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Abstract
In probability theory, the topic of large deviations, i. e., approximation

problems of the probabilities of rare events, have a significant place. To under-
stand why rare events are important at all one only has to think of the events in
an insurance mathematics, nuclear physics and etc., to be convinced that those
events can have an enormous impact.

This thesis is concerned with a normal approximation to a distribution of
the sum ZN =

∑N
j=1 ajXj , Z0 = 0, 0 < aj < ∞, of a random number

of summands N of independent identically distributed weighted random vari-
ables {X,Xj , j = 1, 2, ...} that takes into consideration large deviations in
both the Cramér zone (the characteristic functions of the summands of ZN
are analytic in a vicinity of zero) and the power Linnik zone (the growth of
the moments of the summands does not ensure the analyticity of the charac-
teristic functions). Here a non-negative integer-valued random variable N is
independent of {X,Xj , j = 1, 2, ...}. In addition, the asymptotic expansion
that take into consideration large deviations in the Cramér zone for the density
function of the standardized compound Poisson process is obtained. To solve
the problems, the classical method of characteristic functions, cumulant and
combinatorial methods are used.

Although, in probability theory the asymptotic behavior of tail probabili-
ties for the sums of a random number of summands of random variables is a
quite new problem, it was initiated in the XXth century, but there is a very ex-
tensive literature on mentioned problem. However, as it is known for the author
of the dissertation, there are a few scientific works on theorems of large devi-
ations for the sums of a random number of summands of independent random
variables in case where the cumulant method is used.

The thesis consists of an introduction, three chapters, general conclusions,
references, and a list of the author’s publications. The introduction reveals the
importance of the scientific problem, describes the tasks of the thesis, research
methodology, scientific novelty, the practical significance of results. In the first
chapter an overview of the problems is presented. The second chapter is de-
voted for obtaining an upper bound for the cumulants, theorems of large devia-
tions and exponential inequalities for the standardized version of the sum ZN .
The instances of large deviations (the law of N is known; aj ≡ 1; discount
version of large deviations) are also analyzed in this chapter. In the third chap-
ter, the asymptotic expansion of large deviations in the Cramér zone for the
density function of the standardized compound Poisson process is considered.



Santrauka
Itin svarbi tikimybių teorijos dalis yra skirta didžiųjų nuokrypių proble-

matikai, tai yra retai pasitaikančių įvykių tikimybių aproksimacijos uždavi-
niams. Norint suprasti, kodėl reti įvykiai yra apskritai tokie svarbūs, užtenka
prisiminti retai pasitaikančius įvykius draudos matematikoje, branduolinėje
fizikoje ir pan., kurie gali turėti didžiulį poveikį.

Disertacija yra skirta atsitiktinio dėmenų skaičiaus N nepriklausomų vie-
nodai pasiskirsčiusių atsitiktinių dydžių {X,Xj , j = 1, 2, ...} su svoriniais
koeficientais 0 < aj < ∞ sumos ZN =

∑N
j=1 ajXj , Z0 = 0, skirstinio

normaliosios aproksimacijos didžiųjų nuokrypių Kramero (sumos ZN dėmenų
charakteristinės funkcijos yra analizinės nulinio taško aplinkoje) ir laipsninėse
Liniko zonose (dėmenų momentų augimas neužtikrina charakteristinės funkci-
jos analiziškumo) problemos sprendimui. Čia neneigiamas, sveikareikšmis at-
sitiktinis dydis N yra nepriklausomas nuo {X,Xj , j = 1, 2, ...}. Taip pat, yra
gautas standartizuoto sudėtinio Puasono proceso tankio funkcijos asimptoti-
nis skleidinys didžiujų nuokrypių Kramero zonoje. Uždavinių sprendimui yra
naudojami klasikinis charakteristinių funkcijų, kumuliantų ir kombinatorinis
metodai.

Nors atsitiktinio dėmenų skaičiaus atsitiktinių dydžių sumų didžiųjų nuo-
krypių tikimybių asimptotinio elgesio tyrimas yra pakankamai naujas tikimy-
bių teorijos uždavinys, kuris pradėtas nagrinėti XX a., tačiau yra paskelbtas
įspūdingas kiekis mokslinių darbų, kuriuose nagrinėjama minėta problema.
Ir vis dėlto, kiek disertacijos autorei yra žinoma, mokslinių darbų, skirtų at-
sitiktinio dėmenų skaičiaus, nepriklausomų atsitiktinių dydžių sumų didžiųjų
nuokrypių teoremų gavimui, taikant kumuliantų metodą, yra mažai.

Disertaciją sudaro įvadas, trys pagrindiniai skyriai, bendrosios išvados, li-
teratūros sąrašas, autoriaus publikacijų disertacijos tema sąrašas. Įvade atsklei-
džiama nagrinėjamos mokslinės problemos svarba, aprašomi darbo uždaviniai,
tyrimo metodai, mokslinis naujumas, praktinė rezultatų reikšmė. Pirmame sky-
riuje pateikiama nagrinėjamos temos apžvalga. Antrasis skyrius skirtas sumos
ZN standartizuoto varianto kumuliantų viršutinių įverčių ir didžiųjų nuokrypių
teoremų bei eksponentinių nelygybių gavimui. Šiame skyriuje taip pat ana-
lizuojami atskiri didžiųjų nuokrypių atvejai (kai N skirstinys yra žinomas; kai
aj ≡ 1 ir didžiųjų nuokrypių diskontavimo versija). Trečiame skyriuje yra na-
grinėjamas standartizuoto sudėtinio Puasono proceso tankio funkcijos asimp-
totinis skleidinys didžiųjų nuokrypių Kramero zonoje.



Notation

Symbols

P(A) – the probability of a random event A;
FX – the distribution function of random variable X;
pX – the density function of random variable X;
fX – the characteristic function of random variable X;
E – the mean;
D – the variance;
µ – the mean of random variable X;
σ2 – the variance of random variable X;
N – the set of natural numbers;
N0 – the set of non-negative integer numbers;
R – the set of real numbers;
[x] – the integer part of x;
Φ – standard normal distribution function;
φ – standard normal density function;
P→ – the convergence in probability;
d→ – the convergence in distribution;
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viii NOTATION

∗ – the convolution operation;
∼ – asymptotically equivalent;
' – approximately equal;
� – much less than;
ā – 0 < ā = inf{aj , j = 1, 2, ...} <∞,

where 0 < aj <∞;
a – 0 < a = sup{aj , j = 1, 2, ...} <∞;
(b ∨ c), b, c ∈ R – (b ∨ c) = max{b, c}.

Abbreviations

i. i. d. – independent identically distributed;
r. n. s. – random number of summands;
a. s. – almost sure.
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Introduction

Scientific problem

The theory of large deviations deals with the probabilities of rare events
that are exponentially small as a function of some parameter. For example,
in insurance mathematics, such problems arise in the approximation for small
probabilities of large claims that occur rarely.

The theory was originally created for sums of independent identically
distributed (i. i. d.) random variables and then extended to a class of random
processes (see, e. g., Cramér 1938; Ibragimov and Linnik 1965; Petrov 1975;
Nagaev, S. V. 1979; Saulis and Statulevičius 1991; Dembo and Zeitouni 2010;
Borovkov and Mogulskii 2012; Yang et al. 2012). This thesis is concerned with
theorems of large deviations in both the Cramér and the power Linnik zones
(see, e. g., Saulis and Statulevičius 1991) for a distribution of the sums of a ran-
dom number of summands (r. n. s.) of i. i. d. and weighted random variables.
Only the case of normal approximation is considered in the thesis.

Topicality of the work

The asymptotic behavior of the probabilities for the sums of a r. n. s. of
random variables is a quite recent problem in probability theory. The first re-
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2 INTRODUCTION

sults were developed in the twentieth century, in the 1940s. Presently, there are
many strong results on the approximation of tail probabilities for the aforemen-
tioned sums. Nevertheless, the theory of large deviations is still under rapid
development, because of a large number of diverse and extremely complicated
problems arising in various areas of mathematics and applications that require
it’s investigation (see, e. g., Shorgin 1998; Pragarauskas 2007; Touchette 2009;
Korolev et al. 2011; Borovkov and Mogulskii 2012; Foss et al. 2013).

Research object

The research object of this thesis is the sum of a r. n. s. of i. i. d. random
variables with positive weights (weighted random sum). Throughout the thesis,
it is assumed that the non-negative integer-valued index of the sum is indepen-
dent of the considered random variables.

The aim and tasks of the dissertation

The aim of this dissertation is a normal approximation to a distribution of
the standardized sum of a r. n. s. of i. i. d. weighted random variables that takes
into consideration large deviations in both the Cramér and the power Linnik
zones. The results are obtained for two cases: where the mean of considered
random variables is zero, and where it is non-zero. In the thesis, the following
problems are examined:

1. To evaluate the upper estimate for cumulants of the standardized wei-
ghted random sum in the case where the i. i. d. random variables satisfy
S. N. Bernstein’s condition (see, e. g., Saulis and Statulevičius 1991)
and under some additional assumptions for the cumulants of a sum of
a r. n. s. of positive weights (see, e. g. Kasparavičiūtė and Saulis 2013).

2. To obtain exact large deviation ratios and to analyze the asymptotic be-
havior (convergence to the unit) of that ratios for a distribution function
of the standardized weighted random sum.

3. To derive exponential inequalities for the probability of large devia-
tions for aforementioned sum.

4. To consider instances of large deviations where the law of the random
number of summands is known (is a binomial random variable, and is
homogeneous, or mixed Poisson process); where all weights are equal
to a unit, and the discounted version of large deviations.
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5. To obtain asymptotic expansion that take into consideration large devi-
ations in the Cramér zone for the density function of the standardized
compound Poisson process.

Applied methods

Solutions to the problems of this thesis are obtained by first using gen-
eral lemmas presented in (Rudzkis et al. 1978; Bentkus, R. and Rudzkis 1980;
Saulis 1980), accordingly, on exact ratios of large deviations, exponential in-
equalities for large deviation probabilities, and asymptotic expansion of the
density function for an arbitrary random variable with zero mean and unit vari-
ance.

Among the existing methods for large deviations (see, e. g., Saulis and
Statulevičius 1991; Jensen 1995; Borovkov 1999; Fatalov 2011, 2010; Gao and
Zhao 2011), we rely on the cumulant method that was proposed by S. V. Sta-
tulevičius (1966) and developed by R. Rudzkis, L. Saulis, and V. Statulevičius
(1978), as it is a powerful method that permits the systematic investigation of
large deviations for various statistics.

To obtain asymptotic expansion that take into consideration large devia-
tions in the Cramér zone for the density function of the standardized com-
pound Poisson process along with the cumulant method, the classical method
of characteristic functions is used. In addition, based on S. V. Statulevičius’s
known estimates for characteristic functions (see Statulevičius 1965) of an ar-
bitrary random variable, the structure of the remainder term of aforementioned
asymptotic expansion is obtained.

The combinatorial method is used to evaluate the upper estimates for the
cumulants of the standardized weighted random sum.

Scientific novelty

There is a very extensive literature on approximation of tail probabilities
for random sums, under different assumptions and with various applications
(see, e. g., Aksomaitis 1965; Statulevičius 1967; Saulis 1978; Embrechts et al.
1985; Faÿ et al. 2006; Saulis and Deltuvienė 2007; Robert and Segers 2008;
Yang et al. 2013; Foss et al. 2013). However, among scientific works there
are no works – excepting publications (Kasparavičiūtė and Saulis 2010, 2011a,
2011b, 2013) by the author of this dissertation together with L. Saulis – for
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normal approximation that take into consideration large deviations in both the
Cramér and the power Linnik zones for the sum of a r. n. s. of i. i. d. weighted
random variables in case where the cumulant method is used.

To prove theorems of large deviations in both the Cramér and the power
Linnik zones for the distribution function of the standardized weighted ran-
dom sum, to obtain exponential inequalities for large deviation probabilities of
aforementioned random sum, to derive asymptotic expansions that take into
consideration large deviations in the Cramér zone for the density function
of the standardized compound Poisson process, when cumulant, characteristic
functions and saddle-point methods are used, are rather complicated problems
that were solved for the first time.

Besides, it should be emphasized that in the thesis, i. i. d. weighted ran-
dom variables are considered, which constitute an intermediate variant be-
tween identical and non-identical distributed random variables. In addition,
in order to obtain upper bounds for the cumulants of the sum of a r. n. s., com-
binatorial method is used.

Practical value of the results

The sums of a random number of independent random variables appear
as models in many applied problems, for instance, in insurance, economic the-
ory, finance mathematics, random walks, queuing theory, network theory, (see,
e. g., Bening et al. 1997; Mikosh 2009; Korolev et al. 2011; Foss et al. 2013). In
addition, the theory of large deviations is one of the most active research fields
in probability theory, with many applications to areas such as statistical in-
ference, queuing systems, communication networks, information theory, risk-
sensitive control, partial differential equations, statistical mechanics, physics
(see, e. g., Chernoff 1956; Varadhan 2003a,b; Feng and Kurtz 2006; Touchette
2009; Borovkov and Mogulskii 2012).

Questions related to extremal events play an increasingly important role
in both financial and insurance applications (see, e. g., Pham 2010; Mikosh
2009; Korolev et al. 2011). In finance, large deviations arise in various contexts.
They occur in risk management for computing the probability of large losses
in a portfolio subject to market risk as well as the default probabilities for a
portfolio under credit risk.
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Statements presented for defence

1. A suitable bound for the cumulants of the standardized sum of a r. n. s.
of i. i. d. weighted random variables.

2. Theorems on large deviations in both the Cramér and the power Linnik
zones for a distribution function of aforementioned sum.

3. Exponential inequalities for the probability of large deviations for the
standardized weighted random sum.

4. Asymptotic expansion that take into consideration large deviations in
the Cramér zone for the density function of the standardized compound
Poisson process.

Approval of the work results

Four papers on the topic of the dissertation (see List of author’s scientific
publications on the topic of the dissertation: 117) have been published in refer-
eed scientific journals: Acta Applicandae Mathematicae (Thomson ISI Web of
Knowledge), Nonlinear Analysis: Modelling and Control (Thomson ISI Web
of Science), and the Lithuanian Mathematical Journal. Intermediate research
results were reported at 10 scientific conferences and approved in 4 seminars,
of which 2 conferences and 1 seminar are international. The essential presen-
tations are as follows:

1. Theorems on large deviations for the sum of a random number of sum-
mands, International conference on Probability theory and it’s appli-
cations, Moscow, Russia, 2012.

2. Approximation of small probabilities of the sums of random number
of summands, International conference on Applied mathematics and
approximation theory, Ankara, Turkey, 2012.

3. Asymptotic analysis in the large deviation zones for the distribution
and density functions of the random sums, XXX International Semi-
nar on Stability Problems for Stochastic Models, Svetlagorsk, Russia,
2012.

4. On large deviations for compound mixed Poisson process LMD 54th
conference, Vilnius, 2013.

5. Local limit theorems for the sums of a random number of summands
LMD 53rd conference, Klaipėda, 2012.

6. The discounted version on large deviations for randomly indexed sum
of random variables, LMD 52nd conference, Vilnius, 2011.
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7. Theorems on large deviations for the sums of a random number of
summands. LMD 51st conference, Šiauliai, 2010.

The scope of the scientific work

This thesis consists of an introduction, three chapters, general conclusions,
references, and a list of the author’s publications. The total scope of the disser-
tation is 118 pages, 352 mathematical expressions, 182 items of reference.
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1
Historical overview of large

deviation theorems

The biggest and possibly most important part of probability theory consists of
the limit theorems, where theorems of large deviations (see, e. g., Ibragimov
and Linnik 1965; Saulis and Statulevičius 1991; Petrov 1995; Ramasubrama-
nian 2008; Varadhan 2008) have a significant place.

The theory of large deviations for the sums of random variables Xj , j =
1, 2, ... was developed by well known scientists in the works (Chintshine 1929;
Esscher 1932; Smirnov 1933; Cramér 1938; Feller 1943, 1969; Petrov 1953,
1954, 1963, 1964, 1975; Linnik 1960, 1961a; 1961b, 1962; Ibragimov and Lin-
nik 1965; Ibragimov 1967; Zolotarev 1962; Nagaev, S. V. 1963, 1973, 1979;
Nagajev, S. V. and Fuk 1971; Nagaev, S. V. and Sakoyan 1976; Borovkov 1964;
Borovkov and Mogulskij 1978, 1980; Statulevičius 1965, 1966, 1979; Nagaev,
A. V. 1967, 1969; Saulis 1969, 1979, 1980; Prokhorov 1972; Osipov 1972; Mis-
evičius and Saulis 1973; Bikelis and Žemaitis 1974, Rudzkis et al. 1978, 1979;
Bentkus, R. and Rudzkis 1980; Mogulskii 1980; Bentkus, V. 1986; Rudzkis
1989) and others, by well known scientists. The most widely studied cases are
the following:

• The Cramér condition is satisfied: there exist h > 0, such that

Eeh|Xj | <∞, (1.1)

7



8 1. HISTORICAL OVERVIEW OF LARGE DEVIATION THEOREMS

i. e., the characteristic functions

fXj (u) = EeiuXj =

∫ ∞
−∞

eiuxdFXj (x), u ∈ R (1.2)

of the summands Xj are analytic in a vicinity of the point u = 0 (see,
e. g., Cramér 1938; Feller 1943; Petrov 1954; Statulevičius 1966; Petrov
and Robinson 2007);

• Linnik condition is satisfied: there exist h > 0 and 0 < γ < 1, such
that

Eeh|Xj |
γ
<∞, (1.3)

i. e., all the moments of summands are finite but their growth does not
ensure the analyticity of the characteristic functions (1.2) in a vicinity
of the point u = 0 (see, e. g., Linnik 1961a,b; Zolotarev 1962; Nagaev,
S. V. 1963, Saulis and Statulevičius 1991);

• The case of so-called moderate deviations, where the summands have
only the finite number of moments (this case was first studied by Rubin
and Sethuraman 1965, see also Gao and Zhao 2011);

• The case where the Cramér and Linnik conditions are not satisfied, but
the behavior of the distribution tails of summands is regular enough
(see, e. g., Nagaev, S. V. 1963; Heyde 1968; Nagaev, A. V. 1969; Tkachuk
1975; Mikosh and Wintenberger 2013).

It should be pointed out that the strong law of large numbers and the cen-
tral limit theorem, the versatile classical limit theorems of probability theory,
concern typical events. As large deviation estimates deal with probabilities of
rare events, more subtle methods are needed. Moreover, context specific tech-
niques play a major role, although there are quite a few general principles (see,
e. g. Ramasubramanian 2008; Varadhan 2008).

Varadhan (2008) provides the following historical overview of work on
large deviations. The origin of large deviation theory goes back to Scandina-
vian actuaries by Esscher (1932) who were interested in the analysis of risk
in the insurance industry. A general large deviations for sums of independent
random variables was established by Cramér (1938). The result for empirical
distributions of independent identically distributed (i. i. d.) random variables
is due to Sanov (1957). The generalization to Markov chains and processes
can be found in several papers (see, e. g., Donsker and Varadhan 1975, 1976,
1983). The results concerning small random perturbations of deterministic sys-
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tems go back, e. g., to Freidlin and Wentzell (1998)). There are lecture notes by
Varadhan (1984), texts by Ellis (2006), Dembo and Zeitouni (2010) and, most
recently, by Feng and Kurtz (2006). These cover a broad spectrum of topics in
large deviation theory. Large deviations in the context of hydrodynamic scal-
ing are discussed, e. g., in the exposition (Varadhan 1996), and large deviations
for random walks are discussed in (Varadhan 2003a; Borovkov and Mogulskii
2012), as well as the references in (Dembo and Zeitouni 2010). For a general
survey on large deviations and entropy appears in (Varadhan 2003b).

The review (Touchette 2009) presents many problems and results in statis-
tical mechanics, and shows how these can be formulated and derived within the
context of large deviation theory. The problems and results treated cover a wide
range of physical systems, including equilibrium many-particle systems, noise-
perturbed dynamics, and non-equilibrium systems, as well as multi-fractals,
disordered systems, and chaotic systems.

In this chapter we provide a broad description of research on the topic of
this dissertation based on an exhaustive analysis of the literature. We pay the
greatest attention to the results used for solving the problems posed in this
dissertation. For instance, we rely more on (Ibragimov and Linnik 1965; Sta-
tulevičius 1967; Petrov 1995; Saulis 1978, 1980, 1981; Saulis and Deltuvienė
2007; Saulis and Statulevičius 1991). In the first section, we give a central result
of large deviation theory that is among the most frequently applied: Cramér’s
theorem. Most of Section 1.1 is devoted to general lemmas on large deviations
and asymptotic expansions in the zones of large deviations in the case where
cumulant method is used (see, e. g., Saulis and Statulevičius 1991). Section 1.2
presents a broad overview of the asymptotic behavior of sums of a random
number of summands (r.n.s).

1.1. Theory of large deviations for the sums of
non-random number of summands

Theory of large deviations concerns the rates at which probabilities of
certain events decay as a natural parameter in the problem varies. A specific
example will best illustrate this.

Assume that we have a family {X,Xj , j = 1, 2, ...} of i. i. d. random vari-
ables that has a common distribution with mean and finite positive variance:

µ = EX, σ2 = DX <∞, FX(x) = P(X < x), x ∈ R. (1.4)
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In addition,

EXk =
1

ik
dk

duk
fX(u)

∣∣∣
u=0

, Γk(X) =
1

ik
dk

duk
ln fX(u)

∣∣∣
u=0

(1.5)

denote the kth-order moments and cumulants, k = 1, 2, ..., where fX(u) is the
characteristic function (1.2) of the random variable X . Here the existence of
Γk(X) up to the order k must be implied by the existence of all the kth-order
absolute moments of X . Let us consider the sum

Sn =

n∑
j=1

Xj . (1.6)

According to the central limit theorem, the standardized sum

S̃n =
Sn − ESn√

DSn
=
Sn − nµ
σ
√
n

with mean ES̃n = 0 and variance DS̃n = 1 has a limiting standard normal
distribution. In particular,

lim
n→∞

FS̃n(x) = Φ(x)

uniformly in x, where FS̃n(x) = P(S̃n < x) = P(Sn − nµ <
√
nσx), and

Φ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy (1.7)

is the standard normal distribution function. While the convergence is uniform
in x, this does not say much if x is large. Thus, there is significant interest in
the behavior of the ratio

1− FS̃n(x)

1− Φ(x)

when x → ∞. Whether this ratio tends to 1 even when x → ∞, depends
on how rapidly x is becoming large. In the case where x �

√
n, the ratio

tends to 1 under suitable conditions, while if x '
√
n, it does not. In the

instance where x �
√
n, we have moderate deviations, i. e., the refinements

of the central limit theorem (see, e. g., Gao and Zhao 2011 and the references
therein). Large deviations, which occur when x '

√
n, are different. It is best

to think of them as estimating the probabilities 1 − FS̃n(x) = P(Sn − nµ ≥
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σ
√
nx), FS̃n(−x) = P(Sn − nµ < −σ

√
nx), as x → ∞, which are called

probabilities of large deviations.
The event {S̃n > x} is a typical rare event of interest in insurance (see,

e. g., Ramasubramanian 2008). For example, Xj , j = 1, 2, ..., might denote
the claim amount for policy holder j in a given year, in which case Sn denotes
the total claim amount of n policy holders. Assuming a large portfolio for the
insurance company (that is, assuming that n is very large), any estimate of
P(S̃n ≥ x) gives information about the right tail of the total claim amount
payable by the company in a year. For more illustrations from insurance and
finance see, e. g., (Ramasubramanian 2008; Pham 2010). For a detailed account
of insurance models, also see (Rolski et al. 2001).

The asymptotic behavior of large deviations is a fairly new problem in
probability theory. The first limit theorems for the probabilities of large devi-
ations of sums of independent random variables were obtained in (Chintshine
1929). A theorem on the probability of large deviations for Bernoulli trials was
presented in (Smirnov 1933). The first fundamental theorem of large devia-
tions for the sums of i. i. d. random variables was proved by Cramér (1938),
who showed that the rate function is the convex conjugate of the logarithm of
the moment generating function of the underlying common distribution.

The behavior of the ratios

Un(x) =
1− FS̃n(x)

1− Φ(x)
, Vn(x) =

FS̃n(−x)

Φ(−x)
, x ∈ [0, τn], (1.8)

where τn is a non-decreasing function such that τn → ∞, n → ∞, are of
significant interest. It follows from the central limit theorem that

Un → 1, Vn → 1 (1.9)

uniformly by x = [0, τn], where τn = O(1), n → ∞. If the ratios (1.9) do
hold in the interval x ∈ [0, τn] when τn → ∞, we call the interval a zone of
normal convergence. Cramér (1938) noticed that for large deviation problems,
particular conditions are needed for the random variable’s moments. The cases
that have been the most studied are those where the summands of the sums
satisfy either the Cramér condition (1.1), or the Linnik condition (1.3).

In the field of large deviations, the work (Cramér 1938) occupies a sig-
nificant place. The work presents, Cramér’s theorem, a central result of large
deviation theory and one of the most frequently applied. Cramér’s theorem has
been extended and generalized in several directions, for example, to sums of de-
pendent random variables or to general sequences of random variables. Feller
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(1943), Petrov (1975, 1954), and Statulevičius (1966) studied the probability
of large deviations for sums of independent non-identically distributed random
variables subject to Cramér’s condition. Feller (1943) extended Cramér’s the-
orem to sequences of not necessarily identically distributed random variables
under restrictive conditions. See (Feller 1969) for an account of Cramér’s the-
orem in the context of the central limit problem. Cramér’s theorem was also
expanded by Petrov see (Petrov 1954, 1953) and also (Petrov 1975, 1963, 1964).
Petrov obtained the optimal result for large deviation theorems in the Cramér
zone when the summands of the sum (1.6) are i. i. d. random variables. A de-
tailed proof of Cramér’s theorem can be found in (Petrov 1995: 178).

Let µ = 0, without loss of generality. Petrov’s strengthened version of
Cramér’s theorem is as follows:

Theorem 1.1. If i. i. d. random variables {X,Xj , j = 1, 2, ...} satisfy Cramér’s
condition (1.1), then for all x ≥ 0, x = o(

√
n) as n→∞, the ratios

Un(x) = exp
{ x3

√
n
λ
( x√

n

)}(
1 +O

(x+ 1√
n

))
, (1.10)

Vn(x) = exp
{
− x3

√
n
λ
(
− x√

n

)}(
1 +O

(x+ 1√
n

))
(1.11)

hold, where λ(u) =
∑∞

k=0 λku
k is a power series whose coefficients λk de-

pend on the cumulants (1.5) of the random variable X .

The series λ(u) converges for sufficiently small values of |u|. It is called
Cramér’s series and appears in many results related to large deviations. Results
(1.10), (1.11) first were given in (Petrov 1954) together with a generalization to
the case of non-identically distributed random variables.

Cramér’s theorem is valid not only for real-valued random variables, but
also for Rd-valued random vectors, and even for some infinite-dimensional
random vectors. For a more detailed account of generalizations of Cramér’s
theorem, see in (Ramasubramanian 2008).

The analysis of the asymptotic behavior of the ratios Un and Vn that are
defined by (1.8) is much more complicated, when the Cramér’s condition (1.1)
is not satisfied. Asymptotic convergence to a unit and the rate of convergence
of large deviation ratios (1.8) when i. i. d. summands of the sum (1.6) satisfy
the Linnik condition (1.3), were thoroughly investigated in (Linnik 1961a,b;
Zolotarev 1962; Nagaev, S. V. 1963). Linnik developed a new method (see,
e. g., Linnik 1961a,b) that yields general results when Cramér’s condition fails,
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and it has been extended by Petrov (1963, 1964), Wolf (1970), and Osipov
(1972). Nagajev, S. V. and Fuk (1971), Nagaev, S. V. (1973), and Nagaev, S. V.
and Sakoyan (1976) generalized large deviation theorems in the power Linnik
zones. These results are presented in the monograph by Ibragimov and Linnik
(1965) and in the survey paper (Nagaev, S. V. 1979). In these works and others,
large deviation theorems have been obtained by the rather complicated analyt-
ical saddle-point method (see, e. g., in Jensen 1995) and, as a rule, for sums of
i. i. d. random variables. This is the simplest case that allows one to conceive
the general view of large deviation probabilities.

Linnik’s generalized version of Cramér’s theorem (see Ibragimov and Lin-
nik 1965: 307) is as follows :

Theorem 1.2. If i. i. d. random variables {X,Xj , j = 1, 2, ...} satisfy the Lin-
nik condition (1.3) with h = 1, γ = 4ν/(2ν + 1), 0 < ν < 1/2, and there
exists a function ρ(n) such that limn→∞ ρ(n) = +∞, then in the interval
0 ≤ x ≤ nν/ρ(n), the ratios

Un(x) = exp
{ x3

√
n
λ[q]
( x√

n

)}(
1 +O

(x+ 1√
n

))
,

Vn(x) = exp
{
− x3

√
n
λ[q]
(
− x√

n

)}(
1 +O

(x+ 1√
n

))
are valid. Here λ[q](u) =

∑q
k=0 λku

k, where q is a non-negative integer such
that

q + 1

2(q + 3)
≤ ν < q + 2

2(q + 4)
.

The next major step in addressing problems of large deviation theorems
was made when Statulevičius (1966) proposed the method of cumulants to
consider large deviation probabilities for various statistics. The method of cu-
mulants provided a way to obtain large deviation theorems for sums of indepen-
dent and dependent random variables, polynomials forms, multiple stochastic
integrals of random processes, and polynomial statistics in both the Cramér
and the power Linnik zones. The monograph (Saulis and Statulevičius 1991)
addresses these issues.

The cumulant method was developed by Rudzkis, Saulis, and Statulevičius
(1978) where a general lemma of large deviations for an arbitrary random vari-
able X with the regular behavior of it’s cumulants (see condition (Sγ) below)
was proved. Let us say that the random variable X with mean µ = 0 and vari-
ance σ2 = EX2 = 1 satisfies S. V. Statulevičius’ condition (Sγ): there exist
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γ ≥ 0 and ∆ > 0 such that

|Γk(X)| ≤ (k!)1+γ

∆k−2
, k = 3, 4, ... . (Sγ)

When γ = 0, condition (Sγ) ensures the analyticity of the generating function
ϕX(z) in the domain |z| < ∆. Thus in this case, theorems of large deviations
in the Cramér zone are demonstrated. If γ > 0, then the generating function
ϕX(z) is not analytical, and theorems of large deviations are demonstrated for
the power Linnik zones.

Condition (Sγ) can be easily verified for various multi-linear forms and is
therefore very convenient for asymptotic analysis of large deviations for various
statistics.

Let

∆γ = cγ∆
1

1+2γ , cγ =
1

6

(√2

6

) 1
1+2γ

, (1.12)

and let θi, with or without an index i = 1, 2, ..., denote a quantity (not always
the same one) whose modulus is at most 1.

Lemma 1.1. (Rudzkis et al. 1978) If an arbitrary random variable X with µ =
0 and EX2 = 1 satisfies condition (Sγ), then the ratios of large deviations

1− FX(x)

1− Φ(x)
= exp{Lγ(x)}

(
1 + θ1f(x)

x+ 1

∆γ

)
,

FX(−x)

Φ(−x)
= exp{Lγ(−x)}

(
1 + θ2f(x)

x+ 1

∆γ

) (1.13)

are valid in the interval 0 ≤ x < ∆γ . Here

f(x) =
60
(
1 + 10∆2

γ exp{−(1− x/∆γ)
√

∆γ}
)

1− x/∆γ
,

Lγ(x) =
∑

3≤k<r
λ̃kx

k + θ3

( x

∆γ

)3
, r =

{
2 + 1

γ , γ > 0,

∞, γ = 0.

The coefficients λ̃k (expressed by cumulants of the random variable X) coin-
cide with the coefficients of the Cramér-Petrov series (Petrov 1975) given by
the formula

λ̃k = −bk−1/k, (1.14)
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where bk are defined by the series of equations

j∑
r=1

1

r!
Γr+1(X)

∑
j1+...+jr=j

ji≥1

r∏
i=1

bji =
{ 1, j = 1,

0, j = 2, 3, ... .
(1.15)

In particular,

λ̃2 = −1

2
,

λ̃3 =
1

6
Γ3(X),

λ̃∗,4 =
1

24
(Γ4(X)− 3Γ 2

3 (X)),

λ̃∗,5 =
1

120
(Γ5(X)− 10Γ3(X)Γ4(X) + 15Γ 3

3 (X)), ... .

For the coefficients λ̃k, the estimate

|λ̃k| ≤
2

k

(16

∆

)k−2
((k + 1)!)γ (1.16)

holds, and therefore

Lγ(x) ≤ x3

2(x+ 8∆γ)
, Lγ(−x) ≥ − x3

3∆γ
.

Frequently, instead of precise equalities of large deviations, less precise
exponential inequalities have been used. These were proved in (Bentkus, R.
and Rudzkis 1980).

Lemma 1.2. (R. Bentkus, R. Rudzkis 1980) Assume that for an arbitrary ran-
dom variable X with µ = 0 there exist quantities γ ≥ 0, H > 0, and ∆̄ > 0
such that

|Γk(X)| ≤
(k!

2

)1+γ H

∆̄k−2
, k = 2, 3, ... .

Then for all x ≥ 0,

P(±X ≥ x) ≤ exp
{
− x2

2(H + (x/∆̄1/(1+2γ)))(1+2γ)/(1+γ)

}
. (1.17)

The proofs of Lemmas 1.1, 1.2 can be found, e. g., in (Saulis and Statule-
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vičius 1991: 20–40). The general Lemmas 1.1, 1.2 rendered an opportunity to
consider exponential inequalities, large deviation theorems for various statis-
tics. Based on the general lemma of large deviations, Rudzkis et al. (1978) ob-
tained large deviation theorems for sums of independent non-identically dis-
tributed random variables with regular behavior of it’s cumulants. Also see
(Rudzkis et al. 1979), where large deviation theorems for such sums in terms
of Lyapunov fractions are presented.

Consider independent non-identically distributed random variables X1,
X2,..., Xn, n ≥ 1, with µj = EXj = 0 and σ2

j = DXj = EX2
j < ∞,

j = 1, 2, ..., n. Let

B2
n =

n∑
j=1

σ2
j , S̃n =

Sn
Bn

, Sn =
n∑
j=1

Xj , FS̃n(x) = P(S̃n < x),

where Bn > 0. In addition, let max{b, c} := (b ∨ c), b, c ∈ R. Let us say that
the random variables Xj with µj = 0 and σ2

j < ∞ satisfy condition (Bγ):
there exist γ ≥ 0 and K > 0 such that

|EXk
j | ≤ (k!)1+γKk−2σ2

j , k = 3, 4, ... . (Bγ)

Theorem 1.3. (Rudzkis et al. 1978) Let the random variablesXj , j = 1, 2, ..., n,
satisfy condition (Bγ). Then

|Γk(S̃n)| ≤ (k!)1+γ

∆k−2
n

, k = 2, 3, ...,

where
∆n = Bn/Kn, Kn = (K ∨ max

1≤j≤n
σj}.

In addition, the ratios (1.13) and bound (1.17) hold for X := S̃n with

∆γ = cγ∆1/(1+2γ)
n , H = 21+γ , ∆̄ = ∆n,

where cγ is defined by (1.12).

Corollary 1.1. Let the random variables Xj , j = 1, 2, ..., n, satisfy condition
(Bγ). Then

lim
n→∞

1− FS̃n(x)

1− Φ(x)
= 1, lim

n→∞

FS̃n(−x)

Φ(−x)
= 1, (1.18)
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hold for x ≥ 0, x = o(∆
ν(γ)
n ) as ∆n →∞, where ν(γ) = (1 + 2(1 ∨ γ))−1.

If all the moments of the random variables Xj up to order r = [1/γ] + 2 in-
clusively coincide with the corresponding moments of the normal distribution,
then the ratios (1.18) are true for x ≥ 0, x = o(∆

1/(1+2γ)
n ).

The last part of the assertion is meaningful only for 0 < γ < 1. The
proofs of Theorem 1.3 and Corollary 1.1 can be found, e. g., in (Saulis and
Statulevičius 1991: 44–45).

The cumulant method is the proper method for the analysis of large de-
viation probabilities P(Sn ≥ Bnx) in the case of dependent summands Xj ,
j = 1, 2, ... . For further details and references, see (Saulis and Statulevičius
1991). A completely new method for normal approximation taking large devi-
ations into account was presented by Bentkus, V. (1986). This method is good
for the investigation of martingales and is based, following an idea offered
by Lindeberg in 1992, on the proof of the central limit theorem. Bentkus, V.
(1986) considered large deviations in Banach spaces. Bentkus, V. (2004) ob-
tained a new type of large deviation inequality. Račkauskas (1995) studied a
normal approximation taking large deviations for martingales into account, by
combining S. V. Statulevičius’ cumulant method with V. Benkus’ method.

Local limit theorems for densities taking into account large deviations in
the scheme of summation of random variables under the Cramér condition
were obtained by Rikhter (1957), Linnik (1961b, 1962), Nagaev, S. V. (1962),
Zolotarev (1962), Petrov (1963, 1964), Nagaev, A. V. (1967). The Cramér con-
dition is not imposed, e. g., in (Linnik 1961b, 1962; Zolotarev 1962; Nagaev,
S. V. 1962; Petrov 1963, 1964; Nagaev, A. V. 1967; Wolf 1970). The book
(Petrov 1975) examines asymptotic expansions in integral and local limit the-
orems with uniform and non-uniform estimates of the remainder term, and
also lists extensive references on local limit theorems and asymptotic expan-
sions. Asymptotic expansions for large deviations were first obtained by Ku-
bilius (1964). Asymptotic expansions in the zones of large deviations have
been studied, e. g., in (Cramér 1938; Petrov 1954, 1975; Linnik 1960, 1961a;
Zolotarev 1962; Nagaev, S. V. 1963; Borovkov 1964; Statulevičius 1965; Ibrag-
imov 1967; Nagaev, A. V. 1967, 1969; Bikelis 1967; Pipiras and Statulevičius
1968; Saulis 1969, 1973, 1991, 1996, 1999; Wolf 1970; Misevičius and Saulis
1973; Nakas and Saulis 1973; Bikelis and Žemaitis 1974, 1976; Osipov 1978;
Jakševičius 1983–1985; Borovkov and Mogulskii 2000; Deltuvienė and Saulis
2003a, 2003b).

Without elaborating on all of the studies of asymptotic expansions, we
present some results that have been used to solve the problems posed in this dis-
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sertation. Thus, let us consider the asymptotic expansion presented in (Saulis
1980) for distribution density of an arbitrary random variable which cumulants
exhibit regular behavior.

Suppose that for an arbitrary random variable X with mean µ = 0, vari-
ance σ2 = 1, and distribution function FX(x) = P(X < x) for all x ∈ R,
there exists a density function such that

sup
x
pX(x) <∞. (D)

Let Θ denote the set of all points on the line, at which pX(x) either is con-
tinuous or has a discontinuity of the first kind, and in the latter case assume
that

p(x0) = (p(x0 − 0) + p(x0 + 0))/2.

Let X(h), h = h(x) > 0, be an arbitrary random variable conjugate to X ,
accordingly, with the respective density and characteristic functions

pX(h)(x) =
exp{hx}pX(x)

ϕX(h)
, fX(h)(u) =

ϕX(h+ iu)

ϕX(h)
, (1.19)

where
ϕX(h) =

∫ ∞
−∞

ehxpX(x)dx (1.20)

is the generating function for the random variableX . Here h ≥ 0 is the solution
of the equation

x =
∞∑
k=2

1

(k − 2)!
Γk(X)hk−1.

Let

f∗γ (u) =

{ s∑
k=0

(
3
2

)k xk
k! f

(k)
X (u), γ > 0,

fX(h)(u), γ = 0.
(1.21)

Moreover, f (0)
X (u) = fX(u), s = 2[(1/2)(∆2/18)1/(1+2γ)] − 2, where ∆ is

defined by condition (Sγ) with γ ≥ 0. Set

φ(x) =
1√
2π
e−

x2

2 , (1.22)

c1(γ) = 2π + 6γ253
√

2π/∆, (1.23)

ε(γ,∆) =
1

12

(
1− x

∆γ

)
∆γ , 0 ≤ x < ∆γ , (1.24)
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where ∆γ is defined by (1.12). Furthermore, set

q(r, γ) =
(3
√

2e

2

)r
+ 8(r + 2)26γ(r−1)43(r+1)

·((r + 1)!)γ(r−1)Γ
(3r + 1

2

)
, (1.25)

r∗(x,∆) =
(

1 + 9((m+ 2)!)γ16m−1cm+1−r
γ

1

m+ 1

( x
∆

)r)
·
(

1 + 46∆γ exp
{
− 1

2

(
1− x

∆γ

)√
∆γ

})(
1− x

∆γ

)
, (1.26)

r∗(x,∆) ≡ 0 as γ = 0,

where Γ(α) =
∫∞

0 xα−1e−xdx, m = (1 + γ) + r + 1, γ > 0, r ≥ 1. If
α = n ∈ N, then Γ(n) = (n− 1)!.

Lemma 1.3. (Saulis 1980) If the random variable X satisfies conditions (Sγ)
and (D), then for each integer r ≥ 1 in the interval 0 ≤ x < ∆γ , the relation

pX(x)

φ(x)
= exp

{
Lm(x)

}(
1 +

r−3∑
v=0

Mv(x) + θ1q(r, γ)
(x+ 1

∆

)r−2

+θ2c1(γ)∆3/2
γ exp

{
− 1

72

(
1− x

∆γ

)√
∆γ

}
+θ3

∫
|u|≥ε(γ,∆)

|f∗γ (u)|du

)
(1 + θ4r

∗(x,∆))

holds. Here φ(x), f∗γ (u), c1(γ), ε(γ,∆), q(r, γ), r∗(x,∆) are defined, respec-
tively, by (1.22)–(1.26). And

Lm(x) =
∑

3≤k<m
λ̃kx

k, m =
{ 1 + r + 1

γ , γ > 0,

∞, γ = 0.

The coefficients λ̃k (expressed by cumulants of the random variable X) coin-
cide with the coefficients of the Cramér-Petrov series (Petrov 1975) given by the
formulas (1.14), (1.15) (see the estimate (1.16) of λ̃k too). For the polynomials
Mv(x), the formula

Mv(x) =
v∑
k=0

Kk(x)Qv−k(x)
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with

Kv(x) =
∑ v∏

m=1

1

km!

(
− λ̃m+2x

m+2
)km , K0(x) ≡ 1,

Qv(x) =
∑

Hv+2r(x)
v∏

m=1

1

km!

(
Γm+2(X)

(m+ 2)!

)km
, Q0(x) ≡ 1,

holds, where the summation is taken over all non-negative integer solutions
of the equation k1 + 2k2 + ... + vkv = v. And Hr(x) is Chebyshev-Hermite
polynomial

Hr(x) = (−1)re
x2

2
dr

dxr
e−

x2

2 . (1.27)

To prove Lemma 1.3, characteristic functions and the saddle-point method
were used along with the cumulant method (see, e. g., in Saulis and Statule-
vičius 1991: 155).

Note that to determine the structure of the reminder term

R(h) =

∫
|u|≥ε(γ,∆)

|f∗γ (u)|du (1.28)

for the asymptotic expansion in both γ = 0 and γ > 0, the known esti-
mates of Statulevičius (1965) for the characteristic functions of an arbitrary
random variable may be used (see Lemmas 1–3 in (Statulevičius 1965), or
Lemmas 3.1–3.3 in Section 3.1). Based on Lemma 1.3 and under condition
(Bγ) with γ = 0, asymptotic expansion in the Cramér zone of large devia-
tions for the density function of the sum of independent non-identically dis-
tributed random variables Xj , j = 1, 2, ..., with µj = 0, σ2

j = EX2
j < ∞,

j = 1, 2, ..., n, and density functions such that

sup
x
pXj (x) ≤ Aj <∞, Aj > 0, (D′)

have been presented in (Saulis 1991) (also see Theorem 6.1 in Saulis and Stat-
ulevičius 1991: 180), were the structure of the remainder term in the case where
γ = 0 was delivered.

Asymptotic expansions of large deviations in the Cramér and the power
Linnik zones for the density function have been generalized in (Deltuvienė and
Saulis 2001, 2003b) by considering asymptotic expansions in the zones of large
deviations for the density function of sums of independent random variables
in a triangular array scheme. These results improve on the results on sums of
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random variables with weights in Book (1973).
Asymptotic expansions for the distribution functions of sums of indepen-

dent non-identically distributed random variables that take into consideration
large deviations in both the Cramér and the power Linnik zones have been
studied in (Saulis 1999), where the results was first obtained, primarily by ap-
plying the general lemma in (Saulis 1996) of asymptotic expansion in the zone
of large deviations for distribution function of an arbitrary random variable
with regular behavior of it’s cumulants. Deltuvienė and Saulis (2003a) studied
asymptotic expansions in a triangular array scheme for the distribution func-
tions of sums of independent random variables that take into consideration
large deviations in both the Cramér and the power Linnik zones.

Note that the probabilities of large deviations in the Cramér and the power
Linnik zones can be investigated in terms of Lyapunov fractions (see Saulis
1999). Thus, the probabilities of large deviations in such zones mainly depend
not on individual properties but rather on the average properties of summands,
as emphasized in (Rudzkis et al. 1979; Saulis 1998).

1.2. Limit theorems for compound sums

The classical theory of limit theorems examines the non-random index
n ≥ 1 in the sum Sn = X1 + ...+Xn as a random variables Xj , j = 1, 2, ...,
degenerated at the point n. Replacement of the number n by a non-negative
integer-valued random variable N is natural. Throughout thesis we shall as-
sume that the distribution ofN depends on some parameter, for example, when
N is a homogeneous Poisson process, the distribution of N depends on t ≥ 0,
and we denote N as Nt in this case. In addition, the mean, variance and the
distribution of N would be denoted by

α = EN, β2 = DN, P(N = s) = qs, s ∈ N0. (1.29)

Let us consider the random (compound) sum

SN =

N∑
j=1

Xj (1.30)

of independent random variables Xj . For definiteness, it is assumed that S0 =
0. The most frequently considered case is when N is independent of i. i. d.
summands Xj . In simple terms, the random sum (1.30) is a partial sum in
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which the deterministic index n of the partial sum Sn is replaced by N .
The asymptotic behaviors of compound sums have been investigated in

the theory of probability and stochastic processes for some time now: (see,
e. g., Kolmogorov and Prokhorov 1949; Renyi 1960; Blum et al. 1962; Akso-
maitis 1965, 1967, 1973; Siradzhinov and Orazov 1966; Gnedenko 1967; Sta-
tulevičius 1967; Nagaev, S. V. 1968; Gnedenko and Fahim 1969; Feller 1971;
Szasz 1972a,b; Paulauskas 1972; Berzhintskas et al. 1973; Bernotas 1976; Batirov
et al. 1977; Saulis 1978, 1981; Embrechts et al. 1985; Sakalauskas 1985, 1988;
Kruglov 1988; Kruglov and Korolev 1990b; Gnedenko and Korolev 1996; Ko-
rolev and Shevtsova 2012; Sunklodas 2012 and the references therein) all of
which have appeared since the results in (Robbins 1948a).

Suppose that N := Nn, n ∈ N, are independent of the random variables
Xj . In general, the number of the terms Nn should satisfy some conditions. To
illustrate this we can recall that Robbins (1948a) used the condition ENn →∞
as n → ∞. To confer, the condition Nn/n

P→ 1 as n → ∞ was applied

in Feller’s theorem for random sums (see, e. g., Feller 1971). Here P→ means
convergence in probability. In addition, Rychlik and Szynal (1972) required
the condition Nn

P→∞ as n→∞. These classical conditions for Nn stand in
the following relationship:

Nn/n
P→ 1 as n→∞⇒ Nn

P→∞ as n→∞⇒ ENn →∞ as n→∞.

The problem of finding conditions for which the limit relationships of the
sequence {Sn, n ∈ N} are transferred to {SNn , n ∈ N} has been solved in
more restricted cases, for example, in (Renyi 1960; Blum et al. 1962; Wit-
tenberg 1964) where the independence of Xj , j = 1, 2, ..., n, and Nn is not
presupposed, so additional restrictions on the convergence of the sequence
{Nn, n ∈ N} are imposed. Renyi (1960) proved that if Nn/n

P→ Y , where
Y is a discrete positive variable, and Sn/n1/2 converges in law to normal, then
SNn/N

1/2
n as well. (Blum et al. 1962) obtained this result under the weaker

assumption that Y is an arbitrary positive random variable. (Wittenberg 1964)
treated the case where Sn and SNn are close in the sense of Kolmogorov-
Smirnov distance, the greatest vertical distance between distribution functions.

It should be noted that a qualitative leap in the theory of summation of a
r. n. s N of i. i. d. random variables was made in Gnedenko’s 1969 paper and
those of his followers’ (see, e. g., Gnedenko and Fahim 1969; Szasz and Freyer
1971; Szasz 1972a,b), which obtained sufficient and necessary conditions for
the convergence of distributions of (1.30) in the scheme of series. It was the first
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fundamental result. Gnedenko and Fahim (1969) proved the transfer theorem
for sums of a r. n. s. of real-valued random variables. Suppose that for every
n ∈ N, {Xn,k, k ∈ N} is a sequence of i. i. d. random variables and that
{Nn, n ∈ N} is a sequence of positive integer-valued random variables such
that Nn and {Xn,k, k ∈ N}. Gnedenko and Fahim (1969) proved that if

kn∑
k=1

Xn,k
d→ µ and

Nn

kn

d→ ρ as n→∞

for some probability distributions µ and ρ on R and (0,∞), respectively, then

Nn∑
k=1

Xn,k
d→
∫ ∞

0
µtdρ(t),

where d→ denotes convergence in distribution and µt denotes the t-fold con-
volution power of the necessarily infinitely divisible distribution µ, which is
well-defined by the Lévy-Chintchine formula. A partial converse to the trans-
fer theorem with necessary conditions under strong additional assumptions was
obtained in (Szasz and Freyer 1971), while Szasz (1972b) not only eliminated
these assumptions but also obtained necessary as well as necessary and suf-
ficient conditions. The aim of the investigations in (Szasz 1972a) was to give
both necessary and sufficient conditions for the convergence of the distribu-
tion of random sums with the random indices independent of the sequence of
non-identically distributed summands in the double array scheme.

There is considerable ongoing interest in random limit theorems of this
kind for numerous applications, and there currently exists a vast literature on
transfer theorems generalizing the transfer theorem of Gnedenko. Without pro-
viding a complete list, we refer to the literature cited in (Szasz and Freyer 1971;
Szasz 1972a,b; Kruglov and Korolev 1990b; Gnedenko and Korolev 1996; Ko-
rolev and Kruglov 1998; Peter 2012).

Questions related to limit distributions of normed, centered random sums
(1.30) fall under non-random centering and random centering (centering of
random sums SNn by real numbers an, n ∈ N is non-random centering,
while random centering would involve aNn). Obviously, random sums may
be normed both by constants which is non-random norming and by random
variables which is random norming. Letting bn stand for a real number, vari-
ous kinds of random sums have been considered: (SNn − aNn)/bNn are sums
with random centering and random norming, (SNn − an)/bNn are sums with
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non-random centering and random norming, (SNn − an)/bn are sums with
non-random centering and non-random norming. Possibly the first result for
limit distributions of random sums (1.30) of i. i. d. random variables with non-
random centering appeared in (Robbins 1948a). As discussed in (Finkelstein
et al. 1994; Korolev and Kruglov 1998), the class of limiting distributions for
random sums of non-centered random variables normed by constants when
the summands are i. i. d. and have finite variance were considered in (Robbins
1948a; Robbins 1948b). Robbins (1948a) found sufficient conditions for the
weak convergence of growing compound sums and showed that, depending on
whether the sums are centered by constants or not, the limit distributions have
the form of location or scale mixtures of the laws that are limits for non-random
sums of the same summands.

Assume that {X,Xn, n ∈ N} is a sequence of i. i. d. random variables
with a common distribution function FX = P(X < x), mean µ = EX (not
necessarily equal to zero), and finite common variance σ2 = DX > 0. Let
{Nn, n ∈ N} be a sequence of positive integer-valued random variables that

are independent of {X,Xj , j = 1, 2, ...} and such that Nn
P→ ∞ as n → ∞.

Under these assumptions, Robbins proved that if

Nn −ENn√
DNn

d→ (some) U, (1.31)

then
SNn − nµ√

nσ

d→ (some) Y

and FY = Φ ∗ FU , where Φ is the standard normal distribution function (1.7)
and ∗ denotes the convolution operation. Y is a mixture of normals, the mean
being mixed by U .

A large number of generalizations and refinements of Robbins’ results have
been obtained (see, e. g., Siradzhinov and Orazov 1966; Nagaev, S. V. 1968;
Paulauskas 1972; Rychlik and Walczyński 2001; Bernotas 1976; Kruglov 1988;
Finkelstein et al. 1994). As discussed in (Finkelstein et al. 1994), Kruglov
(1988) obtained a generalization of Robbins’ theorem under the assumption
that EN2

n <∞. It was proved that a necessary and sufficient condition for

SNn − µENn√
σ2ENn + µ2DNn

d→ (some) Y

is that (1.31) in which case FY = Φ ∗ FU . Independently of this work Finkel-
stein and Tucker (1990) obtained a similar generalization of Robbin’s result,
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and it’s converse, but without moment assumptions on Nn. Kruglov and Ko-
rolev (1990a) obtained necessary and sufficient conditions for the convergence
of non-randomly centered random sums of non-identically distributed random
summands in the double array scheme. A fairly complete study of earlier re-
sults connected with random centering appears in the monograph (Kruglov
and Korolev 1990b). Without providing a detailed list of studies connected
with random or non-random centering and norming of (1.30), we refer, e. g.,
to (Kruglov 1988, 1998; Kruglov and Korolev 1990a,b; Korolev and Kruglov
1998; Finkelstein and Tucker 1990; Finkelstein et al. 1994; Gnedenko and Ko-
rolev 1996; Rychlik and Walczyński 2001 and the literature therein).

Siradzhinov and Orazov (1966) were the first to solve the problem of esti-
mating the deviation of the distribution of a random sum SN of a r. n. s. N of
i. i. d. random variables. Their estimate was improved in (Nagaev, S. V. 1968).
However, the results in these papers are more limited than in the paper (En-
glund 1983), where an estimate of the reminder term in the normal approxi-
mation for compound sums (1.30) of i. i. d. random variables is constructed for
the case where the means of the summands are not equal to zero. Sakalauskas
(1985) provided some estimates of the accuracy of the approximation of com-
pound sums of i. i. d. random variables by the scale mixtures of stable laws
which turn out to be limiting. The problem of estimating the deviation of the
distribution of random sum (1.30) in the case of differently distributed ran-
dom variables was solved, e. g., in (Paulauskas 1972; Berzhintskas et al. 1973;
Batirov et al. 1977; Batirov and Manevich 1983; Rychlik 1985; Korolev 1988).
According to (Korolev 1988), the uniform estimates obtained by transferring
the known estimates for a nonrandom index to randomly indexed sums in the
(Batirov et al. 1977; Batirov and Manevich 1983; Englund 1983; Rychlik 1985)
have some disadvantages, though they have an optimal structure in the sense
that there are examples (Englund 1983; Paulauskas 1972) showing that the dis-
tribution of random sums SN do not converge to the normal law if the majo-
rants of the reminder term specified by the assertion in (Batirov et al. 1977;
Batirov and Manevich 1983; Englund 1983; Rychlik 1985) do not tend toward
zero. Korolev (1988) considered integral and local uniform estimates of the
accuracy of normal approximations for the distributions of (1.30) free of the
disadvantages of the works (Batirov et al. 1977; Batirov and Manevich 1983;
Englund 1983; Rychlik 1985) (for more details see Korolev 1988).

Again, without a detailed exposition on the convergence rates in various
metrics in the central limit theorem for the sums (1.30) of a r. n. s. (in addition
to the above papers) we cite, e. g., (Sakalauskas 1988; Kruglov and Korolev
1990b; Gnedenko and Korolev 1996; Bening et al. 1997; 2012; Chaidee and
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Tuntapthai 2009; Shang 2011; Nefedova and Shevtsova 2013; Sunklodas 2012
and the references therein).

Since in most cases the accurate distribution for the sum SN of a r. n. s. is
not available, deriving asymptotic relationship for it’s tail probability P(SN ≥
x) is important. Such asymptotic results often appear in actuarial situations
(see, e. g., Bening and Korolev 2002; Embrechts et al. 1997; Foss et al. 2013;
Korolev et al. 2011; Mikosh 2009; Pragarauskas 2007).

In recent years a very extensive literature has appeared on the approxi-
mation of tail probabilities of random sums (1.30) of i.i.d or non-identically
distributed random variables under different assumptions and with various ap-
plications. The tail of the compound distribution depends on the tails of the
non-negative integer-valued random number of terms N and of the summands
Xj , j = 1, 2, ..., themselves. First, let us define light-tailed and heavy-tailed
distributions (see Definitions 1.1–1.3 or, e. g., Mikosh 2009; Foss et al. 2013).

In probability theory, heavy-tailed distributions are probability distribu-
tions whose tails are not exponentially bounded. There is still some discrep-
ancy in the use of the term "heavy-tailed". Some authors use the term to refer
to those distributions for which not all the power moments are finite, and some
others refer to those distributions that do not have a finite variance. Occasion-
ally, "heavy-tailed" is used for any distribution that has heavier tails than the
normal distribution. The usage of the term "heavy-tailed distribution" varies
according to the area of interest, but it is frequently taken to correspond to an
absence of (positive) exponential moments.

Definition 1.1. The distribution of a random variableX with distribution func-
tion F (x) = P(X < x), x ∈ R is said to be heavy-tailed if E exp{γX} =
∞, for all γ > 0.

The counterpart is given by the following definition.

Definition 1.2. The distribution of a random variableX with distribution func-
tion F (x), x ∈ R is said to be light-tailed if E exp{γX} <∞, for some γ >
0.

If distributions of X and N are light-tailed, then saddle-point approxima-
tion techniques can be used to analyze the tail of SN (see, e. g., Embrechts et
al. 1985; Jensen 1995).

We also provide the following definition which is the most general in use.

Definition 1.3. A distribution function F (x) is heavy-tailed if and only if
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lim supx→∞ F̄ (x) exp{γx} =∞, for all γ > 0. Here F̄ (x) = 1− F (x).

Definition 1.3 includes all distributions encompassed by the alternative
definitions, as well as those distributions such as log-normal that possess all
their power moments.

Heavy-tailed probability distributions are an important component in the
modeling of many stochastic systems (see, e. g., Embrechts et al. 1997; Faÿ
et al. 2006; Robert and Segers 2008). They are essential for describing risk
processes in finance and also for insurance premia pricing. They are frequently
used to accurately model inputs and outputs of computer and data networks and
service facilities such as call centers. In addition, such distributions occur nat-
urally in models of epidemiological spread. Examples of heavy(light)-tailed
distributions and subclasses (the distribution function has consistent, domi-
nated variation, is long-tailed, sub-exponential) of heavy-tailed distributions
may be found, e. g., in (Chistyakov 1964; Cline 1994; Mikosh 2009; Gao et al.
2012; Yang et al. 2012; Foss et al. 2013).

We will omit here a detailed exposition of results on heavy-tailed distribu-
tions as we are interested in normal approximation to the distribution of com-
pound sums that take into consideration large deviations both in the Cramér
and the power Linnik zones (see, Section 1.1). Thus, only as an illustration, let
us consider some results on tails of random sums (1.30) in case of the heavy-
tailed distributions.

Assume that the summands of the compound sum SN are i. i. d. random
variables {X,Xj , j = 1, 2, ...} with mean and finite positive variance

µ = EX, 0 < σ2 = DX <∞.

Moreover, assume that the non-negative integer-valued random variable N is
independent of the mentioned summands. As important result in the literature,
in the case of i. i. d. random variables {X,Xj , j = 1, 2, ...} with the distri-
bution function F (x) = P(X < x) and finite positive mean µ = EX is
the following. Assume that the distribution function F (x) is sub-exponential
(this heavy-tailed distribution class was introduced in Chistyakov 1964), i. e.,
limx→∞ F ∗2(x)/F̄ (x) = 2, where F ∗2(x) denotes the 2-fold convolution of
the distribution function F (x) with itself. If, in addition,N is light-tailed, then
(see, e. g., Embrechts et al. 1997)

P(SN > x) ∼ αF̄ (x), x→∞.

Here∼means asymptotically equivalent. In more detail, for two positive func-
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tions u(x) and v(x), we write u(x) ∼ v(x) if limx→∞ u(x)/v(x) = 1. Aleške-
vičienė et al. (2008) considered the case where F̄ (x) = o(H̄(x)) and H(x)
has consistent variation, i. e., limy↗1 lim supx→∞ H̄(xy)/H̄(x) = 1 (this reg-
ularity property was first introduced by Cline (1994) and is called intermediate
regular variation). Aleškevičienė et al. (2008) proved that

P(SN > x) ∼ H̄(xµ−1), x→∞,

generalizing the corresponding result in (Robert and Segers 2008). Robert and
Segers (2008) concentrated on the converse case when the tail of (1.30) is
dominated by the tail of N . This case is relevant, for instance, for earthquake
insurance, for featuring a potentially large number of bounded claims, or for
cases of individual unobserved heterogeneity, as well as in queueing theory
(see Resnick 1992; Faÿ et al. 2006; Robert and Segers 2008). Aleškevičienė
et al. (2008) considered applications to the asymptotic behavior of the finite-
time ruin probability in a compound renewal risk model. The compound re-
newal risk model was first introduced by Tang et al. (2001), and it has since
been extensively investigated by many researchers (for example, see Gao et al.
2012; Yang et al. 2013; Lin and Shen 2013 and the references therein). Yang
et al. (2012) considered the asymptotic behavior of the tail probability for the
random sum SN with negatively dependent increments on R in three cases:
P(N > x) = o(P(X > x)) and the distribution function F (x) is dominat-
edly varying (this heavy-tailed distribution class was introduced by Feller see,
e. g., Feller (1971)) that is, lim supx→∞ F̄ (xy)/F̄ (x) < ∞, for every fixed
y > 0; P(X > x) = o(P(N > x)) and the distribution function of N is
dominatedly varying; and the tails of X and N are comparable and dominat-
edly varying. The technical restrictions on the distribution functions of X and
N have been minimized. (He et al. 2013) considered asymptotic lower bounds
of precise large deviations with non-negative and dependent random variables
and discussed these in a multi-risk model. The paper considered the case where
it does not matter whether the distributions of the random variables are heavy-
tailed or light-tailed. The work extended and improved the results presented in
(Konstantinides and Loukissas 2011; Loukissas 2012).

As has already been mentioned, we are specifically interested in normal
approximation to the distributions of random sums that takes into consider-
ation large deviations in both the Cramér and the power Linnik zones. The
papers (Aksomaitis 1965, 1967, 1973; Statulevičius 1967; Saulis 1978, 1981;
Saulis and Deltuvienė 2007) address large deviations in the Cramér zone for
distributions of random sums. Of existing methods on large deviations (see,
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e. g., Saulis and Statulevičius 1991; Jensen 1995; Borovkov 1999; Fatalov 2011,
2010; Gao and Zhao 2011), we rely on the cumulant method. However, there are
only a small number of papers (see, e. g., Statulevičius 1967; Saulis 1978, 1981;
Saulis and Deltuvienė 2007; Kasparavičiūtė and Saulis 2010, 2011a, 2011b,
2013) on normal approximation taking into account large deviations for the
distribution of the sums of a r. n. s. in the case where cumulant method is used.

Recall that we assumed that the distribution of non-negative integer-valued
random variable N depends on some parameter. Statulevičius (1967) proved a
theorem on large deviations in the Cramér zone for the distribution function
FSN (µα + xσ

√
α) in case of i. i. d. summands and where α = EN → ∞.

The proof was obtained using the lemma (see Statulevičius 1966) on large
deviations for the distribution FX(µ+xσ) of an arbitrary random variable that
has finite moments of any order. In addition, it was assumed that the following
conditions are satisfied: there exist nonnegative numbersH1, H2, K1, K2 such
that

|E(X − µ)k| ≤ k!H1K
k−2
1 σ2, k = 3, 4, ...,

and
|Γk(N)| ≤ k!H2K

k−1
2 α1+(k−1)ε, k = 1, 2, ... . (1.32)

However, in the proof of the theorem on large deviations for FSN (µα+xσ
√
α)

was assumed that without loss of generality µ = 0, but while the mean may
be assumed to be zero without loss of generality when the number n ∈ N of
summands is non-random, this is not so for sums of a random number N of
terms. Aksomaitis (1965) considered large deviation theorems in case where
N := Nt, t ≥ 0, and ENt = αt → ∞ as t → ∞. Moreover, instead of
condition (1.32), the stronger condition

|Γk(Nt)| ≤ Ckα1+(k−1)ε
t , k = 2, 3, ...

was used, where C > 0 and ε ≥ 0.

Later, Saulis (1978) presented large deviations for the distribution function
of the maximum of a random number of sums of i. i. d. random variables in the
case where µ = 0. In addition, the following Theorem 1.4 on large deviations
in the Cramér zone for FSN (σ

√
αx) has been established.

Theorem 1.4. (Saulis 1978) If µ = 0 and the conditions (1.33), (K): there
exist quantities K2 > 0, ε ≥ 0, and A > 0 such that

|Γk(N)| ≤ k!Kk−1
2 α1+(k−1)ε, k = 1, 2, ..., (1.33)
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∫ ∞
−∞

ehxdFX(x) <∞, |h| < A, (K)

are satisfied, then in the interval max{1, 2
√

3.5ε lnα} ≤ x = O(α(1−ε)/2) the
relation

1− FSN (σ
√
αx)

1− Φ(x)
= exp{L(x)}

(
1 +O

( x

α(1−ε)/2

)
+O

[(
1 +

1

x
max

{ β√
α
,
β2

α

})
exp

{
− x2

14

}])
,

holds as α → ∞. Here L(x) =
∑∞

k=3 ckx
k is a Cramér power series with

coefficients ck that are expressed in terms of the cumulants of SN .

Under the same conditions as in (Statulevičius 1967) and using the cumu-
lant method, Saulis (1981) considered large deviations in the Cramér zone for
a sum of a random number of random vectors (for more detail see, e. g., Saulis
and Statulevičius 1991: 203–206).

Let us denote the standardized version of (1.30) as

S̃N =
SN −ESN√

DSN
, DSN > 0, (1.34)

with mean ES̃N = 0 and variance DS̃N = 1. Saulis and Deltuvienė (2007)
considered the asymptotic behavior of large deviation theorems for the distri-
bution function FS̃N (x) (see Theorem 1.5) and exponential inequalities of the
probability P(±S̃N ≥ x) (see Theorem 1.6) when µ 6= 0. It was assumed that
the random variable X satisfies the conditions: there exist quantities K > 0,
K1 > 0, ε ≥ 0 such that

|EXk| ≤ k!Kk−2EX2, k = 3, 4, ..., (B̄0)

and

|Γk(N)| ≤ (1/2)k!Kk−2
1 (β2)1+(k−2)ε, k = 2, 3, ... . (1.35)

Let

∆N =
√
σ2α+ µ2β2/LN , LN =

(
3K1|µ|β2ε ∨

(
1 ∨ σ/|µ|

)
4M
)
,

where M = 2 max{K,σ}. Assume that ∆N →∞ if β →∞.
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Theorem 1.5. (Saulis and Deltuvienė 2007) Assume that the random variables
X and N satisfy conditions (B̄0) and (1.35). Then

1− FS̃N (x)

1− Φ(x)
→ 1,

FS̃N (−x)

Φ(−x)
→ 1

hold for x, x ≥ 0, x = o(∆
1/3
N ) as β →∞ when 0 ≤ ε < 1/2.

Theorem 1.6. (Saulis and Deltuvienė 2007) Let X and N satisfy the condi-
tions of Theorem 1.5. Then

P(±S̃N ≥ x) ≤

{
exp{−x2/12}, 0 ≤ x ≤ 3∆N ,
exp{−x∆N/4}, x ≥ 3∆N .

1.3. Conclusions of Chapter 1

Let us consider the weighted random (compound) sum

ZN =

N∑
j=1

ajXj (1.36)

of a r. n. s. of i. i. d. weighted random variables. Here 0 < aj < ∞. Again, we
suppose that N is independent of {X,Xj , j = 1, 2, ...} and, for definiteness,
we assume that Z0 = 0. In addition, it is assumed that the distribution of N
depends on some parameter.

1. It follows from the Chapter 1 that is a very extensive literature on ap-
proximation of tail probabilities for random sums of a r. n. s., under
different assumptions and with various applications. However, among
scientific works there are no works – excepting the papers (Kaspar-
avičiūtė and Saulis 2010, 2011a, 2011b, 2013) by the author of this
thesis and L. Saulis – for normal approximation that take into consid-
eration large deviations in both the Cramér and the power Linnik zones
for the standardized weighted compound sum

Z̃N =
ZN −EZN√

DZN
, DZN > 0, (1.37)

in two cases: µ 6= 0 and µ = 0 (see Chapter 2).
2. The papers (Kasparavičiūtė and Saulis 2010, 2011a, 2011b, 2013) gen-
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eralize the previously mentioned results of (Statulevičius 1967; Saulis
1978; Saulis and Deltuvienė 2007) in the Cramér zone. It should be
emphasized that the papers (Kasparavičiūtė and Saulis 2011a, 2011b,
2013) consider the instance where the characteristic function of the
separate summand of Z̃N is not analytic in a vicinity of zero, while the
papers (Statulevičius 1967; Saulis 1978; Saulis and Deltuvienė 2007)
considered only the instance where the characteristic function of (1.37)
in the case where aj ≡ 1 are analytic in a vicinity of zero.



2
Theorems of large deviations for

random sums

Assume that {X,Xj , j = 1, 2, ...} is a family of i. i. d. random variables.
ThroughoutN denotes a non-negative integer-valued random variable, besides
we shall assume that the distribution of N depends on some parameter. For
example, when N is a homogeneous Poisson process (see Definition 2.2 in
Subsection 2.4.1), the distribution of N depends on t ≥ 0, such that t → ∞,
and we denote N as Nt in this case. We also note that the probability space on
which the random variables N and {X,Xj , j = 1, 2, ...} appear is the same.
Obviously, the assumption of the existence of a probability space on which all
the random variables with the specified properties appear does not restrict the
generality.

Consider weighted random (compound) sum

ZN =
N∑
j=1

ajXj ,

of a r. n. s. of i. i. d. weighted random variables. Recall that 0 < aj < ∞.
Throughout, we assume thatN is independent of {X,Xj , j = 1, 2, ...}, and for
definiteness, we suppose that Z0 = 0. For instance, in ruin theory the weights
are interpreted as discount factors and the sequence Xj as the net returns of

33
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an insurance company, for the purpose of analyzing the probability of ruin in
either a finite or an infinite time. In general, random weighted sums appear
in the analysis of random stochastic equations, and they have applications in
many areas.

In this chapter, we are interested in the normal approximation for the dis-
tribution of a standardized weighted random sum

Z̃N =
ZN −EZN√

DZN
, DZN > 0,

that takes into consideration large deviations in both the Cramér and the power
Linnik zones in the case where cumulant method (see Section 1.1 or the mono-
graph by Saulis and Statulevičius (1991)) is used. Let us recall that, to the best
of our knowledge, the scientific literature on aforementioned problem has no
studies except for the papers (Kasparavičiūtė and Saulis 2013, 2011a,b, 2010).
We also refer the reader to the papers (Statulevičius 1967; Saulis 1978, 1981;
Saulis and Deltuvienė 2007) that consider an instance of aforementioned prob-
lem, more detail, that address normal approximation taking into consideration
large deviations in the Cramér zone for the distribution of the sums (1.34).

Such probability characteristics as the mean, variance, and moments of
higher order play an important role in the analysis of the asymptotic proper-
ties of random sums (for more detail see, e. g., Kruglov and Korolev 1990b).
Accordingly, Section 2.1 is devoted to the main probability characteristics of
the examined compound random variables and weighted random sum (1.36).
In addition, the conditions for moments and cumulants are also presented.

To achieve theorems of large deviations, the cumulant method (see Sec-
tion 1.1) is used. Thus the combinatorial method is used in Section 2.2 to
evaluate the suitable bounds for the kth-order cumulants, k = 3, 4, ..., of the
standardized weighted compound sum (1.37). Section 2.3 lists theorems of:
large deviations, in both the Cramér and the power Linnik zones, comparing
the behavior of probabilities of large deviations of standardized weighted ran-
dom sum (1.37) against the standard normal distribution (1.7); the exponential
inequalities for the probability P(±Z̃N ≥ x). In addition, this section also
considers the absolute error estimate for the normal approximation to the dis-
tribution of (1.37). Instances of large deviations are presented in Section 2.3,
including the cases where the number of summands obeys the binomial law,
is homogeneous, or is a mixed Poisson process, as well as, the cases where
aj ≡ 1, j = 1, 2, ..., and aj ≡ vj , 0 < v < 1.
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2.1. Main conditions and probability characteristics

Recall that (1.4) denotes the mean, finite positive variance, and distribution
function of X as

µ = EX, 0 < σ2 = DX <∞, FX(x) = P(X < x), x ∈ R.

In addition, the kth-order moments and cumulants of X are defined by

EXk =
1

ik
dk

duk
fX(u)

∣∣∣
u=0

, Γk(X) =
1

ik
dk

duk
ln fX(u)

∣∣∣
u=0

, k = 1, 2, ...,

respectively, where fX(u) = Eexp{iuX}, u ∈ R is the characteristic function
of the random variable X . Here Γ1(X) = EX and Γ2(X) = DX .

We say that the random variable X with 0 < σ2 < ∞ satisfies condition
(B̄γ) if there exist constants γ ≥ 0 and K > 0 such that

|E(X − µ)k| ≤ (k!)1+γKk−2σ2, k = 3, 4, ... . (B̄γ)

Condition (B̄γ) is a generalization of S. N. Bernstein’s familiar condition

|EXk| ≤ (1/2)k!Kk−2σ2, k = 2, 3, ... , (B0)

where it is assumed that µ = 0. Condition (B̄γ) ensures the existence of all
order moments of the random variable X . Taking into account the fact that
Γk(X) = Γk(X − µ), k = 3, 4, ... and using Lemma 3.1 in (Saulis and Stat-
ulevičius 1991: 42), we take up the position that

Proposition 2.1. (Saulis and Statulevičius 1991) If the random variable X sat-
isfies condition (B̄γ), then

|Γk(X)| ≤ (k!)1+γMk−2σ2, M = 2 max{σ,K}, k = 2, 3, ... . (2.1)

To define the mean and the variance ofZN , we first introduce the following
compound random variables TN,r:

TN,r =

N∑
j=1

arj , r ∈ N, (2.2)

where 0 < aj < ∞. For definiteness, we assume T0,r = 0 for any fixed r.
Clearly, TN,0 = N , in case where r = 0. Here N is non-negative, integer-



36 2. THEOREMS OF LARGE DEVIATIONS FOR RANDOM SUMS

valued random variable with the mean, variance and the distribution

α = EN, β2 = DN, P(N = s) = qs, s ∈ N0.

It is easy to verify that the probability characteristics of TN,r are expressed
through the characteristics of the sum

Ts,r =

s∑
j=1

arj , s ∈ N, (2.3)

where the number of summands s is non-random. For instance, the mean, vari-
ance, and second moment are as follows:

ETN,r =
∞∑
s=0

qsE(TN,r|N = s) =
∞∑
s=1

qsTs,r, (2.4)

DTN,r = ET 2
N,r − (ETN,r)

2, (2.5)

ET 2
N,r =

∞∑
s=0

qsE(T 2
N,r|N = s) =

∞∑
s=1

qsT
2
s,r. (2.6)

In addition, the characteristic function for TN,r is

fTN,r(u) =

∞∑
s=0

qsE
(
eiuTN,r |N = s

)
=

∞∑
s=0

qse
iuTs,r , u ∈ R. (2.7)

We shall also need the following proposition:

Lemma 2.1. Suppose that the functions y = y(x) and z = z(x) have deriva-
tives of order k ≥ 1. Then

dk

dxk
z(y(x)) = k!

∑∗

1

dm

dym
z(y)

∣∣∣
y=y(x)

k∏
j=1

1

mj !

( 1

j!

dj

dxj
y(x)

)mj
, (2.8)

where the summation
∑∗

1 is carried out over all non-negative integer solutions
(m1,m2, ...,mk) of the equation{ m1 + 2m2 + ...+ kmk = k,

m1 +m2 + ...+mk = m,
(2.9)

where 0 ≤ m1, ...,mk ≤ k, and 1 ≤ m ≤ k.
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This proposition can be established by induction and appears, for instance,
in (Petrov 1995: 170) (see Lemma 5.6), where citations for other references can
also be found.

We note that fTN,r(u)|u=0 = 1 and

dm ln y

dym

∣∣∣
y=1

= (−1)m−1(m− 1)!, m = 1, 2, ... .

Hence, using (2.7) and (2.8) together with the definition (1.5) of the kth-order
cumulants we derive the equality

Γk(TN,r) =
1

ik
dk

duk
ln fTN,r(u)

∣∣∣
u=0

= k!
∑∗

1

dm

dym
ln y
∣∣∣
y=fTN,r (u)

k∏
j=1

1

mj !

( 1

j!

dj

ijdyj
fTN,r(u)

)mj ∣∣∣∣
u=0

= k!
∑∗

1

(−1)m−1(m− 1)!

m1! · ... ·mk!

k∏
j=1

( 1

j!
ET jN,r

)mj
, (2.10)

which expresses the cumulants Γk(TN,r) of arbitrary order k through the kth-
order moments

ET kN,r =
1

ik
dk

duk
fTN,r(u)

∣∣∣
u=0

=
∞∑
s=1

qsT
k
s,r, k = 1, 2, ... . (2.11)

Aforementioned equality can be obtained using equality (1.34) in (Saulis and
Statulevičius 1991: 8).

Setting 0 < a = sup{aj , j = 1, 2, ...} <∞, we note

ET kN,r ≤ ak(r−l)ET kN,l, 0 ≤ l ≤ r, r = 1, 2, ..., k = 1, 2, ... . (2.12)

We proceed to show that for (2.5), the following estimate is valid:

DTN,r ≤ a2(r−l)DTN,l, 0 ≤ l ≤ r. (2.13)

Indeed, it can be obtained quite-easily. Observe that we can rewrite (2.4) as
follows:

ETN,r =

∞∑
s=j

qsa
r
j =

∞∑
j=1

P(N ≥ j)arj , (2.14)
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where

P(N ≥ j) =
∞∑
s=j

qs, 0 < P(N ≥ j) < 1. (2.15)

Since
∞∑
s=2

s∑
j,n=1
j 6=n

arja
r
nqs = 2

∞∑
j=1

∞∑
n=j+1

P(N ≥ n)arna
r
j ,

we also can rewrite (2.4) as follows

ET 2
N,r =

∞∑
s=1

( s∑
j=1

arj

)2

qs =

∞∑
s=1

s∑
j=1

a2r
j qs +

∞∑
s=2

s∑
j,n=1
j 6=n

arja
r
nqs

=
∞∑
j=1

P(N ≥ j)a2r
j + 2

∞∑
j=1

∞∑
n=j+1

P(N ≥ n)arna
r
j . (2.16)

Hence, by

(ETN,r)
2 =

∞∑
j=1

(P(N ≥ j))2a2r
j + 2

∞∑
j=1

∞∑
n=j+1

P(N ≥ n)arnP(N ≥ j)arj ,

and from (2.5), (2.14), and (2.16) we have

DTN,r = ET 2
N,r − (ETN,r)

2 =

∞∑
j=1

(1−P(N ≥ j))P(N ≥ j)a2r
j

+ 2
∞∑
j=1

∞∑
n=j+1

P(N ≥ n)arn(1−P(N ≥ j))arj . (2.17)

Subsequent, application of arja
r
n ≤ a2(r−l)alja

l
n and a2r

j ≤ a2(r−l)a2l
j , 0 ≤ l ≤

r, r = 1, 2, ..., yields (2.13). Furthermore, by virtue of (2.12), similar but rather
complicated calculations can show that for (2.10), the estimate

|Γk(TN,r)| ≤ ak(r−l)|Γk(TN,l)|, k = 1, 2, ..., 0 ≤ l ≤ r. (2.18)

holds for r = 1, 2, ... . Obviously, here

|Γk(TN,l)| ≤ k!
∑∗

1
(m− 1)!

k∏
j=1

1

mj !

( 1

j!
ET jN,l

)mj
, k = 1, 2, ...,
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where summation
∑∗

1 is carried out over all non-negative integer solutions
(m1,m2, ...,mk), 0 ≤ m1, ...,mk ≤ k, 1 ≤ m ≤ k, of equation (2.9).

We will see later (see the proof of Lemma 2.2 in Section 2.2: 40) that from
(2.33) and together with (2.20), it follows that if we need to estimate upper
bounds for the kth-order cumulants of the standardized weighted random sum
(1.37), we must impose conditions not only for the kth-order cumulants of the
random variable X but, depending on the case: µ 6= 0 or µ = 0, of TN,1 or
TN,2 as well. Consequently, we assume that the compound random variables
TN,1 and TN,2 defined by (2.2) with r = 1, 2 satisfy the conditions (L) and
(L0), respectively: there exist constants K1 > 0, K2 > 0 and ε ≥ 0 such that

|Γk(TN,1)| ≤ 1

2
k!Kk−2

1 (DTN,1)1+(k−2)ε, k = 2, 3, ..., (L)

|Γk(TN,2)| ≤ k!Kk−1
2 (ETN,2)1+(k−1)ε, k = 1, 2, ... . (L0)

Throughout the rest of thesis, we use the first condition (L) when µ 6= 0, and
the second condition (L0) when µ = 0.

In isolated instance (aj ≡ 1, j = 1, 2, ...), these conditions are imposed for
the kth-order cumulants of the random variable N (see conditions (1.32) and
(1.33), and also instances whereN is distributed according to the binomial law,
is homogeneous, or is a mixed Poisson process).

It is easily seen that, by virtue of conditions (L) and (L0) with 0 ≤ ε <
1/2, the cumulants Γk(TN,1/

√
DTN,1) and Γk(TN,2/

√
ETN,2) decrease as

DTN,1 →∞ and ETN,2 →∞, respectively.
Let us now define the main probability characteristics of the weighted ran-

dom sum ZN that is defined by (1.36). The sum ZN is a partial sum where
the deterministic index s of the partial sum Zs =

∑s
j=1 ajXj , s ∈ N, of

i. i. d. weighted random variables has been replaced by the random variable N .
Application of (2.4)–(2.6) leads to

EZN =
∞∑
s=0

qsE(Zs|N = s) = µETN,1, (2.19)

EZ2
N = EX2ETN,2 + µ2(ET 2

N,1 −ETN,2) = σ2ETN,2 + µ2ET 2
N,1.

Consequently,

DZN = EZ2
N − (EZN )2 = σ2ETN,2 + µ2DTN,1. (2.20)

Although the random variablesXj under consideration are absolutely con-
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tinuous, ZN may be not absolutely continuous, due to the degenerate distribu-
tion function

FZ0(x) = F0(x) =

{
1, x > 0,
0, x ≤ 0.

Therefore, certain difficulties may appear in the formulation of problems re-
lated to local limit theorems, as the distribution function for all x ∈ R,

FZN (x) =
∞∑
s=0

qsP(ZN < x|N = s) =
∞∑
s=0

qsP(Zs < x),

is not absolutely continuous. Since we are considering large deviation theorems
(the case where x > 0), the distribution function for (1.36) will therefore be

FZN (x) = q0 +
∞∑
s=1

qsFZs(x), x > 0. (2.21)

SinceN is independent of the i. i. d. random variables {X,Xj , j = 1, 2, ...},
given (1.5), we derive that the characteristic function

fZN (u) = EeiuZN =
∞∑
s=0

qsE
(
eiuZN

∣∣N = s
)

=
∞∑
s=0

qsfZs(u)

=
∞∑
s=0

qse
ln fZs (u) =

∞∑
s=0

qs exp
{ ∞∑
k=1

Γk(Zs)

k!
(iu)k

}
(2.22)

=
∞∑
s=0

qs exp
{ ∞∑
k=1

Ts,kΓk(X)

k!
(iu)k

}
, u ∈ R, (2.23)

of ZN exists if the kth-order cumulants (1.5) ofX exist. Here Ts,k =
∑s

j=1 a
k
j .

2.2. The upper estimates for the kth order
cumulants

Let us consider the standardized sum (1.37) of a r. n. s. of i. i. d. weighted
random variables:

Z̃N =
ZN −EZN√

DZN
, ZN =

N∑
j=1

ajXj ,
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with EZ̃N = 0 and DZ̃N = 1. Here 0 < aj <∞, j = 1, 2, ..., and EZN and
DZN > 0 are defined by (2.19) and (2.20). Recall that non-negative integer
valued random variableN is independent of {X,Xj , j = 1, 2, ...}. In addition,
the distribution of N depends on some parameter.

To obtain large deviation theorems for Z̃N , the cumulant method proposed
by Statulevičius (1966) and generalized by R. Rudzkis, L. Saulis, S. V. Statule-
vičius (1978) (for detailes, see Section 1.1: 9, or monograph Saulis and Stat-
ulevičius 1991) is used. It is a powerful method that enables investigation of
large deviations for random sums of both independent and dependent random
variables.

Since we are interested not only in the convergence to the normal dis-
tribution but also in a more accurate asymptotic analysis of the distribution
FZ̃N (x) = P(Z̃N < x), we must first find a suitable bound for the kth-order
cumulants of Z̃N . Lemma 2.2 below presents the accurate upper estimate for
|Γk(Z̃N )|in two cases: µ 6= 0 and µ = 0.

Define the abbreviations (b ∨ c) = max{b, c}, b, c ∈ R, 0 < ā =
inf{aj , j = 1, 2, ...} <∞ and recall that 0 < a = sup{aj , j = 1, 2, ...} <∞.

Lemma 2.2. Suppose the random variable X with variance 0 < σ2 < ∞
fulfills condition (B̄γ) and that the random variables TN,1 and TN,2 defined by
(2.2) satisfy conditions (L) and (L0), respectively. Then

|Γk(Z̃N )| ≤ (k!)1+γ

∆k−2
∗

, k = 3, 4, ..., (2.24)

where

∆∗ =
{ ∆N , if µ 6= 0,

∆N,0, if µ = 0.
(2.25)

Here

∆N =

√
DZN
LN

, LN = 2
(a
ā

)2(a
ā
K1|µ|(DTN,1)ε∨

(
1∨ āσ

2a|µ|

)
aM

)
, (2.26)

where DZN is defined by (2.20), and

∆N,0 =

√
DZN
LN,0

, LN,0 = 2
(
1 ∨K2(ETN,2)ε

)(
(1/2) ∨ a

)
M, (2.27)

where DZN is defined by (2.20) with µ = 0. The constants K1, K2, ε, and M
are defined by conditions (L), (L0), (2.1), and DTN,1,ETN,2 are defined by
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(2.5) and (2.4).

Proof of Lemma 2.2. First, observe that fZN (u)|u=0 = 1 , where fZN (u) is
defined by (2.23), and recall that

dm ln y

dym

∣∣∣
y=1

= (−1)m−1(m− 1)!, m = 1, 2, ... .

According to Lemma 2.1 together with definition (1.5) of the kth-order mo-
ments and cumulants, we can assert that for all k = 1, 2, ...,

Γk(ZN ) =
dk

ikduk
ln fZN (u)

∣∣∣
u=0

= k!
∑∗

1

dm

dym
ln y
∣∣∣
y=fZN (u)

k∏
j=1

1

mj !

( 1

j!

dj

ijdyj
fZN (u)

)mj ∣∣∣
u=0

=
∑∗

1

(−1)m−1(m− 1)!

m1! · ... ·mk!

k∏
j=1

( 1

j!
EZjN

)mj
. (2.28)

is valid. Here
∑∗

1 is a summation over all non-negative integer solutions
(m1,m2, ...,mk) of equation (2.9). Further, using (2.8), (2.23) together with
(2.11) for all j = 1, 2, ... gives us

EZjN =
∞∑
s=1

qsj!
∑∗

2

1

η1! · ... · ηj !

j∏
n=1

( 1

n!
Ts,nΓn(X)

)ηn
= j!

∑∗

2

E
(
T η1N,1 · ... · T

ηj
N,j

)
η1! · ... · ηj !

j∏
n=1

( 1

n!
Γn(X)

)ηn
, (2.29)

where

E
(
T η1N,1 · ... · T

ηj
N,j

)
=
∞∑
s=0

qs
(
T η1s,1 · ... · T

ηj
s,j

)
, Ts,j =

s∑
r=1

ajr, j = 1, 2, ... .

Here
∑∗

2 is taken over all non-negative integer solutions (η1, ..., ηj) of the
equation {

η1 + 2η2 + ...+ jηj = j,
η1 + η2 + ...+ ηj = η.

Here 0 ≤ η1, ..., ηj ≤ j, and 1 ≤ η ≤ j. Consequently, substituting (2.29) into
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(2.28) produces

Γk(ZN ) = k!
∑∗

1

(−1)m−1(m− 1)!

m1! · ... ·mk!

k∏
j=1

·
(∑∗

2

E
(
T η1N,1 · ... · T

ηj
N,j

)
η1! · η2! · ... · ηj !

j∏
n=1

( 1

n!
Γn(X)

)ηn)mj
. (2.30)

In particular,

Γ1(ZN ) = Γ1(TN,1)Γ1(X) = EZN ,

Γ2(ZN ) = Γ2(TN,1)(Γ1(X))2 + ETN,2Γ2(X) = DZN ,

Γ3(ZN ) = Γ3(TN,1)(Γ1(X))3 + 3cov(TN,1, TN,2)Γ1(X)Γ2(X)

+ ETN,3Γ3(X),

Γ4(ZN ) = Γ4(TN,1)(Γ1(X))4 + 4cov(TN,1, TN,3)Γ1(X)Γ3(X)

+ 6(Γ1(X))2Γ2(X)
(
cov(T 2

N,1, TN,2)− 2ETN,1cov(TN,1, TN,2)
)

+ 3DTN,2(Γ2(X))2 + ETN,4Γ4(X), ... .

Note that
T
ηj
N,j ≤ a

(j−2)ηjT
ηj
N,2 as j ≥ 2,

where 0 < a = sup{aj , j = 1, 2, ...} <∞. In addition,

T η1N,1 ≤ ā
−η1T η1N,2,

where 0 < ā = inf{aj , j = 1, 2, ...} <∞. Thus

|Γk(ZN )| ≤ k!
∑∗

1

(−1)m−1(m− 1)!

m1! · ... ·mk!

k∏
j=1

·
(∑∗

2

(a/ā)η1ET ηN,2
η1! · ... · ηj !

j∏
n=1

( 1

n!
an−2|Γn(X)|

)ηn)mj
, (2.31)

for k = 1, 2, ... . Here ET ηN,2 is defined by (2.11) with r = 2 and k = η. In
particular,

|Γ1(ZN )| ≤ (1/ā)Γ1(TN,2)|Γ1(X)|,
|Γ2(ZN )| ≤ ETN,2Γ2(X) + (1/ā)2DTN,2(Γ1(X))2,



44 2. THEOREMS OF LARGE DEVIATIONS FOR RANDOM SUMS

|Γ3(ZN )| ≤ (1/ā)3Γ3(TN,2)|Γ1(X)|3 + 3(a/ā)DTN,2|Γ1(X)|Γ2(X)

+ aETN,2|Γ3(X)|,
|Γ4(ZN )| ≤ (1/ā)4Γ4(TN,2)(Γ1(X))4 + 4(a/ā)DTN,2|Γ1(X)||Γ3(X)|

+ 6(1/ā)2Γ3(TN,2)(Γ1(X))2Γ2(X)

+ 3DTN,2(Γ2(X))2 + a2ETN,2Γ4(X), ... .

Let us note that according to Lemma 2.1

k!
∑∗

1

(−1)m−1(m− 1)!

m1! · ... ·mk!

k∏
j=1

(∑∗

2

ET ηN,2
η1! · ... · ηj !

j∏
n=1

( 1

n!
Γn(X)

)ηn)mj
= k!

∑∗

1

dm

dym
ln y
∣∣∣
y=fTN,2

(
1
i

ln fX(u)
)

·
k∏
j=1

1

mj !

( 1

j!

dj

ijdyj
fTN,2(ln fX(u)/i)

)mj ∣∣∣
u=0

= k!
∑∗

1

dm

imdym
ln fTN,2(y)

∣∣∣
y=0

k∏
j=1

1

mj !

( 1

j!

dj

ijdyj
ln fX(u)

∣∣∣
u=0

)mj
= k!

∑∗

1

Γm(TN,2)

m1! · ... ·mk!

k∏
j=1

1

mj !

( 1

j!
Γj(X)

)mj
, (2.32)

where

fTN,2

(1

i
ln fX(u)

)
=
∞∑
s=0

qs exp{Ts,2 ln fX(u)}

=

∞∑
s=0

qs exp
{
Ts,2

∞∑
k=1

Γk(X)

k!
(iu)k

}
.

Here Γm(TN,2) is defined by (2.10). Hence (2.31) we rewrite as follows:

|Γk(ZN )| ≤ k!
∑∗

1

|Γm(TN,2)|
m1! · ... ·mk!

(a
ā

)m1
k∏
j=1

( 1

j!
aj−2|Γj(X)|

)mj
, (2.33)

for k = 1, 2, ... .

Now let us consider the case where µ 6= 0. Separating the summand of the sum
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∑∗
1 in case where m1 = ... = mk−1 = 0, mk = 1, from (2.33) we derive

|Γk(ZN )| ≤ k!(R1 +R2), k = 2, 3, ..., (2.34)

where

R1 =
1

k!
ak−2|Γ1(TN,2)||Γk(X)|,

R2 =
∑∗

3

|Γm̃(TN,2)|
m1!·...·mk−1!

( |µ|
ā

)m1
k−1∏
j=2

( 1

j!
aj−2|Γj(X)|

)mj
.

Here
∑∗

3 is taken over all the non-negative integer solutions (m1,m2, ...,mk−1)
of the equation { m1 + 2m2 + ...+ (k − 1)mk−1 = k,

m1 +m2 + ...+mk−1 = m̃,
(2.35)

where 0 ≤ m1, ...,mk−1 ≤ k, 2 ≤ m̃ ≤ k.

Now we turn to estimating R1 and R2. Condition (2.1) yields

R1 ≤ (k!)γ(aM)k−2σ2ETN,2, k = 3, 4, ..., (2.36)

Application of (2.1), (L), and (2.18) with r = 2, l = 1 implies

R2 ≤
1

2
DTN,1

∑∗

3

m̃!

m1!·...·mk−1!
(K1(DTN,1)ε)m̃−2

· am̃
( |µ|
ā

)m1
k−1∏
j=2

((j!)γ(aM)j−2σ2)mj , k = 3, 4, ... . (2.37)

We also need the equality

gk =
∑∗

1

(m1 + ...+mk)!

m1!·...·mk!
= 2k−1, k = 1, 2, ... . (2.38)

It is assumed, by convention, that g0 = 1. This equality can be obtained on the
basis of the generating function that generates the sequence of numbers< gl >

G(ω) =
∑
l≥0

glω
l =

∑
l≥0

(ω + ω2 + ...+ ωk + ...)l =
1− ω
1− 2ω

, |ω| < 1

2
.
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Therefore,

G(ω) =
1

1− 2ω
− ω

1− 2ω
=
∑
l≥0

2lωl −
∑
l≥0

2lωl+1

= 1 +
∑
l≥1

(2l − 2l−1)ωl = 1 +
∑
l≥1

2l−1ωl.

Consequently,∑∗

3

(m1 + ...+mk−1)!

m1!·...·mk−1!
= 2k−1 − 1, k = 2, 3, ... . (2.39)

Because of the inequality b! ·c! ≤ (b+c)!, where b and c are non-negative inte-
gers, we have that for any solution (m1,m2, ...,mk−1) of the equation (2.35),
the inequality

k−1∏
j=1

(j!)mj ≤ (k − 1)!, k = 2, 3, ..., (2.40)

is valid. Next, recalling that µ 6= 0 let us to evaluate

am̃
( |µ|
ā

)m1
k−1∏
j=2

((aM)j−2σ2)mj

≤
(a|µ|
ā

)m̃( āMσ

2|µ|

)m2+m3+...+mk−1

(aM)m3+2m4+...+(k−3)mk−1

≤
(a|µ|
ā

)m̃((
1 ∨ σā

2|µ|a

)
aM

)k−m̃
, k = 2, 3, ..., (2.41)

as σ ≤ M/2, and 0 ≤ m2 + m3 + ... + mk−1 ≤ k − m̃, where 0 ≤
m1, ...,mk−1 ≤ k, 2 ≤ m̃ ≤ k. Here M and m̃ are defined, respectively,
by (2.1) and (2.35).
Using (2.37) and (2.39)–(2.41) for k = 3, 4, ..., we derive

R2 ≤(k!)γµ2DTN,1

·
(

2
(a
ā

)2(a
ā
K2|µ|(DTN,1)ε ∨

(
1 ∨ σā

2|µ|a

)
aM

))k−2

. (2.42)

Consequently, from (2.34), (2.36), and (2.42) follows that

|Γk(ZN )| ≤ (k!)1+γLk−2
N DZN , k = 3, 4, ..., (2.43)
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where DZN and LN are defined by (2.20) and (2.26), respectively.

Now let us consider the case where µ = 0, and 00 = 1. Referring to (2.33), we
obtain

|Γk(ZN )| ≤ k!
∑∗

4
|Γm̄(TN,2)|

k∏
j=2

1

mj !

( 1

j!
aj−2|Γj(X)|

)mj
, (2.44)

for k = 2, 3, ..., where
∑∗

4 is a summation over all the non-negative integer
solutions (m2,m3, ...,mk) of the equation{

2m2 + ...+ kmk = k,
m2 + ...+mk = m̄.

(2.45)

Here 1 ≤ m̄ ≤ k. Further, using (2.1), (L0), and (2.44), we obtain

|Γk(ZN )| ≤ k!ETN,2
∑∗

4

m̄!

m2!·...·mk!

·(K2(ETN,2)ε)m̄−1
k∏
j=2

((j!)γ(aM)j−2σ2)mj . (2.46)

Noting that b! · c! ≤ (b + c)!, (2.38) gives, for any solution (m2, ...,mk) of
equation (2.45)

k∏
j=2

(s!)mj ≤ k!,
∑∗

4

m̄!

m2!·...·mk!
≤ 2k−2, k = 2, 3, ... . (2.47)

Since

k∏
j=2

((aM)j−2σ2)mj = σ2m̄(aM)k−2m̄, k = 2, 3, ..., (2.48)

substituting (2.47) and (2.48) into (2.46) and recalling that σ ≤ M/2, we
conclude that

|Γk(ZN )| ≤ (k!)1+γDZNL
k−2
N,0 , k = 3, 4, ..., (2.49)

where LN,0 is defined by (2.27) and DZN is defined by (2.20) with µ = 0.

To complete the proof of Lemma 2.2, it is sufficient to use (2.43), (2.49) and
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then, by noting that

Γk(Z̃N ) =
Γk(ZN −EZN )

(DZN )k/2
=

Γk(ZN )

(DZN )k/2
, k = 2, 3, ...,

we arrive at (2.24). 2

Note that, by Leonov (1964), for the convergence to standard normal dis-
tribution under the conditions Γ1(Z̃N ) = 0, Γ2(Z̃N ) = 1, it is sufficient that

Γk(Z̃N )→ 0 as ∆∗ →∞,

for every k = 3, 4, ... . Here ∆∗ is defined by (2.25).
It follows from estimate (2.24) that Z̃N satisfies S. V. Statulevičius’ con-

dition (Sγ) with ∆ := ∆∗.

2.3. Theorems for large deviations

Since the accurate upper bounds (2.24) for the kth-order cumulants of the
standardized sum Z̃N have been derived, to prove theorems of large devia-
tions and exponential inequalities we have to use general lemmas presented in
(Rudzkis et al. 1978; Bentkus, R. and Rudzkis 1980), respectively, about large
deviations and exponential inequalities for an arbitrary random variable with
zero mean and unit variance.

Recall that ∆∗ is defined by (2.25). If γ = 0, then based on (2.24) the
generating function ϕZ̃N (z) is analytical in the domain |z| < ∆∗ which in turn
guarantees that the large deviation theorems are applicable to the distribution
function FZ̃N (x) or, if it exists, to the density function FZ̃N (x) for 0 ≤ x < ∆∗
(i. e., in Cramér zone). If γ > 0, then the generating function ϕZ̃N (z) is no
longer analytical and we can only prove large deviation theorems for 0 ≤ x <
∆∗ (i. e., in the power Linnik zone).

Let

∆∗,γ = cγ∆∗
1/(1+2γ), cγ =

1

6

(√2

6

)1/(1+2γ)
. (2.50)

We will use θ (with or without an index) to denote a value, not always the
same, that does not exceed 1 in modulus.

Theorems 2.1, 2.2, 2.3 and Corollaries 2.1, 2.2 present the exact large devi-
ations, in both the Cramér and power Linnik zones equivalent for the tails (left
and right tails) of Z̃N ; asymptotic convergence of large deviation ratios to a
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unit; non-asymptotic exponential inequalities for the probability of large devi-
ations of Z̃N ; normal approximation with an explicit non-asymptotic estimate
of the "distance" between the distribution of Z̃N and the standard Gaussian
distribution Φ(x) which is defined by (1.7).

Theorem 2.1. If the random variable X with variance 0 < σ2 < ∞ satisfies
condition (B̄γ) and the random variables TN,1, TN,2 satisfy conditions (L)
and (L0), respectively, then in the interval

0 ≤ x < ∆∗,γ ,

the ratios of large deviations

1− FZ̃N (x)

1− Φ(x)
= exp{L∗,γ(x)}

(
1 + θ1f(x)

x+ 1

∆∗,γ

)
,

FZ̃N (−x)

Φ(−x)
= exp{L∗,γ(−x)}

(
1 + θ2f(x)

x+ 1

∆∗,γ

) (2.51)

are valid, where

f(x) =
60
(
1 + 10∆2

∗,γ exp{−(1− x/∆∗,γ)
√

∆∗,γ}
)

1− x/∆∗,γ
,

L∗,γ(x) =
∑

3≤k<r
λ∗,kx

k + θ3

( x

∆∗,γ

)3
, r =

{
2 + 1

γ , γ > 0,

∞, γ = 0.
(2.52)

The coefficients λ̃∗,k (expressed by cumulants of Z̃N defined by (1.37)) coin-
cide with the coefficients of the Cramér-Petrov series (Petrov 1975) given by
the formula

λ̃∗,k = −b∗,k−1/k, (2.53)

where the b∗,k are determined successively from the equations

j∑
r=1

1

r!
Γr+1(Z̃N )

∑
j1+...+jr=j, ji≥1

r∏
i=1

b∗,ji =
{ 1, j = 1,

0, j = 2, 3, ... .

In particular,

λ̃∗,2 = −1/2,

λ̃∗,3 = Γ3(Z̃N )/6,
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λ̃∗,4 = (Γ4(Z̃N )− 3Γ 2
3 (Z̃N ))/24,

λ̃∗,5 = (Γ5(Z̃N )− 10Γ3(Z̃N )Γ4(Z̃N ) + 15Γ 3
3 (Z̃N ))/120.

For λ̃∗,k, the estimate

|λ̃∗,k| ≤
2

k

( 16

∆∗

)k−2
((k + 1)!)γ , k = 2, 3, ...

is valid. Therefore,

L∗,γ(x) ≤ x3

2(x+ 8∆∗,γ)
, L∗,γ(−x) ≥ − x3

3∆∗,γ
.

Proof of Theorem 2.1. Theorem 2.1 is proved using Lemma 2.2 and follows
directly from the general Lemma 1.1 on large deviations. Clearly, Z̃N satisfies
S. V. Statulevičius’ condition (Sγ) with the parameter ∆ := ∆∗. Accordingly,
Lemma 1.1 yields the assertion of Theorem 2.1. 2

Theorem 2.2. Under the conditions of Theorem 2.1, the ratios

1− FZ̃N (x)

1− Φ(x)
→ 1,

FZ̃N (−x)

Φ(−x)
→ 1 (2.54)

hold for x ≥ 0,

x =
{ o((DTN,1)((1/2)−ε)ν(γ)) when µ 6= 0,

o((ETN,2)((1/2)−ε)ν(γ)) when µ = 0,
(2.55)

if DTN,1 → ∞ or ETN,2 → ∞ (depending on the case: µ 6= 0 or µ = 0)
when 0 ≤ ε < 1/2. Here ν(γ) = (1 + 2(1 ∨ γ))−1.

Proof of Theorem 2.2. The first part of Theorem 2.2 follows immediately if
we use the definition of L∗,γ(x), γ ≥ 0 by relation (2.52). Next, we shall prove
that L∗,γ(x) → 0 and x/∆∗,γ → 0 as ∆∗ → ∞, where ∆∗ and ∆∗,γ are
defined by (2.25) and (2.50), respectively. We begin by considering the case
where µ 6= 0. Let us recall the definition (2.26) in ∆N . It follows that

∆N =

√
σ2ETN,2 + µ2DTN,1

2(a/ā)2
(

(a/ā)K1|µ|(DTN,1)ε ∨
(
1 ∨ σā/(2a|µ|)

)
aM

)
≥ C1(DTN,1)(1/2)−ε, C1 = ā3/(2a3K1) > 0,
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if (1 ∨ σā/(2a|µ|))aM ≤ (a/ā)K1|µ|(DTN,1)ε, and

∆N =

√
σ2ETN,2 + µ2DTN,1

2(a/ā)2
(

(a/ā)K1|µ|(DTN,1)ε ∨
(
1 ∨ σā/(2|µ|)

)
aM

)
a ≥ C̄1

√
DTN,1, C̄1 = ā2|µ|/

(
2
(
1 ∨ σā/(2a|µ|)

)
a3M

)
> 0,

if (1∨σā/(2a|µ|))aM ≥ (a/ā)K1|µ|(DTN,1)ε. Thus ∆N →∞ as DTN,1 →
∞ when 0 ≤ ε < 1/2. Here M , ETN,2, DTN,1 and K1 are defined, respec-
tively, by (2.1), (2.4), (2.5) and (L), and 0 < a = sup{aj , j = 1, 2, ...} < ∞,
0 < ā = inf{aj , j = 1, 2, ...} <∞.

Taking into account estimate (2.24) and equality (2.53), we obtain that for all
x = o((DTN,1)((1/2)−ε)v), 1− (1 ∨ γ) ≤ 0 with 0 ≤ ε < 1/2,

λ∗,3x
3 =

1

6
Γ3(Z̃N )x3 = o((DTN,1)((1/2)−p)(3v−1))

= o((DTN,1)2v((1/2)−p)(1−(1∨γ))) = o(1)

as DTN,1 → ∞. Here v = v(γ) = (1 + 2(1 ∨ γ))−1, γ ≥ 0. On the other
hand, recalling the definition of ∆∗,γ for γ − (1 ∨ γ) ≤ 0, we have

x

∆∗,γ
= o((DTN,1)((1/2)−ε)(v−1/(1+2γ)))

= o((DTN,1)2v((1/2)−ε)(γ−(1∨γ))/(1+2γ)) = o(1)

as DTN,1 → ∞. Now we turn to the case where µ = 0. By virtue of (2.27),
we obtain

∆N,0 =
σ
√

ETN,2

2(1 ∨K2(ETN,2)ε)((1/2) ∨ a)M

≥ C2(ETN,2)(1/2)−ε, C2 = σ/
(
2K2M((1/2) ∨ a)

)
> 0,

if K2(ETN,2)ε)((1/2) ∨ a)M ≥ 1, and

∆N,0 =
σ
√
ETN,2

2(1 ∨K2(ETN,2)ε)((1/2) ∨ a)M

≥ C̄2

√
ETN,2, C̄2 = σ/

(
2M((1/2) ∨ a)

)
> 0,

if K2(ETN,2)ε)((1/2) ∨ a)M ≤ 1. Hence ∆N,0 → ∞ as ETN,2 → ∞ when
0 ≤ ε < 1/2. Here K2 is defined by (L0). Therefore, it is easily checked that
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in the same way as in the case where µ 6= 0, for all x = o((ETN,2)((1/2)−ε)v)
with 0 ≤ p < 1/2,

λ∗,3x
3 = o((ETN,2)2v((1/2)−ε)(1−(1∨γ))) = o(1) as ETN,2 →∞,

in the case where 1− (1 ∨ γ) ≤ 0, and

x

∆∗,γ
= o((ETN,2)2v((1/2)−ε)(γ−(1∨γ))/(1+2γ)) = o(1) as ETN,2 →∞,

in the case where γ − (1 ∨ γ) ≤ 0.

Finally, depending on the case: µ 6= 0, or µ = 0, for all x ≥ 0 defined by
(2.55), we derive that L∗,γ(x) → 0 as DTN,1 → ∞ or ETN,2 → ∞, when
0 ≤ ε < 1/2. 2

Remark 2.1. It follows from Theorem 2.2 that in the case where γ = 0, the
ratios (2.54) hold for x ≥ 0 such that

x =
{ o((DTN,1)(1/2−ε)/3) when µ 6= 0,

o((ETN,2)(1/2−ε)/3) when µ = 0,

if DTN,1 →∞ or ETN,2 →∞ when 0 ≤ ε < 1/2.

Theorem 2.3. Let X with variance 0 < σ2 < ∞, TN,1 and TN,2 satisfy con-
ditions (B̄γ), (L) and (L0), respectively. Then for all x ≥ 0,

P(±Z̃N ≥ x) ≤ exp
{
− x2

2(21+γ + (x/∆
1/(1+2γ)
∗ ))(1+2γ)/(1+γ)

}
. (2.56)

Proof of Theorem 2.3. The proof of Theorem 2.3 is obtained by virtue of
general Lemma 1.2, where the inequality (1.17) holds with H = 21+γ , ∆ :=
∆∗. 2

Corollary 2.1. Under the conditions of Theorem 2.3, the exponential inequal-
ities

P(±Z̃N ≥ x) ≤
{

exp
{
− x2/8

}
, 0 ≤ x ≤ (2(1+γ)2∆∗)

1/(1+2γ),

exp
{
− (x∆∗)

1/(1+γ)/4
}
, x ≥ (2(1+γ)2∆∗)

1/(1+2γ),

are valid.

Proof of Corollary 2.1. If x ≤ (2(1+γ)2∆∗)
1/(1+2γ), then
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H ≥ (x/∆
1/(1+2γ)
∗ )(1+2γ)/(1+γ), and therefore the right-hand side of the in-

equality in Corollary 2.1 does not exceed exp{−x2/(4 · 21+γ)}. The second
case is obtained analogously. 2

Corollary 2.2. If X with variance 0 < σ2 <∞, TN,1 and TN,2 satisfy condi-
tions (B̄γ), (L) and (L0), respectively, then

sup
x
|FZ̃N (x)− Φ(x)| ≤ 4.4

∆∗,γ
. (2.57)

Proof of Corollary 2.2. Corollary 2.2 follows by Lemma 2.2 and Corollary 3
in (Saulis 1996: 291). As Z̃N defined by (1.37) satisfies S. V. Statulevičius’ con-
dition (Sγ) with the parameter ∆ := ∆∗. Accordingly, Corollary 3 in (Saulis
1996) yields Corollary 2.2. 2

Remark 2.2. Note that it is possible to obtain large deviation theorems for the
sum ZN using only one of the conditions (L) or (L0), under some additional
assumptions. For example, if DTN,1 ≥ ETN,2, then it is enough to use (L0).
And in this case, the ratios (2.54) are valid in both cases: µ 6= 0, or µ = 0, for
x ≥ 0, x = o((ETN,2)((1/2)−ε)ν(γ)), if ETN,2 →∞ when 0 ≤ ε < 1/2. Here
ν(γ) = (1 + 2(1 ∨ γ))−1.

Remark 2.3. Assume N is non-random: N = n ∈ N. Then

TN,r = Tn,r =
n∑
j=1

arj , r ∈ N,

where TN,r is defined by (2.2). Thus in accordance with (2.4) and (2.10), we
have

ETN,r = Tn,r, Γk(Tn,r) = 0, k = 2, 3, ... . (2.58)

Consequently, taking (2.19) and (2.20) into account, we get

EZn = µTn,1, DZn = σ2Tn,2.

Equality (2.30) and condition (2.1) yield

|Γk(Z̃n)| ≤ (k!)1+γ

∆k−2
, ∆ =

√
DZn
aM

, k = 3, 4, ..., (2.59)

where 0 < a = sup{aj , j = 1, 2, ...} <∞, and M is defined by (2.1).
The upper estimate (2.59) coincides with the estimate (15) presented in
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(Saulis 1979: 280) for i. i. d. random variables. In this instance, estimate (15)
holds with the parameters ∆n := ∆, B̄2

n := DZn, and γn := a.
Note that ∆ = C

√
Tn,2, where C = σ/(aM) > 0. Therefore, in consid-

eration of the proof of Theorem 2.2, the ratios (2.54) are valid for x ≥ 0 such
that x = o(T

ν(γ)/2
n,2 ), if Tn,2→∞. Here ν(γ) = (1 + 2(1 ∨ γ))−1, γ ≥ 0.

2.4. Instances of large deviations

The non-negative integer-valued random number N of summands in wei-
ghted compound sum ZN which is defined by (1.36) can obey various prob-
ability laws. Subsection 2.4.1 includes remarks about N obeys the binomial
law, is a Poisson process, or is a mixed Poisson process. Accordingly, defini-
tions and additional notations for the aforementioned processes are listed first.
For these, we mostly followed (Mikosh 2009), however we also refer to (Em-
brechts et al. 1997; Faÿ et al. 2006; Gnedenko and Korolev 1996; Grändell
1997; Pragarauskas 2007; Rolski et al. 2001) and (Bening and Korolev 2002).

Large deviations in the case where aj ≡ 1, j = 1, 2, ..., are considered
in Subsection 2.4.2 where they are compared with the known results for large
deviations for compound sums SN , that are defined by as defined by (1.30), of
i. i. d. random variables. Subsections 2.4.3–2.4.5 consider large deviation the-
orems for the binomial random sums and the most prominent processes, the
compound Poisson and compound mixed Poisson processes. The last subsec-
tion is concerned with the discounted version of large deviations, including
remarks about the cases where N obeys the binomial law, is a compound Pois-
son process, or is a mixed Poisson process.

2.4.1. Definitions and remarks

In stochastic theory a random number of summands N are often assumed
to follow the Poisson law. As noted in (Mikosh 2009), the Poisson process
has very desirable theoretical properties that have been collected for several
decades and a long tradition in applied probability and stochastic process the-
ory. The Poisson process is currently used in actuarial science to count numbers
of claims, although it is perhaps not the most realistic process when it comes
to fitting real-life claim arrival times. Other models for N are modifications of
the Poisson process that yield greater flexibility in one way or an other.

Let us define the Poisson process. We say that a non-negative integer-
valued random variable Y obeys a Poisson distribution with the parameter
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λ > 0
(
Y ∼ P(λ)

)
if

P(Y = s) = e−λ
λs

s!
, s ∈ N0. (2.60)

We suppose that Y = 0 almost surely (a. s.) has a P(0) distribution.

Definition 2.1. A stochastic process N := Nt, t ≥ 0, is said to be a Poisson
process if the following conditions hold:

10 The process starts at zero: N0 = 0 a. s.

20 The process has independent increments: for any tj , j = 0, 1, ..., n,
n ≥ 1, such that 0 = t0 < t1 < ... < tn , the increments Nt1 −
Nt0 , ..., Ntn −Ntn−1 , are mutually independent.

30 There exists a non-decreasing right-continuous function Λ: [0,∞) →
[0,∞) with Λ(0) = 0 such that the increments Nt′ − Nt for 0 ≤ t <

t
′
< ∞ have a Poisson distribution P(Λ(t

′
) − Λ(t)). We call Λ the

mean value function of N .

40 With probability 1, the sample paths Nt(ω), t ≥ 0, of the process N
are right-continuous for t ≥ 0 and have limits from the left for t > 0.
We say that N has cádlág sample paths.

A Poisson random variable Y is determined only by it’s mean value (=vari-
ance): λ = EY = DY, which is a rare property. Hence, in order to deter-
mine the distribution of the Poisson process Nt, it suffices to know it’s mean
value function. If the mean value function is absolutely continuous, i. e., for
any t < t

′
and for some non-negative measurable function λt,

Λ(t
′
)− Λ(t) =

∫ t
′

t
λydy, t < t

′
,

then we say that the Poisson process Nt has the intensity or rate function λt.
In this instance Λ is a continuous function.

For the amazing properties of the Poisson process, we refer the reader to,
e. g., (Bening and Korolev 2002; Mikosh 2009; Pragarauskas 2007).

Definition 2.2. A process with a following linear mean value function Λ(t) =
λt, t ≥ 0, for some λ > 0, is said to be a homogeneous Poisson process, and
otherwise it is an inhomogeneous Poisson process. The quantity λ > 0 is the
intensity or rate of the homogeneous Poisson process.
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A homogeneous Poisson process plays a major role in insurance mathe-
matics (for a detailed discussion see, e. g., Mikosh 2009).

Definition 2.3. A homogeneous Poisson process with λ = 1 is called a stan-
dard homogeneous Poisson process.

The mean value function Λ can be interpreted as operational time or the
inner clock of the Poisson process. If the process Nt is homogeneous, time
evolves linearly: Λ(t

′
)− Λ(t) = Λ(t

′
+ h)− Λ(t+ h) for any h > 0 and 0 =

t < t
′
<∞. If Nt has a non-constant intensity function λt, time "slows down"

or "speeds up" according to the magnitude of λt. In an insurance context, a
non-constant λt may refer to seasonal effects or trends.

A homogeneous Poisson process Nt

10 has cádlág sample paths;

20 starts at zero;

30 has independent and stationary increments, i. e., P(Nt′ − Nt = s) =

P(Nt′+h −Nt+h = s) ∼ P(λ(t
′ − t)), for any 0 ≤ t < t

′
< ∞ and

h > 0 – the Poisson increment parameter only depends on the length
of the interval, not on it’s location;

40 is P(λt) distributed for every t > 0.

A process on [0,∞) with properties 10–30 is called a Lévy process (refer to
Mikosh 2009: 335). The homogeneous Poisson process is one of the prime
examples of a Lévy process with applications in various areas such as queuing
theory, finance, insurance and stochastic networks, to name a few.

Proposition 2.2. Let N be a Poisson process with the mean value function Λ,
and let N

′
be a standard homogeneous Poisson process. Then the following

statements hold:

(1) The process N
′

Λ(t), t ≥ 0, is Poisson with mean value function Λ.

(2) If Λ is continuous and increasing with limt→∞ Λ(t) =∞, then NΛ−1 ,
t ≥ 0, is a standard homogeneous Poisson process.

This result immediately follows from the definition of a Poisson process
and may by verified, for example, by following the proofs of Lemmas 3.1.5,
3.1.6 in (Pragarauskas 2007: 42), or the notations in (Mikosh 2009: 14–15).

Definition 2.4. Let N
′

be a standard homogeneous Poisson process and let
Λ(t), t ≥ 0, be a non-negative, non-decreasing process that is independent
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of the process N
′
. Moreover, assume that Λ(0) = 0 a. s. and Λ(t) < ∞ a. s.

for any t ≥ 0. Then the random process Nt := N
′

Λ(t), t ≥ 0, is called a Cox
process, or a doubly stochastic Poisson process.

In other words, a Cox process is a Poisson process where the mean value
function Λ is random. In an insurance context, Λ is usually defined by the
formula

Λ(t) =

∫ t

0
λydy, t ≥ 0,

where λt is a right-continuous, non-negative, integrable random process. If
λt ≥ c > 0, t ≥ 0, then Λ is continuous and increasing with limt→∞ Λ(t) =
∞ a. s. The Cox process is more appropriately used as a claim arrival process as
unpredictable random environmental factors like catastrophic events should be
based on a specific stochastic process. The doubly stochastic Poisson process
provides flexibility by not only letting the intensity depend on time but also
allowing it to be a random process.

Set t > 0 and suppose that EΛ2(t) < ∞, DΛ(t) > 0. Taking Def-
inition 2.4 and (2.60) into account (for more detail see, e. g., Pragarauskas
2007: 51, or Korolev et al. 2011: 362–363), we have

EN
′

Λ(t) =

∫ ∞
0

EN
′
ydFΛ(t)(y) =

∫ ∞
0

ydFΛ(t)(y) = EΛ(t), (2.61)

EN
′2
Λ(t) =

∫ ∞
0

(y + y2)dFΛ(t)(y) = EΛ(t) + EΛ2(t), (2.62)

and thus

DN
′

Λ(t) = EΛ(t)+DΛ(t) = EN
′

Λ(t)

(
1+DΛ(t)/EΛ(t)

)
> EN

′

Λ(t). (2.63)

The property that DN
′

Λ(t) > EN
′

Λ(t) for any t > 0 with Λ(t) > 0 is called
over-dispersion. This is one of the major differences between the Cox process
and the Poisson process where ENt = DNt.

Now let us consider a special Cox process – a mixed Poisson process.
Such processes have proved useful, for example, in medical statistics, where
every sample path represents the medical history of a particular patient who
has his/her own mean value function.

Definition 2.5. Let N
′

be a standard homogeneous Poisson process and let Λ
be the mean value function of a Poisson process on (0,∞]. Let θ > 0 a. s. be a
(non-degenerate) random variable independent of N

′
. Then the process Nt :=
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N
′

θΛ(t), t ≥ 0, is said to be a mixed Poisson process with mixing variable θ.

For instance, in an insurance context, a mixed Poisson process is intro-
duced as a claim number process if one does not believe in one particular Pois-
son process as generating process for claim arrivals. θ can represent different
factors of influence on an insurance portfolio.

Extensive detailed treatments of mixed Poisson processes and their proper-
ties appear in (Bening and Korolev 2002; Grändell 1997; Korolev et al. 2011).
For the properties that the mixed Poisson process inherits from the Poisson
process and for the properties that it loses, we refer to (Mikosh 2009: 68-69).
For a gentle introduction to point processes and generalized Poisson processes
we refer to (Embrechts et al. 1997). For a rigorous treatment at a moderate level
see, e. g. (Resnick 1992). Various interpretations of considered processes are
available, e. g., in (Bening and Korolev 2002; Embrechts et al. 1997; Faÿ et al.
2006; Grändell 1997; Korolev et al. 2011; Pragarauskas 2007; Resnick 1992;
Rolski et al. 2001).

Remark 2.4. Recall the probability characteristics ETN,1, ETN,2 and DTN,1
that are defined by (2.14) and (2.17) with r = 1, 2:

ETN,1 =

∞∑
j=1

P(N ≥ j)aj , ETN,2 =

∞∑
j=1

P(N ≥ j)a2
j ,

DTN,1 =
∞∑
j=1

(1−P(N ≥ j))P(N ≥ j)a2
j

+ 2
∞∑
j=1

∞∑
n=j+1

(1−P(N ≥ j))P(N ≥ n)ajan,

where the compound variables TN,1, TN,2 are defined by (2.2) with r = 1, 2,
and P(N ≥ j) =

∑∞
s=j qs, 0 < P(N ≥ j) < 1, j = 1, 2, ..., qs = P(N =

s), s ∈ N0.
Suppose that the mean (2.19) and the variance (2.20) of the weighted ran-

dom sum ZN =
∑N

j=1 ajXj , Z0 = 0, 0 < aj < ∞, where a non-negative
integer-valued random index N is independent of the i. i. d., weighted random
variables {X,Xj , j = 1, 2, ...}, as well as, conditions (L) and (L0) for the cu-
mulants of TN,1 and TN,2, respectively, hold with aforementioned probability
characteristics ETN,1, ETN,2 and DTN,1. Then it immediately follows from
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Lemma 2.2 and Theorem 2.2 that in the cases where N obeys the binomial
law, is a compound Poisson process, or is a mixed Poisson process, the up-
per bound of |Γk(Z̃N )|, k = 3, 4, ... defined by (2.24) and, consequently, the
convergence of large deviation ratios to a unit (2.54) are valid with ETN,2 and
DTN,1, where P(N ≥ j), j = 1, 2, ..., defined by (2.15), depends on the law
in question.

Example 2.1. Assume that N := Nt, t ≥ 0, is the most popular Poisson
process – the homogeneous Poisson process with a linear mean value function
Λ(t) = λt, t ≥ 0, for some λ > 0 (see Definition 2.2) and with the distribution

qs = P(Nt = s) = e−λt(λt)s/s!, s ∈ N0, (2.64)

due to (2.60). If Nt, t ≥ 0 is a homogeneous Poisson process, then

P(Nt ≥ j) =
∞∑
s=j

qs = e−λt
∞∑
s=j

(λt)s

s!
= 1−Q(j, λt). (2.65)

Here Q(m,x) = Γ(m,x)/Γ(m) is the regularized Gamma function, and
Γ(m,x) =

∫∞
x e−yym−1dy is the upper incomplete Gamma function. If m

is a positive integer, then Γ(m) = (m − 1)!. Note that when m > 0 is an
integer, Q(m,λ) is the cumulative distribution function for Poisson random
variables. Accordingly, if Y is a Poisson random variable with intensity λ > 0,
then

P (Y < m) =
∑
i<m

e−λ
λi

i!
=

Γ(m,λ)

(m− 1)!
= Q(m,λ).

Example 2.2. Let us consider a special Cox process – the mixed Poisson pro-
cess Nt := N

′

Λ(t), t > 0, where the mean value function Λ(t) is a general ran-
dom process with non-decreasing sample paths, independent of the standard
Poisson process N

′
(see Definitions 2.2–2.5). By a mixed Poisson distribution

with the mixing distribution FΛ(t)(x) = P(Λ(t) < x), we mean (see, e. g.,
Korolev et al. 2011, 2012)

qs = P(Nt = s) =
1

s!

∫ ∞
0

e−xxsdFΛ(t)(x), s ∈ N0, (2.66)

following the Definition 2.5 of the mixed Poisson process.

The most well-known and most widely used mixed Poisson distribution is
the negative binomial distribution that is generated by the mixing Gamma dis-
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tribution. To elaborate, assume that Λ(t) is distributed according to the Gamma
law with the positive parameters (nt, bt) and density function

pΛ(t)(x) =
bntt

Γ (nt)
xnt−1e−btx, x > 0, (2.67)

where Γ (nt) =
∫∞

0 xnt−1e−xdx is Gamma function. Obviously, by virtue of
(2.66) and (2.67),

qs =
Γ (nt + s)

s!Γ (nt)
pnt(1− p)s, p =

bt
1 + bt

, s ∈ N0. (2.68)

Hence, Nt is distributed according to the negative binomial law with the prob-
ability (2.68) and parameters 0 < p < 1, nt > 0. This process is called a
negative binomial or Pólya process and is often used in insurance and other
dynamic population models. If nt is a positive integer, then negative binomial
distribution is called a Pascal distribution and, in case where nt ≡ 1, it is
called a geometric distribution.

The negative binomial process was first used in the form of a mixed Pois-
son distribution by Greenwood and Yule (1920) to model the frequencies of
accidents. Other examples of mixed Poisson process distributions can be found
in, e. g., (Bening and Korolev 2002; Grändell 1997; Korolev et al. 2011).

According to (2.68),

P(Nt ≥ j) =

∞∑
s=0

Γ(nt + s+ j)

(j + s)!Γ(nt)
pnt(1− p)s+j =

Γ(nt + j)

j!Γ(nt)

bntt
(1 + bt)nt+j

· 2F1

(
1, nt + j; j + 1; 1/(1 + bt)

)
, (2.69)

where

2F1(b; c; d; z) =
∞∑
k=0

zk

k!

bk̄ck̄

dk̄

is the hypergeometric function known as the Gaussian function. Here xk̄ is
used for the rising factorial

xk̄ = x(x+ 1)(x+ 2)(x+ k − 1) = Γ(x+ k)/Γ(x).

If N := Np is distributed according to the geometric law with qs = p(1− p)s
and 0 < p < 1, s ∈ N0, namely, nt ≡ 1, then P(Np ≥ j) = 1/(1 + bt)

j as a
consequence of (2.69).
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Example 2.3. Suppose that N := Nn, n ∈ N0, is distributed according to the
binomial law with

qs = Csnp̄
s(1− p̄)n−s, Csn =

n!

s!(n− s)!
, 0 < p̄ < 1, s ∈ N0. (2.70)

In this instance,

P(Nn ≥ j) = Cjn 2F1

(
1, j − n; j + 1; p̄/(1− p̄)

)
p̄j(1− p̄)n−j . (2.71)

Remark 2.5. Based on Remark 2.4, together with (2.65), (2.69), and (2.71),
the convergence of the large deviation ratios to a unit (2.54) depends on the
parameters (nt , bt, n and p) of the process or probability law considered in
Examples 2.1–2.3.

To clarify the assertion in Remark 2.5, let us consider some instances of
large deviations for the distribution of weighted random sum ZN when aj ≡ 1
or aj ≡ vj , where 0 < v < 1 and j = 1, 2, ... .

2.4.2. Large deviations in summations without weights

Let us suppose that the non-negative bounded weights aj , j = 1, 2, 3, ...,
are equal to one. That is, let us consider the sum

SN =
N∑
j=1

Xj , S0 = 0,

of a r. n. s. of i. i. d. random variables {X,Xj , j = 1, 2, ...} with the mean,
variance, and distribution function

µ = EX, 0 < σ2 = DX <∞, FX(x) = P(X < x), x ∈ R.

Recall that the non-negative integer-valued random variable N with

α = EN, β2 = DN, P(N = s) = qs, s ∈ N0,

is independent of {X, Xj , j = 1, 2, ...}. If aj ≡ 1, then we can rewrite (2.4)–
(2.6) (see Section 2.1: 35) as follows:

ETN,r = α, DTN,r = EN2 − α2 = β2,
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where ET 2
N,r = EN2, given TN,r = N and Ts,r = s, r ∈ N0. Here TN,r and

Ts,r are defined by (2.2) and (2.3), respectively. Hence, it follows from (2.19)
–(2.21) that

ESN = µα, DSN = σ2α+ µ2β2, (2.72)

and

FSN (x) = q0 +

∞∑
s=1

qsF
∗s
X (x), x > 0,

where F ∗sX (x) is the s-fold convolution of the distribution function FX(x) of
the random variable X with itself. For more details about the probability char-
acteristics of SN see, e. g., (Korolev et al. 2011).

A suitable bound for the kth-order cumulants, k = 3, 4, ..., of

S̃N =
SN −ESN√

DSN
, DSN > 0,

follows from Lemma 2.2 on the upper estimate for the kth-order cumulants,
k = 3, 4, ..., of Z̃N in the case where aj ≡ 1. Here Z̃N is defined by (1.37).

Corollary 2.3. Assume that the random variable X with variance 0 < σ2 <
∞ fulfills condition (B̄γ). Also assume that the non-negative integer-valued
random variable N satisfies conditions (1.35) and (1.33). Then

|Γk(S̃N )| ≤ (k!)1+γ

∆k−2
∗

, k = 3, 4, ..., (2.73)

where ∆∗ is defined by (2.25) with

∆N =
√
DSN/LN , LN = 2

(
K1|µ|β2ε ∨

(
1 ∨ σ/(2|µ|)

)
M
)

(2.74)

when µ 6= 0, and

∆N,0 =
√

DSN/LN,0, LN,0 = 2(1 ∨K2α
ε)M (2.75)

when µ = 0. Here DSN and M > 0 are defined by (2.72) and (2.1), respec-
tively, and in the case where µ = 0 holds with σ2 = EX2.

Thanks to the accurate upper bounds (2.73) for the kth-order cumulants of
the standardized sum (1.34), we may conclude that the assertions of the fol-
lowing Corollaries 2.4, 2.5 follow directly from Theorems 2.1–2.3 and Corol-
lary 2.2 (see Section 2.3).
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Corollary 2.4. If the random variables X and N satisfy the conditions (B̄γ)
and (1.35), (1.33), respectively, then the large deviation equalities (2.51), ex-
ponential inequality (2.56), and absolute error estimate (2.57) are valid with
Z̃N := S̃N and ∆∗, respectively, defined by (1.34) and (2.25) with (2.74) and
(2.75).

Corollary 2.5. Under the conditions of Corollary 2.4, the ratios

1− FS̃N (x)

1− Φ(x)
→ 1,

FS̃N (−x)

Φ(−x)
→ 1 (2.76)

hold for x ≥ 0,

x =
{ o((β(1−2ε)ν(γ)) as µ 6= 0,

o((α((1/2)−ε)ν(γ)) as µ = 0,

if β → ∞ or α → ∞ (depending on the case: µ 6= 0 or µ = 0) when
0 ≤ ε < 1/2. Here ν(γ) = (1 + 2(1 ∨ γ))−1, γ ≥ 0.

Large deviation theorems in the Cramér zone for the sum SN under con-
ditions (1.35) and (1.33) and when the cumulant method is used have been
investigated by (Statulevičius 1967; Saulis and Deltuvienė 2007). Corollaries
2.4, 2.5 in the case where µ 6= 0 and γ = 0 coincide with the results obtained
in the paper (Saulis and Deltuvienė 2007). For more details, see in Section 1.2:
21, where an overview of large deviations for distributions of random sums is
given.

Remark 2.6. Assume that the number of summands in the sum SN is non-
random, i. e., N = n ∈ N. Then from (1.29) and (2.58) in the case where
aj ≡ 1, we have α = n and Γm(N) = 0, m = 2, 3, ... . Thus,

ESn = nµ, DSn = nσ2

as a consequence of (2.72). Then, taking (2.32) with TN,2 = N and (2.1) into
account, we arrive at

|Γk(S̃n)| ≤ (k!)1+γ

∆k−2
, ∆ =

√
DSn
M

, k = 3, 4, ... .

It is clear that ∆ = C
√
n, C = σ/M > 0. Obviously, it follows from Corol-

lary 2.5 that the convergence of ratios to a unite (2.76) is valid for x ≥ 0,
x = o(nν(γ)/2), if n→∞.
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2.4.3. Large deviation theorems for compound Poisson
processes

In the continuous dynamic models of an insurance stock,

Rt = R0 + Pt − SNt , t ≥ 0,

can express the surplus Rt at time t (see, e. g., Pragarauskas 2007). Here R0 is
the initial reserve and Pt is the total premium received up to time t. That is the
company sells insurance policies and receives a premium according to Pt. The
sum

SNt =

Nt∑
j=1

Xj , S0 = 0, (2.77)

is the total claim amount process in the time interval [0, t]. In this example,
Xj , j = 1, 2, ..., denotes the jth claim, and N := Nt is the number of claims
by time t.

SNt shares various properties with the partial sum process. For example,
asymptotic properties such as the central limit theorem and the strong law of
large numbers are analogous for the two processes (for more detail, see Mikosh
2009).

Assume that N := Nt, t ≥ 0, is the most popular Poisson process the
homogeneous Poisson process with the linear mean value function Λ(t) = λt,
t ≥ 0, for some λ > 0, and the distribution (2.64) (see Example 2.1). In
addition,

αt = ENt = λt, β2
t = DNt = λt, (2.78)

by virtue of properties of the Poisson process. If N := Nt is a homogeneous
Poisson process, then SNt is a compound Poisson process with the mean and
variance

ESNt = µλt, DSNt = λt(σ2 + µ2), (2.79)

as a consequence of (2.72) and (2.78).
Central limit problems for Poisson random sums have been addressed, for

example, in Bening et al. (1997); Korolev and Shevtsova (2012); Nefedova
and Shevtsova (2011); Sunklodas (2009), also see the books (Embrechts et al.
1997; Gnedenko and Korolev 1996; Korolev et al. 2011; Mikosh 2009) and
references therein. Exponential inequalities, probabilities of large deviations
for compound Poisson sums under different assumptions are available, e. g., in
(Bening and Korolev 2002; Bonin 2003; Embrechts et al. 1985; Michel 1993;
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Mita 1997; Shorgin 1998). The tail behavior of random sums under heavy-
tailed distributions with applications in mathematical finance and insurance,
such as ruin probability in the Cramér–Lundberg model (see, e. g., Mikosh
2009: 12) of risk theory, applications in queueing, random walk, generalized
renewal theory, where compound Poisson sums appear can be found, for ex-
ample, in (Embrechts et al. 1997; Faÿ et al. 2006; Resnick 1992; Robert and
Segers 2008; Rolski et al. 2001; Tang et al. 2001).

Recall that the papers (Kasparavičiūtė and Saulis 2013, 2011a), have exam-
ined large deviation theorems for the distribution of the standardized weighted
compound sum (1.37) in both the Cramér and the power Linnik zones in case
where the cumulant method is used. These papers also discuss the instances of
large deviations for the distribution of compound Poisson process.

According to (2.64),

fSNt (u) = EeiuSNt =
∞∑
s=0

qsf
s
X(u) = e−λt(1−fX(u)), u ∈ R, (2.80)

where fX(u) is the characteristic function (1.2) of the random variable X .
Hence, it follows from (2.79) and (2.80) that

fS̃Nt
(u) = exp

{
λt

(
fX

( u√
DSNt

)
− 1− iµ u√

DSNt

)}
= fλtSN1

−µ

( u√
DSNt

)
, (2.81)

where
S̃Nt =

SNt −ESNt√
DSNt

, DSNt > 0, (2.82)

is the standardized compound Poisson process. Moreover,

fSN1
−µ

( u√
DSNt

)
= exp

{
fX

( u√
DSNt

)
− 1− iµ u√

DSNt

}
is the characteristic function of the random variable SN1 −µ =

∑N1
j=1Xj −µ,

with N1 a Poisson random variable with the parameter 1. E(SN1 −µ) = 0 and
D(SN1 − µ) = EX2. As the papers (Bening et al. 1997; Korolev and Zhukov
2000) have discussed, the representation (2.81) shows that the asymptotic be-
havior of (2.81) as λt → ∞ is similar to that of the characteristic function of
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the random variable
1√

λt(σ2 + µ2)

n∑
j=1

Xj

as n � λt → ∞ (we write u(x) � v(x) for real functions u(x) and v(x)
if u(x) = O(v(x)) and v(x) = O(u(x))), where the Xj are independent
random variables The asymptotic properties of Poisson random sums are to a
great extent similar to the corresponding properties of sums of the same ran-
dom variables with a non-random number of summands (see, for example,
Gnedenko and Kolmogorov 1954). To confirm these words, it suffices to recall
the method of accompanying infinitely divisible distributions (see, e. g., Gne-
denko and Korolev 1996). However, this analogy is not absolutely continuous
as, for example, the distribution function

FSNt (x) = e−λtF0(x) +
∞∑
s=1

qsF
∗s
X (x), x ∈ R, (2.83)

of the compound Poisson process is not absolutely continuous for all x ∈ R
because of the presence of an atom at zero. Here F ∗sX (x) is the s-fold convolu-
tion of the distribution function FX(x) of the random variable X with itself,
and F0(x) is the distribution function with a single unit jump at zero.

Proposition 2.3. If the random variable X with 0 < σ2 < ∞ satisfies condi-
tion (B̄γ) and Nt, t ≥ 0, is the homogeneous Poisson process with the proba-
bility (2.64), then

|Γk(S̃Nt)| ≤
(k!)1+γ

∆k−2
t

, ∆t =

√
λt(σ2 + µ2)

K
, K > 0, k = 3, 4, ... . (2.84)

Proof of Proposition 2.3. (2.80) and (1.5) gives us

Γk(SNt) =
dk

ikduk
ln fSNt (u)

∣∣∣
u=0

= λtEXk, k = 1, 2, ... . (2.85)

Based on (B̄γ), for the kth-order moments EXk of the random variableX with
0 < σ2 <∞ we use the following condition

|EXk| ≤ (k!)1+γKk−2EX2, k = 3, 4, ... .

Therefore, Γk(S̃Nt) = Γk(SNt)/(DSNt)
k/2, k = 2, 3, ..., yield (2.84). Here

DSNt is defined by (2.79). 2
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Remark 2.7. Clearly,

Γk(Nt) =
dk

ikduk
ln fNt(u)

∣∣∣
u=0

= λt, k = 1, 2, ...,

as according to (2.64), the characteristic function of the homogeneous Poisson
process is fNt(u) = exp{−λt(1 − exp{iu})}. Therefore, we can assert that
conditions (1.33) and (1.35) hold with ε = 0 and K1 = K2 = 1. So the use
of Proposition 2.3 immediately gives that the upper bound of Γk(SNt) satisfies
inequality (2.73) with N := Nt being the homogeneous Poisson process and
with ∆∗ := ∆∗,t which would be defined by (2.25), and in this instant holds
with

∆Nt =
√
λt(σ2 + µ2)/L1, L1 = 2

(
|µ| ∨

(
1 ∨ σ/(2|µ|)

)
M
)

as µ 6= 0,

∆Nt,0 = σ
√
λt/L2, L2 = 2M as µ = 0.

Here M = 2(K ∨ σ).

We note that the upper estimate (2.84) for the kth-order cumulants of the stan-
dardized Poisson process (2.82) is more accurate then the one mentioned in
Remark 2.7.

Corollary 2.6. If the random variable X with variance 0 < σ2 < ∞ satisfies
condition (B̄γ) and Nt, t ≥ 0, is a homogeneous Poisson process, then the
large deviation equalities (2.51), exponential inequality (2.56), and absolute
error estimate (2.57) are valid with S̃N := S̃Nt and ∆∗ := ∆t, where S̃Nt and
∆t are defined, respectively, by (2.82) and (2.84).

Corollary 2.7. Under the conditions of Corollary 2.6, the ratios

1− FS̃Nt (x)

1− Φ(x)
→ 1,

FS̃Nt
(−x)

Φ(−x)
→ 1

hold in both cases: when µ 6= 0 and when µ = 0, for x ≥ 0, x = o(tν(γ)/2), if
t→∞. Here ν(γ) = (1 + 2(1 ∨ γ))−1, γ ≥ 0.

The assertions of Corollary 2.6 follow directly from Proposition 2.3 and
Corollary 2.4. The proof of Corollary 2.7 comes from the proof of Theo-
rem 2.2 in the instance where aj ≡ 1, j = 1, 2, ... and N := Nt, t ≥ 0,
is a homogeneous Poisson process. Following the proof of Theorem 2.2 with
S̃N := S̃Nt and ∆∗ := ∆t, it is obvious that is enough to show that ∆t → ∞
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as t→∞, where ∆t is defined by (2.84). In fact, we have ∆t ≥ Ct1/2, where
C =

√
λ(µ2 + σ2)/K > 0. Thus, ∆t →∞ as t→∞.

Remark 2.8. Thanks to Proposition 2.3, application of Corollary 2.2 imme-
diately leads us to conclude that in cases where aj ≡ 1, j = 1, 2, ..., and
N := Nt is a homogeneous Poisson process, the upper estimate of the normal
approximation to the distribution of S̃Nt in the Cramér zone (γ = 0) is

sup
x
|FS̃Nt (x)− Φ(x)| ≤ 4.4K√

(µ2 + σ2)λt
.

Note that the absolute constant 4.4 in this upper bound may be sharpened.
Indeed, Korolev and Shevtsova (2012) presented sharpened upper bounds for
the absolute constant in the Berry-Esseen inequality for Poisson and mixed
Poisson random sums. (Korolev and Shevtsova 2012: 97) proved the following
theorem for the case where N := Nλ is a Poisson random variable with rate
λ > 0:

Theorem 2.4. (Korolev and Shevtsova 2012) Under β3 = E|X|3 <∞ for any
λ > 0, the following inequality holds:

sup
x
|FS̃Nλ (x)− Φ(x)| ≤ 0.3041β3

(µ2 + σ2)3/2
√
λ
.

See this paper also for a references on a rather interesting history of the
so-called Berry-Essen inequality and for the problem of establishing the best
value of the absolute constant in it.

According to Theorem 2.4 and condition (B0),

sup
x
|FS̃Nt (x)− Φ(x)| ≤ 0.9123K√

(µ2 + σ2)λt
, K, σ, λ > 0, t ≥ 0.

2.4.4. Large deviation theorems for compound mixed
Poisson processes

Suppose that Nt := N
′

Λ(t), t > 0, is a mixed Poisson process with the
distribution defined by (2.66) (see Example 2.2). Here the mean value function
Λ(t) is a general random process with non-decreasing sample paths, indepen-
dent of the standard Poisson process N

′
(see Definition 2.3). Let as recall that

the most well-known and most widely used mixed Poisson distribution is the
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negative binomial distribution with the following probability and parameters
0 < p < 1, nt > 0:

qs =
Γ (nt + s)

s!Γ (nt)
pnt(1− p)s, p =

bt
1 + bt

, s ∈ N0.

In this case, Λ(t) is distributed according to the Gamma law with positive
parameters (nt, bt) and the density function defined by (2.67). Thus,

αt = EΛ(t) = nt/bt, β̂2
t = DΛ(t) = nt/b

2
t . (2.86)

As previously mentioned, Nt is called a negative binomial or Pólya process
and is often used in insurance and other dynamic population models. If nt
is a positive integer, then the negative binomial distribution is called Pascal
distribution, and in the case where nt = 1 it is called a geometric distribution.
According to (2.86) and (2.61)–(2.63),

ENt = αt, β2
t = DNt = αt + β̂2

t = αt(1 + αt/nt) > αt. (2.87)

A complete list of references for work on the bounds of the tails of compound
Cox or mixed Poisson processes, and compound negative binomial distribu-
tions would be overly long, and to the best of our knowledge there are no
papers on normal approximation taking into account large deviations for the
aforementioned compound distributions when the cumulant method is used.
Thus, without elaborating, we refer, e. g., to (Bening and Korolev 2002; Cai
and Garrido 2000; Embrechts et al. 1985; Frolov 2009; Gordon and Xiaodong
1997; Grändell 1997; Kong and Shen 2009) and the references therein.

Let us consider the compound mixed Poisson process SNt denoted by
(2.77) with Nt being a mixed Poisson process for each t > 0, independent
of the i. i. d. random variables {X, Xj , j = 1, 2, ...} and with the mean, vari-
ance, and distribution function that are denoted by (1.4). Based on (2.72) and
(2.87),

ESNt = µαt, DSNt = β̂2
t µ

2 + αt(σ
2 + µ2), (2.88)

where αt and β̂2
t are defined by (2.86). Our aim is to consider large deviations

in both the Cramér and the power Linnik zones for the distribution of S̃Nt that
is denoted by (2.82), with Nt being a mixed Poisson process.

Recall that for this purpose, the upper estimates for the kth-order cumu-
lants of Nt are first required.

Proposition 2.4. Assume that Λ(t) > 0, t > 0, is distributed according to
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the Gamma law (2.67) with the parameters nt > 0, 0 < bt ≤ 1. Then for
the kth-order cumulants of the mixed Poisson process Nt, the upper estimate
holds:

Γk(Nt) ≤ (k − 1)!
nt
2

( 2

bt

)k
, k = 1, 2, ... . (2.89)

Proof of Proposition 2.4. Pursuant to (2.67), the characteristic function for
Λ(t) is

fΛ(t)(u) = EeiuΛ(t) = (1− iu/bt)−nt , u ∈ R. (2.90)

From this, the definition (1.5) of the kth-order cumulants leads to

Γk(Λ(t)) =
1

ik
dk

duk
ln fΛ(t)(u)

∣∣∣
u=0

= (k − 1)!nt/b
k
t , k = 1, 2, ... . (2.91)

Further, in view of (2.68) together with (2.90),

fNt(u) = EeiuNt =
( p

(1− (1− p)eiu)

)nt
= fΛ(t)

(1

i
ln fN1(u)

)
, (2.92)

where 0 < p < 1 is defined by (2.68), and N1 is distributed according to the
Poisson law with the unit parameter. It is clear that fN1(u) = exp{exp{iu} −
1}, by (2.60). Consequently, Γk(N1) = 1, k = 1, 2, ... . Thus based on Lemma
2.1, using (1.5) together with (2.92), we have that the upper estimate for the
kth-order cumulants of the mixed Poisson process Nt is

Γk(Nt) = k!
∑∗

1

Γm(Λ(t))

m1! · ... ·mk!

k∏
j=1

( 1

j!

)mj
=

k−1∑
l=0

c
(k)
k−lΓk−l(Λ(t)), k = 1, 2, ... . (2.93)

where
∑∗

1 is the summation over all the non-negative integer solutions 0 ≤
m1, ...,mk ≤ k of the equation (2.9), m1 + ... + mk = m, and 1 ≤ m ≤ k.
The integers c(k)

j ≥ 1, j = 1, 2, ..., k, are Stirling numbers of the second kind
that may be determined, e. g., from

c
(k)
k−l = k!

∑∗∗

1

1

m1! · ... ·mk!

k∏
j=1

( 1

j!

)mj
, l = 0, 1, ..., k − 1, (2.94)

where
∑∗∗

1 is the same summation as
∑∗

1 but choosing m = k − l, 0 ≤ l ≤
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k − 1. For instance,

c
(k)
1 = c

(k)
k = 1, k = 1, 2, ...,

c
(k)
k−1 = k(k − 1)/2, c

(k)
2 = 2k−1 − 1, k = 2, 3, ... .

Substituting (2.91) into (2.93) and by noting that (1/bt)
k−l ≤ (1/bt)

k as bt ≤
1, 0 ≤ l ≤ k − 1, k = 1, 2, ..., leads to (2.89), since

k−1∑
l=0

c
(k)
k−l(k − l − 1)! ≤ (k − 1)!2k−1, k = 1, 2, ... . (2.95)

2

Proposition 2.5. If the random variable X with variance 0 < σ2 <∞ fulfills
condition (B̄γ) and the mixed Poisson process Nt, t > 0 with the probability
(2.68) satisfies condition (2.89), then

|Γk(S̃Nt)| ≤
(k!)1+γ

∆k−2
∗,t

, ∆∗,t =
bt
√
DSNt
Lj

, j = 1, 2, k = 3, 4, ... (2.96)

when 0 < bt ≤ 1. Here

L1 = 2
(

2|µ| ∨
(

1 ∨ σ

2|µ|

)
M
)

when µ 6= 0, L2 = 2M when µ = 0, (2.97)

where DSNt andM > 0 are defined, respectively, by (2.88) and (2.1). In case
where µ = 0, DSNt and M stand with σ2 = EX2.

Proof of Proposition 2.5. First let us consider the case where µ 6= 0. Based
on (2.32) in the instance when TN,2 := Nt together with (2.1) and (2.89), we
have

|Γk(SNt)| ≤ (k!)1+γMk−2αtσ
2 + k!nt

∑∗

2

(m̃− 1)!

m1!·...·mk−1!

2m̃−1

bm̃t

· |µ|m1

k−1∏
j=2

((j!)γM j−2σ2)mj , k = 2, 3, ..., (2.98)

where
∑∗

2 is the summation over all the non-negative integer solutions 0 ≤
m1, ...,mk−1 ≤ k of the equation (2.35) with m1 + ...+mk−1 = m̃, and 2 ≤
m̃ ≤ k. Clearly, nt/bm̃t = β̂2

t /b
m̃−2
t < β2

t /b
m̃−2
t as β2

t > β̂2
t . Here β̂t

2
and β2

t
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are defined, respectively, by (2.86) and (2.87). Consequently, recalling (2.39)–
(2.41) with a = sup{aj , j = 1, 2, ...} ≡ 1 and ā = inf{aj , j = 1, 2, ...} ≡ 1,
we arrive at the estimate of (2.98):

|Γk(SNt)| ≤ (k!)1+γDSNt(L1/bt)
k−2, k = 2, 3, ..., (2.99)

since 0 < bt ≤ 1. Here DSNt and L1 are defined by (2.88) and (2.97), respec-
tively.

Now let us consider the case where µ = 0, supposing that 00 = 1. Taking into
consideration (2.32) (in the instance when TN,2 := Nt) along with (2.1) and
(2.89) gives us

|Γk(SNt)| ≤ k!αt
∑∗

3

(m̄− 1)!

m2! · ... ·mk!

( 2

bt

)m̄−1

·
k∏
j=2

((j!)γσ2M j−2)mj , k = 2, 3, ..., (2.100)

where αt is denoted by (2.87), and
∑∗

3 is the summation over all the non-
negative integer solutions 0 ≤ m2, ...,mk ≤ k of the equation (2.45), where
m2 + ... + mk = m̄ and 1 ≤ m̄ ≤ k. The inequality (2.100) together with
(2.47) and (2.48) (in the instance where a ≡ 1) ensures that

|Γk(SNt)| ≤ (k!)1+γDSNt(L2/bt)
k−2, k = 2, 3, ... (2.101)

when 0 < bt ≤ 1 and σ ≤ M/2. Here DSNt and M > 0 stand with
µ = 0, and L2 is defined by (2.97). Consequently, the inequality Γk(S̃Nt) =
Γk(SNt)/(DSNt)

k/2, k = 2, 3, ..., together with (2.99) and (2.101) leads to
(2.96). 2

Since the kth-order upper estimates of |Γk(S̃Nt)| have been derived, ap-
plying Corollary 2.4 immediately confirms the assertion of Corollary 2.8.

Corollary 2.8. If the random variable X with variance 0 < σ2 < ∞ satis-
fies condition (B̄γ) and mixed Poisson process Nt, t > 0, with the probability
(2.68) fulfills condition (2.89), then the large deviation equalities (2.51), ex-
ponential inequality (2.56), and absolute error estimate (2.57) are valid with
S̃N := S̃Nt , ∆∗ := ∆∗,t, where S̃Nt is defined by (2.82) withNt being a mixed
Poisson process, and ∆∗,t is defined by (2.96).

Assume that ntbt →∞ as t→∞.
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Corollary 2.9. Under the conditions of Corollary 2.8, the ratios

1− FS̃Nt (x)

1− Φ(x)
→ 1,

FS̃Nt
(−x)

Φ(−x)
→ 1 (2.102)

hold in both cases: µ 6= 0 and µ = 0, for x ≥ 0, x = o((ntbt)
ν(γ)/2) as

ntbt →∞ as t→∞. Here ν(γ) = (1 + 2(1 ∨ γ))−1, γ ≥ 0.

The assertion of Corollary 2.9 is derived from the proof of Theorem 2.2,
in the instance where aj ≡ 1, j = 1, 2, ... and N := Nt, t > 0, is a mixed
Poisson process with the probability (2.68).
Really, examining the proof of Theorem 2.2 with ZN := SNt and ∆∗ := ∆∗,t,
and letting ε ≡ 1, it is obvious that is enough to show that ∆∗,t → ∞ as
ntbt →∞, where ∆∗,t is defined by (2.96).
Recalling the definitions of DSNt and ∆∗,t, by (2.88) and (2.96), respectively,
and noting that β2

t ≥ 2αt as β̂2
t ≥ αt and 0 < bt ≤ 1, we have ∆N∗,t =√

DSNt/Lj ≥ Cj(ntbt)
1/2, j = 1, 2, where C1 =

√
2µ2 + σ2/L1 >

0, C2 = σ/L2 > 0. Thus, supposing that ntbt → ∞ as t → ∞, we have
that in this instance ∆∗,t →∞.

Note that it follows, from Corollary 2.9 that whether ratios (2.102) hold
depends on the parameters nt > 0 and bt > 0 of Gamma distribution (2.67).

Now we will consider some instances. In order to follow Corollary 2.3
directly, we should derive conditions for the kth-order cumulants of the mixed
Poisson process, that are similar to (1.33) and (1.35). The relations (2.103) and
(2.105) described in the following remark can be used for this purpose.

Remark 2.9. Assume that the mean value function Λ(t), t > 0, is distributed
according to the Gamma law (2.67) with the parameters nt > 0 and 0 < bt ≤ 1
related by

nt :=
( n

b
2(1−ε̄)
t

)1/ε̄
, n ∈ N, 0 < ε̄ ≤ 1, (2.103)

then

Γk(Nt) ≤ 2(k − 1)!
( 2√

n

)k−2
(β2
t )1+ε̄(k−2)/2, k = 2, 3, ... . (2.104)

If the parameters nt > 0, 0 < bt ≤ 1 are related by

nt :=
( n

b1−εt

)1/ε
, n ∈ N, 0 < ε ≤ 1, (2.105)
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then

Γk(Nt) ≤ (k − 1)!
( 2

n

)k−1
α

1+ε(k−1)
t , k = 1, 2, ... . (2.106)

Indeed, by virtue of β̂2
t as defined by (2.86), we can rewrite condition

(2.89) in the following way:

Γk(Nt) ≤ 2(k − 1)!(2/
√
nt)

k−2(β̂2
t )1+(k−2)/2, k = 1, 2, ... . (2.107)

Since relation (2.103) holds,

β̂t/
√
nt = 1/bt = β̂ ε̄t/

√
n, n ∈ N, 0 < ε̄ ≤ 1, (2.108)

αt = (n/b2−ε̄t )1/ε̄, β̂2
t = (n/b2t )

1/ε̄, β2
t = β̂2

t

(
1 +
√
n/β̂ ε̄t ). (2.109)

Consequently, (2.107) and (2.108), noting that β̂2
t < β2

t , lead to (2.104).
The second part of Remark 2.9 follows in a similar way. Let us rewrite

condition (2.89) as follows:

Γk(Nt) ≤ (k − 1)!(2/nt)
k−1α

1+(k−1)
t , k = 1, 2, ... (2.110)

using αt which is defined by (2.86). Since relation (2.105) holds, we have

αt/nt = 1/bt = αεt/n, n ∈ N, 0 < ε ≤ 1, (2.111)

αt = (n/bt)
1/ε, β̂2

t = (n/b1+ε
t )1/ε, β2

t = αt
(
1 + αεt/n

)
. (2.112)

To complete the proof of (2.106), it suffices to use (2.110) and (2.111).

Remark 2.10. It follows from (2.104) and (2.106) that Nt, t > 0 satisfies con-
dition (1.35) with K1 := 2/

√
n and ε := ε̄/2 such that 0 < ε̄ ≤ 1, and it

also satisfies condition (1.33) with K2 := 2/n and 0 < ε ≤ 1, n ∈ N. Thus,
clearly, applying Corollary 2.3 directly shows that the majorating upper esti-
mate for the kth-order cumulants of a standardized compound mixed Poisson
process S̃Nt satisfies inequality (2.73) with N := Nt, where ∆∗ is defined by
(2.25) with

∆Nt =

√
DSNt
LNt

, LNt = 2
(

2|µ| β
ε̄
t√
n
∨
(

1 ∨ σ

2|µ|

)
M
)

as µ 6= 0, (2.113)

∆Nt,0 =

√
DSNt
LNt,0

, L̄Nt,0 =
2αεt
nM

as µ = 0. (2.114)
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Here DSNt , β
ε̄
t , and αεt are defined by (2.88), (2.109), and (2.112), respec-

tively, and 0 < ε̄ ≤ 1, 0 < ε ≤ 1, and M > 0 are defined by conditions
(2.103), (2.105), and (2.1), respectively. In the case where µ = 0, DSNt and
M stand with σ2 = EX2.

Obviously, to obtain accurate upper estimates for |Γk(S̃Nt)|, k = 3, 4, ...,
in both cases: when µ 6= 0 and when µ = 0, it is enough to use one of the
conditions (2.104) or (2.106).

Remark 2.11. In accordance with the previous remarks, it is clear, based on
the proof of Corollary 2.9 and assuming that condition (2.104) or (2.106) holds
and n ∈ N is fixed, the convergence of large deviation ratios to a unit (2.102)
would be valid in both: when µ 6= 0 and when µ = 0, for x ≥ 0: x =
o((1/bt)

ν(γ)(1−2ε)/(2ε)) with 0 < ε < 1/2 in the case where relation (2.105)
holds, and for x = o((1/bt)

ν(γ)(2−3ε)/(2ε)) with 0 < ε̄ < 2/3 in the case where
relation (2.103) holds, as bt → 0. Here ν(γ) = (1 + 2(1 ∨ γ))−1, γ ≥ 0.

Example 2.4. Assume that bt = 1/t ≤ 1. Then, by (2.105), (2.111), and
(2.112),

nt = (nt1−ε)1/ε, αt = (nt)1/ε, β̂2
t = (nt1+ε)1/ε.

And according to (2.103), (2.108), and (2.109),

nt = (nt2(1−ε̄))1/ε̄, αt = (nt2−ε̄)1/ε̄, β̂2
t = (nt2)1/ε̄.

Obviously, based on Remark 2.11, the convergence of ratios to a unit (2.102)
will hold as t→∞.

Remark 2.12. If bt = 1/t ≤ 1, ε = ε̄ = 1, then according to both relations:
(2.105) and (2.103), gives the same result

nt = n, αt = nt, β̂2
t = nt2, β2

t = nt2(1 + t−1). (2.115)

Obviously, in this instance, due to Remark 2.11, the convergence of ratios to
a unit (2.102) are not valid in the case where t → ∞. However, if we would
suppose that t is fixed, and nt = n → ∞, then according to Propositions 2.4,
2.5 and the proof of Corollary 2.9, we can immediately derive that (2.102) hold
for x ≥ 0 such that x = o(nν(γ)/2) as n→∞.

Let us note that the aforementioned assertion also can be verified by us-
ing directly the Corollary 2.3. For that it is enough to observe that conditions
(1.35), (1.33) hold with K1 = K2 = 2t and ε = 0 in instance where nt = n,
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as (2.89) can be rewritten in the following ways:

Γk(Nn) ≤ (k − 1)!2k−1ntk = (k − 1)!(2t)k−1αn, k = 1, 2, ...,

on the other hand,

Γk(Nn) ≤ (k − 1)!2k−1ntk = 2(k − 1)!(2t)k−2β̂2
n, k = 1, 2, ...

when t ≥ 1. Here Nt := Nn is mixed Poisson process with the parameters
bt = 1/t, nt = n, where t is fixed. αt := αn and β̂2

t := β̂2
n are defined by

(2.115).

2.4.5. Large deviation theorems for random binomial sums

Let us consider the random sum (1.30) assuming that N := Nn, n ∈ N0,
is distributed according to the binomial law, with the probability

qs = Csnp̄
s(1− p̄)n−s, Csn =

n!

s!(n− s)!
, 0 < p̄ < 1, s ∈ N0.

In addition,
α = np̄, β2 = np̄(1− p̄). (2.116)

Let us recall thatNn is independent of the i. i. d. random variables {X,Xj , j =
1, 2, ...}. Thus, according to (2.72) and (2.116), we have

ESNn = µnp̄, DSNn = np̄(σ2 + µ2(1− p̄)). (2.117)

Proposition 2.6. Assume that Nn is distributed according to the binomial law
with the probability (2.70) and parameters 0 < p̄ < 1, n ∈ N. Then

|Γk(Nn)| ≤ (k − 1)!2k−1np̄, k = 1, 2, ... . (2.118)

Proof of Proposition 2.6. According to (2.70), the characteristic function of
Nn is

fNn(u) = EeiuNn = (1− (1− p̄)eiu)n, u ∈ R.

Thus based on Lemma 2.1 and using (1.5), we get

|Γk(Nn)| ≤ Γk(Nt) =
k−1∑
l=0

c
(k)
k−lΓk−l(Λ((n)) ≤ (k− 1)!2k−1np̄, k = 1, 2, ...,
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due to (2.91), (2.93), and (2.95), where is assumed that Λ(n) is distributed
according to the Gamma law (2.67) with the parameters nt := n, bt := 1/p̄ >
1, and Nt, t > 0, is mixed Poisson process with the probability (2.68). Here
the c(k)

k−l are defined by (2.94). 2

Remark 2.13. It follows from (2.118) thatNn satisfies conditions (1.33), (1.35)
with ε = 0, K1 = 8/(1− p̄) and K2 = 2.

Proposition 2.7. If the random variable X with variance 0 < σ2 < ∞ ful-
fills condition (B̄γ), and the binomial random variable Nn, n ∈ N, satisfies
condition (2.118), then

|Γk(S̃Nn)| ≤ (k!)1+γ

∆k−2
∗,n

, ∆∗,n =

√
DSNn
Lj

, j = 1, 2, k = 3, 4, ..., (2.119)

where

L1 =
2

1− p̄

(
2|µ| ∨

(
1 ∨ σ

2|µ|

)
M
)

as µ 6= 0, L2 = 2M as µ = 0, (2.120)

where 0 < p̄ < 1. Here DSNn andM > 0 are defined, respectively, by (2.117)
and (2.1). In the case where µ = 0, DSNn and M > 0 hold with σ2 = EX2.

Proof of Proposition 2.7. Following the proof of Proposition 2.5 with nt := n,
bt := 1/p̄ > 1 and noting that 1/(1− p̄) ≤ 1/(1− p̄)k−2, k = 2, 3, ..., we can
see that (2.119) holds. 2

Corollary 2.10. If the random variable X with variance 0 < σ2 <∞ satisfies
condition (B̄γ), and the binomial random variable Nn, n ∈ N0 fulfills condi-
tion (2.118), then the large deviation equalities (2.51), exponential inequality
(2.56), and absolute error estimate (2.57) are valid with Z̃N := S̃Nn and
∆∗ := ∆∗,n, where S̃Nn is defined by (1.34) with N := Nn being a binomial
random variable, and ∆∗,n is defined by (2.119).

Corollary 2.11. Under the conditions of Corollary 2.10,

1− FS̃Nn (x)

1− Φ(x)
→ 1,

FS̃Nn
(−x)

Φ(−x)
→ 1 (2.121)

hold in both cases: when µ 6= 0 and when µ = 0, for x ≥ 0, x = o(nν(γ)/2), if
n→∞. Here ν(γ) = (1 + 2(1 ∨ γ))−1, γ ≥ 0.
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The statement of Corollary 2.11 follows from the proof of Theorem 2.2,
considering the instance where aj ≡ 1, j = 1, 2, ... andN := Nn is a binomial
random variable. Since ∆∗,n =

√
DSNn/Lj ≥

√
nCj , j = 1, 2, where C1 =√

p̄(σ2 + µ2(1− p̄))/L1 > 0, C2 =
√
p̄σ/L2 > 0, then ∆∗,n → ∞ as

n→∞. Thus it yields the statement of Corollary 2.11, due to the proof of the
Theorem 2.2.

2.4.6. Discounted version of large deviations

Let us consider the discounted version of large deviations, i. e., let us as-
sume that aj ≡ vj , 0 < v < 1, j = 1, 2, ... . In this case we consider the
random sum

ZN =
N∑
j=1

vjXj , Z0 = 0. (2.122)

Recall that {X, Xj , j = 1, 2, ...} is a family of i. i. d. random variables with
the mean, positive variance and distribution function

µ = EX, σ2 = DX <∞, FX(x) = P(X < x), x ∈ R.

In addition, the non-negative integer-valued random variable Nwith the mean,
variance and distribution

α = EX, β2 = DX, P(N = s) = qs, s ∈ N0,

is independent of {X,Xj , j = 1, 2, ...}.

In the case where aj ≡ vj , 0 < v < 1,

TN,r =
N∑
j=1

vjr =
vr(1− vrN )

1− vr
, Ts,r =

s∑
j=1

vjr =
vr(1− vrs)

1− vr
, (2.123)

where r, s ∈ N. Is is assumed that T0,r = 0. Clearly, TN,0 = N . Thus,

ETN,r =
vr

1− vr
(1−EvrN ), ET sN,r =

vrs

(1− vr)s
E(1− vrN )s, (2.124)

DTN,r =
v2r

(1− vr)2
DvrN , (2.125)
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where

EvrN =
∞∑
s=0

qsv
rs, E(1− vrN )s =

∞∑
s=0

qs(1− vrs)s, (2.126)

DvrN = Ev2Nr − (EvNr)2. (2.127)

Consequently, conditions (L) and (L0), the mean (2.19) and the variance (2.20)
of ZN hold with ETN,1, ETN,2 and DTN,1 defined by (2.124) – (2.127) with
r = 1, 2.

For the following, recall the abbreviation (b ∨ c) = max{b, c}, b, c ∈
R. And note that the statement of the thereunder Corollary 2.12 immediately
follows from the proof of Lemma 2.2 in case where aj ≡ vj , 0 < v < 1,
j = 1, 2, ..., and the quantity a/ā is replaced by 1 + v.

Corollary 2.12. Assume that the random variable X with variance 0 < σ2 <
∞ satisfies condition (B̄γ) and that the compound random variables TN,1 and
TN,2 defined by (2.123) satisfy conditions, respectively, (L) and (L0) with
DTN,1, ETN,2 defined by (2.124)–(2.127). Then the upper estimates for the
kth-order cumulants of Z̃N defined by (1.37) with aj ≡ vj , 0 < v < 1,
j = 1, 2, ..., satisfy inequality (2.24), where ∆∗ is defined by (2.25) with

∆N =

√
DZN
LN

,

LN = 2(1 + v)2
(

(1 + v)K1|µ|(DTN,1)ε ∨
(

1 ∨ σ

2|µ|

)
vM

)
, (2.128)

∆N,0 =

√
DZN
LN,0

, LN,0 = 2(1 ∨K2(ETN,2)ε)(1/2 ∨ v)M. (2.129)

Here M = 2(K ∨ σ), K, σ > 0, and DZN , K1, K2, ε ≥ 0 are defined by
(2.20), (L), (L0). DZN , M > 0 have σ2 = EX2 in the case where µ = 0.

Consequently, it immediately follows that Theorems 2.1–2.3 and Corollar-
ies 2.1, 2.2 (see, Section 2.3: 48) hold with the same ∆∗, where ∆N and ∆N,0

are defined, respectively, by (2.128) and (2.129).

Corollary 2.13. Under the conditions of Theorem 2.1, the ratios

1− FZ̃N (x)

1− Φ(x)
→ 1,

FZ̃N (−x)

Φ(−x)
→ 1 (2.130)
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hold for x ≥ 0 defined by (2.55) with (2.124)–(2.127), if v → 1, and β →∞
or α→∞ (depending on the case, either µ 6= 0 or µ = 0) when 0 ≤ ε < 1/2.
Here 0 < v < 1, ν(γ) = (1 + 2(1 ∨ γ))−1, γ ≥ 0.

We remark that the use of L’Hospital’s rule yields

lim
v→1

DTN,1 = lim
v→1

v

v − 1
(DvN + ENv2N −EvNENvN )

= lim
v→1

(
DvN + 3(ENv2N −EvNENvN ) + 2EN2v2N

−EvNEN2vN − (ENvN )2
)

= β2,

lim
v→1

ETN,2 = lim
v→1

(
ENv2N + Ev2N − 1

)
= α.

With these, the statement of Corollary 2.13 follows immediately from the proof
of Theorem 2.2 if we use the definitions of ETN,2 and DTN,1 given by (2.124)
– (2.127) and assume that v → 1 and either β →∞ or α→∞ (depending on
the case, either µ 6= 0 or µ = 0).

Remark 2.14. Assume N = ∞. Thus, according to (2.123), TN,r = vr/(1 −
vr), r ∈ N. And hence, it follows that

ETN,r =
vr

1− vr
, Γm(TN,r) = 0, m = 2, 3, ..., (2.131)

due to (2.10). Consequently,

EZN =
µv

1− v
, DZN =

σ2v2

1− v2
. (2.132)

Next, based on (2.132) together with (2.33) and (2.1), we have

|Γk(Z̃N )| ≤
vk−2|Γ1(TN,2)||Γk(X)|

(σ2ETN,2)k/2
≤ (k!)1+γ

∆k−2
, ∆ =

σ

M
√

1− v2
, (2.133)

for k = 3, 4, ... .

On the other hand, since the characteristic function of the compound sum
(2.122) is fZN (u) =

∏∞
j=1 fX(vju), the definition (1.5) of the kth-order cu-

mulants gives us

Γk(ZN ) =

∞∑
j=1

1

ik
dk

duk
ln fX(vju)

∣∣∣
u=0

=
vk

1− vk
Γk(X), k = 1, 2, ... .
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Next, application of condition (2.1), leads to

|Γk(Z̃N )| ≤ (k!)1+γ (1 + v)(M
√

1− v2)k−2

(1 + v + v2 + ...+ vk−1)σk−2
≤ (k!)1+γH

∆̄k−2
, (2.134)

for k = 3, 4, ..., where

∆̄ =
σ

M
√

1− v2
, H =

1 + v

1 + v + v2
.

Comparing expression (2.133) with expression (2.134), we see that the first
holds with H < 1. Assume that ∆̄ ≤ ∆v = σ/(M

√
1− v) and H ≥ (1 +

v+ v2)−1, then the upper estimate (2.134) will coincide with the estimate (10)
presented in (Saulis and Deltuvienė 2006: 221).

Clearly, ∆ ≥ C/
√

1− v2, where C = σ/M > 0. Here ∆ is defined
by (2.133). Hence, the proof of Theorem 2.2 leads us to assert that the large
deviation ratios to a unit ratios (2.54) hold for x ≥ 0 such that x = o((1 −
v2)ν(γ)/2) as v → 1.

Let us consider some example where N obeys concrete probability laws.

Remark 2.15. If N is a binomial random variable or is a homogeneous or
mixed Poisson process, then equalities (2.19) and (2.20), conditions (L) and
(L0), and consequently Corollaries 2.12, 2.13 are valid with ETN,1, ETN,2,
and DTN,1 defined by (2.124)–(2.127) with r = 1, 2, where the values of
EvrN ,DvrN coincide for the distribution under consideration.

Example 2.5. Suppose that N := Nt, t ≥ 0, is a homogeneous Poisson pro-
cess with the linear mean value function Λ(t) = λt, t ≥ 0, for some λ > 0,
and the distribution

qs = P(Nt = s) = e−λt(λt)s/s!, s ∈ N0, 0 < qs < 1.

Then,

EvrNt = e−λt(1−v
r), DvrNt = e−λt(1−v

2r)
(
1− e−λt(1−vr)2

)
, r ∈ N0.

Hence, based on Corollary 2.13 and (2.78), we see that in both cases: µ = 0
and µ 6= 0, (2.130) hold if v → 1 and t→∞.

Example 2.6. Let us consider a mixed Poisson process Nt := N
′

Λ(t), t > 0,
where Λ(t) is distributed according to the Gamma law with the parameters
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(nt, bt), nt, bt > 0, t > 0, and the density function (2.67). Recall that in this
instance,

qs =
Γ (nt + s)

s!Γ (nt)
pnt(1− p)s, p =

bt
1 + bt

, s ∈ N0.

Nt is distributed according to the negative binomial law with parameters 0 <
p < 1 and nt > 0, defined by (2.68). Hence,

EvrN =
pnt

(1− vr(1− p))nt
,

DvrN =
pnt

(1− v2r(1− p))nt
− p2nt

(1− vr(1− p))2nt
.

Thus, recalling (2.87) and that p = bt/(1 + bt), it follows immediately from
Corollary 2.13 that in both cases: µ 6= 0 and µ = 0, (2.130) hold as v → 1
and nt/bt → ∞. For example, we can suppose that nt := n ∈ N is fixed and
p→ 0 or, for example, bt = 1/t→ 0, t > 0, as t→∞. Obviously, supposing
that nt := n, and bt is fixed, it is possible to show that the ratios (2.130) hold
as n→∞.

Example 2.7. Now let as assume that N := Nn, n ∈ N0, is distributed accord-
ing to the binomial law, with

qs = Csnp̄
s(1− p̄)n−s, Csn =

n!

s!(n− s)!
, 0 < p̄ < 1, s ∈ N0. (2.135)

In this instance,

EvrN = (1− p̄(1− vr))n, DvrN = (1− p̄(1− v2r))n − (1− p̄(1− vr))2n.

Thus, due to Corollary 2.13 and (2.116), it follows that in both cases: µ 6= 0
and µ = 0, (2.130) hold as v → 1 and n→∞.

2.5. Conclusions of Chapter 2

1. By using combinatorial method, the suitable bound (2.24) for the cu-
mulants of the standardized weighted random sum Z̃N which is de-
fined by (1.37) is obtained. It was assumed that the i. i. d. random sum-
mands satisfy the generalized S. N. Bernstein’s condition (B̄γ), γ > 0,
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and random variables TN,1 and TN,2 defined by (2.2) with r = 1, 2
satisfy the conditions (L) and (L0). The suitable bound and general
Lemmas 1.1, 1.2 lead to proof theorems of large deviations in both the
Cramér and the power Linnik zones and exponential inequalities.

2. It follows from Remarks 2.3, 2.6, 2.14 that Theorems 2.1–2.3 and Corol-
laries 2.4, 2.5, 2.12, 2.13 of large deviations for the distribution func-
tion of the sum Z̃N (the cases where aj ≡ 1, j = 1, 2..., and vj ,
0 < v < 1 also include) can be regarded as refinements of the theo-
rems of large deviations and exponential inequalities for the sums of
non-random numbers of summands.

3. The results of the Chapter 2 lead us to large deviation theorems for
the standardized compound and mixed Poisson processes (see Subsec-
tion 2.4.3, 2.4.4) that are largely used in insurance and finance mathe-
matics.





3
Local limit theorem for compound

Poisson process

In this chapter we assume that i. i. d. random variables {X, Xj , j = 1, 2, ...}
with the mean EX = µ, finite, positive variance 0 < DX = σ2 <∞ and the
distribution function FX(x) = P(X < x) for all x ∈ R, satisfy the condition
(B̄γ) with γ = 0: there exist constant K > 0 such that

|E(X − µ)k| ≤ k!Kk−2σ2, k = 3, 4, ... . (B̄0)

In addition, by virtue of Proposition 2.1, we take up the position that

|Γk(X)| ≤ k!Mk−2σ2, M = 2 max{σ,K}, k = 3, 4, ... . (3.1)

Throughout, along with the condition (B̄0) we assume that for X there exist
the density function

pX(x) =
d

dx
FX(x)

such that
sup
x
pX(x) ≤ A <∞, A > 0. (D′)

85



86 3. LOCAL LIMIT THEOREM FOR COMPOUND POISSON PROCESS

Let us recall the compound Poisson process

SNt =

Nt∑
j=1

Xj , S0 = 0,

with the mean and variance

ESNt = µλt, DSNt = λt(σ2 + µ2) > 0.

Here Nt, t ≥ 0, is a homogeneous Poisson process with a linear mean value
function Λ(t) = λt, t ≥ 0, for some λ > 0 (see Definition 2.2 in Subsec-
tion 2.4.1). In addition, with the mean αt = ENt, variance β2

t = DNt and the
distribution P(Nt = s) = qs:

αt = β2
t = λt, qs = e−λt(λt)s/s!, s ∈ N0, 0 < qs < 1.

It is assumed that Nt is independent of i. i. d. random variables {X, Xj , j =
1, 2, ...}.

Local limit theorems for Poisson random sums are available, e. g., in (Ko-
rolev and Zhukov 2000), where the results for non-random sums presented in
(Korolev and Zhukov 1998) are extended. For treatments of asymptotic expan-
sions for Poisson random sums we refer the reader, for example, in (Babu et al.
2003; Bening and Korolev 2002; Gnedenko and Korolev 1996; Korolev et al.
2011).

The aim of this chapter is to extend asymptotic expansions that take into
consideration large deviations in the Cramér zone (γ = 0) that are established
in (Saulis 1991, Deltuvienė and Saulis 2001, 2003b) in another direction, that
is to consider asymptotic expansion that take into consideration large devia-
tions in the Cramér zone for the distribution density function of standardized
compound Poisson process

S̃Nt =
SNt −ESNt√

DSNt
.

The structure of the reminder term (3.19) of asymptotic expansion (3.21) also
is determined (see Section 3.2).

Let us recall that certain difficulties may appear in the formulation of prob-
lems related to local limit theorems for compound Poisson process (2.77) as
distribution function (2.83) of SNt is not continuous for all x ∈ R, because
of the presence of an atom at zero. Obviously, we consider the case where



3. LOCAL LIMIT THEOREM FOR COMPOUND POISSON PROCESS 87

F0(x) = 1, x > 0, thus if (2.83) is differentiable, then

pSNt (x) =
d

dx
FSNt (x) =

∞∑
s=0

qspX1+...+Xs(x), x > 0, (3.2)

where p0(x) = 0. In addition, we may conclude that the fulfillment of the
condition (D′) implies

sup
x
pSNt (x) ≤ A

∞∑
s=0

qs = A <∞, A > 0.

Solution to the problem of this chapter is achieved by first using general
Lemma 1.3 (see Section 1.1) presented in (Saulis 1980: 165) about asymp-
totic expansion for the density function of an arbitrary random variable with
zero mean and unit variance and joining methods of the cumulant and charac-
teristic functions (see, e. g., Saulis and Statulevičius 1991). To follow general
Lemma 1.3, we have to estimate the kth-order cumulants of the standardized
compound Poisson process (2.82) in the case where γ = 0. For that Propo-
sition 2.3 (see, Subsection 2.4.3) in instance where γ = 0 should be used.
Particularly, if the random variable X with variance 0 < σ2 < ∞ satisfies
condition (B̄0), and Nt, t ≥ 0, is a homogeneous Poisson process, then

|Γk(S̃Nt)| ≤ k!/∆k−2
t , ∆t =

√
λt(σ2 + µ2)/K, k = 3, 4, ..., (3.3)

where K > 0 is defined by (B̄0). σ2 = EX2 in the case where µ = 0.
Following, e. g., (Deltuvienė and Saulis 2001, 2003b; Saulis and Statule-

vičius 1991) in order to estimate the reminder term (3.19) of asymptotic ex-
pansion (3.21) along with aforementioned methods S. V. Statulevičius’ known
estimates for characteristic functions should be used (see Statulevičius 1965 or
Lemmas 3.1–3.3 in Section 3.1).

3.1. Auxiliary lemmas

Let X
′

= X − Y be an arbitrary, symmetrized random variable, where Y
is independent of X and with the same distribution. Clearly, the distribution
and characteristic functions of X

′
are as follows

FX′ (x) =

∫ ∞
−∞

FX(x+ y)dFX(x), fX′ (u) = |fX(u)|2.
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Corresponding density will be denoted by pX′ (x). Moreover, in this section,
we assume that EX = 0.

In the paper (Statulevičius 1965) the following lemmas were proved.

Lemma 3.1. Let X be any random variable with density pX(x). Then for any
collection M = {∆i, Ai} of non overlapping intervals ∆i and positive con-
stants Ai <∞ for any −∞ < u <∞ the estimate

|fX(u)| ≤ exp
{
− u2

3

∞∑
i=1

Q3
i

(|∆i||u|+ 2π)2A2
i

}
holds, where

Qi =

∫
∆i

min{Ai, pX′ (x)}dx.

Corollary 3.1. If pX(x) ≤ A <∞ and σ2 = EX2 <∞, then

|fX(u)| ≤ exp
{
− u2

96

1

(2σ|u|+ π)2A2

}
for all −∞ < u <∞, where A > 0.

Lemma 3.2. Let a non-negative function g(u), defined on the interval [b,∞),
satisfies the Lipschitz condition |g(u+ s)− g(u)| ≤ K|s|. Moreover, let

V :=

∫ ∞
b

g(u)du <∞.

Then for any ε > 0 and any partition b = u0 < u1 < ... of the interval [b,∞)
with max

0≤k<∞
(uk+1 − uk) ≤ ε we have the inequality

∞∑
k=0

( max
uk≤u≤uk+1

g2(u))∆uk ≤ V (2Kε+ 4 sup
a≤u<∞

g(u)),

where ∆uk = uk+1 − uk.

For a while, let us assume that Xj , j = 1, 2, ..., are independent, non-
identically distributed random variables, and put

Sn =

n∑
j=1

Xj , B2
n =

n∑
j=1

σ2
j .
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Let

ln(Hn) =
1

B2
n

n∑
j=1

∫
|x|≤Hn

x2p
X
′
j
(x), Hn > 0.

and

Jn(u) =
n∑
j=1

∫ ∞
−∞
〈xy〉2p

X
′
j
(x)dx,

where 〈b〉 denotes the distance of number b to the nearest integer.

Lemma 3.3. For any n ≥ 1 and Hn > 0, there exist a partition

... < u
(n)
−1 < u

(n)
0 = 0 < u

(n)
1 < u

(n)
2 < ...

of the interval (−∞,∞) satisfying the condition

1

6Hn
≤ ∆u

(n)
k ≤ 1

4Hn
, ∆u

(n)
k = u

(n)
k+1 − u

(n)
k .

such that
Jn(u) ≥ 1

2
ln(Hn)(u− u(n)

k0 )2B2
n,

provided u ∈ [u
(n)
k , u

(n)
k+1], where, for given n, uk0 is u(n)

k or u(n)
k+1 depending

on k.

The proofs of Lemmas 3.1, 3.2, 3.3 also can be found in (Saulis and Stat-
ulevičius 1991: 172–174).

3.2. Asymptotic expansion in large deviation
Cramér zone for density function of the
compound Poisson process

Let us note that according to the proof of general Lemma 1.3, we must first
to denote the conjugate process of the compound Poisson process. Assume that
the conjugate compound Poisson process can be denoted by (see Bonin 2003)

SNt(h)(h) =

Nt(h)∑
j=1

Xj(h), (3.4)
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whereNt(h) andXj(h), t ≥ 0, h > 0, are independent, besides the probability
of Nt(h) is

qs(h) = P(Nt(h) = s) = exp{−λtϕX(h)}(λtϕX(h))s/s!, (3.5)

where
ϕX(h) =

∫ ∞
∞

ehxpX(x)dx

is the generating function of the random variable X . The quantity h we will
define later. The identification of Nt(h) and X(h) can be performed with the
help of Laplace transform of SNt(h)(h). Indeed, recall that an arbitrary con-
jugate random variable X(h) of an arbitrary random variable X is defined by
the density function (1.19):

pX(h)(x) = ϕ−1
X (h)ehxpX(x).

Thus the conjugate process of the compound Poisson process can be defined
by using the density function (1.19) with X(h) := SNt(h)(h) and X := SNt
(see, e. g., Saulis 1978; Bonin 2003; Korolev et al. 2011):

pSNt(h)(h)(x) = ϕ−1
SNt

(h)ehxpSNt (x). (3.6)

By virtue of (1.20) with (3.2) and (2.64), we can state that the generating func-
tion of SNt is

ϕSNt (h) =

∫ ∞
−∞

ehxpSNt (x)dx =
∞∑
s=0

qsϕX1+...+Xs(h) =
∞∑
s=0

qsϕ
s
X(h)

= e−λt
∞∑
s=0

(λtϕX(h))s/s! = exp{−λt(1− ϕX(h))}. (3.7)

So by (1.2), (3.6) and (3.7)

fSNt(h)(h)(u) = ϕ−1
SNt

(h)

∫ ∞
−∞

e(h+iu)xpSNt (x)dx = ϕ−1
SNt

(h)ϕSNt (h+ iu)

= exp{−λtϕX(h)(1− fX(h)(u))}. (3.8)

Clearly,
fSNt(h)(h)(u) = exp{−λtϕX(h)(1− fX(h)(u))}
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= e−λtϕX(h)
∞∑
s=0

(λtϕX(h)fX(h)(u))s/s! =

∞∑
s=0

f sX(h)(u)qs(h),

where qs(h) is defined by (3.5). Thus we obtained the characteristic function
of the process SNt(h)(h) which is defined by (3.4). Note that qs(0) = qs as
ϕX(0) = 1, where qs is defined by (2.64).

The use of the definition (1.5) of the moments of X together with (1.19)
and (1.20) produces the rth-order moments of X(h)

EXr(h) = ϕ−1
X (h)

dr

irdur
ϕX(h+ iu)

∣∣∣
u=0

= ϕ−1
X (h)

dr

dhr
ϕX(h)

= ϕ−1
X (h)

∞∑
k=r

EX khk−r

(k − r)!
, r = 1, 2, ... . (3.9)

Additionally, based on Lemma 2.1 in Section 2.1,

Γr(X(h)) = r!
∑∗

1

dm ln y

dym

∣∣∣
y=ϕX(h+iu)

r∏
j=1

1

mj !

( 1

j!

djϕX(h+ iu)

ijduj

)mj ∣∣∣
u=0

=
dr

dhr
lnϕX(h) =

∞∑
k=r

Γk(X)

(k − r)!
hk−r, r = 1, 2, ..., (3.10)

where
∑∗

1 is the summation over all the non-negative integer solutions 0 ≤
m1, ...,mr ≤ r of the equation (2.9), m1 + ...+mr = m, and 1 ≤ m ≤ r. In
particularly,

µ(h) = EX(h) = Γ1(X(h)) =

∞∑
k=1

Γk(X)hk−1

(k − 1)!
, (3.11)

EX2(h) = ϕ−1
X (h)

∞∑
k=2

EX khk−2

(k − 2)!
, (3.12)

σ2(h) = DX(h) =
∞∑
k=2

Γk(X)hk−2

(k − 2)!
. (3.13)

According to the definition (1.5) of the cumulants together with (3.8) and (3.9),
we get

Γr(SNt(h)) = λtϕX(h)EXr(h) =
∞∑
k=r

Γk(SNt)h
k−r

(k − r)!
, r = 1, 2, ..., (3.14)
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where Γk(SNt) is defined by (2.85).
For the following, set

S̃Nt(h)(h) =
SNt(h)(h)−ESNt(h)(h)√

DSNt(h)(h)
, DSNt(h)(h) > 0, (3.15)

where by (3.14),

ESNt(h)(h) = λtϕX(h)EX(h), DSNt(h)(h) = λtϕX(h)EX2(h). (3.16)

Basing on (Ibragimov and Linnik 1965: 213–216) (or see for saddle-point me-
thod in Jensen 1995), to derive equation which gives the solution of h =
h(x) > 0 we need to do the following calculations. By (3.6),

FSNt (x) = ϕSNt (h)

∫ x

−∞
e−hydFSNt(h)(h)(y).

Thus,

FS̃Nt
(x) = ϕSNt (h)

∫ 0

−∞
e−h(
√

DSNt(h)(h)y+ESNt(h)(h))dFS̃Nt(h)
(y),

as

FS̃Nt
(y) = FSNt (

√
DSNty + ESNt),

FS̃Nt(h)(h)(y) = FSNt(h)(h)

(√
DSNt(h)(h)y + ESNt(h)(h)

)
,

when

x =
ESNt(h)(h)√

DSNt
− ESNt√

DSNt
. (3.17)

Hence, according to Ibragimov and Linnik (1965), the quantity h = h(x) > 0
should be defined as the solution of the equation (3.17).

Note that

fS̃Nt(h)(h)(u) = exp

{
− i

ESNt(h)(h)u√
DSNt(h)(h)

}

· exp

{
− λtϕX(h)

(
1− fX(h)

(
u√

DSNt(h)(h)

))}
. (3.18)
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Let us denote

Rt(h) =

∫
|u|≥Ut

|fS̃Nt(h)(h)(u)|du, (3.19)

Ut =
1

12

(
1− Kx√

λt(σ2 + µ2)

)√λt(σ2 + µ2)

K
, (3.20)

for

0 ≤ x <
√
λt(σ2 + µ2)

24K
, K > 0.

In addition,

q(m) =
(3
√

2e

2

)m
+ 8(m+ 2)243(r+1)Γ

(3m+ 1

2

)
, m ≥ 1.

We will use θi, i = 1, 2, ... (with or without an index) to denote a quantity, not
always one and the same, that does not exceed 1 in modulus.

Theorem 3.1. If X with 0 < σ2 <∞ satisfies conditions (B̄0), (D′), and Nt,
t ≥ 0, is a homogeneous Poisson process with the probability (2.64), then for
every m ≥ 3, in the interval 0 ≤ x <

√
λt(σ2 + µ2)/(24K), K > 0, the

asymptotic expansion

pS̃Nt
(x)

φ(x)
= exp{Lt(x)}

(
1 +

m−3∑
k=0

Mt,k(x)

+ θ1q(m)
( K(x+ 1)√

λt(σ2 + µ2)

)m−2
+ θ2Rt(h)

)
(3.21)

is valid, where for the reminder term Rt(h) which is defined by (3.19) the
estimate

Rt(h) ≤ 1

c1(h)Ut
exp{−c1(h)U2

t }+ c2(h) exp{−λtc3(h)} (3.22)

as λt > 2 holds. Here h = h(x) > 0 is the solution of the equation (3.17),
and Ut is defined by (3.20). In addition,

c1(h) = σ2(h)/(π2EX2(h)), (3.23)

c2(h) = 12π
√

2πe2ϕX(h)

√
EX2(h)

σ(h)
A(
√

2πσ(h) + 4H(h)), (3.24)
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c3(h) =
ϕX(h)(1− e−c)3

16(τ(h) +H(h))2A2(h)
, c > 0, (3.25)

where ϕX(h) and A > 0 are defined, respectively, by (1.20) and (D′). In
addition, H(h), τ(h), A(h) are defined by (3.39), (3.47), (3.48), respectively.
For constants c1(h), c2(h), c3(h) estimates

c1(h) ≥ c1 = σ2/(EX2π2g3(δ)), (3.26)

c2(h) ≤ c2 = 12π
√

2π exp
{

2 exp{δ2g2(δ1)/8}
}√

g3(δ)EX2/σ

·MA(π
√

2(1 + g1(δ))/2 + 8g1/2(δ)), (3.27)

c3(h) ≥ c3 =
(1− e−c)3

16( c
δ1−δ +

δ21
4(δ1−δ) + 2g1/2(δ))2

· 1

exp
{
δ2

4 g1(δ1) +
δ21δ

2(δ1−δ) + 2cδ
δ1−δ

}
(MA)2

(3.28)

hold, where M = 2{σ ∨K}, and

g(δ) =
4g2(δ) + 3(1− g2

1(δ))

4(1− g1(δ))
, g1(δ) =

2δ(δ2 − 3δ + 3)

(1− δ)3
, (3.29)

g2(δ) =
24

(1− δ)5
, g3(δ) =

1 + g1(δ)

1− g1(δ)
, (3.30)

g1(δ1) =
1− 3δ1

1− δ1
, g2(δ1) =

1 + δ1

1− δ1
. (3.31)

here 0 < δ < 1− 3
√

18/3, 0 < δ1 < 1/3, δ1 > δ.
Further, Lt(x) =

∑∞
l=3 λ̃t,lx

l, where the coefficients λ̃t,l (expressed by cu-
mulants of S̃Nt coincide with the coefficients of the Cramer series). They are
determined by the relation λt,l = −bt,l−1/l, and bt,l are identified successively
from the equations

j∑
r=1

1

r!
Γr+1(S̃Nt)

∑
j1+...+jr=j

ji≥1

r∏
i=1

bt,ji =

{
1, j = 1,
0, j = 2, 3, ... .
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Mt,k(x) =

k∑
l=0

Kt,l(x)Qt,k−l(x),

Kt,k(x) =
∑∗

1

k∏
r=1

1

mr!
(−λ̃t,r+2x

r+2)mr , Kt,0(x) ≡ 1,

Qt,k(x) =
∑∗

1
Hk+2m(x)

k∏
r=1

1

mr!

(Γr+2(S̃Nt)

(r + 2)!

)mr
, Qt,0(x) ≡ 1.

where the summation
∑∗

1 is taken over all non-negative, integer solutions
(m1,m2, ...,mk) of the equation (2.9), m1 + m2 + ... + mk = m, 0 ≤
m1, ...,mk ≤ k, 1 ≤ m ≤ k. Here Hr(x) is the Chebyshev-Hermite poly-
nomials (1.27).

Remark 3.1. Note that (3.16) together with (2.79), ( 3.11) and (B̄0) leads to
the estimate of (3.17)

x =
λt√
DSNt

∞∑
k=2

EXk

(k − 1)!
hk−1 =

√
DSNth

(
1 + θ

Kh(3− 2Kh)

(1−Kh)2

)
,

if h < 1/K. If h ≤ δ/K, then

x = δ
(

1 + θ
δ(3− 2δ)

(1− δ)2

)√λt(σ2 + µ2)

K
.

If δ = 1/28, then x ≤
√
λt(σ2 + µ2)/(24K). Additionally, if δ1 = 1/25,

then

c1 = σ2/(1.6π2EX2), c2 = 334e4
√

2π
√
EX2MA/σ, c3 = c/(MA)2.

where 0 < c < 2 · 10−8,

Proof of Theorem 3.1. Let us recall, if for the random variableX the condition
(B̄0) is fulfilled and Nt, t ≥ 0, is the homogeneous Poisson process with the
probability (2.64), then for the kth-order cumulants |Γk(S̃Nt)|, k = 3, 4, ..., of
the standardized compound Poisson process S̃Nt which is defined by (2.82) the
upper estimate (3.3) holds. Thus, observe that S̃Nt satisfies S. V. Statulevičius’
condition (Sγ) in the case where γ = 0 with the parameter ∆ := ∆t, where
∆t is defined by (3.3). Accordingly, general Lemma 1.3 yields (3.21).

To finish the proof of Theorem 3.1 the estimate (3.22) of the reminder term
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(3.19) should be verified.

Obviously,

Rt(h) =

∫
|u|≥Ut

|fS̃Nt(h)(h)(u)|du = I1 + I2, (3.32)

where

I1 =

∫
Ut≤|u|≤Ũt(h)

|fS̃Nt(h)(h)(u)|du, I2 =

∫
Ũt(h)≤|u|<∞

|fS̃Nt(h)(h)(u)|du,

here Ũt(h) defined by (3.39). Suppose, that X
′
(h) = X(h)− Y (h) is a sym-

metrized, conjugate random variable, where the conjugate random variable
Y (h) is independent of X(h) and with the same distribution. It is clear that
the distribution and characteristic functions of X

′
(h) are as follows

FX′ (h)(x) =

∫ ∞
−∞

FX(h)(x+ y)dFX(h)(x), fX′ (h)(u) = |fX(h)(u)|2.

Corresponding density will be denoted by pX′ (h)(x). Obviously, DX
′
(h) =

2σ2(h). Denote,

lh(H(h)) =
1

σ2(h)

∫
|x|<H(h)

x2pX′ (h)(x)dx, H(h) > 0. (3.33)

Since
1− |fX(h)(2πu)| ≥ 1

2
(1− |fX(h)(2πu)|2) := Ih(u), (3.34)

by (3.8), we get

|fSNt(h)(h)(2πu)| ≤ exp{−λtϕX(h)(1− |fX(h)(2πu)|)}

≤ exp{−λtϕX(h)Ih(u)}, (3.35)

where

Ih(u) =

∫ ∞
−∞

sin2(πux)pX′ (h)(x)dx ≥ 4u2σ2(h)lh(1/(2|u|)). (3.36)

Here lh(1/(2|u|)) is defined by (3.33). Further,

lh(H(h)) =
1

σ2(h)

∫ ∞
−∞

x2pX′ (h)(x)dx− 2

σ2(h)

∫ ∞
H(h)

x2pX′ (h)(x)dx
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≥ 2
(

1− 2E|X(h)− µ(h)|4

σ2(h)H2(h)

)
≥ 1, (3.37)

ifH(h) = 2
(
E(X(h)−µ(h))4

)1/2
/σ(h). The use of (3.18) and (3.35)–(3.37)

gives

|fSNt(h)(h)(2πu)| ≤ exp{−λtϕX(h)4u2σ2(h)} as |u| ≤ 1/(2H(h)),

and

|fS̃Nt(h)(h)(u)| ≤ exp
{
− u2 σ2(h)

π2EX2(h)

}
as |u| ≤ Ũt(h), (3.38)

where

Ũt(h) =
π
√

DSNt(h)(h)

H(h)
, H(h) =

2(E(X(h)− µ(h))4)1/2

σ(h)
. (3.39)

Here µ(h),EX2(h), and σ2(h) are defined by (3.11)–(3.13). And DSNt(h)(h)
is defined by (3.16). Consequently,

I1 ≤
2

Ut

∫ Ũt(h)

Ut

|u| exp
{
− u2 σ2(h)

π2EX2(h)

}
du

≤ 1

c1(h)Ut
exp{−c1(h)U2

t }, (3.40)

according to (3.38). Here Ut and c1(h) are defined by (3.20) and (3.23).

If we put n = 1 and conjugate random variable X(h) instead of X in Lemma
3.3, then we derive that for any H(h) > 0 there exist a partition

... < u−1 < u0 = 0 < u1 < u2 < ...

of the interval (−∞,∞) satisfying the condition

(6H(h))−1 ≤ ∆uk ≤ (4H(h))−1, ∆uk = uk+1 − uk. (3.41)

such that
Ih(u) ≥ exp{−2σ2(h)lh(H(h))(u− uk0)2}, (3.42)

provided u ∈ [uk, uk+1], where uk0 is uk or uk+1 depending on k. Here
lh(H(h)) defined by (3.33). On the other hand, employing Lemma 3.1 gives:
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if X(h) has a density function such that pX(h)(x) ≤ A(h) < ∞, then for any
collection M(h) = {∆(h), A(h)}, of the interval ∆(h) and positive constant
A(h) the estimate

Ih(u) ≥ Q3(h)

3(|∆(h)|+ 2H(h))2A2(h)
. (3.43)

holds for all |u| ≥ 1/(2H(h)), H(h) > 0. Here

Q(h) =

∫
∆(h)

min{A(h), pX′ (h)(x)}dx.

Now let us estimate I2:

I2 = 2π
√
DSNt(h)(h)

∫
(2H(h))−1≤|u|<∞

|fSNt(h)(h)(2πu)|du

≤ 2π
√
DSNt(h)(h)

∫
(2H(h))−1≤|u|<∞

exp{−(λt− 2)ϕX(h)Ih(u)}

· exp{−2ϕX(h)(1− |fX(h)(2πu))|}du,

by (3.34) and (3.35) as λt > 2, where Ih(u) defined by (3.36). Hence observ-
ing that exp{2ϕX(h)Ih(u)} ≤ exp{2ϕX(h)} due to (3.36), we arrive at

I2 ≤ 2πe2ϕX(h)
√
DSNt(h)(h)

∫
|u|≥(2H(h))−1

exp
{
− λtϕX(h)Ih(u)

}
· exp{−ϕX(h)(1− |fX(h)(2πu)|2)}du. (3.44)

The next step is to estimate (3.44) for (3/4)λtϕX(h)Ih(u), (1/4)λtϕX(h)Ih(u)
using, respectively, (3.43) and (3.42). According to (3.43) and (3.42),

I2 ≤ 2π
√

2πe2ϕX(h)
√

DSNt(h)(h) exp
{
− λtϕX(h)Q3(h)

4(|∆(h)|+ 2H(h))2A2(h)

}
·
∑
k

∫ uk+1

uk

exp{−λtϕX(h)σ2(h)lh(H(h))(u− uk0)2/2}

· exp{−ϕX(h)(1− |fX(h)(2πu)|2)}

≤ 2π
√

2πe2ϕX(h)

√
EX2(h)

σ(h)
exp

{
− λtϕX(h)Q3(h)

4(|∆(h)|+ 2H(h))2A2(h)

}
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·
∑
k

sup
uk<u<uk+1

exp{−ϕX(h)(1− |fX(h)(2πu)|2)}. (3.45)

Further, let us find τ(h) such that

Q(h) =

∫
|y|≤τ(h)

pX′ (h)(y)dy ≥ 1− e−c, c > 0. (3.46)

It was proved in Theorem 6.1 in (Saulis and Statulevičius 1991: 185) that∫
|y|≥τ(h)

pX′ (h)(y)dy ≤ exp{−(Ã− h)τ(h)}ϕX′ (Ã)ϕ−1
X′

(h),

if Ã > h ≥ 0. Hence

exp{−(Ã− h)τ(h)}ϕX′ (Ã)ϕ−1
X′

(h) ≤ exp{−c}, c > 0.

It is enough that

τ(h) =
c+ ln(ϕX′ (Ã)/ϕX′ (h))

Ã− h
> 0, Ã ≥ h > 0, c > 0, (3.47)

where ϕX′ (Ã), ϕX′ (h) are defined by (1.20). Next, if ∆(h) =]−τ(h), τ(h)[,
then recalling (D′), we derive

pX′ (h)(y) = ϕ−1
X′

(h) exp{hy}pX′ (y) ≤ A(h) <∞,

where
A(h) = ϕ−1

X′
(h) exp{hτ(h)}A <∞, c > 0. (3.48)

It remains to evaluate
∑

k sup
uk<u<uk+1

exp{−ϕX(h)(1− |fX(h)(2πu)|2)}. Re-

mark that Lemma 3.2 holds with

g(u) = e−ϕX(h)(1−|fX(h)(2πu)|2) = e−ϕX(h)
∞∑
k=0

|fX(h)(2πu)|2kϕkX(h)

k!
.
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Here (see Saulis and Statulevičius 1991: 186),

|fX′ (h)(2π(u+ s))− fX′ (h)(2πu)| ≤ 2πs
( ∞∫
−∞

y2pX′ (h)(y)dy
)1/2

= 2
√

2πσ(h)s.

Hence, |g(u+ s)− g(u)| ≤ 2
√

2πσ(h)s. Accordingly, Lemma 3.2 holds with

K := K̃(h) = 2
√

2πσ(h), V := V (h) =

∫ ∞
−∞

g(u)du ≤ A, (3.49)

as ∫ ∞
−∞
|fX(h)(2πu)|2du ≤ pX′ (h)(0) ≤ A.

Therefore, taking (3.2) into consideration, together with (3.41) and (3.49), we
can write∑

k

sup
uk<u<uk+1

exp{−ϕX(h)(1− |fX(h)(2πu)|2)}

≤ 6H(h)A
(4π
√

2σ(h)

4H(h)
+ 4
)

= 6A(
√

2πσ(h) + 4H(h)). (3.50)

Substituting (3.46)–(3.48) and (3.50) into (3.45) we derive

I2 ≤ c2(h) exp{−λtc3(h)}. (3.51)

where c2(h) and c3(h) are defined by (3.24), (3.25). Finally, (3.32) (3.40)
(3.51) leads to (3.22).

Let us derive estimates (3.26)–(3.28). The use of (3.1), (3.13) and (3.10) gives

σ2(h) = σ2
(

1 + θ
∞∑
k=3

k(k − 1)δk−2
)

= σ2(1 + θg1(δ)), (3.52)

Γ4(X(h)) ≤ (σM)2
∞∑
k=4

k(k − 1)(k − 2)(k − 3)δk−4 = g2(δ)(σM)2, (3.53)

if 0 ≤ h ≤ δ/M, 0 < δ < 1. Here g1(δ) and g2(δ) are defined by (3.29). Note
that

E(X(h)− µ(h))4

σ2(h)
=

Γ4(X(h))

σ2(h)
+ 3σ2(h).
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Consequently in view of (3.52), (3.53) together with σ ≤M/2, we evaluate

|E(X(h)− µ(h))4|
σ2(h)

≤M2g(δ), (3.54)

where g(δ) defined by (3.30). Hence

H(h) ≤ 2Mg1/2(δ) (3.55)

by (3.39) and (3.54). Here g(δ) > 0, if 0 < δ < 1− 3
√

18/3.
Employing (3.9), (B̄0), together with K ≤M/2 < M, we imply

EX2(h) = ϕ−1
X (h)

(
EX2 + θEX2

∞∑
k=3

k!

(k − 2)!
(Kh)k−2

)
= ϕ−1

X (h)EX2(1 + θg1(δ)), (3.56)

if 0 ≤ h ≤ δ/M. Further, we will need the estimate

ϕX−µ(z) = exp
{ ∞∑
k=2

1

k!
Γk(X)zk

}
= exp

{1

2
σ2z2

(
1 + 2θ

∞∑
k=3

(M |z|)k−2
)}

= exp
{1

2
σ2z2

(
1 + θ

2δ1

1− δ1

)}
,

if |z| ≤ Ã = δ1
M , 0 < δ1 < 1. Thus

exp
{1

2
σ2z2g1(δ1)

}
≤ |ϕX(z)| ≤ exp

{1

2
σ2z2g2(δ1)

}
, (3.57)

where g1(δ1) and g2(δ1) defined by (3.31). From (3.47) follows that δ ≤ δ1.
Besides g1(δ1) > 0, if 0 < δ1 < 1/3. The apply of (3.52), (3.56) and (3.57),
gives

EX2(h)

σ2(h)
≤ EX2g3(δ)

ϕX(h)σ2
≤ EX2

σ2
g3(δ), (3.58)

for h ≥ 0. Here g3(δ) defined by (3.30). Note that g3(δ) > 0, if 0 < δ <
1− 3
√

18/3.
The next step is to estimate τ(h) and A(h) defined, respectively, by (3.47)
and (3.48). Recalling (3.57) and observing that Ã = δ1/M, σ ≤ M/2, h ≤
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δ/M < Ã let us to assert,

τ(h) ≤
c+

1

2
σ2Ã2g2(δ1) +

1

2
σ2h2g2(δ1)

Ã− h
≤ Mc

δ1 − δ
+

δ2
1M

4(δ1 − δ)
, (3.59)

and

A(h) ≤ exp
{ δ2

1δ

4(δ1 − δ)
+

cδ

δ1 − δ

}
A, (3.60)

where c > 0 and A > 0 are defined by (3.46) and (D′). Finally, employing
(3.55)–(3.60), gives estimates (3.26)–(3.28). 2

3.3. Conclusions of Chapter 3

1. The suitable bound (3.3) and general Lemma 1.3 lead to proof asymp-
totic expansion that take into consideration large deviations in the Cra-
mér zone for the density function of the standardized compound Pois-
son process (see Theorem 3.1). Additionally, S. V. Statulevičius’ known
estimates for characteristic functions lead to estimate the reminder
term (3.19) of aforementioned asymptotic expansion (3.21).

2. The result on asymptotic expansion that take into consideration large
deviations in the Cramér zone for the density function of the standard-
ized compound Poisson process extends asymptotic expansions for the
density function of the sums of non-random number of summands con-
sidered in the works by Saulis (1991), Deltuvienė and Saulis (2001,
2003b).



General conclusions

1. Having explored instances of large deviations for a distribution of the
standardized sum of a random number of summands of i. i. d. weighted
random variables, it was noted that in the thesis obtained theorems of
large deviations in both the Cramér and the power Linnik zones and
exponential inequalities can be regarded as extension of the theorems
of large deviations and exponential inequalities for the sums of non-
random number of summands.

2. In the thesis, obtained theorems of large deviations in the Cramér zone
and exponential inequalities for weighted random sum can be regarded
as generalization of the works (Statulevičius 1967; Saulis 1978; Saulis
and Deltuvienė 2007). It should be emphasized, as distinct from the
aforementioned works, in the thesis, the instance where characteristic
function of the separate summand of the sum of a r. n. s. is not analytic
in a vicinity of zero is also considered.

3. The results of the thesis lead us to large deviation theorems for the
standardized compound and mixed Poisson processes that are largely
used in insurance and finance mathematics.

4. The result on asymptotic expansion that take into consideration large
deviations in the Cramér zone for the density function of the standard-
ized compound Poisson process extends asymptotic expansions for the
density function of the sums of non-random number of summands.
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