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Abstract

Cloud computing technologies fostered the growth and great success of many Internet ap-

plications. The huge computational power and storage capacity offered by their world-wide

distributed ensemble of digital warehouses allowed the appearance of novel services offered

directly to consumers, being online social networks one of the most bestselling among them.

At the same time, commodity domestic computers benefited from new hardware advances

and access network increased their offered bandwidth. Nevertheless, the common end-user

usage does not harness all the available capabilities from these new computers and networks.

Several initiatives emerged trying to seize the surplus or idle computer and network capacities

from end-users. Peer-to-peer systems became extremely popular in file-sharing applications

and volunteer computing schemes helped the scientific community by performing calculations

within several specific projects.

The contributory computing paradigm was born aiming to utilize the contributed comput-

ing capacities. The main idea was that users would donate their resources to a self-managed

community that would support general purpose computing applications, like the ones held

by current clouds. Previous research proved the model feasibility and defined the main com-

ponents needed to support decentralized and self-managed contributory communities.

This thesis is focused on the improvement of contributory platforms. We reviewed the

status of the contributory computing model within the distributed computing. From this

review, we identified the need for better node selection mechanisms for application replica

hosting regarding different parameters. First, we discussed service availability as a key factor

for long-lived service survival. Consequently, we proposed a methodology to properly select

hosts in order to offer a given availability level. Second, we noticed an important research

trend in minimizing the environmental footprint of computational infrastructures called green

computing. We studied the energy consumption of contributory platforms and presented two

different mechanisms to minimize these consumptions: a scheduling algorithm to reduce the

global makespan of ordered-task executions and an extension of our availability-aware alloca-

tion method that includes also energy consumptions in the host selection stage. Finally, we

looked at the effect of the underlying network connecting the participant nodes in a commu-
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nity. Contributory systems share their self-provision philosophy with the novel Community

Networks. In these networks, there exist some facilities that publicly offer information about

network topology and host status. These openness provides data that is usually not available

in commercial access networks and allowed new studies in the field. We presented a method-

ology to select those hosts that are closer to as many potential customers in a network, in

such a way the network distance is minimized.

All these contributions aim at offering new tools to enhance the contributory computing

model and attract new services and users.
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Resum

Les tecnologies de computació al núvol (cloud computing) han esdevingut un model de gran

èxit per a moltes aplicacions d’Internet. L’enorme capacitat computacional que ofereix la

multitud de centres de processament distribüıts a tot el món van propiciar l’aparició de nous

serveis per a usuaris finals. Les xarxes socials són l’exemple més clar d’aquest nou conjunt de

serveis. Al mateix temps, els ordinadors domèstics s’han beneficiat també dels nous avenços en

maquinari i les connexions a Internet a través de les xarxes d’accés comercials han augmentat

considerablement el seu ample de banda. Tot i aix́ı, l’ús que la majoria d’usuaris fa d’aquests

ordinadors i aquestes connexions està lluny d’aprofitar tota la potència i ample de banda

disponibles. Han aparegut moltes iniciatives per aprofitar aquesta capacitat computacional

o ample de banda sobrant o ociós. Les xarxes de igual a igual (peer-to-peer) en són el cas

d’ús amb més èxit a l’hora de compartir fitxers, però els sistemes de computació voluntària

(volunteer computing) també han ajudat a la comunitat cient́ıfica a assolir fites en projectes

concrets.

El model de computació contributiva (contributory computing) va néixer amb la intenció

d’utilitzar les capacitats computacionals donades pels usuaris finals. La idea principal era

que els usuaris donarien els seus recursos a una comunitat autogestionada que oferiria apli-

cacions de propòsit general, com les suportades per les plataformes de computació al núvol

ja existents. La recerca prèvia en aquest sentit ja ha demostrat la viabilitat d’aquest model

i ha definit els components bàsics per a suportar comunitats contributives distribüıdes i au-

togestionades.

Aquesta tesi se centra en la millora del funcionament d’aquestes comunitats contributives.

En primer lloc s’estudia l’estat del model de computació contributiva dins del marc dels

sistemes distribüıts. D’aquest estudi, s’identifica la necessitat de mètodes per a la selecció de

nodes per a hostatjar o suportar determinades aplicacions en funció de diferents paràmetres.

Després es debat la importància de la disponibilitat dels serveis com a element clau per a la

supervivència de serveis de llarga vida. En conseqüència, es proposa una metodologia per

a seleccionar els nodes adequats per a garantir un cert nivell de disponibilitat de servei. A

continuació s’assenyala una tendència important en el camp de la recerca de la computació

iii



sostenible (green computing) com a aquella que intenta minimitzar l’impacte ambiental de les

infraestructures computacionals existents. S’estudia el consum energètic de les plataformes

contributives i es presenten dos mecanismes per a minimitzar aquests consums: un algoritme

de planificació per a reduir els temps de computació globals en l’execució de tasques ordenades

i una extensió de la metodologia referent a la disponibilitat de serveis per a incloure també

el consum energètic com a factor de decisió en la selecció de nodes en sistemes contributius.

Finalment s’estudia l’efecte de la xarxa que connecta els nodes en el funcionament dels serveis

contributius. Les comunitats contributives comparteixen la filosofia d’auto-aprovisionament i

autogestió amb el nou model de xarxes comunitàries (community networks). Aquestes xarxes

disposen d’una mı́nima infraestructura de monitorització que permet oferir de manera lliure

informació sobre la topologia de xarxa i l’estat de nodes i enllaços. Aquesta informació no

està disponible de manera habitual en les xarxes d’accés comercial i permet començar noves

ĺınies de recerca en aquest sentit. Aquesta tesi presenta una metodologia per a seleccionar

aquells nodes que quedin el més propers possible a tots els clients potencials d’un servei a la

xarxa, de manera que la distància de xarxa en número de salts es minimitza.

Totes aquestes contribucions pretenen oferir noves eines que millorin el model de com-

putació contributiva per tal d’atraure nous serveis i usuaris.

iv



Acknowledgments

En primer lloc vull agrair als meus directors la seva ajuda durant tot el procés que ha culminat

en aquesta tesi doctoral. A en Joan Manuel Marquès, per confiar en mi a l’iniciar aquest

viatge, per guiar-me a través de tot el procés i per ajudar-me a arribar a bon port amb la
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croblogging for a contributory social network. IEEE Internet Computing, 16(3):37-45,

May-June 2012. Indexed in ISI SCI, 2012 IF 2.039, Q1 (Computer Science, Software

Engineering).
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[P13] G. Cabrera, S. González-Mart́ın, A. Juan, and J.M. Marquès. Despliegue de replicas

de servicios cercanas al usuario en entornos comunitarios. In Proceedings of the XXII

xviii



Jornadas de Concurrencia y Sistemas Distribuidos, Morella (Castelló, Spain), June
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1.1 Motivation

Nowadays, desktop computers are commodity goods affordable for most citizens and organi-

zations in developed countries. This is the main reason behind the high growth of computing

as a common tool in every-day’s life for people around the world. As well, the spread of

domestic and mobile network connections with increasing bandwidth popularized the use of

Internet to an extent that nowadays one can even talk about commodity networks.

Besides the gained popularity in the domestic environments, the reduced prices for pow-

erful computers fostered the appearance of large computational infrastructures composed by

vasts amounts of them. These aggregations, often known as clusters or server farms, pro-

pitiated the intensive usage of computational power for many different tasks or operations

in enterprises and scientific projects. These aggregations of computers are often centralized

and composed mostly by homogeneous and dedicated resources, well-maintained and provi-

sioned under strict maintenance policies. The exploitation of these infrastructures requires

some strategic decisions, such as hardware interconnection schemes, data or service alloca-

tion statements and usage policies. These technologies were the basis for the Grid [1] and

Cloud [2] computing paradigms, on which several distant cluster instances can be combined

to create larger and world-wide distributed systems.

The spread of commodity networks and their increasing capabilities also modified the

usage patterns of these connections. Novel applications, such as Peer-to-Peer systems [3] or

Volunteer computing platforms [4] changed the client-server paradigm to a more distributed

scenario, on which data and services are no longer placed in strategic regions of the network.

In these scenarios, computing resources are no longer homogeneous and no maintenance

policies can be assured, since the computers are owned and controlled by end users. Moreover,

they are geographically dispersed across wide-area networks and the number of involved nodes

can be much higher than in clusters. This large scale, together with the heterogeneity, the

dynamism, the stochastic behavior and the dispersion of the involved resources makes the

operation of these systems to be even more challenging than in the case of distributed clusters.

From a different perspective, different processes involved in the operation of distributed

systems require a selection of some of the involved nodes to perform certain actions. This

selection can be regarded as a scheduling, location or allocation problem, depending on the

nature of the task. Thus, this decision process can be modeled as a classical optimization
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problem, on which the choice of different elements results in different quality systems and

an objective is satisfied. The objective could be regarded for example as minimizing the

processing time for a task scheduler, maximizing scavenged CPU cycles, minimize network

distances among replicas, guaranteeing a certain level of availability or minimizing the energy

consumption.

In a homogeneous and controlled environment, this choice is arbitrary and has no great

impact on the performance and efficiency of the system. However, when the involved nodes

have different capabilities and are placed in distant locations, a proper selection among them

could result in a more efficient or a less resource-demanding system. Furthermore, dealing

with very large scale, dynamic and stochastic systems also complicates the problem and dis-

ables many of the classical analytic approaches for optimization. Heuristic or metaheuristic

procedures showed to be a valuable tool to cope with similar problems in different research

topics, such as logistics, transportation or supply chain management, but also in the dis-

tributed computing field [5, 6, 7].

This thesis explores some of the described problems in the novel paradigm of contributory

computing, in which non-dedicated computing resources are aggregated to support open-

access network services in a way similar to current cloud computing platforms. Specifically,

this dissertation studied how host availability affects the survivability of multi-component ser-

vices and how it can be maximized; how the energy consumed by distributed platforms could

be minimized; and how the network position of a given replica influences on the bandwidth

usage. We propose several heuristic methods to address the aforementioned problems.

Figure 1.1 shows a topic map with the studied fields and their relation with the chapters

in this dissertation.

1.2 The computer distributed systems context

The distributed computing paradigm can be generally defined as the aggregation of multi-

ple autonomous computing resources interacting through a network connection to achieve a

common goal [8]. This definition is general enough to include systems of very different na-

ture. The following sections describe those ones that preceded and inspired the contributory

computing model.
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Distributed systems

System availability
Contributory
computing

Green computing

Network connection

Chapter 1

Chapter 2 Chapter 3
Chapter 4

Figure 1.1: Dissertation topics

1.2.1 Grid Computing

Since the beginning of the 1990s decade, the ongoing scientific and research needs surpassed

the capacity of current single workstations. Hence, scientists allover the globe pursued the

goal of aggregating dispersed computational resources to perform large computational tasks,

aiming at making computer power as easy to access as the electrical power grid. It was from

this terminology that the metaphor of grid computing became a keyword to identify accessible

computer distributed systems [1, 9].

The most important challenge achieved by the earliest grid computing research was the

interoperability of distributed systems [10]. A significant number of different and independent

technologies or protocols were used by each computing infrastructure. This was the largest

barrier the computer scientists had to overcome in order to allow users and organizations to

access resources from other institutions.

A whole new set of protocols and tools were designed and implemented by the community,

leading to the de facto standard Globus Toolkit1. This tool defined the open standards and

protocols to manage different remote processes, covering all the needed functions and proce-

dures (resource management, rights and security, task execution, file transfers or storage).

Thanks to the standardization efforts, computing resources belonging to many different

institutions organized in different administrative domains could be federated into Virtual

1http://toolkit.globus.org/
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Organizations and easily accessed by users involved in other organizations. Thus, large and

computational extensive tasks were processed by gathering heterogeneous, geographically

dispersed and loosely coupled resources.

While no limitation on the supported tasks was explicitly described, in practice its usage

was restricted to the execution of large batch tasks in the scientific or research fields and

caused no viable grid computing providers emerged in the open market [11].

1.2.2 Cloud Computing

One step further on computer distributed systems was the appearance of the cloud computing

paradigm during the first decade of the XXI century [2]. Its objective was the same as

the original of the grid computing model: allow users to easily access unlimited computing

resources.

The grid computing model focused on creating the standards to create Virtual Organi-

zations that federated resources from different organizations to make them available to its

members under certain usage policies. The cloud computing model aims at offering the same

access to an apparently infinite amount of computing resources, but describes in contrast a

pure provider-client model, in which users do not belong to any given organization and pay

for the strict resources they utilize [12, 13]. This pay-as-you-go consumption model is the

reason behind the cloud providers success in the last years and that it became an increasingly

popular tool to outsource large computing infrastructures.

Cloud providers own and manage a vast amount of well-managed, well-provisioned, mostly

homogeneous and dedicated computing resources, organized in large datacenters placed in

strategic locations around the world. This distributed infrastructure is known as a cloud.

Users can access to all these resources, combining several locations and different hardware

features. No up-front investment is required and no over-provisioning is needed to face the

peak load, as clients can pay exactly for the amount of resources their applications require

at any time. Thus, capital expenses are not longer an entry barrier for Small and Medium

Enterprises (SMEs) and scaling up becomes an easy, cheap and quick process for startups.

Different service models appeared as the providers developed their commercial offers.

Mainly, they differ in the features offered by the platform itself and which applications should

support themselves. Three of them can be clearly distinguished:
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Software as a service also referred as ‘on demand software’, cloud providers maintain an

application software and its needed infrastructure, in such a way the client accesses

the software directly, with no knowledge or implication in the underlying layers. An

example of this model is an online Enterprise Resource Planner (ERP) or an online

office software suite.

Platform as a service cloud providers offer a full computing platform, operating and man-

aging the underlying infrastructure. Typical platforms are operating systems, execution

environments and database or webs servers.

Infrastructure as a Service cloud operators provide computers (either physical or virtual

machines) on demand. Cloud users must manage their own operating systems and

applications.

Besides the advantages of the clouds, they also present some important drawbacks that

limit their expansion to even more applications [14]. Moving enterprise or private data to an

external provider poses new security risks. Relying exclusively on a single external provider

may become a restriction in terms of interoperability with other cloud solutions or products

and could lock in companies to their providers, causing operative and economical issues to

their business.

The exponential growth of cloud computing was the foundation for a plethora of new

Internet services, some of them being just the re-implementation of already-existing local

services exported to the cloud. The appearance of infinite resources enabled long-lived services

composed by several components ready to interact and react to user actions. The clearest

examples of these new generation of services are social networks (like Facebook2 or Twitter3),

massive online storage services (like Dropbox4 or Google Drive5), online video platforms (like

2http://www.facebook.com/
3http://www.twitter.com/
4http://www.dropbox.com/
5http://drive.google.com/
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YouTube6 or Netflix7) or cloud-service providers (like Amazon Web Services8 or Windows

Azure9 among others).

1.2.3 Peer-to-Peer Systems

A different evolution branch of computer distributed systems were the peer-to-peer (P2P)

networks. In the traditional client-server model, one of the computers is responsible of pro-

viding a service (known as server) and the others (the clients) contact him to consume this

service. On the contrary, in the P2P model all the components in the system are connected

to each other as equal peers and establish connections with other components in the network.

These connections enable peer interactions, on which both sides can act as client and server

at the same time to request, obtain and exchange information.

The main features of these systems and what make them interesting for the research

community and pose a challenge to predict system dynamics are the following [15]:

a) The high degree of decentralization they support, due to all the burden tasks in the

system are performed by participating nodes, releasing any centralized node.

b) The self-organization in the system management, since no manual configuration should

be need in the participating nodes.

c) The fault tolerance and attack resilience, thanks to the few or any critical nodes in the

system and the large amount of hosts to target simultaneously in order to affect the

system.

d) The high scalability, allowing the system to grow almost arbitrarily without manager

intervention.

e) The abundance of resources contributed by the participating nodes and diversity in

terms of hardware and software.

6http://www.youtube.com/
7https://www.netflix.com/
8https://aws.amazon.com/
9http://www.windowsazure.com/
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f) The presence of multiple administrative domains, since most of the nodes would be

owned and managed by individuals who freely join and leave the system. This trait

causes indirectly a geographical dispersion on the resource locations.

One of the key challenges in any P2P system is to build an overlay with routing capa-

bilities that operates properly under node churn. This overlay can be thought as a directed

graph on which the nodes aware of each other have an edge between them and therefore can

communicate directly though the network and can be structured or unstructured. In (partly)

centralized architectures, nodes join the overlay by contacting a system controller and create

a star topology around her. Later, additional connections can be introduced between col-

laborating hosts. In decentralized systems, the nodes join the system by contacting any of

the already participant hosts, whose contact information is obtained by means of an external

channel.

Overlay Network

Physical Network

Figure 1.2: Peer-to-Peer overlay schema

System overlays are often classified on their structure. Unstructured overlays are those

with no constraints on the links between hosts. Thus, nodes can connect to any of the other

participants maintaining its connection degree in a given range and discovering new neighbors

by random walks on the overlay. Accordingly, the network presents no particular structure.

In structured overlays, each host has a unique identifier (usually known as key) that

determines its unique position in the overlay, which would present a specific structure. Keys

are also used to determine node responsibilities, in such a way the whole key space is divided

among all system participants. These techniques are commonly known as Key-based routing

(KBR) and were the basis for the emergence of Distributed Hash Tables (DHT) in several

flavors [16, 17, 18]. DHTs operate as a traditional hash table, inserting and distributing

key/value pairs the participant nodes in the structured overlay.
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P2P systems became popular at the end of the 1990s decade thanks to the well-known

file sharing applications (like Naptser, Gnutella10, eMule or BitTorrent11 [19]), which make

them appear as a source of copyright violations. However, different P2P approaches proved

to be a valuable tool for large amount data distribution in corporate environments, with

BitTorrent being used for content placement to its servers by Twitter [20] or Facebook [21].

Besides the file sharing applications, they support as well very disparate applications such

as Internet video-telephony (Skype12), video streaming (CoolStreaming [22] or Sopcast13) or

digital currencies (BitCoin [23]).

1.2.4 Volunteer Computing and Desktop Grids

Combining the system scale and the resource geographic dispersion of P2P networks and the

aggregated computing power of the grid paradigm, the models of volunteer computing [4,

24] and enterprise desktop grids appeared, despite some authors include them in the P2P

paradigm [15].

Volunteer computing and desktop grids are similar in the sense they aggregate surplus

or idle computational resources from non-dedicated computers, often underutilized personal

computers connected to the Internet and controlled by their individual owners. Neverthe-

less, in the former end-users voluntarily share their computational resources to be utilized

by a third entity in a given project (often scientific projects such as SETI@home14 or Fold-

ing@home15). The latter relies exclusively on resources inside of an organization network to

make computations. In both cases, the architecture requires a set of centralized entities to

coordinate the task execution and collect the obtained results.

The goal of volunteer computing is similar to that of the original grid computing, that is

aggregating dispersed computational resources to perform large sets of computational tasks

split in smaller independent jobs. The difference is that instead of exploiting only dedicated

resources as in the grid, volunteer computing can combine dedicated and non-dedicated re-

10http://rfc-gnutella.sourceforge.net/
11http://www.bittorrent.com/
12http://www.skype.com
13http://www.sopcast.org/
14http://setiathome.berkeley.edu/
15http://folding.stanford.edu/
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sources contributed by individual users to collect even more computational power16. The

most successful implementations of this paradigm are BOINC [4] (used in the aforementioned

projects), Condor [25] and Entropia [26].

Typically, volunteer computing systems are meant for a specific project. The project

manager provides a central controller entity that manages the experimentation and distribute

the computing tasks among the participants. To some extent, this is the same structure as the

one in partly centralized P2P systems, on which a controller maintains the set of participating

nodes and controls the system, but the burden tasks are performed in a distributed fashion

by peers.

Project contributors can choose different sharing policies, based on their preferences.

Typical policies would include sharing the whole capabilities when idle, a dynamic amount

proportional to the load or a given fixed portion. They can also decide to freely change their

contribution or withdraw the resource at any time. They run a software in their computers

that notifies the project controller when their resources are available. Then, the project

controller assigns a given independent task to be performed by this computer. As soon as the

task is accomplished, the results are sent back. In case the computer becomes unavailable

(either because the user switched it off, she started using it again or there was a network

disconnection) and the task is not properly finalized, the same task can be re-assigned to

another host.

1.3 The contributory computing paradigm

The contributory computing concept was defined by Lázaro as ‘a novel paradigm for aggre-

gating computational resources from different owners to be used collectively’ [27]. In the

framework of this proposal, he described as well the contributory communities as ‘an aggre-

gation of contributed resources which can be used as a platform to deploy computational

services’. In this context, a service is regarded as any long-lived application executed on a

set of computers that receives messages (queries), process them and sends messages back

(responses), a powerful abstraction reinforced by the appearance of the service-oriented ar-

chitectures [28, 29].

16as much as 8.12 petaFLOPS in BOINC in March 2014
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This paradigm can be understood as the union of long-lived distributed services (similarly

to Internet services on top of cloud infrastructures) with user-contributed resources (as the

ones in volunteer computing or P2P networks) hosting them. We show the junction of the

grid, cloud and volunteer computing models in Figure 1.3, being the contributory computing

the intersection of cloud and volunteer computing.

Grid Computing Volunteer computing

Cloud computing

Task execution
Non-dedicated resources

Long-lived services

Dedicated resources

Figure 1.3: Basic scheme of cloud, grid, and volunteer computing feature intersections

As in the volunteer computing implementations, community members can contribute with

different computing resources (such as commodity desktop computers or laptops, high-end

servers or even mobile handhelds) and should choose their contribution policies. Gathering

resources from domestic users implies also a geographical dispersion and the lack of main-

tenance or administration policies, as opposed to the managed server concentration in the

cloud or grid environments.

All these traits make the contributory platforms to be extremely dynamic systems, with

hosts joining and leaving without previous notice; the different hardware and software capabil-

ities of each node increasing the heterogeneity of each community; and the network dispersion

to increase the communication delays among hosts. Despite this dynamism and heterogeneity,

contributory platforms were meant to be self-sufficient, relying only on user-contributed com-

ponents. This can be achieved with a high degree of decentralization, replication strategies

and mechanisms able to tolerate host churn, similarly as in the P2P systems.
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The contributory computing model was designed with the idea of collective utilization of

the resources. Users should contribute their resources unselfishly, with the only purpose of

supporting the community. The same way, services should be available to all participants,

regardless the amount of their contribution. In such an environment, it might seem reasonable

to limit the resources available to a given user according its contribution as an incentive

action. Despite such mechanisms or credit system would be profitable, the collective usage

of the resources and its benefits for all users should prevent community members to use the

resources in a selfish way.

1.3.1 Related proposals

Recent research trends presented different concepts similar in the philosophy of promoting

non-dedicated resources utilization to build Information Technologies (IT) infrastructures or

support Internet-like services.

Contributory Communities and CoDeS

Following his description of the contributory computing model, Lázaro designed and imple-

mented CoDeS17 [27] as a prototype middleware for service deployment in contributory com-

munities. Besides describing all the desired features for fully-distributed and self-provisioned

communities, he developed autonomous service deployment [30] and decentralized resource

discovery [31] mechanisms for these systems. Also, he proposed an availability-aware resource

selection method for stateless services [32] based on historical knowledge of host availability

and replication strategies.

CoDeS was meant to aggregate sets of non-dedicated, Internet-distributed and hetero-

geneous computers to form a platform where general-purpose computing applications could

be deployed. It provides tools to automatically manage resource aggregation and service

deployment supported only by these resources.

It guarantees that management responsibilities and execution of services are automati-

cally distributed among the nodes in a self-sufficient manner by exploiting FreePastry18 [16].

Replica management responsibilities are assigned to hosts in the DHT by service indexes, thus

17http://dpcs.uoc.edu/joomla/index.php/software/codes
18http://www.freepastry.org/
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maximizing decentralization and scalability. These nodes are known as Service Managers and

are responsible to determine the most suitable nodes in the system to host a service, remotely

deploy the service on them, monitor their status and create new replicas on node churn or

system failure.

In his experimentation, Lázaro proved the feasibility of contributory communities in dif-

ferent circumstances with the CoDeS implementation deployed in PlanetLab [33]. He evalu-

ated its resource discovery and service deployment mechanisms on different size communities

under very different churn levels and concluded the contributory computing model is a fea-

sible alternative to centralized and dedicated clouds. He also studied service-availability and

proposed a replica allocation mechanism to ensure long-lived stateless service availability.

Being part of the original proposal of contributory computing, contributory communities

supported by CoDeS fulfills most of the desired features of such a platform.

Community Cloud Computing

Marinos and Briscoe [34, 35] faced some of the limitations of the current cloud computing

technologies proposing the novel concept of Community Clouds. They state the three key

limitations of current clouds to be the following:

• Due to the concentration of services in large datacenters, major failures in these infras-

tructures cause the failure of a significant amount of them and generates long service

downtimes.

• Being the infrastructure, the service and its data transferred to a cloud provider, the

owner looses the control over them. This forces the clients to accept the conditions of

the provider if they want to keep their services running.

• Environmental footprint of large digital warehouses cannot be neglected, because of

their large energy consumption, their heat concentration and the waste generation of

hardware renewals.

Their proposal tries to globally solve social, economic and environmental aspects of the

cloud paradigm by replacing the proprietary clouds with contributed-resource communities

organized in their architectural model.
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Despite some of these ideas are aligned with the contributory computing model, this ini-

tiative fails on going further than a written proposal and providing an actual implementation.

Nebulas

Nebulas were defined as aggregations of voluntary resources donated by end-users to create a

dispersed and less managed cloud [36]. Their goal is not to replace current clouds, but rather

support them in particular situations where they fail.

First, the authors state current clouds are largely centralized and are inefficient when

dealing with dispersed-data-intensive applications (those working with data spread at multi-

ple distant locations). Moving data to centralized digital warehouses is expensive in terms of

cost, time and bandwidth. Second, clouds are often separated from user context and location.

Even though Content Delivery Networks (CDN) can alleviate this issue, sensitive applications

would perform much better if were closer to the network edges than in centralized locations

in the center of the network. And third, cost matters are pointed as an entry barrier for

developers and applications.

Authors claim their system would be suitable as a service experimental platform to deploy

dispersed-data-intensive applications close to the place where the data is stored and would

allow end-user to publicly share their own services. Thus, edge machines could support

commercial clouds in such scenarios.

The Nebula concept was firstly experimented in [37] with an Internet weblog-scanning

application. Then, in [38] the authors proposed a Map-Reduce [39] data-intensive experi-

mentation in a partly centralized architecture using Native Client sandboxing [40] on top of

PlanetLab nodes and a centralized and dedicated controller. The usage of this centralized

entity allows them to introduce a locality-aware task scheduler when assigning reduce tasks to

collaborating hosts. This scheduler uses information from a monitoring system of inter-node

link bandwidths to reduce data transmission times. They execute the Map-Reduce frame-

work to count word appearance in a large set of ebooks, which amounts 500 MBytes of data.

With this experiment, they show their performance in a data intensive scenario outperforms

two volunteer computing systems (BOINC [4] and BOINC-MapReduce [41]) executing the

same experiment.

Non-dedicated resources harvesting, their collective usage and the general application
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support make Nebulas to be close to the contributory computing model. The need for a

centralized entity makes them similar to volunteer computing, an idea reinforced by the fact

the authors compare their proposal to two existing volunteer computing approaches.

Cloud@Home

Cunsolo et al. combined the cloud and volunteer computing paradigms, generalizing volunteer

computing environments using cloud techniques and principles [42, 43]. Their vision is that

user-contributed resources can form a cloud ready to inter-operate with current commercial

ones, still maintaining a centralized structure inside each of the clouds.

Cloud@Home focuses on maintaining interoperability with commercial clouds, in such a

way the Cloud@Home could buy and sell them resources according its the demand and its

surplus capacity. They pose the need of Quality-of-Service (QoS) policies and Service Level

Agreements (SLA) to regulate these cloud interactions.

Even though they propose the gathering of user-donated resources, their focus on the

interaction with commercial clouds make them aside from the pure contributory computing

model. Furthermore, neither implementation nor experimentation to prove their statements

is provided by the authors.

Community Networks

Following the same philosophy of self-provisioned platforms, Community Networks (CN) [44]

showed up as a novel model of open and self-managed communication infrastructures. This

type of networks are built, operated and owned by their users themselves, without any strict

global planning policy. Any user willing to join the network can decide which existing node

to connect. Even though no centralized decisions rule their development, some initiatives

work to sustain and improve the networks. These initiatives provide some basic facilities

(such as monitoring infrastructure or some equipment in the network core) and perform

some strategic contributions to guarantee the system survival, improve its performance or

extend their features.

Most of the successful systems following these principles took advantage of the advances

in wireless transmission technologies to create the so-called Wireless Community Networks

(WCN). Nevertheless, wired technologies like fiber optics can and are also employed in some
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regions of the networks. The largest and most successful examples of these infrastructures

are Guifi.net19, Athens Wireless Metropolitan Network20 and FunkFeuer21.

In addition to the network itself, some of the current initiatives offer basic open-access

services to their members. The most used one and the most important attraction for many

users to join these networks is the Internet proxy access, but other services like IP-telephony,

distributed storage, network monitoring or web servers might be also available. The Internet

access is provided by contributors that donate their bandwidth to other users in the network

by offering a proxy service and other services are often supported by enthusiasts that donate

them to the community with no reward.

These services are currently deployed independently and managed manually by their

contributors. If certain capabilities related to resource discovery, replica management or

directory were offered in the community network, new services could thrive and therefore

attract more users and resources to the network.

1.3.2 Targeted services

The definition describing the services aimed to be supported by contributory computing is

open enough to include a variety of different applications. Still, being hosted by non-dedicated

resources imposes restrictions not present in the grid or cloud environments.

The simplest example of such a service is an instance of a web-server hosting static pages.

A single replica of this service is stateless, in the sense that any response to a request is

independent from the others and that any equal request would be answered with the same

response. Thus, services are easy to replicate and replace, which make them suitable to

be hosted by non-dedicated hosts. Besides web-servers, typical examples would be a video

transcoder or a language translator. This interpretation of a service allows also the execution

of batch tasks as services in a community.

Stateful services can also be achieved by splitting them into three different layers (the

presentation, the service logic and the data itself), each of these layers being deployed inde-

pendently. An external persistent storage mechanism can be seized to permanently save data

19http://guifi.net/
20http://www.awmn.net/
21http://www.funkfeuer.at/
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and status information and the presentation layer can be handled by the client resources.

Hence, the application logic can be deployed in a community as simple stateless service.

Distributed services in nature can also be supported in communities. These services

are composed by a set of different components that interact with each other through the

network to provide a more complex service. They employ the resources of the community and

take advantage of resource discovery and aggregation features and the replica management

mechanisms. However, they implement their own inter-component communication and replica

management mechanisms.

Distributed or three-tier services with multiple components can be referred as well as

composite services built from simpler parts. These parts or components, as in the pure

distributed services, would create an overlay and interact with each other to offer more

complex services, but should be managed by the community mechanisms instead of being

the service itself who internally handles all the communication and replica matters. As an

example, each of the four components in Figure 1.4 can be replicated to enhance the service

performance.

a1

a2

component a b1

b2

b3

b4

component b

c1

c2

component c

d1

d2

d3

component d

Figure 1.4: Composite service representation

Service deployment

Independently of the actual implementation, the service deployment process in the contrib-

utory computing model would generally proceed as shown in Figure 1.5.

A user willing to deploy a service should send its specifications to a designated responsible

for that service. For example, on the one hand CoDeS relies on DHT facilities to determine

18



1.4. Allocation methods

Service A

Service A

Service A
Service Manager

Host
responsible

for Service A
Deploy Service A

1- Service deployment request

2- Service replica deployment

Figure 1.5: Service deployment process in the contributory computing model

the responsible of each service (labeled as Service Manager in Figure 1.5) and route the

requests to her. On the other hand, Nebula relies on a central server to coordinate all

the contributed resources and deploy replicas. In this example, a user requesting a service

composed by two identical replicas contacts the node responsible for this new service through

a DHT-based overlay. This host then determines where to allocate the needed replicas and

remotely instantiate them in the chosen nodes.

On a service deployment request, the Service Manager must decide where to allocate the

desired number of replicas specified by the user demanding the service. While in CoDeS

the middleware maintains a list of available resources and the provided tools enable feature

selection when selecting nodes, in Nebulas the coordination entity perform all these actions

in a centralized manner.

1.4 Allocation methods

We pointed out the need of a strategy to select a set of hosts among a larger pool to

create a service overlay in contributory systems. With this purpose, many selecting ap-

proaches would be valid: random selection, greedy methods, exact methodologies or heuris-

tics/metaheuristics.
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In general, dealing with Internet distributed systems often involves a large amount of

highly scattered nodes. The scale of contributory platforms is directly related to the number

of participants in the community, their differences contribute to increase the heterogeneity

and their stochastic behavior increases the system dynamism. In consequence, the study of

these systems often becomes an NP-hard or NP-complete problem [45].

The resolution of NP-hard or NP-complete problems is a deeply studied research

field. Most of the existing proposals could be classified into exact methods or heur-

sitic/metaheuristic approaches. On the one hand, the former try to find the optimal solution

to the problem, regardless the computational time it takes. On the other hand, the latter

define steps or methodologies to follow in order to obtain good quality solutions (often close

to the optimal value for the problem) in restrained computing times [46].

Due to the large-scale nature of the contributory platforms and the node’s dynamism

and stochastic behavior, the methodologies presented in this thesis will focus on heuristic ap-

proaches that provide high quality host selections (regarding a given parameter) in reasonably

moderate execution times. We expect this methods to be used in real system deployments,

in which is desirable to provide a user-interactive service deployment process. This means

it would be tolerable for the system to spend few minutes determining which is the best

allocation for a given service deployment request, but it would not be acceptable to spend

hours until the service is finally accessible.

1.5 Objectives and scope

While contributory communities aimed at creating a platform to deploy general purpose

applications and long-lived services, Nebulas focused on data-intensive applications. Both

proposals rely on non-dedicated computing resources as their major strength. Treating both

systems as regular cloud platforms, in which most of the resources are well-maintained and

well-provisioned, would lead to inefficiency, resource waste, service malfunction and poor

quality perception from the final users.

Due to the natural dynamism and heterogeneity of user-contributed systems and the

stochastic behavior of their owners, it is imperative to devote efforts to determine resources’

20



1.5. Objectives and scope

roles into the deployed services. Minimizing the number of utilized resources to efficiently

perform a task or service would result in more scalable distributed systems.

The main goal of this thesis is to optimize the resource selection for service allo-

cation in the contributory computing model. More precisely, we focused on different

replica allocation methodologies taking account different parameters, aiming to enhance sys-

tem performance and user quality perception. Therefore, we studied optimization techniques

in different directions, so the quality of these systems could be improved.

Availability-aware service allocation Providing high availability services on top of non-

dedicated computers is a strong research challenge and is one of the main strengths

of popular Internet applications. If achieved, it would be possible to attract services

and its users from current cloud infrastructures to community-based platforms. The

heterogeneity on the hosts involved in such environments and the topological complexity

of advanced Internet applications hinders the prediction of overall service availability.

We believe that using historical availability behavior to select nodes in the system would

lead to higher service availability levels. Thus, user impression is improved and more

users and services could be attracted to contributory environments.

Energy-aware service allocation Current trend on computing research study the envi-

ronmental issues caused by computational infrastructures. The paradigm of green

computing is an umbrella that covers topics from unrelated disciplines [47], including

hardware novelties, energy-aware scheduling algorithms or innovative cooling systems

among others. The idea of system energy consumption reduction fits naturally in the

contributory computing paradigm. Seizing under-utilized resources that would be still

consuming energy if they were not in use is an improvement per se, but dispersion also

plays an important role to avoid expensive cooling systems. Yet, proper assignation

of components or tasks to hosts with lower energy consumption would have a direct

impact on the reduction of the power consumption of contributory platforms.

Different hardware and software means different energy consumption models for each

of the involved resources. Taking into account these energy models, the load of each

computer at a given time and the requirements of the services, it is possible to forecast

the power consumption a service would generate when hosted on different hosts. Com-
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bining this with the availability-aware node selection, we can determine the subset of

nodes to host a service that guarantees a given level of availability with a lower energy

consumption.

Related with the environmental concerns about computing infrastructures, scheduling

in computing is one of the most critical aspects when planning independent tasks exe-

cutions in a set of computers, dealing with either dedicated or non-dedicated resources.

Current proposals consider the execution times to be deterministic, which can be far

from reality. Operative system interruptions, network congestion and storage or net-

work delays can have a great impact on these execution times. Hence, reducing the idle

or queuing times for certain tasks would lead to less power consumption.

Network-aware service allocation Resource dispersion in contributory scenarios can be

a drawback or an advantage, as the Nebula authors claimed in their research. Multi-

component services create an overlay that abstract from the actual underlying network

connections. Withal, those services requiring intensive inter-component communica-

tions to perform their intended tasks would perform better if the replicas are placed

close to each other in the underlying network. On the contrary, delay- or jitter -sensitive

or bandwidth-intensive services should perform much better if their replicas are as close

as possible to their final consumers.

Relying exclusively on user-contributed resources disables globally planned long-term

deployments. Still, if some information of the underlying-network and host location is

available, decisions can be made to strengthen certain types of applications and benefit

the community. Again, appropriate selection of nodes with certain properties would be

profitable for the quality of service and convenient for a sensible resource usage.

1.6 Original contributions

In the process of achieving the described objectives above, this thesis came up with the main

research contributions explained in the following sections.
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1. An availability-aware mechanism for composite service allocation

We addressed the challenge of guaranteeing service availability for composite services over

non-dedicated resources by designing and implementing a simheuristic that combines a meta-

heuristic with Discrete Event Simulation (DES) into its operation. We created a framework

that seeks for service deployments that guarantee a certain availability requirement.

We first built a simulation tool to predict global service availability involving hosts with

different availability behaviors. Thanks to this tool, we can forecast the availability of com-

posite services with complex topologies and composed of nodes with very different behaviors.

We devised a new parameter-less metaheuristic that defines a simheuristic framework [48]

to select a set of nodes to support a given service with a certain availability requirements,

taking advantage of the availability simulator and an Iterated Local Search framework [49].

The novelty of our proposal is twofold. First the combination of simulation techniques inside

of a metaheuristic eliminates some of the restrictions of similar proposals in terms of system

topology, component behavior or scale of the system. Second, its zero-parameter configuration

makes it suitable for very different conditions.

Moreover, comparing our simheuristic with other state-of-the-art proposals, our mech-

anism obtains better results in less computation times, which makes it suitable for user-

interactive service deployment processes.

As a side contribution to our availability-aware methodology, we designed a distributed

application based in the contributory computing paradigm to offer a microblogging service

(similar to Twitter) to community users.

We envisioned a theoretical usage model from Twitter statistics and validated by simula-

tion the feasibility of our proposal in different usage scenarios, regarding bandwidth and stor-

age requirements for community supporters. With this real application, we expect to clarify

the kind of services targeted by our proposal and to identify easily where our other contri-

butions would fit in the contributory model. After its validation, we applied the availability-

aware allocation mechanism explained above to an artificially simulated community support-

ing the distributed microblogging service to prove its value in a real application.
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2. A simheuristic approach to schedule distributed task execution

We designed a methodology to schedule tasks in a distributed environment considering devi-

ations in running times, which is a more accurate approach to reality.

We modeled the task scheduling scenario as a Flow-Shop Problem [50] with Stochas-

tic Times and proposed a simulation-optimization methodology to exploit current state-of-

the-art heuristics to tackle this problem. Our contribution was to bring the simulation-

optimization methodology to the distributed computing arena, so task planning becomes

more realistic.

The proposed methodology obtains significantly lower overall computing times than ran-

dom task processing when combined with two well-known heuristics for the Flow-Shop Prob-

lem. Our assumption was that shorter makespan for overall execution times would result

in lower energy consumption globally. We ascertained that by simulations with well-known

benchmarks for the FSP and typical energy consumption from present datacenter servers.

3. A combined availability- and energy-aware service allocation mechanism

We reviewed in depth the literature on replica allocation mechanisms that considered the

energy consumption in the decision process. This study helped us to discuss the challenges

that the green computing topic arises to the Operations Research community applied to the

distributed computing field.

We present an extension of our availability-aware allocation mechanism to determine

which is the subset of hosts that consumes the minimum power while maintaining a certain

level of service availability.

We considered the energy to be a stochastic variable with high variability over time. We

built a simulator of energy consumption of different hosts from a given energy model for each

one. We then compared the service allocations obtained from a greedy host selection process

and from our methodology and discovered that significant reductions on consumption can be

made with small degradation of the service availability.
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4. A network-aware mechanism for service allocation

We designed a methodology to allocate service replicas in a network graph aiming to minimize

the distances from each client to its closest service replica.

We modeled this problem as a Facility Location Problem [51, 52], on which service replicas

are facilities (with a set up cost) and the clients in the network are customers. Then, the

goal is to minimize the sum of distances and set up costs of the selected replicas.

We assessed our method with the classical benchmarks for the FLP and then validated

our approach in a real network topology fom a community network, showing the goodness of

our proposal on finding closer replica locations to all clients in the network.

1.7 Dissertation outline

The rest of this dissertation is organized in four more chapters, which cover the contributions

of this thesis.

Chapter 2 is focused on describing the availability-aware mechanism that combines com-

puter simulation with an state-of-the-art metaheuristic to find the most suitable subset of

nodes in a contributory platform to host a composite service.

Chapter 3 reviews several energy consumption matters of distributed computing systems

in general. After that, it presents a methodology to schedule ordered tasks in a set of servers

and another methodology that guarantees a certain service availability for contributory ser-

vices while reduces the energy consumption of these systems.

Chapter 4 presents a network-aware methodology to allocate services in a contributory

platform in such a way the network distances of all potential clients to their closest replicas

is minimized.

Chapter 5 reviews the main conclusions of this thesis and discusses the contributed results.

It also draws several lines for future research works that could continue this thesis.
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2Availability-aware allocation
for composite services in
contributory environments

This chapter describes an availability-aware mechanism for contributory computing platforms.

This procedure is based on a simheuristic that combines an Iterated Local Search heuristic with

a complex system availability simulator.

The contents of this chapter were extracted from publications [P1, P3, P7, P8, P9, P10, P12].





2.1 Overview

As previously evidenced in Chapter 1, there is a promising trend to promote the utilization

of non-dedicated resources for offering cloud-like services over the Internet. Despite the

clear benefits of sharing and aggregating idle resources for deploying Internet services in a

community of users, the fact that these are non-dedicated and very heterogeneous resources

makes them extremely stochastic and unpredictable. Therefore, complex mechanisms —

mainly based on the use of costly redundancies— must be developed in order to guarantee

reasonable availability levels for the service.

In this particular context, we generally understand the availability of an individual re-

source or a system of resources as the probability that it will be operative, at a given time,

when working under specified environmental conditions [53]. In distributed computing, avail-

ability is understood as the fact a host has a working connection to the network and is

reachable by other nodes [54]. Also, the hardware must be on and operational and the

associated software must be in a state that can respond to remote requests [55].

Accordingly, we propose in this chapter a novel simheuristic to generate cost-efficient

configurations of non-dedicated resources able to support Internet services (as described in

Section 1.3.2) with a high availability level. Our methodology deals with the stochastic op-

timization problem of determining a minimum-cost configuration of non-dedicated resources

able to support a service while maintaining the service availability level over a user-defined

threshold.

The main idea behind our approach is to design a metaheuristic algorithm which, starting

from a feasible but costly solution, performs an oriented local search trying to replace expen-

sive resources by cheaper ones —usually offering somewhat lower availability levels. For each

new configuration generated in this iterative process, simulation is employed to estimate the

new global availability of the service. This estimation is then used to check if the new and

less expensive configuration offers an availability level higher than the one specified by the

user. As long as more time is available, the algorithm iterates this search process looking for

cheaper configurations of resources that offer service availability levels above a user-defined

threshold.

Despite its relevance in future Internet computing practices, this problem has not been

specifically analyzed so far. Efficient approaches have been developed for solving similar
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problems in the case of grid and cloud computing, though many of these approaches assume

highly-dedicated resources, which are characterized by high availability levels. Other restric-

tive assumptions typically refer to the system size, the system topology —i.e., the logical

interconnections among the components offering a computing task or a service—, and the

probability distributions employed to model the failure and repair times of each resource.

2.2 Problem description

We defined the concept of service earlier in Section 1.3.2. Basically, a composite distributed

service can be seen as a system of interrelated components that must be completed, over a

time period, by a set of different resources.

In terms of availability, a composite service will be available (operative) for the users if

some logical conditions are satisfied. Thus, at any time there must be some nodes offering

each of the service critical tasks. The logical conditions define an underlying logical topology

for the service to be operative. This topology can be represented as a graph or network

of vertexes (resources completing specific tasks) and edges (logical interrelationships among

tasks), The example in Figure 2.1 shows five components supported by seven hosts, being

nodes 2 and 3 and nodes 5 and 6 replicas of the same component.

1

2

3

4

5

6

7

Figure 2.1: Graph representation of a composite distributed service

Notice the availability of these services will depend upon (a) the individual availability

of the resources selected to complete each task; and (b) the underlying topology defining

the conditions for the service to be operative. The service availability level could be trivially

increased by employing those resources with the highest availability levels, but these resources

are likely to be the most desired and expensive ones as well.

The service availability level could also be increased by adding redundancies to the under-

lying topology, i.e., by assigning a large number of redundant resources to each component.
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However, this policy would also increase the cost of deploying the service and could limit its

scalability. Thus, our goal is to find a configuration of nodes which delivers the service with

a high availability and at the lowest possible cost.

More formally, let G = (N , E) be a graph representation of the service, where N =

{n1, n2, ..., nn} denotes the set of n nodes (resources) that can be used to deploy it, and

E = {e1, e2, ..., em} denotes the set of p minimal paths defining the logical topology of the

service [53]. In other words, the service will be available if, and only if, at least one of these

minimal paths is fully operative —at any given time, t, a minimal path will be operative if,

and only if, all the nodes in it are operative at t. For each node ni (i = 1, 2, ..., n), we will

consider the cost of using it, ci ≥ 0, its current status at time t, si(t), as well as a binary

variable xi. The variable xi will take the value 1 if node i is selected to deploy the service,

and 0 otherwise.

Similarly, the status of node i at any given time t, si(t), will be either 1 if the node is

operative at t, or 0 if it is not. Remark that si(t) will depend upon the behavior of two random

variables, Fi and Ri, which represent failure times (time to the next disconnection) and repair

times (time to the next connection) for node i, respectively. Weibull distributions are usually

employed to model these random variables, but other distributions like the Exponential or

the Log-normal are also frequently used.

Finally, we denote the availability of the service at any time t by A(t). As discussed before,

A(t) will be a function g() of both E and s(t) = (s1(t), s2(t), ..., sn(t)). Then, our goal will

be to find a subset of nodesM in N such that the total costs of the resources are minimized

while the service availability at any time t, A(t), is greater than a user-given threshold, A0,

for all t in the interval (0, T ). This problem can be expressed as in Equation 2.1.
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Find D : N →M

that minimizes f(D) =
∑
∀i∈N

xici

subject to si(t) ∈ {0, 1},∀i ∈ N ,∀t ∈ (0, T )

si(0) = 1,∀i ∈ N

Fi ≈ Failure(αi, βi), ∀i ∈ N

Ri ≈ Repair(γi, δi),∀i ∈ N

si(t) = f(Fi, Ri), ∀i ∈ N , ∀t ∈ (0, T )

xi ∈ {0, 1},∀i ∈ N

ci ≥ 0,∀i ∈ N

ĀD = g(E , s(t)) ≥ A0, ∀t ∈ (0, T )

(2.1)

Our problem can be formulated as well as a discrete optimization problem, namely:

Problem 1 Find the deployment D : N →M that minimizes the objective function f(D) =∑
∀i∈N xi · ci, subject to the constraint ĀD ≥ A0.

From the formulation above, we first need to solve the issue of computing the service

availability, AD(t), for different nodes-topology configurations. As discussed earlier, it seems

reasonable to assume that we have information about the availability behavior of each node

—the associated probability distributions can be obtained by fitting historical data on each

resource. Similarly, it seems reasonable to assume that the service topology can be expressed

as a series of minimal paths. However, depending on the specific distributions and topologies,

it might not be easy or even possible to compute the service availability by using exact

methods.

Hence, in most realistic scenarios —characterized by non-normal distributions and net-

work topologies with hundreds or thousands of nodes—, algorithms based on discrete-event

simulation become an excellent alternative to exact or analytic methods [56, 57], which often

can not easily represent factors such as degradation, repair processes, obsolescence and com-

ponent replacement. They can provide estimates for the service availability without having

to consider specific assumptions on the probability distributions modeling individual failure
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and repair times or on the service topology. Our simulation-optimization approach makes

use of such an algorithm.

2.2.1 Complexity of the problem

If |N | = n and |M| = m, then the size of the search space is the number of different

deployments, n(n − 1) · · · (n − m + 1) = n!/m!. As we mainly deal with very large-scale

systems, typically n� m, which makes n!
m! very large, and rules out any form of brute-force

search.

Notice that the different processes will have a certain priority within the service, generally

speaking. Although not strictly required, we prefer to respect the relative priorities of the

processes during deployment, i.e. we assign critical component replicas to nodes with higher

availability. This enables us to reduce the search space, since now we just have to look

for a subset of nodes S, with cardinality m. Once we fix the subset S, the most critical

component is assigned to the node of highest availability, the second most critical component

is assigned to the node with the second-highest availability, and so on. In other words, D is

uniquely determined by S, provided that the process priorities are all different, and the node

availabilities are all different. The size of the search space now becomes n!
m!(n−m)! .

The most important benefit of this restriction is that our problem reduces to a variant

of a well-known combinatorial optimization problem. Note that the objective function f can

now be reformulated as a function of S, instead of D. Next, we shall introduce new variables,

in order to reformulate the problem as a maximization problem.

Let us assume that the cost of a node is bounded above by MaxCost, and let us define

the profit of a node nj as MaxCost − cj . The total profit of a deployment is obviously

defined as f ′(S) =
∑
∀j∈S(MaxCost− cj) =

∑
∀i∈N xi(MaxCost− ci). Let us also define

the weight of nj as 1− āj , and the overall weight of the deployment S as 1− ĀS . With these

new definitions, our Problem 1 can be restated as:

Problem 2 Find a subset of nodes S, with cardinality at most m, that maximizes the overall

profit f ′(S), subject to the constraint 1− ĀD ≤ 1−A0.

This turns out to be a variant of the well-known k-item Knapsack Problem (kKP) [58, 59].

The only difference with the k-item Knapsack Problem is that in our case, 1 − ĀD is not
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necessarily a linear function of the individual weights 1 − āj . Being a generalization of the

k-item Knapsack Problem, we can state our problem is clearly NP-hard. Thus, as we already

discussed in Section 1.4, heuristic approaches can be developed for obtaining good solutions

to this complex problem when dealing with large-scale scenarios as the ones intended in

contributory computing.

2.3 Related work

Many studies focused on availability studies of distributed computing environments. More

recently, some of them focused on those based on heterogeneous and non-dedicated resources

One of the first studies discussing availability of distributed (transactional) systems was

done by Triantafillou [60]. He argued for finding high levels of availability without increasing

costs unnecessarily. Also, he addressed the need to investigate availability in large-scale

heterogeneous systems. Other authors also discussed availability in distributed systems,

proposing two-level hierarchical models to analyze these issues [61]. At the system level, they

use a graph-based approach to analyze the availability of distributed programs. On the other

hand, they use Markov models for predicting availability at the component level.

Due to the growing importance of distributed environments based on heterogeneous and

non-dedicated resources —e.g. peer-to-peer and volunteer-computing networks—, there have

been many recent studies about node-level availability in such systems [62, 63, 64].

Other studies focused on studying CPU availability rather than host availability, a similar

but more restrictive approach on which load [65], user working periods or OS interruptions

were considered [66]. Thus, the host is accounted as available only when it is actually available

to execute tasks in a volunteer computing platform. In [66], the authors studied the execution

availability over four different traces from desktop and laboratory computers and a dedicated

cluster. They extracted some per-host and aggregated statistical information that clearly

showed the heterogeneity and volatility of desktop grid resources. After defining this host

characterization, the authors proposed a performance model for different granularity task

execution in distributed systems. Finally, they compared the performance of executing tasks
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in a dedicated cluster environment and in desktop grid resources, finding a relation between

both (called cluster equivalence).

Bhagwan et al. analyzed the peer-to-peer sharing system used in Overnet and argued

for developing new methods to test the availability of systems subject to complex temporal

variability [54]. They argued that the availability of hosts in these scenarios should be modeled

by a combination of two distinct probability distributions: (a) distributions reflecting the

daily on-line/off-line status of hosts, and (b) distributions reflecting the entrance of new

hosts to and permanent departures of old hosts from the system. Regarding the latter, their

results showed that each day over 20% of the hosts in Overnet were new to the system.

Douceur was one of the first who examined the host availability in large-scale and highly-

distributed computing systems [55]. He studied four traces from Microsoft enterprise desktop

computers, Internet desktop computers, Gnutella hosts and Napster hosts, founding several

common traits in their behavior. He then proposed a graphical, mathematical and behavioral

model for the host conduct and discovered a graduated mix of two uniform distributions. This

could be caused by the existence of two types of hosts, identified by the author as one group

with cyclical behavior and another which are left on at all times.

An interesting description of availability in distributed systems can be extracted from

this same article by Douceur [55]. In this context, the term availability refers to everything

needed for a host to be seen by another host: the hardware must be on and operational, the

associated software must be in a state that can respond to remote requests and a connection

must exist between the two hosts.

Giesecke et al. also discussed ideas related to reliability and availability of peer-to-peer

systems [67]. Using real data to build their model, they developed a discrete event simulator

for peer-to-peer systems. This simulator evaluated different replication strategies based on

voting policies like ROWA and majority consensus.

According to Mickens and Noble [68], achieving efficiency in a peer-to-peer system re-

quires the analysis of system availability. They argued that previous peer-to-peer models for

system availability provide estimates of uptime, but cannot predict changes in availability

over time. Therefore, they proposed new methods for predicting availability based on signal

analysis techniques and information theory. They also described several useful applications of
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availability prediction in distributed systems: reducing bandwidth consumption, increasing

data availability and reducing message latency.

All these studies have provided valuable information about the availability patterns of

several types of computational resources included in different computing paradigms. How-

ever, they focus mainly on node-level availability instead of on service-level availability. In

particular, our methodology aims at efficiently deploying composite services, formed by a

number of interconnected components, on a set of intermittently available resources. De-

spite its relevance for practical applications of contributory communities, to the best of our

knowledge no previous proposals have addressed this problem so far.

The most similar issues that have been previously addressed in the literature are those

related to: (a) providing efficient levels of collective availability to a service or to data in a

distributed storage system; and (b) workflow scheduling. A literature review on these two

issues, together with remarks on the differences and original contributions of our approach,

are included next.

2.3.1 Service availability

Andrzejak et al. introduced the notion of collective availability referred to making a service

or a data object available through replicating it in a number of machines [69]. The service

is considered to be available if at least k out of n computers where the service is located are

available. This is strongly related to some fitting models for file storage.

In effect, file objects can be stored using erasure codes [70], which divide a file object into

n fragments. By doing so, a client only needs to obtain k fragments (k < n) to restore the

entire file. Many distributed storage systems have tried to guarantee collective availability

for data objects [71, 72]. Bhagwan et al. argued that managing availability in large-scale

dynamical systems is a crucial but complex task in achieving system efficiency [71]. For their

predictions, they proposed a peer-to-peer architecture in which the storage system could

predict the future availability of components, determine the appropriate level of redundancy,

and automatically initiate repair actions according to users storage needs. Pàmies et al. stud-

ied the data redundancy costs and modeled the relationship between data redundancy, host

availability and retrieval times in distributed storage systems [6]. He devised new procedures

to optimize the data assigning process in heterogeneous storage systems and he proposed a
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PSO to determine the best way to assign an amount of redundancy to a set of nodes so that

data availability is maximized. The author presented a data assignment mechanism that as-

signs to each node an amount of data proportional to its availability, maximizing the overall

storage capacity.

The case of guaranteeing collective availability for computational services has also been

studied in some previous works [69, 73, 32]. In these models, a service deployment usually im-

plies considering n identical replicas of the service. A k-out-of-n topology is then considered,

meaning that the service will be available whenever at least k replicas are available, indepen-

dently of which ones. Many real-life services do not fit this model, since they present different

inter-component connections and system topologies. Therefore, a flexible simulation-based

methodology, like the one presented in this chapter, can be really helpful in such cases.

Andrzejak et al. tried to identify and evaluate the availability of a set of resources in

large-scale distributed systems, describing collective availability [69]. This approach employs

a virtualization layer to mask any lack of availability in individual resources. The researchers

tested a number of prediction methods, investigated factors influencing prediction error, and

identified a number of indicators that predict the future availability of resources. Also, they

showed how these methods could be used to predict the availability and associated costs of

resource groups. They later expanded this work to discuss using a mixture of dedicated (with

high levels of availability) and non-dedicated (very volatile) hosts to ensure efficient web ser-

vices in large-scale distributed systems [73]. Their approach includes ranking non-dedicated

nodes based on their past behavior, modeling short-term availability, and simulating avail-

ability levels of groups of nodes. In fact, actual data for 10,000 non-dedicated nodes was

used.

Lázaro et al. analyzed a large set of host availability traces from SETI@Home project

aiming to identify and classify different types of hosts and quantify their contribution to

overall system availability on the long run [32]. Then, they presented an availability predic-

tion tool based on bit vectors standing for a whole week host availability. They apply this

predictor to determine sets of hosts with negatively correlated availability patterns and so

deploy reliable services on top of them, trying to minimize file transfers for the service binary

files. They assessed their method by trace-driven simulations and showed it generates service

deployments with lower redundancy but higher collective availability.
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The problem of service availability is also addressed in [74], where Dai et al. develop a

Markov model to evaluate the availability of resources in a grid. Their goal is to minimize

the cost of grid systems by determining the optimal number of (homogeneous and dedicated)

servers to be employed. However, while their model takes into account server load issues,

it also makes some strong assumptions. Specifically, they assume parallel-like topologies,

exponential failure and repair times and independence of failures among different resources.

Kondo et al. measured and characterized time-dependent dynamics of real large-scale dis-

tributed systems (in particular BOINC, with more than 110,000 hosts) [75]. They focused on

identifying correlated availability patterns. They used different metrics along with clustering

techniques to automatically detect meaningful patterns. In this way, they identified groups

of resources with correlated availability and discussed how correlated clusters of resources

can be used to improve the efficiency of volunteer computing.

These previous works show that using actual data from real systems is vital in under-

standing availability in distributed systems. For this reason, Kondo et al. created the Failure

Trace Archive [76], a repository of availability traces for a variety of real distributed systems.

These traces are presented in a common format that enables comparative studies. Moreover,

they modeled host availability in nine distributed systems, including PlanetLab, Overnet and

Skype, among others. The repository also includes a SETI@home trace of more than one

year and comprising 230,000 hosts. This last trace was used by Javadi et al. to validate an

efficient method for discovering subgroups of hosts with similar statistical availability [77].

Of course, subgroups can more accurately be modeled with similar probability distributions.

According to the authors, at least 21% of the nodes in SETI@home can be accurately modeled

by theoretical distributions.

Finally, many of these proposals assumed some historical knowledge about host avail-

ability intervals, but none presented a method to obtain this information in a distributed

fashion on a working system. Morales and Gupta developed AVMON [78], a system that

allows host availability monitoring in large-scale distributed systems. They discuss several

distributed applications that employ nodes which continuously arrive and depart from the

system. AVMON is presented as a solution to monitor availability not only in regular systems

but also in those with selfish or corporate nodes. That is, AVMON deals with those nodes

that manipulate their and others’ availability for personal profit.
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2.3.2 Workflow scheduling

The workflow scheduling problem has been exhaustively studied in the field of grid computing,

in which a group of machines have to be selected to efficiently deploy a set of interconnected

tasks and guarantee its finalization. It is similar to the problem we address in that a group

of machines have to be selected to efficiently deploy a set of interconnected tasks. The

availability levels of the selected hosts contribute to guarantee the correct finalization of

the execution process. However, in our case the goal is not necessarily to guarantee the

finalization of a time-bound set of tasks, but to keep a long-lived service available during an

undefined period of time. In the remainder of this section we review some of the existing

literature for workflow scheduling in grids and discuss how our approach differs from them.

In [79, 80], the authors address the optimization problem of task allocation in heteroge-

neous distributed systems. Their goal is to maximize system reliability. Attiya et al. propose

a simulated annealing algorithm to solve the aforementioned optimization problem [79]. In

their approach, however, they assume the system follows a series-like bus topology and that

it is fully connected. They also assume that all resources have the same cost. In [80],

Kang et al. use an approach based on a honeybee mating optimization algorithm. In their

experiments, they use a uniform distribution to model node-level reliability, and only small-

scale systems (up to 8 processors) are analyzed. Our approach makes less restrictive assump-

tions, and it can be used for dealing with more complex, heterogeneous, and larger system

topologies.

In [81], Tao et al. propose a Markov Chain model to predict future availability of grid

nodes without adding significant overhead to the system. Their work is mainly oriented to

predict node-level availability in order to minimize the tasks completion time (also known as

makespan). Therefore, they do not consider system-level availability, which makes their goal

quite different to the one introduced in our research.

In [82, 83, 84], the authors present a particle swarm optimization algorithm to solve a

multi-objective task allocation problem in distributed computing systems. They mention

several optimization objectives that can be considered while assigning tasks to resources

in a distributed system. Among these potential objectives, they cite (a) minimization of

execution and communication costs; (b) maximization of system reliability and safety; and
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(c) maximization of fault tolerance throughout redundancy. However, their computational

experiments are run over small-scale topologies (up to 9 processors).

In [85], Tang et al. develop a reliability-aware task scheduling algorithm in which inter-

dependencies among tasks are considered. They show that the performance of their algo-

rithm surpasses that of previous algorithms not considering reliability. However, some of

the assumptions they use (e.g., independent failures following a Poisson process) restrict the

applicability of their model. Our approach tries to be more flexible in the sense that it does

not need to make these restrictive assumptions.

Yu et al. [86] propose a cost-based workflow scheduling algorithm that minimizes exe-

cution cost while meeting the deadline for delivering results over Utility Grids. Users are

required to pay in the system, hence cost reduction becomes a key factor. In [87], Zeng et

al. are concerned on guaranteeing user requirements for deployment of services over reli-

able resources. However, they do not consider the case of using unreliable (non-dedicated)

resources. Finally, Brandicet al. try to bind the tasks in a workflow so that grid services

satisfy user requirements [88]. However, they do not consider system efficiency (costs), which

is a fundamental part of our approach.

2.4 A simheuristic approach

In this section we propose a simheuristic to address to the problem of deploying Internet ser-

vices over non-dedicated resources with relatively low availability levels in large-scale systems.

Our proposal integrates discrete-event simulation into a metaheuristic search framework. The

goal is to find a solution which delivers the service with a certain probability and, at the same

time, employs a low-cost assignment of resources for efficient work execution.

First, we consider a service deployment process as the one explained earlier in Section 1.3.2

and sketched in Figure 1.5: a user requests a service deployment, a service manager determines

the most suitable set of nodes to support the service with our proposed methodology and

finally the service is deployed in the chosen hosts. The basic steps of our approach are

described next and are also sketched in a flowchart in Figure 2.2:

1. A user requests to deploy a service: a user wants to deploy a service with a set of

requirements, specifically:
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• a clear description of the service, including the different agents that must deploy

it as well as their specific roles;

• when appropriate, computational requirements (CPU, RAM, geographic location,

quality of its Internet connection, etc.) for each service agent;

• the time during which the service must be operative or, alternatively, conditions

that imply the end of the service;

• the conditions that must be satisfied to consider the service as successfully deployed

and executed (i.e., the logical topology related to the service availability);

• a lower bound or threshold for the availability level that the system must attain,

i.e., a lower bound for the probability that the service can be satisfactorily deployed

and executed (e.g.: 0.95, 0.99, etc.); and

• when resources have an explicit cost, the available budget for booking computa-

tional resources (nodes).

2. The service manager proposes an initial feasible solution: the host designated

as the service responsible determines an initial solution by selecting a subset of free

nodes among those resources with the highest availability levels —which are likely to

be among the most expensive ones as well. To do so the manager must have information

about:

• which resources are idle and their cost;

• the computational characteristics (CPU, RAM, geographic location, quality of its

Internet connection, etc.) of each resource in the system;

• the availability behavior of each individual resource, i.e., it is assumed that we

know the probability distributions modeling the failure (disconnection) times and

repair (recovery) times for each resource.

Notice also that during the initial selection of nodes we could consider policies that

promote independence among failure and repair times of different nodes —e.g., by

selecting geographically dispersed nodes or nodes belonging to different clusters inside
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the community. Once the initial solution has been constructed using highly-available

resources, the manager can check for service feasibility. In particular, the manager

must estimate the system availability function to ensure that it satisfies the user’s

requirements. This estimation can be performed using simulation-based algorithms, as

explained in next section.

By construction, we expect this initial solution to be feasible (i.e., to offer a higher

availability level than the minimum requested by the user), although quite expensive

—since it has been built using expensive resources. Depending on the user’s budget

and on the maximum time allowed for providing a solution, the manager can then start

a heuristic Iterated Local Search [49] process to look for cheaper alternatives without

violating the availability threshold. This iterative process is presented in step 3.

3. The service manager improves the solution: to maintain the availability level of

the service above the lower bound value defined by the user, we identify the critical

nodes —from an availability point of view— in the current solution. Thus, the manager

can start a local search process by substituting expensive and noncritical nodes with

cheaper resources. It can also try replacing critical and expensive nodes with redundant

structures including cheaper resources. By introducing redundancy, the manager may

get the same availability level with a lower cost.

At this point, Discrete-Event Simulation (DES) can be used again to find the defining

characteristics of this modified system. One of the simplest rules to follow during this

iterative process could be the following one: if the new solution is still feasible and also

cheaper than the previous solution, then replace the old solution with the new one;

otherwise ignore the new solution and look for another one. Of course, several meta-

heuristic frameworks —like the one explained in the next section— can be developed to

perform more advanced local search processes able to provide pseudo-optimal solutions.

In particular, the approach employed here also takes into account that in some real-life

scenarios solutions might be needed in just a few seconds or minutes.
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Figure 2.2: Basic flow diagram describing our simheuristic methodology
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2.4.1 A discrete-event simulation algorithm for complex system availabil-

ity estimation

This section reviews the basic ideas behind our discrete-event simulation algorithm used by

our simheuristic framework to estimate the availability of each new nodes-topology configu-

ration. The simulation component of the integrated approach presented in this chapter is an

adapted version of the algorithm introduced in [89].

For simplicity, we will only consider two possible states for a node: available (i.e., opera-

tive) or not. We call a transition from operative to non-operative a failure or disconnection.

A transition in the opposite direction is a recovery or repair.

The availability simulation algorithm assumes that probability distributions modeling

availability behavior of each individual resource are known. Since these will be distributions

modeling positive values (time to failure or time to repair), Weibull or Log-Normal prob-

ability models will be typically preferred over Normal probability models. The algorithm

also assumes that the system topology can be represented as a set of minimal paths [53,

Section 1.3.2]. We depict in Figure 2.3 an example of a topology graph decomposition into

its set of minimal paths.

1 2 5 7

1 2 4 6 7

1 3 6 7

1 3 4 5 7

Figure 2.3: Minimal path decomposition for the system in Figure 2.1

The algorithm uses discrete-event simulation to generate an artificial life-cycle for the en-

tire service. A system status shift schedule, represented as a list sorted by time and containing

the events that occur (failures or recoveries) is built at this step. Failures and recoveries will

be considered as complementary events. We begin by randomly generating failure times for

each node based on its associated failure distribution. When a new event (component failure

or repair) occurs, we add this event to our list and schedule a complementary event for the

same component.
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Assume that we need the service to be functional for a time simTime. Then, for each

event that occurs before time simTime we check the status of the entire service by analyzing

the minimal path decomposition. We record the uptimes and the downtimes of the system

during each simTime period (Figure 2.4). Critical component connections or disconnections

cause the system status to oscillate from available to unavailable. The availability for that

period can then be calculated as in Equation 2.2.

Figure 2.4: Discrete Event Simulation to reproduce service life-cycles

Asys =

∑
tup

simTime
(2.2)

We can then repeat this process a large number of times (e.g., several hundred or even

thousand times) to estimate the expected availability of the service. Additionally, as described

in [89], it is easy to compute a confidence interval for the expected availability, so that we

can have a measure of the estimation accuracy.

2.4.2 Pseudo-code of our hybrid approach

In this section we present a detailed pseudo-code version of our hybrid approach, introduced

at the beginning of this section. For readability issues, we have divided the pseudo-code in two

parts: (a) the node search algorithm (Algorithm 1); and (b) the system availability simulation

algorithm (Algorithm 2). As mentioned earlier, the latter is used several times throughout the

main procedure to estimate the system availability whenever a new configuration is proposed.
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Remark that the same heuristic framework could be used with other methods to estimate

the system availability. Similarly, a different search heuristic framework could be employed

instead of the one presented here. This modular design opens future research lines to explore.

The Algorithm 1 requires the following inputs: (a) information about the nodes or com-

munity resources, including their individual costs and their individual availability levels;

(b) the logical topology of the service, which defines the operational conditions to be

satisfied (E in Equation 2.1);

(c) the time runT ime the algorithm will run;

(d) the time period simTime in which resources will be assigned to the service;

(e) the user’s threshold for the service availability, i.e., the minimum availability level that

the service must satisfy.

At the beginning, all the available nodes are sorted by descending availability level and an

initial (dummy) solution is constructed by selecting the best free nodes, i.e., those resources

offering the highest availability levels. This is the simplest greedy approach, but yet is the

method used currently in the targeted systems. The system availability for this initial solution

is computed using the system availability simulation algorithm in Algorithm 2 for 30 complete

life-cycles. Notice in the implementation of Algorithm 1 we fixed the number of iterations

every time Algorithm 2 is also called to 30. This number provides enough significance to the

simulation results as it restricts the computing time when considering larger instances.

Then, an iterative process is started to seek for cheapest service deployments that fulfill

the availability restriction. We do so by switching a number N of nodes from the current

service deployment by N nodes from the idle ones (shiftNodes method). The N nodes and

their replacements are selected randomly from both lists (as in the example of Figure 2.5)

and we keep the cheapest solution as the best solution found by our method. Alternatively, in

order to let the algorithm escape local optima, some iterations may accept a more expensive

solutions (but still satisfying the availability restriction) as a valid solution (lines 19 to 21 in

Algorithm 1). This feature and the random host shifting makes our method able to explore

a wider set of the solution space of service deployments and hence obtain better results.

After the given runT ime, the algorithm returns the best solution found so far: the one

that fulfills the service availability requirement at the lowest cost observed.

Algorithm 2 presents our system availability simulation procedure. A number of iterations
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Figure 2.5: The shiftNodes method replaces hosts in the current solution by idle nodes in
the system

are run and, at each iteration, a complete life-cycle of the system is randomly generated. This

life-cycle elapses from time 0 to the life-time value simTime defined by the user. This life-

cycle is generated using discrete-event simulation with two types of events: node failures

(disconnections) and node repairs (recoveries), as explained above.

Each time a node failure or repair event occurs, the system status is sensitive to change.

Therefore, the system availability at that instance is checked. If it happens to be operative,

the time until the next event is accounted as uptime. For the next event, the algorithm

repeats the same procedure, until the event time reaches the simTime value. The service

availability is then estimated as in Equation 2.2. Iterating this process a significant number

of times (maxIter in Algorithm 2) produces a fair estimate value of the system availability.

Of course, the accuracy of the estimate is directly related to the number of iterations.

Nevertheless, running more iterations requires more computation time, so a balance must

be found for the maximum number of iterations to run. In general, relatively short simulations

including just a few hundred iterations should be enough to get a good estimate of the system

availability level. If necessary, however, longer simulations including thousands of iterations

can be employed with the final solution provided by our methodology in order to give a more

accurate estimate for that best-found solution.

2.5 Methodology evaluation

We split the validation of the proposed methodology in two different cases, depending on the

scale of the system. In this scenario, we refer to the scale of the system as the number of

nodes participating in the platform.

First, we validate the methodology previously proposed by comparing the solutions it
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Algorithm 1 Replica-to-Host assignment search algorithm

Require: nodes, topology, runT ime, simTime, availabThreshold
1: nodes← sortByAvailability(nodes)
2: baseSol← buildGreedySol(nodes, topology)
3: bestSol← baseSol
4: delta← 0
5: lastImprovement← 0
6: lastMovementWasAnImprovement← false
7: runT ime← currentT ime+ runT ime
8: while currentT ime < runTime do
9: newSol← shiftNodes(baseSol, nodes)

10: if availab sim(newSol, topology, simTime, 30) > availabThreshold then
11: delta← cost(newSol)− cost(baseSol)
12: if delta < 0 then
13: lastMovementWasAnImprovement← true
14: lastImprovement← −delta
15: baseSol← newSol
16: if cost(baseSol) < cost(bestSol) then
17: bestSol← baseSol
18: end if
19: else if delta > 0 and lastMovementWasAnImprovement is true and delta <=

lastImprovement then
20: lastMovementWasAnImprovement← false
21: baseSol← newSolution
22: end if
23: end if
24: end while
25: return bestSol

provides with the optimal solutions obtained for a set of small-scale instances in which several

simplifying assumptions were made. Then, we considered large-scale instances, in which we

compared the solutions generated by our approach with those obtained using greedy rules

typically employed in real-life Internet computing systems, a Multi-Start approach and a

Simulated Annealing algorithm used in a similar situation.

In order to complete these numerical experiments, the simheuristic was implemented as

a Java application. All the experiments in this work were executed on a desktop computer

with an Intel Core i5-2400 processor and 4 GBytes of RAM memory running Ubuntu Linux

13.04 and the Oracle Java Virtual Machine 7-64bits.

2.5.1 Optimal values in small-scale scenarios

Figure 2.1 showed earlier a graph representation of a distributed service which requires seven

nodes to operate. Notice that the service can be seen as a system of interrelated tasks that
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Algorithm 2 availab sim(): System Availability Simulation

Require: solution, topology, simTime,maxIter
1: nIter ← 0
2: Asys ← 0
3: while nIter < maxIter do
4: for all node in solution do
5: dist← getFailureDistribution(node)
6: eT ime← generateRandomTime(dist)
7: addFailure(eventsList, node, eT ime)
8: end for
9: systemStatus← true

10: tup ← 0
11: pastT ime← 0
12: currentT ime← 0
13: while currentT ime < simTime do
14: nextEvent← nextEvent(eventsList)
15: currentT ime← min(getT ime(nextEvent), simTime)
16: node← getNode(nextEvent)
17: if systemStatus is true then
18: tup ← tup + (currentT ime− pastT ime)
19: end if
20: if nextEvent is a failure then
21: dist← getRepairDistribution(node)
22: eT ime← generateRandomTime(dist)
23: addRepair(eventsList, node, eT ime)
24: else if nextEvent is a repair then
25: dist← getFailureDistribution(node)
26: eT ime← generateRandomTime(dist)
27: addFailure(eventsList, node, eT ime)
28: end if
29: systemStatus← checkSystemStatus(topology, nextEvent)
30: pastT ime← currentT ime
31: end while
32: Asys ← Asys +

tup

simTime
33: nIter ← nIter + 1
34: end while
35: return

Asys

nIter
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must be completed, over a time period, by this set of resources. The service will be available

for the users if some logical conditions are satisfied. Thus, at any time there must be some

nodes offering each of the service core tasks. The logical conditions define an underlying

logical topology for the service to be operative. This topology is represented by the oriented

edge connections in the directed graph.

Even though the existence of host availability behavior traces from a plethora of Internet

distributed computing systems (like the ones collected in the Failure Trace Archive [76]),

using them would require to build models for failure and repair distributions describing every

host availability intervals. Since we wanted to asses the operation of our methodology rather

than a model, we chose to use artificially-generated distributions. Thus, we isolated the

operation of our methodology and proved the goodness of our proposal.

In this example, we will assume that the user specifies a minimum availability level of

90% of the time for the service during a period of 0.4 time units. Also, we will assume that

for each resource, both its cost as well as the probability distribution modeling its failure

and repair times are given as inputs. These inputs are shown in Table 2.1, where the mean

availability of each node is computed as the quotient between: (a) the Mean Time To Failure

(MTTF), and (b) the sum between the MTTF and the Mean Time To Repair (MTTR).

Values in Table 2.1 were artificially generated in such a way we obtained a set of nodes

with mean availability levels that made interesting for contributory computing. Also, the

cost associated to each node is correlated to some extent with node’s mean availability, so

the most available nodes are more likely to be also the most expensive ones.

Another simplifying assumption in this example is that only failure times are considered

—i.e., no repairs are allowed. This assumption reduces the computing time needed to obtain

the service availability for each new configuration generated during the search process and

ease to shorten the exhaustive search while keeping our methodology as it was designed.

Our optimization problem consists then in selecting the set of seven ordered nodes, among

the available ones, which minimizes the service cost (sum of nodes’ costs) while providing a

service with an availability level above the user-defined threshold.

Table 2.2 shows the results obtained for different instances of this problem. These in-

stances differ in the number of available nodes in the community. The optimal value has

been obtained using exhaustive search. Computational times employed by exhaustive search
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Table 2.1: Probability distributions and costs associated with each host

Node ID
Failure Distribution Repair Distribution Mean availab.

Cost
Type Shape Scale Type Shape Scale MTTF

MTTF+MTTR

Node 1 Weibull 1.8 2.8 Weibull 1.3 0.3 0.9 18.96
Node 2 1.7 2.7 1 0.25 0.91 16.82
Node 3 1.6 2.6 1.5 0.4 0.87 17.83
Node 4 1.6 2.5 0.9 0.35 0.86 13.1
Node 5 1.4 2.4 0.8 0.25 0.89 17.21
Node 6 1.2 2.2 1.2 0.35 0.86 15.74
Node 7 1.3 2.3 0.95 0.4 0.84 16.41
Node 8 1.1 2.5 0.8 0.22 0.91 9.38
Node 9 1.4 2.8 0.6 0.36 0.82 14.78
Node 10 1.7 2.1 0.95 0.35 0.84 13.63
Node 11 1.6 2.7 0.78 0.26 0.89 15.72
Node 12 1.1 2.4 0.73 0.32 0.86 10.54
Node 13 0.9 2.9 0.87 0.29 0.91 18.71
Node 14 1.9 2.7 1.75 0.34 0.89 13.77
Node 15 0.8 3.1 0.93 0.31 0.92 14.58
Node 16 1.3 2.6 0.5 0.1 0.92 10.08
Node 17 0.75 1.8 1.2 0.28 0.89 14.59
Node 18 1.6 2.3 1.6 0.18 0.93 11.29
Node 19 1.1 2.9 0.8 0.26 0.9 9.93
Node 20 1.6 2.2 1.4 0.32 0.87 15.67
Node 21 0.8 2.9 0.75 0.1 0.97 12.1
Node 22 1.3 2 1.3 0.24 0.89 17.7
Node 23 1.8 2.3 0.92 0.36 0.85 11.36
Node 24 0.95 3.2 0.68 0.15 0.94 14.27
Node 25 1.5 2.8 1.4 0.42 0.87 15.56
Node 26 0.83 2.1 1.2 0.6 0.8 9.3
Node 27 1.2 3.2 0.6 0.3 0.87 12.06
Node 28 1.1 1.98 1 0.2 0.9 12.5
Node 29 0.79 2.3 0.8 0.34 0.87 17.2
Node 30 1.6 2.6 1.2 0.16 0.94 11.23

are given just as a reference, since we were only interested in the availability and cost values

of the optimal solutions.

From the results in Table 2.2, the following observations can be made: (a) our approach

is able to find an optimal solution in all the small-scale instances considered; (b) in all these

instances, the computational times needed by our approach to find an optimal solution are

below one second, while an exhaustive search method might need several hours to find an

optimal solution due to the combinatorial explosion nature of this problem (Figure 2.6); and

(c) from Figure 2.6, it can be noticed that the computing time employed by our approach
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Table 2.2: Comparison between optimal solutions and our solutions

# hosts
Optimal Solution Our Best Solution

Cost
Availab.

Time (s) Cost
Availab.

Time (s)

10 101.28 0.91 5.073 101.28 0.91 0.038
15 89.78 0.91 229.232 89.78 0.91 0.084
20 78.09 0.91 2,620.736 78.09 0.91 0.133
25 74.36 0.91 15,814.235 74.36 0.91 0.167
30 73.29 0.90 63,461.778 73.29 0.90 0.268

—in solving these small-scale instances— is significantly shorter than the exhaustive search

approach (few orders of magnitude lower).
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Figure 2.6: Computational times employed in obtaining the optimal solution. Remark the
logarithmic scale on the vertical axis.

2.5.2 Performance evaluation in large-scale scenarios

We are interested now in analyzing how our approach performs in larger scenarios. These

scenarios are characterized by large-scale distributed communities composed of hundreds or

even hundreds of thousands of hosts with random failure times as well as with random repair

times.

As discussed earlier, due to the complexity of the associated stochastic optimization prob-

lem, in these cases it is not possible to guarantee optimality of the solution in reasonable time
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periods. Therefore, we will not be able to compare the service deployment costs provided by

our solution against the optimal cost. However, we can compare our solutions against some

other well-known algorithms or proposals in the same direction: (a) the greedy solutions

which are employed in Internet computing for solving similar situations (such as CoDeS [27]

or LaCOLLA [90]) (b) a fast but simple Multi-Start search algorithm; and (c) the Simulated

Annealing (SA) approach by Attiya et al. [79], which we implemented using the parameters

fixed in the original paper. In all cases, the search method was combined with our availability

simulator to determine the reliability degree of each of the generated service deployments.

Likewise, we can also analyze the computing times based on our approach as well as other

approaches in finding good solutions to these realistic scenarios.

We will use in our tests the same topology and desirable service availability level as

in the previous experiment (also from Figure 2.1). The simulation time horizon is now

fixed to 0.9 time units, so the effects of repair events can be perceived. Though, the list of

available resources to select from (all the hosts in the system) will be much larger in this case.

In particular, we will consider four different scenarios, with 500, 1,000, 10,000 and 100,000

hosting nodes. In order to easily generate the input data for such a large number of resources,

we have used the rules detailed in Table 2.3 to define the properties of each node. All tests

were run for a maximum time of 300 seconds.

Table 2.3: Rules for generating input data for each node

Node ID Node N

Failure Distribution
Type Weibull
Shape Uniform(0.8, 2)

Scale Uniform(0.5, 4)

Repair Distribution
Type Weibull
Shape Uniform(0.5, 1.75)

Scale Uniform(0.2, 1.8) MTTF
MTTF+MTTR

Cost 10× (availability+Uniform(0,1))

Again, values in Table 2.3 were artificially generated in such a way we obtained a set of

nodes with mean availability levels that made interesting for contributory computing. The

cost associated to each node is also correlated with node’s mean availability. From the host
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availability information in Table 2.3, we obtained four different sets of nodes, with the main

host availability of each as shown in the histograms in Figure 2.7.
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Figure 2.7: Host mean availability for the four node sets used in this experiment

Table 2.4 shows the results obtained using our simulation-optimization approach and how

they compare against the ones obtained using the greedy rule of selecting the nodes with the

highest availability level among all the nodes in the list.

From data in Table 2.4, the following observations can be made: (a) in all cases, our

approach has been able to noticeably reduce the costs of the service deployment provided by

other methods, with an average cost reduction of 58.3% from the greedy approach; (b) despite

the size of the list of resources, our approach is able to provide good solutions —with important

reduction of deployment costs— in reasonable computing times (under 300 seconds).

We recognize the performance of the SA approach implemented for this experiment could

be further improved by fine-tuning the internal parameters of the algorithm (initial tempera-

ture, cooling factor and increasing factor). Thus, we believe that would lead the SA algorithm

to obtain results of similar quality as ours. However, this fact also shows the goodness of our

approach, since it requires less input parameters and, therefore, simpler fine-tuning processes.

This trait makes it very interesting for heterogeneous scenarios like contributory communi-
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Table 2.4: Comparison between greedy selection, Multiple Start algorithm, Simulated An-
nealing algorithm and our approach in large-scale scenarios (max. time = 300 seconds)

# hosts 500 1,000 10,000 100,000 Average

Greedy
Cost 74.53 72.26 79.72 102.71

Availability 0.97 0.98 0.98 0.98

Multiple-Start
Cost 53.94 64.03 53.59 54.01

Availability 0.90 0.90 0.90 0.91
Gap greedy 27.63% 11.39% 32.78% 47.42% 29.8%

Sim. Annealing
Cost 42.08 43.01 47.49 55.6

Availability 0.92 0.90 0.90 0.92
Gap greedy 43.54% 40.48% 40.43% 45.87% 42.6%

Our Best
Cost 33.91 32.41 31.88 37.41

Availability 0.91 0.90 0.92 0.93
Gap greedy 54.5% 55.2% 60.0% 63.6% 58.33%

ties, since the methodology behaves properly in different circumstances with neither changes

nor fine-tuning processes.

Figure 2.8 shows, for each of the considered instances, how the solutions provided by all

the compared methods evolve —in terms of costs— with computing time.

Notice that the solutions obtained in just a few seconds are already far cheaper (almost

a 50% cost reduction after only 10 seconds of execution) than those provided by the greedy

approach —i.e. our approach can provide good solutions in real-time. It is also remarkable

that our approach provides always cheaper service deployments than any of the compared

methods, even when longer execution times are allowed.

2.6 Our simheuristic applied in a distributed social network

use case

In the recent year, our research group proposed several distributed systems based on non-

dedicated resources. One of these proposals is HorNet1 [P1, P9], a microblogging service for

contributory social networks which aims at overcoming dependency from current centralized

microblogging services while making use of existing underutilized resources.

1http://dpcs.uoc.edu/joomla/index.php/software/hornet
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Figure 2.8: Comparison between the solution obtained by the four tested procedures in each
of the studied host sets

We briefly discuss the need for a decentralized microblogging service and its feasibility

in this section. In addition, present a use case of this application in which we apply our

availability-aware host selection simheuristic to select the hosts to support the service replicas.

2.6.1 Distributed or decentralized social networks

Online social networks such as Facebook, Twitter or LinkedIn2 play an important role in

everyday life for a large amount of people. They have reached hundreds of millions of active

users. Twitter is an example of a microblogging social network, which allows users to publish

short messages (up to 140 characters in Twitter, called tweets) as well as follow other users

and receive their messages. Twitter has gained a great social importance, and has been used,

2http://www.linkedin.com/
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together with other social networking services, for public relations, marketing and networking

by many businesses, as well as in organization of collective actions or to spread information

about important news by and to the general public. However, the social importance of these

services makes it paramount that they remain free and under control of the users.

Nevertheless, all major social networking platforms depend on a company which provides

both the software and the resources where it is executed, and stores all the information and

content generated by its users inside the social network. This allows the service provider,

for instance, to control or even censor information about certain topics. Even if the service

provider is trusted, a centralized service can be banned by governmental powers or the same

provider, as has happened to Twitter [91]. Moreover, centralized services can collect, analyze,

and correlate users’ data, thus generating even more information about the identity and

interests of a user than that included in his messages. This poses a critical privacy risk

since this information can be compromised or revealed to interested third parties. At the

same time, the contributory computing paradigm showed to be a valuable tool to utilize

underutilized or surplus user-contributed computers as a service platform.

In a contributory community, HorNet components are deployed dynamically and users are

free to decide when and which resources to contribute, keeping their freedom and ownership

of their computers while accessing and supporting a service which is collectively maintained

and owned. This collective ownership of the service, which is true in a physical sense (the

service is running on machines owned by different people) prevents the service from being

centrally controlled, censored or turned off (either by technical failures or by conscious will).

In any case, a minimal user commitment is required to keep a minimal amount of resources

contributed. Provided that these resources are contributed (by any subset of community

members), any resource might enter or leave the community at will without compromising

its regular operation. Otherwise, the community would not be able to support the intended

services with the desired quality. This minimal amount of resources will depend on the size

and the activity level of the community members.

Related work

Decentralizing social networks is not a new idea. Different solutions have been proposed to

avoid depending on a centralized entity, mainly for privacy reasons [92]. In many of these
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works [93, 94, 95, 96], each user stores his own data in his own computer, in a trusted computer

or in a paid cloud utility computing, retaining full rights to the content and sharing them

with other users in a peer-to-peer basis. Availability of data depends on the availability of the

computers hosting the data. Our proposal focuses on guaranteeing the availability of data

regardless of the availability of each members’ computer by deploying small services (that

manage user’s data) and a storage service in resources freely contributed to the community

by its members.

Other proposals have tried to leverage peer-to-peer networks for social networking by

distributing data among peers [97], but they have focused on the challenges regarding data

privacy [98]. In contrast, in HorNet the service is split into low-demanding operations that

are executed on the individual resources contributed by end-users. Private information, like

profile information, can be easily stored safely using cryptography and be only revealed to

authorized people. This way, the sensible data available to a user cannot be used to infer the

interests of other users beyond what is revealed in their messages.

2.6.2 The HorNet architecture

We designed HorNet as a three-tier application (as described earlier in Section 1.3) on top of

the CoDeS middleware implementation [27], used as a distributed directory service. In our

prototype implementation, we relied on a dedicated web-server for the presentation layer and

on an external storage facility for the data layer.

The microblogging service implements the logic as a set of smaller and stateless services,

deploying an instance of each of them for every user in the system. These services control

the messages the user sends and receives, her followers and other information. They use the

storage service to provide persistence to tweets and metadata and the middleware handle

the resource aggregation and manage the service replica allocation and reallocation on host

churn.

Scalability (in number of users) and service availability guided the design decisions of Hor-

Net. Scalability is achieved by decomposing the microblogging functionality it provides in a

large set of small low-requiring components, each of which deals with one of the functionalities

of each user. Specifically, for each user Ui, the HorNet core deploys six components:
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a Messages: messages published by user Ui. When the user publishes a new message,

this service sends it to all her followers.

b Timeline: messages received by user Ui

c Followers: users that follow user Ui

d Following : users followed by user Ui

e Mentions: messages that have a mention to user Ui

f Profile: general information about user Ui, such as full name, avatar, etc.

When a user is created, a new instance of each of the six services is deployed. From that

moment on, availability is provided by the directory service, freeing HorNet of the burden of

dealing with the dynamic and heterogeneous nature of domestic computers.

Figure 2.9 presents a HorNet social network with many users and many contributed com-

puters. From all these users, the figure focuses in: Alice, Bob, John and Mary. To simplify,

the figure only includes the Timeline and Messages service of each of them. Alice, Bob and

John are connected to HorNet using a HorNet client installed in their home computers. Mary

is not currently connected. Finally, John, Bob and Mary follow Alice. Alice sends a tweet

(1). The tweet is first sent to her Messages service (2) that stores it persistently. From

Alice.Messages, the tweet is sent to the Timeline service of her followers (Bob, John and

Mary) (3) and her own Timeline (3). Notice that even though Mary is not connected, her

Timeline receives the tweet. All these Timeline services store it persistently in the storage

layer. Alice, Bob and John’s web containers perform periodical connections to their Timeline

services (4) from which they refresh the received tweets.

In case of any service disruption, recovery mechanisms should restore a new replica. In

this scenario, HorNet services should perform regular checks for new updates with other

components, in such a way lost or not received messages could be eventually acquired.

2.6.3 Feasibility evaluation

According to our simulations using the HorNet implementation described above, the 99th

percentile of the time it takes for a message sent by a user to reach the Timeline service of
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Figure 2.9: HorNet social network. To simplify, the figure only includes the Timeline and
Messages service of users following Alice.

a follower is 3.66 seconds. Furthermore, the time it takes for a user to retrieve 20 received

tweets is 1.9 seconds (99th percentile), which is reasonable from a user point of view. Our

current design retrieves last 20 tweets from the user Timeline when the user connects and

in blocks of 20 tweets each time she asks for older messages. However, we still lack a real

user community which would allow us to perform actual performance and user satisfaction

measurements.

In order to asses the feasibility of such a system in a real-world community, we made an

estimation of system-wide bandwidth usage and the amount of data generated based on the

typical user behavior found in Twitter. We consider bandwidth and disk space would be the

limiting factors in a real deployment, since the computational power and memory required

by each HorNet service is very low.

Usage data estimation

We used Twitter usage data summarized in a report by Barracuda Labs [99] to build a simple

user activity model. On the one hand, 79.2% of Twitter users send less than 1 message daily
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and 95% of them send less than 10. On the other hand, 83% of Twitter users follow less than

100 friends and are followed by less than 100 of them.

Thus, we modeled a typical Twitter user as follows: she would send 10 messages every

day, would follow 100 friends and would be followed by 100 other users. This makes an

overestimation of the actual average values found in Twitter. We also made the assumption

that each tweet would be represented by 200 bytes, containing the message itself and all the

needed meta-data (i.e. author, timestamps).

Bandwidth and Storage

Taking into account our basic user model and the data replication strategy presented by

Bhagwan et al. [71], which computes the required replication to achieve a specific target data

availability, we estimated the storage and bandwidth usage of our system.

Let us consider Dtweet as the volume of data a user message generates (calculated as

shown in Equation 2.3a), R as the number of replicas needed to guarantee data availability

(determined as detailed in Equation 2.3b), asys as the overall required system availability,

ahost as the mean host availability and Ntweets as the number of daily messages sent by a

single user. We can determine the storage volume each user has to contribute by counting

the number of messages she sends and receives. If we assume that each user contributes a

machine, with an average availability ahost, then it is easy to estimate the average number of

users each host has to manage. Adding the fact that information is stored replicated, we can

compute the amount of storage that each user has to contribute daily with the expression

shown in Equation 2.3c and the required bandwidth per user dividing this amount of data

by the length of a day.

Dtweet = (1 +Nfollowers)× Ltweet ×R (2.3a)

R =
log(1− asys)
log(1− ahost)

(2.3b)

Dhost =
Dtweet ×Ntweets

ahost
(2.3c)
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Providing a highly available service is one of the challenges of our proposal. Therefore, we

fixed a four nines (available 99.99% of the time) as the target availability for our system. We

also assumed that sent and received messages are stored for one month. Users could choose

to store older important messages in their local computer. Figure 2.10 shows the estimated

required bandwidth and disk space from each node in function of average host availability.

The required bandwidth in the upstream and the downstream channels are the same.
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Figure 2.10: Required bandwidth and storage capacities from each node and replicas per
service in HorNet

Figure 2.10 shows that, for example, in the case of an average host availability of 60%

each host should contribute around 58MB of disk space and a constant bandwidth of around

0.31 kbps. For 80% and 40% availability storage is 33MB and 104MB respectively and

bandwidth 0.84kbps and 0.13kbps. This states that such a kind of service deployment would

be completely feasible with current domestic computers storage volumes and the Internet

connections available in most parts of the world.

High demanding scenario

To reinforce our position on HorNet’s feasibility, we show an extreme example of service usage

from a high demanding user who could potentially be interested in this contributory social

network. Consider the case of an organization like Greenpeace, the environmental NGO,
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which could be interested on using the resources contributed by its affiliates3 to freely spread

their messages. This way, they would have no dependence on third-party organizations.

From the usage statistics of the organization’s Twitter account (285,000 followers and 6

tweets/day), we estimated that Greenpeace’s Messages service would have to send 6 messages

per day to 285,000 users (replication would be managed by the receiving Timeline services,

which would store the tweet in the required number of replicas). Therefore, the bandwidth

required by this Messages service would be higher than the average. The node responsible

for dealing with Greenpeace tweets (the node hosting the Messages service) should therefore

be offering a constant upload rate of approximately 30.9 kbps. If this node had a typical

upload bandwidth of 300 kbps, the time needed to send a message to all the followers would

be around 25 minutes. This delay could be tolerable, since delay is not a key feature in the

original Twitter service, which offers eventual consistency due to its database schema over

Cassandra [100]. Moreover, the task of delivering tweets from high demanding users could

be split among several hosts in order to reduce the required bandwidth from a single desktop

computer.

2.6.4 Availability-aware allocation in HorNet

This section presents the simulation of a contributory community where a basic social network

is deployed. We took as reference the six atomic components for each user in HorNet, and we

introduced redundancy in the two key tasks for the system. An instance of each service needs

to be available at any time in order to consider that the social network is fully operative.

Therefore, we modeled the system as shown in Figure 2.11, on which Services Messages and

Timeline are supported by two instances while the rest (Followers, Following, Mentions

and Profile) are only instantiated once.

Figure 2.11: System model for a N-users HorNet deployment

3Greenpeace states they have around 2.8 million economical supporters worldwide and their staff is around
2,400 people worldwide (July 2011).
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Let us imagine a college decides to offer a community-based microblogging service to their

students as a use case example. Assume the community is supported by 100 well-provisioned

computers donated by the institution. Besides of this, 500 personal computers are contributed

by the enrolled students. Assume the availability and cost information of the first 500 nodes

in the previous example in Section 2.5.2 and the 100 stable node information is generated as

in Table 2.5.

Table 2.5: Rules for generating input data for each stable node

Node ID Stable Node N

Failure Distribution
Type Exponential
Rate Uniform(3, 7)

Repair Distribution
Type Exponential
Rate 0.05

Availability MTTF
MTTF+MTTR

Cost 10× (availability+Uniform(0,1))−5

Parameters in Table 2.5 were selected to model highly reliable hosts, with long enough

available intervals and very quick restores from failures. We keep the same cost-availability

relationship than with other hosts, so this stable nodes should be slightly more expensive

than user-contributed resources.

We plot in Figure 2.12 the mean availability histogram for the hosts considered in this

new scenario. As expected, the addition of 100 institutional hosts with high mean availability

increases the mean availability of the nodes in the system. Combining non-dedicated and

dedicated hosts, more reliable service deployments could be achieved.
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Figure 2.12: Host mean availability for the node set used in this experiment

In this scenario, three students decide to deploy their microblogging service to commu-
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nicate privately while working on an assignment. The system topology is composed then by

24 components disposed as in Figure 2.11 and the students only require an 80% of service

availability.

We performed the same experiment than in Section 2.5.2: we sampled the cost and the

availability of the best found solutions after several execution times (as plotted in Figure 2.13).

In this case, we only compared our solution to the greedy deployment, as this is the only

method currently implemented in similar systems [27, 90].

0 50 100 150 200 250 300
Elapsed time [s]

200

220

240

260

280

300

C
os

t

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Av
ai

la
bi

lit
y

Greedy cost
Greedy availability

ILS cost
ILS availability

Figure 2.13: 3-user HorNet deployment in a University-aided community

Devoting computational efforts at the host selection stage could result in significant cost

savings. As can be observed in Figure 2.13, the larger the time spent on scavenging the node

set, the lowest resulting costs from service deployments, while the service availability level is

degraded at a much lower rate.

This example showed our methodology is ready to be adapted to a real-world service

deployment. The lack of an actual deployment of this system with real users prevented a

test in real conditions. The results shown in Figure 2.13 clearly state our method could be

embedded in a user-interactive service deployment procedure, as close to optimal deployments

are found when only 10 seconds are given to run our host selection procedure.
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2.7 Summary

The scale and relevance of existing distributed computing systems is rapidly growing with

the increasing use of inexpensive commodity, heterogeneous, and non-dedicated resources.

However, the narrow availability level of non-dedicated resources constitutes an important

challenge for the range of possible applications of these systems.

To contribute solving this problem, this chapter presented an original simulation-

optimization methodology for cost-effective and availability-aware service deployment. Our

approach combines a heuristic framework —which iteratively constructs cost-efficient solu-

tions for deploying services—, with a flexible simulation-based algorithm —which is used to

ensure feasibility of each newly generated solution through estimation of the corresponding

service-availability level. Therefore, our proposal can be used to promote efficient deploy-

ment of several Internet composite services in community environments. To the best of our

knowledge and despite its relevance, this problem has not been solved before in this particular

environment.

Thus, for example, previous proposals for availability-aware service deployment required

the use of restrictive assumptions —e.g. identical replicas of a service, series-parallel topolo-

gies, small-scale scenarios, probability distributions employed, etc. According to the numer-

ical experiments we performed, our approach is able to quickly provide optimal solutions in

small-size scenarios, while it can be also used in more realistic scenarios to generate good so-

lutions in real time, thus improving the greedy approaches typically used in Internet service

deployment practices over contributory resources.

Our experiments proved our methodology to obtain good quality solutions in reasonable

times. This would allow user-interactive service deployment procedures with close to optimal

allocations. Moreover, improving the greedy solution also causes a proper resource usage.

Thus, more services could be supported by the same number of resources or less resources

could support the same number of services.
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3Issues of energy-aware
allocation in distributed
systems

This chapter discusses the energy matters of distributed computing platforms. We present

two different strategies aimed to reduce the consumption of these systems, composed either by

dedicated or non-dedicated computing resources.

The contents of this chapter were extracted from publications [P2, P4, P5, P11, P12].





3.1 Overview

Internet services have become extremely popular in current societies. End-users quickly

adapted themselves to social networks of different nature, as well as to many different ser-

vices including, among others web-based interactive email services, multi-purpose remote

storage systems or user-owned on-line picture galleries. What all these services have in com-

mon is that they are supported by large —and often geographically distributed— computing

infrastructures managed by remote companies. They are offered to the user as simple web

pages or wizard-installed applications, needing nothing else but an Internet connection and

a low-end device. As explained in Chapter 1, all the resources supporting these services

are commonly known as a cloud platform. As the service popularity and demand grows

at nearly-exponential rates, so do the datacenter infrastructures necessary to support these

services.

Maintaining potentially large infrastructures needed by cloud computing is neither cheap

nor environmentally friendly [101]. Most of them consume vast amounts of energy to run the

servers, the network equipment and the cooling systems. Still, experts have estimated that

only around 10% of the energy used in a datacenter goes to powering active servers. The

rest of the energy is used for keeping idle servers waiting for activities from user requests.

Governments and datacenter owners are starting to be concerned about the effects over the

environment associated with the creation and maintenance of new cloud infrastructures.

So far, performance was the main criterion that guided the design, maintenance and op-

eration of these computing centers. However, moving towards green computing has emerged

as a tendency in most sectors and companies are now starting to consider their carbon foot-

print [102]. According to Lo and Qian, ‘green computing refers to environmentally sustainable

computing which studies and practices virtually all computing efficiently and effectively with

little or no impact on the environment’ [47].

Also, as stated by Laplante and Murugesan in [103], ‘an increased awareness of the harmful

effects of greenhouse gas emissions, new stringent environmental legislation, concerns about

electronic waste disposal practices, and corporate image concerns are pushing business and

individuals to go green’ and ‘business also need to look at green requirements from another

viewpoint —that is, the implications of not going green in the context of stricter environmen-
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tal regulations, stakeholder demands, competitiveness, branding and corporate image, and

social responsibility’.

Therefore, it is necessary to take into account energy consumption, greenhouse gas emis-

sions and the carbon footprint while optimizing costs and performance levels of distributed

computing facilities, as clearly stated by Garg et al. [104]: ‘there is an urgent need for

energy-efficient solutions that can address the high increase in the energy consumption from

the perspective of not only the Cloud provider, but also from the environment’.

Due to the large scale and geographical distribution of these facilities, as well as to the

complexity of the services being offered, the resulting multi-objective optimization problem

arises as an attractive challenge for the research community. The goal for current distributed

computing platforms is to drastically reduce its environmental effects without affecting too

much the service performance and quality. In this direction, Zhang et al. defined green

computing as ‘an emerging technology that applies intelligent optimization algorithms and

advanced computing techniques to minimize energy consumption and reduce pollution on

computing resources’ [105].

In this chapter, we provide an overview of green computing issues related to optimization

problems and we identify how classical techniques could be applied towards reducing the

environmental effects of computing infrastructures. We review the current literature in the

field of green computing, detail the detected problems on current Internet computing systems

and show how similar problems were faced in the past. We classified the detected problems

into those devoted to deal with dedicated infrastructures and those dedicated to manage

non-dedicated systems.

In the case of dedicated infrastructures, there is a need to increase the number and size

of datacenters offering to support all the more popular Internet services. However, this also

implies a sharp annual increase in energy consumption, what made many research proposals

to focus on different fields of green computing. Due to the large scale and geographical

distribution of datacenter facilities, as well as to the complexity of the services being offered,

the resulting multi-objective optimization problem arised as an attractive challenge. One of

the most recurrent topic are scheduling algorithms, on which energy can be introduced as a

variable.

In the second case, our vision is the contributory computing model favors the green
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computing postulates. Exploiting non-dedicated resources not only could avoid the need for

large digital warehouses, but also optimizes the resource utilization ratio. We believe most

of the user-contributed resources would be still consuming energy if they were not seized in

a community platform, so gathering them for collective usage may result in lower energy

consumption than hiring dedicated cloud platforms.

3.2 Green Internet Computing

Large datacenters supporting either grid or cloud computing aggregate a relevant number

of dedicated servers in a relatively reduced space, what causes the heat density in these

spaces to be high. Consequently, cooling systems become a must for the correct operation of

these infrastructures. Though their consumption are usually underestimated, some studies

claim they can make up an important percentage of the total energy consumption in the

system. The Power usage effectiveness (PUE) is a measure of how efficiently a facility uses

its power [106]. This parameter stands for how much of the energy is actually used by the

computing equipment in contrast to cooling and other overheads. It is formally expressed as a

ratio between the total facility power and all the equipment power. Accordingly to the results

of a survey among large datacenter managers, current modern facilities offer an average PUE

between 1.8 and 1.9 [107]. Whereas this number is clearly below the average 2.5 reported in

2011, it still means almost the same energy employed to power IT equipment is consumed

by all the other accessory devices needed for the regular operation of a datacenter. Even so,

this reduction shows the enterprises behind the clouds do actually matter about their energy

consumption. Furthermore, all these facilities rely on backup protection mechanisms for the

case of a power failure, either in the form of huge batteries or diesel generators. Hence,

the carbon footprint of these facilities and its impact on the environment is large enough to

consider taking measures to reduce it.

In parallel to the great success of cloud computing and the services it enables, desktop

computers are continuously becoming more and more powerful. However, most of the end-

users do not exploit the power of their own computers, due to the low-demanding tasks they

perform locally, to the movement of some tasks to the cloud or because computers are left on

when not being used. Volunteer computing proved to be a successful attempt of harnessing
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non-dedicated resources and some of the proposals for contributory computing presented in

Section 1.3.1 pointed the energy consumption as a motivation [34].

Aggregating user-contributed resources is not only interesting by economic means but

also because of the clouds environmental impact. While dedicated servers forming the tradi-

tional datacenters are located in the same physical space, donated computers are hosted and

maintained by end-users at their homes or offices. Thus, the heat density in these cases is

much lower thanks to the geographic disaggregation; the cooling system becomes no longer

mandatory and there is a potential energy saving in this point.

However, some additional optimization issues must be addressed when employing com-

munity clouds. Probably the most noticeable of these issues is related with service reliability

and availability, as previously discussed in Chapter 2. Replication strategies may cause the

global system to be quite inefficient in terms of resource assignment and use. Also, distribut-

ing tasks behind services throughout different computers in Internet may require additional

coordination procedures that might create some overheads both in terms of performance as

well as in terms of complexity of the system. Still, adopting smart policies on replica place-

ment and node selection procedures could also lead to a more efficient and environmentally

friendly cloud model.

All in all, either if using a more decentralized architecture or not, in order to achieve

the goal of an environmentally cleaner cloud, energy consumption must be considered in the

design of the systems and services, the resource usage policies, the resource selection process

and the scheduling of the supported services by the community cloud.

3.2.1 Optimization towards green computing

Issues regarding the development of environmentally sustainable computing have been dis-

cussed since the emergence of the clouds.

Duy et al. designed, implemented and evaluated a Green Scheduling Algorithm with a

neural network predictor for optimizing power consumption in datacenters [108]. They pre-

dicted future load demands from historical data and turned off or restarted servers according

to it. Through simulation, authors showed their method saved up to 46% of energy with

insignificant demand drop. Green task-scheduling algorithms are presented in [105]. After a

simulation experiment, the authors concluded that heuristically assigning tasks to computers
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with lower energy is significantly more energy-efficient than doing it randomly. Borgetto et al.

studied the problem of energy-aware resource allocation for long-term services or on-demand

computing tasks hosted in clusters [109]. They formalized the problem as NP-hard con-

strained optimization problems: (a) maximize job performance under energy consumption

constraints; (b) minimize power consumption under performance constraints; and (c) opti-

mize a linear combination of power consumption and job performance. They finally proposed

several heuristics and used simulation to validate their approaches by comparing their results

in realistic scenarios.

Chen et al. analyzed different algorithms for supporting connection-intensive Internet ser-

vices [110]—-e.g. chat and video-conferencing services. These authors took into account sev-

eral factors such as load distribution, user experience, and also energy consumption. Le et al.

presented a framework for optimization-based request distribution among datacenters [111].

The novelty of their work consisted in that they introduced the energy consumption at the

optimization level, seeking for datacenters in under-peak demands, datacenters close to a

renewable energy source or in different time zones where the energy might be cheaper at

that time. Their heuristic redirected user requests to those datacenters which could offer the

required Service Level Agreement while minimizing energy consumption and operation cost.

Differences among the various data centers of the same company were considered in order

to improve efficiency and reduce carbon emissions in [104]. These authors defined an energy

model for data centers which included metrics to measure energy cost, carbon emission,

profits, etc. On the basis of this model, they proposed heuristic scheduling strategies and

evaluated their performance.

Careglio et al. analyzed energy-consumption implications from all the computer com-

ponents [112]. Also, they presented a short overview on the advances of energy usage in

network infrastructures. Moreover, in the context of large-scale distributed systems, these

authors listed a set of best practices which could reduce energy consumption. These prac-

tices covered datacenter building-construction techniques, context aware buildings, as well as

cooling systems.

Yuan et al. also reviewed different strategies for efficient energy utilization, ranging

from server virtualization and consolidation to optimal operation of fans and other cooling
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equipment [113]. They discussed in more detail the case of cloud-based multimedia services,

which posed specific challenges, such as larger storage and bandwidth requirements.

All the works cited above were mainly concerned with the energy consumed by the servers

themselves. However, the fraction of the energy consumed by other devices, such as network

infrastructure, is by no means negligible. Interest in this topic is more recent, albeit growing

rapidly.

Berl et al. discussed such issues within the framework of the overall energy efficiency of

different distributed information technologies, with emphasis in cloud computing [114].

GreenCloud is a simulation environment for energy-aware cloud computing datacen-

ters [115]. Designed to forecast the energy consumption associated with each system com-

ponent, it also tracks packet-level communication patterns and their energy usage. Authors

simulated different datacenter schemes and demonstrated the utility of different power man-

agement procedures for either servers or network equipment, such as DVFS (Dynamic Volt-

age and Frequency Scaling) or DNS (Dynamic Shutdown). Lee and Zomaya discussed about

energy wastage caused by under-utilized resources within a conventional cloud computing

environment [116]. They argued that task consolidation is a good resource re-allocation pro-

cedure, thanks to the DVFS features included in modern processors. Two energy-conscious

task consolidation heuristics were presented and analyzed, both of them reducing the energy

consumption of clouds.

In another recent paper, Beloglazov et al. addressed the problem of efficient power man-

agement in data centers or processor farms [117]. They made a thorough review of previous

work and proposed a technique for efficient power management based on virtualization. Their

algorithms allocated virtual machines to actual servers dynamically, according to changes in

the workload, and switched idle servers to sleep mode, thus minimizing energy consumption.

Their assumption was that processors were the main power-consuming devices, which was not

always the case in practice. Nevertheless, in contrast to previous approaches, their method

was independent from the type of application or workload.

Nano Data Centers (NaDa) [118] were proposed as a new architecture that used ISP-

controlled home gateways to provide computing and storage services. The challenge was to

adopt an ISP-managed peer-to-peer model to form a fully distributed data center infrastruc-

ture to be exploited to offer Internet services to their customers. They built an energy saving
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model and stated their proposal could theoretically achieve up to a 60% of energy savings

when comparing to traditional data centers. Their model was validated by studying a video-

streaming service on different platforms and showed it could actually save around 20% of the

energy that would be used by legacy data centers.

Schott and Emmen stated that the main advantage of distributed desktop-grids versus

centralized-grid infrastructures was the minimal heat density of personal computers [119, 120].

Due to this fact, these computers did not require intensive air-conditioning systems, saving

electrical power, money and reducing the pollution generated by datacenters. They proposed

seven different methodologies as a collection of best practices, techniques and policies to

reduce the environmental impact of desktop-grids, such as exploitation of natural ambient

conditions, energy-profiling of running applications or reducing the necessity of air-condition.

Finally, it is worthy to mention that several researchers have agreed on identifying two

main stages in the quest for sustainable information technologies [121, 122, 123]. According to

these works, the first stage (Green IT ) is mainly driven by the companies desire to reduce costs

and increase profits. The second stage (Sustainable IT ) is driven by broader concerns about

the environment and rational utilization of resources. The aforementioned works discussed

recent trends and business strategies regarding sustainable IT. In particular, Harmon and

Demirkan reviewed the strategy followed by some important companies to cope with these

challenges [122].

3.2.2 Open optimization challenges for green computing

From the analysis of the literature it is possible to conclude that there are several interact-

ing factors involved in green computing optimization, e.g.: system architecture, resources

geographic allocation, task-resource assignments, tasks scheduling, resource-operation poli-

cies, reliability of resources and Internet connections, availability of non-dedicated resources,

energy prices in different countries, etc.

This rich environment offers an enormous variety of interrelated research optimization

problems, many of which are multi-objective in nature, since system performance must be

balanced with environmental sustainability.

We divided the open challenges in those devoted to systems composed by dedicated re-

sources and those focused on systems formed by non-dedicated resources. This classification is
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not arbitrary, since systems with dedicated resources tend to aggregate similar and so homo-

geneous resources, while those including non-dedicated resources would show more dynamism

and therefore will be more unpredictable.

3.3 Green computing challenges associated with dedicated re-

sources

Most of the work dealing with green computing in the cloud focus on electricity consumption

at server level within a single datacenter. The most common techniques are server virtual-

ization and machine consolidation, DVFS or DNS.

As discussed earlier, several tasks-assignment and tasks-scheduling algorithms —usually

heuristic in nature— have been already proposed. Most algorithms are non-preemptive, i.e.

once a task is assigned to a server or scheduled in a given order, it cannot re-assigned or

re-scheduled. In comparison, very few papers have addressed the scheduling problem in

global terms, i.e. taking into consideration several datacenters at the same time. This global

approach may lead to greater savings, and also poses interesting logistics-related challenges

similar to those encountered in the context of logistics location/allocation problems or multi-

depot routing problems [124]. Thus, for instance, Garg et al. divided the scheduling problem

into two phases [104]: meta-scheduling or allocation/assignment —i.e. deciding the data-

center where the task will be executed—, and scheduling of tasks within the datacenter. In

order to efficiently solve these challenges, heuristics and meta-heuristics algorithms can be

employed either on their own or in combination with mathematical programming techniques.

Similarly, only a handful of papers deal with energy consumption of computing accessories

—hard disks, network routers, etc. Moreover, to the best of our knowledge none of them

integrates all devices together with the CPU. The amount of energy consumed by such devices

is not negligible, and the need to manage them efficiently is becoming more and more evident

in recent years. Here, methods from statistics and data mining can play a decisive role

while identifying relevant factors, defining consumption indexes to be traced and developing

regression (predictive) or forecasting models.

Another important aspect is the lack of methodologies able to support random behavior in

real-life cloud systems —e.g. stochastic service demand, stochastic latency times, stochastic
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availability of resources, stochastic processing times, etc. Due to its importance in most

real-life scenarios, most optimization methodologies in the green computing field should take

into account the system random behavior as it already happens in similar problems [125].

Clearly, methodologies based on simulation, Markov chains [81] or dynamic programming can

be necessary in order to include this random behavior of the system into realistic optimization

models.

3.3.1 Task execution scheduling

One of the critical issues in distributed computing is the scheduling of tasks (jobs) to be pro-

cessed by servers (machines) in large computing infrastructures. Optimal scheduling policies

can represent noticeable reductions in the total time necessary to process a set of programmed

tasks, also known as makespan (as explained graphically in Figure 3.1).

machines

time
1

1

1

2

2

2

3

3

3

makespan

M1

M2

M3

Figure 3.1: A simple flow-shop scheduling problem with three jobs and three machines

In turn, noticeable reductions in makespan can imply significant savings in energy con-

sumption, since advanced techniques like DVFS, DNS or Virtual Machine (VM) consolidation

can be exploited. Thus, computing infrastructures are utilized in a more efficient way and

require less total power to complete the assigned tasks.

Despite the existence of a large number of scheduling-optimization algorithms, most of

them assume deterministic values for the time each task requires in order to be processed by

each server. However, this is a quite unrealistic assumption, since these task-server processing

times are random variables —as opposed to deterministic values— in most realistic scenarios.

In order to contribute to fill this gap, this section discusses how Monte-Carlo simula-

tion can be combined with existing metaheuristics in order to reduce the expected energy

consumption in tasks scheduling problems with stochastic processing times.

In particular, among the different scheduling problems existing in the literature, we will
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focus on the well-known Flow-Shop Problem (FSP) [50]. Notice, however, that simulation-

based approaches similar to the one considered in this work could be employed in solving

other scheduling variants with stochastic components.

3.3.2 Flow-Shop Problem with Stochastic Times related work

The literature on the Flow Shop Problem with Stochastic Times (FSPST) is not as exten-

sive as the deterministic case. Pinedo modeled the permutation flow-shop problem with and

without intermediate storage [126], where the processing times of a given job on the vari-

ous machines were independent realizations from the same probability distribution and the

objective was to minimize the expected makespan. Dodin considered different probability

distributions for processing times [127]. He assumed these processing times were indepen-

dent and not identically distributed random variables and his goal was also to minimize the

expected makespan.

Gourgand et al. used recursive algorithms, based on Markov chains, to compute the

expected makespan in conjunction with a simulation model as a backup to evaluate the

expected makespan [128, 129]. Wang et al. proposed Genetic Algorithm (GA) approaches for

minimizing the expected makespan when processing times follow a Uniform distribution [130,

131].

More recently, Baker and Trietsch developed heuristics for the two-machine flow-shop

problem where the processing times are independent random variables following a known

probability distribution [132]—–also with the objective of minimizing the expected makespan.

Some authors also studied different variations of the flow-shop problem: Allaoui et al. [133],

Choi and Wang [134] and Kianfar et al. [135] considered the stochastic hybrid flow-shop

scheduling problem. Zhou and Cui presented an approach for the multi-objective stochas-

tic flow shop problem [136], on which processing times were normally distributed with two

objectives to minimize: flow time and delay time of the jobs.

Most of the aforementioned publications made restrictive assumptions on the probabil-

ity distributions modeling the processing times of each job-machine pair and the indepen-

dence and identical distribution of the tasks. Recently, Baker and Altheimer combined sim-

ulation and heuristics to solve the FSPST with the objective of minimizing the expected

makespan [137]. They created three sets of stochastic flow shop problems where the pro-

78



3.3. Green computing challenges associated with dedicated resources

cessing times were distributed following different distributions. The authors proposed three

heuristic methods, two of them based on the CDS heuristic [138] and the third based on the

well known NEH heuristic [139].

3.3.3 A simheuristic task scheduler

In the stochastic scheduling scenario described, the goal of our proposal is to find a tasks

schedule that allows us to reduce the expected makespan and, consequently, the associated

energy consumption.

Our approach is inspired in two facts: (a) the FSP is just a FSPST with constant demands

—random demands with zero variance; and (b) while the FSPST is yet an emerging research

area, extremely efficient metaheuristics do already exist for solving the FSP . Thus, given

an initial FSPST instance, our approach proposes to transform the stochastic instance into

a deterministic instance by replacing each random variable time by its mean or expected

time; and then to obtain a set of high-quality solutions for the deterministic problem by

using any of the existing efficient FSP algorithms, e.g. the NEH heuristic [139] or the IG

metaheuristic [140].

A solution to the FSP instance is simply a given permutation of tasks, and therefore

it is also a feasible solution of the original FSPST instance. Then, simulation is used to

determine which solution, among the best-found deterministic ones, produces the lowest

expected makespan when considering stochastic times.

This simulation process works as follows. Given a solution (permutation of tasks) to the

FSP, the probability distribution of each job-machine processing time is used to generate a

random variate; and then, these random variates are used to compute the stochastic makespan

associated with the given permutation of tasks. Iterating this process, it is possible to generate

a random sample of makespan observations associated with the given solution. From this

sample, different statistics for the stochastic makespan can be obtained, including point and

interval estimates for the expected stochastic makespan.
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3.3.4 Numerical experiments

In order to test how our approach could contribute to reduce expected makespan and energy

consumption in a computing facility, we prepared a set of stochastic instances which can be

seen as a generalization of the deterministic FSP instances proposed by Taillard1 [141].

Taillard’s instances are grouped in sets of 10, according to the number of jobs (n) and

machines (m) considered. Usually, these numbers are represented at the end of the name of

each instance in the form n×m. We selected randomly 10 of the whole instance set for our

experiments, as shown in Table 3.1.

For each of these deterministic instances, we changed the constant processing times by

random variables as follows: if pij represents the processing time (in hours) of the i-th task in

the j-th server, then we assumed this processing time to be a random variable, Pij , following

a Log-Normal probability distribution with E[Pij ] = pij and var[Pij ] = k× pij , where k ≥ 0.

In our experiments, we set k = 5 in order to consider a scenario with a relatively high

variance. At this point, it is important to notice that, even we used a particular probability

distribution for generating our numerical experiments, the methodology explained here could

be employed with any other probability distribution and parameters.

First of all, our strategy assumes that there exists a strong correlation between solutions

for the FSP and solutions for the FSPST. We expect this assumption to be particularly

valid when stochastic times show a relatively low variability. To determine so, we ran some

preliminary experiments on the studied instances and we obtained a correlation coefficient

of 0.99 for all variances with factors k ∈ {0.1, 0.5, 2, 5}. These statistics indicate there is a

strong correlation between deterministic and stochastic values for the expected makespan.

We show in Figure 3.2 the scatterplot with the relationship of deterministic and stochastic

makespans of four randomly chosen instances among the ones with 20 servers, since we can

show more values on these instances and so depict larger plots.

As can be observed, even when the time deviation is substantial, there is a clear correla-

tion between expected makespans for the FSPST and deterministic makespans for the FSP.

However, the best-found FSP solution —the one with the lowest deterministic makespan—

1Available online at http://mistic.heig-vd.ch/taillard
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Figure 3.2: Correlation assumption tests in instances tai27, tai59, tai103, tai118. All
axes in time units.

will not necessarily be the best-found FSPST solution —the one with the lowest expected

stochastic makespan.

We then implemented our algorithm as a Java application. Even though Java may run

slower than other compiled languages (such as C or C++), it offers some advantages like the

fact that it is platform independent as well as that it facilitates repeatability of results [142].

We performed all the tests in a computer based on an Intel Xeon at 2.0 GHz with 4 GB RAM

running Windows 7 and the Java Virtual Machine 7-64-bits.

Table 3.1 shows the results obtained by applying our simulation approach in combination

with several scheduling algorithms: (a) Sim-Random refers to using a random order of tasks;

(b) Sim-NEH refers to using the order provided by the NEH heuristic; and (c) Sim-IG refers

to using the order provided by the IG metaheuristic.

Figure 3.3 shows a comparison among the different scheduling strategies and the savings
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Figure 3.3: Boxplot comparison of the energy savings with each scheduling policy

each of them can provide. The following conclusions can be extracted for the sample set of

instances considered:

• By using an extremely fast heuristic like the NEH, it is possible to obtain in real time

—less than a second for the size of the instances considered— a tasks schedule which

is able to generate noticeable savings (about 13.8% on the average) in both expected

makespan and expected energy consumption.

• These savings can be increased even further (up to a 15.8%) by employing a state-of-

the-art metaheuristic, which employs just a few seconds in generating a near-optimal

tasks schedule.

The results of these experiments show remarkable reductions, both in expected makespan

as well as in energy consumption, with regards to using a random scheduling strategy.

3.4 Green computing challenges associated with non-dedicated

resources

We discussed in Chapter 2 the importance of service availability as an incentive to attract

new users and services into contributory platforms. We presented a methodology framework
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to allocate composite services in a contributory system that guarantees a certain availability

level while minimized the deployment cost.

Besides the service availability, it would be profitable to reduce the energy consumption

of every service deployed in a community. Energy consumption of every single host when

supporting a given service could be combined with the availability when selecting the hosts

to place service replicas and so obtain highly available and less energy-consuming service

deployments.

In this section, we devise a heuristic-based methodology to efficiently and automatically

select the set of hosts that provides a given level of service availability while minimizing the

energy consumption of the deployment. This proposal is based on employing the system

availability estimator used in Chapter 2 in combination with an elementary but much faster

heuristic for host selection.

3.4.1 Problem description

We adapted the methodology in in Chapter 2, so the goal is to long-lived services on top of

non-dedicated resources for a period of time T , after which some component re-assignation

might be required. This is repeated until the service is explicitly stopped by an external

agent. We assume all services are either stateless or has an internal procedure to maintain

status amongst different replicas and a short processing time for queries, at least compared

with time T . Thanks to the former, service instances are easily replicable and many of them

might be deployed simultaneously, offering some redundancy to the system.

We assume that a distributed service is a set P of interrelated processes that must run

for a (usually long) period of time (0, T ), as described in Section 1.3.2. Let us assume that

we have a pool N of n available hosts to deploy the service. Each of them is characterized

by a certain availability behavior and an energy consumption model.

Host availability matters were discussed earlier in Chapter 2. About the energy con-

sumption of each host, consider it to be a variable with many factors that affect this value

and its great variability over time. Despite this, some authors proposed to model the en-

ergy consumption of a computer as a linear function directly proportional to the load of the

computer [116]. Therefore, it can be approximated as eni(t) = eminni
+ (emaxni

− eminni
) · sni(t),

where eminni
is the energy employed when there is no load in that computer, emaxni

is the energy
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consumed at maximum load in the computer and sni(t) is the percentage load of the host

ni at time t. Consider eni ∈ [eminni
, emaxni

] for sni ∈ [0, 1]. This energy model is valid if we

assume resources incorporate effective power-saving mechanisms, such as DVFS in modern

processors

Apart from their availability and energy consumption, we consider all nodes can host any

process, but only one process at a given time. Clearly, a process is available at a given time

t if and only if its host node is available at time t. A deployment of any distributed service

is an injective function D : P → N . For the sake of simplicity we use the expression Dj to

indicate the service deployed over a set of given hosts. Another simplified description of the

deployment is given by a set of binary variables xni∀i ∈ N , where xni = 1 if the node ni was

selected to host some process of the service, and xni = 0 otherwise. The energy associated

with the deployment is the sum of the individual energy consumption of the selected hosts

and this is the parameter that we want to minimize.

As services are something continuous on time, we attempt to provide a certain level of

availability by guaranteeing the service will be available a percentage of the time T . This

percentage (atarget) must be one of the service requirements given when specifying the service

itself. In summary, our problem can be formulate as a discrete optimization problem with a

restriction:

Find D : P → N

that minimizes
∑
∀i∈N

xnieni

subject to āD ≥ atarget

As in the problem description in Section 2.2, the scale of the system has a great impact

on the complexity of the problem. In this case, the problem can also be modeled as a k-item

Knapsack Problem (kKP) [58, 59]. No particular method is required to obtain āD, so it

would be possible to use analytical exact methods or simulation tools (as earlier explained in

Section 2.4.1).
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3.4.2 Methodology

Because of the size of the search space for service deployments in contributory communi-

ties, we developed a fast heuristic to determine pseudo-optimal deployments in restrained

times. We assume historical information of the host availability and unavailability intervals;

a mechanism to continuously monitor the load of the involved hosts at any given time; the

target services are coherent (that is āDj > āDj+1); and a user service deployment request

that indicates a desired availability level atarget. We obtain āD using the simulation method

explained earlier in Section 2.4.1. Our new contribution is a host selection methodology that

follows the next steps:

1. Order the list of available hosts by mean availability in descending order, in such a way

that āni > āni+1 .

2. From the host ordered list, obtain a list of possible service deployments, considering

only host subsets of consecutive elements in the host list. If service size is m and n hosts

are available in the system, the obtained list should contain n−m+1 deployments. This

step is possible due to the coherent traits of the studied systems (that is āDj > āDj+1).

3. Perform a binary search over the deployments list, keeping the immediate deployment

in list such that āDj ≥ atarget. We named this deployment as Dlimit.

4. Perform a linear search upwards the availability-sorted list of deployments. Since we

consider the services to be coherent, all the deployments in this part of the list would

have ¯aDj ≥ atarget, but the energy consumption associated to the selected hosts may be

lower (eDlimit
≥ eDlimit−j

). Therefore, we seek for the deployment offering the lowest

energy consumption only in that part of the list, since all deployments on it will fulfill

the availability requirement.

Figure 3.4 shows a graphical chart of the operation of our proposal. Data used in the

figure does not belong to a real scenario and numbers were only chosen to clarify the example.

On it, Dlimit is D2, but the energy consumption of D1 is lower, so the chosen deployment

should be the latter (which still fulfills the availability requirements).

86



3.4. Green computing challenges associated with non-dedicated resources
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Figure 3.4: Sketch of the proposed methodology in a reduced scenario: three-component
service and seven available hosts in the community

This methodology is flexible enough to adapt to very different service topologies and host

behaviors. As well, it is ready to work either on large or small scale communities. Due to

the stochastic nature of the load on the different hosts involved in a community, the pseudo-

optimal deployments obtained by our heuristic might vary for a given service, since it depends

on the system status at time the request was done.

3.4.3 Numerical experiment

As far as we know, there exist no real traces of availability and energy consumption the

systems such as the ones we are dealing with. For this reason, we syntheticallyy generated

the information of 10, 000 hosts with the parameters shown in Table 3.2. RandUniform(a,b)

stands for a random number generation function following a Uniform distribution within the

[a,b] range.

Node ID Node i

Failure Distribution
Type Weibull
Shape RandUniform(0.8, 2)

Scale RandUniform(0.5, 4)

Repair Distribution
Type Weibull
Shape RandUniform(0.5, 1.75)

Scale RandUniform(0.2, 1.8)

āni

E[failurei()]
E[failurei()]+E[repairi()]

ēi
emini

RandUniform(20, 50)

emaxi
RandUniform(350, 1000)

Table 3.2: Synthetically generated historical host information

We then considered an abstract service defined by the topology shown in the directed
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graph in Figure 3.5. The numbers indicate the arbitrary order in which the hosts are selected

from the list (āni ≥ āni+1). We chose this particular topology because its simplicity helps to

better understand the shown example.

1

2

3

4

5

6

7

Figure 3.5: Service topology description

We then built a computer simulator in Java to generate random behavior for the load in

each of the involved hots if the service was placed on it. Our simulator generated random

numbers in the range [0,1] as the load of each computer if the service was deployed on it

every time a service deployment request was placed. From the expected load and the energy

consumption information describing each host (previously obtained from Table 3.2), it was

possible to determine the energy consumption for all the hosts. The energy consumption of

a given service deployment can be then obtained by aggregating the energy consumption of

all the selected hosts.

We ran the simulator for 100 lifetimes, as if 100 services were to be deployed in the

community. In all cases, we fixed the availability requirement at 90% and we recorded

the availability and the energy consumption of the most greedy deployment (selecting the

most available hosts, as was D1 in Figure 3.4) and the ones of the deployment found by our

methodology. We show the mean results and the mean differences in Table 3.3 and we declare

the mean execution time was 903.5 milliseconds in a desktop computer built of an Intel Core

i5-2400 processor, 4 GBytes of RAM memory, running Ubuntu Linux 12.10 and the Oracle

Java Virtual Machine 7u17-64bits.

āD ēD
Greedy deployments 0.992 4437.33

Our deployments 0.959 1938.35

% gap -3.31% -56.32%

Table 3.3: Overview of the measured results
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We show in Figure 3.6 the result of four deployment search processes, selected randomly

among the 100 performed in the experiment. The graphs depict the temporal process and the

evolution of the service availability and energy consumption of the chosen hosts. The vertical

dashed line indicates the time the binary search ends and the high climbing search starts,

while the horizontal one signals the availability threshold (atarget) imposed by the requester.

We chose to compare our method to an availability-greedy method, since it would be the

only one that could guarantee the availability of the service without performing any deep

study over the dealt system.
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Figure 3.6: Graphical evolution of four different service deployments picked randomly from
the 100 ones tested

From the obtained results, we conclude our methodology outperforms the greedy approach

in terms of energy consumption while maintains the availability above a given threshold.

What is more, our method prove to work fast when dealing with a sizable pool of very different
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hosts. Thanks to this fact, it could be included in a user-interactive service deployment

procedure within a real community.

We evaluated our heuristic by means of computer simulation and we found that investing

very few time (less than a second) to perform a search among the available resources, it

is possible to reduce the energy consumption up to a 56.32% while degrading the offered

availability only a 3.31%.

3.5 Summary

Energy consumption of large-scale Internet distributed computing infrastructures is a matter

to be regarded. As the demand for new services and their scale grows at an outstanding rate,

its environmental footprints also does. This chapter surveyed the green computing arena

related to distributed systems in general.

After that, we have argued that by using optimization algorithms to schedule tasks in

servers, energy consumption in these facilities could be reduced in a noticeable way. In

our approach, we have considered stochastic processing times as a more realistic assumption

than just considering constant ones. Thus, simulation has been combined with existing

metaheuristic algorithms in order to obtain numerical values in a set of benchmarks.

We combined as well the environmental concern with the emerging computing concept

of contributory communities. We proposed a simple and fast heuristic to determine a subset

of hosts suitable to provide a given level of service availability. In addition, we included the

energy consumption as a variable in the equation. Thus, we aim at minimizing the energy

consumption of the deployed services while maintaining the service availability over a specified

threshold.

We showed with both methodologies in this chapter that it is possible to reduce the energy

consumptions of distributed computing systems devoting very little efforts to select properly

the resources used by services or applications run on them.
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4Network-aware allocation for
services in community
systems

This chapter proposes a methodology to allocate services in a contributory platform in such a

way the network distances to their clients are minimized. Thus, we formalize the problem as a

Facility Location Problem. We present a method to effectively solve this classical optimization

problem and prove its utility in a real-life example.

The contents of this chapter were extracted from publications [P6, P12, P13, P14].





4.1 Overview

All the allocation methods earlier proposed in this dissertation took into account some traits

of the hosts selected to create the service overlay. In all these cases, it was assumed there

was a network connection between all the components, but no information regarding the

underlying network was used to decide where to allocate services.

In typical Internet applications based on the client-server paradigm, network distance

between both actors has a great impact on the quality perception, the overall bandwidth

consumption and the network latency. For example, video streaming services might be af-

fected if congestion is found in the path from the server to the final client. Distributing

services across the network is a good strategy to reduce these phenomena, but it comes at

a high cost for operators. Data-intensive applications can also suffer from degradation and

can generate high bandwidth demands if data is stored far from the processing spot. These

scenarios fostered the description of the edge computing concept [143], on which analytics

occur at the source of the data, which is usually at the edges of the network.

Service providers often deliver their Internet services through well-established Content

Delivery Networks (CDN) [144], either their own ones or hiring infrastructure to a third

party. These infrastructures distribute their datacenters worldwide, in such a way users are

served from their closest digital warehouse. Thus, network delays can be reduced, less overall

bandwidth is required in the network and the final user obtains a better service at the end.

In contrast to the CDN model with large infrastructures close to the network core, con-

tributory computing systems are composed by nature of geographically distributed nodes,

often placed close to the network edge. Hence, selecting the spots to allocate a service or

to storage data becomes an important decision to guarantee system performance and proper

resource usage.

As stated above, the methods proposed in Chapters 2 and 3 or the one in [32] only

considered some traits of the involved hosts. From the network perspective, these methods

could be considered as a random selection strategy. Ryden et al. proposed a user-contributed

host selection strategy for data-intensive applications in Nebulas [38]. Their proposal was

based on bandwidth probes to reduce overall bandwidth usage and data transfers, but it was

specifically meant for data-intensive applications and only considered available bandwidths

on the paths between hosts, not the actual network topology.
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Selecting locations in a network to place a content or a service as close as possible to

the consumers can be modeled as a Facility Location Problem (FLP) [51, 52] or a p-median

problem [145]. Both the FLP and the p-median are classical NP-hard optimization problems

largely studied in the fields of transportation and logistics.

The p-median problem is devoted to locate a set of facilities relative to a larger set of

customers in such a way the sum of the shortest distances between customers and facilities

is minimized. It does not consider any opening costs for facilities and restricts a priori the

number of them to open. The FLP is similar to the p-median problem, but it introduces

a cost incurred when opening a facility and does not limit the number of facilities to open.

Then, the goal is to determine a set of facilities that minimizes the sum of shortest distances

to all customers and the setup costs incurred by the selected facilities. In both problems,

the more facilities selected, the closer should be any customer to any of them, but also more

resources would be utilized.

Back to the computing arena, distributed systems can be modeled as a FLP or a p-

median problem in which facilities are the servers and the customers are the service consumers.

Network topology would determine the distances, either considering network hops or assigning

weights to the links according to delays or available bandwidths for instance.

Let us imagine a contributory platform meant to support open-access stateless services,

as the ones described in Section 1.3.2 and targeted in [32]. Consider the nodes available to

host these services as potential facility spots and the ones finally hosting a replica as the

open facilities. It would be possible to use the method in Section 2.6.3 to determine the

number of needed replicas to guarantee a certain level of service availability [71] and then

select this replicas by solving a p-median problem on the network topology. Nevertheless,

since the p-median does not consider any setup cost for selecting a node as facility, supporting

concurrent services on the same topology would lead to a situation on which the best services

deployed are located in the best network spots.

To address the latter issue, a setup cost for all the available hosts related their network

position could be established for each available host and then deal with an FLP instead of

a p-median problem. In this case, the number of replicas does not have to be known in

advance and selecting the most suitable network positions for services implies incurring in

higher deployment costs. Balancing deployment costs would make the most suitable network
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spots to be shared out among concurrent services in the same topology. The disadvantage of

this approach is that service availability might not be guaranteed if the FLP results in the

selection of fewer hosts than required by method in [71].

We describe in detail in this chapter a novel heuristic to solve the Uncapacitated Facility

Location Problem based on biased randomization techniques and an Iterated Local Search

framework. We asses the goodness of our methodology in some of the classical benchmarks

for the FLP. Finally, we test our methodology to allocate services in a contributory platform

on top of a Community Network.

4.2 The Uncapacitated Facility Location Problem

The (uncapacitated) FLP [51, 52] involves locating an undetermined number of facilities to

minimize the sum of setup and serving costs. The problem is defined over an undirected

strongly connected graph G = (V,E) where V is composed of a subset of customers C ⊆ V

and a subset of facilities F ⊆ V , and E is a set of edges connecting the nodes in V . Each edge

e ∈ E has an associated cost of using it ce ≥ 0, and for all i ∈ F we are given a facility opening

cost fi ≥ 0. Furthermore, for every facility i and customer j we have an associated cost of

connecting the customer to the facility cij ≥ 0, i ∈ F, j ∈ C. Under these circumstances, the

objective of the problem is to open a subset of the facilities in F and connect each customer

with an open facility, so that the total cost is minimized, as in Equation 4.1.

Minimize
∑
∀j∈C

cij +
∑
∀i∈F

fi (4.1)

The uncapacitated FLP is considered as the ‘simple’ facility location problem [146], where

both the alternative facility locations and the customer positions are considered discrete

points in the graph. An example of a FLP problem instance can be found in Figure 4.1. This

assumes that the alternative sites have been predetermined and the demand in each customer

zone is concentrated at the point representing that region. FLP focuses on the production

and distribution of a single commodity over a single time period, during which the demand is

assumed to be known with certainty. The trait of this discrete location problem is the ability

to determine the size of each facility without any restriction.
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(a) Problem instance (b) Problem solution

Figure 4.1: Example of FLP instance, on which squares are facilities and circles are customers.

Every customer has an associated demand that needs to be served by the facility, dj .

Notice that this demand would take place in the problem definition for the case of the

Capacitated Facility Location Problem (CFLP), where every facility has a limited facility, so

it is required a constraint to avoid surpassing that facility capacitated. Even without this

capacity constraint, the FLP is proved to be NP-hard [147]. For a given instance and a given

non-empty subset of facilities X ⊆ F , a best assignment σ : C → X satisfying (Equation 4.2a)

can be computed easily. Therefore, we will often call a nonempty X ⊆ F a feasible solution,

with facility cost cF (X) (Equation 4.2b) and service cost cS(X) (Equation 4.2c).The task

is to find a nonempty subset X ⊆ F such that the sum of facility cost and service cost is

minimized.

cσ(j)j = min∀i∈X(cij) (4.2a)

cF (X) =
∑
∀i∈X

fi (4.2b)

cS(X) =
∑
∀j∈C

min∀i∈X(cij) (4.2c)

The FLP can be also formulated as an Integer Program (IP) [148]. In Equation 4.3,

assume xij represents the amount of flow from a facility i to a customer j, which would be 0

if the customer will not be served by that facility, or equals to the demand of the customer

otherwise; yi is a decision variable which is equal to 1 if the facility i will be opened and 0
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otherwise. Next constraints force customers to be assigned only to open facilities and assure

every customer’s demand is satisfied.

Find D : F → X

that minimizes
∑
∀i∈F

fiyi +
∑
∀i∈F

∑
∀j∈C

cijxij

subject to xij ≤ yi, ∀i ∈ F,∀j ∈ C∑
∀i∈F

xij = dj ,∀j ∈ C

xij ≥ 0,∀i ∈ F,∀j ∈ C

yi ∈ {0, 1},∀i ∈ F

(4.3)

4.3 Related work on FLP

The FLP was originally introduced in the early 60’s as the Plant Location Problem [51, 52].

It is one of the most common location problems and has been widely studied in the literature,

both in theory and in practice [149, 150, 151]. The following sections review some solutions

proposed to the problem, as well as different variants of the FLP proposed to cope with

different scenarios and its application to computer systems and networks.

4.3.1 Solutions to the problem

The facility location problem has been studied from the perspectives of worst case analysis,

probabilistic analysis, polyhedral combinatorial and empirical heuristics [147]. In the existing

literature, we can also find exact algorithms for the problem, but its NP-hard nature makes

heuristics a more suitable tool to address larger instances. One of the first works on the FLP

was a branch-and-bound algorithm [152] that used a compact formulation of FLP to take

advantage of the fact that its linear programming relaxation can be solved by inspection.

However, this linear programming relaxation does not provide tight lower bounds to the

problem.

Another of the earliest approaches proposed for the problem was a direct search or implicit

enumeration method [153]. The author defined two different algorithms based on the same

97



Chapter 4. Network-aware allocation for services in community systems

directed search, one considering the facilities initially open and a second one considering the

facilities initially closed.

Schrage presented a tight linear programming formulation [154] for the location problem

different from the one defined in [152]. He applied to this formulation a specialized linear

programming algorithm for variable upper bound constraints. Erlenkotter presented a dual-

based procedure that begins with this tight linear programming formulation but differed

from previous approaches by considering a dual objective function [155]. Körkel presented

an improved version of these algorithm in [156].

One of the first non-exact methods proposed to solve the problem was the greedy algorithm

proposed by Hochbaum [157]. The first constant factor approximation for this problem was

given by Shmoys et al. [158], later improved by Chudak [159]. Still, both of these algorithms

were based on LP-rounding and had longer running times. Jain and Vazirani proposed

a primal-dual algorithm with faster running times and adapted for solving several related

problems [160]. This same algorithm was later enhanced and obtained better results [161].

More recently, Li proposed an improved approximation algorithm that outperformed the

former results [162].

Approximation algorithms are very valuable for a theoretical analysis of the problem.

However, these algorithms are outperformed in practice by more straightforward heuristics

with no performance guarantees when facing more complex problem instances. Constructive

algorithms and local search methods for this problem have been used for decades [163]. The

authors presented one of the earliest models for the problem and a heuristic procedure solving

it. Their heuristic comprised two main phases, first a constructive phase considered as the

main program followed by an improvement phase.

Following this work, more sophisticated metaheuristics have been applied to the FLP.

Alves and Almeida proposed a Simulated Annealing algorithm that was one of the firsts

metaheuristics applied to the problem [164]. Kratica et al. presented a genetic algorithm

outperforming previous works [165]. Ghosh presented a Neighborhood Search heuristic for

the problem, using Tabu Search as local search and obtaining competitive solutions in very

low computational times compared to exact algorithms [166]. Michel and Van Hentenryck

defined a simple Tabu Search algorithm [167], which demonstrated to be robust, efficient and

competitive when compared with the previous work with genetic algorithms. The Tabu Search
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algorithm used a linear neighborhood, which flipped a single facility at each iteration. Resende

and Werneck proposed an algorithm based on the Greedy Randomized Adaptive Search

Procedure (GRASP) metaheuristic [168]. The algorithm combined a greedy construction

phase with a local search procedure. It obtained results very close to the best-known solution

for a wide range of different instance sets. More recently, Lai et al. presented a hybrid

algorithm based on Benders’ decomposition algorithm and using a genetic algorithm instead

of the costly branch-and-bound method to obtain good suboptimal solutions [169]. The

computational results indicated that the algorithm was effective and efficient. However the

author only compared the performance with the Benders’ original algorithm.

Finally, some work has been presented regarding parallel computing. Wang et al. pre-

sented an adaptive version of a parallel Multi population Particle Swarm Optimization

(MPSO) implemented with OpenMP [170]. The implementation obtained an important im-

provement in terms of execution times while obtaining competitive results with a standard

computer.

4.3.2 Problem variations

Cooper studied the problem of deciding locations of warehouses and allocation of customers

demand given the locations and demands of customers [171], which can be considered as

the basic facility location problem. After that, many variations of the basic facility location

problem have been studied. The first variation defined is by adding a capacity constraint

to each of the facilities in the problem, which results in the Capacitated Facility Location

Problem (CFLP).

Another immediate generalization of the original FLP is the problem where the delivery of

different products is considered. The Multi Commodity Facility Location Problem (MCFLP)

studied the problem without any restriction on the number of products at each facility [172].

In the Facility Location with General Cost Function (FLP-GCF), the facility cost is a function

on the number of clients assigned to the facility. An additional variant for the problem is the

Online Facility Location (OFLP), in which the demand points arrive one at a time and the

goal is to maintain a set of facilities to serve these customers [173]. Carrizosa et al. presented

a nonlinear variation of the problem where they modified the classical Integer Programming

formulation of the problem by adding to the cost a nonlinear function depending on the
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number of open facilities [174], named as the Nonlinear Minsum Facility Location Problem

(NMFLP).

An interesting field of study of variations to this problem are those proposals defined

under uncertainty [150], introducing wide variations on any of the parameters of the problem

(mainly cost, demands or distances). The goal in these problems is to find a solution that

performs well under any possible realization of the random parameters, which means a robust

solution. The random parameters can be either continuous or discrete. As an example,

Balachandran and Jain presented a CFLP model with piecewise linear production costs that

need not be either concave or convex [175]. Demands are random and continuous, described

by some joint probability distribution. In this kind of problems, only first-stage decisions

are available, so there are no recourse decisions. So, once the locations are set, they cannot

be changed after the uncertainty is resolved. The objectives therefore include the expected

recourse costs.

Finally, it is worth to mention an extension of the FLP where it is combined with another

optimization problem, the Steiner Tree Problem (STP). As a result, Karger and Minkoff

defined the Connected Facility Location Problem (ConFLP) [176]. The ConFLP introduces

an additional constraint to the problem, which is that a Steiner tree must connect all the

open facilities. This variation of the problem combines location and connectivity problems,

which is suitable to model different access network design problems.

4.3.3 Applications

Recently the FLP problem found several new applications in digital network design prob-

lems. One example is the equipment allocation in Video on Demand (VoD) network de-

ployments [177]. VoD services are complex and resource demanding, so deployments involve

careful design of many mechanisms where content attributes and usage should be taken into

account. The high bandwidth requirements motivate distributed architectures with replica-

tion of content. An important and complicated task part of the network planning phase of

these distributed architectures is resource allocation. The growth of peer-to-peer networks

and the use of mobile devices for accessing the contents have made the problem even more

complex. Another example of FLP application is an approach for survivable network design

of citywide wireless broadband based on the FLP model [178]. They address two issues: how
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to locate the Wi-Fi equipment to maximally cover the given demand; and how to connect

Wi-Fi equipment to ensure survivable networking on a real case scenario in the city of Dublin

(Ohio).

Maric applied the problem to model the location of long-term health care facilities among

given potential sites [179]. The objective is to minimize the maximal number of patients

assigned to the established facilities. Examples can be also found in the supply chain man-

agement area. Brahimi and Khan showed a real case of a company that outsourced part of

its warehousing activity to a third party provider, facing the problem of which spaces to rent

in third-party warehouses [180].

The Online Facility Location Problem [173] can model a network design problem in which

several servers need to be purchased and each client has to be connected to one of the servers.

Once the network has been constructed, additional clients may need to be added to the

network. In this case additional costs will appear into the problem such as the connection

cost of connecting a new customer to the cluster and, if additional capacity is required to

accommodate the increase of demand, an additional server should be purchased (which means

opening an additional facility).

4.4 An Iterated Local Search heuristic to solve the UFLP

Our proposal is a hybrid approach that combines an Iterated Local Search (ILS) metaheuris-

tic [181] with biased-randomization techniques [182, 183] to deal with the FLP.

We first define a basic methodology to address the FLP problem in its deterministic

variant. These methodology should obtain results not far from optima in restrained times.

Then, by randomizing some of these steps of the deterministic heuristic, it is transformed into

a randomized procedure. Therefore, it can be run multiple times in order to obtain different

solutions for the problem. These executions, being independent one from another, can be

executed either in sequential or parallel mode.

Notice that it is possible to perform this randomization process without losing the logic

behind the deterministic heuristic by using a biased probability distribution in the procedure.

To achieve this, the process can give higher weight to the candidates that are the best choices

according to the deterministic heuristic.
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With this randomized process, alternative feasible solutions of a similar quality are easily

generated. Being an algorithm with a single input parameter, our approach represents an

interesting and competitive alternative to other state-of-the-art metaheursitcs, which usu-

ally require more cumbersome, time-costly and instance-dependent fine-tuning processes.

In practice, these metaheuristic approaches are usually harder to implement and often not

reproducible. Furthermore, Kant et al. suggest that most efficient heuristics and meta-

heuristics are not used in practice because of the difficulties that arise when dealing with

real-life scenarios [184]. To the best of our knowledge, our proposal is the first that employs

biased-randomization techniques to efficiently solve the FLP.

The proposed method, similarly to GRASP [185], relies on a biased constructive procedure

to generate new solutions. This class of methods has been less studied in the literature and

can offer competitive results when compared to more sophisticated approaches, which are

difficult to implement in practice.

Figure 4.2 details in a flow chart the algorithm, which works as follows. First, it loads

the problem instance. Then, it generates an initial random solution, which is the starting

point for the ILS procedure. To generate this initial solution, the algorithm chooses a random

number pi between |F |
2 and |F |, and picks randomly pi facilities to open. After setting up

the open facilities, it computes the total cost of the generated solution, which is selected as

starting point.

Selecting always more than the half of facilities is not an arbitrary decision and is justified

by the fact that removing facilities from a problem solution is computationally less expensive

than opening new facilities. When a facility is removed from a solution, updating the solution

costs only implies relocating the customers that were assigned to the closed facilities, while

the rest of customers assigned to the other facilities remain unmodified. Nevertheless, opening

facilities in the solution forces the evaluation of every single customer assignment to its closest

facility, since the new open stations may be closer than previous assignments. So, selecting

a large portion of the available facilities might lead to a fast convergence to optima.

After this initial solution is generated, a local search procedure is applied to refine the

initial solution. We propose two different local search procedures. The first one is simple and

very fast (tiny local search), while the other performs a deeper search with slower execution

times (deep local search).
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Figure 4.2: Flow diagram of the proposed approach (RandCFH-ILS)
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On the one hand, the tiny local search procedure is based only in closing movements. It

starts from the current solution and randomly closes one by one each of the open facilities.

The facilities to close are selected randomly among all the closed facilities. If the solution is

improved (i.e. it has a lower total cost) by closing the selected facility, it is actually removed

from the solution; otherwise the facility is kept in.

On the other hand, the deep local search procedure combines both closing and opening

movements, which makes this procedure computationally more expensive. This local search

procedure is divided in three parts. First, it starts by randomly opening one by one each of

the closed facilities. It evaluates the solution at each stage and only adds the open facility

to the solution in the case an improvement is obtained. On the second stage it performs a

swap movement, replacing a random number of open facilities on the solution by the same

number of closed facilities. Finally, in the third stage, it closes the open facilities in the

current solution one by one selected in a random order, effectively closing the facility in the

final solution only in the case an improvement is obtained. Further details on both local

search procedures are detailed in Section 4.4.2.

The solution generated will finally be the starting point for the ILS framework and con-

sidered as base solution. The ILS is mainly an iterative process which, at each iteration,

generates a new feasible solution with chances to outperform the base solution. Our ILS

consists of three steps:

1. Destruction/Construction of the solution (perturbation)

2. Refine the solution (local search)

3. Acceptance criteria of the solution

On the first step, a perturbation operator is applied to the solution. This operator

basically destroys some part of the solution by removing open facilities, and then reconstructs

it by opening new facilities. This operator always opens more facilities than the amount of

closed ones, so it benefits from the fact that the closing movement is less computationally

expensive, as happened with the generation of the initial solution. This solution is then

refined by the same local search operator used on the initial solution.
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Finally, the last step of the ILS is the acceptance criteria for updating the best and

base solutions. Being the best solution the one that will be returned as the result of our

methodology and the base solution the solution used as initial solution for the next iteration of

the ILS. If the solution obtained from the perturbation and local search procedures improves

the best solution found so far, then the best and base solutions are updated.

Additionally, if the solution obtained is worse than the current base solution, an accep-

tance criterion is defined. This acceptance criterion allows a non-improving solution to be

accepted as a new base solution if certain conditions are met. The acceptance criteria define

a gap which the solution is allowed to worsen. This gap varies during the execution of the

algorithm, allowing greater gaps at the beginning of the execution, and smaller gap as the

execution time passes. With that, we enable a method to escape from local minimal and

explore different regions of the solutions space.

4.4.1 Randomization issues in our approach

The proposed methodology is based on applying biased-randomization techniques at different

stages. Biased random sampling can be defined as a set of techniques that make use of

random numbers and asymmetric probability distributions to solve certain stochastic and

deterministic problems. When properly combined with heuristics, random sampling has

proven to be extremely useful in similar stochastic optimization problems [186, 182, 187].

Randomization helps our method to widely explore the space solutions. The first point

where we use randomization is the generation of the initial solution. We randomly select a

number of facilities which will define the initial solution. The local search procedures also use

randomization when exploring facilities, sorting them randomly. Finally, the perturbation

operator decides which facilities to remove in the destruction phase and which facilities to

include on the construction phase in a random fashion as well.

All these randomization processes must be done without introducing too many input

parameters to the algorithm. Otherwise, a non-trivial, time-consuming and often instance-

dependent fine-tuning process would be necessary in order to obtain good quality results.

The most suitable biased probability functions for these purposes are the single-parameter

geometric distribution or the parameter-free decreasing triangular distribution.

When compared to GRASP [185], our approach is not restricting the list of candidates

105



Chapter 4. Network-aware allocation for services in community systems

to be evaluated, so we are leaving out one parameter. Still, the randomization is biased,

since all the candidate facilities are not considered with the same probability (as shown in

Figure 4.3). One of the probability distribution functions which have demonstrated to obtain

competitive results with this purpose is the single-parameter geometric distribution [186, 182,

187]. Therefore, the proposed algorithm will use the geometric distribution, which will add a

single input parameter to the algorithm (the beta parameter for the probability distribution).

Figure 4.3: Uniform randomization vs. biased randomization

4.4.2 Pseudo-code of the proposed algorithm

Besides the flow diagram drawn in Figure 4.2, this section describes in detail the operation

of all the involved routines in our methodology.

The main method of our proposal is ILS-UFLP (Algorithm 3). It receives as parameters

the lists of facilities and customers defining the FLP problem instance, the beta parameter

required by the geometric distribution used in the randomization process and a parameter

used as stopping criterion on the ILS framework.

Our proposal first creates an initial random solution by the genInitRandSol method and

refines it by the local search procedure. As early mentioned in Section 4.4, we defined two

alternative local search procedures: localSearchTiny and localSearchDeep. After that,
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credit values used by the acceptance criteria are initialized. Then, the ILS loop is started

using the initially obtained solution. In the iterated loop, the perturbate operator is applied

to the current base solution and the obtained solution is refined again by the chosen local

search procedure.

This newly obtained solution is then evaluated. If the solution improves the current

base solution, then the base solution is updated. Also the credit is updated with the same

value as the improvement obtained. This causes credit values to be higher at the beginning

of the execution, so bad solutions are more tolerated. As the algorithm obtains smaller

improvements, only small degradations on the base solution are welcomed by the acceptance

criteria. If the new solution improves also the best solution, we update it as well.

In the case that the new solution is worse than the current base solution, the difference

between both is still evaluated. The new solution is only accepted as the new base solution

if this difference is below the credit acceptance threshold. In that case, the new solution is

accepted as base solution and the credit is reset to 0, so two degradations in a row are never

allowed.

The loop is executed until the termination criterion is met, which can be a time limit or a

maximum number of iterations. To conclude, the algorithm returns the best solution found

so far.

Once we have detailed the operation of the main method in our proposal, we describe in

detail the other methods called from the main procedure in the following paragraphs.

The genInitRandSol method (Algorithm 4) is the responsible of generating the initial

solution which serves as starting point for the algorithm. It receives as parameters the

facilities and customers in the problem instance and the beta parameter required for the

Random Number Generator (RNG). It generates a random number between the total number

of facilities and the half of this number. Next, it randomly picks this number of facilities

from the list of available ones in the problem instance to be open. Finally it constructs the

solution with the selected facilities as open facilities and assigns each customer to that facility

among the open with lowest service cost for it.

The perturbate method (Algorithm 5) describes the perturbation operator used within
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Algorithm 3 ILS-UFLP: Iterated Local Search heuristic for the Uncapacitated FLP

Require: facilities, customers, beta,maxIter
1: baseSol← genInitRandSol(facilities, customers, beta)
2: baseSol← localSearch(baseSol)
3: bestSol← baseSol
4: nIter ← 0
5: credit← 0
6: while nIter ≤ maxIter do
7: newSol← perturbate(baseSol, beta) {destruction-construction}
8: newSol← localSearch(baseSol)
9: delta← cost(newSol)− cost(baseSol)

10: if delta < 0 then
11: credit← −delta
12: baseSol← newSol
13: if cost(newSol) < cost(bestSol) then
14: bestSol← newSol
15: end if
16: else if delta > 0 and credit ≥ delta then
17: {acceptation criterion}
18: credit← 0
19: baseSol← newSol
20: end if
21: nIter ← nIter + 1
22: end while
23: return bestSol

Algorithm 4 genInitRandSol(): Initial solution generator for the FLP

Require: facilities, customers, beta

1: nFacilToOpen ← rand( size(facilities)
2 , size(facilities)) {Biased-randomized selection process us-

ing a Geometric(beta), promotes the random selection of those facilities with HIGHEST density
levels}

2: facilToOpen← biasedRandSelect(facilities, nFacilToOpen, beta)
3: sol← constructSol(facilToOpen, customers)
4: return sol

the main ILS loop. This method receives a base solution and the beta parameter for the

RNG. It creates a copy of the base solution and extracts the list of open facilities from it.

Then, it randomly closes a random number of facilities to close from all the open ones in the

solution. After that, it generates another random number of facilities to be opened, being

always greater than the number of facilities previously closed. This forces the new solution to

always include more open facilities and benefits the algorithm on the later refinement process

of the fact that closing a facility is a cheaper operation than opening a new facility. Once

we determine the number of facilities to open, we randomly pick the right amount from the

closed list and reconstruct the solution by adding them.
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Algorithm 5 perturbate(): FLP solution perturbation

Require: baseSol, beta
1: sol← copy(baseSol)
2: openFacilities← getOpenFacilities(sol)
3: nFacilToClose ← rand(0, size(openFacilities)) {Biased-randomized selection process using a

Geometric(beta), promotes the random selection of those facilities with LOWEST density levels}

4: invOpenFacilities← inverseOrder(openFacilities)
5: facilToClose← biasedRandSelect(invOpenFacilities, nFacilToClose, beta)
6: sol← destructSol(sol, facilToClose)
7: closedFacilities← getClosedFacilities(sol) {Re-construct more than destructed since closeLS is

faster than openLS}
8: nFacilToOpen ← rand(nFacilToClose, size(closedFacilities)) {Biased-randomized selection

process using a Geometric(beta), promotes random selection of those facilities with HIGHEST
density levels}

9: facilToOpen← biasedRandSelect(closedFacilities, nFacilToOpen, beta)
10: sol← constructSol(facilToOpen) {compute assignment cost}
11: return sol

The localSearchTiny method (Algorithm 6) describes the operation of the tiny local

search, which can be used to refine FLP solutions. This procedure receives as parameters the

base solution and the beta parameter for the RNG. It creates a copy of the base solution,

extracts the list of open facilities and sorts it randomly. After that, all open facilities are

removed from the solution one at a time. If the solution without that facility has a lower

global cost than the one including it, the facility is effectively removed from the solution.

Otherwise, it is kept in the open facilities list.

Algorithm 6 localSearchTiny(): fast local search based on facility closing

Require: baseSol, beta)
1: sol← copy(baseSol)
2: openFacilities← getOpenFacilities(sol)
3: openFacilitiesSorted← biasedRandSort(openFacilities
4: for all oFacility in openFacilities do
5: newSol← deleteFacility(sol, oFacility)
6: if cost(newSol) < cost(sol) then
7: sol← newSol
8: else
9: newSol← addFacility(sol, oFacility)

10: end if
11: end for
12: return sol
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The localSearchDeep method (Algorithm 7) presents an alternative local search proce-

dure, which can be used to refine FLP solutions as the previous localSearchTiny method.

This procedure receives as parameters the base solution and the parameter for the RNG. It

starts by creating a copy of the base solution. Then, it starts a loop structured on three

different blocks that will keep running while an improvement is found for the solution.

On the first block, we try to open closed facilities. The list of closed facilities is extracted

from the current solution and is randomly sorted. All closed facilities are added one by one

to the solution. If the solution with that facility has a lower global cost than the one without

it, the facility is effectively added the solution and the improvement control is set to true.

Otherwise, it is kept out. The second block of the loop swaps open and closed facilities. It

swaps all the open facilities with all the closed ones one at a time until an improvement is

found. If any of the solutions with a swap has a lower global cost than the one without the

change, the facilities are effectively swapped from the solution, the improvement control is

set to true and the swapping process ends. Finally in the third block, we try to remove open

facilities calling the localSearchTiny, willing to reduce the solution cost. All open facilities

are removed from the solution one at a time. If the solution without that facility has a lower

global cost than the one including that facility, the facility is effectively removed from the

solution and the improvement control is set to true. Otherwise, it is kept in the open facilities

list.

4.5 Performance evaluation against well-established FLP bench-

marks

To evaluate and assess the performance of the proposed algorithm, several computational

experiments were performed. The algorithm was implemented as a Java 7SE application

using the LFSR113 random number generator from the Stochastic Simulation in Java library

(SSJ) [188]. We performed all the tests on a commodity desktop computer with an Intel Core

i5-2400 at 3.20 GHz and 4 GB RAM running Ubuntu GNU/Linux 13.04.

To test the efficiency of the proposed algorithm, four different well-established classes

of FLP instances were used [189]. The selected datasets were chosen with the criteria of
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Algorithm 7 localSearchDeep(): local search with exhaustive search

Require: baseSol, beta
1: sol← copy(baseSol)
2: while improvement do
3: improvement← false
4: closedFacilities← getClosedFacilities(sol)
5: closedFacilitiesSorted← biasedRandSort(closedFacilities, beta)
6: for all cFacility in closedFacilitiesSorted do
7: newSol← addFacility(sol, cFacility)
8: if cost(newSol) < cost(sol) then
9: sol← newSol

10: improvement← true
11: else
12: newSol← deleteFacility(sol, cFacility)
13: end if
14: end for
15: openFacilities← getOpenFacilities(sol)
16: for all oFacility in openFacilities do
17: newSol← deleteFacility(sol, oFacility)
18: closedFacilities← getClosedFacilities(sol)
19: for all cFacility in closedFacilities do
20: newSol← addFacility(sol, cFacility)
21: if cost(newSol) < cost(sol) then
22: sol← newSol
23: improvement← true
24: break
25: else
26: newSol← removeFacility(newSol, oFacility)
27: end if
28: end for
29: if cost(newSol) < cost(sol) then
30: sol← newSol
31: improvement← true
32: break
33: else
34: newSol← addFacility(newSol, cFacility)
35: end if
36: end for
37: sol← localSearchT iny(sol, beta)
38: end while
39: return sol
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testing the algorithm against instances of small, medium and big size (in terms of facilities

and customers included in the graph). We briefly describe next the used sets:

BK a small-sized class introduced by Bilde and Krarup [190]. It includes 220 instances in

total divided in 22 subsets, with the number of facilities varying from 30 to 50 and the

number of customers from 80 to 100. These instances were artificially generated by the

authors, selecting the assignment costs randomly on the range [0, 1000], and opening

costs being always greater than 1000.

GAP a medium-sized class introduced by Kochetov and Ivanenko [191]. It consists of three

subsets, each with 30 instances: GAPA, GAPB and GAPC, being GAPC to be the

hardest instance. These instances are considered to be especially hard for dual-based

methods.

FPP a medium-sized class also introduced by Kochetov and Ivanenko [191]. It includes two

subsets, each with 40 instances: FPP11 and FPP 17. Although optimal solutions in

this class can be found in polynomial times, the instances are hard for algorithms based

on flip and swap local search, since each instance has a large number of strong local

optima.

MED big-sized class originally proposed for the p-median problem by Ahn et al. [192], and

later used in the context of the uncapacitated FLP [193]. Each instance is a set of

n points picked uniformly at random in the unit square. A point represents both a

user and a facility, and the corresponding Euclidean distance determines connection

costs. The set consists of six different subsets with a different number of facilities and

customers (500, 1000, 1500, 2000, 2500 and 3000) and three different opening cost

schemes for each subset.

In the performed experiments, we tested the algorithm using the two different local search

procedures presented. Each dataset was solved twice: one with the algorithm using the

localSearchTiny procedure and another one using the localSearchDeep procedures de-

scribed earlier in Section 4.4.2. With this, we will be able to compare both procedures and

determine which local search has the better performance depending on the features of the

solved instance.

112



4.5. Performance evaluation against well-established FLP benchmarks

The experiments were run by setting a stopping criteria based on a time limit for every

problem instance. Every instance will be solved by generating feasible solutions until the

termination criteria of time has been met (as sketched in Figure 4.2). These termination

criteria will be different depending on the size and the class of instances being solved. So, the

greater the instances are, the more time it is given to the algorithm (see Table 4.1). We set

these times long enough to guarantee that the algorithm reaches its best solution. We record

the time when the best solution was found for every instance, so we can know how fast the

convergence to this best solution was.

Table 4.1: Termination criteria for every class of instances

Class # facilities Time (s)
BK 80-100 30
FPP11 133 600
FPP17 307
GAPA 100 180
GAPB
GAPC
MED 500-3000 3600

Next, we show the results obtained when executing our algorithm in the earlier explained

benchmarks. We compare our results using both of the local search methods described

with the ones declared by Resende and Werneck using their GRASP algorithm [168]. Our

experiments were performed on a low-end commodity desktop computer using a standard

Java SE application, instead of the specifically compiled application for a supercomputer

utilized by Resende and Werneck. Although the theoretically higher performance of our

computer, we only used one of its cores for the Java Virtual Machine to run the experiments.

We started evaluating the methodology in the set of tests with simplest and smallest

problem instances, the Bilde and Krarup benchmark.

In this test, our algorithm clearly outperforms the GRASP proposal when using the deep

local search method. We found the optimal solution for all the instances in the benchmark in

much shorter execution times. Contrarily, we discovered in this first test that the tiny local

search method obtains lower quality results in terms of gap with the optima in comparable

times with the GRASP.

We performed the next evaluation over the GAP benchmark, known as a hard test for

113



Chapter 4. Network-aware allocation for services in community systems

Table 4.2: Results obtained for the 22 subsets of instances in the Bilde and Krarup benchmark

GRASP ILS-UFLP tiny ILS-UFLP deep
Instance # customers # facilities Gap t (ms) Gap t (ms) Gap t (ms)

B 100 50 0.000 310 0.000 794 0.000 0.20
C 100 50 0.016 450 0.130 835 0.000 0.05
D01 80 30 0.000 223 0.001 116 0.000 0.02
D02 211 317 0.04
D03 199 58 0.06
D04 170 48 0.08
D05 162 41 0.10
D06 186 124 0.12
D07 174 9 0.15
D08 166 20 0.08
D09 175 11 0.07
D10 166 28 0.21
E01 100 50 0.000 476 0.201 667 0.000 0.03
E02 588 0.011 1176 0.07
E03 0.019 512 0.000 286 0.11
E04 0.000 464 389 0.14
E05 376 223 0.18
E06 408 247 0.22
E07 416 451 0.25
E08 418 728 0.28
E09 352 35 0.29
E10 353 70 0.32

Average 0.002 316.14 0.015 290 0.000 0.14

dual-based oriented methods. Neither our algorithm nor GRASP were thought specifically

for dual-based problems, so finding good quality results in these instances is challenging for

both algorithms.

Table 4.3: Results obtained for subsets of instances in the GAP benchmark

GRASP ILS-UFLP tiny ILS-UFLP deep
Instance # customers # facilities Gap t (s) Gap t (s) Gap t (s)

GAP A 100 100 5.140 1.41 2.470 47.68 1.095 31.25
GAP B 5.980 1.81 2.811 63.56 1.642 40.72
GAP C 6.740 1.89 2.859 70.17 1.207 59.55

Average 5.953 1.7 3.405 54.43 1.314 43.84

In this set of tests, our algorithm obtained better quality solutions using any of the

presented local search methods, although the deep one resulted in much lower gaps from
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optima. However, the running times employed by our proposal were much higher than the

ones in Resende and Werneck’s experimentation.

The next test was performed over the FPP benchmark, known to include very hard

instances for swapping algorithms. Even though our algorithm is not purely in this family,

since we close and open an independent number of facilities at each overcoming iteration

instead of directly swapping facilities, this benchmark should also be defiant.

Table 4.4: Results obtained for subsets of instances in the FPP benchmark

GRASP ILS-UFLP tiny ILS-UFLP deep
Instance # customers # facilities Gap t (s) Gap t (s) Gap t (s)

FPP 11 133 133 8.480 2.58 0.063 127.126 0.000 111.02
FPP 17 307 307 58.270 25.18 70.731 272.94 12.283 253.44

Average 33.375 13.88 35.397 200.03 6.142 182.22

As in the GAP experimentation, our methodology outperforms the results’ quality of the

Resende and Werneck’s proposal. In the small instance, we even discover the optimal solution

when using the deep local search, while GRASP remained at an 8.4% gap. In this benchmark,

the tiny local search performs poorly due its simplicity in generating new solutions and the

intended complexity of the problem instance. Again, the employed times are much longer

than in GRASP.

Finally, we run the MED benchmark, the one with largest problem instances. In these

tests, the optimal is not known, but lower and upper bounds obtained with exact methods

are provided. We show the gap with respect to the lower bound and compare it to the same

gap of the average obtained by the GRASP method.

The results in Table 4.5 show our algorithm performs slightly better (a gap reduction

of 0.002%) than GRASP in the instances with larger setup costs (the *-10 instances). In

these smallest instances, our running times are even competitive with Resende and Wer-

neck’s experiments (almost 200 seconds faster on average). However, on larger instances, our

algorithm performs much slower, due to the longer list of open facilities included in these

solutions.

Notice some of the times employed to find the best solution are larger than the maximum

run time given to the algorithm. This happens in the tests with the lowest facility opening

costs (the *-1000 instances). In these problems, the number of open facilities is considerably
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Table 4.5: Results obtained for subsets of instances in the MED benchmark

GRASP ILS-UFLP tiny ILS-UFLP deep
Instance # customers # facilities Gap t (s) Gap t (s) Gap t (s)

0500-10 500 500 0.022 33.2 0.022 213 0.022 7.35
0500-100 0.016 32.9 0.093 676 0.014 720.2
0500-1000 0.071 23.6 0.071 3168 0.078 1410.5
1000-10 1000 1000 0.101 173.9 0.399 2038 0.099 69.3
1000-100 0.048 148.8 0.333 3566 0.088 1462.9
1000-1000 0.037 141.7 1.165 3468 0.278 3718.2
1500-10 1500 1500 0.191 347.8 0.236 2418 0.175 860
1500-100 0.030 378.7 0.687 3582 0.094 1427
1500-1000 0.034 387.2 3.514 3540 0.320 8074.1
2000-10 2000 2000 0.052 717.5 0.223 3415 0.052 384.6
2000-100 0.036 650.8 1.198 3573 0.299 2201.3
2000-1000 0.031 760.0 5.468 2838 0.400 30088
2500-10 2500 2500 0.164 1419.5 0.622 2988 0.168 496.2
2500-100 0.049 1128.2 1.537 3569 0.349 2347.1
2500-1000 0.052 1309.4 5.964 3533 0.308 50111
3000-10 3000 3000 0.104 1621.1 0.372 3570 0.102 1309.5
3000-100 0.124 1977.6 1.707 3538 0.482 1974.8
3000-1000 0.043 2081.4 6.238 3427 0.319 72252.4

Average 0.067 740 1.659 2951 0.203 9939.7

large and our algorithm tries to improve iteratively a long list. Thus, a single iteration takes

longer than the time set for the stopping criteria.

In most of the employed benchmarks our algorithm performed slower than the state-of-

the-art heuristic from Resende and Werneck. The reason behind these longer times is the

iterative nature of our methodology. On those scenarios on which the list of open facilities is

quite long, the algorithm has to iterate over all the elements and perform the earlier explained

operations, which takes longer times than the operations in GRASP. Nevertheless, the use of

biased-randomization techniques drive the heuristic to better solutions of the problem.

With all the shown benchmarks, we can conclude our methodology outperforms the exist-

ing state-of-the-art heuristics in small and medium-scale scenarios, especially on those with

short lists of open facilities. In large instances, our proposal is competitive in the case the

facilities setup costs are large in comparison to connection costs. Hence, our algorithm could

be a valuable tool for reduced or clustered scenarios, on which a large amount of clients could

be served by a small amount of facilities, as is the case in access networks in urban areas.
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4.6 Open-access services in a Community Network

We validated the suitability of the proposed methodology for network-aware service allocation

in a real scenario of a community network. We selected a mesh network topology from

Guifi.net, a successful community network. The reason for choosing this network was the

shared philosophy of a user-contributed system and the public availability of the network

topology (an often hidden information for current commercial access networks).

4.6.1 Guifi.net, a successful Community Network

Guifi.net is one of the largest and most successful Community Networks of the world. It

currently connects up to 24,652 operative nodes and 28,689 links1 in a mesh topology. These

topology is divided into more than 130 administrative divisions, each of them containing

some distributed monitoring facilities that help to control the correct network operation.

Most of the links in the network are wireless, although fiber optics are used in some key

regions of the network. The network is mostly based in the Catalunya region, although other

communities in different regions around the world are also growing their local deployments

and join the original network through Internet tunnels.

The network was born as a user initiative to connect themselves by creating a free and

independent telecommunications infrastructure. Later, the Guifi.net Foundation was created

to guard the network freedom and reinforce the infrastructure on its core equipment. This

foundation takes care of maintaining the network operative, provides some basic capabilities

and organizes actions to improve the network quality or expand it to new regions.

One of the most interesting traits of Guifi.net is that the foundation publicly releases

information about nodes, links, network topology and its usage. This poses new research

opportunities for researchers, as this information is usually hidden in commercial networks

operated by ISPs. A clear sign of this research interest is the existence of research projects

devoted to study and improve community networks [194] by designing new protocols and

to create a computing platform similar to clouds with the computing resources in these

networks [195].

1June 2014
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4.6.2 FLP in a Community Network

In order to perform our study over a real network, we obtained a complete network snapshot

from April 2013 in the Guifi.net Foundation website. These snapshot contained 8,907 opera-

tive nodes and 9,047 links divided into 129 administrative regions. For our study, we selected

a portion of these network snapshot with 1,134 nodes and 1,161 links. Due to the low visibil-

ity of such a large graph, we cannot depict the actually selected network topology. Instead,

we provide some basic graph statistics in Table 4.6 to help the reader better understand the

type of network we dealt with.

Table 4.6: Traits of the studied network graph

avg. min. max.

Network diameter 11
Node degree 2.0476 1 260

Node degree centrality 0.0018 0.0009 0.2295
Node closeness centrality 0.2442 0.1212 0.4258

Node betweenness centrality 0.0028 0.00 0.7912
Path lengths 4.2244 1 11

We considered the 53 nodes in the topology with more than one link to be the nodes that

could host a service (the facilities in the FLP terminology) and all of them (including the

facilities) to be potential service consumers (the clients in the FLP). Considering facilities to

be also consumers is the usual case in the community cloud and contributory communities

proposals, as users originally contribute their resources to support the platforms with the

only reward of accessing these services.

In this example we assume complete knowledge about the network topology. If this was

not the case, probing techniques like traceroute could be used in a commercial to discover

the underlying network connecting the nodes, in a similar way than [38] did with available

bandwidth used by their allocation strategy.

To transform the network graph into a classical FLP instance, connection costs were

established as the number of network hops from one node to another and the opening cost

for each facility was defined as ci = 1000× closeness centralityi. The closeness centrality is

a graph measure on how close is a vertex to all other vertices in a graph. Thusly, directly
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linking the opening cost of a facility at a given spot to this measure intuitively seemed a good

strategy to associate higher costs to well connected hosts.

We studied the application of our allocation methodology based on the FLP in the de-

scribed scenario and compared it to the following allocation strategies over the same topology:

1. A greedy method that selects the top N facilities ordered by descending opening cost.

This method selects the best nodes in terms of closeness centrality, meaning higher

setup costs but lower connection ones.

2. A greedy method, that selects the top N facilities ordered by ascending opening cost.

This method selects the worst nodes in terms of closeness centrality, meaning lower

setup costs but higher connection ones.

3. A random selection of N nodes from all the available facilities. This could be interpreted

as any of the other methods presented in previous chapters that did not consider any

network parameter.

In all cases, we set N to the same number of nodes selected by our FLP solving method,

so the distance and cost comparison is done with the same level of resource usage. For

the random selection strategy, we took the average from 100 samples. We gave 1 second of

running time to our heuristic, a restricted time that would allow its use in a user-interactive

service deployment process. We plot in Figure 4.4 the distance of clients in the network to

its closest facility when selected with each of the explained methodologies.

Figure 4.5 shows the cost incurred by each of the service allocations obtained with the

different methodologies.

As can be observed in Figure 4.4, our simulation-based methodology selects nodes in the

network to host a single service that are closer to all other ones while maintaining a low

deployment cost. Observing the disparate distances and costs obtained with both greedy

methodologies, we can also deduct that (a) selecting those nodes with higher closeness cen-

trality values results in low network distances and restrained total deployment costs; and

(b) selecting nodes with lower closeness centrality results in very low opening costs but

prohibitively high connecting ones and longer network distances. Both facts are a direct

consequence of the cost function used to assign open costs for facilities in the FLP instance,

but they help to value our proposal on finding low distance and low cost deployments.
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Figure 4.5: Service allocation costs comparison of the different deployments obtained by the
above described methodologies
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We already stated that in a real-life scenario several services or applications should be

concurrently supported in the same network. To show the behavior of our methodology

in such case, we evaluated the network distances after five consecutive service allocations,

considering only one service replica was supported at a time on each host. We show in

Figure 4.6 the distance of each host in the network to the closest replica of each of the five

deployed services when they are allocated with the earlier explained methodologies.
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Figure 4.6: Percentage of clients at different distances to the closest replica

Figure 4.7 shows the aggregated costs for 5 services incurred by the allocations found

with all the compared methodologies.

Figure 4.6 indicates our methodology consistently allocates replicas closer to all clients in

the network by using the same number of resources. Specially, if we look at the maximum

distance, our proposal is able to allocate replicas at half the distance than other approaches.

Thus, we can highlight our methodology does a better resource utilization, getting lower

network distances without increasing the number of consumed resources.

Moreover, as the bar graph in Figure 4.7 reflects, the selected service allocations are also

cheaper on the aggregate cost after five consecutive allocations. According to the selected

setup costs for the hosts, this fact suggests our methodology is able to share out the most

suitable network spots (in terms of distance to all clients) among different service allocations.

In a real deployment, this fact would help to improve the network allocation of several

concurrent services.

121



Chapter 4. Network-aware allocation for services in community systems

Our meth. Greedy Asc. Greedy Des. Random
Allocation policy

0

5000

10000

15000

20000

25000

30000

A
cc

u
m

u
la

te
d
 C

o
st

Opening costs

Connection costs

Figure 4.7: Accumulated costs for each of the five deployments with each methodology

4.7 Summary

Commodity network connections encouraged the appearance of volunteer and contributory

computing. Despite the increasing quality of domestic Internet connections, host geograph-

ical spread may cause large network distances among participant hosts. In this chapter we

intended to select the proper hosts in such a way network distances from all clients in a

network to a set of contributory service deployed across a topology were minimized.

We modeled this problem as a Facility Location Problem, a classical optimization problem

deeply studied in the fields of logistics and transportation. To address it, we proposed a

methodology based on an Iterated Local Search framework to determine a subset of nodes in

a topology to support a given service.

Our method proved to be competitive with current stat-of-the art heuristics in the well-

established benchmarks for the FLP, specially in small- and medium-sized instances of the

problem.

We then applied our method to a realistic scenario. We modeled the topology of a

community network into an FLP and tested the deployment of several services on the available

hosts. Our method discovered closer and cheaper deployments than the other methods we

compared it to.
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5.1 Final conclusions

The contributory computing model is still at its early stages, as many issues described in

their definition [27] remain still unsolved. All the contributions of this thesis coincide on the

fact their outcomes aim to be be a system improvement to encourage the adoption of this

model. Yet, many other problems should be addressed to finally obtain reliable and attractive

systems able to replace or complement current clouds.

We explained the importance of availability on systems aiming to offer long-lived ser-

vices on top of non-dedicated resources. Users will not be willing to move the services they

currently hire to cloud vendors if the alternative is not reliable enough to offer long-lived ser-

vices. We proposed an availability-aware method for services created from several connected

components. Our proposal showed an efficient way to select those hosts in a community

that could guarantee a certain level of service availability over time while minimizing a cost

function associated to the utilization of each host. This research was published in the journal

Simulation: Transactions of the Society for Modeling and Simulation International [P3].

Service availability was also the main concern behind the design process of our distributed

social network, HorNet. This application was meant from the beginning to be deployed as

a contributory service, so it helped us to motivate the goodness of the contributory model

and its validation reinforced our point of view about the utility of user-donated computers.

Moreover, we could apply our availability-aware allocation method for composite services in

an actual application. With that, proper nodes to host HorNet services were selected and a

given service availability level could be guaranteed. The HorNet design and validation was

published in the journal IEEE Internet Computing [P1].

Our study over the green computing arena made us realize the tremendous efforts in differ-

ent disciplines devoted to minimize the energy consumption of computing systems. Although

the wide spectrum of various methods, we proposed a scheduling heuristic for ordered-task

execution that could minimize the employed energy by minimizing makespans; and a simple

and fast heuristic that combined our availability-aware methodology with the energy con-

sumption of hosts in contributory platforms. In both cases, our proposals showed to be

valuable by attaining significant energy consumption reductions and they were published in

the Journal of Applied Operational Research [P2] and in the proceedings of the Conference of
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the Spanish Association for Artificial Intelligence [P4] and the Winter Simulation Conference

2013 [P5].

The florescence of Community Networks brought many new parameters to take into ac-

count when selecting hosts to allocate service replicas. Their monitoring systems and the

community commitment to publicly offer information about nodes, links and network topolo-

gies opened the door to use this information to manage resources more efficiently. As an

example of a fruitful usage of this data, we focused on selecting replicas as close as possible

to service consumers, proposing a methodology that minimizes network distances while did

not favored more central nodes in the network. This research was accepted for publication

in the proceedings of the Winter Simulation Conference 2014 [P6].

Most of the proposed methods in this dissertation were inspired in classical optimization

problems. These problems have been deeply studied in other research disciplines, such as

logistics, transportation or manufacturing. We showed along this thesis that the influence

from these already-existing tools to the distributed computing research field leads to novel

and helpful methodologies to obtain affordable system optimizations.

5.2 Directions for future work

Seizing non-dedicated computing resources poses many research challenges. As part of this

thesis, we partly addressed some of these challenges, but many of them still remain unex-

plored. Among them, the following ones are of particular interest from our point of view.

• We studied the application of computer simulation on the estimation of composite

services availability, but we only considered predefined topologies. With all, simulation

tools have proven to be extremely valuable to detect weaknesses on complex system

topologies. Obtaining knowledge from components in a service topology, the service

could be reinforced by modifying the topology adding redundancies or by assigning

better hosts to these components.

• The methodologies presented in this thesis were validated by means of system simula-

tion, mostly with artificially generated data. It would be of great interest to validate
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such methods in a real contributory platform. Our proposals could be easily integrated

into the host selection step of current or future implementations of the paradigm.

• In the latter scenario, it would be extremely valuable to observe and study the resource

utilization, in such a way new strategies could be introduced to improve allocations.

• Contributory platforms aggregate very heterogeneous nodes with some traits that can

change and evolve over time. Our proposals focused on evaluating the allocations at

the time of the host selection, but no transient study was performed over the systems.

It would be relevant to determine how far our assignations would be valid in a real

system, so re-assignation policies could be designed in order to make the services last

for longer periods.

• Network-aware allocation mechanisms are a profitable tool that should be further ex-

ploded. We focused on minimizing network distances from replicas to clients, but many

other helpful strategies could be adopted. Minimizing service overlay diameter, max-

imize available bandwidth among replicas or minimize delays from replicas to clients

are just a small portion of the numerous possibilities offered to upper-layer services to

take advantage from the information about the underlying network.
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[72] P. Knežević, A.s Wombacher, and T. Risse. Dht-based self-adapting replication proto-

col for achieving high data availability. In Ernesto Damiani, Kokou Yetongnon, Richard

Chbeir, and Albert Dipanda, editors, Advanced Internet Based Systems and Applica-

tions, pages 201–210. Springer-Verlag, Berlin, Heidelberg, 2009.

[73] A. Andrzejak, D. Kondo, and D.P. Anderson. Exploiting non-dedicated resources for

cloud computing. In Network Operations and Management Symposium (NOMS), 2010

IEEE, pages 341 –348, April 2010.

134



Bibliography

[74] Y. Dai, M. Xie, and K. Poh. Availability modeling and cost optimization for the grid

resource management system. Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE Transactions on, 38(1):170 –179, jan. 2008.

[75] D. Kondo, A. Andrzejak, and D.P. Anderson. On correlated availability in internet-

distributed systems. In Proceedings of the 2008 9th IEEE/ACM International Confer-

ence on Grid Computing, pages 276–283. IEEE Computer Society, 2008.

[76] D. Kondo, B. Javadi, A. Iosup, and D. Epema. The failure trace archive: Enabling

comparative analysis of failures in diverse distributed systems. In Cluster, Cloud and

Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on, pages

398 –407, May 2010.

[77] B. Javadi, D. Kondo, J. Vincent, and D.P. Anderson. Discovering statistical models

of availability in large distributed systems: An empirical study of seti@home. IEEE

Transactions on Parallel and Distributed Systems, 22:1896–1903, 2011.

[78] R. Morales and I. Gupta. AVMON: Optimal and scalable discovery of consistent avail-

ability monitoring overlays for distributed systems. Parallel and Distributed Systems,

IEEE Transactions on, 20(4):446–459, 2009.

[79] G. Attiya and Y. Hamam. Task allocation for maximizing reliability of distributed sys-

tems: a simulated annealing approach. Journal of Parallel and Distributed Computing,

66:1259–1266, October 2006.

[80] Q. Kang, H. He, H. Song, and R. Deng. Task allocation for maximizing reliability of

distributed computing systems using honeybee mating optimization. J. Syst. Softw.,

83:2165–2174, November 2010.

[81] Y. Tao, H. Jin, and X. Shi. Grid workflow scheduling based on reliability cost. In Pro-

ceedings of the 2nd international conference on Scalable information systems, InfoScale

’07, pages 12:1–12:8. ICST (Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering), 2007.

[82] P.Y. Yin, S.S. Yu, P.P. Wang, and Y.T. Wang. A hybrid particle swarm optimization

algorithm for optimal task assignment in distributed systems. Computer Standards &

Interfaces, 28(4):441–450, 2006.

[83] P. Yin, S. Yu, P. Wang, and Y. Wang. Task allocation for maximizing reliability of a

distributed system using hybrid particle swarm optimization. J. Syst. Softw., 80:724–

735, May 2007.

135



Bibliography

[84] P. Yin, S. Yu, P. Wang, and Y. Wang. Multi-objective task allocation in distributed

computing systems by hybrid particle swarm optimization. Applied Mathematics and

Computation, 184(2):407 – 420, 2007.

[85] X. Tang, K. Li, R. Li, and B. Veeravalli. Reliability-aware scheduling strategy for

heterogeneous distributed computing systems. J. Parallel Distrib. Comput., 70:941–

952, September 2010.

[86] J. Yu, R. Buyya, and C.K. Tham. Cost-based scheduling of scientific workflow appli-

cations on utility grids. In e-Science and Grid Computing, 2005. First International

Conference on, pages 8–pp. Ieee, 2005.

[87] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. Qos-

aware middleware for web services composition. Software Engineering, IEEE Transac-

tions on, 30(5):311–327, 2004.

[88] I. Brandic, S. Benkner, G. Engelbrecht, and R. Schmidt. Qos support for time-critical

grid workflow applications. In e-Science and Grid Computing, 2005. First International

Conference on, pages 8–pp. IEEE, 2005.

[89] J. Faulin, A. Juan, C. Serrat, and V. Bargueño. Predicting availability functions in time-

dependent complex systems with saedes simulation algorithms. Reliability Engineering

& System Safety, 93(11):1761–1771, 2008.

[90] J.M. Marquès, X. Vilajosana, T. Daradoumis, and L. Navarro. Lacolla: Middleware

for self-sufficient online collaboration. Internet Computing, IEEE, 11(2):56–64, 2007.

[91] BBC News - Twitter to selectively ’censor’ tweets by country, 2012. http://www.bbc.

co.uk/news/world-us-canada-16753729.

[92] Decentralized online social networks. http://sands.sce.ntu.edu.sg/dOSN/.

[93] S. Seong, J. Seo, M. Nasielski, D. Sengupta, S. Hangal, S. Teh, R. Chu, B. Dodson,

and M. Lam. Prpl: a decentralized social networking infrastructure. In Proceedings of

the 1st ACM Workshop on Mobile Cloud Computing & Services: Social Networks and

Beyond, MCS ’10, pages 8:1–8:8, New York, NY, USA, 2010. ACM.

[94] A. Shakimov, A. Varshavsky, L. Cox, and R. Cáceres. Privacy, cost, and availability
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