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Abstract

The concept of resting state functional magnetic resonance imaging (fMRI) is built onto an
original finding in 1995 that brain hemispheres present synchronous signal fluctuations with
distinct patterns. fMRI measurements rely on blood oxygenation changes that indirectly mirror
neural activity. Therefore, the origin of certain functional connectivity patterns, resting state
networks (RSNs), has been a widely debated research question and numerous contributing factors
have been identified. According to current understanding the fluctuations reflect maintenance of
the system integrity in addition to spontaneous thought and action processes in the resting state. A
popular method to study the functional connectivity in resting state fMRI is spatial independent
component analysis (ICA) that decomposes signal sources into statistically independent
components.

The dichotomy of functional specialization versus functional integration has a correspondence
in fMRI studies where RSNs play the integrative viewpoint of brain function. Although canonical
large-scale RSNs are broadly distributed they also express modularity that can be accomplished
by ICA with a high number of estimated components. The characteristics of high ICA
dimensionality are broadly investigated in the thesis. An enduring issue in resting state research
has been the confounding noise sources like motion and cardiorespiratory processes which may
hamper the analysis. In this thesis the ability of ICA to separate these noise sources from the
default mode network, a major RSN, is studied. Additionally, the suitability of ICA for full
frequency spectrum analysis, a relatively rare setting in biosignal analysis, is investigated.

The results of the thesis support the viewpoint of ICA as a robust analysis method for
functional connectivity analysis. Cardiorespiratory and motion induced noise did not confound the
functional connectivity analyses with ICA. High dimensional ICA provided better signal source
separation, revealed the modular structure of the RSNs and pinpointed the specific aberrations in
the autism spectrum disorder population. ICA was also found applicable for fully explorative
analysis in both the spatial and temporal domains and indicated functional connectivity changes
induced by transcranial bright light stimulation.

Keywords: BOLD, brain, fMRI, full frequency band, functional connectivity, ICA,
model order, modularity, motion, physiological noise, resting state network





Starck, Tuomo, Dimensionalisuus, kohinaerottelu ja täyden taajuuskaistan
näkökulmat itsenäisten komponenttien analyysiin lepotilan fMRI:ssä. ICA-
tutkimuksia lepotilan fMRI:ssä
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Tiivistelmä

Konsepti lepotilan tutkimisesta toiminnallisella magneettikuvauksella (engl. functional magnetic
resonance imaging, fMRI) on rakentunut vuonna 1995 tehdylle löydökselle aivopuoliskojen
välillä synkronisesta signaalivaihtelusta. Mittaukset perustuvat veren hapetuksen muutoksiin,
jotka epäsuorasti heijastelevat hermostollista toimintaa. Tämän takia tietyt toiminnallisen kyt-
kennällisyyden muodot, lepotilaverkostot, ovat olleet laajasti väitelty tutkimusaihe ja monia ver-
kostoihin vaikuttavia tekijöitä onkin tunnistettu. Nykykäsityksen mukaan signaalivaihtelut lepo-
tilassa heijastelevat järjestelmän yhtenäisyyden ylläpitoa spontaanin ajattelun ja toiminnan lisäk-
si. Suosittu menetelmä toiminnallisen kytkennällisyyden tutkimiseen lepotilan fMRI:ssä on spa-
tiaalinen itsenäisten komponenttien analyysi (engl. independent component analysis, ICA), joka
hajottaa signaalilähteet tilastollisesti itsenäisiin komponentteihin.

Aivotoiminnan mallintamisessa kahtiajaolla toiminnalliseen erikoistumiseen ja toiminnalli-
seen integraatioon on vastaavuus fMRI-tutkimukseen, jossa lepotilaverkostot vastaavat toimin-
nallisen integraation näkökulmasta. Vaikka kanoniset lepotilaverkostot ovat laaja-alaisia, ne ovat
toisaalta modulaarisia, jota voidaan tutkia tutkimalla korkean komponenttimäärän ICA-hajotel-
maa. Korkea- dimensioisen ICA-hajotelman ominaisuuksia tutkitaan laajasti tässä väitöskirjas-
sa. Kestoaihe lepotilatutkimuksessa on ollut analyysiä hankaloittavien kohinalähteiden kuten
liikkeen ja kardiorespiratoristen prosessien vaikutus. Väitöskirjassa tutkitaan ICA:n kykyä ero-
tella kohinalähteitä ’default mode’ -verkostosta, joka on merkittävin lepotilaverkosto. Lisäksi
tutkitaan ICA:n soveltuvuutta täyden taajuuskaistan analysointiin, joka on verrattain harvinaista
biosignaalien analyysissä.

Väitöskirjan tulokset tukevat näkemystä ICA:n suorituskyvystä toiminnallisen kytkennälli-
syyden analyysissä. Kardiorespiratorinen ja liikkeestä lähtöisin oleva kohina ei häirinnyt merkit-
tävästi ICA-tuloksia. Korkeadimensioinen ICA tarjosi paremman erottelun signaalilähteille, pal-
jasti lepotilaverkostojen modulaarisen rakenteen ja määritti erityisen poikkeaman autismin kir-
jon oireyhtymän populaatiossa. ICA:n havaittiin olevan soveltuva täyseksploratiiviselle analyy-
sille ajassa ja avaruudessa; tulos viittaa toiminnallisen kytkennällisyyden muutoksiin kallon
läpäisevän kirkasvalostimulaation aikaansaamana. 

Asiasanat: aivot, BOLD, fMRI, fysiologinen kohina, ICA, lepotila, liikeartefakta,
mallin asteluku, modulaarisuus, toiminnallinen kytkennällisyys, täysi taajuuskaista
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ANS autonomic nervous system 

ASD autism spectum disorder 

ATP adenosine triphosphate 

B0 main magnetic field 

BOLD blood oxygen level dependent 

BSS blind source separation 

CBF cerebral blood flow 

CBV cerebral blood volume 

CMRO2 cerebral metabolism rate of oxygen 

CO2 carbon dioxide 

CSF cerebrospinal fluid 

DMN default mode network 

EEG electroencephalography 

e.g. exempli gratia 

EPI echo-planar imaging 

FA flip angle 

FC functional connectivity 

FNC functional network connectivity 

fMRI functional magnetic resonance imaging 

FSPGR fast spoiled gradient echo 

GABA gamma-amino butyric acid 

GICA group independent component analysis 

GLM general linear model 

GM grey matter 

HRV heart rate variability 

HRF hemodynamic response function 

ICA independent component analysis 

i.e. id est 

i.i.d. independent and identically distributed 

IPL inferior parietal lobule 

LFP local field potential 

LFF low frequency fluctuation 

MEG magnetoelectrography 

mPFC medial prefrontal cortex 

MR magnetic resonance 
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MUA motor unit activity 

PCA principal component analysis 

PCC posterior cingulate cortex 

PCUN precuneus 

PDF probability density function 

PET-CO2 end-tidal partial pressure of carbon dioxide 

PICA probabilistic independent component analysis  

PI parallel imaging 

RETROICOR retrospective image-domain correction 

RF radio-frequency 

RRF respiration response function 

RSN resting state network 

RV respiration variability 

RVHRCOR respiration variation heart rate correction 

RVT respiration volume per time 

SCA seed correlation analysis 

SCP slow cortical potential 

SRS social responsiviness scale 

T1 spin-lattice magnetization relaxation time 

T2 spin-spin magnetization relaxation time 

T2* T2 star 

TE time to echo i.e. echo time 

TFCE threshold free cluster enhancement 

TPN task positive network 

TR time to repetition i.e. repetition time 

VIS visual cortex network 

WM white matter 
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1 Introduction 

Functional connectivity (FC) is defined as statistical dependencies among remote 

neurophysiological events (Friston 1994) and can be used to characterize 

spatiotemporal dynamics of various neurophysiological time-series. For a long 

time mainstream functional magnetic resonance imaging (fMRI) dealt with 

controlled stimulations or tasks that were paced with resting state periods for 

purposes of generating signal contrast. Resting state was considered a low-level 

baseline characterized by unorganized background activity (Binder2012). 

However, distant signal dependencies in resting state blood oxygen level 

dependent (BOLD) fMRI were introduced in 1995 in a seminal study (Biswal et 

al. 1995) showing temporally correlated slow signal fluctuations between bilateral 

motor cortices. Following the introduction of the resting state concept, more inter-

hemispheric correlations were detected (Lowe et al. 1998) and later several 

canonical resting state networks (RSNs) have been revealed (Beckmann et al. 

2005). In retrospect, the old viewpoint of the brain as a mainly reflexive system 

seems overly mechanistic.  

Resting state FC remained controversial for over 10 years (Birn 2012) as it 

was suspected to present scanner instabilities or aliased cardiorespiratory 

fluctuations due to low sampling rates. The extent of scanner related fluctuations 

in BOLD fMRI signal varies between scanners and at worst they could be 

mistaken as resting state brain activity (Smith et al. 1999). On the other hand, 

especially the cardiac fluctuations occur on higher frequencies than what can be 

unambiguously resolved by typical fMRI and the cardiac signal alias across the 

whole frequency band of the observed time-series (Lund et al. 2006). 

Additionally, the low frequency fluctuations in cardiorespiratory rhythms can be 

mistaken for distributed synchronous activity (Birn et al. 2006). Another more 

recent concern for the validity of resting state fMRI is motion that induces 

spurious FC measures. Relatively small head movements can cause hypo- or 

hyperconnectivity between distant brain regions (Power et al. 2012). 

A popular exploratory analysis technique in fMRI is data-driven independent 

component analysis (ICA) that is inherently suitable with the exploratory and 

uncontrolled nature of resting state experiments. Spatial ICA decomposes the 

image time-series into components by maximizing the statistical independence 

between the components. Resulting three dimensional (3D) maps and their 

corresponding time-courses form a linear combination of the original data. 

Already early in fMRI research ICA was used to reveal task-related activity 
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(McKeown et al. 1998) and later it was applied for resting state studies in 

anesthetized children (Kiviniemi et al. 2003) and awake adults (Greicius et al. 

2004). Even though ICA results are always accompanied with separate motion 

artefact and physiological noise components, these have not been an evidence for 

the non-artifactual nature of the detected RSNs. Another important aspect is ICA 

dimensionality that is the number of resolved independent components, which is a 

user-defined free parameter if automatic estimation is not used. Especially in 

group ICA, this has a prominent effect on RSN division, and use of high 

dimensionality and the ensuing fine-grained functional parcellation of the RSNs 

(Kiviniemi et al. 2009) are further explored in this thesis. Apart from noise 

separation and dimensionality viewpoints, the applicability of ICA for studying 

full frequency band data is studied in the thesis. 



21 

2 Review of the literature 

2.1 Imaging physics for functional magnetic resonance imaging 

2.1.1 Principles 

Magnetic resonance imaging (MRI) (Lauterbur 1973) rests upon nuclear 

manipulation by electromagnetic waves. A nucleus of interest is the proton of 

hydrogen that is abundant in living tissue. The proton has a positive charge and is 

in constant rotational movement that induces a magnetic field, or magnetic 

moment, thus giving an elementary magnet known as spin. In the presence of an 

external magnetic field the protons tend to align according to the field direction 

with two possible quantum states (parallel and opposite) with different energies. 

However, the magnetic moment vector is always tilted from the external field 

direction and precesses around this axis with a nuclei specific Larmor frequency 

(63 MHz at 1.5 T) according to the Larmor equation 

 of Bγ=  (1) 

where γ denotes the nuclei specific gyromagnetic ratio and B0 is the magnetic 

field strength. The spin state can be altered by absorption or emission of 

electromagnetic radiation on the Larmor frequency. The distribution between 

states obeys the Boltzmann distribution that yields only 10 parts per million 

excess occupation in the parallel state at 1.5 T but enough to produce net 

magnetization aligned with external magnetic field B0. By operating on this net 

magnetization the principles of classical mechanics can be utilized and the 

magnetization can be manipulated on the Larmor frequency to tilt the precession 

to the transversal direction creating an alternating magnetic field which can be 

received by the RF-coil where a corresponding alternating electric current is 

induced. 

The oscillating precession signal from the excited net magnetization fades 

away exponentially based on two main relaxation mechanisms. Relaxation 

process T1 corresponds to recovery of initial thermal equilibrium state of 

longitudinal net magnetization by emission of the absorbed RF-energy to the 

environment. The other relaxation T2 is due to accumulating phase incoherence of 

the net magnetization in the transversal direction. Spin de-phasing occurs due to 

differences in experienced magnetic field between spins leading to different 
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precession frequencies and increasing phase differences. Differences in the 

experienced magnetic fields can arise from interactions with neighbouring spins 

(spin-spin relaxation) or from static field inhomogeneities, which together form 

T2* relaxation. MRI acquisition parameters dictate the contribution of different 

relaxation mechanisms and as tissues present different relaxation properties 

images with the required brightness and tissue contrast can be obtained. The main 

contrasts are T1, T2 and proton density. In BOLD fMRI the T2* weighting of the 

image is of interest, which can be obtained with a gradient-recalled-echo 

sequence. 

MRI with gradient-echo pulse sequences begins with transmit coil generated 

RF excitation of the net magnetization to the transversal plane (90 degrees) or to 

another desired flip angle (FA). The imaging plane is of desired slice thickness 

defined by RF pulse bandwidth and amplitude of the slice-selection magnetic 

field gradient. Then the 2D MR images can be created by modulating spin 

precession phase and frequency in a controlled fashion with magnetic gradient 

coils. The dimensions are manipulated sequentially; first the spin phases across 

the phase encoding (PE) direction are modified by modulating the spin frequency 

for a short time with a field gradient. Simultaneously, orthogonal frequency 

encoding (FE) gradient is turned on and reversed in direction after the PE is 

turned off. Reversing the FE gradient direction results in gradient echo formation 

when the spins realign. The signal echo is collected while the FE gradient is still 

turned on. In single-shot echo-planar imaging (EPI) (Mansfield 1977) fMRI this 

cycle is repeated for a range of PE gradient moments without additional RF 

excitations before the net magnetization vanishes due to T2 relaxation. In-plane 

matrix size and field of view (FOV) define the in plane resolution for the volume 

element (voxel). This procedure is carried out for a defined number of imaging 

slices in order to cover whole brain volume and after acquisition of all slices the 

imaging continues again from the first slice at a set repetition time (TR). 

Pulse sequences are designed to collect RF signal on all applicable spatial 

frequencies yielding signal “k-space”. The acquired signal shares contribution 

from the whole excited volume and represents frequency domain information. 

Furthermore, k-space data is complex-valued consisting of frequency and phase 

and is in the form applicable for inverse Fourier transformation. Image formation 

by means of Fourier transformation yields spatial domain representation of the 

image with magnitude and phase parts although usually only the magnitude 

images are taken into consideration. 
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Relevant for modern fMRI, acquisition acceleration is achieved by means of 

parallel imaging, which deploys a number of receiver coils for simultaneous 

signal detection with spatial weighting according to coil position. This allows for 

a reduced number of sampled PE steps even though this leads to spatial signal 

aliasing. In the image domain reconstruction methods used in this thesis the 

aliasing is corrected by taking into account the sensitivity maps acquired before 

the fMRI scan. 

2.1.2 Scanner related artefacts in fMRI 

Fast imaging comes with a price of deteriorating image quality. In EPI there is a 

multitude of artefacts that can originate from suboptimal acquisition parameters 

or from failed scanner hardware or software, not to forget about the many 

complex ways the human subject can interact with the magnetic field that is 

always inhomogeneous to some extent. Only a couple of the most prominent MRI 

artefacts related to EPI fMRI are mention in the following. The major problems 

for image quality are distortion and dropout. Local distortions occur in the brain 

regions near air filled sinuses producing high magnetic susceptibility gradients 

that alter the expected resonant frequency. Distortions occur in the PE direction 

where acquisition bandwidth is low i.e. sampling is slow during one RF excitation 

of the slice. Parallel imaging (PI) can be deployed to speed up the signal 

acquisition, which at same time reduces distortions in the PE direction. One other 

major artefact is the signal dropout that is also caused by the same magnetic 

susceptibility gradients in the same brain regions. Gradient echo sequences are 

sensitive to the inhomogeneity of the B0 field that causes rapid dephasing of the 

spins within a voxel and therefore loss of MR signal. Signal dropout could be 

alleviated with shorter TE but then the BOLD signal of interest would be lower 

on the other parts of the brain. If the scanner facilitates automatic shimming, this 

will markedly diminish the magnetic field inhomogeneities and alleviate the 

described image artefacts. 

Instrumental instability is a common problem in measurement systems and in 

EPI fMRI it is largely related to the heat-intensive operation of imaging gradients 

that typically requires water cooling. Much heat is generated through mechanical 

vibrations of the gradient coils due to Lorentz forces resulting from electrical 

current through a magnetic field (Foerster et al. 2005), as well as from electrical 

resistance contributing to heating (El-Sharkawy et al. 2006). Importantly, if 

passive iron shims are used for inhomogeneity correction of the magnetic field, 
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eddy currents are induced by altering magnetic fields during imaging. 

Temperature affects the magnetic susceptibility of iron and the thermal expansion 

coefficient is large, thus the fact that these shims are not actively cooled makes 

the B0 field slightly unstable. Heating and cooling processes together make it 

difficult to achieve steady state operating conditions during EPI fMRI (Foerster et 

al. 2005). It has been shown that resulting magnetic field drifts are not only linear 

but possess a quadratic term, both spatially and temporally (El-Sharkawy et al. 

2006). The effect is most pronounced in the z-direction, which is the direction of 

the bore. Such degradation processes of the field homogeneity result in frequency 

shifts and apparent movement and distortion of the object during imaging. The 

signal drifts are especially apparent in regions with large gradients of image 

intensity (Bandettini et al. 1993). Even fat saturation pulses that are used to 

remove chemical shift artifact signal from fat have been found to induce signal 

fluctuations within EPI fMRI time-series in the presence of B0 drift (Shimada et 

al. 2010). 

2.2 Blood oxygen level dependent fMRI in resting state 

Fluctuations of resting state BOLD fMRI signal started to gain wide interest after 

they were shown to present functional connectivity across hemispheres (Biswal et 

al. 1995). In the following, the nature of BOLD signal is presented before going 

into patterns of functional connectivity in the next section. 

2.2.1 BOLD signal and contrast 

BOLD contrast arises from the magnetic properties of haemoglobin in particular; 

it is the paramagnetic deoxyhaemoglobin that has positive magnetic susceptibility 

that enhances the local magnetic field and shortens the T2* relaxation time of the 

MR signal in the capillary and venous blood. At first glance, this could be 

expected to lead to a decreased signal, as more oxygen is metabolized after an 

increased neural activity requiring higher energy supply. In reality, there is an 

oversupply of fresh oxygenated blood (functional hyperemia) delivered to the 

activation site which increases the cerebral blood volume (CBV) and decreases 

the proportion of deoxyhemoglobin in downstream venules (Fox and Raichle, 

1986). This increased local cerebral perfusion of oxygenated blood flow (CBF) 

exceeding the increased oxygen metabolic rate (CMRO2) increases the effective 

T2* and gives rise to MR signal known as BOLD response (Ogawa et al. 1990). 
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Because over two thirds of the brain blood is located within the capillaries and 

venules of the microvasculature, the measured T2* signal is thought to reflect the 

regional deoxygenation state of the venous system. The main determinant of the 

decrease in deoxyhemoglobin is the increase in blood velocity and thus an 

outwash effect, no recruitment of capillary reserves have been found to contribute 

to BOLD effect (Villringer, 2012). The venules are the most important signal 

source for BOLD signal (Frahm et al. 1994). Haemoglobin volume in the brain is 

only a few percent, but because the range of magnetic susceptibility is greater the 

T2* induced image intensity increase can reach 10% for a task activation. 

Given a task or stimulus, a typical BOLD response is characterized by a peak 

around 4–6 seconds after the neural response. Also, it is further accompanied with 

an initial negative dip preceding the peak and an undershoot following the peak. 

Early descriptions regarded the BOLD response largely as a unitary phenomenon 

acting as a hemodynamic filter for often vaguely defined neural activity (Buxton, 

2012). The physiological basis under the hemodynamic BOLD response, the 

neurovascular coupling, is still a subject of research. The debate concerns 

especially the types of neuronal activity that lead to BOLD signal changes and 

which transmitters and messengers mediate the neurovascular coupling. 

Traditionally the energy consumption related to neuronal activity has been 

considered as a principal agent in inducing increased CBF, but current 

understanding points to other complex multi-factorial explanations (Fox 2012) 

where the excitatory neurotransmitter glutamate has a central role (Attwell et al. 

2010). In order to model CBF, CMRO2 and CBV in a unitary manner a so called 

balloon model has been proposed (Buxton, 2012). The assumption in the model is 

that the CBF and CMRO2 responses can be modelled as tightly coupled, but based 

on recent research this has not been proven possible. Instead, a parallelism of 

hemodynamic and metabolic response is now favoured that is possibly driven by 

different aspects of neural activity. This complicates the interpretation of the 

BOLD signal and an additional specific MR measurement sensitive to blood flow 

may be required in some studies. Further, additional CBF measure does not 

suffice in case of the altering volume fraction of CBF, since concomitant CBV 

changes also modulate the BOLD signal. Moreover, one must keep in mind that 

BOLD contrast is a relative measure and does not provide useful information 

about a physiological baseline. Regional and inter-individual variations of the 

BOLD response also pose challenges for interpretation. 



26 

Neurogenic origin of the BOLD signal 

Based on measurements of the sensory cortex, evidence supports a connection 

between BOLD and local field potentials (LFP) with tight coupling between 

gamma band power of LFP signals and BOLD signal response to a sensory 

stimulus (Logothetis et al. 2001, Niessing et al. 2005, Shmuel et al. 2006). LFPs 

are measured directly from the brain tissue with microelectrodes and reflect both 

excitatory and inhibitory post-synaptic activity, estimated to account for 74% of 

the brain energy budget (Attwell and Iadecola, 2002). Negative BOLD response 

has also been found to correlate with decreases in LFPs (Shmuel et al. 2006), 

supporting the view that the sustained negative BOLD response is the counterpart 

of reduced neural activity (Moraschi et al. 2012). In addition to post-synaptic 

activity, LFPs also measure dendritic afterhyperpolarization and intrinsic 

membrane oscillations (Logothetis 2003). LFP as a combination of above 

activities can be described to reflect peri-synaptic activity (Ekstrom, 2010) 

whereas multi-unit activity (MUA) reflects neuronal spiking activity and action 

potentials. The spiking activity has been found to occasionally correlate with LFP 

(Heeger et al. 2000), but most often action potentials and spiking activity present 

dissociation from regional CBF and BOLD (Lauritzen et al. 2003). LFP can be 

thought of as a measure of synaptic input into a region, whereas spiking activity 

can be thought of as the output of a region (Logothetis 2003). Indeed, the BOLD 

signal seems to present the input to neuronal population as well as the intrinsic 

processing of the population (Lauritzen et al. 2005). In typical measurements the 

BOLD signal cannot be assumed to reflect spiking activity although this has 

frequently been assumed as an explanation for the detected BOLD responses in 

diverse fMRI studies (Logothetis 2008). Although there are numerous studies 

reporting dissociations between BOLD, electrophysiological measurements and 

metabolic measurements the BOLD-LFP model is firmly established in the 

neocortex (Ekstrom, 2010). Recent evidence suggests the neural inhibitory 

activity to be a primary driver for the dissociation of spiking activity from LFP 

and metabolic measurements (Li and Freeman, 2013). The additional models 

explaining the dissociations relate mostly to local differences in neural circuitry 

and in vascular properties.  

From systemic a perspective, the neurogenic origin of the BOLD signal is 

primarily affected by changes in the excitation-inhibition balance (Logothetis 

2008). The effect of the excitation-inhibition balance has been shown in the visual 

cortex where inhibitory neurotransmitter GABA concentration diminished the 
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BOLD response (Muthukumaraswamy et al. 2009). This balance is determined 

within excitation-inhibition networks (Logothetis 2008), or canonical 

microcircuits, that by the event of activation set in a sequence of excitation and 

inhibition in every neuron of the module. Thus the microcircuits form complex 

feedback loops, which is in contrast to the simple idea of sequential activation of 

separate neurons. Then again, the excitation-inhibition balance is largely 

determined by neuromodulative processes which act electrophysiologically via a 

volume transmission mechanism i.e. the extracellular fluid acts as a 

communication media. This is clearly a more diffuse and broader way of 

communication compared to neurotransmission, where neurotransmitters bind 

directly to receptors coupled to ion channels (Logothetis, 2008). Overall, there is 

plenty of evidence that BOLD signal does not differentiate between function-

specific processing and neuromodulation, or either between bottom-up and top-

down signalling in the functional hierarchy. Moreover, excitation and inhibition 

are likely to get mixed in the BOLD signal since inhibitory neural activity may 

decrease BOLD signal depending on the microcircuit configuration. Although the 

BOLD signal has been stated neurogenic at all times despite of all ambiguities 

(Logothetis, 2008) there are recent discoveries of study conditions under which 

the hemodynamic BOLD response component cannot be explained by traditional 

evoked response characteristics (Cardoso et al. 2012). It seems the top-down 

control of the brain hierarchy is able to drive the hemodynamic BOLD response 

to an event that is not delivered but is anticipated by the subject. 

Neurovascular coupling and energy consumption 

The majority of the energy use in the brain goes towards the reversal of the ion 

fluxes underlying synaptic potentials and action potentials (Attwell and Laughlin, 

2001). The cellular chemical energy transporter ATP (adenosine triphosphate) in 

the brain is almost entirely produced by oxidative glucose metabolism where 

glycolysis is followed by oxidative phosphorylation. It has been recently found 

that at the onset of increasing neural activity oxidative phosphorylation powers 

the initial information processing (Hall et al. 2012) in contrast to an established 

view that glycolytic ATP production would be responsible for the initial energy 

supply (Hyder et al. 2006). During the course of continuing increased local neural 

activity the non-oxidative metabolism increases markedly but oxidative 

metabolism still corresponds to a dominant share of the energy supply (Lin et al. 

2010). As there are no oxygen or glucose reserves in the brain the varying 
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physiological demands have to be maintained by sophisticated CBF control that 

reallocates the resources.  

Neurovascular coupling in the microvasculature is the key process to control 

regional CBF by increasing the vessel diameter (vasodilation) in response to 

metabolic demands and synaptic transmission (Cauli and Hamel, 2010). 

Synaptically released glutamate is the major CBF regulator that signals for both 

neurons and astrocytes and gives rise to a signalling cascade leading to 

vasodilation by relaxation of the vascular smooth muscle cells (Attwell et al. 

2010). Numerous processes are involved in the CBF control regarding the 

astrocytes: reciprocal signalling between neurons and astrocytes, concentration 

changes of metabolites and electrolytes, and change in vascular tone (Kowianski 

et al. 2013). Moreover, these processes are not independent of each other and it 

seems that the role of astrocytes in CBF regulation is currently still 

underestimated. Overall, the main factors of neurovascular coupling can be 

devided into vasoactive metabolites (e.g. lactate, oxygen), vasoactive ions (e.g. 

Ca2+), neurotransmitters and –modulators (e.g. glutamate, gamma-aminobutyric 

acid (GABA)) and gliotransmitters (e.g. adenosine) (Kowianski et al. 2013). On 

the other hand, the neurovascular coupling model varies between stimulation 

conditions. In short, transient stimulation by vasoactive mediators produced by 

pyramidal neurons and interneurons are responsible for the CBF changes. 

However, with sustained stimulation the response is also considerably mediated 

by astrocyte-derived messengers (Cauli and Hammel, 2010). In resting state fMRI 

there are indications that the peak timing of the BOLD response following slow 

oscillations in neuronal activity is similar in both resting state and task-fMRI 

(Hyder and Rothman, 2010). Nevertheless, the contribution of different mediators 

of CBF control in resting state activity remains to be further studied. 

Imaging parameters characterize BOLD signal 

Some MRI acquisition parameters play a considerable role in defining the relative 

contributions of various signal sources. There has been a brain vs. vein – debate 

regarding the issue of GRE-EPI BOLD signal originating mainly from draining 

veins at 1.5 T magnetic field strength. The signal arises mainly from intravascular 

macroscopic susceptibility effects, instead from capillaries, in lower magnetic 

field strengths (Ogawa et al. 1993), which limits the spatial point spread function 

to around 3 mm in 1.5 T (Engel et al. 1997). The draining vein effect can produce 

additional BOLD activation in downstream veins (Gati et al. 1997) that may not 
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be a faithful representation of the primary activity site in brain parenchyma. 

However, this may not be a dramatic issue in typical 1.5 T studies where the 

imaging voxel size is larger than the point spread function. In order to improve 

the spatial specificity of the BOLD signal a higher magnetic field and longer echo 

time are advantageous, and also spin echo sequences that are not sensitive to 

intravascular effects may be used if the signal-to-noise ratio permits (Menon, 

2012). Magnetic field strength and imaging parameters also affect the relative 

contribution of the physiological noise in the BOLD signal, the BOLD-like noise 

signal increases with higher field strength and decreases with voxel size 

(Triantafyllou et al. 2005). Voxel size dependency is related to changes in blood 

volume fraction in the imaging pixel due to vasodilation and vasoconstriction. 

2.2.2 BOLD signal fluctuations 

Assessment of the brain energy balance is illustrative for appreciating the 

significance of the fluctuations in ongoing brain activity, thought to be reflected 

in BOLD signal fluctuations. It is known that the brain’s relative energy demand 

is ten times more than its portion of the weight (Clark and Sokoloff, 1999). 

However, regional blood flow induced by high demand tasks does not increase 

more than 5–10%. This is further alleviated by a very low increase (~1%) in local 

energy demand associated with low glucose utilization and even lower oxygen 

consumption (Raichle and Mintun, 2006). Furthermore, by magnetic resonance 

spectroscopy, 80% of the brain energy metabolism has been shown to relate to 

glutamate cycling (Sibson et al. 1997) and thus to neural signaling processes. This 

cost-based analysis points towards intrinsic neuronal activity of the brain 

operating on its own and interacting with any possible stimulation (Raicle and 

Mintun, 2006). 

Fluctuation of the main BOLD factors  

Already early physiological studies found spontaneous fluctuations in different 

parameters like in oxygen availability and CBF (Cooper et al. 1966). Nowadays 

the physiology underlying the task- or stimulus-evoked BOLD signal is regarded 

as rather well known but how the physiology differs in spontaneous BOLD 

fluctuations is an open issue. The numerous haemodynamic and metabolic factors 

contributing to BOLD signal have been found to fluctuate too (Obrig et al. 2000; 

Fox and Raichle, 2007). This regards for instance blood volume, blood flow, 
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oxygen availability, neurotransmitter levels and cytochrome oxidase activity that 

reflects neural metabolism. However, spontaneous electrophysiological activities 

and their relations to BOLD fluctuations have been of great research interest. 

Local correspondence has been repeatedly demonstrated between BOLD 

fluctuations and slow fluctuations (<0.1 Hz) in the high frequency gamma band 

(above 30–40 Hz) power of LFPs (Leopold et al. 2003; Lachaux et al. 2007; 

Schölvink et al. 2010). Measured BOLD signal may reflect the coordination of 

neuronal firing mediated by gamma oscillations (Fries et al. 2005). Intriguingly 

the slow fluctuations in LFP power were found to not only present local 

correlations with BOLD signal but they also exhibited similar correlation with 

almost the entire cortical surface (Schölvink et al. 2010). This links together the 

baseline neuronal activity and the global BOLD signal that has often been 

removed in fMRI analysis (Hyder and Rothman, 2010). The results also suggest 

that neurovascular coupling of spontaneous and stimulus-evoked BOLD signal is 

similar since hemodynamic delay to modulations in high gamma band power is in 

agreement with stimulus-related delays (Schölwinck et al. 2010). Additionally, 

the slow cortical potentials (SCPs) between 0.01 and 0.4 Hz, which seem to 

modulate the power of higher frequency activity, also present close 

correspondence to BOLD fluctuations (He and Raichle, 2009). 

Neurotransmitter levels also contribute to the BOLD oscillations and to the 

interplay between distant brain regions as has been depicted in a recent study 

(Kapogiannis et al. 2013) mapping glutamate and GABA concentrations in the 

posteromedial cortex. It was shown that both neurotransmitters present significant 

positive correlation with the power of the BOLD oscillation. 

Fluctuation of the non-BOLD signal sources 

Besides functionally relevant sources for BOLD signal there is also a multitude of 

potential confounders. Periodic cardiac noise in BOLD signal has been thought to 

arise from several sources (Dagli et al. 1999): In-flow enhancement by fresh 

blood, dephasing of the phase coherence between spins due to flow, and pulsatory 

movement of vessels, brain tissue and CSF. Immediate respiratory-induced 

perturbations in the BOLD signal occur due to the moving chest wall and organs 

which modulate the static magnetic field with a dominant effect in global 

resonance frequency shift in the brain (Noll et al. 1994). There is also inferior-

superior dependence in the field modulation caused by relative proximity to the 

chest (Durand et al. 2001). In single-shot EPI the resonance frequency changes 
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lead to positional shifts mostly in the PE direction (Raj et al. 2000). Respiration 

related true head motion is another source of BOLD signal fluctuation (Noll et al. 

1994; Glover and Lee, 1995). An important factor for BOLD signal is carbon 

dioxide (CO2), a by-product of glucose metabolism in the brain and a strong 

vasodilator leading to increased CBF. Arterial CO2 levels are commonly found to 

oscillate due to respiratory feedback mechanisms like chemoreceptor regulation 

(Modarreszadeh and Bruce, 1994). Moreover, arterial blood pressure changes 

cause fluctuations in both respiratory and cardiac rates which again influence the 

BOLD fluctuations. Breathing alters the CBF also via intrathoracic pressure 

changes, which affects the heart rate (Berne and Levy 1993). 

Another considerable factor in CBF oscillation is alteration of the vascular 

tone in response to blood pressure changes. The arterial and arterioral systems 

attempt to maintain a stable CBF by means of vasoconstriction and vasodilation 

processes but the delays in the autoregulation process cause CBF fluctuations. 

Arterial blood pressure and heart rate explain around one third of the fluctuation 

in oxyhemoglobin concentration (Katura et al. 2006) which also influences the 

BOLD signal fluctuations. Cerebral vascular tone is additionally related to 

vascular tone throughout the body, which exhibits low frequency fluctuations 

(LFF) called vasomotion (Aalkjaer et al. 2011), which would influence CBF. This 

fluctuation sometimes presents characteristic 0.1 Hz oscillation (Mayhew et al. 

1996). However, the origin of vasomotion is not well known, although myogenic 

origin is suspected, and it is not certain if it is independent of fluctuations in 

cardiac, respiratory, blood pressure and arterial CO2 concentration (Murphy et al. 

2013). Another source of fluctuation in CBF, also present around 0.1 Hz, is the 

systemic oscillation of blood pressure called Mayer waves that are related to 

sympathetic nervous activity (Julien 2006). Interestingly, the systemic LFFs of 

total haemoglobin concentration measured from a fingertip has been shown to 

significantly correlate with resting state BOLD signal in brain regions of sensory 

modality i.e. sensorimotor, auditory and visual cortices (Tong et al. 2013). 

BOLD as a broad band phenomena 

The BOLD signal fluctuations possess the highest signal power at frequencies 

below 0.1 Hz due to inherent low pass filtering by hemodynamics. Very slow 

BOLD signal drifts below around 0.008–0.01 Hz are typically removed prior to 

analysis. However, the drifts bear also signals of physiological origin as these 

signals in grey matter (GM) share similar TE dependent properties as task-evoked 
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BOLD signal (Yan et al. 2009). The signal intensity level has also been shown to 

be modifiable by a vasoconstrictive drug (Bruhn et al. 2001). On the other end of 

the fMRI frequency spectra the recent advances in PI techniques have enabled 

investigation of intrinsic BOLD fluctuations on high frequencies. Results show 

there is also signal of interest above the typical frequency band between 0.01–0.1 

Hz (Lee et al. 2013), thus indicating that the intrinsic activity is a wide band 

phenomena. 

2.3 Functional connectivity patterns 

Most part of the brain areas that show relatively high regional cerebral blood flow 

at rest (Raichle et al. 2001) also present a deactivation pattern in task-fMRI 

studies. This RSN is the so-called default mode network (DMN) (Greicius et al. 

2003) (Fig. 1) that is thought to support core mental processes such as self-

awareness (Gusnard et al. 2001) and conscious self-representation (Lou et al. 

2004). Especially frontal and parietal lobes maintain higher cognitive functions 

and host RSNs like the DMN and task-positive network (TPN) that constitutes 

networks associated with functions like attention, salience processing and 

executive control. Other large scale RSNs include networks of varying sensory 

modality, visual, auditory and sensorimotor networks. Similar RSNs have been 

revealed with fMRI sequences sensitive to CBF (De Luca et al. 2006) and CBV 

(Miao et al. 2014). The RSN organization has been shown to be relatively 

reproducible across individuals, over repeated scanning sessions and between 

very different datasets (Fornito and Bullmore, 2010). On the other hand, network 

specific individual variations in FC patterns have been found to relate to 

personality traits (Adelstein et al. 2011). Also, practically all known neurological 

and psychiatric disorders have been shown to be associated with altered FC 

properties (Zhang and Raichle, 2010) and a wide variety of pharmacological 

substances have been shown to modulate the networks (Fornito and Bullmore, 

2010). Behavioural performance for example in executive tasks (Seeley et al. 

2007) and working memory tasks (Hampton et al. 2006) has also been shown to 

correlate with the strength of certain RSNs. In clinical utilization resting state 

fMRI holds a great promise in advances of pre-surgical functional mapping 

(Kokkonen et al. 2009) and outcome prediction (Castellanos et al. 2013). 
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Fig. 1. The most prominent resting state network is the default mode network (DMN) 

that activates during the resting state. The core nodes of the DMN are posterior 

cingulate cortex (PCC), medial prefrontal cortex (mPFC) and bilateral inferior parietal 

lobule (IPL). 

The functional brain imaging science has operated on the dichotomical axis of 

functional segregation and integration. Functional segregation, or specialization, 

is established as a fundament of the brain organization (Friston, 2009). In fMRI 

this is being mapped by means of stimulus induced responses. The functional 

connectivity studies on the other hand address functional integration and 

distributed information processing. As a whole, both principles of segregation and 

integration are implemented by dynamically reshaping networks that share a 

varying but consistent degree of interaction (de Pasquale et al. 2012). 

Consequently the distinction into separate RSNs is a rather limited representation 

of the modular organization. In fact the brain organization is well characterized by 

a so called small-world topology (Stam 2004) that demonstrates efficient node 

clustering and path length between nodes. In the brain the high clustering (i.e. 

modularity) supports the segregated functions and short path length between any 

nodes is compatible with integrated information processing. Central nodes in this 

organizational architecture are thought to serve to balance the pressure to evolve 

segregated pathways by integrating local networks and thus minimizing the cost 

of wiring and metabolism (Bassett et al. 2006). 

Modularity or clustering of the brain functional organization can be expressed 

by RSNs that have been mapped with widely varying methods demonstrating the 

modularity continuum. A common comprehension is that there is no clearly 

optimal division into a certain number of networks. On the coarse level of 

clustering there are the negatively correlated intrinsic task-negative DMN system 
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and the extrinsic task-positive TPN system. They indicate two partially competing 

processes, such as internally and externally oriented cognition (Fransson 2005, 

Fox et al. 2005). Both the DMN related system and the TPN system obtained 

from resting state data can be further divided into numerous sub-networks which 

vary depending on the clustering technique and its parameters. Different 

clustering studies suggest varying optimal modularity levels but with less than ten 

modules the representation has been found to be stable (Meunier et al. 2009; He 

et al. 2009). Nevertheless, there are relatively stable hierarchical levels also with 

a higher number of modules. For instance with ICA, the resting state data have 

been demonstrated to parcellate even to more than 40 RSNs (Kiviniemi et al. 

2009). With increasing accuracy of the clustering it has become evident that many 

brain regions of higher level information processing (e.g. DMN) are functionally 

connected to different networks at a time, whereas low level sensory cortices are 

clearly isolated (Yeo et al. 2013). 

Current ideas on the dynamics of the brain activity fluctuations are centered 

on the one hand around criticality, which can be described as a transitional zone 

between ordered and disordered dynamics. Simulations have shown that RSN 

dynamics can be best modelled when the networks function near instability (Deco 

et al. 2013), which provides efficiency and flexibility for resource utilization on 

task demands. On the more in depth view of the brain dynamics the function of 

the brain can be described as being a statistical inference machine that constantly 

predicts and tries to explain its sensations (von Helmholz, 1867). The brain serves 

to update the information about the internal and external circumstances and use 

that information for making decisions about required actions (Friston 2010). The 

fundamental principle describing these actions is called free-energy principle, 

meaning that the brain attempts to minimize surprise. The key mechanisms of this 

internal model are the generated top-down predictions for sensory input and in 

case of error in the prediction the bottom-up control issues an update for the 

model (Friston 2010). In the rest of this chapter the aspects of FC are discussed 

from several standpoints that cast light to its relevance for brain function. 

2.3.1 Stable and dynamic properties 

The FC measures are known to present both stable and dynamic properties 

(Fornito and Bullmore, 2010). The stable properties stand for maintenance of the 

functional integrity and reflect brain organization. The alterations in stable 

properties would reflect changes in the underlying brain physiology. Dynamic 
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properties on the other hand could mirror the fast information processing, 

neuromodular mechanisms (Friston 2009). Overall, the static versus dynamic 

properties can be contemplated for instance from a developmental perspective, in 

light of different stages of consciousness and by correlating intrinsic fluctuations 

in resting state to measures of thoughts and cognition. Also, functional plasticity 

is an important aspect for the dichotomy between stable and dynamic. 

Investigation of the different age populations has revealed brain functional 

connectivity representations of development and aging. In the infancy the brain 

functional architecture is wired to support perception-action tasks as reflected by 

location of functional hubs in the homomodal brain regions like auditory, visual 

and sensorimotor cortex. However, in adulthood the hubs reside in heteromodal 

association cortex (Fransson et al. 2011). In varying ways RSNs shape up 

especially during the third trimester of gestation (Doria et al. 2010), indicating 

their emergence before cognitive abilities. During childhood the DMN FC 

gradually integrates into a cohesive network like it appears in adulthood (Fair et 

al. 2008). As a general observation, from childhood to young adulthood the FC 

evolves from local to a distributed organization (Fair et al. 2009), by mechanisms 

of decreasing short-range connections and increased long-range connections. In 

aging from adolescence to middle age the process is partially reversed, 

manifesting as declining FC in a broad set of RSNs on both heteromodal and 

homomodal cortices (Littow et al. 2010). In the aging brain, a decline in 

connectivity of the RSNs has been a repeated finding, especially for the DMN 

(Andrews-Hanna et al. 2007, Damoiseaux et al. 2008). A neural origin of the 

activity decline has been confirmed by a simultaneous EEG-fMRI study (Balsters 

et al. 2013) that indicated several of the frontal RSNs to be affected. Indeed, 

prediction of the individual maturity from the FC analysis has been shown to be 

feasible with reasonable explanatory power (Dosenbach et al. 2010) although 

from spectral properties of EEG measurement the maturation can be depicted 

more accurately (Wackermann and Matousˇek, 1998). 

Intriguingly, the RSNs are largely sustained also in sleep and anaesthesia. A 

general finding in fMRI studies of light sleep has been the preservation of the FC 

patterns (Horovitz et al. 2008, Larson-Prior et al. 2009) with minor reduction in 

connectivity strength (Samann et al. 2011). Consistent with the interpretation that 

the DMN reflects self-awareness the decoupling of the antero-posterior DMN 

connectivity relates to deep sleep (Horovitz et al. 2009, Samann et al. 2011). On 

the other hand, sleep deprivation (Samann et al. 2010) and light anaesthesia 

(Greicius et al. 2008) suppress the DMN connectivity. Then again anesthetized 
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children present increased synchrony in sensory RSNs (Kiviniemi et al. 2005). 

The patterns of BOLD signal connectivity in animals have been found to present 

highly similar connectivity to that of humans in the homologous areas, in 

anesthetized monkeys (Vincent et al. 2007) and in awake rats (Liang et al. 2011). 

In contrast to the results of sleep and anaesthesia studies in humans, anaesthesia 

was not found to relate to a decrease in long-range connections but showed a clear 

reorganization of the whole brain connectivity (Liang et al. 2012).  

Intimately related to the question of stable vs. dynamic properties of the FC is 

the extent to which measured RSNs represent unconstrained cognition, whether 

conscious or not. The resting state is thought to reflect a free thinking state and 

measured RSNs, especially the DMN, are probably significantly related to the 

content of these thoughts (Mason et al. 2007). Indeed, the spontaneous activity of 

the DMN has been shown to be modulated by mind wandering, related to past or 

future considerations (Andrews-Hanna et al. 2010). One example of classifying 

the prevalent inner experiences are division into permanent sensory monitoring, 

seeing inner images, certain kinds of thought described as inner speech, feelings 

and unsymbolized thinking (Heavey and Hurlburt, 2008). The distribution of 

these categories varies highly between individuals. Importantly, although the 

inner thoughts have been shown to alter the RSN activity and synchronization, 

only a small fraction of the fMRI signal variance can be explained by them 

(Doucet et al. 2012).  

Functional connectivity studies of brain plasticity have been scarce although 

varying training-induced changes have been shown with volumetric and structural 

connectivity measures. In fact, already two hour training in a car racing game was 

shown sufficient to induce structural changes in the hippocampus (Sagi et al. 

2012) as measured by diffusion tensor imaging. Nevertheless, recently also a 

resting state fMRI study was able to determine brain plasticity during a three 

month preparation for the law school admission test that induced strengthening of 

the fronto-parietal FC (Mackey et al. 2013). Another excellent example of neural 

plasticity has been shown in congenitally blind people who recruit the brain 

regions typically allocated for spatial processing of visual information for spatial 

processing of sounds (Collignon et al. 2013). Also bilateral FC in the visual 

cortex during auditory tasks was significantly higher in congenitally blind vs. 

late-onset blind participants. This crossmodal plasticity occurs only if vision is 

lost during an early sensitive period, plasticity in the late-onset blind people relies 

more on the feedback loops on the heteromodal associative cortex. 
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2.3.2 Structural and functional connectivity 

The resting state networks reflect the patterns of anatomical connectivity as 

measured with FC and diffusion tensor imaging based tractography (Greicius et 

al. 2008, Hagmann et al. 2008). Also reflecting anatomical connectivity, distinct 

FC patterns have been found from structurally and functionally different nuclei of 

the amygdala (Roy et al. 2009). However, a lack of anatomical connection does 

not constrain the FC (Vincent et al. 2007). The relation of the functional to 

structural connectivity has been studied with patients with deficits in brain 

anatomy (Uddin et al. 2008, Johnston et al. 2008), but these case studies where 

single patient underwent a split-brain operation for intractable epilepsy are a 

slightly contradictory. However, a conclusive study (Tyszka et al. 2011) shows 

intact bilateral FC in participants with a complete callosal agenesis, a birth defect, 

which indicates that the structural connectivity is not a necessary prerequisite for 

FC. Instead the results suggest that functional networks emerge with the 

development of normal cognition. Current advanced model on the relation 

between structural and FC suggest that deterministic anatomy facilitates certain 

functional networks but instantaneous functional patterns reflect the exploration 

of all possible configurations around the anatomical skeleton (Deco et al. 2013). 

In this model the essential elements for spatiotemporal FC patterns are local 

dynamics, information transmission delay and noise, that serve the purpose of 

efficiency and speed of network mobilization for action or other demand. 

The view on the relation between structural and functional connectivity has 

been that there is no reciprocity, i.e. structural connectivity is highly indicative of 

functional connectivity but not vice versa (Honey et al. 2009, Vincent et al. 

2007). Recent whole brain study firstly found long-range intrahemispheric 

structural properties that support FC changes in attention and memory related 

task-fMRI (Hermundstad et al. 2013). However, the same study reliably identified 

long-range intrahemispheric structural properties that could be inferred from FC 

changes in attention and memory related task-fMRI compared to rest 

(Hermundstad et al. 2013). Moreover, in another study the power of the FC 

during a task was found to deviate more from structural connectivity than during 

rest (Baria et al. 2013). 
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2.3.3 Resting state vs. stimulus-induced activity 

Functional connectivity and task activation MR signal changes appear to arise 

from the same BOLD-related origins (Peltier and Noll, 2002). This was shown 

with multi-echo data where both FC and BOLD activation modulated the 

transversal magnetization signal (T2*) but not the spin density signal (S0). Also, 

the task-fMRI responses have been found to possess a voxel-wise positive linear 

relationship with the resting state BOLD fluctuations, thus they are thought to 

share similar physiological origins (Hyde et al. 2001; Kannurpatti et al. 2012). It 

has been proposed that BOLD FC patterns may be partitioned into two conceptual 

layers (Fransson, 2006), one consisting of stimulus-induced activity as well as 

unconstrained cognition and conscious mentation, the other reflecting the 

spontaneous intrinsic activity more closely reflecting the underlying anatomy. 

Indeed, an emerging view, especially regarding neural activity, is that separation 

of the ongoing and evoked activity is not well grounded (Raichle 2011). 

Analysis of task-fMRI, with a general linear model, is based on the 

assumption that activity in task and control conditions sums linearly, which 

implies that task and control condition do not influence each other, that is a 

concept known as pure insertion. The assumption has been shown not to hold 

(Friston et al. 1996) and the view is that the measured brain activity represents a 

dynamic system whose activity is influenced by the previous activity. With 

varying methods it has been shown how resting state activity and stimulus-

induced activity influence one another (Northoff et al. 2010). An influential study 

(Fox et al. 2006) of the relationship between resting state and task-related activity 

investigated the contribution of spontaneous BOLD fluctuations to unilateral 

motor event-related responses by taking contralateral spontaneous BOLD signal 

into account. It was found that the contralateral activity, although not a fully 

independent measure (Sadaghiani et al. 2010), explained a considerable 

proportion of the response variability. Thus, the result indicated approximately 

linear superposition of task-evoked neuronal activity and spontaneous BOLD 

signal. However, the model of linear superposition has not been found to hold on 

all brain areas (Becker et al. 2011). The picture of the relationship has lately been 

complemented with evidence pointing to certain negative interaction between the 

baseline of spontaneous activity and following stimulus-induced activity (He, 

2013): higher prestimulus baseline results in decreased activation (or increased 

deactivation). The result is that BOLD signal variability in the directly related 

brain region is diminished during task execution.  
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The behavioral significance of the varying prestimulus brain activity level for 

a task performance has been shown in a somatosensory detection task near the 

perceptual threshold (Boly et al. 2007). It was found that higher activity in brain 

areas encompassing the task-positive network predicted perception of the 

stimulus, whereas higher activity on the main nodes of the default mode network 

predicted missed stimulus detection. However, this principle does not generalize 

to other task circumstances, the way certain networks predict the behavioural 

outcome are very context specific (Sadaghiani et al. 2009). 

2.3.4 Electrophysiological correlates 

Electrical activity of the brain is most often measured on the scalp with 

electroencephalography (EEG) that is a summation of local field potentials 

(LFPs). Correspondence of spontaneous electrical activity to the RSNs revealed 

with fMRI has been a subject of challenging research which has shown that high 

temporal correlations between electrical and BOLD signals cannot be obtained 

(Leopold and Maier, 2012). However, very high spatial concordance between 

spontaneous electrical activity patterns and fMRI RSNs has been found with 

magnetoencephalography (MEG) that measures magnetic fields associated with 

electrophysiological brain activity (Brookes et al. 2011). The electrophysiological 

basis of BOLD FC patterns has been studied with patients undergoing pre-

surgical fMRI monitoring and intracranial LFP recordings. Evidence from these 

local measurements has accumulated that interhemispheric synchronous gamma 

band oscillations are a significant neural basis for BOLD connectivity (Nir et al. 

2008; He et al. 2008). The power of high frequency activity on the gamma band 

shows spatial correspondence to BOLD fMRI only during awake and rapid-eye-

movement sleep (He et al. 2008). With whole brain MEG measurements, 

however, low and mid-range frequencies are found to form the FC patterns (Hipp 

et al. 2012; Ghuman et al. 2013). On the other hand, SCPs have been found to 

present spatial patterns of coherent activity comparable to BOLD fMRI networks 

across broadly different levels of consciousness including even anaesthesia 

(Breshears et al. 2010).  

High frequency oscillations shown to be related to FC patterns in BOLD have 

the property that relative phase between distal regions of these synchronous 

oscillations is near zero (Roelfsema et al. 1997, Nikouline et al. 2001). This 

cannot be facilitated by typical neural communication mechanisms that have non-

zero lag (Lord et al. 2013). It has been suggested that slow oscillations would be 
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coordinating activity across longer distances (von Stein and Sarnthein, 2000) 

which is consistent for instance with local synchronization in the high frequency 

band. However, current understanding of the spatial coordination is more 

complex and it is concluded that single frequency bands are not driving the 

BOLD signal (Whitman, 2013). Although, for instance, somatosensory and 

auditory cortices seem to have their own preferred frequency bands for 

synchrony, similar in intrinsic and task evoked activity (Ghuman et al. 2013), it is 

the full band frequency activity working in concert to connect the distant regions 

of networks (Whitman, 2013). Converging evidence points to phenomena called 

cross-frequency coupling that manifests as high-frequency activity modulated by 

slow oscillations (Wang et al. 2012). Slow oscillations (SCPs and their BOLD 

representation) are thought to be fluctuations of cortical excitability (Vanhatalo et 

al. 2004) that have marked effects on the measured spectrum of electrical activity 

(Lakatos et al. 2005). The mechanism works step-wise from SCP frequencies to 

the highest frequencies by phase-amplitude dependency between frequency 

bands. The amplitude of the higher frequencies is dependent on the phase of the 

lower frequency oscillations and this relationship between frequency bands forms 

the so-called nested oscillations (Monto et al. 2008). The cross-frequency phase-

amplitude coupling is always present in the brain activity even though brain 

activity is always arrhythmic (or scale free) (Chialvo 2010). The scale free brain 

activity can be described by 1/f spectral property, where power is inversely 

proportional to frequency, which is a ubiquitous property in complex systems. 

Also, the BOLD signal of the brain exhibits scale-free spatiotemporal 

connectivity patterns (Equiluz et al. 2005). Altogether the scale-free activity 

might be a unifying concept for spontaneous brain activity and behavior (He et al. 

2010, Palva et al. 2013). Parameters describing scale-free behavior of the long 

range temporal correlations, and those describing rapid cascades of neural activity 

called neuronal avalanches, are highly correlated with each other and with 

behavioral performance (Palva et al. 2013). The scale-free dynamic is tightly 

related to the question of whether the brain operates in a critical state (Bak, 1998). 

The latest comprehension however is that criticality may not fit to all wide-

ranging findings, although the theory has a strong explanatory power (Boonstra et 

al. 2013). 
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2.3.5 Rapid dynamics of the functional connectivity 

The variability and dynamic properties of the FC have only recently come up to 

the center of the research focus in the field. So far mostly the average properties 

of FC have been under investigation as analysis techniques implicitly assume 

stationarity of the time series. However, in practice the observed FC is clearly 

non-stationary (Chang and Glover, 2010). Moreover, the non-stationarity issue is 

fully spatiotemporal of nature as the FC patterns markedly evolve during time. 

Investigating the dynamic features of the FC requires different analysis 

approaches, like sliding window based methods (Karvanen & Theis, 2004). Yet 

revealing population level characteristics of connectivity dynamics, under 

undirected resting state scanning, is challenging (Kiviniemi et al. 2011, Sakoglu 

et al. 2010). However, research on variability of RSNs has demonstrated a rich 

variety of connectivity configurations across the brain (Smith et al. 2012). 

Furthemore, an impressive collection of FC configurations can be detected from 

single time frames which mix and merge parts of conventional RSNs (Liu & 

Duyn 2013). The EEG correlates of the varying BOLD connectivity have been 

found especially on the alpha band around 10 Hz, thus supporting the neural basis 

(Chang et al. 2013). Furthermore, the non-stationary FC has been found to relate 

to state of the autonomic nervous system (ANS) by investigating heart rate 

variability (HRV) (Chang & Metzger et al. 2012). Synchronization of brain 

regions mediating vigilance effects and the brainstem was associated with the 

high frequency component of the HRV. Furthermore, on the whole brain level the 

momentary connectivity formation between all RSNs has been shown to present 

certain global connectivity states that in part strongly diverge from traditional 

RSN patterns (Allen et al. 2014). The global connectivity states can fluctuate 

quickly but there are typically relatively stable states that can sustain for over a 

minute. Also, the average occurrence rate in certain connectivity states presents a 

linear or curvilinear trend during a typical resting state of 5–10 minutes. These 

states are thought to reflect alterations in arousal and vigilance. 

Transient modulations of FC patterns have been studied in pharmacological 

studies that can potentially shed light on fundamental properties of the brain 

function. For instance, nodes of the DMN have been shown to present varying 

connectivity dynamics after different emotional arousals (Eryilmaz et al. 2011). 

By measuring fractal properties of the endogenous brain dynamics a cognitive 

effort has been shown to induce a deviant state of the dynamics that takes several 

minutes to recover back to baseline value of the fractal estimate (Barnes et al. 
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2009). Also, transient effects of various substances on FC have been investigated. 

For example, caffeine has been found to increase the non-stationarity of the motor 

cortex BOLD fluctuations by inducing varying phase differences between left and 

right cortices (Rack-Gomer et al. 2012), which supports the MEG study showing 

widespread decrease in neural connectivity following caffeine administration (Tal 

et al. 2013). Another common substance, cholinergic nicotine, is known to 

modulate cognitive performance, and the mechanism has been demonstrated in a 

resting state fMRI study, where the decrease in DMN suggested a shift to external 

information processing and the increase in lateral visual RSN corresponded to 

increase in visual attention (Tababe et al. 2011). Also alcohol has been found to 

affect specifically the visual RSN by inducing a slow increase in the synchronous 

BOLD fluctuations likely mediated by GABA (Esposito et al. 2010). Using 

psilocybin to induce a psychotic state, it has been found that decreased 

connectivity between the anterior and posterior DMN nodes, decreased negative 

temporal correlation between the DMN and the TPN, and an increased 

thalamocortical connectivity are hallmarks of psychosis (Carhart-Harris et al. 

2013). These results emphasize the importance of the DMN integrity for normal 

cognition. 

2.4 Independent component analysis for BOLD fMRI 

Independent component analysis (ICA) is a data-driven method for performing 

blind source separation (BSS) (Jutten and Herault, 1991), from a set of 

measurements by maximizing statistical independence between the source 

estimates. In the ICA context the measured dataset is assumed to be a linear 

mixture of the estimated independent sources, which corresponds to the 

generative model used in conventional hypothesis based task-fMRI analysis. In 

practice each independent component (IC) presents a spatial map and a 

corresponding time-course indicating coherent temporal dynamics among voxels 

of the map. The maps are thought to depict FC between brain regions (Friston 

1994) or signal sources like motion artefact and physiological noise. The key 

criterion in source estimation is non-Gaussianity that can be used for finding non-

linearly decorrelated components. In the estimation process the mutual 

information between the components is minimized, which yields to maximization 

of the statistical independence between components. ICA was developed for 

solving the so-called “cocktail party” problem where a number of individual 

voices have to be separated based on multiple parallel microphone recordings 
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(Bell and Sejnowski, 1995). Similar problems exist in numerous application 

domains, in particular, ICA was found to be widely useful in biomedical imaging 

research. 

Due to spatiotemporal dimensions of typical fMRI data (good spatial 

resolution, poor temporal resolution), ICA is usually operated in the spatial 

domain i.e. time-points act as channels/variables and voxels represent 

measurements. Maximization of mutual independence is then carried out for 

spatial maps, which conforms to the localization paradigm of classical 

neuroscience. Temporal ICA would yield to an underdetermined condition, since 

there are typically at least hundred times more brain voxels (20000–30000) than 

time-points (~200–300). In order to carry out temporal ICA in fMRI, the analysis 

can be restricted to a region of interest for instance by selecting the region based 

on one spatial IC (Seifritz et al. 2002). Due to the recent advent of faster fMRI 

sequences enabling sub-second temporal resolution and more time-points it has 

become possible to carry out full brain temporal ICA without drastic data 

dimensionality reduction in the spatial dimension (Smith et al. 2012, Boubela et 

al. 2013). In this thesis, the acronym ICA will be used to denote spatial ICA 

unless stated otherwise. 

2.4.1 Spatial ICA principles 

The typical generative model used in the ICA is the linear mixture of random 

variables defined as X = AS. Observed data are X and the task is to decompose X 

into appropriate rows and columns of so-called mixing matrix A and a matrix of 

samples from statistically independent random variables S. Generally in the ICA 

estimation the unmixing matrix W is first computed so that source estimates S 

have properties maximixing the statistical independence. This is followed by 

computing the mixing matrix A as an inverse of unmixing matrix W. In spatial 

ICA the final independent components (ICs) are spatial maps that are orthogonal 

to each other and maximally independent statistically. However, the strength of 

ICA is that the IC time-courses are not required to be orthogonal unlike in 

principal component analysis (PCA). Formally the assumption of the statistical 

independence means that the joint probability density function (PDF) of the 

variables can be factorized into marginal PDFs of individual sources. In effect 

ICA searches for non-linearly uncorrelated source estimates which allow the 

separation of signal sources that cannot be separated by requiring only 

uncorrelatedness (Hyvärinen et al. 2001). During recent years there has been 
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controversy about spatial sparseness of the sources (Daubechies et al. 2009) as 

the driver for the decomposition, but current understanding is that ICA indeed 

seeks for statistical independence rather than sparseness (Calhoun et al. 2013). 

Typically the data is assumed to be conditioned before ICA estimation by 

centering (i.e. de-meaning) and whitening using PCA that results in linearly 

uncorrelated principal components with unit variance. The uncorrelatedness 

simplifies the problem of blind source separation by reducing the number of free 

parameters. PCA is also used as a data reduction step before ICA to define the 

signal space of interest by finding projection directions of maximal variance. In 

the basic form of the ICA equation, the noise is not included but can be included 

as in the probabilistic ICA (PICA) framework (Beckmann & Smith 2004) that is 

mostly used in this thesis. In the PICA model the data is additionally normalized 

voxel-wise by a standard deviation of a PCA derived noise estimate to comply 

with the assumption of isotropic noise (Beckmann & Smith 2004). 

The principles of different ICA estimation methods can be understood on the 

basis of mutual information that is a natural information–theoretic measure for 

dependence of the random variables (Hyvärinen & Oja 2000). Mutual information 

is defined using entropy that measures the amount of information contained in the 

random variable. From mutual information definitions it can be further defined 

that minimizing the mutual information is equivalent to maximizing the sum of 

nongaussianities of the estimates under the assumption of uncorrelated estimates. 

Indeed, in fMRI research a common ICA approach is the use of nongaussianity in 

the decomposition, as is done in the FastICA method (Hyvärinen 1999), the ICA 

algorithm used in this thesis. Nongaussianity is the key for ICA estimation and 

this can be reasoned also using a central limit theorem that states the sum of 

independent and identically distributed (i.i.d.) random variables to present more 

gaussian distribution than the original variables. This property justifies the 

maximization of the non-normality of the marginal PDFs i.e. the algorithm seeks 

for nongaussian PDFs. Other common ICA method in fMRI is Infomax (Bell and 

Sejnowski, 1995) that seeks to maximize information transfer from the input 

networks (observations) to output networks mapped through a nonlinear function 

to be optimized. Later the Infomax ICA was further developed to be able to also 

detect sub-Gaussian sources in extended Infomax (Lee et al. 1999). There are 

over one hundred published ICA methods and recent advances indicate that 

FastICA and Infomax may not be optimal ICA methods for fMRI. For instance, 

abandonment of i.i.d. random variables assumption by modelling sample 
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correlation, yielded certain ICs with correct sign of the time-course compared to 

given task (Calhoun et al. 2012).  

At the heart of the ICA algorithms is then the contrast function that is to be 

optimized and which allows for an approximation of the statistical independence. 

In theory, the nongaussianity in ICA estimation could be measured using 

negentropy, which in information theory describes the randomness of the variable. 

An important result from the theory is that a gaussian variable has the largest 

entropy, and thus the smallest negentropy with a value equalling zero. However, 

exact estimation of the negentropy is difficult and in current FastICA 

implementations it is approximated using varying contrast functions that the user 

can choose from. Typical contrast functions for finding nongaussian marginal 

PDFs are based on higher order moments. The first and second order moments, 

mean and variance, are set to zero and one respectively during the data pre-

processing stages. The third and fourth order moments are called skewness and 

kurtosis, and are well suited for detecting nongaussian signal sources. Other types 

of contrast functions are based on hyperbolic cosine or exponential function 

(Hyvärinen et al. 2001). 

In the FastICA-algorithm (Hyvärinen 1999) computation of the unmixing 

matrix is performed with a fixed-point optimization scheme based on Newton’s 

iteration method. The starting point of the iterative FastICA-algorithm is random 

which leads to many possible convergence paths to global minima along the 

optimization landscape if the estimation error is defined as a 3D space 

(Ylipaavalniemi & Vigário 2008). In the case of noisy data or overlapping signal 

sources it is also possible for the algorithm to get stuck on the local minima in the 

optimization landscape. The iterations are repeated as long as the predefined 

stopping criterion, or convergence threshold, for the algorithm has been achieved. 

Factorization of the joint PDF into marginal PDFs takes place via orthogonal 

transformations for the whitened data matrix. After each iteration of the 

factorization, the matrix has to be re-orthogonalized as statistical independence 

implies uncorrelatedness corresponding to orthogonality (Hyvärinen et al. 2001). 

Within iterations the orthonormalization can be performed in two ways, 

symmetrically for the whole matrix or one column at a time so that later estimated 

columns are orthogonalized with respect to earlier estimated columns. 

After the above described ICA estimation, the final presentation of the ICs 

still requires more processing. Firstly, there is an inherent sign ambiguity in ICA 

estimation that can be solved on the presentation phase by selecting the sign 

based on maximum voxel or skewness of the PDF. The raw-valued IC maps are 
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generally presented in statistically meaningful Z-scored values and the 

thresholding of the maps is desired for better inference and visualization. In the 

framework of PICA implemented in FSL Melodic (Beckmann & Smith 2004), z-

scoring of the map voxel values is achieved by dividing the raw values by the 

standard deviation of the voxel-specific noise estimate. Once the voxel values are 

Z-scored, the statistical thresholding can take place. However, simple 

thresholding based on e.g. Z-score > 2.0 will yield an arbitrary and uncontrolled 

false-positive rate. This is due to fact that non-gaussian spatial histogram of the 

ICs do not relate to the null-distribution that would be needed for correct 

calculation of the mean and variance (Beckmann & Smith 2004). Instead a 

method called mixture modelling of the probability density (Everitt & Bullmore 

1999) is applied for Z-transformation. In PICA the specific method used is 

Gaussian mixture modelling in which the noise in the main lobe of the histogram 

around zero is modelled as one Gaussian distribution, and two gamma 

distributions model the positive and negative BOLD effects. The signal of interest 

is assumed to be present only in gamma shaped sidelobes of the histogram 

implying the fact that a rather small set of voxels contribute to the non-

Gaussianity of the ICs. After fitting the Gaussian and gamma models to the 

distribution of all intensity values the voxels presenting significant effect can now 

be defined using posterior probability, controlling for the balance between false 

positive and false negative findings (Hartvig & Jensen 2000). 

2.4.2 ICA approaches for fMRI data 

In neuroscience it is essential to be able to perform group-level statistical 

analyses. This has been addressed in many different ways in ICA (Calhoun & 

Adali 2012), given the prerequisite that fMRI data from different subjects have 

been spatially normalized to a common space. First it was common to perform 

subject level ICA and combine matching IC maps between subjects which have 

the advantage to allow spatiotemporally unique ICs for different subjects. On the 

other hand, this approach suffers from high variability across subjects especially 

on ICs representing highly inter-connected associative cortices. This variability 

makes the comparison difficult. Self-organizing group ICA (Esposito et al. 2005) 

has been proposed for performing group-level analyses from single subject ICA 

decompositions based on hierarchical clustering. However, by concatenating data 

of all subjects it is possible to perform the ICA estimation on the group level. 

Spatial ICA that has been found suitable for fMRI can be implemented on a group 
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level by temporally concatenating the subject data. In that model the subjects are 

assumed to have common spatial ICs while time-courses are allowed to be 

unique. A reverse principle of spatial concatenation has not been found to be 

widely useful, probably due to much higher temporal than spatial variation in the 

fMRI data (Calhoun & Adali 2012). In this thesis, group ICA will refer to 

temporal concatenation type of group ICA unless otherwise stated. 

The first implementation of the temporal concatenation group ICA was 

available in the GIFT-tool (Calhoun et al. 2001). Large volumes of data in group 

ICA require data reduction that is firstly performed by a subject-level PCA 

followed by a group-level second PCA step before ICA estimation. In order to 

obtain subject-level spatial map and time-course representations for each 

estimated group ICs, the PCA-reduced data is back-projected through inverse 

PCA projections. A recent modified version (GICA3) of the back-projection 

reconstruction in group ICA (Erhardt et al. 2011), implemented in GIFT, has the 

desirable property that the sum of individual IC maps equals the corresponding 

group IC map. Later the so-called dual-regression, or spatiotemporal regression 

(Calhoun et al. 2004), based on least squares solutions has become a common 

method for solving the individual spatial and temporal manifestations 

corresponding to group-level IC maps. The dual-regression procedure involves 

taking group IC maps first to the spatial regression against full pre-processed 

fMRI time-series of each individual. This first regression step produces spatial 

parameter estimates for every time-point, and for each IC and subject. The formed 

time-series are secondly used in the temporal regression again against the full pre-

processed fMRI time-series. This produces parameters estimate values for every 

voxel and thus forms a spatial map for that IC and subject. A comparison study of 

the above described GICA3 and dual-regression (used in this thesis) methods 

suggests that GICA3 combined with subject-level PCA and a noise-free ICA 

model yields the more accurate subject-level estimates (Erhardt et al. 2011). 

A known issue with ICA is the varying outcome on each run of the algorithm, 

although Infomax ICA has been found to produce more stable decompositions 

than FastICA (Correa et al. 2007). Result variability is related to the random 

initiation matrix of the iterative algorithm and noisy data, which lead to different 

convergence paths along the optimization landscape where the algorithm may be 

trapped into the local minimum instead of the global minimum (Hyvärinen 2000). 

A user selectable option in ICA is the convergence threshold which when under a 

stringent mode can reduce algorithmic variability. On the other hand the random 

starting conditions allow the algorithm to find more optimal convergence that 
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may not be approached from other directions. Therefore, by random initialization, 

the variability in the data can be exploited to find estimates that are difficult to 

find otherwise (Ylipaavalniemi & Vigário 2008). To analyse the consistency of 

the results and find reliable estimates certain repeatability measures have been 

introduced. The first such framework is ICASSO (Himberg et al. 2004) which 

uses hierarchical clustering for spatial correlation values between IC maps to 

reveal the cluster centre estimate “centrotype” among the repeated results. The 

resulting centrotype decomposition does not represent an orthogonal base in the 

whitened data base and if orthogonality is desired then the individual ICA run 

closest to centrotypes can also be chosen (Ma et al. 2011). 

Spatial ICA analyses have been the workhorse in fMRI research but the 

accompanying time-courses have not been exploited widely. The concept of 

functional network connectivity (FNC) among RSNs incorporates temporal 

correlation and lag information into analysis (Jafri et al. 2008). In FNC, the 

maximum lagged correlation between RSNs is sought within a −5 to +5 s 

window. Recently FNC has been successfully applied for patient-control 

classification with very high accuracy (Arbabshirani et al. 2013). A simpler 

version of the FNC can be performed with full correlation without accounting for 

lag and has been termed simply between network connectivity (Joel et al. 2011). 

Full correlation reflects both direct and indirect connections. To obtain a direct 

measure of the functional connections, partial correlation, accounting for variance 

shared with other RSNs, can be calculated (Marrelec 2006). Direct connections 

revealed by partial correlation can be considered to present effective connectivity 

instead of functional connectivity that features apparent connectivity (Friston 

1994). The above temporal correlation analyses do not take into account 

amplitude information. Yet, also temporal analyses have been carried out with 

amplitude markers such as the standard deviation of the time-course (Tian et al. 

2013). 

2.4.3 ICA performance 

The univariate hypothesis based analysis method general linear model (GLM) can 

be viewed as the golden reference analysis method in fMRI. However, that 

method can be criticized from a multivariate data-driven ICA point of view that 

does not require a priori hypothesis. The hypothesis-based analysis may leave 

artifactual signal unmodelled, which will bias the parameter estimates in the case 

of structured noise temporally orthogonal to the assumed regression model. Also, 
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with orthogonal noise the residual error is inflated and statistical significance is 

reduced (Beckmann & Smith 2004). Furthermore, typically the univariate GLM 

analyses discard the richness of spatial relationships between multiple data points. 

Allowed non-orthogonality of the time-courses is one key factor for ICA to be 

able to separate networks with spatially overlapping activity whereas seed 

correlation analysis (SCA) shows only the average of the overlapping processes 

(Xu et al. 2013). The relationship between seed correlation analysis and ICA has 

been studied and was found to conceptually show correspondence so that the sum 

of ICs and connectivity between ICs is equal to one SCA result map (Joel et al. 

2011). In fact, it may be desirable in some cases to combine ICA and SCA by 

letting ICA define the strongest connectivity regions and use these as optimal seed 

regions in SCA (Marrelec & Fransson 2011). 

Incomplete separation of spatially overlapping signal sources has been shown 

with ICA whereas a temporal dependence between sources did not lead to 

deterioration in separation quality (Calhoun 2001). Physiological noise poses a 

challenge for ICA decomposition especially in posterior DMN areas that overlap 

with prominent signal changes related to slow fluctuations in respiration 

variations (Birn et al. 2006). This issue is complicated by the fact that the midline 

brain regions of the DMN are involved in physiological regulation (Khalili-

Mahani et al. 2013), and therefore neural and cerebrovascular sources cannot be 

separated from the BOLD fMRI signal alone. Mixing of the physiological noise 

and DMN IC has been detected, in varying extent between subjects and repeated 

sessions, by measuring correlation between RVT and DMN time courses (Birn et 

al. 2008). In another study, cardiac signals were found to correlate especially with 

the auditory RSN time course and physiological correction clearly diminished 

correlations between physiological signals and all studied RSN time courses 

(Beall and Lowe 2010). Aliased physiological noise due to a low sampling rate 

has been claimed to not pose a problem for ICA due to relying on spatiotemporal 

patterns instead of temporal information alone (Brooks et al. 2008). Group ICA 

followed by a dual regression approach was found robust against basic 

physiological noise models, but cardiac and respiratory noise convolved with 

corresponding hemodynamic response functions were less accurately eliminated 

(Khalili-Mahani et al. 2013). Also, inclusion of subject-wise measures of average 

cardiac and respiratory frequencies onto second stage regression had a prominent 

impact on statistical test results between different physiological noise conditions 

induced by alcohol and morphine.  
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Motion is the greatest source of spurious signal changes and the complex 

dynamics of the motion artefacts violate the assumption spatial stationarity in the 

ICA components (McKeown et al. 1998). Therefore ICA cannot model all the 

motion artefacts, which makes ICA variant to data quality. Even subtle motion 

related signal changes can falsely enhance, attenuate or distort the results of seed 

correlation analysis (Power et al. 2012). However, in ICA dual regression 

analysis, motion induced artifactual connectivity has been less clear as two large 

sample size studies report non-overlapping results. Motion contribution to 

increased connectivity was found in all examined RSNs and the motion effect in 

DMN is detected on all nodes of the network (Mowinckel et al. 2012). A further 

study (Satterthwaite et al. 2012) showed increased FC in parietal and temporal 

areas in particular but no definite effects in the DMN core areas. Nevertheless, in 

7 T high field fMRI with neurological patients ICA was found clearly superior to 

GLM analysis in revealing the task responses and provided robust estimates even 

in the presence of motion (Robinson et al. 2013). 

An inherent problem for ICA decomposition of resting state data is that 

selection of the ICs by visual inspection is subjective and laborious and 

interpretation of the ICs can be difficult. However, visual inspection principles 

have been formulated more in detail in a study in which good 96% inter-rater 

agreement was found (Kelly et al. 2010), which speaks for the validity of the 

visual inspection process. Many researchers have utilized RSN templates, defined 

in earlier studies (Beckmann et al. 2005) or based on brain atlases, for selecting 

RSNs from their ICA results based on spatial correspondence but this approach 

has been shown notably error prone (Zuo et al. 2010). It is challenging to create 

reliable metrics for ordering or classifying the ICs according to their type. In 

principle the ICs end up in a random order but they can be sorted, for example, 

with a decreasing amount of explained variance (McKeown et al. 1998). 

Comprehensive IC classification methods are able to categorize all types of RSN 

and noise components have been proposed with a varying extent of spatial, 

temporal and spectral features (Di Martino et al. 2007, Tohka et al. 2008). The 

latest development in classification scheme adopted nearly 200 features which 

form the basis for an automatic multi-classifier (Salimi-Khorshidi et al. 2013). 

However, before automatic use the classifier needs to be manually trained for 

particular data characteristics. Another recent classification tool relying on only 

four measures (spatial smoothness, activity near edges, CSF activity and temporal 

high-frequency noise) offers a fully automatic operation without training 
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requirements (Bhaganagarapu et al. 2013), but the performance may be 

compromised. 

The algorithmic variability is known to increase with increasing ICA 

dimensionality while being very stable at around a typical model order 20–30. At 

higher dimensionalities in single subject ICA with task data, the ICASSO stability 

index (derived from spatial correlation) is above 0.8 only for about 15 ICs out of 

90 estimated ICs (Li et al. 2007). However, in group ICA with resting state data 

the situation seems more stable with more than 50 ICs having the quality index 

over 0.8 in model order 70 decomposition (Kiviniemi et al. 2009). Another aspect 

of variability arising from data properties has been investigated by scanning the 

same subject repeatedly. Test-retest reliability of the RSNs in dual-regression 

analysis has been found moderate to high both on the group and subject level 

(Zuo et al. 2010). However, in another study not using dual-regression, but 

comparing single subject ICA vs. group ICA, the subject level reproducibility was 

clearly lower than for group analysis (Franco et al. 2013). Decreased performance 

in single subject ICA is likely due to lower SNR of individual datasets compared 

to concatenated group data (Allen et al. 2012). A greater number of subjects in 

group ICA indeed enables the estimation of weaker, noisier and rarer RSNs. 

Lastly, determination of the appropriate decomposition dimensionality i.e. 

model order has been a difficult issue and a prominent source of variability in 

ICA fMRI studies. In principle, under- or over-fitting the model compared to data 

may yield to distorted results, therefore optimal dimensionality is desirable 

(Beckmann & Smith 2004). Dimensionality estimation approaches based on 

information theoretic criteria have been applied successfully for simulated data 

(Li et al. 2007) but for real data the role of dimensionality estimation is debatable. 

Group ICA has been shown to represent varying functional segmentation with 

varying dimensionality (Kiviniemi et al. 2009, Smith et al. 2009) and a rich set of 

varying RSN configurations can be explored (Abou Elseoud et al. 2011). Higher 

dimensionality in group ICA involves splitting the networks into sub-networks, 

considered as possible artifactual fragmentation i.e. over-fitting (McKeown et al. 

1998) and yielding to less generalizable RSNs across subjects (Pendse et al. 

2012). More specifically, over-fitting manifests as sources with a single smooth 

peak and zero elsewhere (Särelä & Vigário 2003) that optimizes non-gaussianity 

but bears little interesting information in the functional connectivity sense. With 

other kind of over-fitting with simulated data, it has been shown how subject-wise 

anatomical variability, and hence the inadequacy of the typical spatial 

normalization methods, together with functional variability assigned to 
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anatomical loci can lead to forced splitting of the RSNs on high model orders 

without functional reason (Allen et al. 2014). 

2.5 Correcting for structured noise 

BOLD fMRI measurements have low SNR due to a multitude of noise sources, 

various physiological and motion related sources that form structured noise. 

Random thermal noise with no structure is present too but typical fMRI is not 

operating under the random noise regime. Correction for structured noise 

improves the validity of the statistical inference as the error term is assumed i.i.d. 

in GLM (Lund et al. 2006). In GLM analysis the noise processes are commonly 

regressed out in the same time as the regressors of interest are modelled. Typical 

nuisance regressors are motion estimates plus regressors representing nonspecific 

noise signal of a non-neural origin, such as average white matter signal and 

average CSF signal from ventricles. 

2.5.1 Cardiorespiratory signal sources and removal 

In conventional EPI BOLD fMRI the acquisition times for whole brain imaging 

are typically on the order of 2–3 seconds, which is too slow to measure the 

cardiorespiratory processes unambiguously without aliasing. The 

cardiorespiratory signal fluctuations, at about 1 Hz for cardiac and 0.3 Hz for 

respiratory, distribute to the whole measured bandwidth due to aliasing (Lund et 

al. 2006). This makes attempts to frequency filter the cardiac pulsations almost 

worthless. Cardiac and respiratory-induced fluctuations also present a problem for 

conventional task-fMRI and thus correction techniques were developed relatively 

early. Retrospective correction schemes which used heartbeat and respiration 

recordings for regressing out physiological noise fluctuations have been 

introduced (Hu et al. 1995, Glover et al. 2000).  

In fMRI the RETROICOR (Glover et al. 2000) method has become almost 

golden standard for performing the physiological corrections. RETROICOR is 

able to remove signals that are time-locked to particular physiological cycle and 

operates in the MR image domain. In RETROICOR phases of the physiological 

signal cycles in each imaging slice are estimated from measured cardiac and 

respiratory signals, obtained typically with photoplethysmography or a thoracic 

belt, respectively. Cardiac and respiratory signals are assumed quasi-periodic, 

which allows for their modelling with Fourier series, i.e. a function of sine and 
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cosine signals. Respiration is additionally estimated with a histogram based 

normalization method to account for amplitude variations in respiration. Fourier 

series coefficients are obtained by Fourier summation and the resulting Fourier 

series are fit to each voxel’s time series prior to removal. In an original 

publication with 1.5 T data (Glover et al. 2000), second order Fourier series were 

shown to suffice for adequate performance. More recently, it has been noted that 

in 3 T data higher order modelling would improve the fitting of the noise model 

(Harvey et al. 2008). In order to avoid over-fitting i.e. not to lose also signal of 

interest with an increasing amount of noise regressors, a compact set of effective 

regressors have been determined (Beall 2010). Determined impulse response 

functions with differing temporal shapes were shown to be consistent between 

subjects and the proposed set of regressors included four cardiac and two 

respiratory response functions that produced higher sensitivity in FC analysis. 

Accounting for variability in an impulse shape and amplitude are not fully 

accounted for in the above presented correction methods. However, a recently 

developed method of physiological correction termed DRIFTER is also able to 

dynamically take into account the amplitude and shape variations, as well as 

variations in cardiorespiratory frequencies (Särkkä et al. 2012). The method is 

based on estimating momentary frequency trajectories of the given cardiac and 

respiratory signals. 

Respiration related low frequency fluctuations (LFF) of fMRI signal, 

occurring on the lower frequencies than the direct respiration frequency, were first 

identified by measuring end-tidal partial pressure of carbon dioxide (PET-CO2) 

fluctuations in resting state fMRI (Wise et al. 2004). The measured PET-CO2 

signal has most power on frequencies around 0.01–0.05 Hz and it presents 

pronounced correlations with BOLD fMRI signal on the regions overlapping 

especially with the DMN and medial visual network. Moreover, in directed 

respiration conditions with constant rate and depth, the DMN map is markedly 

less noisy than in normal free breathing (Birn et al. 2006). Identified slow CO2 

fluctuations were hypothesized to relate to respiration rate and depth variations. 

Subsequently, a low frequency respiration correction method, regression of 

respiration volume per time (RVT) estimate, was introduced (Birn et al. 2006). 

The RVT estimate is calculated by dividing the height of the each respiration 

wave with its duration, thereby reflecting both respiration depth and rate. Another 

proposed measure is respiration volume (RV) computed as standard deviation 

over a 6 second sliding window of respiration waveform providing better 

robustness against artefacts in the respiration belt signal (Chang & Glover 2009b). 
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Nevertheless, the RVT estimate was found to oscillate at approximately 0.03 Hz 

during the resting state and it showed increased fMRI “response” at an average 

latency of 5 s after decreases in respiration depth. In addition to this negative 

correlation there was a positive correlation with −1 s lag, possibly reflecting 

feedback of CO2 levels in blood modulating the respirations at a later time. In 

order to more accurately correct for respiration related signal changes, the BOLD 

signal response function of respiration was created (Birn et al. 2009). It was 

found that the respiration response function (RRF) presents an early overshoot, 

preceding the peak of canonical HRF, and is followed by a later undershoot 

peaking at around 16 seconds. The RRF convolved RV variation was then 

compared to PET-CO2 measurements in resting state FC analysis (Chang & 

Glover 2009a), and were found to possess a highly linear relationship. This 

supports the validity of the respiration belt measurements as a surrogate for end-

tidal gas monitoring. Relevant to physiological noise in resting state studies, the 

way the resting state scanning is conducted seems to have a broad effect on 

physiological noise contribution. The RVT estimate was clearly less correlated 

with the GM BOLD signal in eyes-open condition compared to eyes-closed (Yuan 

et al. 2013). 

Cardiac LFFs also affect the BOLD signal and correction methods that share 

similarities with respiratory corrections have been proposed. Since BOLD fMRI 

is a measure of hemodynamic changes is inherently strongly linked to heart rate 

fluctuations. HRV is affected by e.g. sympathetic and parasympathetic nervous 

activity, respiration and arterial pressure fluctuations and many interacting 

physiological factors (Cohen and Taylor, 2002). The first study on correcting for 

cardiac LFF (Shmueli et al. 2007) investigated the relation of cardiac LFFs to the 

resting state BOLD fluctuations using a broad set of lagged regressors. They 

found a marked negative response in GM BOLD signal around 6–12 s and 

positive signal correlations at around 30–42 s. Another study on the contribution 

of varying cardiac rate to resting state BOLD signal found a negative BOLD 

signal change after 3–6 s in response to altered heart beat interval (de Munck et 

al. 2008). Subsequently, the cardiac response function was introduced (Chang et 

al. 2009) and a detailed temporal response shape was designed where the positive 

peak occurs at a 4 s lag and the negative dip at a 12 s lag. Further progress into 

cardiac noise correction has been subsequently proposed (van Houdt et al. 2010) 

as variation in pulse height as measured through photoplethysmography was 

shown to explain a significant amount of variability. The GM contributions of 
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pulse height variation were found to occur with marked variability between 

subjects that is typical for fMRI studies in general too. 

The combination of the above described correction methods, RETROICOR 

and respiration and cardiac response functions, is referred as RVHRCOR (Chang 

& Glover 2009a). Cardiac and respiration response functions were found to 

explain mostly spatially disjointed variability in GM. The amount of explained 

variance by physiological correction methods has been found to be rather modest, 

RETROICOR for instance modelled only about 5% of the average variance over 

GM (Bianciardi et al. 2009, Jo et al. 2010). The correction methods for 

physiological LFF, RVT for respiratory and HR for cardiac, can each explain 

around 8% of resting state BOLD variance (Chang & Glover 2009b). Recent 

refinement to the combined RVHRCOR method introduced individualized 

responses to cardiorespiratory changes (Falahpour et al. 2013). The individual 

response functions were derived from a global brain signal by deconvolution and 

results show improved fit over those of standard response functions. 

Neural underpinnings of the physiological processes pose a difficult dilemma 

for physiological noise correction since the assumption of noise as non-neural 

process does not hold. Many brain regions and networks participate in driving or 

monitoring of the autonomic nervous system (ANS) (Iacovella & Hasson 2011) 

which relates cardiorespiratory fluctuations. Using HRV as a proxy for the ANS 

state, the brain regions known to mediate the effects of vigilance and arousal were 

found to express increased FC with a broad set of other brain regions during 

elevated HRV (Chang & Metzger et al. 2013). ANS activity measured with skin 

conductance has also been related to FC strength of the DMN and task-positive 

network (Fan et al. 2012) which speaks for holistic consideration of mind, brain 

and body in future studies. 

2.5.2 Motion related signal changes and removal 

Motion is the greatest source of signal variance in the MR signal with 

contributions ranging typically from 30% to 90% (Friston et al. 1996). The 

primary motion artefact relates to movement of the object within the scanner 

reference frame, which disrupts the establishment of spatial encoding with 

magnetic gradients. Considering typical voxel dimensions on the order of 3–4 

mm, already a 1 mm transition will replace around 30% of the spins within the 

voxel which is easily capable of overriding the BOLD effect strength (~2–5%) 

particularly at tissue interfaces. Motion induced effects depend on a multitude of 
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factors that are affected by the moment the motion occurs in relation to phase of 

the scanning sequence. Motion during the short data collection period is 

considered negligible (Muresan et al. 2002). Also, pulse sequence type and 

parameters, as well as the type of motion, naturally affect the artifactual signal 

changes. In fact, any factor affecting the resonance frequency change will alter 

the interpretation of the signal location. Scanner instabilities, particularly the ones 

related to heating, create drifts to the magnetic field and alter the resonance 

frequency (Foerster et al. 2005). This is reflected mainly in the slow PE direction 

of the image by creating apparent motion (Durand et al. 2001), which can be 

corrected using self-navigated echo. Prominent linear and non-linear 

spatiotemporal inhomogeneities prevail in the slice-encoding direction too (El-

Sharkawy et al. 2006). In a well-operating scanner the instability noise is 

generally ~2% of the physiological noise in the brain cortex and less than 10% in 

WM (Greve et al. 2011).  

The time series realignment based on voxel signal intensities is estimated 

with a rigid body model on the whole head (Friston et al. 1995). The assumption 

that motion would occur between the successive volumes is obviously a 

simplification with respect to true motion, and as a result the amount of motion 

will be underestimated. The time series motion is often calculated with an 

ordinary least squares method, but that has been found to be prone to brain 

activation induced signal intensity changes (Freire and Mangin, 2001). Increased 

tissue contrast has been demonstrated to enhance the motion correction 

performance (Gonzalez-Castillo et al. 2011). Image contrast can be improved by 

several image acquisition parameters including TE, FA, suppression of fat signal, 

and in post-processing by bias field correction (i.e. removal of RF field 

heterogeneity). However, ultimately the rigid-body estimation is bound to be of 

limited accuracy due to complicated signal changes. Slice-wise registration of the 

motion (Kim et al. 1999) has been introduced rather early in fMRI history but it 

has not been adopted into major fMRI analysis tool packages. 

In addition to motion correction under the rigid-body assumption there are 

non-linear effects arising from interactions between magnetic field distortions and 

motion (Jezzard and Clare, 1999). EPI is sensitive to variation in B0 due to low 

bandwidth in the PE direction and thus geometric distortions appear along that 

direction (Jezzard and Balaban, 1995). The shim field generated by shim coils is 

used to counteract the low order inhomogeneity in the magnetic field. However, 

the susceptibility artefacts around tissue borders with markedly different magnetic 

susceptibility values remain. When the head moves in a slightly non-linear 
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magnetic field, this also changes the artefacts in a non-linear fashion which is 

why the effect is called a susceptibility-by-motion artefact. The strongest 

susceptibility effects lie near air-filled sinuses adjacent to the temporal and frontal 

lobes. In order to correct for these, a deformation map image needs to be acquired 

to map the frequency shifts caused by susceptibility effects. In fMRI this 

information can be applied to estimate the warping artefacts in the time-series 

with the help of estimated movement parameters (three translational and three 

rotational). By knowing the extra variance after realignment and movement 

parameters, the derivatives of the magnetic field with respect to movement can be 

estimated. 

Motion also destroys the steady state magnetization of the object, which leads 

to the so-called spin history effect. The spin history effect alters the signal 

intensity by dependence on through-plane position history of the scanned object 

(Friston et al. 1996). Steady state magnetization of the tissue is disrupted by 

movements in the through-plane direction if recovery of the T1 magnetization is 

incomplete at the time of subsequent RF excitation. The most typical head motion 

during scanning is nodding, that results in spin-history effects via through-plane 

motion. The spin-history effect influences the next few acquired volumes after the 

time of motion. Aligning the volumes is not sufficient for obtaining a fully 

faithful representation of the signal changes in the brain. In line with the original 

proposal, the Friston 24 model (Friston et al. 1996), approach for typical 

correction of the spin-history artefact included additional motion regressors into 

the GLM that are derived from translational and rotational movement estimates. 

Of each estimate, a differential time series is calculated and then a quadratic 

version of the time series is computed for all other estimates. All these are then 

regressed in GLM (Satterthwaite et al. 2013). The spin history correction has not 

been considered important until lately and now it receives increased interest as 

subtle motion effects have been found to affect FC analyses (Power et al. 2012). 

Indeed, the Friston 24 model was found to cope best with motion affected data 

(Yan et al. 2013), it was even superior to voxel-wise metrics of motion 

(Satterthwaite et al. 2013; Yan et al. 2013) suggesting more imaging physics 

principled considerations over the spin history effects may be needed. More 

accurate image realignment with slice-wise correction of motion has also showed 

improved performance in correction of the spin history effects (Bhagalia 2008). 

On the other hand, instead of correction, the spin-history can be minimized by 

aiming at more complete signal relaxation before collecting the adjacent image 

slices. This can be accomplished by using lower FA, longer TR and interleaved 
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slice-acquisition. An efficient way of minimizing spin-history modulations would 

be the use of prospective motion correction in image-space during scanning 

(Thesen et al. 2000), but this slows down the acquisition speed. 

Recently, typical motion correction methods have been found to be deficient 

in fully correcting for motion artefact (Power et al. 2012), and these remaining 

subtle artefacts affect several FC measures. The remaining artefacts tend to 

increase lateral connectivity and decrease vertical or anteroposterior connectivity. 

The proposed remedy, termed “scrubbing”, for the issue was removal of motion 

affected time points from the time series using either motion estimates or brain 

signal variance as the criterion. Along the detected time point with excess motion 

one preceding and two following time points are also removed in an attempt to 

completely eliminate the artefact (Power et al. 2012). Further investigation on the 

issue using resting state scans of 1000 young adults showed even subtle motion 

average differences between groups to result in spurious differences in DMN 

connectivity (van Dijk et al. 2012). Following these concerning findings a 

proposal for an improved analysis framework has been suggested (Satterthaite et 

al. 2013) in which full 36-parameter regression model plus motion spike removal 

by regression are suggested to be employed in a high motion study population. 

Despite efforts to correct for motion by modelling with a broad set of regressors 

and removal of time points with a strict threshold of 0.2 mm, the motion related 

residuals persist in the processed data (Yan et al. 2013). Therefore, it is 

recommended to covary motion effects at the group-level, which is a conventional 

procedure in fMRI. 

Advanced imaging techniques also come with the price of new motion 

artefacts. Parallel imaging has increased sensitivity to head motion (Wald 2012) 

especially when image reconstruction relies on a single reference scan of coil 

sensitivities without repeated auto-calibration during imaging (Blaimer et al. 

2004). If motion occurs during the reference scan it will degrade the image 

quality for the entire following scan and motion leads to residual aliasing in the 

fMRI time-series. Under-sampled PI data acquisition also has extra sensitivity to 

perturbations of the magnetic field by limb or chest movements. The type of 

artefacts depends on the PI image reconstruction that can be performed in k-space 

or image-space. Additionally, inhomogeneous sensitivity in the phased array coil 

used in PI introduces signal modulation when the object moves through the 

sensitivity gradient (Wald 2012), creating a receiving field contrast. Because 

receive field heterogeneity remains after the image reconstruction the phased 

array coil sensitivity imparts a spatially fixed contrast and motion correction 
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procedure will move this contrast relative to the object, which leads to complex 

signal modulations. With a higher number of receiving coils in the phased array 

coil there is greater RF field inhomogeneity and higher susceptibility for spurious 

signal modulation due to motion. Acquiring a measurement scan of the B1 field 

inhomogeneity before an fMRI scan diminishes this problem. 

2.5.3 General methods for noise correction 

Typical data pre-processing methods in fMRI do not directly deal with either 

motion or physiological processes, but to both, such as regression of ventricular, 

white matter and global average signals (Fox et al. 2005). The signal variations 

common to the whole brain have been considered nuisance effects that require 

elimination but they may confound the estimation of interesting effects (Friston et 

al. 1995). Indeed, global signal regression has caused long lasting controversy 

(Desjardins et al. 2001; Macey et al. 2004; Fox et al. 2005). Averaged global 

signal consist of physiological noise, motion related signal changes, instrumental 

drifts and unavoidably also of true BOLD effects. Global signal has been shown 

to correlate significantly with respiratory/cardiac LFF estimates in the majority of 

subjects studied (Chang & Glover 2009b), whereby the shared variance between 

RVHRCOR and global signal is around 30% (Marx et al. 2013). Also, BOLD 

fluctuations of neural origin are included in the global signal and their unintended 

removal cannot be avoided. Indeed, a link between global signal amplitude and 

vigilance state as measured by EEG was demonstrated recently (Wong et al. 

2013). Another problem in global signal regression is that it introduces artificial 

negative correlations in the data (Murphy et al. 2009, Weissenbacher et al. 2009, 

Saad et al. 2012). 

Global signal regression has certain advantages over retrospective motion 

correction methods in that it has been shown to effectively remove the 

relationship between motion and FC metrics (Yan et al. 2013). This effect is 

based on the standardization effect of global signal removal; motion increases 

connectivity across the brain (Satterthwaite et al. 2013) but global signal removal 

shifts the FC correlation distribution towards zero (Murphy et al. 2009). 

Intriguingly, similar decoupling of motion and varying FC results as achieved 

with global signal regression can be obtained by voxel-wise signal Z-

standardization, which is mean centering and variance normalization (Yan et al. 

2013). Z-standardization eliminates inter-individual differences in global brain 

signal features and allows more comparable resting state data analysis. After all, 
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global signal regression is often applied pre-processing routine in univariate 

analysis methodology, but is not typically included in multivariate methods like 

ICA that separates all the signal sources. 

2.5.4 Imaging based methods 

Noise sources in a gradient-echo EPI pulse sequence are always characterized by 

either apparent spin density fluctuations S0(t), transverse relaxation rate 

fluctuations T2*(t) or thermal noise n(t) (Wu & Li, 2005). The separation of the 

noise sources by multi-echo EPI relies on echo time dependence of BOLD 

contrast (Bandettini et al. 1994). Secondly, the introduction of a spectroscopy 

sequence to characterize relaxation T2* and initial signal intensity of brain 

activity changes (Hennig et al. 1994) allowed further development of the multi-

echo sequences. The signal across multiple echo times varies as a function of 

initial signal intensity S0 and relaxation time T2* according to the equation 
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The mean T2* and S0 are estimated by fitting the measured signal values to the 

equation (2). After the fitting operation a combined time-course can be computed 

(Posse et al. 1999). 

A simple version of the multi-echo technique is dual-echo acquisition that 

was proposed already in 1996 for separating the blood inflow effect from the 

BOLD effect (Glover et al. 1996). The method relies on the ability to differentiate 

changes in initial signal intensity S0 and relaxation time T2* based on signal TE-

dependency. The short time echo is collected right after excitation to prevent 

significant BOLD-weighting in the signal and the second echo is acquired at an 

echo time optimizing the BOLD contrast. By calculating a ratio between the two 

echo signals (Glover et al. 1996), the resulting time series presents a more faithful 

representation of the BOLD signal of interest. Alternatively, the short time echo 

signal time-series can be regressed out from the second echo signal, yielding a 

time-series corrected for a mixture of noise sources (Bright & Murphy, 2013). 

Optimally the first echo is obtained during the “dead time” prior to the usual 

BOLD-weighted echo, thus the method has no time penalty, only the advantage of 

additional signal.  

The assumption in regression is that the short echo signal has no BOLD 

contribution but there is likely to be some cross-talk between short echo data (S0) 
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and BOLD signal (T2*) changes of interest even with an echo time as short as 3.3 

ms with spiral-out EPI acquisition (Bright & Murphy 2013). Spiral-out EPI signal 

collection is advantageous for short echo imaging since it has minimal delay 

between the RF excitation and the k-space center signal acquisition. The cross-

talk is related mainly to the blood volume changes during the early phase of the 

BOLD response, which would be ideal to remove from the BOLD signal. 

However, unavoidably the cross-talk is to some extent intrinsic due to BOLD 

signal contribution, which is undesirable in signal correction. 

A short echo provides a more direct measure of the head motion compared to 

motion correction algorithms working on the whole brain (Bright & Murphy 

2013). Motion occurring within volume can be more accurately captured with 

voxel-wise short echo signal. Also, the spin history effect that is independent of 

echo time has been corrected for by dual echo signal reconstruction with a 

superior result compared to regression of rigid body motion estimate derivatives 

(Ing & Scwarzbauer 2012). Indeed, the short echo data were found to be closely 

related to both subtle and extreme motion artifacts (Bright & Murphy 2013). The 

short echo method can be used instead of time point removal (“scrubbing”) in 

correcting for motion. The positive consequences would be that the full time 

series is preserved and also very small movements not exceeding the scrubbing 

threshold can be accounted for. 

Regarding the efficiency of physiological correction by short dual echo data, 

it seems that existing correction regressors based on PET-CO2, RVT and cardiac 

rate are sufficient to capture physiological signal variations since approximately 

similar amounts of variance were explained with dual-echo correction (Bright & 

Murphy 2013). Only slight reductions in long-distance anteroposterior DMN 

correlations were observed, suggesting removal of additional noise compared to 

existing modelling techniques. 

Interestingly, it has been recognized only recently that the basic imaging 

parameter FA can be tuned to obtain BOLD data with a markedly decreased 

contribution of physiological noise (Gonzalez-Castillo et al. 2011). The maximal 

SNR is obtained using so-called Ernst flip angle that is dictated by the desired TR 

and T1 of the GM tissue. However, under the physiological noise dominated 

regime, the functional contrast measured by temporal SNR is nearly invariant to 

the FA even at less than 10 degrees. One of the advantages in using low FA is 

diminished contribution of CSF originated signal to the BOLD fMRI (Renvall et 

al. 2014). Other advantages include decreased inflow effect, reduced through-

plane motion artefact, lower physiological noise and improved tissue contrast. 
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Lastly, low FA yields lowered RF energy deposit which is of great importance in 

the future ultra high field fMRI. 

2.5.5 Data-driven methods for de-noising 

Data-driven, or exploratory, methods are suitable for de-noising purposes as they 

are able to estimate expected and also unexpected noise processes. ICA 

classification tools described earlier provide means for running the data de-

noising process in an automatic manner. Early on, PCA was used in fMRI noise 

correction such as in CompCor (Behzadi et al. 2007). CompCor noise estimation 

is based on noise related voxels with the highest temporal standard deviation from 

where typically six significant principal components are detected and used as 

nuisance regressors in GLM. Another study compared PCA and ICA in the ability 

to nominate components into signal, physiological structured noise and random 

noise based on spectral characteristics (Thomas et al. 2002). ICA was found to be 

more effective than PCA in isolating structured noise, whereas ICA is not well 

suited for random noise separation, which is expectable considering the principles 

of ICA and PCA respectively. Subsequently, an ICA based method called 

CORSICA has been proposed (Perlbarg et al. 2007). In their method, time-

courses of the ICs were correlated with BOLD signal time-courses from the 

ventricles and brainstem, which are associated with motion and physiological 

noise. De-noising of the dataset after noise component detection is performed by 

reconstructing the corrected data set from spatial maps and corresponding time 

courses of the remaining ICs of interest. 

Multi-echo imaging described in the previous section can also be used as a 

basis for data-driven component classification. In particular, a comprehensive 

signal determination can be achieved by collecting more than two echoes. The 

obtained parallel time-series can be utilized in a de-noising scheme with spatial 

ICA in a special data arrangement (Kundu et al. 2012). By concatenating the 

multi-echo data spatially the spatial ICA treats the multi-echo dimension as a 

fourth spatial variable in addition to three spatial dimensions. Thus the computed 

independent components share a common time series across spatial location and 

across multiple echoes. The produced IC maps are then subjected to statistical 

estimation that assesses the signal characteristics and assigns the component into 

BOLD-like or non-BOLD-like groups. The non-BOLD ICs can subsequently be 

regressed out in FC analysis. 
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3 Aims of the study 

The purpose of this study was to investigate the use of ICA in resting state fMRI 

analysis. The particular aims were to study: 

1. the effect of physiological noise on ICA estimation of the default mode 

network from the fMRI data; 

2. the effect of ICA dimensionality on detecting resting state networks, 

especially the default mode network; 

3. the disorder and motion related effects on default mode functional 

connectivity with respect to varying ICA dimensionality; 

4. ICA approach in detecting spatiotemporally unknown stimulation effects 

from the full frequency band. 
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4 Participants and methods 

All the studies were conducted in Oulu University Hospital, Finland. 

4.1 Participants 

The studies were approved by the Ethical Committee of Oulu University. Written 

informed consent was obtained from all participants. Volunteers were obtained 

from other studies.  

Study I 

Initially 32 subjects constituted the sample of which half were volunteering 

medical students and the other half belonged to a Northern Finland Birth Cohort 

(NFBC) of 1986. The final sample was diminished to 23 after quality control of 

the cardiorespiratory recordings parallel to fMRI scanning.  

Study II 

Three separate fMRI data projects including resting state scanning were used for 

collecting the data of 55 healthy participants for this study: NFBC 1966, NFBC 

1986 and a resting state study of brain tumours. The mean age was 25 ± 5 years 

and gender distribution was 32 ♀ and 23 ♂. 

Study III 

In the original sample there were 30 high-functioning adolescents with autism 

spectrum disorder (ASD), including autism and Asperger’s syndrome, gathered 

from a community based study and from a clinic based study. Diagnosis was 

based on the use of a broad set of structured interviews, questionnaire tools and 

medical records of Oulu University Hospital. In the community based study, 

school-day observations and teacher interviews were also used. Psychometric 

information with Social Responsiveness Scale (SRS) was collected four years 

prior to fMRI scanning that took place in 2007. Importantly for the present study, 

our subjects were un-medicated. Thirty age- and gender-matched typically 

developing control participants were recruited from mainstream schools. 



66 

The final sample population was reduced due to the following issues: One 

participant with ASD refused to undergo imaging and the dataset of one 

participant with ASD was lost. One control participant was excluded due to 

severe MR artifacts caused by teeth braces. Two control participants were 

discarded due to clinically significant ASD symptoms. After further exclusion of 

datasets due to excess motion (criteria described in the following section 4.3.3) 

the final sample consisted of 24 participants with ASDs (18 ♂, 6 ♀, age 14.9 ± 

1.4, three left-handed) and 26 controls (19 ♂,7 ♀; age 14.8 ± 1.7; two left-

handed). In the ASD group there were 17 participants diagnosed with Asperger’s’ 

syndrome and 7 with autism. 

Study IV 

Alltogether 51 adult volunteers aged 29 ± 6 years were recruited for examining 

responses to continuously exposed bright light stimulus via the ear canal in order 

to study hypothesised inherent photosensitivity of the brain outside the retina. 

First, 10 subjects were scanned in December, then 27 subjects in February and 

finally 14 subjects in May. All light stimulation imaging sessions took place 

during the dark season of the year, in December and February; sham control 

sessions were imaged during February and May. After exclusion of one subject 

with failed light stimulation timing, 24 light stimulus subjects and 26 sham 

control subjects were available for analysis. Additionally, separate 9 volunteers 

were scanned in March to test for immediate responses to light stimulus. 

4.2 Imaging 

Magnetic resonance imaging of the all studies was performed with GE 1.5T Signa 

LX upgraded in 2006 to Signa HDx (GE Healthcare) and equipped with an 8-

channel head coil provided by the scanner manufacturer. In studies I, II and IV a 

respiration belt measuring air flow changes and a photoplethysmograph placed on 

a fingertip to measure attenuation differences of light were used when collecting 

data regarding respiration and heart rates respectively. 

In the beginning of every MRI session, an anatomical brain scan with image 

quality similar to that of clinical practise was collected. The imaging parameters 

of the T1-weighted 3D fast spoiled gradient echo (FSPGR) sequence were as 

follows: FOV 24 cm with 256 × 256 matrix, slice thickness 1 mm, TR 12.1 ms, 

TE 5.2 ms, and FA 20 degrees. The following functional resting state scans were 
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carried out with eyes open and with the instruction for the participant to lie still 

and rest watching a white cross in the middle of the projected dark screen visible 

via a mirror attached to the head coil. Within the MRI session in study III, the 

resting state was scanned before any task-fMRI scans. 

In fMRI, parallel imaging based on image domain image reconstruction, 

provided by the scanner manufacturer, was used with an acceleration factor of 2. 

Functional scans were always preceded by a short calibration scan required by PI. 

BOLD fMRI scanning of 7.5 min consisted of 253 whole brain volumes of which 

the first three were discarded due to T1 non-equilibrium state. Parameters of the 

gradient echo single-shot EPI were TR 1.8 s, TE 40 ms, FA 90 degrees, FOV 256 

mm, 64×64 in-plane matrix, 4×4×4 mm voxel size, 28 oblique axial slices with a 

0.4 mm gap and interleaved acquisition order. 

Study IV 

There were special arrangements in study IV to deliver bright light stimulus via 

the ear canal during resting state scanning, while sight of the light stimulus was 

prevented. Light was produced by two 3 W LEDs (main light spectrum peak at 

blue light 465 nm and a secondary peak at 550 nm) and delivered via 5 meter long 

polycarbonate colourless fibre optic light guides connected to ear-plugs in the 

subject’s ears while laying inside the scanner. The produced output luminous flux 

(circa 7–8 lumens) in the ear canal was of an order of magnitude comparable with 

sunlight intensity in the ear canal under bright sunny day conditions when 

directed towards the sun, according to our measurements.  

Scanning sessions with constant stimulus consisted of two consecutive 

resting-state scans with eyes properly covered. The first scan was always without 

light stimulus, and it was used to achieve better scanner stability before the actual 

scan of interest. During echo-planar imaging with the used scanner, the gradient 

coils warm up and cause marked signal drifts typically during the first five 

minutes of the scanning. Thus, a valid comparison between the first and the 

second scans on the full frequency band was not possible. The first scan also 

worked as a control condition for between group comparisons. The second scan 

was light on for the light group and no light for controls. 

The scanning parameters of the block-design setup for separate participants 

were otherwise similar but the duration was 15 minutes, TR was 2 s and 31 slices 

were recorded without an inter-slice gap. Resting-state data were collected while 
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alternating light on and off every 30 seconds. Light switching was operated 

manually, while checking the timing from a stopwatch. 

4.3 Data pre-processing 

Data pre-processing is required to condition the data to be better suited for the 

analysis. Firstly, the typical pre-processing steps are presented in the following, 

and the order of the steps approximates their order of use in practice although not 

all described steps were performed in any of the individual studies I-IV. Then the 

special pre-processing routines used in studies I & III are described. 

– To correct the data for scanner artefacts, appearing as broadly distorted signal 

within individual image slices, the de-spiking procedure was carried out with 

the AFNI 3dDespike tool (Study III). De-spiking involves smoothing the 

time-series voxel-wise in time-points exceeding the specified threshold for 

deviating signal intensity that cannot originate from normal physiological 

processes. 

– Motion correction, applied in a similar manner in all studies, consists of first 

estimating the motion with respect to the middle volume of the time-series, 

and then re-aligning the time-series based on those estimates. In study I, 

motion correction was performed with AFNI while in studies II-IV the 

MCFLIRT tool (Jenkinson et al. 2002) of the FSL software package was 

used. 

– Brain extraction was performed using BET to remove non-brain tissue from 

the image. This is carried out to be compatible with the reference brain 

images for spatial normalization in FSL, which are also brain-only. 

– 2D image acquisition was carried out in an interleaved order which yields 

about TR/2 temporal difference between adjacent slices. These timing 

differences were corrected for by interpolating the time-series slice-wise in 

studies III-IV. 

– Smoothing via spatial Gaussian filtering was performed to increase SNR. Full 

width at half maximum (FWHM) defines the filter, and the following widths 

were used: 5 mm (study III), 6 mm (study I, IV), 7 mm (study II). The 

exception was in study IV where no additional spatial smoothing was applied 

for the full frequency band data since smoothing may increase the relative 

prevalence of low frequency noise (Wang et al. 2005). However, the filter 

width was 6 mm in block-design stimulus part of the study IV. 
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– Temporal filtering of the data was carried out to remove very low frequency 

drifts. High-pass filtering cut-off frequencies were 0.008 Hz (study II) and 

0.01 Hz (study III). Low-pass filtering was applied to estimate RSN maps of 

interest in study III with a cut-off frequency of 0.1 Hz. The exception was 

study IV, where no temporal filtering was applied, to investigate responses on 

the full spectrum. However, to create spatial template maps from the same 

datasets a cut-off frequency of 0.0067 Hz was used. In the block-design 

stimulus part of study IV the cut-off frequency used was 0.017 Hz. 

– Intensity normalization (grand mean scaling) of the volumes so that all 

datasets have the same mean intensity. This conditions the individual datasets 

to be better comparable for group ICA and it was used in studies II–IV. 

– Spatial normalization to the common T1-weighted template provided by FSL 

was performed using FLIRT in all studies. Multi-resolution affine co-

registration (Jenkinson and Smith, 2001) with 6 degrees-of-freedom was used 

to co-register fMRI volumes to structural scans of corresponding subjects, 

and structural images were co-registered, with 12 degrees-of-freedom, to the 

MNI standard structural space template. 

Study I 

In study I the pre-processing operations included also a broad set of physiological 

correction routines: 

– Physiological correction with RETROICOR of the AFNI 3dretroicor tool was 

used to remove cardiac and respiratory oscillations and their first harmonic 

signals. After first converting the input respiratory and cardiac signals to 

phase signals relative to the image timing, 2nd order Fourier series of the 

phase signals were fitted to the data and regressed out. 

– Physiological correction with respiration volume per time (RVT) was applied 

using eight lagged RVT regressors. An RVT regressor is calculated from the 

respiration belt measurement by dividing the difference between maximum 

and minimum of the wave period amplitude by the time between successive 

peaks in the waveform. Firstly, respiration waveform was smoothed with a 

Gaussian kernel and then waveform peaks were detected by using varying 

criterion for signal deviation from the mean. After this automatic signal 

envelope detection, high frequency fluctuations were removed from the 

envelope estimate. The quality of the detected envelope signal was checked 
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by manually. Finally, the waveform was resampled into every TR similar to 

the BOLD data and seven additional lagged RVT regressors spaced every 3 

TR from −6 TR to +15 TR were created. The time span for lagged regressors 

ranged from −11 s to +27 s. Generated estimates were regressed out using an 

ordinary least squares method. 

– HR LFF correction for cardiac rate low-frequency fluctuation was applied 

according to the original study by Shmueli et al. (2007) using five lagged 

regressors. Cardiac rate was computed from heart pulse trigger data provided 

by the scanner. The pulse interval was first calculated from successive pulses, 

and then inverting the cardiac rate at that point in time. Spurious pulses were 

removed using a threshold of 1.7 times the standard deviation of the cardiac 

rate. As a result, eleven subjects from the original study population were 

discarded since percentage of spurious cardiac pulses was over 5%. Then the 

cardiac rate time course was smoothed and interpolated to every TR 

corresponding to the BOLD data, and four additional lagged cardiac rate LFF 

regressors spaced every 3 TR from 0 TR to +15 TR were created. The time 

span for lagged regressors ranged from 0 to about 27 seconds. Generated 

estimates were regressed out using an ordinary least squares method. 

Study III 

In study III the motion related signal elimination was performed rigorously to 

investigate the efficacy of conventional motion correction methods. A so-called 

scrubbing procedure considered 0.2 mm motion as an exclusion criterion and the 

subsequent time-point was always removed. The actual removal of time-points 

was carried out for fully pre-processed time-series that were not low-pass filtered 

so that motion effects would not smear to adjacent time-points. High-motion 

subjects (4 ASD participants and 1 control participant) with less than 4 min of 

data remaining after scrubbing were excluded from the analysis. For the 

remaining sample the percentage of average scrubbed time-points was 13.5% for 

the ASD and 11.4% for the TD group. 

4.4 Data analysis 

The main tool in the present study, ICA, was used in every sub-study either on a 

subject level (Study I), or on a group level via temporal concatenation group ICA 

(Studies II-IV). A FastICA-algorithm implementation in FSL MELODIC that 
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comprises a probabilistic ICA (PICA) framework was carried out using skewness 

as a contrast function. The same contrast function was used in repeatability 

analyses with ICASSO as well. ICA dimensionality estimation methods were not 

used in any of the studies. 

Study I 

Posterior weighted DMN centrotype ICs from ICASSO of each subject were 

subject to a comparison between physiologically corrected and non-corrected 

data. The comparison was carried out on three dimensionalities, or model orders: 

20, 30 and 40. Statistical testing was carried out with paired t-tests in AFNI, and 

no correction for multiple comparisons was performed to remain sensitive to 

subtle changes. Determined statistical significance threshold was uncorrected 

p>0.05 with a spatial extent of at least 20 voxels. DMN maps produced with 

different pre-processing schemes were spatially correlated and the changes in 

correlation coefficients were assessed as a function of model order using a paired 

t-test. 

Study II 

Evolving spatial characteristics of the default mode, visual, sensorimotor and 

striatal RSNs along increasing ICA dimensionality from 10 to 200 were 

investigated. Parcellation of the large-scale RSNs on the low model orders into 

sub-networks on the high model orders was visually determined. RSNs were 

obtained as centrotypes from repeating 100 runs of ICA, using ICASSO. Analysis 

emphasis was on the one hand put into identification of the RSN detection points 

meaning the model order where the RSN first appeared. On the other hand, 

branching points depicting the model orders where the RSN in question split into 

sub-networks, was also of interest. RSN characteristics were further investigated 

by measuring their volume and z-score, and ICASSO produced reliability metric 

Iq, as a function of model order. Also spatial coverage of RSNs against the Juelich 

histological atlas regions was calculated. 

Study III 

Analysis aimed at exploring the effect of ICA model order and motion scrubbing 

on DMN connectivity in ASD. DMN RSNs were selected from group ICA of low 
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to high dimensionality (20, 30 and 100), with special attention in identifying the 

DMN sub-networks on high dimensionality. The manual DMN selection was 

assisted with a “canonical” reference DMN, produced with very low model order 

ICA (8 ICs). ICASSO analysis indicated that DMNs from a single ICA run with 

100 ICs were from moderately to highly reproducible, when using a stringent 

convergence threshold (0.0000001) for single ICA runs. Spatial FC in DMN sub-

networks was then compared between ASD and control participants using an ICA 

dual-regression tool that incorporates the non-parametric permutation test tool 

FSL Randomise (Nichols & Holmes 2002). The number of permutations was 

5000 and threshold-free cluster enhancement (TFCE) (Smith & Nichols 2009) 

was used to control for the multiple comparisons. The significance level was 

determined as p<0.05 on each tested DMN sub-network separately. 

Temporal full correlation between time-courses of the same RSNs was 

carried out to assess the FC between DMN sub-networks (i.e. between network 

connectivity) which was hypothesized to be decreased in the ASD group. Testing 

was carried out with FSL Randomise with 10000 permutations and multiple 

comparison correction, with a significance threshold of p = 0.05 determined over 

DM-SN pairs within each dimensionality. In other words the statistical testing 

was carried out separately on each ICA dimensionality. 

All above tests were carried out for both motion scrubbed and full datasets. 

Tests included average subject-level absolute and relative motion estimates as 

nuisance regressors to control for linear motion effects. The amount of motion, as 

measured by average values of absolute and relative motion estimates by 

MCFLIRT tool from pre-processing phase, was compared between groups. 

Finally, the effect of age and psychometric measurements was studied on the 

investigated group differences in DMN connectivity by setting age and 

psychometric data as covariates in nonparametric tests using FSL Randomise.  

Study IV 

Group ICA with model order 30 was used for spatial FC analysis with dual-

regression between bright light stimulus and sham control groups. In both 

regression stages of the dual-regression data and design were demeaned. Before 

the 2nd regression the time-courses were variance normalized. Therefore the 

emphasis is on the temporal shape of the time-series instead of its amplitude. 

Statistical testing and multiple comparison correction was performed similarly to 

study III with nonparametric permutation testing.  
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Regarding further temporal analysis of RSNs that showed significant 

differences in spatial FC analysis the time-courses and their spectra were 

investigated using Matlab. A second degree polynomial was fitted for individual 

time-courses and the polynomial coefficients describing the trend were 

statistically tested with two-sample t-tests (assuming unequal variance). In order 

to illustrate spectral differences, time-courses were also converted into the 

frequency domain usin standard discrete Fourier transformation (FFT-function, 

no zero-padding). Group mean single-sided amplitude spectra between ~0.002 - 

0.1 Hz were plotted. 

The scans analysed were the second resting scans of the MRI session. Yet, the 

first scans were also compared between groups in order to assure that the baseline 

was similar between the light stimulus group and the control group. Longitudinal 

comparison on the full band could not be performed due to prominent scanner 

drifts prevalent in the first scan. Another control measure was to compare group-

wise the amount of motion, as measured by average values of absolute and 

relative motion estimates by MCFLIRT tool from pre-processing phase. Absolute 

estimate is computed in reference to the middle time-point and relative estimate is 

computed differentially between adjacent time-points. 

Additional analysis of block-design bright light stimulus was performed in 

FSL, where the data was first pre-whitened before GLM analysis, taking into 

account hemodynamic response function with regards to stimulus timing. 

Estimated motion parameters were included as nuisance regressors. The statistical 

group-level testing was done in FSL Randomise in a similar manner to the main 

analysis. 
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5 Results 

5.1 Physiological noise correction of the ICA default mode network 

The DMN revealed by ICA was found to be effectively similar in group level 

analysis with and without specific physiological correction, physCorr and noCorr 

respectively. On this group level comparison of the individual ICA DMNs, the 

precuneus near the sagittal sinus was shown to present subtle decreased 

connectivity in physCorr datasets, suggesting a putative site of improved 

estimation. However, subject-level examination (Fig. 2) showed plausible 

differences only in a few datasets of the 21 studied subjects. In some subjects the 

differences clearly reflected dissimilar RSN splitting, rather than a direct effect of 

physiological noise correction.  

 

Fig. 2. Individual subjects illustrating the differences in DMN maps between noCorr 

(red) and physCorr (blue) are shown on the left, map intersection shown in yellow. 

Typically the major differences do not present improvement in the DMN estimation but 

different RSN splitting. Example subjects present one with high noCorr–physCorr 

correlation coefficient (A), one with possible enhancements in DMN appearance (B), 

one with low cc at all model orders and major inconsistency at 20 components (C), 

one with divergence at 20 components (D) and a subject with marked inconsistency at 

30 components (E). (Study I, published with permission from Elsevier.) 

Several ICA dimensionalities were analysed in an attempt to map the ability of 

ICA to separate cardiac and respiratory noise sources from the DMN. Individual 

ICA runs with decomposition into 20, 30 and 40 components showed higher 
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dimensionality to yield more similar DMNs between physCorr and noCorr data. 

The average physCorr - noCorr correlation was 0.87 in model order 40 while 

there were marked outliers in lower dimensionalities, decreasing the mean 

correlation to around 0.80. While results indicate better physiological noise 

separation at higher model order, the difference may be even smaller than it 

seems. This is due the worst outliers, especially on low model orders, cannot be 

considered as true effects of improved DMN estimation due to physiological 

correction (Fig. 2). It would be reasonable to expect the true improvement to 

show as decreased FC in regions with prominent physiological noise. However, 

several of the substantial differences between physCorr and noCorr DMNs are 

present in regions considered part of the DMN. This suggests that some of the 

observed differences arise due to altered splitting of the DMN into sub-networks 

after changes in the ICA optimization landscape, or even removal of DMN signal 

of interest, by broad physiological noise regression. 

5.2 Effect of ICA dimensionality on the resting state networks 

RSN expression was highly dependent on model order with the largest changes on 

low dimensionality and minor changes at very high dimensionality (range 100–

200). ICs covering DMN and visual network (VIS) related areas were found to 

present a very dynamic manifestation as a function of ICA dimensionality. 

Typically the large-scale networks tended to branch into sub-networks around 

model order 20–40 after they were detected between model orders 10–30. On the 

other hand, model order 30 was not enough to reveal all RSNs as for instance the 

striatum RSN emerged only at dim = 40. On very high model orders lateralization 

of the initially bilateral RSNs occurred frequently. 
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Fig. 3. The effect of increasing ICA model order on the estimated resting state DMN 

related components. At model order 10, the main DMN and precuneus centered PCUN 

can be detected, while at model order 20 the DMN branches into DMN-A and DMN-P. 

Then at model order 30, the DMN-related bilateral and the transitional component 

emerge. At model order 50, the DMN-related branched into two sub-components. 

Model orders 30–40 presented a transitional zone where most spatial overlap and 

transition of connected brain regions took place. (Study II, figure is combined from 

two figures published in Study II, published with permission from Wiley.) 
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At the lowest dimensionality of 10, the default mode areas were not covered 

with one component. The DMN’s posterior and anterior nodes were well present 

at dim = 10, but there was also the precuneus (PCUN) centred RSN extending 

into core default mode areas. Then at dim = 20 the main DMN was split into 

distinct anterior and posterior RSNs in addition to the PCUN. At dim = 30 the 

picture of DMN connectivity turns more versatile as the posterior DMN is 

effectively split into dorsal and ventral sub-networks (Fig. 3). At further higher 

dimensionalities the DMN appearance stays rather stable with regards to anterior 

and posterior RSNs although spatial extent diminishes gradually as the 

components get more confined. The PCUN RSN evolves into a more distinct 

dorsal component that is not part of the core DMN areas as found from model 

order 40 onwards. The ventral posterior part of the DMN (transitional component 

in Fig. 3) is partially fused with medial visual areas at dim = 40 but these are 

separated into their own sub-networks from dim = 50 onwards. Ventral DMN is 

not shown in the original figure after dim = 40. The lateral posterior parts are 

present in all DMN sub-networks on low model orders while with higher 

dimensionality they reside on dorsal and ventral DMNs (DMNP and ‘Transitional 

component’ in Fig. 3., respectively) and in separate lateralized RSNs called 

“DMN related” in Fig. 3. 

VIS RSNs presented quite hierarchical splitting behaviour starting from a 

unitary visual signal source at dim = 10 covering the whole visual cortex 

including visuo-associative areas. At dim = 20, the splitting occurs into medial 

and lateral visual networks that are further parcellated in higher model order 

decompositions. The medial VIS RSNs were more stable in their spatial coverage 

compared to lateral VISs that varied considerably from model order 70 onwards. 

Regarding sensorimotor RSNs the motor and somatosensory cortices are fused to 

one RSN at dim = 20. The essential splitting into more fine-grained functional 

compartments of separate motor and somatosensory networks occurs around 

dimensionalities 30–40. Very high dimensionalities after around 100 model order 

do not alter the decomposition significantly. 

Measures of volume and z-score indicated marked changes in RSN 

characteristics on average up to model order range 60–100, after which no 

significant improvements or changes could be observed. The stability measure of 

the ICA decomposition decreased with increasing dimensionality but not in a 

linear fashion. On low model orders (20–30) the ICASSO repeatability index (Iq) 

showed high average and low variability on the studied RSN. Increased 

variability and decreased mean repeatability was detected between model orders 
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40–100, however, the mean value was still high between 0.85 and 0.90. 

Beginning after dim = 100 the decomposition stability measured by mean Iq 

gradually decreased below 0.80. Individual RSNs expressed varied repeatability 

across ICA dimensionality, but between dim = 80–100 the Iq’s were stable around 

0.90 without clear outliers. Anterior DMN was highly variable in the 

dimensionality range 40–50. A possible indication of over-fitting the ICA model 

order compared to data dimensionality was the presence of white matter centred 

smooth blobs with no connectivity to the rest of the brain. However, these ICs had 

correspondence in individual datasets. 

5.3 Multi-dimensional ICA view on DMN hypoconnectivity in autism 
spectrum disorders and the effect of rigorous motion 

correction 

Investigation on low and high ICA model orders revealed anteroposterior DMN 

hypoconnectivity in ASD compared to typically developing controls. Firstly, on 

low model order the clear division into two DMN compartments confirmed 

earlier indications of anteroposterior hypoconnectivity. Further on model order 30 

the parcellation of the DMN into two posterior sub-networks (dorsal and ventral) 

showed decreased connectivity between anterior and posterior sub-networks but 

without clear difference between anterior-dorsal or anterior-ventral 

hypoconnectivity in ASD. Finally on high model order 100, with clearly more 

confined spatial coverage in DMN sub-networks, the picture of the 

hypoconnectivity was found highly specific with strongest hypoconnectivity 

between anterior and ventral DMN sub-networks. In contrast to the typical 

findings in the literature, no spatial within sub-network FC differences were 

detected between ASD and control groups. 
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Fig. 4. The lines between DMN sub-networks illustrate the tested connections on 

varying ICA dimensionalities between the participants with ASDs and typically 

developing controls. The red line denotes statistically significant hypoconnectivity in 

ASD between the nodes, and black denotes non-significant hypoconnectivity. The line 

width denotes the connection strength. (Study III, published with permission from 

Frontiers.) 

Although the scientific community has recently been widely concerned about 

subtle motion effects that have been suspected to be the cause for earlier 

observations of anteroposterior hypoconnectivity in ASD, motion was not found 

to explain that finding in our analysis. Repetition of the FC analyses with fMRI 

time-series where motion related time-points were eliminated led to effectively 

the same results; the alterations in statistical scores were minor and could be 

attributed to increased sampling error due to eliminated time-points by scrubbing. 

In additional statistical tests the relationship between connectivity and age 

was found positive but clearly insignificant (p-value almost 1). Similarly, no 

significant covariance between the anteroposterior FC measures with the SRS 

total score or any of the SRS sub-scale scores was found. The relationship with 

the SRS total was slightly negative but the p-value again was nearly one. Gross 

motion estimates were not found to reach statistical significance in covariance 

with DMN correlations on any ICA dimensionality, with or without the motion 

scrubbing procedure. 
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5.4 Full frequency band ICA-approach for transcranial bright light 
stimulation 

The ICA dual-regression approach on full band time-series showed an fMRI 

response to bright light stimulation via the ear canal that suggests the presence of 

the hypothesized photosensitive opsins acting in the brain. The RSNs that 

presented strongest FC findings were the visuoassociative network on the lateral 

visual cortices (Fig. 5A) and the sensorimotor network. Lateral VIS spatially 

conforms to combined ventral and dorsal visual stream and it presented almost 

200 voxels in distributed locations with significantly higher FC in the light 

stimulus group. However, the group difference did not survive for more stringent 

multiple comparison correction with p<0.01, which indicates the finding not to be 

statistically very robust. Yet, VIS also presented a temporally slowly increasing 

group mean activity during the resting state scan as observed from the group 

mean activity plot (Fig. 5B). In spectra the lowest resolvable frequency bin of 

about 0.002 Hz and frequencies around 0.015 Hz were more prominently 

involved (Fig. 5C). The first and second order polynomial fit coefficients of the 

lateral VIS time-course were found elevated in the light stimulation group, 

p = 0.12 and p = 0.08 respectively, although not statistically significant. The 

sensorimotor RSN also presented significant spatial difference in one locus of 21 

voxels on the sensory cortex but the temporal course during the measurement was 

rather similar between groups. No significant findings were detected from the 

light stimulus delivered in conventional block-design fashion.  

The results were from the second scan of the MRI session. As a control the 

first scans with prevalent scanner drift were also compared group-wise between 

the same subjects. However, no baseline differences in lateral VIS or 

sensorimotor RSNs could be detected that could explain the results during bright 

light stimulation. Estimated subject-wise mean motion parameters were not found 

to significantly differ between groups, although the light stimulation group had 

elevated absolute motion in the 1st scan (p = 0.19) and slightly in the 2nd scans 

(p = 0.42). 
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Fig. 5. (A) The lateral visual RSN (red-yellow colors) demonstrated greater functional 

connectivity (blue voxels) in the light stimulus group compared to controls. However, 

the finding did not survive after more stringent multiple comparison correction 

threshold at p<0.01; (B) Group mean time-courses and standard deviations for the 

lateral visual RSN of the light group (blue) and controls (red), time-course units are 

demeaned values of spatial regression fit; (C) Corresponding frequency 

representation with group means and standard deviations. (Study IV, published with 

permission from Scientific Research Publishing.) 



83 

6 Discussion 

6.1 Separation of spurious signal sources with ICA (I-IV) 

Motion related artefact ICs were broadly present in group ICA studies II-IV 

which in part speaks for their separation from RSNs. Naturally the ICA de-

noising approach would be optimally performed with ICA on the individual 

datasets, but the correction performance on the group level analysis seems 

adequate. Also, in comparison to univariate methods like seed correlation 

analysis, the ICA multivariate approach is able to simultaneously model the 

global mean signal as a superposition of all ICs. While for univariate analyses 

global signal regression is advocated for its effects on reducing spurious FC due 

to motion artefacts, this is not recommended or relevant processing for ICA 

(Beckmann 2012). 

Study III focused on motion issues and showed that the average motion 

estimates on the group analysis were not significantly linearly associated with any 

of the performed tests on RSNs comparing ASD and control groups. However, 

this is discrepant with a study that showed the DMN among other RSNs to be 

significantly affected by motion effects in ICA dual-regression (Satterthwaite et 

al. 2012). Incongruence is most probably related to their large sample size of 

nearly 500 subjects which makes the statistical testing far more sensitive for 

detecting significant results from smaller effects. In practice, beta parameter 

estimate maps should be compared between studies and not only t-scores. In 

addition, fairly stringent elimination of motion related time-points did not 

appreciably alter the detected DMN hypoconnectivity results in ASD. This 

supports the inference that ICA combined with dual-regression is in a proper 

extent capable of modelling the spurious signal sources. In the dual-regression 

phase the partial regression estimates with a full set of ICs assign the major 

portion of the motion effects onto dedicated motion components. On the other 

hand, there are pre-processing choices that can contribute to noise separability 

such as low-pass filtering that can make the decomposition task easier for ICA by 

reducing high-frequency noise including some motion related signal changes. 

Finally, ICA dimensionality was not found to alter the way how motion scrubbing 

affected DMN connectivity comparison between ASD and controls. 

Concern over spurious FC measures induced by even 0.1 mm subtle motion 

between successive volumes has reached a level of inevitable physiological 
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motion in a living subject. Accurate external measurements have shown the heart 

pulse induced head displacement to be over 0.1 mm and that respiratory cycle 

related true head motion to be 0.2–0.3 mm (Maclaren et al. 2012). It seems likely 

that in single echo data acquisitions, the motion correction accuracy is limited by 

calculation of the motion estimates from the data itself. Accurate external 

measurement of head motion may be a prerequisite for prospective motion 

correction in current and future ultra-fast fMRI sequences. 

Physiological noise correction using RETROICOR to model instantaneous 

and aliased effects and cardiac and respiratory LFF modelling for slower 

fluctuations were not found to alter the group ICA estimates in a coherent manner. 

A minor clean-up effect was detected in the sagittal sinus adjacent to the 

precuneus but otherwise the differences induced by noise correction were limited 

to individual subjects. On the other hand the inherent sensitivity of ICA 

decomposition to changes in the optimization landscape due to noise regression is 

a challenge for comparison between different noise removal strategies. 

Partitioning of certain regions between distributed RSNs is in some datasets 

strongly altered meaning that this region was not related to physiological noise 

but ended up differently assigned in the whole RSN constellation. This bias was 

most diminished on the highest studied model order of 40, where the results are 

easier to interpret: there is putative group level reduction of FC in the sagittal 

sinus after physiological correction but there are also noisy looking FC increases. 

Overall, noise regression does not unambiguously lead to better ICA performance. 

An additional problem is the use of a large number of noise regressors that 

unavoidably results also to the removal of signal of interest, which further 

complicates comparisons between different pre-processings.  

One other way of investigating the ICA capability for noise separation would 

have been to conduct analysis of time-course correlation with noise regressors, as 

was the case in a parallel study focusing on the RVT estimate and DMN (Birn et 

al. 2008). In fact, there is another study (Beall & Lowe 2010) exploring the 

effects of RETROICOR for group ICA, but spatial results are difficult to interpret 

due to varying RSN splitting after physiological correction, that was problematic 

in study I too. Temporally, however, their results were more straightforward to 

comprehend. The default mode and visual networks were not particularly 

correlated to physiological signals, while the auditory network was highly 

correlated, and all correlations were practically nullified by passing the data to 

RETROICOR before ICA. They found better physiological noise separation at 

higher group ICA model orders (Beall and Lowe 2010) which is in concordance 
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with results of study I indicating a similar behaviour on individual-level ICA. 

Finally, it may have been more accurate to study the effects of noise correction on 

the DMN by measuring reduced FC under a mask defined by separate 

physiological noise ICs. 

6.2 Effect of ICA dimensionality on RSN modularity (I-III) 

Studies I-III collectively depict the course of evolving DMN connectivity on both 

subject-level and group ICA showing anterior and two posterior sub-networks 

(dorsal and ventral) already on model order 30. Additionally at high 

dimensionality in study III, there were the left and right lateralized networks 

centred on the parietal lobule that shared marked spatial coverage with canonical 

DMN regions. In the literature, an RSN closely related to DMN functions is the 

executive control network, which partially resembles our lateralized DMN RSNs. 

Yet, in study III their connectivity involved more clearly the PCC and precuneus 

regions as well. Study II explored mainly the DMN and VIS on varying ICA 

dimensionalities and would have been further improved by presenting a whole 

brain RSN modularity continuum or at least by inclusion of essential task-positive 

networks. However, as the effort was put on dense sampling of ICA 

dimensionalities a practical decision was made to reduce the complexity by 

limiting the number of RSNs. 

Dimensionality estimation methods attempt to conclude an optimal 

representation level of the data decomposition, although rationality of the applied 

criterion can be questioned. Automatic estimation methods depend largely on data 

SNR, which is a sound approach and should scale according to data properties but 

is not equivalent to neurophysiologically meaningful criteria. Different methods 

produce varying model orders and the results can be affected by pre-processing 

choices such as spatial smoothing. As the outcome of ICA regarding the 

constellation of all RSNs is very sensitive for the model order parameter, and 

even more so on the group ICA, comparison between studies can become 

cumbersome due to highly varying RSN expression by varying model order. 

The use of one model order, typically relatively low around 20–30, 

potentially discards useful information as the more complex picture of the whole 

brain connectivity is left aside. Furthermore, low dimensionality can be regarded 

as insufficient use of statistical indepence. This is since large-scale RSNs on low 

model orders are still mixtures of independent sources, RSN sub-networks, which 
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can be only obtained on high model orders. These sub-networks can be viewed as 

more true constituents of the large-scale RSNs.  

Functional neuroanatomy as reflected in a whole RSN constellation can be 

expressed on many desired levels of modular organization. In our data it reaches 

maximal modularity around 100 ICs, depending on the properties of the group 

dataset. These properties are discussed in study II and included e.g. field strength 

and resolution, and their effect was recently confirmed in a 7 T study (Robinson 

et al. 2013). Therefore the ICASSO Iq values, presented in study II, are certainly 

dependent on data properties. 

High model order ICA with fine-grained RSNs can be utilized to pinpoint 

more to the root of the investigated functional aberrations such as was shown in 

study III with DMN alterations in ASD. In order to obtain a ”canonical” DMN 

with group ICA the model order needs to be below 10, based on observations in 

studies II-III. For several years it was a common practise in the field to assume 

that ICA produces only one DMN but a more intricate nature of the DMN 

connectivity is now a settled fact. 

A question of dimensionality is linked to varying dynamics or non-

stationarity of the functional connectivity, a recent topic in fMRI. In the future, a 

better understanding of the functional differences within systems will build up 

and this will help to interpret the neurophysiological driving mechanisms of RSN 

splitting in high model order ICA (Beckmann 2012). The variability of the ICA 

result is often related to spatially distributed and overlapping RSNs and hence the 

robustness reflects the degree of complex inter-connections. These variably 

overlapping RSNs are highly challenging for attempts to present the whole brain 

modularity as non-overlapping entities. Repeatability analysis such as ICASSO 

attempt to diminish the algorithmic variability and the obtained metrics mirror the 

dynamic connectivity properties of the RSNs. Put in other words, the individual 

ICA result gives one of the possible views on the data decomposition that arise 

non-randomly due to data properties.  

It is known that algorithmic variability of the decomposition increases with 

dimensionality, which implies a trade-off between high modularity vs. 

reproducibility and over-fitted ICs. On the other hand, result variability reflects 

intrinsic properties of the measured complex spatiotemporal processes that, even 

in the hypothetical condition of noiseless data, are difficult to present with a linear 

combination of IC maps. It is not fully clear what kind of ICs present over-fitting 

in resting state fMRI but in study III the group IC with smooth blobs in white 

matter arose from an individual dataset and was increasingly detected at higher 



87 

dimensionality. This suggests that a pronouncedly rounded smooth shape of an IC 

indicates an over-fitting result. However, over-fit ICs should not be consistently 

detected by ICASSO as there is no good reason why over-fits would repeatedly 

occur in the same location. Another observation in study III was the increasing z-

score of the ICs, which is attributed to ICA dimensionality by definition of the z-

scores computation. z-scoring involves division with noise residual that 

diminishes along increasing dimensionality, and therefore the z-scores are 

elevated on higher dimensionalities. Finally, the undesirable splitting of RSNs due 

to anatomical variability between subjects is also a possible mechanism for 

another kind of over-fitting (Allen et al. 2014), although real data examples have 

not yet been presented in the literature. 

6.3 Other considerations on ICA methods 

Study III investigated between networks full correlation analysis that was chosen 

instead of previously proposed maximal lagged correlation within a 10 second 

time window (Jafri et al. 2007). The preliminary analysis with lagged correlations 

was often found to be unable to point to clear local maxima other than the edge of 

the time window. This problem was more pronounced for sub-networks that 

presented lower connectivity. Therefore, a simple zero-lag correlation method was 

chosen for more straightforward inference. Further improvement in this between 

network analyses could have been the choice of partial correlation where indirect 

contributions between DMN sub-networks would be regressed out. 

Research groups investigating pharmacological fMRI encounter analysis 

issues that parallel those of study IV with bright light stimulation via the ear canal 

whereby very little a priori information about the hypothesized response pattern 

was available. Characterization of the psychopharmacological effects has proven 

difficult and the challenge of developing a generally applicable methodology for 

repeated measurements of drug effects on the central nervous system has been 

acknowledged. However, recently in the research of pharmacological challenges, 

resting state fMRI and ICA have been found to provide a proper methodology for 

system-level neuroscience (Cole et al. 2013, Khalili-Mahani et al. 2012). In study 

IV, the analysis task started with a consideration of an appropriate method for 

investigating the effects that a constant stimulus would induce. Given the 

hypothesis of inherently photosensitive brain opsins outside retina, the analysis 

properties had to be specifically directed towards unknown spatiotemporal 

responses by analysing the full frequency band which is rarely done in fMRI. 
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Clearly there was a need for data-driven analysis since the hypothesis of affecting 

brain functions by light stimulation had not taken shape yet. ICA fulfilled the 

data-driven criterion but the group ICA dual-regression approach did not directly 

cope with the amount of signal drifts. PCA pre-processing captured dominantly 

signal drift variance from regions with high susceptibility artefacts and hence 

yielded ICs presenting mainly areas near air-sinus cavities. The problem was 

solved by high-pass filtering the data before an ICA estimation phase and issuing 

the non-filtered data back during dual-regression. On the other hand more 

optimally the drifts would have been dealt with by linear de-trending, which 

would have yielded ICA decomposition with a dataset resembling as closely as 

possible the dataset used in dual-regression. Further in the dual-regression process 

it was important to perform signal processing properly to condition the data for 

the hypothesis of signal changes during the course of measurement rather than to 

weight the baseline amplitude of the RSNs. This was accomplished by variance 

normalisation of the time-course in the 2nd regression of the dual-regression, in 

addition to demeaning the data and design in both regressions. Finally, the 

between subjects study design, that was used in study IV, has its limitations in 

statistical power. If the study setup could be formulated such that repeated 

measures of the same subjects would be compared, the statistical analysis would 

be more sensitive as the within-subject variability is smaller than between-subject 

variability. This relates also to major difficulties in spatial normalization 

procedures to map individual structures into common space. 

6.4 Considerations on resting-state measurements 

It is peculiar to note in retrospect how strong the disbelief has been against the 

functional relevance of resting state fMRI until around the year 2005. Regardless, 

the choice of measurement condition in resting state fMRI is between eyes open 

or eyes closed, which clearly has effects on awareness and vigilance. Varying 

vigilance has implications for resting state studies since drowsiness has been 

difficult to control for in the experiments, which causes unintended variability and 

bias into the data. Light sleep has been shown to be associated with increased 

BOLD fluctuations in visual and sensorimotor cortices (Horovitz et al. 2008). In 

studies I-III, resting state condition was eyes open with visual cross fixation that 

requires top-down attention control as a low level task. The repeatability of the 

RSN has been found to be slightly more reliable with eyes open with cross 

fixation, compared to eyes open only or eyes closed (Patriat et al. 2013). In 
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practice the visual fixation can be annoying for some participants but the 

advantage is that participants are less likely to fall asleep. In studies of dynamic 

FC, certain connectivity states are thought to reflect alterations in arousal and 

vigilance states (Allen et al. 2014). Indeed, automatic data-driven sleep staging 

with resting state fMRI has been demonstrated using simultaneous EEG as a gold 

reference (Taggliazucchi et al. 2012). 

Physiological measurements parallel to resting state fMRI are often necessary 

to model physiological noise, especially in univariate analysis methods. Our 

experience in study I indicates that physiological monitoring itself is prone to 

errors, which warrants the use of data-driven methods for data correction. Errors 

occur in cardiac measurements due to low blood circulation in the fingers and 

respiratory measurements suffer from signal saturation and occasional auto-

calibration of the system, which alters the signal level. In fact, the physiological 

signals corresponding to measures from the photoplethysmograph and respiration 

belt can be reconstructed from the fMRI data itself using temporal ICA for each 

image slice separately (Beall and Lowe 2007). 

Recently the effect of mental activity preceding the actual resting state scan 

has been acknowledged as a possible source of bias between studies. For instance, 

a working memory task induced transient carry over effects into the following 

resting state, taking around 10–15 minutes for the BOLD dynamics to return to 

pre-task level (Barnes et al. 2009). In all studies I-IV, the MRI session was 

performed in a manner that minimizes variability related to preceding activity 

since the resting scans were always the first fMRI scans. Furthermore the MRI 

session was started with a 3 min anatomical scan that provided the participant 

some time to adapt to loud and inconvenient MRI environment. 

6.5 Future directions 

Functional imaging techniques evolve with a fast pace and can now provide sub-

second sampling rates of the whole brain with a voxel size smaller than 3 mm. 

The resting state research field is still growing in popularity and is becoming 

better established. At the same time the data processing practices like de-noising 

are now more standardized and automatic where ICA has a prominent role. The 

improved accuracy will naturally enable more fine-grained research, using e.g. 

high dimensionality ICA, with increased statistical power due to more data 

samples. However, with increasing spatial accuracy the error due to variations in 

functional neuroanatomy and hence suboptimal spatial normalization will be 
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relatively enhanced. Faster imaging involves the increasing number of parallel 

coils and that implies increased sensitivity to motion artefacts, but the benefits of 

more samples per time unit clearly outweigh the problems. 

In study III, hypoconnectivity was shown between DMN sub-networks, 

indicating that the alterations related to ASD are in the network interplay rather 

than in local connectivity differences. This result further suggests that it would be 

highly relevant to study not only DMN but also the orchestration of the DMN 

(task-negative network) vs. TPN and other related control networks in both 

resting state and within relevant task settings. Taking the orchestration point of 

view further, it is imperative to also study dynamics i.e. non-stationarity in more 

detail to get a better picture of what can be obtained with the average FC. 

Study IV dealt with the very controversial issue of the inherent photosensivity 

of the brain outside the retina. The idea is based on brain opsins like OPN3 

(Nissilä et al. 2012), which may act as photoreceptors in the human brain. Potent 

photoreceptor properties have been demonstrated for example by transforming 

mammalian cell culture photosensitive by transfecting cell with an OPN3 

homologue (Koyanagi et al. 2013). It is a matter of future studies to confirm the 

light induced effect of brain opsins for transcranial light stimulation but there are 

interesting parallels to our findings on visuoassociative and sensorimotor 

networks in behavioral studies. A recent psychomotor speed study on the effect of 

the bright light treatment period showed acceleration of motor action time for a 

visual cue but not for an auditory cue for the light stimulation group (Tulppo et al. 

2014). On the other hand, one ICA study correlated RSN temporal features with 

reaction times in a stop signal task that is a measure of one’s ability to inhibit a 

prepotent response. The results revealed that shorter reaction times are associated 

with higher fluctuation amplitude of the visual, motor and attention RSNs (Tian et 

al. 2013). 
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7 Conclusions 

1. Spatial analysis of the default mode network is resilient to physiological 

noise on the level of single subject ICA on a 1.5 T magnetic field. At high 

dimensionality, the comparison between ICA decompositions is least biased 

by changes in the algorithm optimization landscape due to noise regression. 

Changes after physiological noise correction were minor, adding further 

proof of the neurophysiological origin of resting state activity. 

2. Low dimensionality ICA results are markedly sensitive for small changes in 

dimensionality. The default mode branches into anterior, dorsal and ventral 

sub-networks at a typical ICA model order of 30, although earlier it has been 

studied as a relatively unitary entity. Generally at higher model orders, ICA 

results are more variable between runs, but the variability also reflects the 

complex and dynamically varying inter-dependencies in fMRI data. 

3. Stringent censoring of the motion related data time-points had only a minor 

effect on the ICA dual-regression results with group level estimates of motion 

level. Autism spectrum disorder was associated with significant 

hypoconnectivity between anterior and posterior default mode sub-networks, 

and particular disconnection was detected with high ICA dimensionality 

between anterior and ventral sub-networks. 

4. Composed spatiotemporally explorative analysis with ICA enabled the 

identification of slow functional connectivity changes during transcranial 

bright light stimulation. Increased functional connectivity was detected in the 

lateral visual and sensorimotor resting state networks, potentially inferred as 

secondary effects of phototransduction. 
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