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Abstract
The goal of this Thesis is to study the electronic and optical properties of semiconductor
nanostructures by employing different theories. The work present in this Thesis is divided
into three parts.

Part I is devoted to the effective-mass theory and its several applications. A general
description of the effective mass theory and several ways of solving the effective-mass
Schrödinger equation with an emphasis on the potential morphing method are given
in the first chapter. In the following few chapters, we apply these theories in many
realistic systems for the study of many properties. They include: i) the binding energy
of hydrogentic donor impurity in semiconductor quantum dots under the influence of
static electric field and/or magnetic field, ii) the linear and nonlinear optical properties
associated with intraband transitions in semiconductor quantum dots, core shell quantum
dots and quantum-dot-quantum-ring systems.

Part II is devoted to the pseudopotential theory and its several applications. The back-
ground theories primarily regarding to the empirical pseudopotential method and configu-
ration interaction approach are described in the first chapter. In the following few chapters,
we employ these theories for the study of the electronic and optical properties of many
nanostructures of group II-VI materials. The optical properties studied herein include
the band gap, Stokes shift, exciton fine structure, optical polarization and absorption
spectra.

Part III is devoted to the appendix, where twelve published papers are presented.

Keyword(s): Semiconductor nanostructures, Effective mass approximation, Binding
energy, Linear and nonlinear optical properties, Pseudopotential theory, Configuration
interaction





Περίληψη

Στόχος της παρούσας διατριβής είναι η μελέτη των ηλεκτρονικών και οπτικών ιδιοτήτων

νανοδομών ημιαγωγών κάνοντας χρήση κατάλληλων υπολογιστικών μεθόδων και τεχνικών.

Η διατριβή χωρίζεται σε τρία μέρη.

Το πρώτο μέρος εστιάζει στην θεωρία της ενεργούς μάζας (Effective-mass Theory) και

τις εφαρμογές της. Στο πρώτο κεφάλαιο παρουσιάζεται το απαραίτητο θεωρητικό υπόβαθρο

και δίνεται μία συνοπτική περιγραφή των συνηθέστερων μεθόδων επίλυσης της μονοηλε-

κτρονιακής εξίσωσης του Schrödinger,δίνοντας ιδιαίτερη έμφαση στην μέθοδο μορφοποίησης

δυναμικού (Potential Morphing Method). Στα επόμενα κεφάλαια του πρώτου μέρους οι

τεχνικές και μέθοδοι που περιγράφηκαν χρησιμοποιούνται για την μελέτη κρίσιμων ιδιοτήτων

και παραμέτρων σε νανοσυστήματα ημιαγωγών. Μεταξύ αυτών είναι: i) η ενέργεια δέσμευ-

σης υδρογονοειδών προσμίξεων τύπου δότη υπό την επίδραση στατικού ηλεκτρικού ή/και

μαγνητικού πεδίου, ii) γραμμικές και μη γραμμικές οπτικές ιδιότητες που συνδέονται με i-
ntraband μεταβάσεις εντός ζώνης σε κβαντικές τελείες ημιαγωγών, κβαντικές τελείες με

δομή πυρήνα-φλοιού και σε μεικτά συστήματα κβαντικής τελείας – κβαντικού δακτυλίου.

Το δεύτερο μέρος εστιάζει στην θεωρία των ψευδοδυνάμικών και τις εφαρμογές της. Αρχικά

παρουσιάζεται το απαραίτητο θεωρητικό υπόβαθρο της μεθόδου εμπειρικών ψευδοδυναμικών

(Empirical Pseudopotential Method) καθώς επίσης και της μεθόδου αλληλεπίδρασης δια-

μορφώσεων (Configuration Interaction). Στην συνέχεια, οι προαναφερθείσες τεχνικές εφαρ-

μόζονται στην μελέτη των ηλεκτρονικών και οπτικών ιδιοτήτων σε μία πληθώρα νανοδομών

ημιαγωγών II-VI. Μεταξύ των ιδιοτήτων αυτών είναι: το ενεργειακό χάσμα, η μετατόπιση

Stokes, η λεπτή δομή των εξιτονίων, η οπτική πόλωση και τα φάσματα απορρόφησης.

Το τρίτο μέρος της διατριβής περιλαμβάνει το παράρτημα, στο οποίο παρατίθενται οι δώδεκα

δημοσιευμένες εργασίες.

Λέξεις Κλειδιά: Νανοδομές ημιαγωγών, Προσέγγιση ενεργούς μάζας, Ενέργεια

δέσμευσης, Γραμμικές και μη γραμμικές οπτικές ιδιότητες, Μέθοδος ψευδοδυναμικών,

Αλληλεπίδραση διαμορφώσεων.
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Preface
This Thesis is submitted to the Materials Science Department of University of Patras,
as a partial fulfillment of the requirements to the degree of Doctor of Philosophy. The
work presented was carried out in the academic years 2011-2014 under the supervision of
Prof. Sotirios Baskoutas and in collaboration with many professors and researchers both
in-house and abroad.

Present semiconductor physics appears to the physics of reduced dimensionality, such
as quasi-two dimensional quantum wells, quasi-one dimensional quantum wires, and
quasi-zero dimensional quantum dots. These structures build a bridge between the
traditional macroscopic condensed matter systems and the microscopic objects, such as
atoms, exhibiting extraordinary physical properties. The work of the Thesis is devoted to
the study of electronic and optical properties of these structures. Two types of theories,
i.e., effective mass theory and pseudopotential theory, are employed. Various properties,
such as i) binding energy of hydrogenic impurity, ii) linear and nonlinear optical properties
associated with the intraband transition, iii) exciton states and related properties, are
covered throughout the thesis.

The Thesis is composed of three parts, i.e., I) effective-mass theory part, II) pseudopoential
theory part, III) appendix part. The first chapter of parts I and II is given to the
description of the background theory that employed in the following few chapters, where
the applications of the theory in the realistic systems are performed. Part III presents the
twelve published papers carried out during my PhD.

Zaiping Zeng
Patras, 2014
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Part I
Effective-mass Theory





1
Background Theory
This chapter is devoted to the description of the background theory employed in the following
few chapters, including the envelope function approximation, effective mass approximation
and many numerical methods for solving the single-band effective-mass Schrödinger equation
emphasizing on the potential morphing method.
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4 1. Background Theory

1.1 Envelope function approximation

In an attempt to give a general description of the envelope function approximation,
we consider an electron which experiences a non-periodic potential. The corresponding
Schrödinger equation is given by

[Ĥ + U(r)]ψ(r) = εψ(r), (1.1)

where Ĥ is the single-electron Hamiltonian, U(r) is the non-periodic potential, ψ(r) is the
eigenfunction and ε is the corresponding eigenenergy. To solve this equation, it is often
convenient to write the wave function ψ(r) as a linear combination of the Bloch states:

ψ(r) =
∑
kν

ckνφkν(r), (1.2)

Inserting the expression (1.2) into equation (1.1) and keeping in mind that the Bloch states
φkν(r) are the eigenstates of the single-electron Hamiltonian Ĥ with the corresponding
eigenenergies εkν , one can derive the following equations for the coefficients ckν :

εkνckν +
∑
k′ν′

Ukν,k′ν′ck′ν′ = εckν , (1.3)

where
Ukν,k′ν′ = 〈φkν(r)|U(r)|φk′ν′ (r)〉 (1.4)

are the matrix elements of the non-periodic potential U(r) within the Bloch basis φkν .
Considering

φkν(r) = ukν(r)eik · r, (1.5)

where ukν(r) is a periodic function, the expression (1.4) can be written as

Ukν,k′ν′ =
∑
G
Fkν,k′ν′ (G)Ũq, (1.6)

with
Fkν,k′ν′ (G) =

∫
u∗kν(r)uk′ν′ (r)e−iG · rd3r, (1.7)

and
Ũq = 1

Ω

∫
U(r)eiq · rd3r, (1.8)

where Ω is the volume of the crystal, G is the lattice vector in the reciprocal space,
q = k− k′ −G. The expression in equation (1.8) is essentially the Fourier transform of
the potential U(r). If U(r) varies slowly on the atomic scale, its Fourier transform will
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only contribute for q in the vicinity of q = 0, i.e., q = k− k′ −G→0. In this condition,
equation (1.7) could be given as

Fkν,k′ν′ (G)≈δνν′δ(G). (1.9)

In the above equation, we used the orthonormality properties of the Bloch states. Employing
the equation (1.9) in equation (1.6), one can get

Ukν,k′ν′≈Uk−k′δνν′ . (1.10)

This covers the key result of the envelope function approximation: if the non-periodic
potential is a slowly varying potential, its matrix elements within the Bloch basis are
diagonal with respect to the band index ν and are given by its Fourier transform Ũ

at k − k′. This suggests that all the interband coupling terms (ν 6=ν ′) are zero and for
intraband transitions (ν=ν ′) the form of the Bloch functions ukν is irrelevant. Inserting
the above approximated matrix elements into equation (1.3), we have

εkνckν +
∑
k′
Uk−k′ck′ν = εckν . (1.11)

Considering the fact that all the interband coupling terms are vanished, the linear combi-
nation of the Bloch states in equation (1.2) can be simplified as

ψν(r) =
∑
k

ckνφkν(r). (1.12)

In the limit of a vanishing potential U(r)→0, the solution of equation (1.11) could be

ckν = δk−k0, ε = εk0ν . (1.13)

In the presence of a non-zero potential U(r), the wave function ψν will also involve k values
different from the reference wavevector k0. However, due to the slowly varying nature of
the perturbation, corresponding to a sharp-peak structure of its Fourier transform Ũ , the
corresponding solution ckν will be strongly peaked around the reference wavevector k0.
Thus, it is convenient to perform to inverse Fourier transform of the eigenvalue equation
(1.11) with respect to the relative wavevector ∆k = k− k0. By denoting with

ψ̄k0ν(r) = 1√
Ω
∑
k
ckνe

i∆k · r, (1.14)

the inverse Fourier transform of the coefficients ckν with respect to ∆k, and applying the
same inverse Fourier transform to equation (1.11), we get the following Schrödinger-like
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equation for the effective wave function as detailed in equation (1.14):

εν(k− i∇r)ψ̄k0ν(r) + U(r)ψ̄k0ν(r) = εψ̄k0ν(r), (1.15)

where εν(k−i∇r) denotes the operatorial version (4k→−i∇r) of the crystal band structure
εkν≡εν(k0 + ∆k).

Compared to the original Schrödinger equation (1.1), the above effective equation involves
only the potential U(r) Consequently, it is possible to solve the original problem in
equation (1.1) by solving an extremely simplified Schrödinger-like equation involving only
the potential U(r).

Let us now come to the link between the original wave function ψ and the effective wave
function ψ̄ detailed in equation (1.14). More specifically, by inserting the explicit form of
the Bloch states into the linear combination (equation 1.12) and taking into account that
ukν(r) is a slowly varying function of the wavevector k, the latter may be taken out of the
sum and evaluated in k0:

ψk0ν(r) =
∑
k
ckνe

ik · rukν(r)≈(
∑
k
ckνe

i4k · r)φk0ν(r). (1.16)

Taking into account that the quality in parenthesis is just proportional to the effective
wave function ψ̄, we finally get

ψk0ν(r)≈
√

Ωψ̄k0ν(r)φk0ν(r). (1.17)

This is the fundamental result of the envelope-function approximation: for any given band
ν and reference wavevector k0, the corresponding global wave function ψ is simply given
by the original Bloch function φ multiplied by the slowly varying effective wave function
ψ̄, called envelope function, the latter is obtained by solving the effective Schrödinger
equation, also referred to as envelope function equation.

1.2 Effective-mass approximation

In the conditions that (i) the conduction band minimum (CBM) or the valence band
maximum (VBM) is at the Γ point of the Brillouin zone, e.g., k0 = 0 and (ii) the constant
energy surface is spherical so that

εν(k) = εν(0) + ~2k2

2m∗ , (1.18)
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the envelope function equation can be written as

[− ~2

2m∗∇
2 + U(r)]ψ̄(r) = εψ̄(r), (1.19)

where we set εν(0) = 0. After making a comparison between equations (1.1) and (1.19), it
is found that the effect of the periodic potential V (r) is included in the effective mass m∗.
In the other words, for an electron (or a hole) near by the CBM (or VBM), its movement
is like the movement of a particle with mass m = m∗. Therefore, the above mentioned
theory is often called as effective-mass approximation.

1.3 Solutions to effective-mass Schrödinger equation

As mentioned before, the eigenvalue problem given in equation (1.1) is significantly
simplified by employing the effective-mass approximation, which leads to another eigenvalue
problem detailed in equation (1.19). It has been generally accepted that this eigenvalue
problem, for most of the physical systems, can not be solved exactly. Therefore, numerical
techniques have been employed in order to solve this problem. Hereafter, we give a
general overview of the most widely used numerical methods, such as perturbation theory,
variational method, matrix diagonalization method et al. and point out the corresponding
disadvantages. In the following step, we describe a powerful method, that is, potential
morphing method, which is developed for the quantum-mechanical determination of the
eigenstates and eigenvalues of a particle in a potential of general shape.

1.3.1 Perturbation theory

Perturbation theory can be used when the Hamiltonian of a system can be written as

Ĥ = Ĥ0 + Ĥ
′
, (1.20)

where Ĥ0 is the Hamiltonian of a system with well-known eigenvalues E0n and eigenfunctions
ψ0n which is usually called as unperturbed system, and Ĥ ′ represents a perturbation, which
is required to be significantly small in comparison to Ĥ0. In this case, if we know the
solution to the system described by Ĥ0, we can use the perturbation theory to get the
approximate solution of a system described by Ĥ. To illustrate the perturbation theory,
we restrict our attention on a simple case where the energy levels of the unperturbed
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system are not degenerate. We assume that the eigenvalues and eigenfunctions of Ĥ can
be expanded as a series whose terms are of zeroth, first, etc., order in Ĥ ′. This can be
done in a more efficient way if we re-write equation (1.20) as

Ĥ = Ĥ0 + λĤ
′
, (1.21)

where λ is a constant and generally assumed to be small. By this way, the series for the
eigenvalue En and eigenfunction ψn can be written as

En = E0n + λE1n + λ2E2n + ...

ψn = ψ0n + λψ1n + λ2ψ2n + ... (1.22)

In the above expressions, the terms independent on the parameter λ are the zeroth order
terms, while that contains λ is the first order term, and so forth. Substituting these
expressions into the following Schrödinger equation

Ĥψn = Enψn, (1.23)

we get

(Ĥ0 + λĤ
′
)(ψ0n + λψ1n + λ2ψ2n + ...)

= (E0n + λE1n + λ2E2n + ...)(ψ0n + λψ1n + λ2ψ2n + ...) (1.24)

If we expand the above equation and compare both sides of the equation with regarding
to the terms having the same power of λ, we can obtain

Ĥ0ψ0n = E0nψ0n, (1.25)

Ĥ
′
ψ0n + Ĥ0ψ1n = E0nψ1n + E1nψ0n, (1.26)

Ĥ
′
ψ1n + Ĥ0ψ2n = E0nψ2n + E1nψ1n + E2nψ0n. (1.27)

If we consider that ψ1n can be expressed as a linear combination of the basis of the
unperturbed eigenfunctions ψ0k:

ψ1n =
∑
k

ankψ0k. (1.28)

Substituting the above expression into (1.26), we obtain

(Ĥ
′
− E1n)ψ0n =

∑
k

ank(E0n − E0k)ψ0k, (1.29)
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where we have used the expression (1.25). Multiplying the both sides of (1.29) by ψ∗0n and
make an integration over all space, and using the fact that 〈ψ0n|ψ0m〉 = δnm, we can get

E1n = Ĥ
′

nn, (1.30)

where
Ĥ
′

nn = 〈0n|Ĥ
′
|0n〉. (1.31)

The above expression is the first-order energy correction which is just the expectation
value of the perturbation operator. We now move our attention to the calculation of the
first-order correction to the eigenfunction. This can be done by multiplying both sides of
(1.29) by ψ∗0m (where m6=n) and integrate over all space. Through this way, we can get

anm = Ĥ
′

mn

E0n − E0m
(m6=n), (1.32)

where Ĥ ′

mn = 〈0m|Ĥ ′|0n〉 is the matrix element. Therefore, the wave function ψn in (1.23)
becomes

ψn = (1 + ann)ψ0n +
∑
k 6=n

Ĥ
′

kn

E0n − E0k
ψ0k + ... (1.33)

The above expression can be significantly simplified by setting ann = 0 but without the
loss of generality,1 which leads to the following expression of the wave function ψn (up to
the first-order correction)

ψn = ψ0n +
∑
k 6=n

Ĥ
′

kn

E0n − E0k
ψ0k. (1.34)

We now proceed to consider the second-order corrections. Following a similar way as we
did previously for the first-order corrections, we write ψ2n as a linear combination of the
wave functions of the unperturbed system:

ψ2n =
∑
k

bnkψ0k. (1.35)

Substituting this expression into (1.27) and making some rearrangements, it is not difficult
to obtain the following expression:

∑
k

bnk(E0k − E0n)ψ0k +
∑
k

ank(Ĥ
′
− E1n)ψ0k = E2nψ0n. (1.36)
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Multiplying both sides of (1.36) by ψ∗0n and making an integrating over all space, we have

E2n =
∑
k 6=n

ankĤnk. (1.37)

Considering the expression (1.32) and the fact that Ĥ is Hermitian operator which means
that Ĥ ′

kn = Ĥ
′∗
nk, (1.37) becomes

E2n =
∑
k 6=n

|Ĥ ′

kn|2

E0n − E0k
. (1.38)

This expression is the second-order correction of the eigenenergy of the perturbed system.
Normally, we could also proceed with the calculation of the second-order correction in the
eigenfunction and even up to higher-order corrections. However, the expressions become
significantly complicated. Thus, it often stops the correction of the wave function at the
first order, otherwise, it would be better to search some other methods for solving the
problem.1

If one or more of the eigenenergies from expression (1.34) (or (1.38)) are degenerate, which
means one or more E0k equals to E0n, one of the denominators (E0n − E0k) in (1.34) (or
(1.38)) would be zero. This would result in an infinite value in the series. Therefore, a
developed perturbation theory for the degenerate systems is often needed. Since we are
only interested on the general idea of the perturbation theory and its limitations rather
than the applications of this type of theory in real systems, a detailed explanation for
the extended perturbation theory for the degenerate systems will not be further covered
in the Thesis. However, the ones who have special interests can find it in Refs. [ 1, 2].
As mentioned previously, the perturbation theory could be useful for the cases that the
perturbation is sufficiently small in comparison to the unperturbed system. However,
practically, most of the cases we want to study do not satisfy this condition. Moreover,
The convergence problem is also in connection with this type of theory.

1.3.2 Ritz variational method

Anthoer method which is widely used to solve the Schrödinger equation is the variational
method. The key point of this method is to have a good initial guess to the form of the
ground-state eigenfunction corresponding to a given system. Let us consider that ψtrial
to be the trial wave function of a system under consideration described by operator Ĥ.
This function typically contains a set of parameters αi (i = 1, 2, ..., n, where n is the total
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number of the parameters). That is:

ψtrial = ψtrial(α1, α2, ..., αn), (1.39)

where these parameters are often called as “variational parameters”. Employing the trial
wave function ψtrial which is assumed to be not normalized, the expectation value 〈Ĥ〉
can be given by

〈Ĥ〉(α1, α2, ..., αn) =
∫
ψ∗trialĤψtrialdτ∫
ψ∗trialψtrialdτ

. (1.40)

The ground-state energy of the system under consideration E0 can be obtained by mini-
mizing the above equation with respect to the variational parameters, which is

E0 = min
α1,α2,...,αn

〈Ĥ〉. (1.41)

As discussed before, the variational method depends significantly on the trial wave function.
The choice of the trail wave function affects strongly the accuracy of the results.

1.3.3 Matrix diagonalization method

Another one of the most popular methods for the solution of the Schrödinger equation
is the matrix diagonalization method. Within this method, the eigenfunction ψ̃ of the
system under investigation can be expanded as

ψ̃ =
N∑
i=1

ci|φi〉, (1.42)

where {|φi〉} is a fixed set of N basis functions. We assume that the basis functions are
real and orthonormal, that is,

〈φi|φj〉 = 〈φj|φi〉 = δij. (1.43)

The matrix representation of the Hamiltonian operator Ĥ by using the basis functions
{|φi〉} can be written as

Hij = 〈φi|Ĥ|φj〉, (1.44)

Since the eigenfunction ψ̃ is normalized, we can get

〈ψ̃|ψ̃〉 =
∑
ij

cicj〈φi|φj〉 =
∑
i

c2
i = 1. (1.45)
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The expectation value 〈Ĥ〉, which is a function of the coefficients ci (i = 1, ..., N), is

〈Ĥ〉 =
∑
ij

ci〈φi|Ĥ|φj〉cj =
∑
ij

cicjHij. (1.46)

The problem for us is to find a set of parameters c0
i (i = 1, ..., N) so that the expectation

value 〈Ĥ〉 is a minimum. This can be solved by the Lagrange’s method of undetermined
multipliers. We firstly construct a function

`(c1, c2, ..., cN , E) = 〈ψ̃|Ĥ|ψ̃〉 − E(〈ψ̃|ψ̃〉 − 1)
=
∑
ij

cicjHij − E(
∑
i

c2
i − 1), (1.47)

where E is the eigenenergy. Considering (1.45), it is easy to find out that we have only
added zero to the rightmost side of (1.46). Therefore, the minimum values of both 〈Ĥ〉
and ` should occur at the same values of the coefficients c0

i (i = 1, ..., N). If we arbitrarily
choose c1, c2, ..., cN−1 as independent and cN is determined by the normalization condition
(1.45), then we have

∂`

∂ck
= 0, k = 1, 2, ..., N − 1, (1.48)

but ∂`/∂cN is not necessarily zero. We now choose the multiplier E so that ∂`/∂cN = 0
does equal zero. Consequently, for all ci (i = 1, 2, ..., N), we have

∂`

∂ck
= 0, k = 1, 2, ..., N. (1.49)

Using (1.47), we can further develop (1.49) into

∂`

∂ck
= 0 =

∑
j

cjHkj +
∑
i

ciHik − 2Eck. (1.50)

Since Ĥ is Hermitian, i.e., Hij = Hji, we have
∑
j

Hijcj − Eci = 0. (1.51)

If we introduce a column vector c with element ci, the above expression can be written in
matrix notation as

Hc = Ec. (1.52)

This is the standard eigenvalue problem which can be solved by diagonalizing the matrix
H. Instead of finding just one eigenvalue E and the corresponding coefficients, we actually
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have found N solutions, which are Eα (α = 0, 1, ..., N − 1) for the eigenenergies with
E0≤E1≤...≤EN−1 and cαi for the expansion coefficients. The lowest eigenvalue E0 is the
best approximation to the ground state energy of the system under consideration within
the truncated Hilbert space {|φi〉, i = 1, 2, ..., N}.

As pointed out by Rieth et al.,3 the problems involved in the matrix diagonalization method
are: (i) if the selected basis functions |φi〉 do not well represent the physical properties of
the system under consideration, the number of the basis functions N has to be so large that
the dimension of the N×N Hamiltonian matrix Hij can be extremely large. Numerically
solving directly the problem becomes highly unstable and hence numerically ill-suited;4 (ii)
in some cases, the discrete basis set {|φi〉, i = 1, 2, ..., N} is not complete since there are
continuum components which are necessary. If we do need these continuum components in
the expansion, then the matrix diagonalization method is no longer applicable. A typical
example can be found in Ref. 5 with regarding the calculation of the quadratic Zeeman
effect for the hydrogen atom in strong white dwarf or neutron star magnetic fields.

1.3.4 Potential morphing method

Potential morphing method is a robust method developed by Rieth, Schommers and
Baskoutas.3 In an attempt to describe the potential morphing method, we consider that a
particle with mass m moves in an arbitrary potential vS. Here, the subscript S donates
the system under consideration. The time-independent Schrödinger equation in this case
can be written as

{− ~2

2m5
2 + vS(r)}ψS(r) = ESψS(r), (1.53)

where ~ is the Planck constant divided by 2π, ES and ψS(r) are the eigenvalue and
eigenfunction of the system S, respectively, and r is the position vector. In order to employ
potential morphing method to solve equation (1.53), we need a reference system (donated
by R) with well-known potential vR, eigenvalues ER and eigenfunction ψR, which satisfy
the following time-independent Schrödinger equation:

{− ~2

2m5
2 + vR(r)}ψR(r) = ERψR(r). (1.54)

The essential point of potential morphing method is that the transition from the reference
system R to the system under consideration S can be performed by means of the time-
dependent Schrödinger equation:

i~
∂ψ(r, t)
∂t

= {− ~2

2m5
2 + vt(r)}ψ(r, t), (1.55)
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where
vt(r) = σ(t)vS(r) + [1− σ(t)]vR(r), (1.56)

with σ(t) having the following property

σ(t) =
 0, t≤ta

1, t≥tb
, (1.57)

where ta is the morphing starting moment, tb is the morphing ending moment, for time
ta < t < tb, the function σ(t) may have any shape but should vary monotonically with
respect to time t. This property of σ(t) enables the form of the wave function ψ(r, t) to
be the following,  ψ(r, t) = ψR(r, t) = CR exp(− iERt

~ )ψ(r) if t≤ta
ψ(r, t) = ψS(r, t) = CS exp(− iESt

~ )ψ(r) if t≥tb
, (1.58)

We divide the time interval tb − ta into N parts and the time step can be defined as
∆t = (tb − ta)/N . If the value N is sufficiently large so that ∆t can be sufficiently small,
the perturbation to the wave function from time to time can be required as significantly
small. Following this idea, if we integrate both sides of (1.55) with respect to time t for
t∈[ta, t1], we get

ψ(r, t1)− ψ(r, ta) = 1
i~

∫ t1

ta
{− ~2

2m∇
2 + vt(r)}ψ(r, t)dt, (1.59)

where t1 = ta + ∆t. By considering the fact that ψ(r, ta) = ψR(r, ta) which is well-known
as required previously, the wave function after the first time step can be written as

ψ(r, t1) = ψR(r, ta) + δψ1 (1.60)

with the perturbation δψ1(r) being

δψ1(r) = 1
i~

∫ t1

ta
{− ~2

2m∇
2 + vt(r)}ψ(r, t)dt. (1.61)

From the above expression, we can see that if the time step ∆t can be chosen as sufficiently
small, the numerical integration can be realized with any degree of freedom. After knowing
ψ(r, t1), we can follow a similar procedure and proceed with the second time step, the
third time step and so on and so forth. After finishing all the time steps, the wave function
ψ(r, tN) is

ψ(r, tN) = ψR(r, ta) +
N∑
i=1
δψi(r) . (1.62)
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If one takes a look at (1.58), it is not difficult to find out that the wave function of the
system S ψS(r) = ψ(r, tN). The corresponding eigenvalue is given by

ES =
∫
ψ∗S(r){− ~2

2m∇
2 + vs(r)}ψS(r)dr. (1.63)

It should be noted that: (i) the wave functions of the system S are automatically orthogonal
and normalized to be unity providing that their counterparts of the system R have the
same properties; (ii) the choice of the reference system does not affect the final results
because the potential morphing method needs only a known reference system to start the
morphing process and finally to give the eigenfunctions and eigenvalues for the unknown
system, independently on the choice of the initial reference system. In general, potential
morphing method is a powerful method which can be used for the determination of the
eigenvalues and eigenfunctions of a system with any arbitrary shape of potential. In
comparison to the other methods we discussed previously, the advantages of this method is
very obvious. In the following chapters of this part of the Thesis, we would like to employ
the potential morphing method in the framework of the effective-mass approximation for
the studies of the shallow donor impurity-related properties and optical nonlinearities in
several semiconductor nanostructures.
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Stark effect of donor binding energy in a self-
assembled GaAs quantum dot subjected to an
electric field
In this chapter, the donor binding energy distribution with respect to the dopant positions
in self-assembled GaAs/AlGaAs quantum dots in the presence of a tilted electric field is
studied. It is found that there is a critical line in a doping plane, corresponding to zero
Stark shift of the donor binding energy. At low electric fields, our work reveals that Stark
shift of an on-center donor binding energy is a purely quadratic function of the electric field
strength, irrespective of quantum dot dimensions and field orientations. This scaling law
permits us to indirectly estimate the impurity polarizability in a self-assembled quantum
dot. The results presented herein are published in Physics Letters A 376, 2712 (2012).
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2. Stark effect of donor binding energy in a self-assembled GaAs quantum

dot subjected to an electric field

2.1 Introduction

Doping semiconductor quantum dots (QDs) allows tuning many properties for tailoring
quantum devices and it provides further means to control their performance.6 Moreover,
donors have already been used in some elegant quantum computing proposals that draw
upon the vast expertise of the semiconductor device industry.7 Therefore, the binding
energy of impurities confined in semiconductor QDs has been extensively studied using
different numerical methods and several confining potential shapes.8–12 In all these reports,
only a few impurity positions (on the growth direction or along the radial direction) are
considered. Furthermore, application of an external electric field induces the carriers
distribution polarization and shifts the energy states. These effects considerably change
the energy spectrum of the carriers, which may be used to control and modulate the
intensity output of devices. Consequently, this makes the external electric field an effective
tool for studying the physical properties of semiconductor nanostructures, both from
theoretical and practical points of view. It is well known that when an electric field is
applied in a semiconductor QD in which the carriers (electron or hole) are confined in
all three directions, the quantum-confined Stark effect appears. Due to this effect, the
symmetry of the electron probability density distributions at zero electric field breaks
and the maximum of the electron probability density moves away from the QD center
to the opposite direction of the applied field. Consequently, the donor binding energy
corresponding to the doping positions which are located opposite to applied field direction
exhibits blue shift. Conversely, red shift takes place if the doping positions are distributed
along the field direction. Are there any doping positions in the QD at which the donor
binding energy keeps invariant (zero shift) under the influence of an applied electric field?

On the other hand, quantum-confined Stark effect on the exciton energy in a semiconductor
self-assembled QD has been extensively investigated,13–18 indicating that a shift of the
excitonic peak in absorption or photoluminescence (PL) spectra, for small electric field
F , has the form δE(F ) = E(F 6=0) − E(F = 0)≈αXF − βXF 2, where αX and βX are,
respectively, the components of the permanent dipole moment and the polarizability.
Especially, if the symmetry of the problem rules out a preferential direction, the Stark shift
is an even function of F and the expansion begins with the polarizability term (αX=0).
As is well known, the donor impurity behaves like an exciton with infinite hole effective
mass. Therefore, a question which naturally arises is the following: what is the relation
connecting the Stark shift of the donor binding energy with the applied electric field in a
self-assembled semiconductor QD ?

To put a quantitative answer to the questions addressed before, in this chapter, we
performed detailed theoretical investigations on the donor binding energy distributions
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with respect to the dopant positions in a self-assembled GaAs/AlGaAs QD, considering
the effect of an applied tilted electric field. The numerical approach we used is potential
morphing method3 (see also Chapter 1) in the framework of effective-mass approximation.

2.2 Theoretical model

It is well-known that the self-assembled QDs are quasi-two dimensional structures which
strongly confine the carriers (electron or hole) in the growth direction, while the lateral
confinement is typically softer. Due to this fact, GaAs/AlGaAs QDs with cylindrical
shape are adopted for our model calculations (see Fig. 2.1). The parameter L referred
to the dot height is responsible for the QD growth-direction (z-axial direction) quantum
confinement. Whereas the parameter R referred to the dot radius is responsible for the
QD lateral quantum confinement.

Figure 2.1: Schematic representation of the self-assembled GaAs/AlGaAs QD under investi-
gation with the dot height L and the radius R in the presence of an electric field F applied
parallel to the xoz plane making an angle θ relative to the x axis.
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In the framework of the effective-mass approximation, a shallow donor impurity embedded
in a self-assembled QD is modeled by the Hamiltonian

Ĥ = p̂
1

2m∗e
p̂+ V (~r) + VF (~r)− e2

ε|~r − ~ri|
, (2.1)

where m∗e is the electron effective mass, V (~r) is the electron confinement potential, which
is assumed to zero insider the QD and V0 outside the QD (V0 is the conduction band
discontinuity). VF (~r) is the electrostatic potential induced by the tiled electric field applied
parallel to the xoz plane making an angle θ relative to the x axis (see Fig. 2.1), which is
given by

VF (~r) = eF (xcos θ + zsin θ), (2.2)

where e is the absolute value of the electron charge, F is the magnitude of the applied
electric field. The last term of Eq. (2.1) represents the Coulomb interaction between the
electron and the shallow donor impurity which is located at ri = (xi, yi, zi) and ε is the
static dielectric constant. It should noted here that due to the symmetry consideration,
the dopant positions considered in the present calculations are distributed in the xoz plane
(yi = 0).

The ground-sate donor binding energy is defined as the difference between the ground-state
energies of the free electron and that of the donor, which is the following

Eb = E0 − Ẽ, (2.3)

where Ẽ is the energy which corresponds to the Hamiltonian in Eq. (2.1) and E0 is the
energy without Coulomb interaction (absence of the last term in Eq. (2.1)). In order
to obtain the ground state energy of the electron (E0) and the donor (Ẽ) as well as
corresponding wave functions, PMM, which has been described in the previous chapter,
is employed. In the present numerical calculations, the usual three-dimensional (3D)
harmonic oscillator is taken as a reference system and its ground state wave function is
selected as the initial wave function (ΦR). The interaction potential corresponding to the
ground-state energy of the electron (E0) is

veS = V (~r) + VF (~r). (2.4)

Whereas, the interaction potential corresponding to the ground-state energy of the donor
(Ẽ) is

vdS = V (~r) + VF (~r)− e2

ε|~r − ~ri|
. (2.5)

To further understand the electric field effect on the donor binding energy in a semiconductor
QD, the Stark shift of the donor binding energy is defined as the difference between the
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binding energy of a donor impurity at electric field F 6=0 (a finite electric field) and its
binding energy at F = 0 (zero electric field), which can be given by

δEb = Eb(F 6=0, θ)− Eb(F = 0, θ). (2.6)

The negative Stark shift of the donor binding energy (δEb < 0) means essentially the
electric field effect makes the donor binding energy “red shift”. Conversely, the “blue
shift”of the donor binding energy takes place if the Stark shift of the donor binding energy
is positive (∆Eb > 0).

2.3 Results and discussion

Before presenting the numerical results obtained from our model calculations, it is deserved
to discuss the validity of the effective mass approximation in small systems. As mentioned
by several authors,12,19,20 validity of effective mass approximation in semiconductor QD
depends on the range of the Bloch function wave vectors necessary to construct the envelope
wave function for the dot. This range has to be much smaller than the width of the Brillouin
zone. For GaAs QD, the effective mass approximation is valid for the case of dot size
larger than 2 − 3 nm.12 To insure the validity, the sizes of the QDs in our calculations
are much larger than the aforementioned critical dot size value. The physical parameters
used in our calculations are ε = 12.4 and V0 = 228 meV. As verified by Li and Xia,21 the
effective-mass mismatch has considerable influence on the high excited states but it only
weakly affects the ground-state donor binding energy and the low excited states. Thus,
in our calculations, a position independent electron effective mass (m∗e = 0.0667m0) is
used as a reasonable approximation. These parameters are suitable for GaAs/AlxGa1−xAs
heterostructures with aluminum concentration x≈0.3. First of all, in an effort to obtain
a quantitative understanding of the dependence of donor binding energy on the dopant
positions in the presence of an applied electric field, we create suitable contour plots (Fig.
2.2) of the Stark shift of the donor binding energy (δEb = Eb(F 6=0) − Eb(F = 0)) for
various dopant positions in a cylindrical GaAs QD with different dot configurations. The
field strength is F = 50 kV/cm and tilted angle θ = 45◦. It is interesting to find from
Fig. 2.2 that for any dot configuration, there is a critical line determined by δEb = 0.
The doping region above the critical line satisfying δEb < 0 represents the red shift of the
donor binding energy and the doping area below the critical line described by δEb > 0
shows the blue shift of the donor binding energy. By observing these plots, it is found
that the critical line exhibits two distinct features. One is horizontal displacement (shift
to left/right-hand side) and the other one is planar rotation. Although both of them are
due to the applied electric field effect, their behaviour is differently influenced by the QD
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Figure 2.2: Contour plots of the Stark shift of the donor binding energy (in unit of meV) for
various dopant positions distributed in xoz plane of a GaAs/Al0.3Ga0.7As cylindrical QD with
different dot configurations subjected to an uniform electric field (F = 50 kV/cm, θ = 45◦).

geometric characteristics, such as dot sizes and aspect ratios (ρ = L/R). As is observed
in Fig. 2.2, for a specific QD aspect ratio (i.e. ρ = 1), the critical line appears to show
a left-hand displacement and simultaneously a counterclockwise planar rotation as the
dot size increases (see the first two plots). Whereas, if the QD aspect ratio increases
(see the last two plots of Fig. 2.2), a right-hand displacement of the critical line takes
place and simultaneously the counterclockwise planar rotation is significantly more intense.
Especially, for a weak-confinement cylindrical QD with aspect ratio ρ = 2 (see the last
plot of Fig. 2.2), the area corresponding to the “red" shift of the donor binding energy
is dominant. The critical line is displaced far from the center of the doping plane and
preferably rotated to be perpendicular to the field direction. These novel behaviour is
attributed to the competition effects between the applied electric field and geometric
confinement.

Figure 2.3: Contour plots of the Stark shift of the donor binding energy (in unit of meV) for
various dopant positions distributed in xoz plane of a GaAs/Al0.3Ga0.7As cylindrical QD with
dot height L = 20 nm and radius R = 20 nm, considering different electric field magnitudes at
tilted angle θ = 45◦.
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For a self-assembled cylindrical QD with aspect ratio ρ = 1 and radius R = 20 nm, we
have also displayed the contour plots of Stark shift of the donor binding energy for various
dopant positions in Fig. 2.3, in which different field strengths (θ = 45◦) are considered.
As expected, the critical line corresponding to zero shift of the donor binding energy
appears in any field strength configuration. Generally, the enhancement of the applied
field causes the enlargement of the doping area corresponding to the red shift of the donor
binding energy. Particularly, it is found that the increase of the field strength practically
has negligible influence on the translational displacement of the critical line. Conversely,
it has a significant effect on the planar rotation. As can be seen from Fig. 2.3, the
counterclockwise rotation of the critical line is significantly enhanced as the field strength
increases.

Figure 2.4: Contour plots of the Stark shift of the donor binding energy (in unit of meV) for
various dopant positions distributed in xoz plane of a GaAs/Al0.3Ga0.7As cylindrical QD with
dot height L = 20 nm and radius R = 20 nm, considering different electric field orientations
with strength F = 50 kV/cm.

In accordance to the previous reports about the tilted electric field effect on the electron22
and magnetoexciton states,23 the applied field orientation also significantly affects the
electron and excitonic properties. At this point, one may expect that the relative orientation
of the applied field may also has considerable effect on the Stark shift of the donor binding
energy. To check this assumption, in Fig. 2.4, we displayed several contour plots of the
Stark shift of the donor binding energy for various dopant positions in the same QD
configuration as in Fig. 2.4, considering different field orientations. As is observed, the
critical line determined by δEb = 0 appears for any field orientation. Variation of the
field orientation from the in-plane direction (~F‖~x) to the growth direction (~F‖~z) leads
to the shrinking of the doping area corresponding to the red shift of the donor binding
energy. It is also found from Fig. 2.4 that increasing the titled angle turns out to shift
the critical line to the right-hand side of the doping plane and simultaneously leads to a
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counterclockwise planar rotation. Especially, when the field is applied along the growth
direction (see the last plot of Fig. 2.4), the Stark shift of the donor binding energy exhibits
obviously axially symmetric distributions (with respect to xi = 0 axis) in the doping plane.
Moreover, the critical line corresponding to the zero shift of the donor binding energy
is distributed apparently perpendicular to the field direction and vertically but slightly
displaced from the center of the doping plane.

Figure 2.5: Variation of the ground-state electron subband energy δEs ((a) and (b)) and
Stark shift of binding energy of an on-center donor impurity δEb ((c) and (d)) in a self-
assembled GaAs/Al0.3Ga0.7As QD as a function of the electric field strength (symbols). In
each figure, each solid line represents a fit to a purely quadratic field dependence of the energy
variation (δEi = Ei(F 6=0)− Ei(F = 0)≈−βiF 2 (i = s or b)). (a) and (c) are for different
QD configurations and θ = 45◦, while (b) and (d) are for different field orientations and
L = R = 20 nm, respectively.

Finally, in order to examine whether the aforementioned relation for the field dependence
of the Stark shift of the exciton energy is also valid for the Stark shift of the donor binding
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energy, we firstly present in Fig. 2.5(a) and (b) the change of the ground-state electron
subband energy δEs (δEs(F ) = Es(F 6=0) − Es(F = 0), where Es is the ground state
electron subband energy) as a function of the applied field strength in a self-assembled
GaAs QD, considering different QD configurations (Fig. 2.5(a)) and field orientations (Fig.
2.5(b)). As can be seen from Fig. 2.5(a) and (b), δEs decreases quadratically with the
applied electric field, irrespective of the QD dimensions and the applied field orientations.
This finding is in excellent agreement with a general quantum mechanical theorem24 which
states that the ground-state energy is a concave function of any parameter that enters
linearly in the Hamiltonian. This is a quite general result, which does not depend on the
model Hamiltonian used.

Table 2.1: Theoretical values of βs and βb (in unit of meV · cm2 · kV −2) obtained from the fits
in Fig. 2.5(a) and (c), respectively.

QD Configurations βs βb

L = R = 10 nm (2.34±0.003)×10−3 (0.59±0.002)×10−3

L = R = 20 nm (26.1±0.17)×10−3 (9.8±0.15)×10−3

L = 2R = 40 nm (53.87±0.4)×10−3 (19.03±0.42)×10−3

Table 2.2: Theoretical values of βs and βb (in unit of meV · cm2 · kV −2) obtained from the fits
in Fig. 2.5(b) and (d), respectively.

Tilted angle βs βb

θ = 0◦ (42.52±0.402)×10−3 (16.62±0.37)×10−3

θ = 30◦ (34.62±0.263)×10−3 (13.43±0.24)×10−3

θ = 60◦ (17.26±0.081)×10−3 (5.89±0.07)×10−3

θ = 90◦ (7.94±0.016)×10−3 (1.48±0.02)×10−3

To understand qualitatively the donor binding energy variation under the influence of
an applied electric field, we also investigated, in Fig. 2.5(c) and (d), the Stark shift of
the binding energy corresponding to an on-center donor impurity as a function of the
field strength for different QD dimensions (Fig. 2.5(c)) and electric field orientations (Fig.
2.5(d)). In general, donor’s intrinsic dipole moment becomes orientated by the applied
electric field, irrespective of dopant positions in a self-assembled QD. Due to an additional
separation of the electron and ionized donor impurity (e−/D+), the induced dipole moment
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will also interact with the applied electric field. In total, this results in a change of the
donor binding energy as δEb≈αDF − βDF 2, where the coefficients αD and βD donate
impurity permanent dipole moment and impurity polarizability, respectively. As can
be seen from Fig. 2.5(c) and (d), it is interesting to find that δEb decreases (red shift)
quadratically with the applied electric field for any dot configuration and field orientation.
This therefore suggests the absence of a permanent dipole moment in each case considered.
This result is in good agreement with the symmetry consideration which states that any
system with an inversion symmetry does not have a permanent dipole moment (αD = 0).
On the other hand, the fits in Fig. 2.5(c) and (d) also suggest a good way to estimate the
impurity poloarizability. As indicated in Tables. 2.1 and 2.2 (see the third column), the
impurity polarizability is in order of 10−3meV · cm2 · kV −2, which is comparable with its
exciton counterpart as shown in the previous literature.17,18 After making a comparison
between βs and βb listed in Tables. 2.1 and 2.2, it is easy to find that both coefficients are
similarly affected by the QD dimensions or the field orientations. Increase of QD dimension
results in significantly increase in the two coefficients, while tilting the electric field from
the lateral direction to the growth direction turns out to decrease both of them. This is a
good reflection of the competition effects between the quantum confinement and applied
electric field. More specially, comparing to δEs, it is found that the applied electric field
effect on δEb is less effective (βs is much larger than βb in each case). This is because of
the Coulomb attraction between the electron and the donor impurity which inhibits the
displacement of the electron probability density far from the impurity center.

2.4 Brief summary

To summarize, we have studied the Stark shift of the donor binding energy distributions
with respect to the dopant positions in a self-assembled GaAs/Al0.3Ga0.7As QD subjected
to an applied electric field. The electric field is tilted from the QD growth direction. It is
found that there is a critical line in the doping plane corresponding to the zero shift of
the donor binding energy. The doping area above the critical line shows the red shift of
the donor binding energy and that below the critical line represents the blue shift. The
position of the critical line is strongly affected by the QD size, its aspect ratio and the
strength and orientation of the applied electric field. Our results also indicate that the
variation of the ground-state electron subband energy and the Stark shift of an on-center
donor binding energy, for small electric field (0-10 kV/cm in our calculations), are purely
quadratic functions of the field strength, irrespective of the QD configurations and the field
orientations. More specially, it is found that comparing to the variation of the ground-state
electron subband energy under the influence of the applied electric field, the applied field
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effect on the Stark shift of the on-center donor binding energy is less effective. We believe
that the results presented here can be useful for design and application of some commonly
used δ-doped self-assembled GaAs/AlGaAs QD based optoelectronic devices. We also hope
that our results can stimulate forthcoming theoretical and experimental investigations in
this attracting research area.
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Tuning the binding energy of surface impu-
rities in cylindrical GaAs/AlGaAs quantum
dots by a tilted magnetic field
In this chapter, the effect of a tilted magnetic field on the binding energy of surface
impurities in GaAs/AlGaAs cylindrical quantum dots is studied by using the potential
morphing method in the framework of the effective-mass approximation. It is found that
contrary to what was expected based on the existing literature for growth-direction magnetic
fields, the presence of a tilted field does not always contribute positively to the binding
energy of surface impurities. The shape (aspect ratio) and size of the cylindrical quantum
dot as well as the dopant positions at the quantum dot surface play an important role.
Furthermore, we find that decrease of the quantum dot size can reduce the sensitivity of
the variation of the donor binding energy with respect to the field strength (orientation)
but it can not change its general behaviour. The results presented herein are published in
Journal of Applied Physics 112, 064326 (2012).
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3.1 Introduction

Rapid advance in material growth technology lead to a renewed interest in studies of
semiconductor nanostructures subjected to a tilted magnetic field directed at an angle with
respect to the growth direction.25–29 Since the pioneering works of Stern30 and Maan,31
subband-Landau-level coupling effect,32 electron33–35 and impurity states,36,37 quantum hall
effect,38 exciton binding energy and excitonic absorption29,39 in a semiconductor quantum
well (QW) structure in the presence of a tilted magnetic field have been investigated
theoretically in the past three decades. These studies revealed that the titled magnetic
field influences dramatically the electronic and optical properties in a semiconductor QW
structure, as it has also been shown by relative experimental works.27,28,40–44 From the
theoretical point of view, the presence of a tilted magnetic field, breaks the cylindrical
symmetry and the variables in the Schrödinger equation can not be fully separated (the
only exception seems to be the special case of parabolic potential31). To solve this problem,
variational and perturbation methods have been used. It is well known that the variational
method is highly dependent on the trial wavefunctions, while the perturbation method is
a reliable method only if the magnetic field is weak enough so that its effect can be viewed
as an external perturbation.

Investigations of hydrogenic impurity in the above setup are of particular relevance, since
the presence of the hydrogenic impurity influences greatly the electronic mobility and
optical properties. Up to now, only few reports concerning the study of the effect of
a tilted magnetic field on the donor impurity states in low dimensional semiconductor
nanostructures have been published. Kasapoglu et al.36 investigated variationally the
binding energy of a shallow donor impurity located at the center of GaAs/AlGaAs QW
under the influence of a tilted magnetic field by making a coordinate transform. Their
results show that the donor binding energy is a nonmonotonic function of the tilted angle
(the orientation of the magnetic field). On the contrary, the findings of Redliński and
Jankó,37 who also used a variational procedure, show that the binding energy of a donor
impurity located at the center of the rectangular CdTe/MgCdTe QW is a monotonic func-
tion of the tilted angle. More recently, Monozon and Schmelcher29 developed an analytical
approach to the problem of the fundamental and exciton magnetoelectroabsorption in a
narrow QW. For comparison purpose, the ground-state binding energy of a donor impurity
located at the center of the CdTe/MgCdTe QW in the presence of a tilted magnetic field
has been calculated by using the analytical approach. Their results show that the donor
binding energy is a monotonic function of the tilted angle of the magnetic field, which
is in agreement with that reported in Ref. 37. In their report, as an approximation, the
electron-impurity Coulomb interaction has been neglected and the carrier confinement
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potential is assumed to be infinite (infinite-depth QW). However, the impurity related
properties37,45,46 and the optical band gap47,48 in semiconductor nanostructures are also
highly dependent on the barrier height (or indirectly on the host matrix). From then on,
no further investigations were involved with the study of the donor impurity states in a
semiconductor QW subjected to a tilted magnetic field. Moreover, in spite of considerable
progress in the investigations on the tilted magnetic field effect in a semiconductor QW, no
studies have been involved investigating the tilted magnetic field effect in a semiconductor
quantum dot (QD).

In this chapter, we employ the potential morphing method (PMM)3,47–53 in the framework
of effective-mass approximation (EMA) in order to investigate the effect of a tilted magnetic
field on the donor binding energy in GaAs/AlGaAs semiconductor QDs. In our calculations,
for simplicity, the difference of the electron effective mass between the dot material and
the barrier material, the dielectric mismatch and the conduction band nonparabolicy have
been neglected.37 On the other hand, according to the presently accepted mechanisms of
doping, the behaviour of surface impurities in semiconductor nanocrystals prepared at
relatively low temperature plays a crucial role during the incorporation process (the success
in doping nanocrystals depends on the possibility of the impurity to be absorbed on the
nanocrystals surface and to stay there a time long enough to be incorporated during the
growth process).54–56 Although there are many investigations on the on-center impurity
in semiconductor QDs, studies with impurities located at off-center positions are much
less.12,57,58 Especially, to our best knowledge, there are no reports in the literature, within
the framework of EMA, concerning to the detailed investigations of the surface impurities
binding energy in semiconductor QDs subjected to a tilted magnetic field. In the present
Chapter, theoretical predictions about the behaviour of the magnetic and angle shift of
the binding energy of the surface impurities under the influence of a tilted magnetic field
in a cylindrical GaAs/AlGaAs QD are reported.

3.2 General theory

In the framework of EMA, a shallow donor impurity embedded in a cylindrical QD is
modeled by the Hamiltonian

Ĥ = (p̂+ e

c
~A(~r)) 1

2m∗e
(p̂+ e

c
~A(~r)) + V (~r)− e2

4πε|~r − ~ri|
. (3.1)

The first term of the Hamiltonian is the operator for the Kinetic energy of a delocalized
conduction electron (where e is the absolute value of the electron charge, c is the speed
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of the light in vacuum, m∗e is the electron effective mass) in the presence of the tilted
magnetic field ~B = B(cos θ, 0, sin θ) which is parallel to the xoz plane with an angle θ to
the x-axial direction. In the previous theoretical treatment36,37 of the tilted magnetic field
effect in a semiconductor QW, the asymmetric gauge ( ~A(~r) = B(0, x sin θ− z cos θ, 0)) was
adopted in order to simplify the numerical calculations. However, PMM which is developed
to solve the time independent Schrödinger equation for any arbitrary interaction potential
offers us more flexibility to choose the gauge. For the magnetic field ~B considered in the
present paper, the commonly used cylindrical gauge is employed in our calculations and
the vector potential in the cylindrical gauge is

~A(~r) = 1
2
~B×~r = 1

2B(−y sin θ,−(z cos θ − x sin θ), y cos θ). (3.2)

Substituting Eq. (3.2) into Hamiltonian (3.1), the operator for the Kinetic energy of the
electron under the influence of a tilted magnetic field ~B (the first term of Hamiltonian
(3.1)) is the following

ĤKin = p̂
1

2m∗e
p̂+ eB

2m∗ec
(cos θl̂x + sin θl̂z) + e2B2

8m∗ec2 [y2 + (zcos θ − xsin θ)2], (3.3)

where l̂i (i = x, z) is the i-component of the angular momentum operator (l̂x = yp̂z − zp̂y,
l̂z = xp̂y − yp̂x). The second term of Eq. (3.3) represents the interaction between the
magnetic field ~B and the orbital angular momentum ~l ( ~B ·~l = Bxl̂x + By l̂y + Bz l̂z, here
By = 0). The third term of Eq. (3.1),

VB(~r) = e2B2

8m∗ec2 [y2 + (zcos θ − xsin θ)2], (3.4)

is the magnetic field induced confinement potential. For in-plane magnetic field (θ = 0◦),
the magnetic field induced confinement potential is VB(~r) = e2B2

8m∗ec2 (y2 + z2), which is in
yoz plane; while for growth-direction magnetic field (θ = 90◦), VB(~r) = e2B2

8m∗ec2 (x2 + y2),
which is in xoy plane. Furthermore, for any B 6=0 and θ 6=0◦ (or 90◦), the magnetic field
induced confinement potential VB(~r) takes the form of Eq. (3.4), which is in both yoz plane
(contributed from the transverse component of the magnetic field Bx = Bcosθ) and xoy
plane (contributed from the longitudinal component of the magnetic field Bz = Bsinθ).

V (~r) in Eq. (3.1) is the step-like electron confinement potential, which is assumed to
be zero inside the QD and V0 outside the dot. The third part of the Eq. (3.1) is the
Coulomb interaction between the electron and the shallow donor impurity which is located
at ~ri = (xi, yi, zi), and ε is the static dielectric constant. In order to obtain the ground
state of the Hamiltonian (3.1), we are using the PMM following the procedure outlined in
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Chapter 1. The ground-state donor binding energy is represented as the following

Eb = E0 − Ẽ, (3.5)

where Ẽ is the energy which corresponds to the Hamiltonian in Eq. (3.1) and E0 is
the energy without Coulomb interaction (absence of the third term in Eq. (3.1)). The
magnetic shift of the donor binding energy is defined as the difference between the binding
energy of a donor impurity at magnetic field B 6=0 and its binding energy at magnetic field
B = 0 for a fixed tilted angle θ, which is given by29

δEb = Eb(B 6=0, θ)− Eb(B = 0, θ). (3.6)

Similarly, the angle shift of the donor binding energy is defined as the difference between
the binding energy of a donor impurity at angle θ 6=0◦ and its binding energy at angle
θ = 0◦ is the following29

∆Eb = Eb(B, θ 6=0◦)− Eb(B, θ = 0◦). (3.7)

3.3 Results and discussion

In the following, we will discuss the influence of the QD geometric characteristics (such as
dot size and height-to-radius aspect ratio), impurities positions (on-surface or on-center)
and magnetic field intensities and orientations on the donor binding energy in a cylindrical
QD characterized by the dot radius R and dot height L. Our calculations are based on a
typical GaAs cylindrical QD, surrounded by larger band gap material Al0.3Ga0.7As in both
the radial and z-axis directions. All the parameters used in our calculations are the same
as in Ref. 50. The cartesian coordinates of the on-center, top and side impurities, which
are considered in the present calculations, are (0,0,0), (0,0,L2 ) and (R,0,0), respectively.

As a first step towards studying the effect of a tilted magnetic field on the binding energy
of surface impurities in cylindrical GaAs/Al0.3Ga0.7As QDs, we performed calculations
for the magnetic shift of the donor binding energy of surface impurities δEb (top and
side impurities) as a function of the magnetic field strength B (see Figs. 3.1(a) and (b)).
This procedure was repeated for height-to-radius aspect ratios ρ = L

R = 0.5, 1.0 and 2.0,
while the dot’s radius was set to R = 20 nm. As reported in previous investigations,59
for a cylindrical QD subjected to the growth direction magnetic field, the binding energy
of on-edge impurity (corresponding to the top impurity in our calculations) is totally
insensitive to the increase of the magnetic field strength. However, for a tilted magnetic
field (for instance, θ = 45◦), the binding energy of top impurity, as indicated in Fig. 3.1 ,
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Figure 3.1: Magnetic shift of the donor binding energy δEb as a function of magnetic
field B with tilted angle θ = 45◦. (a) is for different aspect ratios (R = 20 nm) and
top impurity; (b) is for different aspect ratios (R = 20 nm) but side impurity; (c) is for
different impurity positions (top, side and center) but for radius R = 10 nm and aspect
ratio ρ = 1.

is very sensitive to the magnetic field and δEb increases dramatically with increasing the
magnetic field for a disc-shaped QD (i. e., ρ = 0.5). However, as the aspect ratio increases
this sensitivity declines and δEb even becomes negative for the rod-shaped QD (ρ = 2.0).
On the other hand, for the case of side impurity, the behaviour of δEb is found to be quite
different. For a disc-shaped QD (ρ = 0.5), as shown in Fig. 3.1(b) δEb is negative and
it keeps decreasing dramatically with increasing the magnetic field strength. When the
aspect ratio goes up to ρ = 1, δEb is also negative as the field increases, but the sensitivity
of the donor binding energy with respect to the field strength is reduced. However, if the
aspect ratio keeps increasing and a rod-shaped QD is produced, the enhancement of the
magnetic field results in a positive δEb, which is in contrast to the case of top impurity.

In an effort to explain these novel behaviour of the binding energy of surface impurities
and understand the underlying physics, we have created suitable 3D contour plots of the
electron probability density (first column of Fig. 3.2), as well as isosurfaces of the electron
probability density differences (the last three columns of Fig. 3.2) in impurity-free QDs
with different aspect ratios and magnetic fields (strength and orientation). In particular,
each density difference plot has been produced by subtracting the zero field density from
the density which corresponds to a specific field strength and orientation. This subtraction
leads to positive (blue) and negative (red) density areas which indicate the charge movement
due to the presence of the magnetic field. As a result, the red surfaces correspond to
charge depletion areas, while the blue surfaces correspond to charge accumulation areas.
For the creations of these 3D contour plots, the Gabedit graphical program60 was used.
By observing these figures, two distinct trends can be identified. The presence of the
magnetic field makes the electron probability density shrink towards the center of the dot
and also elongates along the applied field direction. The geometric characteristics of the
dot (aspect ratio) have a different influence on these two trends. The shrinking due to
the magnetic field induced confinement is not significantly affected by the variation of the
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Figure 3.2: The first column corresponds to the three dimensional electron probability density
of an impurity free GaAs/Al0.3Ga0.7As cylindrical QD with radius R = 20 nm and different
aspect ratios in the absence of the magnetic field. The following three columns show suitably
chosen isosurfaces of electron probability density differences for non-vanishing magnetic field
along various directions.

QD aspect ratio, while on the other hand, the elongation trend is greatly affected. In the
absence of the magnetic field, the electron probability density is mainly distributed along
the radial direction of a disc-shaped QD (ρ = 0.5) due to the strong confinement in the
growth direction; whereas, for a rod-shaped QD (ρ = 2.0), it extends apparently in all the
three directions because it is in weak confinement regime (see the first column of Fig. 3.2).
When an experimentally strong tilted magnetic field (for instance, B = 20 T and θ = 45◦)
is applied in a disc shaped QD (see the third column of Fig. 3.2), the electron probability
density exhibits an obvious shrinking towards the center of the QD (see the red color) while
the elongation is strongly limited by the growth-direction geometric confinement of the
QD. The charge density accumulation around the center of the QD is the dominant effect
which leads to the decrease (increase) of the mean relative distance between the electron
and the top (side) impurity. As a result, the binding energy of top impurity increases
dramatically, whereas, that of side impurity obviously decreases. On the contrary, when
the dimensions (aspect ratios) of the QD become larger, the elongation trend mediates or
even reverses this tendency.

In order to investigate the behaviour of δEb in different dot sizes subjected to a tilted
magnetic field, we also displayed in Fig. 3.1(c), the magnetic shift of the donor binding
energy δEb as a function of the magnetic field strength in a cylindrical QD with aspect
ratio ρ = 1.0 but with a smaller radius (R = 10 nm). In this calculation, three different
impurity positions (top, side and center) are considered. At a first glance, we can find
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that the binding energy of the surface impurities does not change in the same way as that
of the on-center impurity when the magnetic field is enhanced. For instance, δEb of side
impurity slightly decreases with increasing the magnetic field. However, for an on-center
donor impurity, it exhibits an apparent increase. This finding is totally different from
the case of growth direction magnetic field, which states that the change of the binding
energy of off-center impurity is similar to that of an on-center impurity.61 Furthermore, by
comparing the three plots shown in Fig. 3.1, it is found that decrease of the QD size can
lead to the decrease of the sensitivity of the magnetic shift of the donor binding energy
with respect to the magnetic field strength but can not change its general behaviour.

As expected, the magnetic field orientation also has a significant influence on the binding
energy of surface impurities in a cylindrical QD. As indicated from Fig. 3.3(a) and (b),
both the top and side impurities show monotonic dependence of the binding energy on the
tilted angle, irrespectively of the QD aspect ratios. However, the variation of the magnetic
filed orientation from in-plane direction to the growth direction contributes positively to
the angle shift of the binding energy of top impurity. While it has a negative influence on
the angle shift of the binding energy of side impurity. This can be understood as follows.
When the magnetic field is applied along the x-axial direction (θ = 0◦), the magnetic field
induced confinement is in yoz plane as shown from Eq. (3.4). For this reason, the electron
probability density shrinks in the plane perpendicular to the magnetic field direction and
mainly elongates along the field direction at this stage (see the density differences shown in
the second column of Fig. 3.2). While when the magnetic field is tilted from the in-plane
direction, the magnetic field has both longitudinal and transverse components, which
correspond to the magnetic field induced confinement in xoy and yoz plane, respectively.
Consequently, the electron probability density shrinks toward the center of the QD and
the mean relative distance between the electron and side (top) impurity is increased
(decreased). Finally, when the magnetic field is applied along the growth direction and
the magnetic field induced confinement contributed from the transverse component of the
magnetic field is diminished, the electron probability density is distributed apparently
along the growth direction of the QD. Therefore, in this situation, the binding energy of
top (side) impurity reaches its largest (smallest) value. Furthermore it can be deduced
from Fig. 3.2 that the charge depletion (accumulation) is much more sensitive to the
magnetic field orientation for the case of larger aspect ratio (ρ = 2). This directly indicates
that the effect of the magnetic field orientation is more pronounced in a semiconductor
QD with large aspect ratios.

As for the behaviour of the angle shift of the donor binding energy, several interesting
trends can be observed from Fig. 3.3. As shown by Fig. 3.3(a), the sensitivity of ∆Eb of
the top impurity with respect to the variation of the tilted angle appears to be significantly
pronounced for the case of disc-shaped QD. However, this sensitivity exhibits an apparent
decrease as the aspect ratio of the QD increases. On the contrary, for side impurity (see
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Figure 3.3: Angle shift of the donor binding energy ∆Eb as a function of the tilted angle θ
with magnetic field B = 20 T. (a) is for different aspect ratios (R = 20 nm) and top impurity;
(b) is for different aspect ratios (R = 20 nm) but side impurity; (c) is for different impurity
positions (top, side and center) but for radius R = 10 nm and aspect ratio ρ = 1.

Fig. 3.3(b)), the sensitivity of ∆Eb is enhanced for a rod-shaped QD and it appears to
increase with increasing the aspect ratio, as expected. In order to show the angle shift
of the donor binding energy in different dot sizes, we also exhibit in Fig. 3.3(c), the
dependence of ∆Eb of top (side or center) impurity on the field orientation in a cylindrical
QD with aspect ratio ρ = 1 but for a smaller radius (R = 10 nm). It is found that the
variation of ∆Eb strongly depends on the surface impurity positions and it does not always
behave in the similar way as that of an on-center impurity. By comparing the values of
∆Eb in the three plots (see Fig. 3.3), it is not difficult to find that the decrease of the QD
size leads to a decreases of the sensitivity of ∆Eb with regard to the tilted angle, but it
does not change its general behaviour, which is similar to that of the magnetic shift of the
donor binding energy (see the plots exhibited in Fig. 3.1).

3.4 Brief summary

In summary, our results show that QD geometric characteristics (dot sizes and aspect
ratios), impurity positions (top, side or center) and the magnetic field intensities and
orientations affect significantly the donor binding energy. The magnetic (angle) shift of the
donor binding energy is not always enhanced by the presence of a tilted magnetic field. Its
sensitivity with respect to the field strength (or tilted angle) can be reduced by decreasing
the QD size, but its general behaviour can not be altered. Furthermore, it is found that
the angle shift of the donor binding energy is a monotonic function of the tilted angle,
irrespectively of the QD sizes and aspect ratios.





4
Combination effects of tilted electric and mag-
netic fields on donor binding energy in a
GaAs/AlGaAs cylindrical quantum dot
In this chapter, we perform a systematic study on the ground-state binding energy of
an on-center donor impurity confined in a GaAs/Al0.3Ga0.7As cylindrical quantum dots,
subjected to simultaneously applied electric and magnetic fields. The two fields are tilted
with respect to the dot growth direction and they are either parallel or perpendicular to
each other. Our results show that when the tilted electric and magnetic fields are parallel,
the magnetic shift of the donor binding energy is a monotonic function of the magnetic
field strength. On the other hand, when the two fields are perpendicular to each other, the
magnetic shift of the donor binding energy varies non-monotonically with respect to the
magnetic field strength, exhibiting a minimum value at a critical magnetic field strength.
The position of this minimum value and its dependence on the QD size, its aspect ratio
and the orientation of the tilted magnetic field is systematically investigated. Moreover,
we discuss in detail the competition effects which appear in the presence of the two fields,
showing that the critical line which corresponds to zero shift of the donor binding energy
can be manipulated by suitably adjusting the QD size, the aspect ratio and the relative
orientation of the two fields. The results presented herein are published in Journal of
Physics D: Applied Physics 45, 23102 (2012).
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4.1 Introduction

A deep understanding of the effects of impurities on electronic states of semiconductor
nanostructures is of fundamental importance in semiconductor physics because their pres-
ence can dramatically alter the performance of quantum devices.62 In the past many
years, hydrogenic impurity states in semiconductor nanostructures, such as quantum wells
(QWs), quantum well-wires (QWWs) and quantum dots (QDs), have been investigated
extensively.44–46,59,63–73 These studies revealed that the binding energy of a hydrogenic
impurity confined in these nanostructures can be directly controlled by choosing appropri-
ated materials, geometries, sizes and doping positions. Besides, external perturbations,
such as uniform electric and magnetic fields, are effective tools for studying the impurity
related properties in semiconductor nanostructures. As it is well known, the presence of a
uniform magnetic field, introduces another electronic confinement (magnetic field induced
confinement) which superposes its geometric counterpart. Depending on the direction of
the magnetic field (parallel or perpendicular to the growth direction), some interesting
physical phenomena can take place.74 Furthermore, the applied electric field induces an
asymmetric distribution of the electron probability density which strongly modifies the
electronic and optical properties in semiconductor nanostructures. Thus, to investigate
the combination effects of the electric and magnetic fields on the binding energy of a
hydrogenic impurity in semiconductor nanostructures were of great interest and attracted
much attention in the past many years.50,75–79 However, vast majority of these calculations
treat the most straightforward cases, where the two fields are applied parallel to each other
and they are either parallel or perpendicular to the growth direction of the semiconductor
nanostructures.

Recently, the rapid advance in material growth technology lead to a renewed interest in
studies of semiconductor nanostructures subjected to an external electric or magnetic field
directed at an angle with respect to the growth direction. The reason for this interest
is the fact that such a unique system provides us novel electronic, optical and transport
effects (see Ref. 29 and references therein). More specially, Redliński and Jankó37 have
investigated the tilted magnetic field effect on the binding energy of a shallow donor
in a CdTe/MgCdTe QW. Wang et al23 investigated the effects of an arbitrary tilted
electric field on the magnetoexciton in a cylidrical QD by means of a variational procedure.
Recently, Monozon and Schmelcher29 developed an analytical approach to the problem
of the fundamental and exciton magnetoelectroabsorption in a narrow QW subjected to
the tilted electric and magnetic fields (the electric and magnetic field are parallel and
are both tilted with respect to the QW growth direction). However, to the best of our
knowledge, the combination effects of the tilted electric and magnetic fields (parallel or
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perpendicular to each other) on the donor binding energy in semiconductor nanostructures
have not been reported anywhere in the literature. On the other hand, as revealed in the
previous reports,37 the tilted magnetic field induces a three dimensional (3D) electron
confinement which makes the electron probability density distribute with respect to the
center of the cylindrical QD. This in turn causes the increase of the on-center donor binding
energy. On the contrary, as the external tilted electric field is applied, the symmetry of the
electron probability density distribution at zero electric field breaks and the maximum of
the electron probability density moves away from the center of the cylindrical QD to the
opposite direction of the tilted electric field. As a result, the decrease of the binding energy
of an on-center donor impurity in a QD takes place. As expected, when the two tilted fields
are simultaneously applied in a GaAs/AlGaAs cylindrical QD, competition effects appear.
A qualitatively understanding of this type of competition effects on the donor binding
energy may be very useful for design and application of some commonly used δ-doped
GaAs/AlGaAs QD based optoelectronic devices, such as LEDs and LDs. Unfortunately,
no related reports have been published. Therefore, in the present work, we perform for the
first time calculations of the ground-state binding energy of an on-center donor impurity in
a typical GaAs/AlGaAs cylindrical QD under the influence of simultaneously applied tilted
electric and magnetic fields. Both fields are applied parallel to the xoz plane and they
are both tilted with respect to the QD growth direction. The cases for which the electric
field is parallel or perpendicular to the tilted magnetic field are considered in details. The
numerical technique we used in the present calculations is the potential morphing method
(PMM)3,47–49,51–53 which has been developed to solve the time independent Schrödinger
equation for any arbitrary interaction potential. The emphasis of the present paper is
placed on a detailed analysis of competition effects between the simultaneously applied
tilted electric and magnetic fields on the binding energy of an on-center donor impurity in
a cylindrical QD.

4.2 General theory

In the framework of effective-mass approximation (EMA), a shallow donor impurity
embedded in a cylindrical QD is modeled by the Hamiltonian

Ĥ = (p̂+ e

c
~A(~r)) 1

2m∗e
(p̂+ e

c
~A(~r)) + V (~r) + VE(~r)− e2

4πε0εr|~r|
. (4.1)

The first term of the Hamiltonian is the operator for the Kinetic energy of a delocalized
conduction electron (where e is the absolute value of the electron charge, c is the speed of
the light in vacuum, m∗e is the electron effective mass) in the presence of a tilted magnetic
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field which is parallel to the xoz plane with an angle θ to the x-axial direction ( ~B =
B(cos θ, 0, sin θ)). The vector potential ~A in the commonly used cylindrical gauge is ~A(~r) =
1
2
~B×~r = 1

2B(−y sin θ,−(z cos θ − x sin θ), y cos θ). Substituting the exact expression of
the vector potential into Hamiltonian (4.1), the operator for the Kinetic energy of the
electron under the influence of a tilted magnetic field ~B (the first term of Hamiltonian
(4.1)) is the following

ĤKin = p̂
1

2m∗e
p̂+ eB

2m∗ec
(cos θl̂x + sin θl̂z) + e2B2

8m∗ec2 [y2 + (zcos θ − xsin θ)2], (4.2)

where l̂i (i = x, z) is the i-component of the angular momentum operator (l̂x = yp̂z − zp̂y,
l̂z = xp̂y − yp̂x). The second term of Eq. (4.2) represents the interaction between the
magnetic field ~B and the orbital angular momentum ~l ( ~B ·~l = Bxl̂x + By l̂y + Bz l̂z, here
By = 0). The third term of Eq. (4.2),

VB(~r) = e2B2

8m∗ec2 [y2 + (zcos θ − xsin θ)2], (4.3)

is the magnetic field induced confinement potential. For in-plane magnetic field (θ = 0◦),
the magnetic field induced confinement potential is VB(~r) = e2B2

8m∗ec2 (y2 + z2), which is in
yoz plane; while for growth-direction magnetic field (θ = 90◦), VB(~r) = e2B2

8m∗ec2 (x2 + y2),
which is in xoy plane. Furthermore, for any B 6=0 and θ 6=0◦ (or 90◦), the magnetic field
induced confinement potential VB(~r) takes the form of Eq. (4.3), which is in both yoz
plane (contributed from the transverse component of the titled magnetic field Bx = Bcosθ)
and xoy plane (contributed from the longitudinal component of the tilted magnetic field
Bz = Bsinθ). V (~r) in Eq. (4.3) is the electron confinement potential in a cylindrical QD,
which is the following

V (~r) = V (x, y, z) =
 V (x, y), |z| ≤ L

2
V0, |z| > L

2
, (4.4)

V (x, y) =
 0,

√
x2 + y2 ≤ R

V0,
√
x2 + y2 > R

, (4.5)

where V0 is the conduction band discontinuity, L and R are the dot height and radius
of the cylindrical QD, respectively. The third part of the Eq. (4.4) is the electrostatic
potential induced by a tilted electric field applied parallel to the xoz plane but making an
angle θ′ to the x-axial direction, which is the following

VE(~r) = eE(xcos θ′ + zsin θ′). (4.6)
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If the tilted angle θ′ = θ, this means that the electric field is applied parallel to the
magnetic field ( ~E‖ ~B). While, when the tilted angle θ′ = θ±90◦, this represents that the
electric field is applied perpendicular to the magnetic field ( ~E⊥ ~B). The last term of the
Eq. (4.1) represents the Coulomb interaction between the electron and the shallow donor
impurity located at the center of the cylindrical QD (~ri = (xi, yi, zi) = (0, 0, 0), ~ri is the
impurity position vector), and ε is the static dielectric constant.

In the present work, we intend to investigate the ground-state donor binding energy under
the combined effects of the simultaneously applied tilted electric and magnetic fields in a
cylindrical QD. The ground-sate donor binding energy is defined as a difference between
the ground-state energies of the free electron and that of the donor with the same electron
spin configuration,37 which is the following

Eb = E0 − Ẽ, (4.7)

where Ẽ is the energy which corresponds to the Hamiltonian in Eq. (4.1) and E0 is
the energy without Coulomb interaction (absence of the last term in Eq. (4.1)). This
definition indicates that the interaction between the spin and the external magnetic field
(∓1

2µBg
∗
e
~B · ~S, µB is the Bohr magneton and ~S is the spin operator) does not contribute

to the donor binding energy. In order to obtain the ground state energy of the electron
(E0) and the donor (Ẽ) as well as corresponding wave functions, PMM, as we described in
Chapter 1, is employed. In our calculations, the usual three-dimensional (3D) harmonic
oscillator is taken as a reference system and its ground state wave function is selected as
the initial wave function (ΦR). The interaction potential corresponding to the ground-state
energy of the electron (E0) is

veS = eB

2m∗ec
(cos θl̂x + sin θl̂z) + V (~r) + VB(~r) + VE(~r). (4.8)

Whereas, the interaction potential corresponding to the ground-state energy of the donor
(Ẽ) is

vdS = eB

2m∗ec
(cos θl̂x + sin θl̂z) + V (~r) + VB(~r) + VE(~r)− e2

4πε0εr|r|
. (4.9)

It should be noted here that adopting the harmonic oscillator as a reference system does
not affect our results because the PMM needs only a known reference system to start the
morphing process and finally to give the eigenfunctions and eigenvalues for the unknown
system, independently on the choice of the initial reference system.3,53

To further understand the magnetic field effect on the donor binding energy in a semicon-
ductor QD subjected to an electric field, the magnetic shift of the donor binding energy is
defined as the difference between the binding energy of a donor impurity at magnetic field
B 6=0 (a finite magnetic field) and its binding energy at B = 0 (zero magnetic field) for a



44
4. Combination effects of tilted electric and magnetic fields on donor binding

energy in a GaAs/AlGaAs cylindrical quantum dot

fixed electric field, which can be given by

δEb = Eb(E, θ′;B 6=0, θ)− Eb(E, θ′;B = 0, θ). (4.10)

Similarly, in an attempt to understand the competition effects between the tilted electric
and magnetic fields on the donor binding energy in a cylindrical QD, the energetic shift
of the donor binding energy is defined as the difference between the binding energy of a
donor impurity at finite electric and magnetic fields (E 6=0, B 6=0) and its binding energy
at zero electric and magnetic fields (E = 0, B = 0), which can be given by

∆Eb = Eb(E 6=0, θ′;B 6=0, θ)− Eb(E = 0, θ′;B = 0, θ). (4.11)

The negative energetic shift of the donor binding energy (∆Eb < 0) means essentially
the combination effects of the tilted electric and magnetic fields makes the donor binding
energy red shift. Conversely, the blue shift of the donor binding energy takes place if the
energetic shift of the donor binding energy is positive (∆Eb > 0).

4.3 Results and discussion

According to the previous theoretical studies on the semiconductor QDs,70,72,73, 77,80 we
consider a typical GaAs cylindrical QD, surrounded by large band gap material AlGaAs in
both the radial and z-axial directions. The origin is taken at the center of the QD and the
z-axial direction is defined as the growth direction (see Fig. 4.1). The physical parameters
used in our calculations are εr = 12.4 (assume that there is no dielectric mismatch) and
V0 = 228 meV. It is well known that the conduction-electron effective mass (m∗e) depends
on the aluminium concentration. Such an effect may contribute to an effective mass
discontinuity at the QD interfaces and leads to an enhancement of the donor binding
energy. However, in the present calculations, a position independent conduction-electron
effective mass (m∗e = 0.0667m0 (where m0 is the free electron mass)) is considered as an
approximation. These parameters are suitable for GaAs/AlxGa1−xAs heterostructures
with an Al concentration x∼=0.3.

4.3.1 Tilted electric field effect on the magnetic shift

In this section, the tilted electric field effect on the magnetic shift of the binding energy of
an on-center donor impurity is calculated as a function of the magnitude of the magnetic



4.3. Results and discussion 45

Figure 4.1: Schematic representation of the GaAs/AlGaAs cylindrical QD under investigation
with the dot height L and the radius R. The magnetic field ( ~B) is applied parallel to the xoz
plane making an angle θ to the x-axial direction. The electric field ( ~E) is also applied parallel
to the xoz plane but it makes an angle θ′ to the x-axial direction.

field for different dot sizes, electric fields (strengths and orientations), orientations of the
magnetic field and aspect ratios of the cylindrical QD.

At first we examine the magnetic shift of the donor binding energy δEb as a function of
the magnetic field magnitude in a GaAs/Al0.3Ga0.7As cylindrical QD for various electric
( ~E) and magnetic fields ( ~B). The electric field is always applied parallel (θ′ = θ) or
perpendicular (θ′ = 90◦±θ) to the magnetic field. The calculations have been performed
for two dot sizes (L = R = 10 nm and L = R = 20 nm). Our results (Fig. 4.2) show that
in the absence of the electric field, δEb increases as the magnetic field increases for any dot
size and magnetic field orientation. As expected, for lager dot size (weaker confinement)
the variation of δEb with respect to the magnetic field strength, appears to be significantly
more intense (see Fig. 4.2(b) and (c)). Moreover, it is found from Fig. 4.2 that in larger dot
(i.e., L = R = 20 nm), variation of the magnetic field orientation from in-plane direction
(Viogt configuration) to growth direction (Faraday configuration), leads to the decrease of
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Figure 4.2: Magnetic shift of the donor binding energy δEb as a function of the magnitude
of the magnetic field ~B in a GaAs/Al0.3Ga0.7As cylindrical QD for various electric fields ( ~E).
Here, (a) is for L = R = 10 nm and θ = 45◦, (b) is for L = R = 20 nm and θ = 0◦, (c) is for
L = R = 20 nm but θ = 90◦, respectively. The electric field is applied either parallel (θ′ = θ

( ~E‖ ~B)) or perpendicular (θ′ = θ + 90◦ ( ~E⊥ ~B)) to the magnetic field.

the sensitivity of δEb with respect to the magnetic field strength. For instance, at B = 30
T, the magnetic shift of the donor binding energy in Viogt configuration is δEb = 0.819
meV; while in the Faraday configuration, δEb = 2.27 meV. This is because in the Faraday
configuration, the magnetic field induced confinement is more effective due to the very
weak confinement in the radial direction (d = 2R = 2L = 40 nm, d is the diameter of the
cylindrical QD). On the other hand, for the case of the small dot size it becomes clear from
Fig. 4.2(a) that the monotonic increase of δEb is practically independent on the electric
field orientation (θ′ = 45◦ or θ′ = 135◦). This can be easily understood by the fact that for
L = R = 10 nm, the QD is in strong confinement regime and the effect of the electric field
is marginal. Thus, it can be safely concluded that in the strong confinement regime, the
value of the magnetic shift of the donor binding energy is practically not affected by the
presence of an electric field.

On the contrary, in weak confinement regime (see Fig. 4.2(b) and (c)), δEb depends
strongly on the relative orientations of the electric and magnetic fields (tilted angle θ and
θ′). When the electric field is applied parallel to the magnetic field (θ′ = θ), δEb increases
monotonically with increasing the magnetic field strength in both Viogt (θ = 0◦) and
Faraday configurations (θ = 90◦). Moreover, in Faraday configuration ( ~B‖~z), the increase
of δEb is practically more sensitive to the magnetic field strength, as expected. However,
when a perpendicular electric field (θ′ = θ + 90◦) is applied, δEb is a non-monotonic
function of the magnetic field strength in both Viogt and Faraday configurations. It
exhibits a minimum at a critical value Bc. In particular, it is interesting to find from Fig.
4.2(b) that in Viogt configuration, the critical magnetic field is Bc≈16 T; while in the
Faraday configuration (Fig. 4.2(c)), it is Bc≈20 T. In other words, the critical magnetic
field Bc increases when the magnetic field is tilted from the in-plane direction ( ~B‖~x) to
the growth direction ( ~B‖~z).
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Figure 4.3: The first column corresponds to the three dimensional contour plots of the
electron probability density distributions in an impurity free GaAs/Al0.3Ga0.7As cylindrical
QD with dot height L = 20 nm and radius R = 20 nm subjected to different tilted electric
fields but zero magnetic field. The following three columns show suitably chosen isosurfaces of
electron probability density differences, which have been produced by subtracting the density
at zero magnetic field from the density which corresponds to a specific magnetic field strength
in Viogt configuration ( ~B‖~x). The red surfaces correspond to charge depletion areas, while the
blue surfaces correspond to charge accumulation areas. The upper panel is corresponding to
the case that the electric field is applied parallel (E = 30 kV/cm and θ′ = 0◦) to the magnetic
field, whereas, the lower panel is corresponding to the case that the electric field is applied
perpendicular (E = 30 kV/cm and θ′ = 90◦) to the magnetic field.

To understand the behaviour of the magnetic shift of the donor binding energy under
the influence of parallel (perpendicular) electric and magnetic fields, we create suitable
three dimensional (3D) contour plots of the electron probability density (first column of
Fig. 4.3), as well as isosurfaces of the electron probability density differences (the last
four columns of Fig. 4.3) in an impurity-free QD for different electric and magnetic fields.
The electric field is applied either parallel (the upper panel of Fig. 4.3) or perpendicular
(the lower panel of Fig. 4.3) to the magnetic field. In particular, each density difference
plot has been produced by subtracting the density at zero magnetic field from the density
which corresponds to a specific magnetic field strength (the magnetic field is applied along
the x-axial direction). This subtraction leads to positive (blue) and negative (red) density
areas which indicate the charge movement due to the applied magnetic field. As a result,
the red surfaces correspond to charge depletion areas, while the blue surfaces correspond
to charge accumulation areas. For the creations of these 3D contour plots, the Gabedit
graphical program was used.60 By observing the first column of Fig. 4.3, it is found
that in the absence of the magnetic field, the electric field always moves the electron
probability density far away from the QD center to its opposite direction. However, the
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density displacement is highly affected by the QD geometric confinement and the electric
field effect turns out to be more effective in the weak confinement regime (see the upper
contour plot in the first column of Fig. 4.3), as expected.

Before proceeding to explain the density changes that take place due to the applied
magnetic field, it would be useful to make a distinction between the two different trends
which are introduced by the presence of a magnetic field. At first, the magnetic field
induced confinement tends to squeeze the charge density around the axis of the applied
magnetic field and secondly it tends to move the charge density towards the center of the
QD. Although both effects are due to the cylindrical symmetry of the magnetic induced
confinement, their behaviour is differently influenced by the geometric characteristics of
the QD and the presence of an extra electric field. As a result, under certain conditions
these two trends may be considered separately. This description may prove to be useful
for understanding the competition effects between the two fields. For the case of a parallel
magnetic field ( ~E‖~x, ~B‖~x), we can see from Fig. 4.3, that the charge density is squeezed
around the x axis as the field strength increases. It is obvious that for large values of
B the magnetic field induced confinement imposes its cylindrical symmetry, while for
smaller values of B the geometric confinement leads to less symmetric density distributions.
In all cases, the charge density exhibits a small displacement towards the QD center.
Consequently the mean relative electron-impurity distance decreases and the binding
energy slightly and monotonically increases with increasing the magnetic field strength.
However, this monotonic displacement of the charge density does not occur when the
electric field is applied perpendicular ( ~E‖~z, ~B‖~x) to the magnetic field (see the lower panel
of Fig. 4.3). It is found that for magnetic field B≤Bc = 15 T, the charge density moves
far from the QD center when the perpendicular magnetic field increases. Conversely, it
tends to move toward the QD center when the magnetic field becomes stronger (B > 15
T). This can be attributed to the competition effects between the two fields. In particular,
although the magnetic field introduces both trends (squeezing and displacing towards the
center of the QD) for small values of B (0 < B < 15 T) the presence of the electric field
inhibits the displacement, allowing only for an asymmetric squeezing of the density. As
a result, the mean relative electron-impurity distance increases and the binding energy
slightly decreases (see Fig. 4.3(b) and (c)). On the other hand, if the magnetic field
becomes stronger (B > 15 T), its influence begins to superpose its electric counterpart and
the two trends (squeezing and displacing towards the center of the QD) lead to a charge
density accumulation closer to the QD center. As a result, the increase of the magnetic
field begins to contribute positively to δEb.

In the Viogt configuration (θ = 0◦), we have also examined the dependence of δEb on the
magnetic field strength for various tilted electric fields at aspect ratios ρ = L

R = 0.5 (Fig.
4.4(a)) and ρ = 2.0 (Fig. 4.4(b)), respectively. Our results (Fig. 4.4(a)) indicate that for
ρ = 0.5, in the absence of the electric field (E = 0), δEb decreases as the strength of the
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Figure 4.4: Magnetic shift of the donor binding energy δEb as a function of the magnitude
of the tilted magnetic field ~B in a GaAs/Al0.3Ga0.7As cylindrical QD with radius R = 20 nm
for various tilted electric fields ~E. The magnetic field is applied along the x-axial direction
(θ = 0◦). The electric field is applied parallel (θ′ = θ) or perpendicular (θ′ = θ + 90◦) to the
magnetic field. Here, (a) and (b) are for aspect ratio ρ = L

R = 0.5 and 2.0, respectively.

magnetic field increases (0 < B≤25 T) and then it becomes insensitive to the increased
magnetic field (25 T ≤ B ≤ 30 T). On the other hand, when the aspect ratio goes up to
ρ = L

R = 2.0 (see Fig. 4.4(b)), δEb increases monotonically with increasing the magnitude
of the magnetic field. This behaviour is related to the variation of the quantum confinement
in the z-axial direction which is induced by the change in the aspect ratio. For small aspect
ratio (ρ = L

R = 0.5), the electron probability density is mainly distributed along the radial
direction due to the weaker confinement (R = 2L = 20 nm). For magnetic field 0 < B≤25
T, the magnetic field induced confinement (in yoz plane) makes the electron probability
density more extend along the radial direction with increasing the magnetic field strength.
Thus, the mean relative electron-impurity distance is increased and the donor binding
energy is decreased. On the other hand, for B≥25 T the electron probability density
appears to be only slightly affected and consequently the δEb becomes almost invariant to
any further increase of the magnetic field. Conversely, when the aspect ratio increases up
to ρ = L

R = 2.0, the magnetic field effect is more effective because of the weak confinement
in the z-axial direction (L = 2R = 40 nm) and it makes the electron probability density
move closer to the impurity center as the magnetic field increases. Therefore, the mean
relative electron-impurity distance is decreased and the donor binding energy is increased
significantly.

It is interesting to find from Fig. 4.4 that in the presence of perpendicular electric field
(θ′ = 90◦ + θ), for any aspect ratio, the magnetic shift of the donor binding energy δEb
exhibits a minimum value at a critical magnetic field B = Bc. For aspect ratio ρ = L

R = 0.5,
Bc≈26 T; while for aspect ratio ρ = L

R = 2.0, it is Bc≈20 T. In other words, the critical
magnetic field Bc decreases with increasing the aspect ratio ρ. Moreover, when the parallel
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Figure 4.5: Contour plot of the energetic shift of the donor binding energy ∆Eb (in unite of
meV) for various electric ( ~E) and magnetic ( ~B) fields in a GaAs/Al0.3Ga0.7As cylindrical QD.
The magnetic field is applied at an angle θ = 45◦). The electric field is applied parallel to the
magnetic field (θ′ = θ = 45◦). Here, (a) and (b) are for L = R = 10 nm and L = R = 20 nm,
respectively.

electric field is applied (θ′ = θ), the magnetic shift of the donor binding energy δEb
decreases slightly with increasing the magnetic field for small aspect ratio (for instance,
ρ = L/R = 0.5). For large aspect ratio ρ = L/R = 2.0, δEb increases monotonically when
the magnetic field is enhanced. This behaviour is associated with the interplay between
the applied electric and magnetic fields effect as well as the geometric confinement and it
can be understood in the similar way as in Fig. 4.2.

4.3.2 Competition effects between the two fields

As we know from the above section, the magnetic shift of the binding energy exhibits novel
behaviour due to the competition effects between the tilted electric and magnetic fields.
Thus, in the following part, the energetic shift of the donor binding energy ∆Eb (defined
by Eq. (4.11)) in a cylindrical QD subjected to simultaneously applied tilted electric
and magnetic fields will be investigated in order to understand in details the competition
effects.

Firstly, in an attempt to obtain a qualitatively understanding of the competition effects,
we have created a suitable contour plot (Fig. 4.5) of the energetic shift of the donor
binding energy ∆Eb for various electric (0 - 30 kV/cm) and magnetic (0 - 30 T) fields. The
magnetic field is directed at an angle θ = 45◦, while the electric field is applied parallel to
it (θ′ = θ = 45◦). Here, two different dot sizes (L = R = 10 nm and 20 nm) are considered.
It is interesting to find from Fig. 4.5 that for any dot size, there is a critical line determined
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Figure 4.6: Contour plot of the energetic shift of the donor binding energy ∆Eb (in unite of
meV) for various electric ( ~E) and magnetic ( ~B) fields in a GaAs/Al0.3Ga0.7As cylindrical QD
with dot height L = 20 nm and radius R = 20 nm. Here, (a): θ = θ′ = 0◦; (b): θ = θ′ = 90◦;
(c): θ = 0◦, θ′ = 90◦; (d) θ = 90◦, θ′ = 0◦.

by ∆Eb = 0. The region above the critical line satisfying ∆Eb > 0 represents the red shift
of the donor binding energy and the region below the critical line described by ∆Eb < 0
shows the blue shift of the donor binding energy. Fig. 4.5 also shows that the critical line
corresponding to ∆Eb = 0 is highly dependent on the dot size. Comparing Fig. 4.5(a)
and (b), it is found that the critical line moves down when the dot size increases from
L = R = 10 nm to L = R = 20 nm. This means that the energetic shift of the donor
binding energy ∆Eb is dominated by the electric field effect for the case of large dot size
(i.e., L = R = 20 nm).

As verified by the previous discussions, the relative orientation of the tilted electric and
magnetic fields plays an important role on the manipulation of the donor binding energy.
To clarify the competition effects between the two fields applied in different configurations,
we presents the contour plot of the energetic shift of the donor binding energy ∆Eb for
various electric (0 - 30 kV/cm) and magnetic (0 - 30 T) fields in Fig. 4.6, where the
magnetic field is applied at θ = 0◦ ((a) and (c)) or 90◦ ((b) and (d)) and the electric field is
either parallel (left column) or perpendicular (right column) to it. As shown from Fig. 4.6,



52
4. Combination effects of tilted electric and magnetic fields on donor binding

energy in a GaAs/AlGaAs cylindrical quantum dot

Figure 4.7: Contour plot of the energetic shift of the donor binding energy ∆Eb (in unite of
meV) for various electric ( ~E) and magnetic ( ~B) fields in a GaAs/Al0.3Ga0.7As cylindrical QD
with dot height L = 20 nm and radius R = 20 nm. The tilted θ = θ′ = 0◦. Here, (a) and (b)
are for aspect ratio ρ = L

R = 0.5 and 2.0, respectively.

in the Viogt configuration ( ~B‖~x), the critical line goes up when the electric field is tilted
from θ′ = 0◦ (see Fig. 4.6(a)) to θ′ = 90◦((see Fig. 4.6(c))). Making a comparison between
Fig. 4.6(b) and (d), it is easy to discover that this finding is also valid in the Faraday
configuration (θ = 90◦). The reasons can be understood as follows. When the electric field
is tilted from the x-axial direction (θ′ = 0◦) to the z-axial direction (θ′ = 90◦), the electric
field effect becomes less important due to the stronger confinement in the z-axial direction
(L = d/2 = 20 nm, d = 2R is the diameter of the cylindrical QD). This directly leads to
the shrinking of the region described by ∆Eb < 0 and the critical line goes up.

Similarly, we find from Fig. 4.6 that when the electric field is applied along the x-axial
direction (θ′ = 0◦), the critical line moves up as the magnetic field is tilted from θ = 0◦
(see Fig. 4.6(a)) to θ = 90◦ (see Fig. 4.6(d)). The same behaviour happens for the
case of growth-direction electric field (see Fig. 4.6(b) and (c)). This can be understood
analogously as follows. When the magnetic field shifts from the x-axial direction to the
z-axial direction, the magnetic filed induced confinement becomes more pronounced due
to the weaker confinement in the radial direction (d = 2R = 2L = 40 nm). As a result,
the region corresponding to ∆Eb > 0 is enlarged and the critical line moves up.

Finally, Fig. 4.7 displays the contour plot of the energetic shift of the donor binding
energy ∆Eb for various electric ~E (0 - 30 kV/cm) and magnetic ~B (0 - 30 T) fields in two
aspect ratio (ρ = L

R = 0.5 and 2.0) configurations, where the electric and magnetic fields
are both applied along the x-axial direction. As indicated from Fig. 4.7(a) (aspect ratio
ρ = L

R = 0.5), ∆Eb is negative for any electric and magnetic field. Furthermore, for small
electric field, it decreases slightly with increasing the magnetic field. For large electric
field, however, it is insensitive to the increased magnetic field. This is because that for
aspect ratio ρ = 0.5, both the in-plane electric and magnetic fields move the electron
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probability density far from the impurity center. Therefore, the donor binding energy
reduces as the applied electric (or magnetic) field increases. Moreover, for very strong
electric field (for instance, E = 25 kV/cm), the electron probability density distribution
is totally dominated by the in-plane electric field and it is insensitive to the increased
magnetic field. This directly makes the donor binding energy become invariant with the
increased in-plane magnetic field. While when the aspect ratio goes up to ρ = L

R = 2 (see
Fig. 4.7(b)), the critical line corresponding to ∆Eb = 0 appears. Moreover, comparing Fig.
4.6(a) to Fig. 4.7(b), it is easy to find that the critical line moves up as the aspect ratio
increases. This is because when the aspect ratio increases the confinement in the z-axial
direction becomes weak and the magnetic field induced confinement in yoz plane becomes
significant.

4.4 Brief summary

In summary, using the potential morphing method (PMM) in the framework of the
effective-mass approximation (EMA), the combination effects of the tilted electric and
magnetic fields on the binding energy of an on-center donor impurity localized in a
GaAs/Al0.3Ga0.7As cylindrical QD has been investigated theoretically. The electric and
magnetic fields are both tilted with respect to the QD growth direction and they are
either parallel or perpendicular to each other. It is found that for small dot size, the
magnetic shift of the donor binding energy is insensitive to the orientation of the electric
field. However, for large dot size, it strongly depends on the orientation of the electric field.
Moreover, our results show that when the tilted electric and magnetic fields are parallel,
the magnetic shift of the donor binding energy is a monotonic function of the strength of
the magnetic field; while when the applied electric and magnetic fields are perpendicular,
it is a non-monotonic function of the magnetic field and it exhibits a minimum at a critical
magnetic field. The critical magnetic field increases when the magnetic field is tilted from
the in-plane direction to the growth direction. However, it decreases with increasing the
aspect ratio of the cylindrical QD. Furthermore, we have systematically discussed the
competition effects between the two fields on the donor binding energy. It is found that
there is a critical line corresponding to the zero shift of the donor binding energy under
the influence of simultaneously applied tilted electric and magnetic fields. Moreover, this
critical line is highly dependent on the dot size, relative orientation of the titled electric
and magnetic fields as well as the aspect ratio of the cylindrical QD. We believe that the
results presented here can be useful for us to directly manipulate the performance of the
GaAs/Al0.3Ga0.7As QD-based optoelectronic devices by applying suitable tilted electric
and magnetic fields. We also hope that our results can stimulate forthcoming theoretical
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and experimental investigations in this research area.
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Competition effects of static fields on impurity
binding energy in a quantum dot in the pres-
ence of pressure and temperature
In this chapter, we study the combination effects of the electric and magnetic fields on the
binding energy of an on-center donor impurity in disc-shaped GaAs/Al0.3Ga0.7As quantum
dots with emphasis on the competition effects between the two fields under externally applied
pressure and temperature. The electric field is applied along the radial direction of the
quantum dots, while the magnetic field is applied along the growth direction. Our results
show that the two fields exhibit a competition effect on the donor binding energy, leading to
an invariant binding energy as in the zero field case at a critical line. This line separates
the region corresponding to the red shift of the donor binding energy from the one referring
to the blue shift of the binding energy. Comparing to the magnetic field effect, increasing in
the QD sizes or applied pressure is found to favour more its electric counterpart, enlarging
the region satisfied by the red shift of the donor binding energy. The temperature effect
appears to decrease the donor binding energy. However, the competition effects between the
two fields retain the same when the temperature varies. The results presented herein are
published in Science of Advanced Materials 6, 586 (2014).
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5.1 Introduction

Doping of semiconductors by impurity atoms has widespread technological applications
in microelectronics and optoelectronics. It provides further means to control the perfor-
mance of related devices.6 Donors have been used in some elegant quantum computing
proposals that draws upon the vast expertise of the semiconductor device industry.7 One
of the proposals that renewed interest in the quantum mechanics of donors is the Kane
qubit81 in which information is encoded into the nuclear spins of donor atoms in doped
silicon electronic devices, and engineers the donor electron wave function by electrodes to
manipulate information.

Due to the development of nanoscience and nanotechnology, the study of donor related
electronic and optical properties in semiconductor quantum dots (QDs) has been of
great interest in the past.70,73,80, 82–86 It has been found that donor related properties in
semiconductor QDs depend significantly on the materials, geometries (sizes and shapes),
shapes of the confinement potentials and also dopant positions. External perturbations,
such as applied electric and magnetic fields, hydrostatic pressure and temperature, also
modify significantly the confined states of the donors.80,87–92 To control and modulate the
output of the doped-QDs-based optoelectronic devices, a combined application of these
external perturbations in semiconductor QDs, such as a combination of the electric field
with the magnetic field, has drawn increasingly attentions recently.93–99 When the electric
and magnetic fields are applied perpendicular to each other in a QD system, as reported
in a recent paper99 of our group, competition effects appear. These competition effects on
the donor binding energy have been found to be strongly dependent on the QD geometric
characteristics (dot sizes and aspect ratios) and also the strength and orientation of the
two fields.99 When another external perturbation is also simultaneously present in the QD
system under the influence of perpendicular electric and magnetic fields, a question, which
will arise, is that how a given perturbation influences the competition effects.

In this contribution, we theoretically investigate the combination effects of the electric
and magnetic fields on the donor binding energy in disc-shaped QDs with emphasis on
the competition effects between the two fields under the externally applied pressure and
temperature. The electric field is applied along the radial direction, while the magnetic
field is applied perpendicular to it which is along the QD growth direction. The numerical
approach we use for the present calculations is the potential morphing method (PMM)3
in the framework of the effective mass approximation (see Chapter 1), which has been
proved to be a robust tool for the calculations of impurity-related electronic and optical
properties in a QD system.58,91,99, 100 In the following section, we define our model and
explain the general theory.
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5.2 Theoretical framework

In the framework of effective mass approximation, an on-center shallow donor impurity in
a disc-shaped QD with radius R, under the influence of the electric and magnetic fields,
applied pressure and temperature, can be modeled by the Hamiltonian

Ĥ = (p̂+ e

c
~A(~r)) 1

2m∗e(P, T )(p̂+ e

c
~A(~r)) +

V (~r, P, T ) + |e| ~E ·~r − e2

4πε0εr(P, T )|~r| . (5.1)

Figure 5.1: Schematic representations of a GaAs/AlGaAs disc-shaped QD under the influence
of the applied electric and magnetic fields. The electric field ( ~E) is applied along the x-axis
direction and the magnetic field ( ~B) is applied perpendicular to it which is along the z-axis
direction.

The first term of the Hamiltonian is the Kinetic term of the delocalized conduction electron
under the influence of the z-axis magnetic field ( ~B = B~z (see Fig. 5.1), where B is the
magnitude of the magnetic field and ~z is the z-axis unit vector). ~A is the vector potential.
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In the cylindrical gauge ( ~A = 1
2
~B×~r), the operator for the Kinetic energy of the electron

(the first term of Eq. (5.1)) is

ĤKin = p̂
1

2m∗e(P, T ) p̂+ eB

2m∗e(P, T )c l̂z + e2B2

8m∗e(P, T )c2 (x2 + y2), (5.2)

where e is the absolute value of the electron charge, c is the speed of the light in vacuum,
and l̂z is the z-component of the angular momentum operator. m∗e(P, T ) is the pressure
and temperature dependent electron effective mass, which is given by101

m∗e(P, T ) = m0

1 + EΓ
P [( 2

EΓ
g (P,T )) + ( 1

EΓ
g (P,T )+∆0

)] , (5.3)

in which m0 is the bare mass of the electron, P and T stand for the applied pressure and
temperature, respectively, EΓ

P = 7.51 eV is an energy related to the momentum matrix
element and the spin-orbit splitting for GaAs QD is ∆0 = 0.341 eV. EΓ

g is the pressure
and temperature dependent energy gap at Γ point in the Brillouin zone for GaAs QD,
which is the following102,103

EΓ
g (P, T ) = EΓ

g (0, T ) + aP + bP 2, (5.4)

where a = 1.07×10−2 eV/kbar, b = −3.77×10−5 eV/kbar2, and

EΓ
g (0, T ) = [1.519− 5.045×10−4T 2

T + 204 ], (5.5)

in unit of eV. V (~r, P, T ) is the pressure and temperature dependent conduction electron
confinement potential, which is given by

V (~r, P, T ) = V0(P, T )Θ(|~r| −R), (5.6)

where Θ is the Heaviside step function and ~r is the position vector with |~r| =
√
x2 + y2,

where x and y are the Cartesian coordinates, respectively. The pressure and temper-
ature dependent conduction band discontinuity at the interface of the GaAs/AlGaAs
heterostructure is

V0(P, T ) = Q[EAlxGa1−xAs
Gap (P, T )− EGaAs

Gap (P, T )], (5.7)

where Q is the conduction band offset which is assumed to be pressure independent
and taken as Q=60% for GaAs/AlGaAs heterostructure. The pressure and temperature
dependent band gap is provided by104

Ei
Gap(P, T ) = Ei

1 + βiP + αiT 2/(T + T i1), (5.8)
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where for GaAs (i = GaAs), E1 = 1.519 eV, α = −5.405×10−4 eV/K, β = 10.7×10−3

eV/kbar and T1 = 204 K at Γ point, while for AlxGa1−xAs (i = AlxGa1−xAs), E1 =
1.519 + 1.155x + 0.37x2 eV, α = −5.405×10−4 eV/K, β = (10.8 − 3.2x + 3.8x2)×10−3

eV/kbar and T1 = 204 K, respectively.

The third term of Eq. (5.1) is the electrostatic potential induced by the external electric
field with strength E, which is applied along the radial direction in our calculations (see
Fig. 5.1). ε0 in the last term is the permittivity in vacuum and εr(P, T ) is the pressure
and temperature dependent relative dielectric constant, which is105,106

εr(P, T ) =
 12.74exp[−1.67×10−3P ]exp[9.4×10−5(T − 75.6)], 0 < T≤200

13.18exp[−1.73×10−3P ]exp[20.4×10−5(T − 300)], T≥200 , (5.9)

where T is in unit of Kelvin.

To solve numerically the Schrödinger equation based on Hamiltonian (5.1), PMM is used
(see Chapter 1). In our calculations, the usual two-dimensional (2D) harmonic oscillator is
chosen as a reference system and its ground-state wave function is selected as the initial
wave function. The interaction potential corresponding to the ground-state energy of the
electron is

V e
S = eB

2m∗e(P, T )c l̂z + e2B2

8m∗e(P, T )c2 (x2 + y2) + V (~r, P, T ) + |e| ~E ·~r, (5.10)

whereas, the interaction potential for the ground-state energy of the shallow donor impurity
is

V i
S = eB

2m∗e(P, T )c l̂z + e2B2

8m∗e(P, T )c2 (x2 + y2) +

V (~r, P, T ) + |e| ~E ·~r − e2

4πε0εr(P, T )|~r| . (5.11)

The binding energy of the shallow donor impurity is defined as

Eb = E0 − Ei, (5.12)

where E0 is the electron ground-state energy (without the last term of Eq. (5.1)) and
Ei is the impurity ground-state energy (with the last term of Eq. (5.1)). To study the
competition effects of the applied electric and magnetic fields, we defined the energetic
shift of the donor binding energy as99

δEb = Eb(F 6=0, B 6=0)− Eb(F=0, B=0). (5.13)
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5.3 Numerical results and discussion

In what follows, we present our results for the combination effects of the electric and
magnetic fields on the binding energy of an on-center donor impurity in GaAs/Al0.3Ga0.7As
disc-shaped QDs under externally applied pressure and temperatures. A position indepen-
dent electron effective mass is used in the present calculations as an approximation and
the dielectric mismatch between the dot and barrier materials is not considered.
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Figure 5.2: Contour plot of the binding energy of an on-center donor impurity Eb (upper
panel, in unit of meV) and the energetic shift of the donor binding energy (δEb) (lower panel, in
unit of meV) for various electric (E) and magnetic (B) fields in GaAs/Al0.3Ga0.7As disc-shaped
QDs at room temperature (T = 300 K) and zero pressure (P = 0). Two dot sizes R = 10 nm
(left panel) and 20 nm (right panel) are considered, respectively.
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As a first step towards the combination effects of the electric and magnetic fields on the
binding energy of an on-center donor impurity in disc-shaped QDs, we present several
suitable contour plots (see Fig. 5.2) of the donor binding energy and the energetic shift
of the donor binding energy for various electric (0 - 10 kV/cm) and magnetic (0 - 10
Tesla) fields. The calculations are performed for two dot sizes (R = 10 nm and 20 nm).
The obtained results show that for any magnetic field, the applied electric field tends to
decrease the donor binding energy. Whereas, an increase in the magnetic field appears
to enhance significantly the binding energy for any electric field. This is due to fact that
the electric field pushes the electron density far away from the impurity center, while its
magnetic counterpart squeezes the electron probability with respect to the impurity center.
When these two fields are simultaneously employed in the QD systems, competition effects
appear. A visualization of these effects can be found in the lower panel of Fig. 5.2. It
shows that there is a critical line (see the red lines in Fig. 5.2) corresponding to the zero
energetic shift of the donor binding energy (δEb=0) under the influence of the applied
electric and magnetic fields, irrespectively of the dot sizes. The area above the critical
line which satisfies δEb > 0 represents the blue shift of the donor binding energy and the
region below the critical line determined by δEb < 0 describes the red shift of the donor
binding energy.

A red shift of the donor binding energy means essentially that the electric field effect
is dominant over its magnetic field counterpart and finally a negative energetic shift of
the donor binding energy is exhibited. Conversely, if the magnetic field effect is more
pronounced, the energetic shift of the donor binding energy is positive (δEb > 0) and a
blue shift of the donor binding energy appears. An increase in the dot size leads to a
decrease in the donor binding energy but favors both the electric and magnetic field effects.
This can be easily conformed by the significantly increased energetic shift of the donor
binding energy in QDs within the weak confinement regime in comparison to the ones
in the strong confinement regime. When the dot size increases, the applied electric field
effect appears to be more pronounced than its magnetic field counterpart. This causes an
enlarged region which describes the red shift of the donor binding energy (δEb < 0). As a
result, the critical line presents a considerable counterclockwise planer rotation as the dot
size increases.

For the QDs in the weak confinement regime (R = 20 nm), we also present in Fig. 5.3
the contour plots of the donor binding energy and energetic shift of the donor binding
energy for various electric and magnetic fields, where two different pressures are considered.
It shows that the applied electric and magnetic fields retain a very similar effect on the
donor binding energy in the presence of the pressure as in the zero pressure case (see the
plots in the right panel of Fig. 5.2). However, when the pressure increases, the donor
binding energy increases at given electric and magnetic fields. This is associated with the
modification of the material parameters induced by the applied pressure. The electron
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quantum dot in the presence of pressure and temperature
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Figure 5.3: Contour plot of the binding energy of an on-center donor impurity Eb (upper
panel, in unit of meV) and the energetic shift of the donor binding energy (δEb) (lower panel, in
unit of meV) for various electric (E) and magnetic (B) fields in GaAs/Al0.3Ga0.7As disc-shaped
QDs with radius R = 20 nm at room temperature (T = 300 K) . Two pressure values (P = 15
kbar (left panel)and 25 kbar (right panel)) are considered, respectively.

effective mass increases with increasing the pressure, while the relative dielectric constant
and electron confinement potential (V0) tend to decrease as the pressure increases. The
joint effects of the variation of these material parameters leads to an effectively enhanced
Rydberg energy with increasing the pressure and finally an increase in the donor binding
energy is present.

Fig. 5.3 also shows that for any applied pressure, the critical line determined by the
zero energetic shift of the donor binding energy appears (see the red lines in the plots
on the lower panel). The presence of the applied pressure turns out to favor more the
electric field effect, which causes an increase in the region determined by the red shift of
the donor binding energy (δEb < 0). Consequently, the critical line experiences a slight
counterclockwise rotation when the applied pressure increases.
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Figure 5.4: Contour plot of the binding energy of an on-center donor impurity Eb (upper
panel, in unit of meV) and the energetic shift of the donor binding energy (δEb) (lower panel, in
unit of meV) for various electric (E) and magnetic (B) fields in GaAs/Al0.3Ga0.7As disc-shaped
QDs with radius R = 20 nm at zero pressure (P = 0) . Two temperature values (T = 10 K
(left panel)and 150 K (right panel)) are considered, respectively.

Finally, in an effort to show the competition effects of the electric and magnetic fields in a
disc-shaped QD under the influence of temperature, we display in Fig. 5.4 the contour
plots of the donor binding energy and energetic shift of the donor binding energy for
various electric and magnetic fields, where two different temperature values are considered.
As the first glance of the figure, one could find that increasing the temperature causes
a decrease in the donor binding energy for any electric and magnetic fields (see the
right plots of Fig. 5.2). This is related to the temperature dependent variation of the
material parameters. As indicated explicitly from Eqs. (5.3) and (5.9), an increase in
the temperature appears to decrease the electron effective mass and enhance the relative
dielectric constant. Consequently, a reduce in the Rydberg energy occurs and the donor
binding energy decreases as the temperature increases. Similarly to what Fig. 5.3 shows,
the critical line described by δEb = 0 appears for any temperature considered. It also
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appears from Fig. 5.4 that the presence of the temperature do not have any significant
influence on the competition effect of the electric and magnetic fields on the binding energy
of an on-center donor impurity in disc-shaped QDs. This can be clearly confirmed by the
invariant position of this critical line in Fig. 5.4 (see the plots on the lower panel).

5.4 Brief summary

In summary, we have studied the combination effects of the electric and magnetic fields
on the binding energy of an on-center donor impurity in disc-shaped GaAs/Al0.3Ga0.7As
quantum dots (QDs), emphasizing on the competition effects between these two fields under
various externally applied pressures and temperatures. The electric field is applied along
the radial direction, while the magnetic field is applied perpendicular to it, which is along
the growth direction of the QD. It is found that the enhanced electric field decreases the
donor binding energy, while the simultaneously applied magnetic field exhibits a reversed
effect, increasing the binding energy with increasing the field strength. These competition
effects between the two fields lead to a critical line in which the donor binding energy
keeps invariant as in the zero field case. The position of this line is found to be strongly
dependently on the QD sizes. Comparing to the magnetic field effect, an increase in the
QD size causes a more pronounced electric field effect which in turn enhances drastically
the region corresponding to the red shift of the donor binding energy. The applied pressure
exhibits a very similar but weaker effect on the critical line as the QD sizes, favoring more
the electric field effect. Although the increased temperature effect turns out to decrease
the donor binding energy, it does not have significant influence on the competition effects
between the two fields. We believe that the results presented here can be useful for the
doped GaAs/AlGaAs QDs based functional devices.
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Optical susceptibilities in singly charged ZnO
colloidal quantum dots embedded in different
dielectric matrices
In this chapter, we derive the analytical expressions for the linear, third-order nonlinear and
intensity-dependent susceptibilities in quantum dots (QDs) embedded in a dielectric matrix
by using density matrix equations within the two-level system approximation, considering
the local field effect due to the presence of dielectric mismatch. Based on the derived
expressions, we perform a comparative study of the optical susceptibilities in singly charged
Zinc oxide quantum dots embedded in various dielectric matrices. Three commonly adopted
matrices are considered. The electronic structure of the system is numerically calculated.
In general, our results indicate that the optical susceptibilities are highly affected by the
capped matrices. For example, QDs embedded in the matrix with the largest dielectric
constant but the smallest energy band gap exhibit the largest linear and nonlinear optical
susceptibilities, while that dispersed in a matrix with the largest energy band gap show
the highest threshold energy. It is also found that the third-order nonlinear susceptibility
exhibits a stronger dependence on the nature of the capped matrix as compared to its linear
counterpart. Finally, we find that the total susceptibility in charged QD immersed in a
matrix with a higher dielectric constant is more sensitive to the applied radiation intensity.
The results presented herein are published in Journal of Applied Physics 113, 054303
(2013).
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6.1 Introduction

Zinc oxide (ZnO) is a material with a great variety of technological applications, such as
surface acoustic wave devices, piezoelectric transducers, optical waveguides, transparent
conductive oxides, chemical and gas sensors, spin functional devices, and ultraviolet (UV)
light emitters (Ref. 107 and references therein). Its wide band gap (3.445 eV) makes
ZnO a promising material for UV photonic applications, while the high exciton binding
energy (around 60 meV) allows efficient excitonic emission, even at room temperature. In
addition, ZnO is plentiful, cost-effective, and relatively non-toxic which is desirable for bio-
applications such as bio-imaging and cancer detection. Due to the important modifications
that appear at the nanoscale, ZnO nanostructures, especially zero dimensional nanoparticles
or colloidal quantum dots (QDs) have attracted increasing attention.

As it is well known, chemical synthesis methods are the most common way to grow
uniformly dispersed QDs. However, QDs prepared by such methods are relatively unstable
and encounter the difficulties in dispersion and preservation. To stabilize the QDs when
coupling with devices, matrix passivation is one of the most commonly adopted ways.
Besides, immersing semiconductor QDs in polymer or glass matrix by using surface
chemistry methods is also a good way of passivating the dangling bond at the QD
surface.108–110 Distinct photoluminescence properties have been demonstrated in such
unique systems that can be served as fluorescent materials or active media in tunable
lasers to achieve full color emission.111,112 Due to these reasons, the optical properties of
ZnO QDs embedded in organic polymers, such as poly(vinyl alcohol) (PVA), poly(methyl
methacrylate) (PMMA) and poly(vinyl pyrrolidone) (PVP),113–117 and inorganic materials,
such as CaF2, MgO, SiO2 and BaF2,118–122 have been widely studied. However, most of
these studies are focused on the experimental synthesis and characterization for possible
device application purposes. Theoretical investigations on the electronic and optical
properties in colloidal ZnO QDs embedded in different matrices are very recent. Using
the atomistic empirical pseudopotential mehthod, Baskoutas and Bester123 have studied
the electronic properties and optical emission polarizations of free-standing ZnO QDs.
Dallali et al.124 have investigated theoretically the energies of exciton and acceptor-bound
exciton complex in ZnO QDs embeded in SiO2 matrix. A theoretical work associated with
the intersubband optical properties of ZnO QDs dispersed in SiO2 matrix has also been
reported recently.125 Though plenty of new insights have been brought by these studies,
the influence of the capped matrices on the electronic and optical properties in ZnO colloid
QDs is still unknown.

In this contribution, we carried out a theoretical comparative study of the optical sus-
ceptibilities126–128 of charged ZnO colloidal QDs embedded in various dielectric matrices.
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Three commonly used matrices, such as PVA, PMMA and SiO2, have been used in the
present calculations. The theoretical approach we are using is the potential morphing
method (PMM)3 (see Chapter 1) in the framework of the effective mass approximation,
which has already been applied in the past for the study of optical properties of several
nanostructures.48,49,52,58

6.2 Calculation details

6.2.1 Calculation of the electronic structure

The Schrödinger equation for an electron confined inside a singly charged ZnO colloidal
QD of radius R is (

p̂
1

2m∗e
p̂+ V (~r)

)
ψ(~r) = Eψ(~r), (6.1)

where m∗e is the effective mass, and V (~r) is the confinement potential which is zero inside
and V0 outside of the QD. V0 is the conduction-band electron confinement potential at the
interface of the QD and the surrounding matrix given by

V0 = Vb + Σ, (6.2)

where Vb is the finite barrier height and Σ is the self-energy due to the polarization induced
by charging the QD. The self-energy is given by129,130

Σ = 1
8πε0

( 1
εout
− 1
εin

)e
2

R
+ δΣ, (6.3)

where εin and εout are the dielectric constants of the dot material and the surrounding
matrix material, respectively. When εin + εout�1, one gets129

δΣ≈0.466 e2

4πε0εinR
(εin − εout
εin + εout

), (6.4)

which is usually small but not negligible.129 This simple model has been successfully
applied for the theoretical investigation of the photoabsorption and photoelectric process
of charged silicon nanocrystallites embedded in amorphous SiO2 matrix.130 To obtain the
ground state, the first excited state and the corresponding energies for the Hamiltonian
(6.1), which are needed for the calculation of the linear and nonlinear optical properties
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below, PMM is employed. The interaction potential involved in the potential morphing
process is vS = V (~r) and the reference system is selected as the usual harmonic oscillator
in three dimensions with well-known eigenfunctions. It should be noted here that adopting
the harmonic oscillator as a reference system does not affect our results because the PMM
needs only a known reference system to start the morphing process and finally to give the
eigenfunctions and eigenvalues for the unknown system, independently on the choice of
the initial reference system.3,53,91,99

6.2.2 Calculation of the susceptibilities

After obtaining the necessary wave functions and eigenenergies, we start to calculate
the linear, nonlinear and total susceptibilities of a charged QD embedded in a dielectric
matrix. The QD interacts with an electromagnetic field with time-dependent electric field
E(t) = E0 cos (ωt), where E0 is the time-independent electric field amplitude and ω is the
angular frequency of the applied electric field. Within the two-level system approximation,
the dynamics of the QD system under the interaction of an electromagnetic field is modeled
by the Hamiltonian

Ĥ = ~ω0(|j〉〈j|)− µE
′
(t)(|i〉〈j|+ |j〉〈i|), (6.5)

where |i〉 and |j〉 represent the initial and final states, respectively, µ is the transition
matrix element between the initial and final states which is defined as µ = 〈i|ez|j〉, where
we assume the polarization of electromagnetic radiation is along the z-axis direction.
E
′(t) = E0

2εeff
(e−iωt + eiωt), where εeff is the effective dielectric constant which considers

the local field effect due to the dielectric mismatch, and it is given by εeff = 2εout+εin

3εout
.

The density matrix equations, in the rotating wave approximation, for the slowly varying
elements of the density matrix are128,131

σ̇(t) = − 1
T2
σ(t) + iΩ∆(t) + iδσ(t), (6.6)

∆̇(t) = 2iΩσ(t)− 2iΩσ∗(t)− ∆(t)− 1
T1

. (6.7)

Here δ = ω − ω0 is the detuning of applied field from resonance, where ω0 = (Ej − Ei)/~
with Ei and Ej being the energy eigenvalues of the initial (ground) and final (first excited)
states in the charged QD, respectively, ∆(t) = σii(t)− σjj(t) with σij being the density
matrix element, T1 and T2 are the population relaxation time and the dephasing time,
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respectively, and Ω = µE0
2~εeff

is the Rabi frequency which differs from the usual definition
by the local field term (εeff ).

From Eqs. (6.6) and (6.7) in steady state we take

σ = (i− δT2)T2Ω
1 + δ2T 2

2 + 4Ω2T1T2
. (6.8)

Therefore, the susceptibility of the system is given by

χ = 2Nµ
ε0εeffE0

σ = Nµ2T2

~ε0ε2
eff

i− δT2

1 + δ2T 2
2 + µ2E2

0
~2ε2

eff
T1T2

, (6.9)

where N is the electron volume density in the QD system and ε0 is the permeability in
vacuum.

We define Es
0 = ~εeff

µ
√
T1T2

which is the saturation electric field strength. By this, we can
rewrite Eq. (6.9) as

χ = Nµ2T2

~ε0ε2
eff

i− δT2

1 + δ2T 2
2 + E2

0
(Es

0)2

. (6.10)

Assuming the electric field parameter x = E2
0

(Es
0)2�1, we can perform a power-series expansion

of χ in terms of x, retaining only terms up to the first order. The resultant solution for χ
takes the form

χ'Nµ
2T2

~ε0ε2
eff

[
i− δT2

1 + δ2T 2
2
− i− δT2

(1 + δ2T 2
2 )2

E2
0

(Es
0)2

]
. (6.11)

Taking into account χ'χ(1) + 3
4χ

(3)E2
0 , we obtain the linear (χ(1)) and third-order nonlinear

(χ(3)) optical susceptibilities as

χ(1) = Nµ2T2

~ε0ε2
eff

i− δT2

1 + δ2T 2
2
, (6.12)

χ(3) = −4Nµ4T1T
2
2

3~3ε0ε4
eff

i− δT2

(1 + δ2T 2
2 )2 . (6.13)

In the linear regime the real part of susceptibility χ(1) exhibits a standard dispersive
lineshape, while its imaginary counterpart presents a Lorentzian lineshape.

We may also write the total susceptibility as

χ = χ
′
+ iχ

′′
, (6.14)
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where χ′ and χ′′ are the real and imaginary part, given by

χ
′
= Nµ2T2

~ε0ε2
eff

1√
1 + κ

− δT2√
1+κ

1 + ( δT2√
1+κ)2 , (6.15)

χ
′′

= Nµ2T2

~ε0ε2
eff

1√
1 + κ

1
1 + ( δT2√

1+κ)2 , (6.16)

respectively, with κ = µ2E2
0T1T2

~2ε2
eff

. It turns out that the real (χ′) and imaginary (χ′′) parts of
total susceptibility still display respectively dispersive and Lorentzian lineshapes, but they
are saturated and broadened.

Finally, one may rewrite the Eqs. (6.9) in terms of the incident optical intensity (I) as

χ = Nµ2T2

~ε0ε2
eff

i− δT2

1 + δ2T 2
2 + 2µ2I

cnε0~2ε2
eff
T1T2

. (6.17)

Here, the relation between the optical intensity and the applied electric field is taken
I = nε0c

2 E2
0 , where c is the light speed in vacuum, n = √εin is the refractive index of the

QD material.

6.3 Results and discussion

In the following, we will study the susceptibilities in the singly charged ZnO colloidal QDs,
using the formulas presented in Sec.6.2. Three different matrices (i.e., PMMA, PVA and
SiO2) are considered. The relevant material parameters for the present calculations are
listed in Tables 6.1 and 6.2, taking N = 1.7×1017 cm−3, T1=1 ps and T2=0.14 ps.132 As
have been reported by Baskoutas and Terzis,48 the height of the finite-depth confinement
potential does not depend on the specific semiconductor of the QD, but exclusively depends
on the matrix energy band gap by a simple linear relation of the form Vconf=0.08 ·Eg(M),
where Eg(M) is the matrix energy band gap. Thus, in the present calculations, we
adopted the same relation, using the electron confinement potential Vb=0.08 ·Eg(M). As
an approximation, the values of the electron effective mass are assumed to be the same in
QD material (ZnO) and matrix materials21 with value m∗e = 0.265 m0, where m0 is the
electron mass in the free space .

Firstly, we display the real and imaginary part of the linear susceptibility χ(1) (Fig. 6.1)
and third-order nonlinear susceptibility χ(3) (Fig. 6.2) as a function of the incident photon
energy for the three different matrices. As clearly shown in Tables 6.1 and 6.2, different
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Table 6.1: Theoretical values of the relative dielectric constant εr, the effective dielectric constant
εeff and the local field factor F (= 1

εeff
) for three different dielectric matrices (PMMA, PVA and

SiO2). Relative dielectric constant for ZnO is 8.66.125

Materials εr
133 εeff F

PMMA 3.4 1.516 0.66
PVA 14 0.873 1.15
SiO2 3.9 1.407 0.71

Table 6.2: Theoretical values of the energy parameters used in our calculations. Here, Eg is in
unit of eV, Vb and V0 are in unit of meV, R is in unit of nm. The energy band gap, Eg, of ZnO is
3.445 eV123 and Σ0 = 1

4πε0
e2

R = 1.44
R eV/nm.

Materials Eg Vb = 80×Eg Σ/Σ0 V0(R = 2) V0(R = 6)
PMMA 5.6134 448 +0.113 530 475
PVA 4.98135 398 -0.035 373 390
SiO2 9136 720 +0.091 786 742

capped matrices have different dielectric constants and energy band gaps which differ
substantially from the QD material. A higher dielectric constant of the capped matrix is
related to a smaller self-polarization energy induced by the QD charging, which resultantly
leads to a lower or even a negative (e.g., PVA) contribution to the QD confinement potential
(see the forth column of Table 6.2). Conversely, it also causes a stronger local field effect
in the corresponding charged QD, characterized by a larger local field factor F = 1

εeff
(see

Figure 6.1: The real (left panel) and imaginary (right panel) part of χ(1) as a function of
the photon energy ~ω in singly charged ZnO QDs embedded in three different matrices (PVA
(red line), PMMA (green line) and SiO2 (blue line)). Two dot sizes R = 2 nm and 6 nm are
considered, separately.
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the last column of Table 6.1). However, a lower energy band gap of the capped matrix
corresponds to a smaller QD confinement potential (see the last two columns of Table 6.2),
consequently leading to a larger dipole transition matrix element. Due to the combination
effects of local field and quantum confinement, QD embedded in polymeric matrix PVA
which has the largest dielectric constant but the smallest energy band gap exhibits the
largest (in absolute value) χ(1) and χ(3) (both real and imaginary part). Moreover, these
two effects appear to compensate with each other and exhibit a competitive phenomenon
in the other two phenomenological QDs. The local field effect turns out to dominate over
its quantum confinement counterpart and consequently the susceptibilities in the charged
QD capped with PMMA which has smaller energy band gap and dielectric constant exhibit
a slightly smaller (absolute) value in comparison to that dispersed in inorganic matrix
SiO2.

Figure 6.2: The same as Fig. 6.1 but for χ(3).

Compared to the linear susceptibility (see Fig. 6.1), its third-order nonlinear counterpart
appears to be more sensitive to the capped matrices, especially in the strong confinement
regime (e.g., R =2 nm). This becomes evident by the top plot in the left panel of Fig. 6.2,
where χ(3) in QDs dispersed in PMMA and SiO2 is practically marginal, while that in PVA
exhibits a relatively large strength. This is also valid for QDs within the weak confinement
regime, although χ(3) in PMMA and SiO2 capped QDs is substantially enhanced. We
relate this to a stronger dependence of χ(3) on the combined effects of local field and
quantum confinement (e.g., χ(3)∝( µ

εeff
)4, while χ(1)∝( µ

εeff
)2).

In the same figures, we also find that the QD size influences significantly the susceptibilities
in all the three charged QDs. Both the linear and nonlinear susceptibilities in all the
capped QDs are substantially broadened and enhanced as the QD size increases. This
can be attributed to the decrease of the quantum confinement effect, which leads to a
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Figure 6.3: The real (left panel) and imaginary (right panel) part of χ as a function of the
photon energy ~ω in singly charged ZnO QDs with radius R = 6 nm under various radiation
intensities (I = 0.01 and 1.5 MW/cm2). Three capped matrices, e.g., PVA, PMMA and SiO2,
are considered.

significant increase of the transition matrix elements. This behavior is significantly more
pronounced for the case of the nonlinear term. Furthermore, drastic red shifts are observed
when the QD size is increased, irrespectively of the capped matrices. Another important
feature is that the threshold energies in the three capped QDs are getting closer when the
quantum confinement becomes weak. Based on this observation, it becomes clear that
the influence of the capped matrices on the threshold energy is significant in small QDs
(e.g., R = 2 nm). However, in large QDs (e.g., R = 6 nm), it becomes less important. In
addition to this, we find that the QD capped with PVA exhibits a more drastic increase in
both χ(1) and χ(3) in comparison to the other two charged QDs.

Finally, in an attempt to investigate the influence of the applied intensity on the total
susceptibility (Eq. (6.17)), we present in Fig. 6.3 the real and imaginary parts of total
optical susceptibility χ under two different radiation intensities. We find that the real and
imaginary part of χ exhibit a standard dispersive and Lorentzian lineshape, respectively.
This is independent of the capped matrices and applied intensities. However, for the
larger intensity χ is substantially decreased in magnitude and strongly broadened in the
near resonant region in all the three charged QDs. For all the applied intensities, the
PVA capped QDs exhibit the largest χ values, while the PMMA capped QDs exhibit the
smallest ones, which also appear to be similar to the intensity-free χ(1) and χ(3). Moreover,
the decrease of χ with respect to intensity is found to be more pronounced for the case of
PVA capping.
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6.4 Brief summary

We have studied the linear, third-order nonlinear and intensity-dependent optical sus-
ceptibilities of singly charged ZnO QDs embedded in different dielectric matrices. Three
commonly used matrices, PVA, PMMA, and SiO2, are considered for the present calcu-
lations. The analytical expressions for these optical susceptibilities are derived by using
density matrix equations within the two-level system approximation. We find that QD
capped with PVA which has the largest dielectric constant always exhibits the largest linear
and third-order nonlinear optical susceptibilities, while that dispersed in amorphous SiO2
which has the largest band gap energy shows the highest threshold energy, irrespectively
of the QD sizes. Increasing the QD sizes leads to the drastic increase in the magnitude
of both the linear and nonlinear susceptibilities. Comparing to the linear susceptibility,
the third-order nonlinear counterpart appears to be more sensitive to the variation of the
capped matrices. Finally, we investigate the influence of the applied radiation intensities
on the total susceptibility in all the three different capped QDs. We show that the real
and imaginary part of the total susceptibility always exhibit a standard dispersive and
Lorentzian lineshape, irrespectively of the applied intensities. However, enhancing the
applied intensity leads to a drastic decrease in the (absolute) magnitude of the total
susceptibility and a substantially broadening in the near resonance region. Furthermore,
the total susceptibility exhibits a stronger dependence on the applied radiation intensity
in charged QD capped by a matrix with a relatively high dielectric constant but with a
relatively small energy band gap. We believe that our results can be useful and helpful not
only in the elucidation of the fundamental physics but also for possible devices application
based on ZnO QDs-matrix systems.



7
Linear and nonlinear optical properties of
ZnO/ZnS and ZnS/ZnO core shell quantum
dots
In this chapter, we study theoretically the linear, nonlinear and total absorption coefficients
and refractive index changes associated with intersubband transitions in ZnO/ZnS core shell
quantum dot (CSQD) and ZnS/ZnO inverted core shell quantum dot (ICSQD), emphasizing
on the influence of the shell thickness, impurity and dielectric environment. We find that in
both impurity-free CSQD and ICSQD, increasing the shell thickness red shifts significantly
the threshold energy and enhances drastically the nonlinear absorption coefficients and
all the refractive index changes, independently on the dielectric environments. Similar
behaviour has also been observed in most of the cases studied when the impurity is displaced
from the core center to the shell center. Finally, we find that the nonlinear properties
are more sensitive to the external perturbations, while at a weak radiation intensity, the
variation of the total quantities is generally dominated by that of the corresponding linear
terms. The results presented herein are published in Journal of Applied Physics 114,
023510 (2013).
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7.1 Introduction

Zinc oxide (ZnO) and Zinc sulfide (ZnS) quantum dots (QDs) have received considerable
attentions due to their wide applications in optoelectronics and spintronic devices, such as
light-emitting, laser diodes and electroluminescent devices (see Refs. 137 and 138 and
references therein). These QDs can be fabricated successfully by using the well-established
chemical synthesis methods, e.g., sol-gel,139,140 wet chemical approach,141–143 to mention
only a few. However, the synthesized colloidal QDs (generally uncapped) are relatively
unstable and encounter the difficulties in dispersion and preservation. Possible existing
of the surface states significantly reduces the electron-hole recombination rate, lowering
the luminescent quantum yield. Size-dependent photophysical properties can also be
obscured.144 One possible way of overcoming such problems is to further cap the bare QD
(core) with an another material (shell), forming a core-shell configuration.

Wurtzite (WZ) ZnO has a relatively smaller band gap (3.445 eV145) in comparison to that of
WZ ZnS (3.864 eV146). Therefore, capping bare ZnO QDs with a thin layer of ZnS forms the
conventional ZnO/ZnS core-shell quantum dot (CSQD) structure where the core material
has a narrower band gap (ZnO) than the shell material (ZnS). Conversely, ZnS/ZnO
inverted core-shell quantum dot147,148 (ICSQD) will be fabricated if the wider gap ZnS is
overcoated with a shell of narrower gap ZnO. ZnO/ZnS CSQDs with dimension in the range
of few nanometer to about 30 nanometer have been successfully synthesized by epitaxial
growth in solution.149 Comparing to the bare ZnO QDs, the fabricated CSQDs exhibit
enhanced ultraviolet (UV) emission and present type I band alignment. Employing a simple
one-step solvent-thermal method, Wang et al.150 have synthesized ZnS/ZnO ICSQDs. The
stability of ICSQDs has been found to be far superior to that of uncapped ZnS QDs, and
the corresponding emission quantum yield is higher than that of bare ZnO QDs. A type
II band alignment has been demonstrated. Very recently, ZnS/ZnO ICSQDs of size 4
nanometer have been grown by controlled oxidation of ZnS QDs,151 showing enormous
enhancement in UV emission (∼ 10 times). Possible applications of ZnO/ZnS CSQD
on drugs and food delivery in blood have also been reported recently.152,153 In contrast
to the multiplicity of experimental work, theoretical work on ZnO/ZnS and ZnS/ZnO
CSQD is very scare and limited. Using band-corrected pseudopotential density functional
theory calculations, Schrier et al.154 have studied the band gap, optical absorption, and
carrier localization of ZnO/ZnS core/shell nanowires, proposing this heterostructure for
photovoltaic applications. McDonald et al.155 have successfully simulated the biexciton
binding and antibinding in CSQD by using a path integral quantum Monte Carlo method.
The electronic structure of ZnO/ZnS CSQD has also been theoretically calculated by
employing the self-consistent charge density functional tight-binding method.156 Despite
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of considerable new insights brought by these work, no attention has been paid to the
linear and nonlinear optical properties in the CSQD and ICSQD systems.

In this contribution, we performed theoretical calculations of the linear, nonlinear, total
absorption coefficients and refractive index changes in ZnO/ZnS CSQD and ZnS/ZnO
ICSQD. The emphasis of the present paper is placed on the shell thickness, possible doping
(or dopant positions), dielectric environment influences on the linear and nonlinear optical
properties in both structures. The local field correction due to the dielectric mismatch
between the CSQD (or ICSQD) and its surrounding matrix, which has rarely been
addressed previously,130,157 has been taken into account in the present calculations. The
electronic structures of the systems are numerically calculated by employing the potential
morphing method (PMM) in the framework of effective mass approximation, which has
been already successfully applied in the past for the study of optical properties in several
nanostructures48,49,52, 58 and very recently for the calculation of optical susceptibilities in
ZnO-matrix system.157

7.2 Model and theoretical framework

In the framework of effective-mass approximation, a single dopant in a CSQD (or an
ICSQD) with inner radius R1 and outer radius R2 (see Fig. 7.1) can be modeled by the
following Hamiltonian

Ĥ = p̂
1

2m∗e
p̂+ Vcon(~r) + Σ(~r) + VCoul(~r). (7.1)

The first term of the Hamiltonian is the operator for the Kinetic energy of a delocalized
conduction electron and m∗e is the electron effective mass. As justified by the experimental
work,149–151 the conduction bandedge of ZnO in ZnO-ZnS hybrid QDs lies below that of
its ZnS counterpart. In accordance with this, the confinement potential (the second term
of Eq. (7.1)) in our calculations is taken to be step-like (see Fig. 7.1), which is

V con(~r) =


0, |~r|≤R1
V0, R1≤|~r|≤R2
∞, |~r|>R2

, (7.2)
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for ZnO/ZnS CSQD, while for ZnS/ZnO ICSQD, it is

V con(~r) =


V0, |~r|≤R1
0, R1≤|~r|≤R2
∞, |~r|>R2

, (7.3)

where V0 is the electron confinement potential due to the conduction band discontinuity.
Σ(~r) is the electron self-polarization potential, describing the interaction of the electron
and its image charge, which is given by148,158–160

Figure 7.1: Schematic representations (left panel) and conduction band profiles (right panel)
of the ZnO/ZnS core shell quantum dot (CSQD) (a) and ZnS/ZnO inverted core-shell quantum
dot (ICSQD) (b) with inner radius R1 and outer radius R2, embedded in a dielectric matrix.
Two impurity positions, 1 (core-center impurity) and 2 (shell-center impurity), considered in
our calculations, have been explicitly shown.
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Σ(r) = e2

8πε0εinR2

∞∑
k=0

(k + 1)(εin − εout)
kεin + (k + 1)εout

r2k

R2k
2
, (7.4)

where ε0 is the permittivity in vacuum, εin = √εcεs with εc and εs being the relative
dielectric constants of the core and shell materials, respectively. εout is the relative dielectric
constant of the surrounding matrix. This self-polarization potential diverges as the electron
approaches the dielectric interface (r→R2). In our calculations, this problem is solved by
employing the well-known hard wall boundary conditions (e.g., for R > R2, potential is
assumed to be infinite (see Eqs. (7.2) and (7.3))), forcing a null electron density at the
interface.

The last term of Eq. (7.1) is the Coulomb potential due to the mutual interaction between
the electron and the shallow donor impurity (or the image charge of the donor impurity),
depending strongly on the doping positions. For an on-center impurity, it is148,158–160

VCoul(r) = − e2

4πε0εinr
− e2(εin − εout)

4πε0εinεoutR2
, (7.5)

while for an off-center impurity, it is148,158–160

VCoul(r) = − e2

4πε0εin|~r − ~ri|
− e2

4πε0εinR2

∞∑
k=0

rki r
k

R2k
2

×(k + 1)(εin − εout)
kεin + (k + 1)εout

Pk(cos θ), (7.6)

where ~r and ~ri are the position vectors of the electron and impurity, respectively, with
|~ri| =

√
x2
i + y2

i + z2
i , where xi, yi and zi are the Cartesian coordinates of the impurity.

Without the loss of generality, the impurity in our calculation is placed on the z-axis
(xi = yi = 0, see also Fig. 7.1). cos θ = ~r · ~zi

|~r| · |~zi| for an off-center impurity (located at
(0,0,zi)) and Pk(cos θ) is the Legendre polynomial. The first term of Eq. (7.6) describes
the direct Coulomb interaction between the electron and the impurity, while the last term
accounts for the Coulomb interaction between the electron and the image charge of an
off-center impurity. Here, we assume that the Coulomb potential incorporates the effects
of the polarization charges induced on the QD surface as a consequence of the dielectric
mismatch.158–160 To truncate the infinite sum in Eqs. (7.4), (7.5) and (7.6), k is taken
up to 4500 in our calculations, which ensures the potential values being insensitive to the
further increase in k. This model has been successfully used for the investigation of the
electronic properties and impurity binding energy in ZnS/CdSe and CdSe/ZnS core-shell
nanodots.148

In order to solve the Schrödinger equation based on the Hamiltonian (7.1) numerically,
potential morphing method (PMM) (see Chapter 1) is employed. In our present calculations,
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the usual three-dimensional (3D) harmonic oscillator is chosen as a reference system in order
to start the morphing process and its wave functions are selected as the initial wave functions
(ΦR). The interaction potential for an impurity-free system is VS(~r) = Vcon(~r) + Σ(~r),
while it is VS(~r) = Vcon(~r) + Σ(~r) + VCoul(~r) for an impurity-present system. In our PMM,
a very dense grid is employed to ensure the accuracy of our results and all calculations
are performed with the same grid number. It should be noted here that adopting the
harmonic oscillator as a reference system does not affect our results because the PMM
needs only a known reference system to start the morphing process and finally to give the
eigenfunctions and eigenvalues for the unknown system, independently on the choice of
the initial reference system.3,53,91,99

After obtaining the necessary eigenenergies and wave functions by using PMM, we start
to calculate the linear, nonlinear and total absorption coefficients and refractive index
changes associated with the intersubband transitions in the ZnO/ZnS CSQD and ZnS/ZnO
ICSQD. Within a two-level system approach, the linear and third-order nonlinear optical
absorption coefficients can be obtained by a density matrix approach and a perturbation
expansion method, given by161

α(1)(ω) = ω

ε0cnr

|M21|2σV ~Γ12

(E12 − ~ω)2 + (~Γ12)2 , (7.7)

α(3)(ω, I) = − 2Iω
ε2

0n
2
rc

2
|M21|4σV ~Γ12

[(E21 − ~ω)2 + (~Γ12)2]2

{1− |M22 −M11|2

4|M21|2
×3E2

21 − 4E21~ω + ~2(ω2 − Γ2
12)

E2
21 + (~Γ12)2 }, (7.8)

where σV is the electron density, Γ12 = 1/T12 is the relaxation rate with T12 being the
relaxation time, I is the incident optical intensity, nr = √εin is the refractive index, c is
the speed of light in vacuum, E21 = Ef − Ei is the energy difference between the final
(first excited) state and the initial (ground state) state. By assuming that the polarization
of electromagnetic radiation is along the z-axis direction, the transition matrix element
between these two states is defined by Mij = − 〈f |ez|i〉εeff

, which takes into account the local
field correction due to the dielectric mismatch between the system and its surrounding
matrix, differing from the the usual definition by the local field factor F = 1

εeff
= 3εout

2εout+εin
.157

For a dielectric environment free system (εin = εout), the local field factor equals to 1
and it has no influence on the transition matrix element, recovering the usual situation
which has been widely addressed in the published literature. However, if the system is
dispersed in a matrix with a lower dielectric constant (εin > εout), e.g., ZnO/ZnS CSQD
(or ZnS/ZnO ICSQD) embedded in amorphous SiO2,162 the local field factor F < 1 and it
significantly decreases the transition matrix element. At a very weak radiation intensity,
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the total absorption coefficient can be approximated as

α(ω, I)≈α(1)(ω) + α(3)(ω, I). (7.9)

The linear and the third order nonlinear refractive index changes are given by161

∆n(1)(ω)
nr

= 1
2n2

rε0
|M21|2σV {

E21 − ~ω
(E21 − ~ω2)2 + (~Γ12)2}, (7.10)

and

∆n(3)(ω)
nr

= − µ0c

n3
rε0

|M21|4(E21 − ~ω)σV I
[(E21 − ~ω)2 + (~Γ12)2]2

×[1− (M22 −M11)2

4|M21|2((E21)2 + (~Γ12)2)(E21 − ~ω)
{(E21 − ~ω)×[E21(E21 − ~ω)− (~Γ12)2]−

(~Γ12)2(2E12 − ~ω)}], (7.11)

respectively, where µ0 is the permeability in vacuum and the relative permeability µr is
taken to be unity in our calculations. In the presence of a weak radiation intensity, the
total refractive index change can be defined by

∆n(ω)
nr
≈∆n(1)(ω)

nr
+ ∆n(3)(ω)

nr
. (7.12)

7.3 Results and discussion

In what follows, we will discuss the shell thickness, impurity and dielectric environment
influences of the linear and nonlinear optical properties associated with the intersubband
transitions in both ZnO/ZnS CSQD (see Sec. 7.3.1) and ZnS/ZnO ICSQD (see Sec. 7.3.2).
The parameters used in our calculations are the same as in Ref. 157, taking σV = 1.7×1017

cm−3 , T12 = 1 ps and nr = √εin = 2.9629 with εZnOr = 8.66 and εZnSr = 8.9,148 where
εZnOr and εZnSr are the relative dielectric constants of ZnO and ZnS, respectively. The
electron effective mass is assumed to be position-independent, taking the value of the core
material (e.g., for ZnO/ZnS CSQD, me = mZnO

e = 0.265m0
145 and for ZnS/ZnO ICSQD,

it is me = mZnS
e = 0.24m0,146 where m0 is the free electron mass). According to the

previous literatures about the linear and nonlinear optical properties in semiconductor
nanostructures,58,157,163–167 the radiation intensity significantly affects the magnitude of
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the third order absorption coefficient and refractive index change, leading to a substantial
decrease in the magnitude of the total counterparts. However, in the present calculations,
we keep the radiation intensity as a constant value I = 0.02 MW/cm2 and take the inner
radius R1 = 1.5 nm, which is slightly larger than the ZnO effective exciton Bohr radius
(a∗B = 1.4 nm). Both the systems with (εout = 3.9, corresponding to disperse the CSQDs
into amorphous SiO2 matrix) and without (εout = εin = 8.779) dielectric environment effect
are considered. The strain effects due to the lattice mismatch between the core and shell
materials are not considered in the present intersubband (conduction band) calculations.

It should be noted that ab initio calculations have been confirmed as a robust tool of
describing the band lineups for a great variety of semiconductor heterostructures (for
example, see Refs. 168–170). However, to the best of our knowledge, such type of
calculations has not yet been performed for WZ ZnO-ZnS hybrid structures, which are
addressed herein. Therefore, in our calculations, the conduction band discontinuity is
taken as V0 = 0.08 ·EZnS

g = 292.8 meV, where the coefficient 0.08 is empirically derived by
fitting to the experimental measurements for a great variety of semiconductor colloidal
QDs48,53 and EZnS

g is the energy band gap of WZ ZnS. The sensitivity of our results
for WZ ZnO/ZnS CSQDs and ZnS/ZnO ICSQDs to the conduction band discontinuity
parameter (i.e., see V0 in Fig. 7.1) will also be discussed in Sec. 7.3.1 and Sec. 7.3.2,
respectively.

Before presenting the numerical results, we firstly address several important characteristics
of the absorption coefficients and refractive index changes, indicating from the correspond-
ing expressions described in the last section. The peak value of the linear absorption
coefficient occurs at the photon energy ~ω=

√
E2

21 + (~Γ12)2 and the peak intensity is
proportional to |M21|2 ·

√
E2

21 + (~Γ12)2. For ~Γ12�E21, which is valid for all the cases
considered below, the peak value of the linear absorption coefficient turns out to be at
the photon energy ~ω≈E21 and the peak intensity is in proportion to E21 · |M21|2. For
systems with inversion symmetry, e.g., impurity free CSQD and ICSQD systems or these
systems doped by a core-center impurity (see Fig. 7.1), the diagonal matrix elements M11
and M22 vanish, leading to a zero contribution from the last term of Eq. (7.8) to α(3).
For ~Γ12�E21, although α(3) reaches its peak value at approximately the same photon
energy as its linear counterpart, the corresponding peak intensity is more sensitive to the
transition matrix element (∝ E21 · |M21|4). When this inversion symmetry is broken by the
external perturbations, e.g, doping an off-center impurity, nonzero M11 and M22 appear
and the aforementioned dependence will be further corrected by the negative contribution
of the anisotropic term (see the term which contains |M11−M22

M21
| in Eq. (7.8)).

Concerning to ∆n(1)(ω)
nr

, it always exhibits a standard dispersive lineshape (e.g., it presents
firstly a maximum and then a minimum as the photon energy increases). The maximum
and minimum appear at the photon energy ~ω = E21 − ~Γ12 and ~ω = E21 + ~Γ12,
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respectively. They are equivalent in magnitude (in absolute value) which is proportional to
|M21|2, independently on the transition energy (E21). Whereas, for ∆n(3)(ω)

nr
, this standard

dispersive lineshape is reversed (e.g, it shows firstly a minimum and then a maximum as
the photon energy increases). Analogously to α(3), ∆n(3)(ω)

nr
in a system with an inversion

symmetry is fully determined by the first term of Eq. (7.11) due to the vanishing
diagonal matrix elements M11 and M22. Its global minimum and maximum occur at
~ω = E21 − (~Γ12)/

√
3 and ~ω = E21 + (~Γ12)/

√
3, respectively. The magnitudes of these

minimum and maximum are equivalent (in absolute value), exhibiting a stronger exclusive
dependence on the transition matrix element (e.g., ∝ |M21|4) in comparison to ∆n(1)(ω)

nr

(e.g., ∝ |M21|2)). However, these relations will also be influenced by the anisotropic term
if the system is lack of inversion symmetry (see Eq. (7.11)).

7.3.1 Optical properties in core shell quantum dots

As a first step towards investigating the linear and nonlinear optical properties in impurity
free ZnO/ZnS CSQDs, we present in Fig. 7.2 the linear, third order nonlinear and total
absorption coefficients and refractive index changes as a function of the photon energy for
three different shell thickness values. It shows that increasing the thickness of the capping
layer leads to a red shift of the threshold energy. This shift appears to be very sensitive to
the initial capping and becomes less significant when the shell layer is relatively thick. In
addition to this, varying the shell thickness also significantly enhances all the refractive
index changes. This effect favors more the nonlinear term. To capture the physical reasons,
we calculated the probability of finding the electron in the shell region for various shell
thickness values. The results for the ground and first excited states are shown in Fig.
7.3. It appears that increasing the capping thickness enhances the penetration of the
electron wave functions into shell region, irrespectively of the dielectric environment. This
movement of the wave functions eventually causes an increase in the transition matrix
element M21 which is fully responsible for the variation of the refractive index changes.
In contrast to the increase in the matrix element, the transition energy experiences a
decrease with increasing the capping thickness, which is associated with the observed red
shift. The competition effects of these two factors (e.g., |M21|2 and E21) determine the
tendency of the peak intensity of the linear absorption coefficients with respect to the
shell thickness. In a dielectrically homogeneous system (see the dash dotted lines), the
later effect (e.g., E21 ) is more pronounced and the peak intensity of α(1) decreases with
regard to the increased capping thickness. Conversely, when the dielectric inhomogeneity
is present (see the solid lines), the former effect (|M21|2) is more effective, finally inducing
an increase in the peak intensity of α(1).
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Figure 7.2: Linear (red), third order nonlinear (navy) and total (blue) absorption coefficients
(left panel) and refractive index changes (right panel) as a function of the photon energy ~ω
for various shell (ZnS) thickness (Ts=R2 −R1, in unit of monolayer (ML)) values in impurity
free ZnO/ZnS CSQDs without (εin = εout, dash dotted lines) and with (εin > εout, solid lines)
dielectric environment. Here, the inner radius R1 = 1.5 nm and 1 ML = 0.3117 nm (for ZnS).

Concerning to α(3), its peak intensity exhibits a more straightforward variation, increasing
significantly with increasing the shell thickness both with and without the dielectric
environment. This is due to the fact that comparing to α(1) (∝ E21 · |M21|2), the peak
intensity of α(3) (∝ E21 · |M21|4) is more sensitive to the variation of the transition matrix
element, which contributes positively with the capping thickness as addressed above.
Although the change of the nonlinear term is more drastic with increasing the shell
thickness, the peak magnitude of total absorption coefficient follows the same variation of
the linear term due to its dominant contribution at relatively weak radiation intensity.

In comparison to a dielectrically homogeneous system, all the quantities are substantially
reduced if the system is dispersed in a matrix with a lower dielectric constant and
considerable blue shift of the threshold energy is observed. This is attributed to the fact
that for a phenomenological CSQD, the existence of the dielectric environment (e.g., in
our case, εin > εout) induces a self energy which is positive and a short range interaction at
the CSQD-matrix interface (see Eq. (7.4)), forcing the electron to move towards the core
center. This can be easily justified by the fact the probability of finding the electron of
ground state in the shell region becomes smaller in the presence of the dielectric mismatch
(see the left panel of Fig. 7.3). Moreover, local field effect, characterizing by the local field
factor F = 1

εeff
= 0.705, also appears. The combination effects of the charge movement

and the local field consequently decrease the transition element, which is related to the
reducing in all the refractive index changes. Although the transition energy exhibits
an increase by taking into account the dielectric environment effect, the decrease in the
matrix element is more significant, leading to the observed variation (decreasing) in all
the absorption coefficients.
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Figure 7.3: Probability of finding the electron of ground-state (red triangles) and first
excited state (blue diamonds) in the shell region as a function of the shell thickness (in
unit of monolayer (ML)) in ZnO/ZnS CSQDs (left panel) and ZnS/ZnO ICSQDs (right
panel) without (εin = εout = 8.779, dash dotted lines) and with dielectric environment
(εin > εout, εin = 8.779, εout = 3.9, solid lines). For the left panel, 1 ML = 0.3117 nm (WZ
ZnS), while for the right panel, 1 ML = 0.26025 nm (WZ ZnO).

Possible existence of dopants (or intrinsic hydrogen like defects) is also expected to affect
significantly the linear and nonlinear optical properties in a CSQD. From the last section
(see Eqs. (7.4), (7.5) and (7.6)), we know that in a dielectrically homogeneous system, the
presence of the donor ion induces a well-known electron-ion Coulomb interaction. However,
this interaction is further influenced by the effect of the polarization image charges (e.g.,
positive self-energy and the Coulomb interaction between the electron and the impurity
image) when the CSQD is embedded in a matrix with a lower dielectric constant. Although
the Coulomb potential is different in these two dielectric environments, the variation of
linear and nonlinear optical properties with respect to a core-center doping appears to be
very similar. Comparing to the impurity free system (see Fig. 7.2), Fig. 7.4 shows that
doping the CSQD at the core center (zi = 0) with a hydrogenic impurity leads to a blue
shift of the transition energy and simultaneously a slight decrease (in absolute magnitude)
in both the linear and nonlinear absorption coefficients and refractive index changes,
irrespectively of the dielectric environment. The physical reason is that the occurrence of
impurity center increases the separation of the energy levels of the two states (E21) in both
with and without dielectric environment. Conversely, the charge accumulation towards
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Figure 7.4: Linear (red), third order nonlinear (navy) and total (blue) absorption coefficients
(a) and refractive index changes (b) as a function of the photon energy ~ω for various dopant
positions in doped ZnO/ZnS CSQDs without (dash dotted lines) and with (solid lines) dielectric
environment. Here, the dopants located at the core center (zi = 0) and at the shell center
(zi = 0.75R2) are considered. The inner radius R1 = 1.5 nm and the shell thickness is Ts = 6
ML (R2 = R1 + Ts = 3.3702 nm).

the impurity center (core center) decreases significantly the transition matrix element.
These two effects appear to compensate with each other and the influence of latter factor
turns out to be more pronounced, causing a decrease of both the linear and nonlinear
quantities.

The influence of the variation of the transition matrix element on the peak intensity
of the nonlinear absorption coefficient is always dominant over its transition energy
counterpart, resulting a similar behaviour in both with and without dielectric environment
(it increases with moving the dopant to the shell center). More specially, we found that
comparing to the system without dielectric environment, both the absorption coefficients
and refractive index changes are substantivally reduced when the system is dispersed in
a lower dielectric constant matrix (εin > εout) and blue shift of the threshold energy is
observed, as expected.

Finally, in an attempt to investigate the sensitivity of the presented results to the conduction
band discontinuity parameter V0 (see Fig. 7.1), we show in Fig. 7.5 the linear absorption
coefficient and refractive index change as a function of the photon energy for various shell
thickness values, taking V0 = 200 meV (∼ 0.052 ·EZnS

g ). It appears that the deviation of
the V0 value from the empirically derived one does not cause any changes in the general
tendency of the transition energy E21 (decreases) and off-diagonal matrix element M21
(increases) with respect to the increase in the shell thickness. This can be confirmed
by the appearance of red-shift phenomenon and also the enhancement of the change in
the refractive index (in absolute value) shown in Fig. 7.5 with increasing the capping
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Figure 7.5: Linear absorption coefficient (α(1), upper panel) and refractive index change
(∆n(1)/nr, lower panel) as a function of the photon energy ~ω for various shell thickness values
(in unit of ML) in ZnO/ZnS CSQD without (dash dotted lines) and with (solid lines) dielectric
environment, using the conduction band discontinuity parameter V0 = 200 meV.

thickness (very similarly to the ones pictured in Fig. 7.2). However, possible variation in
V0 affects strongly the interplay of the two factors on the peak intensity of the absorption
coefficient. This becomes clear by the non-monotonic variation in the absorption coefficient
(i.e., first increases (from 3 ML to 6 ML) and then slightly decreases (from 6 ML to 9
ML)) shown in Fig. 7.5, very differently from the ones shown Fig. 7.2 (i.e., the peak
intensity decreases monotonically with increasing the shell thickness). In addition to this,
the decrease in V0 results in a smaller resonant peak photon energy in CSQDs both with
and without dielectric environment. In the presence of the dielectric environment, the
linear and nonlinear optical properties are independent on the variation of V0, always
decreasing the peak intensity and blue-shifting the peak position (see Figs. 7.2 and 7.5).

7.3.2 Optical properties in inverted core shell quantum dots

In the previous subsection, we find that the shell thickness, impurity and possible exis-
tence of the dielectric environment significantly influence the linear and nonlinear optical
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Figure 7.6: The same as in Fig. 7.2 but for ZnS/ZnO inverted core-shell quantum dots
(ICSQDs). Here, 1 ML = 0. 26025 nm (for ZnO (shell material)).

properties in ZnO/ZnS CSQDs. Comparing to the conventional configuration, ZnS/ZnO
ICSQDs exhibit very different potential profiles (see Fig. 7.1). Herein, we present the
dependence of the absorption coefficients and refractive index changes in the ICSQD on the
aforementioned three factors and possible comparison between these two systems (CSQD
and ICSQD) is performed.

Following the same procedures in the last subsection, we firstly studied the effect of the
shell thickness on the absorption coefficients and refractive index changes in ZnS/ZnO
ICSQDs. As shown in Fig. 7.6, increasing the shell thickness leads to an enhancement of
all the absorption coefficients and refractive index changes both with and without dielectric
environment. This is independent on the variation of the conduction band discontinuity
parameter V0 (see Fig. 7.7), which is different from the case shown in CSQDs by the
variation of the linear absorption coefficients with respect to the capping thickness (see
Fig. 7.2). The physical reason is attributed to the charge accumulation towards the shell
region induced by the increase in the shell thickness (see Fig. 7.3(b)), which is similar to
that in the conventional systems (see the right panel of Fig. 7.3). The resultant increase
in the transition matrix element is the direct reason for the increase in the refractive
index changes. However, comparing to the CSQD, the charge movement appears to be
comparatively more significant in the ICSQD systems (see Fig. 7.3). Therefore, the positive
contribution from the transition matrix element variation completely dominates over the
negative contribution from its transition energy counterpart, causing a monotonic increase
in the linear absorption coefficient peak intensity. We further found from Fig. 7.6 that the
increase in the nonlinear quantities with enhancing the capping layer is significantly more
pronounced. Similarly to the CSQD, for a given shell thickness value, all the quantities are
drastically reduced by dispersing the ICSQD into a matrix with a lower dielectric constant
and a blue shift of the threshold energy appears.
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Figure 7.7: The same as in Fig. 7.5 but for ZnS/ZnO inverted core-shell quantum dots
(ICSQDs).

In the unconventional CSQD structure, Fig. 7.6 shows that enhancing the thickness of
the capping layer causes a strong red shift in the threshold energy. This red shift is very
sensitive to the initial capping (e.g., from 3 ML to 6 ML) and the sensitivity reduces
if the capping layer becomes comparable to the core radius (e.g., from 6 ML to 9 ML),
similarly to its conventional counterpart (shown in Fig. 7.2). This behaviour appears to
be irrespective of the involved conduction band parameter V0 (see Fig. 7.7). Comparing
Fig. 7.6 to Fig. 7.7, we find that for a specific capping thickness, possible variation in V0
also considerably affects the threshold energy, exhibiting a larger value for a smaller V0,
contrary to the CSQD structure. This is due to the fact that although decreasing the V0
value results in lowering both the ground state and the first excited state energy levels, the
sensitivity of this decrease in these two energy levels turns out to be completely different
in the CSQD and ICSQD structures. In ICSQD, the decrease in the ground state energy
level with respect to the reducing of V0 is more significant, leading to a relatively larger
transition energy E21 for a smaller V0 value. However, in CSQD, this decrease favors more
the energy level of the first excited state, causing a reversed picture.

Finally, we present in Fig. 7.8 the linear, nonlinear and total absorption coefficients and
refractive index changes as a function of the photon energy for two doping positions, with
and without dielectric environment. It appears that varying the doping position from the
core center to the shell center causes a red shift of the threshold energy. However, the
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Figure 7.8: The same as in Fig. 7.4 but for ZnS/ZnO inverted core-shell quantum dots
(ICSQDs). The inner radius R1 = 1.5 nm and the shell thickness is Ts = 6 ML (R2 = R1 + Ts
= 3.0615 nm).

sensitivity of this shift with respect to the impurity locations is reduced by considering the
dielectric environment (see Fig. 7.8). Additionally, the peak intensity of the absorption
coefficients and the changes in the refractive index are differently influenced by the doping
position in the two dielectric environments. In a dielectrically homogeneous system, the
displacement of the impurity from the on-center position to an off-center position leads to
an increase in the peak intensity of the linear and nonlinear quantities. Similar behaviour
has been found in the CSQD and the corresponding physical reasons can be understood
analogously. However, when the dielectric environment effect is present, the magnitudes of
all the quantities are reduced significantly, very similar to that in the conventional CSQD
systems (see Fig. 7.4). In contrast to this consistency, displacing the on-center impurity
to an off-center position in the unconventional systems decreases the peak intensity of
all the absorption coefficients and reduces all the changes in the refractive index. This is
associated with the decrement in both the transition energy (e.g., E21) and matrix element
(e.g., |M21|).

7.4 Brief summary

In summary, we have performed a theoretical study on the linear, nonlinear and total
absorption coefficients and refractive index changes associated with the intersubband
transitions in both WZ ZnO/ZnS CSQD and ZnS/ZnO ICSQD. The influence of the shell
thickness, impurity and dielectric environment has been addressed. The necessary wave
functions and corresponding energy levels are numerically calculated by using potential
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morphing method (PMM) in the framework of effective mass approximation. We find
that in both CSQD and ICSQD, increasing the shell thickness causes a significant red
shift of the threshold energy and enhances drastically the nonlinear absorption coefficients
and all the changes in the refractive index. This shift appears to be very sensitive to
the initial capping and then becomes insensitive to the further capping if the shell layer
becomes comparatively thick. Similar red shift phenomenon has also been observed in the
most cases studied when the impurity is displaced from the core-center to the shell-center.
In all the cases investigated, further dispersing the systems into a matrix with a lower
dielectric environment blue shifts all the peak positions of the absorption coefficients and
refractive index changes. However, the corresponding magnitudes (in absolute value) are
substantially reduced. In the ICSQD, moving the core center impurity to the shell center
position even causes a slight decrease in all the absorption coefficients and refractive index
changes. Generally, the nonlinear terms are more sensitive to the external perturbations.
However, we found that at a relatively weak radiation intensity, the variation of the total
counterparts is completely dominated by the corresponding linear terms.

Our results also highlight prominently the importance of accurate determination of the
conduction band discontinuity parameter in WZ ZnO-ZnS hybrid systems. Possible
variation of this parameter appears to affect the tendency of the peak intensity of the
linear absorption coefficient with respect to the shell thickness in the conventional CSQD
structure and also the threshold energy of the absorption coefficient and refractive index
change in both CSQD and ICSQD structures. Despite of this, we believe that the present
results would be useful not only in the elucidation of the fundamental physics but also for
possible devices application based on ZnO/ZnS hybrid systems.
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Linear and nonlinear optical susceptibilities in
a laterally coupled quantum dot quantum ring
system
Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot-quantum-
ring system have been theoretically studied. In general, we find that the structure parameters
of the coupled system significantly affect the optical susceptibilities. The enhancement
of the coupling effects between the dot and ring is found to increase considerably the
optical susceptibilities and redshift drastically the transition energies. Comparing to the
linear susceptibility, the nonlinear optical susceptibility is found to be more sensitive to the
variation of the structure parameters. A comprehensive analysis of the electron probability
density movement with respect to the modification of the structure parameters is provided,
which offers a unique perspective of the ground-state localization. The results presented
herein are published in Physics Letters A 378, 2713 (2014).
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8.1 Introduction

Coupling between semiconductor quantum dots (QDs) forms so-called quantum dot
molecules (QDMs). This can be realized either by vertically stacking or by laterally aligning
the QDs in the same plane.171 Comparing to the traditional vertically stacking structure,
the degree of external control of individual QD within an array of laterally aligned QDMs
is believed to be larger. Laterally coupled QDMs are also found as peculiar candidates
for applications in quantum information science because of the potential to couple several
QDs scaling to form the first building block of a useful device.172–174 Due to these reasons,
plenty of efforts have been committed to study the optical proprieties of the laterally
coupled QDMs.174–179 On the other hand, quantum rings (QRs) have demonstrated unique
electronic, magnetic, and optical properties.180–182 For example, quantum phase coherence
effects on carrier transport, such as Aharonov-Bohm and Aharonov-Casher effects, have
been observed in QR structures,183,184 which have potential applications in quantum
information devices.185 Patterned QR magnetic tunnel junctions have shown superior
prospects for very high density magnetic random access memory, recording medium, and
other spintronic devices.186 High performance QR terahertz (THz) photodetectors have
been fabricated.187,188 Due to the relevance in potential device applications,189–191 the
studies of the nonlinear optical properties in semiconductor QRs have received great
attention.192–199 It is found that the potential geometry, size, alloys composition and the
external perturbations, such as applied electric and/or magnetic fields, hydrostatic pressure
et al. have significant influence on the optical nonlinearities in semiconductor QRs.

In this Chapter, we pay attention to the study of the linear and nonlinear optical suscep-
tibilities in a different geometry of lateral coupling, namely quantum-dot-quantum-ring
system (QDQR) in which a QD is surrounded by a QR with a tunneling barrier separating
both parts of the system. This system has been justified as a good candidate for the
realization of the magnetic field controllable pair of spin qubits which is necessary in
quantum computation.171 However, the optical properties, especially the nonlinear optical
properties, have rarely been studied in such a unique system. Furthermore, to the best of
our knowledge, the coupling effects, which appear in all types of coupled structures, on the
optical nonlinearities are not yet well understood. In the present work, the linear and non-
linear optical susceptibilities in a laterally coupled GaAs QDQR system are theoretically
investigated with an emphasis on the coupling effects between the dot and ring on these
quantities. The electronic structure calculations are performed via potential morphing
method (PMM)3 (see Chapter 1) in the framework of the effective mass approximation
(EMA), which has been successfully employed previously for the study of optical properties
in several nanostructures49,52 and very recently for the calculations of the nonlinear optical
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properties in ZnO-based QD systems.100,157 A detailed visualization of the variation in
the electron probability density of the ground-state and first-excited state with respect
to the changes in the structure parameters has been provided. The calculations of the
linear and nonlinear susceptibilities are realized by using our recently developed analytical
expressions for symmetric systems157 (see Chapter 6). In the following section, we define
our model and explain the general theory.

8.2 Theoretical framework

8.2.1 Electronic structure calculations

In the framework of EMA, an electron confined in a GaAs QDQR system can be modeled
by the following Hamiltonian:

Ĥ = p̂
1

2m∗e
p̂+ V (~r), (8.1)

where the first term is the kinetic term in which m∗e is the electron effective mass and the
second term is the confinement potential. Considering the fact that the thickness of the
QDQR along the growth direction (e.g., z-axis direction) is much smaller than the radial
dimensions, one can decouple the electron motion along the growth direction from that
along the in-plane direction and retain the analysis only the first state along the growth
direction. For simplicity but without the loss of generality, we consider a two-dimensional
QD (with the electron confined in the plane z = 0) placed within a QR. Experimentally,
local oxidation method with atomic force microscope can be used to realize a variety
of nanostructures on metals and semiconductors (cf. Ref. 200 and references therein),
including high-quality QDs201 and QRs.202 Therefore, the two-dimensional coupled QDQR
structure considered herein can be realized by employing this technique to produce both
a QD and a QR which coexist on a GaAs-AlGaAs heterostructure. The shape of the
confinement potential of an individual part (QD or QR) can be tuned via a suitable
choice of gate voltages.200 Consequently, the QD and QR confinement potentials do not
necessarily have the same depths. To model this coupled structure, we employ the following
confinement potential:

V (~r) = V (~ρ) = min[m∗eω2
dρ

2/2 + V0,m
∗
eω

2
r(ρ−R)2

/2], (8.2)
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where ~ωd and ~ωr are the confinement energies of the QD and the QR, respectively. The
radius of the QR is defined by the sum of oscillator lengths for the QD and QR potential
and the barrier thickness (BT ) according to the formula R =

√
2~/m∗eωd+BT +

√
2~/m∗eωr.

V0 is the depth of the dot confinement with respect to the bottom of the QR potential.
A view of the potential profile (detailed in Eq. (8.2)) is pictured in Fig. 8.1 for ~ωd = 6
meV, ~ωr = 12 meV, V0 = −5 meV, and BT = 10 nm. As shown in Fig. 8.1, the potential
appears to be parabolic within both the QD and the QR. This strictly cylindrically
symmetric potential have been adopted previously for the study of the electron spin and
charge switching in a coupled QDQR system.171 Similar potential has also been used
previously for the description of side by side QDs.203,204

Figure 8.1: Potential profile (in unit of meV) for a laterally coupled GaAs quantum-dot-
quantum-ring with the confinement energy of the dot ~ωd = 6 meV, the confinement energy
of the ring ~ωr = 12 meV, the depth of the dot confinement V0 = -5 meV and the barrier
thickness BT = 10 nm. The dot oscillator length ld =

√
2~/m∗eωd = 19.51 nm and the ring

oscillator length lr =
√

2~/m∗eωr = 13.798 nm, giving the ring radius R = 43.31 nm.

To calculate the eigenenergies and corresponding wave functions of Hamiltonian (8.1), which
are necessary for the calculations of optical susceptibilities, we employ potential morphing
method.3,49,52, 100,157 The reference system we used to start the morphing procedure is
the usual harmonic oscillator in two dimensions with well-known eigenfunctions. The
interaction potential is Vs = V (~r), as shown in Eq. (8.2).
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8.2.2 Optical susceptibility calculations

Within the two-level system approximation, the linear (χ(1)) and third-order (χ(3)) nonlinear
optical susceptibilities are give by157

χ(1) = Nµ2T2

~ε0ε2
eff

i− δT2

1 + δ2T 2
2
, (8.3)

χ(3) = −4Nµ4T1T
2
2

3~3ε0ε4
eff

i− δT2

(1 + δ2T 2
2 )2 . (8.4)

where N is the electron volume density in the QDQR system, ε0 is the permittivity in
vacuum, δ = ω−ω0 is the detuning of applied field from resonance, where ω0 = (Ej−Ei)/~
with Ei and Ej being the energy eigenvalues of the initial (ground) and final (first excited)
states which we obtained in the last subsection, respectively. T1 and T2 are the population
relaxation time and the dephasing time, respectively, µ is the transition matrix element
between the initial and final states which is defined as µ = −〈i|ex|j〉, where we assume that
the polarization of electromagnetic radiation is along the x-axis direction. εeff = 2εout+εin

3εout

is the local field factor due to the possible existence of the dielectric mismatch, where
εin is the dielectric constant of the QDQR material, and εout is the dielectric constant of
surrounding matrix material. As shown from the Eqs. (8.3) and (8.4), possible existence
of the dielectric mismatch (εin 6=εout) has significant influence on the linear and nonlinear
optical susceptibilities. This has also been addressed in more details in our previous
work regarding to the ZnO-based colloidal QD systems.100,157 However, we assume that
the GaAs coupled QDQR structures studied herein are obtained on a GaAs-AlxGa1−xAs
heterostructure with Al concentration x = 0.3,200 and the QDQR material GaAs and
the possible barrier material Al0.3Ga0.7As have closely matching dielectric constants (e.g.,
εin=εout and εeff=1).

8.3 Numerical results and discussion

In the linear regime, two characteristics of the linear and nonlinear optical susceptibilities
are of great importance. One is the photon energy at which the susceptibility reaches its
peak value, and the other one is the magnitude or the intensity of this peak. The analytical
expressions of the linear and nonlinear optical susceptibilities we employ herein offer us
the possibility to quantify these two characteristics. As indicated from Eq. (8.3), the real
part of the linear susceptibility χ(1) exhibits a standard dispersive lineshape, presenting
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firstly a maximum and then a minimum as the photon energy increases. These maximum
and minimum appear at the photon energy ~ω = E21 − ~/T2 and E21 + ~/T2, respectively,
where E21 is the transition energy. They are equivalent in the magnitude and defined
by the expression |χ(1)

Real,max| = Nµ2T2/(2~ε0). On the other hand, the imaginary part of
χ(1) displays a standard Lorentzian lineshape, presenting a maximum at photon energy
~ω = E21. This peak value is determined by |χ(1)

Real,max| = Nµ2T2/(~ε0). Comparing
to the linear counterpart, the real part of the nonlinear susceptibility χ(3), as indicated
from Eq. (8.4), shows an inverted dispersive lineshape, exhibiting firstly a minimum at
~ω = E21 − ~/T2 and then a maximum at ~ω = E21 + ~/T2 when the photon energy
increases. The intensities of these extremums are equivalent (in absolute value) which
are described by |χ(3)

Real,max| = 4Nµ4T1T
2
2 /(3~3ε0). As concerning the imaginary part of

χ(3), it is negative and presents a maximum (in absolute value) at the photon energy
~ω = E21 whose magnitude is determined by |χ(3)

Img,max| = Nµ4T1T
2
2 /(3~3ε0). It should be

noted here that the linear susceptibility χ(1) is a dimensionless quantity, while its nonlinear
susceptibility χ(3) is in unit of m2/V 2.

As shown above, the peak intensities of the linear and nonlinear optical susceptibilities
are dependent on the electron volume density N , the relaxation time T1, the dephasing
time T2 and the transition matrix element |µ|. However, in what follows, we focus on the
study of the influence of the structure parameters of the coupled QDQR system, such as
the confinement energy of the ring (or the dot), the depth of the dot confinement relative
to the bottom of the QR potential and the tunneling barrier thickness, on the transition
energy (i.e., E21) and the peak values of the linear and nonlinear susceptibilities. The
relevant parameters used in our calculations for GaAs QDQR systems are: m∗e = 0.0667m0
(m0 is the free electron mass), N = 3×1016 cm−3[Ref. 199], T1 = 1 ps and T2 = 0.2 ps,205
respectively. The influence of the volume density N or the dephasing time T2 on the optical
nonlinearities in semiconductor nanostructures have been addressed in the literature and
can be found in Refs. 206 and 128.

Firstly, in order to study the dependence of the the linear and nonlinear susceptibilities
on the relative strength of the dot and ring confinement, we define a parameter γ =
(~ωr)/(~ωd). Large γ corresponds to a narrower (wider) path for the electron to transverse
in the ring (dot) part of the QDQR and vice versa. The calculations are based on QDQRs
with equal depth of the dot and ring (i.e., V0 = 0). We start our calculations with a ring
confinement energy ~ωr = 3 meV which is only a half of its dot counterpart (γ = 0.5, cf.
Fig. 8.2). It appears that the ground state is almost purely ring-localized state (see the
upper plot of the first column in Fig. 8.3). This can also be justified by its energy, i.e.,
E = 1.42 meV, which is pretty close to the ground state energy of the single-dimensional
harmonic oscillator in the radial direction (i.e., ≈ ~ωr/2 = 1.5 meV). As γ increases (the
ring confinement energy increases), the oscillator length of ring decreases and the wave
functions gradually penetrate through the central tunneling barrier into the dot part (cf.
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Figure 8.2: (a) The ground-state (blue solid square), first excited state (red solid diamond)
energies and transition energy (inset) as a function of γ. (b) The maximum values (in absolute
value) of the real (red solid sphere) and imaginary (black solid square) parts of the linear and
nonlinear (inset) susceptibilities as a function of γ. Here, γ = (~ωr)/(~ωd) where ~ωr and
~ωd are the confinement energies of the dot and ring, respectively. ~ωd = 6 meV, V0 = 0 and
BT = 10 nm.

Fig. 8.3). Consequently, both energies of the ground state and the first excited state
increase as shown in Fig. 8.2(a). However, comparing to the ground state energy, the
energy of the excited state turns out to be more sensitive to the variation of γ. This
results in a substantially increase in the transition energy (cf. the inset of Fig. 8.2(a)). For
~ωr>3~ωd = 18 meV (γ = 3), we find that the ground state is nearly purely dot-localized
state (cf. Fig. 8.3) and its energy approaches to the ground state energy of an isolated
QD, i.e., E = V0 + ~ωd = 6 meV (see the dashed line in Fig. 8.2(a)). As regards the first
excited state, the density movement towards the dot part of QDQR appears to be slower
in comparison to its ground state counterpart.

Figure 8.3: Electron probability densities of the ground state (the upper panel) and the first
excited state (the lower panel) in QDQRs with various confinement energy values of the ring
~ωr. From the leftmost to the rightmost columns are for ~ωr = 3 meV, 12 meV, 18 meV, 30
meV, respectively. Here, the depth of the dot (V0), the confinement energy of the dot (~ωd)
and the barrier thickness (BT ) are the same as in Fig. 8.2.
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At the meantime, the aforementioned penetration of both the ground-state and first
excited-state wave functions into the dot part of the QDQR system also causes a decrease
in the transition matrix element |µ|. This in turn leads to a decrease in the maximum
values of the real and imaginary parts of both linear and nonlinear susceptibilities (in
absolute value, cf. Fig. 8.2(b)). Comparing the linear susceptibility (e.g., |χ(1)

max|), the
maximum value of its nonlinear counterpart (e.g., |χ(3)

max|) is found to be more sensitive to
the variation of the relative strength of the dot and ring confinement (as characterized by γ).
This is related to the fact that |χ(3)

max| is more dependent on the transition matrix element
(e.g., |χ(3)

max|∝|M21|4, while |χ(1)
max|∝|M21|2 ). We further find that for a given quantity

(linear or nonlinear susceptibility), the imaginary part exhibits a stronger dependence on
γ in comparison to its real analog (cf. Fig. 8.2(b)). All the maximum values appear to be
insensitive to the further increase in γ when γ≥3 (~ωr≥18 meV).

Figure 8.4: (a) The ground-state (black solid square), first excited state (red solid sphere)
energies and transition energy (inset) as a function of the depth of dot confinement relative to
the bottom of the QR potential V0. (b) The maximum values (in absolute value) of the real
(solid spheres) and imaginary (solid squares) parts of the linear (red lines) and nonlinear (blue
lines) susceptibilities as a function of the depth of dot confinement. Here, BT = 10 nm and
~ωd = ~ωr = 12 meV.

To proceed our calculations, we turn our attention to study the influence of the depth
of dot confinement relative to the bottom of the QR potential (e.g., V0) on the optical
susceptibilities in coupled QDQRs with the dot and ring having the same confinement
energies (e.g., ~ωd = ~ωr = 12 meV). For a dot with very deep confinement (e.g., V0 = −12
meV), the ground-state is almost purely dot-localized state with an energy (= −0.1 meV)
approaching to the ground-state energy of an isolated QD (≈V0 + ~ωd = 0 meV, cf. Fig.
8.4(a)). As V0 increases, both the ground-state and first excited-state wave functions leak
gradually from the dot part to the ring part of the QDQR (cf. Fig. 8.5). This causes
an increase in both the ground-state and first excited-state energies (cf. Fig. 8.4(a)).



8.3. Numerical results and discussion 101

Figure 8.5: Electron probability densities of the ground state (the upper panel) and the first
excited state (the lower panel) in QDQRs with various depths of the dot confinement relative
to the bottom of the QR potential V0. From the leftmost to the rightmost columns are for
V0 = −12 meV, −3 meV, 3 meV, 12 meV, respectively. Here, the confinement energies of the
dot (~ωd) and the ring (~ωr), and the barrier thickness (BT ) are the same as in Fig. 8.4.

However, the ground state exhibits a significantly stronger dependence on the increase of
V0, experiencing a quick increase in the corresponding energy as V0 enhances. Conversely,
the variation of V0 on the first-excited state is practically marginal and only a slight
increase in its energy is observed (cf. Fig. 8.4(a)). As a consequence, the transition energy
decreases as V0 increases (see the inset of Fig. 8.4(a)). We further find that for V0≥−3
meV which is a quarter of the dot (or ring) confinement energy (in absolute value), both
energies (ground-state and first excited state) are insensitive to the further increase in V0.
The ground-state becomes a nearly purely ring-like state (see the upper panel of Fig. 8.5)
and its energy approaches to the ground-state energy of the single-dimensional harmonic
oscillator in the radial direction (≈1

2~ωr = 6 meV, see Fig. 8.4(a)).

The leakage of the wave function from the dot part to the ring part also causes a
significant increase in transition matrix element |µ|. This resultantly leads to a considerable
enhancement of the maximum values of the linear and nonlinear susceptibilities (both
real and imaginary parts, cf. Fig. 8.4(b)). Similarly to what we have found previously,
the maximum value of the nonlinear susceptibility, especially that of the imaginary part,
appears to be more sensitive to the variation of V0. For V0≥−3 meV, the maximum values
of all the quantities are insensitive to the increase in V0 (see Fig. 8.4(b)).

Finally, we study the coupling effects between the dot and ring on the optical susceptibilities
in a laterally coupled QDQR structure. In the strong coupling limit (e.g., BT = 5 nm), the
ground state is a dominant dot-localized state, having an energy (= 0.76 meV) very close
to the ground-state energy of an isolated QD (≈V0 + ~ωd = 1 meV, cf. Figs. 8.6(a) and
8.7). As the barrier thickness increases, the ground-state energy increases slightly (cf. Fig.
8.6(a)), while its first excited counterpart appears to be more energetically dependent on
the central barrier thickness, experiencing a faster increase in its energy. Consequently, as
shown in Fig. 8.6(a), the transition energy is an increasing function of the barrier thickness.
For BT≥25 nm, both the ground-state and first excited-state energies are insensitive to
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quantum dot quantum ring system

Figure 8.6: (a) The ground-state (black solid square), first excited state (red solid sphere)
energies and transition energy (inset) as a function of the barrier thickness BT . (b) The
maximum values (in absolute value) of the real (solid spheres) and imaginary (solid squares)
parts of the linear (red lines) and nonlinear (blue lines) susceptibilities as a function of the
barrier thickness BT . Here, ~ωd = 6 meV, ~ωr = 12 meV and V0 = −5 meV.

the further increase in the barrier thickness and a decoupling phenomenon is observed
(cf. Figs. 8.6(a)). We also find that the ground-state wave function is more localized
towards the dot center (see the upper panel of Fig. 8.7), whereas the first excited state
one turns out to move away from the dot center (see the lower panel of Fig. 8.7) when
BT increases. Therefore, the overlap between these two wave functions decreases and the
transition matrix element |µ| reduces considerably as the coupling effects become less
significant. This eventually causes a drastic decrement of the maximum values of all the
optical susceptibilities (cf. Fig. 8.6(b)). At the meanwhile, we find that in comparison to
the linear susceptibility, its nonlinear analogue is more sensitive to the coupling effects,
while for a given quantity, the imaginary part demonstrates a stronger dependence on the
coupling effects than the real part.

Figure 8.7: Electron probability densities of the ground state (the upper panel) and the
first excited state (the lower panel) in QDQRs with various values of central barrier thickness
BT . From the leftmost to the rightmost columns are for BT = 5 nm, 15 nm, 20 nm, 30 nm,
respectively. Here, the confinement energies of the dot (~ωd) and the ring (~ωr), and the
depth of the dot confinement (V0) are the same as in Fig. 8.6.
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8.4 Brief summary

In summary, we have theoretically studied the influence of the structure parameters, such
as the relative strength of the dot and ring confinement, the depth of the dot confinement
relative to the bottom of the QR potential and the central tunneling barrier thickness,
on the linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot-
quantum-ring (QDQR) system. A simple model for the potential, which assumes parabolic
confinement in both the dot and the ring, is adopted. We employ the potential morphing
method (PMM) in the framework of the effective mass approximation for the electronic
structure calculations. It is found that the ground electron state can be changed from
a nearly pure dot-localized state to a nearly pure ring-localized state or vice versa by
suitably choosing the structure parameters (e.g., the ring (or dot) confinement energy
and/or the depth of the dot confinement). However, this can not be realized by modifying
the coupling effects which have a strong influence primarily on the shape and energy of the
excited state counterpart. The significant modification appeared in the electronic structure
through controlling the structure parameters eventually leads to a considerable influence
on the optical susceptibilities in such a coupled structure. A significant blue shift of the
transition energy is observed when the relative strength of the dot and ring confinement
and/or the central barrier thickness are enhanced. Conversely, a red shift is found when
the depth of the dot confinement increases. For the confinement energy of the ring larger
than a critical value (around three times of the confinement energy of the dot), all the
maximum values of the optical susceptibilities appear to be insensitive to the increase
in the confinement energy of the ring. Similar behaviour has also been observed for the
variation of the maximum values with respect to the depth of the dot confinement. The
enhancement of the coupling effects turns out to have a significantly positive contribution
on the linear and nonlinear optical susceptibilities. Finally, we find that the nonlinear
optical susceptibility is more sensitive to the modification of the structure parameters in
comparison to its linear counterpart, while for a given quantity, its imaginary part always
exhibits a stronger dependence on the change in the structure parameters than the real
part.
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9
Background Theory
The envelope function and effective-mass approximations, which have been discussed and
applied in many interesting systems previously, allow many of the most fundamental
properties of semiconductor and their nanostructures to be explained. However, it would
be worthwhile considering more complex models to bring up more physical insights. In this
chapter, we describe the general pseudopotential theory with an emphasis on the plane wave
empirical pseudopotential method which we will employ for the calculations of the electronic
structure of several realistic systems in the following few chapters. The configuration
interaction approach which is used for studying the excitonic effects in these systems is
also described.
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9.1 Plane wave expansion

One of the crucial points of any electronic structure method is to select a set of basis
functions so that the wave function of the system under consideration can be represented as
a linear combination of these basis functions. The choice of the basis functions is generally
strongly relevant to the accuracy of the results and also the computational efficiency. In
quantum chemistry and/or computational physics, the most widely used basis sets are: (i)
Slater (i.e., exp(α|r|)), (ii) Gaussian (i.e., exp(−αr2)), (iii) plane wave. In addition to these
widespread basis sets, there are also some other basis sets which are less popular, such as
numerical basis sets, discrete variable representations, wavelets, non-orthogonal generalized
Wannier functions and so on. In what follows, we will discuss in details about the simplest
complete and orthonormal basis set, the plane wave basis set, which is employed in our
work.

In principle, the single electron wave function of a crystal ψn(k, r) can always be expanded
by the plane wave exp[i(k + G) · r], where k is the wave vector and G is the reciprocal
lattice vector. That is,

ψn(k, r) = 1√
NΩc

∑
G
cn(k,G) exp[i(k + G) · r], (9.1)

where 1√
NΩc

is the normalization constant and Ωc is the volume of the primitive cell. For a
given expansion, an infinite number of G is generally needed to ensure the completeness.
However, the Fourier coefficients cn(k,G) decreases with increasing in G. Therefore, the
expansion can be reasonably truncated at an energy cutoff Ecut, which is ~2

2m |k+G|2<Ecut.

The advantages of the plane wave basis set are:

1. The convergence with respect to the completeness of the basis set can be easily
checked by controlling only one parameter, i.e., Ecut,

2. Due to the orthonormality of the basis set, the Kinetic term of the single electron
Hamiltonian is diagonal in reciprocal space. The wave functions can be effectively
transformed between the real space and the reciprocal space by using the fast Fourier
transformation (FFT). Consequently, the calculations are significantly speeded up.

3. The basis set is atom position independent. This largely simplifies the calculations of
the forces on the atoms and the stresses on the unit cell, which can be done directly
via the Hellmann-Feynman theorem without applying Pulay corrections207 for the
site-dependence of the basis set.



9.2. Orthogonalized plane wave method 109

9.2 Orthogonalized plane wave method

There is a large number of crystals whose electronic states can be separated into two
classes: (i) inner states (core states), which are very localized spatially and very deep in
energy; (ii) outer states (valence and/or conduction states), which are spread out spatially
and at higher energy. The use of the plane wave expansion of all the electron states fails
on the description (with a reasonable number of plane waves) of the strongly localized core
states. Herring208 proposed a solution to this problem: describing the core states by Bloch
sums built from localized orbitals and the valence and/or conduction states by plane waves
orthogonalized to the core states. Orthogonalized plane waves can be effectively used to
describe the itinerant states, since they are atomic-like and very close to the nuclei where
the crystal potential is atomic-like, while the plane waves can describe the interstitial
regions, where the crystal potential is smooth. This is the so-called orthogonalized plane
wave (OPW) method.

We assume that the core wave function 〈φc(k, r)| is the summation of all the core Bloch,

|φc(k, r)〉 = 1√
N

∑
R

exp(ik ·R)ϕc(r−R). (9.2)

This wave function is not the eigenfunction of the crystal Hamiltonian Ĥ. However, we
enforce that it is the eigenfunction of the crystal Hamiltonian Ĥ and satisfies the following
Schrödinger equation

Ĥ|φc(k, r)〉 = Ec|φc(k, r)〉. (9.3)

We define the OPW |χk+G〉 as

|χk+G〉 = |k + G〉 −
∑
c
|φc(k, r)〉〈φc(k, r)|k + G〉, (9.4)

where |k + G〉 represents the plane waves and the summation in the second term on the
right hand side covers all the inner states. It can be justified that

〈φc(k, r)|χk+G〉 = 0. (9.5)

We now expand the crystal wave function |ψk〉 by using the OPWs |χk+G〉:

|ψk〉 =
∑
G
cG(k)|χk+G〉. (9.6)
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One can get the following secular equation by using the standard variational procedures
on the coefficients of the expansion cG(k),

det|〈χk+G′ |Ĥ|χk+G〉 − Ek〈χk+G′ |χk+G〉| = 0. (9.7)

The lowest eigenvalue of (9.7) corresponds to the lowest (valence or conduction) crystal
eigenstate. If one uses the expression (9.4), the secular equation (9.7) can be written in an
alternative but perfectly equivalent form,

det|〈k + G
′
| − ∇2 + V (r) + V (rep)|k + G〉 − EkδG′G| = 0, (9.8)

where Ĥ = −∇2 + V (r) is the crystal Hamiltonian and the operator V (rep) is defined as,

V (rep) =
∑
c

(Ek − Ec)|φc(k, r)〉〈φc(k, r)|. (9.9)

The operator V (rep), as defined in (9.9), is a non-orthodox operator, which is energy-
dependent and non-local; qualitatively, it can be interpreted as a repulsive potential
produced by the presence of the core states.209

In general, the OPW method has reasonable rapid convergence and in the expansion, a
number of ten to hundred OPWs are sufficient.209 As pointed out previously, the core wave
function |φc(k, r)〉 is not the eigenstate of the crystal Hamiltonian. However, in OPW
method, this is enforced to be valid. Within this approximation, the calculated energy is
systematically smaller than the true energy. This problem essentially leads to a significant
limitation of the applications of the OPW method.

9.3 Pseudopotential method

9.3.1 The derivation of the pseudopotential

The concept of pseudopotentials was proposed by Fermi210 to study high-lying atomic
states. Later on, Hellman introduced the pseudopotentials for the calculations of the
energy levels of the alkaline molecules and its hydrides.211 The usage of pseudopotentials
did not become wide spread until the late 1950s, when the activity in the area of condensed
matter physics began to accelerate. The pseudopotential method is based on the previously
discussed OPW method. The basic idea of the OPW method is to exploit the presence
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of the core states for the determination of the valence and conduction energy bands, both in
the core regions and outside the core regions. While, the basic idea of pseudopotential
method is to get rid of the core states, by replacing the strong crystalline potential
with a weak pseudopotential, which is sufficient for the determination of the valence and
conduction energy bands. The pseudo wave functions are required to represent the genuine
crystalline wave functions only outside the core regions, without worrying about the
smoothing occurring inside the core regions.

In OPW method, the valence and conduction states are obtained solving the secular Eq.
(9.8). The effect of the energy-dependent non-local orthogonalization terms in equation
(9.8) is to cancel (to large extent) the true all-electron crystal potential V (r) just in the
core region, where V (r) is particularly strong. From this, the hope arises that the effective
potential (true potential plus orthogonalization terms) in Eq. (9.8) can be mimicked by
an appropriate weak pseudopotential V (pseudo), smoother than the true potential V (r)
within the core region, and equal to it outside the core region. Following this idea, the
pseudopotentials will be introduced as the following.

ψC and ψV represent respectively the true valence and core wave functions corresponding
to the crystal Hamiltonian Ĥ with eigenvalues EV and EC . They satisfy the following
Schrödinger equations,

Ĥ|ψV 〉 = EV |ψV 〉, (9.10)

and
Ĥ|ψC〉 = EC |ψC〉, (9.11)

respectively. Similarly to the OPW method, we now define the valence wave function of
the crystal,

|ψV 〉 = |ψpsV 〉+
∑
C

µCV |ψC〉. (9.12)

Unlikely to the OPW method, the |ψC〉 is the true core wave function. Using the
orthogonality condition 〈ψC |ψV 〉 = 0, the coefficient µCV can be obtained as following,

µCV = −〈ψC |ψpsV 〉. (9.13)

If |ψpsV 〉 is applied by the operator Ĥ − EV , one can get,

(Ĥ − EV )|ψpsV 〉 = (Ĥ − EV )(|ψpsV 〉+
∑
C

µCV |ψC〉)

= (Ĥ − EV )
∑
C

|ψC〉〈ψC |ψpsV 〉

=
∑
C

(EC − EV )〈ψC |ψpsV 〉. (9.14)
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Making some arrangements on the above equation, the following equation can be ob-
tained,

[Ĥ +
∑
C

(EV − EC)|ψC〉〈ψC | − EV ]|ψpsV 〉 = 0. (9.15)

If one uses,
Ĥ = T̂ + V̂ , (9.16)

and defines,
V ps = V̂ +

∑
C

(EV − EC)|ψC〉〈ψC |, (9.17)

The equation (9.15) can be re-written as the following,

[T̂ + V ps]|ψpsV 〉 = EV |ψpsV 〉, (9.18)

where T̂ is the Kinetic operator, V ps is the pseudopotential, and (9.18) is the pseudopo-
tential Schrödinger equation.

9.3.2 Basic properties of pseudopotential

As one can see from (9.17), the pseudopotential is made of two terms. One is the positive
attractive term V̂ , and the other one is the negative repulsive term ∑

C(EV −EC)|ψC〉〈ψC |.
The summation of these two terms leads to a weak and smooth potential. It should be
noted here the although |ψpsV 〉 is the pseudo wave function, the obtained eigenenergies by
solving the corresponding Schrödinger equation (9.18) are not the pseudo energies, but
the true eigenenergyies EV of the valence states.

The pseudopotential at this point is non-local. It can be written as the following,

V ps(r, r
′
) = V ps

L (r)δ(r− r
′
) + V ps

NL(r, r
′
), (9.19)

where the first term on the right-hand side of the above equation V ps
L (r) = V , which

is local, and the other term V ps
NL = ∑

C(EV − EC)|ψC〉〈ψC |, which contains the core
states and is non-local. The non-local term V ps

NL is generally not unique, since (EV −
EC) can be arbitrarily replaced. This property will be used for the generation of the
pseudopotential. There are several ways to construct the pseudopotentials. One of
them is the so-called norm-conserving pseudopotentials (NCPPs), which were introduced
by Hamann, Schlüter, Chiang212 in 1979, which are based on the ab initio atomic
calculations. These pseudopotentials have to meet the following conditions:212 (i) real and
pseudo valence eigenvalues agree for a chosen prototype atomic configuration; (ii) real
and pseudo atomic wave functions agree beyond a chosen core radius rc; (iii) the integrals
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from 0 to r of the real and pseudo charge densities agree for r > rc for each valence
state (norm conservation); (iv) the logarithmic derivatives of the real and pseudo wave
functions and their first energy derivatives agree for r > rc. Atoms with strongly oscillating
pseudo wave functions generally produce hard NCPPs. More plane waves are required
in the calculations. However, the transferability of the pseudopotentials is better and
can be used in different chemical environments. On the other hand, larger core radius
means better softness of the pseudopotential, but worse transferability. The common
procedures of generating such type of pseudopotentials can be found in Refs. 212–216.
Generally, the NCPPs remain hard for the first row elements (particularly, N, O, F) and
for transition metals (particularly, Cr, Mn, Fe, Co, Ni). More plane waves are needed in
the relevant calculation, even if only one atom is hard. This leads to large CPU and RAM
requirements.

Ultrasoft pseudopotentials (USPPs) are devised to overcome the above mentioned problems.
This type of PPs were introduced by Vanderbilt217 in 1990 in order to allow calculations
to be performed with the lowest possible cutoff energy for the plane wave basis set. For
this type of pseudopotentials, they must meet the following properties:217 (i) it takes
the form of a sum of a few separable forms; (ii) it becomes local and vanishes outside
the core; (iii) the scattering properties and their energy derivatives are, by construction,
correct at several energies spanning the range of occupied states, and the transferability
can be systematically improved by increasing the number of such energies; (iv) the norm-
conserving constraint is removed so that the pseudopotential can be constructed in such
a way as to optimize smoothness; (v) the pseudopotential itself becomes involved in the
self-consistent screening process, thereby improving transferability with respect to changes
in the charge configuration. The procedures of constructing this type of pseudopotentials
can be found in Refs. 217,218.

The previously discussed two ways of constructing pseudopotentials, where the interaction of
the valence electrons has been taken into account explicitly, have been very successful in the
modern ab initio calculations. There is also another way of constructing pseudopotentials
which includes of the interaction of not only the valence electrons but of all the electrons,
that is, empirical pseudopotential method. The details of this method will be outlined in
the following section.

9.3.3 Empirical pseudopotential method

The empirical pseudopotential method (EPM) was developed in 1960’s219–221 to solve the
Schrödinger equation of the bulk crystal without knowing exactly the potential experienced
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by an electron in the lattice. The pseudopotential Hamiltonian for an electron in the
crystal can be written as the following,

Ĥ = − ~2

2m0
∇2 + V (r), (9.20)

where the first term is the Kinetic term and the other term is the effective crystal potential.
The first assumption of EPM is that V (r) can be written as a summation of the atom-
centered pseudopotentials,

V (r) =
∑
α,j,n

vα(r−Rn − rα,j), (9.21)

where n is the index for the primitive unit cells, Rn is the corresponding lattice vector, α
represents the atom type, j is the atom index. rα,j is the basis vector of atom j of type α.
We start with the simplest case where the crystal is consisted with only one type of atoms
(e.g., Si). V (r) can be expanded in reciprocal lattice vector G and can be expressed as the
product of a structure factor S(G) times a pseudopotential form factor v(G) as in the
following equation,

V (r) =
∑
G
v(G)S(G) exp (iGr). (9.22)

The structure factor S(G) in the above equation is

S(G) = 1
n

∑
j

e−iGrj . (9.23)

The structure factor only depends on the geometry and the form factor is treated in the
EPM as disposable parameters.222 The cubic semiconductors of the diamond structure
(e.g., Si, Ge) have the face-centered cubic (fcc) structure with two atoms per unit cell. We
take the origin to be halfway between these two atoms, whose posisions are donated by r1
and r2, so that r1 = a0(1

8 ,
1
8 ,

1
8) = τ , and r2 = −τ , where a0 is the length of the unit cube.

In this case, the structure factor S(G) in (9.23) is simplified as

S(G) = cos (G · τ). (9.24)

It has been proved that for Si and most conventional IV, and III-IV semiconductors
the potential V (G) becomes week for reciprocal vectors larger than |G|2 = 11(2π

a0
)2.223

Therefore, it could be a reasonable approximation to truncate the expansion at this
point (e.g., |G|≤11 (in unit of 2π

a0
)). The first five reciprocal lattice vectors have squared

magnitudes of 0, 3, 4, 8, and 11 (in unit of (2π
a0

)2), which are corresponding to G =
{0, 0, 0}, {1, 1, 1}, {2, 0, 0}, {2, 2, 0}, {3, 1, 1} (in unit of 2π

a0
), respectively. If one takes a

look on the results of G · τ , it is very easy to find out that only three of these five G give
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non-zero structure factors. They are G = {1, 1, 1}, {2, 2, 0}, {3, 1, 1}. It should be noted
here that the structure factor for G = {0, 0, 0} is kept as zero, since it merely adds a
constant value to all the energy levels. If v(r) is assumed to be spherically symmetric
and the form factor takes v(G), only three different form factors remain. They are
v(G = {1, 1, 1}), v(G = {2, 2, 0}), and v(G = {3, 1, 1}), respectively. These three form
factors are then treated as adjustable parameters to reproduce the well-known experimental
quantities of the crystal, such as the band structure. Consequently, this method is named
as EPM. Initially, this method was used successfully both to obtain very accurate band
structures224–227 for Si and Ge, and also to interpret optical experiments.228 It was soon
extended by Cohen and Bergstresser223 with great success for the determination of the
band structures and pseudopotential form factors for fourteen semiconductors of the
diamond and zinc-blende structures. The band structures of most semiconductors can be
fitted accurately by using such a procedure giving us the hint that a local potential V (r)
can used as a mean field to describe the complex many-body electron interactions in the
crystal.222

The emphasis of the present Thesis is to investigate the electronic structures of the
nanostructures by employing the EPM. However, this requires a continuous form of v(G)
rather than few discrete points of v(G) in the traditional EPM.229,230 The continuous
empirical pseudopotential in the reciprocal has been introduced by Wang and Zunger229
as,

vEPM(q) = a1(q2 − a2)
a3ea4q2 − 1 , (9.25)

where a1, a2, a3, and a4 are fitting parameters, or it is introduced by Mäder and Zunger230
as a linear combination of N Gaussains, i.e.,

vEPM(q) =
N∑
i=1

aie
−ci(q−bi)2

, (9.26)

where ai, bi, and ci are the fitting parameters. Using a specific type of continuous empirical
pseudopotential, the crystal potential V (r) can be obtained as a superposition of the
atomic pseudopotentials as detailed in equation (9.21). Once the crystal potential is
calculated, we solve the following Schrödinger equation,

{− ~2

2m0
∇2 + V EPM(r) + V̂ SO}ψi(r) = εiψi(r), (9.27)

where V̂ SO is the non-local spin-orbit operator which is,222,231,232

V̂ SO =
∑
iα

V̂ SO
α (Ri) =

∑
iα

∑
lm

V SO
l,α (r−Ri)|Plm(Ri)〉L ·S〈Plm(Ri)|, (9.28)
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where ∑ |Plm(Ri)〉〈Plm(Ri)| is a projector of angular momentum lm centered at the atomic
position Ri, L is the spatial angular momentum operator, S is the spin operator with
components given by Pauli matrices, and V SO

l,α (r) is a potential describing the spin-orbit
interaction. The functional form of V SO

l,α (r) was set to a Gaussian and only the effect of
p states (l = 1) was included in the most recent works.233,234 Practically, this approach
leads to only one free spin-orbit parameter for each atom type α. At this point, the
free parameters in the pseudopotential and the free parameter in the non-local spin-orbit
operator are fitted to reproduce the well-known experimental quantities such as the energy
gaps at high symmetry points of the Brillouin zone, the effective masses at different bands
at different k points and along different reciprocal space directions, the surface work
function, the spin-orbit and/or crystal field parameters.

If the optimized parameters of the pseudopotentials are found for a specific material
(e.g., ZnO or ZnS), one can move the attentions to the calculations of the electronic
and optical properties of the nanostructures of this material, such as quantum dot (QD),
nanorod (NR), and nanowire (NW). The nanostructures are cut from the corresponding
bulk material with desired shape or cross section. In this case, the atoms at the surface of
the nanostructure have dangling bonds. As is well-known, the existence of these dangling
bonds generates electronic states localized at the surface, with energies usually in the
gap of the semiconductor.235,236 These states can have energies close the conduction and
valence band edges, and can include an artificial modification of the conduction and valence
band states.237–239 Therefore, they should be eliminated. In the literature, there are two
ways to passivate the surface dangling bonds of the nanostructure:

1. embed the structure inside an artificial ligand material. This artificial material
has the same structure as the nanomaterial except a larger band gap. This way of
saturating the surface dangling bonds of the nanostructure has been successfully
adopted previously for the study of the electronic and optical properties of wurtzite
CdSe QDs.235,240

2. passivate the surface dangling bonds with pseudo-hydrogen atom, displacing the
energies of the surface states far from the band gap.241–243

In our calculations, we prefer the first way. The pseudopotentials of the artificial material
are generated in the same way as the nanomaterial. Once all the empirical pseudopotentials
of the nanomaterial and the artificial material are obtained, the crystal potential can be
calculated according to Eq. (9.21).
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9.4 Solve pseudopotential Schrödinger equation

Now, with the crystal potential V (r) specified, the next task is to solve the pseudopotential
Schrödinger equation,

{− ~2

2m0
∇2 + V (r)}ψ(r) = Eψ(r). (9.29)

Essentially, there are two ways of solving the equations: (i) direct diagonalization method,
(ii) folding spectrum method (FSM). In the following two subsections, these two methods
will be discussed.

9.4.1 Direct diagonalization method

We expand the unknown wave function ψ(r) by using the plane wave basis set according
to the expression (9.1). Substituting ψ(r) with (9.1) and then multiplying both sides
exp [−i(k + G′) · r], one can obtain the following equation by making an integration over
the crystal, ∑

G
{[(k + G)2 − En(k)]δGG′ + V (G

′
−G)}cn(k,G) = 0, (9.30)

where
V (G

′
−G) = 1

NΩc

∫
dr exp[−(G

′
−G) · r]V (r), (9.31)

is the Fourier coefficient of V (r).

The expression specified in Eq. (9.30) is zero when each term in the sum is identically
zero, which implies the following equation,

[(k + G)2 − En(k)]δGG′ + V (G
′
−G) = 0. (9.32)

The eigenvalue problem can be written in a familiar form Hψ = Eψ, where H is a
matrix, ψ is a column vector representing the coefficient cn(k,G), and E is the eigenvalues
corresponding to the matrix H. The diagonal matrix elements of matrix H is (k + G)2 for
G = G′, while the off diagonal matrix elements are V (G′ −G) for G 6= G′. The solution
to the energy eigenvalues and corresponding eigenvectors can be found by diagonalizing
the matrix H, thus giving the name of the method direct diagonalization method. In this
method, the number of reciprocal lattice vectors G or G′ employed determines both the
matrix size and the accuracy of the results.
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9.4.2 Folding spectrum method

In most of the modern electronic structure calculations, people generally solve the effective
single-particle Schrödinger equation, Ĥψi = εiψi, for all the occupied wave functions ({ψi})
and corresponding eigenenergies ({εi}). This is indeed necessary for the case that for a
given problem, the potential V (r) and the atomic positions are not known in advanced
and they have to be obtained from the solution of all the occupied states. To achieve
this purpose, the conventional variational method is employed, which is to minimize
〈ψ|Ĥ|ψ〉/〈ψ|ψ〉 by varying the coefficients of the basis functions, to obtained the lowest
eigenenergy and corresponding eigenfunction. To find a higher energy state, one needs
to orthogonalize this state to all the energy states below it. The computational efforts
required by the above mentioned way scale as approximately N3 where N is the number of
atoms in the system. This way can not be applied for the system containing more than 1000
atoms, depending on the available computational power and level of approximations.

If one’s aim is to find very limited states on either side of the gap which determines
most of the properties related to excitations, the above mentioned way appears to be
very insufficient. In 1994, Wang and Zunger244 proposed a way of solving the effective
single-particle Schrödinger equation around a desired energy, that is, folding spectrum
method (FSM). The central idea of the this method is that the eigenfunctions {ψi} and
eigenenergies {εi} of the Schrödinger equation, Ĥψi = εiψi, also satisfy,

(Ĥ − εref )2ψi = (εi − εref )2ψi. (9.33)

The lowest solution of Eq. (9.33) is the eigenstate with εi closest to εref . By putting the
εref in the physically interesting range, one transforms an arbitrarily highest eigensolution
to the lowest one, obviating the need for orthogonalization.244 For example, if one places
εref in the energy band gap of a semiconductor nanostructure, the minimization of
〈ψ|(Ĥ − εref )2|ψ〉/〈ψ|ψ〉 results either the highest molecular orbital (HOMO) state or the
lowest molecular orbital (LUMO) state, depending on which is closer to εref . This method
was initially applied for silicon QDs, giving very satisfactory precision of the results.244
However, the computational efforts involved scale only linearly with the system’s size,
thus enabling calculations of band gap properties in mesoscopic systems. For example,244
for Si1315H460 QDs, the actual CPU time consumed for the calculation of the band gap by
employing the conventional method (e.g., solving Schrödinger equation, Ĥψi = εiψi) is
approximately two weeks. However, it is only one CPU hour if the FSM is employed.

In our calculations, we generally solve the effective single-particle Schrödinger equation
by using the direct diagonalization method for the bulk material since in this case, there
are only few atoms in the unit cell and only very limited occupied states have to be
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calculated. For example, for wurtzite ZnO, there are only four atoms per unit cell and
eight occupied states have to be calculated. By successfully diagonalizing the matrix H,
we can obtain the locations of the conduction band minimum (CBM) and the valance band
maximum (VBM). By choosing the reference energy εref close to the VBM (CBM) of the
bulk material, we employ the FSM for calculating the target single-particle hole (electron)
states at the vicinity of the HOMO (LUMO) state for the corresponding nanostructures.
After obtaining the desired single-particle electron and hole states, we are at a position of
solving the many-body problem. It should be noted that we assume that the obtained
single-particle eigenfunctions and eigenvalues by solving the pseudopotential Schrödinger
equation are already fully correlated. Therefore, we do not attempt to solve the many-body
problem for the ground-state. A detailed explanation of this assumption can be found in
Ref. 222.

9.5 Many-body problem

9.5.1 Configuration interaction

In our calculations, we are mainly interested on the excitonic properties of the nanos-
tructured materials. Once the single-particle electron and hole states are obtained, the
excitonic effects are taken into account by employing the configuration interaction (CI)
approach. This approach generally appears in quantum chemistry to obtain the correlation
energy Ecorr which is defined as,

Ecorr = ε0 − E0, (9.34)

where ε0 is the exact nonrelativistic energy of the system under consideration and E0 is
the Hartree-Fock (HF) energy (E0) in the limit that the basis set approaches completeness.
Since the HF energy is an upper bound to the exact energy, the correlation energy is
negative. The CI approach in quantum chemistry started from the solution of the Hartree-
Fock-Roothaan equation (suppose that the system under consideration has even number
of electrons and is adequately represented by a closed-shell restricted HF equation), where
one can obtain a set of spin-orbitals. However, in our calculations, we do not start
from the HF ground-state, but from the solution of the single-particle pseudopotential
Schrödinger equation, where we obtain a set of correlated single-particle electron and hole
wave functions and energy levels. It has been justified245 that the Brillouin’s Theorem
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which states that the singly-excited determinants |ΨS〉 will not interact with a reference
HF determinant |Ψ0〉, i.e., 〈ΨS|Ψ0〉 = 0, is still valid.

A set of single-substitution Slater determinant |Φcr
va
〉 (e.g., singlet excitation) can be

constructed from the reference ground state |Φ0〉 by promoting one electron from the
valence state ψva with energy εva to the conduction state ψcr with energy εcr , that is,

Φ0(r1, σ1, ...., rN , σN) = A[ψ1(r1, σ1), ..., ψva(rva, σva), ..., ψN(rN , σN)],
Φcr
va

(r1, σ1, ...., rN , σN) = A[ψ1(r1, σ1), ..., ψcr(rva, σva), ..., ψN(rN , σN)] (9.35)

where N is the number of electrons in the system, σ =↑ or ↓ is the spin variable, and A is
the anti-symmetrizing operator. The exciton wave functions Ψα can be expanded in terms
of this determinantal basis set,

Ψ(α) =
Nv∑
va=1

Nc∑
cr=1

C(α)
va,cr

Φcr
va
, (9.36)

where Nv and Nc represents the number of hole and electron states included in the
expansion of the exciton wave functions, respectively. The hole states are numbered from
1 to Nv in order of decreasing energy starting from the highest occupied molecular orbital
(HOMO) state, while the electron states are numbered from 1 to Nc with increasing energy
starting from the lowest unoccupied molecular orbital (LUMO) state. It should be noted
here that we are only interested on the single-exciton state, that is, one electron in the
conduction band and one hole in the valence band. The doublet excitation, which means
promoting two electrons at valence band states ψva and ψvb

from the reference ground
state to the conduction band state ψcr and ψcs, and higher order excitations (e.g., triplet,
quadruplet , ...) are neglected in the expansion (9.36) which can be justified by the
fact that the doublet and even higher-order excitations are energetically remote from the
ground-state. Since limited number of electron and hole states (e.g., Nv and Nc) are chosen
in the expansion of the exciton wave functions, the quality of the basis set Φcr

va
should be

checked by comparing the results of the calculations using progressively larger basis sets
(e.g., increasing the number of electron and hole states in the expansion).

Once the exciton wave functions are constructed, the following task is to solve the many-
body Schrödinger equation, ĤΨ = εΨ. The matrix elements of the many-body Hamiltonian
Ĥ in the basis {Φcr

va
} can be written as

Ĥvacr,vbcs = 〈Φcr
va
|Ĥ|Φcs

vb
〉 = (εcr − εva)δvavb

δcrcs − Jvacr,vbcs +Kvacr,vbcs, (9.37)

where J and K are the Coulomb and exchange integrals, respectively, which are given as
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following,

Jvacr,vbcs = e2 ∑
σ1,σ2

∫ ∫ ψ∗vb
(r1, σ1)ψ∗cr

(r2, σ2)ψva(r1, σ1)ψcs(r2, σ2)
ε̄|r1 − r2|

dr1dr2,

Kvacr,vbcs = e2 ∑
σ1,σ2

∫ ∫ ψ∗vb
(r1, σ1)ψ∗cr

(r2, σ2)ψcs(r1, σ1)ψva(r2, σ2)
ε̄|r1 − r2|

dr1dr2. (9.38)

In the above expressions, ε̄ represents the microscopic, position-dependent dielectric
constant. The excitonic states of the system under consideration can be obtained by
solving the following secular equation,

Nv∑
vb=1

Nc∑
cs=1

Ĥvacr,vbcsC
(α)
vb,cs

= E(α)C(α)
vvacr

. (9.39)

9.5.2 Screening function

It has been well understood that246,247 (i) when the size of nanostructure is reduced,
the dielectric constant decreases considerably, enhancing significantly the electron-hole
Coulomb interaction, (ii) the electron-hole exchange interaction in quantum confinement
systems consists of a short-range component and a long-range component. Consequently,
the screening of the long range electron-hole exchange interaction has a sizable effect on
the extent of the electron-hole exchange splitting in a quantum confinement system. In
order to take all these facts into account, we have chosen a position dependent dielectric
constant to screen the Coulomb and exchange interactions in the nanostructures under
consideration. In equations (9.38), the Coulomb potential can be written as,

g(r1, r2) = e2

ε(r1, r2)|r1 − r2|
= e2

∫
ε−1(r1, r2)|r1 − r2|−1dr1, (9.40)

where ε−1(r1, r2) is the inverse of the dielectric function. If we assume that ε−1(r1, r2) ≈
ε−1(r1 − r2), the Fourier transform of the screened Coulomb potential is given by,

g(k) = ε−1(k)4πe2

k2 , (9.41)

where ε−1(k) is the Fourier transform of ε−1(r1−r2). We have chosen that ε−1 = ε−1
el +ε−1

ion,
which consists of an electronic (high frequency) contribution ε−1

el and an ionic (low-
frequency) contribution ε−1

ion, which are approximated here by the Thomas-Fermi model
proposed by Resta248 and by the polaronic model of Haken, respectively. ε−1

el and ε−1
ion are
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diagonal and isotropic in reciprocal space, and they can have the following analytic form,

ε−1
el (k) = k2 + q2 sin(kρ∞)/(εS∞kρ∞)

k2 + q2 ,

ε−1
ion = ( 1

εS0
− 1
εS∞

)( 1/2
1 + ρ2

hk
2 + 1/2

1 + ρ2
ek

2 ), (9.42)

where q = 2π−1/2(3π2n0)1/3 is the Thomas-Fermi wave vector in which n0 is the electron den-
sity, and ρ∞ is the solution of the equation sinh(qρ∞)/(qρ∞) = εS∞, ρh,e = (~/2m∗h,eωLO)1/2,
where m∗h,e represents the hole (h) and electron (e) effective masses, and ωLO is the fre-
quency of the bulk LO photon mode. εS0 and εS∞ are the macroscopic high-frequency
and low-frequency dielectric constants of the system under consideration (e.g., S), respec-
tively.

9.5.3 Absorption spectra

After obtaining the the exciton states by solving equation (9.37), we are interested on the
absorption spectra of the nanostructure. The oscillator strength for the absorption from
initial state (|Ψ(i)〉) to the final state (|Ψ(f)〉) can be given by,222

α(ω, T ) ∝
∑
i,f

|Mif |2Pi(T )δ(ω − ωif ), (9.43)

where
Mif = 〈Ψ(f)|ê ·p|Ψ(i)〉, (9.44)

is the optical transition dipole matrix element with the momentum operator p and the
polarization vector of the electromagnetic field ê,

Pi(T ) = N exp{−[E(i) − E(0)]/kBT} (9.45)

is the occupation probability of the initial state |Ψ(i)〉 at temperature T and N is the
normalization constant, and the delta function δ(ω−ωif ) can be replaced by the a Gaussian
to take into account the size distribution or by a Lorentzian to account for the intrinsic
sources of broadening.

In the following few chapters of the Thesis, we will employ the theory decried herein for the
study of the electronic and excitonic properties of the realistic nanostructures, including
ZnO colloidal quantum dots, ZnO nanowires and ZnS colloidal quantum dots.



10
Electronic and optical properties of ZnO quan-
tum dots under hydrostatic pressure
In this chapter, we study the electronic and optical properties of ZnO quantum dots subjected
to applied hydrostatic pressure. The optical band gap, Stokes shift and optical emission
polarization are investigated as a function of the applied pressure. It is found that the
applied pressure causes a linear increase in the optical band gap. The pressure coefficient
appears to be highly size-dependent, exhibiting a monotonic increase with increasing dot
size. In contrast to this monotonic behaviour, the applied pressure induces a nonmonotonic
Stokes shift which presents a minimum value at a critical pressure. The results presented
herein are published in Physical Review B 87, 125302 (2013).
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10.1 Introduction

Nanostructures and heterostructures made of zinc oxide (ZnO), such as nanowalls,249
nanotubes,250 nanorods251 and quantum dots (QDs),113,252 have already been used as
transparent conductors in solar cells, as components in high-power electronics, UV light
emitters, and gas and chemical sensors (see Ref. 253 and references therein). Possible
applications of ZnO nanostructures in optoelectronic and spintronic devices, such as laser
diodes with polarized output, spin-based memory and logic, have also attracted great
attention.107,137 As an important member of the nanostructure family, zero-dimensional
ZnO QDs have become the subject of recent developments. Experimental fabrication of this
type of nanostructures has been achieved by using different chemical synthesis methods,
such as sol-gel,139 thermolysis254 and polyol methods,113 to mention only a few. From a
theoretical point of view, due to the specifics of the wurtzite ZnO material, such as the
anisotropy of the valence band, as well as the small dielectric constant and correspondingly
strong electron-hole Coulomb interaction, simple one-band effective-mass models fail to
deliver predictive results. To have a good interpretation of experimental measurements and
optimization of ZnO QDs for possible device applications, an accurate theoretical method
able to predict the transition energy and the oscillator strength of optical transitions is
required. Accurate atomistic empirical pseudopotential calculations have shown to describe
exciton states in CdSe255 QDs, and very recently in ZnO QDs145 very well.

On the other hand, high pressure investigations of semiconductor nanostructures such
as nanocrystals or QDs have emerged as a focus area in condensed mater physics and
material science because of their large impact on the tunable optical properties that
may be advantageous for application in optoelectronics, QD lasers, high-density memory,
bioengineering, etc.256–259 Most of the existing theoretical work concerning the hydro-
static pressure effect focused on QDs with zinc-blende structure, such as self-assembled
InAs/GaAs260 or InGaAs/GaAs261 QDs. Theoretical work associated with the pressure
effect in wurtzite ZnO colloidal QDs is very limited.262 Here, we study the electronic and
optical properties of ZnO QDs under externally applied hydrostatic pressure. The single
particle orbitals and energies are calculated by the atomistic empirical pseudopotential
method using recently derived pseudopotentials,145 considering the effects of multiband
coupling, multivalley coupling, spin-orbit interaction, while the excitonic effects are taken
into account by using the configuration interaction approach.263 The present numerical
results cover a variety of optical properties of ZnO QDs under pressure, such as optical
band gap, pressure coefficient, Stokes Shift and the optical emission polarization.
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10.2 Computational details

10.2.1 Crystal structure of bulk ZnO

ZnO is mostly stablized with hexagonal wurtzite structure with lattice parameters a = 3.249
Å, c = 5.205 Å, and internal parameter u = 0.382. There are four atoms (e.g., two Zn
atoms and two O atoms) per unit cell which is shown in Fig. 10.1, where the lattice vectors
are given in Table 10.1, the atom positions in Cartesian and fractional coordinates are
given in Tables 10.2 and 10.3, respectively.

Figure 10.1: Unit cell of wurtzite ZnO. Gray balls represent Zn atoms and red balls represent
the O atoms, respectively.

For ideal wurtzite structure, c
a = 1.6333 and u = 0.375. However, these two parameters

for ZnO are c
a = 1.6019 and u = 0.382 which significantly deviate from the ideal values.

These are strongly relevant to the crystal field splitting which appears in the wurtzite
structures, which is proportional to the deviation of these two parameters (e.g., c

a and
u) from the ideal values. In wurtzite ZnO, there are two types of bond length: one is
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Table 10.1: Unit vectors a1, a2 and a3 in wurtzite structure. a and c are the lattice parameters.
x̂ ŷ ẑ

a1
1
2a −

√
3

2 a 0
a2

1
2a

√
3

2 a 0
a3 0 0 c

Table 10.2: Atom positions in the unit cell in Cartesian coordinates. a, c, u are the structure
parameters.

Atom x̂ ŷ ẑ
Zn1

1
2a

1
2
√

3a 0
Zn2

1
2a - 1

2
√

3a
1
2c

O1
1
2a

1
2
√

3a u c
O2

1
2a - 1

2
√

3a (1
2 + u)c

R(1) = uc = 1.988 Å and the other one R(2) =
√

3c2(1−2u)2+4a2

2
√

3 = 1.974 Å, and two types of
angles θ′ and θ with

θ
′
= arccos( −

√
3c(1− 2u)√

3c2(1− 2u)2 + 4a2
) = 108.13◦, (10.1)

and
θ = arccos(3c2(1− 2u)2 − 2a2

3c2(1− 2u)2 + 4a2 ) = 110.78◦, (10.2)

respectively.

Table 10.3: The same as in Table 10.2 but in fractional coordinates.
Atom a1 a2 a3
Zn1 1/3 2/3 0
Zn2 2/3 1/3 1

2
O1 1/3 2/3 u
O2 2/3 1/3 1

2 + u



10.2. Computational details 127

Table 10.4: The pseudopotential parameters a1, a2, a3 and a4 and spin-orbit interaction parameter
λ for Zn and O, which are taken from Ref. 145.

λ a1 a2 a3 a4
Zn 0.00533 -8.561564 0.0062352 -0.001589 0.5521333
O 0.0 -28.419299 4.2557852 -0.0100096 0.95926425

10.2.2 Generate empirical pseudopotentials for ZnO

After knowing the crystal structure of wurtzite ZnO, the following task is to generate
reliable empirical pseudopotentials for ZnO. This has been done by Baskoutas and Bester145
in 2010. Exponential form of the pseudopotential(s), as detailed in (9.25), has been chosen,
which has four free parameter a1, a2, a3, and a4 for each atom type (e.g., Zn and O).
These parameters and the spin-orbit interaction parameter λα (α = Zn or O) are fitted
to reproduce the well-known experimental or theoretical bulk properties, including the
energy gap at specific high symmetry points of the Brillouin zone, the effective masses
of different bands, the crystal splitting and spin-orbit splitting values. The optimized
parameters are given in Table 10.4, which leads to a very good agreement between the
calculated results and the existing experimental (or theoretical) results (see Table 10.5).
The volume normalized local parts of the Zn and O empirical pseudopotentials are shown
in Fig. 10.2.

It has been well proved that in order to accurately capture the pressure effects on the
electronic and optical properties of QDs, it is necessary to have empirical pseudopotentials
that are explicitly dependent on the strain.261 We follow the same strategy as Williamson
et al,264 designing the pseudopotentials to further include the stain dependence:

vα(r; ε̃) = vα(r)[1− γαTr(ε̃)], (10.3)

where α = Zn or O, γ is a fitting parameter to reproduce the pressure coefficient of the
bulk material, and Tr(ε̃) is the strain tensor, which is calculated through the following
equation,

V0/V = [1 + Tr(ε̃)]−1, (10.4)

where V0 is the volume of the dot (or unit cell (for bulk material)) at zero pressure, and V
is the corresponding volume under pressure. In our calculations, we have chosen γO = 0
and γZn = 0.304, giving a pressure coefficient for bulk ZnO equal to 24.7 meV/GPa, which
reproduces exactly the experimental value of 24.7 ± 0.1 meV/GPa.265 The calculated
conduction band minimum (CBM) and the top most three valence band states of bulk
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Figure 10.2: Volume normalized local parts of the Zn and O empirical pseudopotentials.

ZnO as a function of the applied pressure are shown in Fig. 10.3. It is found that the
energy level of CBM increases with increasing the applied pressure, giving a conduction
band deformation potential ac = −2.26 eV. In contrast, all the energy levels of the topmost
three valence band states exhibit a decreasing function of the applied pressure. The
valence band deformation potential av = 2.27 eV and the effective deformation potential

Figure 10.3: The conduction band minimum (a) and the top most three valence band states
(b) of bulk ZnO as a function of the applied pressure.
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Table 10.5: Compiled reference bulk properties and results calculated from empirical pseu-
dopotential method by using the parameters listed in Table 10.4. The results are taken from
Ref. 145.

Properties Experiments Theory EPM
ε(Γ7v − Γ3v) 5.0 3.8, 5.517, 8.92, 5.0 3.454
ε(Γ1c − Γ7v) 3.4449, 3.435, 3.4376 3.44,3.458 3.458
ε(Γ3c − Γ1c) 3.366, 4.394 3.032
ε(Γ6c − Γ1c) 13.21, 7.303, 7.320, 7.3897 8.590
ε(H3c − Γ1c) 6.44, 5.0, 7.105 4.655
ε(K2c − Γ1c) 7.25, 6.75, 5.99, 6.831 5.361
ε(M1c − Γ1c) 5.03, 5.11, 5.017 3.502

m⊥e 0.265 0.177, 0.21, 0.130, 0.211 0.213
m‖e 0.265 0.21, 0.137, 0.225 0.239
m⊥A 0.59 0.351, 4.31, 2.5899 0.712
m
‖
A 0.59 1.98, 3.06, 1.091 2.120

m⊥B 0.59 0.30, 0.55, 0.227, 0.5813 0.515
m
‖
B 0.59 2.979, 3.227, 4.330, 3.06, 0.8454 0.572

m⊥C 0.55 0.288, 0.537, 1.12, 0.1769 1.075
m
‖
C 0.31 0.169, 0.330, 0.26, 0.27, 0.2071 0.250

∆so -0.0035, -0.0047 -0.0035 -0.0035
∆cr 0.0404, 0.0408 0.0391, 0.0392 0.040

ag = ac − av = −4.53 eV, which is in very good agreement with the experimental values
∼ −3.51 to -3.81 eV, and −3.5± 0.4 eV by using different experimental methods.266,267

We further find from Fig. 10.3(b) that the bulk A-band and B-band exhibit a stronger
dependence on the pressure than the C-band. This indicates that the A-band and B-band
of bulk ZnO have larger deformation potentials than the C-band. Consequently, for
pressure larger than a critical value (≈ 3.45 GPa), C-band rises above the A-band and
B-band and becomes the valence band maximum (VBM). Similar behaviour has been
found by Schleife et al268 in wurtzite ZnO under bilateral strain. The change in the valence
band ordering will have strong influence on the nature of the near-band-edge exciton and
the optical polarizations in ZnO QDs, which we shall discuss later.

10.2.3 Geometry optimization

The ZnO QDs studied herein are cut from the bulk material and characterized by diameter
D. The surface passivation is approximated by a high band gap artificial material, as
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practiced successfully previously.145,240,269 The pressure is created by equally compressing
the lattice constants in both the in-plane direction and out-of-band direction. The pressure
values are obtained approximately by using the Murnaghan equation of states,261,264

P = (B/B
′
)[(V0

V
)B
′

− 1], (10.5)

where P is the pressure value, V0 and V have the same meanings as in equation (10.4). B
and B′ are the bulk modulus and its pressure derivative, respectively. Here, we have used
B = 142.4 GPa and B′ = 3.6 [Ref. 265]. The atom positions of the QD structure is then
relaxed to the minimum strain energy by using Keating’s valence force field (VFF) for
wurtzite materials.270

According to the generalized Keating’s VFF model, the elastic energy per atom in wurtzite
material reads,270

Ui = 3α
16r2

0

3∑
j=1

(r2
ij − r2

0)2 + 3α′

16r′20
(r2
i4 − r

′2
0 )2

+ 3β
8r2

0

3∑
j=1

3∑
k>j

(rij · rik − r2
0 cos θ0)2 + 3β ′

8r0r
′
0

3∑
k=1

(ri4 · rik − r0r
′

0 cos θ
′

0)2, (10.6)

where α and α′ are the two bonding stretching constants, and β and β ′ are the two bond
bending constants, respectively,

r
′

0 = cu, (10.7)

r0 =
√

3c2ν2 + 4a2

2
√

3
, (10.8)

cos θ
′

0 = −
√

3cν√
3c2ν2 + 4a2 , (10.9)

cos θ0 = 3c2ν2 − 2a2

3c2ν2 + 4a2 , (10.10)

where ν = 1 − 2u, a, c, u are the structure parameters of wurtzite materials and the
corresponding values for wurtzite ZnO are given in subsection (10.2.1). The free parameters
α, α′, β and β ′ are optimized to reproduce the well-known macroscopic elastic constants
cij of bulk ZnO. To this end, we build the following function,

f(α, α
′
, β, β

′
) = (c11 − ctag11 )2 + (c33 − ctag33 )2 + (c12 − ctag12 )2

+(c13 − ctag13 )2 + (c44 − ctag44 )2 + (c66 − ctag66 )2, (10.11)
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where ctag are the well known elastic constants for bulk ZnO, and

c11 = a2

2
√

3c
(4A2 + 13AB +B2)(8A′u2 + 3B ′w2) + 162AB(A+B)ν2

(2A+B)[8A′u2 + 6(A+ 2B)ν2 + 3B ′w2] , (10.12)

c33 = 3
√

3c3

4a2
(A+ 2B)(8A′u2ν2 + 3B ′ν4) + 16A′B ′u4

8A′u2 + 6(A+ 2B)ν2 + 3B ′w2 , (10.13)

c12 = a2

2
√

3c
(A−B)[(4A−B)(8A′u2 + 3B ′w2 + 54ABν2)]

(2A+B)[8A′u2 + 6(A+ 2B)ν2 + 3B ′w2] , (10.14)

c13 =
√

3c
2

(A−B)(8A′u2 + 3B ′νw)ν
8A′u2 + 6(A+ 2B)ν2 + 3B ′w2 , (10.15)

c44 =
√

3c
4

(2A+B)B ′

(2A+B +B ′) , (10.16)

c66 = c11 − c12

2 , (10.17)

where A = α/r2
0, A

′ = α
′
/r
′2
0 , B = β/r2

0, B
′ = β

′
/(r0r

′

0), and w = 1 − 4u. In order to
obtain the optimized values for α, α′, β and β ′, we use the standard conjugate gradient
method to minimize the function (10.11). The optimized values are α = 59.15 N/m,
α
′ = 80.23 N/m, β = 6.88 N/m and β ′ = 7.63 N/m, respectively. The resultant elastic

constants cij and bulk modulus (B) are c11 = 209.7 GPa, c33 = 211.4 GPa, c12 = 121.8
GPa, c13 = 103.8 GPa, c44 = 41.32 GPa, c66 = 43.9 GPa and B = 143.1 GPa, reproducing
almost exactly the experimental target values:265,271 ctag11 = 209.7 GPa, ctag33 = 210.9 GPa,
ctag12 = 121.1 GPa, ctag13 = 105.1 GPa, ctag44 = 42.47 GPa, ctag66 = 44.3 GPa and Btag = 142.4
GPa. It should be noted that the bulk modulus B is calculated through the following
equation,

B = c33(c11 + c12)− 2c2
c13

c11 + c12 + 2c33 − 4c13
. (10.18)

The positions of the atoms in the compressed QD are then optimized by minimizing the
total elastic energy,

U =
N∑
i=1

Ui, (10.19)

where N is the total number of atoms in the QD. The optimization procedure is processed
by the standard conjugate gradient (CG) method.
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10.2.4 Calculations of electronic and optical properties

After performing the geometry optimization, the relaxing atom positions are obtained.
The crystal potential is then obtained as a superposition of the atomic pseudopotentials
(see Eq. (9.22)). The single-particle electron and hole states are calculated by employing
the empirical pseduopotential method as discussed in Section 9.3.3 of Chapter 9. We
employ configuration interaction approach, as described in Section 9.5 of Chapter 9, to
taking into the excitonic effects. The corresponding many-body Hamiltonian is solved
using iterative diagonalization techniques. Our computational limitations allow us to
include in the configruation interaction treatment 10 states from the valence band and
10 states from the conduction band. For the screening function needed in the Coulomb
integrals we used the phenomenological microscopic, isotropic and uniform model proposed
by Resta248 (see Subsection 9.5.2 of Chapter 9). The optical dipole matrix elements are
calculated within the dipole approximation, and the oscillator strength was calculated
using Fermi’s golden rule (see Subsection 9.5.3 of Chapter 9).

10.3 Results and discussion

10.3.1 Valence band ordering of bulk ZnO

There are two main characteristics of bulk ZnO we would like to address prior to the
discussion of our main results later on. One is the crystal field and the other one is the
spin-orbit interaction. Without these two characteristics, the top valence band is six fold
Γ5v states. The crystal field splits the Γ5v states into four fold Γ5v states and Γ1v states.
Further including the spin-orbit interaction leads to the formation of three 2-fold states at
the top of the Γ-point of the Brillouin Zone. In the conventional situation, the spin-orbit
parameter is positive. The top three valence band states at the Γ point of the Brillouin
zone from the top to the bottom are so-called A-band, B-band and C-band, respectively,
which are of symmetry Γ9v, Γ7v, and Γ7v, respectively. However, for ZnO, the spin-orbit
parameter is negative. The origin of this negative spin-orbit coupling has been discussed
initially for cuprous halides and has been attributed to the spin-orbit effect of cation
d states. This leads to a situation which is contrary to the conventional situation: the
topmost three valence band states from the top to the bottom are named as A-band,
B-band and C-band but with symmetry Γ7v, Γ9v and Γ7v, respectively. These states are
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corresponding to the A-, B- and C-exciton lines in photoluminescence experiments. Due to
the rather small spin-orbit splitting parameter (e.g., ∆so = 3.5 meV), A-band and B-band
are nearly degenerate, exhibiting a tiny splitting. Conversely, the separation between
A-band (or B-band) and C-band is much larger.

10.3.2 Projection onto bulk technique

To visualize the QD wave functions |ψQDi 〉, we employ the projection onto bulk technique.145
In this technique, we project the QD wave function |ψQDi 〉 onto the bulk wurtzite ZnO
wave functions with band index n and wave vector k, that is ψbuknk ,

|ψQDi 〉 =
∑
nk
|ψbulknk 〉〈ψbulknk |ψ

QD
i 〉, (10.20)

where ∑ |ψbulknk 〉〈ψbulknk | is the projection operator. The expansion coefficients cink =
〈ψbuknk |ψ

QD
i 〉 are used to determine the bulk band character of the dot wave function,

bbcin =
∑
k
cinkc

i∗
nk. (10.21)

By chopping the QD wave functions into bulk cells, and projecting each of them onto bulk
states, we obtain space-resolved function bbcin(x, y, z). Summing them over bands leads to
the envelope functions,

envi(x, y, z) =
∑
n
bbcin(x, y, z). (10.22)

One shall see from the above technique, the fast oscillating atomic wave functions of
the QD is projected on the bulk wave functions. This leads to the visualization of the
symmetry of the envelope function and the parentage of each dot state. This is indeed a
very useful tool and we shall see its applications in the coming sections.

10.3.3 Pressue-dependent electronic properties

To determine the electronic and optical properties in ZnO QDs in both the strong and
the intermediate confinement regime under externally applied hydrostatic pressure, we
considered five different ZnO colloidal QDs with diameters D = 1.7 nm, 2.1 nm, 3.1 nm,
3.6 nm, 5.2 nm, respectively. ZnO QDs with such sizes can be experimentally synthesized
by using the well-established colloidal fabrication techniques, leading to a nearly spherical
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shape.113,139 The numbers of atoms for the respective structures are Zn99O111, Zn204O210,
Zn654O654, Zn1014O1011, and Zn3063O3102.

Figure 10.4: Envelope functions for the first four electron (e0,1,2,3) and first four hole (h0,1,2,3)
states in a ZnO QD with diameter D = 1.7 nm for various hydrostatic pressures. The isosurface
values are chosen in such a way to enclose 75% of the state densities.

As a first step toward elucidating the electronic structure in ZnO QDs, we project the fast
oscillating atomic wave functions onto the bulk ZnO Bloch states (as stated in the above
subsection). This gives us access to the envelope functions, which are more convenient
to visualize than the fast oscillating real wave functions. However, it should be kept in
mind that the energetic for each state is not governed by the envelope function alone, but
determined by the full atomic wave function. As the representatives of the electronics of
ZnO QDs under hydrostatic pressure in both the strong and intermediate confinement
regimes, we present the projected envelope functions of the first four electron states and
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Figure 10.5: Same as Fig. 10.4 but for D = 5.2 nm.

the first four hole states of our smallest and largest structures in Figs. 10.4 and 10.5,
respectively. The results are shown for six different hydrostatic pressures. To characterize
the symmetry of the wave functions, which is very useful to understand the relevant optical
properties discussed in the next subsection, we use the notation ωζ where ω represents the
number of nodes encountered by moving across a specific direction (xy or z-axis direction),
while the subscript ζ indicates the direction in which we find the node(s). The possible
value for ω are S, P , D, etc., where S represents the form of the wave function without
node (in this case, we neglect the subscript ζ), P with one node etc. This way, we tabulated
the characters of the electron and hole envelope functions shown in Figs. 10.4 and 10.5 in
Tables 10.6 and 10.7, respectively.

In Fig. 10.6 we plot the Bloch function character of the first four hole states using the
projection formalism described in the last subsection. After a combined analysis of the
relative contribution from the bulk valence bands with the characters of the hole envelope
functions listed in Tables 10.6 and 10.7, we find that in the absence of external pressure, the
highest occupied molecular orbital (HOMO, h0) of our smallest structure (with diameter
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Figure 10.6: Analysis of the Bloch function character of the first four hole states h0,1,2,3 in
a ZnO QD under various hydrostatic pressures. The left panel corresponds to the QD with
diameter D = 1.7 nm, while the right panel corresponds to the QD with diameter D = 5.2 nm.
The colors red, green and blue correspond to A-, B- and C- bands, respectively.

D = 1.7 nm) has orbital S character, while it shows a P character in our largest structure
(with diameter D = 5.2 nm). This is in agreement with one of the important conclusions
of Ref. 145 which demonstrates that the HOMO of ZnO QDs is of orbital P character
for structures larger than 2.6 nm in diameter. Under pressure, the orbital character of
the HOMO state of our smallest structure appears to be pressure-independent, always
exhibiting a conventional S-type character. Conversely, the orbital character of the HOMO
state of our largest structure experiences a drastic change in the envelope function character,
switching to a more conventional S orbital character for pressures larger than 2.07 GPa.
This is due to the pressure effect which modifies the Bloch function parentage from an
even mixture of A- and B-band (P ≤ 2.07 GPa) to a nearly pure single-C-band (P >

2.07 GPa), as seen in Fig. 10.6 (see the top plot of the right panel). In addition to the
HOMO state, the applied pressure significantly modifies the Bloch function characters for
the other hole states (h1,2,3): they are nearly pure single-band objects for relatively high
pressures (e.g., P > 4.54 GPa), originating mainly from bulk Bloch C-band (∼ 75%) and
exhibiting Pxy-type characters. The only exception is h3 of our smallest structure which
has a dominant bulk Bloch A-band parentage and shows a S-type character for pressures
larger than 4.54 GPa. The fact that the PCxy states at the pressures of 7.02 and 10.76 GPa
(h1,2 states in Table 10.6) are energetically separated from the PCz state can be related to
the anisotropic effective masses of the topmost three ZnO valence bands. The C-band
effective mass is anisotropic and larger perpendicular to the c-axis (m∗C⊥ = 0.55 m0 and
m∗C‖ = 0.31 m0, where m0 is the free electron mass). This favors the orbital P-states with
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Table 10.6: Character of the first four envelope functions for electrons and holes in a ZnO QD
with diameter D = 1.7 nm under various hydrostatic pressures (in unit of GPa). The superscript
(A, B, C) indicates the corresponding hole state parentage (A-band, B-band, C-band) obtained
from Fig. 10.6 and the symbol (*) means that the wave function is a mixed state with orbital
P-character.

Pressure e0 e1 e2 e3 h0 h1 h2 h3
0 S Pz Pxy Pxy SA SB SC PABxy

0.70 S Pz Pxy Pxy SA SB SC PABxy
2.07 S Pz Pxy Pxy SC∗ SA∗ SB∗ SC∗
4.54 S Pz Pxy Pxy SC∗ SAC∗ SBC∗ SABC∗
7.02 S Pz Pxy Pxy SC PCxy PCxy SA
10.76 S Pxy Pxy Pz SC PCxy PCxy SA

Table 10.7: Same as table 10.6 but for D = 5.2 nm.
Pressure e0 e1 e2 e3 h0 h1 h2 h3

0 S Pz Pxy Pxy PABxy SA SB PAz
0.70 S Pz Pxy Pxy PABxy SA SB PAz
2.07 S Pz Pxy Pxy PABxy SA SB PAz
4.54 S Pxy Pxy Pz PABCxy SC SC PABxy
7.02 S Pxy Pxy Pz SC PCxy PCxy PCxy
10.76 S Py Px Pz SC PCxy PCxy PCxy

in-plane nodes, Pxy, over the ones with nodes along the c-axis, Pz. No such anisotropy
exists for the A- and B- bands and the orbital Pxy states are not favored over the Pz states.
The electron states follow the typical pattern of a single-band object originating from an
isotropic band. The lowest four electron states have orbital S and P character, where Pz is
slightly favored over Pxy at low pressures and vice versa at high pressures.

As mentioned before, the applied hydrostatic pressure strongly modifies the relative
contribution of the bulk valence band states to the QD hole states, which causes the
changes in the symmetry of the hole envelope functions. In Fig. 10.7, we see that states
with dominant A, B-band parentage have a stronger dependence on pressure than the
states with dominant C-band parentage. This is associated with the larger deformation
potential of A- and B-bands in comparison to that of the C-band. Fig. 10.7 also shows
that the C-band states rise above the A- and B-band states at a critical pressure and
finally become the energetically favorable states. This critical pressure appears to be
highly size-dependent. For our smallest structure, it is P1 ≈ 1.2 GPa, while for our largest
structure, it is P2 ≈ 3.3 GPa.



138
10. Electronic and optical properties of ZnO quantum dots under hydrostatic

pressure

Figure 10.7: Energy of the first ten hole states relative to the HOMO state at zero pressure, in
ZnO QDs under various hydrostatic pressures (in unit of GPa). The lines connect states which
are of the same symmetry ωζ . The red, green, blue lines connect states with dominant A-, B-,
C-band character, respectively. Two QD sizes D = 1.7 and 5.2 nm, where D is the diameter of
the QD, are considered.

10.3.4 Pressue-dependent optical properties

We first present the optical band gap of ZnO QDs as a function of the applied hydrostatic
pressure. The calculations are performed for five different QD sizes which are in the strong
or intermediate confinement regime. Two levels of theory: at the single particle (SP) level
and at the configuration interaction (CI) level, are employed. Fig. 10.8(a) and (b) show
a strong size dependence of the optical band gap and a weaker, nearly linear, pressure
dependence. The pressure coefficients (dE/dP ) are given in Fig. 10.8(c) for uncorrelated
and correlated calculations. Both the single-particle and the excitonic pressure coefficients
are strongly size-dependent. Increasing the QD size causes a monotonic increase in the
pressure coefficient. A similar behaviour has also been calculated theoretically for CdSe
QDs.272 Furthermore, it is shown from Fig. 10.8(c) that the QD excitonic pressure
coefficients obtained in the full CI scheme are substantially smaller than the bulk value (see
the dot dashed line) with deviations at small diameters of up to 41%. The single-particle
results exceed the bulk limit for QD diameters larger than D = 4.5 nm. This prominently
highlights the importance of the higher level of theory accounting for excitonic effects. We
also studied in Fig. 10.8(d) the Stokes shift, defined as the energetic difference between
the lowest dark exciton state and the first bright exciton state. The Stokes shift displays
a nonmonotonic dependence of the applied hydrostatic pressure, exhibiting a minimum
value at a critical pressure Pc. This critical pressure is highly size-sensitive. It appear to
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Figure 10.8: Optical band gap of ZnO QDs at the single particle (SP) level (a), and at the CI
level (b) as a function of the hydrostatic pressure (symbols). (c) Pressure coefficients at the single
particle level (obtained from (a)) and at the CI level (obtained from (b)) versus QD diameter.
(d) Stokes shift as a function of the applied hydrostatic pressures. Here, five different QD sizes
(D = 1.7 nm, 2.1 nm, 3.1 nm, 3.6 nm and 5.2 nm, where D is the QD diameter) are considered.
All the symbols and colors in (a) and (b) are the same as in (d).

be Pc = 0.7 GPa for the first two smallest structures, Pc = 2.07 GPa for the QD diameter
D = 3.1 nm and Pc = 4.54 GPa for the other two largest structures.

To clarify the physical reasons for this nonmonotonic behaviour, we take our largest
structure as an example and recall the electronic properties of the single electron and hole
states presented in the last subsection. For pressures smaller than or equal to the critical
value (P = 4.54 GPa), both the first bright and dark exciton states have a dominant
contribution from the (0,1) configuration, where both the electron and hole have S-type
orbital character. In the CI scheme, the lowest exciton state is spin-forbidden. However,
when the applied pressure is larger than the critical value (P > 4.54 GPa), the single-
particle states which are responsible for the two exciton states show an abrupt change from
the configuration (0,1) to (0,0). This level crossing is responsible for the nonmonotonic
behavior in Stokes shift. This nonmonotonic behaviour in Stokes shift makes evident that
the electron-hole spin-exchange interaction is much stronger in the (0,0) configuration
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(C-exciton) and it is enhanced with increasing pressure. Similar behaviour has also been
experimentally measured and theoretically calculated in CdSe NRs by systematically
varying the height-to-diameter aspect ratio.273 For larger pressures, Fig. 10.8(d) shows
that the Stokes shift is significantly larger than the corresponding value at zero pressure. A
larger Stokes shift means a smaller overlap area between absorption and emission spectra,
which is desirable in applications such as light-emitting diodes, where reabsorption reduces
the total efficiency.273

Finally, we calculate in Fig. 10.9 the photoluminescence emission spectrum in the full CI
scheme for our smallest and largest structures. We find that the applied pressure induces a
strong blue shift in the emission spectrum. This blue shift is more pronounced in the larger
QD in accordance with Fig. 10.8(c). In an attempt to indicate explicitly the emission
polarization direction, we also present the spectra at each pressure with a vertical line. It is
shown that in both, the strong and intermediate confinement regimes, the optical emission
polarization exhibits a crossing from in-plane (E⊥~c) to out-of-plane (E‖~c) polarization at
a critical pressure value. It is Pc = 0.70 GPa for our smallest structure and Pc = 4.54 GPa
for our largest structure. In other words, the emission changes from a normal α-emission
(E⊥~c) to the unusual274,275 so-called σ- and π-emission (E‖~c) for pressures larger than
the critical pressure. After reaching the crossing, the lowest optically bright exciton state
in both confinement regimes has a dominant contribution from the (0,0) configuration,

Figure 10.9: Oscillator strength for the emission |X〉 to |0〉 at room temperature in ZnO QDs
which are obtained by full CI. Transitions polarized along the out-of-plane direction (c-axis) are
shown by red vertical lines, while the ones polarized along in-plane direction are shown as black
vertical lines. The numbers in bracket refer to the dominant single-particle levels involved in
the transitions (e,h). The blue curve represents the total emission spectra. The left panel is
corresponding to the QD with diameter D = 1.7 nm, while the right panel is corresponding to
the QD with diameter D = 5.2 nm.
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where the single-particle hole state has S-type character, and is derived from the dominant
bulk Bloch C-band contribution. Recently, it has been shown that the polarization of
the C-exciton along the c-axis (E‖~c) holds not only for bulk ZnO276 but also for ZnO
nanowires.277 The possibility to effectively manipulate the optical emission polarization of
QDs via pressure should be advantageous in the design of future experiments.

10.4 Brief summary

In summary, we studied the electronic and optical properties of ZnO colloidal QDs as
a function of applied hydrostatic pressure. We find that for QD larger than 2.6 nm in
diameter, the increased pressure induces a drastic change in the highest occupied molecular
orbital from an unconventional P-type character to a normal S-type character. Hole states
tend to become single-band objects originating from the Bloch C-band with increasing
pressure. We relate this effect to the fact that the hole states with dominant A- and B-band
parentage experience a stronger pressure dependence, in comparison to the corresponding
C-band states. In other words, the Bloch band hydrostatic deformation potentials are
negative and larger in magnitude for the A/B-bands than for the C-band. As a consequence,
the C-band states emerge as the HOMO states at high pressure. We show that the crossover
between A/B-band and C-band HOMO states is size dependent and occurs at higher
pressures for larger QDs. We further find that the P-states derived from the Bloch C-band
are energetically split into states with nodes in-plane and nodes along the c-direction. This
is attributed to the anisotropy of bulk Bloch C-band which has a heavier in-plane effective
mass favoring P states with in-plane nodes. At both single-particle and at the correlated
excitonic level, the optical band gap experiences a linear increase with increasing pressure,
with a highly size-dependent pressure coefficient. The pressure coefficient is significantly
lowered, by as much as 41%, by correlations. Only the correlated results (configuration
interaction) can be brought in agreement with experiment. In contrast to the monotonic
increase of the optical band gap, the applied hydrostatic pressure causes a non-monotonic
Stokes shift with a minimum at a specific pressure. For pressures larger than this critical
value, the optical emission polarization changes from in-plane to out-of-plane polarization.
We explained this behavior through the drastic change of the single-particle hole state
parentage from a dominant bulk Bloch A/B-band (before crossing) to a nearly pure C-band
(after crossing). Finally, we find that the critical pressure at which the crossing takes place
strongly depends on the QD size, showing larger pressure values for larger QD sizes. After
this crossing, the optically bright exciton state has a pure contribution from the (0,0)
configuration, where both the electron and hole states have S-type orbital character and
the single-particle hole state has a dominant contribution from the bulk Bloch C-band.
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Near-band-edge exciton polarization change in
ZnO nanowires
In this chapter, using the atomistic pseudopotential method complemented by configuration
interaction calculations, the electronic and optical properties of ZnO nanowires (NWs)
in the presence of quantum confinement effects are studied. Our results indicate that
the near-band-edge exciton experiences a crossover from an in-plane polarized A-exciton
(for D ≥ 3 nm) to an out-of-plane polarized C-exciton (for D < 3 nm) due to quantum
confinement. This transition leads to a non-monotonic variation of Stokes shift, exhibiting
a maximum value around the critical diameter of 3 nm. The observed behavior is analyzed
by a stepwise inclusion of correlation effects, leading to a comprehensive description of the
excitonic fine structure. The results presented herein are published in Physical Chemistry
Chemical Physics (2015), DOI: 10.1039/C4CP04551C.
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11.1 Introduction

Zinc oxide (ZnO) nanowires (NWs) have attracted considerable attention as promising
candidates for device applications. The wide direct band gap (3.445 eV) and large exciton
binding energy (60 meV) of bulk ZnO make them one of the most remarkable optoelectronic
materials for nanoscale device applications, such as ultraviolet (UV) lasers,278 light-emitting
diodes279 (LEDs), field-effect transistors (FETs),275 and UV photodetectors.280,281 Their
high surface-to-volume ratio and high density of surface states promote the development
of a new generation of chemical and biological gas sensors with high sensitivity and fast
response.282,283 Piezoelectric nanogenerators based on ZnO NWs for self-powered systems
have also been reported.284,285 Experimental fabrication of this type of nanostructures has
been successfully achieved by using different synthesis methods, such as vapor trapping
chemical vapor deposition,275 thermal evaporation,286 chemical synthesis by vapour phase
transport,277 to mention only a few. However, the vast majority of the fabricated NWs
are so large in diameter (e.g., > 15 nm which is more than 10 times of the exciton Bohr
radius of bulk ZnO (≈ 1.4 nm)) that the quantum confinement effects remain absent. A
clear picture of the quantum confinement effects on the electronic and optical properties
of ZnO NWs remains unknown.

Due to the specific features of wurtzite ZnO, such as anisotropy of the valence band, as
well as the small dielectric constant and strong electron-hole Coulomb interaction, a simple
one-band effective mass model287 is not able to deliver predictive results. The incorporation
of many-body effects in an effective mass model to probe large nanostructures has been
recently achieved.288,289 Density functional theory (DFT) calculations have been employed
to study the piezoelectricity and the band structure,290 the charged states and the band
gap in ZnO NWs (or doped ZnO NWs).291 This type of calculations are restricted to
nonpassivated, small-diameter (e.g., < 3 nm) NWs. Moreover, since in DFT the bulk ZnO
band gaps are significantly underestimated (e.g., ∼0.63 eV [Ref. 290] by local density
approximations (LDA or GGA) (82% underestimated in comparison to the well-known
experimental value 3.445 eV), the description of the quantum confinement effects on the
electronic and optical properties of ZnO NWs is more than questionable.

In this Chapter, we study the electronic and optical properties of ZnO NWs with diameters
up to 6 nm, covering the intermediate and weak confinement regimes. The calculations are
performed via the empirical pseudopotential method, using recently derived and well-tested
ZnO pseudopotentials from Ref. 145, and the excitonic effects are considered by using the
configuration interaction approach.236 This method has been shown to describe very well
the excitonic properties in wurtzite CdSe quantum dots (QDs),255 and very recently in
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ZnO QDs145,292 and Si NWs.293 In the following section, we present the computational
details.

11.2 Computational details

The empirical pseudopotentials for Zn and O employed herein are are derived and well-
tested by Baskoutas and Bester.145 Both potentials have exponential form and the
corresponding parameters are given in Table 10.4. The ZnO NWs are constructed with
a cross section as circular as possible, considering the atomistic nature of the structure
and extend along the [0001] crystallographic direction, while the lateral surface of the
NWs is well passivated by an artificial ligand with the same crystal structure and lattice
parameters as ZnO and a higher band gap. Since there is no mismatch between the NW
and the passivating material the electric field induced by piezoelectric effects can be safely
neglected. The contribution of spontaneous polarization to the internal field is expected
not to be significant since the polar direction of the NW coincides with the infinite growth
direction. It has been demonstrated by large scale DFT calculations294 that the internal
field even in a polar quasi-one-dimensional nanorod (NR) does not depend strongly on the
spontaneous polarization of the underlying lattice.This type of surface passivation has been
practiced successfully previously for this material system,145,240,269 and very recently in Si
NWs.293 It should be noted here that the nature of the surface passivation and morphology
may play an important role in the determination of the electronic and optical properties
of semiconductor NWs, especially with smaller sizes. However, in our calculations, the
emphasis is put on the size effects rather than the surface effects.

The many-body excitonic properties are calculated via configuration interaction (CI),
as described in Section 9.5 of Chapter 9. The excitonic wave functions are expanded
in terms of single-substitution Slater determinants constructed from the single-particle
wave functions of electrons and holes (see Section 9.5.1 of Chapter 9). The corresponding
many-body Hamiltonian is solved either in the framework of the single configuration (SC)
approximation or in the CI scheme. At the SC level, the intraconfiguration Coulomb
and exchange matrix elements are fully included, but the interaction between different
configurations is neglected.236 Consequently, the correlation effects at this level of theory
are willingly not accounted for. The interconfiguration coupling is fully included in the CI
scheme.236 It should be noted that our calculations are focused on the near-band-edge
low energy excitonic states which are dominantly originated from the transitions at the
Γ-point of the Brillouin zone. The band dispersion along the growth direction of the NWs
is expected to have only very marginal influence on the results presented herein. It should
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Figure 11.1: (a) Mininum supercell for ZnO nanowire with diameter D = 2 nm. (b) Supercell
for ZnO nanowire (e.g., 8 minimum supercells along the growth direction) with diameter D =
2 nm used in our calculations.

be also noted that an infinite wire will exhibit a continuum of states above (below) the
LUMO (HOMO) from which we capture only a subset with our finite NW.

There are two ways to capture the electron-hole interaction of excitons,

1. Reciprocal space implementation: use a minimum supercell size in the NW growth
direction and increase the k-point sampling;

2. Real space implementation: use a large supercell extended in the NW growth direction
and limit the calculation to the Γ point of the Brillouin zone.

In our calculations, we prefer the real space implementation: the NWs are periodically
expanded along the growth direction with a length of ∼4.164 nm, which is around three
times the exciton Bohr radius in bulk ZnO (∼1.4 nm). The Coulomb and exchange integrals
are screened by the position-dependent and size-dependent screening function proposed
by Resta (see Section 9.5.2 of Chapter 9), which gives a physically smooth transition
from short range (unscreened) to long range (screened).236,293 An important issue in the
calculation of excitonic properties in nanostructures is the treatment of correlations. Our
CI treatment exhibits a poor scaling, which limits the number of states that we are able
to include in the expansion. A careful convergence test is therefore necessary, especially
in the case of a NW, where the confinement in the NW direction is the sole result of the
electron-hole interaction. For the convergence test, we choose our smallest ZnO NW with
a diameter D = 2 nm. The minimum supercell and the supercell used in our calculations
(e.g., 8 minimum supercells along the growth direction) are shown in Fig. 11.1(a) and (b),
respectively.

We firstly calculated the corresponding single-particle electron and hole energy levels and
the results are shown in Fig. 11.2(a). We find that the single-particle electron states
spread in a much larger energy window than its hole states counterparts, e.g., the first five
electron states distribute in an energy window of 0.56 eV, while the first fifty hole states
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Figure 11.2: (a) Single-particle electron and hole energy levels diagram for our smallest ZnO
nanowire (with diameter D = 2 nm). Here, we have plotted the first five electron energy levels
and the first fifty hole energy levels. (b) Exciton energy as a function of the number of the
hole states in the configuration interaction (CI) treatment for our smallest ZnO nanowire
(with diameter D = 2 nm). Here, we include the first five electron states in the CI.

only spread in a energy window of 0.27 eV. Therefore, we include in our configuration
interaction (CI) treatment the first five electron states and systematically increase the
number of hole states. The exciton energy as a function of the number of hole states
is presented in Fig. 11.2(b). As we can see from Fig. 11.2(b), the exciton energy is
insensitive to a further increase of the number of hole states when the number of hole
states is larger than eighteen. Thus, we include in our CI treatment five states from the
conduction band and eighteen states from the valence band. The optical dipole matrix
elements are calculated within the dipole approximation, and the oscillator strength was
calculated using Fermi’s golden rule (see Section 9.5.3 of Chapter 9).

11.3 Numerical results and discussion

11.3.1 Electronic properties of ZnO nanowires

We consider five different ZnO NWs with diameters D = 2, 3, 4, 5, 6 nm. The fast
oscillating atomic wave functions are projected onto bulk ZnO Bloch states, which enables
us to visualize the envelope functions and quantify the Bloch function parentage of each
NW state (see the projection onto bulk technique in Section 10.3.2 of Chapter 10). The
envelope functions and Bloch function characters obtained from the projection for the first
electron and first four hole states are presented in Fig. 11.3. We use the notation ω to
characterize the symmetry of the envelope functions, where ω gives the number of nodes
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Figure 11.3: Contour plot of the square of the envelope functions (perpendicular to the
NW growth direction), extracted from our atomistic wave functions, for the first electron and
first four hole states for various ZnO NWs. The parentage of each atomic NW wave function
from the topmost three bulk valence band states (labeled as A, B and C) and the lowest bulk
conduction band state (labeled as El) is tabulated under each plot in percentage.
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Table 11.1: Orbital character of the first four electron and hole envelope functions in ZnO NWs of
various diameters (in unit of nm). The superscript (A,B,C) indicates the Bloch function parentage
of the corresponding hole state obtained from Fig. 11.3.

Diameter e0 e1 e2 e3 h0 h1 h2 h3

2 S S S P SC PA,B SA SB
3 S S S P SC PA,B SA SB
4 S P P S PA,B SC SA SB
5 S P P S PA,B SA SB SC
6 S P P P PA,B SA SB SC

encountered when the envelope function is projected on a plane which contains both the
growth direction vector and the center of the NW. The possible values of ω can be S, P
and so forth, where S represents the an envelope function without node, P with one node,
etc.. The results for the first four electron and first four hole states are presented in Table
11.1.

It is found that the lowest unoccupied molecular orbital (LUMO) state exhibits an S-like
envelope function, derived purely from the lowest bulk conduction band, irrespectively
of the variation of the level of quantum confinement. The following two electron states
(e1,2) appear to be energetically degenerate (see Fig. 11.4(a)), switching from an S-type to
a P -type envelope function at a diameter around 3 nm. Furthermore, a P -like envelope
function is more preferable for electron states e1,2,3 in the presence of very weak quantum
confinement effects (i.e., D = 6 nm ≈ 4.3aB, where aB = 1.4 nm is the exciton Bohr radius
of bulk ZnO).

Concerning the hole states, Fig. 11.3 and Table. 11.3 show that the wave functions with
dominant single-band character (either A-, B-, or C-band) have S-type envelope functions,
while the ones with an even mixing of bulk Bloch A- and B-bands have P -type envelope
functions. The SA and SB states are energetically close to each other, whereas they are
considerably separated from the SC states (see Fig. 11.4(b)). This is a consequence of the
nature of the topmost three valence bands in bulk ZnO, where the A- and B-bands are very
close to each other, being energetically separated from the C-band. The SC states exhibit
a weaker diameter dependence than the SA and SB states (see Fig. 11.4(b)). Consequently,
the A- and B-band states rise above the C-band states at the critical diameters DA/C

c

and DB/C
c , respectively, and become energetically more favorable, reproducing the usual

electronic structure encountered in bulk ZnO. The critical values are DA/C
c = 4.2 nm and

DB/C
c = 4.6 nm, respectively (see Fig. 11.4(b)). The PA,B states are energetically very

close to the SA and SB states. The SC states become the highest occupied molecular
orbital (HOMO) states for diameter smaller than a critical value DS/P

c = 3.8 nm (see Fig.
11.4(b)). These PA,B states are energetically more sensitive to the NW diameter, crossing
over the SC states at D = DS/P

c and becoming the HOMO states for D > DS/P
c . This
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diameter dependent change in HOMO state from a conventional electronic state (e.g., with
S-type envelope) to an unconventional state (e.g., with P-type envelope) has also been
found previously in colloidal ZnO QDs145 and very recently in GaN NWs,295 and is being
attributed to the nontrivial interplay between symmetry mixing, spin-orbit coupling, and
quantum confinement effects on the valence band electronic structure.

11.3.2 Optical properties of ZnO nanowires

First, we present the optical band gap of ZnO NWs for various diameters, which correspond
to the intermediate or weak confinement regime (see Fig. 11.4(c)). The calculations are

Figure 11.4: Single-particle electron states (a), hole states (b), (c) single-particle gap (red
solid squares), optical band gap at SC level (green filled spheres) and optical band gap at
the CI level (blue regular triangles), Stokes shift (d), as a function of the NW diameter. In
figure (b), the lines connect states of the same symmetry ω. The red, green, blue, and black
lines connect states with dominant A-band, B-band, C-band, and an even mixing of A- and
B-bands parentage, respectively. In figure (c), each solid line represents a fit according to Eq.
(11.1).
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performed at three levels of theory, i.e., single-particle (SP) level, SC level, and CI level.
Expectedly, the band gap appears to be a decreasing function of the NW diameter at all
the three levels (see Fig. 11.4(c)). The size-dependent gaps are best fitted according to

ESP
g = Ebulk

g + α/Dβ,

EOp,SC
g = Ebulk,op

g + α
′
/Dβ

′

,

EOp,CI
g = Ebulk,op

g + α
′′
/Dβ

′′

, (11.1)

where ESP
g , EOp,SC

g , EOp,CI
g are the calculated single-particle gaps, optical band gaps at

the SC level, optical band gaps at the CI level, respectively. Ebulk
g = 3.445 eV [Ref. 269] is

the fundamental band gap of bulk ZnO, and Ebulk,op
g = 3.385 eV is the bulk optical gap.

The respective values of the fitting parameters α, β, α′, β ′, α′′, β ′′ are 1.26, 1.33, 1.11, 1.5,
0.99, 1.54, where α, α′ and α′′ are in unit of eV · nm, while β, β ′ and β ′′ are dimensionless
quantities. It is found that the diameter-dependent optical band gap of ZnO NWs (at
the CI level), in the presence of quantum confinement effects, scales as ∼1/D1.539, rather
than ∼1/D as predicted by the effective mass approximation.296 The difference between
the single-particle gap and the optical band gap at the CI level gives an exciton binding
energy (in meV) which is best fitted by:

EX
b = Ebulk,X

b + 310/D0.97, (11.2)

where Ebulk,X
b = 60 meV is the well-known exciton binding energy of bulk ZnO at room

temperature. As expected from the quantum confinement effects, the exciton binding
energy is significantly enhanced in ZnO NWs in comparison to bulk ZnO (∼ 60 meV at
room temperature), giving 111.25 meV at D = 6 nm, 140.99 meV at D = 4 nm and 218.78
meV at D = 2 nm, respectively.

The redshift of the emission spectra with respect to absorption spectra is known as the
Stokes shift. It has two possible contributions:297 (i) a purely electronic shift due to the
splitting of exciton states into bright and dark states, which is usually called as electronic
Stokes shift, and (ii) vibrational (phonon) relaxation due to movement of nuclei to new
equilibrium positions in the excited state, which is called as vibrational Stokes shift. In
general, the vibrational part is very difficult to model297 since it requires excited state
geometry optimization. Moreover, it has been well justified298,299 that the Stokes shift in
III-V and II-VI semiconductor nanostructures is mainly attributed to the (i) contribution.
Therefore, in our calculations, the emphasis is put on the electronic Stokes shift which
for brevity is called as Stokes shift. Its dependence on the NW diameter is shown in Fig.
11.4(d). The results are obtained at two levels of theory: at SC level and at CI level.
It is found that the Stokes shift is a non-monotonic function of the diameter at both
levels, having a maximum at a critical diameter value Dc. This critical values appear to
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Figure 11.5: Schematic picture of the evolution of the exciton states in ZnO NWs of two
different diameters. From the left to the right columns are the single-particle states (column
(i)), energy of the uncoupled electron-hole pairs (column (ii)), excitonic states obtained via CI
including the Coulomb interaction but neglecting the exchange interaction (column (iii)), final
result for the excitonic states including Coulomb, exchange and correlation effects (column
(iv)). The numbers in parenthesis indicate the degeneracy of each level. The dark-exciton
states, bright-exciton states with in-plane polarization, bright exciton states with out-of-plane
polarization are shown in dashed black, solid black and solid red lines, respectively. For
columns (ii)-(iv), the lowest total energy is placed at the bottom.

be significantly different at both levels of theory, with DSC
c ≈5 nm at SC level, and it is

DCI
c ≈3 nm at CI level. To understand this behaviour, we take our smallest and largest

NWs as examples and present the corresponding near-band-edge exciton pictures in the
last column of Fig. 11.5. For D < Dc (top panels in Fig. 11.5), the lowest and first bright
exciton states belong to C-exciton at both SC and CI levels (the results at SC level are not
shown), being contributed nearly purely (or dominantly) from the configuration where the
hole state has an S-type envelope function and derives from bulk Bloch C-band (SC state).
However, for D≥Dc, the two exciton states responsible for the Stokes shift switch to the
A-exciton, deriving mainly from the configuration where the hole state has an S-type
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envelope function and a dominant bulk Bloch A-band parentage. This diameter-dependent
C-exciton to A-exciton transition is responsible for the non-monotonic behaviour in Stokes
shift.

We find from Fig. 11.5 that the formation of the optically dark and bright states is due to
the electron-hole exchange interaction (see the last two columns). The C-exciton consists
of one optically dark state and three optically bright states (see the upper panel of Fig.
11.5). The dark state is spin-forbidden and lower in energy. The lowest two bright exciton
states are energetically very close to the dark state (i.e., ∼0.013 meV for D = 2 nm (by
CI), see Fig. 11.4(d)), being doubly degenerate (with a very small splitting of 0.4 µeV (by
CI)) and weakly polarized (with low intensity) along the in-plane direction. The third
bright state is energetically far away (i.e., ∼4.01 meV (by CI) to the lowest dark state
for D = 2 nm) and is singly degenerate with strong out-of-plane polarization (with high
intensity). Concerning the A-exciton (see the lower panel of Fig. 11.5), it consists of two
optically dark and two optically bright states. The dark states appear to be degenerate and
present the ground state. The two bright exciton states are nearly degenerate with a small
splitting of up to 58.25 µeV, being significantly separated from their dark counterparts
(e.g., ∼ 0.573 meV for D = 6 nm). These results are in full agreement with the symmetry
analysis developed by Hopfield.300 The Stokes shift originating from different types of
exciton is found to exhibit a different diameter-dependence. As shown in Fig. 11.4(d), the
Stokes shift derived from C-exciton states is quantitatively much smaller and it increases
slightly with increasing diameter. Conversely, the one derived from A-exciton states turns
out to be quantitatively much larger and it decreases significantly with respect to the
increase in the diameter.

As mentioned previously, the SA state rises over the SC state and becomes energetically
more favourable for D > DA/C

c = 4.2 nm. Therefore, one might expect that the transition
between the near-band-edge C-exciton (electron-S—hole-SC) and A-exciton (electron-S—
hole-SA) takes place around the critical value (≈ 4.2 nm). This is indeed the case if
correlation effects are neglected. The maximum of the Stokes shift appears at a critical
diameter DSC

c ≈5 nm, as shown by the SC results (see Fig. 11.4(d)). However, when the
correlation effects are fully considered (see the CI results), the critical value at which the
transition occurs shifts to a significantly smaller diameter value (e.g., DCI

c ≈3 nm). This
nonmonotonic behaviour in Stokes shift has been found previously in several semiconductor
nanostructures, e.g., CdSe nanorods (NRs) [Ref. 273], ZnO NRs [Ref. 269], ZnO QDs
under pressure [Ref. 292]. A larger Stokes shift means a smaller overlap area between
absorption and emission spectra, which is desirable in applications such as light-emitting
diodes, where reabsorption reduces the total efficiency.273 The transition between different
types of excitons have recently been found in GaAs/AlGaAs QDs by applying elastic
stress,301 which is believed to have potential application in quantum technologies.
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We also find that the exciton nearly purely derived from a configuration (e, h) where the
electron has an S-type envelope function (in LUMO) and the hole has a P-type envelope
function does not exhibit the orbitally forbidden, dark ground state (see the lower panel).
The exciton ground state appears to be orbitally allowed but spin-forbidden, derived
from electron (in LUMO) and hole (in HOMO-1) with both S-type envelope functions,
similar to the case of small diameter NWs (see the upper panel of Fig. 11.5). After the
detailed analysis of the evaluation of the band-edge exciton states through the stepwise
incorporation of Coulomb and exchange interactions (see Fig. 11.5), we find that two
combined effects are responsible for this phenomenon:

(i) Increasing the diameter leads to a significant decrease in the energy difference between
the two four-fold uncoupled states (see the second column of Fig. 11.5), e.g., the energy
difference is 55.23 meV for D = 2 nm, while it is only 6.11 meV for D = 6 nm;

Figure 11.6: Oscillator strength for the absorption 〈0| to 〈X| in various ZnO NWs at
room temperature obtained via CI. Absorptions polarized along the out-of-plane (c axis)
and in-plane (perpendicular to the c-axis) directions are shown by red and black vertical
lines, respectively. The symbols in parentheses indicate the dominant envelope function
characters of the single-particle states (e, h) involved in the emissions, and the parentage of
the corresponding hole state is given as superscript.
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(ii) The Coulomb interaction is more pronounced for the configuration with both electron
and hole having the same envelope function characters (both S-type) than that with electron
and hole having different characters (electron: S-type, and hole: P-type), irrespective
of the NW diameter. For example, for D = 2 nm, the Coulomb interaction experienced
by the configuration (e0, h0) (e0 − S − h0 − S) is around 218.8 meV, while it is around
213.7 meV for the configuration (e0, h1) (e0 − S − h1 − P ). These two values appear to
be 106.6 meV (configuration (e0, h0), (e0 − S − h1 − P )) and 117.9 meV (configuration
(e0, h1), (e0 − S − h1 − S)), for D = 6 nm.

This conventional optics from unconventional electronics has also been found previously in
ZnO colloidal QDs.145 Compared to the Coulomb interaction, the influence of the exchange
interaction (fourth column of Fig. 11.5) has a significantly smaller magnitude (below
1 meV, depending on the NW diameter) but is important for the optical polarization
properties.

Finally, we present in Fig. 11.6 the absorption spectrum at room temperature for various
NW diameters. The calculations are performed in the CI scheme. A Gaussian broadening
function is adopted with a broadening parameter of 1.2 meV. It is found that increasing
the diameter leads to a redshift in the absorption spectrum. This redshift is more
pronounced for narrow NWs (with small diameters). Decreasing the NW diameter results
in a transition in the optical absorption polarization from an in-plane polarization (E⊥~c)
to an out-of-plane polarization (E‖~c) at a diameter of around 3 nm. This transition
between usual α-absorption (E⊥~c) and unusual σ and π absorptions (E‖~c) has also been
found previously in ZnO QDs under hydrostatic pressures292 and ZnO NRs by changing
the length-to-diameter aspect ratios.269 Before the transition occurs (e.g., for D≥3 nm),
the near-band-edge optical absorption is dominated by the A- and B-exciton absorptions,
which can not be separately resolved experimentally.277 However, after the transition
takes place (e.g., for D<3 nm), the unusual C-exciton absorption (σ and π absorptions)
becomes active. This type of absorption in ZnO NWs has been recently experimentally
achieved by Jacopin et al.277 using a thermal approach. The results we present here offer
a new way (e.g., narrowing the NW diameter) to activate the C-exciton absorption in ZnO
NWs, which should be very interesting for the design of future experiments in the realm of
quantum technology.301

11.4 Brief summary

In the present work, we have studied the electronic and optical properties of ZnO NWs
as a function of the diameter. We find that the hole states with dominant single-band
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(bulk A-, B- or C-band) parentage exhibit S-type envelope functions, while the states
with an even mixture of bulk Bloch A- and B-bands present P-type envelope functions.
The A-band and B-band states are very close in energy and more sensitive to the NW
diameter than the C-band states. Consequently, these states rise over the C-band states at
a critical diameters (e.g., DA/C

c = 4.2 nm and DB/C
c = 4.8 nm) and become energetically

more favourable, reproducing the usual electronic structure of bulk ZnO. Comparing to the
C-band states, the states with an even mixture of bulk Bloch A- and B-bands parentage
exhibit a stronger size-dependence, causing a drastic change in the envelope function
character of the highest occupied molecular orbital (HOMO) state from a conventional
S-like character to an unconventional P -like character at diameter around 3.8 nm. The
lowest unoccupied molecular orbital (LUMO) state always presents an S-type envelope
function, irrespectively of the variation of the quantum confinement effects.

The optical band gap is a decreasing function of the NW diameter and scales as ∼1/D1.54,
rather than ∼1/D as expected from effective mass theory. The exciton binding energy is
calculated and the associated scaling law is provided. In contrast to monotonic behaviour
in the optical band gap, the Stokes shift displays a non-monotonic function of the diameter,
exhibiting a maximum at a critical diameter value around 3 nm. We explain this behaviour
through the transition of the near-band-edge exciton from a usual C-exciton to an unusual
A-exciton by varying the NW diameters. For NWs larger than the critical diameter,
the near-band-edge photoluminescence is dominated by the in-plane polarized A- and
B-exciton emissions. For NWs smaller than the critical diameter the out-of-plane polarized
C-exciton emission is dominant.



12
New insights in the excitonic emission of ZnS
colloidal quantum dots
In this chapter, we have studied the electronic and optical properties of wurtzite ZnS colloidal
quantum dots by means of atomistic empirical pseudopotential method complemented by
configuration interaction calculations. For this purpose we have developed a new set of
reliable pseudopotentials (for Zn and S) which give an accurate and balanced description
of ZnS bulk properties. Our results for the size-dependent optical gap are found to be in
excellent agreement with the experimental measurements, offering valuable information
with regard to the nature of the near-band-edge excitons. In particular, it is found that,
not only the first optically allowed exciton is an A-exciton for the full range of dot sizes,
but also all the pronounced emission peaks exhibit an in-plane polarization (i.e. A or
B excitons). Under normal conditions, the C-exciton emissions which are common in
the ZnO analogs are found to be inactive in the lower part of the excitonic spectrum of
ZnS colloidal quantum dots. The results presented herein are published in The Journal of
Physical Chemistry C 118, 10502 (2014).
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12.1 Introduction

Zinc Sulfide (ZnS), as one of the typical II-VI semiconductor compounds, is an excellent
optical material having a wide optical transparency from the ultraviolet (UV) to the
far infrared (IR) region.302,303 It is also widely used for flat panel displays,304 laser,305
sensor,306 cathode ray tube and electroluminescence device304,307 applications. ZnS usually
crystallizes into a cubic zinc-blende (ZB) structure at low temperature which transforms to a
more stable hexagonal wurtzite (WZ) structure above 1020 ◦C under normal pressure.308,309
Comparing to the ZB counterpart, WZ ZnS exhibits a higher ionization transition rate
and therefore has a higher optical gain.310 The most recent developments are towards
nanostructured ZnS, such as nanowires, nanoribbons, nanotubes and quantum dots.
Great progresses in the fabrication and characterization of ZnS nanostructures for device
application purposes have been committed (see Ref. 311 and references therein). However,
several important challenges still remain and await for being explored. One of them is
the application of ZnS in transparent and flexible electronics due to the challenge which
exists in optimization of nanodevice performances. Although several ways to optimize
the performances of ZnS-based devices have been exploited, more work on tuning the
conductivity, band gap, surface and optical properties is still quite desired.311

From a theoretical standpoint, Density functional theory (DFT) calculations have been
widely employed for the study of the bulk ZnS band structure,312–314 the geometric and
the electronic properties of ZnS nanowires, nanotubes, nanosheets.315 These types of
calculations are restricted to nonpassivated and small size nanostructures. Since in DFT
the band gap in bulk ZnS are not well-reproduced,313 the description of the quantum
confinement effects in ZnS nanostructures is questionable. Furthermore, effective mass
and tight binding models have been applied to interpret the experimental measurements
of ZnS QDs with realistic sizes. However, these approaches are either only appropriate for
QDs within the weak confinement regime or significantly underestimate the optical band
gap.316

In this Chapter, we derived a new empirical pseudopotential for wurtzite ZnS, which
reproduced well the experimental and/or theoretical bulk properties, such as band gap,
critical energy levels, effective masses, crystal-field and spin-orbit splitting. This allows
us to calculate electronic and optical properties of wurtzite ZnS QDs with realistic sizes
at an atomistic level by means of empirical pseudopotential method and configuration
interaction approach. We studied the size-dependent optical band gap, Stokes shift and
optical emission polarizations of ZnS colloidal QDs. Our calculated optical band gap
is in very good agreement with the experimental work. For the full range of QD sizes
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studied, the near-band-edge exciton emission is polarized along the in-plane direction,
corresponding to A-exciton emission.

12.2 Computational details

12.2.1 Crystal structure of bulk ZnS

We use the experimental structure parameter for bulk wurtzite ZnS and constructing
wurtzite ZnS QDs later on, which are listed in Table 12.1. Similarly to wurzite ZnO,
there are four atoms per unit cell, that is, two Zn atoms and two S atoms. The lattice
vectors of the unit cell, and the atom positions in the unit cell in Cartesian and fractional
coordinates can be obtained from Tables 10.1, 10.2 and 10.3, respectively, by using the
above mentioned structure parameters. In wurzite ZnS, there are two types of bond length:
one is R(1) = uc = 2.338 Å and the other one R(2) =

√
3c2(1−2u)2+4a2

2
√

3 = 2.334 Å, and two
types of angles θ′ and θ with

θ
′
= arccos( −

√
3c(1− 2u)√

3c2(1− 2u)2 + 4a2
) = 109.44◦, (12.1)

and
θ = arccos(3c2(1− 2u)2 − 2a2

3c2(1− 2u)2 + 4a2 ) = 109.502◦, (12.2)

respectively.

Table 12.1: Structure parameters a, c, u and c/a for wurtzite ZnS.
a (Å) c (Å) u c/a

3.811241 6.234241 0.375241 1.63579241
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12.2.2 Generate empirical pseudopotentials for ZnS

We follow the atomistic empirical pseudopotential method145,269,292,317,318 and derive new
pseudopotentials for Zn and S. The Hamiltonian has the form

Ĥ = −1
2∇

2 +
∑
nα

[vα(~r− ~Rαn) + v̂SOα ], (12.3)

where n is an atomic index, α specifies the atom type, and v̂SOα is the nonlocal spin-orbit
operator, including one parameter λ for each atom type. The screened atomic pseudopo-
tentials vα (with α = Zn, S) are centered at each atomic position and their superposition
generates the crystal potential. In the present work, we employed pseudopotentials with
four free parameters, which are defined in reciprocal space, having the analytic form

vα(q) = α1(q2 − α2)
α3eα4q2 − 1 . (12.4)

This exponential type of pseudopotential has been successfully adopted previously for the
study of electronic and optical properties of wurtzite ZnO nanostructures.145,269,292,318 The
quasicubic model of Hopfield300 is adopted to obtain the spin-orbit ∆so and crystal-field
∆cr splittings

EA(Γ9v) = 1
2(∆so + ∆cr),

EB(C)(Γ7v) = ±1
2[(∆so + ∆cr)2 − 8

3∆so∆cr], (12.5)

where EA, EB and EC are the energies of the top three valence bands at Γ point of the
Brillouin Zone.

To define the free parameters a1, a2, a3, a4 and λ, the unknown eigenfunctions of Hamilton
(12.3) are expanded by using the plane wave basis set. The plane wave energy cutoff is 8.5
Ryd and the Kinetic energy is not re-scaled. The Schrödinger’s equation is solved by using
the direct diagonalization method (see Section 9.4.1 of Chapter 9). During the generation
procedure, larger weight has been allocated to the quantities close to the conduction band
minimum (CBM) and valence band maximum (VBM), while smaller weight has been put
on these quantities which are remote from CBM and VBM. This procedure is ended until
the known bulk properties of wurtzite ZnS, such as the energy gaps at specific symmetry
points of the Brillouin Zone, the perpendicular and parallel effective masses of electron
and hole, the spin-orbit, and crystal-field splitting (see Table 12.2), are well-reproduced.
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Table 12.2: Compiled reference bulk properties and empirical pseudopotential results (including
spin-orbit interaction) using the parameters presented in Table 12.3.

Quantities Experiment Theory Targets EPM
Eg(Γ1c − Γ6v) 3.864,146 3.872,146 3.75,319

3.76,320 3.78321
1.968,313 2.211,313
2.260313

3.75 3.739

Eg(Γ3c − Γ1c) 1.5322 1.5 1.59
Eg(Γ6c − Γ1c) 4.4322 4.4 4.40
Eg(H3c − Γ1c) 2.7322 2.7 2.55
Eg(K2c − Γ1c) 1.8322 1.8 1.526
Eg(M1c − Γ1c) 1.6322 1.6 1.52
m⊥e 0.33,146 0.153,313

0.199,313 0.157313
0.33 0.079

m‖e 0.24146 0.144,313 0.142,313
0.138313

0.24 0.100

m⊥A 0.49146 3.838,313 1.713,313
2.914,313 1.470241

0.49 1.15

m
‖
A 1.40146 1.746,313 2.176,313

1.785,313 1.51241
1.40 5.02

m⊥B 0.485,146 0.180,313
0.198,313 0.195313

0.485 0.21

m
‖
B 0.53,146 0.756,313

0.402,313 0.621313
0.53 0.42

m⊥C 0.75,146 0.337,313
0.443,313 0.303313

0.75 1.23

m
‖
C 0.32,146 0.183,313

0.440,313 0.339313
0.32 0.27

∆cr 0.058,146 0.055,146 0.029146 0.052,313 0.049,313
0.055313

0.0580 0.0526

∆so 0.086,146 0.089,146 0.092146 0.027,313 0.025,313
0.026313

0.086 0.0926

The optimized four free parameters for Zn and S are listed in Table 12.3 and the volume
normalized local parts of the Zn and S pseudoptentials are presented in Fig. 12.1(a). Using
these pseudopotentials, the computed quantities of bulk wurtzite ZnS are in very good
agreement with existing experimental and/or theoretical results (see Table 12.2). The
calculated band structure is depicted in Fig. 12.1(b) which reproduces almost exactly the
result of Bergstresser and Cohen.322
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Table 12.3: Empirical pseudopotential parameters a1,2,3,4 and spin-orbit parameter λ.
a1 a2 a3 a4 λ

Zn -5.091010 0.000005 -0.011512 0.285308 0.1165
S -20.220911 3.750462 -0.000227 1.465173 0.0

12.2.3 Input geometry

After deriving the reliable atomic pseudopotentials, we turn our attention to the study
of the electronic and optical properties of wurtzite ZnS colloidal QDs. The QDs are
cut from the bulk ZnS with a spherical shape, being centered on an Sulfide atom. The
surface dangling bonds are passivated by employing a high band gap artificial material,
as successfully practised previously.145,240,269,292,293 The geometry of our smallest QD
structure (e.g., with radius R = 1 nm, unpassivated) is displayed in Fig. 12.2(a) and the

Figure 12.1: (a) Normalized atom pseudopotentials for Zn and S. (b) Band structure of
wurtzite ZnS by our empirical pseudopotential methods (EPM) including spin-orbit interaction.
(c) Schematic representation of the symmetry evolution of the conduction band minimum
(CBM) and valence band maximum (VBM) of bulk ZnS by the crystal-field and/or spin-orbit
splitting. (d) Topmost three valence bands around Γ-point of the Brillouin Zone obtained by
EPM including spin-orbit splitting.
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Figure 12.2: (a) Geometry of our Zn102S105 quantum dot (Radius R = 1 nm) and (b) its
corresponding suppercell used in our calculations. The blue and yellow balls represent the Zn
and S atoms, respectively.

corresponding supercell used in our calculations are shown in Fig. 12.2(b).

12.2.4 Calculations of electronic and optical properties

The single-particle electron and hole eigenenergies and wave functions are calculated
by the aforementioned empirical pseudopotential method which naturally includes the
effects of multiband coupling, multivalley coupling, and spin-orbit interaction. The many-
body excitonic properties are calculated via configuration interaction (CI) approach263
and the excitonic wave functions are expanded in terms of single-substitution Slater
determinants constructed from the single-particle wave functions of electrons and holes
(see Section 9.5 of Chapter 9). The Coulomb and exchange integrals are screened by the
position-dependent and size-dependent screening function proposed by Resta,248 which
gives a smooth transition from short range (unscreened) to long range (screened)263,293
(see Subsection 9.5.2 of Chapter 9). We include in the CI treatment 4 states from the
conduction band and 10 states from the valence band. The optical dipole matrix elements
are calculated within the dipole approximation, and the oscillator strength was calculated
using Fermi’s golden rule (see Subsection 9.5.3 of Chapter 9).



164 12. New insights in the excitonic emission of ZnS colloidal quantum dots

12.3 Results and discussion

12.3.1 Valence band ordering of bulk ZnS

Before presenting our QD results, we briefly describe the valence band structure of bulk
ZnS which is relevant to the later discussion. Without crystal-field and spin-orbit splitting,
the top valence band of ZnS is six-fold Γ5v state (see Fig. 12.1(c)). This state is split
into a four-fold Γ5v state and a two-fold Γ1v state by the crystal field which is a typical
characteristic of wurtzite structure. The Γ5v state is a px, py-like state, while Γ1v state
is a pz-like state. Further inclusion of spin-orbit coupling leads to a splitting of the
four-fold Γ5v state into two doubly-degenerate states, which are corresponding to the heavy
hole and light hole states, respectively. The two-fold Γ1v state is transferred accordingly
to the spin-split-off hole state. For wurtzite ZnS, the spin-orbit parameter is positive,
which is pretty similar to wurtzite GaN. In this conventional situation, the top three
valence bands, from top to bottom, are the so-called bulk A-, B-, C-bands, respectively,
which are of symmetry character Γ9v, Γ7v and Γ7v, respectively (see Fig. 12.1(d)). It
should be mentioned that although wurzite ZnS exhibits a normal valence band ordering,
the generation of reliable atomistic pseudopotentials appears to be an uneasy task in
comparison to its ZnO counterpart which has an abnormal valence band ordering.145

12.3.2 Electronic properties of ZnS quantum dots

We have studied wurtzite ZnS colloidal QDs with experimentally achievable sizes, which
are defined by radii R = 1 nm, 1.5 nm, 1.75 nm, 2.25 nm, 2.5 nm, respectively. The
numbers of atoms for each respective radius are Zn102S105, Zn356S359, Zn573S575, Zn1222S1207
and Zn1646S1677.

Firstly, we present the electron and hole envelope functions for each dot size in Fig. 12.3.
These envelope functions are obtained by employing the projection onto bulk technique145
which gives us the access to visualize the symmetry of the envelope functions and the
parentage of the atomic wave function of each state. We use the notation ωζ to describe
the symmetry of the envelope functions, where ω donates the number of nodes encountered
by moving across the in-plane (xy-direction) or out-of-plane (z-direction) directions, and
ζ represents the direction in which we find the node(s). The possible values for ω are S,
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Figure 12.3: The first electron (e0) and first four hole (h0,1,2,3) envelope functions for five
different radii.

P , etc., where S indicates the form of the envelope function without a node (in this case,
we neglect the subscript ζ), P with one node, etc. Using this notation, the symmetry
characters for the first electron and first four hole states are tabulated in Table 12.4. The
evolution of the parentage of each hole state with respect to the dot size is pictured in Fig.
12.4.

Table 12.4: Character of the first electron and first four hole envelope functions for various QD
radii. The superscript (A and/or B) indicates the corresponding hole state parentage (A-band,
B-band or A, B-bands mixing).

Radius (nm) e0 h0 h1 h2 h3

1 S SA SB PA,B
xy PA

z

1.5 S SA SB PA,B
xy PA

z

1.75 S SA PA,B
xy SB PA

z

2.25 S SA PA,B
xy PA

z SB

2.5 S SA PA,B
xy PA

z SB

We find from Table 12.4 and Fig. 12.4 that the states having S-type characters (SA or SB)
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Figure 12.4: Bloch function characters of the first four hole states for various radii. The red,
green and blue colors are corresponding to the bulk bloch A-, B- and C-bands, respectively.

are derived mainly from a single-band state (either A-band or B-band). These conventional
SA and SB states are separated significantly from each other in energy, whereas their
energetic dependence on the QD sizes appears to be very similar (see Fig. 12.5). This is a
consequence of the nature of topmost valence band structure of bulk ZnS, where A-band
and B-band are energetically separated considerably (see Fig. 12.1(c) and (d)). We further
find that the states with an even admixture of bulk A- and B-band parentage (e.g., h1 at
R = 1.75 nm, 2.25 nm, 2.5 nm) display Pxy-type envelope function characters. These PA,B

xy

characters have also been found previously in wurtzite ZnO nanostructures145,269,292 and
very recently in wurtzite GaN nanowires,295 being attributed to be one of consequences
of the nontrivial interplay between symmetry mixing, spin-orbit coupling and quantum
confinement effects on the valence band electronic structure. Comparing to the S-like
states, these states appear to be more sensitive to the quantum confinement effects, rising
over the SB state at a critical radius value Rc = 1.66 nm and becoming energetically more
favourable (see Fig. 12.5).

In addition to the S-type envelope function characters, the states with a dominant bulk
Bloch A-band parentage also exhibit P-like characters (e.g., h3 at R = 1 nm, 1.5 nm, 1.75
nm, see Table 12.4) with a node exclusively along the out-of-plane direction. The reason
for the fact that the PA

xy-like states are energetically separated from the PA
z -like states is

related to the anisotropic hole effective masses of the bulk A-band, which is larger along
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Figure 12.5: Single particle energies of the first four hole states as a function of the QD
radius. The lines connected states are of the same symmetry. The red (or blue), green, black
lines connect states with dominant A-band, B-band, and an even mixing of A- and B-band
parentage, respectively.

the direction parallel to the c-axis (m∗A‖ > m∗A⊥, see Table 12.2). This favours a state with
a node along the out-of-plane direction, PA

z , rather than with a node along the in-plane
direction, PA

xy. These PA
z -like states are energetically very close to the PA,B

xy states, showing
a similar sensitivity of energy to the variation of the quantum confinement effects (see Fig.
12.5). In contrast to the A-band and/or B-band states, the states with dominant C-band
parentage are not energetically very favourable, being remote from HOMO state (e.g., h9
at R = 1.5 nm, not shown in the figures for clarity). The lowest unoccupied molecular
orbital (LUMO) state turns out to be a single band object deriving purely from bulk Γ7c
band and presenting an S-type envelope function.

12.3.3 Optical properties of ZnS quantum dots

We present the optical band gap of ZnS colloidal QDs with realistic sizes in Fig. 12.6.
The necessary material parameters used in our calculations are given in Ref. 323. The
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Figure 12.6: (a) Single-particle gap (red boxes) and optical band gap (blue circles) as a
function of the QD radius. The green stars with error bars, the wine inverted triangles and
pink regular triangles are the experimental results, the values calculated from the effective
mass approximation (EMA) and tight-binding (TB) models (Ref. 316), respectively. Each
line represents a fit of the band gap energy by Eg = α + β/Rγ where Eg is the band gap
energy, R is the QD radius, α, β, γ are the fitting parameters. (b) The Stokes shift (SS,
red boxes) as a function of the QD radius. The red solid line donates a parabolic fit of the
Stokes shift. The inset shows the near-band-edge exciton picture and corresponding emission
polarization directions (x or y). X indicates the near-band-edge exciton (A-exciton) which is
consisted of a doubly degenerate (2x) dark (D) state and two non-degenerate (1x) bright (B)
states decaying to the ground state (GS).

calculations are performed at single-particle level and configuration interaction (CI) level,
respectively. The calculated optical band gap appears to be in very good agreement
with the experimental measurements by Nanda et al.316 for the full range of QD sizes
in comparison to the results based on the effective mass model324,325 and semiempirical
tight binding model.326 The dependence of the band gap on the QD radius is best fitted
by ESP

g = Ebulk
g + 0.91/R1.61 at single-particle (SP) level where Ebulk

g = 3.75 eV is the
fundamental gap of bulk ZnS (see Table 12.2), and ECI

g = Ebulk,opt
g + 0.66/R1.79 at full

CI level in which Ebulk,opt
g = 3.709 eV is the optical gap of bulk ZnS, respectively. Here

Eg is in unit of eV and R is in unit of nm. The exciton binding energy can be obtained
by subtracting the SP results from the correlated results (CI results), best fitted by
EX
b = EX,bulk

b + 240.95/R1.81 where EX,bulk
b = 41 meV is the exciton binding energy of

bulk ZnS at room temperature327 and all the energies are in unit of meV. In an attempt
to bridge our findings to other material systems, the scaling law associated with the
calculated exciton binding energy can also be written as EX

b v1/Rn with n = 0.919 which
appears to be larger than its counterpart for CdSe colloidal QDs obtained theoretically by
Franceschetti and Zunger (i.e., n = 0.86 [Ref. 328]) and experimentally by Meulenberg
et al. (i.e., n = 0.72 [Ref. 329]). We also find that the obtained exciton binding energy
exhibits a sublinear dependence on the QD radius, which is consistent with the results
reported previously for CdSe QDs.328,329 As expected from the quantum confinement
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effects, the exciton binding energy is significantly enhanced in colloidal ZnS QDs in
comparison to bulk ZnS, giving 130 meV at R = 2.5 nm, 145 meV at R = 1.75 nm and
284 meV at R = 1 nm, respectively.

The near-band-edge exciton is found to be A-exciton for all the QD sizes, which is
contributed nearly purely from HOMO-LUMO transition, where the HOMO state has
a S-like symmetry character and derives dominantly from bulk A-band. This type of
exciton consists of two optically passive (dark) states and two optically active (bright)
states. The formation of these dark-exciton (or bright-exciton) states are originated from
the electron-hole exchange interaction.298,330 The exchange interaction gives rise to the
splitting between the singlet and triplet states. The aforementioned two dark-exciton states
are orbitally allowed but spin-forbidden (spin-triplet states), being doubly degenerate
and energetically favourable. The two bright-exciton states (spin-singlet states) appear
to be singly-degenerate and energetically very close to each other, exhibiting in-plane
polarizations.

Figure 12.7: Oscillator strength for the emission |X〉 to |0〉 for various QD sizes obtained
by full CI at room temperature. Emissions polarized along the in-plane and out-of-plane
directions are shown in black red lines, respectively. The symbols in parentheses indicate the
envelope function characters of the single-particle states (e, h) involved in the emissions (for
the hole state, the corresponding parentage has also been shown).

The energetic difference between the first bright-exciton state and the first dark-exciton
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state is defined as Stoke shift (SS). The SS is in the scale of 10−3 eV, being a decreasing
function of the QD sizes (see Fig. 12.6(b)). This is qualitatively consistent with the
previous reports331–333 for wurtzite CdSe and CdS colloidal QDs. The calculated SS is
found to be in a similar energy window as that of similarly sized CdSe counterparts (∼ 5 -
20 meV [Ref. 331]). However, it turns out to be quantitatively much smaller than that of
CdS analogs (∼ 20 - 70 meV for radius of R = 1 - 2.3 nm [Ref. 333]). This is related
to different near-band-edge dark-exciton mechanisms. The lowest dark-exciton state of
CdS QDs is orbitally forbidden (electron-S-hole-P),333 in contrast to that of CdSe331 and
our ZnS QDs with orbitally allowed but spin-forbidden (electron-S-hole-S) ground-state
dark-exciton states. The dependence of the our obtained SS on the QD radius within the
range studied is best fitted by ESS = 16.31− 11.43R + 2.22R2, where ESS is in unit of
meV (see Fig. 12.6(b)).

Finally, we present in Fig. 12.7 the photoluminescence emission spectrum for various QD
sizes, which are obtained by full CI at room temperature. Lorentzian broadening function
is employed and the broadening parameter is chosen as 1.5 meV. As expected, increasing
the QD sizes leads to a significant redshift in the emission spectrum. This redshift is more
pronounced for smaller QDs. For all the QD sizes, the pronounced emissions are polarized
exclusively along the in-plane direction (E⊥~c, α-emission277) and attributed to A- and
B-exciton emissions. The C-exciton emissions with out-of-plane polarization appear to be
not active in ZnS colloidal QDs under normal conditions.

12.4 Brief summary

In conclusion, we have derived a new and reliable empirical pseudopotential for wurtzite
ZnS which enables us to study the size-dependent electronic and optical properties of ZnS
colloidal quantum dots at an atomistic level. The single-particle states are calculated
by employing empirical pseudopotential method and the many-body excitonic effects are
considered via configuration interaction approach. We find that the highest occupied
molecular orbital (HOMO) states have a dominant bulk Bloch A-band parentage, exhibiting
S-like envelope function characters. These SA states are energetically separated significantly
from their counterparts originated mainly from bulk bloch B-band with S-like envelopes.
We related this to the nature of the topmost valence band structure of wurtzite ZnS
where A-band and B-band are separated considerably in energy. The states with an even
admixture of bulk A-band and B-band turn out to have Pxy-like characters.

In addition to the S-type symmetry characters, the states with a dominant A-band
parentage also exhibit P-like characters but with nodes exclusively along the out-of-plane



12.4. Brief summary 171

direction. This is attributed to the anisotropy of the hole effective masses of the bulk bloch
A-band. The calculated optical band gaps are in excellent agreement with the experiments
which confirms the accuracy of the present method. We provide scaling laws for the
experimentally measurable physical quantities, such as optical band gap and Stokes shift,
for the full range of QD sizes. Finally, we find that the near-band-edge exciton is A-exciton
and the pronounced exciton emissions are from A-exciton and/or B-exciton emissions with
in-plane polarizations. The C-exciton emissions with out-of-plane polarization are found
to be not active in ZnS colloidal quantum dots under normal conditions.
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Using the potential morphing method in the framework of the effective-mass approximation, we have

studied theoretically the effect of a tilted magnetic field on the binding energy of surface impurities

in GaAs=Al0:3Ga0:7As cylindrical quantum dots. It is found that contrary to what was expected based

on the existing literature for growth-direction magnetic fields, the presence of a tilted field does not

always contribute positively to the binding energy of surface impurities. The shape (aspect ratio) and

size of the cylindrical QD as well as the dopant positions at the QD surface play an important role.

Furthermore, we find that decrease of the QD size can reduce the sensitivity of the variation of the

donor binding energy with respect to the field strength (orientation), but it cannot change its general

behaviour. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754824]

I. INTRODUCTION

Rapid advance in material growth technology leads to a

renewed interest in studies of semiconductor nanostructures

subjected to a magnetic field directed at an angle with

respect to the growth direction.1–5 Investigations of hydro-

genic impurity in the above setup are of particular relevance,

since the presence of the hydrogenic impurity influences

greatly the electronic mobility and optical properties. Fur-

thermore, surface impurities play a crucial role in the design

of new materials with desirable properties.6–8 Up to now,

only few reports5,9,10 were involved with studying the tilted

magnetic field effect on the donor impurity states in such

unique systems, and all of them were exclusively based on

semiconductor quantum well (QW) structures. To the best of

our knowledge, there are no reports based on the effective

mass approximation (EMA) offering a detailed account of

the behaviour of the binding energy of impurities (on-surface

or on-center) localized in QDs subjected to a tilted magnetic

field. The present work attempts to fill this gap in the litera-

ture by providing theoretical predictions based on the poten-

tial morphing method (PMM)11,12 which is employed in the

framework of EMA. The emphasis of the present paper is

placed on the behaviour of the donor binding energy with

respect to the geometric characteristics of the QDs, impurity

positions, and magnetic field orientation and intensity.

II. GENERAL THEORY

In the framework of EMA, a shallow donor impurity em-

bedded in a cylindrical QD is modeled by the Hamiltonian

Ĥ ¼ ðp̂ þ e

c
~Að~rÞÞ 1

2m�e
ðp̂ þ e

c
~Að~rÞÞ þ Vð~rÞ � e2

�j~r �~ri j
: (1)

The first term of the Hamiltonian is the operator for the

Kinetic energy of a delocalized conduction electron (where

e is the absolute value of the electron charge, c is the speed of

the light in vacuum, and m�e is the electron effective mass) in

the presence of a magnetic field B. In our case, the magnetic

field is applied parallel to the xoz plane making an angle

h with the x-axial direction (i.e., ~B ¼ Bðcos h; 0; sin hÞ). For

the uniform magnetic field ~B, the commonly used cylindrical

gauge is employed, and the vector potential assumes the

following form:

~Að~rÞ ¼ 1

2
~B �~r ¼ 1

2
Bð�y sin h;�ðz cos h� x sin hÞ; y cos hÞ:

(2)

By substituting Eq. (2) into Hamiltonian (1), the opera-

tor for the Kinetic energy of the electron under the influence

of a tilted magnetic field ~B (the first term of Hamiltonian (1))

takes the following form:

ĤKin ¼ p̂
1

2m�e
p̂ þ eB

2m�ec
ðcos hl̂x þ sin hl̂zÞ

þ e2B2

8m�ec2
½y2 þ ðz cos h� x sin hÞ2�;

(3)

where l̂i (i¼ x, z) is the i-component of the angular momen-

tum operator (l̂x ¼ yp̂z � zp̂y; l̂z ¼ xp̂y � yp̂x). The second

term of Eq. (3) represents the interaction between the exter-

nal applied tilted magnetic field ~B and the orbital angular

momentum ~l ð~B �~l ¼ Bxl̂x þ Byl̂y þ Bzl̂z, here By ¼ 0). The

third term of Eq. (3)

VBð~rÞ ¼
e2B2

8m�ec2
½y2 þ ðz cos h� x sin hÞ2� (4)

corresponds to the magnetic field induced confinement poten-

tial. Vð~rÞ in Eq. (1) is the step-like electron confinementa)Electronic mail: bask@upatras.gr.
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potential, which is assumed to be zero inside the QD and V0

outside the dot. The third part of the Eq. (1) is the Coulomb

interaction between the electron and the shallow donor impu-

rity located at ~ri ¼ ðxi; yi; ziÞ; � is the static dielectric con-

stant. In order to obtain the ground state of the Hamiltonian

(1), we are using the PMM following the procedure outlined

in Ref. 11. The ground-state donor binding energy is

Eb ¼ E0 � ~E; (5)

where ~E is the energy which corresponds to the Hamilto-

nian in Eq. (1) and E0 is the energy without Coulomb inter-

action (absence of the third term in Eq. (1)). The magnetic

shift of the donor binding energy is defined as the differ-

ence between the binding energy of a donor impurity at

magnetic field B 6¼ 0 and its binding energy at magnetic

field B¼ 0 for a fixed tilted angle h, which is given by5

dEb ¼ EbðB 6¼ 0; hÞ � EbðB ¼ 0; hÞ: (6)

Similarly, the angle shift of the donor binding energy is

defined as the difference between the binding energy of a do-

nor impurity at tilted angle h 6¼ 0� and its binding energy at

tilted angle h ¼ 0� and hence is the following:5

DEb ¼ EbðB; h 6¼ 0�Þ � EbðB; h ¼ 0�Þ: (7)

III. NUMERICAL RESULTS AND DISCUSSION

In the following, we will discuss the influence of the QD

geometric characteristics (such as dot size and height-to-

radius aspect ratio), impurities positions (on-surface or on-

center), and magnetic field intensities and orientations on the

donor binding energy in a cylindrical QD characterized by

the dot radius R and dot height L. Our calculations are based

on a typical GaAs cylindrical QD, surrounded by larger band

gap material Al0:3Ga0:7As in both the radial and z-axis direc-

tions. All the material parameters used in our calculations

are the same as in Ref. 12. The cartesian coordinates of the

on-center, top, and side impurities, which are considered in

the present calculations, are (0,0,0), (0,0,L/2), and (R,0,0),

respectively.

As a first step towards studying the effect of a tilted

magnetic field on the binding energy of surface impurities in

cylindrical GaAs=Al0:3Ga0:7As QDs, we performed calcula-

tions for the magnetic shift of the donor binding energy of

surface impurities dEb (top and side impurities) as a function

of the magnetic field strength B (see the first two plots of the

left column of Fig. 1). This procedure was repeated for

height-to-radius aspect ratios q ¼ L
R ¼ 0:5, 1.0, and 2.0,

while the dot’s radius was set to R¼ 20 nm. As reported in

previous investigations,13 for a cylindrical QD subjected to

the growth direction magnetic field, the binding energy of

on-edge impurity (corresponding to the top impurity in our

calculations) is totally insensitive to the increase of the mag-

netic field strength. However, for a tilted magnetic field (for

instance, h ¼ 45�), the binding energy of top impurity, as

indicated in Fig. 1, is very sensitive to the magnetic field,

and dEb increases dramatically with increasing the magnetic

field for a disc-shaped QD (i.e., q ¼ 0:5). However, as the

aspect ration increases this sensitivity declines and dEb even

becomes negative for the rod-shaped QD (q ¼ 2:0). On the

other hand, for the case of side impurity, the behaviour of

dEb is found to be quite different. For a disc-shaped QD

(q ¼ 0:5), as shown in Fig. 1 (see the second plot of the left

column), dEb is negative and it keeps decreasing dramati-

cally with increasing the magnetic field strength. When the

aspect ratio goes up to q ¼ 1; dEb is also negative as the

field increases, but the sensitivity of the donor binding

energy with respect to the field strength is reduced. However,

if the aspect ratio keeps increasing and a rod-shaped QD is

produced, the enhancement of the magnetic field results in a

positive dEb, which is in contrast to the case of top impurity.

In an effort to explain these novel behaviour of the bind-

ing energy of surface impurities and understand the underly-

ing physics, we have created suitable 3D contour plots of the

electron probability density (first column of Fig. 2), as well

as isosurfaces of the electron probability density differences

(the last three columns of Fig. 2) in impurity-free QDs with

different aspect ratios and magnetic fields (strength and ori-

entation). In particular, each density difference plot has been

produced by subtracting the zero field density from the den-

sity which corresponds to a specific field strength and orien-

tation. This subtraction leads to positive (blue) and negative

(red) density areas which indicate the charge movement due

to the presence of the magnetic field. As a result, the red

surfaces correspond to charge depletion areas, while the blue

surfaces correspond to charge accumulation areas. For the

creations of these 3D contour plots, the Gabedit graphical

program14 was used. By observing these figures, two distinct

trends can be identified. The presence of the magnetic field

makes the electron probability density shrinks towards the

center of the dot and also elongates along the applied field

direction. The geometric characteristics of the dot (aspect ra-

tio) have a different influence on these two trends. The

shrinking due to the magnetic field induced confinement is

not significantly affected by the variation of the QD aspect

ratio while, on the other hand, the elongation trend is greatly

affected. In the absence of the magnetic field, the electron

probability density is mainly distributed along the radial

direction of a disc-shaped QD (q ¼ 0:5) due to the strong

confinement in the growth direction, whereas for a rod-

shaped QD (q ¼ 2:0), it extends apparently in all the three

directions because it is in the weak confinement regime (see

the first column of Fig. 2). When an experimentally strong

tilted magnetic field (for instance, B¼ 20 T and h ¼ 45�) is

applied in a disc shaped QD (see the third column of Fig. 2),

the electron probability density exhibits an obvious shrinking

towards the center of the QD (see the red color) while the

elongation is strongly limited by the growth-direction geo-

metric confinement of the QD. The charge density accumula-

tion around the center of the QD is the dominant effect

which leads to the decrease (increase) of the mean relative

distance between the electron and the top (side) impurity. As

a direct result, the binding energy of top impurity increases

dramatically, whereas that of side impurity obviously

decreases. On the contrary, when the dimensions (aspect

064326-2 Zeng et al. J. Appl. Phys. 112, 064326 (2012)
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ratios) of the QD become larger, the elongation trend medi-

ates or even reverses this tendency.

In order to investigate the behaviour of dEb in different

dot sizes subjected to a tilted magnetic field, we also dis-

played in Fig. 1 (see the last plot of the left column), the

magnetic shift of the donor binding energy dEb as a function

of the magnetic field strength in a cylindrical QD with aspect

ratio q ¼ 1:0 but with a smaller radius (R¼ 10 nm). In this

calculation, three different impurity positions (top, side, and

center) are considered. At a first glance, we can find that the

binding energy of the surface impurities does not change in

the same way as that of the on-center impurity when the

magnetic field is enhanced. For instance, dEb of side impu-

rity slightly decreases with increasing the magnetic field.

However, for an on-center donor impurity, it exhibits an

apparent increase. This finding is totally different from the

case of growth direction magnetic field, which states that the

change of the binding energy of off-center impurity is similar

to that of an on-center impurity.15 Furthermore, by compar-

ing the three plots shown in the left column of Fig. 1, it is

found that decrease of the QD size can lead to the decrease

of the sensitivity of the magnetic shift of the donor binding

FIG. 1. Left column: magnetic shift of the donor binding energy dEb as a function of magnetic field B with tilted angle h ¼ 45�. Right column: angle shift

of the donor binding energy DEb as a function of the tilted angle h with magnetic field B¼ 20 T. (a) is for different aspect ratios (R¼ 20 nm) and top

impurity; (b) is for different aspect ratios (R¼ 20 nm) but side impurity; (c) is for different impurity positions (top, side, and center) but for radius R¼ 10 nm

and aspect ratio q ¼ 1.
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energy with respect to the magnetic field strength but can not

change its general behaviour.

As expected, the magnetic field orientation also has a

significant influence on the binding energy of surface impur-

ities in a cylindrical QD. As indicated from Fig. 1 (see the

first two plots of the right column), both the top and side

impurities show monotonic dependence of the binding

energy on the tilted angle, irrespectively of the QD aspect

ratios. However, the variation of the magnetic filed orienta-

tion from in-plane direction to the growth direction contrib-

utes positively to the angle shift of the binding energy of top

impurity, while it has a negative influence on the angle shift

of the binding energy of side impurity. This can be under-

stood as follows. When the magnetic field is applied along

the x-axial direction (h ¼ 0�), the magnetic field induced

confinement is in yoz plane as shown from Eq. (4). For this

reason, the electron probability density shrinks in the plane

perpendicular to the magnetic field direction and mainly

elongates along the field direction at this stage (see the den-

sity differences shown in the second column of Fig. 2).

When the magnetic field is tilted from the in-plane direction,

the magnetic field has both longitudinal and transverse com-

ponents, which correspond to the magnetic field induced

confinement in xoy and yoz plane, respectively. Conse-

quently, the electron probability density shrinks toward the

center of the QD and the mean relative distance between the

electron and side (top) impurity is increased (decreased).

Finally, when the magnetic field is applied along the growth

direction and the magnetic field induced confinement con-

tributed from the transverse component of the magnetic field

is diminished, the electron probability density is distributed

apparently along the growth direction of the QD. Therefore,

in this situation, the binding energy of top (side) impurity

reaches its largest (smallest) value. Furthermore it can be

deduced from Fig. 2 that the charge depletion (accumulation)

is much more sensitive to the magnetic field orientation for

the case of larger aspect ratio (q ¼ 2). This directly indicates

that the effect of the magnetic field orientation is more pro-

nounced in a semiconductor QD with large aspect ratios.

As for the behaviour of the angle shift of the donor bind-

ing energy, several interesting trends can be observed from

Fig. 1. As shown by the first plot of the right column, the

sensitivity of DEb of the top impurity with respect to the

variation of the tilted angle appears to be significantly pro-

nounced for the case of disc-shaped QD. However, this sensi-

tivity exhibits an apparent decrease as the aspect ratio of the

QD increases. On the contrary, for side impurity (see the sec-

ond plot of the right column in Fig. 1), the sensitivity of DEb

is enhanced for a rod-shaped QD, and it appears to increase

with increasing the aspect ratio, as expected. In order to show

the angle shift of the donor binding energy in different dot

sizes, we also exhibit in Fig. 1 (see the last plot of the right

column), the dependence of DEb of top (side or center) impu-

rity on the field orientation in a cylindrical QD with aspect

ratio q ¼ 1 but for a smaller radius (R¼ 10 nm). It is found

that the variation of DEb strongly depends on the surface im-

purity positions, and it does not always behave in the similar

way as that of an on-center impurity. By comparing the val-

ues of DEb in the three plots (see the right column of Fig. 1),

it is not difficult to find that the decrease of the QD size leads

to a decrease of the sensitivity of DEb with regard to the tilted

angle, but it does not change its general behaviour, which is

similar to that of the magnetic shift of the donor binding

energy (see the plots exhibited in left column of Fig. 1).

In summary, our results show that QD geometric charac-

teristics (dot sizes and aspect ratios), impurity positions (top,

side, or center), and the magnetic field intensities and orienta-

tions affect significantly the donor binding energy. The mag-

netic (angle) shift of the donor binding energy is not always

enhanced by the presence of a tilted magnetic field. Its sensi-

tivity with respect to the field strength (or tilted angle) can be

reduced by decreasing the QD size, but its general behaviour

cannot be altered. Furthermore, it is found that the angle shift

of the donor binding energy is a monotonic function of the

tilted angle, irrespectively of the QD sizes and aspect ratios.

We hope the present work can stimulate forthcoming

theoretical, experimental investigations as well as devices

applications in this attracting research area.
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We theoretically investigated the donor binding energy distribution with respect to the dopant positions
in a self-assembled GaAs/AlGaAs quantum dot (QD) in the presence of a tilted electric field. It is found
that there is a critical line in a doping plane, corresponding to zero Stark shift of the donor binding
energy. At low electric fields, our work reveals that Stark shift of an on-center donor binding energy
is a “purely” quadratic function of the electric field strength, irrespective of QD dimensions and field
orientations. This scaling law permits us to indirectly estimate the impurity polarizability in a self-
assembled QD.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Doping semiconductor QDs allows tuning many properties for
tailoring quantum devices and it provides further means to control
their performance [1]. Moreover, donors have already been used in
some elegant quantum computing proposals that draw upon the
vast expertise of the semiconductor device industry [2]. Therefore,
the binding energy of impurities confined in semiconductor QDs
has been extensively studied using different numerical methods
and several confining potential shapes [3–7]. In all these reports,
only a few impurity positions (on the growth direction or along
the radial direction) are considered. Furthermore, application of an
external electric field induces the carriers distribution polarization
and shifts the energy states. These effects considerably change the
energy spectrum of the carriers, which may be used to control and
modulate the intensity output of devices. Consequently, this makes
the external electric field an effective tool for studying the physical
properties of semiconductor nanostructures, both from theoretical
and practical points of view. It is well known that when an elec-
tric field is applied in a semiconductor QD in which the carriers
(electron or hole) are confined in all three directions, the quantum-
confined Stark effect appears. Due to this effect, the symmetry of
the electron probability density distributions at zero electric field
breaks and the maximum of the electron probability density moves
away from the QD center to the opposite direction of the applied

* Corresponding author.
E-mail address: bask@upatras.gr (S. Baskoutas).

field. Consequently, the donor binding energy corresponding to the
doping positions which are located opposite to applied field direc-
tion exhibits “blue” shift. Conversely, “red” shift takes place if the
doping positions are distributed along the field direction. Are there
any doping positions in the QD at which the donor binding energy
keeps invariant (zero shift) under the influence of an applied elec-
tric field?

On the other hand, quantum-confined Stark effect on the ex-
citon energy in a semiconductor self-assembled QD has been ex-
tensively investigated [8–13], indicating that a shift of the exci-
tonic peak in absorption or photoluminescence (PL) spectra, for
small electric field F , has the form δE(F ) = E(F �= 0) − E(F = 0) ≈
αX F − β X F 2, where αX and β X are, respectively, the components
of the permanent dipole moment and the polarizability. Especially,
if the symmetry of the problem rules out a preferential direction,
the Stark shift is an even function of F and the expansion be-
gins with the polarizability term (αX = 0). As is well known, the
donor impurity behaves like an exciton with infinite hole effective
mass. Therefore, a question which naturally arises is the follow-
ing: what is the relation connecting the Stark shift of the donor
binding energy with the applied electric field in a semiconductor
self-assembled QD?

To put a quantitative answer to the questions addressed before,
in this Letter, we performed detailed theoretical investigations on
the donor binding energy distributions with respect to the dopant
positions in a self-assembled GaAs/AlGaAs QD, considering the ef-
fect of an applied tilted electric field. The numerical approach we
used is potential morphing method [14] (PMM) in the framework
of effective-mass approximation. The rest Letter is organized as

0375-9601/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physleta.2012.07.032
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Fig. 1. (Color online.) Schematic representation of the self-assembled GaAs/AlGaAs
QD under investigation with the dot height L and the radius R in the presence of a
electric field F applied parallel to the xoz plane making an angle θ relative to the
x axis.

follows: in Section 2 we define our model and explain the general
theory, in Section 3 we present our numerical results and related
discussions, and Section 4 is devoted to conclusions.

2. Theoretical model

It is well known that the self-assembled QDs are quasi-two-
dimensional structures which strongly confine the carriers (elec-
tron or hole) in the growth direction, while the lateral confinement
is typically softer. Due to this fact, a GaAs/AlGaAs QD with cylin-
drical shape is adopted for our model calculations (see Fig. 1).
The parameter L referred to the dot height is responsible for
the QD growth-direction (z-axial direction) quantum confinement.
Whereas the parameter R referred to the dot radius is responsible
for the QD lateral quantum confinement.

In the framework of the effective-mass approximation, a shal-
low donor impurity embedded in a self-assembled QD is modeled
by the Hamiltonian

Ĥ = p̂
1

2m∗
e

p̂ + V (�r) + V F (�r) − e2

ε|�r − �ri| , (1)

where m∗
e is the electron effective mass, V (�r) is the electron con-

finement potential, which is assumed to zero insider the QD and
V 0 outside the QD (V 0 is the conduction band discontinuity).
V F (�r) is the electrostatic potential induced by the tiled electric
field applied parallel to the xoz plane making an angle θ relative
to the x axis (see Fig. 1), which is given by

V F (�r) = eF (x cos θ + z sin θ), (2)

where e is the absolute value of the electron charge, F is the
magnitude of the applied electric field. The last term of Eq. (1)
represents the Coulomb interaction between the electron and the
shallow donor impurity which is located at ri = (xi, yi, zi) and ε
is the static dielectric constant. It should noted here that due to
the symmetry consideration, the dopant positions considered in
the present calculations are distributed in the xoz plane (yi = 0).

The ground-sate donor binding energy is defined as a difference
between the ground-state energies of the free electron and that of
the donor, which is the following

Eb = E0 − Ẽ, (3)

where Ẽ is the energy which corresponds to the Hamiltonian in
Eq. (1) and E0 is the energy without Coulomb interaction (absence
of the last term in Eq. (1)). In order to obtain the ground-state
energy of the electron (E0) and the donor ( Ẽ) as well as corre-
sponding wavefunctions, PMM is employed. Actually, PMM solves

the time-independent Schrödinger equation for an arbitrary inter-
action potential v S (�r) starting from a potential v R(�r) with well-
known eigenvalues and eigenfunctions. The essential point is that
the transition from potential v R(�r) to potential v S (�r) can be per-
formed by means of the time-dependent Schrödinger equation as
follows: using the potential v R(�r) and v S (�r), we formulate a time-
dependent Schrödinger equation [14]

ıh̄
∂Φ(�r, t)

∂t
=

{
− h̄2

2m
�2 + (

1 − σ(t)
)

v R(�r)

+ σ(t)v S(�r)
}
Φ(�r, t), (4)

where σ(t) has the following property:

σ(t) =
{

0, t � ta,

1, t � tb.
(5)

For ta � t � tb (ta is the morphing starting moment, tb is the mor-
phing ending moment), the function σ(t) should increase mono-
tonically. Moreover, we solve Eq. (4) numerically. After a large
number of time steps (so that t > tb), the energy eigenvalue E S

for the potential v S (�r) is given by

E S =
∫

d3r Φ∗
S (�r)

{
− h̄2

2m
�2 + v S(�r)

}
ΦS(�r), (6)

where ΦS is the wavefunction of the system under consideration.
In the present numerical calculations, the usual three-dimensional
(3D) harmonic oscillator is taken as a reference system and its
ground-state wavefunction is selected as the initial wavefunction
(ΦR ). The interaction potential corresponding to the ground-state
energy of the electron (E0) is

ve
S = V (�r) + V F (�r). (7)

Whereas, the interaction potential corresponding to the ground-
state energy of the donor ( Ẽ) is

vd
S = V (�r) + V F (�r) − e2

ε|�r − �ri| . (8)

It should be noted here that adopting the harmonic oscillator as
a reference system does not affect our results because the PMM
needs only a known reference system to start the morphing pro-
cess and finally to give the eigenfunctions and eigenvalues for the
unknown system, independently on the choice of the initial refer-
ence system [14,15].

To further understand the electric field effect on the donor
binding energy in a semiconductor QD, the Stark shift of the donor
binding energy is defined as the difference between the binding
energy of a donor impurity at electric field F �= 0 (a finite electric
field) and its binding energy at F = 0 (zero electric field), which
can be given by

δEb = Eb(F �= 0, θ) − Eb(F = 0, θ). (9)

The negative Stark shift of the donor binding energy (δEb < 0)
means essentially the electric field effect makes the donor bind-
ing energy “red shift”. Conversely, the “blue shift” of the donor
binding energy takes place if the Stark shift of the donor binding
energy is positive (
Eb > 0).

3. Numerical results and discussions

Before presenting the numerical results obtained from our
model calculations, it is deserved to discuss the validity of the
effective-mass approximation in small systems. As mentioned by
several authors [7,16,17], validity of effective-mass approximation
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Fig. 2. (Color online.) Contour plots of the Stark shift of the donor binding energy (in unit of meV) for various dopant positions distributed in xoz plane of a GaAs/Al0.3Ga0.7As
cylindrical QD with different dot configurations subjected to an uniform electric field (F = 50 kV/cm, θ = 45◦).

Fig. 3. (Color online.) Contour plots of the Stark shift of the donor binding energy (in unit of meV) for various dopant positions distributed in xoz plane of a GaAs/Al0.3Ga0.7As
cylindrical QD with dot height L = 20 nm and radius R = 20 nm, considering different electric field magnitudes at tilted angle θ = 45◦ .

in semiconductor QD depends on the range of the Bloch function
wavevectors necessary to construct the envelope wavefunction for
the dot. This range has to be much smaller than the width of the
Brillouin zone. For GaAs QD, the effective-mass approximation is
valid for the case of dot size larger than 2–3 nm [7]. To insure the
validity, the size of the QD in our calculations is much larger than
the aforementioned critical dot size value. The physical parame-
ters used in our calculations are ε = 12.4 and V 0 = 228 meV. As
verified by Li and Xia [18], the effective-mass mismatch has con-
siderable influence on the high excited states but it only weakly
affects the ground-state donor binding energy and the low excited
states. Thus, in our calculations, a position-independent electron
effective mass (m∗

e = 0.0667m0) is used as a reasonable approx-
imation. These parameters are suitable for GaAs/AlxGa1−xAs het-
erostructures with aluminum concentration x ≈ 0.3.

First of all, in an effort to obtain a quantitative understanding
of the dependence of donor binding energy on the dopant posi-
tions in the presence of an applied electric field, we create suitable
contour plots (Fig. 2) of the Stark shift of the donor binding en-
ergy (δEb = Eb(F �= 0) − Eb(F = 0)) for various dopant positions
in a cylindrical GaAs QD with different dot configurations. The
field strength is F = 50 kV/cm and tilted angle θ = 45◦ . It is in-
teresting to find from Fig. 2 that for any dot configuration, there
is a critical line determined by δEb = 0. The doping region above
the critical line satisfying δEb < 0 represents the “red” shift of the
donor binding energy and the doping area below the critical line
described by δEb > 0 shows the “blue” shift of the donor bind-
ing energy. By observing these plots, it is found that the critical
line exhibits two distinct features. One is horizontal displacement
(shift to left/right-hand side) and the other one is planar rotation.
Although both of them are due to the applied electric field ef-
fect, their behavior is differently influenced by the QD geometric
characteristics, such as dot sizes and aspect ratios (ρ = L/R). As
is observed in Fig. 2, for a specific QD aspect ratio (i.e. ρ = 1),
the critical line appears to show a left-hand displacement and si-
multaneously a counterclockwise planar rotation as the dot size
increases (see the first two plots). Whereas, if the QD aspect ra-
tio increases (see the last two plots of Fig. 2), a right-hand dis-

placement of the critical line takes place and simultaneously the
counterclockwise planar rotation is significantly more intense. Es-
pecially, for a weak-confinement cylindrical QD with aspect ratio
ρ = 2 (see the last plot of Fig. 2), the area corresponding to the
“red” shift of the donor binding energy is dominant. The criti-
cal line is displaced far from the center of the doping plane and
preferably rotated to be perpendicular to the field direction. These
novel behavior is attributed to the competition effects between the
applied electric field and geometric confinement.

For a self-assembled cylindrical QD with aspect ratio ρ = 1 and
radius R = 20 nm, we have also displayed the contour plots of
Stark shift of the donor binding energy for various dopant posi-
tions in Fig. 3, in which different field strengths (θ = 45◦) are con-
sidered. As expected, the critical line corresponding to zero shift
of the donor binding energy appears in any field strength configu-
ration. Generally, the enhancement of the applied field causes the
enlargement of the doping area corresponding to the “red” shift
of the donor binding energy. Particularly, it is found that the in-
crease of the field strength practically has negligible influence on
the translational displacement of the critical line. Conversely, it has
a significant effect on the planar rotation. As can be seen from
Fig. 3, the counterclockwise rotation of the critical line is signifi-
cantly enhanced as the field strength increases.

In accordance to the previous reports about the tilted electric
field effect on the electron [19] and magnetoexciton states [20], the
applied field orientation also significantly affects the electron and
excitonic properties. At this point, one may expect that the relative
orientation of the applied field may also has considerable effect on
the Stark shift of the donor binding energy. To check this assump-
tion, in Fig. 4, we displayed several contour plots of the Stark shift
of the donor binding energy for various dopant positions in the
same QD configuration as in Fig. 3, considering different field ori-
entations. As is observed, the critical line determined by δEb = 0
appears for any field orientation. Variation of the field orientation
from the in-plane direction (�F ‖ �x) to the growth direction (�F ‖ �z)
leads to the shrinking of the doping area corresponding to the
“red” shift of the donor binding energy. It is also found from Fig. 4
that increasing the titled angle turns out to shift the critical line to
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Fig. 4. (Color online.) Contour plots of the Stark shift of the donor binding energy (in unit of meV) for various dopant positions distributed in xoz plane of a GaAs/Al0.3Ga0.7As
cylindrical QD with dot height L = 20 nm and radius R = 20 nm, considering different electric field orientations with strength F = 50 kV/cm.

Fig. 5. (Color online.) Variation of the ground-state electron subband energy δEs

((a) and (b)) and Stark shift of binding energy of an on-center donor impurity δEb

((c) and (d)) in a self-assembled GaAs/Al0.3Ga0.7As QD as a function of the electric
field strength (symbols). In each figure, each solid line represents a fit to a purely
quadratic field dependence of the energy variation (δEi = Ei(F �= 0) − Ei(F = 0) ≈
−β i F 2 (i = s or b)). (a) and (c) are for different QD configurations and θ = 45◦ ,
while (b) and (d) are for different field orientations and L = R = 20 nm, respec-
tively.

the right-hand side of the doping plane and simultaneously leads
to a counterclockwise planar rotation. Especially, when the field is
applied along the growth direction (see the last plot of Fig. 4), the
Stark shift of the donor binding energy exhibits obviously axially
symmetric distributions (with respect to xi = 0 axis) in the doping
plane. Moreover, the critical line corresponding to the zero shift of
the donor binding energy is distributed apparently perpendicular
to the field direction and vertically but slightly displaced from the
center of the doping plane.

Finally, in order to examine whether the aforementioned re-
lation for the field dependence of the Stark shift of the exciton
energy is also valid for the Stark shift of the donor binding energy,
we firstly present in Fig. 5(a) and (b) the change of the ground-
state electron subband energy δEs (δEs(F ) = Es(F �= 0)− Es(F = 0),
where Es is the ground-state electron subband energy) as a func-
tion of the applied field strength in a self-assembled GaAs QD,
considering different QD configurations (Fig. 5(a)) and field orien-
tations (Fig. 5(b)). As can be seen from Fig. 5(a) and (b), δEs de-
creases quadratically with the applied electric field, irrespective of
the QD dimensions and the applied field orientations. This finding
is in excellent agreement with a general quantum mechanical the-
orem [21] which states that the ground-state energy is a concave
function of any parameter that enters linearly in the Hamiltonian.
This is a quite general result, which does not depend on the model
Hamiltonian used.

Table 1
Theoretical values of βs and βb (in unit of meV cm2 kV−2) obtained from the fits in
Fig. 5(a) and (c), respectively.

QD Configurations βs βb

L = R = 10 nm (2.34 ± 0.003) × 10−3 (0.59 ± 0.002) × 10−3

L = R = 20 nm (26.1 ± 0.17) × 10−3 (9.8 ± 0.15) × 10−3

L = 2R = 40 nm (53.87 ± 0.4) × 10−3 (19.03 ± 0.42) × 10−3

Table 2
Theoretical values of βs and βb (in unit of meV cm2 kV−2) obtained from the fits in
Fig. 5(b) and (d), respectively.

Tilted angle βs βb

θ = 0◦ (42.52 ± 0.402) × 10−3 (16.62 ± 0.37) × 10−3

θ = 30◦ (34.62 ± 0.263) × 10−3 (13.43 ± 0.24) × 10−3

θ = 60◦ (17.26 ± 0.081) × 10−3 (5.89 ± 0.07) × 10−3

θ = 90◦ (7.94 ± 0.016) × 10−3 (1.48 ± 0.02) × 10−3

To understand qualitatively the donor binding energy variation
under the influence of an applied electric field, we also investi-
gated, in Fig. 5(c) and (d), the Stark shift of the binding energy
corresponding to an on-center donor impurity as a function of the
field strength for different QD dimensions (Fig. 5(c)) and electric
field orientations (Fig. 5(d)). In general, donor’s intrinsic dipole
moment becomes orientated by the applied electric field, irre-
spective of dopant positions in a self-assembled QD. Due to an
additional separation of the electron and ionized donor impurity
(e−/D+), the induced dipole moment will also interact with the
applied electric field. In total, this results in a change of the donor
binding energy as δEb ≈ αD F − βD F 2, where the coefficients αD

and βD donates impurity permanent dipole moment and impurity
polarizability, respectively. As can be seen from Fig. 5(c) and (d),
it is interesting to find that δEb decreases (“red shift”) quadrati-
cally with the applied electric field for any dot configuration and
field orientation. This therefore suggests the absence of a perma-
nent dipole moment in each case considered. This result is in good
agreement with the symmetry consideration which states that any
system with an inversion symmetry does not have a permanent
dipole moment (αD = 0). On the other hand, the fits in Fig. 5(c)
and (d) also suggest a good way to estimate the impurity poloariz-
ability. As indicated in Tables 1 and 2 (see the third column), the
impurity polarizability is in order of 10−3 meV cm2 kV−2, which is
comparable with its exciton counterpart as shown in the previous
literature [12,13]. After making a comparison between βs and βb

listed in Tables 1 and 2, it is easy to find that both coefficients
are similarly affected by the QD dimensions or the field orienta-
tions. Increase of QD dimension results in significantly increase in
the two coefficients, while tilting the electric field from the lat-
eral direction to the growth direction turns out to decrease both
of them. This is a good reflection of the competition effects be-
tween the quantum confinement and applied electric field. More
specially, comparing to δEs , it is found that the applied electric
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field effect on δEb is less effective (βs is much larger than βb in
each case). This is because of the Coulomb attraction between the
electron and the donor impurity which inhibits the displacement
of the electron probability density far from the impurity center.

4. Conclusion

In summary, we have studied the Stark shift of the donor bind-
ing energy distributions with respect to the dopant positions in a
self-assembled GaAs/Al0.3Ga0.7As QD subjected to an applied elec-
tric field. The electric field is tilted from the QD growth direction.
It is found that there is a critical line in the doping plane cor-
responding to the zero shift of the donor binding energy. The
doping area above the critical line shows the “red” shift of the
donor binding energy and that below the critical line represents
the “blue” shift. The position of the critical line is strongly affected
by the QD size, its aspect ratio and the strength and orientation
of the applied electric field. Our results also indicate that the vari-
ation of the ground-state electron subband energy and the Stark
shift of an on-center donor binding energy, for small electric field
(0–10 kV/cm in our calculations), are purely quadratic functions
of the field strength, irrespective of the QD configurations and the
field orientations. More specially, it is found that comparing to the
variation of the ground-state electron subband energy under the
influence of the applied electric field, the applied field effect on
the Stark shift of the on-center donor binding energy is less ef-
fective. We believe that the results presented here can be useful
for design and application of some commonly used δ-doped self-
assembled GaAs/AlGaAs QD based optoelectronic devices. We also
hope that our results can stimulate forthcoming theoretical and
experimental investigations in this attracting research area.
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Abstract
We have performed a systematic study on the ground-state binding energy of an on-center
donor impurity confined in a GaAs/Al0.3Ga0.7As cylindrical quantum dot (QD), subjected to
simultaneously applied electric and magnetic fields. The two fields are tilted with respect to
the QD growth direction and they are either parallel or perpendicular to each other. All the
calculations are based on the potential morphing method which is employed within the
framework of the effective-mass approximation. Our results show that when the tilted electric
and magnetic fields are parallel, the magnetic shift of the donor binding energy is a monotonic
function of the magnetic field strength. On the other hand, when the two fields are
perpendicular to each other, the magnetic shift of the donor binding energy varies
nonmonotonically with respect to the magnetic field strength, exhibiting a minimum value at a
critical magnetic field strength. The position of this minimum value and its dependence on the
QD size, its aspect ratio and the orientation of the tilted magnetic field is systematically
investigated. Moreover, we discuss in detail the competition effects which appear in the
presence of the two fields, showing that the critical line which corresponds to zero shift of the
donor binding energy can be manipulated by suitably adjusting the QD size, the aspect ratio
and the relative orientation of the two fields.

(Some figures may appear in colour only in the online journal)

1. Introduction

A deep understanding of the effects of impurities on electronic
states of semiconductor nanostructures is of fundamental
importance in semiconductor physics because their presence
can dramatically alter the performance of quantum devices
[1]. In the last few years, hydrogenic impurity states in
semiconductor nanostructures, such as quantum wells (QWs),
quantum well-wires (QWWs) and quantum dots (QDs), have
been investigated extensively [2–16]. These studies revealed
that the binding energy of a hydrogenic impurity confined in
these nanostructures can be directly controlled by choosing
appropriated materials, geometries, sizes and doping positions.
Moreover, external perturbations, such as uniform electric
and magnetic fields, are effective tools for studying the

impurity related properties in semiconductor nanostructures.
As is well known, the presence of a uniform magnetic
field introduces another electronic confinement (magnetic
field induced confinement) which superposes its geometric
counterpart. Depending on the direction of the magnetic
field (parallel or perpendicular to the growth direction),
some interesting physical phenomena can take place [17].
Furthermore, the applied electric field induces an asymmetric
distribution of the electron probability density which strongly
modifies the electronic and optical properties in semiconductor
nanostructures. Thus, to investigate the combination effects
of the electric and magnetic fields on the binding energy of
a hydrogenic impurity in semiconductor nanostructures was
of great interest and has attracted considerable attention in
the last few years [18–23]. However, the vast majority of
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these calculations treat the most straightforward cases, where
the two fields are applied parallel to each other and they are
either parallel or perpendicular to the growth direction of the
semiconductor nanostructures.

Recently, the rapid advance in material growth technology
lead to a renewed interest in studies of semiconductor
nanostructures subjected to an external electric or magnetic
field directed at an angle with respect to the growth direction.
The reason for this interest is the fact that such a unique
system provides us with novel electronic, optical and transport
effects (see [24] and references therein). More specially,
Redliński and Jankó [25] have investigated the tilted magnetic
field effect on the binding energy of a shallow donor in a
CdTe/MgCdTe QW. Wang et al [26] investigated the effects
of an arbitrary tilted electric field on the magnetoexciton
in a cylindrical QD by means of a variational procedure.
Recently, Monozon and Schmelcher [24] developed an
analytical approach to the problem of the fundamental and
exciton magnetoelectroabsorption in a narrow QW subjected
to the tilted electric and magnetic fields (the electric and
magnetic field are parallel and are both tilted with respect
to the QW growth direction). However, to the best of our
knowledge, the combination effects of the tilted electric and
magnetic fields (parallel or perpendicular to each other) on
the donor binding energy in semiconductor nanostructures
have not been reported anywhere in the literature. On the
other hand, as revealed in the previous reports [25], the
tilted magnetic field induces a three-dimensional (3D) electron
confinement which makes the electron probability density
distribute with respect to the centre of the cylindrical QD.
This in turn causes the increase in the on-centre donor binding
energy. In contrast, as the external tilted electric field is
applied, the symmetry of the electron probability density
distribution at zero electric field breaks and the maximum of
the electron probability density moves away from the center
of the cylindrical QD to the opposite direction of the tilted
electric field. As a result, the decrease in the binding energy
of an on-center donor impurity in a QD takes place. As
expected, when the two tilted fields are simultaneously applied
in a GaAs/AlGaAs cylindrical QD, competition effects appear.
More importantly, a qualitatively understanding of these types
of competition effects on the donor binding energy may be very
useful for design and application of some commonly used δ-
doped GaAs/AlGaAs QD-based optoelectronic devices, such
as LEDs and LDs. Unfortunately, no related reports have
been published. Therefore, in this work, we performed for
the first time calculations of the ground-state binding energy
of an on-center donor impurity in a typical GaAs/AlGaAs
cylindrical QD under the influence of simultaneously applied
tilted electric and magnetic fields. Both fields are applied
parallel to the xoz plane and they are both tilted with respect
to the QD growth direction. The cases for which the electric
field is parallel or perpendicular to the tilted magnetic field
are considered in detail. The numerical technique we used
in the present calculations is the potential morphing method
(PMM) [27–33] which has been developed to solve the time-
independent Schrödinger equation for any arbitrary interaction
potential. The emphasis of this paper is on a detailed analysis of

competition effects between the simultaneously applied tilted
electric and magnetic fields on the binding energy of an on-
center donor impurity in a cylindrical QD.

The rest of the paper is organized as follows. In section 2
we define our model and explain the general theory, in section 3
we present our numerical results and related discussions and
section 4 is devoted to conclusions.

2. General theory

Within the framework of effective-mass approximation
(EMA), a shallow donor impurity embedded in a cylindrical
QD is modelled by the Hamiltonian

Ĥ = (p̂ +
e

c
�A(�r)) 1

2m∗
e

(p̂ +
e

c
�A(�r)) + V (�r) + VE(�r) − e2

ε|�r| .
(1)

The first term of the Hamiltonian is the operator for the
kinetic energy of a delocalized conduction electron (where e

is the absolute value of the electron charge, c is the speed
of the light in vacuum, m∗

e is the electron effective mass)
in the presence of a tilted magnetic field which is parallel
to the xoz plane with an angle θ to the x-axial direction
( �B = B(cos θ, 0, sin θ)). The vector potential �A in the
commonly used cylindrical gauge is �A(�r) = 1

2
�B×�r =

1
2B(−y sin θ, −(z cos θ − x sin θ), y cos θ). Substituting the
exact expression of the vector potential into Hamiltonian (1),
the operator for the kinetic energy of the electron under
the influence of a tilted magnetic field �B (the first term of
Hamiltonian (1)) is the following:

ĤKin = p̂
1

2m∗
e

p̂ +
eB

2m∗
ec

(cos θ l̂x + sin θ l̂z)

+
e2B2

8m∗
ec

2
[y2 + (zcos θ − xsin θ)2], (2)

where l̂i (i = x, z) is the i-component of the angular
momentum operator (l̂x = yp̂z − zp̂y , l̂z = xp̂y − yp̂x).
The second term of equation (2) represents the interaction
between the external applied titled magnetic field �B and the
orbital angular momentum �l ( �B·�l = Bxl̂x + Byl̂y + Bzl̂z, here
By = 0). The third term of equation (2),

VB(�r) = e2B2

8m∗
ec

2
[y2 + (zcos θ − xsin θ)2], (3)

is the magnetic field induced confinement potential. For in-
plane magnetic field (θ = 0◦), the magnetic field induced
confinement potential is VB(�r) = e2B2

8m∗
ec

2 (y
2 + z2), which is

in the yoz plane; while for growth-direction magnetic field
(θ = 90◦), VB(�r) = e2B2

8m∗
ec

2 (x
2 + y2), which is in the xoy plane.

Furthermore, for any B �=0 and θ �=0◦ (or 90◦), the magnetic
field induced confinement potential VB(�r) takes the form of
equation (3), which is in both the yoz plane (contributed from
the transverse component of the titled magnetic field Bx =
B cos θ ) and xoy plane (contributed from the longitudinal
component of the tilted magnetic field Bz = B sin θ ). V (�r)

2
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in equation (1) is the electron confinement potential in a
cylindrical QD, which is the following:

V (�r) = V (x, y, z) =
{

V (x, y), |z| � L
2

V0, |z| > L
2 ,

(4)

V (x, y) =
{

0,
√

x2 + y2 � R

V0,
√

x2 + y2 > R,
(5)

where V0 is the conduction band discontinuity, L and R are
the dot height and radius of the cylindrical QD, respectively.
The third part of equation (1) is the electrostatic potential
induced by a tilted electric field applied parallel to the xoz

plane but making an angle θ ′ to the x-axial direction, which is
the following:

VE(�r) = eE(xcos θ ′ + zsin θ ′). (6)

If the tilted angle θ ′ = θ , this means that the tilted electric field
is applied parallel to the tilted magnetic field ( �E‖ �B). While,
when the tilted angle θ ′ = θ±90◦, this represents the tilted
electric field is applied perpendicular to the tilted magnetic
field ( �E⊥ �B). The last term of equation (1) represents the
Coulomb interaction between the electron and the shallow
donor impurity located at the center of the cylindrical QD
(�ri = (xi, yi, zi) = (0, 0, 0), �ri is the impurity position vector);
ε is the static dielectric constant.

In this paper, we intend to investigate the ground-state
donor binding energy under the combined effects of the
simultaneously applied tilted electric and magnetic fields in
a cylindrical QD. The ground-sate donor binding energy is
defined as a difference between the ground-state energies of
the free electron and that of the donor with the same electron
spin configuration [25], which is the following:

Eb = E0 − Ẽ, (7)

where Ẽ is the energy which corresponds to the Hamiltonian
in equation (1) and E0 is the energy without Coulomb
interaction (the absence of the last term in equation (1)). This
definition indicates that the interaction between the spin and
the external magnetic field (∓ 1

2µBg∗
e

�B · �S, µB is the Bohr
magneton and �S is the spin operator) does not contribute to
the donor binding energy. In order to obtain the ground-
state energy of the electron (E0) and the donor (Ẽ) as well as
corresponding wavefunctions, PMM is employed. Actually,
PMM solves the time-independent Schrödinger equation for
an arbitrary interaction potential vS(�r) starting from a potential
vR(�r) with well-known eigenvalues and eigenfunctions. The
essential point is that the transition from potential vR(�r) to
potential vS(�r) can be performed by means of the time-
dependent Schrödinger equation as follows: using the potential
vR(�r) and vS(�r), we formulate a time-dependent Schrödinger
equation [30]

ıh̄
∂�(�r, t)

∂t
=

{
− h̄2

2m
	2 + (1 − σ(t))vR(�r) + σ(t)vS(�r)

}
× �(�r, t), (8)

where σ(t) has the following property:

σ(t) =
{

0, t � ta
1, t � tb

. (9)

For ta � t � tb (ta is the morphing starting moment, tb is the
morphing ending moment), the function σ(t) should increase
monotonically. Moreover, we solve equation (8) numerically.
After a large number of time steps (so that t > tb), the energy
eigenvalue ES for the potential vS(�r) is given by

ES =
∫

d3r�∗
S(�r)

{
− h̄2

2m
	2 + vS(�r)

}
�S(�r), (10)

where �S is the wavefunction of the system under
consideration. In the present numerical calculations, the
usual 3D harmonic oscillator is taken as a reference system
and its ground-state wavefunction is selected as the initial
wavefunction (�R). The interaction potential corresponding
to the ground-state energy of the electron (E0) is

ve
S = eB

2m∗
ec

(cos θ l̂x + sin θ l̂z) + V (�r) + VB(�r) + VE(�r). (11)

Whereas, the interaction potential corresponding to the
ground-state energy of the donor (Ẽ) is

vd
S = eB

2m∗
ec

(cos θ l̂x + sin θ l̂z) + V (�r) + VB(�r) + VE(�r) − e2

ε|r| .
(12)

It should be noted here that adopting the harmonic oscillator as
a reference system does not affect our results because the PMM
needs only a known reference system to start the morphing
process and finally to give the eigenfunctions and eigenvalues
for the unknown system, independently on the choice of the
initial reference system [30, 33].

To further understand the magnetic field effect on the
donor binding energy in a semiconductor QD subjected to an
applied electric field, the magnetic shift of the donor binding
energy is defined as the difference between the binding energy
of a donor impurity at magnetic field B �=0 (a finite magnetic
field) and its binding energy at B = 0 (zero magnetic field) for
a fixed electric field, which can be given by

δEb = Eb(E, θ ′; B �=0, θ) − Eb(E, θ ′; B = 0, θ). (13)

Similarly, in an attempt to understand the competition effects
between the tilted electric and magnetic fields on the donor
binding energy in a cylindrical QD, the energetic shift of the
donor binding energy is defined as the difference between
the binding energy of a donor impurity at finite electric and
magnetic fields (E �=0, B �=0) and its binding energy at zero
electric and magnetic fields (E = 0, B = 0), which can be
given by

�Eb = Eb(E �=0, θ ′; B �=0, θ) − Eb(E = 0, θ ′; B = 0, θ).

(14)

The negative energetic shift of the donor binding energy
(�Eb < 0) means essentially the combination effects of the
tilted electric and magnetic fields make the donor binding
energy ‘red shift’. Conversely, the ‘blue shift’ of the donor
binding energy takes place if the energetic shift of the donor
binding energy is positive (�Eb > 0).

3
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Figure 1. Schematic representation of the GaAs/AlGaAs cylindrical
QD under investigation with the dot height L and the radius R. The
magnetic field ( �B) is applied parallel to the xoz plane making an
angle θ to the x-axial direction. The electric field ( �E) is also applied
parallel to the xoz plane but it makes an angle θ ′ to the x-axial
direction.

3. Numerical results and discussion

According to the previous theoretical studies on the
semiconductor QD [13, 15, 16, 20, 34], we consider a typical
GaAs cylindrical QD, surrounded by large band gap material
AlGaAs in both the radial and z-axial directions. The origin is
taken at the center of the QD and the z-axial direction is defined
as the growth direction (see figure 1). The physical parameters
used in our calculations are ε = 12.4 (assume that there is no
dielectric mismatch) and V0 = 228 meV. It is well known that
the conduction-electron effective mass (m∗

e ) depends on the
aluminium concentration. Such an effect may contribute to
an effective-mass discontinuity at the QD interfaces and leads
to an enhancement of the donor binding energy. However, in
the present calculations, a position-independent conduction-
electron effective mass (m∗

e = 0.0667m0 (where m0 is the
free electron mass)) is considered as an approximation. These
parameters are suitable for GaAs/AlxGa1−xAs heterostructures
with an Al concentration x∼=0.3.

3.1. Tilted electric field effect on the magnetic shift of the
donor binding energy in a GaAs/Al0.3Ga0.7As cylindrical QD

In this section, the tilted electric field effect on the magnetic
shift of the binding energy of an on-center donor impurity has
been calculated as a function of the magnitude of the applied
magnetic field for different dot sizes, electric fields (strengths
and orientations), orientations of the magnetic field and aspect
ratios of the cylindrical QD.

At first, we examine the magnetic shift of the donor
binding energy δEb as a function of the magnetic field
magnitude in a GaAs/Al0.3Ga0.7As cylindrical QD for various
electric ( �E) and magnetic fields ( �B). The electric field is
always applied parallel (θ ′ = θ ) or perpendicularly (θ ′ =
90◦±θ ) to the magnetic field. The calculations have been

Figure 2. Magnetic shift of the donor binding energy δEb as a
function of the magnitude of the tilted magnetic field �B in a
GaAs/Al0.3Ga0.7As cylindrical QD for various tilted electric fields
( �E). Here, (a) is for L = R = 10 nm and θ = 45◦, (b) is for
L = R = 20 nm and θ = 0◦, (c) is for L = R = 10 nm but θ = 90◦,
respectively. The electric field is applied either parallel (θ ′ = θ

( �E‖ �B)) or perpendicularly (θ ′ = θ + 90◦ ( �E⊥ �B)) to the tilted
magnetic field.

performed for two dot sizes (L = R = 10 nm and L = R =
20 nm). Our results (figure 2) show that in the absence of the
electric field, δEb increases as the magnetic field increases for
any dot size and magnetic field orientation. As expected, for
lager dot size (weaker confinement) the variation of δEb with
respect to the magnetic field strength appears to be significantly
more intense (see figures 2(b) and (c)). Moreover, it is found
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Figure 3. The first column corresponds to the 3D contour plots of the electron probability density distributions in an impurity-free
GaAs/Al0.3Ga0.7As cylindrical QD with dot height L = 20 nm and radius R = 20 nm subjected to different tilted electric fields but zero
magnetic field. The following three columns show suitably chosen isosurfaces of electron probability density differences, which have been
produced by subtracting the density at zero magnetic field from the density which corresponds to a specific magnetic field strength in the
Voigt configuration ( �B‖�x). The red surfaces correspond to charge depletion areas, while the blue surfaces correspond to charge
accumulation areas. The upper panel is corresponding to the case where the electric field is applied parallel (E = 30 kV cm−1 and θ ′ = 0◦)
to the magnetic field, whereas, the lower panel is corresponding to the case where the electric field is applied perpendicularly
(E = 30 kV cm−1 and θ ′ = 90◦) to the magnetic field.

from figure 2 that in a larger dot (i.e. L = R = 20 nm),
variation of the magnetic field orientation from the in-plane
direction (Voigt configuration) to the growth direction (Faraday
configuration) leads to the decrease of the sensitivity of δEb

with respect to the magnetic field strength. For instance, at
B = 30 T, the magnetic shift of the donor binding energy
in the Voigt configuration is δEb = 0.819 meV; while in the
Faraday configuration, δEb = 2.27 meV. This is because in the
Faraday configuration, the magnetic field induced confinement
is more effective due to the very weak confinement in the radial
direction (d = 2R = 2L = 40 nm, d is the diameter of the
cylindrical QD). On the other hand, for the case of the small
dot size it becomes clear from figure 2(a) that the monotonic
increase in δEb is practically independent on the electric field
orientation (θ ′ = 45◦ or θ ′ = 135◦). This can be easily
understood by the fact that for L = R = 10 nm, the QD
is in strong confinement regime and the effect of the electric
field is marginal. Thus, it can be safely concluded that for
the strong confinement regime, the value of the magnetic shift
of the donor binding energy is practically not affected by the
presence of an electric field.

In contrast, in the weak confinement regime (see
figure 2(b) and (c)), δEb depends strongly on the relative
orientations of the electric and magnetic fields (tilted angle
θ and θ ′). When the electric field is applied parallel to the
magnetic field (θ ′ = θ ), δEb increases monotonically with
increasing magnetic field strength in both Voigt (θ = 0◦)
and Faraday configurations (θ = 90◦). Moreover, in Faraday
configuration ( �B‖�z), the increase in δEb is practically more
sensitive to the magnetic field strength, as expected. However,
when a perpendicular electric field (θ ′ = θ + 90◦) is applied,
δEb is a ‘nonmononic’ function of the magnetic field strength
in both Voigt and Faraday configurations. It exhibits a
minimum at a critical value Bc. In particular, it is interesting
to find from figure 2(b) that in the Voigt configuration, the
critical magnetic field is Bc ≈ 16 T; while in the Faraday
configuration (figure 2(c)), it is Bc ≈ 20 T. In other words,
the critical magnetic field Bc increases when the magnetic

field is tilted from the in-plane direction ( �B‖�x) to the growth
direction ( �B‖�z).

To understand the behaviour of the magnetic shift of
the donor binding energy under the influence of parallel
(perpendicular) electric and magnetic fields, we create suitable
3D contour plots of the electron probability density (first
column of figure 3), as well as isosurfaces of the electron
probability density differences (the last four columns of
figure 3) in an impurity-free QD for different electric and
magnetic fields. The electric field is applied either parallel
(the upper panel of figure 3) or perpendicularly (the lower panel
of figure 3) to the magnetic field. In particular, each density
difference plot has been produced by subtracting the density
at zero magnetic field from the density which corresponds to a
specific magnetic field strength (the magnetic field is applied
along the x-axial direction). This subtraction leads to positive
(blue) and negative (red) density areas which indicate the
charge movement due to the applied magnetic field. As a result,
the red surfaces correspond to charge depletion areas, while the
blue surfaces correspond to charge accumulation areas. For
the creations of these 3D contour plots, the Gabedit graphical
program was used [35]. By observing the first column of
figure 3, it is found that in the absence of the magnetic
field, the electric field always moves the electron probability
density far away from the QD center to its opposite direction.
However, the density displacement is highly affected by the
QD geometric confinement and the electric field effect turns
out to be more effective in the weak confinement regime
(see the upper contour plot in the first column of figure 3),
as expected.

Before proceeding to explain the density changes that take
place due to the applied magnetic field, it would be useful
to make a distinction between the two different trends which
are introduced by the presence of a magnetic field. At first,
the magnetic field induced confinement tends to squeeze the
charge density around the axis of the applied magnetic field
and secondly it tends to move the charge density towards

5
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the center of the QD. Although both effects are due to the
cylindrical symmetry of the magnetic induced confinement,
their behaviour is differently influenced by the geometric
characteristics of the QD and the presence of an extra electric
field. As a result, under certain conditions these two trends
may be considered separately. This description may prove to
be useful for understanding the competition effects between
the two fields. For the case of a parallel magnetic field
( �E‖�x, �B‖�x), we can see from figure 3 that the charge density
is squeezed around the x-axis as the field strength increases.
It is obvious that for large values of B the magnetic field
induced confinement imposes its cylindrical symmetry, while
for smaller values of B the geometric confinement leads to
less symmetric density distributions. In all cases, the charge
density exhibits a small displacement towards the QD center.
Consequently the mean relative electron-impurity distance
decreases and the binding energy slightly and monotonically
increases with increasing magnetic field strength. However,
this monotonic displacement of the charge density does not
occur when the electric field is applied perpendicularly ( �E‖�z,
�B‖�x) to the magnetic field (see the lower panel of figure 3).
It is found that for magnetic field B � Bc = 15 T, the
charge density moves far from the QD center when the
perpendicular magnetic field increases. Conversely, it tends
to move towards the QD center when the magnetic field
becomes stronger (B > 15 T). This can be attributed to the
competition effects between the two fields. In particular,
although the magnetic field introduces both trends (squeezing
and displacing towards the center of the QD) for small values
of B (0 < B < 15 T) the presence of the electric field inhibits
the displacement, allowing only for an asymmetric squeezing
of the density. As a result, the mean relative electron-impurity
distance increases and the binding energy slightly decreases
(see figures 2(b) and (c)). On the other hand, If the magnetic
field becomes stronger (B > 15 T), its influence begins to
superpose its electric counterpart and the two trends (squeezing
and displacing towards the center of the QD) lead to a charge
density accumulation closer to the QD center. As a result, the
increase in the magnetic field begins to contribute positively
to δEb.

In the Voigt configuration (θ = 0◦), we have also
examined the dependence of δEb on the magnetic field strength
for various tilted electric fields at aspect ratios ρ = L

R
= 0.5

(figure 4(a)) and ρ = 2.0 (figure 4(b)), respectively. Our
results (figure 4(a)) indicate that for ρ = 0.5, in the absence of
the electric field (E = 0), δEb decreases as the strength of the
magnetic field increases (0 < B � 25) and then it becomes
insensitive to the increased magnetic field (25 T � B � 30 T).
On the other hand, when the aspect ratio goes up to ρ =
L
R

= 2.0 (see figure 4(b)), δEb increases monotonically with
increasing magnitude of the magnetic field. This behaviour
is related to the variation of the quantum confinement in the
z-axial direction which is induced by the change in the aspect
ratio. For small aspect ratio (ρ = L

R
= 0.5), the electron

probability density is mainly distributed along the radial
direction due to the weaker confinement (R = 2L = 20 nm).
For magnetic field 0 < B � 25 T, the magnetic field induced
confinement (in the yoz plane) makes the electron probability

Figure 4. Magnetic shift of the donor binding energy δEb as a
function of the magnitude of the tilted magnetic field �B in a
GaAs/Al0.3Ga0.7As cylindrical QD with radius R = 20 nm for
various tilted electric fields �E. The magnetic field is applied along
the x-axial direction (θ = 0◦). The electric field is applied parallel
(θ ′ = θ ) or perpendicularly (θ ′ = θ + 90◦) to the magnetic field.
Here, (a) and (b) are for aspect ratio ρ = L

R
= 0.5 and 2.0,

respectively.

density extend more along the radial direction with increasing
magnetic field strength. Thus, the mean relative electron-
impurity distance is increased and the donor binding energy
is decreased. On the other hand, for B � 25 T the electron
probability density appears to be only slightly affected and
consequently the δEb becomes almost invariant to any further
increase in the magnetic field. Conversely, when the aspect
ratio increases up to ρ = L

R
= 2.0, the magnetic field

effect is more effective because of the weak confinement in
the z-axial direction (L = 2R = 40 nm) and it makes the
electron probability density move closer to the impurity center
as the magnetic field increases. Therefore, the mean relative
electron-impurity distance is decreased and the donor binding
energy is increased significantly.

It is interesting to find from figure 4 that in the presence of
perpendicular electric field (θ ′ = 90◦ +θ ), for any aspect ratio,
the magnetic shift of the donor binding energy δEb exhibits
a minimum value at a critical magnetic field B = Bc. For
aspect ratio ρ = L

R
= 0.5, Bc ≈ 26 T; while for aspect

ratio ρ = L
R

= 2.0, it is Bc ≈ 20 T. In other words, the
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Figure 5. Contour plot of the energetic shift of the donor binding
energy �Eb (in unite of meV) for various electric ( �E) and magnetic
( �B) fields in a GaAs/Al0.3Ga0.7As cylindrical QD. The magnetic
field is applied at an angle θ = 45◦). The electric field is applied
parallel to the magnetic field (θ ′ = θ = 45◦). Here, (a) and (b) are
for L = R = 10 nm and L = R = 20 nm, respectively.

critical magnetic field Bc decreases with increasing aspect
ratio ρ. Moreover, when the parallel electric field is applied
(θ ′ = θ ), the magnetic shift of the donor binding energy
δEb decreases slightly with increasing magnetic field for small
aspect ratio (for instance, ρ = L/R = 0.5). For large aspect
ratio ρ = L/R = 2.0, δEb increases monotonically when
the magnetic field is enhanced. This behaviour is associated
with the interplay between the applied electric and magnetic
fields effect as well as the geometric confinement and it can be
understood in a similar way as in figure 2.

3.2. Energetic shift of the donor binding energy under the
influence of simultaneously applied tilted electric and
magnetic fields in a cylindrical QD

As we know from the above section, the magnetic shift
of the binding energy exhibits novel behaviour due to the
competition effects between the tilted electric and magnetic
fields. Thus, in the following part, the energetic shift of
the donor binding energy �Eb (defined by equation (11)) in
a cylindrical QD subjected to simultaneously applied tilted
electric and magnetic fields will be investigated in order to
understand in detail the competition effects.

Firstly, in an attempt to obtain a qualitative understanding
of the competition effects, we have created a suitable contour
plot (figure 5) of the energetic shift of the donor binding energy
�Eb for various electric (0–30 kV cm−1) and magnetic (0–
30 T) fields. The magnetic field is directed at an angle θ = 45◦,
while the electric field is applied parallel to it (θ ′ = θ = 45◦).
Here, two different dot sizes (L = R = 10 nm and 20 nm) are
considered. It is interesting to find from figure 5 that for any
dot size, there is a critical line determined by �Eb = 0. The
region above the critical line satisfying �Eb < 0 represents the
‘red shift’ of the donor binding energy and the region below the
critical line described by �Eb > 0 shows the ‘blue shift’ of the
donor binding energy. Figure 5 also shows that the critical line
corresponding to �Eb = 0 is highly dependent on the dot size.
Comparing figures 5(a) and (b), it is found that the critical line
moves down when the dot size increases from L = R = 10 nm
to L = R = 20 nm. This means that the energetic shift of the
donor binding energy �Eb is dominated by the electric field
effect for the case of large dot size (i.e. L = R = 20 nm).

As verified by the previous discussions, the relative
orientation of the tilted electric and magnetic fields plays an
important role on the manipulation of the donor binding energy.
To clarify the competition effects between the two fields
applied in different configurations, we present the contour plot
of the energetic shift of the donor binding energy �Eb for
various electric (0–30 kV cm−1) and magnetic (0–30 T) fields
in figure 6, where the magnetic field is applied at θ = 0◦ ((a)
and (c)) or 90◦ ((b) and (d)) and the electric field is either
parallel (left column) or perpendicular (right column) to it.
As shown from figure 6, in the Voigt configuration ( �B‖�x),
the critical line goes up when the electric field is tilted from
θ ′ = 0◦ (see figure 6(a)) to θ ′ = 90◦ (see figure 6(c)). Making
a comparison between figures 6(b) and (d), it is easy to discover
that this finding is also valid in the Faraday configuration
(θ = 90◦). The reasons can be understood as follows. When
the electric field is tilted from the x-axial direction (θ ′ = 0◦)
to the z-axial direction (θ ′ = 90◦), the electric field effect
becomes less important due to the stronger confinement in the
z-axial direction (L = d/2 = 20 nm, d = 2R is the diameter
of the cylindrical QD). This directly leads to the shrinking of
the region described by �Eb < 0 and the critical line goes up.

Similarly, we find from figure 6 that when the electric field
is applied along the x-axial direction (θ ′ = 0◦), the critical
line moves up as the magnetic field is tilted from θ = 0◦ (see
figure 6(a)) to θ = 90◦ (see figure 6(d)). The same behaviour
happens for the case of growth-direction electric field (see
figures 6(b) and (c)). This can be understood analogously
as follows. When the magnetic field shifts from the x-axial
direction to the z-axial direction, the magnetic field induced
confinement becomes more pronounced due to the weaker
confinement in the radial direction (d = 2R = 2L = 40 nm).
As a result, the region corresponding to �Eb > 0 is enlarged
and the critical line moves up.

Finally, figure 7 displays the contour plot of the energetic
shift of the donor binding energy �Eb for various electric
�E (0–30 kV cm−1) and magnetic �B (0–30 T) fields in two
aspect ratio (ρ = L

R
= 0.5 and 2.0) configurations, where

the electric field and magnetic field are both applied along
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Figure 6. Contour plot of the energetic shift of the donor binding energy �Eb (in unite of meV) for various electric ( �E) and magnetic ( �B)
fields in a GaAs/Al0.3Ga0.7As cylindrical QD with dot height L = 20 nm and radius R = 20 nm. Here, (a) θ = θ ′ = 0◦; (b) θ = θ ′ = 90◦;
(c) θ = 0◦, θ ′ = 90◦; (d) θ = 90◦, θ ′ = 0◦.

the x-axial direction. As indicated from figure 7(a) (aspect
ratio ρ = L

R
= 0.5), �Eb is negative for any electric

and magnetic field. Furthermore, for small electric field,
it decreases slightly with increasing magnetic field. For
large electric field, however, it is insensitive to the increased
magnetic field. This is because for aspect ratio ρ = 0.5, both
the in-plane electric and magnetic fields move the electron
probability density far from the impurity center. Therefore,
the donor binding energy reduces as the applied electric (or
magnetic) field increases. Moreover, for very strong electric
field (for instance, E = 25 kV cm−1), the electron probability
density distribution is totally dominated by the in-plane electric
field and it is insensitive to the increased magnetic field. This
directly makes the donor binding energy become invariant with
the increased in-plane magnetic field.

When the aspect ratio goes up to ρ = L
R

= 2 (see
figure 7(b)), the critical line corresponding to �Eb = 0
appears. Moreover, comparing figure 6(a) with figure 7(b),
it is easy to find that the critical line moves up as the aspect
ratio increases. This is because when the aspect ratio increases
the confinement in the z-axial direction becomes weak and the
magnetic field induced confinement in the yoz plane becomes
significant.

4. Conclusions

In summary, using the potential morphing method (PMM) with
the framework of the effective-mass approximation (EMA), the
combination effects of the tilted electric and magnetic fields
on the binding energy of an on-center donor impurity localized

in a GaAs/Al0.3Ga0.7As cylindrical QD have been investigated
theoretically. The electric and magnetic fields are both tilted
with respect to the QD growth direction and they are either
parallel or perpendicular to each other. It is found that for
small dot size, the magnetic shift of the donor binding energy
is insensitive to the orientation of the electric field. However,
for large dot size, it strongly depends on the orientation of the
electric field. Moreover, our results show that when the tilted
electric and magnetic fields are parallel, the magnetic shift
of the donor binding energy is a monotonic function of the
strength of the magnetic field; while when the applied electric
and magnetic fields are perpendicular, it is a nonmonotonic
function of the magnetic field and it exhibits a minimum at a
critical magnetic field. The critical magnetic field increases
when the magnetic field is tilted from the in-plane direction to
the growth direction. However, it decreases with increasing
aspect ratio of the cylindrical QD. Furthermore, we have
systematically discussed the competition effects between the
two fields on the donor binding energy. It is found that
there is a critical line corresponding to the zero shift of the
donor binding energy under the influence of simultaneously
applied tilted electric and magnetic fields. Moreover, this
critical line is highly dependent on the dot size, relative
orientation of the titled electric and magnetic fields as well
as the aspect ratio of the cylindrical QD. We would like to
point out that the present numerical results are only valid for
the on-center donor impurity in a cylindrical QD subjected to
tilted electric and magnetic fields. It is well known that surface
impurities play an important role during the doping process
of the semiconductor nanocrystals [36–38]. Thus, theoretical
predictions of the behaviour of off-center impurities, especially
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Figure 7. Contour plot of the energetic shift of the donor binding
energy �Eb (in unite of meV) for various electric ( �E) and magnetic
( �B) fields in a GaAs/Al0.3Ga0.7As cylindrical QD with dot height
L = 20 nm and radius R = 20 nm. The tilted θ = θ ′ = 0◦. Here,
(a) and (b) are for aspect ratio ρ = L

R
= 0.5 and 2.0, respectively.

the surface impurities under the influence of tilted electric
or magnetic fields deserve to be carried out in detail in the
near future. We believe that the results presented here can
be useful for us to directly manipulate the performance of
the GaAs/Al0.3Ga0.7As QD-based optoelectronic devices by
applying suitable tilted electric and magnetic fields. We also
hope that our results can stimulate forthcoming theoretical and
experimental investigations in this attracting research area.
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ABSTRACT: In the present work, we have performed a systematic
theoretical study of the electronic and optical properties of ZnO
nanorods as a function of an externally applied hydrostatic pressure.
Our calculations are based on the empirical pseudopotential method
and configuration interaction to consider the excitonic effects. The
optical emission polarization is found to exhibit a transition between in-
plane and out-of-plane polarization with increasing pressure. The
critical value of the hydrostatic pressure at which the crossover takes
place appears to depend strongly on the nanorod’s radius. In particular,
when the nanorod’s radius is smaller than the ZnO exciton Bohr radius,
the necessary pressure to reach the crossover point is significantly
smaller than the pressure required for a nanorod with radius larger than
the exciton Bohr radius. For large pressures, the lowest exciton state is a
nearly pure state (0,0), where electron and hole have dominant S-
orbital character and the hole has a nearly pure parentage from the bulk Bloch C-band.

■ INTRODUCTION

Zinc oxide (ZnO) has emerged as a very promising material for
electronic and optoelectronic applications,1 and it forms a rich
variety of nanostructures, such as quantum dots,2,3 nanowires,4

nanorods,5 nanotubes,6 and nanowalls.7 It can function in a
variety of practical applications from optoelectronic devices,
e.g., ultraviolet (UV) sensor8 and light-emitting diodes (LEDs),
to the recently suggested growth of ZnO nanorods (NRs) on
graphene for photovoltaic9 and for biosensor10 applications.
Thanks to the spatial separation of photogenerated carriers, UV
photodetectors with a very high photoconductive gain based on
ZnO nanowires (NWs) have been demonstrated.11 It has been
shown that the photodetection properties of ZnO NWs depend
on the incident light polarization, and when the incident light is
parallel to the c-axis of the NW, photocurrent takes its
maximum value.12 Furthermore, as has been proved exper-
imentally, the band-edge UV emission of light along the c-axis
of vertically aligned ZnO NWs has a larger intensity in
comparison to that parallel to the substrate.13 For laser
applications, the electric field E (or optical emission polar-
ization) and the wavevector k must be perpendicular (E⊥c)⃗ and
parallel (k∥c)⃗ to the c-axis of the ZnO NW (α-emission)14−16

to maximize the light−matter interaction and minimize mirror
losses.16 In our previous work on ZnO NRs,17 we found a sharp
crossover for the optical emission polarization from an in-plane
polarized luminescence (E⊥c)⃗ to an out-of-plane (E∥c)⃗
polarization at a length-to-diameter aspect ratio of around 3.
This means the emission of ZnO NRs with aspect ratio larger
than 3 has a pure contribution from the so-called σ- and π-
emission rather than a normal α-emission. This practically

offers us an efficient way to manipulate the optical polarization
in ZnO NRs by suitably choosing their sizes and shapes
(length-to-diameter aspect ratio). Another way to control the
emission properties is via hydrostatic pressure. Such experi-
ments have focused on nanowires,18 nanosheets,19 nanotubes,20

microrods,21 and nanocrystallites.22 No attention has been paid
to the pressure-dependent optical properties of ZnO NRs. We
now investigate the effect of external hydrostatic pressure on
the optical emission polarization of ZnO NRs with our recently
derived atomistic empirical pseudopotentials.23 Our calcula-
tions include the effects of multiband coupling, multivalley
coupling, spin−orbit interaction, and excitonic correlation via
configuration interaction. We discuss the pressure dependence
of the optical band gap at three levels of theory: at the single
particle (SP) level, at the single configuration (SC) level
including electron−hole exchange interaction, and at the
correlated configuration interaction (CI) level. We find that
the optical band gap increases monotonically with increasing
pressure for nearly spherical NRs; however, it is a non-
monotonic function of the pressure for elongated NRs. The
applied pressure induces a sharp transition of the optical
emission polarization between the in-plane and an out-of-plane
polarization for all the shapes of NRs.
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■ METHODS

The single-particle eigenstates for both conduction and valence
bands are obtained using the plane-wave empirical pseudopo-
tential method24 and our recently derived ZnO pseudopoten-
tials. The adopted Hamiltonian for the single-particle states has
the form

∑̂ = − ∇ + ⃗ − ⃗ + ̂
α

α α αH v r R v
1
2

[ ( ) ]
n

n
2 SO

(1)

where n is an atomic index; α specifies the atom type; and vα̂
SO is

the nonlocal spin−orbit operator. The screened atomic
pseudopotentials vα (with α = Zn,O) are centered at each
atomic position, and their superposition generates the crystal

potential. The pseudopotentials vα incorporate the dependence
on the local hydrostatic strain Tr(ε) via the relationship25

ε γ ε= +α α αv r v r( ; ) ( ; 0)[1 Tr( )]eq
(2)

where γα is a fitting parameter. The form and the parameters of
the zero strain potential, which are optimized to reproduce the
known band structure and the bulk properties of ZnO, are
given in ref 24. In our calculations, the fitting parameter γα has
the value 0.304 and gives a pressure coefficient26 for bulk ZnO
equal to 24.7 meV/GPa, which reproduces exactly the
experimental value 24.7 ± 0.1 meV/GPa.27 The surface
passivation is approximated by a high band gap artificial
material, as practiced successfully previously.17,23,28 The
structure was relaxed with Keating’s VFF model for wurtzite

Figure 1. Envelope functions for the first four electron (e0,1,2,3) and first four hole (h0,1,2,3) states for different hydrostatic pressures and L = 5 nm and
D = 2.2 nm. The white isosurfaces enclose 75% of the state density.

Figure 2. Envelope functions for the first four electron (e0,1,2,3) and first four hole (h0,1,2,3) states for different hydrostatic pressures and L = 5 nm and
D = 4 nm. The white isosurfaces enclose 75% of the state density.
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materials.29 The corresponding envelope functions of the
single-particle states in both valence and conduction bands are
obtained by projecting the fast oscillating atomic wave
functions onto the Bloch states at each unit cell (according
to eq 6 of ref 24). This effectively smears out the atomic
oscillations and leads to an envelope function that can be
displayed with clarity.17,23 This procedure also allows us to
obtain the Bloch function character of each NR state and
attribute them A-, B-, or C-band (or a mixture of them)
parentage. The excitonic wave functions are expanded in terms
of single-substitution Slater determinants constructed from the
single-particle wave functions of electrons and holes. The
corresponding many-body Hamiltonian is solved in the
framework of CI30 as well as in the SC approximation. As
this level of theory, the intraconfiguration Coulomb and
exchange matrix elements are fully included, but the interaction
between different configurations is neglected.30 At the SC level,
correlations are neglected, and our analysis includes 10 states
from the valence band and 10 states from the conduction band.
For the screened Coulomb interaction we used the
phenomenological isotropic and uniform model proposed by
Resta.31 The optical dipole matrix elements are calculated
within the dipole approximation, and the oscillator strength was
calculated using Fermi’s golden rule. A review of this method
can be found in ref 32.

■ RESULTS AND DISCUSSION

Electronic Properties. We define four different ZnO NRs
and more specifically three NRs with diameter D = 2.2 nm and
lengths L = 2.2 nm (Zn378O336), L = 5 nm (Zn840O798), and L =
8 nm (Zn1302O1260) and one with D = 4 nm and L = 5 nm
(Zn2820O2679).
The results for the projected envelope functions of the first

four electron states e0,1,2,3 and first four hole states h0,1,2,3 for L =
5 nm D = 2.2 nm and L = 5 nm D = 4 nm are given in Figures 1
and 2, respectively, for different hydrostatic pressures. To
characterize the symmetry of the wave functions, we use the
notation (ω,ζ) where the indices ω and ζ represent the number
of nodes encountered by moving across the xy plane and along
the z-direction, respectively (for more details see ref 10). The

results are summarized in Table 1 for L = 5 nm and D = 2.2 nm
and in Table 2 for L = 5 nm and D = 4.4 nm.
From Table 1, we can see that all the electron wave functions

have the form (S,ζ), as expected from a truly 1D single band
system.17 Only e3 for pressures greater than or equal to 7.02
GPa develops an in-plane node. The situation is different for
the NR with L = 5 nm and D = 4 nm, where e0 and e1 have the
form (S,ζ) and e2 and e3 develop an in-plane node which is very
similar to the case of spherical QDs.23

Table 1. Character of the First Four Envelope Functions for Electrons and Holes for L = 5 nm, D = 2.2 nm, and Various
Hydrostatic Pressuresa

pressure (GPa) e0 e1 e2 e3 h0 h1 h2 h3

0 (S,S) (S,P) (S,D) (S,F) (S,S) (P,S) (S,S) (P,S)
0.70 (S,S) (S,P) (S,D) (S,F) (S,P) (S,S) (S,S) (S,S)
2.07 (S,S) (S,P) (S,D) (S,F) (S,S) (S,P) (S,P) (S,P)
4.54 (S,S) (S,P) (S,D) (S,F) (S,S) (P,S) (P,S) (P,S)
7.02 (S,S) (S,P) (S,D) (P,S) (S,S) (P,S) (P,S) (S,P)
10.76 (S,S) (S,P) (S,D) (P,S) (S,S) (S,P) (P,S) (P,S)

aThe given orbital character represents the dominant contribution; significant mixing is present, especially for the hole states.

Table 2. Same as Table 1 but for a NR with L = 5 nm and D = 4 nm

pressure (GPa) e0 e1 e2 e3 h0 h1 h2 h3

0 (S,S) (S,P) (P,S) (P,S) (P,S) (S,S) (S,S) (S,P)
0.70 (S,S) (S,P) (P,S) (P,S) (P,S) (S,S) (S,S) (S,P)
2.07 (S,S) (S,P) (P,S) (P,S) (P,S) (S,S) (S,S) (S,S)
4.54 (S,S) (S,P) (P,S) (P,S) (S,S) (P,S) (P,S) (S,S)
7.02 (S,S) (S,P) (P,S) (P,S) (S,S) (P,S) (P,S) (D,S)
10.76 (S,S) (S,P) (P,S) (P,S) (S,S) (P,S) (P,S) (D,S)

Figure 3. Analysis of the Bloch function character of the first four hole
states h0,1,2,3 for different hydrostatic pressures, with L = 5 nm and D =
2.2 nm. The colors red, blue, and green correspond to A-, B-, and C-
bands, respectively.

Figure 4. Same as Figure 3 but for a NR with L = 5 nm and D = 4 nm.
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The situation for the hole states is more complicated, and we
analyze them by projection onto bulk ZnO bands (see eq 5 of
ref 24 for details). The results are given in Figures 3 and 4 for
the first four hole states of NRs with L = 5 nm and D = 2.2 nm
and D = 4 nm, respectively, where the contribution of the A-,
B-, and C-bands is given in percent. From Figures 3 and 4, we
notice that with increasing pressure all the first four hole states
acquire nearly pure C-band Bloch function character. Hydro-
static pressure therefore effectively favors hole states with C-
band character, in a similar fashion that elongations along the c-
direction favor holes with C-band character.17 For the nearly
spherical NR (Figures 2 and 4) the ground state hole for
pressures below 4 GPa have P-envelope function character
(P,S) and have an even mixture of A- and B-band Bloch
function parentage. When the pressure is increased above 4
GPa, the state switches to a more conventional S-envelope state
with C-band Bloch function parentage. For pressures above 6
GPa, all the first four hole states, for all our shapes, are nearly
pure single C-band hole states. The associated envelope wave
functions are therefore expected to follow the situation we
observe for electrons. However, Figure 2 and especially Figure
1 show that electron and hole states are very different, even in
the simple situation of high pressure when the holes are single-
band objects. This is due to the very different effective masses
of electrons and holes. The electrons are relatively light (me =
0.265 m0, where m0 is the free electron mass) and isotropic (me∥
= me⊥). This leads to a situation where the states with P
envelope functions with a node in-plane (we label these as
(P,S), e.g., e2 at zero pressure in Figure 2) and with a node
along the c-axis (labeled as (S,P), e.g., e1 at zero pressure in
Figure 2) have a similar energy. In other words, the effective
mass, and associated kinetic energy, does not favor one type of
node (along or perpendicular to the c-axis). This situation is
different for holes. These holes are relatively heavy and
anisotropic with mh∥ = 0.31m0 and mh⊥ = 0.55m0. The
formation of nodes perpendicular to the c-axis (⊥) is therefore
favored over the formation of nodes along the c-axis (∥). The
states (P,S) are therefore preferred over the states (S,P), as can
be seen on the right-bottom of Figure 2 where no nodes along

Figure 5. Energy of the first ten hole states versus hydrostatic pressure
for ZnO NRs with L = 5 nm and D = 2.2 nm. The lines connect states
with the same envelope function symmetry (ω,ζ) and the same
strongly dominant (A,B,C)-band character.

Figure 6. Same as Figure 5 but of a NR with L = 5 nm and D = 4 nm.

Figure 7. Optical band gap at the SP level (filled circles), in the SC
approximation including exchange (squares) and using full CI (solid
stars) for various hydrostatic pressures and (i) L = 2.2 nm and D = 2.2
nm (black line and symbols); (ii) L = 5 nm and D = 2.2 nm (red lines
and symbols); and (iii) L = 8 nm and D = 2.2 nm (blue lines and
symbols).

Figure 8. Optical band gap at the SP level (filled circles), in the SC
approximation including exchange (open stars) and using full CI (solid
stars) for various hydrostatic pressures and L = 5 nm and D = 4 nm.

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp307269d | J. Phys. Chem. C 2012, 116, 26592−2659726595



the c-axis are present and h3 is a state with in-plane D-character.
This is however only true for nearly spherical structures. When
the NRs are increasingly elongated along the c-direction, the
formation of nodes along this direction becomes increasingly
favorable as well. This can be seen on the right-bottom part of
Figure 1. The effect of the hydrostatic pressure on the envelope
functions of the holes can be seen in the hole panels (right) of
Figure 1 for 7.02 and 11.76 GPa. All of the states are nearly
pure C-band hole states. The P envelope state with a node
along the c-direction becomes more favorable (moves from h3
to h1) for higher pressure. Pressure favors nodes along the c-
direction, although energetically this effect is rather small; i.e.,
the states h1,2,3 are close in energy (see Figure 5).
In Figures 5 and 6, we study the pressure dependence of the

first ten hole-state eigenvalues for L = 5 nm, D = 2.2 nm and L
= 5 nm, D = 4 nm, respectively, and connect the states
according to their symmetry. As we can see, the A- and B-bands
are more sensitive to the pressure in comparison to the C-band.
On the other hand, the C-band states rise above the other states
for pressures greater than 3.0 GPa (Figure 5) and 3.5 GPa
(Figure 6).
Optical Properties. While the literature on ZnO NRs in

the intermediate and weak confinement is extensive,5,33,34 the
literature on ZnO NRs with radii smaller than or equal to the
exciton Bohr radius (1.4 nm) and showing quantum confine-
ment effects is limited.35−38 The optical band gap for different
pressures at three different levels of theoryat the single
particle (SP) level (filled circles), at the SC level including
electron−hole exchange interaction (squares), and at the
correlated CI level (solid stars) for D = 2.2 nm and L = 2.2
nm, 5 and 8 nm are given in Figure 7. As we can see for aspect
ratio ρ = 1 (L = 2.2 nm, D = 2.2 nm) with increasing pressure
the optical band gap increases at all three levels of theory. The
situation is different for the other aspect ratios (ρ = 2.27 and
3.63) where the optical band gap, at the three levels of theory,
increases only for pressures larger than 4.54 GPa. For pressures
smaller than 4.54 GPa, the optical band gap at the SP level is
essentially constant, and at the SC and CI levels the optical
band gap even decreases if pressure increases. As is also evident,
the difference between the values of the optical band gap
between SC and CI levels, which define the correlation effects,
becomes larger with increasing pressure and also increasing
aspect ratio.

In Figure 8 we depict the behavior of the optical band gap at
the SP, SC, and CI levels as a function of pressure for L = 5 nm
and D = 4 nm, showing an increasing band gap with increasing
pressure, at all three levels of theory. The pressure coefficients
are 17.4 meV/GPa (SP), 15.7 meV/GPa (SC), and 13.9 meV/
GPa (CI). Finally we show in Figure 9 the emission spectra at
the CI level and analyze the results in terms of dominant
configurations. The lowest exciton is polarized along the out-of-
plane direction (c-polarized) when the pressure reaches a
critical value. This critical value is highly dependent on the
length-to-diameter aspect ratio and is Pc = 0.70 GPa for large-
aspect-ratio NRs, while it is Pc = 4.54 GPa for small-aspect
ratios. In both cases, the lowest exciton state is a pure (0,0)
state where both electron and hole have (S,S) symmetry and
the hole has a dominant parentage from the bulk C-band. This
result is in agreement with the theoretical results for ZnO NWs
obtained by k·p theory which states that the Xc exciton is
strongly polarized parallel to the c-axis.39 The emission which is
treated by line spectrum in Figure 9 (black or red vertical lines)
is just to indicate explicitly the polarization direction. To be
compared more easily with future experiments, some Lorentz
line shape has been added (blue curves of Figure 9).

■ CONCLUSIONS

In the present work, we have studied the electronic and optical
properties of ZnO NRs as a function of the applied hydrostatic
pressure within the atomistic empirical pseudopotential frame-
work and configuration interaction. We analyze the hole states
according to their envelope function symmetry and their Bloch
function character using a projection technique. We find that:
(i) The hole states with a mixed parentage of A- and B-bands
are more sensitive to pressure than hole states with C-Bloch-
band parentage. (ii) For increasing pressure until 4 GPa the
optical band gap remains constant, for nearly spherical NRs,
and even decreases for elongated NRs. For larger pressures, the
band gap increases for all our structures. (iii) The effects of
correlations increase with increasing pressure. (iv) We obtain a
large difference between the electron and hole envelope
functions, even when the holes have a nearly single-C-Bloch
band character. This is due to the anisotropic hole effective
mass of the C-Bloch band in ZnO. Envelope functions with
nodes perpendicular to the c-axis are more favorable than nodes

Figure 9. Oscillator strengths for the emission |X⟩ to |0⟩ at room temperature in L = 5 nm, D = 2.2 nm (left panel) and L = 5 nm, D = 4 nm (right
panel) calculated at the CI level. Emission polarized along the out-of-plane direction (c-axis) is shown in red, while that polarized in-plane is shown
in black. The numbers in brackets refer to the dominant single-particle levels involved in the transitions (e,h). The blue curve is the total emission
spectrum where a Lorentz line shape with a broadening of 1.5 meV has been used.
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parallel to the c-axis. The electron effective mass is, however,
isotropic, and there is nearly no preference for the existence of
nodes parallel or perpendicular to the c-axis. (v) The ground
state hole in nearly spherical NRs has P-type envelope function.
This situation can only occur when the Bloch function
character of this state is mixed. In our case, the hole state has
a Bloch function made of an even mixture of A and B Bloch
bands. (vi) Pressure favors envelope functions with nodes along
the c-direction. (vii) Pressure favors the C-band, over the A, B-
bands, so that at high pressures the hole states become single-
C-band like. In this case the envelope function of the ground
state hole has the conventional S angular momentum. (viii)
Accordingly, the optical polarization exhibits a transition
between in-plane (E⊥c)⃗ to out-of-plane (E∥c)⃗ with increasing
pressure. This indicates the possibility to effectively manipulate
the optical emission polarization of NRs via pressure, which
should be very attractive for the design of future experiments.
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Abstract Nanocrystalline SnS powder has been

prepared using tin chloride (SnCl2) as a tin ion source

and sodium sulfide (Na2S) as a sulfur ion source with the

help of ultrasound irradiation at room temperature. The

as-synthesized SnS nanoparticles were quantitatively

analyzed and characterized in terms of their morpho-

logical, structural, and optical properties. The detailed

structural and optical properties confirmed the ortho-

rhombic SnS structure and a strongly blue shifted direct

band gap (1.74 eV), for synthesized nanoparticles.

The measured band gap energy of SnS nanoparticles

is in a fairly good agreement with the results of

theoretical calculations of exciton energy based on the

potential morphing method in the Hartree–Fock

approximation.

Keywords Quantum confinement effect � SnS �
Semiconductor nanoparticles � X-ray diffraction �
Potential morphing method � Ultrasound irradiation

Introduction

Quantum confinement effect in semiconductor

nanomaterials has been of special interest during the

last decades. Quantum confined semiconductor nano-

crystals, which exhibit properties different from bulk

materials, are a new class of materials that hold

considerable attention for numerous applications in

the field of optoelectronics. Modification of molecular

design and morphology of such nanostructures pro-

vides a powerful approach to control their electronic

and optical properties. Reduction in the size of

particles to nanometer ranges changes the degree of

confinement of charge carriers, which affect the

electronic and optical properties of semiconductor

materials (Alivisatos 1996; Henglein 1989; Liu et al.

2006; Ögüt et al. 1997; Rama Krishna and Friesner

1991; Trindade et al. 2001). These unique character-

istics of semiconductor nanostructured materials orig-

inate from the quantum confinement effects. From

Y. Azizian-Kalandaragh (&)

Department of Physics, University of Mohaghegh

Ardabili, P.O. Box 179, Ardabil, Iran

e-mail: yashar.a.k@gmail.com; azizian@uma.ac.ir

A. Khodayari

Department of Chemistry, University of Mohaghegh

Ardabili, P.O. Box 179, Ardabil, Iran

Z. Zeng � C. S. Garoufalis � S. Baskoutas

Materials Science Department, University of Patras,

26504 Patras, Greece

C. S. Garoufalis

Department of Environment Technology and Ecology,

Technological Institute of Ionian Islands, 2 Kalvou Sq,

29100 Zakynthos, Greece

L. C. Gontard

Instituto de Ciencia de Materiales de Sevilla (CSIC),

41092 Sevilla, Spain

123

J Nanopart Res (2013) 15:1388

DOI 10.1007/s11051-012-1388-1



theoretical point of view, as the radius of particle

approaches the exciton Bohr radius of a given

material, quantization of the energy bands become

apparent and a blue shift in the exciton transition

energy can be observed (Baskoutas and Terzis 2006;

Wang and Herron 1990). Among the extensively

studied IV–VI semiconductor materials, tin sulfide is

very important narrow gap material because of its low

toxicity and wide applications as an absorber layer in

solar cells, near infrared materials, holographic

recording media, and solar control devices (Liu et al.

2010; Rudel 2003; Winship 1998). It is important and

necessary to study the band gap changes in semicon-

ductor nanostructures in order to gain a better under-

standing for their relevant properties. Also, band gap

engineering of the semiconductor nanostructures by

the control of nanostructure sizes is important.

Experimental studies showed that semiconductor

SnS exhibit p and n type conduction and has both a

direct optical gap located at 1.3 eV and indirect optical

band gap located at 1.1 eV (Bashkirov et al. 2011;

Ning et al. 2010; Yue et al. 2009). In order to obtain

nanostructured SnS, the following methods are used:

spray pyrolysis of the water solution (Reddy et al.

1999; Thangaraju and Kaliannan 2000), vacuum

evaporation (Johson et al. 1999), chemical vapor

deposition (Ortiz et al. 1996; Price et al. 2000),

chemical bath deposition (Engelken et al. 1987;

Tanusevski 2003), electro deposition and electro-

chemical deposition (Chazali et al. 1998; Takeuchi

et al. 2003), chemical synthesis (Gou et al. 2005),

microwave assisted synthesis (Chen et al. 2004), mild

solution route (Li et al. 2002), modified solution

dispersion method (Zhao et al. 2004), two gas process

(Reddy and Reddy 2002), solvothermal process

(Panda et al. 2006; Paul and Agarwal 2007; Paul

et al. 2008; Qian et al. 1999), successive ionic layer

adsorption and reaction (SILAR) method (Ghosh et al.

2008), hydrothermal synthesis (Biswas et al. 2007),

and molecular beam epitaxy (Nozaki et al. 2005).

Generally, most of the above-mentioned methods

require high temperature as well as the use of highly

sensitive toxic solvents. Our attempt is to obtain high

quality materials under normal laboratory conditions,

using safer precursors by applying ultrasonic waves.

Previously ultrasonic waves have been used for the

preparation of nanomaterials (Azizian-Kalandaragh

et al. 2009; Azizian-Kalandaragh and Khodayari

2010a, b; Bhattacharyya and Gedanken 2008;

Goharshadi et al. 2009; Suslick 1990; Suslick et al.

1990; Wang et al. 2002; Zhu et al. 2008).

Ultrasonic waves have been shown to cause phys-

ical and chemical effects such as fragmentation to

small particles and acceleration of reactions, which

may be used for the preparation of new materials with

desirable properties.

During sonication, ultrasonic longitudinal waves

are radiated through the solution causing alternating

high and low pressure regions in the liquid medium.

Millions of microscopic bubbles form and grow in the

low-pressure stage, and subsequently collapse in the

high-pressure stage.

Hot spots that are localized regions of extremely high

temperatures as high as 5,000 K, and pressures of up to

*1,800 atm can occur from the collapsing bubbles, and

cooling rates can often exceed *1010 K s-1. The

energy released from this process, known as cavitation,

would lead to enhanced chemical reactivity and accel-

erated reaction rates (Suslick 1988).

In this paper we report the preparation of SnS

nanocrystals with the help of ultrasonic irradiation.

We have chosen this method because of its many

advantages, such as easier composition control, low

toxicity, better homogeneity, low processing temper-

ature, easier fabrication of large numbers of nanopar-

ticles, lower cost, and possibility of using high purity

starting materials. In this paper we also report the

morphological, optical, and structural properties of

SnS nanocrystals. As our results indicate, the absorp-

tion edge is shifted toward the lower wavelength side

(i.e., blue shift) and direct energy gap of SnS

nanocrystals is estimated to 1.74 eV. The results are

compared to theoretical calculations based on the

potential morphing method (PMM) (Rieth et al. 2002)

in the Hartree–Fock approximation (Baskoutas 2005a,

b; Baskoutas et al. 2006a, b; Baskoutas and Terzis

2006; Poulopoulos et al. 2011). This method, based on

the adiabatic theorem of quantum mechanics which

states that if the Hamiltonian of the system varies

slowly with time then the nth eigenstate of the initial

Hamiltonian will be carried into the nth eigenstate of

the final Hamiltonian, solves the Schrödinger equation

for any arbitrary interaction potential. In the present

case, the PMM based results exhibit a fairly good

agreement with the experimental data. This combined

experimental and theoretical work provides a better

insight on the quantum confinement effects in SnS

nanoscaled systems.

Page 2 of 9 J Nanopart Res (2013) 15:1388

123



Experimental details

Materials and instruments

Sodium sulfide hydrate was obtained from Sigma-

Aldrich, triethanolamine (TEA) was obtained from

Rankem; tin (II) chloride dihydrate, polyvinyl alcohol

(PVA), and absolute ethanol were obtained from

Merck. All the reagents were used as-received without

purification.

X-ray diffraction (XRD) analysis of drop-coated

films on an ordinary glass substrate from the SnS

nanocrystals was carried out on a Philips X’ Pert Pro

with CuKa radiation. The optical properties of sample

were monitored on a Carry 5 UV-Visible spectropho-

tometer (model Varian). Scanning electron micros-

copy (SEM) measurements were performed on a LEO

1430VP instrument operated at an accelerating voltage

of 15 kV. The elemental analyses of the products were

obtained by energy dispersive X-ray analysis (EDAX)

on the same LEO 1430VP instrument with accelerat-

ing voltage of 15 kV. Samples for SEM and EDAX

studies were prepared by placing drops of the SnS

nanostructured suspension on gold- and palladium-

coated SEM stage. Transmission electron microscopy

(TEM) images of the sample were taken on a Philips

CN10, TEM performing at an accelerating voltage of

100 kV.

Preparation of SnS nanocrystals

In a typical procedure, for preparation of 0.2 M

solution of tin chloride, 0.90 g of tin chloride powder

was dissolved in 20 ml TEA, then 0.31 g of sodium

sulfide was dissolved in 20 ml distilled water (0.2 M).

These two solutions were mixed and were put in a

100 ml round bottom flask. The pH value of the

mixture was 12. The mixture solutions were kept

under high intensity ultrasonic transductor at room

temperature for 2 h. During irradiation 5 ml of

aqueous solutions of PVA (1 %) were added to the

mixture. At the end of the reaction, a great amount of

black precipitates were obtained. After cooled to room

temperature, the precipitates were centrifuged,

washed by distilled water and absolute ethanol in

sequence, and dried in vacuum. Plenty of SnS

nanoparticles have been prepared using this method

and the yield of this preparation is high in comparison

with most of chemical preparation methods. The final

products were collected for characterizations. The

products were characterized by XRD, SEM, TEM,

EDAX, and UV-Visible spectroscopy.

The formation mechanism of SnS nanocrystals with

the reaction equation can be expressed as follows:

SnCl2 � 2H2Oþ Na2S � xH2O

! SnS þ 2NaCl þ xH2O

The role of PVA is to stabilize the nanostructures

preventing them from coagulation.

Theory

In the effective mass approximation the Hamilto-

nian for the electron hole system can be written as

(Baskoutas 2005a, b; Baskoutas et al. 2006a, b;

Baskoutas and Terzis 2006; Poulopoulos et al.

2011)

H ¼ � �h2

2m�e
r2

e �
�h2

2m�h
r2

h þ Ve
0 reð Þ þ Vh

0 rhð Þ �
e2

e
1

reh

ð1Þ

where m�e m�h
� �

is the effective electron (hole) band

mass, e is the effective dielectric constant, reh is the

electron—hole distance in three dimensions, and V
e hð Þ
0

is the finite depth well confinement potential of

electron (hole). As in our previous work (Poulopoulos

et al. 2011; Baskoutas et al. 2006a, b) we will also use

here a reliable expression for the dielectric constant e
developed by Hanken (1956) and used by several

authors for example Nanda et al. (2004); Pellegrini

et al. (2005) and which has the following form

1

e R0ð Þ
¼ 1

e1
� 1

e1
� 1

e0

� �
1�

exp �R0=qe

� �
þ exp �R0=qh

� �

2

� �

ð2Þ

where R0 is the mean distance between the electron

and hole (Nanda et al. 2004; Pellegrini et al. 2005) and

approximately takes the values (Nanda et al. 2004)

0.69932R or R (Baskoutas et al. 2006a, b), where R is

the radius of the cluster and represents half of the

confining parameter which is the diameter of the
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nanocrystal. e0 and e1 are the static and optical

dielectric constants, respectively, and qe;h are given as

follows

qe;h ¼
�h

2m�e;hxLO

 !1=2

ð3Þ

where xLO is the frequency of LO phonons.

As regards the height of the finite depth well

confining potentials V
e hð Þ
0 for electrons and holes, we

have shown in our previous study (Baskoutas and

Terzis 2006) that is independent of the nanostructured

semiconductor material and depends exclusively on

the matrix energy band gap Eg Mð Þ by a simple linear

relation of the form V0 ¼ 0:08 � Eg Mð Þ. Assuming also

that the confining potential has the same value for both

electron and hole, we set for our thin film system

Ve
0 reð Þ ¼ Vh

0 rhð Þ ¼
0 r\R
0:08 � Eg Mð Þ r�R

�
ð4Þ

where R is the radius of the nanocrystal.

The Hartree–Fock equations are solved in an iterative

manner until self consistency is achieved. In each

iteration the PMM (Baskoutas 2005a, b; Baskoutas et al.

2006a, b; Baskoutas and Terzis 2006; Poulopoulos et al.

2011) is employed as a subroutine for the calculation of

the corresponding energies and wavefunctions and thus

the Hartree–Fock potential for the next iteration.

Actually, PMM solves the time-independent Schrö-

dinger equation for an arbitrary interaction potential

vSðr~Þ starting from a potential vRðr~Þ with well-known

eigenvalues and eigenfunctions. The essential point is

that the transition from potential vRðr~Þ to the potential

vSðr~Þ by means of the time-dependent Schrödinger

equations as follows: using the potential vRðr~Þ and

vSðr~Þ, we formulate a time-dependent Schrödinger

equation (Rieth et al. 2002)

i�h
oUðr~; tÞ

ot
¼
(

� �h2

2m
r2 þ ð1� rðtÞÞvRðr~Þ

þrðtÞvsðr~ÞgUðr~; tÞ;
ð5Þ

where rðt) has the following property:

rðtÞ ¼
0; t� ta

1; t� tb

(

: ð6Þ

For ta� t� tb (tais the morphing starting moment, tbis

the morphing ending moment). The function rðtÞ

should increase monotonically. Moreover, we solve

equation (5) numerically. After a large number of time

steps (so that t [ tb), the energy eigenvalue ES for the

potential vSðr~Þ is given by

ES ¼
Z

d3rU�Sðr~Þ �
�h2

2m
r2 þ vSðr~Þ

� �
USðr~Þ; ð7Þ

where US is the wave function of the system under

consideration. In the present calculations, the refer-

ence system for PMM is set to be the three-

dimensional harmonic oscillator with the well-known

eigenfunctions (Greiner 1989)

Unlm r; h;uð Þ ¼ rle�
mx
2�h r2

1F1 �n; lþ 3=2; kr2
� �

Ylm h;uð Þ
ð8Þ

where 1F1 �n; lþ 3=2; kr2ð Þ is the hypergeometric

function (Greiner 1989). The interaction potential is

vSðr~Þ ¼ vHFðr~Þ þ vCðr~Þ; ð9Þ

where vHFðr~Þ is the Hartree–Fock potential for the

electron (or hole), while vCðr~Þ is the electron (or hole)

confinement potential which is given explicitly in Eq.

(4). It should be noted here that adopting the harmonic

oscillator as a reference system does not affect our

results because the PMM needs only a known

reference system to start the morphing process and

finally to give the eigenfunctions and eigenvalues for

the unknown system, independently from the choice of

the initial reference system (Rieth et al. 2002).

When the procedure reaches a self consistent

solution, then the exciton energy is calculated by the

sum of the corresponding electron and hole energies

E Xð Þ ¼ ~Ee þ ~Eh ð10Þ

and the effective band gap is given by (Baskoutas

2005a, b; Baskoutas et al. 2006a, b; Baskoutas and

Terzis 2006; Poulopoulos et al. 2011)

EB ¼ Eg þ E Xð Þ ð11Þ

where Eg is the bulk band gap energy.

Results and discussion

The quantitative analysis of the as-prepared product

was carried out using the EDAX technique. Figure 1

shows typical EDAX spectrum and details of relative

analysis for SnS nanocrystals. The spectrum illustrates
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the actual distribution of Sn and S of the prepared

sample separately. It is evident from the analysis that

the product contains Sn and S materials with a same

average atomic percentage ratio (1:1). Note that non-

labeled peaks in EDAX spectrum comes from the Au–

Pd sputter coating and glass stage.

The morphology of the as-prepared products was

studied by SEM. The SEM image (Fig. 2) show that

the product consists of very small spherical SnS

nanocrystallites aggregated in the form of polydis-

persive nanoclusters with sizes smaller than 100 nm.

It is very hard to discuss about nanoparticles

size using SEM images, but from images it is clear

that the sizes are in the order of very small

nanoparticles.

In order to further elucidate the morphology and the

size of nanoparticles, TEM image was taken and is

shown in Fig. 3. Comparison of TEM and SEM

images confirms the formation of very small spherical

SnS nanoparticles, most of which aggregated together

in the form of polydispersive nanoclusters.

The particle size distribution was also measured

from the bright-field TEM image shown in Fig. 4. The

detection and measurement of the nanoparticles (seg-

mentation) on this type of samples is difficult because

thickness changes locally, and diffraction from dif-

ferent crystal orientations introduce large contrast

variations. First, the image was preprocessed by

adjusting the contrast and brightness to minimize the

speckle contrast of the background due to the carbon

film used to support the sample. Second, the SnS

nanoparticles were segmented using a semiautomatic

procedure which combines interactive segmentation

with adaptative thresholding, obtaining an mean

particle diameter of 3.2 nm with a standard deviation

of 1.9 nm (Gontard et al. 2011).

Figure 5 show the XRD pattern of the as-prepared

SnS nanocrystals. Several peaks corresponding to

diffraction of orthorhombic SnS appear clearly in the

Fig. 1 EDAX spectrum of the as-prepared SnS nanocrystals

Fig. 2 SEM image of the as-prepared SnS nanocrystals

Fig. 3 Typical TEM image of SnS nanocrystals
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figure. This clearly proves polycrystalline nature of the

as-prepared product in which the appeared peaks are

very consistent with the values in the standard card of

SnS phase (JCPDS No. 39-0354).The broadness of the

peaks indicates that the size of structure is reasonably

nanocrystalline in nature. The crystallite size of SnS

nanoparticles was calculated using Debye–Scherrer

formula (Guinier 1963) D ¼ 0:9k
b cos hð Þ : Here, D is the

coherent length, k the wave length of X-ray radiation,

b the full-width at half-maxima (FWHM) of the

prominent peak, and h is the angle of diffraction. So

the corresponding crystallite size of nanoparticles

obtained are smaller than 4 nm in the case of

broadened peaks.

Figure 6 shows the plot of ahmð Þ2 versus photon

energy hmð Þ of the SnS nanocrystals and also absorp-

tion spectrum of the as-prepared SnS nanocrystals.

Investigations prove that the absorption reduces

rapidly with the increase of wavelength. These values

were used to determine absorption coefficienta. The

absorption coefficient a of SnS nanocrystals was

calculated from the average absorption index A as a ¼
4pA
k (Suslick 1988). The optical energy gap of the SnS

nanocrystal was evaluated using the relation a ¼
A hm�Egð Þn

hm where A is an energy independent constant

and n characterizes the transition process (El-Nahass

et al. 2002).

The curve has a good straight line fit with higher

energy range above the absorption edge, indicating a

direct optical transition edge. Based on Fig. 6, the

direct energy gap of the sample has been calculated as

1.74 eV which is blue shifted in comparison to the

bulk band gap.

Now in order to investigate the above system

theoretically with PMM we assume that the matrix is

PVA with Eg Mð Þ = 4.98 eV (Mahendia et al. 2011)

and we use the following material parameters for SnS:

m�e = 0.5 m0 (Vidal et al. 2012), m�h = 0.109 m0

(Reddy and Reddy 2006), where m0 is the electron

mass, e0 ¼ 32 (Chandrasekhar et al. 1977) and e1 ¼
16 (Chandrasekhar et al. 1977) and �hxLO = 71 meV

(Chandrasekhar et al. 1977) andEg bulkð Þ = 1.296 eV

Fig. 4 a Image on which an over layer of the boundaries and

center of masses of the segmented particles has been added to

the original bright-field TEM image shown in Fig. 3. Adaptative

thresholding with 80 9 80 divisions and a kernel size of 5 pixels

was used. b Histogram of the size distribution of the

nanoparticles and several statistical parameters

Fig. 5 XRD pattern of the as-prepared SnS nanocrystals
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(Parenteau and Carlone, 1990). The effective band gap

is calculated according to the relation (11) and the

theoretical results are depicted in Fig. 7. The size of

the nanocrystals which can be estimated from the

curve of Fig. 7 is 4 nm (corresponding to the energy

value 1.74 eV) and is in a fairly good agreement with

the size which is obtained from the Debye–Scherrer

formula and TEM image analysis.

Conclusion

In conclusion, for the first time, using a novel, very

simple and not expensive procedure, SnS nanocrystals

have been synthesized via ultrasonic waves at normal

laboratory conditions. The as-synthesized SnS nano-

crystals were quantitatively analyzed and character-

ized in terms of their morphological, structural, and

optical properties. The SnS nanocrystals appear

strongly blue shifted with direct band gap energy

value of 1.74 eV. Comparison with the theoretical

curve of the exciton energy versus the particle size,

which is obtained with the PMM method in the

Hartree–Fock approximation, shows a fairly good

agreement indicating that the observed blue shift is

attributed clearly to the effect of the quantum

confinement.
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In which we study the linear, nonlinear, and

intensity-dependent total optical susceptibilities in singly
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Within the two-level system approximation, analytical expressions for the linear, third-order

nonlinear and intensity-dependent susceptibilities in quantum dots (QDs) embedded in a dielectric

matrix are developed by using density matrix equations, considering the local field effect due to the

presence of dielectric mismatch. Based on the derived expressions, we perform a comparative

study of the optical susceptibilities in singly charged zinc oxide QDs embedded in various

dielectric matrices. Three commonly adopted matrices are considered. The electronic structure of

the system is numerically calculated. In general, our results indicate that the optical susceptibilities

are highly affected by the capped matrices. For example, QDs embedded in the matrix with the

largest dielectric constant but the smallest energy band gap exhibit the largest linear and nonlinear

optical susceptibilities, while that dispersed in a matrix with the largest energy band gap show the

highest threshold energy. It is also found that the third-order nonlinear susceptibility exhibits a

stronger dependence on the nature of the capped matrix as compared to its linear counterpart.

Finally, we find that the total susceptibility in charged QD immersed in a matrix with a higher

dielectric constant is more sensitive to the applied radiation intensity. VC 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4789363]

I. INTRODUCTION

Zinc oxide (ZnO) is a material with a great variety of

technological applications, such as surface acoustic wave

devices, piezoelectric transducers, optical waveguides, trans-

parent conductive oxides, chemical and gas sensors, spin

functional devices, and ultraviolet (UV) light emitters (Ref. 1

and references therein). Its wide band gap (3.445 eV) makes

ZnO a promising material for UV photonic applications,

while the high exciton binding energy (around 60 meV)

allows efficient excitonic emission, even at room tempera-

ture. In addition, ZnO is plentiful, cost-effective, and rela-

tively non-toxic which is desirable for bio-applications such

as bio-imaging and cancer detection. Due to the important

modifications that appear at the nanoscale, ZnO nanostruc-

tures, especially zero dimensional nanoparticles or colloidal

quantum dots (QDs) have attracted increasing attention.

As it is well known, chemical synthesis methods are the

most common way to grow uniformly dispersed QDs. How-

ever, QDs prepared by such methods are relatively unstable

and encounter the difficulties in dispersion and preservation.

To stabilize the QDs when coupling with devices, matrix pas-

sivation is one of the most commonly adopted ways. Besides,

immersing semiconductor QDs in polymer or glass matrix by

using surface chemistry methods is also a good way of passi-

vating the dangling bond at the QD surface.2,3 Distinct photo-

luminescence properties have been demonstrated in such

unique systems that can be served as fluorescent materials or

active media in tunable lasers to achieve full color emis-

sion.4,5 Due to these reasons, the optical properties of ZnO

QDs embedded in organic polymers, such as poly(vinyl alco-

hol) (PVA), poly(methyl methacrylate) (PMMA) and poly

(vinyl pyrrolidone) (PVP),6–9 and inorganic materials, such

as CaF2, MgO, SiO2 and BaF2,10–14 have been widely stud-

ied. However, most of these studies are focused on the experi-

mental synthesis and characterization for possible device

application purposes. Theoretical investigations on the elec-

tronic and optical properties in colloidal ZnO QDs embedded

in different matrices are very recent. Using the atomistic em-

pirical pseudopotential method, Baskoutas and Bester15 have

studied the electronic properties and optical emission polar-

izations of free-standing ZnO QDs. Dallali et al.16 have

investigated theoretically the energies of exciton and

acceptor-bound exciton complex in ZnO QDs embedded in

SiO2 matrix. A theoretical work associated with the intersub-

band optical properties of ZnO QDs dispersed in SiO2 matrix

has also been reported recently.17 Though plenty of new

insights have been brought by these studies, the influence of

the capped matrices on the electronic and optical properties

in ZnO colloid QDs is still unknown.

In this contribution, we carried out a theoretical compar-

ative study of the optical susceptibilities18–20 of charged

ZnO colloidal QDs embedded in various dielectric matrices.

Three commonly used matrices, such as PVA, PMMA, and

SiO2, have been used in the present calculations. The theo-

retical approach we are using is the potential morphing

method (PMM)21 in the framework of the effective mass

approximation, which has already been applied in the pasta)Electronic mail: bask@upatras.gr.
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for the study of optical properties of several nanostruc-

tures.22–25 The rest of the paper is organized as follows: in

Sec. II, we define our model and explain the general theory.

In Sec. III, we present numerical results and related discus-

sions, and Sec. IV is devoted to conclusions.

II. DETAILS OF THE CALCULATIONS

A. Calculation of the electronic structure

The Schr€odinger equation for an electron confined

inside a singly charged ZnO colloidal QD of radius R is

p̂
1

2m�e
p̂ þ Vð~rÞ

� �
wð~rÞ ¼ Ewð~rÞ; (1)

where m�e is the effective mass, and Vð~rÞ is the confinement

potential which is zero inside and V0 outside of the QD. V0 is

the conduction-band electron confinement potential at the

interface of the QD and the surrounding matrix given by

V0 ¼ Vb þ R; (2)

where Vb is the finite barrier height and R is the self-energy

due to the polarization induced by charging the QD. The

self-energy is given by26,27

R ¼ 1

8p�0

1

�out
� 1

�in

� �
e2

R
þ dR; (3)

where �in and �out are the dielectric constants of the dot mate-

rial and the surrounding matrix material, respectively. When

�in þ �out � 1, one gets26

dR � 0:466
e2

4p�0�inR

�in � �out

�in þ �out

� �
; (4)

which is usually small but not negligible.26 This simple

model has been successfully applied for the theoretical

investigation of the photoabsorption and photoelectric pro-

cess of charged silicon nanocrystallites embedded in amor-

phous SiO2 matrix.27 To obtain the ground state, the first

excited state and the corresponding energies for the Hamilto-

nian (1), which are needed for the calculation of the linear

and nonlinear optical properties below, PMM is employed.

A detailed review of this methodology can be found in

Ref. 21. The interaction potential involved in the potential

morphing process is vS ¼ Vð~rÞ and the reference system is

selected as the usual harmonic oscillator in three dimensions

with well-known eigenfunctions. It should be noted here that

adopting the harmonic oscillator as a reference system does

not affect our results because the PMM needs only a known

reference system to start the morphing process and finally to

give the eigenfunctions and eigenvalues for the unknown

system, independently on the choice of the initial reference

system.21,28–30

B. Calculation of the susceptibilities

After obtaining the necessary wave functions and eige-

nenergies, we start to calculate the linear, nonlinear, and total

susceptibilities of a charged QD embedded inside a dielectric

matrix. The QD interacts with an electromagnetic field with

time-dependent electric field EðtÞ ¼ E0cosðxtÞ, where E0 is

the time-independent electric field amplitude and x is the

angular frequency of the applied electric field. Within the

two-level system approximation, the dynamics of the QD

system under the interaction of an electromagnetic field is

modeled by the Hamiltonian,

Ĥ ¼ �hx0ðjjihjjÞ � lE0ðtÞðjiihjj þ jjihijÞ; (5)

where jii and jji represent the initial and final states, respec-

tively, l is the transition matrix element between the initial

and final states which is defined as l ¼ �hijezjji, where we

assume the polarization of electromagnetic radiation is along

the z-axis direction. E0ðtÞ ¼ E0

2�ef f
ðe�ixt þ eixtÞ, where �ef f is

the effective dielectric constant which considers the local

field effect due to the dielectric mismatch, and it is given by

�ef f ¼ 2�outþ�in

3�out
:

The density matrix equations, in the rotating wave

approximation, for the slowly varying elements of the den-

sity matrix are20,31

_rðtÞ ¼ � 1

T2

rðtÞ þ iXDðtÞ þ idrðtÞ; (6)

_DðtÞ ¼ 2iXrðtÞ � 2iXr�ðtÞ � DðtÞ � 1

T1

: (7)

Here d ¼ x� x0 is the detuning of applied field from

resonance, where x0 ¼ ðEj � EiÞ=�h with Ei and Ej being

the energy eigenvalues of the initial (ground) state and

final (first excited) state in the charged QD, respectively,

DðtÞ ¼ riiðtÞ � rjjðtÞ with rij being the density matrix ele-

ment, T1 and T2 are the population relaxation time and the

dephasing time, respectively, and X ¼ lE0

2�h�ef f
is the Rabi fre-

quency which differs from the usual definition by the local

field term (�ef f ).

From Eqs. (6) and (7) in steady state, we take

r ¼ ði� dT2ÞT2X

1þ d2T2
2 þ 4X2T1T2

: (8)

Therefore, the susceptibility of the system is given by

v ¼ 2Nl
�0�ef f E0

r ¼ Nl2T2

�h�0�2
ef f

i� dT2

1þ d2T2
2 þ

l2E2
0

�h2�2
ef f

T1T2

; (9)

where N is the electron volume density in the QD system

and �0 is the permeability in vacuum.

We define Es
0 ¼

�h�ef f

l
ffiffiffiffiffiffiffi
T1T2

p which is the saturation electric

field strength. By this, we can rewrite Eq. (9) as

v ¼ Nl2T2

�h�0�2
ef f

i� dT2

1þ d2T2
2 þ

E2
0

ðEs
0
Þ2
: (10)

Assuming the electric field parameter x ¼ E2
0

ðEs
0
Þ2 � 1, we

can perform a power-series expansion of v in terms of x,
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retaining only terms up to the first order. The resultant solu-

tion for v takes the form,

v ’ Nl2T2

�h�0�2
ef f

i� dT2

1þ d2T2
2

� i� dT2

ð1þ d2T2
2Þ

2

E2
0

ðEs
0Þ

2

" #

: (11)

Taking into account v ’ vð1Þ þ 3
4
vð3ÞE2

0, we obtain the linear

(vð1Þ) and third-order nonlinear (vð3Þ) optical susceptibilities as

vð1Þ ¼ Nl2T2

�h�0�2
ef f

i� dT2

1þ d2T2
2

; (12)

vð3Þ ¼ � 4Nl4T1T2
2

3�h3�0�4
ef f

i� dT2

ð1þ d2T2
2Þ

2
: (13)

In the linear regime, the real part of susceptibility vð1Þ exhib-

its a standard dispersive lineshape, while its imaginary coun-

terpart presents a Lorentzian lineshape.

We may also write the total susceptibility as

v ¼ v0 þ iv00; (14)

where v0 and v00 are the real and imaginary part, given by

v0 ¼ Nl2T2

�h�0�2
ef f

1
ffiffiffiffiffiffiffiffiffiffiffi
1þ j
p

� dT2ffiffiffiffiffiffiffi
1þj
p

1þ dT2ffiffiffiffiffiffiffiffiffiffiffi
1þ j
p
� �2

; (15)

v00 ¼ Nl2T2

�h�0�2
ef f

1
ffiffiffiffiffiffiffiffiffiffiffi
1þ j
p 1

1þ dT2ffiffiffiffiffiffiffiffiffiffiffi
1þ j
p
� �2

; (16)

respectively, with j ¼ l2E2
0
T1T2

�h2�2
ef f

. It turns out that the real (v0)

and imaginary (v00) parts of total susceptibility still display,

respectively, dispersive and Lorentzian lineshapes, but they

are saturated and broadened.

Finally, one may rewrite the Eq. (9) in terms of the inci-

dent optical intensity (I) as

v ¼ Nl2T2

�h�0�2
ef f

i� dT2

1þ d2T2
2 þ

2l2I
cn�0�h2�2

ef f

T1T2

: (17)

Here, the relation between the optical intensity and the

applied electric field is taken I ¼ n�0c
2

E2
0, where c is the light

speed in vacuum, n ¼ ffiffiffiffiffi
�in
p

is the refractive index of the QD

material.

III. NUMERICAL RESULTS AND DISCUSSION

In the following, we will study the susceptibilities in the

singly charged ZnO colloidal QDs, using the formulas pre-

sented in Sec. II. Three different matrices (i.e., PMMA, PVA,

and SiO2) are considered. The relevant material parameters for

the present calculations are listed in Tables I and II, taking

N ¼ 1:7� 1017 cm�3, T1¼ 1 ps, and T2¼ 0.14 ps.32 As have

been reported by Baskoutas and Terzis,24 the height of the

finite-depth confinement potential does not depend on the spe-

cific semiconductor of the QD, but exclusively depends on the

matrix energy band gap by a simple linear relation of the form

Vconf ¼ 0:08 � EgðMÞ, where Eg(M) is the matrix energy band

gap. Thus, in the present calculations, we adopted the same

relation, using the electron confinement potential Vb ¼ 0:08

�EgðMÞ. As an approximation, the values of the electron

effective mass are assumed to be the same in QD material

(ZnO) and matrix materials33 with value m�e ¼ 0:265 m0,

where m0 is the electron mass in the free space.

First, we display the real and imaginary part of the lin-

ear susceptibility vð1Þ (Fig. 1) and third-order nonlinear sus-

ceptibility vð3Þ (Fig. 2) as a function of the incident photon

energy for the three different matrices. As clearly shown in

Tables I and II, different capped matrices have different

dielectric constants and energy band gaps which differ

substantially from the QD material. A higher dielectric con-

stant of the capped matrix is related to a smaller self-

polarization energy induced by the QD charging, which

resultantly leads to a lower or even a negative (e.g., PVA)

contribution to the QD confinement potential (see the fourth

column of Table II). Conversely, it also causes a stronger

local field effect in the corresponding charged QD, charac-

terized by a larger local field factor F ¼ 1
�ef f

(see the last col-

umn of Table I). However, a lower energy band gap of the

capped matrix corresponds to a smaller QD confinement

potential (see the last two columns of Table II), conse-

quently leading to a larger dipole transition matrix element.

Due to the combination effects of local field and quantum

confinement, QD embedded in polymeric matrix PVA

which has the largest dielectric constant but the smallest

energy band gap exhibits the largest (in absolute value) vð1Þ

and vð3Þ (both real and imaginary part). Moreover, these

two effects appear to compensate with each other and ex-

hibit a competitive phenomenon in the other two phenome-

nological QDs. The local field effect turns out to dominate

over its quantum confinement counterpart and consequently

the susceptibilities in the charged QD capped with PMMA

which has smaller energy band gap and dielectric constant

exhibit a slightly smaller (absolute) value in comparison to

that dispersed in inorganic matrix SiO2.

Compared to the linear susceptibility (see Fig. 1), its

third-order nonlinear counterpart appears to be more sensi-

tive to the capped matrices, especially in the strong confine-

ment regime (e.g., R¼ 2 nm). This becomes evident by the

top plot in the left panel of Fig. 2, where vð3Þ in QDs dis-

persed in PMMA and SiO2 is practically marginal, while that

in PVA exhibits a relatively large strength. This is also valid

for QDs within the weak confinement regime, although vð3Þ

in PMMA and SiO2 capped QDs is substantially enhanced.

We relate this to a stronger dependence of vð3Þ on the

TABLE I. Theoretical values of the relative dielectric constant �r , the effec-

tive dielectric constant �ef f and the local field factor F ð¼ 1
�ef f
Þ for three dif-

ferent dielectric matrices (PMMA, PVA, and SiO2). Relative dielectric

constant for ZnO is 8.66.17

Materials �r (Ref. 34) �ef f F

PMMA 3.4 1.516 0.66

PVA 14 0.873 1.15

SiO2 3.9 1.407 0.71
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combined effects of local field and quantum confinement

(e.g., vð3Þ / ð l
�ef f
Þ4, while vð1Þ / ð l

�ef f
Þ2).

In the same figures, we also find that the QD size influ-

ences significantly the susceptibilities in all the three charged

QDs. Both the linear and nonlinear susceptibilities in all the

capped QDs are substantially broadened and enhanced as the

QD size increases. This can be attributed to the decrease of

the quantum confinement effect, which leads to a significant

increase of the transition matrix elements. This behavior is

significantly more pronounced for the case of the nonlinear

term. Furthermore, drastic red shifts are observed when the

QD size is increased, irrespectively of the capped matrices.

Another important feature is that the threshold energies in

the three capped QDs are getting closer when the quantum

confinement becomes weak. Based on this observation, it

becomes clear that the influence of the capped matrices on

the threshold energy is significant in small QDs (e.g.,

R¼ 2 nm). However, in large QDs (e.g., R¼ 6 nm), it

becomes less important. In addition to this, we find that the

QD capped with PVA exhibits a more drastic increase in

both vð1Þ and vð3Þ in comparison to the other two charged

QDs.

Finally, in an attempt to investigate the influence of the

applied intensity on the total susceptibility (Eq. (17)), we

present in Fig. 3 the real and imaginary parts of total optical

susceptibility v under two different radiation intensities. We

find that the real and imaginary part of v exhibit a standard

dispersive and Lorentzian lineshape, respectively. This is in-

dependent of the capped matrices and applied intensities.

FIG. 1. The real (left panel) and imaginary (right panel) part of vð1Þ as a function of the photon energy �hx in singly charged ZnO QDs embedded in three dif-

ferent matrices (PVA (red line), PMMA (green line), and SiO2 (blue line)). Two dot sizes R¼ 2 nm and 6 nm are considered, separately.

FIG. 2. The same as Fig. 1 but for vð3Þ.

TABLE II. Theoretical values of the energy parameters used in our calcula-

tions. The energy band gap, Eg, of ZnO is 3.445 eV (Ref. 15) and

R0 ¼ 1
4p�0

e2

R ¼ 1:44
R eV.

Materials Eg (eV)

Vb ¼ 0:08Eg

(meV) R=R0

V0 (meV),

R¼ 2 nm

V0 (meV),

R¼ 6 nm

PMMA 5.6 (Ref. 35) 448 þ0.113 530 475

PVA 4.98 (Ref. 36) 398 �0.035 373 390

SiO2 9 (Ref. 37) 720 þ0.091 786 742
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However, for the larger intensity, v is substantially decreased

in magnitude and strongly broadened in the near resonant

region in all the three charged QDs. For all the applied inten-

sities, the PVA capped QDs exhibit the largest v values,

while the PMMA capped QDs exhibit the smallest ones,

which also appear to be similar to the intensity-free vð1Þ and

vð3Þ. Moreover, the decrease of v with respect to intensity is

found to be more pronounced for the case of PVA capping.

IV. CONCLUSIONS

In this work, we have studied the linear, third-order non-

linear, and intensity-dependent optical susceptibilities of sin-

gly charged ZnO QDs embedded in different dielectric

matrices. Three commonly used matrices, PVA, PMMA, and

SiO2, are considered for the present calculations. The analyt-

ical expressions for these optical susceptibilities are derived

by using density matrix equations within the two-level sys-

tem approximation. We find that QD capped with PVA

which has the largest dielectric constant always exhibits the

largest linear and third-order nonlinear optical susceptibil-

ities, while that dispersed in amorphous SiO2 which has the

largest band gap energy shows the highest threshold energy,

irrespectively of the QD sizes. Increasing the QD sizes leads

to the drastic increase in the magnitude of both the linear and

nonlinear susceptibilities. Comparing to the linear suscepti-

bility, the third-order nonlinear counterpart appears to be

more sensitive to the variation of the capped matrices.

Finally, we investigate the influence of the applied radiation

intensities on the total susceptibility in all the three different

capped QDs. We show that the real and imaginary part of the

total susceptibility always exhibit a standard dispersive and

Lorentzian lineshape, irrespectively of the applied inten-

sities. However, enhancing the applied intensity leads to a

drastic decrease in the (absolute) magnitude of the total sus-

ceptibility and a substantially broadening in the near reso-

nance region. Furthermore, the total susceptibility exhibits a

stronger dependence on the applied radiation intensity in

charged QD capped by a matrix with a relatively high dielec-

tric constant but with a relatively small energy band gap.

We believe that our results can be useful and helpful not

only in the elucidation of the fundamental physics but also

for possible devices application based on ZnO QDs-matrix

systems.
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In the present work, we studied the electronic and optical properties of ZnO quantum dots (QDs) subjected to
externally applied hydrostatic pressure. Our single-particle calculations are based on the empirical pseudopotential
method and the excitonic effects are considered by employing the configuration interaction approach. The optical
band gap, Stokes shift, and optical emission polarization have been investigated as a function of the applied
pressure. It is found that the applied pressure causes a linear increase in the optical band gap. The pressure
coefficient appears to be highly size dependent, exhibiting a monotonic increase with increasing QD size. In
contrast to this monotonic behavior, the applied pressure induces a nonmonotonic Stokes shift which presents a
minimum value at a critical pressure. For pressures larger than this critical value, the optical emission polarization
exhibits a sharp transition from in-plane to out-of-plane polarization. Finally, it is found that the critical pressure at
which the crossing takes place strongly depends on the QD size, showing larger values for larger QD sizes. Beyond
this crossing point, the lowest optically bright exciton state mainly originates from one Slater determinant, where
both the single-particle electron and hole states have an S-type envelope function and the hole state originates
mainly from the bulk Bloch C band.

DOI: 10.1103/PhysRevB.87.125302 PACS number(s): 78.67.Hc, 73.21.La, 73.22.Dj, 73.22.Lp

I. INTRODUCTION

Nanostructures and heterostructures made of zinc oxide
(ZnO), such as nanowalls,1 nanotubes,2 nanorods,3 and quan-
tum dots (QDs),4 have already been used as transparent
conductors in solar cells and as components in high-power
electronics, UV light emitters, and gas and chemical sensors
(see Ref. 5 and references therein). Possible applications of
ZnO nanostructures in optoelectronic and spintronic devices,
such as laser diodes with polarized output, and spin-based
memory and logic, have also attracted great attention.6,7

As an important member of the nanostructure family, zero-
dimensional ZnO QDs have become the subject of re-
cent developments. Experimental fabrication of this type of
nanostructure has been achieved by using different chemical
synthesis methods, such as sol-gel,8 thermolysis,9 and polyol
methods,4 to mention only a few. From a theoretical point of
view, due to the specifics of the wurtzite ZnO material, such
as the anisotropy of the valence band, as well as the small
dielectric constant and correspondingly strong electron-hole
Coulomb interaction, simple one-band effective-mass models
fail to deliver predictive results. To have a good interpretation
of experimental measurements and optimization of ZnO
QDs for possible device applications, an accurate theoretical
method able to predict the transition energy and the oscillator
strength of optical transitions is required. Accurate atomistic
empirical pseudopotential calculations have been shown to
describe exciton states in CdSe QDs (Ref. 10), and very
recently in ZnO QDs,11 very well.

On the other hand, high-pressure investigations of semi-
conductor nanostructures such as nanocrystals or QDs have
emerged as a focus area in condensed-matter physics and
material science because of their large impact on the tunable
optical properties that may be advantageous for application
in optoelectronics, QD lasers, high-density memory, bio-
engineering, etc.12–15 Most of the existing theoretical work

concerning the hydrostatic pressure effect focused on QDs
with zinc-blende structure, such as self-assembled InAs/GaAs
(Ref. 16) or InGaAs/GaAs (Ref. 17) QDs. Theoretical work
associated with the pressure effect in wurtzite ZnO colloidal
QDs is very limited.18 Here, we study the electronic and
optical properties of ZnO QDs under externally applied
hydrostatic pressure. The single-particle orbitals and energies
are calculated by the atomistic empirical pseudopotential
method using recently derived pseudopotentials,11 considering
the effects of multiband coupling, multivalley coupling, and
spin-orbit interaction, while the excitonic effects are taken into
account by using the configuration interaction approach.19 The
present numerical results cover a variety of optical properties
of ZnO QDs under pressure, such as the optical band gap, the
pressure coefficient, the Stokes shift, and the optical emission
polarization.

In the following section, we outline the computational
details. Thereafter, in Sec. III numerical results and related
discussions are presented. Sec. IV is devoted to conclusions.

II. COMPUTATIONAL DETAILS

The single-particle energies and eigenstates for both
conduction and valence bands are obtained by the plane-
wave empirical pseudopotential method,20 using our recently
derived ZnO pseudopotentials.11 The adopted Hamiltonian for
the single-particle states has the form

Ĥ = −1

2
∇2 +

∑
nα

[
vα(|�r − �Rαn|; ε) + v̂SO

α

]
, (1)

where n is an atomic index, α specifies the atom type,
and v̂SO

α is the nonlocal spin-orbit operator. The screened
atomic pseudopotentials vα (with α = Zn, O) are centered
at each atomic position and their superposition generates
the crystal potential. These pseudopotentials vα incorporate

125302-11098-0121/2013/87(12)/125302(7) ©2013 American Physical Society
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FIG. 1. (Color online) Envelope functions for the first four electron (e0,1,2,3) and first four hole (h0,1,2,3) states in a ZnO QD with diameter
D = 1.7 nm for various hydrostatic pressures. The isosurface values are chosen in such a way to enclose 75% of the state densities.

the dependence on the local hydrostatic strain Tr(ε) via the
relationship21

vα(r; ε) = veq
α (r; 0)[1 + γαTr(ε)], (2)

where γα is a fitting parameter. The form and the parameters of
the zero strain potential, which are optimized to reproduce the

known band structure and the bulk properties of ZnO, are given
in Ref. 11. In our calculations, the fitting parameter γα has the
value 0.304, giving a pressure coefficient for bulk ZnO equal
to 24.7 meV/GPa, which is in very good agreement with the
experimental value of 24.7 ± 0.1 meV/GPa.22 This also gives
the conduction and valence band deformation potentials17

FIG. 2. (Color online) Same as Fig. 1 but for D = 5.2 nm.
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ac = −4.65 eV and av = −2.54 eV, respectively, resulting
in a (relative) band-gap deformation potential ag = −2.11 eV,
which agrees fairly well with the results predicted by the local-
density approximation (LDA) and the LDA +U (Ref. 23):
ag = −1.7 eV (LDA) and ag = −2.9 eV (LDA +U ). The
experimental value of the effective deformation potential for
bulk ZnO is ∼−3.51 to −3.81 eV, and −3.5 ± 0.4 eV obtained
by different experimental methods.24,25 The pressure values
used in our calculations are determined approximately by using
the Murnaghan equation of state17,26

P = (B/B
′
)[(V0/V )B

′ − 1], (3)

taking for the wurtzite ZnO bulk modulus B = 142.4 GPa and
for the pressure derivative B

′ = dB/dP = 3.6.22

The surface passivation is approximated by a high-band-gap
artificial material, as practiced successfully previously.11,27,28

The structure was relaxed with Keating’s valence force field
(VFF) model for wurtzite materials.29 It should be noted
that the VFF relaxed structures exhibit a qualitatively correct
variation of c/a and u internal parameters with respect to
pressure (i.e., c/a decreases while u increases when the
pressure increases30,31). The corresponding envelope functions
of the single-particle states in both valence and conduction
bands are obtained by projecting the fast-oscillating atomic
wave functions onto the Bloch states of each unit cell
[according to Eq. (6) of Ref. 11]. This effectively smears out
the atomic oscillations and leads to an envelope function that
can be displayed with clarity.11,27 This procedure also allows
us to obtain the Bloch function character of each QD state
and analyze them in terms of their Bloch function parentage:
A, B, or C band (or a mixture of them). The excitonic
wave functions are expanded in terms of single-substitution
Slater determinants constructed from the single-particle wave
functions of electrons and holes. The corresponding many-
body Hamiltonian is solved using iterative diagonalization
techniques. Our computational limitations allow us to include
in the configuration interaction (CI) treatment ten states from
the valence band and ten states from the conduction band.
For the screening function needed in the Coulomb integrals
we used the phenomenological microscopic, isotropic, and
uniform model proposed by Resta.32 The optical dipole matrix
elements are calculated within the dipole approximation, and
the oscillator strength was calculated using Fermi’s golden
rule. A review of this method can be found in Ref. 33.

III. RESULTS AND DISCUSSION

A. Pressure-dependent electronic properties

To determine the electronic and optical properties in ZnO
QDs in both the strong and the intermediate confinement
regime under externally applied hydrostatic pressure, we
considered five different ZnO colloidal QDs with diameters
D = 1.7, 2.1, 3.1, 3.6, and 5.2 nm, respectively. ZnO QDs
with such sizes can be experimentally synthesized by using
the well-established colloidal fabrication techniques, leading
to a nearly spherical shape.4,8 The numbers of atoms for
the respective structures are Zn99O111, Zn204O210, Zn654O654,
Zn1014O1011, and Zn3063O3102.

TABLE I. Character of the first four envelope functions for
electrons and holes in a ZnO QD with diameter D = 1.7 nm under
various hydrostatic pressures (in unit of GPa). The superscript (A, B,
C) indicates the corresponding hole-state parentage (A, B, or C band)
obtained from Fig. 3 and the asterisk means that the wave function is
a mixed state with orbital P character.

Pressure e0 e1 e2 e3 h0 h1 h2 h3

0 S Pz P xy Pxy SA SB SC P AB
xy

0.70 S Pz Pxy Pxy SA SB SC P AB
xy

2.07 S Pz Pxy Pxy SC∗ SA∗ SB∗ SC∗

4.54 S Pz Pxy Pxy SC∗ SAC∗ SBC∗ SABC∗

7.02 S Pz Pxy Pxy SC P C
xy P C

xy SA

10.76 S Pxy Pxy Pz SC P C
xy P C

xy SA

As a first step toward elucidating the electronic structure
in ZnO QDs, we project the fast-oscillating atomic wave
functions onto the bulk ZnO Bloch states (as stated in
Sec. II). This gives us access to the envelope functions, which
are more convenient to visualize than the fast-oscillating
real wave functions. However, it should be kept in mind
that the energetics for each state is not governed by the
envelope function alone, but determined by the full atomic
wave function. As the representatives of the electronics of
ZnO QDs under hydrostatic pressure in both the strong and
intermediate confinement regimes, we present the projected
envelope functions of the first four electron states and the
first four hole states of our smallest and largest structures in
Figs. 1 and 2, respectively. The figures show results for six
different hydrostatic pressures. To characterize the symmetry
of the wave functions, which is very useful to understand
the relevant optical properties discussed in the next section,
we use the notation ωζ , where ω represents the number of
nodes encountered by moving across a specific direction (xy or
z-axis direction), while the subscript ζ indicates the direction
in which we find the node(s). The possible value for ω are S,
P , D, etc., where S represents the form of the wave function
without node (in this case, we neglect the subscript ζ ), P with
one node, etc. This way, we tabulated the characters of the
electron and hole envelope functions shown in Figs. 1 and 2
in Tables I and II, respectively.

In Fig. 3 we plot the Bloch function character of the first four
hole states using the projection formalism described in Sec. II.
After a combined analysis of the relative contribution from the
bulk valence bands with the characters of the hole envelope
functions listed in Tables I and II, we find that, in the absence
of external pressure, the highest occupied molecular orbital

TABLE II. Same as Table I but for D = 5.2 nm.

Pressure e0 e1 e2 e3 h0 h1 h2 h3

0 S Pz Pxy Pxy P AB
xy SA SB P A

z

0.70 S Pz Pxy Pxy P AB
xy SA SB P A

z

2.07 S Pz Pxy Pxy P AB
xy SA SB P A

z

4.54 S Pxy Pxy Pz P ABC
xy SC SC P AB

xy

7.02 S Pxy Pxy Pz SC P C
xy P C

xy P C
xy

10.76 S Py Px Pz SC P C
xy P C

xy P C
xy
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FIG. 3. (Color online) Analysis of the Bloch function character of
the first four hole states h0,1,2,3 in a ZnO QD under various hydrostatic
pressures. The left-hand panel corresponds to the QD with diameter
D = 1.7 nm, while the right-hand panel corresponds to the QD with
diameter D = 5.2 nm. The colors red, green, and blue correspond to
A, B, and C bands, respectively.

(HOMO, h0) of our smallest structure (with diameter D =
1.7 nm) has orbital S character, while it shows a P character
in our largest structure (with diameter D = 5.2 nm). This is
in agreement with one of the important conclusions of Ref. 11
which demonstrates that the HOMO of ZnO QDs is of orbital
P character for structures larger than 2.6 nm in diameter.
Under pressure, the orbital character of the HOMO state of
our smallest structure appears to be pressure independent,
always exhibiting a conventional S-type character. Conversely,
the orbital character of the HOMO state of our largest
structure experiences a drastic change in the envelope function
character, switching to a more conventional S orbital character
for pressures larger than 2.07 GPa. This is due to the pressure
effect which modifies the Bloch function parentage from an
even mixture of A and B bands (P � 2.07 GPa) to a nearly
pure single C band (P > 2.07 GPa), as seen in Fig. 3 (see the
top plot of the right-hand panel). In addition to the HOMO
state, the applied pressure significantly modifies the Bloch
function characters for the other hole states (h1,2,3): they are
nearly pure single-band objects for relatively high pressures
(e.g., P > 4.54 GPa), originating mainly from the bulk Bloch
C band (∼75%) and exhibiting Pxy-type characters. The only
exception is h3 of our smallest structure, which has a dominant
bulk Bloch A-band parentage and shows an S-type character
for pressures larger than 4.54 GPa. The fact that the P C

xy

states at the pressures of 7.02 and 10.76 GPa (h1,2 states in
Table I) are energetically separated from the P C

z state can be
related to the anisotropic effective masses of the topmost three
ZnO valence bands. The C-band effective mass is anisotropic
and larger perpendicular to the c axis (m∗

C⊥ = 0.55m0 and
m∗

C‖ = 0.31m0, where m0 is the free electron mass). This
favors the orbital P states with in-plane nodes, Pxy , over the
ones with nodes along the c axis, Pz. No such anisotropy
exists for the A and B bands, and the orbital Pxy states are
not favored over the Pz states. The electron states follow the
typical pattern of a single-band object originating from an
isotropic band. The lowest four electron states have orbital S

and P character, where Pz is slightly favored over Pxy at low
pressures and vice versa at high pressures.

As mentioned before, the applied hydrostatic pressure
strongly modifies the relative contribution of the bulk valence
band states to the QD hole states, which causes the changes

FIG. 4. (Color online) Energy of the first ten hole states relative
to the HOMO state at zero pressure, in ZnO QDs under various
hydrostatic pressures (in units of GPa). The lines connect states which
are of the same symmetry ωζ . The red, green, and blue lines connect
states with dominant A-, B-, and C-band character, respectively. Two
QD sizes, D = 1.7 and 5.2 nm, where D is the diameter of the QD,
are considered.

in the symmetry of the hole envelope functions. In Fig. 4,
we see that states with dominant A- and B-band parentage
have a stronger dependence on pressure than the states with
dominant C-band parentage. This is associated with the larger
deformation potential of A and B bands in comparison to that
of the C band. Figure 4 also shows that the C-band states
rise above the A- and B-band states at a critical pressure and
finally become the energetically favorable states. This critical
pressure appears to be highly size dependent. For our smallest
structure, it is P1 ≈ 1.2 GPa, while for our largest structure, it
is P2 ≈ 3.3 GPa.

B. Pressure-dependent optical properties

We first present the optical band gap of ZnO QDs as a
function of the applied hydrostatic pressure. The calculations
are performed for five different QD sizes which are in the
strong or intermediate confinement regime. Two levels of
theory, at the single-particle (SP) level and at the CI level,
are employed. Figures 5(a) and 5(b) show a strong size
dependence of the optical band gap and a weaker, nearly linear,
pressure dependence. The pressure coefficients (dE/dP ) are
given in Fig. 5(c) for uncorrelated and correlated calculations.
Both the single-particle and the excitonic pressure coefficients
are strongly size dependent. Increasing the QD size causes
a monotonic increase in the pressure coefficient. A similar
behavior has also been calculated theoretically for CdSe
QDs.34 Furthermore, it is shown from Fig. 5(c) that the
QD excitonic pressure coefficients obtained in the full CI
scheme are substantially smaller than the bulk value (see
the dot-dashed line), with deviations at small diameters of
up to 41%. The single-particle results exceed the bulk limit
for QD diameters larger than D = 4.5 nm. This prominently
highlights the importance of the higher level of theory
accounting for excitonic effects. We also studied in Fig. 5(d)
the Stokes shift, defined as the energetic difference between
the lowest dark exciton state and the first bright exciton
state. The Stokes shift displays a nonmonotonic dependence
of the applied hydrostatic pressure, exhibiting a minimum
value at a critical pressure Pc. This critical pressure is highly
size sensitive. It appears to be Pc = 0.7 GPa for the first
two smallest structures, Pc = 2.07 GPa for the QD diameter
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FIG. 5. (Color online) Optical band gap of ZnO QDs at (a) the
single-particle (SP) level and (b) the CI level as a function of the
hydrostatic pressure (symbols). (c) Pressure coefficients at the single-
particle level [obtained from (a) and at the CI level [obtained from
(b)] versus QD diameter. (d) Stokes shift as a function of the applied
hydrostatic pressures. Here, five different QD sizes (D = 1.7, 2.1,
3.1, 3.6, and 5.2 nm, where D is the QD diameter) are considered.
All the symbols and colors in (a) and (b) are the same as in (d).

D = 3.1 nm, and Pc = 4.54 GPa for the other two largest
structures.

To clarify the physical reasons for this nonmonotonic
behavior, we take our largest structure as an example and recall
the electronic properties of the single electron and hole states
presented in the previous section. For pressures smaller than or
equal to the critical value (P = 4.54 GPa), both the first bright
and dark exciton states have a dominant contribution from
the (0,1) configuration, where both the electron and the hole

have S-type orbital character. In the CI scheme, the lowest
exciton state is spin forbidden. However, when the applied
pressure is larger than the critical value (P > 4.54 GPa), the
single-particle states which are responsible for the two exciton
states show an abrupt change from the configuration (0,1)
to the configuration (0,0). This level crossing is responsible
for the nonmonotonic behavior in the Stokes shift. This
nonmonotonic behavior in the Stokes shift makes evident that
the electron-hole spin-exchange interaction is much stronger
in the (0,0) configuration (C exciton) and it is enhanced
with increasing pressure. Similar behavior has also been
experimentally measured and theoretically calculated in CdSe
nanorods by systematically varying the height-to-diameter
aspect ratio.35 For larger pressures, Fig. 5(d) shows that the
Stokes shift is significantly larger than the corresponding
value at zero pressure. A larger Stokes shift means a smaller
overlap area between absorption and emission spectra, which
is desirable in applications such as light-emitting diodes, where
reabsorption reduces the total efficiency.35

Finally, we calculate in Fig. 6 the photoluminescence
emission spectrum in the full CI scheme for our smallest and
largest structures. We find that the applied pressure induces
a strong blueshift in the emission spectrum. This blueshift
is more pronounced in the larger QD in accordance with
Fig. 5(c). In an attempt to indicate explicitly the emission
polarization direction, we also present the spectra at each
pressure with a vertical line. It is shown that, in both the
strong and intermediate confinement regimes, the optical
emission polarization exhibits a crossing from in-plane (E⊥�c)
to out-of-plane (E‖�c) polarization at a critical pressure value.
It is Pc = 0.70 GPa for our smallest structure and Pc =
4.54 GPa for our largest structure. In other words, the emission
changes from a normal α emission (E⊥�c) to the unusual36,37

so-called σ and π emissions (E‖�c) for pressures larger than
the critical pressure. After reaching the crossing, the lowest
optically bright exciton state in both confinement regimes has
a dominant contribution from the (0,0) configuration, where
the single-particle hole state has S-type character and is derived

FIG. 6. (Color online) Oscillator strength for the emission |X〉 to |0〉 at room temperature in ZnO QDs, which are obtained by full CI.
Transitions polarized along the out-of-plane direction (c axis) are shown by red vertical lines, while the ones polarized along the in-plane
direction are shown as black vertical lines. The numbers in parentheses refer to the dominant single-particle levels involved in the transitions
(e,h). The blue curve represents the total emission spectra. The left-hand panel corresponds to the QD with diameter D = 1.7 nm, while the
right-hand panel corresponds to the QD with diameter D = 5.2 nm.
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from the dominant bulk Bloch C-band contribution. Recently,
it has been shown that the polarization of the C exciton along
the c axis (E‖�c) holds not only for bulk ZnO (Ref. 38) but also
for ZnO nanowires.39 The possibility to effectively manipulate
the optical emission polarization of QDs via pressure should
be advantageous in the design of future experiments.

IV. CONCLUSIONS

In summary, we studied the electronic and optical properties
of ZnO colloidal QDs as a function of applied hydrostatic
pressure. We find that for QD larger than 2.6 nm in diameter,
the increased pressure induces a drastic change in the highest
occupied molecular orbital from an unconventional P -type
character to a normal S-type character. Hole states tend to
become single-band objects originating from the Bloch C
band with increasing pressure. We relate this effect to the fact
that the hole states with dominant A- and B-band parentage
experience a stronger pressure dependence, in comparison to
the corresponding C-band states. In other words, the Bloch
band hydrostatic deformation potentials are negative and larger
in magnitude for the A or B bands than for the C band. As a
consequence, the C-band states emerge as the HOMO states
at high pressure. We show that the crossover between A- or
B-band and C-band HOMO states is size dependent and occurs
at higher pressures for larger QDs. We further find that the P

states derived from the Bloch C band are energetically split
into states with nodes in plane and nodes along the c direction.
This is attributed to the anisotropy of the bulk Bloch C band,
which has a heavier in-plane effective mass favoring P states
with in-plane nodes. At both the single-particle level and the

correlated excitonic level, the optical band gap experiences
a linear increase with increasing pressure, with a highly
size-dependent pressure coefficient. The pressure coefficient
is significantly lowered, by as much as 41%, by correlations.
Only the correlated results (configuration interaction) can
be brought into agreement with experiment. In contrast to
the monotonic increase of the optical band gap, the applied
hydrostatic pressure causes a nonmonotonic Stokes shift with
a minimum at a specific pressure. For pressures larger than
this critical value, the optical emission polarization changes
from in-plane to out-of-plane polarization. We explained this
behavior through the drastic change of the single-particle hole
state parentage from a dominant bulk Bloch A or B band
(before crossing) to a nearly pure C band (after crossing).
Finally, we find that the critical pressure at which the crossing
takes place strongly depends on the QD size, showing larger
pressure values for larger QD sizes. After this crossing, the
optically bright exciton state has a pure contribution from
the (0,0) configuration, where both the electron and hole
states have S-type orbital character and the single-particle
hole state has a dominant contribution from the bulk Bloch
C band.
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22H. Morkoç and U. Özgür, Zinc Oxide (Wiley-VCH, Weinheim,

2009).
23A. Janotti and C. G. Van de Walle, Phys. Rev. B 75, 121201 (2007).

125302-6



ELECTRONIC AND OPTICAL PROPERTIES OF ZnO . . . PHYSICAL REVIEW B 87, 125302 (2013)

24A. Mang, K. Reimann, and S. Rübenacke, Solid State Commun.
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In the present work, we investigated theoretically the linear, nonlinear, and total absorption

coefficients and refractive index changes associated with intersubband transitions in ZnO/ZnS core

shell quantum dot (CSQD) and ZnS/ZnO inverted CSQD (ICSQD), emphasizing on the influence of

the shell thickness, impurity, and dielectric environment. The effect of the polarization charges due

to the possible existence of the dielectric mismatch between the system and its surrounding matrix is

considered. The electronic structures are numerically calculated by employing the potential

morphing method in the framework of effective mass approximation. We find that in both impurity-

free CSQD and ICSQD, increasing the shell thickness red shifts significantly the threshold energy

and enhances drastically the nonlinear absorption coefficients and all the refractive index changes,

independently on the dielectric environments. Similar behaviour has also been observed in most of

the cases studied when the impurity is displaced from the core center to the shell center. In contrast,

comparing to a dielectrically homogeneous system, dispersing the systems into a matrix with a lower

dielectric constant blue shifts all the peak positions of the absorption coefficients and refractive

index changes. However, the corresponding magnitudes (in absolute value) are substantially reduced.

Finally, we find that the nonlinear properties are more sensitive to the external perturbations, while at

a weak radiation intensity, the variation of the total quantities is generally dominated by that of the

corresponding linear terms. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4813094]

I. INTRODUCTION

Zinc oxide (ZnO) and Zinc sulfide (ZnS) quantum dots

(QDs) have received considerable attentions due to their wide

applications in optoelectronics and spintronic devices, such

as light-emitting, laser diodes, and electroluminescent devi-

ces (see Refs. 1 and 2, and references therein). These QDs

can be fabricated successfully by using the well-established

chemical synthesis methods, e.g., sol-gel,3,4 wet chemical

approach,5,6 to mention only a few. However, the synthesized

colloidal QDs (generally uncapped) are relatively unstable

and encounter the difficulties in dispersion and preservation.

Possible existing of the surface states significantly reduces

the electron-hole recombination rate, lowering the lumines-

cent quantum yield. Size-dependent photophysical properties

can also be obscured.7 One possible way of overcoming such

problems is to further cap the bare QD (core) with an another

material (shell), forming a core-shell configuration.

Wurtzite (WZ) ZnO has a relatively smaller band gap

(3.445 eV (Ref. 8)) in comparison to that of WZ ZnS

(3.864 eV (Ref. 9)). Therefore, capping bare ZnO QDs with

a thin layer of ZnS forms the “conventional” ZnO/ZnS core-

shell quantum dot (CSQD) structure where the core material

has a narrower band gap (ZnO) than the shell material (ZnS).

Conversely, ZnS/ZnO “inverted” core-shell quantum dot10,11

(ICSQD) will be fabricated if the wider gap ZnS is over-

coated with a shell of narrower gap ZnO. ZnO/ZnS CSQDs

with dimension in the range of few nanometers to about 30

nm have been successfully synthesized by epitaxial growth

in solution.12 Comparing to the bare ZnO QDs, the fabricated

CSQDs exhibit enhanced ultraviolet (UV) emission and pres-

ent type I band alignment. Employing a simple one-step sol-

vent-thermal method, Wang et al.13 have synthesized ZnS/

ZnO ICSQDs. The stability of ICSQDs has been found to be

far superior to that of uncapped ZnS QDs, and the corre-

sponding emission quantum yield is higher than that of bare

ZnO QDs. A type II band alignment has been demonstrated.

Very recently, ZnS/ZnO ICSQDs of size 4 nm have been

grown by controlled oxidation of ZnS QDs,14 showing enor-

mous enhancement in UV emission (�10 times). Possible

applications of ZnO/ZnS CSQD on drugs and food delivery

in blood have also been reported recently.15 In contrast to the

multiplicity of experimental work, theoretical work on ZnO/

ZnS and ZnS/ZnO CSQD is very scare and limited. Using

band-corrected pseudopotential density functional theory

calculations, Schrier et al.16 have studied the band gap, opti-

cal absorption, and carrier localization of ZnO/ZnS core/

shell nanowires, proposing this heterostructure for photovol-

taic applications. McDonald et al.17 have successfully simu-

lated the biexciton binding and antibinding in CSQD by

using a path integral quantum Monte Carlo method. The

electronic structure of ZnO/ZnS CSQD has also beena)Electronic mail: bask@upatras.gr
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theoretically calculated by employing the self-consistent

charge density functional tight-binding method.18 Despite of

considerable new insights brought by these work, no atten-

tion has been paid to the linear and nonlinear optical proper-

ties in the CSQD and ICSQD systems.

In this contribution, we performed theoretical calcula-

tions of the linear, nonlinear, total absorption coefficients,

and refractive index changes in ZnO/ZnS CSQD and ZnS/

ZnO ICSQD. The emphasis of the present paper is placed on

the shell thickness, possible doping (or dopant positions),

dielectric environment influences on the linear and nonlinear

optical properties in both structures. The local field correc-

tion due to the dielectric mismatch between the CSQD (or

ICSQD) and its surrounding matrix, which has rarely been

addressed previously,19,20 has been taken into account in the

present calculations. The electronic structures of the systems

are numerically calculated by employing the potential

morphing method (PMM) in the framework of effective

mass approximation, which has been already successfully

applied in the past for the study of optical properties in sev-

eral nanostructures21–23 and very recently for the calculation

of optical susceptibilities in ZnO-matrix system.20 The rest

of the paper is organized as follows: in Sec. II, we define our

model and explain the general theory. In Sec. III, we present

numerical results and discussions, and the conclusions are

given in Sec. IV.

II. THEORETICAL FRAMEWORK

In the framework of effective-mass approximation, a

single dopant in a CSQD (or an ICSQD) with inner radius R1

and outer radius R2 (see Fig. 1) can be modeled by the fol-

lowing Hamiltonian:

Ĥ ¼ p̂
1

2m�e
p̂ þ Vconð~rÞ þ Rð~rÞ þ VCoulð~rÞ: (1)

The first term of the Hamiltonian is the operator for the

Kinetic energy of a delocalized conduction electron and m�e
is the electron effective mass. As justified by the experimen-

tal work,12–14 the conduction band edge of ZnO in ZnO-ZnS

hybrid QDs lies below that of its ZnS counterpart. Regarding

this, the confinement potential (the second term of Eq. (1)) in

our calculations is taken to be step-like (see Fig. 1), which is

Vconð~rÞ ¼
0; j~rj � R1

V0; R1 � j~rj � R2

1; j~rj > R2;

8
<

:
(2)

for ZnO/ZnS CSQD, while for ZnS/ZnO ICSQD, it is

Vconð~rÞ ¼
V0; j~rj � R1

0; R1 � j~rj � R2

1; j~rj > R2;

8
<

:
(3)

where V0 is the electron confinement potential due to the

conduction band discontinuity. Rð~rÞ is the electron self-

polarization potential, describing the interaction of the elec-

tron and its image charge, which is given by11,24–26

RðrÞ ¼ e2

8p�0�inR2

X1

k¼0

ðk þ 1Þð�in � �outÞ
k�in þ ðk þ 1Þ�out

r2k

R2k
2

; (4)

where �0 is the permittivity in vacuum, �in ¼
ffiffiffiffiffiffiffiffi
�c�s
p

with �c

and �s being the relative dielectric constants of the core and

shell materials, respectively. �out is the relative dielectric

constant of the surrounding matrix. This self-polarization

potential diverges as the electron approaches the dielectric

interface (r ! R2). In our calculations, this problem is

solved by employing the well-known “hard wall” boundary

conditions (e.g., for R > R2, potential is assumed to be infi-

nite (see Eqs. (2) and (3))), forcing a null electron density at

the interface.

The last term of Eq. (1) is the Coulomb potential due to

the mutual interaction between the electron and the shallow

donor impurity (or the image charge of the donor impurity),

depending strongly on the doping positions. For an on-center

impurity, it is11,24–26

VCoulðrÞ ¼ �
e2

4p�0�inr
� e2ð�in � �outÞ

4p�0�in�outR2

; (5)

while for an off-center impurity, it is11,24–26

VCoulðrÞ ¼ �
e2

4p�0�inj~r �~ri j
� e2

4p�0�inR2

X1

k¼0

rk
i rk

R2k
2

� ðk þ 1Þð�in � �outÞ
k�in þ ðk þ 1Þ�out

Pkðcos hÞ; (6)

FIG. 1. Schematic representations (left panel) and conduction band profiles

(right panel) of the ZnO/ZnS CSQD (a) and ZnS/ZnO ICSQD (b) with inner

radius R1 and outer radius R2, embedded in a dielectric matrix. Two impurity

positions, 1 (core-center impurity) and 2 (shell-center impurity), considered

in our calculations, have been explicitly shown.
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where ~r and ~ri are the position vectors of the electron and

impurity, respectively, with j~rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ y2
i þ z2

i

p
, where

xi; yi, and zi are the Cartesian coordinates of the impurity.

Without the loss of generality, the impurity in our calculation

is placed on the z-axis (xi ¼ yi ¼ 0, see also Fig. 1). cos h
¼ ~r �~zi

j~r j�j~zi j for an off-center impurity (located at (0,0,zi)) and

Pkðcos hÞ is the Legendre polynomial. The first term of Eq.

(6) describes the direct Coulomb interaction between the

electron and the impurity, while the last term accounts for

the Coulomb interaction between the electron and the image

charge of an off-center impurity. Here, we assume that the

Coulomb potential incorporates the effects of the polariza-

tion charges induced on the QD surface as a consequence of

the dielectric mismatch.24–26 To truncate the infinite sum in

Eqs. (4)–(6), k is taken up to 4500 in our calculations, which

ensures the potential values being insensitive to the further

increase in k. This model has been successfully used for the

investigation of the electronic properties and impurity

binding energy in ZnS/CdSe and CdSe/ZnS core-shell

nanodots.11

In order to solve the Schr€odinger equation based on the

Hamiltonian (1) numerically, PMM is employed. A detailed

description of this method can be found in Ref. 27. In our

present calculations, the usual three-dimensional (3D) har-

monic oscillator is chosen as a reference system in order to

start the morphing process and its wave functions are selected

as the initial wave functions (UR). The interaction potential

for an impurity-free system is VSð~rÞ ¼ Vconð~rÞ þ Rð~rÞ, while

it is VSð~rÞ ¼ Vconð~rÞ þ Rð~rÞ þ VCoulð~rÞ for an impurity-

present system. In our PMM, a very dense grid is employed

to ensure the accuracy of our results and all calculations are

performed with the same grid number. It should be noted

here that adopting the harmonic oscillator as a reference sys-

tem does not affect our results because the PMM needs only

a known reference system to start the morphing process and

finally to give the eigenfunctions and eigenvalues for the

unknown system, independently on the choice of the initial

reference system.27–29

After obtaining the necessary eigenenergies and wave

functions by using PMM, we start to calculate the linear, non-

linear, and total absorption coefficients and refractive index

changes associated with the intersubband transitions in the

ZnO/ZnS CSQD and ZnS/ZnO ICSQD. Within a two-level

system approach, the linear and third-order nonlinear optical

absorption coefficients can be obtained by a density matrix

approach and a perturbation expansion method, given by30

að1ÞðxÞ ¼ x
�0cnr

jM21j2rV�hC12

ðE12 � �hxÞ2 þ ð�hC12Þ2
; (7)

að3Þðx; IÞ ¼ � 2Ix
�2

0n2
r c2

jM21j4rV�hC12

½ðE21 � �hxÞ2 þ ð�hC12Þ2�2
1� jM22 �M11j2

4jM21j2
� 3E2

21 � 4E21�hxþ �h2ðx2 � C2
12Þ

E2
21 þ ð�hC12Þ2

( )

; (8)

where rV is the electron density, C12 ¼ 1=T12 is the relaxa-

tion rate with T12 being the relaxation time, I is the incident

optical intensity, nr ¼
ffiffiffiffiffi
�in
p

is the refractive index, c is the

speed of light in vacuum, and E21 ¼ Ef � Ei is the energy

difference between the final (first excited) state and the ini-

tial (ground state) state. By assuming that the polarization of

electromagnetic radiation is along the z-axis direction, the

transition matrix element between these two states is defined

by Mij ¼ � hf jezjii
�ef f

, which takes into account the local field

correction due to the dielectric mismatch between the system

and its surrounding matrix, differing from the usual defini-

tion by the local field factor F ¼ 1
�ef f
¼ 3�out

2�outþ�in
.20 For a dielec-

tric environment free system (�in ¼ �out), the local field

factor equals to 1 and it has no influence on the transition

matrix element, recovering the usual situation which has

been widely addressed in the published literature. However,

if the system is dispersed in a matrix with a lower dielectric

constant (�in > �out), e.g., ZnO/ZnS CSQD (or ZnS/ZnO

ICSQD) embedded in amorphous SiO2,31 the local field fac-

tor F < 1 and it significantly decreases the transition matrix

element. At a very weak radiation intensity, the total absorp-

tion coefficient can be approximated as

aðx; IÞ 	 að1ÞðxÞ þ að3Þðx; IÞ: (9)

The linear and the third order nonlinear refractive index

changes are given by30

Dnð1ÞðxÞ
nr

¼ 1

2n2
r �0

jM21j2rV
E21 � �hx

ðE21 � �hx2Þ2 þ ð�hC12Þ2

( )

(10)

and

Dnð3ÞðxÞ
nr

¼ � l0c

n3
r �0

jM21j4ðE21 � �hxÞrVI

½ðE21 � �hxÞ2 þ ð�hC12Þ2�2

"

1� ðM22 �M11Þ2

4jM21j2ððE21Þ2 þ ð�hC12Þ2ÞðE21 � �hxÞ

� fðE21 � �hxÞ � ½E21ðE21 � �hxÞ � ð�hC12Þ2� � ð�hC12Þ2ð2E12 � �hxÞg
#

; (11)
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respectively, where l0 is the permeability in vacuum and the

relative permeability lr is taken to be unity in our calcula-

tions. In the presence of a weak radiation intensity, the total

refractive index change can be defined by

DnðxÞ
nr

	 Dnð1ÞðxÞ
nr

þ Dnð3ÞðxÞ
nr

: (12)

III. NUMERICAL RESULTS AND DISCUSSION

In what follows, we will discuss the shell thickness, im-

purity, and dielectric environment influences of the linear

and nonlinear optical properties associated with the inter-

subband transitions in both ZnO/ZnS CSQD (see Sec. III A)

and ZnS/ZnO ICSQD (see Sec. III B). The parameters used

in our calculations are the same as in Ref. 20, taking

rV ¼ 17� 1017 cm�3, T12¼ 1 ps, and nr ¼
ffiffiffiffiffi
�in
p ¼ 2:9629

with �ZnO
r ¼ 8:66 and �ZnS

r ¼ 8:9,11 where �ZnO
r and �ZnS

r are

the relative dielectric constants of ZnO and ZnS, respec-

tively. The electron effective mass is assumed to be

position-independent, taking the value of the core material

(e.g., for ZnO/ZnS CSQD, me¼mZnO
e ¼ 0:265m0 (Ref. 8)

and for ZnS/ZnO ICSQD, it is me ¼ mZnS
e ¼ 0:24m0,9 where

m0 is the free electron mass). According to the previous lit-

eratures about the linear and nonlinear optical properties in

semiconductor nanostructures,20,23,32–34 the radiation inten-

sity significantly affects the magnitude of the third order

absorption coefficient and refractive index change, leading

to a substantial decrease in the magnitude of the total coun-

terparts. However, in the present calculations, we keep the

radiation intensity as a constant value I¼ 0.02 MW/cm2 and

take the inner radius R1 ¼ 1:5 nm, which is slightly larger

than the ZnO effective exciton Bohr radius ða�B ¼ 1:4 nmÞ.
Both the systems with (�out ¼ 3:9, corresponding to disperse

the CSQDs into amorphous SiO2 matrix) and without

(�out ¼ �in ¼ 8:779) dielectric environment effect are con-

sidered. The strain effects due to the lattice mismatch

between the core and shell materials are not considered in

the present intersubband (conduction band) calculations.

It should be noted that ab initio calculations have been

confirmed as a robust tool of describing the band lineups

for a great variety of semiconductor heterostructures (for

example, see Refs. 35–37). However, to the best of our

knowledge, such type of calculations has not yet been per-

formed for WZ ZnO-ZnS hybrid structures, which are

addressed herein. Therefore, in our calculations, the conduc-

tion band discontinuity is taken as V0 ¼ 0:08 � EZnS
g

¼ 292:8 meV, where the coefficient 0.08 is empirically

derived by fitting to the experimental measurements for a

great variety of semiconductor colloidal QDs29 and EZnS
g is

the energy band gap of WZ ZnS. The sensitivity of our

results for WZ ZnO/ZnS CSQDs and ZnS/ZnO ICSQDs to

the conduction band discontinuity parameter (i.e., see V0 in

Fig. 1) will also be discussed in Secs. III A and III B,

respectively.

Before presenting the numerical results, we first address

several important characteristics of the absorption coeffi-

cients and refractive index changes, indicating from the cor-

responding expressions described in the last section. The

peak value of the linear absorption coefficient occurs at the

photon energy �hx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

21 þ ð�hC12Þ2
q

and the peak intensity

is proportional to jM21j2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

21 þ ð�hC12Þ2
q

. For �hC12 
 E21,

which is valid for all the cases considered below, the peak

value of the linear absorption coefficient turns out to be at

the photon energy �hx 	 E21 and the peak intensity is in pro-

portion to E21 � jM21j2. For systems with inversion symmetry,

e.g., impurity free CSQD and ICSQD systems or these sys-

tems doped by a core-center impurity (see Fig. 1), the diago-

nal matrix elements M11 and M22 vanish, leading to a zero

contribution from the last term of Eq. (8) to að3Þ. For

�hC12 
 E21, although að3Þ reaches its peak value at approxi-

mately the same photon energy as its linear counterpart, the

corresponding peak intensity is more sensitive to the transi-

tion matrix element (/ E21 � jM21j4). When this inversion

symmetry is broken by the external perturbations, e.g., dop-

ing an off-center impurity, nonzero M11 and M22 appear and

the aforementioned dependence will be further corrected by

the negative contribution of the anisotropic term (see the

term which contains jM11�M22

M21
j in Eq. (8)).

Concerning to
Dnð1ÞðxÞ

nr
, it always exhibits a standard dis-

persive lineshape (e.g., it presents first a maximum and then

a minimum as the photon energy increases). The maximum

and minimum appear at the photon energy �hx ¼ E21 � �hC12

and �hx ¼ E21 þ �hC12, respectively. They are equivalent in

magnitude (in absolute value) which is proportional to

jM21j2, independently on the transition energy (E21).

Whereas, for
Dnð3ÞðxÞ

nr
, this standard dispersive lineshape is

reversed (e.g., it shows firstly a minimum and then a maxi-
mum as the photon energy increases). Analogously to

að3Þ; Dnð3ÞðxÞ
nr

in a system with an inversion symmetry is fully

determined by the first term of Eq. (11) due to the vanishing

diagonal matrix elements M11 and M22. Its global minimum

and maximum occur at �hx ¼ E21 � ð�hC12Þ=
ffiffiffi
3
p

and

�hx ¼ E21 þ ð�hC12Þ=
ffiffiffi
3
p

, respectively. The magnitudes of

these minimum and maximum are equivalent (in absolute

value), exhibiting a stronger exclusive dependence on the

transition matrix element (e.g., / jM21j4) in comparison to
Dnð1ÞðxÞ

nr
(e.g., / jM21j2)). However, these relations will also

be influenced by the anisotropic term if the system is lack of

inversion symmetry (see Eq. (11)).

A. Optical absorption coefficients and refractive index
changes in ZnO/ZnS core-shell quantum dots

As a first step towards investigating the linear and non-

linear optical properties in impurity free ZnO/ZnS CSQDs,

we present in Fig. 2 the linear, third order nonlinear, and

total absorption coefficients and refractive index changes as

a function of the photon energy for three different shell

thickness values. It shows that increasing the thickness of the

capping layer leads to a red shift of the threshold energy.

This shift appears to be very sensitive to the initial capping

and becomes less significant when the shell layer is relatively

thick. In addition to this, varying the shell thickness also sig-

nificantly enhances all the refractive index changes. This

effect favors more the nonlinear term. To capture the

023510-4 Zeng et al. J. Appl. Phys. 114, 023510 (2013)
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physical reasons, we calculated the probability of finding the

electron in the shell region for various shell thickness values.

The results for the ground and first excited states are shown

in Fig. 3. It appears that increasing the capping thickness

enhances the penetration of the electron wave functions into

shell region, irrespectively of the dielectric environment.

This movement of the wave functions eventually causes an

increase in the transition matrix element M21 which is fully

responsible for the variation of the refractive index changes.

In contrast to the increase in the matrix element, the transi-

tion energy experiences a decrease with increasing the cap-

ping thickness, which is associated with the observed red

shift. The competition effects of these two factors (e.g.,

jM21j2 and E21) determine the tendency of the peak intensity

of the linear absorption coefficients with respect to the shell

thickness. In a dielectrically homogeneous system (see the

dash dotted lines), the later effect (e.g., E21) is more pro-

nounced and the peak intensity of að1Þ decreases with regard

to the increased capping thickness. Conversely, when the

dielectric inhomogeneity is present (see the solid lines), the

former effect (jM21j2) is more effective, finally inducing an

increase in the peak intensity of að1Þ.
Concerning to að3Þ, its peak intensity exhibits a

more straightforward variation, increasing significantly with

increasing the shell thickness both with and without

the dielectric environment. This is due to the fact that compar-

ing to að1Þ ð/E21 � jM21j2), the peak intensity of að3Þ

ð/E21 � jM21j4) is more sensitive to the variation of the transi-

tion matrix element, which contributes positively with the

capping thickness as addressed above. Although the change of

the nonlinear term is more drastic with increasing the shell

thickness, the peak magnitude of total absorption coefficient

follows the same variation of the linear term due to its domi-

nant contribution at relatively weak radiation intensity.

In comparison to a dielectrically homogeneous system,

all the quantities are substantially reduced if the system is

dispersed in a matrix with a lower dielectric constant and

considerable blue shift of the threshold energy is observed.

This is attributed to the fact that for a phenomenological

CSQD, the existence of the dielectric environment (e.g., in

our case, �in > �out) induces a self energy which is positive

and a short range interaction at the CSQD-matrix interface

(see Eq. (4)), forcing the electron to move towards the core

center. This can be easily justified by the fact the probability

of finding the electron of ground state in the shell region

becomes smaller in the presence of the dielectric mismatch

(see the left panel of Fig. 3). Moreover, local field effect,

characterizing by the local field factor F ¼ 1
�ef f
¼ 0:705, also

appears. The combination effects of the charge movement

and the local field consequently decrease the transition ele-

ment, which is related to the reducing in all the refractive

index changes. Although the transition energy exhibits an

increase by taking into account the dielectric environment

effect, the decrease in the matrix element is more significant,

FIG. 2. Linear (red), third order nonlinear (navy), and total (blue) absorption coefficients (left panel) and refractive index changes (right panel) as a function of

the photon energy �hx for various shell (ZnS) thickness (Ts¼R2 � R1, in unit of ML) values in impurity free ZnO/ZnS CSQDs without (�in ¼ �out, dashed dot-

ted lines) and with (�in > �out, solid lines) dielectric environment. Here, the inner radius R1¼ 1.5 nm and 1 ML¼ 0.3117 nm (for ZnS).

FIG. 3. Probability of finding the electron of ground-state (red triangles) and

first excited state (blue diamonds) in the shell region as a function of the

shell thickness (in unit of ML) in ZnO/ZnS CSQDs (left panel) and ZnS/

ZnO ICSQDs (right panel) without (�in ¼ �out ¼ 8:779, dashed dotted lines)

and with dielectric environment (�in > �out; �in ¼ 8:779; �out ¼ 3:9, solid

lines). For the left panel, 1 ML¼ 0.3117 nm (WZ ZnS), while for the right

panel, 1 ML¼ 0.26025 nm (WZ ZnO).
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leading to the observed variation (decreasing) in all the

absorption coefficients.

Possible existence of dopants (or intrinsic hydrogen like

defects) is also expected to affect significantly the linear and

nonlinear optical properties in a CSQD. From the last section

(see Eqs. (4)–(6)), we know that in a dielectrically homoge-

neous system, the presence of the donor ion induces a well-

known electron-ion Coulomb interaction. However, this

interaction is further influenced by the effect of the polariza-

tion image charges (e.g., positive self-energy and the

Coulomb interaction between the electron and the impurity

image) when the CSQD is embedded in a matrix with a

lower dielectric constant. Although the Coulomb potential is

different in these two dielectric environments, the variation

of linear and nonlinear optical properties with respect to a

core-center doping appears to be very similar. Comparing to

the impurity free system (see Fig. 2), Fig. 3 shows that dop-

ing the CSQD at the core center (zi ¼ 0) with a hydrogenic

impurity leads to a blue shift of the transition energy and

simultaneously a slight decrease (in absolute magnitude) in

both the linear and nonlinear absorption coefficients and re-

fractive index changes, irrespectively of the dielectric envi-

ronment. The physical reason is that the occurrence of

impurity center increases the separation of the energy levels

of the two states (E21) in both with and without dielectric

environment. Conversely, the charge accumulation towards

the impurity center (core center) decreases significantly the

transition matrix element. These two effects appear to com-

pensate with each other and the influence of latter factor

turns out to be more pronounced, causing a decrease of both

the linear and nonlinear quantities.

Varying the doping position from the core center to the

shell center breaks the inversion symmetry of the system,

causing an increment in the off-diagonal transition matrix

element M21 and the appearance of a non-zero anisotropic

value ðjM11�M22

M21
jÞ, as we addressed before. The increase in

M21 is dominant and leads to the enhancement of all the re-

fractive index changes. On the other hand, moving the on-

center impurity towards an off-center position also results in

a decrease in the transition energy which is responsible for

the red shift exhibited in Fig. 3. However, the variation of

these two effects (M21 and E21) with respect to the change of

the doping position is different in the two dielectric environ-

ments. For a dielectrically homogeneous system, the transi-

tion energy is smaller and its variation is more effective.

Consequently, the peak intensity of the linear absorption

coefficient decreases with moving the impurity to shell cen-

ter (see the dash dotted lines in the upper plot of Fig. 4). By

contrast, in a dielectrically inhomogeneous system, the tran-

sition energy is larger due to the incorporation of the self-

image effects and its variation with respect to the doping

position is less efficient in comparison to its matrix element

counterpart. The peak intensity of linear absorption coeffi-

cient resultantly experiences an increase.

The influence of the variation of the transition matrix

element on the peak intensity of the nonlinear absorption

coefficient is always dominant over its transition energy

counterpart, resulting a similar behaviour in both with and

without dielectric environment (it increases with moving the

dopant to the shell center). More specially, we found that

comparing to the system without dielectric environment,

both the absorption coefficients and refractive index changes

are substantially reduced when the system is dispersed in a

lower dielectric constant matrix (�in > �out) and blue shift of

the threshold energy is observed, as expected.

Finally, in an attempt to investigate the sensitivity of the

presented results to the conduction band discontinuity pa-

rameter V0 (see Fig. 1), we show in Fig. 5 the linear absorp-

tion coefficient and refractive index change as a function of

the photon energy for various shell thickness values, taking

V0¼ 200 meV (�0:052 � EZnS
g ). It appears that the deviation

of the V0 value from the empirically derived one does not

cause any changes in the general tendency of the transition

energy E21 (decreases) and off-diagonal matrix element M21

(increases) with respect to the increase in the shell thickness.

This can be confirmed by the appearance of red-shift phe-

nomenon and also the enhancement of the change in the re-

fractive index (in absolute value) shown in Fig. 5 with

increasing the capping thickness (very similarly to the ones

pictured in Fig. 2). However, possible variation in V0 affects

strongly the interplay of the two factors on the peak intensity

of the absorption coefficient. This becomes clear by the non-

monotonic variation in the absorption coefficient (i.e., first

increases (from 3 Monolayer (ML) to 6 ML) and then

FIG. 4. Linear (red), third order nonlinear (navy), and total (blue) absorption

coefficients (upper panel) and refractive index changes (lower panel) as a

function of the photon energy �hx for various dopant positions in doped

ZnO/ZnS CSQDs without (dashed dotted lines) and with (solid lines) dielec-

tric environment. Here, the dopants located at the core center (zi ¼ 0) and at

the shell center (zi ¼ 0:75R2) are considered. The inner radius R1¼ 1.5 nm

and the shell thickness is Ts ¼ 6 ML ðR2 ¼ R1 þ Ts ¼ 3:3702 nm).
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slightly decreases (from 6 ML to 9 ML)) shown in Fig. 5,

very differently from the ones shown in Fig. 2 (i.e., the peak

intensity decreases monotonically with increasing the shell

thickness). In addition to this, the decrease in V0 results in a

smaller resonant peak photon energy in CSQDs both with

and without dielectric environment. In the presence of the

dielectric environment, the linear and nonlinear optical prop-

erties are independent on the variation of V0, always decreas-

ing the peak intensity and blue-shifting the peak position

(see Figs. 2 and 5).

B. Optical absorption coefficients and refractive index
changes in ZnS/ZnO inverted core-shell quantum dots

In Subsection III A, we find that the shell thickness, im-

purity and possible existence of the dielectric environment

significantly influence the linear and nonlinear optical prop-

erties in ZnO/ZnS CSQDs. Comparing to the conventional
configuration, ZnS/ZnO ICSQDs exhibit very different

potential profiles (see Fig. 1). Herein, we present the depend-

ence of the absorption coefficients and refractive index

changes in the ICSQD on the aforementioned three factors

and possible comparison between these two systems (CSQD

and ICSQD) is performed.

Following the same procedures in the last subsection,

we first studied the effect of the shell thickness on the

absorption coefficients and refractive index changes in ZnS/

ZnO ICSQDs. As shown in Fig. 6, increasing the shell thick-

ness leads to an enhancement of all the absorption coeffi-

cients and refractive index changes both with and without

dielectric environment. This is independent on the variation

of the conduction band discontinuity parameter V0 (see Fig.

7), which is different from the case shown in CSQDs by the

variation of the linear absorption coefficients with respect to

the capping thickness (see Fig. 2). The physical reason is

attributed to the charge accumulation towards the shell

region induced by the increase in the shell thickness (see the

right panel of Fig. 3), which is similar to that in the conven-
tional systems (see the right panel of Fig. 3). The resultant

increase in the transition matrix element is the direct reason

for the increase in the refractive index changes. However,

comparing to the CSQD, the charge movement appears to be

FIG. 5. Linear absorption coefficient (að1Þ, upper panel) and refractive index

change (Dnð1Þ=nr , lower panel) as a function of the photon energy �hx for

various shell thickness values (in unit of ML) in ZnO/ZnS CSQD without

(dashed dotted lines) and with (solid lines) dielectric environment, using the

conduction band discontinuity parameter V0 ¼ 200 meV.

FIG. 6. The same as in Fig. 2 but for ZnS/ZnO ICSQDs. Here, 1 ML¼ 0. 26025 nm (for ZnO (shell material)).

FIG. 7. The same as in Fig. 5 but for ZnS/ZnO ICSQDs.
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comparatively more significant in the ICSQD systems (see

the two plots in Fig. 3). Therefore, the positive contribution

from the transition matrix element variation completely

dominates over the negative contribution from its transition

energy counterpart, causing a monotonic increase in the lin-

ear absorption coefficient peak intensity. We further found

from Fig. 6 that the increase in the nonlinear quantities with

enhancing the capping layer is significantly more pro-

nounced. Similarly to the CSQD, for a given shell thickness

value, all the quantities are drastically reduced by dispersing

the ICSQD into a matrix with a lower dielectric constant and

a blue shift of the threshold energy appears.

In the unconventional CSQD structure, Fig. 6 shows

that enhancing the thickness of the capping layer causes a

strong red shift in the threshold energy. This red shift is very

sensitive to the initial capping (e.g., from 3 ML to 6 ML)

and the sensitivity reduces if the capping layer becomes

comparable to the core radius (e.g., from 6 ML to 9 ML),

similarly to its conventional counterpart (shown in Fig. 2).

This behaviour appears to be irrespective of the involved

conduction band parameter V0 (see Fig. 7). Comparing Fig.

6 to Fig. 7, we find that for a specific capping thickness, pos-

sible variation in V0 also considerably affects the threshold

energy, exhibiting a larger value for a smaller V0, contrary

to the CSQD structure. This is due to the fact that although

decreasing the V0 value results in lowering both the ground

state and the first excited state energy levels, the sensitivity

of this decrease in these two energy levels turns out to be

completely different in the CSQD and ICSQD structures. In

ICSQD, the decrease in the ground state energy level with

respect to the reducing of V0 is more significant, leading to

a relatively larger transition energy E21 for a smaller V0

value. However, in CSQD, this decrease favors more the

energy level of the first excited state, causing a reversed

picture.

Finally, we present in Fig. 8 the linear, nonlinear and

total absorption coefficients and refractive index changes as

a function of the photon energy for two doping positions,

with and without dielectric environment. It appears that

varying the doping position from the core center to the shell

center causes a red shift of the threshold energy. However,

the sensitivity of this shift with respect to the impurity loca-

tions is reduced by considering the dielectric environment

(see Fig. 8). Additionally, the peak intensity of the absorp-

tion coefficients and the changes in the refractive index are

differently influenced by the doping position in the two

dielectric environments. In a dielectrically homogeneous

system, the displacement of the impurity from the on-center

position to an off-center position leads to an increase in the

peak intensity of the linear and nonlinear quantities. Similar

behaviour has been found in the CSQD and the correspond-

ing physical reasons can be understood analogously.

However, when the dielectric environment effect is present,

the magnitudes of all the quantities are reduced significantly,

very similar to that in the conventional CSQD systems (see

Fig. 4). In contrast to this consistency, displacing the on-cen-
ter impurity to an off-center position in the unconventional
systems decreases the peak intensity of all the absorption

coefficients and reduces all the changes in the refractive

index. This is associated with the decrement in both the tran-

sition energy (e.g., E21) and matrix element (e.g., jM21j).

IV. CONCLUSION

In summary, we have performed a theoretical study on

the linear, nonlinear and total absorption coefficients and re-

fractive index changes associated with the intersubband tran-

sitions in both WZ ZnO/ZnS CSQD and ZnS/ZnO ICSQD.

The influence of the shell thickness, impurity, and dielectric

environment has been addressed. The necessary wave func-

tions and corresponding energy levels are numerically calcu-

lated by using PMM in the framework of effective mass

approximation. We find that in both CSQD and ICSQD,

increasing the shell thickness causes a significant red shift of

the threshold energy and enhances drastically the nonlinear

absorption coefficients and all the changes in the refractive

index. This shift appears to be very sensitive to the initial

capping and then becomes insensitive to the further capping

if the shell layer becomes comparatively thick. Similar red

shift phenomenon has also been observed in the most cases

studied when the impurity is displaced from the core-center

to the shell-center. In all the cases investigated, further dis-

persing the systems into a matrix with a lower dielectric

environment blue shifts all the peak positions of the absorp-

tion coefficients and refractive index changes. However, the

corresponding magnitudes (in absolute value) are substan-

tially reduced. In the ICSQD, moving the core center impu-

rity to the shell center position even causes a slight decrease

FIG. 8. The same as in Fig. 4 but for ZnS/ZnO ICSQDs. The inner radius

R1¼ 1.5 nm and the shell thickness is Ts¼6MLðR2¼R1þTs¼3:0615 nm).
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in all the absorption coefficients and refractive index

changes. Generally, the nonlinear terms are more sensitive to

the external perturbations. However, we found that at a rela-

tively weak radiation intensity, the variation of the total

counterparts is completely dominated by the corresponding

linear terms.

Our results also highlight prominently the importance of

accurate determination of the conduction band discontinuity

parameter in WZ ZnO-ZnS hybrid systems. Possible varia-

tion of this parameter appears to affect the tendency of the

peak intensity of the linear absorption coefficient with

respect to the shell thickness in the conventional CSQD

structure and also the threshold energy of the absorption

coefficient and refractive index change in both CSQD and

ICSQD structures. Despite of this, we believe that the pres-

ent results would be useful not only in the elucidation of the

fundamental physics but also for possible devices application

based on ZnO/ZnS hybrid systems.
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ABSTRACT

We have theoretically studied the combination effects of the electric and magnetic fields on the binding energy
of an on-center donor impurity in disc-shaped GaAs/Al0.3Ga0.7As quantum dots (QDs) with emphasis on the
competition effects between the two fields under externally applied pressure and temperature. The electric
field is applied along the radial direction of the QD, while the magnetic field is applied along the growth direc-
tion. The numerical method we employed in the present calculations is the potential morphing method in the
framework of the effective mass approximation. Our results show that the two fields exhibit a competition effect
on the donor binding energy, leading to an invariant binding energy as in the zero field case at a critical
line. This line separates the region corresponding to the “red shift” of the donor binding energy from the one
referring to the “blue shift” of the binding energy. Comparing to the magnetic field effect, increasing in the
QD sizes or applied pressure is found to favour more its electric counterpart, enlarging the region satisfied
by the “red shift” of the donor binding energy. The temperature effect appears to decrease the donor bind-
ing energy. However, the competition effects between the two fields retain the same when the temperature
varies.

KEYWORDS: Quantum Dot, Impurity, Electric and Magnetic Fields.

1. INTRODUCTION
Doping of semiconductors by impurity atoms has
widespread technological applications in microelectronics
and optoelectronics. It provides further means to control
the performance of related devices.1 Donors have been
used in some elegant quantum computing proposals that
draws upon the vast expertise of the semiconductor device
industry.2 One of the proposals that renewed interest in
the quantum mechanics of donors is the Kane qubit3 in
which information is encoded into the nuclear spins of
donor atoms in doped silicon electronic devices, and engi-
neers the donor electron wave function by electrodes to
manipulate information.
Due to the development of nanoscience and nanotech-

nology, the study of donor related electronic and opti-
cal properties in semiconductor quantum dots (QDs)
has been of great interest in the past.4–8 It has been
found that donor related properties in semiconductor QDs

∗Author to whom correspondence should be addressed.
Email: bask@upatras.gr
Received: 2 August 2013
Accepted: 2 October 2013

depend significantly on the materials, geometries (sizes
and shapes), shapes of the confinement potentials and also
dopant positions. External perturbations, such as applied
electric and magnetic fields, hydrostatic pressure and tem-
perature, also modify significantly the confined states of
the donors.6,9–14 To control and modulate the output of
the doped-QDs-based optoelectronic devices, a combined
application of these external perturbations in semicon-
ductor QDs, such as a combination of the electric field
with the magnetic field, has drawn increasingly attentions
recently.15–20 When the electric and magnetic fields are
applied perpendicular to each other in a QD system, as
reported in a recent paper20 of our group, competition
effects appear. These competition effects on the donor
binding energy have been found to be strongly dependent
on the QD geometric characteristics (dot sizes and aspect
ratios) and also the strength and orientation of the two
fields.20 When another external perturbation is also simul-
taneously present in the QD system under the influence
of perpendicular electric and magnetic fields, a question,
which will arise, is that how a given perturbation influ-
ences the competition effects.
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In this contribution, we theoretically investigate the
combination effects of the electric and magnetic fields
on the donor binding energy in disc-shaped QDs with
emphasis on the competition effects between the two fields
under the externally applied pressure and temperature. The
electric field is applied along the radial direction, while
the magnetic field is applied perpendicular to it which is
along the QD growth direction. The numerical approach
we use for the present calculations is the potential mor-
phing method (PMM)21 in the framework of the effective
mass approximation, which has been proved to be a robust
tool for the calculations of impurity-related electronic and
optical properties in a QD system.13,20, 22, 23 The rest of the
paper is organized as follows: in Section 2, we define our
model and explain the general theory. In Section 3, we
present numerical results and discussions, and the conclu-
sions are given in Section 4.

2. THEORETICAL FRAMEWORK
In the framework of effective mass approximation, an on-
center shallow donor impurity in a disc-shaped QD with
radius R, under the influence of the electric and magnetic
fields, applied pressure and temperature, can be modeled
by the Hamiltonian

Ĥ =
(
p̂+ e

c
�A��r�

)
1

2m∗
e�P� T �

(
p̂+ e

c
�A��r�

)
+V ��r�P� T �

+�e� �E · �r− e2

4��0�r�P� T ���r �
(1)

The first term of the Hamiltonian is the Kinetic
term of the delocalized conduction electron under the
influence of the z-axis magnetic field ( �B= B�z (see Fig. 1),
where B is the magnitude of the magnetic field and �z is
the z-axis unit vector). �A is the vector potential. In the

Fig. 1. Schematic representations of a GaAs/AlGaAs disc-shaped QD
under the influence of the applied electric and magnetic fields. The
electric field ( �E) is applied along the x-axis direction and the mag-
netic field ( �B) is applied perpendicular to it which is along the z-axis
direction.

cylindrical gauge ( �A = �1/2� �B×�r), the operator for the
Kinetic energy of the electron (the first term of Eq. (1)) is

ĤKin = p̂
1

2m∗
e�P� T �

p̂+ eB

2m∗
e�P� T �c

l̂z

+ e2B2

8m∗
e�P� T �c

2
�x2+y2�

where e is the absolute value of the electron charge, c is
the speed of the light in vacuum, and l̂z is the z-component
of the angular momentum operator. m∗

e�P� T � is the pres-
sure and temperature dependent electron effective mass,
which is given by24

m∗
e�P� T �

= m0

1+E�
P ��2/�E�

g �P�T ���+ �1/�E�
g �P�T �+�0��	

(2)

in which m0 is the bare mass of the electron, P and T
stand for the applied pressure and temperature, respec-
tively, E�

P = 7
51 eV is an energy related to the momentum
matrix element and the spin-orbit splitting for GaAs QD is
�0 = 0
341 eV. E�

g is the pressure and temperature depen-
dent energy gap at � point in the Brillouin zone for GaAs
QD, which is the following25,26

E�
g �P�T �= E�

g �0� T �+aP +bP 2 (3)

where a= 1
07×10−2 eV/kbar, b=−3
77×10−5 eV/kbar2,
and

E�
g �0� T �=

[
1
519− 5
045×10−4T 2

T +204

]
(4)

in unit of eV. V ��r�P� T � is the pressure and tempera-
ture dependent conduction electron confinement potential,
which is given by

V ��r�P� T �= V0�P�T �����r �−R� (5)

where � is the Heaviside step function and �r is the posi-
tion vector with ��r � = √

x2+y2, where x and y are the
Cartesian coordinates, respectively. The pressure and tem-
perature dependent conduction band discontinuity at the
interface of the GaAs/AlGaAs heterostructure is

V0�P�T �=Q�E
AlxGa1−xAs
Gap �P�T �−EGaAs

Gap �P�T �	 (6)

where Q is the conduction band offset which is assumed
to be pressure independent and taken as Q = 60% for
GaAs/AlGaAs heterostructure. The pressure and tempera-
ture dependent band gap is provided by27

Ei
Gap�P�T �= Ei

1+�iP +iT 2/�T +T i
1 � (7)

where for GaAs (i = GaAs), E1 = 1
519 eV,  =
−5
405×10−4 eV/K, � = 10
7×10−3 eV/kbar and T1 =
204 K at � point, while for AlxGa1−xAs (i=AlxGa1−xAs),
E1 = 1
519+1
155x+0
37x2 eV, =−5
405×10−4 eV/K,
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�= �10
8−3
2x+3
8x2�×10−3 eV/kbar and T1 = 204 K,
respectively.
The third term of Eq. (1) is the electrostatic poten-

tial induced by the external electric field with strength E,
which is applied along the radial direction in our calcu-
lations (see Fig. 1). �0 in the last term is the permittivity
in vacuum and �r�P� T � is the pressure and temperature
dependent relative dielectric constant, which is28,29

�r�P� T �

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

12
74exp�−1
67×10−3P	

· exp �9
4×10−5�T −75
6�	� 0< T≤200

13
18exp�−1
73×10−3P	

· exp �20
4×10−5�T −300�	� T≥200

(8)

where T is in unit of Kelvin.
To solve numerically the Schrödinger equation based on

Hamiltonian (1), PMM is used. A detailed review of this
method can be found in Ref. [21]. In our calculations, the
usual two-dimensional (2D) harmonic oscillator is chosen
as a reference system and its ground-state wave function
is selected as the initial wave function. The interaction

Fig. 2. Contour plot of the binding energy of an on-center donor impurity Eb (upper panel, in unit of meV) and the energetic shift of the donor
binding energy (�Eb) (lower panel, in unit of meV) for various electric (E) and magnetic (B) fields in GaAs/Al0
3Ga0
7As disc-shaped QDs at room
temperature (T = 300 K) and zero pressure (P = 0). Two dot sizes R= 10 nm (left panel) and 20 nm (right panel) are considered, respectively.

potential corresponding to the ground-state energy of the
electron is

V e
S = eB

2m∗
e�P� T �c

l̂z+
e2B2

8m∗
e�P� T �c

2
�x2+y2�

+V ��r�P� T �+�e� �E · �r (9)

whereas, the interaction potential for the ground-state
energy of the shallow donor impurity is

V i
S = eB

2m∗
e�P� T �c

l̂z+
e2B2

8m∗
e�P� T �c

2
�x2+y2�

+V ��r�P� T �+�e� �E · �r− e2

4��0�r�P� T ���r �
(10)

The binding energy of the shallow donor impurity is
defined as

Eb = E0−Ei (11)

where E0 is the electron ground-state energy (without
the last term of Eq. (1)) and Ei is the impurity ground-
state energy (with the last term of Eq. (1)). To study the
competition effects of the applied electric and magnetic
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fields, we defined the energetic shift of the donor binding
energy as20

�Eb = Eb�F �=0�B �=0�−Eb�F=0�B=0� (12)

3. NUMERICAL RESULTS AND DISCUSSION
In what follows, we present our results for the com-
bination effects of the electric and magnetic fields on
the binding energy of an on-center donor impurity
in GaAs/Al0
3Ga0
7As disc-shaped QDs under externally
applied pressure and temperatures. A position independent
electron effective mass is used in the present calculations
as an approximation and the dielectric mismatch between
the dot and barrier materials is not considered.
As a first step towards the combination effects of the

electric and magnetic fields on the binding energy of an
on-center donor impurity in disc-shaped QDs, we present
several suitable contour plots (see Fig. 2) of the donor
binding energy and the energetic shift of the donor bind-
ing energy for various electric (0–10 kV/cm) and magnetic
(0–10 Tesla) fields. The calculations are performed for two
dot sizes (R = 10 nm and 20 nm). The obtained results
show that for any magnetic field, the applied electric field

Fig. 3. Contour plot of the binding energy of an on-center donor impurity Eb (upper panel, in unit of meV) and the energetic shift of the donor
binding energy (�Eb) (lower panel, in unit of meV) for various electric (E) and magnetic (B) fields in GaAs/Al0
3Ga0
7As disc-shaped QDs with radius
R= 20 nm at room temperature (T = 300 K). Two pressure values (P = 15 kbar (left panel) and 25 kbar (right panel)) are considered, respectively.

tends to decrease the donor binding energy. Whereas, an
increase in the magnetic field appears to enhance signif-
icantly the binding energy for any electric field. This is
due to fact that the electric field pushes the electron den-
sity far away from the impurity center, while its magnetic
counterpart squeezes the electron probability with respect
to the impurity center. When these two fields are simulta-
neously employed in the QD systems, competition effects
appear. A visualization of these effects can be found in
the lower panel of Figure 2. It shows that there is a criti-
cal line (see the red lines in Fig. 2) corresponding to the
zero energetic shift of the donor binding energy (�Eb = 0)
under the influence of the applied electric and magnetic
fields, irrespectively of the dot sizes. The area above the
critical line which satisfies �Eb > 0 represents the “blue
shift” of the donor binding energy and the region below
the critical line determined by �Eb < 0 describes the “red
shift” of the donor binding energy.
A “red shift” of the donor binding energy means essen-

tially that the electric field effect is dominant over its
magnetic field counterpart and finally a negative ener-
getic shift of the donor binding energy is exhibited. Con-
versely, if the magnetic field effect is more pronounced,
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the energetic shift of the donor binding energy is posi-
tive (�Eb > 0) and a “blue shift” of the donor binding
energy appears. An increase in the dot size leads to a
decrease in the donor binding energy but favors both the
electric and magnetic field effects. This can be easily con-
formed by the significantly increased energetic shift of the
donor binding energy in QDs within the weak confine-
ment regime in comparison to the ones in the strong con-
finement regime. When the dot size increases, the applied
electric field effect appears to be more pronounced than its
magnetic field counterpart. This causes an enlarged region
which describes the “red shift” of the donor binding energy
(�Eb < 0). As a result, the critical line presents a con-
siderable counterclockwise planer rotation as the dot size
increases.
For the QDs in the weak confinement regime

(R= 20 nm), we also present in Figure 3 the contour
plots of the donor binding energy and energetic shift of
the donor binding energy for various electric and mag-
netic fields, where two different pressures are considered.
It shows that the applied electric and magnetic fields retain
a very similar effect on the donor binding energy in the

Fig. 4. Contour plot of the binding energy of an on-center donor impurity Eb (upper panel, in unit of meV) and the energetic shift of the donor
binding energy (�Eb) (lower panel, in unit of meV) for various electric (E) and magnetic (B) fields in GaAs/Al0
3Ga0
7As disc-shaped QDs with radius
R= 20 nm at zero pressure (P = 0). Two temperature values (T = 10 K (left panel)and 150 K (right panel)) are considered, respectively.

presence of the pressure as in the zero pressure case (see
the plots in the right panel of Fig. 2). However, when the
pressure increases, the donor binding energy increases at
given electric and magnetic fields. This is associated with
the modification of the material parameters induced by
the applied pressure. The electron effective mass increases
with increasing the pressure, while the relative dielectric
constant and electron confinement potential (V0) tend to
decrease as the pressure increases. The joint effects of the
variation of these material parameters leads to an effec-
tively enhanced Rydberg energy with increasing the pres-
sure and finally an increase in the donor binding energy is
present.
Figure 3 also shows that for any applied pressure, the

critical line determined by the zero energetic shift of the
donor binding energy appears (see the red lines in the plots
on the lower panel). The presence of the applied pres-
sure turns out to favor more the electric field effect, which
causes an increase in the region determined by the “red
shift” of the donor binding energy (�Eb < 0). Conse-
quently, the critical line experiences a slight counterclock-
wise rotation when the applied pressure increases.
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Finally, in an effort to show the competition effects of
the electric and magnetic fields in a disc-shaped QD under
the influence of temperature, we display in Figure 4 the
contour plots of the donor binding energy and energetic
shift of the donor binding energy for various electric and
magnetic fields, where two different temperature values
are considered. As the first glance of the figure, one could
find that increasing the temperature causes a decrease in
the donor binding energy for any electric and magnetic
fields (see the right plots of Fig. 2). This is related to
the temperature dependent variation of the material param-
eters. As indicated explicitly from Eqs. (2) and (8), an
increase in the temperature appears to decrease the elec-
tron effective mass and enhance the relative dielectric con-
stant. Consequently, a reduce in the Rydberg energy occurs
and the donor binding energy decreases as the temperature
increases. Similarly to what Figure 3 shows, the critical
line described by �Eb = 0 appears for any temperature
considered. It also appears from Figure 4 that the presence
of the temperature do not have any significant influence on
the competition effect of the electric and magnetic fields
on the binding energy of an on-center donor impurity in
disc-shaped QDs. This can be clearly confirmed by the
invariant position of this critical line in Figure 4 (see the
plots on the lower panel).

4. CONCLUSIONS
In summary, we have studied the combination effects
of the electric and magnetic fields on the binding
energy of an on-center donor impurity in disc-shaped
GaAs/Al0
3Ga0
7As quantum dots (QDs), emphasizing on
the competition effects between these two fields under var-
ious externally applied pressures and temperatures. The
electric field is applied along the radial direction, while
the magnetic field is applied perpendicular to it, which is
along the growth direction of the QD. It is found that the
enhanced electric field decreases the donor binding energy,
while the simultaneously applied magnetic field exhibits a
reversed effect, increasing the binding energy with increas-
ing the field strength. These competition effects between
the two fields lead to a critical line in which the donor
binding energy keeps invariant as in the zero field case.
The position of this line is found to be strongly depen-
dently on the QD sizes. Comparing to the magnetic field
effect, an increase in the QD size causes a more pro-
nounced electric field effect which in turn enhances dras-
tically the region corresponding to the “red shift” of the
donor binding energy. The applied pressure exhibits a very
similar but weaker effect on the critical line as the QD
sizes, favoring more the electric field effect. Although
the increased temperature effect turns out to decrease the
donor binding energy, it does not have significant influ-
ence on the competition effects between the two fields. We
believe that the results presented here can be useful for the
doped GaAs/AlGaAs QDs based functional devices.
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22. İbrahim Karabulut and S. Baskoutas, J. Appl. Phys. 103, 073512

(2008).
23. Z. Zeng, C. S. Garoufalis, A. F. Terzis, and S. Baskoutas, J. Appl.

Phys. 114, 023510 (2013).
24. C. A. Moscoso-Moreno, R. Franco, and J. Silva-Valencia, Phys. Sta-

tus Solidi B 246, 486 (2009).
25. H. Ehrenreich, J. Appl. Phys. 32, 2155 (1961).
26. B. Welber, M. Cardona, C. K. Kim, and S. Rodriguez, Phys. Rev. B

12, 5729 (1975).
27. C. A. Duque, S. Y. López, and M. E. Mora-Ramos, Phys. Status

Solidi B 244, 1964 (2007).
28. E. Li, Physica E 5, 215 (2000).
29. H. Odhiambo Oyoko, N. Porras-Montenegro, S. Y. López, and C. A.

Duque, Phys. Status Solidi C 4, 298 (2007).

Sci. Adv. Mater., 6, 586–591, 2014 591





Paper X
In which we study the electronic and optical properties of

wurtzite ZnS colloidal quantum dots ...



New Insights in the Excitonic Emission of ZnS Colloidal Quantum
Dots
Zaiping Zeng, Christos S. Garoufalis, and Sotirios Baskoutas*
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ABSTRACT: We have studied the electronic and optical properties of
wurtzite ZnS colloidal quantum dots by means of atomistic empirical
pseudopotential method complemented by configuration interaction
calculations. For this purpose, we have developed a new set of reliable
pseudopotentials (for Zn and S) which give an accurate and balanced
description of ZnS bulk properties. Our results for the size-dependent
optical gap are found to be in excellent agreement with the experimental
measurements, offering valuable information with regard to the nature of the
near-band-edge excitons. In particular, it is found that not only the first
optically allowed exciton is an A-exciton for the full range of dot sizes but
also all the pronounced emission peaks exhibit an in-plane polarization (i.e.,
A or B excitons). Under normal conditions, the C-exciton emissions which
are common in the ZnO analogues are found to be inactive in the lower part
of the excitonic spectrum of ZnS colloidal quantum dots.

■ INTRODUCTION
Zinc sulfide (ZnS), as one of the typical II−VI semiconductor
compounds, is an excellent optical material having a wide
optical transparency from the ultraviolet (UV) to the far-
infrared (IR) region.1,2 It is also widely used for flat panel
displays,3 laser,4 sensor,5 cathode ray tube, and electro-
luminescence device3,6 applications. ZnS usually crystallizes
into a cubic zinc-blende (ZB) structure at low temperature
which transforms to a more stable hexagonal wurtzite (WZ)
structure above 1020 °C under normal pressure.7,8 Comparing
to the ZB counterpart, WZ ZnS exhibits a higher ionization
transition rate, and therefore, has a higher optical gain.9 The
most recent developments are toward nanostructured ZnS,
such as nanowires, nanoribbons, nanotubes, and quantum dots
(QD). Great progress in the fabrication and characterization of
ZnS nanostructures for device application purposes has been
made (see ref 10 and references therein). However, several
important challenges still remain and await for being explored.
One of them is the application of ZnS in transparent and
flexible electronics because of the challenge which exists in
optimization of nanodevice performances. Although several
ways to optimize the performances of ZnS-based devices have
been exploited, more work on tuning the conductivity, band
gap, and surface and optical properties is still quite desired.10

From a theoretical standpoint, density functional theory
(DFT) calculations have been widely employed for the study of
the bulk ZnS band structure11−13 and the geometric and the
electronic properties of ZnS nanowires, nanotubes, and
nanosheets.14 These types of calculations are restricted to
nonpassivated and small-size nanostructures. Because in DFT
the band gap in bulk ZnS is not well-reproduced,12 the
description of the quantum confinement effects in ZnS
nanostructures is questionable. Furthermore, effective mass

and tight-binding models have been applied to interpret the
experimental measurements of ZnS QDs with realistic sizes.
However, these approaches are either only appropriate for QDs
within the weak confinement regime or significantly under-
estimate the optical band gap.15

In this contribution, we derived a new empirical
pseudopotential for wurtzite ZnS, which reproduced well the
experimental and theoretical bulk properties, such as band gap,
critical energy levels, effective masses, crystal field, and spin−
orbit splitting. This allows us to calculate electronic and optical
properties of wurtzite ZnS QDs with realistic sizes at an
atomistic level by means of an empirical pseudopotential
method and configuration interaction approach. We studied the
size-dependent optical band gap, Stokes shift, and optical
emission polarizations of ZnS colloidal QDs. Our calculated
optical band gap is in very good agreement with the
experimental work. For the full range of QD sizes studied,
the near-band-edge exciton emission is polarized along the in-
plane direction, corresponding to A-exciton emission.

■ METHOD

We follow the atomistic empirical pseudopotential method16−20

and derive new pseudopotentials for Zn and S. The
Hamiltonian has the form

∑ υ̂ = − ∇ + ⃗ − ⃗ + ̂
α

α α αH r R v
1
2

[ ( ) ]
n

n
2 SO

(1)
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where n is an atomic index, α specifies the atom type, and vα̂
SO is

the nonlocal spin−orbit operator, including one parameter λ for
each atom type. This method has been reviewed in more detail
in ref 21. The screened atomic pseudopotentials υα (with α =
Zn, S) are centered at each atomic position, and their
superposition generates the crystal potential. In the present
work, we employed pseudopotentials with four free parameters,
which are defined in reciprocal space, having the analytic form

υ
α α

α
= −

−α α
q

q

e
( )

( )

1q
1

2
2

3
4 2

(2)

This exponential type of pseudopotential has been successfully
adopted previously for the study of electronic and optical
properties of wurtzite ZnO nanostructures.17−20 The quasicubic
model of Hopfield22 is adopted to obtain the spin−orbit Δso
and crystal-field Δcr splittings

Γ = Δ + Δ

Γ = ± Δ + Δ − Δ Δ

υ

υ
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⎣⎢

⎤
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E

E
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1
2

( )
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2
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A 9 so cr

B(C) 7 so cr
2

so cr
(3)

where EA, EB, and EC are the energies of the top three valence
bands at Γ point of the Brillouin zone.
We used the experimental structure parameters of bulk

wurtzite ZnS, which are listed in Table 1, to generate the

atomic pseudopotentials. The plane wave energy cutoff is 8.5
Ryd, and the kinetic energy is not rescaled. During the
generation procedure, larger weight has been allocated to the
quantities close to the conduction band minimum (CBM) and
the valence band maximum (VBM), while smaller weight has
been put on the quantities which are remote from CBM and
VBM. This procedure stops until the known bulk properties of
wurtzite ZnS, such as the energy gaps at specific symmetry

points of the Brillouin zone, the perpendicular and parallel
effective masses of electron and hole, the spin−orbit, and the
crystal-field splitting (see Table 2), are well-reproduced.
The optimized four free parameters for Zn and S are listed in

Table 3, and the volume normalized local parts of the Zn and S

pseudopotentials are presented in Figure 1a. Using these
pseudopotentials, the computed quantities of bulk wurtzite ZnS
are in very good agreement with existing experimental and
theoretical results (see Table 2). The calculated band structure
is depicted in Figure 1b which reproduces almost exactly the
result of Bergstresser and Cohen.28

After deriving the reliable atomic pseudopotentials, we turn
our attention to the study of the electronic and optical
properties of wurtzite ZnS colloidal QDs. The QDs are cut
from the bulk ZnS with a spherical shape, being centered on a
sulfide atom. The surface-dangling bonds are passivated by
employing a high band gap artificial material, as successfully
practiced previously.17,18,20,29,30 The single-particle electron and
hole eigenenergies and wave functions are calculated by the
aforementioned empirical pseudopotential method which
naturally includes the effects of multiband coupling, multivalley
coupling, and spin−orbit interaction. The many-body excitonic
properties are calculated via configuration interaction (CI)
approach,31 and the excitonic wave functions are expanded in
terms of single-substitution Slater determinants constructed
from the single-particle wave functions of electrons and holes.
The Coulomb and exchange integrals are screened by the
position-dependent and size-dependent screening function
proposed by Resta,32 which gives a smooth transition from
short-range (unscreened) to long-range (screened).30,31 We
include in the CI treatment 4 states from the conduction band
and 12 states from the valence band. The optical dipole matrix
elements are calculated within the dipole approximation, and
the oscillator strength is calculated using Fermi’s golden rule.

Table 1. Structure Parameters a, c, u, and c/a for Wurtzite
ZnS

a (Å) c (Å) u c/a

3.81123 6.23423 0.37523 1.6357923

Table 2. Compiled Reference Bulk Properties and Empirical Pseudopotential Results (Including Spin−Orbit Interaction) Using
the Parameters Presented in Table 3

quantities experiment theory targets EPM

Eg(Γ1c − Γ6υ) 3.864,24 3.872,24 3.75,25 3.76,26 3.7827 1.968,12 2.211,12 2.26012 3.75 3.739
Eg(Γ3c − Γ1c) 1.528 1.5 1.59
Eg(Γ6c − Γ1c) 4.428 4.4 4.40
Eg(H3c − Γ1c) 2.728 2.7 2.55
Eg(K2c − Γ1c) 1.828 1.8 1.526
Eg(M1c − Γ1c) 1.628 1.6 1.52
me

⊥ 0.33,24 0.153,12 0.199,12 0.15712 0.33 0.079
me

∥ 0.2424 0.144,12 0.142,12 0.13812 0.24 0.100
mA

⊥ 0.4924 3.838,12 1.713,12 2.914,12 1.47023 0.49 1.15
mA

∥ 1.4024 1.746,12 2.176,12 1.785,12 1.5123 1.40 5.02
mB

⊥ 0.485,24 0.180,12 0.198,12 0.19512 0.485 0.21
mB

∥ 0.53,24 0.756,12 0.402,12 0.62112 0.53 0.42
mC

⊥ 0.75,24 0.337,12 0.443,12 0.30312 0.75 1.23
mC

∥ 0.32,24 0.183,12 0.440,12 0.33912 0.32 0.27
Δcr 0.058,24 0.055,24 0.02924 0.052,12 0.049,12 0.05512 0.0580 0.0526
Δso 0.086,24 0.089,24 0.09224 0.027,12 0.025,12 0.02612 0.086 0.0926

Table 3. Empirical Pseudopotential Parameters a1,2,3,4 and
Spin−Orbit Parameter λ

a1 a2 a3 a4 λ

Zn −5.091 010 0.000 005 −0.011 512 0.285 308 0.1165
S −20.220 911 3.750 462 −0.000 227 1.465 173 0.0
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■ NUMERICAL RESULTS AND DISCUSSION

Valence Band Ordering of Bulk Zinc Sulfide. Before
presenting our QD results, we briefly describe the valence band
structure of bulk ZnS, which is relevant to the later discussion.
Without crystal-field and spin−orbit splitting, the top valence
band of ZnS is 6-fold Γ5υ state (see Figure 1c). This state is split
into a 4-fold Γ5υ state and a 2-fold Γ1υ state by the crystal field
which is a typical characteristic of wurtzite structure. The Γ5υ
state is a px, py-like state, while Γ1υ state is a pz-like state.
Further inclusion of spin−orbit coupling leads to a formation of
three 2-fold states at the top of the Γ-point of the Brillouin
zone. For wurtzite ZnS, the spin−orbit parameter is positive,
which is pretty similar to wurtzite GaN. In this conventional
situation, the top three valence states, from top to bottom, are
the so-called bulk A-, B-, and C-bands, respectively, which are
of symmetry character Γ9υ, Γ7υ, and Γ7υ, respectively (see
Figure 1d). These states correspond to the A-, B-, and C-
exciton lines in photoluminescence experiments.33 Although
wurzite ZnS exhibits a normal valence band ordering, the
generation of reliable atomistic pseudopotentials appears to be
an uneasy task in comparison to its ZnO counterpart which has
an abnormal valence band ordering.17

Electronic Properties of Zinc Sulfide Quantum Dots.
We have studied wurtzite ZnS colloidal QDs with exper-
imentally achievable sizes, which are defined by radii R = 1, 1.5,
1.75, 2.25, and 2.5 nm, respectively. The numbers of atoms for
each respective radius are Zn102S105, Zn356S359, Zn573S575,
Zn1222S1207, and Zn1646S1677. The geometry of our smallest
QD structure is displayed in Figure 2.
First, we present the electron and hole envelope functions for

each dot size in Figure 3. These envelope functions are
obtained by employing a projection onto bulk technique,17

which gives us the access to visualize the symmetry of the
envelope functions and the parentage of the atomic wave
function of each state. We use the notation ωζ to describe the
symmetry of the envelope functions, where ω denotes the
number of nodes encountered by moving across the in-plane
(xy-direction) or out-of-plane (z-direction) directions, and ζ
represents the direction in which we find the nodes. The
possible values for ω are S, P, and so forth, where S indicates
the form of the envelope function without a node (in this case,
we neglect the subscript ζ), P with one node, and so forth.
Using this notation, the symmetry characters for the first
electron and the first four hole states are tabulated in Table 4.

Figure 1. (a) Normalized atom pseudopotentials for Zn and S. (b) Band structure of wurtzite ZnS by our empirical pseudopotential methods (EPM)
including spin−orbit interaction. (c) Schematic representation of the symmetry evolution of the conduction band minimum (CBM) and valence
band maximum (VBM) of bulk ZnS by the crystal-field and spin−orbit splitting. (d) Topmost three valence bands around Γ-point of the Brillouin
zone obtained by EPM including spin−orbit splitting.

Figure 2. Geometry of our Zn102S105 quantum dot. The blue and
yellow balls represent the Zn and S atoms, respectively.
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The evolution of the parentage of each hole state with respect
to the dot size is pictured in Figure 4.

We find from Table 4 and Figure 4 that the states having S-
type characters (SA or SB) are derived mainly from a single-
band state (either A-band or B-band). These conventional SA

and SB states are separated significantly from each other in
energy, whereas their energetic dependence on the QD sizes

appears to be very similar (see Figure 5). This is a consequence
of the nature of the topmost valence band structure of bulk

ZnS, where A-band and B-band are energetically separated
considerably (see Figure 1c and d). We further find that the
states with an even admixture of bulk A- and B-band parentage
(e.g., h1 at R = 1.75, 2.25, and 2.5 nm) display Pxy-type
envelope function characters. These Pxy

A,B characters have also
been found previously in wurtzite ZnO nanostructures17,18,20

and very recently in wurtzite GaN nanowires,34 being attributed
to one of the consequences of the nontrivial interplay between
symmetry mixing, spin−orbit coupling, and quantum confine-
ment effects on the valence band electronic structure.
Comparing to the S-like states, these states appear to be
more sensitive to the quantum confinement effects, rising over
the SB state at a critical radius value Rc = 1.66 nm and becoming
energetically more favorable (see Figure 5).
In addition to the S-type envelope function characters, the

states with a dominant bulk Bloch A-band parentage also

Figure 3. The first electron (e0) and the first four hole (h0,1,2,3) envelope functions for five different radii.

Table 4. Character of the First Electron and the First Four
Hole Envelope Functions for Various QD Radiia

radius (nm) e0 h0 h1 h2 h3

1 S SA SB Pxy
A,B Pz

A

1.5 S SA SB Pxy
A,B Pz

A

1.75 S SA Pxy
A,B SB Pz

A

2.25 S SA Pxy
A,B Pz

A SB

2.5 S SA Pxy
A,B Pz

A SB

aThe superscript (A or B) indicates the corresponding hole state
parentage (A-band, B-band, or A, B-bands mixing).

Figure 4. Bloch function characters of the first four hole states for
various radii. The red, green, and blue colors correspond to the bulk
bloch A-, B-, and C-bands, respectively.

Figure 5. Single particle energies of the first four hole states as a
function of the QD radius. The lines connect states that are of the
same symmetry. The red (or blue), green, and black lines connect
states with dominant A-band, B-band, and an even mixing of A- and B-
band parentage, respectively.
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exhibit P-like characters (e.g., h3 at R = 1, 1.5, and 1.75 nm, see
Table 4) with a node exclusively along the out-of-plane
direction. The reason for the fact that the Pxy

A -like states are
energetically separated from the Pz

A-like states is related to the
anisotropic hole effective masses of the bulk A-band, which is
larger along the direction parallel to the c-axis (mA∥* > mA⊥* , see
Table 2). This favors a state with a node along the out-of-plane
direction, Pz

A, rather than with a node along the in-plane
direction, Pxy

A . These Pz
A-like states are energetically very close to

the Pxy
A,B states, showing a similar sensitivity of energy to the

variation of the quantum confinement effects (see Figure 5). In
contrast to the A-band and B-band states, the states with
dominant C-band parentage are not energetically very
favorable, being remote from the highest occupied molecular
orbital (HOMO) state (e.g., h9 at R = 1.5 nm, not shown in the
figures for clarity). The lowest unoccupied molecular orbital
(LUMO) state turns out to be a single band object deriving
purely from bulk Γ7c band and presenting an S-type envelope
function.
Optical Properties of Zinc Sulfide Quantum Dots. We

present the optical band gap of ZnS colloidal QDs with realistic
sizes in Figure 6. The necessary material parameters used in our
calculations are given in ref 35. The calculations are performed
at single-particle level and configuration interaction (CI) level.
The calculated optical band gap appears to be in very good
agreement with the experimental measurements by Nanda et
al.15 for the full range of QD sizes in comparison to the results
based on the effective mass model36,37 and the semiempirical
tight binding model.38 The dependence of the band gap on the
QD radius is best fitted by Eg

SP = Eg
bulk + 0.91/R1.61 at single-

particle (SP) level in which Eg
bulk = 3.75 eV is the fundamental

gap of bulk ZnS (see Table 2) and by Eg
CI = Eg

bulk,opt + 0.66/R1.79

at full CI level in which Eg
bulk,opt = 3.709 eV is the optical gap of

bulk ZnS. Here, Eg is in the unit of eV and R is in the unit of
nm. The exciton binding energy can be obtained by subtracting
the SP results from the correlated results (CI results), best
fitted by Eb

X = Eb
X,bulk + 240.95/R1.81 where Eb

X,bulk = 41 meV is
the exciton binding energy of bulk ZnS at room temperature39

and where all the energies are in the unit of meV. In an attempt
to bridge our findings to other material systems, the scaling law
associated with the calculated exciton binding energy can also

be written as Eb
X ∼ 1/Rn with n = 0.919, which appears to be

larger than its counterpart for CdSe colloidal QDs obtained
theoretically by Franceschetti and Zunger (i.e., n = 0.8640) and
experimentally by Meulenberg et al. (i.e., n = 0.7241). We also
find that the obtained exciton binding energy exhibits a
sublinear dependence on the QD radius, which is consistent
with the results reported previously for CdSe QDs.40,41 As
expected from the quantum confinement effects, the exciton
binding energy is significantly enhanced in colloidal ZnS QDs
in comparison to bulk ZnS, giving 130 meV at R = 2.5 nm, 145
meV at R = 1.75 nm, and 284 meV at R = 1 nm.
The near-band-edge exciton is found to be A-exciton for all

the QD sizes, which is contributed nearly purely from
HOMO−LUMO transition, where the HOMO state has an
S-like symmetry character and derives dominantly from bulk A-
band. This type of exciton consists of two optically passive
(dark) states and two optically active (bright) states (see Figure
6b). The formation of these dark-exciton (or bright-exciton)
states originates from the electron-hole exchange interac-
tion.42,43 The exchange interaction gives rise to the splitting
between the singlet and triplet states. The aforementioned two
dark-exciton states are orbitally allowed but are spin-forbidden
(spin-triplet states), being doubly degenerate and energetically
favorable. The two bright-exciton states (spin-singlet states)
appear to be singly degenerate and energetically very close to
each other, exhibiting in-plane polarizations. The energetic
difference between the first bright-exciton state and the first
dark-exciton state is defined as Stokes shift (SS). The SS is in
the scale of 10−3 eV, being a decreasing function of the QD
sizes (see Figure 6b). This is qualitatively consistent with the
previous reports44−46 for wurtzite CdSe and CdS colloidal
QDs. The calculated SS is found to be in a similar energy
window as that of similarly sized CdSe counterparts (∼5−20
meV44). However, it turns out to be quantitatively much
smaller than that of CdS analogues (∼20−70 meV for radius of
R = 1−2.3 nm46). This is related to different near-band-edge
dark-exciton mechanisms. The lowest dark-exciton state of CdS
QDs is orbitally forbidden (electron-S-hole-P),46 which is in
contrast to that of CdSe44 and our ZnS QDs with orbitally
allowed but spin-forbidden (electron-S-hole-S) ground-state
dark-exciton states. The dependence of our obtained SS on the

Figure 6. (a) Single-particle gap (red boxes) and optical band gap (blue circles) as a function of the QD radius. The green stars with error bars, the
wine inverted triangles, and the pink regular triangles are the experimental results and the values calculated from the effective mass approximation
(EMA) and the tight-binding (TB) models15, respectively. Each line represents a fit of the band gap energy by Eg = α + β/Rγ where Eg is the band
gap energy; R is the QD radius; and α, β, and γ are the fitting parameters. (b) The Stokes shift (SS, red boxes) as a function of the QD radius. The
red solid line denotes a parabolic fit of the Stokes shift. The inset shows the near-band-edge exciton picture and corresponding emission polarization
directions (x or y). X indicates the near-band-edge exciton (A-exciton) which consists of a doubly degenerate (2×) dark (D) state and two
nondegenerate (1×) bright (B) states decaying to the ground state (GS).
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QD radius within the range studied is best fitted by ESS =
16.31−11.43R + 2.22R2, where ESS is in the unit of meV (see
Figure 6b).
Finally, we present in Figure 7 the photoluminescence

emission spectrum for various QD sizes, which are obtained by

full CI at room temperature. Lorentzian broadening function is
employed, and the broadening parameter is chosen as 1.5 meV.
As expected, increasing the QD sizes leads to a significant
redshift in the emission spectrum. This redshift is more
pronounced for smaller QDs. For all the QD sizes, the
pronounced emissions are polarized exclusively along the in-
plane direction (E⊥c,⃗ α-emission47) and are attributed to A-
and B-exciton emissions. The C-exciton emissions with out-of-
plane polarization appear to be not active in ZnS colloidal QDs
under normal conditions.

■ CONCLUSIONS
In conclusion, we have derived a new and reliable empirical
pseudopotential for wurtzite ZnS which enables us to study the
size-dependent electronic and optical properties of ZnS
colloidal quantum dots at an atomistic level. The single-particle
states are calculated by employing an empirical pseudopotential
method, and the many-body excitonic effects are considered via
configuration interaction approach. We find that the highest
occupied molecular orbital (HOMO) states have a dominant
bulk Bloch A-band parentage, exhibiting S-like envelope
function characters. These SA states are energetically separated
significantly from their counterparts originated mainly from
bulk bloch B-band with S-like envelopes. We related this to the
nature of the topmost valence band structure of wurtzite ZnS
where A-band and B-band are separated considerably in energy.
The states with an even admixture of bulk A-band and B-band
turn out to have Pxy-like characters.
In addition to the S-type symmetry characters, the states with

a dominant A-band parentage also exhibit P-like characters but
with nodes exclusively along the out-of-plane direction. This is
attributed to the anisotropy of the hole effective masses of the
bulk bloch A-band. The calculated optical band gaps are in
excellent agreement with the experiments which confirms the
accuracy of the present method. We provide scaling laws for the
experimentally measurable physical quantities, such as optical

band gap and Stokes shift, for the full range of QD sizes.
Finally, we find that the near-band-edge exciton is A-exciton
and that the pronounced exciton emissions are from A-exciton
or B-exciton emissions with in-plane polarizations. The C-
exciton emissions with out-of-plane polarization are found to be
not active in ZnS colloidal quantum dots under normal
conditions.
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Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system 
have been theoretically studied. In general, we find that the structure parameters of the coupled system 
significantly affect the optical susceptibilities. The enhancement of the coupling effects between the 
dot and ring is found to increase considerably the optical susceptibilities and redshift drastically the 
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be more sensitive to the variation of the structure parameters. A comprehensive analysis of the electron 
probability density movement with respect to the modification of the structure parameters is provided, 
which offers a unique perspective of the ground-state localization.
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1. Introduction

Coupling between semiconductor quantum dots (QDs) forms 
so-called quantum dot molecules (QDMs). This can be realized ei-
ther by vertically stacking or by laterally aligning the QDs in the 
same plane [1]. Comparing to the traditional vertically stacking 
structure, the degree of external control of individual QD within an 
array of laterally aligned QDMs is believed to be larger. Laterally 
coupled QDMs are also found as peculiar candidates for applica-
tions in quantum information science because of the potential to 
couple several QDs “scaling” to form the first building block of a 
useful device [2–4]. Due to these reasons, plenty of efforts have 
been committed to study the optical proprieties of the laterally 
coupled QDMs [4–9]. On the other hand, quantum rings (QRs) have 
demonstrated unique electronic, magnetic, and optical properties 
[10–12]. For example, quantum phase coherence effects on carrier 
transport, such as Aharonov–Bohm and Aharonov–Casher effects, 
have been observed in QR structures [13,14], which have potential 
applications in quantum information devices [15]. Patterned QR 
magnetic tunnel junctions have shown superior prospects for very 
high density magnetic random access memory, recording medium, 
and other spintronic devices [16]. High performance QR terahertz 
(THz) photodetectors have been fabricated [17,18]. Due to the rel-
evance in potential device applications [19–21], the studies of the 
nonlinear optical properties in semiconductor QRs have received 
great attention [22–29]. It is found that the potential geometry, 
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size, alloys composition and the external perturbations, such as ap-
plied electric and/or magnetic fields, hydrostatic pressure etc. have 
significant influence on the optical nonlinearities in semiconductor 
QRs.

In this contribution, we pay attention to the study of the lin-
ear and nonlinear optical susceptibilities in a different geome-
try of lateral coupling, namely quantum-dot–quantum-ring system 
(QDQR) in which a QD is surrounded by QR with a tunneling bar-
rier separating both parts of the system. This system has been 
justified as a good candidate for the realization of the magnetic 
field controllable pair of spin qubits which is necessary in quan-
tum computation [1]. However, the optical properties, especially 
the nonlinear optical properties, have rarely been studied in such 
a unique system. Furthermore, to the best of our knowledge, the 
coupling effects, which appear in all types of coupled structures, 
on the optical nonlinearities are not yet well understood. In the 
present work, the linear and nonlinear optical susceptibilities in 
a laterally coupled GaAs QDQR system have been theoretically in-
vestigated with an emphasis on the coupling effects between the 
dot and ring on these quantities. The electronic structure calcula-
tions are performed via potential morphing method (PMM) [30] in 
the framework of the effective mass approximation (EMA), which 
has been successfully employed previously for the study of optical 
properties in several nanostructures [31,32] and very recently for 
the calculations of the nonlinear optical properties in ZnO-based 
QD systems [33,34]. A detailed visualization of the variation in the 
electron probability density of the ground-state and first-excited 
state with respect to the changes in the structure parameters has 
been provided. The calculations of the linear and nonlinear sus-
ceptibilities are realized by using our recently developed analytical 

http://dx.doi.org/10.1016/j.physleta.2014.07.036
0375-9601/© 2014 Elsevier B.V. All rights reserved.
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expressions for symmetric systems [33]. The rest of the paper is or-
ganized as follows: in Section 2, we define our model and explain 
the general theory. In Section 3, we present numerical results and 
related discussions, and Section 4 is devoted to conclusions.

2. Theoretical framework

2.1. Electronic structure calculations

In the framework of EMA, an electron confined in a GaAs QDQR 
system can be modeled by the following Hamiltonian:

Ĥ = p̂
1

2m∗
e

p̂ + V (�r), (1)

where the first term is the kinetic term in which m∗
e is the elec-

tron effective mass and the second term is the confinement po-
tential. Considering the fact that the thickness of the QDQR along 
the growth direction (e.g., z-axis direction) is much smaller than 
the radial dimensions, one can decouple the electron motion along 
the growth direction from that along the in-plane direction and 
retain the analysis only the first state along the growth direc-
tion. For simplicity but without the loss of generality, we con-
sider a two-dimensional QD (with the electron confined in the 
plane z = 0) placed within a QR. Experimentally, local oxidation 
method with atomic force microscope can be used to realize a va-
riety of nanostructures on metals and semiconductors (cf. Ref. [35]
and references therein), including high-quality QDs [36] and QRs 
[37]. Therefore, the two-dimensional coupled QDQR structure con-
sidered herein can be realized by employing this technique to 
produce both a QD and a QR which coexist on a GaAs–AlGaAs 
heterostructure. The shape of the confinement potential of an in-
dividual part (QD or QR) can be tuned via a suitable choice of gate 
voltages [35]. Consequently, the QD and QR confinement potentials 
do not necessarily have the same depths. To model this coupled 
structure, we employ the following confinement potential:

V (�r) = V ( �ρ) = min
[
m∗

eω
2
dρ

2/2 + V 0,m∗
eω

2
r (ρ − R)2/2

]
, (2)

where h̄ωd and h̄ωr are the confinement energies of the QD and 
the QR, respectively. The radius of the QR is defined by the sum of 
oscillator lengths for the QD and the QR potential and the barrier 
thickness (BT ) according to the formula R = √

2h̄/m∗
eωd + BT +√

2h̄/m∗
eωr . V 0 is the depth of the dot confinement with respect 

to the bottom of the QR potential. A view of the potential profile 
(detailed in Eq. (2)) is pictured in Fig. 1 for h̄ωd = 6 meV, h̄ωr =
12 meV, V 0 = −5 meV, and BT = 10 nm. As shown in Fig. 1, the 
potential appears to be parabolic within both the QD and the QR. 
This strictly cylindrically symmetric potential have been adopted 
previously for the study of the electron spin and charge switching 
in a coupled QDQR system [1]. Similar potential has also been used 
previously for the description of side by side QDs [38,39].

To calculate the eigenenergies and corresponding wave func-
tions of Hamiltonian (1), which are necessary for the calculations 
of optical susceptibilities, we employ potential morphing method 
[30–34]. A detailed description of this method can be found in 
Ref. [30]. The reference system we used to start the morphing pro-
cedure is the usual harmonic oscillator in two dimensions with 
well-known eigenfunctions. The interaction potential is V s = V (�r), 
as shown in Eq. (2).

2.2. Optical susceptibility calculations

Within the two-level system approximation, the linear (χ(1)) 
and third-order (χ(3)) nonlinear optical susceptibilities are give by 
[33]

Fig. 1. (Color online.) Potential profile (in unit of meV) for a laterally coupled GaAs 
quantum-dot–quantum-ring with the confinement energy of the dot h̄ωd = 6 meV, 
the confinement energy of the ring h̄ωr = 12 meV, the depth of the dot confinement 
V 0 = −5 meV and the barrier thickness BT = 10 nm. The dot oscillator length ld =√

2h̄/m∗
e ωd = 19.51 nm and the ring oscillator length lr = √

2h̄/m∗
e ωr = 13.798 nm, 

giving the ring radius R = 43.31 nm.

χ(1) = Nμ2T2

h̄ε0ε
2
eff

i − δT2

1 + δ2T 2
2

, (3)

χ(3) = −4Nμ4T1T 2
2

3h̄3ε0ε
4
eff

i − δT2

(1 + δ2T 2
2 )2

, (4)

where N is the electron volume density in the QDQR system, ε0 is 
the permittivity in vacuum, δ = ω − ω0 is the detuning of applied 
field from resonance, where ω0 = (E j − Ei)/h̄ with Ei and E j being 
the energy eigenvalues of the initial (ground) and final (first ex-
cited) states which we obtained in the last subsection, respectively. 
T1 and T2 are the population relaxation time and the dephasing 
time, respectively, μ is the transition matrix element between the 
initial and final states which is defined as μ = −〈i|ex| j〉, where 
we assume that the polarization of electromagnetic radiation is 
along the x-axis direction. εeff = 2εout+εin

3εout
is the local field factor 

due to the possible existence of the dielectric mismatch, where 
εin is the dielectric constant of the QDQR material, and εout is 
the dielectric constant of surrounding matrix material. As shown 
from Eqs. (3) and (4), possible existence of the dielectric mismatch 
(εin �= εout) has significant influence on the linear and nonlinear 
optical susceptibilities. This has also been addressed in more de-
tails in our previous work regarding to the ZnO-based colloidal QD 
systems [33,34]. However, we assume that the GaAs coupled QDQR 
structures studied herein are obtained on a GaAs–AlxGa1−xAs het-
erostructure with Al concentration x = 0.3 [35], and the QDQR 
material GaAs and the possible barrier material Al0.3Ga0.7As have 
closely matching dielectric constants (e.g., εin = εout and εeff = 1).

3. Numerical results and discussion

In the linear regime, two characteristics of the linear and non-
linear optical susceptibilities are of great importance. One is the 
photon energy at which the susceptibility reaches its peak value, 
and the other one is the magnitude or the intensity of this peak. 
The analytical expressions of the linear and nonlinear optical sus-
ceptibilities we employ herein offer us the possibility to quantify 
these two characteristics. As indicated from Eq. (3), the real part 
of the linear susceptibility χ(1) exhibits a standard dispersive line-
shape, presenting firstly a maximum and then a minimum as the 
photon energy increases. These maximum and minimum appear at 
the photon energy h̄ω = E21 − h̄/T2 and E21 + h̄/T2, respectively, 
where E21 is the transition energy. They are equivalent in the mag-
nitude and defined by the expression |χ(1)

Real,max| = Nμ2T2/(2h̄ε0). 
On the other hand, the imaginary part of χ(1) displays a stan-
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Fig. 2. (Color online.) (a) The ground-state (blue solid square), first excited state (red solid diamond) energies and transition energy (inset) as a function of γ . (b) The 
maximum values (in absolute value) of the real (red solid sphere) and imaginary (black solid square) parts of the linear and nonlinear (inset) susceptibilities as a function 
of γ . Here, γ = (h̄ωr)/(h̄ωd) where h̄ωr and h̄ωd are the confinement energies of the dot and ring, respectively. h̄ωd = 6 meV, V 0 = 0 and BT = 10 nm.

Fig. 3. (Color online.) Electron probability densities of the ground state (the upper panel) and the first excited state (the lower panel) in QDQRs with various confinement 
energy values of the ring h̄ωr . From the leftmost to the rightmost columns are for h̄ωr = 3 meV, 12 meV, 18 meV, 30 meV, respectively. Here, the depth of the dot (V 0), the 
confinement energy of the dot (h̄ωd) and the barrier thickness (BT ) are the same as in Fig. 2.

dard Lorentzian lineshape, presenting a maximum at photon en-
ergy h̄ω = E21. This peak value is determined by |χ(1)

Real,max| =
Nμ2T2/(h̄ε0). Comparing to the linear counterpart, the real part of 
the nonlinear susceptibility χ(3) , as indicated from Eq. (4), shows 
an “inverted” dispersive lineshape, exhibiting firstly a minimum 
at h̄ω = E21 − h̄/T2 and then a maximum at h̄ω = E21 + h̄/T2
when the photon energy increases. The intensities of these ex-
tremums are equivalent (in absolute value) which are described by 
|χ(3)

Real,max| = 4Nμ4T1T 2
2/(3h̄3ε0). As concerning the imaginary part 

of χ(3) , it is negative and presents a maximum (in absolute value) 
at the photon energy h̄ω = E21 whose magnitude is determined 
by |χ(3)

Img,max| = Nμ4T1T 2
2/(3h̄3ε0). It should be noted here that the 

linear susceptibility χ(1) is a dimensionless quantity, while its non-
linear susceptibility χ(3) is in unit of m2/V 2.

As shown above, the peak intensities of the linear and nonlin-
ear optical susceptibilities are dependent on the electron volume 
density N , the relaxation time T1, the dephasing time T2 and the 
transition matrix element |μ|. However, in what follows, we focus 
on the study of the influence of the structure parameters of the 
coupled QDQR system, such as the confinement energy of the ring 
(or the dot), the depth of the dot confinement relative to the bot-
tom of the QR potential and the tunneling barrier thickness, on the 
transition energy (i.e., E21) and the peak values of the linear and 
nonlinear susceptibilities. The relevant parameters used in our cal-
culations for GaAs QDQR systems are: m∗

e = 0.0667m0 (m0 is the 
free electron mass), N = 3 × 1016 cm−3 (Ref. [29]), T1 = 1 ps and 

T2 = 0.2 ps [40], respectively. The influence of the volume den-
sity N or the dephasing time T2 on the optical nonlinearities in 
semiconductor nanostructures have been addressed in the litera-
ture and can be found in Refs. [41] and [42].

Firstly, in order to study the dependence of the linear and non-
linear susceptibilities on the relative strength of the dot and ring 
confinement, we define a parameter γ = (h̄ωr)/(h̄ωd). Large γ cor-
responds to a narrower (wider) path for the electron to transverse 
in the ring (dot) part of the QDQR and vice versa. The calcula-
tions are based on QDQRs with equal depth of the dot and ring 
(i.e., V 0 = 0). We start our calculations with a ring confinement 
energy h̄ωr = 3 meV which is only a half of its dot counter-
part (γ = 0.5, cf. Fig. 2). It appears that the ground state is al-
most purely ring-localized state (see the upper plot of the first 
column in Fig. 3). This can also be justified by its energy, i.e., 
E = 1.42 meV, which is pretty close to the ground state energy of 
the single-dimensional harmonic oscillator in the radial direction 
(i.e., ≈ h̄ωr/2 = 1.5 meV). As γ increases (the ring confinement 
energy increases), the oscillator length of ring decreases and the 
wave functions gradually penetrate through the central tunneling 
barrier into the dot part (cf. Fig. 3). Consequently, both energies 
of the ground state and the first excited state increase as shown 
in Fig. 2(a). However, comparing to the ground state energy, the 
energy of the excited state turns out to be more sensitive to the 
variation of γ . This results in a substantially increase in the tran-
sition energy (cf. the inset of Fig. 2(a)). For h̄ωr � 3h̄ωd = 18 meV
(γ = 3), we find that the ground state is nearly purely dot-
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Fig. 4. (Color online.) (a) The ground-state (black solid square), first excited state (red solid sphere) energies and transition energy (inset) as a function of the depth of dot 
confinement relative to the bottom of the QR potential V 0. (b) The maximum values (in absolute value) of the real (solid spheres) and imaginary (solid squares) parts of the 
linear (red lines) and nonlinear (blue lines) susceptibilities as a function of the depth of dot confinement. Here, BT = 10 nm and h̄ωd = h̄ωr = 12 meV.

Fig. 5. (Color online.) Electron probability densities of the ground state (the upper panel) and the first excited state (the lower panel) in QDQRs with various depths of the 
dot confinement relative to the bottom of the QR potential V 0. From the leftmost to the rightmost columns are for V 0 = −12 meV, −3 meV, 3 meV, 12 meV, respectively. 
Here, the confinement energies of the dot (h̄ωd) and the ring (h̄ωr ), and the barrier thickness (BT ) are the same as in Fig. 4.

localized state (cf. Fig. 3) and its energy approaches to the ground 
state energy of an isolated QD, i.e., E = V 0 + h̄ωd = 6 meV (see the 
dashed line in Fig. 2(a)). As regards the first excited state, the den-
sity movement towards the dot part of QDQR appears to be slower 
in comparison to its ground state counterpart.

At the meantime, the aforementioned penetration of both the 
ground-state and the first excited-state wave functions into the dot 
part of the QDQR system also causes a decrease in the transition 
matrix element |μ|. This in turn leads to a decrease in the max-
imum values of the real and imaginary parts of both linear and 
nonlinear susceptibilities (in absolute value, cf. Fig. 2(b)). Compar-
ing the linear susceptibility (e.g., |χ(1)

max|), the maximum value of its 
nonlinear counterpart (e.g., |χ(3)

max|) is found to be more sensitive 
to the variation of the relative strength of the dot and ring con-
finement (as characterized by γ ). This is related to the fact that 
|χ(3)

max| is more dependent on the transition matrix element (e.g., 
|χ(3)

max| ∝ |M21|4, while |χ(1)
max| ∝ |M21|2). We further find that for 

a given quantity (linear or nonlinear susceptibility), the imaginary 
part exhibits a stronger dependence on γ in comparison to its real 
analog (cf. Fig. 2(b)). All the maximum values appear to be insen-
sitive to the further increase in γ when γ ≥ 3 (h̄ωr ≥ 18 meV).

To proceed our calculations, we turn our attention to study the 
influence of the depth of dot confinement relative to the bottom of 
the QR potential (e.g., V 0) on the optical susceptibilities in coupled 
QDQR systems with the dot and ring having the same confinement 
energies (e.g., h̄ωd = h̄ωr = 12 meV). For a dot with very deep con-
finement (e.g., V 0 = −12 meV), the ground-state is almost purely 

dot-localized state with an energy (= −0.1 meV) approaching to 
the ground-state energy of an isolated QD (≈ V 0 +h̄ωd = 0 meV, cf. 
Fig. 4(a)). As V 0 increases, both the ground-state and first excited-
state wave functions leak gradually from the dot part to the ring 
part of the QDQR (cf. Fig. 5). This causes an increase in both the 
ground-state and first excited-state energies (cf. Fig. 4(a)). How-
ever, the ground state exhibits a significantly stronger dependence 
on the increase of V 0, experiencing a quick increase in the corre-
sponding energy as V 0 enhances. Conversely, the variation of V 0
on the first-excited state is practically marginal and only a slight 
increase in its energy is observed (cf. Fig. 4(a)). As a consequence, 
the transition energy decreases as V 0 increases (see the inset of 
Fig. 4(a)). We further find that for V 0 ≥ −3 meV which is a quar-
ter of the dot (or ring) confinement energy (in absolute value), 
both energies (ground-state and first excited state) are insensitive 
to the further increase in V 0. The ground-state becomes a nearly 
purely ring-like state (see the upper panel of Fig. 5) and its energy 
approaches to the ground-state energy of the single-dimensional 
harmonic oscillator in the radial direction (≈ 1

2 h̄ωr = 6 meV, see 
Fig. 4(a)).

The leakage of the wave function from the dot part to the 
ring part also causes a significant increase in transition matrix el-
ement |μ|. This resultantly leads to a considerable enhancement 
of the maximum values of the linear and nonlinear susceptibili-
ties (both real and imaginary parts, cf. Fig. 4(b)). Similarly to what 
we have found previously, the maximum value of the nonlinear 
susceptibility, especially that of the imaginary part, appears to be 
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Fig. 6. (Color online.) (a) The ground-state (black solid square), first excited state (red solid sphere) energies and transition energy (inset) as a function of the barrier 
thickness BT . (b) The maximum values (in absolute value) of the real (solid spheres) and imaginary (solid squares) parts of the linear (red lines) and nonlinear (blue lines) 
susceptibilities as a function of the barrier thickness BT . Here, h̄ωd = 6 meV, h̄ωr = 12 meV and V 0 = −5 meV.

Fig. 7. (Color online.) Electron probability densities of the ground state (the upper panel) and the first excited state (the lower panel) in QDQRs with various values of central 
barrier thickness BT . From the leftmost to the rightmost columns are for BT = 5 nm, 15 nm, 20 nm, 30 nm, respectively. Here, the confinement energies of the dot (h̄ωd) 
and the ring (h̄ωr ), and the depth of the dot confinement (V 0) are the same as in Fig. 6.

more sensitive to the variation of V 0. For V 0 ≥ −3 meV, the max-
imum values of all the quantities are insensitive to the increase in 
V 0 (see Fig. 4(b)).

Finally, we study the coupling effects between the dot and ring 
(e.g., the barrier thickness BT ) on the optical susceptibilities in a 
laterally coupled QDQR system. In the strong coupling limit (e.g., 
BT = 5 nm), the ground state is a dominant dot-localized state, 
having an energy (= 0.76 meV) very close to the ground-state 
energy of an isolated QD (≈ V 0 + h̄ωd = 1 meV, cf. Figs. 6(a) 
and 7). As the barrier thickness increases, the ground-state en-
ergy increases slightly (cf. Fig. 6(a)), while its first excited coun-
terpart appears to be more energetically dependent on the cen-
tral barrier thickness, experiencing a faster increase in its energy. 
Consequently, as shown in Fig. 6(a), the transition energy is an in-
creasing function of the barrier thickness. For B T ≥ 25 nm, both 
the ground-state and excited-state energies are insensitive to the 
further increase in the barrier thickness and a decoupling phe-
nomenon is observed (cf. Fig. 6(a)). We also find that the ground-
state wave function is more localized towards the dot center (see 
the upper panel of Fig. 7), whereas the first excited state one turns 
out to move away from the dot center (see the lower panel of 
Fig. 7) when BT increases. Therefore, the overlap between these 
two wave functions decreases and the transition matrix element 
|μ| reduces considerably as the coupling effects become less signif-
icant. This eventually causes a drastic decrement of the maximum 
values of all the optical susceptibilities (cf. Fig. 6(b)). At the mean-
while, we find that in comparison to the linear susceptibility, its 

nonlinear analog is more sensitive to the coupling effects, while 
for a given quantity, the imaginary part demonstrates a stronger 
dependence on the coupling effects than the real part.

4. Conclusion

In summary, we have theoretically studied the influence of the 
structure parameters, such as the relative strength of the dot and 
ring confinement, the depth of the dot confinement relative to the 
bottom of the QR potential and the central tunneling barrier thick-
ness, on the linear and nonlinear optical susceptibilities in a later-
ally coupled quantum-dot–quantum-ring (QDQR) system. A simple 
model for the potential, which assumes parabolic confinement in 
both the dot and the ring, is adopted. We employ the potential 
morphing method (PMM) in the framework of the effective mass 
approximation for the electronic structure calculations. It is found 
that the ground electron state can be changed from a nearly pure 
dot-localized state to a nearly pure ring-localized state or vice versa
by suitably choosing the structure parameters (e.g., the ring (or 
dot) confinement energy and/or the depth of the dot confinement 
relative to the bottom of the QR potential). However, this cannot be 
realized by modifying the coupling effects (e.g., the barrier thick-
ness) which have a strong influence primarily on the shape and 
energy of the excited state counterpart. The significant modifica-
tion appeared in the electronic structure through controlling the 
structure parameters eventually leads to a considerable influence 
on the optical susceptibilities in such a coupled structure. A sig-
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nificant blue shift of the transition energy is observed when the 
relative strength of the dot and ring confinement and/or the cen-
tral barrier thickness are enhanced. Conversely, a red shift is found 
when the depth of the dot confinement increases. For the confine-
ment energy of the ring larger than a critical value (around three 
times of the confinement energy of the dot), all the maximum val-
ues of the optical susceptibilities appear to be insensitive to the 
increase in the confinement energy of the ring. Similar behavior
has also been observed for the variation of the maximum values 
with respect to the depth of the dot confinement relative to the 
bottom of the QR potential. The enhancement of the coupling ef-
fects turns out to have a significantly positive contribution on the 
linear and nonlinear optical susceptibilities. Finally, we find that 
the nonlinear optical susceptibility is more sensitive to the mod-
ification of the structure parameters in comparison to its linear 
counterpart, while for a given quantity, its imaginary part always 
exhibits a stronger dependence on the change in the structure pa-
rameters than the real part.
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Near-band-edge exciton polarization change in
ZnO nanowires†

Zaiping Zeng,a Alexia Petoni,a Christos S. Garoufalis,a Sotirios Baskoutas*a and
Gabriel Bester*b

Using the atomistic pseudopotential method complemented by configuration interaction calculations,

we have studied the electronic and optical properties of ZnO nanowires (NWs) in the presence of

quantum confinement effects. Our results indicate that the near-band-edge exciton experiences a

crossover from an in-plane polarized A-exciton (for D Z 3 nm) to an out-of-plane polarized C-exciton

(for D o 3 nm) due to quantum confinement. This transition leads to a non-monotonic variation of

Stokes shift, exhibiting a maximum value around the critical diameter of 3 nm. The observed behavior is

analyzed by a stepwise inclusion of correlation effects, leading to a comprehensive description of the

excitonic fine structure.

1 Introduction

Zinc oxide (ZnO) nanowires (NWs) have attracted considerable
attention as promising candidates for device applications. The
wide direct band gap (3.445 eV) and the large exciton binding
energy (60 meV) of bulk ZnO make them one of the most
remarkable optoelectronic materials for nanoscale device appli-
cations, such as ultraviolet (UV) lasers,1,2 light-emitting diodes3

(LEDs), field-effect transistors (FETs),4,5 and UV photodetectors.6,7

Their high surface-to-volume ratio and high density of surface
states promote the development of a new generation of chemical
and biological gas sensors with high sensitivity and fast response.8,9

Piezoelectric nanogenerators based on ZnO NWs for self-
powered systems have also been reported.10,11 Experimental
fabrication of these types of nanostructures has been success-
fully achieved by using different synthesis methods, such as
vapor trapping chemical vapor deposition,4 thermal evapora-
tion,12 chemical synthesis by vapour phase transport,13 and
vapor–liquid–solid method,14 to mention only a few. However,
the vast majority of the fabricated NWs are so large in diameter
(e.g., 415 nm which is more than 10 times of the exciton Bohr
radius of bulk ZnO (E1.4 nm)) that the quantum confinement
effects remain absent. A clear picture of the quantum confine-
ment effects on the electronic and optical properties of ZnO
NWs is still unknown.

Due to the specific features of wurtzite ZnO, such as anisotropy of
the valence band, as well as the small dielectric constant and strong
electron–hole Coulomb interaction, a simple one-band effective
mass model15 is not able to deliver predictive results. The incorpora-
tion of many-body effects in an effective mass model to probe large
nanostructures has recently been achieved.16,17 Density functional
theory (DFT) calculations have been employed to study the piezo-
electricity and the band structure,18 the charged states and the band
gap in ZnO NWs (or doped ZnO NWs).19 These types of calculations
are restricted to nonpassivated, small-diameter (e.g., o3 nm) NWs.
Moreover, since in DFT the bulk ZnO band gaps are significantly
underestimated, e.g., B0.63 eV (ref. 18) by local density approxima-
tions (LDA or GGA) (82% underestimated in comparison to
the well-known experimental value of 3.445 eV), the quantum
confinement effects on the electronic and optical properties of
ZnO NWs are often not well described.

In this contribution, we study the electronic and optical proper-
ties of ZnO NWs with diameters up to 6 nm, covering the inter-
mediate and weak confinement regimes. The calculations are
performed via the empirical pseudopotential method, using the
recently derived and well-tested ZnO pseudopotentials from ref. 20,
and the excitonic effects are considered by using the configuration
interaction approach.21 This method has been shown to describe
very well the excitonic properties in wurtzite CdSe quantum dots
(QDs),22 and very recently in ZnO QDs20,23 and Si NWs.24

2 Computational details

The single-particle electronic energies and wave functions
are calculated using the plane-wave empirical pseudopotential
method25 and our recently derived and well-tested ZnO
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pseudopotentials.20 The Hamiltonian for the single-particle
states has the form

Ĥ ¼ �1
2
r2 þ

X

na

va ~r� ~Ran

� �
þ v̂SOa

h i
; (1)

where n is the atomic index, a specifies the atom type and v̂SO
a is

the non-local spin–orbit operator. The screened atomic pseudo-
potentials va (with a = Zn, O) are centered at each atomic
position and their superposition generates the crystal potential.
na(-r � -

Ran) and v̂SO
a are fitted to accurately reproduce the well-

known properties of bulk ZnO (e.g., band gaps, critical energy
levels, effective masses, and spin–orbit splittings), and the para-
meters are given in ref. 20. This approach naturally includes the
effects of multiband coupling, multivalley coupling, and spin–
orbit interaction.

The ZnO NWs are constructed with a cross-section as circular
as possible, considering the atomistic nature of the structure.
The supercells are extended and periodically repeated along the
[0001] crystallographic direction, while the lateral surface of the
NWs is well passivated by an artificial ligand with the same
crystal structure and lattice parameters as ZnO and a higher
band gap. Since there is no mismatch between the NWs and the
passivating material the electric field induced by piezoelectric
effects can be safely neglected. The contribution of spontaneous
polarization to the internal field is expected not to be significant
since the polar direction of the NW coincides with the infinite
growth direction. It has been demonstrated by large scale DFT
calculations26 that the internal field even in a polar quasi-one-
dimensional nanorod (NR) does not depend strongly on the
spontaneous polarization of the underlying lattice. This type of
surface passivation has been practiced successfully previously
for this material system,20,27,28 and very recently in Si NWs.24 It
should be noted here that the nature of the surface passivation and
morphology may play an important role in the determination of the
electronic and optical properties of semiconductor NWs, especially
with smaller sizes. However, in our calculations, the emphasis is
placed on the size effects rather than the surface effects.

The many-body excitonic properties are calculated via configu-
ration interaction (CI).21 The excitonic wave functions are expanded
in terms of single-substitution Slater determinants constructed
from the single-particle wave functions of electrons and holes.
The corresponding many-body Hamiltonian is solved either in the
framework of the single configuration (SC) approximation or in the
CI scheme. At the SC level, the intraconfiguration Coulomb and
exchange matrix elements are fully included, but the interaction
between different configurations is neglected.21 Consequently, the
correlation effects at this level of theory are willingly not accounted
for. The interconfiguration coupling is fully included in the CI
scheme.21 To capture the electron–hole interaction of excitons, the
NWs are periodically expanded along the growth direction with a
length of B4.164 nm, which is around three times the exciton Bohr
radius in bulk ZnO (B1.4 nm). The Coulomb and exchange
integrals are screened by the position-dependent and size-
dependent screening function proposed by Resta,29 which gives
a physically smooth transition from a short range (unscreened)
to a long range (screened).21,24 According to the results of the

convergence test (see the ESI†), we include in the CI treatment
eighteen states from the valence band and five states from the
conduction band (not counting the spin degree of freedom),
which ensures that the conduction and valence band states are
in a similar energy window. The optical dipole matrix elements
are calculated within the dipole approximation, and the oscillator
strength was calculated using Fermi’s golden rule. A review of
this method can be found in ref. 30. It should be noted that our
calculations are focused on the near-band-edge low energy
excitonic states which are dominantly originated from the transitions
at the G-point of the Brillouin zone. The band dispersion along the
growth direction of the NWs is expected to have only very marginal
influence on the results presented herein. It should also be noted
that an infinite wire will exhibit a continuum of states above (below)
the LUMO (HOMO) from which we capture only a subset with our
finite NW.

3 Numerical results and discussion
3.1 Electronic properties of ZnO nanowires

In an attempt to determine the electronic properties of ZnO
NWs in both the intermediate and weak confinement regimes,
we consider five different ZnO NWs with diameters D = 2, 3, 4,
5, and 6 nm. The fast oscillating atomic wave functions are
projected onto the bulk ZnO Bloch states, which enables us to
visualize the envelope functions and quantify the Bloch function
parentage of each NW state (i.e., to identify the contribution
from each bulk Bloch state).20 The envelope functions and Bloch
function characters obtained from the projection of the first
electron and first four hole states are presented in Fig. 1. We use
the notation o to characterize the symmetry of the envelope
functions, where o gives the number of nodes encountered
when the envelope function is projected on a plane which
contains both the growth direction vector and the center of the
NW. The possible values of o can be S, P and so forth, where S
represents an envelope function without a node, P with one
node, etc. The results obtained for the first four electron and first
four hole states are presented in Table 1.

It is found that the lowest unoccupied molecular orbital
(LUMO) state exhibits an S-like envelope function, derived purely
from the lowest bulk conduction band, irrespective of the variation
of the level of quantum confinement. The following two electron
states (e1,2) appear to be energetically degenerate (see Fig. 2(a)),
switching from an S-type to a P-type envelope function at a
diameter around 3 nm. Furthermore, a P-like envelope function
is more preferable for electron states e1,2,3 in the presence of very
weak quantum confinement effects (i.e., D = 6 nm E 4.3aB, where
aB = 1.4 nm is the exciton Bohr radius of bulk ZnO).

Concerning the hole states, Fig. 1 and Table 1 show that the
wave functions with dominant single-band character (either A-,
B-, or C-band) have S-type envelope functions, while the ones
with an even mixing of bulk Bloch A- and B-bands have P-type
envelope functions. The SA and SB states are energetically close
to each other, whereas they are considerably separated from the
SC states (see Fig. 2(b)). This is a consequence of the nature of
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the topmost three valence bands in bulk ZnO, where the A- and
B-bands are very close to each other, being energetically sepa-
rated from the C-band. The SC states exhibit a weaker diameter

dependence than the SA and SB states (see Fig. 2(b)). Conse-
quently, the A- and B-band states rise above the C-band states at
the critical diameters DA/C

c and DB/C
c , respectively, and become

Fig. 1 Contour plot of the square of the envelope functions (perpendicular to the growth direction of NWs), extracted from our atomistic wave
functions, for the first electron and first four hole states for various ZnO NWs. The parentage of each atomic NW wave function from the topmost three
bulk valence band states (labeled as A–C) and the lowest bulk conduction band state (labeled as El) is tabulated under each plot in percentage.
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energetically more favorable, reproducing the usual electronic
structure encountered in bulk ZnO. The critical values are
DA/C

c = 4.2 nm and DB/C
c = 4.6 nm, respectively, (see Fig. 2(b)). The

PA,B states are energetically very close to the SA and SB states. The
SC states become the highest occupied molecular orbital (HOMO)
states for the diameter smaller than a critical value DS/P

c = 3.8 nm
(see Fig. 2(b)). These PA,B states are energetically more sensitive to
the NW diameter, crossing over the SC states at D = DS/P

c and
becoming the HOMO states for D 4 DS/P

c . This diameter dependent
change in the HOMO state from a conventional electronic state
(e.g., with S-type envelope) to an unconventional state (e.g., with
P-type envelope) has also been found previously in colloidal ZnO

QDs20 and very recently in GaN NWs,31 and is being attributed to
the nontrivial interplay between symmetry mixing, spin–orbit
coupling, and quantum confinement effects on the valence band
electronic structure.

3.2 Optical properties of ZnO nanowires

First, we present the optical band gap of ZnO NWs for various
diameters, which correspond to the intermediate or weak
confinement regime (see Fig. 2(c)). The calculations are performed
at three levels of theory, i.e., single-particle (SP) level, SC level, and
CI level. Expectedly, the band gap appears to be a decreasing
function of the NW diameter at all the three levels (see Fig. 2(c)).
The size-dependent gaps are best fitted according to

ESP
g = Ebulk

g + a/Db,

EOp,SC
g = Ebulk,op

g + a0/Db0,

EOp,CI
g = Ebulk,op

g + a00/Db00, (2)

where ESP
g , EOp,SC

g , and EOp,CI
g are the calculated single-particle

gaps, optical band gaps at the SC level, and optical band gaps at
the CI level, respectively. Ebulk

g = 3.445 eV (ref. 27) is the
fundamental band gap of bulk ZnO and Ebulk,op

g = 3.385 eV is

Table 1 Orbital character of the first four electron and hole envelope
functions in ZnO NWs of various diameters (in units of nm). The superscripts
(A, B, and C) indicate the Bloch function parentage of the corresponding
hole state obtained from Fig. 1

Diameter e0 e1 e2 e3 h0 h1 h2 h3

2 S S S P SC PA,B SA SB

3 S S S P SC PA,B SA SB

4 S P P S PA,B SC SA SB

5 S P P S PA,B SA SB SC

6 S P P P PA,B SA SB SC

Fig. 2 Single-particle electron states (a), hole states (b), (c) single-particle gap (red solid squares), optical band gap at the SC level (green filled spheres)
and optical band gap at the CI level (blue regular triangles), Stokes shift (d), as a function of the NW diameter. In figure (b), the lines connect the states of
the same symmetry o. The red, green, blue, and black lines connect states with the dominant A-band, B-band, and C-band, and an even mixing of A- and
B-band parentage, respectively. In figure (c), each solid line represents a fit according to eqn (2).
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the bulk optical gap. The respective values of the fitting para-
meters a, b, a0, b0, a00, and b00 are 1.26, 1.33, 1.11, 1.5, 0.99, and
1.54, where a, a0 and a00 are in units of eV nm, while b, b0 and b00

are dimensionless quantities. It is found that the diameter-
dependent optical band gap of ZnO NWs (at the CI level), in the
presence of quantum confinement effects, scales as B1/D1.54,
rather than B1/D as predicted by the effective mass approxi-
mation.32 The difference between the single-particle gap and
the optical band gap at the CI level gives an exciton binding
energy (in meV) which is best fitted by:

EX
b = Ebulk,X

b + 310/D0.97, (3)

where Ebulk,X
b = 60 meV is the well-known exciton binding energy of

bulk ZnO at room temperature. As expected from the quantum
confinement effects, the exciton binding energy is significantly
enhanced in ZnO NWs in comparison to bulk ZnO (B60 meV at
room temperature), giving 111.25 meV at D = 6 nm, 140.99 meV at
D = 4 nm and 218.78 meV at D = 2 nm, respectively.

The redshift of the emission spectra with respect to absorption
spectra is known as the Stokes shift. It has two possible contribu-
tions:33 (i) a purely electronic shift due to the splitting of exciton
states into ‘‘bright’’ and ‘‘dark’’ states, which is usually called
electronic Stokes shift, and (ii) vibrational (phonon) relaxation due
to the movement of nuclei to new equilibrium positions in the
excited state, which is called vibrational Stokes shift. In general, the
vibrational part is very difficult to model33 since it requires
excited state geometry optimization. Moreover, it has been well
justified34,35 that the Stokes shift in III–V and II–VI semiconductor
nanostructures is mainly attributed to the (i) contribution. There-
fore, in our calculations, the emphasis is placed on the electronic
Stokes shift which for brevity is called Stokes shift. Its dependence
on the NW diameter is shown in Fig. 2(d). The results are obtained
at two levels of theory: at the SC level and the CI level. It is found
that the Stokes shift is a non-monotonic function of the diameter at
both levels, having a maximum at a critical diameter value Dc.
This critical values appear to be significantly different at both
levels of theory, with DSC

c E 5 nm at the SC level, and it is DCI
c E

3 nm at the CI level. To understand this behaviour, we take our
smallest and largest NWs as examples and present the corre-
sponding near-band-edge exciton pictures in the last column of
Fig. 3. For D o Dc (top panels in Fig. 3), the lowest and first bright
exciton states belong to the C-exciton at both SC and CI levels
(the results at the SC level are not shown), being contributed
nearly purely (or dominantly) from the configuration where
the hole state has an S-type envelope function and is derived
from the bulk Bloch C-band (SC state). However, for D Z Dc,
the two exciton states responsible for the Stokes shift switch to the
A-exciton, derived mainly from the configuration where the
hole state has an S-type envelope function and a dominant bulk
Bloch A-band parentage. This diameter-dependent C-exciton to
A-exciton transition is responsible for the non-monotonic beha-
viour in Stokes shift.

We find from Fig. 3 that the formation of the optically dark
and bright states is due to the electron–hole exchange inter-
action (see the last two columns). The C-exciton consists of one
optically dark state and three optically bright states (see the

upper panel of Fig. 3). The dark state is spin-forbidden and
lower in energy. The lowest two bright exciton states are
energetically very close to the dark state (i.e., B0.013 meV for
D = 2 nm (by CI), see Fig. 2(d)), being doubly degenerate (with a
very small splitting of 0.4 meV (by CI)) and weakly polarized
(with low intensity) along the in-plane direction. The third
bright state is energetically far away (i.e., B4.01 meV (by CI)
to the lowest dark state for D = 2 nm) and is singly degenerate
with strong out-of-plane polarization (with high intensity).
Concerning the A-exciton (see the lower panel of Fig. 3), it
consists of two optically dark and two optically bright states.
The dark states appear to be degenerate and present the ground
state. The two bright exciton states are nearly degenerate with a
small splitting of up to 58.25 meV, being significantly separated
from their dark counterparts (e.g., B0.573 meV for D = 6 nm).
These results are in full agreement with the symmetry analysis
developed by Hopfield.36 The Stokes shift originating from
different types of excitons is found to exhibit a different
diameter-dependence. As shown in Fig. 2(d), the Stokes shift
derived from C-exciton states is quantitatively much smaller
and it increases slightly with an increase in the diameter.
Conversely, the one derived from A-exciton states turns out to
be quantitatively much larger and it decreases significantly
with respect to the increase in the diameter.

As mentioned previously, the SA state rises over the SC state and
becomes energetically more favourable for D 4 DA/C

c = 4.2 nm.

Fig. 3 Schematic picture of the evolution of the exciton states in ZnO
NWs of two different diameters. Columns from the left to the right are the
single-particle states (column (i)), energy of the uncoupled electron–hole pairs
(column (ii)), excitonic states obtained via CI including the Coulomb interaction
but neglecting the exchange interaction (column (iii)), and the final result
obtained for the excitonic states including the Coulomb, exchange and
correlation effects (column (iv)). The numbers in parenthesis indicate the
degeneracy of each level. The dark-exciton states, bright-exciton states with
in-plane polarization, and bright exciton states with out-of-plane polarization
are shown in dashed black, solid black and solid red lines, respectively. For
columns (ii)–(iv), the lowest total energy is placed at the bottom.
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Therefore, one might expect that the transition between the
near-band-edge C-exciton (electron-S–hole-SC) and A-exciton
(electron-S–hole-SA) takes place around the critical value
(E4.2 nm). This is indeed the case if correlation effects are
neglected. The maximum of the Stokes shift appears at a
critical diameter DSC

c E 5 nm, as shown by the SC results (see
Fig. 2(d)). However, when the correlation effects are fully
considered (see the CI results), the critical value at which the
transition occurs shifts to a significantly smaller diameter value
(e.g., DCI

c E 3 nm). This nonmonotonic behaviour in Stokes
shift has been found previously in several semiconductor
nanostructures, e.g., CdSe NRs,37 ZnO NRs,27 and ZnO QDs
under pressure.23 A larger Stokes shift means a smaller overlap
area between absorption and emission spectra, which is desirable
in applications such as light-emitting diodes, where reabsorption
reduces the total efficiency.37 The transition between different types
of excitons has recently been found in GaAs/AlGaAs QDs by
applying elastic stress,38 which is believed to have potential appli-
cations in quantum technologies.

We also find that the exciton nearly purely derived from a
configuration (e,h) where the electron has an S-type envelope
function (in LUMO) and the hole has a P-type envelope function
does not exhibit the orbitally forbidden, dark ground state (see the
lower panel). The exciton ground state appears to be orbitally
allowed but spin-forbidden, and derived from electrons (in LUMO)
and holes (in HOMO�1) with both S-type envelope functions,
similar to the case of small diameter NWs (see the upper panel
of Fig. 3). After the detailed analysis of the evaluation of the band-
edge exciton states, (see Fig. 3) through the stepwise incorporation
of Coulomb and exchange interactions, we find that two combined
effects are responsible for this phenomenon:

(i) Increasing the diameter leads to a significant decrease in
the energy difference between the two four-fold uncoupled states
(see the second column in Fig. 3), e.g., the energy difference is
55.23 meV for D = 2 nm, while it is only 6.11 meV for D = 6 nm.

(ii) The Coulomb interaction is more pronounced for the
configuration with both electrons and holes having the same
envelope function characters (both S-type) than that with
electrons and holes having different characters (electrons:
S-type, and holes: P-type), irrespective of the NW diameter. For
example, for D = 2 nm, the Coulomb interaction experienced by
the configuration (e0,h0) (e0–S–h0–S) is around 218.8 meV, while
it is around 213.7 meV for the configuration (e0,h1) (e0–S–h1–P).
These two values appear to be 106.6 meV (configuration (e0,h0),
(e0–S–h1–P)) and 117.9 meV (configuration (e0,h1), (e0–S–h1–S)),
for D = 6 nm.

This conventional optics from the unconventional electronics has
also been found previously in ZnO colloidal QDs.20 Compared to the
Coulomb interaction, the influence of the exchange interaction
(fourth column in Fig. 3) has a significantly smaller magnitude
(below 1 meV, depending on the NW diameter) but is important for
the optical polarization properties.

Finally, we present in Fig. 4 the absorption spectrum at room
temperature for various NW diameters. The calculations are per-
formed in the CI scheme. A Gaussian broadening function is
adopted with a broadening parameter of 1.2 meV. It is found that

increasing the diameter leads to a redshift in the absorption
spectrum. This redshift is more pronounced for narrow NWs
(with small diameters). Decreasing the NW diameter results
in a transition in the optical absorption polarization from an
in-plane polarization (E > -

c) to an out-of-plane polarization
(E J

-
c) at a diameter of around 3 nm. This transition between

the usual a-absorption (E > -c) and the unusual s and p
absorptions (E J

-
c) has also been found previously in ZnO

QDs under hydrostatic pressures23 and ZnO NRs by changing
the length-to-diameter aspect ratios.27 Before the transition
occurs (e.g., for D Z 3 nm), the near-band-edge optical absorp-
tion is dominated by the A- and B-exciton absorptions, which
cannot be separately resolved experimentally.13 However, after
the transition takes place (e.g., for D o 3 nm), the unusual
C-exciton absorption (s and p absorptions) becomes active.
This type of absorption in ZnO NWs has recently been experi-
mentally achieved by Jacopin et al.13 using a thermal approach.
The results we present here offer a new way (e.g., narrowing the
NW diameter) to activate the C-exciton absorption in ZnO NWs,
which should be very interesting for the design of future
experiments in the realm of quantum technology.38

4 Conclusions

In the present work, we have studied the electronic and optical
properties of ZnO NWs as a function of the diameter. We find
that the hole states with a dominant single-band (bulk A-, B- or
C-band) parentage exhibit S-type envelope functions, while the
states with an even mixture of bulk Bloch A- and B-bands
present P-type envelope functions. The A- and B-band states
are very close in energy and more sensitive to the NW diameter
than the C-band states. Consequently, these states rise over
the C-band states at critical diameters (e.g., DA/C

c = 4.2 nm and

Fig. 4 Oscillator strength for absorption h0| to hX| in various ZnO NWs at
room temperature obtained via CI. Absorptions polarized along the out-
of-plane (c axis) and in-plane (perpendicular to the c-axis) directions are
shown by red and black vertical lines, respectively. The symbols in
parentheses indicate the dominant envelope function characters of the
single-particle states (e,h) involved in the absorptions, and the parentage
of the corresponding hole state is given as the superscript.
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DB/C
c = 4.8 nm) and become energetically more favourable,

reproducing the usual electronic structure of bulk ZnO. Com-
pared to the C-band states, the states with an even mixture of
bulk Bloch A- and B-band parentage exhibit a stronger size-
dependence, causing a drastic change in the envelope function
character of the highest occupied molecular orbital (HOMO)
state from a conventional S-like character to an unconventional
P-like character at a diameter around 3.8 nm. The lowest
unoccupied molecular orbital (LUMO) state always presents
an S-type envelope function, irrespective of the variation of
the quantum confinement effects.

The optical band gap is a decreasing function of the NW
diameter and scales as B1/D1.54, rather than B1/D as expected
from effective mass theory. The exciton binding energy is
calculated and the associated scaling law is provided. In con-
trast to monotonic behaviour in the optical band gap, the
Stokes shift displays a non-monotonic function of the diameter,
exhibiting a maximum at a critical diameter value around 3 nm.
We explain this behaviour through the transition of the near-band-
edge exciton from a usual C-exciton to an unusual A-exciton by
varying the NW diameters. For NWs larger than the critical
diameter, the near-band-edge optical absorption is dominated by
the in-plane polarized A- and B-exciton absorptions. For NWs
smaller than the critical diameter the out-of-plane polarized
C-exciton absorption is dominant.
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Supplementary Information: Near-band-edge exciton polarization change
in ZnO nanowires

Zaiping Zeng,a Alexia Petoni,a Christos S. Garoufalis,a Sotirios Baskoutas∗a and Gabriel Bester‡b

Convergence test

An important issue in the calculation of excitonic properties in nanostructures is the treatment of correla-
tions. Our configuration interaction (CI) treatment exhibits a poor scaling, which limits the number of states
that we are able to include in the expansion. A careful convergence test is therefore necessary, especially
in the case of a NW, where the confinement in the NW direction is the sole result of the electron-hole
interaction. The approach followed in this work is to use a large supercell extended in the NW direction,
in order to fully include the physical extent of the exciton state, and limit the calculation to the Γ point of
the Brillouin zone. An alternative and equivalent approach is to use a minimum supercell size in the NW
direction and introduce k-point sampling.

Fig. 1 (a) Single-particle electron and hole energy levels diagram for our smallest ZnO nanowire (with diameter D = 2 nm). Here, we have
plotted the first five electron energy levels and the first fifty hole energy levels. (b) Exciton energy as a function of the number of the hole
states in the configuration interaction (CI) treatment for our smallest ZnO nanowire (with diameter D = 2 nm). Here, we include the first five
electron states in the CI.

For the convergence test, we choose our smallest ZnO nanowire with a diameter D = 2 nm, and plot the
corresponding single-particle electron and hole energy levels (see Fig. 1(a)). We find that the single-particle
electron states spread in a much larger energy window than its hole states counterparts, e.g., the first five
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∗ Corresponding author: bask@upatras.gr
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electron states distribute in an energy window of 0.56 eV, while the first fifty hole states only spread in
a energy window of 0.27 eV. Therefore, we include in our CI treatment the first five electron states and
systematically increase the number of hole states. The exciton energy as a function of the number of hole
states is presented in Fig. 1(b). As we can see from Fig. 1(b), the exciton energy is insensitive to a further
increase of the number of hole states when the number of hole states is larger than eighteen. Thus, we
include in our CI treatment five states from the conduction band and eighteen states from the valence band.
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