterns pertaining to a population while not exposing sensitive
information traceable to individual members of the population. A variety of methods are
available for accomplishing this: data can be protected through hiding or modification,
and the hiding or modification can be implemented in the mining algorithm or in the
data itself (Verykios et al. 2004, Bertino et al. 2005, Zhang & Zhao 2007). The purpose,
however, is always to achieve a satisfactory trade-off between the level of privacy
protection and the quality of mining results.

Security-related applications of KD form an interesting subclass here. These, in
many cases, must invade the privacy of the data subjects in order to be successful, but on
the other hand, it is argued that the invasion is morally justified by the security concern
addressed by the application. This is a classic case of having to weigh one value against
another, often without accurate knowledge of how much one will be boosted or how
severely the other will be breached.

Terrorism prevention applications such as airline passenger profiling by DM (Thu-
raisingham 2002, Solove 2008) have been the target of particular media attention, leading
to a somewhat imbalanced public perception of what DM is. A group of executives of
the ACM SIGKDD eventually thought it necessary to write an open letter to correct this
perception (Kim et al. 2003). The letter points out that person profiling is but one of
many diverse applications of DM, so it is completely unreasonable to treat the term as if
it were synonymous to privacy-threatening government projects.

Indeed, it is good to keep in mind that ethics is about what is good and right just
as much as it is about what is bad and wrong. Discussion of the ethics of KD should
therefore consider not just the ethically questionable applications of KD, but also the
ethically commendable ones. It is good to think about how to reduce the potential
negative effects of KD, but we should also be proactively thinking about how to use KD
to advance positive values.

(Tuovinen & Röning 2005) looks at KD from both perspectives, using the terms
“negative ethics” and “positive ethics” to refer to the harmful and beneficial effects of
KD, respectively. Several application examples of both the negative and the positive
ethical aspect of KD are cited in the paper. Medical DM forms a notable class of
applications on the positive side; DM techniques can be used, for instance, for early
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diagnosis of various diseases, leading to significant improvements in prognosis and
quality of life for the patients.

Other topics related to the philosophical aspect of KD are not as popular as ethics.
This does not mean, however, that there are no other philosophically interesting questions
related to KD. Knowledge is a highly significant concept in philosophy and a branch of
philosophy, epistemology, is dedicated to studying it. In this thesis the epistemology of
knowledge discovery is an important theme, discussed at length in Sections 3.1 and 4.1.

There are yet some other branches of philosophy that intersect with KD in ways
that merit further attention. In philosophy of science, the implications of using KD as
an instrument of scientific knowledge acquisition could be investigated. Using text
mining to analyze philosophical literature and thus applying KD to philosophy itself is
another topic that might be worth studying. Finally, recalling that logic and computing
are closely related to begin with, the intersection of logic and KD might prove a fertile
research area. All these questions are, however, out of scope for this thesis.
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3 Analysis of requirements

The objective of this chapter is to define a set of requirements that the solution proposed
in the next chapter should satisfy. The requirements are derived from an analysis
of the current state of research and practice in the field of knowledge discovery and
related disciplines. Based on the analysis, aspects of the KD process that have been
neglected in the past are identified and translated into formal requirements. Each
individual requirement is given a shorthand designation to be used when referring to the
requirement in body text. In Chapter 5, once the proposed solution has been presented,
the requirements will be used as a test to show whether and to what degree the solution
achieves the goals set for it.

The augmented process model was defined in Chapter 1 as being composed of
three sub-models: the data model, the workflow model and the architectural model.
The remainder of this chapter is structured to reflect this division. Section 3.1 defines
requirements for the data model, which specifies how data and knowledge are stored and
accessed in the KD process. Section 3.2 does the same for the workflow model, which is
concerned with the actors of the KD process and their roles and responsibilities. Finally,
Section 3.3 presents requirements for the architectural model, which deals with the
design and implementation of KD software.

3.1 Data requirements

At the heart of the KD process is the repeated transformation of data from one state to
another, with each transformation taking the data to a higher level of refinement. The
objective of the data model is to capture these different states, or categories, of data, and
to guide the design and implementation of storage solutions and access interfaces. The
model is intended to be decoupled from any particular type of data repository, although
the concrete implementations discussed in the thesis exhibit a fairly strong preference
for relational databases.

One aspect of the data model is the management of data over the course of the refine-
ment process. Storing the data is, in itself, largely a trivial issue, but the transformations
add a metalevel that makes the matter more complicated. Through modification of
transformation parameters, any number of transformation sequences can result from the
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same original data. Tracking the data along the path of transformations is one of the
major problems that the data model should address.

As discussed in Subsection 2.3.1, this thesis adopts the position that knowledge
is a special case of data, an extreme point along a continuum where untreated data
represents the opposite extreme. It is therefore argued that a single unified data model
can and should cover knowledge representation in addition to knowledge generation.
The model should clarify the concept of knowledge beyond what was said on the topic
in the background chapter; following that, we can proceed to study the problem of
digitally representing knowledge as the concept is understood in the context of KD.

The requirements for the data model are collected in Table 1. In the subsections
that follow, each requirement is given a more detailed description and justification.
Requirements pertaining to data management for knowledge generation are described in
Subsection 3.1.1, and those pertaining to knowledge representation in Subsection 3.1.2.

Table 1. Data requirements for the augmented KD process model.

Req no. Description

D-01 The data model should provide a conceptual framework that identifies and
characterizes each state that data passes through during the KD process.

D-02 The conceptual framework should identify and characterize each transformation that
causes data to shift from one state to another.

D-03 The data model should provide technology-independent guidance for the creation of
storage structures that cover all the identified states of data.

D-04 The guidance for the creation of data stores should address the design of access
methods for storing, searching for and retrieving data.

D-05 The data model should establish criteria for validating the knowledge generated by
the KD process.

D-06 The validation criteria should be based on a theoretical understanding of the
concept of knowledge.

D-07 The data model should provide a KR scheme for the creation of a knowledge base.

D-08 The KR scheme should share a theoretical basis with the other components of the
data model.

D-09 The KR scheme should integrate with and satisfy the same requirements as the data
management scheme specified by D-03 and D-04.
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3.1.1 Data management

D-01: The data model should provide a conceptual framework that identifies

and characterizes each state that data passes through during the KD

process.

D-02: The conceptual framework should identify and characterize each

transformation that causes data to shift from one state to another.

These requirements address the theoretical foundation of data management in the KD
process. The rationale for them is that in order to gain a clear and comprehensive view
of the data management needs of the process, the data model should begin with a formal
description of the process from a data perspective. The description will serve as a fixed
point of reference that connects the data model to the overall KD process model.

Data in the KD process has a static aspect and a dynamic aspect. The different states
that data goes through over the course of the process represent the static aspect. The
transformations that shift data from one state to another constitute the dynamic aspect.
Data management involves both aspects: the data needs to be stored in its different
states, and it needs to be tracked along its progression through the states. Therefore,
both the states and the transformations should be identified and formally described by
the data model.

D-03: The data model should provide technology-independent guidance for

the creation of storage structures that cover all the identified states of data.

D-04: The guidance for the creation of data stores should address the

design of access methods for storing, searching for and retrieving data.

These requirements address the basic data management functions necessary for the
application of KD algorithms to data. For the data analysis to begin, the original raw
data needs to be stored in a database. Furthermore, it is desirable to have the ability to
store intermediate results, because it enables the analysis process to be restarted with
modifications from an arbitrary point along the sequence of transformations (Laurinen
et al. 2004b). The data model should therefore assist in the design of a data repository
capable of storing data in all of the states identified by the model.

A data repository consists of persistent data structures and interfaces for accessing
and manipulating the structures. The data model should support the creation of both
the data structures and the interfaces, but in an abstract manner such that there is no
preference for a particular vendor or a particular type of database. Instead, the model
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should provide a generic design template that can be applied regardless of the underlying
DBMS. Technology-specific implementations can be included in the architectural model,
however.

D-05: The data model should establish criteria for validating the knowledge

generated by the KD process.

D-06: The validation criteria should be based on a theoretical understand-

ing of the concept of knowledge.

These requirements address the target of the KD process, knowledge. The reason for
their inclusion is that in order to conclude the KD process, there needs to be a test to
determine whether the target has been achieved. Since the data model treats knowledge
as the ultimate state of refinement for data, it should propose such a test: a set of criteria
that can be used to judge whether a given body of data may legitimately be called
knowledge.

In order to establish such criteria, it is first necessary to give a proper definition to
the concept of knowledge. This is a heavily analyzed concept in philosophy, a fact that
the data model should make use of: the model should first establish a theoretical basis
by reviewing existing definitions of knowledge as a general concept. It should then
study those definitions in the context of KD in order to discover how philosophical
criteria for knowledge translate into criteria that can be applied in the KD process.

Epistemology, or theory of knowledge, is the branch of philosophy that studies
knowledge. In classical epistemology, knowledge is defined as justified true belief. This
definition is often attributed to Plato, but it is doubtful whether Plato himself originated
it, nor is it known for certain whether he endorsed it. The definition has also been
attacked by later epistemologists as incomplete, but even though it is not universally
accepted by philosophers, it does give us three useful conditions:

– Truth: false knowledge is considered a contradiction in terms.
– Belief: the one in possession of a piece of knowledge must believe it to be true.
– Justification: the belief must be supported by a convincing rational argument.

In a human context, these concepts are all intuitively understandable. In the context
of KD, however, it is much less clear how they should be defined to make them useful as
evaluation criteria. The data model should therefore examine each concept more closely
to make explicit the implicit epistemology of KD.

60



3.1.2 Knowledge representation

D-07: The data model should provide a KR scheme for the creation of a

knowledge base.

D-08: The KR scheme should share a theoretical basis with the other

components of the data model.

D-09: The KR scheme should integrate with and satisfy the same require-

ments as the data management scheme specified by D-03 and D-04.

These requirements address the creation of a digital repository of knowledge generated
by KD. To facilitate this, the data model should include a KR scheme suitable for such a
repository. Keeping in mind the premise that knowledge is a special case of data and
should be managed by the same unified data model, the KR scheme should be rooted in
the same definition of knowledge as the other components of the data model. Studying
the epistemology of KD, as required by D-06, is therefore a prerequisite to the KR
scheme.

For the KR scheme to integrate smoothly with the data management scheme, the two
should be roughly equivalent in terms of both content and presentation. In other words:

– Like the data management scheme, the KR scheme should address the data structures
in which the knowledge is stored and the interfaces by which the knowledge is
accessed and manipulated.

– Like the data management scheme, the KR scheme should be presented in an appro-
priately abstract manner such that the presentation does not bind the implementation
of the scheme to any particular vendor or technology.

Ideally, the data management and knowledge representation aspects of the data
model should be implementable as a single integrated repository using whichever
database technology is the most convenient one for the organization carrying out the KD
process. The organization would thus not need to migrate to a new database platform or
deploy one alongside the one it is already using.

3.2 Workflow requirements

A process model, in order to be useful, should be neither too imprecise nor too precise: it
has to be precise enough to eliminate uncertainty on how to proceed in a given situation,
but not so precise that it becomes impossible to grasp the process as a whole. Any useful
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process model is therefore necessarily imperfect in the sense that it cannot accurately
capture every single detail of the process it represents. Given this, one could well ask
whether the process model of KD is not good enough already, since perfection is a
meaningless goal here and thus the idea of improving the model indefinitely does not
make sense. This thesis aims to show that there are aspects of the process model that
could indeed be improved, and to suggest how an improvement can be attained.

The established KD process model is basically a workflow model, a set of steps that
starts with a quantity of relatively cheap and crude material, which it attempts to reduce
to its valuable essence or core. Before we can begin to discuss requirements for an
improved workflow model, it is first necessary to present a more detailed description
of the established model than the brief and informal one given in Chapter 1. We
examine first a more exclusive version of the model, which only covers the series of
transformations applied to data in order to refine it into knowledge, and then a more
inclusive version, which covers the entire development process of a KD solution, starting
with a description of what the current situation is in the application domain and how it
should be improved.

When considered in the more exclusive sense, the KD process begins with the
preprocessing of raw data. The preprocessing phase typically involves operations such
as restructuring the data and fixing or removing data items with missing or erroneous
values. The objective of preprocessing is to normalize the form of the data so that its
content can be analyzed; the operations performed in this phase do not extract any
information from the data but only prepare it for further transformations.

The next step in the KD process is extracting features from the preprocessed
data. Feature extraction is essentially a form of lossy compression: the objective
is to lose some of the original data in a controlled manner such that the resulting
feature set represents the important characteristics of the original dataset. If the KD
effort is to succeed, the feature set has to be comprehensive enough to capture all the
relevant patterns in the distribution of the original data, yet compact enough for it to be
computationally feasible to build a model of the data based on the features.

In the third step, a modeling algorithm is applied to the data items of the feature set.
The purpose of the algorithm may be, for instance, to divide the data into classes or
clusters such that data items that are close to each other in feature space are grouped
together. The modeling algorithm thus yields a view of the original dataset that rises
above the level of individual data items, showing substructures defined by groups of data
items.
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The final step of the process is to visualize and interpret the substructures exposed
by the modeling algorithm. This enables domain experts to assess the significance of the
results of the process. If they find that the results answer the original questions they set
out to answer, then it is concluded that the KD effort was a success and valuable new
knowledge was generated. If the results are inconclusive, the experts may choose, e.g.,
to gather additional data for analysis.

Defining the questions to be answered is the first step of the KD process in the more
inclusive sense. This is done by experts who must be aware of both what is already
known in the application domain and what is achievable using current technology.
With the aid of this knowledge, they can define a goal for the KD effort such that the
effort is feasible to carry out and advances the state of the art sufficiently to justify the
investment.

Once the experts have defined what is to be achieved, they must next determine how
it can be achieved. This involves determining what datasets are required, where they can
be acquired and how they should be analyzed in order to arrive at the desired result.
Once the step is complete, the experts have a plan for preparing and executing the KD
process (in the more exclusive sense).

Carrying out the plan begins with procuring the required datasets, which may come
from a number of different sources. Some of the required data may already be in the
possession of the organization executing the KD process, and some may be acquired
from other organizations such as project partners or strategic collaborators. It may also
be necessary to generate some new datasets, e.g., by performing controlled experiments
designed specifically to support the chosen goals of the KD effort.

When all the required datasets have been created and brought together, analyzing the
data can begin. It is at this point that the KD process in the more exclusive sense is
executed, with one more step to follow once it has been completed: integrating the
results with existing knowledge. As suggested later in the thesis, in Subsection 4.1.1,
this is the final test of the proposed new knowledge and may yet lead to unexpected
conclusions if the results do not seem to fit in with what is already known about the
subject of the KD effort.

The CRISP-DM (CRoss Industry Standard Process for Data Mining) process
model (Shearer 2000) is a formalization of the knowledge discovery process developed
by a consortium founded specifically for this purpose, the (now apparently defunct)
CRISP-DM Special Interest Group. On the top level, the model consists of six phases:
business understanding, data understanding, data preparation, modeling, evaluation and
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deployment. The model proceeds through the phases sequentially, with a few feedback
points where it is possible to return to an earlier phase.

Compared with the KD process model as described above, the CRISP-DM model is
more business-oriented, as witnessed by the business understanding and deployment
phases: the process is driven by the needs of a business and the goal is to get results that
can be deployed by the business in a profitable manner. The model described above
is more generic, or perhaps more idealistic, in that it simply takes it as a given that
knowledge has value. Apart from this, the two models are largely equivalent, although
they group the process tasks into phases somewhat differently.

An interesting feature of the CRISP-DM model is that at several points its specifi-
cation puts emphasis on the roles and responsibilities of human actors in the process:
what they contribute to the process and what they expect to receive from other actors.
This human aspect of the KD process is a major source of the workflow requirements
presented in this section. Another is the structure of the workflow itself, which, it is
argued here, is not as linear as the established model implies.

Table 2 presents a summary of the workflow requirements identified. This is followed
by more detailed descriptions and justifications of the requirements in the subsections.
Subsection 3.2.1 examines requirements concerning process actors, “actor” being used
here as a broad term referring to a person, group or artifact with a contribution to the
KD process. Requirements concerning interactions among the actors are discussed in
Subsection 3.2.2.

3.2.1 Actors

W-01: The workflow model should provide a conceptual framework that

identifies the types of technological artifacts used in the KD process, and

characterizes their roles and relationships.

This requirement addresses the software tools used to carry out the KD process.
Algorithms are the most elementary of KD tools: they perform transformations of data
from one state to another. Data transformations thus represent a common ground with
the data model, making algorithms a natural starting point for the workflow model.

Algorithms are generally not used as standalone entities. Instead, they are packaged
as components and assembled into applications where multiple algorithms work together
toward a common goal. Applications, in turn, may exchange data and instructions with
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Table 2. Workflow requirements for the augmented KD process model.

Req no. Description

W-01 The workflow model should provide a conceptual framework that identifies the types
of technological artifacts used in the KD process, and characterizes their roles and
relationships.

W-02 The conceptual framework should identify the human actors responsible for
executing the KD process, and characterize their contributions and expectations.

W-03 The conceptual framework should identify the human actors who otherwise hold a
stake in the KD process, and characterize their contributions and expectations.

W-04 The conceptual framework should identify the interactions that take place between
human actors, and characterize their significance in the KD process.

W-05 The conceptual framework should identify the interactions that take place between
human actors and technological artifacts, and characterize their significance in the
KD process.

W-06 The conceptual framework should identify the interactions that take place between
technological artifacts, and characterize their significance in the KD process.

W-07 The workflow model should provide guidance for mapping the interactions that make
up the KD process onto a flowchart of process steps.

W-08 The workflow model should identify any potential conflicts of interest that may result
from interactions between actors in the KD process.

one another, forming systems of multiple collaborating applications. The workflow
model should provide a conceptual framework that formally describes this hierarchy of
KD technology.

W-02: The conceptual framework should identify the human actors respon-

sible for executing the KD process, and characterize their contributions

and expectations.

This requirement addresses the primary drivers of the KD process. Although computing
technology is an indispensable instrument for KD, the tasks that have the most profound
effect on the outcome of the KD process — setting the goals, deciding the methods,
controlling the process, evaluating the results — are performed by human actors. These
actors and tasks should therefore hold a central position in the process model.

In order to understand how to support the work of a given actor, it is necessary to
understand what the contribution of the actors to the KD effort is and what the actor
needs from other actors in order to make the contribution. The conceptual framework of
the workflow model should therefore identify the contributions and expectations of each
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actor. Based on this information, it is then possible to reason about the most effective
way to secure the contribution of a given actor.

W-03: The conceptual framework should identify the human actors who oth-

erwise hold a stake in the KD process, and characterize their contributions

and expectations.

This requirement addresses the contributions and expectations of actors who have no
immediate interest in the outcome of the KD process and whose goals are therefore of a
more personal nature. Here, the case may be that there is no direct dependency between
an actor’s contributions and expectations, but it is nevertheless important to respect the
expectations, lest the primary drivers’ relationship with the actor become exploitative.
To avoid the ethical issues associated with such relationships, these actors should be
identified by the workflow model.

One of the ethical issues that may be raised by KD, privacy, has already been
discussed. The workflow model should explore the implications of the privacy issue to
the KD process, but it should not focus on privacy alone. A more comprehensive survey
of the potential ethical issues associated with KD should be carried out, and the results
of the survey should be translated into constraints on the KD process and made part of
the KD process model.

3.2.2 Interactions

W-04: The conceptual framework should identify the interactions that take

place between human actors, and characterize their significance in the KD

process.

W-05: The conceptual framework should identify the interactions that take

place between human actors and technological artifacts, and characterize

their significance in the KD process.

W-06: The conceptual framework should identify the interactions that take

place between technological artifacts, and characterize their significance in

the KD process.

These requirements address the nonlinear nature of the KD process, which, the thesis
argues, the established KD process model does not adequately capture. To justify this
argument, let us first consider a parallel from the field of software engineering: the
classical “waterfall” process model. The model has its roots in SE practices of the 1950s

66



and 1960s, but its modern formulation originated in the 1970s (Boehm 2006). There are
several versions of the model, but the basic pattern they all follow is that the development
of a software product follows a linear path from solicitation of requirements through
specification, design, coding and testing to deployment. As in the KD process, the
outputs of each process step become inputs for the next step in the sequence. Thus, the
original inputs, consisting of information gathered from the customer, are eventually
transformed into the final product.

The most straightforward version of the waterfall model is not a very realistic model
to follow in an actual software engineering project, and it mainly serves as an instrument
for understanding the variety and hierarchy of tasks that need to be successfully executed
in order to create a software product that meets all expectations. To make it useful
in practice, the naive, perfectly sequential model requires additions such as feedback
loops between process steps to acknowledge the reality that quality software cannot be
developed in a purely linear fashion. However, even in its refined form, the waterfall
model is somewhat unwieldy, and one of the major themes of SE work in the 1990s and
2000s has been the search for more flexible software development methodologies, with
emphasis on concurrency and agility (Boehm 2006).

The lesson here is that while a simplistic linear process model can be useful by
virtue of being easy to grasp and follow, it is inevitably rather narrow in perspective,
failing to account for those aspects of the process that are not readily reducible into a
sequential list of instructions. It is this narrowness of scope that this thesis considers the
main weakness of the established KD process model: like the waterfall model in SE, it
is a reasonably good top-level description of the lifecycle of a solution, but at the cost of
obscuring many important nuances of the actual solution development process.

To illustrate what the established KD process model does not show, we can begin by
noting that there is a word for the process of acquiring knowledge: learning. From this
perspective, KD can be informally defined as the process of learning from a digital
dataset, which is not unlike learning from a textbook. The latter is an inherently
interactive process where the learner must constantly try to place the new information
in the context of what they already know about the subject, and the interactive aspect
is emphasized even further when we consider KD as an act of learning. Knowledge
in a book is explicitly stated, but the knowledge in a dataset is implicit in the hidden
dependencies and regularities of the data items. The learner is therefore very likely to
require the help of auxiliary sources, such as a software application to process the data
and a technology expert to show how to use the application and interpret the results.
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Even this rather simplified scenario shows that the KD process involves diverse
interactions: between the learner and the technology expert, between the learner and
the software, between the software and the data. In a real KD project, at least some of
these entities are likely to be multiplied, so there may be multiple learners (domain
experts), multiple technology experts, multiple data processing tools or multiple datasets,
increasing the number of interactions. Additionally, the process may involve people or
technology acting in roles other than these four.

From this perspective, the traditional path of sequential steps no longer seems
an appropriate visual metaphor for the KD process. A graph would be a more apt
representation, with process actors as the nodes and their relationships as the edges
connecting them. An edge between two nodes would indicate that some kind of
interaction, or dialogue, takes place between the actors represented by the nodes.
Learning emerges as the overall effect of this potentially highly complex web of
interactions. Figure 1 illustrates the difference between this and the sequential KD
process model.

The conceptual framework of the workflow model, having identified and character-
ized the actors of the KD process, should thus then proceed to identify and characterize
the interactions among the actors. Actors, by the definition adopted here, may be either
humans or technological artifacts, so there are three major categories of interactions
that we can discern: those involving only humans, those involving only technology,
and those involving both. The current state of KD research and practice is such that
interactions involving humans are much less thoroughly explored than interactions
involving only technology, so the workflow model should focus special attention on
providing a comprehensive description of the roles and tasks of human actors in the KD
process.

W-07: The workflow model should provide guidance for mapping the

interactions that make up the KD process onto a flowchart of process steps.

This requirement addresses the ability of the augmented process model to guide the
execution of the KD process. While the thesis criticizes the established process model
for failing to represent important aspects of the process, the model has undeniable
practical value by virtue of providing a reasonably unambiguous flowchart for KD
practitioners to follow. Something comparable should be provided by the workflow
model for the augmented process model to be useful as a reference for carrying out the
KD process. Although it is not feasible to present one in this thesis, the workflow model
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(a) Sequential
model

(b) Graph model

Fig 1. The traditional, sequential model of the knowledge discovery process, emphasizing
process steps, versus a graph model of the process, emphasizing process actors and inter-
actions.

should make it possible to create a detailed user guide similar to the one included in the
specification of the CRISP-DM model.

W-08: The workflow model should identify any potential conflicts of interest

that may result from interactions between actors in the KD process.

This requirement addresses interactions where the expectations of the actors involved
are in conflict. When such situations arise, it is important for the actors to be prepared to
resolve the conflict, which is why the workflow model should identify cases where
conflicts of interest are possible. The requirement continues to emphasize the importance
of ethical conduct, but it also has a more pragmatic dimension, which can be illustrated
using the privacy example again.

In KD projects where potentially sensitive data is mined, there is always a certain
tension between the data miners, who would like to have access to as much data as
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possible, and the data subjects, who would prefer to retain their privacy. Assuming
that the data needs to be voluntarily provided by the data subjects and that the subjects
realize its sensitive nature — and arguably the data miners have a moral obligation to
make sure that they do — the miners cannot acquire the data unless they can win the
trust of the subjects. If the subjects suspect that their data may be used unethically, they
will decline to disclose it to the miners and the project will fail. This is one instance
where the success of a KD effort depends on successful conflict resolution.

For a less specific example, consider the case of a KD company bidding for a project.
For the potential client, the project would mean, besides entrusting their data to another
company, a substantial financial investment as well, so establishing trust is of great
importance for several reasons here. A bid has a chance of succeeding only if the client
is sufficiently convinced that the bidder will keep the data secure and has the necessary
competencies to create value for the client.

Largely similar conditions apply when a research group seeks a grant for an academic
KD project, with the funding source (e.g., a foundation) in the role of the client and the
research group in the role of the bidder. Grant applications are also typically subject to
scrutiny by an ethics review board, which has the authority to demand revisions to the
project plan or even reject the entire project. The researchers are thus forced to review
the ethical issues involved, even if it is just to reach the conclusion that there are none.

The various examples given above demonstrate that addressing ethical issues is an
important KD task that, if done poorly, may even kill a project before it has a chance
to start. The reputation of an organization is affected by the way it handles these
issues, so the importance of ethical awareness is emphasized in the long run: the more
credibility the organization loses as an ethical actor, the less likely it is to be given new
opportunities to work on projects involving sensitive data or other ethical issues. To
ensure that these issues are handled in a thorough and responsible manner, identifying
and addressing them should be made an integral part of the KD process.

3.3 Architectural requirements

Although the thesis argues for a less technology-centric view of the KD process, it is
undeniable that technology plays a crucial role in providing support for the process. The
aim of the architectural model is to provide such support through a reusable software
design that reflects key aspects of the proposed augmented process model. Ultimately,
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the design should be expressed in the form of a software framework that can be used to
develop and deploy KD solutions in any application domain.

As the survey in Subsection 2.2.3 shows, there are many KD software frameworks in
existence already. The new perspective offered here is that the three sub-models of
the proposed process model — data, workflow and architecture — should constitute a
consistent whole. The role of the architectural model in this arrangement is to bring both
the data model and the workflow model under a single software architecture.

The requirements for the workflow model focus on process actors and their interac-
tions. Therefore, in order to accommodate the workflow model, the architectural model
should be able to represent the actors and to support the interactions among them. Many
of the interactions involve human actors only, and these are deliberately left outside the
scope of the architectural model. However, there are various human-technology and
technology-technology interactions that warrant more attention than they have received
so far. These are taken into account by the requirements for the workflow architecture.

The requirements for the data model deal with data management and knowledge
representation. The objective of the data architecture is to integrate these functions
smoothly with the workflow architecture. This does not imply, however, that a software
framework that implements the workflow model should also implement its own solution
for database management. Instead, the requirements for the data architecture presume
the existence of an established solution that can be adapted to implement the data model.

The architectural requirements for the augmented KD process model are gathered
in Table 3. A more detailed treatment of the requirements is given in the subsections:
Subsection 3.3.1 discusses requirements related to the data model, and Subsection
3.3.2 those related to the workflow model. Subsection 3.3.3 looks at general quality
requirements that are not specific to either model.
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Table 3. Architectural requirements for the augmented KD process model.

Req no. Description

A-01 The architecture should provide access to data sources via a transparent abstract
interface.

A-02 The architecture should assist in the generation of a data repository structure that
covers the entire KD process.

A-03 The architecture should assist in the generation and management of metadata
attached to the contents of the data repository.

A-04 The architecture should not be bound to any database technology or vendor.

A-05 The architecture should be able to process any type of data, including unstructured
and multimodal data.

A-06 The architecture should support the construction of KD workflows in the form of
pipe-and-filter graphs.

A-07 The architecture should support partial execution of workflows based on previous
intermediate results.

A-08 The architecture should provide a library of reusable application elements
implementing solutions to common problems.

A-09 The architecture should provide internal interfaces for the purpose of extending the
architecture with new application elements.

A-10 The architecture should provide external interfaces for communication with other
software, to support requirement W-06.

A-11 The architecture should provide external interfaces for communication with humans,
to support requirement W-05.

A-12 The architecture should support development with and of reusable components.

A-13 The architecture should grant developers access to it on multiple levels of
abstraction, enabling them to control low-level functions.

A-14 The architecture should be portable to multiple hardware and operating system
platforms.

A-15 The architecture should be able to deliver satisfactory performance under realistic
operating conditions.

A-16 The architecture should cover all the design and coding stages of the development
lifecycle of KD software.

3.3.1 Data architecture

A-01: The architecture should provide access to data sources via a trans-

parent abstract interface.

A-02: The architecture should assist in the generation of a data repository

structure that covers the entire KD process.
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A-03: The architecture should assist in the generation and management of

metadata attached to the contents of the data repository.

These requirements address the integration of the data architecture with the workflow
architecture. To achieve a good architectural integration, the data architecture should
present an interface that abstracts away irrelevant details and automates or assists in the
generation of the underlying data structures. Convenient shortcuts to the most commonly
needed data management functions should be provided.

The architecture of the database used by a KD application mirrors the architecture
of the application itself to a considerable extent. Given a KD algorithm, a data
structure suitable for storing the data it generates can be automatically derived from a
machine-readable description of its output variables. Similarly, a complete database that
implements the data management scheme specified by D-03 can be generated when a
machine-readable description of the entire application is available.

The use of metadata is required for knowledge representation, and also for certain
advanced data management functions. Data structures for attaching metadata to data
should be provided by the architecture. Furthermore, the generation of the metadata
itself should be automated and hidden by the data architecture. Where automation is not
possible, a generic interface for metadata definition should be provided.

A-04: The architecture should not be bound to any database technology or

vendor.

This requirement addresses the technology-independence of the data model, which
should extend to the manifestation of the data model in the architectural model. In a
software framework that implements the architectural model, vendor-specific database
connectors are a desirable feature, since the required development effort is reduced
when a connector for the chosen database platform is available as part of the framework.
However, users of the framework should not be restricted to using only such connectors
as are provided by the developers of the framework.

A-05: The architecture should be able to process any type of data, including

unstructured and multimodal data.

This requirement addresses the diversity of the application domains where KD may
be applied. As illustrated by the survey in Subsection 2.1.2, the data processed by a
KD application does not necessarily come in the form of sets of individual data points.
Instead, the data may represent a more complex modality such as spatiotemporal data,
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unstructured text, or multimedia. The architecture should account for this by providing
an open-ended type system that does not unnecessarily limit the range of data types
available to KD solution developers.

3.3.2 Workflow architecture

A-06: The architecture should support the construction of KD workflows in

the form of pipe-and-filter graphs.

This requirement addresses the principal architectural style of KD software developed
using the architectural model. As discussed in Subsection 2.2.3, the pipes-and-filters
style is well suited to the task of building and executing KD workflows, and therefore,
it is desirable for the architectural model to support the development of applications
representing this style. The basic features that the model needs to have in order to
accomplish this include representing KD algorithms as filters, coupling filters with pipes
to form a graph, reading input data from data sources, and pushing the data through the
graph to be processed by the filters.

A-07: The architecture should support partial execution of workflows based

on previous intermediate results.

This requirement addresses the ability to restarting a workflow from an intermediate step
instead of re-executing the workflow in its entirety. The usefulness of this ability was
cited in Subsection 3.1.1 as motivation for the requirement that the data management
scheme should cover every state of data. This requirement thus complements D-03,
ensuring that intermediate data stored in a database that implements the data model
can indeed be used to initiate a workflow in a software framework that implements the
architectural model.

A-08: The architecture should provide a library of reusable application

elements implementing solutions to common problems.

A-09: The architecture should provide internal interfaces for the purpose of

extending the architecture with new application elements.

These requirements address the acquisition of filters, pipes and other basic architectural
elements from which KD applications are built. Certain sub-problems in KD software
development are universal or near-universal, and it would be wasteful to have every
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developer create their own solutions to these problems. Therefore, a software frame-
work that implements the architectural model should come with a library of reusable
standard solutions, with top priority placed upon the most broadly applicable ones,
such as database connectors interfacing with the products of major vendors and filters
implementing frequently used DM algorithms.

Anticipating every contingency with the library included in the framework is not a
feasible goal, so it is necessary to complement the library with a set of internal interfaces
for the development of new application elements. Developers using the framework
to create KD applications can then use these interfaces to code new filters and other
application elements whenever a solution to a particular sub-problem is not already
available. The interfaces also enable the development and distribution of third-party
libraries, increasing the probability that when a problem is encountered, a solution can
be acquired without writing a large quantity of new code for it.

A-10: The architecture should provide external interfaces for communica-

tion with other software, to support requirement W-06.

This requirement addresses interactions between technological artifacts that involve
multiple software applications coordinating their actions. To support such coordination,
a framework that implements the architectural model needs to provide external interfaces
that enable it to send data to other applications and receive data from them. One situation
where this is required is when a developer wishes to use a standalone external tool,
such as a scientific computing application, to perform some tasks in the KD workflow.
Another is when a KD application developed using the framework is to be integrated
with a legacy information system.

A-11: The architecture should provide external interfaces for communica-

tion with humans, to support requirement W-05.

This requirement addresses interactions between technological artifacts and human
actors. To support such interactions, user interface (UI) hooks should be provided so
that developers using the framework can build control and monitoring interfaces for
their applications. Furthermore, the framework should provide UIs of its own, for the
purpose of configuring and operating the framework itself. A graphical UI that can be
used to create applications from library elements without writing code would be highly
desirable. Another possible use case for UIs is a reversal-of-roles situation where an
application assigns a task, such as a visual pattern recognition problem, to a human
actor.
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3.3.3 Architectural quality

A-12: The architecture should support development with and of reusable

components.

This requirement addresses the efficiency of developing KD applications based on
the architectural model. High efficiency can be achieved through component-based
development, in which applications are assembled from reusable components, with
standardized interfaces that enable the components to be connected, configured and
coordinated. This development paradigm is highly compatible with the pipes-and-filters
architectural style, and it should be supported by the architecture. Furthermore, the
architecture should encourage developers to design with component-based development
in mind, maximizing the reusability of the new application elements they write.

A-13: The architecture should grant developers access to it on multiple

levels of abstraction, enabling them to control low-level functions.

This requirement addresses the flexibility of development based on the architectural
model. A software framework that implements the model necessarily has several
layers of functionality, with each layer providing services for the ones above it. Using
higher-level services reduces the effort required to develop an application, but this
advantage comes at the cost of losing control over lower-level behavior. Developers
should therefore be given access to all the layers, so that they may choose the trade-off
that best suits their purposes and build their applications on top of the layer that best
represents the chosen trade-off.

A-14: The architecture should be portable to multiple hardware and

operating system (OS) platforms.

This requirement addresses technology-independence from the perspective of execution
platforms. There are several viable hardware architectures and operating systems on
which KD applications may be deployed, and it would be undesirable for the framework
to be limited to just one or a small subset of all the available options. Ideally, the
framework should be portable to all major hardware and OS platforms in server, desktop
and mobile environments. The means that may be used to achieve high portability
include coding practices and virtual machines.

A-15: The architecture should be able to deliver satisfactory performance

under realistic operating conditions.
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This requirement addresses the increasing performance requirements of KD software.
Several factors contribute to this trend: one is increasing dataset sizes (big data),
another is the use of resource-restricted devices such as smartphones and tablets as KD
application platforms. Any software framework necessarily generates some amount of
processing overhead, but it should not get out of control with increasing data quantities
or diminishing computing resources, or the applicability of the framework will be
severely limited. Furthermore, to avoid being limited to the processing power of a single
device, parallel computing platforms such as clusters and grids should be a significant
consideration in the design of the framework.

A-16: The architecture should cover all the design and coding stages of the

development lifecycle of KD software.

This requirement addresses the range of KD software development tasks for which the
framework is suitable. The principal ones are implementation and deployment of a
KD solution, but before them, there is frequently an experimental phase involving the
construction of application prototypes and testing of different algorithms and parameters.
The framework should support these tasks as well, and enable developers to make
a gradual transition to the final release version by replacing prototype components
with finalized ones, one by one, while the overall application architecture remains
unchanged.

77



78



4 Proposed solution

This chapter introduces the proposed solution to the research problem outlined in
Chapter 1 and defined in detail in Chapter 3. The solution is composed of the three
models identified in Chapter 1, the data model, the workflow model and the architectural
model. Collectively, these three models constitute the augmented KD process model
that the thesis seeks to formulate and validate.

Although the three models are all part of the same overall model, they represent
different stages of refinement in terms of how concrete the model artifacts are. The most
abstract of the three is the workflow model, which is mainly a conceptual framework.
The most concrete is the architectural model, which is implemented both as generic
software frameworks and as specific applications based on the frameworks. The data
model is a set of design guidelines that are expressed in several software artifacts but
have not been implemented in an application-independent manner.

The organization of this chapter is similar to that of the previous one, so that the
data model is presented in Section 4.1, the workflow model in Section 4.2, and the
architectural model in Section 4.3. The applications will be discussed later, in Chapter 6,
as case studies for testing the solution against the requirements.

4.1 Data model

The three sub-models of the proposed KD process model can be organized into a rough
dependence hierarchy with the data model at the bottom, the workflow model on top of
the data model, and the architectural model on top of both. In other words, the workflow
model depends on the data model, and the architectural model on both the data model
and the workflow model. It therefore makes sense to begin the presentation of the
process model by discussing the data model.

Subsection 4.1.1 examines data from three perspectives. First, it looks at what
happens to data during KD, depicting the process as a sequence of states and transforma-
tions. Second, it studies the creation and management of a data repository for KD. Third,
it analyzes the concept of knowledge and posits a number of principles intended to
bridge the gap between knowledge as the outcome of the KD process and knowledge as
an epistemological concept.
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Subsection 4.1.2 follows up on all three perspectives, attempting to derive from the
data model a knowledge representation scheme that can be used to build a knowledge
base for KD. It begins by revisiting the previously established definition of knowledge
and translating it into a set of KR formalisms. It then proceeds to discuss how these
formalisms might be incorporated into the previously presented data repository design,
enabling it to be used as a repository for discovered knowledge.

4.1.1 Data management

One way to view the established process model of knowledge discovery is that it depicts
the categories, or states, of data involved in the process, and the transformations that
cause data to move from one state to another. We begin the presentation of the data
model by reviewing these states and transformations. Six states of data are identified
here: raw data, prepared data, condensed data, activated data, explained data, and
knowledge (see Figure 2).

Fig 2. The knowledge discovery process, depicted in terms of data states and transforma-
tions.

Raw data is the starting point of the process, consisting of observations that have
been recorded and digitized but not modified in any manner. The observations may
come from a variety of sources, such as human observers or various sensor devices. If
the phenomenon of interest occurs in the virtual world rather than the physical one,
instruments such as logging software or online questionnaires can be used to gather data
that is digital by nature and therefore ready for processing without digitization.

The first step of the KD process, preprocessing, transforms raw data into prepared

data. This transformation does not yet move the data to a higher level of abstraction: the
data still consists of observations. However, it may be necessary, e.g., to drop out some
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of the data because it is believed to be erroneous or otherwise unsuitable. Compensating
for missing values in data items is another frequently needed preprocessing operation.

The next process step takes the data to a higher level of abstraction and radically
reduces its volume. The result, condensed data, consists of features, the purpose of
which is to represent essential characteristics of the data using relatively few values. The
goal of feature extraction and selection is to come up with a set of features small enough
to make further processing feasible, yet informative enough to constitute an adequate
stand-in for the full dataset.

The concrete meaning of the feature selection criteria depends on what kind of
method is used to process the feature values in the next process step. In this step, the
features are used to train a model that learns the relevant properties of the dataset and
generates a function that, when a data item is plugged in, answers a question concerning
the data item. Because the data, which thus far has been input for processing methods,
has now been transformed into a processing method, this new type of data is given here
the name activated data.

Assuming that the process has been successful so far, the activated data represents
a previously unknown predictive or descriptive rule concerning the behavior of a
real-world phenomenon. The next step is to consider the meaning of the rule with
respect to the phenomenon in question. The objective of this is to understand why the
rule works and under what circumstances it does not work. The result amounts to a new
category of data, which is here called explained data.

The final step is to incorporate the explained data with the body of existing knowl-

edge. A body of verified knowledge should not contain any incoherencies, so any
incompatibilities between the existing knowledge and the new addition must be resolved,
a task that may involve revisiting the KD process. Once a coherent view has been
established, the transformation of the raw data into knowledge is complete.

The purpose of recapitulating and reformulating the established KD process model
in this way is to shift the focus of the model slightly: instead of data transformations, we
are now concentrating on the data itself. This enables us to use the established model as
a foundational process dimension to which additional dimensions can be anchored. The
data, workflow and architectural models are all connected through this conceptual model
of data.

Figure 3 depicts a reference architecture for a data repository based on the concep-
tualization of the KD process given above. The reference architecture is composed
of three distinct architectural layers, the bottommost of which is the entity labelled

81



“Data Store” in the figure. This is simply a database designed such that it can be used to
store data in any of the states described above. Any type of database can be used to
implement the data store, since only its content is specified by the reference architecture,
not its storage format.

Above the data store is another database, labelled “Metadata Store” in the figure.
The purpose of the metadata store is to store information that describes various aspects
of the actual repository content stored in the data store. General dataset properties
such as producer information and timestamps are useful for searching the repository
for a specific dataset. Tracking information establishes lateral relationships between
datasets representing different states of data, allowing a result to be traced back along
the transformation chain. Semantic annotations are used to represent the meaning of
data; their importance increases toward the end of the transformation chain, as the
concepts embodied by the data grow increasingly complex.

The topmost layer of the reference architecture consists of two access interfaces,
labelled “Import Interface” and “Export Interface” in the figure. The interfaces expose a
set of operations on the data repository to users and hide the implementation of the data
and metadata stores from the users. The import interface is used to write data into the
repository; it stores the primary content in the data store and the descriptive metadata
in the metadata store. The export interface accesses the metadata store to locate the
requested dataset and retrieves it from the data store, returning it to the user.

Although knowledge is treated above as one state of data among others, it holds a
special status owing to its relationship with the philosophical concept of knowledge.
Recalling the classical definition of knowledge as justified true belief, we can examine
the concepts of justification, truth and belief more closely in order to get a better idea of
the properties that define knowledge and set it apart from less refined forms of data.
From such properties, we can derive conditions that must be satisfied for the outcome of
the KD process to qualify as knowledge in a broader sense than the one normally used
within the KD domain.

Starting with the concept of justification, we can define it as a convincing rational
argument supporting a proposition. Since KD starts with data, that is where the
justification for discovered knowledge must ultimately be found. We can thus derive two
principles from the definition of justification, corresponding to the two keywords in the
definition, rational and convincing.

For the justification for a piece of knowledge to be rational, the knowledge should be
traceable to the original data via a logical sequence of transformations. Discontinuities
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Fig 3. A generic design for a data repository intended to support the KD process.

in the traceability chain make it more difficult to understand the outcome of the discovery
process: to grasp its significance with respect to the real world, to assess the scope of its
applicability, to detect its weak points. Applying discovery results without properly
understanding them invites problems. The discovery process should therefore not just
produce an outcome that works, but also generate an explanation for why it works and
suggest constraints on when it can be expected to work.

For the justification for a piece of knowledge to be convincing, the knowledge should
be backed up by enough data to dispel any reasonable doubt regarding its reliability.
This principle is already codified in several basic KD concepts, such as those of support
and confidence in association rule mining, where a rule is only accepted as significant if
its support (the fraction of the overall dataset that is relevant to the rule) and confidence
(the fraction of the support set that follows the rule) exceed a predetermined threshold.
In predictive modeling, the sufficiency of supporting data can be controlled by using
validation datasets and by studying the data space to find regions where the available
data is too sparse.

Moving on to the concept of truth, there are three major attempts to define it in
classical epistemology: correspondence theory, coherence theory, and pragmatic theory.
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Each theory has its own virtues and its own drawbacks, so that no single theory offers
a perfect solution, but neither should any of them be rejected completely. The most
sensible approach is to combine useful elements from all three theories into a hybrid
view of the concept of truth, using each theory in turn to reveal a different aspect of
the concept as a potential source of additional principles to be used as criteria for
knowledge.

Correspondence theory states, simply put, that a proposition is true if and only if it
corresponds to reality. To expand this definition a little, we can say that the truth of a
proposition is determined by an examination of the real-world entities it invokes: if such
an examination shows the statements made in the proposition to be accurate, then and
only then is the proposition considered true. While this definition may seem attractive,
as a test of truth it is rather problematic. There is no way to compare what a proposition
says about reality to reality in itself, so one is left wondering what the practical method
of determining truth should be.

A lesson that we can derive from correspondence theory is that the results of
knowledge discovery represent objective statements concerning reality and should be
treated as such. A KD expert should therefore understand the results of a KD project not

only in terms of their utility, but also in terms of what facts they reveal about the world.
As a test condition, this principle relies on the expert judgment of humans, emphasizing
the role of human actors as the driving force of the KD process.

Coherence theory defines the truth of a proposition in terms of the system of
propositions previously established as true. A true proposition is one that can be
incorporated into the system without disturbing it: it corroborates and is corroborated
by some of the established truths, and contradicts none. A proposition that fails to
satisfy this condition is suspended as inadequately supported or rejected as demonstrably
false. For instance, it is not uncommon for KD algorithms to learn properties of their
training datasets that are merely random concentrations in the distribution of the data, a
phenomenon known as overfitting. Independent validation of the discovered model
is necessary in order to ensure that it is coherent with more than just the sample of
observable reality represented by the training data.

However, there is always the possibility that a new, conflicting result represents
a previously undiscovered truth, in which case there must be some kind of error in
the body of existing knowledge. The weakness of coherence theory is that it is biased
against accepting the new result also in this case. Although a dramatic upheaval of the
status quo is unlikely to be caused by the outcome of a single KD effort, it is nevertheless
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enlightening to look for the source of the conflict, since it may point out new lines of
investigation, which may, in turn, eventually lead to major new discoveries. KD experts
should therefore make an effort to build a coherent model of the world that combines

their new results with previous knowledge, but if this fails, they should make an effort to

explain the apparent anomaly.
Pragmatic theory differs from both correspondence theory and coherence theory in

that it provides a practical way to test individual propositions in isolation, using only
observable events as the criterion of truth. The theory states that a proposition is true if
and only if assuming it to be true leads to a favorable outcome. To expand this definition,
a pragmatic test of truth could be phrased as follows: “If I live my life and choose my
actions assuming X to be true, are the results better than when I assume X to be false
instead?” This, again, is problematic in a number of ways. A major practical problem is
that making sufficient observations to come to an adequately conclusive decision may
not be feasible because of the time or effort required. Another potential problem is
the element of epistemological subjectivism introduced by the concept of favorable
outcome.

Applying the pragmatic theory of truth in the context of KD brings forth the notion
that the truth of a piece of knowledge is equivalent to its utility in a given application
domain. Whether or not a KD result is accepted as true thus depends on how and within
what constraints the experts expect to use it, so we must again rely on their judgment
to establish a condition: KD experts should, when defining a KD problem, define an

objective test for deciding when to accept a result as (provisionally) true. This may turn
out to be not at all straightforward, owing to the exploratory nature of KD — frequently
the objective is not to answer specific questions but to reveal any potentially interesting
patterns in the available data without more than a vague prior expectation of what kind
of knowledge the patterns might yield. Even so, however, at the end of the process, the
results must be interpreted to find out what they imply, and evaluated to see if there is
sufficient proof to accept the implications.

The third and final concept invoked by the classical definition of knowledge, belief,
is usually defined in the KD context as a continuous value, the estimated probability of a
proposition being true. In Bayesian probability theory, this value is calculated as prior
belief modified by new (posterior) evidence, so by this definition, the concept of belief
is closely related to coherence and justification: propositions that appear less likely in
light of prior knowledge need to be backed up by a larger quantity of supporting data
before they can be accepted as true.
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In the more general sense, belief is a psychological phenomenon that occurs in the
mind of the KD expert. The link to justification and coherence remains strong, but
achieving belief is now a matter of how the justification is presented to and processed
by the expert. First of all, the justification for each piece of knowledge should be
communicated in a form that allows a KD expert to grasp it. Furthermore, the KD expert
should strive to understand the justification for each piece of knowledge, suspending

belief when this fails. Since it is in the interest of the expert to consolidate every piece
of good knowledge discovered, it makes sense to make an effort to understand the
justification, even if the way it is presented makes it difficult to grasp. However, in cases
where the effort is inconclusive, it is better to err on the side of caution than to accept
false information as true. Often, such cases can be resolved through further inquiry, e.g.,
by gathering more data or by examining the results in a new way.

4.1.2 Knowledge representation

Subsection 2.3.3 reviewed existing work on knowledge representation, with a particular
focus on the use of machine-readable ontology descriptions and logic-based reasoning
for KR. Although an alternative scheme is proposed in this subsection, the intent is not
to imply that other KR approaches are flawed. The discussion that follows is exploratory
rather than explanatory in nature, an attempt to extend the data model presented above
such that it solves the KR problem in the context of KD specifically.

Keeping in mind the analysis of the concept of knowledge in the previous subsection,
we can borrow from pragmatic epistemology the idea that knowledge is something
that can be successfully applied to solve problems. We can then say that a computer
knows X if and only if it is able to apply X independently in the appropriate context.
This gives us an intuitive definition of KR technology as any technology that enables a
computer-based system to possess knowledge in the pragmatic sense.

If we now examine again the view of data states and transformations given at the
beginning of the previous subsection, we find that it is compatible with this definition of
KR. In the knowledge-as-data reduction of the data model, knowledge is a predictive or
descriptive function discovered from data, which has been interpreted as a model of
reality and integrated with existing knowledge. The knowledge is thus by definition in a
format that allows it to be executed by a computer to solve a problem — what is missing
is a mechanism that enables the computer to identify the correct solution to a given
problem, retrieve it from a knowledge base and use it to solve the problem.
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We can now formalize the above by defining three conditions that must be satisfied.
First, the system must possess the actual data for each individual piece of knowledge X.
Second, it must have functions that enable it to apply X in practice. Third, it must be able
to determine when it is appropriate to apply X and to locate X in such situations. Thus
we can define a digital representation of a piece of knowledge X as the combination of
three components:

– Passive component: the data that solves the problem to which X is related.
– Active component: functions that allow the data to be retrieved and applied.
– Descriptive component: metadata that allows the functions to decide whether X is the

correct solution to the current problem.

The passive component of knowledge corresponds to the activated state of data in
the data model. While this may seem contradictory, the term is justified in this context
because the component is passive from the perspective of the KR system: a static object
stored in the KB, the content of which is of no concern to the system. It is only after the
data has been retrieved from the KB and returned to the entity that requested it that the
data becomes active again.

The active component of knowledge is what allows the passive component to be
produced from the KB for the requester. This is somewhat counterintuitive, since
normally search and retrieval operations would be considered part of the access interface
of the KB rather than part of its content. However, storage and retrieval of knowledge
is a considerably more complex task than that of less refined forms of data, and the
approach proposed here for dealing with that complexity is to introduce an additional
level of processing between KB interface and KB content. The case study in Subsection
6.1.2 illustrates how this additional level might be implemented in a KR system.

With the descriptive component of knowledge we are already familiar from the
previous subsection, where the use of metadata to enrich database content was discussed.
To facilitate knowledge representation, the metadata needs to include information
readable to the active component that describes the problem that can be solved using a
given piece of knowledge and the circumstances under which the knowledge can be
applied. This information is available as a result of the transformation from activated to
explained data, so the problem is defining a suitable machine-readable encoding for
incorporating the information in the KB. This is again illustrated by the case study in
Subsection 6.1.2.
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In terms of the reference architecture depicted in Figure 3, the passive component
of knowledge would be stored in the data store and the descriptive component in the
metadata store. Only the active component has no designated place in the architecture.
We can thus extend the reference architecture to accommodate the KR scheme described
above through the addition of one architectural layer. The extended architecture is
shown in Figure 4.

The new layer is labelled “Function Store” in the figure and placed between the
access interfaces and the data and metadata stores. As the arrows in the figure indicate,
the access interfaces now communicate exclusively with the function store, which in
turn communicates with the data and metadata stores. The function store thus assumes
the role of an additional interface layer, which exposes its services to the import and
export interfaces. The addition of a new abstraction layer makes the complexity of
manipulating and searching a knowledge base, as opposed to a regular database, more
manageable.

4.2 Workflow model

Although the presentation of the data model began with a recapitulation of the established
KD process model, the closest counterpart of the established model in the augmented
model is the workflow model. The most significant modification proposed by the
augmented model is the greater emphasis upon process actors, especially human actors,
and the nonlinear nature of the interactions between the actors that move the process
forward. Furthermore, the augmented model brings into consideration actors not
considered by the established model, and takes into account actors’ expectations that are
not aligned with the objectives of the KD process.

Subsection 4.2.1 discusses the actors of the KD process. It begins by constructing a
hierarchy of the technological artifacts used in KD, which are considered actors in this
context. It then proceeds to discuss the human actors, or stakeholders. The role of each
class of human actors is described in terms of what the actor expects from other actors
and what is expected from it by other actors.

Interactions between the actors are the topic of Subsection 4.2.2. Interactions between
technological actors, those between technology and humans, and those involving only
humans are examined each in turn. Special attention is devoted to interactions between
actors whose expectations may be in conflict, since such conflicts are a possible source
of ethical issues and should therefore be resolved in a manner that respects the rights of
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Fig 4. A generic design for a data repository intended to support the KD process, with
extensions to facilitate knowledge representation.

the actors involved. The subsection is concluded by an attempt to reconcile the workflow
model with the CRISP-DM model, the current standard model of the KD process.

4.2.1 Actors

Starting once again with the established model of the KD process, we can think about
data as a horizontal chain-like structure, with the various categories or states of data
placed next to each other and linked to their neighbors, as in Figure 2. In this view, the
technology used in the process forms a vertical layered structure above the data. The
structure consists of four layers, from bottom to top: data management, algorithms,
applications, and systems (see Figure 5).

The data management layer consists of software for storing and accessing data
and knowledge. File systems, databases and knowledge bases are the most important
categories of data management technology. These three form a layered hierarchy of
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Fig 5. The hierarchy of knowledge discovery technology, including the hierarchy of data
from Figure 2 as the bottommost layer.

their own, since a database system usually stores its data in files and a knowledge base
system, in turn, generally relies on some kind of database engine. The higher one moves
in this hierarchy, the more processing the data management software does on behalf of
the client using its services.

The algorithms layer consists of small pieces of software that work on the data.
Each algorithm represents a solution to a particular sub-problem encountered during
execution of the KD process. For any given problem, there are usually several potentially
acceptable solutions; the nature of the problem determines which one is the most
appropriate. The solutions are implemented in program code and typically gathered in
software libraries, where they can be conveniently invoked when required.

The applications layer consists of standalone software entities composed of algo-
rithms and coordinating code. An application solves KD problems that are broader in
scope than those solved by individual algorithms. This is done by breaking down the
problem into sub-problems and applying algorithms in a coordinated fashion to solve
them. Often, a software framework is employed, which makes it convenient to assemble
a complete application from components representing algorithms.

The topmost layer consists of systems composed of multiple collaborating appli-
cations. Various forms of collaboration are possible: applications may communicate
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with one another directly, or the communication may be mediated by human operators
who transfer information between applications. In the latter case, the operators can be
considered components of the system along with the applications they control.

The term “actor”, as has already been remarked, is used here in a broad sense
that covers entities belonging to the technology hierarchy, especially applications and
systems, as well as humans. To distinguish human actors from technological ones, we
now introduce the concept of a stakeholder. Being a stakeholder in the KD process
means one or more of the following:

– having a vested interest in the results of the process;
– participating in the planning or execution of the process;
– being affected by the execution or results of the process.

Four groups of stakeholders are identified: technology experts, domain experts,
volunteers and data subjects. Society is considered the fifth stakeholder, concerned with
KD as a phenomenon rather than individual KD projects. Knowledge users are not
counted as a distinct stakeholder group since they are represented in the process by
domain experts and, to some extent, by society. Figure 6, adapted from (Tuovinen &
Röning 2009), illustrates the relationships between the stakeholder groups.

Technology experts are people with the knowledge and skills required to apply KD
technology. They understand the process and methods of KD, are familiar with KD
tools and are able to use their knowledge to design and implement solutions to KD
problems. Defining the problems is the job of the other expert group, domain experts.

Domain experts are people who are intimately familiar with a specific application
domain of KD technology. They have a comprehensive view of what in the domain is
already known and what is not, what knowledge would be desirable and what data can
be acquired from which new knowledge could be discovered. Simply put, technology
experts need domain experts to tell them what they should look for, whereas domain
experts need technology experts to tell them how they can find it.

The two expert stakeholder groups are the primary drivers of the KD process. The
objectives of the process are directly dependent on the business or research needs of the
domain experts, and the means by which the process progresses toward the objectives
are directly dependent on the analysis of the technology experts. Both groups are
characterized by the fact that their individual expectations are, generally speaking,
aligned with the goals of the process as a whole.
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Fig 6. Stakeholders and their expectations. An arrow pointing from stakeholder A to stake-
holder B indicates that A expects something from B; the arrow caption states the expectation
verbally. An arrow may also point from a stakeholder to itself, indicating an expectation of
community support. For the knowledge discovery process to proceed smoothly, all stake-
holder expectations must be satisfied.

It is easy to see that since KD necessarily involves defining and solving a problem,
the two expert groups must always be present, although they need not be distinct — it
is possible for a person to play the role of both technology expert and domain expert.
Conversely, the two non-expert stakeholder groups are not an essential component of the
KD process and therefore are involved only in special cases. However, it is in these
cases that some of the most interesting ethical issues of KD arise.

Volunteers are people who assist the experts in the execution of the KD process
by performing tasks that do not require significant technology or domain expertise.
Volunteer computing, or public-resource computing, is a distributed computing model
that makes use of computing resources donated voluntarily by users of personal comput-
ers with Internet access. A volunteer computing server coordinates the computation,
distributing tasks to volunteer machines. Each volunteer machine hosts a volunteer
computing client that downloads a task from the server, processes it, uploads the result
and requests another task, restarting the cycle. The administrator of a volunteer machine
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can specify what resources the client application is allowed to consume and at what
times. Figure 7 illustrates how the volunteer computing model works. (Anderson et al.

2002)

Fig 7. Volunteer computing illustrated. The server coordinates the work of the clients, dis-
tributing tasks and collecting results. The client machines work on their tasks as permitted
by their administrators, and when finished, contact the server over the Internet to return the
result and request a new task.

In the basic volunteer computing model, the task of the volunteers is to install and
configure the volunteer computing client, but some projects engage the volunteers
themselves rather than their idle computing resources by giving them reasoning or
recognition tasks for which they can quickly train themselves using materials prepared
by the experts (Raddick et al. 2010, Cooper et al. 2010). Volunteer computing can be a
powerful way to attack a KD problem, provided that it can be broken down into relatively
small sub-problems that can be solved independently. If, for instance, a research project
requires heavy computation but lacks the funds to purchase the necessary hardware,
recruiting volunteers to execute the computations on their desktop machines may be the
solution. Probably the most famous volunteer computing project is U.C. Berkeley’s
SETI@home (Anderson et al. 2002), but many others also exist, studying such diverse
topics as climate modeling (Christensen et al. 2005), protein folding (Beberg et al. 2009)
and prime numbers (Ziegler 2004).
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Data subjects are people who provide data regarding themselves as material
for the knowledge discovery process. They do this by either recording the data by
themselves (e.g., by filling in a questionnaire) or operating in an environment, physical
or virtual, where their actions can be observed and recorded by an automated tracking or
surveillance system. In the latter case, the collection of data does not depend on the
subjects’ input, knowledge or even consent, so being a data subject does not necessarily
imply an active role in the KD process.

Of the two non-expert stakeholder groups, data subjects play the more critical role in
the sense that whereas volunteers may sometimes provide the most cost-effective way to
gain access to the computing resources required by a KD project, they are not strictly
necessary for the project to succeed. If, however, the project is based on the premise that
a body of data gathered from a specific group of subjects will be mined, then access
to that data must be gained or the project cannot advance. Personal information is
typically guarded by both authorities and the data subjects themselves, a fact which
further emphasizes the importance of giving all due consideration to the expectations of
this stakeholder group.

Society is a special case among the stakeholders in that it does not refer to a specific
group of people, except in the sense that a society is composed of the individual human
beings living in it. However, it makes sense to count society among the stakeholders
because the boundary conditions faced by all KD projects are largely determined by
its attitude towards knowledge and KD. Since KD technology is an instrument for
generating new knowledge, arguments for the proliferation of knowledge in society are
also arguments for the encouragement of KD by society. Factors such as the availability
of research funding and affordable hardware can be boosted to increase the output of
KD efforts. Funding decisions can also be used to steer KD projects towards types of
knowledge considered particularly beneficial.

On the other hand, the interest of society in the generation of new knowledge is
not unconditional; the process by which knowledge is created may also be socially
relevant, in some cases more so than the outcome. For example, if the raw data for a
KD project is gathered by potentially illegal means, society has an obvious interest
in investigating the matter and, if necessary, imposing restrictions. Society is thus a
stakeholder that plays multiple roles in the KD process: it creates a knowledge-friendly
environment that KD practitioners can use to their benefit, but at the same time it sets
boundary conditions that practitioners must observe in order to be successful. The social
implications of KD should therefore be considered in the KD process model: since
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society will always be present in the background, it is common sense to acknowledge its
presence and make explicit its effects on the process.

4.2.2 Interactions

The interactions that take place during the KD process can be divided into three
categories based on the involvement of humans. Interactions in the first category take
place between different technological artifacts, so there is no human involvement in
them. Interactions in the second category take place between humans and technology,
and those in the third category are between humans with no technology involved.

It is notable, when one reviews KD literature with respect to its relevance to the
three categories of interactions, that the quantity of published research grows lesser
as the degree of human involvement in the research topics grows greater. There is a
lot of research on exclusively technical KD topics, some research on certain special
cases where humans interact with technology, and very little research on the effects of
human-to-human interactions on the KD process.

One can speculate on whether the apparent imbalance in the research interests of KD
researchers is a result of KD being relatively young as a research area. Although KD as
an engineering discipline is already quite mature, it may be that this degree of maturity
has not yet reached the less technically oriented corners of the KD domain. A background
in engineering or mathematical sciences alone is not suitable for approaching problems
related to human-machine interfaces or human-human relationships, and it seems
plausible that there has not been enough time to achieve the level of interdisciplinary
collaboration necessary to solve these problems.

Studying the backgrounds and interests of KD researchers beyond the level of
speculation is out of scope for this thesis. The uneven distribution of published results
across the three categories is an observable fact, and it is argued here that it is not
simply reflective of the importance of the categories relative to one another. One of the
objectives of the thesis is therefore to promote questions that are currently not receiving
much attention from KD researchers.

In the most fundamental interaction of the KD process, an algorithm interacts with
data to produce transformed data. Several algorithms interacting with one another
make an application, and applications interacting with one another form a system of
collaborating applications. This is the same hierarchy that was already described in
the subsection on technology. It also contains the established data mining process,
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which is essentially a series of interactions of algorithms with data and other algorithms.
Together these interactions form our first category, consisting of interactions between
technological artifacts.

The second category of interactions, those involving a human actor and a technologi-
cal artifact, similarly covers every level of the technology hierarchy and every step of the
DM process. At the beginning of the process, humans interact with data as they compile
datasets for mining, and at the end of the process, they do it again as they explore and
utilize the results of the process. Every intermediate step involves humans interacting
with other levels in the technology hierarchy as they configure and operate algorithms,
applications and systems to make them perform the required computations.

An interesting special case of humans interacting with data is when a human takes
the place of an algorithm in the KD process, performing a pattern-recognition task
for which humans have a natural aptitude, not easily matched by a computer program.
Notable examples can be found among volunteer computing projects; the Galaxy Zoo
project, for instance, asks volunteers to classify galaxies photographed by the Hubble
Space Telescope (Raddick et al. 2010). The Foldit project adopts a more subtle approach,
enticing volunteers to play a computer game that allows them to contribute to research
on protein folding (Cooper et al. 2010).

The first two categories of interactions are similar in that they both relate to the
configuration and execution of the components that make up the KD process. The third
category of interactions, those of human actors with other human actors, is different:
rather than steering the process, these interactions are concerned with creating an
environment in which the process can take place. The most fundamental of these
interactions is that of domain and technology experts working together to define the
KD problem they wish to solve. Each of the other stakeholders must be negotiated
with as well, to find out what their expectations are and how they can be balanced with
the (potentially conflicting) expectations of other stakeholders. Finally, before the KD
process can be launched, roles must be assigned to those who are to be responsible for
carrying out the process. The distribution of roles and responsibilities is yet another type
of human-human interaction.

Figure 8 illustrates the three categories of interactions described above. As already
noted, the third category is the least thoroughly studied one, yet in a sense, it is the most
important of the three: it is the human-human interactions that create the conditions
necessary for a KD project to begin. There are several angles from which this area of
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study could be approached, some of which are discussed in Section 7.3. Beyond that,
however, the topic cannot be advanced in this work.

Fig 8. Actors and interactions. The two main categories of actors, technology and humans,
correspond to Figure 5 and Figure 6, respectively. The arrows represent the three main
categories of interactions: interactions within the technology category, those within the
humans category, and those that bridge the two categories.

There are also differences between interactions in the human-human category.
Interactions among experts are the more straightforward ones, since the primary concern
of all experts is the successful completion of the KD effort. This is not to say that there
can be no conflicts between experts, but if such conflicts do occur, they are more likely
to be about the terms of their collaboration than the objectives. Resolving the conflict in
this case is a simpler task than if the two parties were in disagreement over what is to be
achieved.

Interactions involving non-expert stakeholders — data subjects or volunteers —
are more difficult in the sense that the objectives of non-experts may not be aligned
with those of experts, and may even be in direct conflict with them. Nevertheless, the
non-experts are entitled to have their legitimate expectations fulfilled, even if it requires
special provisions or trade-offs to be made by the experts. To illustrate this, let us first
consider how the experts should handle interactions with volunteers.

The ethical aspect of volunteer computing is examined in (Tuovinen & Röning
2009). The paper analyzes the relationship of the coordinators of a volunteer computing
project and the volunteers who participate in the project, identifying three dimensions of
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this relationship that need to be considered from the perspective of ethics. These three
are trust, fairness and persuasion.

It is easy to see why trust is an important issue in the volunteer computing model:
The coordinators ask the volunteers to install a piece of software and let it operate
independently on their computers. Given how much malicious software there is on the
Internet, common sense dictates that one should only download software from sources
one trusts, and it is up to the coordinators to convince potential volunteers of their
trustworthiness. On the other hand, the coordinators also need to be able to trust the
volunteers, because the success of the project depends on the volunteers’ goodwill. A
malicious volunteer might, for instance, try to sabotage the computation by tampering
with the client application such that it returns false results to the server. This possibility
has been recognized by developers of volunteer computing platforms, and technical
means exist to counter it (Sarmenta 2002, Domingues et al. 2007).

The issue of fairness in volunteer computing is essentially a question of what
is appropriate compensation for the volunteers for their participation. While the
volunteer computing model depends on the volunteers not expecting to be paid for their
contributions, the principle of fairness prescribes that they should be acknowledged in
some manner. For example, if a volunteer computing project produces publishable
scientific results, the authors of the publications should not omit to mention the
contribution of the volunteers. The Foldit project (Cooper et al. 2010) sets an interesting
precedent with respect to fairness: several papers published by the Foldit team give
collective co-author credit to the players whose gameplay produced the results reported
in the papers.

Persuasion in itself is not an ethical issue, but it becomes one when one considers
how it is applied: people can be persuaded to do ethical or unethical things, and the
motivation and means of persuasion can be ethical or unethical. In volunteer computing,
the issue of persuasion is closely linked with the issue of trust, because creating trust is a
major task in persuading potential volunteers to join a volunteer computing project.
However, there are also persuasion issues not directly related to trust; for instance,
the coordinators should avoid misleading potential volunteers when explaining the
topic, scope and impact of their project. This ensures that volunteers have adequate
information to choose the projects most compatible with their values.

Volunteer computing, of course, only represents a specific and relatively small
category of KD, and the ethical issues involved in it are not relevant to KD projects that
do not enlist volunteers. To find examples of ethical issues not restricted to volunteer
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computing, let us examine again the concept of trust. It is one of the basic premises of
KD that data is a valuable asset. From this, it follows that allowing someone else to
handle your data is an act of trust, although this fact is easy to overlook if one only
focuses on the methods and technology used to process the data. Trust is therefore
frequently an issue in KD projects, even if it is not explicitly recognized.

The problematic relationship of KD, personal data and privacy was already discussed
in Subsection 2.4.3, and again in Subsection 3.2.2. It was observed that personal data is
potentially sensitive, and that applying KD methods to personal data may amplify this
property, deriving sensitive conclusions even from an otherwise unsensitive dataset.
Given the value and legal protection assigned to privacy, any data analysis operation that
may invade someone’s privacy is dependent on trust, whether or not the consent of the
individuals concerned is required to gain access to the data.

In some cases, the data subjects are not simply providers of raw material but potential
beneficiaries of the KD process. For example, if the provider of an online service
applies KD to usage data for personalization purposes, then both the users of the service
and the provider can benefit from the resulting improvement of user experience. In a
more clear-cut example, medical KD aimed at improving the efficacy of a therapy can
directly increase the quality of life of data subjects suffering from a chronic condition.
In the latter case, there is a strong element of common good involved, making society a
beneficiary as well.

Using KD for crime prevention provides another example of the role of society in
interactions with data subjects. In this case society, in the form of authorities, assumes
an active role by explicitly sanctioning the use of personal data. Here, again, there is the
element of common good, but also the possibility of concrete harm to a data subject if a
false positive causes one to be falsely implicated. In light of these examples, interactions
involving data subjects are tri- rather than bilateral and emphasize the position of society
as one of the actors in the workflow model.

Up to now, the workflow model has concentrated on identifying and describing the
interactions that the actors of the KD process engage in. While these have a certain value
in themselves, a list of activities does not yet constitute a process model; the activities
must be placed within a structural framework that dictates the overall flow of the process.
Although the thesis emphasizes the nonlinear aspect of the KD process, a high-level
sequential workflow specification is still necessary for the augmented process model
to be applicable in practice. We can adopt such a specification from the CRISP-DM
process model.
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The CRISP-DM model is composed of six major phases, shown in Table 4. Each
row of the table gives the name of a CRISP-DM phase, a short description of the phase,
and a list of corresponding interactions in the workflow model. The table thus places the
activities specified by the workflow model into rough order of execution. It also serves
as a checklist to find out if there are any major parts of the process that are conspicuously
not addressed by the workflow model.

Table 4. The six major phases of the CRISP-DM process model and the corresponding inter-
actions in the proposed workflow model.

Process Phase Interactions

Business understanding:
defining objectives; creating
project plan

Human-human: defining KD problems
Human-human: negotiating objectives and resources
Human-human: recruiting volunteers

Data understanding: reviewing
available datasets; evaluating
dataset properties

Human-human: soliciting data
Human-technology: creating initial datasets

Data preparation: selecting and
preprocessing data for analysis

Human-technology: creating final raw datasets
Human-technology: operating preprocessing software
Technology-technology: transforming data

Modeling: analyzing the data
with data mining algorithms

Human-technology: operating data mining software
Technology-technology: transforming data
Human-technology: analyzing/visualizing data

Evaluation: reviewing the
modeling results against the
objectives

Human-technology: interpreting results
Human-human: discussing results

Deployment : preparing the
results for application

Human-human: distributing knowledge
Human-human: applying knowledge

It is interesting to note that there are interactions identified by the workflow model
that do not readily fit into any individual phase of the CRISP-DM model. These are
the ones that fall outside the immediate sphere of influence of the primary (expert)
stakeholders: human-human interactions among non-experts, such as community-
building activities of volunteers, and the influence of society. These are actually
processes of their own that do not target any individual KD project, which makes it
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difficult to address them from within the KD process in a meaningful way. In the long
run, however, it pays off to cultivate a mutually benevolent relationship with non-expert
stakeholders, for example, by fostering the creation of an established community of
volunteers. Thus, one more recommendation can be derived from the workflow model:
KD practitioners should look beyond the project at hand and plan for the long term to
ensure a favorable landscape for future projects.

4.3 Architectural model

One of the major themes in KD research has been the development of software
architectures for KD applications. This work is based on the principle that since KD
applications share basic functionality, they also tend to share certain architectural
foundations. Thus, it makes sense to try to identify the common architectural elements
of KD applications and to assemble them into a reference architecture, making it faster
and easier to build individual KD solutions for various purposes.

A good reference architecture is particularly effective when implemented as a
software framework. A framework captures architectural objects and their relationships
in a body of code upon which software developers can build their applications. Unlike
a library, a framework takes charge of the flow of control and data in an application,
relying on code created by the application developers to take care of application-specific
functions only. The architectural model proposed in this thesis is presented in the form
of two software frameworks developed or co-developed by the author: Smart Archive
(SA) and Device-Based Software Architecture (DBSA).

Both SA and DBSA were developed to support the scientific work of the Intelligent
Systems Group at the University of Oulu, Finland. Between the two frameworks, there
is a lot of overlap in design and functionality, owing to their similar goals and also to the
fact that several members of the research group were involved in the development of both.
However, both frameworks were also used as test platforms for new ideas concerning
the architecture of KD software, and as a result there are also several notable differences
between the two, with each framework highlighting a different set of priorities and
design innovations.

The SA framework (Tuovinen et al. 2008), as it appears in this thesis, was developed
over a three-year period starting at the beginning of 2006. It was originally a Java-based
framework for KD in desktop and server environments; later it was ported to C++ to
explore its suitability for mobile platforms (Rautio et al. 2009). The overall goal of
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this work was to investigate the requirements of KD frameworks, identify interesting
problems and create novel solutions. The framework was also used to solve real-world
industrial data mining problems.

The DBSA framework (Kätevä et al. 2010) is another data flow-oriented software
framework, developed in part to be a successor to Smart Archive. Like SA, DBSA is
aimed primarily at KD problems but suitable also for other types of data processing tasks.
Being based to a significant degree on previous experiences with Smart Archive, DBSA
adopts the innovative aspects of SA while improving those found to be problematic
when working with SA. The framework was implemented in C++, principally by Janne
Kätevä.

The thesis author’s contribution to DBSA is limited to participation in the design of
the software and database architecture of the framework. SA, in contrast, is entirely the
author’s original work, although some fundamental architectural concepts are inherited
from an earlier framework with the same name. The following discussion therefore
focuses on the SA framework as the principal software contribution of the thesis,
whereas DBSA gets a more succinct treatment that mainly brings up those parts of it
where it differs significantly from SA.

Currently, neither SA nor DBSA are being actively developed and distributed, and
they serve here primarily as vehicles for the presentation of the architectural aspect of the
augmented process model. Although the frameworks have been shown to be viable as
implementation tools for KD software, they are more valuable for the novel architectural
ideas they embody. They should therefore be viewed as demonstrations of how the
proposed data and workflow models could be represented in software architecture, rather
than as polished products intended to replace other KD frameworks.

In the remainder of this section, Subsection 4.3.1 describes the data architecture of
the two frameworks, discussing two major themes in particular: database management
and data type handling. Subsection 4.3.2 describes the workflow architecture, discussing
basic application elements, application architecture, and interfaces. Subsection 4.3.3
outlines the process of developing a KD application with SA and illustrates it with a
running case.

4.3.1 Data architecture

The basic design elements of Smart Archive, as well as its name, are inherited from
an earlier incarnation of the framework, described in (Laurinen et al. 2005). This, in
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turn, was based on a concept originally introduced by Väinämö et al. (2000). The basic
elements are filters, which transform data, sinks, which store it, components, which
combine filters and sinks into units, and pipes, which couple components together. The
name of the framework refers to selective storage of data, which was one of the primary
goals of the original SA.

The fundamental idea behind the SA data sink is that since data storage capacity
is relatively inexpensive, there is often no need to make early decisions on what data
to discard and what to keep for possible later use. Instead, it is possible to keep all
data, including all intermediate results, just in case they prove useful. The data sink is
designed to make sure that inconvenience is not an argument against doing so. In the
older version of SA, each component in an application was required to have a data sink
because the next component in the processing sequence would read its input from the
sink. In the new SA, the focus of the framework has shifted toward a more generic KD
framework, and data is passed directly from filter to filter, leaving application developers
free to decide which components in their applications need sinks.

On the other hand, the archival point of view is still more strongly represented in
Smart Archive than it is in other KD frameworks. Data sinks as such are not unique to
SA — they could hardly be, since access to data stores is essential to any KD application
and therefore to any KD framework. However, whereas in other frameworks writing
data into a database is treated as a processing operation like any other, SA elevates it to a
special status such that each component in an application can both execute a processing
operation, using its filter, and write the results into a database, using its sink.

Another important feature of data sinks is that they are two-way: a sink object can
both write data into a repository and read previously stored data. This means that a
component can pull previously generated results out of the sink and present them as its
output instead of using its filter to produce new results. Thus, it is possible to restart a
previously executed KD task from any intermediate step, for instance, if the user of the
framework wishes to examine the effect of modifying a model parameter on the final
results.

Filters and sinks are inserted into an application by wrapping them in components;
each component has one filter and one (optional) sink. The choice of filter and sink
can be made either statically, during application programming, or dynamically, during
execution. The wrapping component serves two major purposes. Internally, it connects
its filter to its sink, allowing the filter to store its outputs. Externally, the component
provides a single interface to other components that hides the filter and the sink from
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their view. The implication of this is that to generate its outputs, a component may either
use its filter to compute them, or use its sink to retrieve previously computed outputs
from the application database.

The persistent data store used by a sink may be, e.g., a relational database or an
XML file; the filter does not need to be aware of the storage format because the sink
takes care of all format-specific details and hides them behind its external interface.
One implementation of the sink interface can handle, for example, all RDB storage
requests, so it is relatively rare for a developer to need to write a new sink. The RDB
sink included in the framework automatically generates table definitions from filter
output specifications, so a relational database capable of storing all the data processed
by an application can be generated simply by attaching an RDB sink to each filter.

To cope with the vast range of different data types that a KD framework may be
expected to handle, Smart Archive employs a data type engine that allows developers
using the framework to use any conceivable data type in their applications. The type
engine comes with a preprogrammed set of most commonly needed elementary and
compound types, and developers can implement other types when they need them. Like
other application elements, data types are reusable, so once a type has been implemented
for one application, the same implementation can be used in any other application where
the type is needed.

The purpose of the type engine is to take care of conversions of variable and
parameter values from one format to another such that the conversion process is
transparent to application developers. Format conversions are necessary because the
framework has to be able to represent values in several different contexts: for each data
type, there is an internal representation and a number of external representations. For
instance, if a variable value is to be written into a relational database, the framework
must convert the value into a string representation that can be appended to an SQL
query. Similarly, if a parameter value is to be written into a configuration document,
the framework must convert it into an XML representation. The type engine handles
conversions from internal to external representation, and vice versa.

The type engine consists of a type dictionary and one or more type renderers. The
type dictionary is an XML document that specifies the name of each SA type, the names
of corresponding types in internal and external contexts, and the class name of the type
renderer that handles the type. It is also possible to define type parameters, e.g., the
type of collection elements in a collection type. The type renderers are objects that
convert values between different representations. When an SA application is started, the
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framework loads existing type renderers based on entries in the type dictionary. Then,
when a conversion is required, SA looks up and invokes the appropriate type renderer,
making it unnecessary for the application developer to implement the conversion.

In addition to the data type engine, SA includes features designed specifically to
support KD from time series data. This class of data has certain special qualities that
never become an issue when dealing with fixed-size datasets of independent observations.
For example, the extent of a time series dataset is not necessarily limited, but with SA it
is possible to buffer the input data and process it in small increments even while new
observations are being generated. New data accumulates in the input buffers until the
application is ready to process it.

Besides managing the input buffers and controlling the admission of new data for
processing, SA can also extend incoming data items with a set of metadata variables that
may be useful when mining time series data. These variables include timestamps and
grouping information. Grouping variables can be used to indicate the beginning and end
of interesting events in a time series, an event being, e.g., a manufacturing cycle or an
athletic performance. Using these metadata variables is optional.

The name of the DBSA framework derives from its basic architectural unit, the
device, which is equivalent to the component in Smart Archive. A DBSA device may
represent either a physical device, such as a sensor, or a logical device, i.e., a data
processing operation with no physical counterpart. Like components, devices produce
output that other devices can read and process further. Connections between devices are
defined in an XML configuration file that the framework loads on start-up.

Database integration in DBSA is similar to Smart Archive in that the framework
automatically generates RDB tables based on the structure of the data generated by each
individual device. However, instead of having separate data sink objects attached to the
devices, the devices access the database interface of DBSA directly. A new database
table is generated for each dataset processed by each device in a DBSA application.

In addition to the dynamically generated data tables, the DBSA framework provides
a static set of metadata tables, which provide a way to locate and access the automatically
generated data tables. The data model of the metadata schema reflects the architecture of
the framework, enabling a DBSA application to find, for example, a dataset generated by
a given device at a given time. The metadata schema and the associated data manipulation
interface constitute what in the terminology of DBSA is called the knowledge base.

As with SA, DBSA application developers can extend the framework by implement-
ing their own data types when a suitable type is not provided by the framework. DBSA,
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however, does not have a special type management subsystem for this purpose. Instead,
the framework requires the type objects themselves to implement certain operations
such as serialization of data for insertion into a database. This seems awkward if one
considers the representation, say, of a single double-precision number, but it is highly
unusual for a DM application to use just one variable. Typically, the number of values
passed between devices is greater, in which case wrapping the values in a data type
object makes more sense.

4.3.2 Workflow architecture

Application frameworks can be classified into white-box and black-box frameworks
based on how the functionality of the framework is exposed to developers so that they
can extend it to create applications (Fayad & Schmidt 1997). White-box frameworks
expose the actual class structure of the framework, allowing developers to extend it by
inheriting their own classes from framework classes; black-box frameworks, in contrast,
only expose specific interfaces where developer-created components are plugged in.
More restricted access means simpler development but less control over the final product,
so this property is an important factor in determining the type of development a given
framework is most suitable for. Smart Archive gives developers the freedom to derive
their own filter, sink and component classes from the base classes provided by the
framework, so in this sense, it is a classic white-box framework.

On the other hand, SA has a layered architecture that adds a degree of subtlety to its
otherwise straightforward white-box nature. Each layer forms an additional level of
abstraction, using services provided by layers below it and providing more sophisticated
functionality to layers above it. Developers are not forced to use all framework layers,
so they can decide which parts of their application logic they wish SA to handle, include
the appropriate layers in the application, and implement the remaining logic themselves.
A developer can thus shift towards a more black-box-like development style by choosing
to work at a certain level of abstraction and act as if the lower levels were hidden from
the developer. The architectural layers of SA are shown in Figure 9.

Filters in Smart Archive, as in all pipes-and-filters style frameworks, represent
data transformations that, when executed in correct sequence, implement the core
functions of an application. In KD, the required transformations are derived from the KD
process, so in KD applications, there will be filters for such tasks as feature extraction,
classification, clustering, regression, visualization, etc. A filter may have any number of
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Fig 9. The architectural layers of the Smart Archive framework. A typical SA application
uses at least the component API, the application engine, and some elements of the control
and monitoring layer.

inputs, outputs and controlling parameters; a detailed description of these constitutes a
definition of the external interface of the filter, allowing a developer to decide whether
the filter is appropriate for their application.

The role of SA components, as explained in the previous subsection, is to encapsulate
the functionality provided by filters and sinks. The component implementation included
in Smart Archive handles this task in a highly generic fashion, so a developer will
almost never need to write a new component class. The same holds for pipes, whose
task is to transfer data from one application element to another. Pipes are used both
to connect a component to other components and to connect the internal elements of
the component to one another. Figure 10 illustrates this. Placing a pipe between two
application elements requires that the names of the output variables provided by the
origin agree with the names of the input variables expected by the destination; if this is
not the case, variable name mappings can be defined for the pipe to correct the situation.

The components of an application, together with the pipes (links) connecting them,
form a directed graph. This is known as the execution graph of the application. The
execution graph has a single root node, the starting component, from which the graph
may branch out arbitrarily. Cycles in the graph are not allowed. The execution graph
class has the ability to run itself, i.e., to activate the filter of each component in turn and
transfer its outputs to components that require them as their inputs. The class uses the
structure of the graph to determine the correct running order: each component must be
executed exactly once, and no component may be executed until all of its inputs have
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Fig 10. A Smart Archive component. Input data comes via pipes to the input interface and
further on to the filter. The output data of the filter is similarly piped to the output interface
and further on to other components. Alternatively, the outputs can be retrieved from the
sink, which keeps data generated by the filter in persistent storage.

been supplied by previously executed components. The execution graph is illustrated in
Figure 11.

Fig 11. An example execution graph, illustrating how the graph may branch out from the
root node. The numbering of the nodes reflects their execution order.

The execution graph is controlled by an object known as the mining kernel. The
main task of the kernel is to feed input data to the execution graph and instruct the graph
to process it, repeating this cycle until all the available data has been consumed or the
process is otherwise terminated. To get the input data, the kernel interacts with one or
more objects known as input receivers. Each input receiver reads data from one data
source (a sensor device or a database, for instance) and writes it into one or more buffers,
from which the kernel transfers the data to the execution graph.

In Figure 12 is a top-level view of the architecture of a Smart Archive application. In
addition to the parts described so far, the figure includes a user interface, presented to
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end users so that they can control the application while it is running. Through the kernel,
the UI can start and stop the data processing cycle, change the controlling parameters of
application elements, replace the application elements themselves, and alter the structure
of the execution graph. The framework provides a console UI where some of the basic
kernel functions (starting, stopping, displaying configuration information, etc.) can be
controlled with text-based commands, but if this is not sufficient, developers are free to
implement the UI however they wish, using hooks provided by the framework API.

Fig 12. The major components and data flows of a Smart Archive application. The bulk of the
application logic resides in the mining kernel and the input receivers, which the application
developer controls via the control and monitoring interface. Note that the input receivers
may access the internal database of the application instead of, or in addition to, external
data sources.

The information required to set up a Smart Archive application is collectively known
as an application configuration. A configuration consists of the following items:

– application name and description;
– for each component, filter and sink:

– class name;
– object name and description;
– parameter values;
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– for each inter-component link:

– origin and destination;
– variable name mappings;

– for each input receiver:

– class name;
– object name and description;
– parameter values.

The framework allows the configuration to be exported as XML. The kernel
accomplishes this by requesting each application element in turn to generate an XML
description of itself and then compiling the descriptions of individual elements into a
single XML document. Similarly, when a configuration is imported, each individual
application element is responsible for setting itself up; the kernel only instantiates
the corresponding class and sends to the resulting instance an XML object, extracted
from the configuration document, specifying how the instance should set its properties.
The framework provides abstract superclasses that implement the required XML
export/import functions, so developers do not need to write them for their own classes;
subclassing the appropriate SA class solves the problem.

During execution, a Smart Archive application has three main sections running
in parallel: the input section, consisting of the input receivers, the processing section,
consisting of the components and links of the execution graph, and the control section,
consisting of the UI components. The mining kernel serves as a coordinator that enables
the sections to communicate in a thread-safe manner. Most importantly, the kernel
manages the input buffers, preventing unpredictable behavior that might occur as the
result of poor synchronization as the input receivers and the execution graph try to
access the buffers simultaneously.

The framework provides several synchronization-related properties that developers
can adjust to control the flow of data through their applications. The rate of consumption
and replenishment of buffer data can be regulated, and synchronization between input
sources can be toggled when the application has more than one. These features
complement the configuration-related control features of SA, enabling the framework to
be used to develop both interactive applications and autonomous ones that stay in the
background and process new data as it becomes available. Both operation modes are
demonstrated in the application described in Subsection 6.2.1.
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It is sometimes desirable to use something other than an SA filter for processing
data in an SA application. Typically, this would occur during algorithm development,
since there are specialized tools available that are more suitable for this type of work
than generic programming languages such as Java. However, an algorithm must be
implemented in Java as an SA filter if it is to be tested together with other application
elements. To address this problem, Smart Archive introduces proxy filters.

A proxy filter in SA is a filter that acts as a placeholder for an algorithm implemented
using an external tool. To the framework, a proxy filter appears no different from
a regular filter, but instead of processing data, a proxy filter sends it to the external
tool for processing. Once the external tool has executed the algorithm, it returns its
results to the proxy filter, which presents them to the application as its output. To the
application, this appears exactly as if the proxy filter had generated the results itself. The
framework provides a ready-to-use proxy filter implementation, as well as an interface
that developers can implement to create new ones.

Proxy filters are particularly useful in application prototyping. Using proxies, it is
possible to compose a complete application structure at an early stage of development:
previously implemented regular filters are used wherever possible, and proxies otherwise.
When the proxies are coupled with suitable external tools, this arrangement amounts to a
functional prototype of the application. The prototype can then be tested as a whole,
using the external tools (e.g., scientific computing environments such as MATLAB) to
make rapid modifications to those algorithms that have not been finalized yet. Once the
final form of each algorithm is decided, it can be implemented as a regular filter, which
then replaces the corresponding proxy in the application.

Replacing a proxy with a regular filter is a very simple operation, provided that the
latter retains the input and output interfaces of the former. From this, it follows that
transforming a prototype into a deployable application is also a relatively straightforward
operation once all the required filters have been coded. Smart Archive thus makes it a
viable option to build a working prototype early on, as soon as the application design has
been finalized. Conceivably, proxy filters could also be used, e.g., to build distributed
applications, in which case they would provide access to remotely hosted algorithms and
would not be replaced in the final application.

The DBSA framework, like SA, is intended to be portable to multiple platforms.
However, whereas SA is implemented in Java to ensure portability of the compiled
binaries, DBSA is written in C++ and relies instead on the portability of its source code.
This approach is commonplace in the open source community, where many projects are
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distributed under the assumption that those who are interested have the required tools
and knowledge to build the project sources on their platform of choice. On the other
hand, many projects also offer pre-built binaries for the most popular platforms as a
convenience.

To keep the source code portable, DBSA mostly stays within the bounds of the C++
standard, the main non-standard dependency being the Boost libraries. Boost itself is an
open-source project and the libraries it provides are portable, so depending on it does
not compromise the portability of the DBSA framework. Several Boost libraries have
also been proposed for inclusion in the C++ standard (Auster 2005). DBSA relies on
Boost for general-purpose utilities such as memory management and multithreading.

DBSA provides a few ready-to-use devices, e.g., a device for importing data from a
wireless sensor box, and a code template for developers to use when writing their own
devices. The template illustrates how to access data from other devices, process it and
make the results available in outgoing data buffers. Unlike SA components, DBSA
devices actively scan and process data from the devices they are listening to, whereas in
SA, components wait for the framework to transfer the data and trigger the filter.

Unlike SA, DBSA does not have input receivers as a distinct class of objects.
Instead, the task of reading input data into the framework is handled by devices. In
the terminology associated with the framework, these are sometimes called physical
devices, since in many cases, they represent actual physical sensors feeding data into the
application. In contrast, devices with no physical counterpart are called logical devices.
This is just a semantic distinction, however; from the perspective of the framework,
there is no difference between physical and logical devices other than physical devices
not accepting input from other devices.

DBSA has a console UI similar to the one provided by Smart Archive. However,
while similar in functionality, the UI plays a more important role in DBSA than it
does in SA. This is because with DBSA, the UI is the principal method of controlling
the framework: unless the framework itself is modified, a DBSA application can
only be executed by invoking the DBSA console, which configures the framework as
instructed in the configuration file specified at start-up. With SA, both the console and
the configuration file are optional; the primary method of configuring and controlling
the framework is by code.

Integration of external tools to DBSA applications differs from the proxy filter
approach of Smart Archive: a tool-specific interface must be used for each external
entity that the developer wishes to integrate. The solution employed by SA is more
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generic, but on the other hand, using non-generic interfaces is generally more efficient
in terms of computing resources due to there being fewer abstraction layers creating
overhead. Interfaces to MATLAB and Python are demonstrated in (Kätevä et al. 2010).

4.3.3 Developing applications

As an illustration of the process of developing a KD application using the SA framework,
we will consider a running case that addresses all the steps required to design and
implement an application. The application developed in the running case is a system
for real-time assessment of the quality of resistance spot welding joints using data
mining. Although the application as described is fictitious, it is based on actual
research referenced in the discussion of the spot welding database in Subsection 6.1.1,
and includes also elements of the predictive model maintenance system described in
Subsection 6.2.1. The purpose of the running case is to show how the various features of
SA support the work of KD software developers throughout the development process.

The first step in creating a Smart Archive application is designing the application.
The design task is composed of the following activities:

1. Identify required processing steps.
2. Identify steps that can be implemented using existing component and filter classes.
3. Design required new component and filter classes.
4. Identify required data sources and repositories.
5. Identify sources and repositories that can be accessed using existing input receiver

and data sink classes.
6. Design required new receiver and sink classes.

The example application has two operation modes: learning mode, where a predictive
model is trained for a new welding process, and production mode, where a previously
trained model is applied to obtain quality predictions for welding spots. In each mode,
there are the same four processing steps, but with subtle differences in what data is
processed and what is produced as output:

1. Preprocessing: standardization of data formats, normalization of values.
2. Feature extraction: calculation of variables suitable for classification.
3. Classification: training of predictive model (learning mode); prediction of welding

results (production mode).
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4. Presentation: visualization of classification performance (learning mode); visualiza-
tion of welding results (production mode).

For the sake of simplicity, we will assume that each of these steps will be carried out
by a single filter object, with parameters to adjust its behavior to the operation mode of
the application. However, pools of candidate filters are required for the feature extraction
and classification steps, since there are several different feature sets and classification
algorithms that are potentially applicable. Searching for good candidate algorithms
for these steps represents the bulk of the filter design effort in the development of
the example application. The proxy filter is a useful tool for discovering candidates
through experimentation and gradual modification — in essence, this means building an
application based on the framework to help design a more complex application based on
the framework. For the preprocessing and presentation steps, one filter for each step is
sufficient.

The main data sources for the example application are the welding equipment
set-ups, which generate data on the behavior of electric current and voltage during the
welding event. Features for classification are computed from the current and voltage
signals. Assuming that there is a standard interface through which the data is exported,
a single input receiver class is sufficient for receiving data from welding equipment.
Additionally, for model training, the data must be supplemented with the correct values
of the output (quality) variables, obtained, for example, by mechanical testing of the
welding spots. The training data is imported into the application by another input
receiver class.

In the learning mode, the application will use a relational database as a repository
for partially processed training data. The RDB sink class provided by the framework
is suitable for this purpose. Additionally, a repository is needed for application
configurations verified to deliver good classification performance for specific welding
processes. For this, a data sink is not appropriate, but some kind of interface for storing
and retrieving configurations will need to be designed. The repository itself can be, e.g.,
a file system or an XML database.

With all the individual application elements designed, the remaining design activity
is to build an application architecture from them. This involves planning how the
elements will be arranged into a graph (the processing section), how the processing
section will be supplied with data and triggered (the input section), and how the functions
of the application will be operated and their results visualized (the control section). In
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the example application, both operation modes use the same structure for the execution
graph. A graphical user interface, representing the control section of the application, is
designed for editing the configuration of the graph and switching between operation
modes. The GUI also controls the reading and processing of welding data.

The first implementation step is writing code for those application elements that
cannot be implemented using existing classes. In the best case, the entire application can
be built from existing elements, but it is likely that at least some new filters will need
to be programmed, unless a sizable library of them has already been accumulated in
previous projects. New input receivers or data sinks are needed less frequently, since an
existing one can usually be reused if the application only needs to access standard data
stores such as relational databases. Components mostly just direct the flow of data to
and from their own filter and sink, so writing a new component class is necessary only
on rare occasions.

The next step is to package the chosen filters and sinks into components. This is a
relatively straightforward task, since there is probably not a great diversity of component
classes to choose from. Pipe couplings inside a component always follow the same
pattern and are normally handled automatically by the component class, so there is
not much that developers need to code here. Setting parameter values for components,
filters and sinks forms the main effort instead.

With all the required components assembled and configured, the next step is to
arrange them into an execution graph. This is done by creating pipe objects and using
them to connect components. The pattern of connections determines where each
component gets its inputs from, where its outputs are sent to, and in what order the
components are processed. If variable name mappings are necessary between some of
the connected components, they are set up in this phase. Finally, one of the components
is designated as the starting component, which acts as the entry point of input data into
the execution graph.

For the example application, the component and sink classes provided by the
framework are sufficient. Input receivers are implemented for reading welding data from
a database (learning mode) and from welding equipment (production mode). The new
filters identified as necessary for the application are implemented and added to a library
from which they can be pulled into application configurations. The setting of parameters
for application elements is always initiated via the GUI by the application operator. In
learning mode, the parameters are adjusted manually until a satisfactory solution is
found to the current classification problem. In production mode, all parameter values are

115



retrieved from the selected configuration document. The structure of the execution graph
is always the same, with four components representing the processing steps occurring in
linear sequence.

If an application has more than one major function, it may be necessary for the
application to have more than one distinct execution graph. If this is the case, the
application logic must include code for setting up each graph and for switching between
graphs as different application functions are activated. One way to do this is to create an
XML configuration document for each required graph, so that when a given execution
graph is needed, it can be activated by loading the corresponding configuration document.

The starting component, like all other components in an SA application, has one or
more input channels. Input data enters the processing section of the application through
the input channels of the starting component. Each of these channels must be served by
an input receiver in the input section. This is not a one-to-one relationship, however; it is
possible for a single input receiver to server multiple input channels, so an application
with multiple input channels does not necessarily require multiple input receivers.

Like execution graph elements, input receivers are created by instantiating the
appropriate classes and setting parameter values for the class instances. In addition to
this, if the UI functionality of the framework is used, each receiver must be registered by
declaring it to the UI manager. The input receivers and the mining kernel can then be
controlled in a centralized manner; for instance, all application sections can be started
simultaneously with a single method call to the UI manager. On the other hand, it is also
possible to control each input receiver individually.

In the example application, although the structure of the execution graph remains
unchanged, the elements of the graph and their parameters do change. In learning mode,
there is a single configuration that the application operator modifies, switching filters
and adjusting their parameters until satisfactory classification accuracy is achieved. In
production mode, there can be any number of possible configurations in the repository,
from which the operator selects the most appropriate one for the welding process to be
executed. In either case, the application is supplied by a single input receiver, which is
controlled by the application-specific GUI; the console UI provided by the framework is
not used.

The task of creating the UI ranges in complexity from very simple to vastly complex.
For example, if the application is intended to support interactive exploration of data, the
UI must provide convenient access to a variety of selection, processing and visualization
techniques, making UI design and implementation a major effort. On the other hand, if
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the application is meant to run in the background with little or no human interaction, it
may well be that the SA console provides all the required UI functions. In such cases, it
is not necessary to write any UI code at all.

The final step in SA application programming is writing the main program of the
application. The complexity of this task is, in a certain sense, inversely proportional to
the complexity of the UI creation task: the more the UI is in control of the application, the
less there is for the main routine to do. If the application is entirely UI-driven, the main
program simply launches the UI and does nothing more, whereas in a non-interactive
application, the main program has all the control all the time. In such cases, the effort of
writing the program may be comparable to that of creating a complex interactive UI.

The example application is controlled by a custom GUI with five major functions:

– configuring the application for training;
– execution of training;
– storage of configuration in the repository;
– retrieval of configuration from the repository;
– execution of prediction.

The GUI uses the API calls provided by the framework to implement these functions.
The main program of the application simply launches the GUI; from that point on, the
execution of the application is driven entirely by the GUI.
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5 Satisfying the requirements

With the requirements for the augmented KD process model established in Chapter 3, and
the model itself presented in Chapter 4, this chapter begins the validation of the model
with respect to the requirements. Two mutually complementary validation approaches
are used: In this chapter, the requirements are mapped onto specific components of the
process model to show that they have been accounted for in the model. The next chapter
follows a more empirical approach, demonstrating compliance with the requirements
through a series of case studies involving real-world KD and KR problems.

The remainder of the chapter is once again organized to reflect the composition of
the proposed process model. Therefore, Section 5.1 evaluates the fulfillment of the
requirements for the data model, Section 5.2 does the same for the workflow model, and
Section 5.3 for the architectural model.

5.1 Data requirements

The data management requirements for the data model state that the model should
provide a descriptive framework for data transformation sequences, provide guidance
for designing data repositories, and develop criteria for knowledge validation based on a
theoretical analysis of the concept of knowledge. These requirements are addressed in
Subsection 5.1.1. The knowledge representation requirements state that the model should
provide a KR scheme founded on the same theoretical basis and general requirements as
the data management scheme. These requirements are addressed in Subsection 5.1.2.

5.1.1 Data management

D-01: The data model should provide a conceptual framework that identifies

and characterizes each state that data passes through during the KD

process.

D-02: The conceptual framework should identify and characterize each

transformation that causes data to shift from one state to another.

Figure 2 in Subsection 4.1.1 shows a progression of data states from raw data to
knowledge, with four intermediate states between them. The discussion associated with
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the figure gives textual descriptions of the states shown in the figure. Furthermore, the
discussion explains for each state how data in that state is treated to transform it to the
next state in the progression. Requirements D-01 and D-02 are thus satisfied by the data
model.

D-03: The data model should provide technology-independent guidance for

the creation of storage structures that cover all the identified states of data.

D-04: The guidance for the creation of data stores should address the

design of access methods for storing, searching for and retrieving data.

Figure 3 shows a generic design for a data repository. The design covers both data storage
and access interfaces. The components, functions and content of the repository are
shown in the figure and described in more detail in the associated text. The design does
not assume any particular database model or implementation technology. Requirements
D-03 and D-04 are thus satisfied by the data model.

The repository design is presented on a high level of abstraction, which is, in part,
necessary in order to satisfy the requirement of technology-independence. However, the
abstraction also means that there is a wide gap separating the repository design from its
implementation in practice, limiting its usefulness as a design reference. To close the
gap, concrete guidelines and examples should be provided. The case study in Subsection
6.1.1 is offered as an example of designing a relational database.

D-05: The data model should establish criteria for validating the knowledge

generated by the KD process.

D-06: The validation criteria should be based on a theoretical understand-

ing of the concept of knowledge.

In Subsection 4.1.1, the concept of knowledge is broken down into the three conditions
of justification, truth and belief, following the definition of knowledge in classical
epistemology. From these conditions are derived a set of principles intended to ensure
that the outcome of the KD process has all the qualities expected of knowledge in the
epistemological sense. Requirements D-05 and D-06 are thus satisfied by the data model.
However, the model offers little guidance on how to uphold the established principles,
leaving several major questions open and awaiting further research.
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5.1.2 Knowledge representation

D-07: The data model should provide a KR scheme for the creation of a

knowledge base.

D-08: The KR scheme should share a theoretical basis with the other

components of the data model.

In Subsection 4.1.2, the discussion of the concept of knowledge started in the preceding
subsection is continued, and pragmatic epistemology is used to derive a representation
that emphasizes knowledge as a practical asset. The representation is composed of three
components that can be stored in a data repository modified from the one presented in
the preceding subsection. The modified design is shown in Figure 4 and explained in the
associated text. Requirements D-07 and D-08 are thus satisfied by the data model.

D-09: The KR scheme should integrate with and satisfy the same require-

ments as the data management scheme specified by D-03 and D-04.

A comparison of Figures 3 and 4 reveals that the latter is almost identical in structure
to the former. The data and metadata stores are found in both designs, the only
difference being that the KB design inserts a third store between the access interfaces
and the metadata store, corresponding to the third component of knowledge in the KR
scheme. The two designs can thus be integrated into a single one that covers both data
management and knowledge representation: for storage and retrieval of knowledge, the
interfaces interact with the function store as in Figure 4, whereas for data management
operations, they can communicate directly with the data and metadata stores as in Figure
3.

Compared with the repository design presented in Subsection 4.1.1, the modified
design is equally abstract and therefore equally technology-independent. Requirement
D-09 is thus satisfied by the data model. However, the high level of abstraction also has
the same drawback in this case, and therefore, the generic design should be supplemented
with guidelines and examples. An example of designing a KR system is offered by the
case study in Subsection 6.1.2.

5.2 Workflow requirements

The actor requirements for the workflow model state that the model should provide a
descriptive framework for the human and technological actors that participate in the
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KD process. These requirements are addressed in Subsection 5.2.1. The interaction

requirements state that the framework should also describe the interactions among the
actors, that the model should map the interactions to process steps, and that the model
should identify potential conflicts of interest between actors. These requirements are
addressed in Subsection 5.2.2.

5.2.1 Actors

W-01: The workflow model should provide a conceptual framework that

identifies the types of technological artifacts used in the KD process, and

characterizes their roles and relationships.

Figure 5 in Subsection 4.2.1 identifies four categories of technology used in the KD
process, arranged in hierarchical layers. The associated text gives more detailed
descriptions of the technological artifacts in each category and the tasks they may
perform. Both vertical relationships between artifacts belonging to different categories
and horizontal relationships between artifacts belonging to the same category are
described. Requirement W-01 is thus satisfied by the workflow model.

W-02: The conceptual framework should identify the human actors respon-

sible for executing the KD process, and characterize their contributions

and expectations.

W-03: The conceptual framework should identify the human actors who oth-

erwise hold a stake in the KD process, and characterize their contributions

and expectations.

Subsection 4.2.1 introduces the concept of a stakeholder to distinguish between human
and technological actors. The five groups of stakeholders involved in the KD process
are identified and described in Figure 6 and the associated text. Two expert groups
are identified as the primary stakeholders whose contributions drive the process.
Additionally, two non-expert groups are noted as possibly having a contribution but not
being among the principal process drivers. Society is treated as the fifth stakeholder
group due to its role in shaping the conditions under which KD projects take place.

Figure 6 shows both the five stakeholder groups and the relationships among them,
expressed in terms of the expectations that each stakeholder needs others to fulfill.
Requirements W-02 and W-03 are thus satisfied by the workflow model.
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5.2.2 Interactions

W-04: The conceptual framework should identify the interactions that take

place between human actors, and characterize their significance in the KD

process.

W-05: The conceptual framework should identify the interactions that take

place between human actors and technological artifacts, and characterize

their significance in the KD process.

W-06: The conceptual framework should identify the interactions that take

place between technological artifacts, and characterize their significance in

the KD process.

Figure 8 in Subsection 4.2.2 shows the two main categories of actors, the actors within
each category as identified in the preceding subsection, and the interactions that take
place within and between the actor categories. The associated text supplements the
figure with some discussion of the nature of the interactions, but focuses more on the
relative importance of the different types of interactions and the current state of KD
research and practice with respect to them.

The discussion particularly notes that interactions involving human actors, and
especially those where both parties are human actors, are more poorly understood
than interactions involving technology. Beyond this, however, not much is offered as
contribution toward a better understanding of these interactions. Requirements W-04,
W-05 and W-06 are thus satisfied by the workflow model, but in addressing these
requirements, the model leaves a topic of major importance unexplored.

W-07: The workflow model should provide guidance for mapping the

interactions that make up the KD process onto a flowchart of process steps.

Table 4 maps the interactions of the workflow model onto the steps of the CRISP-DM
process model. In the resulting hybrid model, the high-level process flow is specified
by the established model, while the finer structure within process steps is provided by
the augmented model. Requirement W-07 is thus satisfied by the workflow model by
making use of the existing standardized process model of KD. However, it is by no
means clear or even likely that such straightforward reliance on the CRISP-DM model is
the optimal way to guide the flow of the augmented process model; it should be treated
as a tentative proposal, to be evaluated and refined through further research.
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W-08: The workflow model should identify any potential conflicts of interest

that may result from interactions between actors in the KD process.

The discussion in Subsection 4.2.2 identifies the non-expert stakeholder groups as the
main source of potential conflicts. This is because non-experts, like experts, contribute
resources (such as personal data or processor cycles) to a KD effort, but unlike experts,
they are likely to have expectations that are not aligned with the objectives of the
effort. The possibility of conflicts between experts is acknowledged but not examined
further, and conflicts with society are only given a superficial treatment in the preceding
subsection. Requirement W-08 is thus partially satisfied by the workflow model, but
additional work is needed to plug the gaps pointed out here.

5.3 Architectural requirements

The data requirements for the architectural model state that the architecture should
provide an interface to data sources, assist in the generation of storage structures and
metadata, and allow any database technology and any data type to be used. These
requirements are addressed in Subsection 5.3.1. The workflow requirements state that
the architecture should support construction and execution of KD workflows, that it
should provide a library of reusable components, and that it should provide interfaces for
extension and communication. These requirements are addressed in Subsection 5.3.2.
Finally, the quality requirements state that the architecture should promote reusability,
expose multiple levels of abstraction to developers, be portable, deliver satisfactory
performance, and cover the entire development lifecycle of a KD application. These
requirements are addressed in Subsection 5.3.3.

5.3.1 Data architecture

A-01: The architecture should provide access to data sources via a trans-

parent abstract interface.

In the SA framework, input receivers are used to import raw data into applications,
while data sinks provide access to data repositories. In the DBSA framework, raw
data is imported using devices, and all devices have access to a data repository via the
DBSA knowledge base interface. In each case, the interface exposed to application
developers abstracts away the mechanics of communicating with the data source,
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enabling developers to access any data source using the same set of method calls.
Requirement A-01 is thus satisfied by the architectural model.

A-02: The architecture should assist in the generation of a data repository

structure that covers the entire KD process.

In the SA framework, data sinks have the ability to automatically generate database
tables with fields matching the names and data types of the output variables of each filter
used in an application. In the DBSA framework, a new table is dynamically generated
for each dataset produced and linked to the device that produced the data via a static
metadata schema. An application based on either framework can store all the data it
processes without requiring the developer or operator to set up a database. Requirement
A-02 is thus satisfied by the architectural model.

A-03: The architecture should assist in the generation and management of

metadata attached to the contents of the data repository.

The SA framework offers limited support for metadata processing by providing a
few metadata variables intended to assist in the management of time series datasets.
The metadata schema of the DBSA framework is a more generic solution, but still
somewhat restricted, being mainly useful for searching a database for a specific dataset.
Requirements A-03 is thus partially satisfied by the architectural model, but additional
work is required in order to more comprehensively support data management functions
that rely on metadata. In particular, neither framework directly addresses the problem of
backtracking a result to its supporting evidence; such functionality can be implemented
by the developer using existing framework features, but it would be preferable for the
frameworks to support it explicitly.

A-04: The architecture should not be bound to any database technology or

vendor.

The most convenient database management solution to pair with either SA or DBSA
is the MySQL relational DBMS; using a different RDB product is possible through
a minor development effort. Using non-relational (e.g., object-oriented) databases is
similarly possible, but requires a more substantial effort, especially if the data sinks of
SA or the metadata schema of DBSA are to be reimplemented. Requirement A-04 is
thus satisfied by the architectural model, but better out-of-the-box support for different
database technologies would be preferable.
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A-05: The architecture should be able to process any type of data, including

unstructured and multimodal data.

In the SA framework, the type dictionary and type renderers can be freely extended by
developers to accommodate any data type not already supported by the framework. In
the DBSA framework, a similar role is assumed by the abstract data type superclass,
which developers can subclass whenever an appropriate type representation is not
already available. Requirement A-05 is thus satisfied by the architectural model.

5.3.2 Workflow architecture

A-06: The architecture should support the construction of KD workflows in

the form of pipe-and-filter graphs.

Both SA and DBSA use the pipes and filters style as their primary reference architecture,
although the implementations differ. In SA, filter objects are packaged inside component
objects, which are linked using pipe objects, and the framework pushes data through the
network of components and pipes. In DBSA, the role of filter-component pairs is played
by device objects, which have output queues that other devices can listen to and pull
data from. Requirement A-06 is thus satisfied by the architectural model.

A-07: The architecture should support partial execution of workflows based

on previous intermediate results.

In the SA framework, this functionality is provided by data sinks: the output of any filter
can be stored in a sink, then pulled out and fed into the execution graph at a later time.
In the DBSA framework, a similar outcome can be achieved by having a device use the
metadata schema to find a previously stored dataset, retrieve the data and write it into its
output queue. Requirement A-07 is thus satisfied by the architectural model.

A-08: The architecture should provide a library of reusable application

elements implementing solutions to common problems.

Both SA and DBSA provide a small number of reusable application elements, most
of which address various supporting tasks rather than actual data analysis. The SA
framework, for example, comes with an RDB sink for storing and retrieving data, type
renderers for handling various common primitive and collection data types, and a proxy
filter for relaying data to an external tool for processing, but no filters implementing DM
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algorithms and other important data transformations. The situation is largely similar
with the DBSA framework. Requirement A-08 is thus satisfied by the architectural
model only to a very limited extent, and integrating an algorithm library such as Weka
would be a top priority in further development of either framework.

A-09: The architecture should provide internal interfaces for the purpose of

extending the architecture with new application elements.

The SA framework gives developers access to its abstract superclasses for components,
filters, sinks, pipes, input receivers and type renderers, allowing any of these to be
subclassed to replace the default implementations or to extend the library of reusable
elements that the developers can use to build their applications. The DBSA framework
allows developers to write new devices and data types, and provides templates to help
them get started quickly. Requirement A-09 is thus satisfied by the architectural model.

A-10: The architecture should provide external interfaces for communica-

tion with other software, to support requirement W-06.

The SA framework provides an abstract proxy filter superclass and one concrete
implementation of it for the purpose of exchanging instructions and data with other
software. The DBSA framework does not have a generic proxy interface, but does
provide a number of product-specific proxy devices. Additionally, in both frameworks,
the database interface can be used for this purpose, and in fact, the concrete proxy
filter of SA uses a database for data transfer. Requirement A-10 is thus satisfied by the
architectural model.

A-11: The architecture should provide external interfaces for communica-

tion with humans, to support requirement W-05.

Both SA and DBSA come with a console-based user interface that enables operators to
control framework functions at runtime using typed commands. Additionally, in the SA
framework, the mining kernel provides control hooks that developers can attach their
own custom user interfaces to. Requirement A-11 is thus satisfied by the architectural
model, albeit with the notable shortcoming that neither framework provides a graphical
UI for building application configurations. Creating one would be another objective of
high priority in further development.

127



5.3.3 Architectural quality

A-12: The architecture should support development with and of reusable

components.

The principal technique by which the frameworks facilitate reusability is decoupling,
i.e., reducing dependencies that hinder the transportation of an application element
to a different application context. The SA framework decouples components, filters
and sinks from one another by never allowing them to exchange data except through
pipes, which can be used to perform such data transformations as are required to match
the output interface of the origin to the input interface of the destination. Furthermore,
the components themselves represent an additional level of decoupling between filters.
In the DBSA framework, decoupling is achieved through the use of asynchronous
buffers and standardized data carrier objects to relay data from one device to another.
Requirement A-12 is thus satisfied by the architectural model.

A-13: The architecture should grant developers access to it on multiple

levels of abstraction, enabling them to control low-level functions.

The SA framework exhibits a layered architecture that directly addresses this requirement:
developers can bypass the user interface, the application engine (mining kernel), and
even the execution graph if they find it desirable to do so. The DBSA framework is
closer to a black box: in its default configuration, it requires applications to be operated
via the DBSA console. However, the framework can also be compiled as a dynamic link
library (DLL), enabling it to be embedded in and controlled by custom application code.
Requirement A-13 is thus satisfied by the architectural model, especially as expressed in
the SA framework.

A-14: The architecture should be portable to multiple hardware and

operating system platforms.

The SA framework, being written entirely in Java, is (theoretically) portable to any
platform for which there is a Java Virtual Machine (JVM) implementation available.
A C++ version was developed as a side project, aimed primarily at mobile platforms.
The DBSA framework is written in standard C++ with portability in mind, the main
nonstandard dependency being the Boost libraries. These, in turn, are portable libraries
distributed in source code form. Requirement A-14 is thus satisfied by the architectural
model.
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A-15: The architecture should be able to deliver satisfactory performance

under realistic operating conditions.

Both frameworks have been used to build applications that run in a real-world production
environment or in a test environment that approximates real-world circumstances.
Additionally, some individual features of the frameworks have been subjected to
quantitative performance testing. However, the overall number of applications created
is still small, and no rigorous and comprehensive scalability testing has been carried
out to see how the frameworks perform when processing big data. There is therefore
not enough evidence available to judge how fully requirement A-15 is satisfied by the
architectural model.

A-16: The architecture should cover all the design and coding stages of the

development lifecycle of KD software.

Both frameworks enable application architecture to be set up early on, before the
algorithms to be used in the application have been selected. The architecture can be
transformed into an executable prototype by populating it with dummy versions of the
algorithms. Proxies can be used to experiment with different algorithms and parameters
using an external computational tool such as MATLAB. By replacing the proxies
and dummies with finalized versions of the algorithms written in the native language
of the framework, developers can make a piecewise transition from prototyping and
experimentation to implementation and deployment. Requirement A-16 is thus satisfied
by the architectural model, although the process is not as efficient as it would be if a
graphical application builder were provided.
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6 Case studies

This chapter discusses four case studies involving concrete applications of the models
presented in Chapter 4. Each application represents a previously published contribution
in its own right, but in the context of this thesis, the primary role of the case studies is to
support the arguments made in Chapter 5. Each application description is therefore
followed by a discussion of its relevance to the models and their requirements.

The structure of this chapter deviates from that of the three preceding ones, because
there is no simple one-to-one mapping between the case studies and the models.
However, the data-management case studies in Section 6.1 pertain mainly to the data
model, whereas the application-building case studies in Section 6.2 are more relevant to
the architectural model. The workflow model is not addressed by any of the case studies,
except indirectly through the features of the architectural model.

6.1 Managing data and knowledge

The case studies presented in this section primarily serve to show how the data model
proposed in Section 4.1 can be applied in practice. The two applications discussed
represent solutions to real-world problems in the domain of intelligent manufacturing.
The principal objective of the case-study descriptions is to demonstrate how the data
model translates into concrete databases and knowledge bases in the context of specific
applications. To a lesser extent, they also demonstrate how the data model attains a
concrete expression through the architectural model.

The first case study, described in Subsection 6.1.1, consists of a storage model and
access interfaces for resistance spot welding quality assessment and process identification
based on data mining. The storage model addresses the problem of managing the
welding data being mined, using metadata to support search and retrieval operations.
The interfaces provide graphical access to the data, supporting human-technology
interactions between experts and the spot welding database. The welding database was
originally reported in (Tuovinen et al. 2007).

The second case study, in Subsection 6.1.2, concerns a knowledge storage and
retrieval system for reconfigurable manufacturing. The system performs task-to-method
transformations, i.e., operations whereby a manufacturing task expressed in a machine-
readable format is translated into a set of instructions for the machine that will execute
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the task. The application represents a solution to a KR problem where a computer-based
system maintains and applies a body of knowledge without depending on human
supervision. Additionally, it serves as a demonstration of the DBSA framework as an
application platform. A description of the system was originally published in (Tuovinen
et al. 2010).

6.1.1 A database architecture for welding quality assurance

Resistance spot welding is a welding technique where a pair of electrodes is used to
conduct an electric current through the workpieces to be joined. When the current is
high enough, the resistance of the workpiece material causes it to heat and melt locally
at the point of contact with the electrodes. When the current is switched off, the metal
cools and solidifies, creating a spotlike joint between the workpieces. If necessary, this
process is then repeated at different locations until the total strength of the individual
welding spots is sufficient for whatever purpose the resulting object is intended to serve.

The quality of a welding spot can be determined by a physical test, but such tests
increase the expenses of the manufacturing process. Thus, a more desirable alternative is
to predict the quality of the spot automatically by observing and analyzing the welding
event. This can be achieved by applying data mining methods to measurements of
electrode current and voltage gathered during the execution of the welding protocol
(Laurinen et al. 2004a, Junno et al. 2004b). To support this task, a database application
was developed.

The welding database consists of four main types of data:

– raw data, consisting of current and voltage signals recorded in controlled welding
tests;

– preprocessed data, consisting of filtered signals, including resistance and power
signals derived from the measured data;

– features computed from the preprocessed data;
– metadata, consisting of human-readable descriptions of the attributes of the datasets

stored in the database.

By providing storage for raw data, preprocessed data and features, the database
satisfies the basic requirement of making it possible to record the intermediate states of
the data mining process. The quality of welding spots can be predicted by applying a
classification algorithm to a suitable subset of the features. The features can also be
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used to assess the similarity of two welding processes; this is useful for the purpose of
determining the optimal process parameters (Junno et al. 2004a, 2005, Haapalainen et al.

2005, 2006, Koskimäki et al. 2007).
The purpose of the metadata is to assist users in the task of selecting data to export

from the database. The metadata section contains descriptions of attributes that the users
can use as selection terms when formulating queries on the database. The metadata plays
no role in the actual query, but it serves to remind the user of the names of potential
selection terms and the syntax and semantics associated with them.

The welding database was implemented in the form of a relational database and
three graphical interfaces for interacting with the database. One of these is a standalone
application for importing raw data into the database. The other two are plug-in modules
in an application created for processing welding data: one for exporting data for
processing and the other for importing the results. The actual processing is done by
other modules, executed in sequence in the style of pipes-and-filters architecture. Figure
13 illustrates this arrangement.

This case study is relevant principally to the following requirements:

D-03: The data model should provide technology-independent guidance for

the creation of storage structures that cover all the identified states of data.

The case study serves as an example of how to design a database to support a real-world
KD process. In the original paper can be found an ER diagram that specifies the data
structures used to store the welding data. However, the case study is not complete in
addressing the requirement, for two reasons:

1. The database design is not entirely technology-independent. Although an ER model
is an abstract representation that does not necessarily imply a relational database,
it does imply a preference for such. In the case of the welding database, an RDB
happens to be an appropriate solution, but it is unclear how the lesson might be
generalized to cover other types of databases.

2. The database design covers only a part of the KD process. In terms of the data states
identified in Subsection 4.1.1, the welding database accommodates the first three of a
sequence of six states: raw data, prepared data, and condensed data. The database
has a metadata section, but it is used only for searching, not tracking or semantic
annotation.
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Fig 13. The spot welding database and its interfaces. The raw data import interface is used
only once per test set, to store the original data. The data is then refined in cycles, so the
export and import interfaces may be needed any number of times.

These limitations reduce the value of the case study as an illustration of how to apply
the data model. Thus, while the case study is instructive, it is not sufficient by itself.

D-04: The guidance for the creation of data stores should address the

design of access methods for storing, searching for and retrieving data.

The import and export interfaces are a major component of the welding database, and
the original paper provides details on how the interfaces are operated, including screen
captures of their UI layouts. Technology-dependence is again an issue here, since the
interfaces (apart from the raw data import interface) were designed specifically for
the plug-in framework used in the project in which the welding database was created.
However, the validity of the UI designs is not dependent on the underlying framework,
and the design principles of the UIs are not specific to any application domain, either.
The case study can therefore serve as an illustrative example of how to design interfaces
that comply with the data model.
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6.1.2 A task-to-method transformation system for reconfigurable
manufacturing

Task-to-method transformation (T2MT) is defined here as a process whereby a formal
description of a manufacturing task is transformed into a method for executing the task.
The method is a set of instructions to the controller of the machine, generated such
that when the method is executed, all the goals of the task are achieved and none of its
constraints are violated. The T2MT system described below was developed for the
purpose of giving production-line components the ability to independently reconfigure
themselves when the line configuration changes.

The task description is an XML document containing all the information necessary
for choosing a suitable method for the task. Most importantly, the task description
specifies the physical objects involved in the task: tools, workpieces, fixtures, and
obstacles. The objects can be arranged into various situations, e.g., one to represent
the starting conditions of the task and another one to represent the objective. The task
description also specifies what quality information (e.g., execution time) is expected to
be produced when the task is executed.

Method descriptions, unlike task descriptions, have no common structure because
the presentation format of the method depends entirely on the method consumer, leading
to unlimited variation. A method for a welding controller, for instance, cannot be
expected to bear much resemblance to a method for an assembly robot. From this, it
follows that the T2MT system cannot be expected to understand the method description;
it only needs to be able to identify the method consumer and choose a method that the
consumer will understand.

Two instances of the T2MT system were deployed, both based on the same generic
architecture, illustrated in Figure 14. The interface client sends the T2MT request over
an HTTP connection to the interface server, which unpacks the request and hands it over
to the session manager. The session manager analyzes the request and sends the included
document (task or method description), along with instructions for further processing, to
the parser. The parser processes the document and invokes either the method generator,
if the document represents a task to be transformed into a method, or the method writer,
if the document represents a method to be stored in the knowledge base.

The manufacturing task in both application scenarios was the same: handling a
resistance spot welding gun. However, in the first scenario, the method consumer
was a robot, whereas in the second one it was a human assisted by a guidance and
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Fig 14. The software architecture of the T2MT system. The figure shows the case where a
method retrieval operation is executed; in the other case, storing a new method, the input
to the system includes both a task description and a method description, and the output is
simply an acknowledgment that the requested operation was performed.

monitoring system displaying instructions and feedback. The methods in the first
scenario — programs written in the control language of the robot controller — were
therefore completely different from those in the second scenario, where the primary
component of the method description was a recording of a previous execution of the
same task, shown to the worker as a model for completing the task successfully.

Since the tasks were similar, the principle of storing and looking up methods was
also similar in the two scenarios, even though there was no similarity between them in
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the methods themselves. The manufacturing knowledge required by the T2MT process
was represented as specified in Subsection 4.1.2, using data, metadata and functions to
represent the passive, descriptive and active components of the knowledge, respectively.
The T2MT system operates on this knowledge representation to match manufacturing
tasks with suitable methods.

The data used by the T2MT system consists of methods. Each method in the knowl-
edge base is there because it has been demonstrated to provide a satisfactory solution to
some problem (manufacturing task). In both application scenarios, the methods were
stored in an XML-based format, but this, as already stated, is unimportant from the
perspective of the T2MT system: interpreting the contents of method descriptions is a
task for method consumers only.

The metadata used by the T2MT system consists of information required by the
system to determine whether a given method in the KB is appropriate for a given task.
This information, in turn, consists of attributes of the task itself and attributes of the task
execution environment (manufacturing cell). Finding a method for a task is based largely
on comparing the task description to metadata stored in the KB, so object specifications,
the most important part of the task description, are also the most important part of the
metadata.

The functions representing the active component of the manufacturing knowledge
handled by the T2MT system were implemented as embedded scripts. Each script
is responsible for executing knowledge base queries, i.e., matching task descriptions
with metadata, for one category of tasks, e.g., handling tasks performed by a robot.
The scripting language is interpreted, so the system can select the appropriate script at
runtime and execute it dynamically when a request arrives.

T2MT queries are executed in three phases such that each phase rules out candidate
methods until, ideally, after the third phase there is exactly one candidate left. In the first
phase, the query script passes only those methods that are valid, i.e., appropriate for the
task execution environment (causing no collisions, for example). In the second phase,
with all invalid methods ruled out, the script passes only those methods that are adequate,
i.e., achieve all task objectives. Finally, in the third phase, the script chooses the optimal
method, i.e., the best known valid and adequate method, given a cost function. The
query thus returns exactly one method, provided that there is at least one valid and
adequate method in the KB and the result of the cost function is unambiguous.

This case study is relevant principally to the following requirements:
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D-07: The data model should provide a KR scheme for the creation of a

knowledge base.

D-08: The KR scheme should share a theoretical basis with the other

components of the data model.

D-09: The KR scheme should integrate with and satisfy the same require-

ments as the data management scheme specified by D-03 and D-04.

As established in Subsection 5.1.2, the data model does provide a KR scheme, based on
a theoretical understanding of the concept of knowledge and compliant with the other
components of the data model. The case study provides an example of the KR scheme
applied in practice: it defines a representation of manufacturing knowledge based on the
three components specified by the data model, and presents a software architecture for a
knowledge storage and retrieval system. Two application scenarios for the system are
presented.

The main problem of this case study as an illustration of how to implement the
data model is that the knowledge processed by the T2MT system is not arrived at
through a process of knowledge discovery. Although the origin of the knowledge
as such is not relevant to the KR scheme, this nevertheless means that there is no
sequence of intermediate states of data leading up to it, so again the case study addresses
only a fraction of the KD process. What has not been demonstrated yet is a complete
implementation of the data model, with data management and knowledge representation
integrated in a single system.

A-01: The architecture should provide access to data sources via a trans-

parent abstract interface.

A-02: The architecture should assist in the generation of a data repository

structure that covers the entire KD process.

A-03: The architecture should assist in the generation and management of

metadata attached to the contents of the data repository.

The implementation of the system is based on the DBSA framework, and the knowledge
base is implemented using the database interface and schema provided by the framework.
The successful completion of the two application scenarios supports the claim that
the framework is an appropriate tool for implementing the KR scheme defined by the
data model. However, as already pointed out above, only the storage and retrieval of
knowledge is addressed by the case study — not the generation of knowledge through
KD. Furthermore, the system uses the DBSA database schema in a domain-specific
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fashion that may not be readily generalizable to support a wide range of applications. The
scope of the evidence provided by the case study on the data management capabilities of
the DBSA framework is therefore quite narrow.

A-05: The architecture should be able to process any type of data, including

unstructured and multimodal data.

The system uses a number of custom data types: the manufacturing knowledge is
represented in the form of task and method description documents, and additionally the
devices of the system need to exchange information on how to process the documents.
Furthermore, the data contained in the method descriptions differs considerably between
the two application scenarios. The programmable data types of DBSA enabled all these
to be processed by the framework, supporting the claim that the framework is capable of
processing any data type.

A-06: The architecture should support the construction of KD workflows in

the form of pipe-and-filter graphs.

A-09: The architecture should provide internal interfaces for the purpose of

extending the architecture with new application elements.

The architecture of the system is based on a bidirectional pipes-and-filters workflow,
implemented using DBSA devices. Several new devices were written for the purpose, in
addition to the new data type classes created in order to accommodate the custom data
types required by the application. These are the two most basic application-building
features of the DBSA framework, and the successful completion of the case study
indicates that they make the framework suitable for practical application development.

A-10: The architecture should provide external interfaces for communica-

tion with other software, to support requirement W-06.

One of the external interfaces of the DBSA framework, the Python interface, is used
extensively by the T2MT system. The scripts representing the active component of
knowledge are written in Python, and additionally the interface server device uses
Python scripts to process HTTP requests, making it easier to adapt the system to
different application scenarios. The communication between the interface client and the
interface server thus demonstrates a successful integration of the DBSA framework with
another software system using the external interfaces of the framework, although the
HTTP server itself is not part of the framework; for this, the interface server relies on
Mongoose, a lightweight embeddable HTTP server implementation.
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A-12: The architecture should support development with and of reusable

components.

Both the architecture of the system and the individual devices were designed to be
reusable across the application domain, so that the same system could be deployed
regardless of the specific properties of the manufacturing tasks to which it is applied.
The Python interface of the DBSA framework, as mentioned above, proved useful here,
since it enables the behavior of devices to be modified without recompiling their C++
code. Conceivably, the system, or individual components of it, could be reused also
outside the original application domain, but a new case study would be required in order
to demonstrate this.

A-14: The architecture should be portable to multiple hardware and

operating system platforms.

A-15: The architecture should be able to deliver satisfactory performance

under realistic operating conditions.

The system was developed in a desktop environment, whereas the target environment was
an industrial PC setup. Porting the system to the target environment proved problematic
due to its reliance on external systems, particularly Python. It seems reasonable to
assume that the bare DBSA framework, without any such dependencies, would port
more smoothly, but the case study has no evidence to offer in support of this.

Owing in part to the difficulties encountered in deploying the system to the target
platform, there is no data available on the performance of the system in a realistic
manufacturing scenario, with the KB populated with real manufacturing knowledge.
Tests performed in the development environment using simulated data indicate that
the system can deliver acceptable search performance, but the tests simplify the actual
application scenario considerably. For a more reliable estimate, the system would have
to be tested under circumstances that approximate a real factory environment more
closely.

6.2 Building knowledge discovery applications

The case studies discussed in this section serve first and foremost as demonstrations of
KD software development using the Smart Archive framework. The two applications
highlight different aspects of the workflow model presented in Section 4.2 and how
the framework accommodates them. They also illustrate some of the diversity of the
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application architectures that can be achieved using the framework. To some extent, the
case studies address the implementation of the data model and the fulfillment of the
general quality requirements as well. Both case studies were originally reported in
(Tuovinen et al. 2008).

The first case study, in Subsection 6.2.1, concerns a system for training and
maintenance of predictive DM models used in steel production. The system has two
operation modes, with a straightforward sequential workflow in the basic mode where it
monitors the performance of the models in an unsupervised fashion. When a possible
need for model update is detected, the system switches to an interactive mode where
a human expert is involved in a decision-making role. The case study demonstrates
human-technology interaction and integration of an SA-based application with an
existing information system.

The second case study, in Subsection 6.2.2, examines a distributed application for
time series data mining. The application consists of multiple instances of the SA analysis
engine executed on multiple hosts by human operators, in a manner that resembles
volunteer computing. The case study demonstrates an arbitrary number of SA instances
interacting in a coordinated fashion to form a larger system. The integration of the
system is realized by means of the data model implementation of SA, which is used to
set up a database-centered software architecture.

6.2.1 A model maintenance system for the steel industry

The model maintenance system is a semi-automatic system for monitoring and maintain-
ing the performance of mechanical property models in the steel industry. The models
are used to predict certain properties of steel plates based on various properties of the
production process, most importantly the relative quantities of elements in the steel alloy.
Such predictive models are important planning tools for production engineers. A more
thorough discussion of the case can be found in (Juutilainen et al. 2011).

The reason why a model maintenance system is needed is the tendency of model
performance to decay over time. Decay refers to the gradual loss of predictive accuracy
due to changing circumstances, which makes regular recalibration of models a necessity.
The model maintenance system is a tool that helps production engineers do this by
alerting them to the situation whenever the accuracy of one of the maintained models
drops below a given threshold. The same system can then be used to train a new model
to replace the decaying one.
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The models maintained by the system predict three properties of steel: tensile
strength, yield strength, and elongation. For each property, there are separate models for
expectation and variance. Thus, there are six models altogether, each represented in the
application by a Smart Archive filter. The models themselves are statistical regression
polynomials whose terms are stored in text files in a format that the filters can read. This
makes it easy to update the models, since it is not necessary to modify the code of the
filters.

The top-level software architecture of the model maintenance system consists of two
processing subsystems, the model evaluator and the model trainer, and two data stores,
the process database and the model repository. Each processing subsystem has access to
both data stores. The organization of subsystems is illustrated in Figure 15.

Fig 15. Subsystems and interfaces of the model maintenance system. Although the two
operation modes of the application are implemented as two separate subsystems, the sub-
systems are connected via shared data repositories.

The two processing subsystems of the maintenance system correspond to the two
operation modes of the application: the non-interactive mode is handled by the model
evaluator and the interactive mode by the model trainer. As seen in Figure 15, the model
trainer has a user interface for interacting with humans, whereas the model evaluator
only interacts with other information systems of the steel mill.

The non-interactive operation mode of the maintenance system is invoked at steady
intervals to evaluate the currently active models with new data accumulated in the
process database. If the evaluator detects signs of performance decay exceeding what is
considered acceptable, it alerts the engineer in charge of model maintenance. Since the

142



maintenance system is connected to the other information systems of the steel mill, it
can notify the engineer via e-mail.

When the engineer responsible for the maintained models receives the notification
e-mail, they invoke the interactive operation mode of the maintenance system. In this
mode, the engineer can view the properties of the active models, as well as all other
models stored in the model repository. If the engineer judges that the decay detected by
the evaluator warrants further action, they can initiate the training of a new model.

If the engineer decides that the active model needs to be updated, they select a
training dataset from the process database. The model trainer then uses the selected
data to train new expectation and variance models. Once the training is complete, the
engineer can compare the predictive accuracy of the new model to that of the active one.
If the performance improvement is deemed sufficiently large, the engineer stores the
new model in the model repository and designates it as the new active model.

This case study is relevant principally to the following requirements:

A-01: The architecture should provide access to data sources via a trans-

parent abstract interface.

A-02: The architecture should assist in the generation of a data repository

structure that covers the entire KD process.

A-06: The architecture should support the construction of KD workflows in

the form of pipe-and-filter graphs.

A-09: The architecture should provide internal interfaces for the purpose of

extending the architecture with new application elements.

The system developed in the case study makes heavy use of the database functionality of
the SA framework. Especially the non-interactive operation mode, which estimates
the need for model update, depends on a long processing pipeline in which several
intermediate result datasets are generated and stored before the final result is produced.
The successful realization of the application scenario indicates that the data repository
interface of SA is well suited to implementing such applications. The processing
pipelines themselves were realized by implementing the required algorithms as SA
filters and assembling them into SA execution graphs, demonstrating the validity of the
framework as a platform for component-based pipe-and-filter applications.

A-10: The architecture should provide external interfaces for communica-

tion with other software, to support requirement W-06.
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A-11: The architecture should provide external interfaces for communica-

tion with humans, to support requirement W-05.

The case study demonstrates successful integration of an application based on the
SA framework with an existing information system (the non-interactive operation
mode). Furthermore, communication with a human expert via a user interface is also
demonstrated (the interactive operation mode). However, the implementation of these
interfaces is not significantly aided by SA features specifically intended to support
communication with external entities, such as the proxy filter. Therefore, the case study
mainly serves to show that such interfaces can be created, owing to the white-box nature
of SA that allows developers to embed the SA data processing engine in any application.

A-12: The architecture should support development with and of reusable

components.

A good example of developing for reusability is provided by the implementation of
the filters representing the models used to predict the mechanical properties of steel.
A generic regression filter was first designed that reads the terms of the regression
polynomial from a file supplied as a parameter to the filter object. This filter could
then be used, with minor adjustments, to implement each of the three property models.
Furthermore, since there is a vast range of possible applications for polynomial regression
models, the generic regression filter has a high reuse potential and is a good candidate
for inclusion in a library of general-purpose SA filters.

A-14: The architecture should be portable to multiple hardware and

operating system platforms.

A-15: The architecture should be able to deliver satisfactory performance

under realistic operating conditions.

Like the T2MT system described in Subsection 6.1.2, the model maintenance system
was developed in a desktop environment. However, unlike the T2MT system, the model
maintenance system was successfully deployed in a factory environment, providing an
example of the portability of the SA framework. This deployment was experimental in
nature, but a DBSA-based production-ready version of the system was later developed
and deployed, demonstrating that at least the DBSA framework delivers sufficient
performance to support real-world KD applications.
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6.2.2 A distributed application for analyzing activity data

The distributed application is a system for analyzing time-series datasets representing
physical activity measurements. The measurements are recorded from human subjects
engaged in various forms of physical exercise such as running, cycling, or tennis.
The measurements consist of various indicators of the subject’s activity level such as
two-dimensional acceleration values measured by a wrist-worn sensor device.

Activity data, such as that processed by the case-study application, has a number of
uses related to fitness and health. One possible use is the identification of the type of
activity performed, which in turn can be used to maintain an automatic diary of sports
activities (Siirtola et al. 2009). Another one is the prediction of energy expenditure
during an activity (Haapalainen et al. 2008a,b). The case-study application, however, is
only a preprocessing system that prepares data for further analysis.

The data preparation task itself is somewhat uninteresting in this case; the principal
problem here is the heavy computing involved. The application solves this problem by
partitioning the data into chunks that can be processed independently from all others.
These are then distributed to be processed in parallel by different computers, which
significantly reduces the workload of an individual computer.

The distribution model of the application is depicted in the architectural diagram in
Figure 16. The system is controlled by a broker unit, which gives instructions to an
undefined number of worker units. All units have access to a central database, from
which the data to be processed is read and into which the results of the processing are
written. There is no direct link from the broker to the workers, so all communication
between units is done indirectly, through the database.

The broker unit is in charge of partitioning the data to be processed. The unit is
implemented as a Smart Archive application instance. Each partition is stored in the
central database along with a tag that indicates it to be ready for processing. It is through
this tag that the broker sends its instructions to the workers. A worker may choose to
process any data chunk tagged as ready by the broker.

The worker units, like the broker unit, are implemented as SA application instances.
When a worker unit selects a data chunk for processing, is changes the corresponding tag
in the database to indicate that the chunk is being processed. This prevents other workers
from taking on the same task. Once the task has been completed, the worker stores the
results in the database and changes the tag to indicate that the selected partition has been
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Fig 16. Distributed data mining with Smart Archive, using a database-centered architecture.
The boxes represent individual SA instances, which communicate via the processed data
repository.

processed. It then proceeds to scan the database for a new task that has not been claimed
yet by another worker.

Being based on the SA framework like the model maintenance system, this case
study addresses many of the same requirements as the previous one, and most of these
will not be repeated here to avoid redundancy. However, the following requirements
highlight aspects of the framework that the previous case study did not:

A-01: The architecture should provide access to data sources via a trans-

parent abstract interface.

A-05: The architecture should be able to process any type of data, including

unstructured and multimodal data.

A-10: The architecture should provide external interfaces for communica-

tion with other software, to support requirement W-06.

A-15: The architecture should be able to deliver satisfactory performance

under realistic operating conditions.

Like the model maintenance system, the system developed in this case study uses the
data repository interface of the SA framework to access the database. However, rather
than simply using the database as a persistent store for the results generated, the system
uses it to mediate communication between multiple SA instances running in parallel in a
coordinated fashion. The case study thus demonstrates the use of the data repository
interface for integration of systems composed of multiple applications, and also the use
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of distribution to increase the overall performance of a system by harnessing additional
computing resources. Additionally, the case study provides an example of using the SA
framework to process time series datasets.
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7 Evaluation of contributions

The purpose of this chapter is to present a qualitative summary of the strengths and
weaknesses of the proposed augmented KD process model. The evaluation is based on
all the material discussed in Chapters 2 through 6, and its aim is to build a balanced
view of how the various components of the model contribute to the scientific value of
the thesis. Another important objective of the evaluation is to suggest how the model
should be applied and which parts of it should most urgently be improved, given the
identified strong and weak points.

Section 7.1 discusses the merits of the proposed solution. Each of the three sub-
models is discussed in its own subsection, with particular emphasis on what is novel
about the models and what is the significance of the associated case-study applications.
Section 7.2 is similarly partitioned into subsections and discusses the shortcomings of
the models. There the emphasis is on notable omissions and the limits of the applicability
of the models. Section 7.3 gives an overview of topics that are potentially relevant to the
proposed process model but not addressed by the thesis.

7.1 Merits and significance

The data model covers the progression of data from raw data to knowledge as specified
by the requirements defined for the model. It analyzes the concept of knowledge and
applies the results of the analysis to KD, showing how various aspects of knowledge as
an epistemological concept can be defined in a computing context. The model presents a
reference architecture for data repositories that addresses both data management and
knowledge representation, and the case studies associated with the model demonstrate
a significant portion of the architecture in practice. The merits of the data model are
discussed in more detail in Subsection 7.1.1.

The workflow model identifies the actors that participate in the KD process and the
interactions between them, as specified by the requirements. Explicitly recognizing
the role of ethical considerations in the process is a particularly novel feature of the
workflow model. Conventional wisdom is also made part of the model by using the
CRISP-DM model to guide the overall flow of the process. The merits of the workflow
model are discussed in Subsection 7.1.2.
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The architectural model has two concrete manifestations in the form of software
frameworks for KD application development. The frameworks provide a number of
novel features addressing various aspects of the KD process highlighted by the data and
workflow models. Realistic case studies implemented using the frameworks demonstrate
their suitability for programming KD applications. The merits of the architectural model
are discussed in Subsection 7.1.3.

7.1.1 Data model

The description of data states and transformations presented as part of the data model
lays the groundwork for all the other components of the augmented KD process model.
This descriptive framework is the common root from which all three sub-models of the
augmented model stem, expanding it in different dimensions. It is thus significant as an
internal reference model through which the different aspects of the proposed process
model are linked.

The next contribution of the data model is the abstract architecture for data manage-
ment in the KD process. Its most significant impact comes from informing the design
of the data management-related components of the architectural model. However, it
also has a direct embodiment in the spot welding database described in Subsection
6.1.1, which is a demonstrably viable solution to the problem of data management in the
context of DM-based quality assurance of welding joints. The validity of the concept
and the potential of the technology have been proven (Laurinen et al. 2004a, Junno et al.

2004b,a, Haapalainen et al. 2005, 2006, Koskimäki et al. 2007, Tuovinen et al. 2007),
and through its external interfaces the database integrated smoothly with the DM tool
used to analyze the welding data.

With respect to the data model, the welding database represents an application-
specific implementation of the storage of data at different points along the KD process.
The implementation consists of a relational database schema and access interfaces for
storing and retrieving data at three levels of abstraction: raw data, preprocessed data
and features. These correspond to the first three states of data identified by the data
model, and the solution can be viewed as a means of supporting the data transformations
involving these states. The higher levels of the data hierarchy are not addressed, but the
principle of the solution can be extended to cover them as well, and similarly, although
the detailed design and implementation of the solution are specific to a particular
application domain, the architecture is not.

150



The task-to-method transformation system discussed in Subsection 6.1.2 is a special
case that specifically addresses the topmost part of the data hierarchy by supporting
interactions with the most refined form of data, knowledge. Again, the solution consists
of a set of interfaces and an underlying database schema on which the interfaces operate.
There is a notable asymmetry in the way the different interfaces are intended to be
used: the input of knowledge into the database is done by human experts, but the stored
knowledge is looked up and used by other software applications. The idea is that human
expertise in the form of semantic metadata has to be injected into the process in the input
phase, but after that, the knowledge can be accessed independently by an application
that executes queries on the metadata. This allows the T2MT system to be used as a
subsystem in larger systems, as was done in the T2MT test cases (see (Tuovinen et al.

2010)).
Like the welding database, the T2MT system is restricted to a specific application

domain, but one may ask how much genericity is actually required; the approach
followed is not suitable for developing highly generic knowledge systems, but it is viable
and potentially preferable in situations where a solution that covers a restricted class of
applications is sufficient. Furthermore, the architecture and working principles of the
system — its knowledge representation model and the associated search method, in
particular — are more widely applicable than the system itself. The pragmatic concept
of knowledge underlying the KR scheme is very generic, and since the concept of
knowledge in KD is essentially pragmatic, it is natural to pair it with a KR model based
on pragmatic epistemology.

Based on the case study, the knowledge system architecture underlying the T2MT
system can be considered proven as a concept. The system makes innovative use of the
pipeline architecture and data management functionality of the DBSA framework to set
up a platform for knowledge base searches and other knowledge-based services. Its
central session manager component plays the dual roles of maintaining session state,
enabling the system to serve multiple clients in parallel, and directing service requests to
the components that implement the corresponding services, allowing the addition of new
services via the plug-in API of DBSA. The possibility of using Python scripting to
modify component behavior dynamically provides additional flexibility.

It is a noteworthy feature of the T2MT system that it stores the passive and descriptive
components of the knowledge — data and metadata — in an ordinary relational database.
All data definitions are done in SQL, so there is no need to use an ontology description
language to define the properties and relationships of tasks, methods and other related
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concepts. Retrieving information from the KB is also based on SQL queries, constructed
and executed by an intermediate interface written in C++. Similarly, the implementation
of the active component of the knowledge does not require a special reasoning engine.
The scripts that represent the active component in the case of the T2MT system were
written the Python language, executed by the C++ code of the T2MT system. The scripts,
in turn, use the C++ interface of the knowledge base to search the KB for methods.

The most purely theoretical contribution of the thesis is the observation that the
theory of knowledge discovery is necessarily linked to the theory of knowledge. It
was further observed that this connection is seldom made explicit, and that knowledge
as an abstract concept is poorly understood in KD as a result of this. The data model
applies epistemological thought and theory to the concept of knowledge as used in KD,
uncovering the implicit assumptions and values embedded in it and pointing out aspects
of knowledge overlooked by it. This work thus contributes to a better understanding of
the theoretical concept, which can be transformed into a better understanding of how to
generate and represent knowledge digitally. The results of the analysis are codified as a
set of principles to be heeded by KD experts.

7.1.2 Workflow model

The other significant theoretical contribution of the thesis is also its binding theme:
a remodeling of the knowledge discovery process is proposed, based on a nonlinear
graph of interactions rather than a linear sequence of transformations. The intent is
not to supplant the established process model but rather to extend or complement it
by adding entities and relationships that affect the outcome of the process but are not
represented in the established model. To integrate the established process model with
the proposed augmentations, the workflow model presents a mapping of the activities of
the augmented model onto the steps of the standardized CRISP-DM model. Thus, the
established model can still be used to direct the overall flow of the KD process, while
simultaneously using the augmented model to ensure that other important aspects of the
process are not neglected.

The workflow model is based on two observations made by analyzing the concept of
knowledge, especially those aspects of it that are ignored by the established model,
and by studying real-world KD processes that pose problems not addressed by the
established model. First, it was concluded that human actors are underrepresented in the
established model, considering the diversity and weight of the roles they play in the
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process. Furthermore, it was observed that the human aspect of the KD process is best
described in terms of interactions, since humans are typically required in the process to
perform interactive tasks such as negotiating with other humans or analyzing data using
exploratory methods. As an extrapolation of this observation, it was seen that software
artifacts can also be viewed as actors and therefore the process in its entirety can be
represented by a model composed of interactions.

Extending the definition of actor to cover software as well as people might be
dismissed as just a conceptual trick invented to make the model appear more coherent,
but it is necessary if we are to account for the full variety of different ways to organize
the KD process. The volunteer computing model examined in Subsection 4.2.2 serves
well as an example of how the roles of computers and humans are sometimes overlapping
or interchangeable, making the process much less straightforward than the conventional
KD process model would indicate. Much of the significance of the workflow model
lies in explicitly identifying the various actors, their contributions and expectations,
and the interactions by which they make their contributions and satisfy one another’s
expectations.

An additional merit of the workflow model is that it accounts for the contributions
and expectations of non-expert stakeholders and enforces consideration of how they
should be treated by the experts who drive the KD process. Social and ethical issues such
as privacy preservation are usually studied in isolation, but the thesis argues that they
should be integrated into the process model to ensure that the rights of all stakeholders
are properly respected. It is observed that doing so is both a moral obligation and a
long-term practical necessity, since failure to execute the KD process in an ethical
manner will reflect poorly on the responsible parties and diminish their chances of
carrying out successful KD efforts in the future.

7.1.3 Architectural model

With respect to software architectural support for the KD process, the thesis makes its
main contributions through the two knowledge discovery software frameworks, Smart
Archive and DBSA. Smart Archive was the first to be developed, with the thesis author
as the lead designer and implementer, based on earlier work by Väinämö et al. (2000)
and Laurinen et al. (2005). DBSA is the more recent of the two and corrects some
of the problems that were found to hinder KD application development with SA, but
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the contribution of the thesis author, who only participated in the specification and
architectural design phases of the work, is considerably smaller.

Both SA and DBSA have been demonstrated in practice to be applicable as platforms
for KD software development, but in this respect, the frameworks are not by any means
unique, since there are several other similar frameworks available, some of which were
reviewed in Subsection 2.2.3. However, while the concept of SA and DBSA is not novel
in itself, the frameworks do have certain novel features, developed in response to specific
problems that are frequently encountered in the knowledge discovery process. These
individual features represent much of the significance of the frameworks as research
results.

One distinguishing feature of both SA and DBSA is how they handle interactions
with data repositories. Both provide components for importing data into applications, but
additionally, there is a direct link between algorithm components and data repositories.
This is especially useful for writing the outputs of algorithms in a database, which the
frameworks make fully automatic; the benefits of this are discussed in Subsections 3.1.1
and 3.3.2. Another benefit is that a component can use its inputs to retrieve additional
data from a repository, either to support the transformation it performs or to use the
retrieved data as its output. An example of the latter is found in the DBSA-based T2MT
system, where the purpose of one component is to search the knowledge base, using
data received from another component to build the search conditions, and return the
results of the search.

Another special feature of SA and DBSA is data type management. Although the
frameworks approach the problem from different angles, they are similar in that both
impose certain conditions on the data flowing through the framework and provide an
API for implementing data types that satisfy those conditions. Both solutions also offer
similar benefits: interacting with data is made easier by automatic conversions between
different representation formats, and interactions between algorithms are also helped
because type management ensures that there is a common interface to data passed from
one algorithm to another.

Indirectly, through the configuration file, data type management also supports
interactions between a framework and its users. Both SA and DBSA use an XML-based
configuration that defines the composition and operational parameters of applications,
and one of the functions of type management is to control the representation format
of parameter values. This holds especially for SA, where the same mechanism that
converts data types between their internal and database representations also handles
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conversions between internal representations and XML renditions. In DBSA, type
management has a smaller role, being primarily concerned with data passed between
components and stored in databases while leaving the interpretation of parameter values
up to the components.

A distinguishing property of SA and DBSA that goes beyond individual features
and into the realm of design philosophy is that compared to other KD frameworks, the
design of SA and DBSA is based on a different approach to application development.
While other frameworks tend to emphasize rapid development of applications that
are constructed and executed via the same GUI, SA and DBSA conform to a more
conventional development process model, especially SA with its layered white-box
architecture. The choice of development approach depends on development goals, so the
particular strengths of an SA/DBSA-style framework are useful in some projects, while
in others it would make more sense to adopt one of the mainstream frameworks.

In summary, while SA or DBSA alone may be too cumbersome as an exploration
and prototyping tool, either one is suitable for implementing the final solution once
its design has been completed. Furthermore, both frameworks have a feature that can
be of considerable use in the exploration phase: interacting with other applications.
SA offers a generic API for external application proxies, whereas DBSA provides a
small set of application-specific connectors, but both approaches lead to the same result:
developers can opt to code and run some of their algorithms in an environment outside
the one defined by the framework. This makes it possible to experiment with different
algorithms and parameter sets using a more convenient tool such as MATLAB or R,
the favored approach of the researchers whose needs the frameworks were originally
designed to serve.

The other major use case for this feature is building the final solution such that
it is composed of multiple collaborating applications. This is the system level in the
technology hierarchy and has been experimented with using both SA and DBSA,
although not in solutions intended for a production environment. However, the principal
reason why the feature was considered desirable is that it supports the working style
of the researchers involved in the development of the frameworks, which in itself is
another example of the interactive nature of the KD process and of the importance
of human involvement in it: while the established KD process model may be an apt
description of how the final solution works, the process of designing the solution is
much less straightforward.
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In terms of real-world impact, the most significant application contribution of the
thesis is the predictive model maintenance system discussed in Subsection 6.2.1. The
system is now deployed for production use at a steel mill, although the version in use is
not the original Smart Archive-based implementation reported in (Tuovinen et al. 2008)
and (Juutilainen et al. 2011). Instead, the application has been reimplemented using the
DBSA framework, which became available later. Also, since most of the design and
implementation work on the application was done by co-authors of (Tuovinen et al.

2008) and not by the thesis author, its main significance here is as a demonstration of the
capabilities of SA and DBSA rather than a contribution in its own right.

7.2 Omissions and restrictions

Although the data model addresses the requirements defined for it, there are parts of it
that are too abstract to apply directly. The case studies aim to alleviate this problem by
serving as reference implementations, but their applicability suffers from the fact that
they address a relatively narrow application domain. Furthermore, the case studies do
not, either separately or together, cover the entire KD process as captured by the data
model. The flaws of the data model are discussed in more detail in Subsection 7.2.1.

The workflow model similarly addresses its respective requirements, but in doing so
it is relatively simplistic. The model does not go very far beyond naming the various
actors and requirements, and while it highlights interesting problems related to, for
example, the privacy of data subjects, it does not have much to offer toward solving such
problems. The manner in which the CRISP-DM model is tied in is very straightforward
and requires better justification. The flaws of the workflow model are discussed in
Subsection 7.2.2.

The current implementation of the architectural model, as manifested in the two
software frameworks, is behind the state of the art in certain important respects. Also,
the number of case studies implemented is small, which raises the question of how
much the existing case studies can really tell about the applicability of the frameworks.
The range of situations in which choosing one of the frameworks described in the
thesis would be justified is severely limited by these considerations. The flaws of the
architectural model are discussed in Subsection 7.2.3.
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7.2.1 Data model

It may be argued that the philosophical concept of knowledge is not pertinent to KD,
since there is nothing concrete philosophy can offer that would aid the process of
building computational models from data. It is indeed true that the discussion of
knowledge as a theoretical concept is, for the most part, not immediately applicable in
practice. The formulation of the concept as imperatives to be fulfilled by KD experts is
a step in the right direction, but the formulations are abstract and offer, for example,
no criteria for deciding whether a given imperative has been fulfilled to an acceptable
degree.

To the argument that knowledge as an epistemological concept is not relevant at all,
the response is that operating on data and models is not a departure from the realm of
philosophy — on the contrary, it represents a decision to prefer certain philosophical
ideas and theories over others. Specifically, empiricism is favored over rationalism in
the question of where knowledge comes from, and pragmatism over other theories in
the question of what is true, but these choices do not simply render the alternatives
irrelevant. They should, instead, be seen as a compromise that makes the problem of KD
solvable in practice but also sets bounds to what any given solution can achieve. To
understand the nature of the compromise, it is necessary to understand that knowledge
as defined in KD is just one face of the entire complexity of the concept of knowledge.

The knowledge base of the T2MT system represents another attempt to derive a
practical application from the theoretical discussion of knowledge: its KR scheme is
based on a naive interpretation of the classical definition of knowledge. Naivete, in
this context, is not simply a flaw but rather another compromise — it implies that the
solution lacks the sophistication of a truly generic KB system, but on the other hand,
its simplicity means that the concept is easy to grasp and relatively straightforward to
implement. However, the reality of the knowledge system architecture falls somewhat
short of the ideal, largely due to resourcing and scheduling considerations at the time of
its development. Ideally, for instance, new service components should be pluggable in
without disturbing other parts of the system, but in practice, such an addition always
requires modifications to the session manager and external interface components.

Furthermore, the built-in KB solution of DBSA is not always the optimal one, and a
better one probably could have been designed for the T2MT system, which currently
represents the only test case of the architecture. The fact that there are no other test
cases is another weakness, since it means that there may be elements in the design of
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the architecture that are unsuitable for applications that differ significantly from the
T2MT case. To expose and improve such elements, it would be important to apply the
architecture to a wider variety of problems in order to see which parts of it are genuinely
reusable and which ones should be revised. The T2MT system could thus be refined into
a properly generic and versatile architecture for KB management.

The weakness of the welding database as an application contribution is that it is
fairly narrow in scope, addressing only one application domain and only one layer of
the proposed solution. The role of the database in the solution is an important one,
but still, the most significant scientific advances were made in the area of algorithms
for analyzing the data. The database as an independent contribution has some reuse
value within the welding domain, but ultimately, it may be more valuable for the more
generalized lessons that can be derived from it.

The strengths and weaknesses of the T2MT system as an application contribution
are essentially opposite to those of the welding database. The system is a complete and
integrated solution, designed with modifiability and reusability in mind, so the scope
of the contribution is much wider in this case. The potential for reuse across diverse
application domains is demonstrated by the application case studies, which address
considerably different problems, even though the goal in both cases is to achieve high
quality in handling a welding tool.

What the T2MT lacks is a degree of maturity comparable to the welding database
or the model maintenance system, the two most extensively tested and validated
application contributions of the thesis. The case-study applications were developed to a
proof-of-concept level, but tests with realistic quantities of data in a realistic factory
environment are still missing, leaving open, for instance, the question of whether the KB
search algorithm performs adequately under real-world circumstances. The architecture
and working principles of the system therefore outweigh the impact of its concrete
implementation as it currently stands.

If one ignores the domain- and technology-specific aspects of the T2MT system and
the welding database and focuses on those aspects that have the highest reuse potential,
combining them comes close to spanning the entire hierarchy of data from top to bottom.
Thus, the best way to use these results in the service of the KD process would be to
follow this lead and build a database system that integrates all states of data under
a single coherent set of interfaces, reusing the generic aspects of the two systems as
appropriate. The system could take its deployment model from the T2MT system, with
generic components providing hooks for application-specific functionality implemented
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via dynamic scripting, enabling the reuse of not just the architecture but the majority
of the code as well. Such a system could serve as a reference implementation of the
proposed data model, the current absence of which diminishes the utility of the model
considerably.

7.2.2 Workflow model

The major problem with the nonlinear, graph-structured workflow model is that it does
not intuitively translate into a coherent plan for executing the process. The most acute
shortcoming is that although the augmented process model covers tasks that are not
included in the established model, it contributes little towards an understanding of how
to perform these tasks effectively. Before the augmented model can be made into a
practical and comprehensive tool for KD project management, it would have to be
synthesized with relevant results from a diverse set of related disciplines. Section 7.3
includes a brief discussion of this topic.

The workflow model is, for the most part, an enumeration of actors and interactions,
which on its own is not a sufficient reference for steering the KD process; what is needed
is a sequential process flowchart that can be superimposed on the workflow model in
order to make the process manageable in practice. Merging the workflow model with
the CRISP-DM model represents a step in this direction, but a tentative and simplistic
one. The overall effect is that the process is still managed using the established process
model, with the augmented model mainly serving to draw attention to activities or issues
that might otherwise be taken for granted or ignored.

Generally speaking, it of course makes sense to build upon existing work rather than
completely discard something that has established itself as a standard solution. That
said, it must be remarked that the increment made by the proposed workflow model is
fairly small and straightforward. What the thesis does not address is the question of
what would be the outcome of a bolder reinvention of the KD process model, resulting
in something analogous to what has replaced the waterfall model in modern software
engineering.

The completeness of the proposed process model is another question to which
the thesis cannot give a definitive answer. The model has been pieced together from
a variety of elements developed separately, and there is no case study available that
would demonstrate a complete KD process featuring all the different elements. The case
studies reported in Chapter 6 address several elements of the data and architectural
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models, but the workflow model is left without significant empirical support. As a result,
there is no data available that would provide conclusive answers to such questions as
whether the workflow model is exhaustive, i.e., whether it covers all the actors and
interactions that have a significant effect on the progress of a KD project.

7.2.3 Architectural model

A notable feature that the SA and DBSA frameworks currently lack is the graphical user
interface that several other architecturally similar frameworks provide. Both offer a
run-time console interface that allows users to send commands to the framework and
to individual components, but there is no tool for editing applications configurations
in graphic form, and since the frameworks also do not come with a comprehensive
algorithm library, creating an application is likely to require an algorithm programming
effort as well. This diminishes the suitability of SA and DBSA for the rapid, exploratory
style of development encouraged by the other frameworks.

The best way to use SA or DBSA to support the KD process, then, would be to
adopt a more conventional development style that clearly differentiates between the
roles of developers and end users. Developers interact with the framework at the source
code level, tailoring the application logic and the user interface according to the specific
requirements of the problem at hand. End users, on the other hand, interact with the
framework exclusively through the interface defined by the developers, and need not
be aware of the framework at all; the framework exists mainly to help the developers
implement those aspects of KD application logic that are always or frequently required,
such as controlling data flows and communicating with databases.

A natural follow-up question to this is whether there is a rationale for preferring
SA or DBSA over other frameworks for this style of development. Such decisions are
determined in part by factors that have little if anything to do with the properties of the
frameworks themselves, such as the strength of the support available from the vendor
and the associated developer community. Currently, neither SA nor DBSA are being
actively developed and distributed, a weakness that for many potential adopters would
probably outweigh their strengths.

With respect to the general quality requirements, the main problem with the
frameworks is the uncertainty concerning their performance when processing large
datasets. Particularly with KD problems for which distributed computing is the only
feasible solution, there is much that the existing case studies leave unclear. Although
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both frameworks do provide interfaces that demonstrably can be used to distribute the
workload of an application among multiple hosts, neither framework is specifically
designed for this purpose. A probable implication of this is that compared to grid-based
platforms, there are higher processing overheads and a greater need for manual labor in
setting up the system.

Ultimately, for the purposes of this thesis, the SA and DBSA frameworks are less
important than the architectural model underlying them. Clearly, neither framework
implements the model in its entirety, and it is uncertain whether the development
of either one will be picked up again at some point. The frameworks are therefore
academically more significant for the novel architectural concepts they embody than
for their actual code. A complete reference implementation of the architectural model
would combine these concepts and the architectural foundations of the frameworks
with a state-of-the-art GUI and other features needed in order to satisfy the remaining
architectural requirements.

7.3 Untouched topics

It was already established in Chapter 2 that the study of knowledge discovery is spread
across a considerable variety of disciplines within the field of computer science and
engineering. Databases and knowledge bases, pattern recognition and machine learning,
algorithm theory, software engineering, and information systems science are among the
most important areas of knowledge required to build successful KD solutions. Between
them, these computing disciplines span the technology hierarchy of Subsection 4.2.1
from top to bottom, but to look at technology only is to overlook two thirds of the
interaction model of the KD process. Human involvement in the process is an essential
part of the model, and this part cannot be adequately understood without the help of
disciplines unrelated to computing.

Interactions between humans and technology are addressed by disciplines such as
human-computer interaction (HCI) and usability research, which are not in themselves
unrelated to computer science. They do, however, require the help of such disciplines
— ergonomics and certain branches of psychology are obvious examples, since HCI
must work within bounds established by the mental and physical capabilities of humans.
Especially important are those areas of study that help us visualize data in an intuitive
manner, since the goal of the KD process is essentially to help humans understand a
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body of data. One could add even aesthetics to the list of disciplines that may be of
some service in the pursuit of this goal.

The importance of social and behavioral sciences in the knowledge discovery process
is further emphasized when we consider interactions that take place between human
actors. Managing a KD project efficiently — finding the necessary actors and assigning
roles to them, balancing the expectations of stakeholders, etc. — requires skills of
organization, negotiation and persuasion, and these skills are based on knowledge
of psychology, organizational science, business administration, and possibly others.
Furthermore, as we saw in Subsection 4.2.2, knowledge of ethics is essential because
negotiation and persuasion should never result in violation of a stakeholder’s rights.

Besides ethics and aesthetics, there are other branches of philosophy that are relevant
to knowledge discovery, albeit in a manner that pertains to knowledge acquisition in
general rather than to the practice of knowledge discovery in particular. Epistemology
explores the question of what it means to know something, while logic and philosophy
of science are concerned with different methods of deriving knowledge, and all of these
are therefore part of the essential theoretical background to technology designed to
discover new knowledge. The remainder of this section looks at areas of philosophical
inquiry that could provide additional insights but had to be left outside the scope of the
thesis.

There is a pair of important epistemological concepts that have not been brought up
yet, except in passing in the previous section, namely empiricism and rationalism. These
are the main schools of thought concerning the ultimate source of human knowledge:
empiricism claims that all knowledge is derived from observation and experience,
whereas rationalism holds that proper knowledge is only achieved through logic and
reasoning. In knowledge discovery through data mining, the acquisition of knowledge
is based on inductive reasoning from a set of observations, as opposed to deductive
reasoning from a set of axiomatic truths. DM thus represents an empirical approach to
KD. This opens up an interesting question: is there also a rationalist approach to KD?

There are some examples of techniques and paradigms that may qualify, depending
on which definition of KD one subscribes to. There are, for instance, software systems
designed for proving mathematical theorems automatically or semi-automatically (Sut-
cliffe & Suttner 2001), arguably a form of rationalist KD in the domain of mathematics.
Logic programming, as embodied, e.g., in the programming language Prolog (Warren
et al. 1977), is another candidate, and is in fact used in the implementation of automated
theorem provers (e.g., (Manthey & Bry 1988)). A more thorough investigation in this
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area would be of some philosophical interest, but for this thesis, the question is out of
scope.

As a final note on the philosophy of KD, let us consider the relationship between
KD and philosophy of science. Whereas logic studies the rules of acquiring knowledge
by rational means, philosophy of science is concerned with the principles of empirical
knowledge acquisition. The most important result to come out of this study is the
modern scientific method, which, simplified somewhat, is a cycle that begins with
the formulation of a hypothesis intended to explain an observed phenomenon. This is
followed by the design and execution of an experiment to test the hypothesis. If the
outcome of the experiment supports the hypothesis, additional experiments are devised
to rule out alternative explanations for the positive result. The more alternatives are
successfully rejected in this way, the more likely it is that the proposed explanation is
correct. If, on the other hand, an experiment fails to support the hypothesis, it must be
revised or rejected and the cycle starts over.

Over time, as this approach is systematically applied, verified hypotheses accumulate
and are eventually synthesized to form theories. The most important test of a scientific
theory is its predictive power: it will survive only if it can successfully predict the results
of future experiments. This represents a parallel between the scientific method and the
KD process — in both, models of reality are induced from observations and evaluated
by their accuracy in predicting further observations of the same subject. On a more
fundamental level, science and KD share the pragmatic definition of truth; in science, it
is codified in the concept of falsifiability (Popper 1959), which is an important criterion
that any explanation must satisfy in order to be considered scientific. A falsifiable
explanation is one that can conceivably be refuted experimentally, and the ability of an
explanation to withstand falsification attacks from multiple angles can be viewed as a
measure of its scientific strength.

A crucial element where the scientific method departs from its similarity to the KD
process is the submission of results to peer review. The concept of peer review is based
on the idea that it is not enough that scientists test their hypotheses: to be sure that the
results are reliable, the tests by which they were attained should also be evaluated. The
importance assigned to the peer review process is evident in the culture of science:
papers are not considered properly scientific unless they have passed peer review, and
journals and conferences are not considered properly scientific unless every paper
submitted to them is subjected to peer review. The quality of papers published affects
both the career advancement of a researcher and the reputation of a scientific publisher,
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so mutual self-interest discourages both parties from trying to subvert the peer review
system. It is interesting to note here the similarity to something we observed when
discussing the impact of ethical behavior on the KD process: the ideal is reinforced by
an environmental pressure that makes following the ideal a rational choice.

More important, however, is the lesson that for any given result, one should evaluate
both the quality of the result and the soundness of the method by which the result was
acquired. The absence of either evaluation should be taken as an indicator that the verity
of the result is in doubt. From the perspective of the KD process, the implication of
this is that testing the method of inquiry should be an integral part of the process, just
as testing the result is. Testing the soundness of the method satisfies the requirement
laid down in Subsection 4.1.1 that a piece of knowledge acquired using KD should
be supported by a clear and comprehensive argument. The task of constructing and
evaluating such an argument would make a significant research topic in its own right, but
it is one that cannot be covered in this work beyond noting its place in the KD process.
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8 Conclusion

Over the course of this thesis, a number of apparently divergent and only superficially
related topics have been discussed: the concepts of data and knowledge, the processes of
data mining and knowledge discovery, software frameworks, databases, knowledge
bases, and computer ethics. However, all these topics are interlinked through the idea of
a computer capable of possessing and generating knowledge. The idea is philosophically
challenging, much like the idea of a computer capable of thinking is, but that is not to
say that creating such a computer is an insurmountable problem. We can use the tools of
philosophy to attack it, to determine what exactly we mean by the concept of knowledge
and how we can transfer that concept to the realm of computing. A substantial portion
of the thesis was devoted to applying major philosophical ideas concerning knowledge
to computing and exploring their ramifications to the branch of computing known as
knowledge discovery.

The individual results presented in the thesis address various aspects of KD, including
the development of KD software and the management and representation of data and
knowledge. However, the aspect that the thesis especially seeks to transform is the
process of KD. There is an established model for the process that depicts it as a waterfall
model-style progress from one step to the next, but this depiction, the thesis argues, is
too simplistic a representation of the tasks and events that comprise the KD process in
reality.

It was proposed that instead of a linear sequence of steps, the KD process should be
modeled as a network of interactions involving human stakeholders and technological
artifacts. The role of human actors is particularly emphasized — another departure
from the established model, which is mainly concerned with the source data and the
transformations applied to it in order to extract the hidden knowledge. The proposed
new process model fully recognizes the importance of the latter, but at the same time, it
points out that the technology for handling the transformations is relatively mature.
Interactions involving human stakeholders are poorly understood in comparison, so the
thesis advocates a reallocation of research priorities towards problems associated with
them.

An inevitable consequence of the proposed modifications to the KD process model
is a significant increase in complexity, which limits the usefulness of the model as a
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practical tool for project management. However, to some extent, the added complexity is
held in check by the partitioning of the augmented process model into three sub-models.
These are the data model, the workflow model, and the architectural model.

The data model addresses the management of data and knowledge in the KD process.
The model recapitulates the established process model by representing it in terms of the
states and transformations that data goes through as it is refined into knowledge. On top
of this, the model sets up an abstract architecture for a data repository that supports the
execution of the KD process. An analysis of the concept of knowledge is carried out to
establish a set of principles concerning the affirmation of the outcome of the process
as true knowledge. Finally, the analysis and the abstract repository architecture are
extended to cover knowledge representation.

The workflow model deals with the process activities required to execute the data
transformations depicted by the data model. First, the model defines two sets of actors:
technological artifacts and human stakeholders. Following this, the model defines
three sets of interactions among the actors: interactions between human stakeholders,
interactions between technological artifacts, and interactions between humans and
technology. Interactions that may raise ethical issues, such as those involving the
acquisition and use of personal information, are treated as a special case. The established
KD process model is harnessed by using the standard CRISP-DM model to overlay a
sequential process onto the actors and interactions of the workflow model.

The architectural model is concerned with the development of software to support
the KD process. The model is manifested in two object-oriented software frameworks
designed specifically with KD applications in mind. Both frameworks are based on the
same architectural style, namely the pipes-and-filters style commonly found in KD
frameworks. However, different objectives were emphasized in their development, and
as a result, different design and implementation decisions were made. The architectural
model describes how various aspects of the KD process are addressed by these decisions.

The three sub-models of the augmented process model were evaluated against a set
of requirements defined for them before the models themselves were presented. This was
done first analytically, by means of a requirements trace where each requirement was
matched with those elements of the corresponding model that address the requirement.
Following this, four application case studies were examined for additional evidence on
how the models measure up to the requirements. Two of these pertain mainly to the data
model, addressing problems related to the management of data in the KD process in
the context of industrial manufacturing, while the other two are mainly relevant to the
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architectural model, being KD applications developed using one of the frameworks
discussed in the presentation of the architectural model.

A problem with the case studies is that they cover only a limited portion of the
entire augmented process model. Most notably, none of the case studies offer direct
empirical support for the workflow model, leaving a significant part of the overall model
resting on analytical argumentation alone. Another weakness is the high abstraction
level of the sub-models combined with the relatively low maturity level of the reference
implementations. The current implementations of the architectural model, for instance,
lack some major features that a modern KD software framework would be expected to
provide.

The strength of the frameworks, and the proposed models in general, is in the novel
ideas they include rather than the current state of their implementation. The thesis
merges the conventional wisdom represented by the established process model and
the new perspectives offered by the three sub-models into an integrated model that
governs the planning and execution of the KD process in a holistic manner. Although
the model as presented in the thesis resembles a patchwork of components developed
to varying levels of detail, it provides an overarching framework within which the
individual components can be improved by future work.

While the thesis advocates a greater emphasis on the role of human actors in the KD
process, its concrete contributions are primarily related to the technological aspect of the
process. As for human issues, there is no accepted theory concerning how to proceed
with them, and the thesis has only a few minor contributions to offer regarding them.
These are mainly in the field of ethics and address the rights and duties of stakeholders
in the KD process. Perhaps more important than any of these is the general observation
that there are problems associated with the process that cannot be solved by technology
alone — the collaboration of a variety of research disciplines, including ethics and other
humanities, is required for success.

We can thus conclude that to adopt the proposed view of the KD process is not to
make the process more complex but to acknowledge the complexity that is already
there in the reality of KD. Tools to manage the complexity can be developed, but it
requires a broader perspective on KD and the concept of knowledge in general than the
conventional KD process model can offer. This thesis makes an effort towards opening
up such a perspective, while also proposing concrete solutions to a number of technical
problems associated with it.
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