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Bordallo López, Miguel, Designing for energy-efficient vision-based interactivity
on mobile devices. 
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering, Department of Computer Science and Engineering; Infotech Oulu
Acta Univ. Oul. C 512, 2014
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

Future multimodal mobile platforms are expected to require high interactivity in their
applications and user interfaces. Until now, mobile devices have been designed to remain in a
stand-by state until the user actively turns it on in the interaction sense. The motivation for this
approach has been battery conservation.

Imaging is a versatile sensing modality that can enable context recognition, unobtrusively
predicting the user's interaction needs and directing the computational resources accordingly.
However, vision-based always-on functionalities have been impractical in battery-powered
devices, since their requirements of computational power and energy make their use unattainable
for extended periods of time.

Vision-based applications can benefit from the addition of interactive stages that, properly
designed, can reduce the complexity of the methods utilizing user feedback and collaboration,
resulting in a system that balances computational throughput and energy efficiency.

The usability of user interfaces critically rests on their latency. However, an always-on sensing
platform needs a careful balance with the power consumption demands. Improving reactiveness
when designing for highly interactive vision-based interfaces can be achieved by reducing the
number of operations that the application processor needs to execute, deriving the most expensive
tasks to accelerators or specific processors. 

In this context, this thesis focuses on investigating and surveying enablers and solutions for
vision-based interactivity on mobile devices. The thesis explores the development of new user
interaction methods by analyzing and comparing means to reach interactivity, high performance,
low latency and energy efficiency. The researched techniques, ranging from mobile GPGPU and
dedicated sensor processing to reconfigurable image processors, provide understanding on
designing for future mobile platforms.

Keywords: computer vision, energy-efficiency, mobile device, user interface 





Bordallo López, Miguel, Energiatehokas kamerapohjainen vuorovaikutteisuus
mobiililaitteissa. 
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Tieto- ja sähkötekniikan tiedekunta,
Tietotekniikan osasto; Infotech Oulu
Acta Univ. Oul. C 512, 2014
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Tulevaisuuden multimodaalisten mobiilialustojen sovellusten ja käyttöliittymien odotetaan vaa-
tivan käyttäjältä läheistä vuorovaikutusta. Tähän saakka mobiililaitteet on suunniteltu pysymään
valveustilassa siihen asti kunnes käyttäjä aktivoi laitteen. Tällä lähestymistavalla on pyritty
pidentämään akun kestoa.

Kuvantaminen on monipuolinen aistimodaliteetti, joka mahdollistaa kontekstin tunnistuksen
ennakoimalla huomaamattomasti käyttäjän vuorovaikutustarpeet ja suuntaamalla laskennalliset
resurssit asianmukaisesti. Näköpohjaiset, jatkuvasti päällä olevat toiminnot ovat kuitenkin epä-
käytännöllisiä akkukäyttöisissä laitteissa sillä niiden laskennallisen suoritustehokkuuden ja akun
keston vaatimukset tekevät pidemmästä yhtäjaksoisesta käytöstä mahdotonta.

Kamerapohjaiset sovellukset voivat hyötyä interaktiivisten vaiheiden lisäämisestä. Oikein
suunniteltuina ne vähentävät käyttäjäpalautetta ja -yhteistyötä hyödyntävien menetelmien moni-
mutkaisuutta, joka saattaa laskennallisen suoritustehokkuuden ja energiatehokkuuden tasapai-
noon.

Käyttöliittymien käytettävyys on kriittisesti riippuvainen niiden viiveestä. Jatkuvasti päällä
oleva aistiva alusta edellyttää kuitenkin tasapainottelua virrankulutuksen vaatimusten kanssa.
Hyvin interaktiivisia kamerapohjaisia käyttöliittymiä suunniteltaessa reaktiivisuuden parantami-
nen saadaan aikaan vähentämällä prosessorin käsittelemien operaatioiden määrää, johtamalla
kuormittavimmat tehtävät kiihdyttimille tai erillisille prosessoreille. 

Tässä kontekstissa, väitöskirjatutkimus keskittyy tutkimaan ja tarkastelemaan mahdollistajia
ja ratkaisuja kamerapohjaiseen vuorovaikutukseen mobiililaitteissa. Väitöskirja tutkii uusien
käyttäjäinteraktiomenetelmien kehittämistä vuorovaikutusta, suoritustehoa, alhaista viivettä ja
energiatehokkuutta tuottavia keinoja analysoimalla ja vertaamalla. Tutkitut tekniikat mobiilista
grafiikkaprosessoreista ja erillis sensoriprosessoinnista uudelleen konfiguroitaviin kuvaprosesso-
reihin tuovat ymmärrystä tulevaisuuden mobiilien alustojen suunnitteluun.

Asiasanat: energiatehokkuus, konenäkö, käyttöliittymä, mobiililaite
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Φk state transition matrix at time instant k

Γkεk uncertainty of the motion model at time instant k

εk process noise at time instant k

Qk covariance matrix at time instant k
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lcam camera latency

ldis display latency

lproc processing latency

ltot total latency
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1 Introduction

"Research has shown how to solve the problems, now it is up to the industry

to just implement them."

- A computer vision professor, several years ago.

Mobile communication devices have become attractive platforms for multimedia
applications as their display and imaging capabilities are improving together with the
computational resources. Many of the devices have increasingly been equipped with
built-in cameras that allow the users to capture high-resolution still images, as well
as lower resolution video frames. Lately, they have been equipped with a large set of
sensors, large touch-screens and additional cameras, while future devices are expected
to include even 3D displays. Fig. 1 depicts a modern mobile device equipped with
several cameras and sensors.

Fig 1. Nokia Lumia 920. Current mobile devices include several cameras, sensors, and a
large display within a very constrained space.
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The capabilities of mobile phones in portable imaging applications are on par or
exceed those of laptop computers, despite the order of magnitude disparity between the
computing power budgets. In particular, for interactive purposes, the size and semi
dedicated interfaces of hand-held devices pose significant opportunities over general
purpose personal computer technology. Table 1 summarizes the differences between a
laptop and a hand-held mobile device.

Table 1. Characteristics of typical laptop computers and hand-held mobile devices and typi-
cal laptop/mobile ratios.

Laptop computer Hand-held device Typical ratio

Still image resolutions up to 2 Mpixel up to 12 Mpixel 0.20x

Number of displays 1 1-2 0.5x

Number of cameras 0–1 1–3 0.5x

Video resolution (display) 1920x1080/30Hz 1920x1080/30Hz 1x

Display size (inches) 10–15 2–5 5x

Processor clock (GHz) 1–3.5 0.6–2.7 1.5x

Display resolution (pixels) 1024x768–2408x1536 320x240–1920x1080 4-16x

Processor DRAM (MB) 1024–8192 256–2048 4-16x

Storage(GB) 80–1000 8–64 10–40x

Processor TDP (W) 9–55 0.5–1 10–100x

Battery capacity (mAh) 5000–13000 1000–2800 2–10x

Active-use battery life (h) 3-10 3-10 1x

On the other hand, even the most recent mobile communication devices have not
used their sensing and computing resources in a truly novel manner, but are merely
replicating the functionalities already provided by other portable devices, such as digital
still and video cameras (Hannuksela 2008). Also the popularity of laptop PCs and
portable video players, as a means to access multimedia content via WiFi or mobile
networks, has clearly influenced the hand-held application designs. These design
decisions combined with the battery-powered characteristic of hand-helds result in
devices designed to remain in a stand-by state, until the user actively turns it on in the
interaction sense.

However, if cleverly designed, mobile devices can be used in manners that essentially
deviate from laptop and desktop computers. Their small size, multiple cameras, and
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semi-dedicated user interfaces are still under-exploited assets. Properly combined,
these characteristics should be used to build concepts that can result in novel user
interfaces and applications (Ronkainen 2010). For example, the sensory capabilities of
current devices allow certain control operations with taps, swipes and device shaking.
Nonetheless, the battery-powered quality of these devices poses an additional challenge
related to power consumption and energy efficiency.

1.1 Motivation

As it has been shown in the case of interactive games, it can be observed that when
sufficient feedback is offered, the user will collaborate to ease the task at hand, improving
the results and user experience. Future mobile platforms are expected to allow always-on

interactivity in their applications and user interfaces. A key advantage of using cameras
as an input modality is that it enables recognizing the context in real-time and, at
the same time, provides for single-handed operations in which the users’ actions are
recognized without needing interactions with the screen.

Computer vision enables camera data to be utilized in user interfaces to analyze the
context and automatically detect the user intentions. However, many times computer
vision methods are created independently from the system where they are intended to be
used. The small size and relatively reduced computing capabilities of a mobile device
introduce important additional constraints. The result is that many advanced vision
algorithms are still unrealizable in real devices.

Mobile devices have been identified as promising platforms for vision-based
applications (Zhou et al. 2008). As their computational resources grew, they became
increasingly suitable for tasks related to the analysis and understanding of images and
videos. However, this type of applications still pose significant challenges. The key
challenges posed by this scenario of vision-based interactivity on mobile devices are
two-fold:

1. Computing and interactivity: Mobile device developers do not always consider
the needs of computer vision. This results in vision-based applications that are in
fact impractical, since their requirements of computational power and energy make
them unusable for extended periods of time. Consequently, their computational
throughput needs should be carefully balanced with the energy-efficiency of the
system. The computational load can benefit from the addition of interactive stages
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that, properly designed, can reduce the complexity of the methods utilizing user
feedback and collaboration.

2. Sensing and interactivity: The lack of understanding of the needs of the camera-
based applications make the designers opt for sub-optimal solutions, which do not
necessarily include the functionality that is very much needed. This is patent in the
fact that cameras and sensors have been kept off for most of the time. This becomes
even more apparent in the case of mobile user interactivity, where the latency and
energy-efficiency needs are even more pronounced. Most mobile devices, even now,
are unable to notice if they are being held or watched, ignoring even the context that
surrounds them. The consideration of the sensing platform and its relationship with
the interactivity needs is paramount to improve the user experience.

There is a very notable gap between opportunities and reality. The future mobile
designers need to establish a relationship between mobile device development and its
constraints in power dissipation and energy efficiency, and vision-based interactivity
that requires real-time computationally expensive algorithms. Both problems are
intrinsically interrelated and should not be considered separately. The work presented in
this thesis, situated in the intersection between mobile computing, embedded systems
development and computer vision, aims to bridge the gap, providing understanding on
how to build the future mobile platforms in order to satisfy camera-based interactivity
requirements. Figure 2 depicts a diagram of the scope of the thesis.
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Fig 2. A diagram that covers the scope of the thesis.

The author believes that although many advanced computer vision based interaction
methods have been demonstrated, their actual implementations as embedded solutions
are still far from being useful. This derives, at least partially, from the implementation
challenges of the highly interactive applications due to power efficiency, computing
power and cost issues that many times call for a complete redesign of the applications
and even the mobile platform itself. This thesis presents a set of concepts that can be
used as possible solutions for such implementation problems. These challenges were
revealed when the implementation of highly interactive applications was carried out on
current mobile platforms. Case studies of these application types are presented and the
used solutions are described at an application and system level.
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1.2 Research objectives

The main research objective of this thesis is to gain understanding on how to build the
future mobile platforms in order to satisfy their interactivity requirements, highlighting
the development challenges and trade-offs that need to be dealt with battery powered
devices.

In this context, this thesis establishes a relationship between vision-based interac-
tivity and energy efficiency, formulating the fundamental principles that appear to lie
beneath previous observations on camera-based user interactions of mobile devices.
In addition to the analysis of the user interfaces, the work provides insight into the
computing needs and characteristics of the future camera-based applications.

1.3 Contributions of the thesis

The thesis contains contributions to several individual topics but also as a whole, since
the different computing needs and characteristics of the future vision-based applications,
from interactive camera applications to entire user interfaces, are discussed.

Eight original publications, Bordallo López et al. (2007), (2009), (2011a),
(2011b), (2011c), (2012a), (2012b), (2014), reflect the author’s contribution to
the research field. The author of this thesis had the main role in all the publications. The
article co-authors provided important sub-solutions and assisted in writing.

The work described in this thesis has been mainly performed by the author under the
supervision of Professor Olli Silvén, who has provided the guidelines for the work.
The measurements and the implementations in sections 7.3.1 and 7.4.1 of the thesis
were done in collaboration with Dr. Alejandro Nieto, and their analysis has not been
published before.

In the following list summarizes the main original contributions of the thesis, each
one depicted in a separate chapter:

1. Showing the importance of real-time feedback, through the implementation of an
interactive multi-frame reconstruction application, including the novel concept of
integrating quality assessment in the image capturing stage.

2. A novel analysis of the computing and sensing needs of camera-based user interface,
through the implementation of new interaction methods on a virtual 3-D user interface
based on face-tracking, demonstrated on a real mobile device. The implementation
prototype is described at system and implementation levels.
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3. Showing the importance of using all the available resources to hide application
latency and maximize computational throughput. This was done through the analyses
of alternative implementation principles for vision-based interactivity, covering
general purpose serial implementations, GP-GPU based parallel implementations
and dedicated processors. In addition, the challenges of highly interactive uses are
also identified.

4. Bringing vision-based interactive computing to other developers through the iden-
tification of missing and unsupported abstractions of the current mobile graphics
processing units APIs and tool-chains. This provides for novel insight into efficient
high-performance mobile GPGPU implementation of interactive applications.

5. Steps towards always-on vision-based interactivity, analyzing its relationship with
energy-efficiency. A novel insight on the use of a dedicated architecture for camera
sensor processors that independently carry out most of the necessary analytic
processing.

6. Advances towards platform level adaptability, presenting a comparison of reconfig-
urable architectures applied to interactive computer vision, identifying trade-offs and
challenges.

1.4 Organization of the thesis

The thesis focuses on identifying the possible solutions for the challenges posed
by highly interactive camera-based applications and user interfaces. Whenever new
technological concepts are going to be integrated into an existing application system,
the particularities of the implementation can have an impact in the whole platform
design, and even the design principles themselves. The solutions range from software
and algorithmic selection and system level redistribution of the tasks, achievable with
current mobile devices, to the integration of dedicated solutions that call for a complete
architecture reorganization or redesign. In this context, the structure of the thesis can
be compared to a spiral, starting from the application domain and vision-based user
interfacing, and progressing through issues of system organization and platform-specific
implementations and designs.

Figure 3 shows the development cycle used for enabling new advanced vision-based
applications and the chapters of this dissertation that correspond to each phase. The
first phase is the development of vision-based applications and the identification of
their computational and energy needs. Their interactivity principles are utilized in the
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creation of complete vision-based interfaces that, properly designed, can be used to
build novel applications. This is followed by studying the organization of the computing
resources in the mobile device, characterizing the mobile architecture in terms of
performance and power consumption. The analysis is proceeded by the optimization of
the implementations in specific computing platforms, such as a mobile GPUs. Then,
a relationship between the computing platform and the sensing devices is analyzed,
formulating the principles of an energy-efficient sensing platform. Last, the platforms
themselves are studied and efficient reconfigurable processors are proposed. The final
integration of the redesigned platforms in future systems results in the enablement of
new applications that allows the start of a new iteration of the process.

Fig 3. A spiral reflecting the outline of the thesis. The complete development cycle, from
application development to hardware design, is considered.

Although the thesis presents a structure as a whole, each part of the thesis can be
considered to be self-contained, presenting an introduction to the specific challenge, a
review of the related work in the field, and an experimental evaluation of the solutions
proposed, identifying the advantages and shortcomings. The thesis consists of six parts
presented in dedicated chapters, and it is organized in the following way:
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– Interactive Camera Applications for mobile devices: in chapter 2, the inclusion
of interactive stages in camera applications is discussed. The relationship between
computing and interactivity is described, analyzing the challenges presented by the
high computational throughput posed by their combination. The characteristics of
advanced camera applications are identified. As a result, a novel interactive camera
application is implemented: a multi-frame reconstructor for mobile devices that
includes an interactive capture stage and user feedback.

– Vision-based user interfaces for mobile devices: the use of camera-based methods
from the viewpoint of interactive applications and user interfaces is studied in
chapter 3. As a background to the work, different computer vision-based interaction
techniques are reviewed and their characteristics identified. The combination of
interactivity and camera-based sensing is discussed with emphasis on its main
challenge, a low latency implementation. As a result, a vision-based user interface
is implemented: a virtual 3-D display concept which utilizes head-tracking. To
evaluate the usefulness of the approach, several interaction methods are proposed in
the context of the implemented User Interface.

– Mobile platform challenges in interactive computer-vision: chapter 4 discusses
the mobile device’s particularities that lay behind the vision-based user interfaces and
interactive applications. The computing and sensing challenges that interactivity
poses to battery-powered devices are identified. As a result of this analysis, an
architectural design based on heterogeneous mobile computing using asymmetric
multiprocessing in the context of camera and sensor-based interactivity is proposed.

– GPGPU-based interaction acceleration for mobile devices: chapter 5 presents
the use of mobile GPUs to perform general computations that can be used to
accelerate mobile interactive applications and User Interfaces. As a background, the
particularities of mobile GPUs in the context of general computation are described.
The computing challenges of interactive vision-based applications are analyzed. The
result is the development and implementation of several computer-vision algorithms on
a mobile GPU, which has an impact on the consideration of the computing platform.
Evaluated in terms of performance and energy efficiency, the applicability of the
principles to interactive vision-based applications and user interfaces is discussed.

– Sensing-assisted vision-based interactivity: chapter 6 shows how sensors can be
used to assist the context recognition on mobile devices, and how they improve the
vision-based user interfaces and applications. The integration of sensor data with
camera data is described. The sensing and interactivity challenges, and their impact
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on battery life and energy efficiency is discussed. As a result, the use of specific
sensor processors to improve the performance and energy efficiency of camera and
sensor-based applications is discussed. Sensory integration poses an impact on the
design of the sensing platform.

– Reconfigurable computing for vision-based user interfaces on mobile devices: in
chapter 7, reconfigurable computing for vision-based interactive applications and
UIs is described. With an emphasis in the impact of the combined consideration of
computing, sensing and interactivity, three reconfigurable architectures, an EnCore
processor with a Configurable Flow Accelerator, a hybrid SIMD/MIMD reconfigurable
coprocessor, and Transport-Triggered Architecture processors, are presented and
analyzed in terms of performance and energy efficiency. The advantages of integrating
dedicated reconfigurable resources in mobile devices is discussed. The results have
significance in the adaptation of the design principles at a platform level.

Each part of the thesis brings understanding on how computing, sensing and
interactivity are intertwined and closely related with the energy efficiency of the system
on the application, interface, architecture and platform levels. The consideration of the
thesis as a whole provides insight into the process of creating novel and applicable
concepts in the context of vision-based applications and user interfaces.
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2 Interactive camera applications for mobile
devices

"Particularly frustrating is that even in platforms like smartphones, which

encourage applet creation and have increasingly capable imaging hardware,

the programming interface to the imaging system is highly simplified,

mimicking the physical interface of a point-and-shoot camera."

- Adams et al. (2010)

This chapter introduces concepts on vision-based user interactivity applied to camera
applications. Cellular phone cameras have traditionally been designed to replicate the
functionalities of digital compact cameras. They have been included as almost standalone
subsystems rather than as an integrated part of the device interfaces. However, the
programmability of modern devices and their increasing computational resources have
enabled the incorporation of the camera systems as a crucial part of vision-based mobile
interactive applications. However, this scenario requires low level image processing
operations that are computationally costly and power-hungry.

The computational load can benefit from the addition of interactive stages that,
properly designed, can reduce the complexity of the methods utilizing user feedback and
collaboration. In this context, this chapter shows the importance of real-time feedback
through the inclusion of an interactive stage that provides quality assessment on a
camera application: a multi-frame reconstructor.

The application, used throughout the thesis as the primary camera application
example that integrates the different concepts of high interactivity and energy-efficiency,
shows the benefits from an interactive and enriched user experience, giving insight into
how the analysis of image sequences captured by the cameras of mobile devices can be
used for new self-intuitive camera applications.

2.1 Interactive camera applications

An interactive camera application is essentially an application that uses interactivity and
computer vision techniques to enhance the acquisition of the best possible images in
certain scenarios. In this context, a suitable solution consists of the incorporation of

29



interactive stages that facilitate the image capturing process. If sufficient feedback on
the quality is offered, the user will collaborate to improve the final results.

The computational stages of interactive camera applications can usually be divided
into two types. An online loop faces the analysis of viewfinder frames to determine the
conditions of the subsequent image capture, while the second stage should analyze the
captured or result image and provide feedback about its suitability for the desired results.
Both stages can be considered to be data, memory and computationally intensive. In this
context, it is essential that the added processing stages do not substantially add high
latency to the capture stage and that the analysis of the captured frame happens in a
reasonable time that allows a fast re-capture in case it is needed. Figure 4 shows the two
computational stages of an interactive camera application.

Fig 4. Computational stages of an interactive camera application. An online loop analyzes
video frames in real-time, assessing its properties and giving feedback to the user. The
offline stage process the selected images to compose the final result.
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2.2 Related work

Recently, mobile devices equipped with a camera have been incorporating certain
interactive stages to create better pictures. Current built-in camera applications are able
to capture, together with regular still pictures, images composed by several frames such
as panoramas, motion images, photospheres, high dynamic range pictures, or images
with strong ’bokeh’ by simulating lens blur (Google Inc. 2014) (Nokia Inc. 2014a).
Standalone applications that can be found in application stores range from document
scanners (Intsig-Information. 2014) and photo-collages (Imagination-Unlimited. 2014)
to face beautification (Tacoty-CN. 2014) and distortion (Swiss-Codemonkeys. 2014)
applications. These applications usually tackle the analysis and fusion of several images
into a single one that presents the desired enhanced characteristics.

The principles that lay behind them can be found in the literature. A good survey
of work on mobile multi-frame techniques can be found in the work of Pulli et al.

(2009a). Among the applications utilizing several blended input images, panorama
imaging was among the first ones considered for mobile devices. Boutellier et al.

(2007) and Bordallo López et al. (2007) introduced a mobile panorama system based
on phase correlation. The system was the first one able to compute 360◦ images in
real-time on a commercial mobile device. Later, Adams et al. (2008) presented another
online system for building 2D panoramas. Based on aligned integral projections of the
edges, they used viewfinder images for triggering the camera whenever it is pointed
at previously uncaptured part of the scene. Ha et al. (2008) also introduced the auto
shot interface to guide mosaic creation using device motion estimation. Working in
real-time, the application is only able of coping with four high-resolution images, and no
quality assessment on the captured set is offered. Other panorama creation applications
include the work of Xiong & Pulli (2010) and Wagner et al. (2010). Kim & Su (1993)
used a recursive method for constructing super resolution images that is applicable
to mobile devices. However, no mobile implementation is presented. Another super
resolution technique-based on soft learning priors can be seen in the work of Tian et al.

(2011). Also related to down-sampling and super resolution techniques, recent Nokia
Pureview devices include in their image pipeline a pixel binning technique to improve
the quality of still images and video capturing, while allowing for high quality digital
zooming (Vuori et al. 2013).

Bilcu et al. (2008) proposed a technique for creating high resolution high dynamic
range images, while Gelfand et al. (2010) proposed the fusion of multi-exposure images
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to increase the quality of the resulting images. Their methods, aimed to be integrated
in the camera pipeline, are computationally efficient, but no performance analysis is
offered.

Bordallo López et al. (2011a) proposed the composition of a feature cloud panorama
to be utilized in interactive image recognition applications. Based on real-time feature
extraction and registration, the proposed system is able to compose on-the-fly a feature-
cloud that could be used in image recognition. Figure 5 depicts the feature-cloud
panorama creation process.

Fig 5. A feature-cloud panorama construction process. The features of a set of video-frames
are aggregated into a wide field-of-view feature cloud.

Certain typical tasks, such as the capture of images from documents or business cards,
have been incorporated into mobile devices. Related works are the mosaicking technique
described by Hannuksela et al. (2007c) or the interactive assessment of the quality of the
documents proposed by Erol et al. (2008). Both applications, implemented for real
mobile devices, introduce an interactive stage to improve the capture of the source
images. However, the final results rely on a computationally heavy post-processing
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stage to compose the final document mosaic. A re-implementation by Bordallo López
et al. (2009) aims at accelerating the interactive stage and the final post-processing
stage by including software optimization techniques. Recently, several commercial
applications designed to ease the document scanning process have appeared in the
mobile application stores. However, those applications still lack interactivity and user
feedback and require slow manual input to correct capturing defects. Figure 6 depicts
a document captured by CamScanner (Intsig-Information. 2014), the most popular
document scanning application for mobile devices.

Fig 6. An example document captured by the CamScanner application on an Android device.
The non-perpendicularity to the camera is not automatically detected. Details from the text
appear blurry.

Other applications have emerged as a way of interactively modifying the parameters
of the camera capture applications. For example, Chung et al. (2009) created an
automatic way of classifying the capture conditions in one of seventy six available
modes, offering feedback to the user of the most probable ones. Lipowezky et al. (2010)
proposed the classification of indoor and outdoor images to adjust the capture conditions
while Huttunen et al. (2011) implemented the real-time detection of landscape scenes to
automatically switch the camera mode. Finally, Luxenburger et al. (2012) proposed an
interactive way of creating diffusion filters during the image capturing process.

The previous works have been aiming at introducing new interactive camera
applications in mobile devices. From the evaluation of the literature, it can be seen
that many applications and methods are claimed to be applicable for mobile devices.
However, the works analyzed do not offer a real evaluation of the implementation in
terms of performance and energy consumption. Without this evaluation, it is difficult to
assess the validity of these approaches being included in commercial devices. To fit
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on low resource platforms, the real-time implementation of these techniques does not
only consist of algorithm tweaking. Many times, the process requires a revision of the
approaches, considering the application needs in terms of energy consumed and latency,
when not a reimplementation from scratch.

2.3 Interactive multiframe reconstruction for mobile devices

Multiframe reconstruction techniques can be included in several interactive applications,
such as scene panorama imaging, hand-held document scanning, context recognition,
high dynamic range composition, super resolution imaging or digital zooming. The prac-
tical challenges of multiframe reconstruction in mobile devices lay in the implementation
of the reconstruction techniques on a platform with constrained resources.

Multiframe reconstruction is a process that merges the information obtained from
several input frames into a single result (Bordallo López et al. 2012b) (Boutellier
et al. 2007) (Hannuksela et al. 2007c). The result can be an image that presents an
increased field of view or enhanced quality, but also a feature cloud with combined
information obtained from the inputs that can be used for example in object recog-
nition (Bordallo López et al. 2011a) or even 3D reconstruction (Klein & Murray
2009).

While not a replacement for specific cameras, wide angle lenses or flatbed scanners,
a multiframe image reconstructing application running on a cellular phone platform is
essentially an interactive camera-based scanner that can be used in less constrained
situations. The usage concept of the hand-held solution offers a good alternative, as the
users cannot realistically be expected to capture and analyze single shot high-quality
images of certain types of targets, such as broad scenes, three-dimensional objects, big
documents, whiteboard drawings or posters.

In this context, to demonstrate camera-based interactivity, the author of this thesis has
built examples of mobile multiframe reconstruction applications. Traditional multiframe
reconstruction applications usually rely on the capture of several still frames that are
later heavily processed offline, and blended together. Others rely on the process of
compressed video frames. However, both approaches require large amounts of memory
that cannot be mitigated with heavy compression, due to the apparition of artifacts.
Instead, this chapter presents an approach that relies on real-time user interaction and
capturing of HD-720p resolution images that are registered and stitched together. The
analysis of video-frames enables the assessment of the quality of the image capturing
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process, used in the interactive stage where the user can utilize the feedback offered by
the device to improve the final result.

In addition to interactivity benefits, the use of low resolution video imaging can
be defended from purely technical aspects. In low resolution mode, the sensitivity
of the camera can be better, as the effective size of the pixels is larger, reducing the
illumination requirements and improving the tolerance against motion blur (Vuori et al.

2013). On the other hand, a single-shot high resolution image, if captured properly,
could be analyzed and used directly after acquisition, while the low resolution video
capture approach requires significant post-processing effort.

Figure 7 shows the four steps of a multiframe reconstruction application. In the
proposed interactive solution, the capture interface sends images to the frame evaluation
subsystem and gives feedback to the user. The best frames are selected. The images are
corrected, unwarped and interpolated. The final stage constructs the resulting image.

Fig 7. The four steps of a multiframe reconstruction application. Image registration aligns
the features of each frame. An image selection subsystem, based on quality assessment,
identifies the most suitable input images. A correction stage unwarps and enhances the
selected frames. A blending algorithm composes the result image by reconstructing the
final pixels. (Bordallo López et al. 2012b) c©Springer.
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2.3.1 Interactive capture

To reconstruct a single image from multiple frames, the user faces the capture of several
good quality partial images. The input frames are often far from perfect, while not
unsuitable for the reconstruction. The most relevant problem when capturing several
frames that are going to be merged is the camera orientation and perpendicularity to the
target among the set of captured frames. The user might involuntarily tilt or shake the
camera, causing the frames to have a lack of focus or motion blurriness, which will
result in a low quality reconstructed image. Because a hand-held camera is used, it
is difficult for the user to maintain a constant viewing angle and distance, so the user
interaction scheme just aims at capturing the targets using a free scanning path. Figure 8
shows the typical problems present during the capture stage and the proposed solutions
based on interactivity and quality assessment.

The key usability challenge of a hand-held camera-based multiframe reconstructor is
enabling and exploiting interactivity. For this purpose, the proposed solution is to let the
device interactively guide the user to move the device during the capture (Hannuksela
et al. 2007d)(Bordallo López et al. 2009)(Bordallo López et al. 2012b). This novel
solution has been adopted in recent commercial products such as the Nokia Panorama
software (Nokia Inc. 2014b).

In the interactive capture process, the user starts the scanning by taking an initial
image of some part of the target, for example a newspaper page or a whiteboard drawing.
Then, the application instructs the user to move the device to the next location. The
scanning direction is not restricted in any manner, and a zig-zag style path can be used.
Rotating the camera may be necessary to avoid and eliminate shadows or reflections
from the target, and it offers a useful degree of freedom.

The allowed free scanning path is a very useful feature from the document imaging
point of view; however, it sets significant computational and memory demands on
the implementation, and it prevents building final mosaics in real time. For a more
complete evaluation, a scene panorama application that limits the scanning path into a
unidirectional one was also developed. With this approach, a mobile device can be used
to stitch images on the fly, with the resulting images growing in real time with the frame
acquisition (Bordallo López et al. 2007). The memory requirements are smaller as not
all selected frames need to be stored until the end of the panorama blending process.

To obtain a coarse camera motion model, each new video-frame needs to be
individually processed to estimate motion. In this context, to provide a comparison, two
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Fig 8. Image acquisition problems and the proposed solutions. (Bordallo López et al. 2012b)
c©Springer.

different methods have been implemented. In the first one, a feature-based approach, the
estimation of the motion is based on modified Harris’ corners (Harris & Stephens 1988)
and a best linear unbiased estimator (Henderson 1975). This method is computationally
very fast, and able to provide for rotation and change of scale in addition to planar shift.
A detailed description of the subsystem can be found in the article from Hannuksela
et al. (2007b).

The second method, based on phase-correlation, utilizes the Fast Fourier Transform

to compute the displacements between frames (Vandewalle et al. 2006) and has been
reimplemented and improved by the author. This computationally efficient method is
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also able to handle rotated frames, and it is very robust to motion-blurred images, easily
found in hand-held video-frames. Also, since it relies in well-known operations such as
complex arithmetics and FFTs, it is easily optimizable for speed.

In addition to the coarse registration, the blurriness of each picture is measured and
eventual moving objects are detected (Boutellier et al. 2007). Based on shutter time and
illumination-dependent motion blur, the user can be informed to slow down when the
suitable overlap between images has been achieved (Hannuksela et al. 2007d), and a
new image for stitching is selected from among the image frames, based on quality
assessment. The user can also be asked to go back, or he can voluntarily return to lower
quality regions later in the scanning process. As a result, good partial images of the
target can be captured for the final stitching stage.

The practical result of the interactive capture stage is a set of high quality images
that are pre-registered and aligned. The coarse frame registration information based on
motion estimates computed during interactive scanning is employed as the starting point
when constructing the mosaic image. The strategy in scanning is to keep sufficient
overlaps between stored images to provision for frame re-registration using a highly
accurate feature-based method during the final processing step.

2.3.2 Quality determination and frame selection

Taking pictures of documents, posters or other close objects with a hand-held camera
is often hampered by the self-shadow of the device, appearing as a moving region
in the sequence of frames. In practice, the regions with moving objects, whether
they are shadows or something else, are not desirable when stitching the final image.
Instead of developing advanced methods for coping with these phenomena, the proposed
application mostly counts on user interaction to avoid the problems from harming the
reconstruction result.

The treatment of shadows, reflections or moving objects depends on the type of the
scene that is being processed. For every selected frame with natural scenes, if a moving
object is present and fits the sub-image, the image is blended, drawing a seam that is
beyond the boundaries of the object. If only a partial object is present, the part of the
frame without the object is the one that is blended.

The proposed novel approach also includes a patented frame selection system
that chooses only the best quality ones based on moving objects detection and blur
measures (Boutellier et al. 2007). This mobile system is the very first implementation
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of this selection method. Figure 9 shows the frame selection scheme applied in panorama
stitching.

Fig 9. The implemented frame selection scheme. (Boutellier et al. 2007) c©SPIE.

In the subsystem, a blur detection estimates the image’s sharpness by summing
together the derivatives of each row and each column. When an FFT-based method is
used for motion estimation, the calculated spectrum amplitude can be used by estimating
the amount of high frequency components on it. Motion detection is done in a very
efficient fashion to make the process fast. First, the difference between the current frame
and the previous frame is computed. The result is a two-dimensional matrix that covers
the overlapping area of the two frames. Then, this matrix is low-pass filtered to remove
noise, and is thresholded against a fixed value to produce a binary motion map. If the
binary image contains a sufficient amount of pixels that are classified as motion, the
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dimensions of the assumed moving object are determined statistically. These operations
are computed in real time to enable feedback to the user.

However, as the differences in the image content may distort the results, the accuracy
of motion estimates used for preliminary registration needs to be reasonable. In practice,
this is a computational cost, interactivity and quality trade-off. An increased accuracy
implies that less overlap is needed between frames and a decrease of the computing
requirements.

2.3.3 Accurate registration and blending

After on-line image capturing, the registration errors between the regions to be stitched
can be on the order of pixels that would be seen as unacceptable artifacts. In principle, it
would be possible to perform accurate registration during image capture, but building
final document images will in any case require post-processing to adjust the alignments
and scales.

The fine-registration employed for automatic mosaicking of document images is
based on a RANSAC estimator with a SIFT feature point detector (Lowe 2004). In
addition, graph-based global alignment and bundle adjustment steps are performed
in order to minimize the registration errors and to further improve quality. Finally,
warped images are blended to the mosaic, using Gaussian weighting. A more detailed
description of the implementation can be found in the work of Hannuksela et al. (2007d).

2.3.4 Performance analysis

The computing requirements of a multiframe reconstructor are quite significant for a
battery-powered mobile device, although the application can be broken down into the
interactive, real-time frame capture part, and the non-interactive final mosaic stitching
post-processor. It has to be noted that while the online loop needs to calculate the motion
and quality for every viewfinder frame, the post-processing stage, computationally
expensive, is only computed on the selected frames that will be part of the final mosaic.

The application has been developed on a Nokia N9 device. This device is based on
an OMAP 3630 System on Chip which integrates a 1 GHz Cortex A8 ARM. The Nokia
N9 has a 3.9 inches capacitive touchscreen with a maximum resolution of 854x480
pixels and an 8 Mpixel camera with a maximum video resolution of 2180x720 pixels.
The device includes a 1450mAh battery. The implementations and optimizations have
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been programmed utilizing standard C code, under a Maemo/Meego operating system.
Table 2 shows the computational and energy costs of the most expensive parts of the
HD-720p frame-based document scanning application when implemented entirely on
the application processor.

Table 2. Algorithm’s computational and energy costs per frame on an N9 (ARM Cortex-A8).

Computation time [ms] Energy consumption [mJ]

Online loop

Camera motion estimation 100 200

Quality assessment 50 10

Offline computations

Image registration 5000 800

Image correction 200 40

Image blending 100-300 40-60

The application has been implemented using only fixed point arithmetic to achieve
good performance on most devices. The implementations of the interactive capture stage
allow the processing of about 7.5 frames/second on Nokia N9 in HD-720p resolution
mode. Compared with a camera loop that operates at 30 frames/second, it means that
about one in four frames can be analyzed in real-time. The off-line stage operates at
about 0.2 frames/second, and depends both on the available memory resources and
processor speed.

High resolution video frames require a processing time that, although suitable
for interactivity purposes, might not result in the best user experience. Reducing the
resolution of the input frames proportionally decreases the needed processing times,
allowing a better user experience. Table 3 shows a comparison of the processing times
at different resolutions on a Nokia N9. The experiments show that processing time
increases almost linearly with the number of pixels and operations.

Due to the real-time performance of the application, the resulting blended image
preview is available immediately after the interactive capture stage, allowing the user to
attempt a recapture if necessary. The coarse result, sufficiently accurate for display on a
small screen, is then seamlessly replaced by the final high resolution image when the
offline stage is completed.
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Table 3. Application processing times at different resolutions on an N9 (ARM Cortex-A8).

320x240 640x480 1280x720 1920x1080

Online loop 15ms. 52ms. 150ms. 330ms.

Offline computations 500ms. 1900ms. 5400ms. 11900ms.

2.4 Discussion

The main contribution of this chapter is showing the relationship between interactivity
and improved quality, depicted in the implementation of an interactive multiframe recon-
struction application that includes the novel concept of integrating quality assessment
and real-time feedback in the image capturing stage.

The development and implementation of camera-based applications such as multi-
frame reconstruction suggest that relying on heavy, complex methods in a single
post-processing stage might not be the best strategy. The addition of interactive stages
that help the user collaborating in the acquisition and selection of the best possible
images can easily simplify the final image composition stage.

In this context, the selection of the best images on-the-fly utilizing quality assesment
and user feedback is a very useful method to reduce the number of images that have
to be processed. Reducing the amount of post-processed data is very relevant, since
memory needs are a usual implementation bottleneck of fine-registration with current
mobile devices and it limits the size of the final reconstructed images and the number of
input frames. The possibility of reducing the resolution of the input images, is also a
valid strategy, but the lower quality frames cause registration and blending errors that
are easy to see, and reveal the eventual shortcomings of the methodology.

In practice, in the interactive stage, there is a resolution and speed trade-off that
needs to be explored. For example, while higher resolutions could offer a more accurate
evaluation of the input, this usually implies a decreased ratio of images processed, which
in turn could result in the selection of worse quality input images. For the offline stage,
where the high quality image is composed, high resolution frames result in better final
images, but could take too much time to be ready. These two trade-offs reveal the need
for extremely high processing speeds in high throughput algorithms that are able to
compute huge amounts of pixels in a short time, guaranteeing the best possible inputs.
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3 Vision-based user interfaces for mobile
devices

"There is no Moore’s Law for user interfaces. Human-computer interaction

has not changed fundamentally for nearly two decades. Most users interact

with computers by typing, pointing, and clicking."

- Turk & Robertson (2000)

This chapter introduces concepts related to vision-based user interfaces in mobile
devices. The key ideas for vision-based interactivity rest on the utilization of the
hand-held nature of the equipment, and the analysis of video frames captured by the
device’s camera. Enabled by computer vision methods, the information provided
by images allows developers to create new interactivity concepts to build the future
applications.

The most challenging scenario of vision-based interactivity consists of the creation
of a camera-based user interface that is able to respond to the user actions in a timely
manner. The time and latency constraints introduced by the real-time nature of user
interfaces adds a layer of complexity to the already computationally intensive computer
vision applications.

In this context, this chapter analyzes the computing and sensing needs of camera-
based user interfaces through the implementation of new interaction methods on a
virtual 3-D user interface based on face-tracking. Demonstrated on a real mobile device,
the implementation prototype is described on system and implementation levels. The
design is used throughout the thesis as the primary user interface example that integrates
the different concepts of low latency interactivity and energy-efficiency.

3.1 Vision-based user interfaces

Traditionally, vision has been utilized in perceptual interfaces to build systems that look
at people, and automatically sense and perceive the human users, including their location,
identity, focus of attention, facial expression, posture, gestures and movements (Pentland
2000). These systems are usually constructed taking an input from the analysis of the
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data obtained by one or more cameras, and providing an output that indicates the effects
of the user’s actions.

Touch-sensitive screen interaction has emerged recently as a solution for mobile
direct manipulation. However, it usually requires both hands and has caused additional
attentional overhead (Capin et al. 2008). In a touch screen-based approach, the user’s
hand or finger can partially obstruct the view and compromise the eventual perception of
the displayed augmented information. Figure 10 depicts the potential problems of touch
screen interaction and view obstruction.

Fig 10. Potential problems with mobile interactivity via a touch screen. The hand or finger
partially obstructs the view, and two handed operations are needed.

In vision-based user interfaces (UIs), the camera is used essentially for sensing
purposes, and utilized to control some aspects of the device to interact with it. The
applications of vision-based user interfaces range from gaming and augmented reality to
vision-assisted general user interfaces. In this context, the usability of these kinds of
interfaces rests on their robustness and latency. A fast response, perceived by the user as
instantaneous, and a very low failure rate are the most critical aspects. The real-time
aspect of the vision-based UIs dominates the design decisions during their development.

3.2 Related work

3.2.1 Camera motion-based UIs

Motion information-based user interfaces utilize the ego-movement of the device and
its position to control a specifically-built user interface. Navigating large information
spaces can be disorienting even on a large screen. In mobile devices with a small screen,
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the user often encounters situations where the content that is needed for display exceeds
what can be shown on the screen. For example, the need to browse through large digital
images is becoming commonplace due to the increasing availability of high resolution
imaging and map navigation applications.

A viable alternative for improving interaction capabilities consists of spatially
aware displays (Fitzmaurice 1993). The solution is to provide a window to a larger
virtual workspace where the user can access more information by moving the device
around. Figure 11 depicts an example motion-based user interface (Hannuksela et al.

2007b) (Bordallo López et al. 2011b). Using motion input, the user can operate the
phone through a series of movements whilst holding the device with a single hand.
During these movements, the motion can be extracted from one of the device’s cameras.

Fig 11. An example of a motion-based user interface estimates the motion of the device rela-
tive to the user or the scene, enabling browsing and zooming functionalities. Bordallo López
et al. (2012a) c©IEEE.

The first mobile application utilizing the camera as a sensor to provide a vision-based
user interface, was the augmented reality game called Mozzies, developed by Siemens
in 2003 and reimplemented by the author (Bordallo López et al. 2012b), where the
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motion of the phone was recorded using a simple optical flow technique. Figure 12
depicts the reimplementation of the mosquito killing game. Since then, the rapid
evolution of image sensors and computing hardware on mobile phones has facilitated
the application of computer vision techniques to create new user interaction methods
and a number of solutions have been proposed (Capin et al. 2008).

Fig 12. Reimplementation of a camera-based mosquito killing game, similar to Mozzies,
which was included in the Siemens SX1 device. (Bordallo López et al. 2012b) c©Springer.

Much of the previous work on vision-based user interfaces with mobile phones has
utilized measured motion information directly for controlling purposes. For instance,
Möhring et al. (2004) presented a tracking system for augmented reality on a mobile
phone to estimate 3-D camera pose using special color-coded markers. Other marker-
based methods used a hand-held target (Hachet et al. 2005) or a set of squares (Winkler
et al. 2007) to facilitate the tracking task. A solution presented by Pears et al. (2008)
uses a camera on the mobile device to track markers on the computer display. These
methods prove to be very robust, since the markers are very clear features that are easy
to track. While these kind of markers have applicability in certain applications such as
marker-based augmented reality (AR), there is a need for methods able to estimate
motion from features extracted from natural images (You & Mattila 2013). Figure 13
depicts the author’s reimplementation of three camera-based interaction methods.

An alternative to markers is to estimate motion between successive image frames
with similar methods to those commonly used in video coding. For example, Rohs
(2004) divided incoming frames into a fixed number of blocks and then determined the
relative displacements x,y and the rotational motion using a simple block-matching
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Fig 13. Mobile reimplementation of three examples of camera-based interaction. a) Color-
coded markers. b) Hand-held markers. c) Ego motion image browsing. (Bordallo López et al.
2012b) c©Springer.

technique. Another possibility is to extract distinctive image features, such as edges
and corners which exist naturally in the scene. Haro et al. (2005) have proposed a
feature-based method to estimate movement direction and magnitude. Instead of using
local features, some approaches extract global features such as integral projections from
the image (Adams et al. 2008). The main advantage of these kind methods is that they
are widely applicable in areas such as motion-based browsing or image-registration.
However, they are computationally expensive and less robust against illumination
changes or blur.

3.2.2 Tracking-based UIs

Tracking-based user interfaces utilize the information related to the position of a certain
object to perform controlling tasks that enable interaction with the device. Many times,
the object to track is known beforehand. This is the case of markers and wearable user
attachments. However, the advance of tracking technology has provided the possibility
of tracking certain parts of the user, such as his face, fingers or hands, providing for
more natural interaction.

The usability of tracking-based user interfaces is a critical factor in these kinds of
applications, and it is determined by several limiting factors. The suitability of a certain
tracking algorithm and its implementation for use on mobile devices can be determined
by several parameters, such as the robustness of the tracking system, the temporal and
spatial accuracy, and the total end-to-end latency.

The spatial accuracy of the system is highly influenced by the camera’s resolution,
and determines how accurately the interactions can be measured. The accuracy is also
proportional to the distance of the tracked object to the camera and the dimensions of
the mobile camera sensor, with is usually small. While close objects have a pixel size
equivalent to a very small real-world distance and can be very accurate, distant objects
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do not allow such detailed tracking. Also, the robustness of the interface implementation
can be affected by the camera’s field of view (FOV), which practically defines the region
in which a face, hand or finger can be tracked. In this context, a typical mobile camera
has viewing angles below 60 degrees in both the vertical and horizontal axis. Lastly, the
latency and the temporal accuracy are closely related to the computation time and the
system architecture of the implementation.

Since Crowley et al. (1995) introduced the FingerPaint system, which was able to
track pointing devices on a digital desk, several other applications have been used for
hand and finger tracking-based interaction. In this seminal work, a finger was tracked
using cross-correlation with a reference template. A survey of the techniques used for
finger and hand tracking can be found in the work of Rautaray & Agrawal (2012).

The application of these techniques to interaction with mobile devices started with the
work of Lumsden & Brewster (2003). Since then, several prototype mobile applications
can be found in the literature. Hannuksela et al. (2007a) developed a Kalman filter
based method that can be implemented on a mobile device. The implementation of a
gesture-based mobile user interface can be found in the work of An & Hong (2011),
which proposed a unique touch camera idea. Developed as a touchscreen replacement,
their work proposes the use of the rear-facing camera to manipulate objects shown on
the screen. The work of Hürst & van Wezel (2013) builds on this idea, and investigates
the finger and hand tracking methods in order to explicitly manipulate virtual objects on
augmented reality mobile applications.

Face tracking-based user interfaces utilize the position of the user’s face to perform
controlling tasks, or to change the representation of a scene that the user can see on
the screen. The head-coupled perspective, as introduced by Rekimoto (1995), tracked
the user’s head position to dynamically update a 3-D projection matrix. Since then,
many works have tried to improve the techniques and performance of such systems. For
example, the work of Lee (2008), that used a modified Wii remote to determine the user’s
position relative to a big screen. This method offers excellent tracking performance
although it requires the user to wear a source of infrared illumination to track the user’s
position.

The real-time constrains of head-coupled systems determines the little work that can
be found on embedded or mobile devices. Stavness et al. (2010) presented a prototype
of a small cube with five displays that corrects the perspective of their projections
based on the user’s position. The work of Francone & Nigay (2011) evaluated the user
acceptability of an OpenCV-based (Viola & Jones 2001) head-coupled-perspective
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application using an iPad or iPhone device. This work includes a subjective test with
potential users, but does not analyze the challenges of implementing such interfaces on
mobile platforms. There is still the need to address the particularities of such embedded
implementations and their shortcomings, while offering a description of their computing
and sensing needs.

3.3 Mobile head-tracking virtual 3-D display

3-D rendering has been traditionally used in computer graphics, together with joysticks,
controllers and mice to control the camera position and point of view in interactive 3-D
applications, such as video games and scene viewers. However, the limitation of these
kinds of systems is that no realistic intuitive immersion is achieved, since the user has to
use his hands to ’look’ at places in the virtual scenes. Head-coupled displays increase
the immersive feeling by tracking the user’s head position, utilizing the information to
interact with the virtual scene in a natural manner.

In this context, this section presents a real-time mobile application prototype where
the user’s head position is determined in real time (Bordallo López et al. 2012a). The
prototype renders a customized off-axis projection matrix based on the user’s point
of view. Determined by the face position, the projection is used as a technique that
enables the display of true three-dimensional objects, even on a typical 2-D LCD screen.
Defining a novel series of interaction methods where the user’s motion and camera input
realistically control the viewpoint on a 3-D scene, the head movement can be used to
interact with hidden objects in a natural manner, just by looking at them.

The user interface concept, a pure software solution, can be coupled together with
lenticular display systems to provide for a natural 3D user experience. Figure 14 presents
a simple user interface example. The user’s point of view determines the projection of
the 3-D environment on the screen.

In the proposed scenario, the user and the device can move independently with
equivalent results since the computed coordinates express the relative position of the
user with respect to the device, whether the movement is from the user’s head or from
the device itself. This technique allows the user to no longer perceive the objects as
flattened, but to estimate the position and depth with respect to the screen level and to
reveal objects that hide behind others, or under the borders of the displaying surface.

Based on the parallax effect of the head-coupled perspective technology, the user
perceives the depth of the objects and their 3-dimensional position in space, obtaining
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an immersive feeling. Although not completely three-dimensional, the user perception
using a head-coupled perspective technique has shown to be more comfortable for the
user than pure stereoscopic 3D and it does not require additional hardware. On the
other hand, if a stereoscopic display is available, both techniques can be combined for a
superior 3D effect (Li et al. 2012a).

3.3.1 System implementation

The proposed system can be divided into two main tasks: face-tracking and UI
rendering. Consequently, the implementation of the system uses two principal threads.
A background thread is constantly obtaining video frames from the frontal camera. This
thread integrates the face-tracking subsystem, which continuously searches for a face in
the field of view. If a face is detected, its relative 3-D position is updated to a global
variable.

Fig 14. A simple scheme of the application: The user’s point of view is determined by the
relative position between the device and the head. A part of the 3-dimensional space is
projected on the screen according to the position. The user can browse the desktop and
two hidden lateral panels by moving the head or the device varying the point of view. (Bor-
dallo López et al. 2012a) c©IEEE.
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The main thread is in charge of rendering the actual user interface and handling the
interactions. In the same fashion as a regular mobile touch UI, the user can interact with
the objects present on the screen, and execute certain tasks. The screen rendering is
done by calling a graphics subroutine that presents a three-dimensional application in
the screen. The graphics subsystem needs to recalculate a customized off-axis projection
matrix each time the face position is updated by the background thread.

3.3.2 Interaction design

In a typical three-dimensional use case, there is a background image situated in the
infinite plane, and some panels on both sides that offer hidden static information that can
be looked at by moving the head or the display. The most obvious interaction method
consists of moving the head or the display to fix the point of view in a way that the user
looks at a hidden object that is out of the normal field of view (Francone & Nigay 2011).

This concept can be utilized in several applications such as displaying of an image
larger than the field of view (Lee 2008). The movement of the head navigates through
the image, displaying parts of it, based on the user’s point of view. The user gets the
immersive sensation of looking at a scene through a window in a very natural manner.
Figure 15 depicts the displaying of a landscape image on a virtual window.

Fig 15. The immersive sensation when surfing a large landscape image.

A new interaction method for mobile head-coupled displays

The interaction with 3D virtual objects on a scene represented on a 2D screen does
not have a straightforward solution. Common interaction concepts for these kinds of
objects have been traditionally limited to pure 2D pointing on the device screen, causing
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a partial block of the view and a possible block of the camera view that is in charge of
the face-tracking. A possible solution for this kind of interaction consists of using the
back camera and finger tracking approaches to interact with the objects in a more natural
manner (Hürst & van Wezel 2013). However, this method implies additional challenges
such as computing overheads and the analysis of data from two cameras that must be
able to run at the same time.

However, making good use of the hand-held characteristics, novel interaction
methods can be developed. For interaction purposes, in relatively small screens such as
those of mobile devices, it can be considered that the user is always looking around the
center of the display. This fact allows the estimation of the users’ gaze and intentions.
Figure 16 shows a self-intuitive interaction method with hidden objects. When the user
shifts his head to peek at hidden parts of the background, the object that is looked at can
be brought to the first plane to be inspected or read, and to be used with regular touch
interaction.

Fig 16. Objects can be moved to the screen level by simply looking at them for a sec-
ond. (Bordallo López et al. 2012a) c©IEEE.

An example usage for the interaction method is the triggering of hidden dialogue
boxes while using the device’s web browser or the image gallery. The user can bring to
the front level the history or the bookmarks by tilting the device or moving his head
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to one side and keeping that position for about a second. Figure 17 depicts a mobile
browser and the triggering of a hidden dialog box.

Fig 17. Web browsing use case. A dialog opens when observed for a second.

3.3.3 Face detection

In face detection and tracking, usually a few facial features are extracted from the image
and compared to a predetermined feature database. Several detectors apply, for example,
Haar features (Viola & Jones 2001) or local binary patterns (LBP) (Ahonen et al. 2006).
The robust implementation of both solutions presents disadvantages related to the
excessive amount of features and data needed, leading to slow processing. Reducing the
amount of features or the input resolution, could result in poor consideration of a local
structure of neighboring pixels, uneven illumination of the face or varying viewpoint.

Adapting the Local Binary Pattern methodology, the proposed solution utilizes a face
tracking method that is based on selecting and weighting neighborhood for each pixel
under observation (Niskanen et al. 2012). This method can be used in conjunction with
the well-known learning algorithms, such as AdaBoost, that can be applied to find the
most discriminative features for distinguishing the face patterns from the background.

In the adopted solution, a cascaded classifier structure speeds up the detection. In
the early cascade levels only a minority of features are considered to rapidly reject the
majority of classified image regions. The image is processed in multiple scales until
the face is detected. Similarly, the image may be processed in parts, such as a search
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window of 20 by 20 pixels. As a result, the rectangular coordinates of the detected face
are obtained.

After the initial detection, only the face scales and spatial locations close to the
previous locations are tracked. This improves the tracking speed with respect to the full
search. During tracking, the image frame is divided into smaller windows. This way, at
a specific moment, only certain windows are under observation.

The accurate determination of the face distance to the screen is highly important.
Since it determines the angle from which the screen is looked at, it affects directly the
field-of-view (FoV) of the rendered world that can be observed through the virtual
window.

The simplest way of estimating the face distance to the screen consists of using
the bounding box of the face detected by the face tracking library. This naïve method
presents small flickering, or noisy variations around a central value. In addition, it is
not accurate if the face is partly out of the field of view, since only the size of a partial
face is detected. On the positive side, this method does not need the inclusion of any
other computationally expensive operations in the rendering pipeline. Also, it does not
incur in any extra latency, allowing for a high frame rate, while still providing sufficient
accuracy.

To provide a comparison, we have experimented with the use of a motion estimation
library (Hannuksela et al. 2007d) to improve the detection of the face position on the Z
axis. This library is able to compute only "changes of scale" between two corresponding
frames or areas, in this case, between two corresponding faces. Therefore, it also needs
to use an approximate face size to compute the distance to the screen.

To test the accuracy and performance of the utilized method to calculate the distance
to the screen, a database of images obtained with Microsoft Kinect has been built. The
images have been calibrated (Herrera et al. 2011) to know the user’s real distance to the
camera. The same distance is then calculated using only the RGB data, the face tracking
library and the calibration data obtained with the face sizes at some known distances.
Three images from our dataset with the face tracking results can be seen in Figure 18.

When comparing the results of both methods side by side with the same video
sequences at a fixed frame rate (15fps), the Motion Estimation Library offers 10% more
accuracy using standard deviation. The Motion Estimation Library also presents less
flickering.

However, the addition of extra calculations concurs with a decrease of the frame rate
that increases the differences between frames, affecting the accuracy of the face tracker.
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Fig 18. Three still images taken with Kinect at different distances to the camera. On the left
side, only the RGB data is used to calculate the distance, determined by the face size. On the
right side, the 3-D data is used as a ground truth for calibration purposes. (Bordallo López
et al. 2012a) c©IEEE.

When comparing the performance of the Face Size method at 15 fps against the use of
the Motion Estimation library at 10 fps, the accuracy of the methods is comparable,
while the latency of the method that uses only face-boundary size is smaller.

3.3.4 Wide-angle lens integration

The frontal cameras of the current mobile devices are mainly intended for video-
conference use, and they are usually situated in one of the device’s corners. This
positioning causes an input image with an asymmetrical, very reduced field of view.
Since a camera-based user interface requires the user to be in the field of view, this is a
major constraint. The field of view of the frontal camera of the N900 is about 40 degrees
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in the vertical field and 45 degrees in the horizontal field. However, the effective field of
view is reduced due to the fact that the face is not detected when it is partially out of the
field of view. While at longer distances (80cm), this effect is not really appreciable, at
closer distances (20cm) the field of view can be reduced to less than 30 degrees.

This problem can be mitigated by the integration of a wide-angle or fish eye lens.
This lens enhances greatly the field of view at the cost of a small overhead to undistort
the warping that it introduces. We have integrated in our system a mobile wide-angle
lens (Photojojo 2012) that can be attached to most mobile devices with a sticker washer
and a magnet. A macro lens/wide-angle lens (0.67x) extends the field of view up to 120
degrees while a fish-eye lens (0.28x) extends it to more than 160 degrees.

The distortion of the lens has been modelled and calibrated (Kannala & Brandt
2006), and the correction stage has been implemented as a lookup table that is used
to remap the input image. For a VGA final size, the overhead of the correction takes
about 20 ms. Figure 19 depicts the device and application when the wide-angle lens is
attached. In our implementation, the input image is cropped to avoid the distortions in
the borders and the horizontal effective field of view gets extended up to 130 degrees in
the closest plane.

3.3.5 Performance analysis

The application has been developed on a Nokia N900 device. This device is based
on an OMAP 3430 System on Chip composed by a 600 MHz Cortex A8 ARM and a
Power VR SGX530 GPU, supporting openGL ES 2.0. The Nokia N900 has a 3.5 inches
resistive touchscreen with a maximum resolution of 800x480 pixels and a 0.3 Mpixels
front camera with a maximum video resolution of 640x480 pixels. The device includes
a 1320mAh battery. The application has been programmed utilizing native standard C
code under a Maemo operating system.

The system is able to run in real time on the device with an acceptable accuracy. A
comparison is made between the accurate profile, slower but more robust to recovery
when tracking is lost, and the fast profile, with better performance but less robustness. A
performance test on an N9 platform (ARM Cortex A8, 1GHz) is also included as a
comparison. Table 4 shows the processing times of the application on the N900 and N9
platforms for several tracking image sizes.

The results of the time performance and frame rates and latencies obtained with
the developed application show that using a higher resolution than QVGA decreases
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Fig 19. The wide-angle lens is integrated on the phone device to enhance the field of view
(up). The effective horizontal field of view with the wide-angle lens is about 130 degrees. (Bor-
dallo López et al. 2012a) c©IEEE.

Table 4. Average processing time of the application at different resolutions on N900 and N9
mobile platforms.

Tracking N900 Fast Accurate N9 Fast Accurate

resolution profile profile profile profile

80x60 28 ms 39 ms 16 ms 20 ms

160x120 37 ms 54 ms 21 ms 27 ms

320x240 50 ms 75 ms 27 ms 38 ms

640x480 64 ms 95 ms 36 ms 48 ms

the frame rate and increases the latency beyond the acceptable limits. As expected,
smaller resolutions present less accuracy, but can increase the frame rate. However,
the experiments show that the use of faster processors, already available on current
mobile platforms, would allow higher resolutions, while remaining below the tolerable
processing latencies.
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3.4 Discussion

The main contribution of this chapter is the analysis of the computing and sensing needs
of camera-based User Interfaces, depicted in the implementation of a virtual 3-D display
based on face-tracking. In addition, several novel interaction methods deriving from this
kind of interface and its timing and accuracy characteristics have been presented.

Vision-based user interfaces could be integrated with current touch-based UIs,
providing for complementary ways of interacting with mobile devices. New interaction
methods could increase the interactivity of mobile devices in a novel manner, while their
requirements in robustness and accuracy could be tackled with a careful selection of the
algorithms.

The computational complexity of the computer vision algorithms required in vision-
based interfaces is tightly related with the UI robustness and accuracy. There is a
practical compromise between the accuracy of the methods used and the need of
processing time, in a similar quality-performance trade-off as the one described in
chapter 2.

However, even with plentiful computing resources, the processing of large amounts
of pixels in a short time is still limited by system timing constrains. In vision-based UIs,
the end-to-end latency of the utilized methods takes special relevance. Essentially, with
real-time systems, the user experience is directly related to the capability of the system
of providing timely results and information, in an extremely fast response time.
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4 Mobile platform challenges in interactive
computer vision

"In the twilight of Moore’s Law, mainstream computers from ’desktops’

to ’smartphones’ are being permanently transformed into heterogeneous

supercomputer clusters. Henceforth, a single compute-intensive application

will need to harness different kinds of cores, in immense numbers, to get its

job done. The free lunch is over. Now welcome to the hardware jungle."

- Herb Sutter (2005)

Chapters 2 and 3 described how computer vision can be used to increase the
interactivity of existing and new camera-based applications and how it can be used to
build novel interaction methods and user interfaces. The developing of two use cases
helped in understanding the computing and sensing needs of this kind of applications,
and the required careful balance between quality and performance, a practical trade-off.

This chapter shows the importance of using all the available resources to hide
application latency and maximize computational throughput. The experience gained
during the developing of interactive applications is utilized to characterize the constraints
imposed by the mobile environment, discussing the most important design goals: high
performance and low power consumption. In addition, this chapter discusses the use of
heterogeneous computing via asymmetric multiprocessing to improve the throughput
and energy efficiency of interactive vision-based applications.

4.1 Computational performance: latency and throughput

To solve the problems they face, mobile vision-based applications become more complex,
leading to tight requirements in order to efficiently address the computations they involve.
Although this is also applicable in many other fields, computer vision algorithms are
particularly constrained to the processing capabilities of the hardware platforms. In this
context, there is a need to maximize the computational performance of such applications
by adapting them to the particularities of mobile devices.

The first issue to encounter when optimizing or porting an interactive application
to a mobile platform is how to define such computational performance. The speed
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of a system can be characterized by two terms; latency and throughput. Throughput
is defined as the amount of work done per unit time. Latency is defined as the time
between the start of a process and its completion. Although interrelated, a system can be
designed to optimize one of both parameters, affecting the other (Grochowski et al.

2004). For example, pipelining an algorithm could increase its throughput, but actually
increase the end-to-end latency.

The extensive amount of data processed by vision-based applications implies that
the system implementation has a high throughput requirement, since many times it
should be able to compute several millions of pixel in less than a second. However,
interactive applications and user interfaces are in practice real-time systems, that require
a response in a limited amount of time. In this context, the implementation must assure
a latency low enough to meet the requirements of interactivity. In practice, the designer
needs to carefully balance both parameters in a practical trade-off.

4.1.1 Latency considerations

As discussed in chapter 3, the usability of camera-based user interfaces critically rests
on their latency. Certain interactive applications such as web browsing can tolerate
relatively long latencies (Abolfazli et al. 2013) that are unacceptable for others such as
thin-client applications (Tolia et al. 2006). User interfaces are expected to have even
faster response and spontaneous reflection to the arrival of new data. This becomes
apparent with computer games in which action-to-display delays exceeding about
100-150 milliseconds are considered disturbing. The low-latency requirement applies
even to simple key press-to-sound or display events (Dabrowski & Munson 2001).

Vision-based interactive applications employ a camera as an integral real-time
application component. Consequently, in camera-based systems the sensor integration
time will add to the latency, as well as the image analysis computing. When added to the
presentation latency caused by the graphics overlaying and the display, it can be noted
that the mobile hardware imposes a relatively long fixed latency that can not be reduced
by algorithmic tweaking. Therefore, the only possible way of reducing the end-to-end
latency is to cut the computing times through algorithm or implementation optimization.
Figure 20(a) shows the latency budget of a vision-based interactive application. It can be
seen that at a lower framerate, the fixed latencies are longer, leaving a smaller time for
processing.
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In order to keep the throughput of the system as high as possible, the different
latencies caused by the different parts of the system can be overlapped and executed at
the same time. Figure 20 shows the latency diagram of a vision-based application at 15
and 30 fps.

(a) Latency budget of a vision-based application.

(b) Timing diagram of a vision-based application.

Fig 20. Latency diagrams for a vision-based application at 15 and 30fps. The latencies
caused by the different parts of the system can be overlapped to increase throughput. The
timing is constrained by the fixed latencies imposed by the hardware and the variable latency
that depends on the processing.

At lower frame-rates, each frame can processed sequentially. However, it can
be seen, that at higher frame-rates, keeping the highest throughput means that the
processing of each frame must overlap with each other. This calls for the parallel or
concurrent computation of different frames, which can be seen as an argument for
multiple cores or processors.
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Virtual 3D display latency analysis

To provide an example of the latency measurement on a vision-based UI that requires
a crisp response, the latency budget of the use case described in chapter 3 has been
analyzed. As described before, the practical case consists of the projection of a scene
based on the real point of view of the user or the device. Since the rendering of the user
interface is based on the camera position tens of milliseconds ago, a lack of realism
can be perceived. In this case, even latencies below 100 ms can be disturbing. Table 5
depicts the latency budgets of the face-tracking based UI on a Nokia N900.

Table 5. Latency budget of the application on an N900 at different resolutions (ms).

Tracking Camera Format Image GPU Total

Resolution Lat. Conv. Analysis Rend. Lat.

80x60 17 3 28 15 66

160x120 17 4 37 15 76

320x240 17 6 50 15 91

640x480 17 10 64 15 119

In the example UI, if the scene is sampled at a 30 frames/s rate, the base latency is 33
ms. Assuming that the integration time is 33 ms, the information in the pixels read from
the camera is on an average 17 ms old using a rolling shutter approach. A typical touch
screen has a presentation time that can be around 10 ms and the latency of the GPU
rendering is about 15-20 ms. As the computing latencies need to be added, achieving the
100-150 ms range is challenging even with very fast computations. Again, the trade-off
between resolution and the processing times that affect the latency can be observed.

A latency hiding technique for vision-based UIs

The effect caused by high latencies of vision-based UIs can be partially mitigated by
hiding them using the accurate knowledge of the system’s timing. The processing
latency of the vision algorithm can be estimated as the average of 1/F ps. Then, the total
latency ltot can be computed as the addition of the known camera latency lcam , display
latency ldis and processing latency lproc:
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ltot = lproc + lcam + ldis (1)

In order to hide the latencies that happen between the capturing and the displaying of
the contents, it is possible to estimate the camera position at the moment of displaying.
With the data obtained by the video analysis subsystem, and these latencies, a motion
vector is constructed.

The motion vector mk consists of the position xk(xk,yk,zk), velocities (ẋk, ẏk, żk) and
accelerations (ẍk, ẍk, ẍk) of the device at time instant k. It is defined as follows:

mk = [xk,yk,zk, ẋk, ẏk, żk, ẍk, ÿk, z̈k]
T . (2)

In the beginning, the elements of the state vector are set to zero. The time step between
two successive images is set to lproc. The motion vector is updated every frame:

ẍk = ẋk− ˙xk−1 (3)

ẋk = xk−xk−1 + ẍk ∗ ltot (4)

Finally, the predicted position that should be used for the re-projection is calculated
based on the motion vector:

xpredicted = xk + ẋk ∗ ltot (5)

This technique reduces the user’s perception of a lagged interface by reacting to the
predicted current user’s position instead of to the calculated one. Figure 21 depicts the
effect of the estimated position. The predicted position is closer to the real position than
the measured one. The drawback of this approach is that the accuracy of the model is
hindered when the device is subject to sudden fast motion. However, in this case, the
same device’s fast motion makes the user less likely to perceive the possible errors, that
are quickly corrected when the device’s motion speed is reduced.

4.1.2 Measuring algorithmic performance across architectures

Modern computer performance is often described in MIPS (millions of instructions
per second) or FLOPS (floating point operations per second). Since higher clock-rates
can make a processor faster, a useful and widely applicable normalization consists of
dividing the performance metric by the clock frequency, obtaining a measurement in
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Fig 21. The effect of latency hiding on a vision-based application. The prediction of the
movement compensates the latencies.

MIPS/MHz. Not considering memory access bottlenecks, simple modern processors
easily reach 1 MIPS/MHz while superscalar ones might achieve rates from 3 to 5.
Multi-core and many-core processors can achieve even faster rates by distributing the
tasks among all the cores, computing a large amount of data per second.

Vision algorithms operate with input data that mainly consists of images composed
by pixels. Since the resolution of the input images often has a direct relation with the
speed of the process, a good normalization strategy to measure the performance of
certain architecture for a given algorithm consists of making the performance of the
metric independent of the resolution. This allows the easy calculation of the maximum
possible resolution of an algorithm constrained by latency needs.

The cycles-per-pixel (CPP) metric measures the number of clock cycles required to
execute all the operations of an algorithm on each one of the pixels of the resulting
image, normalizing the differences in frequency and, sometimes also by the number
of identical cores (CPP per core). The metric, used throughout the rest of the Thesis,
allows the comparison of several architectures despite of their different implementations.

4.2 Energy efficiency

Along with their small size and comparatively reduced computational power, the
main constraint present in mobile devices is that they are, essentially, battery powered
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devices (Ferri et al. 2008). This implies that the application development trade-offs
and challenges that need to be dealt with mobile devices are closely related not only to
pure performance, but also to energy efficiency (Fabritius et al. 2003). In this thesis,
energy-efficiency is defined as the capability of providing high computational power
while presenting a low average power dissipation (Balfour et al. 2008).

4.2.1 Characterizing battery life

The power offered by the battery is the main resource in mobile devices that requires an
external source to be replenished (Miettinen & Nurminen 2010). Although current
mobile devices integrate Lithium-ion batteries with moderate capacities between 1000
and 4000mAh, preserving battery life is still considered among the most important
design constraints of highly interactive applications.

Consequently, energy efficiency is a key characteristic of a realizable interactive
mobile application. Since battery-hungry applications can quickly deplete the available
energy they can easily limit the usability of applications or even the device itself. In this
context, the frequent need for battery recharging has become one of the most important
usability issues of current mobile platforms (Heikkinen & Nurminen 2010) (Abolfazli
et al. 2013) (Ferreira et al. 2011).

Although battery manufacturers are improving their technology to offer higher
capacity batteries, still current battery cells are already very dense (Satyanarayanan
2005). The battery capacity growth per year can be estimated to be around 5 to 10%,
clearly insufficient to catch up with the ever increasing application demands (Neuvo
2004). Alternative technologies to recharge the battery, such as harvesting from solar
power or movement, are still far from offering a reliable solution in the immediate
future (Pickard & Abbott 2012).

Since the battery life is a nonlinear function of the load current, small improvements
in the energy efficiency of the applications can give high improvements in the operation
times. Figure 22 shows the equivalent capacity of a 1320mAh Li-ON battery with
different discharge times and power consumptions. The curves have been drawn
assuming a Peukert coefficient of 1,1 (Peukert 1897)(Doerffel & Sharkh 2006) and
utilizing the nominative battery capacity measured at a 5h discharge rate. It can be
noted that with lower power consumptions, the perceived battery capacity increases
dramatically.
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(a) Equivalent battery capacity and power consumption

(b) Equivalent battery capacity and discharge time

Fig 22. 1320mAh Li-ON battery characterization curves. The real battery depends on the
power consumption and the time taken by the discharge.

These curves show the importance of reducing power consumption to maximize
battery life. However, the availability of a fast application processor enables the
straightforward implementation of novel camera-based applications, and even vision-
based user interfaces. On the other hand, the versatility and easy programmability of the
single processor solution have led to design decisions that compromise the battery life if
high interactivity is needed. In an active-state, a fast application processor may consume
more than 1200mW with memories, while the whole device can go up to more than 3W.
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This can push the life of typical mobile device’s batteries below one hour, and increase
its temperature to levels beyond the tolerable.

A possible solution has its roots in the employment of the processors at smaller
loads or in the utilization of alternative processing devices that consume less power. The
difference in power consumption of several mobile processors under different loads can
be seen in Figure 23. The curve shows the measurements of the battery discharge times
of a Nokia N9 phone under constant power consumption.

Fig 23. Discharge time of a 1320mAh Li ON battery on an N900 phone. The shape of the
discharge curve implies that small improvements in the applications’ energy efficiency can
achieve high improvements in the operation times. (Bordallo López et al. 2014) c©Springer.

For applications with moderate loads, it can be seen that relatively small improve-
ments in energy-efficiency, can push the power consumption out of the knee region,
extending the battery life. Similar observations of the battery life and its knee region
have been made by Silvén & Rintaluoma (2007) and can be found in the earlier work
of Rakhmatov & Vrudhula (2003). Hence, an interactive applications design goal is to
execute each part of the algorithm in the most suitable processor, trying to keep its load
as low as possible.
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4.2.2 Thermal constraints

In the unlikely event of a sudden increase in battery capacities, an additional constraint
is that the high-performance computing required by interactive mobile applications has
to be performed in a small spatial volume. This requires the discharge of the heat into
the environment. A mobile device utilizing all its resources can easily become too hot to
handle.

In addition, electronic components at very high loads can quickly run into overheating
problems. Therefore, in high-performance computing, thermal issues have gained a
great deal of attention in recent years. The power dissipated by a microprocessor chip
per unit of area is growing steeply as the transistor densities increase (Borkar 1999).
The size form of mobile devices makes typical desktop methods to prevent overheating
unacceptable. That is the case of cooling fans or huge dissipators. Figure 24 depicts
a set of dissipators and heat-sinks installed on a mobile SoC, the Raspberry Pi. The
picture shows the obvious mechanical implementation challenges for thin devices.

Fig 24. A set of dissipators and heat-sinks on an ARM-based SoC, the Raspberry Pi.

4.2.3 Electrical power consumption

The combination of battery-life and thermal issues impose serious constrains in the
power consumption of mobile devices. Power consumption on electrical circuits is
composed of two main components: dynamic and static power consumption.

Dynamic power consumption, caused by the switches in the states of transistors, has
a direct relation with the operating frequency. Dynamic power is used to dominate total
power usage in CMOS circuits. However, in recent years, the semiconductor industry
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has kept the maximum operating frequencies steady, and has instead started making a
big effort to increase the parallelism of most devices. Thus, multiprocessor solutions are
becoming popular in high-performance mobile devices (Horowitz et al. 2005). The
increase of symmetric parallelism through multi-core development has allowed the
steady increase of performance while keeping dynamic consumption at a reasonable
level.

On the other hand, static power consumption is independent of the system activity.
Caused by the leakage currents in the silicon of the circuit, it only refers to the
consumption of the system when all inputs are held, and are not changing their state. In
recent years, the increase in the chip density and the thinner insulations between wires
has made static power consumption very significant (Kim et al. 2003).

The number of transistors per processor has increased greatly with impacts in
power and design complexity. This complexity has caused only a modest increase in
application performance, as opposed to performance due to faster clock rates from
technology scaling. Modern desktop chips, with a big form factor, have around 6-7
billion transistors. Current mobile chips with a smaller form factor can contain up
to 2 billion. While desktop computers, equipped with fans and dissipators, can keep
the processor in full load for long periods of time, in mobile devices this is a losing
strategy. Since mobile application processors consume large amounts of power, the
solution has been in reducing activity or turning off complete subsystems and parts of
the chip in a process known as power throttling. This process is based on two classes
of techniques: Voltage/frequency scaling and gating based. Both types of techniques
incur on overhead with the extra circuitry and can only cut dynamic power. As a result,
large areas of silicon remain inactive most of the time, in a phenomenon named dark

silicon (Esmaeilzadeh et al. 2011).
Therefore, while the bigger cores provide for higher single thread performance, they

also have reduced energy efficiency. With this in mind, it becomes apparent that for the
current performance increase to hold, it will still be necessary to have a proportional
scaling down of the transistors. The recent failure of Dennard’s scaling (Dennard et al.

1974) suggests that the future reduction in power consumption might not be proportional
to the reduction in transistor sizes. In this context, it can be predicted that newer
architectures with novel approaches to energy efficiency are likely to appear, increasing
the heterogeneity of future platforms (Esmaeilzadeh et al. 2012). Figure 25 depicts the
increase in the heterogeneity of future platforms. The progress of processor technology
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moved from single-core, to multiple homogeneous cores and then to heterogeneous
computing.

Fig 25. Progress of processor technologies. From single-core to homogeneous multi-core
and heterogeneous computing. c©AMD 2014.

4.2.4 Measuring energy-efficiency

Since modern circuits have less power per transistor, as the number of transistors per
chip grows, power efficiency has increased in importance. Therefore, it is advisable to
know how much energy is required by certain applications when executed on a specific
platform. However, predicting or estimating power for a certain algorithm running on
a particular device is an extremely difficult task. Therefore, it is typical practice to
measure the currents of the processor, translating them to power consumption values.
In this context, several works have attempted to analyze the battery life of several
mobile devices under different scenarios (Shye et al. 2009) (Carroll & Heiser 2010).
An important notion arising from these kind of studies is that it can be established
that it is sufficient to use the device’s battery voltage sensors and knowledge about
battery discharge behaviors to accurately estimate power consumption (Zhang et al.

2010) (Pathak et al. 2011).
The measurement of an application’s power consumption is directly related to

the energy-efficiency of the platform. Modern computer energy efficiency is often
reported in performance per Watt, be it MIPS/W (millions of instructions per second
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per Watt) or FLOPS/W (floating-point operations per second per Watt). However, this
is not a practical measurement metric (Akenine-Möller & Johnsson 2012), since its
counter-intuitive nature does not allow the easy computation of aggregate statistics.
In the rest of the thesis, a different metric that allows the comparison of different
implementations across several platforms is utilized. Analogously to the measurements
of performance in the CPP metric, the Joules per pixel (JPP) metric measures the
amount of energy consumed to execute all the operations of an algorithm on each one of
the pixels of the resulting image.

4.3 Asymmetric multiprocessing for vision-based interactivity

Vision-based applications require very high throughputs, and low latencies. A traditional
solution has been to increase not only the clock frequency but also the complexity of the
application processor to achieve a better ratio of operations per cycle. However, as
discussed before, the energy-efficiency of the system decreases rapidly as the frequency
is scaled. An industry solution has been the integration of different processors into the
same chip or as independent subsystems. However, the strong heterogeneity of the
computing devices and subsystems included on a mobile device, poses a significant
challenge.

The exploitation of asymmetric processors is heavily dependent on the heterogeneity
of the applications. Characterizing the application needs is not easily done in a simpler
manner. While many types of applications can benefit from the speed of a large core or
the efficiency of a small processor, the reality is that applications are usually composed
of several tasks that could easily be matched to the most suitable platform.

Some application phases might have a large amount of instruction-level parallelism
(ILP) where a VLIW architecture that issues many instructions per cycle can be exploited.
Other application phases might require a processor that is able to process large amounts
of data under the same operation and they are more suitable for processors that exploit
the SIMD paradigm. Lastly, many applications require the repetition of a single complex
operation that can be executed efficiently with a clever hardware design. In practice, this
heterogeneity applied to mobile devices means that a mobile developer should be able to
tackle different processors that have been incorporating varied parallelization strategies
and optimization (Sutter 2005).

Even with careful partition of the tasks among the asymmetric cores, heterogeneous
computing requires communication between them. An important design constraint in
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this kind of systems is the bandwidth of the memory access. While a certain amount of
memory can be included in the specific processor, many times it is still required to access
the memory in a separate component, and this will be limited by the communication
bandwidth.

Fortunately, even with relatively infrequent switching among asymmetric cores,
a performance and energy-efficiency increase of heterogeneous execution can be
obtained (Kumar et al. 2005). When considering the inclusion of dedicated hardware
accelerators, heterogeneous SoCs are likely to overcome homogeneous systems (Wolf
2004) in terms of performance. The average energy per instruction (EPI) of the system
is also likely to be reduced, even by a factor of 4 to 6 fold (Grochowski et al. 2004).

4.3.1 Amdahl’s law and asymmetric multiprocessing

Parallelizing the computations of a given algorithm has a theoretical limit imposed by
Amdahl’s law (Amdahl 1967). This principle states that if certain computation has a
fraction of the program that is inherently serial and cannot be parallelized, the speedup
obtained by parallel computing is limited by a factor directly proportional to the time
required by the sequential calculations.

As a counterpoint, Gustafson’s law points out that if the sequential part of an
algorithm is fixed or grows slowly with the problem size, additional processing units can
increase the problem size. In this case, the relative performance of the computation is
not limited by the non-parallel part (Gustafson 1988).

Heterogeneous computing is able to tackle the implications of both statements
by assigning each part of the processor (serial and parallel) to different processors
that are specifically designed for each type of computations. Executing serial parts of
the algorithm on a fast low-latency processor and parallel parts on many small cores
can maximize the throughput while keeping the latency low. Applications based on
asymmetric multiprocessing can then be designed for low latency. This implies high
interactivity without compromising the general performance, directly related to the
throughput. In addition, the efficiency of the specific processors also maximizes the
ratio of performance to power consumption, increasing the total energy efficiency of the
system.
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4.3.2 Heterogeneous computing and software

The embedded nature of mobile devices implies that they are composed by carefully
designed software and hardware, which should be able to work in close collaboration.
The main challenge of exploiting heterogeneous computing lies in the lack of tools and
models that allow the transparent usage of the asymmetric resources. Programming
parallel applications requires awareness of the heterogeneity and a good understanding
of the architecture.

A computing architecture can be seen as the interface between this software
and hardware. Computing architectures essentially describe a computing system by
specifying the relations between the parts that compose a device. In this context, the
successful design and implementation of a mobile device with novel capabilities requires
careful optimization across all interfaces.

Application developers are many times trained to assume that computational cores
will provide similar performance independently of the task and that the addition of
another core to the system will increase the performance similarly. The heterogeneous
nature of mobile SoCs breaks the assumption, resulting in the unpredictability of the
performance results.

In this context, a future area of interest is to focus on the development of interfaces
that allow full access to the tool-chains, not hiding the complexity of the heterogeneity
from the developers, but providing them with abstractions that allow the exploitation of
the multiple cores to reduce the application latencies, while keeping the higher possible
throughputs in an energy-efficient manner.

4.3.3 Concurrent heterogeneous implementation of computer vision
algorithms

As discussed before, the multiple heterogeneous processing cores present in current
mobile SoCs offer the possibility of increasing the overall performance of the system by
using asymmetric multiprocessing. A simple way of taking advantage of the heteroge-
neous cores consists of dividing the application into different tasks and offloading the
CPU by executing them on the most suitable processor. A more efficient variant of this
approach consists of pipelining the different tasks and executing them concurrently in
different processors.
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However, when a given algorithm is not easily divided but the involved data is, even
the same task can be carefully partitioned and scheduled over the multiple heterogeneous
cores, if a good knowledge of the performance of every core can be obtained (Leskelä
et al. 2009). In a case of no data interdependency, the time td used by the speed-optimal
workload distribution over two different processors can be expressed with the following
equation:

td = (1−
tproc2 + ttran

tcpu + tproc2 + ttran
)x(tproc2 +2∗ ttran), (6)

where tcpu is the time measured using only the main processor, tproc2 is the time measured
using only the secondary processor (e.g. mobile GPU or DSP) and ttran is the time to
transfer the data between processors, which in this case is considered to be CPU-bound.

In terms of power consumptions, if we define pcpu, pproc2 and ptran as the powers
consumed by the corresponding actions, the total power drain pd can be modeled as
follows:

pd = pcpu + pproc2x
tproc2

tproc2 + ttran
+ ptranx

ttran

tproc2 + ttran
, (7)

and the total energy used can be obtained as:

Ed = pd ∗ td . (8)

Many computer vision operations can be easily partitioned by simply dividing the
input image into sections that overlap several rows and/or columns. In this context, the
processing of an image can be distributed on the heterogeneous cores by dividing the
data proportionally to the inverse of the computing times while keeping the number of
shared neighbors as small as possible. Figure 26 shows the impact of the speed of the
secondary processor and transfer times in the algorithm speedup.

It can be seen in Figure 26(a) that even secondary processors slower than the CPU
can result in an algorithm speedup if both are utilized concurrently. However, the
speedups can be hindered by long transfer times, as can be seen in Figure 26(b).
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(a) Speedup with different processor speed (b) Speedup with different transmission times

Fig 26. Concurrent implementation speedups achieved depending on transmis-
sion/communication time and secondary processor speed.

4.4 Mobile platform as a set of heterogeneous computational
devices

Mobile communication devices are becoming attractive platforms for multimedia
applications as their display and imaging capabilities are improving together with the
computational resources. Many of the devices have increasingly been equipped with
built-in cameras that allow the users to capture high resolution still images as well as
lower resolution video frames.

With power efficiency and reduced space in mind, most mobile device manufacturers
integrate several chips and subsystems on a System on Chip (SoC). Figure 27 depicts
a simplified diagram of the top organization of an example OMAP3430 SoC from a
mobile device.

Fig 27. A simplified diagram of an example mobile SoC, the OMAP3430 mobile SoC. (Bor-
dallo López et al. 2014) c©Springer.

75



Along with a general purpose processor (GPP), SoCs usually contain several domain-
specific subsystems, such as DSPs or GPUs, packed in an application processor. As
independent subsystems, they also include a set of dedicated processors that assist the
computations needed by mixed-signal, camera sensors or radio functions. The SoC
hardware is often shipped with a set of controlling software and APIs that handle the
communication between processors, peripherals and interfaces.

4.4.1 Application processors

A mobile application processor provides a self-contained operating environment that
delivers all system capabilities needed to support a device’s applications, including
memory management, graphics processing and multimedia decoding. Mobile application
processors may be independent of other specialized processors in the same mobile
device, such as a phone’s base-band, camera or processor.

Mobile application processors are typically developed to consume less power and
dissipate less heat than desktop computers, while using a smaller silicon size. To
preserve battery life, mobile application processors can work with different power levels
and clock frequencies (operating points) and it is usually possible to turn off several
parts of the chip.

Single-core general purpose processors

The most typical mobile general purpose processors are based on the ARM architecture,
which describes a family of computer processors designed in accordance with a RISC
CPU design. The ARM architecture includes a load/store architecture with restrictions
to misaligned memory access and a uniform 16x32-bit register file. A fixed instruction
width of 32-bits allows easy decoding and pipelining with a decreased code density.
However, to improve compiled code-density, most ARM processors include Thumb,
a 16-bit instruction subset. A VFP (Vector Floating Point) co-processor is included
to provide for low-cost floating point computations, although later versions of the
architecture have abandoned it in favor of more complete SIMD units. The particularities
of ARM processors enable some code optimizations to achieve higher performance.
General ARM optimization tips include, for example, the use of do-while loops and
counter decrement.
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NEON co-processors and SIMD units

Despite the evolution of the industry, pure Single Instruction Single Data (SISD)
microprocessors do not offer adequate performance for a large set of tasks. Many
computationally intensive tasks require high performance computations that cannot
be carried out efficiently by the mobile application processor alone. In this context, a
wide range of accelerator modules have been included as specific arithmetic units or
co-processors accessed through special sets of instructions. The inclusion of Single
Instruction Multiple Data (SIMD) units is decisive for tasks such as video and image
processing. SIMD processors have a unique control unit and multiple processing units.
There are several ways of accessing the capabilities of modern SIMD units (Kristof et al.

2012), such as in-lining the corresponding assembly language instructions into the code,
using array annotations that specify the sections that must be transformed from scalar to
vectors, or the inclusion of pragmas that help the compilers to automatically vectorize
suitable code.

Current mobile devices make use of SIMD units for operation parallelization. Even
though the SIMD computing model presents high flexibility, these units rely on a CPU
with control code execution. Many ARM-based mobile processors include a SIMD
co-processor known as NEON that provides for signal processing acceleration.

NEON co-processors use combined 64- and 128-bit single instructions over multiple
data, supporting up to 64-bit integer and 32-bit floating-point data types for a total of up
to 16 concurrent operations at the same time. The NEON hardware shares the same
floating-point registers with the VFP.

The exploitation of the NEON co-processor can be done in several ways. A compiler
flag for automatic vectorization in NEON analyzes the code and vectorizes it where it
is possible. A set of pragmas can be defined in the code to give information such as
function pointers dependency, or minimum loop iterations, about suitable parallelizable
code sections. Other ways of exploiting the NEON architecture are based on the
programmer explicitly in-lining the appropriate assembly instructions on the source
code, or using the NEON intrinsics ARM extension.

The use of a NEON co-processor slightly increases the power consumption of the
ARM-based SoCs. For example, Texas Instruments OMAP3530 Power Estimation
Spreadsheet(Texas-Instruments 2011) depicts a power contribution of 120 mW for the
use of a NEON co-processor at 600MHz, which means about a 20% increase in power
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consumption. If the performance gain is higher than such an increase, the utilization of a
NEON unit implies a better performance over power.

Homogeneous multi-core architectures

Most of the latest desktop computers include General Purpose Processors with several
cores. In the majority of architectures, each one of the cores is usually identical and can
include a SIMD unit. Identical or different tasks can be assigned to the cores by using
several Application Programming Interfaces (APIs) such as Open MP (Kristof et al.

2012). The multiple cores can share the data with several techniques such as shared
caches or the implementation of message passing communication methods.

Multiple applications can exploit the multicore capabilities of vision-based applica-
tions. A straightforward approach consists of dividing several different and independent
tasks among the total number of processors. This task parallelism is very easy to
implement, since there is no data shared by the cores, and it leads to an increased
throughput with the cost of a higher end-to-end latency.

For many interactive vision-based applications, where the end-to-end latency is a
concern, another approach that allows us to keep the latency smaller consists of dividing
the input images into equal strips and assigning them to each one of the cores, using a
domain decomposition or data parallelism technique. However, several experiments
suggest (Humenberger et al. 2009) that doubling the number of processors does not
double the speed. For each partition, a set of pixels needs to be accessed by two of the
cores, causing an overhead.

Experiments show that for pixel-based computations (such as convolutions) on N

cores, the time consumed per frame gets reduced by a factor of approximately 0.8∗N to
0.9∗N (Bordallo López et al. 2014) The results show that using the four cores on a
processor, the computations are about 3.6 times faster. The overhead in using more than
one core can be caused by multiple factors such as inefficiencies in the operating system,
cache utilization or contention in the access of the data shared by several cores. These
results are in line with previous observations in mobile multicore systems (Blume et al.

2008).
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Heterogeneous multi-core architectures

Mobile CPU architectures are starting to include together with several homogeneous
powerful cores, different complementary low power processors that are meant to reduce
the power and heat dissipation in modern SoCs (Greenhalgh 2011) (Rajovic et al. 2013).
The different approaches for these kind of architectures can be summarized in three
strategies:

In the symmetric clustering approach, the CPU architectures couples a relatively
slow energy-efficient processor with a powerful core, clocked at a higher frequency.
This processor couple is able to adjust better to dynamic computing needs, increasing
the energy efficiency in respect to the approaches that use only clock scaling. In this
kind of coupled architecture, a cache memory is shared between both cores, and the
tasks are transferred from the slower to the faster processor depending on the load. Only
one of the processors is powered and running at the same time.

Asymmetric clustering organizes the processors in non-symmetrical groups, where
one fast core can be tied together with several low power cores or viceversa. Although
the approach offers increased flexibility, only either fast or slow cores can be running at
the same time, keeping the others unpowered.

Heterogeneous multiprocessing architectures allow the concurrent use of all cores,
assigning high throughput tasks to faster cores and tasks with less priority or computa-
tional needs to the slower low power ones. The advantage of this approach is that all
physical cores can be used concurrently.

4.4.2 Application domain specific processors

To provide for optimized solutions for specific tasks, mobile SoC has been increasingly
integrating several processors directed to the execution of a set of algorithms on an
application domain such as signal, graphics or image processing. Application Domain-
Specific Processors (ADSPs) rely upon notions of concurrency and parallelism to satisfy
performance and cost constraints resulting from increasingly complex applications and
architectures. ADSPs are essentially programmable devices that aim to combine the
efficiency of the hardware with the flexibility of the software. Several of these ADSPs,
such as DSPs, ISPs, or GPUs have been included in mobile SoCs.

A Digital Signal Processor (DSP) is a microprocessor-based system with a set of
instructions and hardware optimized for data intensive applications. Although not
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exclusively used in mobile devices, DSPs are often used in mobile and embedded
systems, where they integrate all the necessary elements and software. DSPs are able to
exploit parallelism both in instruction execution and data processing by adopting a
Harvard architecture and Very Long Instruction Words (VLIW) that allow the execution
of instructions on each clock cycle. Although many DSPs have floating-point arithmetic
units, fixed-point units fit better in battery-powered devices. Formerly, floating-point
units were slower and more expensive, but nowadays this gap is getting smaller and
smaller.

Mobile Graphics Processing Units (GPU) are specialized co-processors for graphic
processing, employed to reduce the workload of the main microprocessor. They
implement highly optimized graphic operations or primitives. GPUs have several
independent processing units (cores) working on floating point data. Due to their higher
level of parallelism, when computing graphics tasks, they have a higher operation
throughput than modern microprocessors, while running at lower clock rates.

Image Signal Processors (ISPs) are subsystems designed to apply real-time image
enhancement algorithms like de-mosaicking and noise reduction to war images taken
by a high resolution camera sensor. Mobile ISPs aim to achieve cost, power and
performance objectives by implementing most of the algorithmic and compression tasks
in dedicated hardwired processing chains using minimal software.

To cope with the future needs of mobile devices, current devices are integrating
other domain-specific processors such as audio processors, sensor processors or radio
and network processors. Therefore the number of ADSPs included in mobile SoCs is
only expected to rise, increasing the heterogeneity of mobile processing.

4.5 Discussion

The main contribution of this chapter is the analysis of alternative implementation
principles for vision-based interactivity. The identified challenges in terms of latency,
throughput and energy efficiency and their intertwining characteristics result in the
proposal of the exploitation of a set of heterogeneous processors using asymmetric
multiprocessing, maximizing the use of all the computing resources available on a
mobile device.

The guidelines for high performance computing in mobile devices substantially
differ from the strategies utilized in non-battery devices, such as desktop computers.
The scarcity of the mobile resources calls for the wise use of the available computing
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devices. Parameters such as the precision or dynamic range of the computed data do
not only depend on the application itself, but also on the number and type of available
processors. Designing for high throughputs is intrinsically related to the assignation of
the most suitable core to the task in hand.

In this context, the extensive knowledge of the system timing in terms of performance
and latency is paramount for the creation of high performance applications. A careful
design and distribution of tasks could hide the possible latencies and increase the total
algorithmic throughput.

However, even the highest throughput solution might not be the most suitable. The
energy-efficiency of mobile SoCs has become the limiting factor in performance. Even
if battery capacity problems could be mitigated, the thermal envelope that keeps heat
dissipation under control will still require low power consumption. In this context,
the inclusion of even more heterogeneous lower frequency components in SoCs is the
natural path. Figure 28 depicts the evolution of mobile SoCs towards heterogeneity.

Fig 28. The evolution of mobile SoC. The increased heterogeneity calls for new
toolchains. (Goodacre 2009).

The increased heterogeneity calls for a simplification and standardization of the
ways of using all the included computing resources, while still providing for low level
access to them. The different tools at the designer’s disposal to address this task range
from macro-micro architecture design, to dynamic resource management and automatic
application partitioning, with the granularity of the tasks depending on the specific
architecture.
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5 GPGPU-based interaction acceleration

"Since real world applications are naturally parallel and hardware is

naturally parallel, what we need is a programming model, system software,

and a supporting architecture that are naturally parallel. Researchers have

the rare opportunity to re-invent these cornerstones of computing, provided

they simplify the efficient programming of highly parallel systems."

- Asanovic et al. (2006)

Chapters 2 and 3 focused on the better understanding of mobile vision-based
interactivity, identifying the practical constrains of vision-based interactive applications,
while chapter 4 provided insight into the problems and constraints of including computer
vision algorithms in mobile platforms. The rest of this thesis provides an assortment of
practical solutions for the challenges of these kinds of applications, especially in terms
of computational throughput, latency and energy efficiency.

This chapter analyzes the means to maximize the computational platform perfor-
mance to reach high interactivity by utilizing the Graphics Processing Units (GPU)
included in most of the modern mobile devices.The challenges, drawbacks and opportu-
nities of mobile GPUs are discussed in detail, identifying missing and unsupported
abstractions of the current mobile GPUs, APIs and toolchains. Finally, to illustrate
the increase in performance and energy efficiency that can be reached, two practical
examples of GPU acceleration of interactive applications are presented.

5.1 Mobile GPU as a computing device

Current mobile platforms do not include dedicated energy efficient programmable
camera processors that can be employed to develop advanced user interfaces. However,
an increasing number of devices already include a Graphics Processing Unit that can be
accessed with standard APIs such as OpenGL ES or OpenCL. A good solution that can
be integrated into the current platforms is the employment of a GPU for general purpose
computing (GPGPU), which can also improve the active-state battery life due to its
lower energy consumption in comparison with a general purpose processor (GPP).

Graphics Processing Units (GPU) are specialized co-processors for graphic pro-
cessing. Employed to reduce the workload of the main microprocessor in PCs, they
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implement highly optimized graphic operations or primitives. Because of their very
high level of parallelism, they can perform, certain operations faster than a modern
microprocessor, even at lower clockrates. Also, their smaller EPI makes them a suitable
candidate for reducing the power consumption of computationally intensive tasks.
Therefore, using mobile GPUs for camera-based applications is an attractive option.

Graphics Processing Units present clear benefits for intensive parallel computing
algorithms in terms of performance, since many of them can be considered compute-
bound algorithms, meaning that the algorithm execution time is determined by the speed
of the central processor, which has a 100% utilization rate. On the other hand, several
algorithms do not require a high amount of operations per data byte, and are considered
I/O bound or memory-bound, where the number of memory accesses and the memory
access speed are the limiting factor. Since GPUs have very high memory bandwidth,
they still present advantages in these kinds of algorithms (Vuduc & Czechowski 2011).

The use of a GPU proves to be very useful when some other tasks need to be done
during the desired GPGPU computation. They are especially suitable for long image
pipelines with long computations and a relatively low data exchange between computing
entities, which also reduce the load of the CPU that does the transfer. In some new
platforms, the transfer time between processors is reduced by including a high-end GPU
and a multicore CPU on the same chip (Brookwood 2010). In this case, both processors
(GPU and CPU) are allowed to access the main memory, eliminating the need for a
peripheral bus transfer.

5.2 Mobile GPGPU

Using Graphics Processing Units (GPUs) to perform computationally intensive tasks has
become popular in many industrial and scientific applications. As GPU computing is well
suited for parallel processing, it is also a very interesting solution for accelerating vision-
based interactive applications. Traditionally, the GPU is only used to accelerate certain
parts of the graphics pipeline such as warping operations. General-purpose computing
on graphics processing units (GPGPU) is the technique of using a GPU to perform
computations that are usually handled by the CPU. The addition of programmable stages
and high precision arithmetic allow developers to use stream processing of general
data (Owens et al. 2007) (Che et al. 2008).

A mobile GPU is especially useful as a co-processor to execute certain functions,
while employing its resources is most conveniently and portably done with a standard
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graphics API. On a mobile device platform ,the choice is essentially limited to OpenGL
ES, while the emerging OpenCL Embedded Profile is likely to offer flexibility similar
to vendor-specific solutions designed for desktop computers, such as CUDA from
nVidia (nVidia Inc. 2014). Most of the recent mobile phones include a graphics processor
accessible via the OpenGL ES application programming interface (API).

Although the current OpenGL ES API supports a limited set of programmable
function pipelines originally designed to render 3-D graphics, it can be used even
in implementing image processing functions. Furthermore, future GPU interfacing
APIs are likely to provide more flexibility, which helps in implementing and mapping
algorithms to the GPU.

5.2.1 GPGPU through graphics interfaces

Mobile graphics APIs have been implemented in mobile devices to provide for optimized
access to the graphics capabilities of the mobile SoCs. Allowing the programmers to
access the hardware in an abstract way, they have been utilized in all stages of computer
graphics generations. Motivated by the increased understanding of the mobile computing
needs, the APIs have been evolving together with the mobile hardware to adapt to the
new requirements presented by novel graphics and applications.

OpenGL ES

OpenGL (Open Graphics Library) is a multi-platform standard defining a cross-language
cross-platform API used for producing 2-D and 3-D scenes from simple graphic
primitives such as points, lines and triangles. OpenGL ES (OpenGL for Embedded
Systems) is in turn a subset of the OpenGL 3-D graphics API designed for embedded
devices such as mobile phones, tablet PCs, and video game consoles. Currently, there
are several versions of the OpenGL ES specification. OpenGL ES 1.0 is drawn up
against the OpenGL 1.3 specification, while OpenGL ES 1.1 and OpenGL ES 2.0 are
defined relative to OpenGL 1.5 and OpenGL 2.0 specification, respectively. OpenGL ES
2.0 is not backwards compatible with OpenGL ES 1.1.

In early 2005, OpenGL ES 1.1 started to be implemented in many mobile phones,
some of which included GPU hardware. The fixed point types were supported due to the
lack of hardware floating-point instruction sets on many embedded processors. Many
functionalities were in the original OpenGL API, although some minor functionalities
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were also added. In comparison to the previous version (mostly implemented in software)
OpenGL ES 1.0, the 1.1 added support for multi-texture with combiners and dot product
texture operations, automatic mipmap generation, vertex buffer objects, state queries,
user clip planes, and greater control over point rendering. The rendering pipeline is of a
fixed-function type.

In practice, these features of OpenGL ES provided for limited possibilities of using
the graphics accelerator as a co-processing engine. General purpose image processing
capabilities were available via texture rendering. In the OpenGL ES 1.1 model, the
image data can be copied to the graphics memory, allowing the application of several
matrix transformations and performing bilinear interpolations for the rendered texture.

Around 2010, OpenGL ES 2.0 irrupted in commercial devices as the preferred
API. It eliminated most of the fixed-function rendering pipeline API in favor of a
programmable one. A shading language allows programming most of the rendering
features of the transform and lighting pipelines. However, the images must still be
copied to the GPU memory in a matching format and the lack of shared video memory
causes multiple accesses to the GPU memory to retrieve the data for the processing
engine. Although a programmable pipeline enables the implementation of many general
processing functions, OpenGL ES APIs have several limitations. The most important
one is that the GPU is forced to work in single buffer mode to allow the read-back of the
rendered textures. Other shortcomings include the need to use power of two textures or
the restricted types of pixel data.

A new version of the API, OpenGL ES 3.0, was publicly released in August 2012,
and provides compatibility with desktop-based OpenGL 4.3. Backwards compatible with
OpenGL ES 2.0, the new specification reimplements the GLSL ES shading language,
adds computing shader capabilities and offers full support for 32-bit floating point
operations and a new set of texture and render buffer objects, increasing the flexibility
and portability of new applications.

Direct3D

Direct3D is a graphics and 3-D rendering API implemented by Microsoft designed to
be included in all Windows-based products. Although it does not specifically define
a subset of functionalities for mobile devices, the supported version for embedded
GPUs tends to be reduced compared with versions supported by desktop hardware. The
programming of mobile GPUs through the Direct3D API is done by using the High
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Level Shading Language (HLSL), a shading description language similar to GLSL.
Specific GPGPU support is only available in the newer versions of the API, not yet
supported by mobile GPUs.

5.2.2 GPGPU through specific interfaces

Following the path laid by desktop GPU vendors, the mobile industry is starting
to implement GPGPU-specific APIs. Designed to bring high-performance parallel
computing to mobile devices, these kinds of libraries focus on providing the programmer
for an interface that allows access to the architectural advantages of mobile GPUs in
a simpler way, obviating the cumbersome translation into graphics primitives that is
needed with graphic APIs.

OpenCL Embedded Profile

OpenCL is an API that defines the access and control of OpenCL-capable devices
and it includes a C99-based language that allows the implementation of kernels on
them. OpenCL simplifies the execution of task-based and data-based parallel tasks on
sequential and parallel processors. Currently, there are OpenCL implementations on
General Purpose Processors and Graphics Processing Units. However, several efforts
have been made to port the code into other processors and platforms, such as application
specific multi-cores (Jääskeläinen et al. 2010) or multicore DSPs (Li et al. 2012b).

OpenCL (Open Computing Language) is essentially an open standard for parallel
programming of heterogeneous systems. It consists of an API for coordinating parallel
computation across different processors and a cross-platform programming language
with a well-specified computation environment. It was conceived by Apple Inc., which
holds trademark rights, and established as standard by the Khronos Group in cooperation
with others, and is based on C99. The purpose is to recall OpenGL and OpenAL, which
are open industry standards for 3-D graphics and computer audio respectively, to extend
the power of the GPU beyond graphics facilitating General Purpose computation on
Graphics Processing Units.

In the OpenCL model, the high-performance resources are considered as Compute

Devices connected to a host. The standard supports both data and task based parallel
programming models, utilizing a subset of ISO C99 with extensions for parallelism.
OpenCL is defined to efficiently inter-operate with OpenGL and other graphics APIs.
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The current supported hardware ranges from CPUs, GPUs and DSPs to mobile CPUs
such as ARM processors. Through OpenCL, multiple tasks can be configured to run in
parallel on all processors in the host system, and the resulting code is portable on a
number of devices. The specification is divided into a core that any OpenCL compliant
implementation must support and an embedded profile which relaxes the OpenCL
compliance requirements, such as data type and precision, for hand-held and mobile
devices.

OpenCL defines a set of functions and extensions that must be implemented by
hardware vendors. Vendors should provide the compiler and other tools to allow the
execution of OpenCL code on their specific hardware. OpenCL implemented on an
embedded system allows the distribution of tasks with highly parallel programming
through all the processing units present on a chipset (CPU, GPU, DSP,...). Fig. 29
compares three different computational models. The OpenCL model can make use of
available shared local memory to reduce the number of memory read-backs.

Fig 29. The figure shows three computational models. The use of shared memory reduces
the number of read-backs. (Bordallo López et al. 2009) c©SPIE.

The execution of image processing algorithms in a single OpenCL kernel offers
smaller execution overheads, lower memory bandwidth requirements and better per-
formance comparisons than CPU alone or pure OpenGL ES implementations. Full
implementations of the OpenCL standard have been recently released for the PC market
and desktop GPUs, while the existing embedded profile implementations are currently
being integrated in the most recent mobile device development environments.
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RenderScript

Introduced in 2012, RenderScript provides a transparent acceleration engine that operates
at the native level on Android platforms. Developed by Google, it can be used to
accelerate applications that require extensive computational power. The RenderScript
runtime environment, designed to be asynchronous, is able to compute parallel scripts
using the Graphics Processing Resources, the multicore CPUs and the DSP present
in mobile SoC. In a completely user-transparent way, the script is able to allocate the
necessary resources to accelerate certain tasks. A drawback of the approach is that the
developer has no control over where and how the code is executed, and its performance
varies across implementations, platforms and devices. Also, since RenderScript hides
the actual hardware information and properties, many architectural advantages such
as the appropriate use of GPU memory hierarchies cannot be leveraged. A subset
of RenderScript named FilterScript provides better acceleration of image filtering
operations in a similar manner.

5.3 Related work

In personal computers, the use of GPUs for multimedia applications and computer vision
has become commonplace. The work of Kalva et al. (2011) presents a good tutorial
on the advantages and shortcomings of GPU platforms when developing multimedia
applications, while Fung & Mann (2008) explain how to use the GPU to perform
computer vision tasks.

In recent years, GPU implementations of computer vision algorithms have gained
recognition as a viable option. Algorithms like scale invariant feature transform
(SIFT) (Heymann et al. 2007), speeded up robust features (SURF) (Cornelis &
Van Gool 2008), Kanade-Lucas-Tomasi (KLT)-tracker (Sinha et al. 2006), Advanced
Phase Shifting Algorithm (APSA) (Bordallo López et al. 2012c), nonparametric
foreground segmentation (Berjon et al. 2013) and LBP (Zolynski et al. 2008) have been
implemented on a desktop GPU with performance far surpassing the corresponding
CPU implementations.

However, despite the tremendous popularity that GPGPU computing has obtained in
recent years, the use of GPUs as general purpose capable processors has not yet been
extensively considered on mobile phones. Until recently, mobile GPUs have been only
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utilized for graphics and composition of the presentation layer. The first attempts at
utilizing the mobile GPU for general purpose computation started in early 2009.

The first work that can be found in the literature, published by the author of this
thesis (Bordallo López et al. 2009), utilized the fixed rendering pipeline offered by
OpenGL ES 1.1 to warp and correct the video frames that would be utilized to compose
a planar panoramic scene. The application was implemented on a real device, the
Nokia N95. These first results show that it was possible to compute simple geometry
transformations about four times faster than using the mobile CPU, although the
overheads of copying images as textures to graphics memory resulted in significant
slowdowns. Other identified problems of OpenGL ES 1.1, including the slow texture
readbacks, the forced single-buffer mode, the fixed power-of-two resolutions and
the required memory reordering, decreased the overall performance. The lack of
programmability of the graphics interface did not allow, at the time, more complex
operations that entail higher performance gains. Almost a year later, and following
this first work, Pulli et al. (2009b) integrated a similar type of solution into a spherical
projected panorama application. Reporting similar results, these works showed that the
limitations of the fixed rendering pipeline for general purpose computations were a
major challenge.

The introduction of the programmable OpenGL ES 2.0 pushed the development
of new applications. Nah et al. (2010) utilized the GPU to improve and accelerate a
ray-tracer. Integrated in a real application, the GPU was used to create realistic graphics
in a programmable way. However, no clear evaluation of the system performance can be
found.

The firsts evaluations of the performance of mobile GPUs in a GPGPU context
start with the work of Singhal et al. (2010), who calculated the gains of mobile GPU
implementation of several computer vision algorithms, such as Harris´ corners (Harris &
Stephens 1988) detection, median, bilateral and Sobel filters or gradient computation.
Kayombya (2010) adapted a desktop GPU SIFT implementation to OpenGL ES 2.0 and
evaluated its performance. Both works conclude that OpenGL ES 2.0 is a suitable API
for the acceleration of computer vision algorithms, recommending general techniques
such as the use of calculations per vertex, instead of per fragment or the pre-packing of
the images as suitable textures. Although an increased energy efficiency is mentioned,
no specific values are shown.

The first attempt to bring mobile GPGPU computing to face detection was made
by Wang et al. (2010). In their work, based on a mobile GPU-accelerated FFT, they
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analyze along with the possible performance gains, the reduction of the energy consumed
by GPU-based applications (Wang & Donyanavard 2010). Their conclusions stress the
importance of the efficient partition of the software between GPU and CPU in a hybrid
solution.

It has to be noted that all these works utilized developer tools and were never
integrated in real mobile devices. Following the ideas of accelerating face and object
detection and recognition, in early 2011, the author of this thesis presented an LBP
implementation of the LBP operator (Bordallo López et al. 2011c), able to run on a real
device, the Nokia N900. The work showed that along with a moderate speedup obtained
by concurrently using the CPU and GPU, the reduction of the energy consumed could
be directly translated into energy savings in real devices.

Since then, the emergence of several devices including programmable GPUs,
implied the materialization of applications deployed on real devices. Seo et al. (2011)
created a mobile visual tracking system that used the GPU to perform rigid 3-D body
transformations. Implemented on an Android platform, it could be executed in numerous
devices. Cheng & Wang (2011) analyzed the use of the mobile GPUs by analyzing
a case of study based on face tracking, emphasizing the energy savings that could
be obtained with their approach. Ensor & Hall (2011) re-implemented a Canny Edge
detector in real devices.

In 2012, the author of this thesis integrated the existing mobile GPGPU algorithms
into a multiframe reconstruction application (Bordallo López et al. 2012b) and a 3-D
virtual display based on face tracking (Bordallo López et al. 2012a). The applications
demonstrate techniques and strategies to utilize the CPU and the GPU concurrently,
even when the GPU is needed for rendering.

Recently, several other algorithms such as SURF (Hofmann et al. 2012a) (Hofmann
et al. 2012b) (Yang & Cheng 2012) or Flocking Boids (Joselli et al. 2012) (Joselli et al.

2013), have been ported into mobile devices, while others such as the FFT (Wang &
Cheng 2012) or the SIFT descriptor (Rister et al. 2013) have been re-implemented
and optimized with several performance gains obtained by a better use of the mobile
architecture.

The slow introduction of the first OpenCL-capable platforms has motivated the
apparition of several new implementations. A notable early effort is the emulation
of the more generic OpenCL standard on embedded devices. Leskelä et al. (2009)
created the first OpenCL implementation able to run on a mobile development platform,
the OMAP3630, by emulating the general purpose interface using OpenGL ES 2.0.
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However, this experimental emulation has not been available for general use in standard
devices or developer boards.

General guidelines about the use of OpenCL in mobile devices can be found in the
work of Maghazeh et al. (2013) and Cheng et al. (2013). However, it was Wang et al.

(2013b) who proposed the first implementation of a computer vision algorithm by using
OpenCL in mobile devices, an exemplar-based inpainting algorithm (Wang et al. 2014).
Other applications using OpenCL are a stereo image rectification system (Park et al.

2013), a re-implementation of a hybrid GPU/CPU SIFT detector (Wang et al. 2013a), a
marker-based virtual reality application (Konrad 2014) and a mobile facial recognition
system (El-Mahdy & Elsersy 2014).

The most recent efforts are focused in the implementation of common libraries
or structures so they can be used for developers in a transparent manner. Pulli et al.

(2012) introduced a gpu-capable implementation of the popular OpenCV library that
can be used in mobile devices. Although several functions are accelerated when
compared to the CPU general version, the developer has no control over the computing
device that will execute the functions. Their work also analyzes the use of GPU-based
computer vision for real-time applications, by studying the performance in an OpenCV
environment. Similar commercial implementations, such as Qualcomm’s FastCV, also
exist (Qualcomm 2013). In a more generic way, Paralldroid (Blanco 2013) is able to
generate C/C++/OpenCL code from standard Android Java code, enabling parallel
computing in a simple manner, while the work of Yang et al. (2012) can convert OpenCL
code into the Android-optimized RenderScript.

5.4 Advantages, shortcomings and opportunities of mobile GPGPU

The architectures of mobile GPUs differ significantly from the well-known desktop
GPUs. With mobility in mind, embedded GPUs have been designed to minimize
their power consumption and size. To adapt to these characteristics, developers have
traditionally taken the approach of restricting the problem size or thinking of mobile
GPUs as low-end desktop counterparts. Although this might be practical for certain
situations, the reality is that that the best performance is only obtained by tackling the
fundamental differences between mobile and desktop GPUs and the particularities and
needs of mobile applications.

The fundamental reason for using mobile GPUs for general purpose computing,
specifically for computer vision tasks, has its roots in the fact that almost every mobile
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device on the market includes one. The integration of programmable stages in mobile
GPUs provides for an excellent opportunity to offload the mobile GPU, simultaneously
increasing the performance and efficiency of the system.

In this context, the use of a mobile GPU decreases the workload of the application
processor and proves to be very useful when some other tasks need to be performed at
the same time. Mobile Graphics Processing Units can be treated as an independent
entity. Their reduced clock frequency and Energy per Instruction (EPI) can potentially
reduce the power needs of image analysis tasks on mobile devices (Akenine-Möller &
Strom 2008).

Since mobile GPUs do not have a shared control code, they are especially useful as
a co-processor to execute certain computationally expensive operations, while keeping
the CPU free for sequential tasks. Table 6 shows the different EPIs of CPUs and GPUs
in different form factors. In any form factor, the GPU shows its higher energy efficiency

Table 6. EPIs of different CPUs and GPUs in different form factors.

Form-Factor Model EPI (pJ)

CPU Desktop Intel i5-3570 6886

GPU Desktop nVidia GeForce GTX650 60

CPU Laptop AMD C50 935

GPU Laptop AMD Radeon 6250 38

CPU Mobile ARM Cortex-A8 100

GPU Mobile I.T. PowerVR 540 16

5.4.1 Architectural constrains

Mobile GPUs have multiple independent processing units (cores) working on floating
point data. The performance of these cores is optimal when all of them are occupied and
performing the same operations. Instructions that affect the flow control, looping and
branching are thus usually restricted and might cause performance penalties. A good
practice consists of eliminating loops by using optimized unrolling vectors to perform
the operations, decreasing the number of increments and comparisons.

Due to the high degree of parallelism and the high number of processing units that
need to be operational at the same time, memory access is critical to avoid processing
downtimes, both in bandwidth and speed. Traditionally, discrete GPUs present in
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desktop systems transfer data with the main processor using a peripheral bus. On the
other hand, current mobile platforms integrate the memory, the GPU and multicore
CPU in the same System on Chip, and reduce costs, power and size by integrating a
Unified Memory Architecture (UMA) that allows each processor to access the main
memory (Elhassan 2005). However, a very important drawback of this approach is that
the GPU needs to share memory access bandwidth with other system parts, such as the
camera, network and display, subsequently reducing the amount of dedicated memory
bandwidth for graphics rendering (McCaffey 2012). Figure 30 depicts the differences
between a UMA and bus-based memory transfers.

In the context of bandwidth scarcity, mobile GPU architectures have traditionally
been implemented as tiled rendering architectures. Texture compression is used to
help in the reduction of the memory transfer overheads. When textures cannot be
compressed, lower precision pixel formats are used. Lowering the bus traffic between
the GPU and the memory is also an efficient way of reducing power consumption.
Therefore, several high-level algorithms for bandwidth reduction can be found in the
literature (Akenine-Möller & Strom 2008). A good practice consists of exploiting the
available APIs to overlap memory transfers.

5.4.2 Numerical representation

Mobile GPUs are designed to operate in floating-point format. As a result, any image
processing algorithm with high floating point arithmetic requirements is a very good
candidate for acceleration on a mobile GPU. Operating in other number formats such as
integers does not usually have any performance gain, and sometimes it can be treated as
a penalty. As example, a 5 x 5 Gaussian filter implemented on a PowerVR SGX540
shows about a 30x speedup in comparison with a floating-point implementation on a
ARM Cortex A8 CPU. When compared with a fixed-point CPU implementation, the
GPU still presents a 2x speedup, while a fixed-point implementation on the mobile GPU
does not present any improvement (Singhal et al. 2012).

5.4.3 Form-factor constraints

Other challenges of mobile GPGPU programming are related to architectural design
decisions, due to their form factor. The small size of mobile GPUs has pushed the
manufacturers to reduce the number of registers. While a high-end desktop GPU can
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(a) Bus-based memory transfers

(b) Unified Memory Architecture

Fig 30. Different types of GPU access to memory.

have a register bank size of up to 128KB on each one of its 14 multiprocessors (Tesla
M2050), a mobile GPU (PowerVR SGX530, Vivante GC2000) has only 2KB in each
one of its 4 cores. This fact causes a smaller number of available thread-blocks and an
inefficient scheduler, which in turn results in memory transfers not necessarily well
hidden.
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Embedded GPUs allow a smaller number of instructions per kernel. Although
the next generation of GPUs is likely going to increase the instruction memory size,
the limited sizes of instruction caches might be a performance limit when more tasks
are implemented on the mobile GPUs. This causes a practical trade-off between
many smaller kernels with high launching overhead and long kernels that might be
inefficient because of small L1 GPU caches. The possible solution to this is to develop
heterogeneous programs that concurrently use the GPU and CPU while being able to
hide the possible transfers between entities. An example of this type of solution can be
seen in the implementations of pattern matching and genetic programming in the work
of Maghazeh et al. (2013)

5.4.4 Application Programming Interfaces limitations

Employing the resources of mobile Graphics Processing Units is most conveniently done
using standard APIs. As discussed before, these APIs are divided between Graphics
APIs and general purpose APIs. Most of the recent mobile devices include a graphics
processor accessible via the OpenGL ES graphics API, while general APIs are limited
to newer high-end devices.

The main disadvantage of Graphics APIs is rooted in their specificity. Designed
for graphics processing, OpenGL ES does not provide access to certain architecture
specific features. Although, on a mobile SoC, the memory is shared between the CPU
and GPU, texture objects used as input data (e.g. images) have to be properly wrapped
for the graphics core and cannot be directly accessed as a CPU image array. The texture
wrapping operation implies a significant overhead that might be the bottleneck of
systems that need large memory buffers. For example, the practical memory bandwidth
measured on a real system, ARM Cortex A8 and PowerVR SGX530, is about 220MB/s
from CPU to GPU and about 30MB/s from GPU to CPU. Table 6 shows the asymmetry
in the achieved memory bandwidth with different mobile SoCs (Wang & Cheng 2012).
This asymmetry is expected since readbacks from texture memory are not a very
common operation in graphics processing. Depending on the computational heaviness of
the algorithm, this API implementation can be a major performance penalty. Accessing
neighborhood color values in a fragment shader commonly results in dependent texture
read, which in turn results in a stall until the texture information is retrieved. To avoid
dependent texture read, it is generally good practice to pre-compute neighboring texture
coordinates in a vertex shader.
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Table 7. Practical memory bandwidth using OpenGL ES in different SoCs.

SoC CPU to GPU GPU to CPU

OMAP 3530 220 MB/s 30 MB/s

Snapdragon S2 1100 MB/s 240 MB/s

Tegra2 1100 MB/s 302 MB/s

The implementations of graphics APIs are vendor specific. This causes low precision
control in the algorithm, since the implementation of a certain shader on one platform
might not give the same results on another. For example, OpenGL ES shaders use
precision pragmas such as highp, mediump and lowp to provide the compiler with hints
on how the variable is used. Lower precisions increase the shader performance, but the
developer has no control over how it is going to be used. An illustration of the lack of
precision uniformity can be seen when implementing the following shader code:

{

precision highp float;

uniform vec2 resolution;

void main( void )

{

float y = ( gl_FragCoord.y / resolution.y ) * 26.0;

float x = 1.0 "" ( gl_FragCoord.x / resolution.x );

float b = fract( pow( 2.0, floor(y) ) + x );

if(fract(y) >= 0.9)

b = 0.0;

gl_FragColor = vec4(b, b, b, 1.0 );

}

The results are depicted in Figure 31. The images show a varying fade level
from bright to dark over several iterations. The bars are composed using increased
floating-point precision further up in the image. It can be seen that different platforms
implement the shaders in a different way, with different accuracy. A detailed experiment
on floating point accuracy on mobile GPUs can be seen in the articles written by Olson
(2013) or Rusell (2013).

General APIs, such as OpenCL Embedded Profile, offer higher flexibility and better
access to the architectural features of the mobile GPUs. However, the details of the
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Fig 31. A fade shader implementation to test mobile GPU precision.

standard API implementation might not be transparent to the developer. Standard APIs
hide several implementation details from the user by implementing certain abstractions
that might have a reflection on the real hardware or might be just emulated. For example,
OpenCL 1.1 forces the implementation of software support for local memory. However,
current mobile GPUs such as the Vivante or Adreno family do not have on-chip user
defined memory that allows data sharing between GPU cores. The result is that the
standard is implemented emulating the local memory by using general memory. While
the code that uses local memory is still fully compatible, there is a high performance
penalty that makes the implementations that use local memory considerably slower. This
fact is counter-intuitive as developers expect performance benefits from a memory type
that physically does not exist. Future devices are expected to include more and more
hardware resources, but for the time being, understanding the actual GPU architecture
can result in important performance gains.

5.4.5 Sensor interfacing

An important fact not directly related to the mobile GPU architectures is that the
most of the recent mobile devices have not yet taken into account the use of GPU for
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camera-based processing. In current mobile architectures, image processing algorithms
that use the camera as the main source of data lack fast ways of data transferring between
processing units and capturing or saving devices. In this context, to map the algorithms
properly on the GPU, the data should be copied to the main memory, then to be later
wrapped in the specific model of the graphics APIs. The multiple memory copies result
in a latency overhead and the involvement of the CPU in a process that essentially
should take place between the camera and the GPU.

5.5 GPU acceleration of multiframe reconstruction

To illustrate the possible performance gains in interactive camera applications when
using mobile GPGPU computing, several algorithms that can be used in a multiframe
reconstruction application have been implemented using a PowerVR530 mobile GPU,
integrated on a Nokia N9 device. The Nokia N9 graphics processor is accessible via the
OpenGL ES application programming interface (API). However, as discussed before, the
use of GPU as general purpose capable processors has not been extensively considered
yet on mobile phones.

In the target platform, the camera image transfers must be done by copying the
images obtained by the camera from the CPU memory space to the GPU memory space
in a matching format (Bordallo López et al. 2011c). Furthermore, the overheads of
copying images as textures to graphics memory result in significant slowdowns. The
lack of shared video memory causes multiple accesses to the GPU memory to retrieve
the data for the processing engine.

Traditional approaches to mosaic building algorithms used to follow a sequential
path with multiple accesses to the memory from the processing unit. In the example
application, each step of the mosaicking algorithm has to be evaluated separately in
order to find the best ways of organizing the data and to reduce the overheads. In order
to evaluate the improvements in terms of speed and energy-efficiency, several GPU-
implemented relevant parts of the algorithm have been integrated into the multiframe
reconstruction application. Both the highly interactive capture stage, the frame selection
stage and the blending stage are suitable for acceleration.
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5.5.1 Interactive capture acceleration

In the interactive capture stage, the mobile-GPU Harris’ Corners detector can be used to
accelerate the motion estimation process (Singhal et al. 2010). The experiments suggest
that the GPU can compute the corner detection of QVGA pictures in less than 50ms,
which implies a 30% gain while using a CPU/GPU hybrid approach.

Area-based image registration methods are also suitable for being highly parallelized.
For example, the method by Vandewalle et al. (2006) uses Tukey window filtering and
FFT-based phase correlation computations to register two images. Experiments run on
an OMAP 3630 platform show that window filtering and complex division routines
increase their execution speed up to three times compared to the CPU when performed
on the built-in GPU (Bordallo López et al. 2012b) while the FFT can be accelerated
about two fold (Wang et al. 2010).

5.5.2 Accelerating quality assessment

The selection of the best images that will be utilized in the blending stage requires
the measurement of the blur contained in each individual frame. The programmable
pipeline of OpenGL ES 2.0 enables shader programming in implementing blur detection
in a similar way to the feature extraction method. The first stage of the blur detection is
a simple derivation algorithm, which can be implemented efficiently with OpenGL ES
2.0 shader (Bordallo López et al. 2012b). The designed tests show that on an OMAP
3630 platform the derivation algorithm with HD-720p images can be computed about
three times faster on the GPU, while reducing the CPU load by an %.

The most obvious operations to be accelerated using OpenGL ES are pixel-wise
operations and geometrical transformations such as warps and interpolations. The
stitching process requires the correction of each selected frame with a warping function
that must interpolate the pixel data to the coordinates of the new frame. This costly
process can be done in a straightforward manner in several steps using any fixed or
programmable graphics pipeline (Bordallo López et al. 2009). Figure 32 depicts the
warping correction process using the vertex shader.
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Fig 32. Image dewarping on a mobile GPU.

5.5.3 Accelerating registration and blending

The blending stage requires a re-registration of each one of the selected images and a
seamless blending algorithm. Feature extraction can be moved to the GPU through the
use of programmable shaders. Previous works shows that desktop-GPU SIFT feature
extraction used along with a RANSAC estimator in parallel has shown a 50% CPU load
reduction (Sinha et al. 2006) and that feature extraction times on VGA frames can be
reduced by about ten times (Ready & Taylor 2007). However, the recent CPU/GPU
hybrid implementation of SIFT in a mobile (Rister et al. 2013) suggests improvements
from 6 to 8-fold.

The pixel blending operation can be done utilizing the hardware-implemented
blending function. When the blending function is enabled, overlapping textures will be
blended together. The transparency can be determined by choosing a blending factor for
every channel of both images and then a blending function. The channel values are
multiplied with their respective factors. After that, the blending function is applied to
each channel pair. Since OpenGL ES 2.0 has a programmable pipeline, blending can
also be done with a shader algorithm. In this way, all the needed calculations can be
combined in only one rendering stage.

5.5.4 Comparison of performance

As described in Chapter 2, the multiframe reconstruction application can be divided
into two parts. The first part, an online loop, is asynchronously executed in each video
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frame obtained by the camera, and is the main component of the interactive capture.
The algorithms that can utilize the mobile GPU to improve the overall performance
are grayscale conversion, scaling, blur detection and motion estimation, using either a
Harris’ Corners detector or a Phase Correlation method. The improvements in this stage
are translated into a higher operating framerate which in time allows the capture of
better source images.

The second part of the algorithm, more computationally expensive, performs the
accurate registration and blending of selected HD-720p video frames. The algorithms
suitable for acceleration are SIFT detection, image warping correction and Gaussian or
linear blending.

The computation times and energy consumptions of the main parts of the multiframe
reconstruction algorithm are depicted in Table 8. The first two columns refer to pure
CPU code, while the other two utilize the CPU and the GPU concurrently.

Table 8. Computational and energy costs per HD-720p frame of several operations imple-
mented on a mobile platform (OMAP 3630).

CPU time GPU time CPU energy GPU energy

consumption consumption consumption consumption

[ms] [ms] [mJ] [mJ]

Grayscale conv. 18 8 3,6 1,0

Scaling 24 12 5,3 1,5

Harris Corners detector 60 45 13,5 10,2

Tukey windowing 35 15 5,1 2,1

FFT 70 40 10,2 5,6

Blur detection 80 60 28,2 8,0

TOTAL online (Feature) 182 125 41,1 19,7

TOTAL online (Area based) 207 135 42,5 18,2

SIFT detection 1400 240 770 26,4

Matching 2000 - 1100 -

RANSAC 1600 - 880 -

Image warping 320 105 215 11,6

Image blending 250 105 170 11,6

TOTAL Offline 5470 4050 3235 2030
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The results show that the utilization of the mobile GPU increases the performance
of the overall application. The online loop can increase the framerate about 4-fold,
while consuming 17% of the energy per frame. The GPU accelerated loop is a more
energy-efficient solution due to a decreased CPU load and the higher EPI of the mobile
GPU. The solution allows increasing the framerate and reducing the power consumption
simultaneously.

The GPU implementation of the offline phase is able to accelerate the feature
detection, warping and matching to reduce the total computation time by about 20%.
The total energy reduction accounts for 30%. In this case, the CPU load cannot get
substantially reduced since it is needed for matching and RANSAC.

It can be noted that SIFT detection, matching and RANSAC are the most computa-
tionally demanding parts of the multiframe reconstruction application, determining a
practical application bottleneck. It would be beneficial to move part of the computations
to the GPU by defining a matching algorithm with a high degree of parallelism. Also,
the substitution of the computationally demanding SIFT points for faster features, such
as SURF, must be considered. Finally, the careful pipelining and scheduling of the
application might be able to reduce the idle time of the CPU and GPU, increasing the
overall performance.

5.6 GPU-accelerated virtual 3-D display

To analyze the possible performance gains of mobile GPGPU computing in vision-based
UIs, this section considers the acceleration of a face tracking approach that uses efficient
gray-scale invariant texture features and boosting. The solution is based on the Local
Binary Pattern (LBP) features and makes use of the GPU on the pre-processing and
feature extraction phase to reduce the computation time and power requirements. The
LBP operator is a texture analysis tool that measures local image contrast where the
selected pixel’s value is defined by its eight surrounding neighbors. The LBP techniques
have been identified as a potential methodological basis for implementations due to
their high accuracy (Hadid et al. 2004). However, the algorithms are pixel-wise and
bit-oriented, and as such, difficult to implement efficiently on serial processors. The
face-tracking solution integrates the first mobile GPU implementation of LBP extraction.
It uses the OpenGL ES 2.0 shading language and its performance is measured on an
OMAP3430 platform (Bordallo López et al. 2011c).

103



5.6.1 GPU-accelerated face tracking

An efficient face tracking implementation can also be used as a first step for constructing
several more complex applications, such as smile-based shutters or virtual 3-D displays.
An example scheme of a face tracking algorithm is shown in Figure 33. The face
tracking approach under consideration uses efficient gray-scale invariant texture features
(Ojala et al. 1996) and boosting (Freund & Schapire 1995). Feature extraction is an
important part of these systems and many algorithms have been proposed to solve it.
The analyzed solution is based on the LBP texture methodology (Ahonen et al. 2006)
for facial representation.

Fig 33. Parallelized face tracker. Tasks are distributed between the CPU and GPU.

After the effective extraction of the face features, a learning system like AdaBoost
can be applied to find the most discriminative features for distinguishing the face patterns
from the background. This boosting method searches for the faces in the images or
image sequences, and returns the coordinates of the detected objects. The resulting
information could also be directly used by face-based applications, such as auto focusing
or color enhancement.

The face tracking algorithm consists of four phases. First, the incoming viewfinder
image is pre-processed. The pre-processing algorithm consists on the multi-scaling
of the source image at different sizes, and the preparation of the data in the most
suitable format. The extraction of features in different scales allows the detection of
multiple-sized objects.

After the pre-processing, the image features are extracted using the LBP operator.
Then, classification is performed, and finally the results are post-processed and presented.
In this section we describe how the computation of scaling, pre-processing and LBP
feature extraction can be implemented on a GPU. The classifier is implemented as a
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pure CPU solution, although future work should consider also the GPU acceleration of
this computationally demanding phase.

OpenGL ES implementation of the LBP

A detailed implementation of the LBP algorithm on a mobile GPU can be found in
a previously published article (Bordallo López et al. 2011c)1 The simplest way of
implementing LBP on a mobile GPU takes in a basic 8 bits per pixel (bpp) intensity
picture. However, a more efficient way consists on taking in a 32bpp RGBA picture.
Even if the input picture has only one channel, this approach will offer a better
performance since the texture lookup function will always return values of all the four
channels.

The 32bpp RGBA texture can be composed in various ways. For example, when low
end-to-end latency is not needed, a different gray-scale picture can be uploaded onto
each one of the RGBA texture channels. However, since the LBP algorithm is easily
separable, another solution is to divide a regular intensity picture into four sections that
would be assigned to different color channels.

The required preparation for the input images can be also included at the same stage
as the gray-scale conversion and scaling. The uploaded texture can be divided into four
sections that can be used to texture each one of the RGBA channels of the rendered
quad. The result is suitable as the input of the LBP computation. Figure 34 depicts the
preprocessing algorithm.

Fig 34. Composition of an RGBA texture.

Similarly to the desktop’s OpenGL model, a mobile GPU pipeline is composed
of vertex and fragment shaders. The vertex shader operates on vertices and, properly
designed, it can be used to transform the coordinates of a quad through matrix multi-

1The source code can be downloaded from the website:
http://www.ee.oulu.fi/m̃iguelbl/LBP-Software/index.html
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plications. Depending on the application, these operations can be used to compose a
multi-scaled image or to just pass the texture coordinates forward.

The fragment shader operates on fragments (pixels) and it can be used to perform
operations such as the LBP calculations. After this, the data goes through various
per-fragment operations before reaching the frame buffer. While the quad is textured,
bilinear interpolations for each pixel are calculated in parallel on the GPU. The rendering
surface is then copied back to the main memory as a native bitmap.

The fragment shader program accesses the input picture via texture lookups. Since
this model accepts the use of non-integer indexes, the interpolated version of the LBP
that makes use of the built-in interpolation capabilities is as fast as the non-interpolated.

A straightforward solution to calculate the LBP values, in a similar way to desktop
GPUs (Zolynski et al. 2008), is to form the LBP value by multiplying the binary
number’s bits with their corresponding weight factors and then sum all products together.

The first operation fetches the selected pixel’s value and the second it’s neighbors’
values. Next, the built-in OpenGL ES 2.0 function step returns a matrix of ones and
zeros corresponding to the relations of the pixels’ values. The LBP values of all the
channels can then be calculated by multiplying the binary matrix with the weight factor
vector.

5.6.2 Performance evaluation

Both the standard and interpolated versions of the LBP algorithm were tested on a
PowerVR SGX530 mobile GPU. The OpenGL shaders were integrated on a native
program programmed using standard C code, running under an embedded linux
environment. The implementation was tested with multiple image sizes in order to
identify dependencies from the cache efficiency and the level of parallelization, but no
significant differences were found. The experiments show that the OMAP3530 built-in
GPU is able to compute the LBP of VGA frames in around 40ms. Although the GPU is
slower than the CPU on a platform level, an improved performance can be achieved if
both are utilized concurrently.

Since GPUs are usually designed with smaller clock frequency than General Purpose
Processors, the specialization of its units leads to a smaller EPI. Our experiments show
that the PowerVR SGX530 mobile GPU included on the Beagleboard kit consumes about
110mW with the overheads of the memory accesses. Texas Instruments’ OMAP3530
Power Estimation Spreadsheet (Texas-Instruments 2011) reports a consumption of about
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93mW at a 110MHz frequency which is consistent with our measurements. These
values imply a power consumption of about 0.85mW/MHz when the GPU is operated at
the intended operating points. When an application does not have heavy time constrains
or real-time requirements, the mobile GPU proves to be a good alternative to reduce the
total battery drain.

The face tracking process requires the construction of a multi scale 8bpp image that
allows the detection of faces in multiple sizes. This costly process can be done in a
straightforward manner on several steps using any fixed or programmable graphics
pipeline. The process can be mapped onto the GPU, offering an improvement in
processing time and energy consumed. Table 9 depicts the computation times and energy
consumptions of the relevant algorithms when executed on an N900mobile device.

Table 9. Computational and energy costs per VGA frame of several operations implemented
on a mobile platform (OMAP3430).

CPU GPU CPU GPU

time time ener. ener.

[ms] [ms] [mJ] [mJ]

8bpp conv. 10 4 6,1 0,5

Scaling 15 6 9,2 0,8

LBP 22 40 13,1 6,1

TOTAL 47 50 28,4 7,4

The test results show that the CPU implementation of the LBP outperforms the GPU
implementation. This is due to the fact that mobile GPUs and Graphics APIs are not too
suitable for bitwise operations. However, it can be observed that pixel-wise algorithms
that require floating-point operations are around three times faster using the GPU.

The energy efficiency of the GPU depends heavily on the algorithm type and
mapping, although the smaller EPI of mobile GPUs are usually designed to offer a high
energy efficiency per instruction (Akenine-Möller & Strom 2008). However, this feature
takes most relevance in algorithms where only floating-point per pixel operations are
required.

Measuring the combination of all the algorithms in a single stage produces compara-
ble times in both the GPU and CPU. However, the use of the GPU solution moderately
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reduces the energy per frame, while leaving the CPU idle to perform other tasks, such as
classification.

When time and energy consumption results are normalized, it can be seen that the
lower frequency of the mobile GPU results in a smaller number of cycles consumed per
pixel, even in the least favourable of the operations, the LBP extraction. This lower
count, together with the smaller EPI, results in an even more pronounced advantage in
terms of energy consumed per pixel. Table 10 shows the normalized values, independent
of the pixel count and operating frequency. It can be seen that even in the least suitable
cases, the GPU acts as a way of trading speed for energy.

Table 10. Normalized computational and energy costs.

CPU GPU Rate CPU GPU Rate

CPP CPP CPU/GPU nJPP nJPP CPU/GPU

8bpp conv. 19,5 1,4 13,6x 19,8 1,6 12,2x

Scaling 29,3 2,1 13,6x 29,9 2,6 11,5x

LBP 42,9 14,3 3,0x 42,6 19,8 2,1x

TOTAL 91,8 17,9 5,12x 92,4 24,1 3,8x

5.6.3 Concurrent use of CPU and GPU

A practical challenge of using the mobile GPU to perform general computations on
a user interface is that the GPU is actually needed to render the 3-D graphics on the
screen. An excessive use of the GPU might cause delays in the rendering that would
show as unrealistic glitches to the user.

In this context, a straightforward solution is to execute the main tasks sequentially,
starting with the camera image acquisition, following with face-tracking and finishing
with the render on the screen. However, this causes a very pronounced decrease of the
application framerate. A possible solution that increases the overall frame rate of the
application consists of the careful scheduling of the application to minimize the idle
time of the CPU and GPU. Figure 35 depicts the distribution of tasks between the CPU
and GPU to reduce the idle times.

Pipelining the tasks properly, the CPU can start the face-tracking task while the GPU
is still rendering the results of the previous frame. The application is implemented by
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Fig 35. Scheduling of the virtual 3-D UI tasks between the mobile CPU and GPU. The latency
of the presentation time remains the same while the throughput and framerate increase.

using three threads. One of them does the LBP feature extraction, the second one does
face tracking, and the third one renders the resulting POV onto the screen. While the
latency between the capture and the presentation time remains the same, this approach
notably increases the frame rate, improving the overall feeling since it allows the
rendering of more intermediate frames.

5.7 Discussion

The main contribution of this chapter is the identification of missing and unsupported
abstractions in the current mobile graphics processing units APIs and toolchains,
achieved through the implementation of several compute-intensive operations on a
mobile device. This novel insight into high-performance mobile GP-GPU brings
vision-based interactive computing to other developers, showing the limitations and
opportunities of the platform.
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The high demand for complex graphics applications such as high-end mobile video-
games suggests that mobile GPUs will still see future improvements. Consequently,
based on the success shown by GPGPU-capable GPUs in desktop environments,
the industry will likely include APIs and interfaces to utilize mobile GPUs for the
acceleration of intensive floating-point computations. If carefully designed, a single
mobile GPU chip could be utilized for both graphics and massively parallel computing.
In addition, the use of mobile GPUs in a suitable manner could also have a positive
impact in the energy-efficiency of the system.

However, to take advantage of the exploitation of the GPU resources, an understand-
ing of the mobile GPU architecture is paramount. The partition of the application tasks
between the CPU and GPU is of great importance. This is in line with the principles of
asymmetric processing described in Chapter 4. The most suitable processors should be
utilized for each task and they must be used concurrently whenever possible, to increase
the maximum throughput.

At this point, it is tempting to believe that ideal solutions that have learnt from
the experiences will come in a more efficient, elegant and simple manner. However,
compromises still exist. Focused on increasing application throughputs, the current
utilization of mobile GPUs still presents problems of communication latencies. These
are caused mainly by the specific design and the implementation of the standard APIs.
New mobile architectures need to be designed with reduced latency in mind, especially
when utilizing camera data. The integration of mobile GPUs in the camera pipeline is
the next important step for mobile interactivity (Hakanen 2014).
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6 Sensing-assisted vision-based interactivity

"If mobile devices remain unaware of important aspects of the user’s context,

then the devices cannot adapt the interaction to suit the current task or

situation."

- Hinckley et al. (2000)

Chapter 5 gave insight on how Graphics Processing Units could improve the energy-
efficiency of vision-based interactive applications, while at the same time improving
the computational throughput. However, the low-latency and real-time constraints of
interactive applications require the consideration of the sensing platform in conjunction
with the computing needs of interactive applications.

This chapter addresses the fundamental limitation of using cameras as the only input
modality and investigates the use of complementary sensors to enrich the interactivity
of vision-based applications, reducing startup latencies and increasing robustness. In
addition, the architectural constrains of continuous sensing are addressed, and the use of
a dedicated architecture for sensor processors that independently carry out the most of
the necessary analytic processing is proposed and evaluated.

6.1 Related work

As described in Chapters 2 and 3, cameras have traditionally been utilized in user
interface research to build systems that observe and automatically sense and perceive the
human users. However, despite the significant progress made, vision-based interfaces
often require customized hardware. They work optimally in more or less restricted
environments such as in video game systems (Kinect, Sony EyeToy), where the sensors
are stationary and the background is stable. To cope with interactivity needs without
the use of a camera, several commercial products integrate sensor processing and
interactivity. The Nintendo Wii gaming console is an example of fitting together
application interactivity and sensor functionality: the limitations of the three-axis
accelerometer are cleverly hidden from the user by the characteristics of each game.

Although to some extent more challenging, the interaction needs of hand-held
communication devices in mobile usage are similar. It has been shown that different
sensors provide viable alternatives to conventional interaction in portable devices. For
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example, tilting interfaces can be implemented with gyroscopes (Rekimoto 1996) and
accelerometers (Hinckley et al. 2000). Using both tilt and buttons, the device itself
is used as input for navigating menus and maps. During operation, only one hand is
required for manipulation. A recent and generally interesting direction for mobile
interaction is to combine information from several different sensors. For example, a
technique to couple wide area, absolute, and low resolution global data from a GPS
receiver with local tracking using feature-based motion estimation was presented
by DiVerdi & Höllerer (2007).

Ego-motion obtained from sensor data has also been applied to advanced indirect
interaction, such as sign and movement recognition. This increases the flexibility of the
control system as the abstract signs can be used to represent any command, such as
controls for a music player. A number of authors have examined the possibility of using
phone motion to draw alpha-numeric characters. Liu et al. (2005) show examples of
Latin and Chinese characters drawn using the ego-motion of a mobile device, although
these characters are not recognized or used for control. Kratz & Ballagas (2007)
propose using a simple set of motions to interact with the external environment through
the mobile device. In their case, there are four symbols, consisting of a three-sided
square in four different orientations. Due to the small size of the symbol set, they report
good performance with no user training.

The data obtained by inertial sensor data such as accelerometers and gyroscopes has
also been used to recognize the context surrounding the user. Collectively, the set of
built-in sensors is enabling new applications in several domains such as transporta-
tion (Thiagarajan et al. 2009), healthcare (Consolvo et al. 2008), or monitoring (Mun
et al. 2009). The availability of cheap embedded sensors that are included to enhance
the user experience (e.g. the accelerometer included to change screen orientation) also
motivated the apparition of novel applications that are able to recognize the context. For
example, sensor data processing has also been used to recognize human activity with the
use of accelerometers (Kawahara et al. 2007) or multiple sensors (Gellersen et al. 2002).
In recent years, we have also seen the irruption of mobile applications (Siirtola & Röning
2012) that have been able to overcome the previous challenges of the task (Randell &
Muller 2000).

To classify and summarize context recognition on mobile devices using sensor-
processing, Korpipää & Mäntyjärvi (2003) presented an ontology for sensor-based
context awareness. A survey of mobile sensing can be found in the work of Lane et al.

(2010). Their work emphasizes the challenges of mobile sensing, relating them to
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technical barriers such as the lack of support of continuous sensing and the difficulty of
performing privacy-sensitive and resource-sensitive reasoning with noisy data.

The numerous advances in sensor processing and interactivity have also found
their way to commercial platforms. For example, Apple’s products make use of the
multimodal user interaction technology in different ways. In the iPhone (Apple 2014),
users are allowed to zoom in and out by performing multiple finger’s gestures on the
touch screen. In addition, a proximity sensor shuts off the display in certain situations
to save battery power, and an accelerometer senses the orientation of the phone and
changes the screen accordingly. Certain Nokia devices turn the screen on and off
using the camera and the proximity sensor when the device is inside or outside of the
pocket. The Android platform includes, in its latest versions, a way of accessing fused
sensors to obtain location and orientation in real time, ready to be included in interactive
applications.

However, the information from motion sensors alone might not be sufficient for
certain applications. In this context, the need of more accurate data and increased
robustness has made camera interactivity the latest target of sensor fusion. Numerous
schemes to improve camera interaction and applications with the use of sensors appear
in the literature. In their feasibility study, Hwang et al. (2006) combined forward and
backward movement, and rotation around the Y axis data from camera-based motion
tracking, and tilts about the X and Z axis from the 3-axis accelerometer. Labrie &
Hebert (2007) utilized accelerometer data to estimate the 3D translations between frames
of a video sequence. Clipp et al. (2008) utilized a sensor fusion scheme with motion
sensors and GPS to assist the reconstruction of large urban scenes using mobile devices.
Pons-Moll et al. (2010) proposed the stabilization of markerless vision-based human
motion detection by using the information of inertial sensors. Bordallo López et al.
(2011b) presented a way of increasing the robustness of camera-based applications, such
as panorama capturing and large map browsing, by fusing camera and accelerometer data.
Ramachandran et al. (2011) improved the results of Structure from Motion by using the
measurements of the inertial sensors to increase the robustness. Scheuermann et al.

(2011) tried to mitigate the effects of face rotations due to the ego-motion of the device
by integrating the device’s analogue information obtained from the motion sensors with
the camera data. The previous work has analyzed the incorporation of multiple sensors
to increase the interactivity and robustness of vision-based applications. However, the
shortcomings and challenges of the implementation are usually not considered and
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discussed. There is still the need to consider the platform issues that are brought about
by the utilization of cameras and sensors as integral components of the user interfaces.

6.2 Automatic launching of camera applications

In many cases, when a user wants to use a camera application, usually he faces a
frustratingly long latency (Kuhmann et al. 1987), especially in the case of image captures
that require an instantaneous response, such as sudden events or occasional captures of
documents. This problem can be traced to the characteristics of the mobile platform and
camera subsystems.

An apparently dormant device that is actually on an energy-efficient responsive

sleeping state (Priyantha et al. 2010b), could reduce the starting latency of interactive
camera applications and vision-based UIs. The key ideas for the automatic launching of
camera applications rest on the utilization of the hand-held nature of the equipment and
the user being in the field of view of a camera (Hannuksela et al. 2010). In this context,
the camera can be used to detect whether the user is watching the device. This is often a
good indication of interaction needs. Figure 36 illustrates the user handling the device to
launch a camera application.

A key motivation for this concept is to hide the start-up latencies of the camera-based
functionalities from the user. In particular, the user could perceive the illusion of camera
applications being always on by concealing their often 1-3 second camera application
launch delay. In some devices, the high resolution back camera recognizes a screen
swipe to act as a trigger for the camera application, while in many other designs, a
light push of the camera button powers on the camera. In any case, these events are
usually followed by a camera turn-on latency. Figure 37 depicts the benefits of automatic
context recognition on a sensing device. The time employed for user actions such as
turning on the screen or selecting the desired application and capture mode are reduced
by the recognition of the context. The camera configuration latency is also reduced if
the camera is always-on.

In a startup latency reduced case, the motion sensors trigger the action recognition
sequence that, in turn, continues with the illumination sensor determining the level of
ambient light, and if it is sufficient, the cameras are turned on. The frontal camera is
used for face detection, while the back camera provides for supplemental contextual
information. This can be used to trigger an application such as multi-frame reconstruction
or panorama imaging.
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Fig 36. Automatic launching of a camera application. When the device is raised in front of
the user and a face is in the field of view, the main camera starts the capture. (Bordallo López
et al. 2012b) c©Springer.

Clearly, the recognition of this context benefits from the coupled use of motion
and face sensing, using the frontal camera, provided that it is on all the time, even at a
smaller framerate. The motion sensors trigger the action recognition sequence that
continues with the illumination sensor determining the level of ambient light, and if it is
sufficient, the key lock is released, the back light is turned on, and the back camera is
activated automatically. From the user’s point of view, it would be most convenient if
the device would automatically recognize the type of target that the user is expecting to
capture without demanding manual activation of any application. Several targets could
be differentiated by, for example, showing a dialog box on the capture screen with the
suggested options (Bordallo López et al. 2012b).

6.3 The challenges of continuous sensing

The practical challenge of the scenarios described in the previous section is the
assumption of having an active front camera and motion sensors. This sort of continuous

sensing could also enable several novel applications across a number of sectors. The
main trade-off is that if the camera and sensors are operated at lower rate, the latency
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Fig 37. Reduced turn-on latency on a sensing-capable device. The latency originated by
the user’s needed actions (application start and mode election) is reduced by the automatic
recognition of the context.

savings may not materialize, while a higher rate drastically reduces power efficiency.
This thesis argues that the roots of the problem are in the involvement of the application
processor of the platform in the camera and sensor sampling, and this can be seen as an
argument for dedicated sensor-camera subsystems and processors (Bordallo López
et al. 2012b) (Bordallo López et al. 2011b).

As depicted in Chapters 2 and 3, signal processing and computer vision algorithms
are often able to utilize all the resources that the mobile platform offers. They are
computationally expensive, requiring the CPU to process large volumes of data and
many times require real-time operation. As shown in chapter 4, the latency of operation
is of vital importance, especially in user initiated operations.

Mobile application processors are usually designed to handle bursts of computations
during short periods of time, with the active use of computationally hungry applications
by the user. This active-state requires very high use of resources, but it composes a
comparatively small part of the total mobile device use. Most of the time, the device
will be in a stand-by mode, where the device’s application processor is mostly idle,
waiting for a user interaction.

However, the stand-by and active-state battery lives of a mobile device are intercon-
nected. High stand-by power consumption means that active use regularly starts with a
partially charged battery. As this is a recognized usability issue, the designers optimize
for low stand-by currents, primarily by turning off sub-systems such as motion sensors
and cameras whenever possible. However, this exposes another usability issue as the
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responsiveness to interaction with the device can be compromised. For instance, the
device may be unable to detect its handling when in a stand-by state.

To deal with this scenario, several works propose the offloading of the sensor data
processing to back-end systems or the cloud (Cuervo et al. 2010). The drawback of
this approach, which essentially assumes a trade-off of smaller energy consumption
in exchange for added latency, is that the energy savings are seldom sufficient for
continuous sensing and the reliability and interactivity are seriously diminished.

Future mobile devices should include support for continuous sensing without
substantially hindering the current user experience; that means not disrupting the battery
life or the responsiveness of the device. Experiments from early tests on real devices
show that running continuous sensing applications can reduce the battery life of a
stand-by device to 30%, compared with a non-sensing device (Miluzzo et al. 2008). To
be able to apply continuous sensing in real scenarios with user acceptance, there is
a need not only for breakthroughs in energy efficient algorithms, but also in sensing
platforms that can keep an acceptable duty cycle on the device while keeping the
necessary accuracy, fidelity and low energy consumption (Liang et al. 2013).

A straightforward approach to achieve continuous sensing consists of studying
the energy-accuracy trade-off while sampling sensor data (Rachuri et al. 2010). A
possible solution consists of adapting the duty cycle and sampling rate, depending on the
activity (Yan et al. 2012), increasing the sampling rate when the activity requires rapid
responses. However, although the energy consumption reduction with this adaptive
method is important, it is still not applicable for an always-on solution.

The roots of the limitation are in the involvement of the application processor of
the platform, and this can be seen as an argument for dedicated camera and sensor
processors. The background is in the typical top level hardware organization of a current
mobile communications device with multimedia capability, as the example that is shown
in Figure 38. As discussed in chapter 4, most of the application processing functionality,
including camera and display interfaces, has been integrated to a single system chip.
The baseband and mixed signal processing, such as the power supply and analog sensor
control, have their own subsystems. For instance, with the design of Figure 38 the
accelerometer measurements cannot be kept on all the time due to the power hungry
processor. In comparison, sport watches that include accelerometers, operate at sub-mW
power levels, thanks to their very small footprint processors (Epson Inc. 2014).

In practice, the bulk of the sensor processing, including the camera, needs to be
moved to dedicated low-power subsystems that can be on all the time. This reduces the
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Fig 38. Example organization of a current multimedia device. In current devices, the pro-
cessing of the motion sensors, frontal and back cameras is mainly done on the application
level using a power-hungry main processor.

number of tasks the application processor needs to execute, improving its reactiveness,
for example, for highly interactive vision-based user interfaces. In Figure 39, the author
proposed (Bordallo López et al. 2009) (Bordallo López et al. 2012b) a possible future
design with low power sensor processors. The inclusion of small-footprint processors
that operate very close to the camera and sensor units, allows the energy efficiency of
the subsystems that can always remain on, enabling new interaction methods.

In this context, several companies in the mobile industry are investigating and
prototyping new sensing platforms, with specific processors (Leppänen & Eronen
2011) (Apple Inc. 2013) (Intel Inc. 2014) (CEVA Inc. 2014). Microsoft Research is
developing hardware support for continuous sensing (Priyantha et al. 2010a) in its
LittleRock project (Priyantha et al. 2010a). Their prototype features, attached to the
battery, a sensor controller and processor (based on a small microcontroller and a DSP)
which supports duty cycle management, signal processing and sensor sampling, reducing
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Fig 39. Possible organization of a future multimedia device. The author proposes that future
multimedia devices include several dedicated small-footprint processors that minimize the
transfers, improving the energy efficiency and allowing being always activated.

the involvement of the CPU and other parts of the application processor (GPU, DSP) to
scenarios of high activity (active-state) while supporting continuous sensing in stand-by
mode.

Reducing the utilization of the main processor has a huge battery-life impact in
sensor data processing, but also in camera-based context recognition. For example
face tracking from QVGA (320-by-240) video requires around 10-15 MIPS per frame,
using Local Binary Pattern technology (Ahonen et al. 2006). Implemented on an
ARM7-based camera subsystem, the energy per instruction (EPI) is around 100 pJ; an
optimized DSP could implement it with an EPI of 10-20 pJ, while with optimized sensor
processing architectures, the EPI can be pushed well below 5 pJ (Nazhandali et al. 2005).
Consequently, if implemented at a low frame rate of 1 frame/s, the corresponding power
needs range from micro-Watts up to 1 mW. Employing the application processor with its
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interfaces for the same purposes demands tens of mW, significantly reducing the battery
life of active-state uses.

Together with the sampling and processing of the data, the designers need to take
into account the power needs of the sensors themselves. For example, capacitive touch
interfaces demand around 3mW, while a triaxial accelerometer only dissipates in the
sub-mW range. Cameras still require lots of power when sampled at a high rate. While
a QVGA camera requires about 1mW when operated at a rate of 1 frame/second, an
HD frontal camera operated at 15 frames/second can consume more than 60 mW. A
possible solution is the inclusion of dedicated cameras that are only usable as sensing

cameras (Inc. 2014). A small number of cameras could be directly equipped with
sensors that are able to compute certain data to assist the visual-context recognition
tasks (Lahdenoja et al. 2007) (Rodríguez-Vázquez et al. 2010).

Another complementary solution to the high energy consumption of the cameras
as sensors, consists of the adaptation of the back and front high definition cameras
of the current devices. The goal would be to optimize the energy consumption of the
sensors to make it proportional to the resolution and the sampling rate. LiKamWa
et al. (2013) made two proposals that could be applied to current devices. The inclusion
of an efficient clock frequency management system on current sensors could reduce
the energy consumption of the capture of a low resolution frame from 30% to 50%,
while the implementation of a low-power stand-by between frames could reduce it an
additional 40%. Their work also proves that 0.1 Mpixel images taken at 3 frames/second
could be sufficient for certain context recognition scenarios, such as image registration
or object detection. These findings could also have an impact on the sensing and vision
ability of future wearable devices (Han & Philipose 2013).

6.4 A sensor and camera data fusion system for vision-based
interactivity

The fusion of camera data with the data obtained from the mobile built-in sensors is not
necessarily a straightforward process. In this context, finding a way of improving the
camera data by increasing its robustness is of vital importance. This section describes a
system that determines the motion of the device using both image and accelerometer data.
Camera-based motion estimation has a number of apparent performance limitations,
caused by lighting conditions and fast movements. Similarly, pure accelerometer
measurements lead to errors that increasingly grow with time. These two sensing
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modalities can be combined to compensate for each other’s limitations and therefore
provide for more robust device movement estimates.

In vision-based user interfaces, special attention needs to be paid to the design of a
proper lighting system. One possibility is to use special infrared LEDs for illuminating
the user’s face. Energy consumption is, of course, the main limitation of such designs.
Therefore, if cameras become standard user interface components in mobile devices,
energy efficiency requires that the bulk of computing is carried out using hardware
acceleration.

Another possibility to solve this issue is to use an adaptation method to switch
to another input source. Several motion sensors are included in most of the newest
mobile devices. For example, linear accelerometers can capture data at a very high rate,
increasing the system’s robustness when the user input consists of fast movements or the
camera image does not present a sufficient amount of valid features.

Combining inertial sensors with camera motion estimation has been an active
research area in the past decade. In many cases, the fusion is done using a Kalman
filtering (KF) framework (Kalman 1960). For example, Klein & Drummond (2002)
and Bleser & Stricker (2009) used a KF-based method for fusing rate gyroscope
information with model-based tracking. Jiang et al. (2004) proposed a real-time system
for outdoor augmented reality integrating gyroscope data and natural line features from
images. In the proposed system, KF is used to fuse measurements from accelerometers
and camera motion estimation.

The main features of the Kalman filter are modelling the random process under
consideration using a system model and recursive processing of the noisy measurement
data. A filter is optimal if the dynamic model is linear, the measurement model is
linear, and the noise processes involved are Gaussian distributed. Furthermore, the
recursive nature of the algorithm makes it convenient to use in real-time systems. A
detailed system description can be found in the article by Bordallo López et al. (2011b).
Figure 40 shows an example result for an image sequence. This information is used in
RANSAC style outlier analysis, which provides reliable motion features for 2-D motion
estimation.

6.4.1 System model

In sensor fusion, the objective is to recursively estimate the state in the dynamic model.
We model the device motion using the following model
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xk+1 = Φkxk +Γkεk, (9)

where the parameters to be estimated are presented by the state vector xk at time
instant k, and Φk is the state transition matrix. The state transition matrix relates the
state at time instant k to the state at time instant k+1. Γkεk models the uncertainty of
the motion model. The process noise εk is assumed to be Gaussian distributed with an
expected value E{εk}= 0 and the covariance matrix Qk = E{εkεT

k }. Γk is the process
noise transition matrix.

The state vector xk consists of the position (xk,yk,zk), velocities (ẋk, ẏk, żk) and
accelerations (ẍk, ẍk, ẍk) of the device at time instant k. It is defined as follows

xk = [xk,yk,zk, ẋk, ẏk, żk, ẍk, ÿk, z̈k]
T .

In the beginning, the elements of the state vector are set to zero. The time step
between two successive images is normalized to 1. We approximate the variances of the
process noise from the maximum accelerations allowed.

6.4.2 Measurements

The measurement model is needed to relate the state to the 2-D image motion and
accelerometer observations. In our case, the model is defined as

wk = Hxk +ηk, (10)

where H is the observation matrix. The measurement noise ηk models uncertainty in the
motion measurements and it is assumed to be Gaussian distributed with an expected
value E{ηk}= 0 and the covariance matrix Rk = E{ηkηT

k }. The noise covariance can
be adjusted based on lighting conditions. For example, in dark lighting conditions the
uncertainty of image motion estimation is greater.

In actual measurements, the ego-motion of the device is estimated from 2-D image
motion measured between two successive frames. The utilized approach employs a
sparse set of feature blocks first selected from one image and then the displacements are
determined (Hannuksela et al. 2007b) (Sangi et al. 2007). The confidence analysis of
block matching is of special interest since the results of this process can be utilized in
further analysis.

First, the previous frame is split into 16 subregions, and one 8 by 8 pixel block is
selected from each region based on analysis of spatial gradients. Displacement the of
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selected blocks is estimated using the zero mean sum of squared differences (ZSSD)
criterion which is applied over some range of candidate displacements (e.g. 16 pixels).
Refinement to subpixel precision is done in the neighbourhood of the displacement,
minimizing the ZSSD measure using fitting of the second order polynomials. The
ZSSD values are also used for analyzing uncertainty information related to the local
displacement estimate.

(a) Frame #1 (b) Frame #10 (c) Frame #20

(d) Frame #30 (e) Frame #40

Fig 40. Example frames from the image sequence. Estimates of feature block displacements
(lines) and associated error covariances (ellipses). (Bordallo López et al. 2011b) c©SPIE.

In this setup, a four-parameter affine model is sufficient for approximating motion
between frames as it can represent 2-D motion consisting of x-y translation (θ1, θ2),
rotation around the z-axis (φ ), and scaling s. Scaling s is related to the translation in the
z-direction, ∆Z, as (s−1) = ∆Z/Z, where Z is the scene depth.

In the presented example of the system, images are captured at fixed rate of 15
fps and the motion is estimated at the same rate. Therefore, the accelerometer data
is acquired also at a rate of 15 fps. This leads to an easy implementation of the
measurement fusion. Figure 41 shows example data for x-,y-, and z-acceleration for the
same sequence as that presented in Figure 40.

In order to obtain smoother output as a result of motion estimation, Kalman filtering
is applied for implementing sensor fusion. The Kalman filter algorithm estimates the
motion recursively, repeating two stages: prediction and correction. At the first stage,
the state at the next time instant is predicted, based on the previous state estimate and
the dynamical model. In the correction stage, the predicted state is adjusted by using the
measurements of the image motion and device acceleration.
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Fig 41. Accelerometer measurements for the example sequence. (Bordallo López et al.
2011b) c©SPIE.

The presented framework fuses image analysis with data from motion sensors,
improving the user interactivity and reliability of camera-based applications, especially
when the environmental conditions are not optimal for approaches using camera data
alone. The fusion of the data also decreases the number of operations that are needed
for an image-based motion estimation, improving the computational efficiency of the
system.

Other than the accelerometer data, the framework proposed allows the integration of
data from other types of sensors that describe the device’s motion, such as gyroscopes or
magnetometers. Other sensors present in the device, such as ambient-light or proximity
sensors, can be used to adapt the fusion process, evaluating the conditions and adjusting
a proper balance for the contribution of each sensor to the final results.

6.5 Improving multi-frame reconstruction using sensor processing

The previous section describes how to fuse the data obtained from accelerometers
and image analysis to enhance the user interactivity and robustness of camera-based
applications. The framework allows the balancing of several motion input sensors,
improving the device movement estimates, especially when the environmental conditions
are not optimal for approaches using camera data alone. This scheme can be utilized
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for improving vision-based interactive applications. For example, a camera-based
tracking system can be utilized in real-time for browsing large images or documents
such as maps on small screens with single hand operation. Based on video analysis,
the solution enables the display to be controlled by the motion of the user’s hand.
The motion sensor obtains the device orientation and can be used as complementary
information for motion-based browsing. The system decides the motion input by fusing
the measurements from the camera and accelerometers depending on the light conditions
and image quality.

The sensor fusion method can be integrated in the multi-frame reconstruction method
described in chapter 3. The best use case consists of a multi-frame reconstruction
application that acts as a real-time panorama builder that composes a mosaic image
from individual video frames using the motion information obtained by both the
camera and the device accelerometers. The image registration stage relies on the sensor
fusion method to offer an accurate description of the camera movement with increased
robustness against poor light conditions. This is practically done with a multimodal
motion estimation approach.

To improve the robustness of the system, the ambient-light sensor (or the average
luminance obtained from the camera) present on the device determines the lighting
conditions of the environment. In case the illumination is insufficient, the night-mode is
turned on and the motion estimation model assigns an increased value of trust to the
accelerometer measurements, decreasing the value of the features extracted from the
camera frames.

In order to determine the quality of each frame, and to add robustness to the selection
system, the accelerometer measurements are integrated with the blur in a scoring system.
A simple measure of the involuntary tilting or shaking is done by calculating the average
of the last motion vectors provided by the accelerometers and subtracting the result from
the current vector. The result of this operation is then thresholded to determine if a frame
is too blurry and should be discarded. The final selection of the images to be blended is
done based on the score of the frame quality, calculated with the values of rotation,
change of scale, involuntary tilting and the motion detection process (Bordallo López
et al. 2011b).
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6.6 Improving face-tracking based UIs with sensor integration

As described in chapter 3, a typical problem of face-tracking user interfaces is the lack
of robust solutions that are able to handle the case of a tracking loss. A possible solution
to this is the integration of data provided by the mobile device’s motion sensors into the
tracking system, providing for an alternative when the tracking is not possible due to
occlusions, fast movement, bad image quality or the user being out of the field of view.

The combination of accelerometers, magnetoscopes and gyroscopes on mobile
devices is able to offer the position and ego-motion of the device. This information
can be used to correct the input image, reducing the face rotation and improving the
face-tracking success rate. For example, Scheuermann et al. (2011) report up to 50%
improved detection rate of a Viola & Jones (2001) based face tracker when the phone
angle with respect to the perpendicular is bigger than 30 degrees. Another possibility
consists of using the motion sensors present in the devices to improve the prediction of
the face position in the tracking algorithm (Han et al. 2012).

The same ego-motion information can be used to track the possible movement of the
user face respective to the device, and increase the tracker robustness extending the
tracking to a beyond field-of-view solution. An example of this technique can be found
in the work of Joshi et al. (2012), which describes a camera-gyro fusion system that
allows the browsing of large images without the use of the touch screen.

6.7 Discussion

The main contribution of this chapter is the analysis of the relationship between sensing,
intrinsically related to latency, and computing, with an impact in the energy consumption
on the system. This is achieved through the implementation of several methods to reduce
the perceived latencies utilizing sensor integration. In addition the proposal of a sensing
architecture provides steps towards a future always-on sensing platform.

The described scenarios represent a more general class of applications that employ
multimodal sensory information, and may provide for ingredients for novel device
designs. Motion estimation, obtained from the fusion of camera data and multiple
complementary sensors can be identified as a potential platform level service to be
offered via the multimedia API. As it plays key roles in the demonstrated use case
applications, it is most likely to be employed in many others.
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Sensor-assisted vision-based applications could provide for fast response using
the analysis of the context and the prediction of the user intentions. However, the
reduction of application and UI start-up latencies can only be tackled with the use of
continuous sensing. Undoubtedly, this requires specific architectures that allow the
camera and sensors to be always-on. In this context, the future inclusion of specific
sensor processors in semi-independent subsystems is paramount.
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7 Reconfigurable computing for future
vision-capable devices

"The ability to customize the architecture to match the computation and

the data flow of the application has demonstrated significant performance

benefits compared to general purpose architectures. Computer vision

application characteristics have significant overlap with the advantages of

reconfigurable architectures. "

- Bondalapati & Prasanna (2002)

The previous chapters exemplified the computing and sensing challenges of vision-
based interactive applications and user interfaces and the relationship with the limitations
imposed by the embedded nature of mobile devices. The importance of using utilization
of all the available platform resources to hide application latencies and maximizing the
computational throughput has been shown.

However, current computing and sensing platforms still present some limitations
in the scalability for higher resolutions and more complex algorithms, while still
maintaining energy-efficiency. Future high-resolution cameras and high-performance
applications are likely to require more specific solutions such as dedicated image
processors or reconfigurable hardware architectures.

This chapter presents concepts laying on platform level adaptability, exploring the
acceleration of vision-based interactive applications through the utilization of three
reconfigurable architectures. Based on the analysis of interactive applications and user
interfaces, several computationally expensive image processing kernels are implemented
using three different reconfigurable architectures. In this context, a processor with a
reconfigurable accelerator is proposed as a low-power high-efficiency alternative, or
complement to the current ARM processors and NEON units. A hybrid reconfigurable
SIMD/MIMD platform is proposed to complement mobile GPUs. Lastly, the inclusion
of the flexible Transport-Triggered Architecture-based processors is proposed as a
low-power complement to current DSP-based solutions. All three architectures are
evaluated and compared with their current counterparts, analyzing their advantages and
weaknesses in terms of performance and energy-efficiency when implementing highly
interactive vision-based applications.
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7.1 Experimental setup

For experimental purposes, to provide a comparison with the selected reconfigurable
architectures, we benchmark different computer vision kernels across several current
platforms. In this context, we have measured and estimated the performance on two
different devices based on the Texas Instruments OMAP3 family, OMAP3430 and
OMAP3530. The platforms, a Beagleboard revision C and a Nokia N900 mobile phone,
include an ARM Cortex-A8 CPU, a PowerVR SGX530 GPU and a TMS320C64x+
DSP. The OMAP3530 SoC can be set to use at least six different operating points, with
frequencies of the main processor ranging from 125 to 720MHz and DSP frequencies up
to 520MHz. The chosen operating point features a 600MHz ARM core, with a 430MHz
DSP and a 110MHz GPU. For the selected operating point, the single-core ARM
processor presents a maximum power consumption of 550mW. The utilization of the
NEON coprocessor increases the consumption to 670mW. The mobile GPU consumes
about 93mW alone and about 110mW including the overheads of the memory readings.
Lastly, the DSP core consumes about 248mW (Bordallo López et al. 2011c) (Texas-
Instruments 2011).

7.2 Reconfigurable architectures

A reconfigurable processor is a processor with erasable hardware that can rewire
itself dynamically. This allows the chip to adapt effectively to the programming tasks
demanded by the particular software they are interfacing with at any given time. Ideally,
a reconfigurable processor can transform itself to run applications across different fields
with the highest possible performance.

As discussed in Chapter 4, the scalability of the performance of general purpose
processors has been recently declining. Even with transistor densities improving
according to Moore’s law, the failure of Dennard Scaling (Esmaeilzadeh et al. 2011) and
the lack of proportional improvements in battery technology will prevent future devices
from utilizing the whole die area at the same time. Alternative processors such as the
GPU could be used as energy-efficient architecture alternatives. Thus, their use is likely
to rapidly increase. However, the current architectures included in mobile devices have
noticeable drawbacks either in future scalability or lack of flexibility. In this context,
reconfigurable computing has the chance of becoming a future mainstream alternative as
a part of the future scalable mobile architectures (Chung et al. 2013).
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Over the years, numerous reconfigurable architectures have been proposed to fill the
gap between the performance of ASICs and the flexibility of General Purpose Processors.
Computer Vision algorithms and applications are inherently comprised of very variable
of tasks that range from low-level pixel processing to high-level inference of abstract
representations (Nieto et al. 2011). Reconfigurable computing, oriented in performance,
but with specific flexibility in mind, adapts extremely well to this paradigm (Bondalapati
& Prasanna 2002).

Several processors aim to meet the processing requirements of camera pipelines
without compromising the costs. This is the case of the CRISP stream processor
(Coarse-Grained Reconfigurable Image Stream Processor) (Chen & Chien 2008) which
outperforms modern DSPs in these kinds of tasks by a factor up to 80.

Other processors focus on the inherent parallelism of image data to enhance the
performance of computation-intensive tasks by including SIMD units. The MorphoSys
processor (Singh et al. 2000) adds a reconfigurable SIMD coprocessor based on a
2-dimensional mesh with enhanced connectivity to a RISC core utilized for control
tasks. To exploit task parallelism, other architectures are designed with the focus on the
execution of different tasks at the same time (Lanuzza et al. 2007) (Uzun et al. 2003).

Low-level image processing, inherently data parallel, usually consumes most of the
computation time. However, subsequent tasks are also time-consuming, and custom
accelerators that allow task parallelism are often a requirement. Hybrid architectures
permit facing both processing stages, reducing hardware requirements and taking
advantage of the interaction between these stages to improve performance, instead of
considering them independently. Embedding FPGAs in modern SoCs composing an
heterogeneous system provides for flexibility and high performance (von Sydow et al.

2006).
Exploiting both data and task parallelism, heterogeneous reconfigurable architectures

such as the HERA processor (Wang & Ziavras 2004) have been developed. Usually
composed of two complementary units and a data sharing network, they present some
limitations in dataflow control. Some of these limitations can be overcome by the
inclusion of a RISC core that executes sequential parts of the algorithm and takes care of
control flow (Prengler & Adi 2009).

Since many architectures still require a general purpose or domain specific processor,
other reconfigurable architectures focus on assisting a more general counterpart such as
a DSP to perform specific tasks in a faster manner (Hung et al. 2003).
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Utilizing an example architecture of each type, the rest of this chapter analyzes
three different styles of reconfigurable architectures, a reconfigurable accelerator for a
RISC processor (EnCore), a task/data parallel reconfigurable architecture (Hybrid) and
reconfigurable application-specific processors to assist the general processor (TTA).

7.3 EnCore processor with a Configurable Flow Accelerator

The EnCore processor (Almer et al. 2009) (PASTA group, University of Edinburgh.
2014) is a configurable 32-bit single-issue RISC core which implements the ARCompact
instruction set (Arc International. 2014). The processor can be integrated on a System on
Chip, together with an extension interface for reconfigurable accelerators. The specific
reconfigurable accelerator of the EnCore architecture is called the Configurable Flow
Accelerator (CFA). It defines a small Instruction Set Architecture (ISA) which allows
the customization of Application-Specific Instruction-set Processors (ASIP) through the
use of user-defined Instruction Set Extensions (ISE).

Figure 42 shows a simplified schematic of the EnCore Castle datapath. Although not
shown, the current implementation has a 5-stage pipeline. The Fetch block manages
instruction supply. There are two banks of registers. The first, a general-purpose-
processor register bank (GPP) is employed for the standard ALU of the CPU. The
second register bank stores data for the CFA extension datapath.

In a similar manner as SIMD coprocessors in ARM processors, the EnCore CFA
defines an Instruction Set Extension which includes specific operations that can be used
to accelerate algorithmic computations. The particularity of the CFA is that it enables
the definition of custom instructions that specifically adapt to the algorithm in hand.
The instructions include additional arithmetic operations or a combination of them,
facilitating the speed-up of the most critical parts of the application.

The inclusion of the CFA entails only a limited increase in hardware resources
and power consumption, but usually implies a large increase in performance. This is
achieved by making use of several single-function ALUs that allow spatial and temporal
parallelism through resource sharing and pipelining. In addition, the CFA is fully
programmable, supporting up to 64 reconfigurable extension instructions.

Figure 43 presents a simplified scheme of the CFA unit. A set of ALUs and
multiplexers allow the data alignment through shuffling. The CFA is highly configurable
and its datapath runs multi-cycle operations. The CFA has a 3-stage pipeline and is able
to handle 4 independent arithmetic operations according to the configuration of the
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particular ISE under execution. The CFA register bank supplies a vector of 4 elements
to the CFA, storing up to 10 of them.

The programmability of the CFA is exploited by the definition of new specific
instructions that adapt to the desired algorithm or application. The process of analyzing
the applications to identify candidate instructions, can be done in a manual or automatic
manner, resulting in a series of templates that adapt to an existing CFA or the generation
of a new one. In this context, the EnCore processor employs a design flow for automated
construction of ISEs (Almer et al. 2009). Figure 44 shows how a custom ISE is mapped
in the CFA unit.

Using an adapted compiler to identify and exploit the more suitable ISEs, the
resulting CFA mapping can reuse the results across different applications. The resulting
ISEs are larger and more complex than the standard RISC instructions. It has to be
noted that in order to adapt to the available CFA hardware resources, not all the ISEs
identified by the compiler are necessarily matched to the CFA. In practice, there is a
trade-off between specific ISEs with low latency and high resource usage and reusable
shared instructions with higher instruction latencies. Thus, data allocation becomes
critical in the performance maximization process (Zuluaga & Topham 2008).

Fig 42. EnCore Processor simplified organization scheme.
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7.3.1 Improving vision-applications using an Encore processor

To provide for an example of the possible improvements obtained by using the EnCore
processor to execute vision-based interactive applications, the execution of several
operations has been measured. The evaluation of the several image processing kernels
has been done using two setups, the EnCore processor alone and the Encore processor
utilizing a CFA. The setup for the EnCore processor consists on an EnCore Castle chip
that has been used to obtain the measurements in terms of performance and energy
efficiency. The Castle test-chip, a second iteration of the architecture, is fabricated with
a generic 90nm CMOS process, and occupies only 2.25 mm2, including the CFA and
two 32KB caches. Embedded within a SoC providing a generic 32-bit memory interface,
the processor features an operation clock-rate of 600MHz, with a maximum power
consumption of 70mW on typical conditions. This evaluation of the EnCore processor is
partially presented in previous work (Nieto 2012). The results are compared with a
mobile CPU (ARM Cortex-A8), with and without the use of a NEON unit. Table 11
presents a summary of the experiments.

The experiments show how the performance of the EnCore processor is comparable
to the ARM. However, EnCore, designed with energy-efficiency in mind, consumes
much less power. The energy consumption of the EnCore processor represents from 8 to
33% of the ARM consumption, depending on the image processing kernel. However, it
has to be noted, that the comparison with newer ARM models (e.g. Cortex A15) could
reduce the gap to about the half.

Depending on the operation, the use of the NEON coprocessor increases the
performance of the ARM core up to 50% while increasing the total power consumption

Fig 43. A simplified scheme of the Configurable Flow Accelerator (CFA).
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Fig 44. An example of a custom instruction of the Configurable Flow Accelerator. Four input
registers and four independent arithmetic operations result in four output registers.

only 20%. The potential of a reconfigurable accelerator can be seen in the comparison of
the NEON unit with the CFA of the EnCore processor. The performance of the EnCore
processor increases up to 4 times for certain kernels, such as grayscale conversion or
alpha blending. The difference is more noticeable in simpler kernels, where the needed
arithmetic operations can be mapped directly into a single CFA instruction.

Computationally expensive kernels can benefit from a reconfigurable co-processor.
The integrated nature of the CFA unit can be included in the tool-chain in a transparent

Table 11. Cycles per pixel needed by several algorithms in the ARM and EnCore processors
including accelerators.

CPP nJPP
Operation ARM NEON EnCo CFA ARM NEON EnCo CFA

Grayscale conv. 216,4 156 240 66 198 174,2 28,0 7,7

Image displac. 78,4 56 50 47 71,5 62,5 5,8 5,5

Alpha Blending 141 100 86 20,0 129 111,7 10,0 2,3

Blur detection 72,8 52 84 19,5 19,5 58,0 9,8 2,3

Convolution(3x3) 422,8 302 199 58 66,0 337,2 23,2 6,8

Histogram 21,4 21,4 29,0 20,1 19,25 23,5 3,4 2,3

Image Rotation 546 390 608 234 500 435,5 70,9 27,3

Image Scaling 384 250 390 143 352 279,2 45,5 16,7
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manner. However, for memory intensive operations, with bottlenecks mainly dependent
on fast data access, the performance gains are expected to be smaller.

The low-power design of the EnCore/CFA configuration also implies a very important
gain in energy consumption. The reconfigurable setup outperforms the ARM/NEON
combination, consuming only 5% of the energy.

The EnCore processor with its CFA proves to be a very good alternative to reduce
the power consumption of mobile microprocessors. In this context, an asymmetric
configuration of one or two ARM cores with several EnCore processors in a multicore
architecture could be a viable option for future SoCs.

7.4 SIMD/MIMD dynamically-reconfigurable architecture

As seen in chapters 2 and 3, interactive vision based applications integrate complex
computer vision algorithms that include a wide range of operations, data dependencies
and program flows. Current GPU devices, although extremely performance-efficient
in certain tasks, lack the flexibility of an unrestrained program flow control that can
adapt to different types of parallelism when faced with looping and branching. In this
context, a reconfigurable architecture that is able to reorganize its processing elements is
a suitable candidate to complement current mobile GPUs.

A hybrid SIMD/MIMD dynamically-reconfigurable architecture is essentially an
image coprocessor designed to take advantage of the different types of parallelism
(data parallelism and task parallelism) present on each algorithm by adding a flexible
datapath to the processor. Keeping certain similarities with GPUs, the hybrid platform
is essentially a many-core architecture able to process many operations concurrently.
However, the addition of the flexible data path allows the architecture to reconfigure
during the program flow to select the best characteristics for SIMD and MIMD (Multiple
Instruction Multiple Data) computing paradigms.

The hybrid architecture features general purpose capabilities, dynamic and at-
runtime reconfiguration that can select the SIMD or MIMD modes as needed. The
architecture is completely modular and scalable, adaptable according to the requirements
of the algorithm or the target platform. In addition, it aims to reduce the set-up time
and ease algorithm migration by automatically managing tasks such as data I/O or
synchronization between the computing units. The architectural details can be found in
the work of Nieto et al. (2012a).
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Figure 45 depicts the main elements of the Image Coprocessor. It is composed of
three main elements: two I/O Processors, the Programmable Input Processor (PIP) and
the Programmable Output Processor (POP), and a set of Processing Elements (PEs).
Depending on the configuration of the coprocessor, the set of PEs can execute both
SIMD and MIMD computing paradigms. In the SIMD mode, all PEs execute the same
instruction, exploiting the spatial (data) parallelism. In the MIMD mode, each PE
executes a small kernel of the whole algorithm, making it possible to take advantage of
the temporal (task) parallelism. Two different networks enable data sharing between the
PEs.

Fig 45. Schematic view of the Hybrid Image Coprocessor and the operation modes. (Bor-
dallo López et al. 2014) c©Springer.

In the SIMD mode, adjacent PEs can exchange data synchronously using the side-to-

side network, while in the MIMD mode, the different kernels executed on the different
PEs are chained, employing the local network. This mode uses the Stream Queues to
enable automatic synchronization, therefore no additional operations are needed. The
different modules of the architecture are enabled, depending on the operation mode, and
this selection depends on the algorithm characteristics and how the tasks are scheduled.
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7.4.1 Accelerating vision-based applications with a Hybrid
reconfigurable architecture

The hybrid SIMD/MIMD architecture is currently prototyped on an FPGA for evaluation
purposes. The target device is a Xilinx Virtex-6 X240T, included on the Xilinx ML605
Base Board (Xilinx Inc. 2014). An AXI4-based MicroBlaze SoC with Multi-Port
Memory Controller and 10/100-Ethernet units was implemented to support the Image
Coprocessor. It was configured with 128-PEs of 32-bit each. Their ALUs only support
integer and fixed-point arithmetic in order to save FPGA resources. Due to the FPGA
characteristics, turning on the prototype consumes a static power of 1.97W. Clocked up
to 150MHz, the peak performance is 19.6GOP/s and the maximum power consumption
is 7.197W. More details of the hardware prototype are available in the article by Nieto
et al. (2012a).

To provide an example of the possible benefits of employing a Hybrid SIMD/MIMD
platform for accelerating vision-based interactive applications, this section evaluates its
use in several computer vision kernels utilized in many interactive camera applications
and vision-based UIs. The performance is compared with an ARM Cortex-A8 processor
and a PowerVR530 GPU, both included on the OMAP3430 SoC. The results, partially
presented in previous work (Nieto 2012) (Bordallo López et al. 2014) (Nieto et al.

2012b), show that the Hybrid SIMD/MIMD platform can outperform mobile CPUs and
GPUs in scenarios requiring a flexible data path and parallel computations. Table 12
summarizes the performance of the platform compared with a mobile CPU and a mobile
GPU.

The measurements show that the Hybrid architecture, designed with emphasis in
performance, outperforms the ARM processor in speed and energy efficiency for all
the implemented image kernels. When compared with a mobile GPU, the flexibility
of the Hybrid platform offers a considerable advantage in operations that require a
more complicated program flow, such as feature extraction, 2D-convolution or LBP
computation. Its flexibility is better exploited with long image pipelines that can take
more advantage of its task-parallel capabilities through the SIMD configuration.

However, when data access patterns become irregular, the performance of the Hybrid
platform is hindered. For example, for pixel-wise operations typically present in graphics
processing such as image rotation and scaling, the well optimized GPU still outperforms
the Hybrid platform.
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Table 12. Cycles per pixel needed by several algorithms in the mobile CPU, mobile GPU and
Hybrid platforms.

CPP nJPP
Operation ARM mGPU Hybrid ARM mGPU Hybrid

Grayscale conversion 156 13,4 2,1 174,2 11,3 98,0

Image displacement 56 13,6 1,3 62,5 11,5 60,7

Alpha Blending 100 13,6 1,0 111,7 11,5 46,7

Feature Extraction 549 75,5 0,7 613,0 63,8 32,7

Blur detection 52 100,7 1,0 58,0 85,1 46,7

LBP extraction 37 18 0,2 41,3 15,2 6,8

2D-convolution(3x3) 302 160 1,0 337,2 135,3 46,7

Histogram 1,1 - 2,4 1,22 - 112

Image Rotation 390 13,6 12,0 435,5 11,5 560

Image Scaling 250 20 136,7 279,1 16,9 6379

The speedups obtained by the hybrid platform imply a smaller energy consumption
for the less parallelizable kernels, such as the image histogram or the feature matching
even when implemented on an FPGA. The implementation in silicon could drop the
energy consumption by at least one order of magnitude (Kuon & Rose 2007) (Chinnery
& Keutzer 2005).

The results suggest that a Hybrid SIMD-MIMD platform is a good alternative to be
used in conjunction with a GPU, providing for a flexible architecture that is able to
exploit different types of parallelism, supporting different program flows.

7.5 Transport-triggered architecture

Current mobile Image Signal Processor (ISP) architectures are based in a combination of
programmable Digital Signal Processors with monolithic and inflexible hardware codecs.
Future vision-capable mobile platforms are expected to provide for energy-efficient
solutions with enough flexibility and programmability to adapt to several scenarios. In
this context, the inclusion of reconfigurable architectures in future devices, designed for
computing and sensing tasks is a suitable solution.

Transport-Triggered Architecture (TTA) is a processor technology that is fundamen-
tally different from conventional processor designs (Corporaal 1997). TTA resembles
the VLIW processor architecture and exploits instruction-level parallelism, executing
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multiple instructions simultaneously in the same clock cycle. While in mainstream
embedded and signal processors computations are triggered by processor instructions
that are accompanied with operands, in TTA processors there is only one instruction:
move data. Computational operations are triggered as side-effects of data moves. TTA
resembles the VLIW processor architecture and exploits instruction-level parallelism
executing multiple instructions simultaneously in the same clock cycle

TTAs fetch and execute several instructions in parallel every clock cycle. This
makes TTA processors well-suited for computationally intensive signal processing-style
computations that offer abundant instruction-level parallelism.

An example TTA processor is depicted in Figure 46. In TTA design, there is
no theoretical limit to the number of buses (and respectively, number of instructions
executed in parallel), however, the maximum operating frequency goes down as the
number of buses increases.

(a) Toy TTA (b) Function Unit

Fig 46. A toy TTA and one of the function units. (Bordallo López et al. 2014) c©Springer.

Also, the maturity of the TTA design tools that include a compiler of standard C
code, makes the platform especially attractive for high performance applications with
moderate development times, and easy to integrate with other chip designs.

7.5.1 Improving intensive operations with TTA processors

To provide for an example of the possible benefits of employing TTA processors for
accelerating vision-based interactive applications, this section evaluates the use of two
different programmable application-specific instruction processor (ASIP). The first
one implemented by Boutellier et al. (2012) is capable of performing LBP feature
extraction for HDTV resolution video at a modest clock frequency of 304MHz in real
time (Bordallo López et al. 2014). The second one, presented by Pitkänen et al. (2006)
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is designed to accelerate 1024-point fast Fourier transforms with minimum latencies,
employing a maximum frequency of 400MHz.

The custom TTA processors, have been designed with the open source TCE tool-
set (Esko et al. 2010) that provides a complete co-design flow all the way to ASIC
synthesis. The programmability of the processor enables changing its operation solely
by software updates. To verify the functionality and to measure the power consumption
to test the suitability for mobile devices, the processors can be synthesized on an FPGA
board.

In the case of the LBP processor, for evaluation purposes, the FPGA used for
measurements and testing was Altera EP4CE115F29C7 Cyclone IV. The FFT processor
was synthesized using 130nm CMOS standard sell ASIC technology.

The resulting processor, a TTA-based ASIP, can be integrated in face detection
and tracking system such as the one presented in Chapter 3. The system, designed
to minimize the dissipated power while keeping the programmability requires about
11 Cycles per Pixel (CPP) for the non-interpolated LBP, while the interpolated LBP
requires 20 CPP. This implies a figure of energy consumption equivalent to only 1.1
pJ/pixel, which proves that the approach is extremely power efficient. This means that,
even on the FPGA prototype, the real-time HD720 processing at 30 fps. can be achieved
while keeping the power consumption below 30mW. It is expected that the synthesis of
the processor in silicon could mean a possible increase in the power efficiency of about
one order of magnitude.

To provide a comparison, the LBP implementation is compared with highly optimized
implementations on a DSP (Humenberger et al. 2010) (Patyk et al. 2013) and optimized
ARM and NEON implementations (Bordallo López et al. 2014) (Bordallo López
et al. 2012b). The DSP core, explicitly designed for signal processing tasks, offers a
performance about four times faster than the ARM and NEON implementation. The
DSP code is a carefully optimized code and makes use of DSP intrinsics.

For the LBP processor, the experiments suggest a CPP count of 6,7 and 11,8 for LBP
and interpolated LBP, respectively. These numbers show that the DSP is actually faster
than the reconfigurable TTA processor, which make it still a very suitable candidate for
high resolution and high performance applications. However, when distributing the
performance over power, the TTA processor is about 3,5 times more efficient than the
DSP, making it especially suitable for continuous sensing tasks. The energy efficiency
of the TTA processor could be improved further with the synthesis of the processor in
silicon (Kuon & Rose 2007) (Chinnery & Keutzer 2005).
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On the FFT processor, the TTA-architecture outperforms the DSP in terms of CPP.
In addition, implementation in silicon makes also the processor about 3,5 times more
energy efficient. Table 13 shows a summary of the experiments.

Table 13. Cycles per pixel needed by the two TTA processors compared with a DSP and an
ARM processor.(1) FPGA. (2) 130nm technology.

CPP nJPP
Operation ARM DSP TTA ARM DSP TTA

LBP 37,1 6,7 11,0 41 3,9 1,1(1)

iLBP 76,8 11,8 20,0 86 6,9 2,0(1)

FFT 160 6 5,0 146 3,5 1,1(2)

The analysis of the results show that the TTA processors outperform the ARM
processor in both CPP and JPP metrics. Compared with the more specific DSP, designed
to take advantage of instruction parallelism, the performance is comparable. However,
the TTA processors prove to be more energy efficient, even when implemented on an
FPGA. Future implementations of the LBP processor in silicon are expected to reach
even better energy-efficiency.

Although not a replacement for current DSPs, the inclusion of several reconfigurable
TTA processors in a mobile architecture enables the computation of several specific
tasks with small energy consumption, while still providing enough flexibility.

7.6 Discussion

The main contribution of this chapter is the analysis of the characteristics of reconfig-
urable computing platforms in the context of mobile vision-based interactivity. The
comparison of different architectures and the characterization of their advantages and
shortcomings is achieved through the implementation of several compute-intensive
image processing kernels. The analysis of the trade-off between the flexibility of general
purpose processors and the high performance of dedicated hardware circuits provides
advances towards future devices that include platform level adaptability concepts.

The use of reconfigurable processors in future mobile platforms is a very attractive
opportunity. However, there are still major challenges that have to be addressed. The
main target of future research is the integration of reconfigurable computing into existing
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hardware and software systems. In this context, the investment in the development of
efficient tools that help the exploitation of such devices is imperative. The identification
of novel emerging applications and their possible bottlenecks and constrains in terms
of size and energy consumption is paramount for the definition of the boundaries
between software and hardware, and the apparition of new paradigms of reconfigurable
computing. In this context, the future of reconfigurable computing will be determined by
the same trends that affect the development of these systems today. System integration,
dynamic reconfiguration and high-level compilation are still major areas that require
development (Tessier & Burleson 2001).
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8 Conclusions and future research

"We are stuck with technology when what we really want is just stuff that

works."

- Douglas Adams (2002)

Mobile hand-held devices are attractive platforms for the development of new
interaction methods. Their small size, multiple sensors and cameras call for the creation
of new applications and user interfaces. Integrating vision-based interactivity on these
devices introduces new challenges and constraints.

Researchers and developers with a role in the field of mobile computer vision need
to consider the relationships between interactivity and the platform as a whole, and start
designing their systems accordingly. Vision-based algorithms and methods should be
analyzed using a holistic process that considers all stages of mobile development, from
hardware design to application implementation.

In this context, the main contribution of this thesis is establishing a relationship
between interactivity and energy-efficiency, tying the computing and sensing needs of
interactive vision-based applications together with the requirements imposed by the
battery-powered characteristic of the devices. The solutions contained in this thesis laid
on the creation of novel interactive applications and interfaces, the full exploitation
of current computing devices, the proposal of new specific sensing architectures and
advances towards platform adaptability.

The relationship between interactivity and improved quality can be seen in the
implementation of an interactive multi-frame reconstruction application. Since the user
will likely collaborate to obtain the best results if provided with enough feedback, the
application shows the principles of user-feedback utilization on a real scenario, proving
the usefulness of introducing interactive stages in camera-based applications.

The implementation of a virtual 3-D display that integrates a camera as a crucial
point of a user interface has shown the sensing needs of the approach. In complete
vision-based user interfaces, which can be utilized to create novel interaction methods
and applications, the consideration of the system timing and accuracy proves to be of
vital importance. Based on this implementation, new interaction methods deriving from
this kind of interface have been presented.
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The constraints imposed by the nature of the mobile architecture put in relevance
the intertwining of all the interactivity qualities. The computational performance
characterized by throughput and latency needs to be maximized, but carefully balancing
it with the battery consumption, composing an energy-efficient system. The introduction
of a set of heterogeneous processors and their exploitation using the principles of
asymmetric multiprocessing showed that utilizing all the available resources of the
device in the most suitable manner is the way to face the challenge.

With the most suitable tasks distributed on the most appropriate processors, the
optimization of the implementations to be adapted to the computational platform at
hand is of vital importance. The implementation and description of expensive algorithmic
kernels on mobile Graphics Processing Units puts in relevance the importance of
the exploitation of the supported APIs and the identification of the limitations and
opportunities that they offer.

However, since interactivity is intrinsically related with latency and robustness, the
consideration of a sensing platform that integrates the information of the available
cameras and sensors is paramount. This is shown in the implemented methods for
the reduction of the perceived latencies. The proposed solutions for sensing platform
reorganization should lead to the design of an always-on system that includes a dedicated
architecture for continuous sensor processing.

The design of a specific processor or platform still poses a challenge that faces
the trade-off between the flexibility of application processors and the performance of
dedicated hardware circuits. In this context, the analysis of reconfigurable computing
platforms has shown the advances towards a much required platform level adaptability.

However, despite the latest progress of mobile design, several challenges still
remain. The investigation of robust methods that work in variable conditions is still a
field to explore. In this context the exploitation of complementary methods such as
infra-red or thermal imaging could provide for the required reliability of the systems in
difficult lighting or weather conditions. In turn, this can drive the creation of novel and
meaningful ways of utilizing vision-based UIs for interactive purposes to complement or
substitute the current user interfaces.

To tackle the computing needs of these novel methods, future research should focus
on the standardization of the means to use all the computing resources, providing different
tools to address all levels of application design, from low-level arithmetic optimization
to automatic application partitioning. Also important is the future integration of novel
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reconfigurable devices in commercial systems and the creation of suitable developing
tools, including high-level compilers and APIs.

For the particular case of vision-based interactivity, the integration of mobile GPUs
in the camera pipeline is the next crucial step. In this context, any future standards for
GPGPU computing should consider simple ways of accessing the camera data.

With this in mind, several questions are still unanswered. Can continuous sensing,
GPU processing and reconfigurable architectures fundamentally change devices? What
is the impact of an always-on advanced vision-based interface in a device that considers
the techniques described earlier?

Future designs are expected to converge to a full range of devices with multiple
sizes and shapes, including wearable devices. The interactive requirements of all of
them are expected to have certain common characteristics that can be tackled with the
principles shown in this thesis. The relationship established between interactivity and
energy-efficiency is even more relevant in devices with reduced size that cannot use
traditional interaction methods. The principles based on the distribution of the tasks
among the most suitable processors, considering interactivity as a crucial part of the
system, should play the main role in the developing of the interfaces of future devices.

Recent advances suggest that we have a brilliant future ahead. However, we are still
at the beginning of a path full of challenges and opportunities.
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