
A
B
C
D
E
F
G

UNIVERSITY OF OULU  P .O. B  00  F I -90014 UNIVERSITY OF OULU FINLAND

A C T A  U N I V E R S I T A T I S  O U L U E N S I S

S E R I E S  E D I T O R S

SCIENTIAE RERUM NATURALIUM

HUMANIORA

TECHNICA

MEDICA

SCIENTIAE RERUM SOCIALIUM

SCRIPTA ACADEMICA

OECONOMICA

EDITOR IN CHIEF

PUBLICATIONS EDITOR

Professor Esa Hohtola

University Lecturer Santeri Palviainen

Postdoctoral research fellow Sanna Taskila

Professor Olli Vuolteenaho

University Lecturer Veli-Matti Ulvinen

Director Sinikka Eskelinen

Professor Jari Juga

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-952-62-0403-1 (Paperback)
ISBN 978-952-62-0404-8 (PDF)
ISSN 0355-3213 (Print)
ISSN 1796-2226 (Online)

U N I V E R S I TAT I S  O U L U E N S I SACTA
C

TECHNICA

U N I V E R S I TAT I S  O U L U E N S I SACTA
C

TECHNICA

OULU 2014

C 487

Eero Väyrynen

EMOTION RECOGNITION 
FROM SPEECH USING 
PROSODIC FEATURES

UNIVERSITY OF OULU GRADUATE SCHOOL;
UNIVERSITY OF OULU,
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING,
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING;
INFOTECH OULU

C
 487

AC
TA

Eero Väyrynen

C487etukansi.kesken.fm  Page 1  Tuesday, March 11, 2014  11:02 AM





A C T A  U N I V E R S I T A T I S  O U L U E N S I S
C  Te c h n i c a  4 8 7

EERO VÄYRYNEN

EMOTION RECOGNITION FROM 
SPEECH USING PROSODIC 
FEATURES

Academic dissertation to be presented with the assent of
the Doctoral Training Committee of Technology and
Natural Sciences of the University of Oulu for public
defence in OP-sali (Auditorium L10), Linnanmaa, on 9 May
2014, at 12 noon

UNIVERSITY OF OULU, OULU 2014



Copyright © 2014
Acta Univ. Oul. C 487, 2014

Supervised by
Professor Tapio Seppänen

Reviewed by
Professor Tom Bäckström
Professor Klára Vicsi

ISBN 978-952-62-0403-1 (Paperback)
ISBN 978-952-62-0404-8 (PDF)

ISSN 0355-3213 (Printed)
ISSN 1796-2226 (Online)

Cover Design
Raimo Ahonen

JUVENES PRINT
TAMPERE 2014

Opponent
Professor Paavo Alku



Väyrynen, Eero, Emotion recognition from speech using prosodic features. 
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering, Department of Computer Science and Engineering; Infotech Oulu
Acta Univ. Oul. C 487, 2014
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Abstract

Emotion recognition, a key step of affective computing, is the process of decoding an embedded
emotional message from human communication signals, e.g. visual, audio, and/or other
physiological cues. It is well-known that speech is the main channel for human communication
and thus vital in the signalling of emotion and semantic cues for the correct interpretation of
contexts. In the verbal channel, the emotional content is largely conveyed as constant
paralinguistic information signals, from which prosody is the most important component. The lack
of evaluation of affect and emotional states in human machine interaction is, however, currently
limiting the potential behaviour and user experience of technological devices. 

In this thesis, speech prosody and related acoustic features of speech are used for the
recognition of emotion from spoken Finnish. More specifically, methods for emotion recognition
from speech relying on long-term global prosodic parameters are developed. An information
fusion method is developed for short segment emotion recognition using local prosodic features
and vocal source features. A framework for emotional speech data visualisation is presented for
prosodic features. 

Emotion recognition in Finnish comparable to the human reference is demonstrated using a
small set of basic emotional categories (neutral, sad, happy, and angry). A recognition rate for
Finnish was found comparable with those reported in the western language groups. Increased
emotion recognition is shown for short segment emotion recognition using fusion techniques.
Visualisation of emotional data congruent with the dimensional models of emotion is
demonstrated utilising supervised nonlinear manifold modelling techniques. The low dimensional
visualisation of emotion is shown to retain the topological structure of the emotional categories,
as well as the emotional intensity of speech samples. 

The thesis provides pattern recognition methods and technology for the recognition of emotion
from speech using long speech samples, as well as short stressed words. The framework for the
visualisation and classification of emotional speech data developed here can also be used to
represent speech data from other semantic viewpoints by using alternative semantic labellings if
available. 

Keywords: affective computing, data visualisation, emotion recognition, machine
learning, speech prosody
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Tiivistelmä

Emootiontunnistus on affektiivisen laskennan keskeinen osa-alue. Siinä pyritään ihmisen kom-
munikaatioon sisältyvien emotionaalisten viestien selvittämiseen, esim. visuaalisten, auditiivis-
ten ja/tai fysiologisten vihjeiden avulla. Puhe on ihmisten tärkein tapa kommunikoida ja on siten
ensiarvoisen tärkeässä roolissa viestinnän oikean semanttisen ja emotionaalisen tulkinnan kan-
nalta. Emotionaalinen tieto välittyy puheessa paljolti jatkuvana paralingvistisenä viestintänä,
jonka tärkein komponentti on prosodia. Tämän affektiivisen ja emotionaalisen tulkinnan vajaa-
vaisuus ihminen-kone – interaktioissa rajoittaa kuitenkin vielä nykyisellään teknologisten laittei-
den toimintaa ja niiden käyttökokemusta. 

Tässä väitöstyössä on käytetty puheen prosodisia ja akustisia piirteitä puhutun suomen emoti-
onaalisen sisällön tunnistamiseksi. Työssä on kehitetty pitkien puhenäytteiden prosodisiin piir-
teisiin perustuvia emootiontunnistusmenetelmiä. Lyhyiden puheenpätkien emotionaalisen sisäl-
lön tunnistamiseksi on taas kehitetty informaatiofuusioon perustuva menetelmä käyttäen proso-
dian sekä äänilähteen laadullisten piirteiden yhdistelmää. Lisäksi on kehitetty teknologinen viite-
kehys emotionaalisen puheen visualisoimiseksi prosodisten piirteiden avulla. 

Tutkimuksessa saavutettiin ihmisten tunnistuskykyyn verrattava automaattisen emootiontun-
nistuksen taso käytettäessä suppeaa perusemootioiden joukkoa (neutraali, surullinen, iloinen ja
vihainen). Emootiontunnistuksen suorituskyky puhutulle suomelle havaittiin olevan verrannolli-
nen länsieurooppalaisten kielten kanssa. Lyhyiden puheenpätkien emotionaalisen sisällön tunnis-
tamisessa saavutettiin taas parempi suorituskyky käytettäessä fuusiomenetelmää. Emotionaali-
sen puheen visualisoimiseksi kehitetyllä opetettavalla epälineaarisella manifoldimallinnusteknii-
kalla pystyttiin tuottamaan aineistolle emootion dimensionaalisen mallin kaltainen visuaalinen
rakenne. Mataladimensionaalisen kuvauksen voitiin edelleen osoittaa säilyttävän sekä tutkimus-
aineiston emotionaalisten luokkien että emotionaalisen intensiteetin topologisia rakenteita. 

Tässä väitöksessä kehitettiin hahmontunnistusmenetelmiin perustuvaa teknologiaa emotio-
naalisen puheen tunnistamiseksi käytettäessä sekä pitkiä että lyhyitä puhenäytteitä. Emotionaali-
sen aineiston visualisointiin ja luokitteluun kehitettyä teknologista kehysmenetelmää käyttäen
voidaan myös esittää puheaineistoa muidenkin semanttisten rakenteiden mukaisesti. 

Asiasanat: affektiivinen laskenta, emootiontunnistus, koneoppiminen, prosodiikka,
tiedon visualisointi
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1 Introduction

1.1 Background

Emotion recognition is a key process of an affective computer. In emotion recognition,
the decoding of emotional content from visual, audio, and/or physiological signals is
attempted. The understanding of emotional relevance is seen as an essential capability
for artificial computing to interpret the semantic meaning of signals.

A thirst for understanding emotion and related phenomena in the human interaction
is as old as the civilisation itself. Written evidences of a strong understanding of
emotional relevance to semantics can be traced back to ancient times. For example, the
Greek philosopher Aristotle taught in his great treatise Rhetoric about the concept of
using emotion in public speaking as a tool for appealing to the crowds’ innate emotional
biases for a desired effect (i.e. ethos and pathos). During the early modern era in 1649,
the philosopher Descartes in his last published work, the Passions of the Soul, identified
emotions as simple and primitive passions from where all other forms of passion arise.
Although Descartes acknowledged the mind-body union of a human being, he separated
the two and placed the passions in the body from where they interfere with the decisions
of the rational mind. Now, it is generally understood that this total division of mind and
body was the so-called Descartes’ error, greatly affecting the thinking of philosophers
and scientists afterwards. From studying people with brain injuries, it can be argued that
having emotions is an integral and essential component of conscious decision making
and thus entwined with the reason itself (Damasio 1994).

Scientific study to model and understand emotion can also be traced back by more
than two centuries. The current understanding of affects has evolved immensely from
the early treatises on emotion, e.g. Bell (1806). Darwin (1872/1965) studied emotional
expressions and made observations that link some emotional behaviour to evolutionary
processes. During the last few decades, a popular concept of basic emotions (Izard
1992, Ekman 1992, 1999) has been found successful, especially when considering facial
expressions. However, in the search of a more primitive, fundamental representation
of affects, the old views that attribute emotions, and expressions thereof, to lists of
monopolar emotional labels have been augmented by modern dimensional approaches
(Russell 2003, Fontaine et al. 2007). Although emotional labels are still a relevant and
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useful concept, a bipolar dimensional circumplex model (Russell 1980) can be seen as
an essential representation of affects. Dimensional models can be used to represent the
strict emotional labels in a looser, more malleable continuous structure.

Affective computers and affective technology, or the lack of, have been a staple
theme in science fiction for decades. Engineering emotionally intelligent computers
and agents is, however, no more just a good story. Affective computing has become
a recognised and important field of technological study (Picard 1997). Affective
computing is a multidisciplinary field bridging knowledge together from multiple
fields such as cognitive sciences, psychology, computer sciences, natural language
processing, phonetics, and linguistics. Advantages that affective computing can bring,
range from better usability and user experience of human computer interfaces to more
independent context aware autonomous technological agents. Ultimately, perhaps, a
better understanding of semantics and affects can lead to a point when the Holy Grail of
computer science, a fully conscious, self-aware artificial intelligence, becomes a reality.

1.2 Research problem and objectives

The overall research problem of this thesis is: How to automatically recognise communi-
cated emotions from speech? Due to the vast size of the field of emotion recognition,
even if nothing but all paralinguistic communication modalities (e.g. facial expressions,
postures, gestures, speech, or other physiological signals) would be considered, the
research problem had to be still narrowed. Speech is generally identified as an important
channel for the communication of emotion, yet it has been relatively little studied,
compared with facial expressions, in the context of emotion.

Consequently, in this thesis, the problem of emotion recognition is approached using
only speech signals. More specifically, the most important paralinguistic component
of speech, i.e. prosody, is primarily considered. The prosody is chosen because the
prosody of emotional continuous spoken Finnish has not been extensively studied and
no automatic emotion recognition technology exists yet for continuous Finnish speech
using long-term global prosodic features. To accommodate for the narrowed approach, a
fusion of different modalities is nevertheless considered during the research in order to
retain some generalizability of results with the overall field of emotion recognition.
The visualisation of data is a closely related problem. The nonlinearity of semantic
concepts, e.g. emotion, requires more effective data representation techniques to
generate semantically meaningful visualisations. An aim is to study nonlinear modelling
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techniques in order to produce visualisations of emotional speech data that are consistent
with a semantic evaluation. Specific sub-questions for this research can be formulated
as:

1. Is emotion recognition from speech possible from Finnish using long-term global
prosodic features?

2. What kind of technology is needed to combine different signal modalities and/or
feature sets for multimodal emotion recognition?

3. Is it possible to produce visualisations of the intrinsic emotional data structures
consistent with a dimensional model of emotion?

The technological goal was to develop methods for the automatic recognition of
emotions from speech prosody. The papers published on the topic aim at three distinct
main objectives. The first objective is to establish state-of-the-art emotion recognition for
continuous Finnish speech using pattern recognition techniques. The second objective
was to develop an information fusion based technology for the recognition of emotional
speech when using multimodal features. The third objective was to develop a supervised
method for emotional speech data visualisation.

1.3 Research scope and approach

The objectives of this thesis are approached using short- and long-term prosodic features
and other related acoustic features in the context of Finnish speech. The selected
approach moves the scope distinctively away from the standard Automatic Speech
Recognition (ASR) field. By using speech prosody, the analysis is now concentrated on
the semantic quality of the speech signal rather than the lexical information content of
natural language. The intonation and acoustic quality of speech is a property that is
continuously present in any speech signals and has a profoundly important meaning and
impact on speech communication, yet it is still a quite poorly understood phenomenon.
Technical tools for the study of this implicit speech information are needed.

The emotional corpus data used in the original publications was recorded in 2003
and 2006, using high quality condenser microphones and a controlled environment.
The speech material was produced using recruited native Finnish professional actors
with theatrical acting backgrounds. The recorded corpus contains hours of emotional
speech material. From the material, a set of 280 around 10 second length basic emotion
renditions was selected for the emotion recognition and the visualisation of emotion
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studies. A set of 450 long [a:] vowel samples was selected for the short segment fusion
study.

The simulated acted emotional content was chosen because one of the goals of the
study was to develop emotional data visualisation techniques. The fact that an immense
amount of available recorded material, e.g. television programs, are all acted material
support this choice of an approach for technical analysis method development. The
consequence of this approach is that for spontaneous speech many of the results of this
study must be separately verified, however. A separate testing data containing classified
radio communications between fighter jet pilots during a war exercise was used in the
robustness testing of the feature extraction. The flight communication contains high
noise and both high physical and psychological stress situations that can be used to test
the extraction procedures at extreme conditions.

In this work, statistical pattern recognition techniques are utilised in the development
of emotion recognition technology. First, statistical features are developed that can
be automatically extracted from speech prosody. A classifier technology is used to
enable a robust machine learning of emotional speech. Next, fusion techniques are
investigated to enable the use of multimodal information ensembles for the classification
of emotion in very short time frames. Finally, nonlinear modelling and classifier based
optimisation techniques are developed for the visualisation of high-dimensional speech
feature manifolds in a low dimensional semantically relevant space.

1.4 Original publications and authors’ contributions

Paper I focuses on the classification of Finnish emotional speech content. In the paper, a
standard pattern recognition approach to emotion recognition task is investigated using
prosodic features extracted with a fully automatic method. In Paper II, the performance
and quality of the used automatic prosodic feature extraction method is investigated. In
Paper III, fusion techniques to combine prosodic features with voice quality features are
investigated to enhance the emotion classification performance of short vowel length
utterances. Finally, in Paper IV, a framework for semantic speech visualisation is
presented in the context of emotional speech using a nonlinear manifold estimation
technique, Isomap.

In all four original publications, the author was primarily responsible for the study
design, development and implementation of algorithms and analysis of results. The
author was also the principal manuscript writer of papers II–IV. In papers I–III, Dr.
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Juhani Toivanen provided phonetic and language expertise, along with being the
responsible principal manuscript writer for Paper I. Dr. Toivanen was also the primary
contributor responsible for the design and collection of the emotional speech corpus
used throughout the research (the author contributed technical assistance and supervision
only). M.Sc. Heikki Keränen contributed to the data analysis design, provided manual
reference estimates and annotations for the algorithm and speech error analysis, and
contributed to the manuscript writing of Paper II. Dr. Jukka Kortelainen contributed to
the study and algorithm design, as well as to the manuscript writing and revision of
Paper IV. Professor Tapio Seppänen contributed to all publications as a supervisor and
participated in the revision of the manuscripts.

19



20



2 Literature review

This chapter provides a review of the relevant literature and terminology related to the
topic of the thesis. The review is divided into five sections. Section 2.1 reviews emotion
recognition technology in the affective computing scope. In Section 2.2, the fundamental
characteristics of the human speech production and perception systems are reviewed. In
Section 2.3, the taxonomy and extraction of different features of speech are reviewed.
Section 2.4 concentrates on the vocal expression of emotion in the context of natural
languages. In particular, the role and importance of speech prosody, emotional models,
and emotional corpus data are discussed. Finally, in Section 2.5, a review of current
emotion recognition research and methodologies used in the context of emotional speech
is provided.

2.1 Affective computing

". . . emotion and feelings may not be intruders in the bastion of reason at all: they may

be enmeshed in its networks, for worse and for better."

Antonio R. Damasio

Affective computing is a multidisciplinary field of computer science, psychology,
and cognitive sciences related to emotion and the implications thereof to computing.
Affective computing as a scientific technical field is still in its infancy. The defining
work of Picard (1995, 1997) is a very good introduction to the general and technological
problems of affects.

Before continuing, first, a few concepts have to be discussed. Emotion and affect are
key terms frequently used in the field of affective computing, sometimes inconsistently.
The terms are hard to define precisely and many definitions exist (Russell 2003).
Emotion can be characterised as a brief, conscious and self-evident, state of mind that
is accompanied by subjective feelings and tendencies for physiological, behavioural,
neural, and/or expressive responses. An affect refers to a non-conscious change of state.
An affect is the experience arising from a change in an affective state (e.g. emotion,
mood, or feeling) due to stimuli, external or internal. Affect and emotion are routinely
used in the literature synonymously. However, affect is a more general encompassing
term that includes emotions, feelings and more general longer-term moods. In this
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thesis, emotion is used to refer to distinct prototypical states in the affective dimension
and affect, in its turn, is used when referring to the underlying broader context.

As the field of affective computing is young, many questions have not been robustly
answered yet. The concept of emotion and cognition, as well as the interconnection
of the two, in decision-making is also still an active field of study with large open
questions, for a review, see Blanchette & Richards (2010). Many theories for cognitive
appraisal have been presented, usually focusing on the conscious mind, e.g. by Oatley &
Johnson-laird (1987), Ortony et al. (1990), and not so much on the sentic modulations
(i.e. physiological signals). Nevertheless, the concept of body-mind interactions of
affects is generally accepted. The general consensus currently is that emotions are
both cognitive and physical. Thinking and feeling are neither separate processes nor
the same; rather, they are interconnected and entwined together complementing each
other. Affects can be triggered, reinforced, or suppressed by external stimuli, sentic
modulations, and/or from within the conscious processes themselves (e.g. social rules),
complicating any recognition, expression, and/or modelling of emotion.

To somewhat help sort the multifaceted aspect of emotions, Damasio (1994)
distinguished between primary and secondary emotions. The primary emotions can be
described as the more primitive, immediate emotional effects (typically accompanied by
unintentional spontaneous sentic modulations). The secondary emotions, in their turn,
are a product of cognition that might not be accompanied with any readily observable
reactions (but can also include intentional sentic modulations). The notion of basic
emotions (e.g. sad, anger, happy, disgust, fear, and surprise) argued to have explicit
facial expressions (Ekman 1992) can be tied to the primary emotions, while secondary
emotions relate to more subtle emotions typical in social interactions (e.g. shame or
guilt). However, any kind of lists of emotional labels or hard taxonomical structures for
emotions derived from natural languages are still problematic (Ortony & Turner 1990).

For a computer to have an affective dimension, it needs to account for at least some
emotional components. The most primitive requirement for an affective computer is the
ability to recognise emotional signals. The recognition of emotion is typically connected
with some reasoning to understand the context of the detected signals but no more.
The ability to express emotions is an important but straightforward expansion of an
affective computer. The expression of emotion is dependent on some internal or external
reasoning, but does not require any deeper level of understanding other than proper
contexts. Both recognition and expression can be seen more or less as simple pattern
recognition and/or signal processing tasks. Finally, for a computer to actually have
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emotions, it needs to have a whole range of emotional capabilities. Picard (1997) lists
the components needed for an emotional system as: emergent emotions, fast primary
emotions, cognitive emotions, emotional experience, and body-mind interactions.

2.1.1 Emotion recognition

Emotion recognition is in principle based on detecting and unscrambling sentic modula-
tions. Picard (1997) divides the possible sentic modulations into signals apparent and
less apparent to others (see Table 1).

Table 1. Sentic modulations.

Apparent Less-apparent
Facial expressions Respiration
Voice Heart rate/pulse
Gesture/movement Temperature
Posture Electro-dermal response/perspiration
Pupillary dilation Muscle action potentials

Blood pressure

Picard (1997) also identifies criteria for emotion recognition, summarised briefly in
Table 2. The criteria for emotion recognition can be seen as relevant steps in a classic
pattern recognition and machine learning problem. The inputs in the context of this
thesis are audio speech recordings. Prosodic and acoustic features can be extracted
from the recordings to produce feature sets used for pattern recognition. The reasoning
and learning steps can be included in machine learning using feature selection and

Table 2. Criteria for emotion recognition.

Criteria Short description of criteria
Input Receiving of input signals (i.e. raw sentic modulation data).
Pattern recognition Feature extraction and classification (i.e. relevant emotional features and

structures for input signals).
Reasoning Prediction of emotion based on knowledge about emotion generation and

expression, i.e. reasoning about situations, goals, preferences, social rules,
and other perceived context.

Learning Learning of person dependent factors and updating of rules used in future
reasoning based on new information and reasoning.

Bias Optional bias in recognition to account for internal emotional states, if
emotionally induced behaviour is defined.

Output Descriptions of recognised emotions and expressions (e.g. probabilities for
current and predicted emotions).
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other supervised learning approaches. The bias information can be seen as an option
for recognition. Emotional bias is relevant if an inner emotional state is defined and
emotionally influenced behaviour is sought for an affective system. The emotional bias
can be included in machine learning using supervision. For classifier decisions, the
emotional bias can also be implemented at a later stage if the classifier outputs are
defined more robustly than just the most likely class (e.g. probability estimates are given
to all prospective classes).

Multi-modality

The numerous different sentic modulations suggest that the underlying affective state
can be approximated using multiple sources of information. This multi-modal nature of
emotional expression is well known and explored (Brown 2005). From the apparent
sentic modulations, facial expressions and voice are the best known and robust sources
for emotion recognition (Russell 2003). These different modal sources are, however,
not exclusive to emotional expressions. Sentic modulations are convoluted with other
signals, both physiological functions (e.g. pupil adaptation to light changes) and other
semantic signals (e.g. gestures to point at objects). Perception of semantic information
is routinely done using as many clues as possible. For example, humans interpret speech
content using bimodal audio-visual information (Brown 2005). The multi-modal nature
of emotion requires robust recognition modalities. However, using classifier fusion
techniques this problem can be approached by a divide and conquer tactic. The overall
multi-modal recognition problem is first reduced to single modality problems and then
an affective system can use fusion to make multi-modal decisions based on available
single modal experts.

2.2 Human voice and speech

The voice has a fundamental meaning for us human beings. Without the voice, no
language, speech, or a culture of information exchange like ours would exist. Even
the essence of our conscious thinking could be fundamentally different. It is thus not
surprising that the human voice and speech are one of the most interesting and studied
phenomena in our world. This chapter is a brief overview of the human speech production
system, perception, and related acoustic basics. For a more thorough treatment of
the human auditory system and acoustic properties thereof, see the Encyclopedia of
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Language & Linguistics (Brown 2005), the works of a pioneer of speech G. Fant (Fant
1960, 2004), or any good book on the subject, e.g. Kent & Read (1992), Titze (1994).
For an in depth review of speech from the ASR viewpoint, see Rabiner & Juang (1993).

2.2.1 Speech production

The human speech production system (Fig. 1) is a complex system capable of producing
a theoretically infinite number of distinct sounds. The system can be divided into three
major subsystems that contribute to specific operations in speech production: respiratory
subsystem (diaphragm, lungs), laryngeal subsystem (larynx) and articulatory subsystem
(oral/nasal cavities, soft/hard palate, tongue, jaw, lips and teeth) (Kent & Read 1992). It
is important to notice that the respiratory and laryngeal subsystems, providing the source
signals of speech, are in effect separate from the articulation processes of the vocal tract.
Therefore, the fundamental frequency (F0), i.e. the quasi-periodic cycle frequency of
voiced speech, and the glottal waveforms differ only a little across the vowels. The F0

Nasal Cavity

Hard/Soft Palate

Oral Cavity

Lips/Teeth

Tongue

Larynx

Trachea

Lungs

Diaphragm

Jaw

Fig. 1. An overview of the human speech production system.
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and the patterns thereof, called intonation, as well as the intensity of speech, i.e. the
power of a speech signal per unit area, are mainly the functions of pulmonary pressure
from the respiratory subsystem and the larynx (Kent & Read 1992, Titze 1994). The
articulatory subsystem is then responsible for the final articulation of different phones
such as vowels (e.g. ’[a]’), fricatives (e.g. ’[f]’) and plosives (e.g. ’[p]’).

2.2.2 Source filter model

The finding that laryngeal and articulatory processes are in effect separate is the basis of
one of the most fundamental models used in speech technology. The assumption allows
a total separation of the complete speech production process into a linear convolution of
a source signal, i.e. a glottal waveform or a noise source in normal speech, and a vocal
tract filter. This linearized model is used widely in various fields of speech technology
and is commonly referred to as the source filter model (see Fig. 2).

Gain

Vocal tract
model

Impulse generator Noise generatorVoiced/Unvoiced
Switch

Vocal tract
parameters

Fig. 2. Source-filter model of speech production.

The main parameters in the source filter model are the cycle period, gain and vocal
tract parameters. The switch operating the voiced and unvoiced input selection can
be seen as a slider that also allows a mixture of both input signals and controls the
harmonics-to-noise ratio of speech. The cycle period and the gain parameters are directly
related to the F0 and intensity of speech, respectively. Vocal tract parameters include the
formant frequencies (F1, F2 and F3) that describe the vowel produced for voiced speech.
(Kent & Read 1992, Titze 1994)
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d) Radiated sound pressure spectrum of voiced speech.

Fig. 3. Illustration of source signal and filter functions for voiced speech produc-
tion.

The equation for the linear model in the frequency domain is:

P( f ) = U( f )T( f )R( f ), (1)

where, assuming voiced speech, P( f ) is the radiated sound pressure spectrum of speech
(Fig. 3d), U( f ) is the glottal source function (Fig. 3a), T( f ) is the vocal tract function
(Fig. 3b), R( f ) is a radiation function of lips (Fig. 3c) and f is frequency.

2.2.3 Auditory perception

The influence of perception cannot be disregarded when addressing speech production.
The human auditory system is an inseparable combination and adaptation of both hearing
and voice. Implications of this signal adaptation are profound in speech technology. The
way the human ear and auditory system processes sound has many consequent qualities
defined as psychoacoustics (for a throughout treatment of psychoacoustics, see Fastl &
Zwicker (2007)). Most importantly, the psychological perception of auditory signals is
in no way linearly correlated with the corresponding physical acoustic scales. Even
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basic properties like the bandwidth of hearing is subject to changes, for example age is a
well-known factor.

Frequency perception

Pitch is the perceived frequency of an auditory signal. The perceived pitch of an acoustic
signal can differ from the actual frequency of the signal considerably. The perceptual
correspondence to the physical measures can be estimated with a scaling such as the
mel-scale (Stevens et al. 1937) that is designed to represent the perceptual pitch in
relation to the actual frequency. The bark-scale (Zwicker 1961) introduces a concept of
critical bands where the pitch perception range is divided into filter banks according
to the frequency sensitivity of the cochlea in the inner ear. The concept of critical
bands is closely related to the basic psychoacoustic phenomena of frequency masking.
Masking, in general, is the ability of another signal, close in time or frequency, to
modify, suppress, or otherwise hide the perception of a signal. To make matters more
complicated, the masking properties of auditory perception are also dependent on the
spectral and temporal composition of the acoustic stimuli (e.g. noises, narrowband
tones, or complex harmonic sounds) leading to a multitude of tuning curves. For
speech, the impact of masking is also seen in the formant and vowel perception, key
elements of speech signals, where the vowel formant frequencies integrate at 3.5 bark
distances (Beddor & Hawkins 1990). The frequency masking of formant frequencies
has a tremendous impact on any semantic evaluation of speech analysis (e.g. formant
analysis).

Intensity perception

The perceived intensity, i.e. loudness, of audio signals, as a concept is also at least
equally complex as the perception of frequency. The human interpretations of intensity
for different audio stimuli can be modelled by exponential functions (Stevens 1957).
The perceptual loudness of an audio signal is measured in the units of phon for pure
tonal signals. The loudness perception as a function of frequency is a nonlinear function
as well. Typically, the perception of loudness as a function of frequency is represented
with equal-loudness contours (Fletcher & Munson 1933, Robinson & Dadson 1956). As
is the case with the pitch perception, a multitude of different scalings exists dependent
on the signal properties. For tonal signals, the A-scale, representing roughly the tonal
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response of the 40-phon equal-loudness contour, is often used as a simplified solution
for loudness scaling. A more thorough measurement of the tonal signal equal-loudness
contour is defined in the ISO 226:2003 standard. The ITU-R 468 standard presents a
perceptual loudness scale for noise signals. The equal-loudness contours are, however,
presented for frontal audio sources only. When the highly individual Head Related
Transfer Functions (HRTF) are considered, the perception of loudness of direction free
sound sources clearly becomes even more complicated. An HRTF is an omnidirectional
estimate of the impact that the various tissues of the head, especially the pinnae, have on
the auditory signal.

2.3 Extraction of speech features

The taxonomy of speech derived features is not straightforward. In general, the inputs
to a pattern recognition system are called just features. However, a higher level of
taxonomy is useful to assess the information expected in a feature. The categorization of
features can be seen as a kind of preselection of expectedly efficient features. Speech
conveys not only linguistic messages, but also includes a major paralinguistic component,
prosody. Prosody is used to convey information that augments the linguistic message,
e.g. cues of speakers’ emotional state.

It is generally defined in linguistics, e.g. by Brown (2005), that prosodics comprises
the following suprasegmental perceived speech properties/acoustic correlates: pitch/F0,
loudness/intensity, and rhythm/duration. Suprasegmental property is defined in this
linguistic context as a property that spans over identifiable discrete phonetic and
linguistic unit borders (e.g. phonemes and utterances). The taxonomy of speech
properties into suprasegmental and segmental components is not to be confused with
any technical segmentation of a speech signal during the extraction of features. Features
that describe prosody are referred to as prosodic features. Features that are not designed
to describe prosody are called acoustic features.

However, there is a plurality of extraction techniques for features that do not
intuitively fall under the prosodic or acoustic categories. For example, many linguistic
and phonetic correlates (e.g. stress) are strictly segmental in nature, i.e. as defined in
phonetic and linguistic sciences. Features describing segmental units are often referred
to as acoustic features in the literature even if such a segmental unit is signalled using
prosody (e.g. stress using pitch). This division into suprasegmental prosodic and
segmental acoustic features is still even more problematic as there are many features
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that are attributed to acoustic features in the literature but estimate some suprasegmental
property (e.g. voice quality) and thus are intuitively close to prosody. Finally, features
that attempt to preserve the whole speech signal, i.e. transformation based features,
contain also prosody but are traditionally included in acoustic features. Transformation
based features are also often referred to more precisely by using the name of the
transformation, e.g. MFCC features.

The taxonomy of the speech features in the literature thus seems to be heavily
influenced by the originating field of research. In this thesis, the main taxonomy of
speech features is defined as suprasegmental prosodic features and other acoustic
features to retain resemblance to the literature. Prosodic features are, however, extended
to include the various voice quality features.

2.3.1 Acoustic features

Acoustic features often attempt to parameterise the whole acoustic speech signal in an
efficient way. Traditional acoustic features are in many times engineering motivated and
used to efficiently solve specific practical problems. Feature extraction is routinely
based on basic methods found robust in other engineering approaches. The Fast Fourier
Transform (FFT) is a great example of such a method and consequently is widely
employed in acoustic feature extraction (e.g. FFT is also the basis of cepstral coefficient
extraction). The use of FFT based approaches also explains the fact that common
acoustic features are almost invariably using short segment based extraction ideology.
As a consequence, while accomplishing a robust efficient algorithmic description, the
connection to linguistic and/or physiological representations or interpretations may
be lost. Some acoustic features, however, are more closely connected to a linguistic
and phonetic background. For example, different acoustic features have been designed
to quantify distinct phoneme information (e.g. features derived from speech formant
estimation) and thus are strongly identifiable as segmental phonetic/linguistic features.

Typically, acoustic features are used in speech diarisation applications, for a review,
see Moattar & Homayounpour (2012). For speech technological applications where
individual speaker qualities and long-term properties are also relevant (e.g. affective
sensing and analysis or speaker recognition), the additional use of longer term features
has been found improving performance (Shriberg 2007). For the aforementioned
purposes, a number of longer term acoustic correlates have been developed and adopted.
These typically include non-linguistically motivated suprasegmental features, e.g. the
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Zero-Crossing Rate (ZCR), Short Time Energy (STE), Harmonics-to-Noise Ratio
(HNR), and long-term average spectrum.

Cepstral coefficients

A classic acoustic feature set commonly used is the Mel-Frequency Cepstral Coefficients
(MFCC), attributed often to (Bridle & Brown 1974, Mermelstein 1976, Davis &
Mermelstein 1980), and its variants (e.g. log power coefficients, delta MFCC, and delta-
delta MFCC). The MFCC features have been found extremely efficient in various speech
technologies. Other spectral derivations and LPC based features such as Perceptual
Linear Prediction (PLP) coefficients (Hermansky 1990) are also often used.

The basic extraction process for cepstral coefficients includes a frequency domain
transform of the speech signal (typically an FFT). In the frequency domain, a filter bank
with a number of pre-selected frequency bands (the number of filters corresponds to the
number of cepstral coefficients extracted) is used to filter the resulting power spectra.
The filter bank is usually selected using a perceptually motivated logarithmically spaced
scale, e.g. mel-scale (Stevens et al. 1937) for MFCC (see Fig. 4), but sometimes,
the bark-scale (Zwicker 1961) is used as is the case for PLP. Triangular windowing
functions are commonly applied. Alternative filtering functions, e.g. rectangular or
Gaussian windows, are also used. Intensity weighting relative to frequency, e.g. using
an equal-loudness contour, and/or nonlinear intensity-loudness compression can be
employed to produce perceptually motivated features that more closely model the human
auditory system.

In the case of MFCC, the logarithms of the resulting filtered frequency banks are
then transformed back into the time domain where the amplitudes of the filters are
then interpreted as the cepstral coefficients. Typically, segmental difference features
(delta, and delta-delta) are also collected, as well as the total log power (i.e. the
zero coefficient). The coefficients are often also decorrelated using the Cepstal Mean
Subtraction (CMS) method where the long-term means of the cepstral coefficients are
subtracted from individual cepstral coefficients resulting in zero mean signals depicting
cepstrum variability. For LPC based approaches, the transform to final features is
performed typically by an all-pole autoregressive modelling of the spectral envelopes.
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Fig. 4. Normalised mel-frequency filter bank.

Speech formants

Speech formant structures code the phonemes of spoken languages. As features, the
speech formants describe the articulation of speech and are estimates for the parameters
of the vocal tract. As the main function of formats is to define single phoneme
length segments, they are usually considered as segmental features from a linguistics
perspective. However, formant structures can have acoustic properties that are carried
over the phoneme boundaries, thus giving them also some suprasegmental qualities.
Formants and features derived from formant data are therefore many times used as voice
quality features and hence can also be argued to have some prosodic qualities.

Formant analysis is typically based on autoregressive modelling techniques, e.g.
LPC (Atal & Hanauer 1971, Makhoul 1973). The spectrum of a voiced speech sample or
segment is analysed for peaks in the spectrum envelope. The peaks are then interpreted
as discrete formant frequencies enumerated in ascending frequency order (typically
denoted as F1,F2,F3, ...). The resulting voiced samples can then be projected on a space
with axes defined by the formant frequencies (typically in bark scaling using the first
two formants only). Fig. 5 illustrates a typical formant map for Finnish vowels.

2.3.2 Prosodic features

Prosody of speech is defined in the linguistic literature as the suprasegmental properties
of speech. Traditionally, the definition of prosody is thought to include the pitch/F0,
loudness/intensity, and rhythm/duration aspects of speech (Brown 2005). Purely from a
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technical point of view, there are no features that are intrinsically prosodic, i.e. prosodic
features can be estimated from segmentals but also audio features or variants thereof
can be calculated over multiple segmentals to describe suprasegmental properties. The
features are called prosodic features mostly as they have phonetic and linguistic model
etymology and aim to model the suprasegmental properties of speech. Therefore, many
other features that have a different background can also be seen as prosodic features if
they are seen capturing the suprasegmental aspects of speech. As a consequence, there
does not exist any technical clear boundary between acoustic and prosodic features.

Many longer time domain acoustic features (e.g. long-term spectral measures) also
describe the suprasegmental properties of speech. Especially, the voice quality aspects
of speech are generally seen forming the most obvious group of speech properties that
has not been traditionally viewed as a part of prosody. Unlike with the other prosodic
speech properties, voice quality cannot be fundamentally associated with a single
perceptual property and its corresponding acoustic correlate. However, the voice quality
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is suprasegmental in nature and thus convincing arguments have been made to include
voice quality under prosody (Campbell & Mokhtari 2003). In this thesis, voice quality
has been included taxonomically under prosody together with the three other prosodic
primes. The definition of prosody used in this thesis when classifying features is as
follows: pitch/fundamental frequency, loudness/intensity, rhythm/duration, and voice
quality.

Pitch/Fundamental frequency

Pitch is the most important prosodic property of speech. The pitch contour, a perceptual
property, is directly related to the fundamental frequency F0 contour, an acoustic
correlate, formed by the larynx during the phonation of speech. The F0 contour
is extracted from speech using a Pitch Detection Algorithm (PDA). Various PDA
approaches have been studied extensively, see Hess (1983) for an overview of pitch
determination. Current state-of-the-art methods are typically constructed using cepstrum
based PDA algorithms (Noll 1967, 1970, Schroeder 1968), or autocorrelation based
methods (Boersma 1993). Pitch determination in the context of human speech is still an
active research area. However, in the context of this thesis, the performances of PDAs
are at a sufficiently high level (cf. Rabiner et al. (1976), and Bagshaw et al. (1993)) and,
consequently, the performance of algorithms does not seriously limit the quality of
long-term prosodic feature extraction.

Extracted features for the F0 contour typically include distribution parameters such as
the mean, median, range, variance, skewness, and kurtosis of contour values. However,
the F0 contour values can be extracted in a wide domain. F0 can be measured from
small or large segmental units such as phonemes or utterances, but also from whole
paragraphs of spoken material. The analysis segment size chosen for feature extraction
greatly influences the information captured in the extracted features. Therefore, a short
segment F0 measure can also be a single value only. Additionally, a range of derivative
data and distribution features thereof can be measured. The steepness of F0 movements
and durations of accents can be calculated. Furthermore, the F0 contour has a tendency
of declination towards the ends of sentences for normal speech. The type of language
has a large impact on the properties of speech F0 contours as well due to different
functional use of pitch in languages. Between tone and pitch accent type of languages,
the intonational contour structure differs enormously (Thymé-Gobbel & Hutchins 1999).
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Loudness/Intensity

The importance of the intensity aspects of the speech signal for prosodic signalling is
comparable to that of the F0 contour. Technically, the actual physical quantity called
the intensity of speech, i.e. the acoustic intensity, itself is not directly measured by
microphones but, rather, the sound pressure is sensed. Using calibrated microphones the
logarithmic relative measure called sound pressure level (SPL) can be estimated. The SPL
is a quantity closely related to the intensity of speech. If certain conditions are fulfilled
(i.e. recordings in an anechoic room, in the far field, and using an omnidirectional
microphone capsule), the intensity of speech is proportional to the measured SPL.
Therefore, the recorded pressure signal can be used as a proxy of intensity.

A prosodic intensity contour is technically trivial to extract from speech recordings,
for example, directly from the time domain signal using some short segment root
mean squared (RMS) routine or from the power spectrum of speech derived from
the frequency domain. A STE contour can be seen as a prosodic intensity measure.
Loudness features that attempt to describe the perceptual experience of a human listener
are clearly more difficult to produce. The audio signals must be transformed using the
various psychoacoustic corrections, e.g. the equal-loudness contours. Statistical features
(Mean, median, range, variance, skewness and kurtosis) can be calculated from the
derived feature contours. Psychological effects also affect the intensity of speech. Vocal

effort, a quantity used to adapt speech according to the perceived distance to the receiver,
has an important effect on the intensity of speech (Traunmüller & Eriksson 2000). Vocal
effort also affects F0 and voice quality.

In addition to personal variations, the measurement of intensity, unfortunately, has
an increased sensitivity to variations in the recording conditions compared with F0 or
other frequency measures. The most inherently problematic nature of the intensity
related features is the squared relationship between the distance of the sound source and
the sound pressure measured at the recording microphone. Additional problems are
presented by the physical dimensions of the recording environment, as well as the used
microphone capsule types. The Lombard effect, i.e. the tendency of increasing vocal
effort in the presence of noise, is also a factor.

Features derived from intensity contours are consequently also affected. Without
knowledge about distance, the intensity measures can be unreliable on their own. The
general unreliability of intensity derived features for uncalibrated recordings is one
reason why comparably little research interest has been directed to intensity features
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than F0 based prosodic features. Only basic statistical features are commonly included
in prosodic feature sets (Ververidis & Kotropoulos 2006).

Rhythm/Duration

The timing and duration of various speech parts forms the rhythm/duration family of
prosody. The duration and timing of speech segments are usually estimated during
voicing analysis performed in order to do pitch determination. Although duration
properties are formed of clear segmental parts of the speech signal, the resulting derived
prosodic features (e.g. speech rate) are typically suprasegmental and can be defined in
a wide domain. Features for durations include ratios of voiced, unvoiced and silent
segments. The classification of pauses and voiced segments can be used to calculate
articulation and speech rate related correlates. The classification of segments can also be
used to form ratios for different length segment usages. It needs to be taken into account,
however, that speech rates, the usage of pauses and other timing related features based
on preset classification criteria can be language, culture and even situation dependent
(e.g. read or spontaneous speech) (Lehtonen 1985, Campione & Véronis 2002). For
western languages, the distribution of silent pauses can be modelled by a bi-Gaussian
distribution (Campione & Véronis 2002). Changes in read text speech rates move the
bi-Gaussian distributions of pauses, but the overall model remains (Demol et al. 2007).
The pause lengths are also relative to intonational complexity and other cognitive load
factors (Krivokapić 2007).

The role of timing and duration in speech is indeed broad. The usage of different
pauses and the timing together with intonations are very common as cues of the
functional level of speech. This multi-role aspect of durations complicates the evaluation
of the features and affects the very information the features capture when a different
domain is used for extraction, i.e. a short window captures more local functional cues
and a longer window may reveal more general aspects of rhythm. Furthermore, in
language identification studies, e.g. by Thymé-Gobbel & Hutchins (1999), Farinas &
Pellegrino (2001), the role of rhythm has been highlighted between different languages.
Considerable differences in usages of durations between the syllable timed and the pitch
accent language families have been reported. Segment durations have also been detected
reflecting differences in the syllabic structures of languages that are more closely related.
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Voice quality

Contrary to the other acoustic correlates of prosody, F0, intensity, and duration, the
quality of voice does not have an acoustic property that is easily distinguishable and
measurable from a speech signal. Voice quality is composed of many aspects of the
speech production. Usually, the quality of voice is characterised by qualitative terms
such as hoarseness, whispering, creakiness, etc. Traditionally, the voice quality is not
seen as a part of prosody. This may be due to poor understanding of the role the related
acoustic parameters have on the voice quality. In any case, voice quality is definitely
suprasegmental in nature and, therefore, arguments have been made to place the quality
aspects of voice under prosody, e.g. by Campbell & Mokhtari (2003). Differences in
quality can be seen in the spectral properties of speech, but also the subtler changes in
F0 and intensity can contribute to voice quality. The spectral features can include the
spectrum tilt and ratios of energy in different frequency bands. Voice quality, however,
is not prominently represented in such trivial spectral features. More specific spectral
features have been developed using formant frequencies (Lugger et al. 2006). Many
voice quality features have been researched and developed in medical voice research.
Among the more well-known features, the shimmer and jitter of voiced segments,
originally developed to analyse pathological voices, see e.g. Horii (1979, 1980), can be
important source-related features of speech quality (Bachorowski 1999). The HNR of
speech, originally used for pathological voice analysis, is also strongly related to normal
voice quality as a correlate of hoarseness (Yumoto et al. 1982).

Research into voice source properties has also identified many parameters that are
seen fundamentally associated with voice quality. To produce source features, the glottal
flow function must be extracted. For a thorough review of glottal flow estimation and
parameters, see Alku (2011). The glottal flow can be calculated using an iterative
adaptive inverse filtering (IAIF) method (Alku 1992). Typically, the flow function is
estimated using an idealised flow model, e.g. the Liljencrants-Fant (LF) model (Fant
et al. 1985), that is fitted to the inverse filtered flow, e.g. by a nonlinear least square error
minimisation or a Kalman Filter (KF) (Alku 1992, Airas 2008, Li et al. 2011). Features
describing the voice source can then be extracted from the inverse filtered glottal flow
and the derivative flow, but also from the fitted model (i.e. estimates for the model
parameters can be seen as features describing voice quality). Model derived features are,
however, reported as sensitive to noise. More robust methods that estimate the model
parameters from the frequency domain have been proposed, e.g. by Kane et al. (2010).
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For a good treatment of model extracted features, see Scherer et al. (2013).
In Fig. 6, an illustrative example of glottal flow and the corresponding derivative

flow through vocal folds is depicted. Many source related parameters can be derived
from the glottal flow and its derivative. The Open Quotient (OQ) and the Speed Quotient
(SQ) forms an essential representation of the glottal flow. OQ is defined as the ratio of
time the glottis is open in relation to the total cycle period time. The SQ is the ratio of
rise and fall time of the glottal flow; thus, the ratio between the glottal opening and the
closing phases reflects the asymmetry of the glottal pulse, skewness. Many times, the
glottal opening is formed of two distinct phases (note the knee in Fig. 6) that represent
the primary (i.e. the onset of flow) and the secondary (i.e. an abrupt increase in the
flow) openings of glottis. The two-phased opening of glottis is perhaps caused by a
pistonlike movement of the vocal folds due to pulmonary pressure just before the actual
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Fig. 6. Glottal flow and derivative flow waveforms (III, published by permission of
Elsevier B.V.).
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opening of glottis. The primary and secondary openings can be used to define open
quotients corresponding to the primary opening (OQ1) and the secondary opening
(OQ2). Corresponding primary and secondary speed quotients (SQ1 and SQ2) are also
defined from the two openings, respectively. Due to the problems of accurate detection
of the instants of the glottal openings, other variants of OQ have been also developed. In
the Quasi Open Quotient (QOQ), a threshold is applied to the glottal flow to produce a
more robustly evaluated quasi-open phase. The quasi-open phase now represents the
opening and closing of glottis that is comparable to the open phase used in OQ. SQ
and QOQ indirectly describe vocal fold vibration (Laukkanen et al. 1996). Another
example is a variation of the open quotient (OQa) derived using the LF model (Gobl &
Ní Chasaide 2003). The Closing Quotient (ClQ) can be further defined as the ratio of
the closing phase in relation to the total cycle.

Because OQ , ClQ, and consequently SQ, are sensitive to errors in the estimation of
glottal closures, more robust parameterisations of the glottal flow have been proposed.
The Amplitude Quotient (AQ) (Alku & Vilkman 1996) defines a ratio of glottal flow
peak-to-peak pulse amplitude in relation to the flow derivative peak. A normalised
version, the Normalised Amplitude Quotient (NAQ) (Alku et al. 2002), is further defined
as the AQ normalised with respect to the fundamental period time. NAQ can be seen as
an estimate for glottal adduction (i.e. it is closely related to ClQ) that is more robustly
measured because an accurate estimation of the glottal closure is not required. NAQ (Eq.
2) is therefore a robust parameter that is related to the pressedness of speech.

NAQ =
AQ
T

=
fac

dpeakT
, (2)

where fac denotes the peak-to-peak alternating flow amplitude, dpeak is the flow derivative
amplitude, and T is the total cycle period length. The intensity of the speech signal itself
can also be seen as a component of speech quality as intensity has a direct effect on the
other speech quality properties (Murray et al. 1996, Zetterholm 1999).

2.4 Vocal expression of emotion

2.4.1 Emotional speech models

Finding an emotional model of speech has been for a long time an aspired goal for
researches. The simplest discrete label based emotion model can be traced back by
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more than a century (Darwin 1872/1965). The discrete emotional model has a strong
ecological foundation. A group of so-called "big six" fundamental basic emotions
(sadness, happiness, anger, fear, disgust, surprise) is a distinctive example of this link
between evolutionary survival related processes and the chosen emotional model labels.
This label based model has been found remarkably efficient and thus is still a commonly
used paradigm in many emotional studies, e.g. by Dellaert et al. (1996), McGilloway
et al. (2000), Oudeyer (2002), Bosch (2003).

Although the usage of emotional class labels has provided efficient techniques, the
problem of a discrete model still remains. When a more accurate model is desired, the
inflexibility of strict labels leads to an ever larger amount of emotional classes resulting
in an unnecessarily complex model that is susceptible to the curse of dimensionality (i.e.
an additional class in the model requires exponential amount of training data to fill the
resulting space). More flexible dimensional models have been introduced in an attempt
to reduce the emotional space into a few semantic dimensions. A circumplex model of
emotion (Russell & Mehrabian 1977, Russell 1980) is the basis for these dimensional
emotional models (Fig. 7).
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interested

happy
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serene
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delighted

exhilarated
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depressed

sad

anger
fear

neutral

Fig. 7. A two dimensional circumplex model of emotion. Adapted from Cowie et al.
(2000).

The dimensional model of emotion is currently a widely accepted paradigm for
the representation of affect. However, the dimensions associated with models are still
up for debate. The original circumplex model is constructed using only the two most
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accepted emotional dimensions, activation and valence. Activation and valence as
emotional dimensions are widely accepted. Russell & Feldman (1999) argues that these
dimensions are the only relevant emotional components. The view is that other proposed
emotional dimensions do not have any orthogonal components to activation and valence
and hence should reduce to the two emotional dimensions. The validity of the two
prime emotional dimensions, activation and valence, is not challenged. However, many
researchers argue that other emotional dimensions exist. The most common additional
emotional dimension is potency. The argument supporting potency as an independent
dimension is the common observation that some negative yet fundamentally different
emotions (e.g. fear and anger) are poorly differentiated in the two-dimensional approach,
e.g. Russell & Mehrabian (1977), MacKinnon & Keating (1989), Fontaine et al. (2007).
Smith & Ellsworth (1985) have argued that up to six emotional dimensions could
be distinguishable. Togneri et al. (1992) have postulated, however, that the intrinsic
dimensionality of speech signals should not be higher than four, limiting the emotional
structure of speech into similar dimensional bounds. The integration of emotional

intensity, i.e. the strength of emotion, in the dimensional models is also not a settled
issue. Laukka et al. (2005) have modelled the emotional intensity as a fourth dimension.
Daly et al. (1983) presented a cone-like model to include the emotional intensity in a
three-dimensional structure. The two-dimensional circumplex model is also capable of
modelling emotional intensity to some degree. In the circumplex models, emotional
intensity is typically assumed to be the distance of emotion from the circumplex origin
(Cowie et al. 2000).

Prosodic and acoustic features of emotion

Prosody has many other functions than emotional signalling. Intonations and speech
rhythm changes can indicate other common speech related functions. The stressing of
words or syllables for emphasis or other conversationally relevant functions such as turn
signalling in conversations are often used regardless of any emotional state. Murray
et al. (1996) conclude that any emotional changes to prosody must be seen in addition
to the underlying normal prosodic processes. Also, acoustic features do not specify
emotional information only. Even simpler acoustic contours such as ZCR, HNR, or STE
measures are very sensitive to different speech properties that are not related to emotion.
More sophisticated spectral feature contours such as MFCC or PLP features capture also
much, or all, of the normal speech processes.
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Research to find emotionally relevant prosodic components and signal features have
been traditionally conducted by performing perception tests or by manually inspecting
the prosodic parameters of real speech recordings to guess what kind of changes are
emotionally induced (Scherer 2003). Access to modern computational resources has also
made systematic data mining approaches more effective with the capability to search
through vast amounts of suspected or even randomly generated acoustic and prosody
derived candidate features to find emotional correlates, e.g. by Oudeyer (2002), Batliner
et al. (1999). A more fundamental approach is to model emotional speech itself and with
synthesis techniques to produce candidate samples using different model parameters.
The synthesised samples are then used in perception tests to identify which parameter
changes convey emotional signals (Murray & Arnott 1995, Murray et al. 1996, Schröder
et al. 2001, Schröder 2001). For a review of emotionally relevant features and extraction
techniques, see Cowie & Cornelius (2003) or Ververidis & Kotropoulos (2006).

It is generally accepted that the most contributing factor for emotional speech
is prosody through the fundamental frequency (F0) and variations in the F0 contour.
Significant differences in F0 contours have been observed, especially between basic
emotions (Banse & Scherer 1996, Paeschke & Sendelmeier 2000, Toivanen 2001). Other
important prosodic feature categories identified are the variations in energy (intensity),
variations in duration, and variations in speech quality. Energy statistics are directly
related to the perceived activation level of emotions (Banse & Scherer 1996, Ehrette
et al. 2002). The timing and duration of the different parts of an utterance as well
as the overall speech rate are all emotionally sensitive features (Murray et al. 1996,
Thymé-Gobbel & Hutchins 1999, Farinas & Pellegrino 2001, Bosch 2003). It has been
further noted that pause lengths are different between read and spontaneous speech. The
speech rate has an effect on articulation, e.g. segment deletions, that can be detected
using formant and spectral analysis (Kienast & Sendlmeier 2000). Using synthesis
techniques, voice quality changes have been shown to have a significant supporting
role in the signalling of emotion, particularly among milder affective states (Gobl &
Ní Chasaide 2003, Grichkovtsova et al. 2012).

A summary of commonly associated emotion effects in relation to normal speech is
shown in Table 3, adapted from Scherer (1986), Murray & Arnott (1993), and Nwe et al.

(2003).
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Table 3. Summary of common emotional effects.

Anger Fear Joy Sadness Disgust Surprise
Speech rate > � > or < < ≪ >

Pitch average ≫ ≫ � < ≪ >

Pitch range � � � < > >

Pitch changes abrupt normal smooth up down down terminal high
Intensity > = > < < >

Voice quality breathy irregular breathy resonant grumbled breathy
Articulation tense precise normal slurring normal

Note: Symbols ">", "�" and "≫" represent increase and symbols "<", "�" and "≪" decrease in a
relevant category. A "=" symbol indicates no perceived change. The emotional effects represent
changes found in the context of western languages.

Perception of emotional speech

The perception of emotion from actor-produced simulated emotions has been mostly
studied using listening tests with randomly ordered recordings and answer choices
limited to forced choice categories, typically a set of basic emotions. In this kind of
discrimination study, a success rate of 50%–60% has commonly been achieved for the
six basic emotions and neutral. The problem of guessing the correct answer, or using one
category (e.g. neutral) as a default choice, however, is not easily compensated. Criticism
has been made against the forced choice methodology (Russell 1994). When using a
wider list of common emotions for the possible answers, or even not giving any fixed
alternatives to choose from, a more accurate estimate for recognition might be possible.
A large meta-analysis of cross-cultural emotion recognition by Elfenbein & Ambady
(2002) could not, however, find any significant difference between methodologies due
to a low amount of studies using alternative answering methods. The study did, on
the other hand, find that emotion perception is universal. A dimensional annotation of
emotion is also an option, e.g. Cowie et al. (2000). Common emotional labels can be
argued to be more familiar to naive listeners; however, in Laukka et al. (2005), both
professional and amateur listeners were shown to be able to perform equally well when
annotating emotional expressions using typical dimensional scales (i.e. activation,
valence, potency, and emotional intensity). Table 4 (Scherer 2003) shows the recognition
rate for eleven western countries and one non-western country.
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Table 4. Perception of simulated vocal expressions of emotion.

Neutral Anger Fear Joy Sadness Disgust Surprise Mean
Western 74% 77% 61% 57% 71% 31% 62%
Non-western 70% 64% 38% 28% 58% 52%

Note: The perception of surprise has not been commonly studied for vocal expressions and hence
is missing in the table.

Using fewer emotional categories has the expected tendency of inflating recognition
rates. Statistically, it is obvious that a smaller set of classes leads to a higher percentage
of correct choices due to increasing chance of guessing the correct class. However,
due to different semantic evaluation of available class choices (e.g. some choices such
as neutral are selected more frequently when unsure of the correct choice), it can be
difficult to compare recognition rates obtained using different sets of classes. For
recognition, an average rate of 66% has also been reported by Scherer (2000) for the
first four basic emotions and neutral. In a Spanish discrimination investigation for the
first three basic emotions and neutral, a rate of 87% was recorded Montero et al. (1998).

2.4.2 Emotional speech databases

Emotional databases have evolved much during the last decade. Older studies on emotion
recognition have relied almost exclusively on small and heterogeneous databases
collected by the researchers for their own personal use, for a review, see Ververidis &
Kotropoulos (2006). Typically, the contents and used annotations in the small databases
have a large degree of variance making the comparison or fusion of databases hard.
Douglas-Cowie et al. (2003) presented a guideline for future databases to address these
issues and guide the database collection processes. The main considerations for a
database development have been identified to be as follows: scope, naturalness, context,
descriptors and accessibility. For a more thorough discussion about the identified
considerations, see Douglas-Cowie et al. (2003).

The more modern databases have not only adopted the presented guidelines, but also
incorporated many advances in emotional models, e.g. dimensional model annotations.
Furthermore, the modern databases have logically included the multi-modal aspects
of emotion. Thus, the more modern larger databases, e.g. the HUMAINE Database

(Douglas-Cowie et al. 2007), or MAHNOB-HCI (Soleymani et al. 2012), have begun
including not only speech, but also a full range of multi-modal signals such as audio-
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visual recordings from audio-visual stimuli, gestures, and physiological biosignals (i.e.
ECG, skin conductance, respiration, eye tracking, etc.). The database used in this thesis
is of the older variety, limiting its usability in the future, due to the fact that Finnish
emotional speech data has not yet been extensively collected using the more modern
collection guidelines and multimodal scope. Nevertheless, the MediaTeam Emotional

Speech Corpus (Seppänen et al. 2003) is still currently the largest corpus of emotional
Finnish speech.

2.5 Emotion recognition from speech

Emotion recognition from speech using pattern recognition techniques is a relatively
recent approach that has become possible with the increase in computational resources.
Traditional label based classification solutions have been developed using multiple
state-of-the-art classifier techniques. Reasonably good results around 50%–80% correct
classification for 4–6 basic emotions (e.g. neutral, sad, angry, happy, fear, disgust) have
been attained (Dellaert et al. 1996, McGilloway et al. 2000, Oudeyer 2002, Bosch 2003).
Label based classification attempts are, however, prone to semantic confusion in the truth
data and other problems in data collection (e.g. methodological issues in obtaining some
types of emotion) (Douglas-Cowie et al. 2003) limiting their performance. More robust
approaches using dimensional models of emotion, e.g. Zeng et al. (2005), Nicolaou
et al. (2011), are very recent. For a state-of-the-art review of emotion recognition and
classification techniques from traditional approaches to recent advances, see Cowie et al.

(2001), Ververidis & Kotropoulos (2006), Zeng et al. (2009), and/or Calvo & D’Mello
(2010).

2.5.1 Machine learning and pattern recognition

Machine learning and pattern recognition are not standard procedures although an
overview of the required steps in the process can be presented. Rather, machine learning
and pattern recognition offer tools that can be used to solve problems by utilising
knowledge (Duda et al. 2001). No Free Lunch (NFL) theories (Wolpert & Macready
1997) have been proven, indicating that no single optimisation or search strategy can be
universally better than another, with certain exceptions for co-evolutionary self-game
scenarios (Wolpert & Macready 2005). A generic classifier, feature transformation,
or supervised learning scheme therefore cannot be expected a priori to work better
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Fig. 8. General overview of a pattern recognition system and design process.
Adapted from Duda et al. (2001).

than the alternatives on an arbitrary problem. The key to well performing solutions
is the understanding of the problem at hand and identifying methods that align well
with the problem characteristics. It is, however, useful to look for working solutions
for similar problems. It is also important to note that, since many machine learning
and pattern recognition approaches are closely related, typically, no one approach is
significantly superior to another in performance. In Fig. 8, the general structure of a
pattern recognition system is illustrated as a series of steps from input to decision (with
optional feedback to previous steps indicated by the dashed arrows). The design process
follows a similar structure from start to end, involving various choices and tasks in each
step (with the possibility of going back to previous steps if necessary, indicated by the
backwards arrows).
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Feature selection and transformations

Feature selection and transformation techniques are used to find, or remodel, features
that are relevant to the pattern recognition problem. In selection techniques, to improve
model performance, the relevant and efficient features are kept while the irrelevant and
noisy features are excluded. Feature selection is a typical way to implement supervised
learning. Optimal feature selection can be performed by brute force, i.e. an exhaustive
search of all alternatives. Methods using cost functions that guarantee global optimum,
e.g. Branch and Bound style methods, can also be implemented to produce optimal
solutions at the expense of computational complexity (Duda et al. 2001). For practical
applications, however, optimal solutions are often computationally too inefficient and
suboptimal search strategies, i.e. heuristics, are used instead. Many methods have been
attempted in emotion recognition research. Simple sequential selection algorithms, e.g.
Promising First Selection (PFS) or Sequential Forward Search (SFS) (Dellaert et al.

1996, Lee et al. 2001), have been found effective. Very similar Sequential Backward
Search (SBS) (Oudeyer 2002) has also been used successfully. A more generalized
Sequential Forward Floating Search (SFFS) (Pudil et al. 1994) is therefore a good
candidate. Evolutionary computing motivated Genetic Algorithms (GA) (McGilloway
et al. 2000) can be used, but they are not ideal for decision type objective functions, nor
when using a low amount of features, i.e. around 50–200, typical in emotional speech
analysis.

In transformations, the existing features are transformed into a new set of features.
The transformed set of features typically satisfies some desired property. For example,
the new transformed feature set is an orthogonal set of features, which is the case in
Principal Component Analysis (PCA). The target dimensionality of the transformations
is almost always a lower dimension than the starting feature space to counteract the
curse of dimensionality. Although transformations are usually defined as unsupervised
methods, they can also implement supervised learning, e.g. Linear Discriminant
Analysis (LDA). Nonlinear transformations are often used in supervised learning. Using
the kernel trick (Aizerman et al. 1964), an extension of PCA to nonlinear spaces, i.e.
Kernel PCA (KPCA), is straightforward. KPCA can be seen as a general framework for
nonlinear transformations and thus many nonlinear techniques can be reduced to special
cases of KPCA (Maaten et al. 2009). Neural Networks (NN) (Haykin 1994) can also
be used to learn nonlinear transformations, e.g. using a General Regression Neural
Network (GRNN) method. Manifold modelling techniques can also be seen as a type of
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feature transformations. Manifold modelling techniques are discussed in more detail in
Section 2.5.1.

Both selection and transformation methods can be used at the same time. It is
important to note that neither approach gives guaranteed increases in performance as
implied by the NFL theories. Transformations and selection are, however, great tools for
implementing desired models in feature extraction to simplify subsequent classifier and
decision methods.

Manifold modelling

Manifold modelling techniques are a group of specialized data transformation methods.
The taxonomy of manifold modelling methods is typically divided into linear and
nonlinear methods, convex and non-convex optimisation techniques, or full and sparse
spectral groups. Many of these methods share considerable similarities, however, even
when the methods can be taxonomically placed in seemingly different branches. For a
throughout review of methods and general taxonomy, see Maaten et al. (2009).

Classic data transformation methods, e.g. linear PCA, can be included in the
taxonomy of manifold modelling techniques, even though the methods are not specific
to any spatial structures implied by the assumption of manifold data. The more advanced
convex manifold modelling techniques, however, are based on the use of some spatial
data properties (e.g. neighbourhood information) and a suitable distance measure to
model data structures as manifolds. The metric choice for the distance measurement
is typically some kind of formulation of path information, e.g. geodesic distances, to
effectively model nonlinear manifolds by mapping the path distances to the desired,
typically lower, dimension. An effective nonlinear manifold modelling technique that
uses the geodesic distance mapping of a local neighbourhood linked data for a global
solution is Isomap (Tenenbaum et al. 2000). Another successful method that aims to
retain the local neighbourhood structure of data manifolds for a sparse generalized
solution is Local Linear Embedding (LLE) (Roweis & Saul 2000). The base methods
of manifold modelling techniques are typically unsupervised but can be modified for
supervised learning.

Nonlinear manifold modelling is a strong tool and a clear advance in learning and
representation of complex convex data structures. The nonlinear manifold modelling
techniques still have some problematic properties. Many assumptions made in the
methods can lead to serious problems if violated. Many methods, but especially the local
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linearity based sparse methods, e.g. LLE, suffer badly from the curse of dimensionality,
local linearity violations, gaps in the data or outliers, and numerical problems (Maaten
et al. 2009). The general problems increase the requirements for the data, both in quality
and quantity. The neighbourhood linking that is used to produce data structures as a
graph tree exposes the global methods, in particular, e.g. Isomap, to short-circuiting
errors (Balasubramanian & Schwartz 2002). A short-circuit error usually leads to a major
deformation of the manifold structures resulting in a poor performing and ultimately
incorrect model. The most important shortcoming for most nonlinear manifold learning
methods is, however, the lack of generalization property (i.e. the mapping between
the feature and manifold spaces is lost during the process). Consequently, new data
cannot be readily mapped to the generated manifold model, and the embedding must be
recalculated to add new data to the model. The need to recalculate the embeddings
for supervised training and the inclusion of many additional parameter optimisations
greatly increases the overall computational complexity of nonlinear manifold learning.
The computational complexity is thus a seriously limiting factor for the practical
implementation of the nonlinear manifold learning methods for large databases.

Methods have been developed to, at least partially, overcome problems such as the
short-circuiting and the lack of generalization property. The short-circuiting can be
addressed by finding major short-circuits and removing them from the graph, e.g. by
identifying unusually large flow nodes (Choi & Choi 2007). Another solution is to use
supervised learning by weighting known structures differently in the data (e.g. class
structures) to lessen the chance of short-circuits (Vlachos et al. 2002). The lack of
generalization is currently a more difficult problem to solve. The mapping of new data
to the generated manifold can be constructed again by using another nonlinear method,
e.g. GRNN (Geng et al. 2005). Mapping can also be established using the kernel trick
(Zhang et al. 2010a). However, the use of the kernel trick in supervised learning is still
somewhat limited because correct class weights are needed in the projection and they
cannot be specified without first knowing the class information of the new unknown
samples. A method using average weight for an unknown class has been suggested by
Gu & Xu (2007).

Emotion recognition has been attempted successfully using nonlinear manifold
modelling with prosodic features. The approaches (You et al. 2006, Zhang et al. 2010a,b)
have been more aligned with a traditional concept of feature reduction during the
feature extraction process. The amount of dimensionality reduction used, although
considerable, has not been aimed at a sufficiently low dimensionality to be very suitable
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for visualisation purposes. Reduction attempts at a sufficiently low dimensionality for
visualisation have also been made, but the studies, e.g. by Jain & Saul (2004) and Kim
et al. (2010), have been restricted to short vowel or word length samples and use spectral
features.

Classifiers

A classifier is a key element of machine learning. A multitude of classifiers has been
developed. Linear classifiers, e.g. Naive Bayesian (NB), Linear Discriminant Classifier
(LDC), or Perceptron (Duda et al. 2001), are typical examples of classic statistical
classification methods. Further advances in statistical classification have made nonlinear
classification methods available. Typical methods capable of nonlinear classification are
k-Nearest Neighbour (kNN) and various advanced Neural Network (NN) methods. The
linear classifiers can also be extended to nonlinear classification, e.g. using the kernel
trick (Aizerman et al. 1964). Using the kernel trick, a linear Support Vector Machine
(SVM) (Vapnik & Lerner 1963) is generalized to nonlinear classification (Boser et al.

1992) making SVM a very effective framework for classification.
Many classifiers have been found effective in emotion recognition from speech,

typically using mostly prosodic features and a label based class approach (typically 4–6
basic emotions). LDC approaches have been found effective with feature selection
(McGilloway et al. 2000, Lee et al. 2001). Classification And Regression Trees (CART)
performed well for the classification of frustration in Ang et al. (2002). Oudeyer (2002)
found the CART approach also efficient when combined with a meta-optimisation
method. Simple NB classifiers exhibited poor performance, but when combined with a
good feature selection method, good performance was reached (Dellaert et al. 1996,
Oudeyer 2002). Various kNN classifiers were all found performing well when a suitable
feature selection method was utilised (Dellaert et al. 1996, Lee et al. 2001, Yu et al. 2001,
Oudeyer 2002). The NN type of classifiers has not been found effective. In McGilloway
et al. (2000), a generative vector quantisation approach led to over learning problems,
which resulted in a poor performance. In Oudeyer (2002), radial basis function neural
networks and voting perceptron type of classifier setups did not perform well, either.
Linear SVMs were found performing poorly, but when using polynomial kernels, a good
performance was observed (McGilloway et al. 2000, Oudeyer 2002). In Nwe et al.

(2003), a Hidden Markov Model (HMM) based solution was found very effective.
It can be seen from the literature that emotion recognition from speech has the
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typical dualistic solution property common in classification tasks. A simple classifier
can be effective when the features are selected and the input nonlinearities are handled
first with a more robust method (e.g. manifold modelling or nonlinear transformation).
Another solution is to use a classifier that is particularly well suited for the problem. For
example, one can use an SVM that has the feature space problem solved by using the
correct kernel or use a solution that is intrinsically well aligned with the information
structure of the input features, e.g. an HMM that robustly incorporates the segmental
nature of speech.

Validation and bias in supervised learning

One of the cornerstones of machine learning is the ability to evaluate or validate the
results of a supervised learning method. Objective estimates for classifier performances
are essential for any attempt to generalize the learning results for new data. In supervised
learning, there is an inherent risk in over learning the training and testing data. A method
for validation is thus necessary for an objective assessment of any such results. The
problem of a separate validation data, e.g. a typical choice of 30% data that is left
for validation, is that now a significant portion of data cannot be used for training.
Almost always it would be advantageous to have more data. Another problem is that the
validation set is still quite small as there is the need to have as large as possible training
and testing sets as well, due to the curse of dimensionality, for instance. The use of a
small validation set leads to a larger variance of performance estimates. (Duda et al.

2001)
Cross-Validation (CV) (Stone 1974) techniques attempt to mitigate the problems

of using separate validation data. In CV, a fraction of data is held out in turn as a
validation set (e.g. 10% for 10-fold CV), while the other part is used for training and
testing. Then, an estimate of generalized performance is formed using all folds of
the validation procedure (e.g. mean performance of the CV folds). The performance
estimate gained from CV is an almost unbiased estimate of the true generalization error.
An extreme case of cross-validation is the Leave-One-Out Cross-Validation (LOOCV).
In LOOCV, each sample is rotated in turn out of the training and testing sets and used
for performance estimation. LOOCV offers the maximal use of data for training and still
retains generalization. The downside of CV methods is the increased computational
cost.

The use of CV has become very common in pattern recognition, especially in model
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selection, feature selection, and hyper-parameter optimisation. For example, in emotion
recognition from speech, Oudeyer (2002) used AdaBoost meta-optimisation to produce
the best performance. There is, however, an insidious problem when using CV in
incremental wrapper methods, sometimes called metaheuristics. The use of CV in
wrapper methods violates the assumption of statistical independence of the validation
because the results of validation are used to tune the parameters (i.e. the validation
data "bleeds" information to the feature vector or hyper-parameters). The results are
prone to over-learning because the CV error is no longer unbiased for finite data due to
the estimation variance (Cawley & Talbot 2010). Other possible meta-optimisation
algorithms, e.g. bootstrapping or jackknifing (Efron & Tibshirani 1994), are also equally
effected. A solution is to use a separate validation data for the generalization testing, but
unfortunately, this solution leads to the obvious problems of using separate validation
data discussed earlier. Another solution is to stop the training early (Qi et al. 2004) to
avoid complex models (i.e. a simple realisation of Occam’s razor). A nested CV can
be used to generate effectively unbiased performance estimates for wrapper methods
(Varma & Simon 2006). In a nested CV, each trained CV wrapper method folds (i.e.
inner CVs) are tested using another outer CV loop. The outer CV layer holds out a
fraction of data that is unused in the inner CV layers. A nested CV, however, can lead to
different optimisation results within each inner CV fold making the learning results
ambiguous.

Fusion techniques

The fundamental idea behind fusion techniques (Kittler 2000) is the integration of
information from multi-modal sources. Typically, the modalities are highly differentiated
in feature and analysis techniques (e.g. facial expressions and speech signal). Fusion
can be achieved at multiple stages in pattern recognition systems. In feature fusion,
an attempt to add multi-modal information at the feature level is made by including
features, or derived features (i.e. transformed features using both modal feature sources),
from two or more modal sources. In the simplest form, the feature sets are just united
into a new larger set of features and the problem of fusing the information is left for the
classifier to learn. Another way of performing fusion is to fuse the information at a later
stage (e.g. after classifier decisions) by treating the outputs of multiple single modal
experts as features or inputs to the fusion. Commonly, this late stage fusion is referred to
as score or decision level fusion. In the most straightforward case where the classifier
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outputs can be defined as probability distributions, the fusion is a trivial product of the
expert outputs. However, due to the presence of noise and the fact that classifiers are
invariably limited by finite data, the use of multiplication in fusion is problematic (e.g.
multiplication by zero from one bad expert nullifies the outputs of other experts). It is
found that a sum fusion of outputs has more robust properties in many real application
cases (Kittler et al. 1998). Vote fusion between expert outputs has also been investigated
but found inferior to sum fusion in real application cases (Kittler & Alkoot 2003). In
emotion recognition from speech, Dellaert et al. (1996) used a voting technique similar
to fusion to produce an ensemble of majority voting specialists that produced the best
performance reported.
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3 Research contributions

The research contributions of the original Publications I–IV are presented here. In
Paper I, a state-of-the-art emotion recognition method is presented with results for
Finnish acted emotional speech. The classifier and feature selection methods developed
in Paper I are also used in Papers III–IV. In Paper II, the performance testing of the
prior developed PDA algorithm is described. In Paper III, short vowel length segments
are studied in order to develop robust multimodal fusion enhanced classification of
emotion for short word length inputs. Paper IV, in its turn, proposes a framework for
the visualisation of semantic speech data. In the paper, classifier optimised non-linear
manifold modelling techniques are used to create a visualisation of the emotional content
of the speech database used in this research.

In papers I and IV, the passage length emotional monologs of the MediaTeam
Emotional Speech corpus are used. In Paper II, separate, classified, very challenging and
noisy radio communication data between Finnish F-18 Hornet fighter pilots recorded
during a war exercise is used. In Paper III, the second larger multiple rendition extension
to the MediaTeam Emotional Speech Corpus is used.

3.1 Emotion recognition for Finnish speech

As outlined in Sections 2.3 and 2.4, the expression of continuous emotional states
in speech is conveyed primarily via prosody. Emotion recognition from speech can
be fundamentally seen as a pattern recognition problem (Section 2.5). In Paper I, a
state-of-the-art emotion recognition technology is presented and the performance of
fully automatic feature extraction techniques for prosody analysis is demonstrated for
Finnish emotional speech samples. In Paper II, the performance of the used feature
extraction technique is further tested in a very demanding physical and psychical stress
environment. The relevance of developed prosodic features in a challenging environment
is important for future application implementations.
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3.1.1 Emotion recognition using global prosodic features

Previously, the emotional properties of the long-term prosody of continuous spoken
Finnish have been very little studied. Research on the vocal parameters of emotional
Finnish speech has often been focused on very short speech units, e.g. syllables and
vowels. The authors are not aware of any prior automatic classification studies of
continuous Finnish emotional speech using long-term global prosody. The primary
technological goal in Paper I was first to establish an automatic recognition of emotion
using the prosodic features of speech. The automatic classification of continuous
emotional Finnish speech was then attempted and the results compared with a human
listening test reference.

The data set used in Paper I is the passage length emotional monologues of the
MediaTeam Emotional Speech corpus (Seppänen et al. 2003) in core basic emotions, i.e.
four emotional categories, including neutral. To generate the data, 14 Finnish speaking
actors (eight male, six female, aged between 26 and 50) were recruited. Around one
minute length renditions of emotional speech in each emotional class (neutral, sad,
happy, and angry) were produced by each actor by reading an otherwise emotionally
neutral text passage, for a total of one hour of speech material. The speech samples
were recorded in an anechoic chamber with a high quality condenser microphone and a
digital audio tape (DAT) recorder using a lossless 44kHz 16bit audio format.

Each of the resulting passages was then divided into five segments to produce
70 samples of around ten seconds in length in each emotional category for a total of
280 samples. The division of raw data was required to produce enough samples for
classification. The sample length of around ten seconds was chosen to guarantee at least
one full utterance and the pauses between utterances in each sample (there are eleven
utterances in the full text). A shorter sample length would have been more desirable for
classification purposes, i.e. the more samples, the better. However, as the optimal sample
length for global prosody extraction is not known, a larger sample was preferred to
avoid oversensitivity to local phenomena. In order to retain a fully automatic capability,
the segmentation was made using a simple division of the recordings. The samples were
labelled according to speaker identity, gender, and emotional categories.

The F0Tool feature extraction software, developed by the author in Väyrynen (2005),
was then used to calculate the long-term global prosodic features and related acoustic
features used in the study. Features used in Paper I are all automatically calculable from
the segmented raw speech recordings, for an overview of the calculated features see
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Table 5. The definitions for each feature are presented in detail in Väyrynen (2005). The
same extracted global features were later on also used in Paper IV. In Paper II and III,
the feature contours are derived using the same PDA architecture (see, Väyrynen (2005)
for a detailed description), but raw feature contours (Paper II) or short time statistical
parameters of the contours (Paper III) are used instead of the global features.

The pattern recognition approach used for emotion classification in Paper I consists
of a CV-based metaheuristic search algorithm that utilises nested kNN classifiers and
an SFFS feature selection method (see Fig. 9). The approach was selected to retain
maximal use of the still rather small amount of data available, i.e. all data can be used
for training and testing. A person independent partitioning of the data was adopted for
the CV loop. Each person’s set of samples, i.e. 20 samples at a time, was rotated in and
out of the training set, i.e. 260 samples in each fold, in turn to produce fourteen fold CV
performance estimates for the feature selection algorithm. The problem of over fitting is
not easily compensated for when using meta-search algorithms (see, Section 2.5). In this
approach, the structure of floating search does not allow the feature vector to change too
heavily during the search, however, shielding the process from finding totally random
combinations of features. Over-learning is primarily handled by limiting the search
dimension to a low number of initial features and the CV performance testing. The kNN
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k = k − 1 Leave out feature
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Fig. 9. Sequentual forward floating search flowchart.
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Table 5. Global prosodic features and other related acoustic features.

Feature name Short description of feature
Mean Mean F0 frequency (Hz)
Median Median F0 frequency (Hz)
Max 99% value of F0 frequency (Hz)
Min 1% value of F0 frequency (Hz)
fracMax 95% value of F0 frequency (Hz)
fracMin 5% value of F0 frequency (Hz)
fracRange 5–95% F0 frequency range (Hz)
Range 1–99% F0 frequency range (Hz)
F0Var F0 variance
Shimmer Mean proportional random intensity perturbation
Jitter Trend corrected mean proportional random F0 perturbation
LFE1000 Proportion of Low Frequency Energy under 1000Hz
LFE500 Proportion of Low Frequency Energy under 500Hz
GDposav Average F0 rise during cont. voiced segment (Hz)
GDnegav Average F0 fall during cont. voiced segment (Hz)
GDriseav Average F0 rise steepness (Hz/cycle)
GDfallav Average F0 fall steepness (Hz/cycle)
GDrisemax Max rise of F0 during continuous voiced segment (Hz)
GDfallmin Max fall of F0 during continuous voiced segment (Hz)
GDmax Max steepness of F0 rise (Hz/cycle)
GDmin Max steepness of F0 fall (Hz/cycle)
MeanInt Mean RMS intensity (abs., dB)
MedianInt Median RMS intensity (abs., dB)
MaxInt Max RMS intensity (abs., dB)
MinInt Min RMS intensity (abs., dB)
IntRange Intensity range (abs., dB)
fracMaxInt 95% value of intensity (abs., dB)
fracMinInt 5% value of intensity (abs., dB)
fracIntRange 5–95% intensity range (abs., dB)
IntVar Intensity variance (abs., dB)
mavlngth Average length of voiced runs
manlngth Average length of unvoiced segments shorter than 300 ms
maslngth Average length of silence segments shorter than 250 ms
mlnlngth Average length of unvoiced segments longer than 300 ms
mlslngth Average length of silence segments longer than 250 ms
max_vlngth Max length of voiced segments
max_nlngth Max length of unvoiced segments
max_slngth Max length of silence segments
perc_short Percentage of pauses shorter than 50 ms
perc_mid Percentage of 50–250 ms pauses
perc_long Percentage of 250–700 ms pauses
spratio Ratio of speech against unvoiced segments >300ms
vratio Ratio of voicing against unvoiced segments
sratio Ratio of silence against speech
norm_intvar Normalised segment intensity distribution width
norm_freqvar Normalised segment frequency distribution width
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Table 6. Results of global prosody based emotion recognition for Finnish.

Scenario 1 Scenario 2
Instruction mode 85.7% 71.4%
Human vote mode 81.8% 71.1%

classifier is also resistant to inflated performance readings when larger k values are used.
Experiments were made using two scenarios. In Scenario 1, a person dependent

approach was used. In Scenario 2, a more general setting of an unknown speaker
was adopted. In both cases, also the selection of the ground truth data was evaluated.
First, the original emotions requested from the speech actors were used as the labels
(i.e. instruction mode). Next, labels generated via a majority vote from the answers
provided by the human listening tests were used (i.e. human vote mode). Both used
labellings produced very similar results. This could be expected as both labellings were
largely congruent. Since the instruction mode yielded slightly better results, the human
voting based labels were not used in the subsequent papers. The emotion recognition
performance for basic emotions achieved using long-term global prosodic features (see
Table 6) approached the used human reference of 76.9%.

Feature vectors corresponding to the best achieved results are presented in Table
7. In the speaker dependent Scenario 1, long-term spectral features (i.e. LFE500 and

Table 7. Selected feature vectors for global emotion classification.

Instruction mode Human vote mode
Scenario 1 Scenario 2 Scenario 1 Scenario 2
Mean
Median
fracMax
fracMin
LFE1000
LFE500
GDnegav
GDfallav
GDrisemax
MedianInt
MinInt
vratio
sratio

fracRange
Shimmer
Jitter
GDrisemax
IntRange
IntVar
sratio
norm_intvar

Mean
Median
fracMin
fracRange
Shimmer
LFE1000
LFE500
GDposav
GDfallav
GDfallmin
GDmax
MeanInt
MinInt
spratio
norm_intvar

fracMax
fracRange
F0Var
Shimmer
Jitter
GDfallav
MaxInt
MinInt
IntRange
fracMaxInt
fracIntRange
IntVar
vratio
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LFE1000) and mean values for important prosodic parameters (e.g. Mean, Median)
were among the discriminative features. In the speaker independent Scenario 2, the
selected features are typically those that capture the dynamic variation of prosody (e.g.
fracRange, IntRange, and Jitter). The difference in the selected features between the
scenarios can be explained by the ability of the spectral and mean values of prosodic
contours to identify individual speakers. The classifiers in Scenario 1 have learned the
individual representations of emotions. In Scenario 2, the classifiers are more aligned to
identify the speaker independent patterns of emotions.

3.1.2 Performance testing of prosodic feature extraction

In Paper II, the performance of the feature extraction method was tested using speech
data recorded in a very challenging environment. The data was obtained by recording
actual F-18 Hornet fighter pilot communications inside the aircraft cabin during an
in-flight war exercise. The high noise environment is mainly composed of broad band
noises produced by the jet engines, the aerodynamic flow, and cockpit equipment (e.g.
pressurisation). The recordings were made using a microphone inside the pilots’ oxygen
mask with a DAT recorder attached to the pilots’ combat gear. A lossless 44.1kHz 16 bit
audio format was utilised. A set of 40 communication utterances (ten random utterances
from each of the four pilots) was then extracted from the total material and used for the
performance evaluation.

The performance measurement was based on a semi-automatic waveform matching
procedure (a tool programmed in Java, see Fig. 10) where a human operator constructed
the correct reference F0-contours by manually identifying each F0 cycle. A least
squared error minimisation with quadratic interpolation was then applied to fine tune the
identified peaks and to extract the reference contour values. The resulting reference F0
values were then inspected again by the operator and corrected if necessary. A total of
6,501 cycles were individually identified and tagged. Each reference contour was then
compared with a corresponding contour provided by the fully automatic extraction
algorithm (F0Tool) to produce performance measurements.

The performance measurements (see Table 8) revealed that the extracted basic
prosodic parameters are quite robust to noise environment. The errors were found to be
unbiased. The total average relative error (AvRE) of F0 estimation was at 1.0% level.
The total SD of errors was also found to be very acceptable at 3.4%. The errors were
mainly explained by fine pitch determination errors. Only 0.56% of the errors (0.22%
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Fig. 10. UI of the reference contour generation application.

high and 0.34% low) were defined as gross errors (i.e. an error of more than 20%). The
AvRE of fine errors was 0.8% with an SD of 2.2%.

The performance level does not adversely impact the final long-term (i.e. multiple
second) prosodic features calculated using multiple F0 measurements, however, because
the mean error becomes practically zero very soon. Features relying on a few measures
would typically incur an error of no more than a few percentages. The Perturbation
contour based feature estimates (e.g. Shimmer and Jitter), on the other hand, are more
affected by the noise environment rendering them unreliable for high noise recordings.

Table 8. Results of performance measurement.

Fine errors Total errors Gross error rate
AvRE SD AvRE SD high low total
0.8% 2.2% 1.0% 3.4% 0.22% 0.34% 0.56%

Note: Fine errors include F0 measures deviating < 1ms from the reference contour. Total errors
include all measurements. Gross error rate is the percentage of measures with an error exceeding
±20% from the reference (+ for high, - for low errors).
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3.2 Fusion technique for multi-modal classification of
emotion

The aim in Paper III was to investigate the influence of emotion on very short stressed
words. Short stressed words are routinely used in voice commands and when acknowl-
edging messages with voice. In the paper, a fusion classifier based emotion recognition
of short speech segments using F0Tool (Väyrynen 2005) local prosodic features and
Aparat (Airas 2008) vocal source features, describing mostly voice quality, is proposed.

A set of 450 samples of the MediaTeam Emotional Speech Corpus data was used
in the study. The data was produced in an anechoic room by nine Finnish speaking
actors (five men and four women aged between 26 and 45) in five emotional categories,
including neutral. Ten renditions of speech produced by reading a passage length
text was recorded using a random sequence where no single category (neutral, sad,
happy, angry, and tender) was repeated immediately in the next rendition. The text was
constructed in such a way that in the middle of the passage a specifically constructed
target utterance "Taakkahan se vain on" ‘It’s only a burden’ was placed to create a strong
and consistently emphasised position on the first syllable of the word "Taakkahan"
‘Only a burden’. The passage frame is intended to guarantee that emotional speech
is consistently portrayed when the target utterance is reached by the naïve speakers.
The first long [a:] vowel (about 100–250ms in length) situated in a primary stressed
position was then extracted from the target utterance. An open long [a:] vowel was
needed in order to robustly extract the vocal source features. The extracted emotional
vowel sample is used as a proxy of a short independent discoursal unit such as an
acknowledgement or a short command.

Local prosodic features and vocal source features were extracted from the vowel
samples using F0Tool and Aparat software, respectively. A sum fusion based leveraging
method using CV meta learning was developed (see Fig. 11) in order to merge the two
feature sets at decision level. The fusion method was implemented using groups of
four odd k (3, 5, 7, and 9) valued kNN classifiers in the leveraging process in order to
marginalise over the parameter k. A base classifier group using local prosodic features
is first trained using SFFS feature search. The base classifier group is then used with
sum fusion to search with SFFS for a vocal source feature based classifier group that
maximises the performance of the fusion classifier. During the sum fusion, weights were
given to the prosodic feature and vocal source feature classifier groups according to their
relative separate performances. The sum fusion (Eq. 3) is calculated using estimates of
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Base classifier set Fusion leveraging (SFFS)

Results of decision level fusion classification

F0Tool local prosodic

features

Sequential Forward Floating

Search

Aparat vocal source

features

Fig. 11. Leveraging of fusion classifiers using meta learning (III, published by
permission of Elsevier B.V.).

the a-posteriori probabilities of the kNN classifier groups (Eq. 4).

assign Z→ c j i f

(1−R)P(c j)+
R

∑
i=1

wiP(c j|xi)

=
m

max
k=1

[
(1−R)P(ck)+

R

∑
i=1

wiP(ck|xi)

]
, (3)

where Z is the pattern to be assigned to class c j among m number of classes (c1, . . . ,cm)

using R classifiers that represent patterns given by sample vectors xi, i = 1, . . . ,R. The
sum of weights is normalised ∑

m
i=1 wi = 1. The a-posteriori probabilities were defined

as:
P(ci|x) =

p(x|ci)P(ci)

∑
m
j=1 p(x|c j)P(c j)

=̂
ki

k
, (4)

where ci denotes the i:th class of the m total number of classes, x is a sample vector, and
ki is the number of k-neighbourhood prototypes with class label ci.

The results of short segment emotion recognition (see Table 9 for average clas-
sification performance results) reflects the knowledge that voice quality features are
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Table 9. Results of fusion based emotion recognition of short speech segments.

Human Aparat F0Tool Fusion
42.4% 32.9% 40.9% 45.3%

Note: Average classification results are provided for neutral, sad, happy, angry, and tender emotions.

effective in describing emotions where the speech quality is more pressed (e.g. anger).
The observed low performance of 32.9% correct, on average, when using vocal source
features only (Aparat) can therefore be explained largely to be due to the incapability
of classifying whole emotional categories. The vocal source features were effective
when classifying neutral, happy, and angry samples. Intonation level features (F0Tool)
are clearly emotionally relevant, also in the case of stressed short segments of speech,
indicated by the robust recognition performance (40.9%). The proposed fusion method
was capable of including the information in both the vocal source features and the local
prosodic features to reach the best performance of 45.3% correct, on average, even
surpassing the performance of the human reference (42.4%). Feature level fusion was
also investigated. However, the decision level fusion based approach invariably resulted
in a better performing classifier structure that combined both intonation describing
prosodic features, as well as voice quality describing source features.

The best performing feature vectors used in the fusion study are collected into Table
10. The best identified vocal source features for emotion recognition were the features
sensitive to the pressedness of speech (i.e. features derived from ClQ, AQ, and NAQ).
Local prosodic features effective in emotion recognition were, expectedly, the mean
values for pitch and amplitude together with features describing the amplitude dynamics
of the stressed short segments. The fusion leveraging did not result in a noticeably
different set of vocal source features.

The results of the fusion classification suggest that local prosodic features and
vocal source features could be used effectively to evaluate the emotional content of
short discoursal units such as command words and acknowledgements. Unfortunately,
as the used Aparat vocal source features are currently limited by the IAIF technique,
i.e. a good clean quality open vowel is needed for the analysis, the results are not
immediately usable for practical applications. The main intent of the study is, however,
to demonstrate the expected utility when combining the feature sets using a fusion
classification architecture. When a robust feature extraction method becomes available,
the proposed fusion architecture can be immediately used to incorporate the new features
for the classification of emotion. The leveraging process further enables a parallel
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Table 10. Selected feature vectors for short segment fusion emotion classification
(III, published by permission of Elsevier B.V.).

Aparat vocal source features
only
Mean of OQ2
Mean of ClQ
Median of ClQ
Median of SQ2
Median deviation from the

median of OQ1
Median deviation from the

median of NAQ
Median deviation from the

median of AQ
Median deviation from the

median of QOQ

F0Tool local prosodic features
only
Mean of F0 frequency
Mean of cycle peak amplitude
Median deviation from the median

of cycle peak amplitude
Median deviation from the median

of Shimmer

Aparat vocal source features
in the fusion
Mean of OQ2
Mean of ClQ
Median of NAQ
Median of SQ2
Median deviation from the

median of OQ1
Median deviation from the

median of NAQ
Median deviation from the

median of AQ
Median deviation from the

median of OQa
Median deviation from the

median of QOQ
Median deviation from the

median of SQ1

approach to the final trained fusion classifier structure that allows the use of voice quality
parameters if they are available by a simple sum operation (Fig. 12). The extraction of
features can be handled in separate processes and if one expert’s feature extraction fails,
the missing expert can be easily handled in the sum fusion by simply zeroing the output
of the expert.

Aparat vocal source

features

F0Tool local prosodic

features

kNN classifier kNN classifier

Fusion result

Fig. 12. Weighted sum fusion of experts (III, published by permission of Elsevier
B.V.).
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3.3 Visualisation of emotional speech data

Visualisation of different semantic qualities in speech recordings is a highly sought
capability for speech researchers. In Paper IV, the visualisation of speech data is studied.
As semantic concepts (e.g. emotion) in speech are typically highly nonlinear phenomena,
it is very hard to gain a deep insight from data via simple visualisations such as plots
of different raw feature values. A machine learning based data mining approach is
required in order to access the nonlinear statistical patterns that are implicitly sampled in
the recorded speech materials. Traditional label based classifications and statistical
modelling of class properties are often incapable of learning complex patterns and are
prone to errors in the labelling of data. The correct labelling of semantic content cannot
be guaranteed to be flawless, and consequently, the annotated labellings often contain a
large amount of error.

In order to compensate the labelling errors, it can be helpful to relax the rigid
labelling. A continuous dimensional modelling of a semantic aspect, e.g. annotating with
Feeltrace (Cowie et al. 2000), or another continuous measure known to be directly related
to the semantic aspect in question, can be used to provide a more flexible annotation of
data. A regression analysis can then be used with a continuous annotation to produce
clear measures and visualisations for semantic properties, e.g. for language fluency,
by using the number of annotated speech errors as a dependent variable (Väyrynen
et al. 2009). However, many semantic aspects are also notoriously hard to define on
continuous dimensions (cf. dimensional models of emotion). A solution can be to use
modelling techniques that use the intrinsic data structure (e.g. geodesic distance) to
provide an alternate mapping of the labelled data. The mapping of data into a new
supervised structure provides a data driven version of the labelling space that is not as
strict as the original labels and, consequently, is not as much influenced by the labelling
errors (i.e. data similarity is emphasised).

3.3.1 Isomap based framework for semantic speech
content visualisation

In Paper IV, an Isomap based framework for the nonlinear visualisation of speech data
is presented that uses a classifier based supervised learning of data. The data used in
Paper IV is the same data which was used in Paper I (Four emotional categories: neutral,
sad, angry, and happy) with exactly the same sampling and extraction of features. The
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original labelling of samples was used in the training and testing of models, i.e. the
instruction mode labels.

An SFFS-based feature selection procedure and a CV-based estimation of model
performance are used to produce low dimensional nonlinear embeddings of high
dimensional prosodic and acoustic features. The classifier learning procedure enables
an efficient way to emphasise the desired semantic property to be visualised (e.g.
emotional speech content) and yet still retains the topological structure of the data in
the visualisation (see Fig. 13, for a sketch of 3D model of emotion for four emotional
labels).

In the training, using the SFFS feature selection method, for each prospective
feature vector, first, the Isomap embedding procedure is performed (Fig. 14). The
resulting model is then evaluated in the embedding space using a kNN classifier and a
CV performance estimation. The Isomap and other model parameters (i.e. the Isomap
linking k, the kNN classifier k, dissimilarity function parameters, and GRNN parameters)
are searched during the training using an exhaustive grid search within reasonable
parameter ranges.

A PCA based global linear methods (using ROBPCA, Hubert et al. (2005), and a
similar supervised classifier optimisation setup as was used in the Isomap methods) is

Happy

Angry

Neutral
Activation

Valence

Sad

Fig. 13. Sketch of a 3D model of emotion.
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Fig. 14. Flowchart of the Isomap embedding procedure.

also provided as a reference and to highlight the need for nonlinear learning in order to
build usable visualisations. The PCA based embedding (see Fig. 15), although effective
in classification performance, does not provide a very good visualisation of the data.

In the paper, two different dissimilarity functions were used to produce the nonlinear
manifold embeddings, a linear weighted (Vlachos et al. 2002) version (W-Isomap) and a
nonlinear version (S-Isomap) using the dissimilarity function (Eq. 5) from Geng et al.

(2005):

D(xxxi,xxx j) =

{ √
1− exp

−d2(xxxi,xxx j)
β yi = y j√

exp
−d2(xxxi,xxx j)

β −α yi 6= y j

, (5)

where d2(xxxi,xxx j) is the squared Euclidean distance between vectors xxxi and xxx j with class
labels yi and y j, respectively. β was chosen to be the average Euclidean distance of the
data set and α is optimised in feature selection process.

The impact of different target embedding dimensionality was also evaluated during
training. The best classification performances were consistently obtained when using

68



three dimensional target embedding space. Lower dimensions (i.e. one and two
dimensional spaces) were clearly not as effective embedding targets, resulting in worse
performance. Higher dimensions, although providing performances comparable to that
of the three-dimensional space, would require more complex representations of the
embeddings (e.g. they would require multiple visualisations projected along different
dimensions to properly illustrate the structures). The classifier learning procedure
enables comparison between the classification performances of the various approaches.

The average classification performances for a direct high dimensional classification
using a kNN classifier, a linear PCA based mapping, the two nonlinear Isomap based
methods W-Isomap and S-Isomap, and a human listening test are presented in Table 11.
The performances of the two nonlinear embeddings compare well with the direct kNN
classifier and the linear PCA reference methods. Furthermore, the performances of the
nonlinear methods are also very close to the human reference. The best performing
nonlinear embeddings were also observed, subjectively, to provide the most visually
pleasing low dimensional representations of the speech database (Fig. 16 and Fig. 17).
Feature vectors corresponding to the best achieved results are presented in Table 12.
All feature vectors are composed of features from each of the major prosodic feature
categories. Emotionally discriminative features seem to be predominantly describing
the range dynamics of the F0, intensity, and duration aspects of speech. Only a few
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Fig. 15. Linear PCA embedding of a speech database.
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Table 11. Classification results of low dimensional embedding methods and refer-
ence methods.

kNN PCA W-Isomap S-Isomap Human
71.4% 73.2% 75.4% 76.1% 76.9%

spectral features (i.e. LFE500 and LFE1000) are present in the feature vectors of Isomap
embedding based approaches.

The visualisation offering the best classification performance, and also, via subjective
evaluation, the most pleasing structure, was then further studied for emotional intensity
structures by means of listening tests. The hypothesis was that the used weighting
and the supervision that relies on geodesic data structures is also robust in preserving
other topological structures of the data. It was therefore expected that the emotional
manifold structures should contain to some degree the variations in emotional intensities
although no such information was used in the training. Speech samples selected along
the emotional manifolds were annotated in two emotional intensity groups (high and
low) by the human listeners. Wilcoxon rank-sum tests and logistic regression were
then used to test the tagged groups for statistically significant structures (Table 13).
Significant median distances between the high and low emotional intensity groups were
observed in each emotional category. The listeners’ annotations of emotional intensity
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Fig. 16. Linear weighted W-Isomap based visualisation of an emotional speech
database.
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Fig. 17. Nonlinear weighted S-Isomap based visualisation of an emotional speech
database.

were briefly compared and found consistent across all categories. The logistic regression
tests further revealed that the emotional intensity structures were significantly predicted
by the embedding coordinates. The low intensity areas of emotions were as expected
closer to neutral samples and the high intensity samples resided farther away along the
corresponding emotional sub-manifolds.

Table 12. Feature vectors corresponding to the best achieved results (IV, pub-
lished by permission of IEEE).

S-Isomap W-Isomap PCA kNN
fracRange fracRange Mean fracRange
Jitter F0Var Max Shimmer
LFE1000 Shimmer fracMax Jitter
GDrisemax Jitter fracRange GDrisemax
GDfallmin LFE500 Shimmer IntRange
MeanInt GDrisemax Jitter IntVar
fracMaxInt fracMaxInt GDposav sratio
fracIntRange fracIntRange GDfallav norm_intvar
mlnlngth mlslngth GDmin
mlslngth spratio fracMaxInt
spratio norm_intvar vratio
vratio norm_freqvar
norm_intvar
norm_freqvar
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Table 13. Significance testing results of S-Isomap emotional sub-manifold struc-
tures (IV, published by permission of IEEE).

Sad Angry Happy
Listener agreement 85% 85% 86.5%
Median distance 1.0599** 2.3024*** 1.9745***
Correct count (Dist) 62.0% 80.0%*** 74.5%***
Correct count (3D) 73.0%*** 84.0%*** 73.5%***

Note: Agreement ratios of the listeners are shown in percentages. The median distances of
the low/high emotional intensity groups in different emotions (arbitrary units) are shown with the
associated p-values from Wilcoxon rank-sum tests. The logistic regression correct counts in
percentages are shown with the associated p-values from Likelihood Ratio (LR) tests. ** indicates
p-values < 0.01 and *** indicates p-values < 0.001

3.4 Summary of research contributions

The contributions of this thesis can be divided into three parts. First, a technology for
the recognition of emotion for Finnish speech was developed. The Finnish long-term
global prosody of emotions has been very little studied. Often, the studies of the vocal
parameters of emotional Finnish speech have been concentrated on very short speech
units. Furthermore, no automatic classification approaches for continuous emotional
Finnish speech has been previously performed.

Second, a novel fusion technique was developed to enhance the emotion classification
of short speech segments. An increased classification performance was achieved by
using vocal source derived features and more traditional intonation describing local
prosodic features.

Third, a technological framework for the visualisation of emotional speech data was
developed. A novel classifier based optimisation approach was used for the supervised
Isomap embedding of high dimensional emotional data into a low dimensional manifold.
An efficient and topologically consistent visualisation of emotional data was achieved
using long-term global prosodic features.
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4 Discussion

4.1 Significance of results

4.1.1 Emotion recognition for Finnish speech

In this thesis, the automatic recognition of emotion has been studied using Finnish
emotional speech recordings. The technology developed in Paper I for emotion
recognition is based on features describing primarily global long-term prosody. Some
related acoustic features of speech are also included. The feature extraction and pattern
recognition techniques have been developed aiming at a fully automatic mode of
operation and a robust noise performance (Paper II).

Using long samples (i.e. multiple seconds in length), a robust emotion recognition
for the basic emotions is possible. A long-term emotion recognition capability can be
useful in making experiences with different interfaces (e.g. robot behaviours, adapted
user interface flows, or automatic assessment of communications) more familiar and
natural for the users. As a result, the operational effectiveness of such interfaces can also
be expected to increase.

The recognition results for emotion recognition for Finnish speech were found to be
consistent with prior literature findings on emotion recognition in the western language
context. A level of classification performance around two thirds correct to over 80%
correct can be seen as an attainable goal for a limited basic emotion recognition task
depending on the amount of emotional categories used (Dellaert et al. 1996, McGilloway
et al. 2000, Oudeyer 2002, Bosch 2003). In Finnish speech, the activation dimension
of affect seems to be more prominently signalled in the voice, a finding common for
vocal expression of emotion (Bachorowski 1999, Scherer 2003). The recognition rates
for Finnish listeners were found to be typical and consistent with the results reported
in western language contexts, see e.g. Elfenbein & Ambady (2002), Scherer (2003).
Feature vectors describing the learned models suggest that a similar prosody based
signalling of emotion is used also in Finnish speech.
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4.1.2 Fusion technique for multi-modal classification of
emotion

Short emphasised vowels are often used in commands and acknowledging purposes in
conversations carrying important information that can be utilised to detect frustration
or other emotional behaviour that possibly indicates unwanted functionality when
using speech user interfaces. A robust recognition of emotion can thus be a desirable
enhancement for voice command based user interfaces, e.g. automatic call centres.

In Paper III, meta learning algorithms were developed for the learning of emotional
models and to combine relevant information from multiple sources with fusion tech-
niques. The study of fusion techniques indicates that a decision based fusion method is
preferable for the recognition of emotion when combining short term voice quality
features with traditional prosodic, and related often used acoustic features. Further-
more, the decision level sum fusion allows for an efficient technological realisation for
multimodal operation.

For the short signals, the detection of emotion is the most effective in high activation
emotions when the speech quality is more pressed (e.g. Anger). For short segments, the
voice quality features describing the vocal source characteristics were mostly capable in
describing neutral, happy, and angry emotions. This was expected as many of the voice
quality describing features are sensitive to the pressedness of the voice, e.g. NAQ (Alku
et al. 2002). Using fusion, recognition results were increased accordingly, as expected.
For this reason, applications attempting to analyse frustration and possible erroneous
operations in human computer interactions where short vocal commands are utilised
are the most likely to benefit from short speech segment based emotion recognition.
However, as the performance of the used IAIF based vocal source extraction is currently
limited, a more robust feature extraction technique for the vocal source features is
most likely required for most practical applications. The use of the proposed fusion
architecture with alternative features is straightforward.

4.1.3 Visualisation of emotional speech data

In Paper IV, the presented method for emotional speech data visualisation relies on the
structural properties of the data. Supervised learning of manifolds not only improves on
the classification performance of emotional speech over standard classification methods,
but also provides an effective representation of speech. A visualisation of intrinsic data
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manifolds helps in interpreting the emotional speech data and provides a means for
further exploration.

Using nonlinear weighting, the S-Isomap approach produced both the best classifica-
tion rate and qualitatively the best visualisation of emotional Finnish speech data. The
topology of the produced visualisation was also inspected using listening tests to verify
if the perceived emotional intensity would be distributed in a meaningful way along the
emotional sub-manifolds. The distribution of emotional intensity was found correlating
strongly with the manifold coordinates. The presence of clear manifold structures that
was not guided by the supervised learning process can be seen as a strong indication
of robustness of the presented visualisation framework in retaining the original space
manifold topology after a considerable reduction in dimensionality. Furthermore, the
resulting visualisations of emotional speech data were found strongly resembling the
dimensional emotional models presented in the literature, e.g. by Russell & Mehrabian
(1977), Daly et al. (1983). During the optimisation process, the strong performance
of the very low dimensional representations (3–5) is also a strong support for the
assumption of low intrinsic dimensionality of speech and emotion therein (Togneri et al.

1992, Kim et al. 2010).
The proposed manifold modelling technology is not specifically designed for emotion

visualisation only. The presented framework should thus be generalizable for other
semantic concept classification and visualisation tasks (e.g. speech style or fluency).
The supervision can be changed to incorporate arbitrary class labellings as long as the
required prior assumptions for continuous connected manifold structures are not violated.
It is also possible to incorporate other continuous functions to focus the supervision on
more specific structures. For example, it might be useful to incorporate the emotional
intensity estimates gained from human experts into the manifold dissimilarity functions
to produce more highlighted visualisation of the emotional intensity manifolds.

4.2 Limitations and generalizability

This study is based on Finnish emotional speech data only. Thus, the results are only to
be interpreted in the context of Finnish speech. Especially, in Paper III, the used short
speech segment results are critically based on the fact that in Finnish the first word of
utterances, short or long, is always stressed. The emotional behaviour and the prosody
of short verbal commands can be markedly different in other languages and the study
must therefore be replicated before any generalizations of the results over different
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languages can be made.
Also, it should be noted that the used emotional data only contains acted emotional

content in limited basic emotions. However, the vast majority of recorded data available
is actually acted. Hence, the results are likely to be applicable for at least applications
using such data (e.g. the analysis of emotional plays and other entertainment productions).
However, spontaneous emotional speech might not be signalled using similar, perhaps
stereotypical, ways naturally limiting the utility of the presented results in a real
environment application. The used technology should in general be applicable to natural
emotional speech data also, but the presented results of feature selections and meta
learnings will likely be different with a spontaneous data and should be reanalysed
accordingly. The inclusion of more emotions can be done without changes in the
proposed methods. A lowered overall performance when working with a larger scale of
emotion or more complex emotions is naturally expected.

The IAIF based extraction of vocal source features used in Paper III to demonstrate
the performance of fusion classification is currently limited to high quality clean speech
recordings of an open vowel. It is likely that a more robust feature extraction method is
required for most practical applications. However, the proposed fusion classification
architecture itself is not limited by the used features and can be directly used with
features provided by alternative extraction methods.

We can expect that the presented method for nonlinear manifold learning and
visualisation of speech data (Paper IV) should be generalizable for other languages,
spontaneous speech, or semantic concepts other than emotion. Adding more emotions or
categories and therefore more data samples, or hyper-parameters in the training, can be
problematic, however, due to computational requirements. The high computational
complexity of the presented method is an apparent limitation in learning and finding
complex manifold embeddings from large databases. A final learned embedding, on the
other hand, can be used effectively in classification and further analysis, making the
computational requirements problematic only during the supervised learning.
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5 Summary and conclusions

In this thesis, emotion recognition from speech is studied using long and short term
prosodic and related acoustic features. Finnish acted emotional speech data is used to
produce a state-of-the-art classification of spoken emotional content in basic emotional
categories. The work is divided into three main parts:

1. Emotion recognition from speech using long-term prosodic and acoustic features
2. Emotion recognition using the fusion of short term prosodic and voice quality features
3. Visualisation of emotional speech data using nonlinear manifold modelling.

In the first part, a state-of-the-art level basic emotion recognition from Finnish
speech was developed using global prosodic and acoustic features. The robustness and
performance of the feature extraction were investigated. The aim was to enable automatic
operation using raw audio recordings with little or no user defined parameters. An
automatic pattern recognition method was developed for emotional speech recognition
using a meta learning feature selection algorithm. An emotion classification rate
approaching the human reference was obtained using a limited set of basic emotions.

In the second part, short term prosody and voice source features were investigated
to enable the emotion classification of short stressed words. Fusion technology was
developed to combine the feature sets in order to enhance the classification performance.
An increased emotion classification performance was demonstrated.

In the third part, the visualisation of emotional speech data was investigated.
Nonlinear manifold modelling techniques were used with classifier based supervision
to enable a low dimensional visualisation of high dimensional prosodic and related
acoustic speech features. A framework for semantic content visualisation for speech
data was developed. An increased classification and a low dimensional visualisation of
emotional speech data were achieved. Large similarities with the dimensional emotional
models and the produced visualisations were observed.

The developed emotion recognition technology can be used to enhance user interfaces
and devices to be more emotionally responsive and natural. Measuring the emotional
responses of user experiences can be used to further develop the interfaces. The
presented framework for emotional speech visualisation can be used for speech research
and data representation purposes. The method can also be used for other semantic
content visualisations and the meta-analysis of speech data.
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