
A
B
C
D
E
F
G

UNIVERSITY OF OULU P .O. B 00 F I -90014 UNIVERSITY OF OULU FINLAND

A C T A U N I V E R S I T A T I S O U L U E N S I S

S E R I E S E D I T O R S

SCIENTIAE RERUM NATURALIUM

HUMANIORA

TECHNICA

MEDICA

SCIENTIAE RERUM SOCIALIUM

SCRIPTA ACADEMICA

OECONOMICA

EDITOR IN CHIEF

PUBLICATIONS EDITOR

Professor Esa Hohtola

University Lecturer Santeri Palviainen

Postdoctoral research fellow Sanna Taskila

Professor Olli Vuolteenaho

University Lecturer Veli-Matti Ulvinen

Director Sinikka Eskelinen

Professor Jari Juga

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-952-62-0642-4 (Paperback)
ISBN 978-952-62-0643-1 (PDF)
ISSN 0355-3191 (Print)
ISSN 1796-220X (Online)

U N I V E R S I TAT I S O U L U E N S I SACTA
A

SCIENTIAE RERUM
NATURALIUM

U N I V E R S I TAT I S O U L U E N S I SACTA
A

SCIENTIAE RERUM
NATURALIUM

OULU 2014

A 638

Tuomas Kortelainen

ON ITERATION-BASED
SECURITY FLAWS IN
MODERN HASH FUNCTIONS

UNIVERSITY OF OULU GRADUATE SCHOOL;
UNIVERSITY OF OULU,
FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICAL SCIENCES;
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING,
DEPARTMENT OF INFORMATION PROCESSING SCIENCE

A
 638

AC
TA

Tuom
as K

ortelainen

A C T A U N I V E R S I T A T I S O U L U E N S I S
A S c i e n t i a e R e r u m N a t u r a l i u m 6 3 8

TUOMAS KORTELAINEN

ON ITERATION-BASED SECURITY
FLAWS IN MODERN HASH
FUNCTIONS

Academic dissertation to be presented with the assent of
the Doctoral Training Committee of Technology and
Natural Sciences of the University of Oulu for public
defence in the OP auditorium (L10), Linnanmaa, on 9
December 2014, at 12 noon

UNIVERSITY OF OULU, OULU 2014

Copyright © 2014
Acta Univ. Oul. A 638, 2014

Supervised by
Professor Markku Niemenmaa
Doctor Ari Vesanen

Reviewed by
Professor Valtteri Niemi
Professor Orr Dunkelman

ISBN 978-952-62-0642-4 (Paperback)
ISBN 978-952-62-0643-1 (PDF)

ISSN 0355-3191 (Printed)
ISSN 1796-220X (Online)

Cover Design
Raimo Ahonen

JUVENES PRINT
TAMPERE 2014

Kortelainen, Tuomas, On iteration-based security flaws in modern hash functions.
University of Oulu Graduate School; University of Oulu, Faculty of Science, Department of
Mathematical Sciences; Faculty of Information Technology and Electrical Engineering,
Department of Information Processing Science
Acta Univ. Oul. A 638, 2014
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

The design principles proposed independently by both Ralph Merkle and Ivan Damgård in 1989
are applied widely in hash functions that are used in practice. The construction reads the message
in one message block at a time and applies iteratively a compression function that, given a single
message block and a hash value, outputs a new hash value.

This iterative structure has some security weaknesses. It is vulnerable, for instance, to Joux's
multicollision attack, herding attack that uses diamond structures and Trojan message attack.

Our principal research topic comprises the deficiencies in hash function security induced by
the Merkle-Damgård construction. In this work, we present a variant of Joux's multicollision
attack. We also develop a new, time-saving algorithm for creating diamond structures. Moreover,
two new efficient versions of Trojan message attack are introduced.

The main contribution of the thesis is the analysis of generalized iterated hash functions. We
study the combinatorial properties of words from a new perspective and develop results that are
applied to give a new upper bound for the complexity of multicollision attacks against the so called
q-bounded generalized iterated hash functions.

Keywords: cryptography, diamond structure, hash functions, multicollision, Trojan
Message Attack, word combinatorics

Kortelainen, Tuomas, Iteraatioon perustuvia tietoturvaheikkouksia moderneissa
hash-funktioissa.
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Luonnontieteellinen tiedekunta, Matemaattisten
tieteiden laitos; Tieto- ja sähkötekniikan tiedekunta, Tietojenkäsittelytieteiden laitos
Acta Univ. Oul. A 638, 2014
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Vuonna 1989 Ralph Merkle ja Ivan Damgård ehdottivat toisistaan riippumatta hash-funktioille
suunnitteluperiaatteita, joita käytetään tänä päivänä laajasti. Niin kutsuttu Merkle-Damgård -
rakenne lukee viestin sisään viestiblokki kerrallaan ja käyttää tiivistefunktiota, joka liittää hash-
arvoon ja viestiblokkiin uuden hash-arvon.

Tällä iteratiivisella rakenteella on joitakin turvallisuusheikkouksia. Se on haavoittuva esimer-
kiksi Joux’n monitörmäyshyökkäykselle, timanttirakenteita hyödyntävälle paimennushyökkäyk-
selle ja Troijan viesti -hyökkäykselle.

Väitöskirjan pääasiallinen tutkimusaihe on Merkle-Damgård -rakenteen aiheuttamat puutteet
tietoturvassa. Tässä työssä esitetään uusi versio Joux’n monitörmäyshyökkäyksestä, luodaan
uusi aikaa säästävä algoritmi timanttirakenteiden kehittämiseksi ja kaksi uutta tehokasta versio-
ta Troijan viesti -hyökkäyksestä.

Väitöskirjan tärkein kontribuutio on yleistettyjen iteratiivisten hash-funktioiden turvallisuu-
den analysointi. Sanojen kombinatorisia ominaisuuksia tutkitaan uudesta näkökulmasta, jonka
pohjalta kehitettyjä tuloksia soveltamalla luodaan uusi yläraja niin kutsuttujen q-rajoitettujen
yleisten iteratiivisten hash-funktioiden monitörmäyshyökkäysten kompleksisuudelle.

Asiasanat: hash-funktiot, kryptografia, monitörmäykset, sanojen kombinatoriikka,
timanttirakenteet, Troijan viesti -hyökkäyset

Acknowledgements

I wish to express my gratitude to my supervisors, Professor Markku Niemenmaa and
PhD Ari Vesala for their support and rewarding collaboration. Also I wish to express my
gratitude for the pre-examiners of my thesis, Professor Valtteri Niemi and Professor Orr
Dunkelman for their critique and advice that have allowed me to significantly improve
the quality of my thesis.

I have been lucky enough to be working with great people. I wish to thank Kimmo
Halunen for our collaboration on hash functions. Especially I want to thank my father
Juha for the constant, unyielding and selfless support that he has given me through the
years. I also wish to thank Alli Huovinen, Keijo Väänänen and the staff of both the
Department of Mathematical Sciences and the Division of Mathematics at the University
of Oulu.

For financial support, I wish to thank the Tauno Tönnig foundation. I also wish to
thank Professor Keijo Ruotsalainen who has created a pleasant atmosphere to teach and
do research.

I want to thank my friends for relaxing and good times. Particularly, I wish to thank
Soile Kontio for her friendship and the support she has given that has allowed me to
concentrate on work more than would have been possible otherwise.

Finally, I wish to thank my family. Especially my precious children Venla and Arttu
and my wife Tiina for all her love and encouragement.

Oulu, November 2014 Tuomas Kortelainen

7

8

Contents

Abstract
Tiivistelmä
Acknowledgements 7
Contents 9
1 Introduction 13
2 Basics 15

2.1 Words . 15

2.2 Some Mathematical Tools . 16

2.3 General Description of Hash Functions . 17

2.3.1 Why Are These Security Properties Important? 19

2.4 Iterated Hash Functions . 20

2.5 Different Types of Hash Functions . 22

2.5.1 Concatenated Hash Functions .22

2.5.2 Hash Twice . 23

2.5.3 Zipper Hash . 23

2.5.4 Generalized Iterated Hash Functions . 24

2.6 Attack Algorithms and Their Complexity .25

2.6.1 The Complexity of the Attack Algorithm . 25

2.6.2 Asymptotic Complexity . 26

2.6.3 Complexity Analysis in This Work . 27

2.6.4 On Memory Requirements . 27

2.6.5 About Wide-Pipe Hash . 28

2.7 About Collisions . 29

2.7.1 The Probability of Finding a Collision . 30

2.7.2 Collision Complexity . 30

2.7.3 Multicollision Complexity . 31

2.7.4 Preimage and Second Preimage Complexities . 32

3 What is Known Before 33
3.1 Joux’s Attack . 33

3.1.1 Joux’s Attack on Concatenated Constructions . 35

3.1.2 Multicollisions on Generalized Hash Functions 36

9

3.2 Creating Expandable Messages . 37
3.3 Second Preimage Attacks with Expandable Messages 38
3.4 Creating a Diamond Structure . 39

3.4.1 Elongated Diamond Structure .42
3.4.2 Multicollision Diamond . 42

3.5 Herding Attack with a Diamond Structure . 44
3.5.1 Herding Attack against Concatenated Hash . 46
3.5.2 Herding Attack against Hash Twice . 49
3.5.3 Herding Attack Variant against Zipper Hash . 51

3.6 Second Preimage Attack with Diamond Structure . 55
3.6.1 Second Preimage Attack against Hash Twice . 55

3.7 Trojan Message Attack . 58
3.7.1 Collision Trojan Attack . 59
3.7.2 Herding Trojan Attack . 59

3.8 Tables . 62
4 A Variant of Joux’s Attack 65

4.1 About Probabilites . 65
4.2 Probabilistic Attack Algorithm . 66
4.3 Computing the Expected Value . 68
4.4 Comparing the Procedure to Joux’s Attack . 70

4.4.1 Bypassing Merkle-Damgård Strengthening . 71
4.5 Special Cases with Small Parameter Values . 72
4.6 Improved Results . 72
4.7 Further Thoughts . 73

5 Diamond Structures and Trojan Messages 75
5.1 A New Method for a Diamond Structure Creation . 75

5.1.1 A Pairing Set . 75
5.1.2 Intuitive Description of the Diamond Structure Construction

Method . 75
5.1.3 The Overall Complexity of the Construction . 82
5.1.4 Memory Requirements . 83
5.1.5 Reducing the Complexity . 83

5.2 New Versions of the Trojan Message Attacks . 84
5.2.1 Trojan Message Resistance . 84
5.2.2 Weak Trojan Attack . 84

10

5.2.3 Strong Trojan Attack .87
5.3 Tables . 90

6 Generalized Iterated Hash Functions I: Attack Consideration Based
on Classical Combinatorics and Permutations 93
6.1 Nested Multicollision Attack Schema (NMCAS) . 94
6.2 Basic Structure of the Attack . 95
6.3 First Step: Creating Unavoidable Permutations . 97
6.4 Second Step: Using the Permutations . 101
6.5 Third Step: Completing the Attack . 101

7 Generalized Iterated Hash Functions II: Attacks Based on
Nonuniform Words 109
7.1 Uniform and Distinct Words . 110
7.2 Factorizing q-Bounded Words . 118
7.3 Attacking Bounded Generalized Iterated Hash Functions 120
7.4 Supplementary Combinatorial Considerations . 122

8 Conclusion 127
References 129

11

12

1 Introduction

Before the late 20th century, cryptography was an art practiced mainly by military and
intelligence organizations. The goal of cryptography was to hide your own secrets and
at the same time find out the secrets of your possible enemies. There was very little
theory or robust scientific study on the field. Instead, cryptography relied on creativity
and personal skill.

The role cryptography plays in the society has changed dramatically. Today cryptog-
raphy is everywhere. Protocols for exchanging secret keys, message authentication,
digital signatures and other forms of cryptography are an integral and everyday part
of our computer systems. Cryptography is used not only to protect secret military
plans, but also every time we access a secured website. In their book Introduction to

Modern Cryptography (2007) [16], Katz and Lindell define modern cryptography to be
the scientific study of techniques for securing digital information, transactions, and

distributed computations.
Cryptographic theory has experienced a similar drastic change. A broad and fast

evolving theory has emerged to answer the new challenges and to allow the rigorous
scientific study of cryptographic systems, i.e. algorithms that are designed to provide
particular functionality while guaranteeing certain security properties. Cryptographic
protocols are based on Cryptographic primitives, i.e. low-level cryptographic algorithms.
One widely used class of cryptographic primitives is one-way hash functions or
cryptographic hashes.

A hash function is an algorithm that maps data of arbitrary length to a data of fixed
length. Such functions have many uses, for example in quick locating of data record
using so called hash tables. However, when we use hash functions as building blocks for
cryptographic systems, we are not interested in hash functions in general, but especially
in cryptographic hashes. The input of a cryptographic hash function is usually called a
message and the output a hash value. Cryptographic hash functions should have several
security properties.

Ideally, a cryptographic hash function should work as a random oracle, meaning
that for each message the resulting hash value should be chosen uniformly at random.
Any regularities or undesired properties that appear can possibly be used by malicious

13

adversaries in order to attack cryptographic systems that use the hash function as a
cryptographic primitive.

In practice, hash functions are often used in situations where the whole message
might not be ready at the beginning of the hashing process. The most successful solution
to this problem was proposed independently by both Merkle and Damgård [6, 29] and is
known as an iterated hash function. The basic idea of an iterated hash function is to
divide the message in message blocks and apply a finite compression function on one
message block at a time. Our work focuses on some security flaws this pattern creates
and analyzes some proposed solutions to these flaws.

This work is organized in the following way. In chapter two, we define and explain
some basic concepts and results of words, probabilities and hash functions. In chapter
three, we give a brief survey of some previously proven results. The focus is on the
Joux’s multicollision attack, diamond structures and Trojan message attacks. The fourth
chapter contains a variant of Joux’s multicollision attack. The results of the chapter are
based on [23], where the author was the main contributor. Chapter five describes new
results concerning the complexity of creating a diamond structure and new versions
of Trojan message attacks. Results are based on [22], where the author was the main
contributor.

Chapters six and seven are the main contribution of this thesis and describe attacks
against the so called generalized iterated hash functions. Chapter six explains the results
that have been reached before and is based on several articles. The author contributed
some results to articles [13, 19–21]. Finally, chapter seven contains the newest results
on attacks against generalized iterated hash functions. The results of the chapter are
based on article [24] where the author was the main contributor. Chapter eight is the
conclusion of the thesis.

14

2 Basics

In this chapter, we will give a short introduction to concepts on words. The combinatorics
on words (the theory of finite sequences) is needed in the formulation of definitions and
in analysis of attack algorithms. We will also give prerequisites to probability theory
and hash functions.

2.1 Words

Let N = {0,1,2, . . .} be the set of all natural numbers and N+ = N \ {0} . For each
l ∈ N+ , we define Nl to be the set of l first positive integers: Nl = {1,2, . . . , l} . For
each finite set S , let |S| be the cardinality of S , i.e., the number of elements in S .

An alphabet is any finite nonempty set of abstract symbols called letters. Let
A be an alphabet. A word (over A) is any finite sequence of symbols in A . Thus,
assuming that w is a word over A , we can write w = x1x2 · · ·xn , where n ∈ N and
xi ∈ A for i = 1,2, . . . ,n . Above n is the length ||w|| of w . Notice that n may be equal
to zero; then w is the empty word, denoted by ε , that contains no letters. By |w|a we
mean the number of occurrences of the letter a in w . Define the alphabet of w by
alph(w) = {a ∈ A | |w|a > 0} . A word α is q-bounded if |α|a ≤ q for all a ∈ alph(α) .

For each n ∈ N , denote by An the set of all words of length n over A . Let
A∗ =

⋃
∞
n=0 An be the set of all words and A+ = A∗ \ {ε} =

⋃
∞
n=1 An the set of all

nonempty words over A .
The word u is a subword of w if there exist m ∈ N and x0,u1,x1 . . . ,um,xm ∈ A∗

such that w = x0u1x1 . . .umxm where u = u1u2 · · ·um . A subword u of w is a factor

of w if w = x0ux1 for some x0,x1 ∈ A∗ . A factor u of v is a prefix (suffix, resp.) if
w = ux1 for some x1 ∈ A∗ (w = x0u for some x0 ∈ A∗ , resp.).

The concatenation of two words u and v in A∗ is the word uv obtained by writing
u and v after one another. Clearly concatenation defines a binary operation · in A∗ :
u · v = uv for all u,v ∈ A∗ . In algebraic terms (A∗, ·) is a free monoid and (A+, ·) is a
free semigroup. For any two sets U and V of words, let UV = {uv

∣∣u ∈U,v ∈V} .

15

2.2 Some Mathematical Tools

In this section, we will present some well-known basic results of calculus and probability
theory. We will later use these results repeatedly.

Fact 1. For all real numbers x

lim
n→∞

(1+
x
n
)n = ex.

Remark 1. If we choose for example x =−1 and n = 100 we get |(1− 1
n)

n− e−1|<
0.0019. In this work we will use this Lemma in the context where generally n≥ 2160 .
This means that effectively we can assume that (1− 1

n)
n equals to e−1 . In addition for

any n ∈ N+ , (1− 1
n)

n < e−1 so e−1 offers an upper bound for (1− 1
n)

n when n ∈ N+ .

Fact 2. Most of our attack constructions are realized as (a sequence) of distinct
statistical experiments, where each experiment is repeated until the required event
happens. Consider a statistical experiment where the probability of an event A is p .
Suppose that the experiment is repeated as a sequence of independent Bernouli trials
until A happens for the first time. Let x be the number of repetitions needed. Then x is
a random variable that follows the geometric distribution with parameter p and the
expected value E(x) of x satisfies E(x) = p .

Lemma 1. From a set of n distinct elements k elements are randomly drawn with
replacement. The probability p(n,k) that at least two of the drawn elements are equal is

1−
(

n
k

)
k!
nk .

Proof. The probability that all elements of the sample are distinct is

n(n−1) · · ·(n− k+1)
nk =

n!
k!(n− k)!

· k!
nk =

(
n
k

)
k!
nk .

The result follows.

Remark 2. Choosing n = 365 above we get the famous birthday problem.

Remark 3. Now when n is large enough(
n
k

)
k!
nk =

n(n−1) · · ·(n− k+1)
nk = 1 · (1− 1

n
) · · ·(1− k−1

n
)

= (1− 1
n
)n· 1n · · ·(1− k−1

n
)n· 1n ≈ (e−1)

1
n · (e−2)

1
n · · ·(e−k+1)

1
n

16

= e−
k(k−1)

2n = e−(
k
2)/n.

Thus p(n,k)≈ 1− e−(
k
2)/n when n is large.

Lemma 2. Let A and B be two randomly chosen subsets of set C such that |A|+ |B|<
|C| . Then the probability that A

⋂
B 6= /0 is greater than

1− (1− 1
|C|

)|A||B|.

Proof. The probability that A∩B = /0 is(|C|
|A|
)(|C|−|A|

|B|
)

(|C|
|A|
)(|C|
|B|
) =

(|C|−|A|
|B|

)
(|C|
|B|
) =

(|C|− |A|)!
(|C|− |A|− |B|)!

· (|C|− |B|)!
(|C|)!

= (1− |A|
|C|

)(1− |A|
|C|−1

) · · ·(1− |A|
|C|− |B|+1

)< (1− |A|
|C|

)|B| < (1− 1
|C|

)|A||B|.

The claim follows.

Remark 4. If |A||B|= |C| , then according to Fact 1, the probability that A∩B 6= /0 is
greater than 1− e−1 = e−1

e .

Consider now two sets of random variable values A = {x1,x2, . . .xm} and B =

{y1,y2, . . . ,yn} . Each variable can assume any of t discrete values with equally likely
probability. Lemma 2 is a special case of such a situation and proves that if |A|= m and
|B|= n the probability that A

⋂
B 6= /0 is larger than 1− (1− 1

t)
mn .

The exact probability that A
⋂

B 6= /0 can be found for example in Theorem 1 in [37].
Article [37] considers also the validity of widely used binomial approximation that
estimates the probability that A

⋂
B 6= /0 with 1−(1− 1

t)
mn. The binomial approximation

overstates the true probability that A
⋂

B 6= /0 . However, the error decreases rabidly as a
function of t (see Section 3 in [37]). In our work, the created sets of random variable
values are extremely small when compared with the number of possible values those
variables can assume. Thus within the context of this work the binomial approximation
holds well.

2.3 General Description of Hash Functions

Messages over an arbitrary finite alphabet can be encoded into messages over a binary
alphabet. It follows that we may certainly, without loss of generality, assume that all our
messages are over the binary alphabet {0,1} .

17

Definition 1. A hash function (of length n , n∈N+) is a mapping H : {0,1}∗→{0,1}n .

From now on we will assume that, unless otherwise stated, all hash functions will have
the codomain of {0,1}n , where n ∈ N+ is arbitrary but fixed. In other words, all the
hash functions will have n -bit long hash values.

There are three main security properties that are usually required from a crypto-
graphic hash function H . These are preimage resistance, second preimage resistance and
collision resistance [28].

– Preimage resistance: For essentially all pre-specified hash values, it is computationally
infeasible to find any input which hashes to that output, i.e ., to find any message
x′ such that H(x′) = h when given any h for which a corresponding message is not
known.

– Second preimage resistance: It is computatinally infeasible to find any second
message which has the same hash value as any specified message, i.e., given x , to
find a second preimage x′ 6= x such that H(x) = H(x′) .

– Collision resistance: It is computationally infeasible to find any two distinct messages
x and x′ which have the same hash value, i.e., H(x) = H(x′) .

It is clear that all hash functions are vulnerable to so called birthday attack. In
a birthday attack the attacker simply chooses random messages and calculates the
respective hash values. The attacker needs to hash only approximately 2n/2 random
messages to create two messages with the same hash value (see for example [28]). This
is known as birthday paradox. Usually, it is assumed that the attacker needs to hash
approximately 2n random messages to create a preimage for any hash value or a second
preimage for a given message. We will look at the details later.

However creating collisions, second preimages and preimages are by no means
the only ways to attack a hash function in practice. This means that in addition to
preimage resistance, second preimage resistance and collision resistance there are
several other properties a hash function should have. Three of these are generalized
collision resistance, herding resistance and Trojan message resistance.

– Generalized collision resistance: It is computationally infeasible to find any set K of
k distinct messages k ≥ 2 such that H(x) = H(x′) for all x,x′ ∈ K , x 6= x′ .

– Herding resistance: In the herding attack the adversary commits to a single hash value
hd and is then challenged with a prefix p . The attacker cannot control p , altough

18

she/he knows its length. It is computationally infeasible to provide a suffix xs , such
that H(pxs) = hd .

– Trojan message resistance: Given any finite message set P , of at least two messages,
it is computationally infeasible to find a message t and a message set M such that
|M|= |P| and for each p ∈ P there exists x ∈M such that pt 6= x and H(pt) = H(x) .

Generalized collision resistance has been studied in [32]. A k -collision in H can be
found (with probability approx. 1

2) by hashing (k!)
1
k 2

n(k−1)
k messages. This is known as

the generalized birthday paradox.
The herding attack was first presented in [17]. The attacker’s work is divided into an

offline and online phase. The offline phase happens before the attacker is challenged
with a prefix and the online phase happens after the attacker is challenged. The attacker
should not be able to use the offline phase to her/his advantage. In the online phase, the
attack should require hashing approximately 2n random messages.

The Trojan message attack was first presented in [1]. However, the complexity of
the Trojan message attack against hash function that is a random oracle was calculated
for the first time in [22]. We will take a look at this complexity in Chapter 5.

2.3.1 Why Are These Security Properties Important?

Any regularities or undesired properties that the attacker can find in the hash function
are potentially dangerous because they give the attacker tools that can possibly be used
in some unpredictable way to mount an attack in the future. Thus cryptographers are
expecting hash functions to be indistinguishable from random oracles (see [3]).

We will now, briefly give examples on what the breaking of the security resistances
presented at the beginning of this section could mean in practice. Our examples are by
no means the only ways to use these breaches of security. The Nostradamus attack is an
example of another way, see [17].

Assume that we have a situation where the parties A and B wish to form a contract
in such way that anybody is able to verify later that they have made this contract.
Assume furthermore that at the same time A and B wish to keep the details of their
contract in secret. If A and B have access to a hash function H they can form their
contract and use the given hash function to it, receiving a hash value h . After this A

and B can publish the hash value they received and announce that they have made a
contract that hashes to h when using hash function H . If either party later breaks the

19

contract, the other party can publish the contract and show that using H it really hashes
to h .

It should be clear that if either party, say A , is able to break the preimage resistance
or second preimage resistance of H the situation becomes unbearable. The party with
this kind of advantage can create her/his own version of the made contract that hashes to
the same hash value h and claim that she/he never agreed to the original contract.

Breaking collision resistance alone is not directly as harmful. If A can create a
single collision, but has no control over the created messages x and x′ , her/his ability to
work directly in practice is still very limited. However, once the attacker gains the ability
to create collisions, there are ways she/he can use to create meaningful messages with
desired content. If A has this kind of ability, she/he can create two contracts x and x′

that have the same hash value h and offer x to B , while keeping x′ for herself/himself
in order to be able to deny ever making contract x .

It is clear that if the generalized collision resistance of H is broken, A can use the
same kind of attack as with collision resistance but even more effectively. Assume now
that A is able to create k different versions of the contract and offer only one of them
to B while keeping the rest of them in secret. Later A can choose to use one of these
forged contracts in order to deny ever making the original one.

The ability to break herding resistance can also be used in the previous contract
setting when we assume that B is satisfied after creating the beginning part of the
contract (i.e creating a prefix p) and allows A to formalize the rest of the contract. In
this case A creates a herding attack and commits to hash value hd . After this, she/he
provides a suffix xs such that the message pxs hashes to hd . Later the attacker is able to
use her/his ability to perform a herding attack again and create a forged contract that
will have the same hash value hd and include any p′ as prefix.

Finally, breaking the Trojan message resistance can be used in an occasion where
B is satisfied in choosing the beginning part of the contract from some set of known
messages and A is free to create the rest of the contract to be a Trojan message t . An
example could be a case where A does not know the day when the contract will be
signed, but is allowed to otherwise formalize its details.

2.4 Iterated Hash Functions

The idea of an iterated hash function was presented in [6, 29]. The underlying method is
quite simple and easy to implement. The basic method is to read the message in from

20

Fig 1. Example of using iterated hash function on a message that is four message blocks
long.

left to right, block by block and in each step use the hash value created in previous step,
to create a new hash value.

In practice hash functions are often used online in situations, where one does not
necessarily have the whole message ready beforehand. An iterated hash function
construction allows one to start the hashing process immediately after the first message
block of the message is known.

A compression function forms the core of an iterated hash function.

Definition 2. A compression function (of block size m and length n) is a mapping
f : {0,1}n ×{0,1}m →{0,1}n where m,n ∈ N+ and m > n .

Let m,n∈N+ , m> n , and the compression function f : {0,1}n×{0,1}m →{0,1}n

be given. The iterated hash function f+ : {0,1}n × ({0,1}m)+ → {0,1}n (based on
f and the initial hash value h0 ∈ {0,1}n) is defined as follows: Given the message
x = x1x2 · · ·xl , where l ∈ N+ , and x1,x2, . . . ,xl ∈ {0,1}m , let hi = f (hi−1,xi) for i =

1,2, . . . , l . Then f+(h0,x) = hl .
Since all messages do not have length that is divisible by m it is necessary to

preprocess the message by adding extra bits (padding) at the end of the message to
attain a suitable bit length. This padding usually includes also the length of the original
message in bits. This is known as Merkle-Damgård strengthening.

For each message x ∈ {0,1}∗ , let the xMD ∈ ({0,1}m)+ be the bit string achieved
from x after Merkle-Dåmgård strengthening. The standard Merkle-Damgård con-
struction based on compression function f : {0,1}n ×{0,1}m → {0,1}n and initial
value h0 ∈ {0,1}n is a function Hf ,h0 : {0,1}∗ → {0,1}n defined as follows: for each
x ∈ {0,1}∗ let H(x) = f+(h0,xMD) .

In this work, for the sake of simplicity, we will assume that all messages can be
directly divided into message blocks and we will not worry about the padding. In our
attacks we will ensure that all second preimages we create have the same length as
the original messages and all messages forming a collision have the same number of

21

message blocks. This means that Merkle-Damgård strengthening is not a problem for
our second preimage and multicollision attacks.

We would also like to note that in Definition 2 property m > n is chosen for the sake
of simplicity. It is not a necessary property for the attacks presented in this work to be
successful. All the attack algorithms presented in chapters 3, 4 and 5 can be build to
work also in the case where m≤ n . The attacker simply needs to replace single message
blocks in the constructions with several blocks (enough to ensure that they contain more
than n bits).

When constructing attacks against generalized iterated hash functions that are
considered in chapters 6 and 7, situation is slightly more complex. Thus the situation
where m≤ n is considered there separately.

2.5 Different Types of Hash Functions

Although the Merkle-Damgård structure has been a successful way of constructing fast
and secure hash functions, many of them have been found flawed [10, 33, 35, 36, 38].
Often these flaws come from the weaknesses in the underlying compression functions.
However, rigorous mathematical study has also found some weaknesses in the Merkle-
Damgård structure itself as we shall see later.

There have also been many hash constructions that are not exactly iterated hash
functions, but similar in many respects. We will now present a couple of them.

2.5.1 Concatenated Hash Functions

In practice a natural way to build hash functions of large length is to take hash
functions of smaller length and concatenate their results (see for example [28]).
This means that if we have iterated hash functions f+1 : {0,1}n1 × ({0,1}m)+ →
{0,1}n1 and f+2 : {0,1}n2 × ({0,1}m)+→{0,1}n2 we can simply set C(h0,1,h0,2,x) =

f+1 (h0,1,x)|| f+2 (h0,2,x) , where h0,1 ∈{0,1}n1 , h0,2 ∈{0,1}n2 and f+1 (h0,1,x)|| f+2 (h0,2,x)

mean the concatenation of n1 -bits long hash value string f+1 (h0,1,x) and n2 -bits long
hash value string f+2 (h0,2,x) .

Ideally C : {0,1}n1 ×{0,1}n2 × ({0,1}m)+→{0,1}n1+n2 should be indistinguish-
able from a random oracle. This however is not the case and such structure has severe
weaknesses that we will later study further.

22

x1 x2 xi...

x1 x2 xi...

Fig 2. Hash Twice function.

Remark 5. The concatenation is defined in Section 2.1, without || notation. We use
notation || when we concatenate two hash values. The purpose of this is to make it clear
that we are not multiplying the hash values.

2.5.2 Hash Twice

An easy way to add security to a hash function is to hash the message twice. If
we have iterated hash function f+ with initial value h0 we can create Hash Twice
function Tf ,h0 , based on compression function f and initial value h0 simply by choosing
Tf ,h0(x) = f+(f+(h0,x),x) . At first this seems to protect an iterated hash function from
most of the weaknesses of the Merkle-Damgård structure, such as from Joux’s attack
described in Section 3.1. However, security benefits gained by hashing each message
twice are not as large as one would hope as we will discover.

2.5.3 Zipper Hash

Zipper Hash was introduced by Moses Liskov [25]. The idea was to construct an ideal
hash function from two weak compression functions. However, further study showed
that assumed weaknesses in compression functions resulted in fatal flaws, see [31].

Let two compression functions f1 and f2 from {0,1}n×{0,1}m → {0,1}n be
given. Zipper Hash based on compression functions f1, f2 and initial value h0 is
a function Z f1, f2,h0 : ({0,1}m)+ → {0,1}n defined as follows. For each message
x = x1x2 · · ·xs where x j is a single message block for all j ∈ {1,2, · · · ,s} , Z f1, f2,h0(x) =

f+2 (f+1 (h0,x),xsxs−1 · · ·x1) . In this thesis, we assume f1 and f2 to be two distinct
random oracles. Even this assumption is not enough to protect the Zipper Hash as we
will later see.

23

x1 x2 xi...

x1 x2 xi...

Fig 3. Zipper Hash function.

2.5.4 Generalized Iterated Hash Functions

The basic idea of Hash Twice and Zipper Hash is that a single message block can be
used multiple times in the hashing process to gain security. This idea was developed
even further to create the so called generalized iterated hash functions that have been
studied for example in [14, 30].

Assume now that l ∈ N+ and α ∈ N+
l are such that α = a1a2 · · ·as , where s ∈ N+

and ai ∈ Nl for i = 1,2, . . . ,s . Assume that f is as a compression function. Define
the iterated compression function fα : {0,1}n× ({0,1}m)l →{0,1}n (based on α and
f) as follows: Given the initial value h0 ∈ {0,1}m and message x = x1x2 · · ·xl , where
x1,x2, . . .xl ∈ {0,1}m , let hi = f (hi−1,xai) for i = 1,2, . . . ,s . Then fα(h0,x) = hs .

Now for each l ∈ N+ , let αl ∈ N+
l be such that alph(αl) = Nl , α̂ = (α1,α2, . . .)

and h0 ∈ {0,1}n .

Definition 3. A generalized iterated hash function (based on α̂ , f and h0) is a
mapping Hα̂, f : {0,1}n×({0,1}m)+→{0,1}n such that when x= x1x2 · · ·xi , i∈N+ is
a message, where x j is a message block for all j ∈ {1,2, . . . , i} : Hα̂, f (h0,x) = fαi(h0,x) .

It is easy to see that if α̂ = (1,1 ·2,1 ·2 ·3, · · ·) the generalized iterated hash function
Hα̂, f is actually an iterated hash function. If α̂ = (1 ·1,1 ·2 ·1 ·2,1 ·2 ·3 ·1 ·2 ·3, · · ·)
then Hα̂, f is Hash Twice function.

We can also create a generalized hash function that differs only very slightly from
Zipper Hash. If we choose α̂ = (1 ·1,1 ·2 ·2 ·1,1 ·2 ·3 ·3 ·2 ·1, · · ·) then Hα̂, f works
very much like Zipper Hash. The only difference is that there is only one compression
function instead of two.

Call the sequence α̂ = (α1,α2, . . .) q− bounded , q ∈ N+ , if |α j|i ≤ q for each
j ∈ N+ and i ∈ N+ . The generalized iterated hash function Hα̂, f is q−bounded if α̂

is q−bounded .

24

2.6 Attack Algorithms and Their Complexity

From now on when constructing an attack algorithm against a hash function that use
compression function we will assume that the attacker knows, how the hash function
depend on the respective compression function f , but models f only as a black box.
She/he does not know anything about the internal structure of f and can only make
queries on f to get the respective responses (see [3]). We assume f to be a random
oracle, which means that the only way to find collisions or preimages on f is through
random search. Furthermore, as we have stated, we will assume that the hash function is
protected with effective Merkle-Damgård strengthening.

Since f is a random oracle, it is clear that the attacker cannot perform successful
preimage attack in any other way than through random search. The same naturally goes
for second preimage attacks against messages with just a single message block. It is also
quite easy to show that, if f is collision resistant, then the respective hash function is
collision resistant [6, 29].

However, despite of these assumptions, there are still ways to create attacks. These
attacks make use of the Merkle-Damgård structure of the hash function to create
regularities that are then used to mount attacks. It has been shown that given assumptions
do not mean that the hash function achieves the generalized collision resistance, herding
resistance, Trojan message resistance or second preimage resistance (when the original
message is long) of a random oracle hash function.

From now on we will assume that every message x can be written as x = x1x2 · · ·xr ,
where r ∈ N+ and xi is a message block of m bits for every i ∈ {1,2, · · · ,r} . The
length of the message x is marked as |x| and it is the number of message blocks in x

i.e., |x|= r .

2.6.1 The Complexity of the Attack Algorithm

The expected number of required compression function calls is a natural way to
measure the efficiency of some attack algorithm. Many papers (see for example
[15, 17, 18]) approach the number of compression function calls required through
intuitive approximations. For example in [15] (Subsection 4.1) it is simply stated that if
a compression function f gives out a hash value with n f bits then it has a security level
of 2n f /2 with respect to collision resistance and thus the attacker needs approximately

25

t ·2n f /2 compression function calls to repeat the collision attack successfully for t times.
The same kind of reasoning can be found in [1] and [18].

This sort of an estimation is of course somewhat rough, but can still very well be
useful. It gives roughly the expected number of compression function calls the attacker
should need in order to complete the attack. We shall later see that the probability
of finding a collision among 2n f /2 messages is approximately 0.4. Thus it seems
reasonable to assume that the amount of required compression function calls to repeat
this successfully, would be somewhere near t ·2n f /2 .

2.6.2 Asymptotic Complexity

Many articles (see for example [5, 19, 30]) consider the complexity of the attack through
the so called big O notation. One writes that f (x) = O(g(x)) if and only if there exists
a constant r and a real number x0 such that | f (x)| ≤ r|g(x)| for all x > x0 . The big
O notation is used to give insight to the upper bound of the complexity of the attack
algorithm. Big Omega notation, where one writes f (x) = Ω(g(x)) if and only if there
exists a constant r and a real number x0 such that | f (x)| ≥ r|g(x)| for all x > x0 , is
used to give insight to the lower bound of the complexity of the attack. If these two
coincide, we can use the big Theta notation, i.e. f (x) = Θ(g(x)) if and only if there
exists constants r1 , r2 and a real number x0 such that r1|g(x)| ≤ | f (x)| ≤ r2|g(x)| for
all x > x0 .

The big O notation is a useful tool, when we wish to examine the complexity of
some attack algorithm from the theoretical point of view. It allows us to simplify the
calculations, since we do not have to worry about the constant factors of the attack. At
the same time we still get a good insight to the complexity that the attack algorithm has.

For example we can simply state that the complexity of finding a collision through
random search is O(2n/2) , since it is clear that the expected number of compression
function calls required to create a collision is O(2n/2) . Thus we can easily deduce
that the complexity of finding k different collisions is O(k ·2n/2) , since we can create
collisions one at a time and add the expected number of compression function queries
needed together.

However, from a practical point of view the attack algorithms are applied in situations
that are not asymptotic. For example the complexity O(k ·2n/2) is equal to O(2n/2) as
long as we assume that k is constant. This means that the complexity of creating 280

collisions is O(2n/2) . On the other hand for hash functions with 160 bits hash values

26

280 ·2160/2 = 2160 that is the number of compression function calls required to create a
preimage attack with probability 1− (1− 1

2160)
2160 ≈ e−1

e . From this point of view it is
of course good to have an upper bound of the complexity evaluated also without the big
O notation, if this is possible.

2.6.3 Complexity Analysis in This Work

In this work we have chosen to define the complexity of an attack algorithm as the
expected number of queries on compression function f required to complete the attack.
This kind of complexity is often called the time complexity of the attack. We will
go through algorithms in detail to be able to give certain upper bounds for required
complexities.

Our attacks are build as stepwise statistical experiments in a manner where the
probability that the attack fails altogether is so small that it can be ignored. Thus each
step of the attack is a statistical experiment which, from the viewpoint of the attacker,
either succeeds or fails. The attacker keeps repeating the statistical experiment until it
succeeds. Clearly this is not an optimal approach, if our aim is to minimize the number
of required compression function calls. Thus the given complexities are somewhat
rough upper bounds.

There are three reasons, why we have chosen this model. Firstly, the upper bounds
for complexities are easy to calculate this way and they certainly hold. Secondly, only
the constant multipliers of the complexities are affected by this approach and the aim of
this work is not to optimize them. Thirdly, the model allows us to give strict memory
requirements for the attacks, when they are performed in the manner described in this
work. This is possible since, if some step is unsuccessful, we could simply erase the
created messages and hash values from the memory.

2.6.4 On Memory Requirements

In addition to the ability to call the compression function for sufficiently many times, the
attacker also needs the ability to store the received hash values. This can of course
become problematic, if the attacker is required to store for example 2

n
2 hash values (as

is the case for collision attacks) or even more than 2
2n
3 hash values (as is the case for

attacks that use a diamond structure that we will later present).

27

However, there are algorithms the attacker can use to decrease the memory require-
ments of the attack, but at the cost of increased number of compression function calls.
This is called the space-time tradeoff. For example [34] offers an algorithm that allows
the attacker to do quite efficient space-time tradeoff, when creating collisions.

We shall evaluate the memory requirements of the attack in two parts. Firstly, we
give the algorithm memory requirement (AMR) that tells the amount of hash values the
attacker should be able to store to ensure that the attack algorithm can be completed
without doing any space-time tradeoff at all. This analysis concerns the attacks in the
form given in this work.

Secondly, some of the attacks run in offline and online phase and require the attacker
to store some construction created in the offline phase (for example a diamond structure).
Often it is assumed that the attacker can spend more time at the offline phase and thus it
could be wise to add required amount of compression function calls in the offline phase,
if this allows the attacker to reduce the number of compression function calls required to
complete the online phase.

Thus we measure the number of hash values and message blocks of such stored
structure with the online memory requirement (OMR). For the sake of simplicity, we
assume that it takes the same amount of memory to store a hash value and a message
block. The online memory requirement also gives us the amount of memory the attacker
needs to complete the online phase with given complexity.

So in short the algorithm memory requirement gives us the amount of memory the
attacker needs to complete the whole attack in the given form without doing space-time
tradeoff and the online memory requirement gives us the amount of memory the attacker
needs to complete the online phase of the attack in the given form without doing
space-time tradeoff.

2.6.5 About Wide-Pipe Hash

In [27] a new type of hash function construction, labeled Wide-Pipe Hash, was introduced.
The basic structure resembles the structure of iterated hash function that we have
presented, but the compression function is f : {0,1}s×{0,1}m → {0,1}s , where
s,m ∈ N+ and s > n . In the final step of the hashing process a second compression
function f1 : {0,1}s→{0,1}n is used to compress the last internal hash value (with
s bits) to the final hash value (with n bits). A Wide-Pipe Hash function Wh0, f , f1 :
{0,1}s× ({0,1}m)+ → {0,1}n based on initial value h0 ∈ {0,1}s and compression

28

functions f , f1 is
Wh0, f , f1(x) = f1(f+(h0,x)).

If we choose s≥ 2n , then all the attacks we present in this work will have complexity
of at least 2n since we assume the compression functions to be random oracles. The
downside of the Wide-Pipe Hash is that in practise one needs more resources to use a
compression function with a larger domain and range than a compression function with
smaller ones. Thus some new hash function schemes allow the user to decide the size of
the final hash value up to the size of the compression function output (see for example
[4]).

For the sake of simplicity, we assume in this work that the final hash value of any
iterated hash function is of the same size as the output of the compression function i.e. n

bits. This means that the efficiencies of presented attacks are compared with the size of
the output of the compression function.

2.7 About Collisions

A k-collision on hash function H : {0,1}∗ → {0,1}n is a set X ⊆ {0,1}∗ such that
|X |= k and H(x) = H(y) for all x,y ∈ X . In this work, we will also demand |x|= |y| for
all x,y ∈ X to ensure that Merkle-Damgård strengthening is not a problem. A concept
of k -collision is generalized in a natural way to any function g : {0,1}n×A→{0,1}n

where A ⊆ {0,1}∗ . Usually 2−collisions are simply referred to as collisions while
larger collisions are referred to as multicollisions.

Assume, that the hash function H is a random oracle. Assume furthermore that
the attacker wants to minimize the number of hash function calls needed to create a
collision. Since the only way to attack is to make random queries to H , the best possible
attack algorithm is to create new messages and calculate respective hash values one at a
time and stop the process immediately when the collision occurs. This means that the
attacker creates first message x1 and calculates hash value H(x1) . Then the attacker
creates x2 , calculates H(x2) and checks if H(x1) = H(x2) . If this is not the case, the
attacker creates x3 , calculates H(x3) and checks if H(x3) = H(x1) or H(x3) = H(x2) and
so on. The process continues until a collision is found.

We will now take a look at probability and complexity of finding a collision with
more detail. From the attacker’s point of view we are especially interested in the
expected number of compression function calls that are needed to create a collision,
when using an iterated hash function.

29

2.7.1 The Probability of Finding a Collision

Assume that the attacker creates k message blocks and calculates the respective hash
values. According to Lemma 1 the probability that there is a collision is approximately

1− e−
k(k−1)
2n+1 , when n is large. This means that the probability of finding a collision is

approximately 1− e−
k2

2n+1 when we assume that also k is large. Subsection 7.1 in [8]
offers the same result using different technique for the proof.

2.7.2 Collision Complexity

We will now determine an upper bound for the complexity of finding a collision on an
iterated hash function. Assume that the compression function f is a random oracle and
h0 is a hash value. This means that the only possible way to find two message blocks x1

and x2 such that x1 6= x2 and f (h0,x1) = f (h0,x2) is through random search. What is
the complexity of this kind of attack?

One mathematically robust approach can be found for example in [19, 30]. In this
approach we create a set of 2n/2 message blocks, calculate the respective hash values
and search for a collision. If no collision is found, we repeat the process. We keep
creating a set of 2

n
2 messages until a collision is found. In [30] it is evaluated that

since the probability of finding a collision in 2
n
2 randomly created message blocks is

aproximately 1− e−
1
2 ≈ 0.4, the expected number of compression function calls is

2.5 ·2n/2 (see Fact 2). The algorithm memory requirement of this attack is 2
n
2 .

Clearly, this is not the best possible way to create a collision if our aim is to minimize
the number of compression function calls. The best way to attack is to create new
message blocks one at a time and after each new message block calculate the respective
hash value and see, if we have created a collision. Assuming that the attacker can ignore
the memory requirements, we can use Theorem 2 of [12] to deduce that the expected
value of compression function calls required is approximately

√
π

2 · 2
n
2 , when n is

large. In this work we shall, however, use the model, where a step is repeated, if it is
unsuccessful.

We will now optimize the complexity of this approach, where we choose a large set
of message blocks, calculate the respective hash values and then repeat the process,
if no collisions are found. Assume that we create a message set with k message
blocks, calculate the respective hash values and search for a collision. The number of
compression function calls needed is k , while the probability of finding a collision can

30

be evaluated to be 1− e−
k2

2n+1 according to previous subsection. This means that the
expected number of compression function calls needed, when we assume n to be large,
according to Fact 1 and Fact 2 is

k

1− e−
k2

2n+1

.

We will now try to find the minimal value of this function with respect to k . Taking the
derivative with respect to k and setting it to zero gives us an equation

1− (e)−
k2

2n+1 +(e)−
k2

2n+1 ·
(
− 2k

2n+1

)
· k = 0

that holds if and only if

e
k2

2n+1 = 1+
k2

2n .

For the sake of simplicity we now set k = s ·2n/2 and get a new equation

e
s2
2 = 1+ s2.

It is now easy to evaluate the value of s by using for example the Maple program and see
that the only positive real root is s≈ 1.585201 and so k ≈ 1.585201 ·2n/2 . From now
on we will mark this positive real root with š . Using s = š we get the total complexity
of our attack to be approximately

š

1− e
š2
2

·2
n
2 ≈ (2.21606) ·2

n
2 .

This is a slight improvement of 2.5 ·2 n
2 found in [30]. From now on we will mark

š

1− e
š2
2

= ǎ

and thus the complexity of finding a collision is ǎ · 2 n
2 . The algorithm memory

requirement of this attack is š ·2 n
2 .

2.7.3 Multicollision Complexity

As we have stated before, according to the (generalized) birthday paradox, given any
hash function H of length n (random oracle hash functions included), a k -collision for
H can be found (with probability approx. 1

2) by hashing (k!)
1
k 2

n(k−1)
k messages [32].

31

It is easy to see that given an integer k , where 2 < k≤ n when n is sufficiently large,
finding a (k+1) -collision consumes much more resources than finding a k -collision in
the case of the random oracle hash function. This is especially true, when k is relatively
small. The complexity of finding a collision is O(2

n
2) while the complexity of finding a

3−collision is O(2
2n
3) .

Later in this work the method invented by Joux [15] is repeatedly used to create
attacks on different kinds of hash functions in order to create k -collisions with complexity
well below (k!)

1
k 2

n(k−1)
k . In other words, it is shown that it is difficult to create iterative

hash functions that achieve the same generalized collision resistance as a random oracle
hash function, even when we assume that the compression function is a random oracle.

2.7.4 Preimage and Second Preimage Complexities

Assume that the compression function f is a random oracle and f+ is an iterated
hash function with initial value h0 . It is relatively easy to calculate the number of
compression function queries required to create a preimage for any given hash value
h . The only possible way the attacker can attack is through random search. The best
possible way to do this is to create a random message block x , calculate respective hash
value and see if f (h0,x) = h . If this is not the case the attacker repeats the process. The
probability that f (h0,x) = h is 2−n , so the expected number of message blocks and
thus the compression function queries required is 2n according to Fact 2.

If f+ would work as a random oracle, then the same reasoning should apply to a
second preimage attack. However in the next chapter we shall see that this is not the
case, if the original message is long.

32

3 What is Known Before

In this chapter we give a brief survey of some previously proven weakness results
for iterated hash functions. We shall introduce the following types of approaches and
their applications: Joux’s attack, expandable messages, diamond structures and Trojan
messages attacks. We shall study some attacks that apply these using our attack model
where each step is repeated if it is unsuccessful. This allows us to give rough but certain
upper bounds for the expected value of compression function calls required to complete
these attacks when the attacker has the required memory available.

Some of the following attacks contain a theoretical (and extremely small) possibility
that they do not succeed. We have made some small changes to attacks presented
in previous literature to ensure that we can disregard the possibility of unsuccessful
attack from our complexity considerations. If the attack has not succeeded after 2n

compression function calls (or 2n1+n2 for concatenated hash functions) the attacker
should stop and start it all over again.

As an example let us consider a situation where the attacker has a single hash value
h′ , a set of hash values {h1,h2, . . . ,h2n/3} and she/he has to find a message block x such
that f (h′,x) = hi for some i ∈ {1,2, . . . ,2n/3} or the attack fails. Now there are 2m

different message blocks and m > n , but it is still theoretically possible that there is no
message block that satisfies the required property.

The possibility that this is the case, is of course extremely small (less than e−2
n
3).

However, in such a rare situation the attacker should give up after 2n compression
function calls and start the whole attack again. We wish to point out that in practice
this condition is effectively meaningless since, if the attacker can call the compression
function for 2n times, she/he is able to create a preimage for any hash value with high
probability. We have included it for a theoretical purpose only, i.e. to avoid a situation,
where a failed attack would result in an infinite complexity.

3.1 Joux’s Attack

In [15], Antoine Joux introduced an easy way to construct 2k -collision for an iterated
hash function f+ with the same amount of work it takes to create k times an ordinary
collision. Joux’s attack works as follows.

33

. . .
h h h h h0 1 2 k - 1 k

x

x'

x x

x' x'

1

1 2

2

k

k

Fig 4. Joux’s method of multicollision creation.

Assume that iterated hash function has the initial value h0 . First we will simply
search for two message blocks x1 and x′1 such that x1 �= x′1 , f (h0,x1) = f (h0,x′1) .
We will find two such message blocks, even if f is a random oracle. Let us mark
h1 := f (h0,x1) = f (h0,x′1) .

Next we start searching for message blocks x2,x′2 such that f (h1,x2) = f (h1,x′2)

and mark h2 := f (h1,x2) = f (h1,x′2) . As before we can use the birthday paradox, if
we do not have a better way to attack against f . We continue this process; when we
have calculated the value hi we will search for message blocks xi+1,x′i+1 such that
f (hi,xi+1) = f (hi,x′i+1) and denote hi+1 = f (hi,xi+1) = f (hi,x′i+1) .

When we have completed k such steps, we have created our multicollision M =

M1M2 · · ·Mk , where Mi = {xi,x′i} for i ∈ {1,2, · · · ,k} . There are 2k different messages
in M , each of them k blocks long. Next we will evaluate how complex such an attack
could be, if we have to rely on the birthday paradox to produce multicollisions.

Let us suppose that Joux’s attack is carried out as a statistical experiment in the
following way. In step i of the attack we create a set X of 2

n
2 message blocks. Then we

calculate hash values f (hi−1,x) for all x ∈ X . Next we look for a collision, in other
words message blocks x,x′ ∈ X such that x �= x′ and f (hi−1,x) = f (hi−1,x′) and denote
hi = f (hi−1,x) . In k steps this method creates a collision with size 2k .

As we have seen in subsection 2.7.2, the probability for finding a collision in 2
n
2

messages is approximately 0.4. We repeat the procedure until a collision is found.
The expected number of repetitions is 2.5 according to Fact 2. This implies that the
expected complexity of creating a 2k -collision with Joux’s attack as described above is
approximately 2.5 · k ·2 n

2 with the algorithm memory requirement 2
n
2 .

Remark 6. If the attacker is able to store š ·2 n
2 hash values, the results of the subsection

2.7.2 allow us to decrease this complexity to ǎ · k ·2 n
2 ≈ 2.2 · k ·2 n

2 by choosing š ·2 n
2 as

the size of the created message set. If the attacker ignores the memory requirements
altogether and performs the attack in the optimal way, i.e. creates the new message

34

blocks one by one and ends the process, when collision is found, the complexity drops
to
√

π

2 · k ·2
n
2 (based on [12]).

3.1.1 Joux’s Attack on Concatenated Constructions

In [15] also a clever way to attack against concatenated hash functions is presented.
Assume that we have two iterated hash functions f+1 : {0,1}n1 × ({0,1}m)+→{0,1}n1

and f+2 : {0,1}n2 × ({0,1}m)+ → {0,1}n2 , where f+1 is based on the compression
function f1 and the initial value h0,1 and f+2 is based on the compression function f2

and the initial value h0,2 . Assume further that n1 ≤ n2 < m and the concatenated hash
function C is defined by setting C(h0,1,h0,2,x) = f+1 (h0,1,x)|| f+2 (h0,2,x) .

We can now simply use Joux’s attack for f+1 to a create message set M =

M1M2 · · ·Mn2 where Mi = {xi,x′i} , |M|= 2n2 and mark f+1 (h0,1,x) = hn2 for all x ∈M .
The complexity of this is approximately 2.5 ·n2 ·2

n1
2 as we have seen.

Now it is possible to simply execute a birthday attack to f+2 with messages from
M . The complexity of finding ḿessages x and x′ such that x,x′ ∈ M , x 6= x′ and
f+2 (h0,2,x) = f+2 (h0,2,x′) is approximately 2.5 ·2 ·2

n2
2 .

It is worth noticing that the first impression would be that the complexity is
approximately 2.5 · n2 · 2

n2
2 since all x ∈ M have the length of n2 message blocks.

However, the tree like structure of the multicollision means that the attacker can
lower this complexity. To create 2

n2
2 messages and calculate the respective hash

values, the attacker can simply fix n2
2 first message blocks and use only the set

M n2
2 +1M n2

2 +2 · · ·Mn2 . Thus the number of required compression function calls is only
n2
2 +2+4+ · · ·+2

n2
2 ≈ 2 ·2

n2
2 .

Now since x,x′ ∈M and f+2 (h0,2,x) = f+2 (h0,2,x′) clearly

C(h0,1,h0,2,x) =C(h0,1,h0,2,x′).

Complexity of creating a collision for a hash function with n1 + n2 bits hash value
through random search is more than 2

n1+n2
2 . This is certainly a lot larger than 2.5 · (n2 ·

2
n1
2 +2 ·2

n2
2) if n1 is of any significant size.

The result above means that creating a collision for a concatenated hash function
with two iterated hash functions is well below the complexity of a brute force attack. As
has been shown in [15], the attacker’s ability to use Joux’s attack, however, does not end
here. It is possible to use Joux’s multicollision attack to create preimage and second
preimage attacks on the concatenated hash function.

35

Assume that we have a concatenated hash function C as above and the hash value
h′ = h′1||h′2 where h′1 has the length of n1 bits and h′2 has the length of n2 bits. We can
create a multicollision M , with size 22n2 , for function f+1 as above with complexity
2.5 ·2 ·n2 ·2

n1
2 . Now we have |M|= 22n2 and f+1 (h0,1,x) = h2n2 for all x ∈M . After

this we simply search for a single message block x2n2+1 such that f1(h2n2 ,x2n2+1) = h′1 .
The complexity of finding such a message block is usually stated to be approximately
2n1 . We will now evaluate the complexity using our definition, where the attack
complexity is the expected number of compression function calls.

The attacker creates a random message block x and calculates the hash value
f1(h2n2 ,x) . If f1(h2n2 ,x) = h′1 the attacker has found the required message block. If
not, the attacker repeats the procedure until the required message block is found. If we
assume that the f1 is a random oracle, then probability that f1(h2n2 ,x) = h′1 is 2−n1 .
According to Fact 2 the expected number of compression function calls required is
indeed 2n1 .

Next we can search for a message x′ such that x′ ∈M and f+2 (h0,2,x′x2n2+1) = h′2 .
As before we can prove by using the tree like structure of the set M that finding such
a message x′ has the complexity approximately 2 · 2n2 . This means that the total
complexity of the preimage attack is at most 2.5 ·2 ·n2 ·2

n1
2 +2n1 +2 ·2n2 while the

complexity of the preimage attack using a random search is 2n1+n2 . The algorithm
memory requirement of both attacks is 2

n2
2 .

It is clear that it is possible to create a second preimage attack against any message
in the same manner.

Remark 7. In [15] the multicollisions that are used as a base of collision and (second)
preimage attacks, are smaller than in this work (2n2/2 for a collision attack and 2n2 for a
preimage and a second preimage attack). We have decided to use larger multicollisions
to ensure that we can disregard the possibility of failure from our complexity analysis.

3.1.2 Multicollisions on Generalized Hash Functions

As we have seen, Joux’s attack allows us to create 2k−collision on iterated hash function
with the complexity 2.5 · k ·2n/2 . This means that by increasing the complexity linearly,
we can increase the size of the created multicollision exponentially. The question arises
whether or not the ideas of Joux’s can be applied in a broader setting, i.e., can Joux’s
approach be used to create multicollisions on generalized iterated hash functions? This
question has been studied in [14, 30] and is studied in detail in Chapters 6 and 7.

36

3.2 Creating Expandable Messages

With an expandable message we mean a set of messages X , such that for any two
distinct messages x,x′ ∈ X we have |x| 6= |x′| and f+(h0,x) = f+(h0,x′) . This means
that without Merkle-Damgård strengthening, X would be a multicollision with messages
of varying length. Expandable messages are used to create second preimage attacks
against long messages, as was discovered in [7, 18].

The first use of expandable messages against an iterated hash function f+ has been
carried out with fixed points [7]. A fixed point of compression function f is a pair (h,x)
such that f (h,x) = h . It is possible to find fixed points easily only, if the compression
function f is weak. If we assume that f is a random oracle, as we do in this work, the
complexity of creating a fixed point is approximately 2n which means that there is no
efficient way to produce them.

However, later Kelsey and Schneier showed [18] that fixed points are not necessary
for the creation of expandable messages. Expandable messages can be created even,
when the compression function is a random oracle. We will now show how.

We start from the initial value h0 and first search for a pair of colliding messages,
where the first one has the length of one block and the other one has the respective
length 2k−1 +1, k ∈ N+ message blocks. We name the respective hash value to h1 and
launch a new collision attack using it as an initial value. This time we are searching for a
colliding pair of messages, where the first has the length of one and the second is of
length 2k−2 +1. Once such a collision is found we name the respective hash value to h2

and continue the attack as above until we find hash value hk . We call this final hash
value expanding value.

Now it is possible to choose any integer s between k and k+ 2k− 1 and find a
message x that satisfies conditions |x|= s and f+(h0,x) = hk . In [18] it is assumed
that the complexity of each step of creating an expandable message is approximately
2

n
2+1 , so the total complexity of the attack is approximately k ·2 n

2+1 .
In this work we define the complexity through the expected number of compression

function calls needed to complete the attack. From this point of view we can apply
Lemma 2 and deduce that the probability to complete each step successfully, directly by
creating two sets of messages with 2

n
2 messages in each of them, is around

1− (1− 1
2n)

2n ≈ e−1
e

37

for a sufficiently large n . If we now assume that the attacker repeats the step, if it
fails until it succeeds, we can apply Fact 2 and conclude that the expected number
of compression function calls needed is 2 · k · e

e−1 · 2
n
2 with the algorithm memory

requirement of 2
n
2+1 . There are approximately 2k message blocks in an expandable

message with maximum length of 2k +k−1, so the online memory requirement of such
message is about 2k . It is possible to lower this for example by using the same message
block more than once.

3.3 Second Preimage Attacks with Expandable Messages

Kelsey and Schneier presented a second preimage attack using expandable messages
[18]. The attack is effective only against messages with large number of message blocks.

Assume, that we have a message y = y1y2 · · ·y2l , where yi is a message block for all
i ∈ {1,2, · · ·2l} . We begin our attack by creating an expandable message with initial
hash value h0 , the minimum length of l and the maximum length of 2l + l−1. The
complexity of this is at most 2 · e

e−1 · l ·2
n
2 with the algorithm memory requirement

2
n
2+1 . Let us assume that the expandable message gives us a hash value hv .

Next we search for a message block xv such that f (hv,xv) = f +(h0,y1y2 · · ·yi) for
some i ∈ {l + 1, l + 2, · · · ,2l} . In [18] it is stated that the attacker needs to call the
compression function for approximately 2n−l times to find such xv . We will now verify
this.

The attacker creates a random message block x and calculates the hash value
f (hv,x) . If f (hv,x) = f+(h0,y1y2 · · ·yi) for some i ∈ {l +1, l +2, · · · ,2l} , the attacker
has found the required message block. If not, the attacker repeats the procedure
until the required message block is found. Assume that f is a random oracle and
f+(h0,y1y2 · · ·yi) 6= f+(h0,y1y2 · · ·y j) for all i, j ∈ {1,2, ...,2l} , i 6= j , then probability
that f (hv,x) = f+(h0,y1y2 · · ·yi) for some i ∈ {l +1, l +2, · · · ,2l} is 2l−l

2n that can be
approximated to be 2l−n for sufficiently large n and l . According to Fact 2 it follows
that the expected number of compression function calls required is approximately 2n−l .

Now it is a simple task to create a second preimage by choosing message
xrxvyi+1yi+2 · · ·y2l , where xr is the expandable message chosen so that |xr| = i− 1.
Thus we have created a new message with the same hash value and length as the original
one.

The total complexity of the attack is e
e−1 · l ·2

n
2+1 +2n−l . Since usually the length of

an even long message is well below 2
n
2 message blocks, we have 2n−l � 2 · e

e−1 · l ·2
n
2 ,

38

h0 hv

y1 y2 y2l-1 y2l yi+1yi

h0 h1 h2 hi-1 hi hi+1 h2l-2 h2l-1 h2l

xv

hi

xv

hihvh0

y2l-1 y2l yi+1

hi+1 h2l-2 h2l-1 h2l

Fig 5. Second preimage attack with expandable message.

where the notation a� b means that a is much bigger than b . In this case the
complexity of this attack is about 2n−l and the algorithm memory requirement is 2

n
2+1 .

3.4 Creating a Diamond Structure

Collision trees or diamond structures have been used in both herding and second
preimage attacks against an iterated hash function [1, 2, 17]. The idea of the diamond
structure is to take a fairly large set of different hash values and force these to converge
towards a single hash value along paths of equal length. We will now offer a more
formal definition of a diamond structure by defining it as a binary tree. The following
definition can be found in [22].

A diamond structure with 2d chaining hash values or of breadth 2d , where d ∈ N+ , is
a node labeled and an edge labeled complete binary tree D satisfying the following
conditions:

1. The tree D has 2d leaves, i.e., the height of the tree is d .

39

2. The nodes of the tree D are labeled by hash values (strings in the set {0,1}n) so that
the labels of nodes that are at the same distance from the root of D , are pairwise
disjoint.

3. The edges of the tree D are labeled by message blocks (strings in the set {0,1}m).
4. Let v1,v2 , and v with labels h1,h2 , and h , respectively, be any nodes of the tree D

such that v1 and v2 are the two children of v . Suppose furthermore that x1 and x2

are (message) labels of the edges connecting v1 to v and v2 to v , respectively. Then
f (h1,x1) = f (h2,x2) = h .

It should be noted that the definition above forces quite strict requirements for the
diamond structure. It does not, for example, allow the nodes to have more than two
children, something that surely would not be a problem when constructing a diamond
structure in practice. This is a choice made for the simplicity of notation.

Assume that we have an iterated hash function with the compression function f .
The creation method presented in [17] works as follows: We start by storing 2d chaining
hash values (leaves) a1,a2, · · ·a2d , where d ∈ N+ . Next we create 2

n−d+1
2 single-block

messages xi and calculate f (hi,x j) for all i ∈ {1,2, · · · ,2d} and j ∈ {1,2, · · · ,2 n−d+1
2 } .

The large number of created hash values gives us reason to expect that collisions
will occur. In [17] it is assumed that for each i ∈ {1,2, · · ·2d} it is possible to find
ji ∈ {1,2, · · · ,2

n−d+1
2 } such that set { f (ai,x ji)|i ∈ {1,2, · · ·2d}} contains only 2d−1

distinct values. This assumption is not actually proved in [17].
We can repeat this process for d−1 times finally reaching a single hash value h′

which from now on will be known as the diamond value. Now for each ai we have
created a message x′i , which is d message blocks long and satisfies f +(ai,x′i) = h′ . We
say that the breadth of the created diamond is 2d . The length of the diamond is the
number of message blocks in each x′i , where i ∈ {1,2, · · · ,2d} i.e d . With intuitive
reasoning [17] deduces that the complexity of the algorithm is 2

n+d
2 +2 .

However, a recent study of Blackburn et al. [5] has shown that creating diamond
structure is not that simple and that the assertion concerning complexity in [17] is
incorrect. It was proven that it is possible to create a diamond structure with the method
implied in [17] with complexity O(

√
d ·2 n+d

2) . The reasoning of [5] is sound. However,
in Chapter 5 we shall introduce a new method of creating a diamond structure with
O(2

n+d
2) compression function calls.

40

h'

a1

a2

a3

a4

a5

a6

a7

a8

Fig 6. Diamond structure with eight chaining hash values.

In [5] we can also find an upper bound for the complexity of creating a diamond
structure (in the proof of Theorem 1 in page 179). This bound is

0.83 ·
√

d ·2n/2 21/2(2(d+1)/2−1)
21/2−1

≈ 4 ·
√

d ·2
n+d

2 .

It should be noted that [5] does not use the same model in complexity analysis as this
work. Namely in our model, if a step is unsuccessful it is repeated until it succeeds (and
thus it is guaranteed to succeed). Taking such approach would increase the complexity
above.

We can also use [5] to get an upper bound for the algorithm memory requirement
of the diamond structure creation (equation (3) on page 178). This amount is 0.83 ·√

d ·2(n+d)/2 . Unlike other algorithm memory requirements computed in this work,
this value is not strict, but instead the amount that is needed in the average case. It is,
however the best number we have, so we will use it. In Chapter 5 we will present a
new method of creating a diamond structure and we are able to give a strict algorithm
memory requirement for it, as well as a complexity evaluated in the model, where each
step is repeated, if unsuccessful.

The attacker can store a diamond structure with breadth 2d by storing 2d chaining
hash values and all the message blocks in the structure. This brings the online memory
requirement to approximately 3 ·2d .

41

3.4.1 Elongated Diamond Structure

Assume for a moment that the attacker can use long messages i.e. messages with
2l+1 message blocks where l is fairly large. In this situation it is possible to create a
variant of a diamond structure with significantly lower complexity [17]. We begin by
creating 2d messages xi with 2l message blocks xi, j in each of them, that is to say
xi = xi,1xi,2 · · ·xi,2l for i = 1,2, · · ·2d .

Let the initial hash value be h0 . We can now calculate hash values h1 = f +(h0,x1),

h2 = f +(h0,x2), ...,h2d = f +(h0,x2d) . Denote hi, j = f +(h0,xi,1xi,2 · · ·xi, j) for each i ∈
{1,2, · · · ,2d} and j ∈ {1,2, · · · ,2l} . Altogether 2d+l compression function calls are
required to carry out the computations. Next we proceed to construct a diamond structure
beginning with hash values h1,h2, · · · ,h2d . Let us assume that we have now reached
the hash value h′ as in a standard diamond structure creation. After this we create an
expandable message, starting from the hash value h′ with maximum length of 2l + l−1
and minimum length of l . Assume that the expandable message ends to a hash value h′′ .

Since we can choose the length of the expandable message freely between l

and 2l + l− 1, there exists for each chaining hash value hi,s (i ∈ {1,2, · · ·2d},s ∈
{1,2, · · · ,2l}) a message x′ such that |x′|= 2l +d + l and f+(hi,s,x′) = h′′ . We have
now created a collision tree of the length 2l +d + l message blocks possessing 2d+l

chaining hash values.
The complexity of creating an elongated diamond structure is thus 2l+d +4 ·

√
d ·

2
n+d

2 + l · e
e−1 ·2

n
2+1 , with the algorithm memory requirement 0.83 ·

√
d ·2 n+d

2 . We can
usually approximate the complexity to be 4 ·

√
d ·2 n+d

2 since typically 2l+d � 2
n+d

2 and
l · e

e−1 ·2
n
2+1� 2

n+d
2 .

There are approximately 2l+d + 2d+1 message blocks in an elongated diamond
structure. In addition we should be able to store 2l+d hash values. Since usually
2l+d � 2d+1 we can thus approximate that the online memory requirement of an
elongated diamond structure is approximately 2l+d+1 .

3.4.2 Multicollision Diamond

Assume now that we have a Joux’s type multicollision M of size 2(d+1)n . In [1, 11] it is
shown that it is possible to create a variant of a diamond structure based on M . The
variant structure has 2d chaining hash values hi and for each of these a n ·d message
blocks long message xi ∈M that satisfies f+(hi,xi) = h′ , where h′ is the final hash

42

h'

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

x5,1 x5,2 x5,3 x5,4

x6,1 x6,2 x6,3 x6,4

x7,1 x7,2 x7,3 x7,4

x8,1 x8,2 x8,3 x8,4

h''

Fig 7. Elongated Diamond Structure with l=2,d=3 and 32 chaining hash values.

value of the structure. In this work we call this structure a multicollision diamond. We
will now study the mechanism to construct it.

Assume that we are provided with an iterated hash function f+ , some hash values
h0 and message pairs M1,M2, ...,M(d+1)n such that for each i ∈ {1,2, ...,(d +1)n} :

(i) Mi = {xi,x′i} where xi and x′i are distinct message blocks; and
(ii) f (hi−1,xi) = f (hi−1,x′i) = hi .

We can now choose 2d chaining hash values b1,b2, · · · ,b2d and create a diamond
structure with messages chosen from the message set M′ = Mn+1Mn+2 · · ·M(d+1)n

as follows. In the set Mn+1Mn+2 · · ·M2n there are 2n messages, so for each hash
value bi we should be able to find a message xi such that, xi ∈Mn+1Mn+2 · · ·M2n and
{ f +(bi,xi)|i∈ {1,2, · · · ,2d}} contains only 2d−1 hash values b′1,b

′
2, · · · ,b′2d−1 . We then

proceed by searching message x′i for each b′i such that x′i ∈M2n+1M2n+2 · · ·M3n and
{ f +(b′i,x

′
i)|i ∈ {1,2, · · · ,2d−1}} contains only 2d−2 hash values. We will then proceed,

step by step, in the same manner.
After d steps we should reach a single hash value hk and for each bi , i ∈

{1,2, · · · ,2d} we have created a message yi such that f+(bi,yi) = hk and
yi ∈ Mn+1Mn+2 · · ·M(d+1)n . The first impression is that the number of compression

43

function calls required is the same that would be required to create a standard diamond
structure multiplied by n (since in each step the length of the messages is n). However,
as earlier we can use the tree like structure of the multicollision to lower this complexity,
thus resulting to complexity that is approximately 8 ·

√
d ·2 n+d

2 .
Now we know that there are 2n messages in the set M1M2 · · ·Mn , which means

that given any hash value hb we should be able to find zb ∈ M1M2 · · ·Mn such that
f+(hb,zb) = bi for some i ∈ {1,2, · · · ,2d} . The complexity of this is approximately
2 ·2n−d .

The complexity of creating a multicollision diamond is thus 8 ·
√

d · 2 n+d
2 with

the algorithm memory requirement of around 0.83 ·
√

d ·2 n+d
2 and the online memory

requirement of approximately 3 ·n ·2 d
2 . However, all the messages are created from the

same multicollision M . This means that it is possible to simply store the hash values
b1,b2, · · · ,b2d , the message blocks that appear in M and for each bi the index of the
message sequence used to reach hk . This drops the online memory requirement to
approximately 2d +2(d +1)n .

Remark 8. In [1, 11] the multicollisions that are used as a base of the multicollision
diamond, are smaller. Again we have chosen the collisions of this size to ensure that we
can disregard the possibility that the construction method fails. This choice has very
little effect on the actual complexity of the attacks that apply the multicollision diamond.

3.5 Herding Attack with a Diamond Structure

It is possible to use the diamond structure to create a herding attack against an iterated
hash function f+ (see [17]). The basic idea is to create a diamond structure in the
offline phase and connect the prefix to it in the online phase.

The attacker creates a diamond structure with 2d chaining hash values and reaches
the diamond value h′ . The complexity of this operation is 4 ·

√
d ·2 n+d

2 . The attacker
needs to know the length of the message and the final hash value given by the compression
function. He commits to the length |p|+1+d , where |p| is the length of the prefix,
and to the hash value h′ .

After this the attacker is challenged with a prefix p . She/he then searches for a
single message block za such that f+(h0, pza) = ai , where ai is a chaining hash value
for the diamond structure. Several articles state that the complexity of this is 2n−d ([17],
[1]). We will now verify this.

44

.

b 1

b 2

b 3

b 4

b 5

b 6

b 7

b 8

x3n + 2x3n + 1 x4n

x'3n + 1 x'3n + 2 x'4nx'2n + 1 x'2n + 2 x'3n

x2n + 1 x2n + 2 x3nxn + 1 xn + 2 x2n

x'n + 1 x'n + 2 x'2n

x1 x2 xn

x'1 x'2 x'n

hk

M 1 M 2 M n. . . M n + 1 M 2n
. . . M 2n + 1 M 3n

. . . M 3n + 1 M 4n
. . .

Fig 8. Multicollision diamond with d=3.

45

Let us denote hp := f+(h0, p) . The attacker creates a random message block x

and calculates the hash value f (hp,x) . If f (hp,x) = ai for some i ∈ {1,2, · · · ,2d} ,
the attacker has found the required message block. If not, then the attacker repeats
the procedure, until the required message block is found. If we assume that f is a
random oracle, then probability that f (hp,x) = ai for some i ∈ {1,2, · · · ,2d} is 2d−n .
According to Fact 2 the expected number of required compression function calls is
2n−d .

Now there exists x′i such that f +(h0, pzax′i) = h′ . The complexity of creating a
diamond structure is 4 ·

√
d ·2 n+d

2 , while the complexity of finding za is 2n−d giving us
the offline complexity of 4 ·

√
d ·2 n+d

2 and the online complexity of 2n−d . This means
that by choosing d = n

3 , we get the total complexity of (4 ·
√ n

3 +1) ·2 2n
3 .

The algorithm memory requirement of this attack is the same as in a diamond
structure creation. In addition the attacker has to be able to store the diamond structure
giving this kind of an attack the online memory requirement 3 ·2d .

Remark 9. It is possible to use an elongated diamond structure to reduce this complexity.
If the attacker is able to create expandable messages and can store the elongated
diamond structure, she/he can reduce the total complexity of this attack to approximately
(4 ·
√

n−2l
3 +1) ·2 2n−l

3 by choosing d = n−2l
3 .

3.5.1 Herding Attack against Concatenated Hash

Diamond structures and multicollision diamonds can be used to create herding attacks
against the concatenated hash function as presented in [1, 11].

Assume that we have f+1 : {0,1}n1 × ({0,1}m)+ → {0,1}n1 and f+2 : {0,1}n2 ×
({0,1}m)+→{0,1}n2 , where f+1 is based on the initial value h0,1 and f+2 is based on
the initial value h0,2 . Assume that n1 ≤ n2 < m and the concatenated hash function C

is defined by setting C(h0,1,h0,2,x) = f+1 (h0,1,x)|| f+2 (h0,2,x) .
In the offline phase the attacker goes through steps:

(1) Create a diamond structure D , on f+1 . Denote the diamond value of D by h1 .
(2) Create a large Joux type multicollision, on f+1 based on h1 . Assume that the final

hash value is h2 .
(3) Create a multicollision diamond K based on the multicollision created in step (2)

on f+2 . Assume that the final hash value is h3 .

46

p
h'

za ai

Fig 9. Herding Attack with diamond structure and d=3.

(4) Commit to the hash value h2||h3 and a message length |p|+ 1+ d + n2(d + 1) ,
where |p| is the length of the prefix in message blocks and the diamond structure has
2d chaining hash values.

Then in the online phase, where the attacker is challenged with prefix p , the attack
proceeds through steps:

(5) Connect the prefix p to the diamond structure D using f+1 .
(6) Connect the prefix p to the multicollision diamond K using f+2 .

A detailed description follows. On the first step of the attack the attacker creates a
diamond structure D for f+1 with 2d chaining hash values a1,a2, · · · ,a2d and a diamond

value h1 . The complexity of this is approximately 4 ·
√

d ·2
n1+d

2 .
In step two, the attacker creates a Joux type multicollision of size 2(d+1)n2 for f+1

starting from the initial value h1 . In other words the attacker creates a message set
M1,M2, ...,M(d+1)n2 such that:

47

.

a i

b j

h2

h3

h1p
za

h2,0

zb

M 1 M 2 M n. . . M 2n + 1 M 3n
. . . M 3n + 1 M 4n

. . .M n + 1 M 2n
. . .

h1,0

f ⁺2:

f ⁺1:

Fig 10. Herding attack against concatenated hash.

(i) for each i ∈ {1,2, ...,(d +1)n2} , the set Mi consists of two distinct message blocks;
and

(ii) f +
1(h1,x) = f +

1(h1,x′) for all x,x′ ∈ M = M1M2 · · ·M(d+1)n2 .

Let us denote f+1 (h1,x) = h2 , when x ∈ M . The complexity of the construction is
approximately 2.5 · (d +1) ·n2 ·2

n1
2 .

In step (3) the attacker chooses 2d new chaining hash values b1,b2, · · · ,b2d and
creates a multicollision diamond using f+2 and the message set M = M1M2 · · ·M(d+1)n2 .

So with the complexity of 8 ·
√

d ·2
n2+d

2 the attacker should be able to produce message
yi for each chaining hash value bi and multicollision diamond with hash value h3 such
that yi ∈ Mn2+1Mn2+2 · · ·M(d+1)n2 and f+2 (bi,yi) = h3 for all i ∈ {1,2, · · · ,2d} . The
attacker now commits to a message length |p|+1+d +n2(d +1) , where |p| is the
length of the prefix, and to hash value a h2||h3 thus completing the offline phase.

Assume now that the attacker is challenged with a prefix p . On step (5) the attacker
searches for a message block za such that f+1 (h0,1, pza) = ai for some i ∈ {1,2, · · · ,2d} .
The complexity of this is approximately 2n1−d . Now there is a message xi such that
f+1 (ai,xi) = h1 . Next on the step (6) the attacker searches for a message zb such

48

that zb ∈ M1M2 · · ·Mn and f+2 (h0,2, pzaxizb) = b j for some j ∈ {1,2, · · · ,2d} . The
complexity of finding zb is approximately 2n2−d+1 .

The attacker now chooses the message pzaxizby j . The length of the message is
|p|+1+d +n2(d +1) while

f+1 (h0,1, pzaxizby j) = f+1 (ai,xizby j) = f+1 (h1,zby j) = h2

and

f+2 (h0,2, pzaxizby j) = f+2 (b j,y j) = h3.

The offline complexity of this process is 4 ·
√

d ·2
n1+d

2 +2.5 · (d +1)n2 ·2
n1
2 +8 ·√

d ·2
n2+d

2 while the online complexity is 2n1−d +2n2−d+1 . This means that by choosing
d = n2

3 the total complexity will be at most (12 ·
√

n2
3 +3) ·2

2n2
3 . Clearly, this is well

below 2n1+n2 that is the complexity of the random oracle hash function of length
n1 +n2 .

3.5.2 Herding Attack against Hash Twice

It is possible to use the Joux’s multicollision attack, a diamond structure and a multicol-
lision diamond to create a herding attack against Hash Twice (see subsection 2.5.2) as
stated in [1]. Let T be a Hash Twice hash function that uses the compression function f

and the initial value h0 . We will now give the informal framework of the attack. The
attack proceeds through the following steps in the offline phase. The attacker creates

(1) a diamond structure D , with a diamond value h1 .
(2) a large Joux type multicollision, based on h1 . Assume that the final hash value is

h2 .
(3) a multicollision diamond K based on a multicollision created on step (2). Assume

that the final hash value is h3 . Commit to the hash value h3 and the message length
|p|+1+d +n(d +1) .

Then in the online phase, where the attacker is challenged with prefix p , the attack
proceeds through following steps. The attacker connects

(4) the prefix p to the diamond structure D .
(5) the diamond structure D to the multicollision diamond K .

49

Now we will take a look at what happens in more detail. In the first step of the attack,
the attacker creates a diamond structure D with 2d chaining hash values a1,a2, · · · ,a2d

and a diamond value h1 . The complexity of the procedure is 4 ·
√

d ·2 n+d
2 .

In the second step, the attacker creates a Joux’s type of multicollision of size 2(d+1)n

for f+ starting from the initial value h1 . In another words the attacker creates a message
set M1,M2, ...,M(d+1)n such that:

(i) for each i ∈ {1,2, ...,(d +1)n} , the set Mi consists of two distinct message blocks;
and

(ii) f +(h1,x) = f +(h1,x′) for all x,x′ ∈M = M1M2 · · ·M(d+1)n .

Let us denote f+(h1,x) = h2 , when x ∈M . The complexity of the construction is at
most 2.5 · (d +1) ·n ·2 n

2 .
In step (3) the attacker chooses 2d new chaining hash values b1,b2, · · · ,b2d and

creates a multicollision diamond using the message set M = M1M2 · · ·M(d+1)n . So, with
the complexity 8 ·

√
d ·2 n+d

2 , the attacker should be able to produce a message yi for
each chaining hash value bi and a multicollision diamond with hash value h3 such that
yi ∈Mn+1Mn+2 · · ·M(d+1)n and f+(bi,yi) = h3 for all i ∈ {1,2, · · · ,2d} . The attacker
now commits to a message length |p|+1+d +n(d +1) , where |p| is the length of the
prefix and to hash value a h3 , thus completing the offline phase.

Assume now that the attacker is challenged with a prefix p . In step (4) the attacker
searches for a message block za such that f+(h0, pza) = ai for some i ∈ {1,2, · · · ,2d} .
The complexity of this is around 2n−d . Now there is a message xi such that f+(ai,xi) =

h1 . Next on step (5) the attacker searches for a message zb such that zb ∈M1M2 · · ·Mn

and f+(h2, pzaxizb) = b j for some j ∈ {1,2, · · · ,2d} . The complexity of finding zb is
2n−d .

The attacker now chooses the message pzaxizby j . The length of the message is
|p|+1+d +n(d +1) while

f+(f+(h0, pzaxizby j), pzaxizby j) = f+(f+(ai,xizby j), pzaxizby j)

= f+(f+(h1,zby j), pzaxizby j) = f+(h2, pzaxizby j) = f+(b j,y j) = h3.

The offline complexity of this process is 12 ·
√

d ·2 n+d
2 +2.5 · (d +1)n ·2 n

2 with the
algorithm memory requirement 0.83 ·

√
d ·2 n+d

2 . The online complexity is 3 ·2n−d and
the online memory requirement approximately 2d+2 +2(d +1)n . This means that by
choosing d = n

3 we get the total complexity of approximately (12 ·
√ n

3 +3) ·2 2n
3 .

50

.

a 1

a 2

a 3

a 4

a 5
a 6
a 7

a 8

b 1

b 2

b 3

b 4

b 5

b 6

b 7

b 8

h2

h3

h1

M 1 M 2 M n. . . M 2n + 1 M 3n
. . . M 3n + 1 M 4n

. . .M n + 1 M 2n
. . .

Fig 11. Hash Twice herding attack: Offline phase.

3.5.3 Herding Attack Variant against Zipper Hash

Let f1, f2 be compression functions: {0,1}n ×{0,1}m →{0,1}n and h0 ∈ {0,1}n an
initial value. Consider the Zipper Hash Z f1, f2,h0 (see subsection 2.5.3). If we assume
that f2 is a random oracle, it is impossible to create a standard herding attack against
Z f1, f2,h0 . The attacker is not aware of the prefix and the first block of the prefix is the
last one used in hashing. If f2 is a random oracle and we are not aware of the message
block used, it is clear that there is no way to predict the produced hash value, even if we
could predict the hash value given to f2 .

However, as has been shown in [1] it is possible to mount a variant of herding attack
against the Zipper Hash, even when f1 and f2 are random oracles. In this variant we
assume that the attacker is challenged with a suffix s that is placed at the end of the
message instead of a prefix. Otherwise the variant is similar to an original herding
attack.

The attack proceeds through the following steps in the offline phase. The attacker
creates

51

.

a i

b j

h2

h3

h1p
za

h2

zb

M 1 M 2 M n. . . M 2n + 1 M 3n
. . . M 3n + 1 M 4n

. . .M n + 1 M 2n
. . .

Fig 12. Hash Twice herding attack: Online phase.

(1) a large Joux type multicollision M1M2 · · ·M(d+1)n based on the initial value h0 and
compression function f1 .

(2) a multicollision diamond K based on M(d+1)nM(d+1)n−1 · · ·M1 and the compression
function f2 .

Then in the online phase the attacker is challenged with suffix s and she/he:

(3) connects the suffix s to the multicollision diamond K .

At the beginning of the attack the attacker creates a Joux’s multicollision with
size 2(d+1)n for f+1 starting from initial value h0 . Now the attacker has message sets
M1,M2, ...,M(d+1)n such that

(i) for each i ∈ {1,2, ...,(d +1)n} the set Mi consists of two distinct message blocks;
and

(ii) for all x,x′ ∈ M = M1M2 · · ·M(d+1)n , f+1 (h0,x) = f+1 (h0,x′) .

Let us denote f+1 (h0,x) = h1 , when x ∈ M . The complexity of the construction is at
most 2.5 · (d +1)n ·2 n

2 .

52

.h0 h1

h2

M 1 M 2 M n. . . M n + 1 M 2n
. . . M 2n + 1 M 3n

. . . M 3n + 1 M 4n
. . .

Fig 13. Herding attack variant against Zipper Hash: Offline phase.

Next the attacker chooses 2d new chaining hash values b1,b2, · · · ,b2d and creates a
multicollision diamond using the message set M(d+1)nM(d+1)n−1 · · ·M1 for the compres-
sion function f2 . The complexity of this is approximately 8 ·

√
d ·2 n+d

2 and the attacker
now has a message zi for each chaining hash value bi and a single hash value h2 such
that zi ∈ MdnMdn−1 · · ·M1 and f+2 (bi,zi) = h2 for all i ∈ {1,2, · · · ,2d} .

The attacker is now ready to commit to a hash value h2 and a message length n(d +

1)+ |s| , where |s| is the length of the suffix. Assume now that the attacker is challenged
with a suffix s= s1s2 · · ·sp , where |si|= 1 for all i∈ {1,2, · · · , p} . The attacker searches
for a message v ∈ M(d+1)nM(d+1)n−1 · · ·Mdn+1 such that f+2 (f+1 (h1,s),spsp−1 · · ·s1v) =

b j for some j ∈ {1,2, · · · ,2d} . The complexity of this action is around 2 ·2n−d .

53

.h0

h1

h2

b j

v

s

M 1 M 2 M n. . . M n + 1 M 2n
. . . M 2n + 1 M 3n

. . . M 3n + 1 M 4n
. . .

Fig 14. Herding attack variant against Zipper Hash: Online phase.

Assume that v = v1v2 · · ·vn and |v j|= 1 for all j ∈ {1,2, · · ·n}, thus vnvn−1 · · ·v1 ∈
Mdn+1Mdn+2 · · ·M(d+1)n . Furthermore note that f+2 (b j,z j) = h2 and z j = z′1z′2 · · ·z′nd ,
where |z′i| = 1 for all i ∈ {1,2, · · · ,nd} and z j ∈ MdnMdn−1 · · ·M1 . It follows that
z′ndz′nd−1 · · ·z′1 ∈ M1M2 · · ·Mdn .

Now we know that

Z f1, f2,h0(z
′
ndz′nd−1 · · ·z′1vnvn−1 · · ·v1s)

= f+2 (f+1 (h0,z′ndz′nd−1 · · ·z′1vnvn−1 · · ·v1s),spsp−1 · · ·s1vz j)

= f+2 (f+1 (h1,s),spsp−1 · · ·s1vz j) = f+2 (b j,z j) = h2.

The offline complexity of this attack is 2.5 · (d + 1) · n · 2 n
2 + 8 ·

√
d · 2 n+d

2 while
the online complexity is 2 ·2n−d . The algorithm memory requirement of the attack
is 0.83 ·

√
d ·2 n+d

2 . The online memory requirement of the attack is 2d +2 · (d +1) ·n .
Once again by choosing d = n

3 the total complexity is approximately (8 ·
√ n

3 +2) ·2 2n
3 .

54

3.6 Second Preimage Attack with Diamond Structure

It is also possible to use the diamond structure for a second preimage attack against an
iterated hash function, if the original message is long [2]. Assume that we have an iterated
hash function f+ with the initial value h0 and the original message y = y1y2 · · ·y2l

where yi is a single message block for each i ∈ {1,2, · · · ,2l} .
First the attacker creates a diamond structure with 2d chaining hash values

a1,a2, · · · ,a2d . Let us assume that the diamond value of the structure is h′ . The
attacker then searches for a message block xv such that f (h′,xv) = f+(h0,y1y2 · · ·yi)

for some i ∈ {d +2,d +3, · · · ,2l} . The complexity of finding such an xv is around
2n−l as we have seen.

Next the attacker searches for a beginning part xc such that f+(h0,xc) = a j for
some j ∈ {1,2, · · · ,2d} and |xc|= i−d−1. The complexity of finding such xc is 2n−d .
The second preimage message is xcx jxvyi+1yi+2 · · ·y2l where x j is the path from a j to
h′ .

The complexity of creating a diamond structure is 4 ·
√

d ·2 n+d
2 so the total complexity

of this second preimage attack is 4 ·
√

d ·2 n+d
2 +2n−l +2n−d with the algorithm memory

requirement of 0.83 ·
√

d · 2 n+d
2 and the online memory requirement of 3 · 2d . By

choosing d = n
3 the attacker gets the total complexity of (4 ·

√ n
3 +1) ·2 2n

3 +2n−l .
The second preimage attack using expandable messages was discovered before the

second preimage attack with the diamond structure and the complexity of the attack
applying an expandable message is slightly smaller. However, some applications of
an iterated hash function that are not vulnerable to second preimage attack applying
an expandable message, such as Dithered hash function, are vulnerable to the second
preimage attack that uses a diamond structure [1, 2]

3.6.1 Second Preimage Attack against Hash Twice

A second preimage attack that uses expandable messages does clearly not work against
Hash Twice directly. However, it is possible to combine expandable messages, Joux’s
multicollisions and the multicollision diamond to create a second preimage attack
against Hash Twice as was done in [1].

The attack proceeds through the following steps:

(1) Create an expandable message with an initial value h0 and an expanding value h1 .
(2) Create a large Joux type multicollision M1M2 · · ·M(d+1)n based on h1 .

55

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16

xv

h10

h10

a1

a2

a3

a4

a5

a6

a7

a8

Fig 15. Second preimage attack example with a diamond structure: d=3 l=4.

(3) Create a multicollision diamond K based on M1M2 · · ·M(d+1)n and a compression
function f2 .

(4) Connect the multicollision diamond K to the original message on the “second
round” of the hashing process.

(5) Use the expandable message to ensure that the created second preimage has the
same length as the original message.

We will now take a more detailed look at the process.
Assume that we have the Hash Twice function Tf ,h0 and an original message

y = y1y2 · · ·y2l , where yi is a single message block for each i ∈ {1,2, · · · ,2l} . The
attacker creates an expandable message for f+ , with a maximum length 2l + l− 1
starting from the initial value h0 . Assume that the expanding value of the expandable
message is h1 .

Next the attacker creates a Joux’s 2(d+1)n−collision for f+ starting from the initial
value h1 . As before this means that the attacker creates message sets M1,M2, ...,M(d+1)n

such that:

(i) For each i ∈ {1,2, ...,(d +1)n} , the set Mi consists of two distinct message blocks;
and

(ii) f +(h1,x) = f +(h1,x′) for all x,x′ ∈M = M1M2 · · ·M(d+1)n .

56

. h2

h3

h1h0

M 1 M 2 M n. . . M n + 1 M 2n
. . . M 2n + 1 M 3n

. . . M 3n + 1 M 4n
. . .

Fig 16. Second preimage attack against Hash Twice: Steps (1), (2) and (3).

Once again we can denote f+(h1,x) = h2 , when x ∈ M and conclude that complexity
of the construction is at most 2.5 · (d +1) ·n ·2 n

2 .
Now the attacker chooses 2d new chaining hash values b1,b2, · · · ,b2d and creates a

multicollision diamond, using the message set M = M1M2 · · ·M(d+1)n . The attacker
should be able to produce a single hash value h3 and a message zi for each chaining
hash value bi such that zi ∈ Mn+1Mn+2 · · ·M(d+1)n and f +(bi,zi) = h3 . The complexity
of this is 8 ·

√
d ·2 n+d

2 .
Next the attacker finds a message block xv such that

f (h3,xv) = f+(f+(h0,y1y2 · · ·y2l),y1y2 · · ·y j) for some j ∈ {l +(d +1)n+1, l +(d +

1)n+2, · · · ,2l} . Assume now that xr is the expandable message with length j− (d +

1)n−1. Now there should be xb ∈ M1M2 · · ·Mn such that.

f+(h2,xvy j+1y j+2 · · ·y2l xrxb) = bi

for some i ∈ {1,2, · · · ,2d} . Such an xb can be found with complexity 2 ·2n−d .
Note that f+(bi,zi) = h3 . Now since

Tf ,h0(xrxbzixvy j+1y j+2 · · ·y2l)

57

= f+(f+(h0,xrxbzixvy j+1y j+2 · · ·y2l),xrxbzixvy j+1y j+2 · · ·y2l)

= f+(f+(h1,xbzixvy j+1y j+2 · · ·y2l),xrxbzixvy j+1y j+2 · · ·y2l)

= f+(f+(h2,xvy j+1y j+2 · · ·y2l),xrxbzixvy j+1y j+2 · · ·y2l)

= f+(bi,zixvy j+1y j+2 · · ·y2l) = f+(h3,xvy j+1y j+2 · · ·y2l)

= f+(f (h3,xv),y j+1y j+2 · · ·y2l) = Tf ,h0(y1y2 · · ·y2l)

we have Tf ,h0(xrxbzixvy j+1y j+2 · · ·y2l) = Tf ,h0(y1y2 · · ·y2l) . In addition
|xrxbzixvy j+1y j+2 · · ·y2l |= 2l so xrxbzixvy j+1y j+2 · · ·y2l is the second preimage for
y1y2 · · ·y2l .

The total complexity of this procedure is approximately 2.5 · n(d + 1) · 2 n
2 + 8 ·√

d ·2 n+d
2 +2 ·2n−d +2n−l with the algorithm memory requirement 0.83 ·

√
d ·2 n+d

2 .
This means that by choosing d = n

3 we get the total complexity of approximately
(8 ·
√ n

3 +2) ·2 2n
3 +2n−l .

Remark 10. In [1] this attack is divided into the offline and online phase. Since in this
work the other second preimage attacks are presented in a single phase, also this attack
is presented in this form.

3.7 Trojan Message Attack

The article [1] offered two variants of the Trojan message attacks against the Merkle-
Damgård structure: the Collision Trojan Attack and the Herding Trojan Attack. Both of
them consist of the following three general phases.

1. The attacker creates a Trojan message t . The complexity of this phase is the offline
complexity of the attack.

2. The attacker is challenged with a prefix message p from the prefix set P , where
|P|= 2r .

3. The attacker creates a second preimage for pt . The complexity of this phase is the
online complexity of the attack.

We assume that the attacker is familiar with the compression function f , the initial
hash value h0 and the prefix set P . Furthermore assume from now on that h0 ∈ {0,1}n is
the initial hash value and P = {p1, p2, · · · , p2r} , r ∈N+ is the set of prefixes. Moreover,
denote h0,i := f+(h0, pi) for i = 1,2, · · · ,2r . For the sake of simplicity we will assume
that all the prefixes in P are of equal length k ∈ N+ .

58

p2

p1

p8

x

y 1

1

x

y 2

2

x4

x2

x2

x1

x1

x3

x3

x3

x4

x4

h0,1

h0,2

h0,8

x 5

x6

x

y

8

8

x6

x6

x5

x5

x7

x7

x7

x8

x8

.
.
.

.
.
.

.
.
.

Fig 17. Example of the offline phase in Collision Trojan Attack when r=3.

Next we will present the basic structure of both the Collision Trojan Attack and the
Herding Trojan Attack.

3.7.1 Collision Trojan Attack

The first phase of the Collision Trojan Attack consists of 2r steps. In the first step
the attacker creates a message block pair x1,y1 such that f (h0,1,x1) = f (h0,1,y1) ,
x1 �= y1 . In the step i of the attack, where i ∈ {2,3, · · · ,2r} , the attacker computes
the value hi−1 = f+(h0,i,x1x2 · · ·xi−1) and creates a message block pair xi,yi such that
f (hi−1,xi) = f (hi−1,yi) and xi �= yi . The attacker chooses then the word t = x1x2 · · ·x2r

for the Trojan message and has thus completed the offline phase of the attack.
Assume now that in the second phase the attacker is challenged with p j and forms

the word p j t .
In the third phase the attacker first sets t ′ := x1x2 · · ·x j−1y jx j+1 · · ·x2r and then offers

the word p j t ′ for a second preimage to p j t . The attack is successful, since obviously
f+(h0, p j t) = f+(h0, p j t ′) and |p jt| = |p jt ′| . The offline complexity of this attack
is 2.5 ·2 n

2+r with the algorithm memory requirement 2
n
2 . The online complexity is

negligible. The online memory requirement of this attack is 2r+1 .

3.7.2 Herding Trojan Attack

The article [1] also presents a stronger version of the Trojan message attack called the
Herding Trojan Attack. It offers the attacker a greater freedom to choose the contents of
the second preimage message. To ensure this we will assume that the attacker is, in
addition to the prefix choice p j from the set P , challenged with any prefix w (for the

59

sake of simplicity we assume that |w|< k). The attacker now has to find a suffix s such
that f+(h0,ws) = f+(h0, pt) , where t is the Trojan message.

In the first phase the attacker creates a diamond structure with 2d chaining hash
values. The complexity of this is 4 ·

√
d ·2 n+d

2 . Assume now that the final value of the
structure is h′ . Then the attacker creates a message x0 such that |x0|= d . Next the
attacker searches for a message block pair x1,y1 such that f+(h0,1,x0x1) = f (h′,y1) ,
and then sets h1 = f (h′,y1) . Certainly the attacker can perform this with complexity

e
e−1 ·2

n
2+1 .

In the step i of the first phase, where i ∈ {2,3, · · · ,2r} , the attacker computes the
value hi−1,i := f+(h0,i,x0x1 · · ·xi−1) and creates a message block pair xi,yi such that
f (hi−1,i,xi) = f (hi−1,yi) . Then the attacker simply sets hi := f (hi−1,yi) and is ready
to proceed to next step. Finally the attacker creates the Trojan message t = x0x1 · · ·x2r

and has finished the second phase.
Let us assume that the attacker is challenged both with a prefix p j , j ∈ {1,2, . . . ,2r}

and a second prefix w such that |w|< k . The attacker now searches for a connection
message z such that |wz|= k and f+(h0,wz) is equal to some chaining hash value of the
created diamond structure. Assume now that message u is the path from this chaining
hash value to the root hash value h′ of the diamond structure, i.e. f+(h0,wzu) = h′ .

Now we have f+(h0,wzuy1y2 · · ·y j) = h j = f+(h0, p jx0x1 · · ·x j) , so clearly
wzuy1y2 · · ·y jx j+1x j+2 · · ·x2r is the second preimage for the word p jx0x1 · · ·x2r .

The complexity of the offline phase is e
e−1 ·2

n
2+r+1 +4 ·

√
d ·2 n+d

2 while the com-
plexity of finding z is 2n−d , which means that the complexity of the online phase is also
2n−d . The algorithm memory requirement of this attack is 0,83 ·

√
d ·2 n+d

2 while the
online memory requirement is 3 ·2d +2r+1 . Once again, we can set d = n

3 and get the
total complexity of approximately e

e−1 ·2
n
2+r+1 +(4 ·

√ n
3 +1) ·2 2n

3 .
It is easy to see that the complexity of this kind of an attack is approximately

(4 ·
√ n

3 +1) ·2 2n
3 as long as the number of possible prefixes is at most 2

n
6 , while the

length of the created message is k+d +2r . If the number of possible preimages is
larger than 2

n
6 , the complexity exceeds (4 ·

√ n
3 +1) ·2 2n

3 .
In comparison the second preimage attack presented in [18] and the second preimage

attack based on the diamond structure presented in [2] against a message with length 2
n
6

would have the complexity of approximately 2
5n
6 .

60

p2

p1

p3

p4

x1 x2
x0 x3 x4

x0

x0

x0

x1 x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

h' y2 y3 y4y1
h1 h2 h3 h4

h1

h2

h3

h4

h0,1

h0,2

h0,3

h0,4

Fig 18. Example of the offline phase in Herding Trojan Attack when r=2, d=4.

61

3.8 Tables

The most important results of this chapter are summarized on the following tables. The
complexity refers to the complexity of the attack carried out in the manner described in
this work. AMR refers to the algorithm memory requirement and OMR refers to the
online memory requirement of the attack carried out in the manner described in this
work.

We wish to point out that the given complexities are rough upper bounds and not
strict. The complexities could very well be presented in the asymptotic setting, where we
would drop the constant multipliers. The aim of this work has not been to optimize these
constants. We have decided to include them in order to be able to give certain upper
bounds for the complexity of the attack, when the attacker can satisfy the algorithm
memory requirement.

Table 1. Complexities and memory requirements of basic attacks and constructions.

Attack Type Complexity AMR

Joux’s Multicollision Attack [15] 2.5 · k ·2 n
2 2

n
2

Second Preimage Attack [18] e
e−1 · l ·2

n
2 +1 +2n−l 2

n
2 +1

Creating Diamond Structure [5, 17] 4 ·
√

d ·2 n+d
2 0.83 ·

√
d ·2 n+d

2

Hash Twice Second Preimage [1, 5] (8 ·
√ n

3 +2) ·2
2n
3 +2n−l 0.83 ·

√ n
3 ·2

2n
3

The length of the original message in second preimage attacks is assumed to be 2l .

62

Table 2. Offline and online complexities of different attacks.

Attack Type Offline Online

Herding Attack [5, 17] 4 ·
√

d ·2 n+d
2 2n−d

Hash Twice Herding [1, 5] 12 ·
√

d ·2 n+d
2 +2.5 ·(d+1) ·n ·2 n

2 3 ·2n−d

Zipper Hash Herding Variant [1, 5] 8 ·
√

d ·2 n+d
2 +2.5 · (d+1) ·n ·2 n

2 2 ·2n−d

Collision Trojan Attack [1] 2.5 ·2 n
2 +r Negl.

Herding Trojan Attack [1] e
e−1 ·2

n
2 +r+1 +4 ·

√
d ·2 n+d

2 2n−d

Negl. means that the online complexity is negligible. The size of the prefix set in Trojan

message attack is assumed to be 2r .

Table 3. Memory requirements of different attacks.

Attack Type AMR OMR

Herding Attack [5, 17] 0.83 ·
√

d ·2 d+n
2 3 ·2d

Hash Twice Herding [1, 5] 0.83 ·
√

d ·2 d+n
2 2d+2 +2 · (d +1) ·n

Zipper Hash Herding Variant [1, 5] 0.83 ·
√

d ·2 d+n
2 2d +2 · (d +1) ·n

Collision Trojan Attack [1] 2
n
2 2r+1

Herding Trojan Attack [1] 0.83 ·
√

d ·2 d+n
2 3 ·2d +2r+1

Table 4. Complexities of the attacks that apply diamond structure when d=n/3.

Attack Type Complexity

Herding Attack [5, 17] (4 ·
√ n

3 +1) ·2
2n
3

Hash Twice Herding [1, 5] (12 ·
√ n

3 +3) ·2
2n
3

Zipper Hash Herding Variant [1, 5] (8 ·
√ n

3 +2) ·2
2n
3

Herding Trojan Attack [1] e
e−1 ·2

n
2 +r+1 +(4 ·

√ n
3 +1) ·2

2n
3

63

64

4 A Variant of Joux’s Attack

Next we present a variant of Joux’s multicollision attack (see [15]). This attack can be
found in [23]. The calculations and results of [23] are kept mostly in their original form.
Based on the results of subsection 2.7.2 we could slightly improve the efficiency of this
variant. We will look at the details of this in Section 4.6. This variant is a generalization
of the Joux’s method and uses the information about messages and hash values gathered
in previous steps of the attack.

The basic idea of our attack is to create smaller sets of message blocks and instead
of searching for the collision only in the current set, we also compare the hash values
of the current set with s previous ones. This gives us greater probability of finding
collisions with less work. The downside is, that we need more memory space to store
the message blocks and hash values.

4.1 About Probabilites

Let s ∈ N+ . Suppose that we have enough memory to store the message blocks and the
respective hash values produced during the previous s steps of the attack. Suppose
furthermore that in each step approx. 1√

2s
2

n
2 random message blocks are generated and

their respective hash values computed.
Assume that we are in the (k+1)st step of the attack (k ∈ N , k ≥ s). Let M j be

the set of pairs of message blocks and respective hash values computed in the step
j = k− s+1,k− s+2, . . . ,k . Next we generate 1√

2s
2

n
2 new random message blocks

and hash values. According to [8] the probability p1(s) of finding a collision within this
new set through the birthday paradox is approximately 1− e−

1
4s .

Let Hi be set of hash values in step i , where i = k− s+1,k− s+2, . . . ,k . Let us
now evaluate the probability p2(s) that Hk+1∩Hi 6= /0 for at least one i ∈ {k− s+1,k−
s+2, . . . ,k} . Since |

⋃k
i=k−s+1 Hi| ≈

√ s
2 ·2

n
2 we can now use Lemma 2 to prove that

the probability of finding a collision is approximately

p2(s)≈ 1− e−
1
2 ≈ 0.4

when we assume n to be large enough.

65

Suppose now that p3(s) is the probability that either there is a collision between hash
values calculated in the (k+1)st step or that there exists a common hash value in the sets
Hk+1 and Hi for some i ∈ {k− s+1,k− s+2, . . . ,k} . Since the events above can be
assumed to be statistically independent, the equality p3(s) = p1(s)+ p2(s)− p1(s)p2(s)

holds. This means that

p3(s)≈ (1− e−
1
4s)+(1− e−

1
2)− (1− e−

1
4s)(1− e−

1
2).

When we let s grow, p3(s) approaches from above the number 1− e−
1
2 ≈ 0.4, the

collision probability in the Joux’s attack performed in the manner presented in this
work. What follows now are the technical description and details of the attack. As stated
before the results can be found in [23].

4.2 Probabilistic Attack Algorithm

Let an iterated hash function f+ : {0,1}n× ({0,1}m)+ → {0,1}n , an initial value
h0 ∈ {0,1}n , and an integer s ∈ N+ be given. Denote d = 1√

2s
2

n
2 .

Initialization. Let h := h0 , i := 1, and C0 := {ε} . While i < s+1 do the following.

Generate d random message blocks x1,x2, . . . ,xd . Compute the respective hash values
f (h,x j) for j = 1,2, . . . ,d . Let (xi, j,hi, j) := (x j, f (h,x j)) for j = 1,2, . . . ,d , Mi :=
{(xi, j,hi, j)| j = 1,2, . . . ,d} and Hi = {hi, j| j = 1,2, . . . ,d} . Search for a collision in
hi,1,hi,2 . . . ,hi,d .

A. Suppose that a collision is found. Let j1, j2 ∈ {1,2, . . . ,d} , j1 6= j2 be such that
hi, j1 = hi, j2 . Then set D := {xi, j1 ,xi, j2} , h := hi, j1 , and Ci := Ci−1D . Finally set
i := i+1.

B. Suppose that no collision is found in hi,1,hi,2 . . . ,hi,d . If i = 1, set h := hi,1 ,
C1 :=C0{xi,1} , and i := i+1. If i > 1, search for a collision between the values in
the set Hi and the values in the union ∪i−1

j=1H j .

1◦ Assume that a collision is found. Let i1 ∈ {1,2, . . . , i−1} be the largest number
such that there exist l1, l2 ∈ {1,2, . . . ,d} , for which hi,l1 = hi1,l2 . Set Ci :=
Ci−1{xi,l1}∪Ci1−1{xi1,l2} , and i := i+1.

2◦ Assume that no collision between the values in the set Hi and the values in the
union ∪i−1

j=1H j is found. Then set Ci :=Ci−1{xi1} and i := i+1.

66

We have now completed the initialization and are ready to describe the real attack.
The procedure is exactly the same as before, except that if no collision is found, we shall
repeat the generation of the set of random message blocks (and the execution of the step)
until a collision is found.

Assumptions for the general step. Let k ∈ N+ , k ≥ s . Suppose that the sets Mk−i :=
{(xk−i, j,hk−i, j)| j = 1,2, . . . ,d} and Hk−i = {hk−i, j| j = 1,2, . . . ,d} for i = 0,1, . . . ,s−1
are created as well as the collision sets Ck−s,Ck−s+1, . . . ,Ck . Assume that a hash value
h is given.

The general (k+1)st step. Generate d random message blocks x1,x2, . . . , xd . Compute
the respective hash values f (h,xi) for i = 1,2, . . . ,d . Set

(xk+1, j,hk+1, j) := (x j, f (h,x j))

for j = 1,2, . . . ,d , Mk+1 := {(xk+1, j,hk+1, j)| j = 1,2, . . . ,d} and Hk+1 = {hk+1, j| j =

1,2, . . . ,d} .
Search for a collision in hk+1,1, hk+1,2, . . . ,hk+1,d .

C. Suppose that a collision is found. Let j1, j2 ∈ {1,2, . . . ,d} , j1 6= j2 be such
that hi, j1 = hi, j2 . Then set D := {xk+1, j1 ,xk+1, j2} and h := hk+1, j1 . Finally set
Ck+1 :=CkD .

D. Suppose that no collision is found in hk+1,1,hk+1,2 . . . ,hk+1,d . Search for a collision
between the values in the set Hk+1 and the values in the union ∪k

j=k−s+1H j .

3◦ Assume that a collision is found. Let i1 ∈{k−s+1,k−s+2, . . . ,k} be the largest
number such that there exist l1, l2 ∈ {1,2, . . . ,d} , for which hk+1,l1 = hi1,l2 . Set
Ck+1 :=Ck{xk+1,l1}∪Ci1−1{xi1,l2} .

4◦ Assume that no collision between Hk+1 and ∪k
j=k−s+1H j is found. Then repeat

the execution of the (k+1)st step.

Let us now assume that the (k + 1)st step is carried out successfully and we
have found a match. It is time to look at the size of the created multicollision. If
there is a match between hash values hk+1,1, hk+1,2, . . . ,hk+1,d , say hk+1,i = hk+1, j ,
i 6= j , then we have just doubled the size of our multicollision, because the last
block of the colliding messages can be chosen to be {xk+1,i,xk+1, j} . This means
that the value |Ck+1| = 2 |Ck| . If this is not the case, then hk+1,l1 = hi1,l2 for some
i1 ∈ {k− s+ 1,k− s+ 2, . . . ,k} and l1, l2 ∈ {1,2, . . . ,d} , l1 6= l2 . This means that

67

hk
hk + 1

hk + 2

hk + 3

xk ,1

xk ,2

xk + 1,1

hk + 2

xk + 2,1

hk + 3

xk ,3

xk ,4

Fig 19. Example of attack variant. Starting from hk we can choose paths xk,4, xk,3xk+2,1,

xk,1xk+1,1xk+2,1 and xk,2xk+1,1xk+2,1 to reach hash value hk+3 .

almost certainly the equality |Ck+1|= |Ck|+ |Ci1−1| holds (theoretically we could have
|Ck+1|= |Ck|+ |Ci1 | which would of course be a good thing since |Ci1 |> |Ci1−1|).

Obviously all the messages in our collision set Ck+1 are not of equal length, which
seems to be a problem at first. We shall address this problem later.

4.3 Computing the Expected Value

Let us now evaluate the size of the created multicollision in step k+1, k ≥ s . If there is
a match in hk+1,1, hk+1,2, . . . ,hk+1,d , the size of the created collision is |Ck+1|= 2 |Ck|
and the probability of this event is p1(s)

p3(s)
. Otherwise the collision is between sets Hk+1

and some set Hi , where i ∈ {k− s+1,k− s+2, · · · ,k} , which means that the size of the
created collision is at least |Ck+1|= |Ck|+ |Ci1−1| . The probability that such a collision
exists and that there is no match in hk+1,1, hk+1,2, . . . ,hk+1,d is p3(s)−p1(s)

p3(s)
. We may

assume that each of the sets Hk−s+1,Hk−s+2, . . . ,Hk contains the matching hash value
with equal likelihood; this probability is p3(s)−p1(s)

sp3(s)
, since the number of sets is s .

If we now mark the expected size of the multicollision in step i with Ei , we get the
equations

Ek+s+1 =
p1(s)
p3(s)

(2Ek+s)+
p3(s)− p1(s)

p3(s)
(Ek+s +

1
s
(Ek+s−1 +Ek+s−2 + · · ·+Ek))

68

=

(
1+

p1(s)
p3(s)

)
(Ek+s)+

(
1− p1(s)

p3(s)

)
1
s
(Ek+s−1 +Ek+s−2 + · · ·+Ek) (1)

for each k ∈ N . From the definitions of p1(s) and p3(s) , it is easy to see that
Ek+s+1 > Ek+s +

1
s (Ek+s−1 +Ek+s−2 + · · ·+Ek) and when s is large Ek+s+1 ≈ Ek+s +

1
s (Ek+s−1 +Ek+s−2 + · · ·+Ek),k ∈ N .

Let us now evaluate the size of the multicollision in step k+ s+ 1 by using the
equation

Ek+s+1 = Ek+s +
1
s
(Ek+s−1 +Ek+s−2 + · · ·+Ek)

when k ∈ N . Moreover, we set Ei = |Ci| for all i = 1,2, . . . ,s , where |C1|, |C2|, . . . , |Cs|
are the cardinalities of the sets determined in the initialization step of our attack. The
above recursive equation has the characteristic polynomial fs(x) = xs+1− xs− 1

s (x
s−1 +

xs−2+ · · ·+1) . The roots of this polynomial certainly determine the values of Ek , where
k > s . For the large values of k the root that has the largest absolute value, dominates
the values of the sequence and gives us the ratio Ek+1

Ek
,k ∈ N .

Now we have to find the solution to the equation xs+1− xs− 1
s (x

s−1 + xs−2 + · · ·+
1) = 0 with the largest absolute value. It is easy to see that x = 0 is not a root for the
equation and so it can be written in the form 1 = x−1 + 1

s (x
−2 + x−3 + · · ·+ x−s−1) .

Clearly x−1 + 1
s (x
−2 + x−3 + · · ·+ x−s−1) is decreasing, when x ∈ R+ and so our

equation can have only one positive real root. It is straight forward to see that x 6= 1 so
the equation can be written as

xs(x−1)+
1− xs

s(x−1)
=

xs[s(1− x)2−1]+1
s(x−1)

= 0.

Finding the general solution to such an equation is hard if not an impossible task.
However finding an approximation is relatively easy. Let us set g(x) = xs[s(1− x)2−
1]+1. Now g(1+ 1√

s) = (1+ 1√
s)

s[s(1√
s)

2−1]+1 = 1 > 0. On the other hand g(1+
1√
s+2

) = (1+ 1√
s+2

)s[s(1√
s+2

)2−1]+1 = (1+ 1√
s+2

)s (−2)
s+2 +1 = 1− (1+ 1√

s+2
)s 1

s
2+1 .

It is easy to compute this value for all s = 2,3, · · · ,19 and see that in these cases
g(1+ 1√

s+2
)< 0.

Now assume that s≥ 20. In this case we get

(1+
1√

s+2
)s = 1+

s

(s+2)
1
2
+

s(s−1)
2(s+2)1 +

s(s−1)(s−2)

6(s+2)
3
2

+
s

∑
i=4

(
s
i

)
1

√
s+2i .

69

Now s(s−1)(s−2)

6(s+2)
3
2

= s
6 ·

s−1
s+2 ·

s−2√
s+2

. If s = 20, s−1
s+2 ·

s−2√
s+2

> 3 and since s−1
s+2 and s−2√

s+2

are clearly increasing when s≥ 20 we get s(s−1)(s−2)

6(s+2)
3
2

> s
2 . Thus (1+ 1√

s+2
)s > s

2 +1

which in turn means that g(1+ 1√
s+2

)< 0 also for values s = 20,21, · · · .
We have now proven that g(x) possesses a positive real root x ∈]1+ 1√

s+2
,1+ 1√

s [.
This root appears to be the only positive real root of our equation. We mark this root
with x1 . Next we will prove that all other roots of this equation will have smaller
absolute values.

Let us now assume that x /∈ R+ . This means that |x+1| < |x|+1 Our equation
can also be written as xs+1 = xs + 1

s (x
s−1 + xs−2 + · · ·+ 1). It follows that |xs+1| <

|xs|+ 1
s (|x

s−1|+ |xs−2|+ · · · |x|+1). This in turn means that

|x|s+1−|x|s− 1
s
(|x|s−1 + |x|s−2 + · · ·+1)< 0.

Since |x| ∈ R+ this leads to |x|< x1 = |x1| .
We have now proven that Ek+1

Ek
= x1 ∈]1+ 1√

s+2
,1+ 1√

s [for the large values of
k . This means that by taking k general steps, where k is large, we can create a
multicollision with an expected size xk

1 , where xk
1 > (1+ 1√

s+2
)k .

4.4 Comparing the Procedure to Joux’s Attack

Calculating the exact complexity, i.e. the expected number of required compression
function calls, to create a collision of certain size with our attack variant, seems to be
nearly an impossible task. However, it is still possible to compare its effectiveness with
standard Joux’s attack, when we use Joux’s attack as a statistical experiment described in
section 3.1. We will do this by calculating the expected sizes of created multicollisions,
when the number of compression function calls is assumed to be constant.

Let us now compare the complexity of our attack with the complexity of the Joux’s
attack. As we have stated before, with (1−e−

1
2)−1 ·k ·2 n

2 ≈ 2.5 ·k ·2 n
2 work, we should

get k successful steps in the Joux’s attack. Each step of the Joux’s attack multiplies the
size of the multicollision by two and thus k steps gives us a 2k -collision.

With (1− e−
1
2)−1 · k ·2 n

2 compression function calls our variant should be able to
complete the initialization phase and more than

((1− e−
1
2)−1 · k− s · 1√

2s
) ·2 n

2

(p3(s))−1 · 1√
2s
·2 n

2
>
√

2s
(

k− p3(s)
√

s
2

)

70

successful ordinary steps after this (where s · 1√
2s
·2 n

2 is the number of compression
function calls required to complete the initialization phase). Let us mark ts = p3(s)

√ s
2 .

In each general step of our attack, the size of the multicollision is multiplied by a
constant greater than (1+ 1√

s+2
) . Thus the expected size of the multicollision is greater

than

(1+
1√

s+2
)
√

2s(k−ts) = [(1+
1√

s+2
)
√

2s]k−ts ,

when we are not considering Merkle-Damgård strengthening.
When s→ ∞ we see that

(
1+

1√
s+2

)√2s

=

[(
1+

1√
s+2

)√s
]√2

→ e
√

2 ≈ 4.113.

So if we are creating large multicollisions (k is large) and using a large number of stored
sets of message blocks (s is large), our attack creates a (e

√
2)k−ts -collision, when we

assume that the length of the message is not a problem.
With the same amount of compression function calls, Joux’s attack creates a 2k -

collision. This means that theoretically we can achieve multicollisions with less than
half of the work of Joux’s attack.

4.4.1 Bypassing Merkle-Damgård Strengthening

As stated before Merkle-Damgård strengthening means that the length of the message is
added to the end of the original message before hashing. This forces all of the colliding
messages in our method to be of the same length. In Joux’s attack this is not a problem,
because all the messages have the same length. At first this might seem problematic to
our attack, since the lengths of the created messages are not equal. However, when the
number of the steps taken is large, we can overcome this obstacle.

If we complete the initialization phase (with s steps) and after this
√

2s(k− ts)

ordinary steps, where k is large, then there are certainly at most
√

2s(k− ts)+ s possible
lengths for the messages. This means that the expected size for the largest set of
messages of the same length is at least

(1+ 1√
s+2

)
√

2s(k−ts)

√
2s(k− ts)+ s

.

71

In reality the largest collision set with the equal length messages is of course much
greater. However, even this evaluation shows that, when k is large, the length of the
messages is not really an obstacle, since (1+ 1√

s+2
)
√

2s(k−ts) grows exponentially with
respect to k and

√
2s(k− ts)+ s grows only linearly with respect to k .

Certainly we know that the expected size of the created multicollision will be greater
than 1√

2s(k−ts)+s
(e
√

2)k−ts , when we do (1− e−
1
2)−1 · k ·2 n

2 compression function calls
and assume s and k to be large enough.

4.5 Special Cases with Small Parameter Values

In practice the amount of usable memory and the maximum length of the messages limit
the use of our attack variant. However, even the small values of s give us quite nice
results for large k . We can assume that the case s = 0 is the standard attack by Joux’s.

It is possible to use Maple program to evaluate the expected multicollision sizes with
2.5 · k ·2 n

2 compression function calls, when s = 1 and come up with

1√
2(k− t1)+1

(1.74948)
√

2·2.5·0.53272·(k−t1) ≈ 1√
2(k− t1)+1

(2.87)k−t1 .

Similarly the cases s = 2 are evaluated, where we get the expected size

1
2(k− t2)+2

(1.62322)2·2.5·0.47050·(k−t2) ≈ 1
2(k− t2)+2

(3.13)k−t2

and in the case s = 3, we get the expected size of the multicollision to be approximately

1√
6(k− t3)+3

(1.54478)
√

6·2.5·0.44797·(k−t3) ≈ 1√
6(k− t3)+3

(3.30)k−t3 .

4.6 Improved Results

As stated in subsection 2.7.2 we can improve the standard statistical Joux’s attack (run
in the manner described in this work) by simply choosing to create š ·2 n

2 new message
blocks in each step. We can also use the same results to improve our attack variant. This
happens by choosing the number of message blocks created in each step to be š√

2s
2

n
2

instead of 1√
2s

2
n
2 .

Effectively this would change nothing in the sections 4.1, 4.2, 4.3 and 4.4. This
means that the efficiency of the variant, compared with the standard statistical attack by

72

Joux’s, remains the same i.e. the expected number of compression function calls needed
to create a k -collision with our variant is less than ǎ

2 · k ·2
n
2 , when s is large and we

wish to create large sets of colliding messages.
However, the results of subsection 4.5 are changed. Again using Maple to evaluate

the expected size of the created multicollision for ǎ · k ·2 n
2 , the expected number of

compression function calls is 1√
2(k−t1)+1

(2.68)k−t1 for s = 1, 1
2(k−t2)+2 (3.07)k−t2 for

s = 2 and finally 1√
6(k−t3)+3

(3.29)k−t3 for s = 3.

4.7 Further Thoughts

There are three aspects concerning the analysis of this variant that should be taken
into consideration. Firstly, the algorithm memory requirement for this attack variant is
s+1√

2s
·2 n

2 , while for Joux attack it is 2
n
2 , when performed in the manner described in this

work.
Secondly, there exists an algorithm that can be used to perform quite efficient

space-time tradeoff for the standard Joux’s attack [34]. No such algorithm exists, as far
as we know, for this variant.

Thirdly, in this work both attacks; the standard Joux attack and this variant, are
performed in a model, where the attacker tries to complete a step and if unsuccessful
starts the whole step again. As we have seen, if we run Joux’s attack in optimal
manner, i.e. we do not pay anttention to the amount of memory required and stop the
process immediately when a collision occurs, the complexity of Joux’s attack drops to
k ·
√

π

2 ·2
n
2 , when creating a 2k -collision.

Assume now that in the variant š√
2s
·2 n

2 new message blocks are created in each
step. With k ·

√
π

2 ·2
n
2 compression function calls the variant should be able to perform

more than

p4(s) ·

√
π

2 · k ·2
n/2− s · š√

2s
·2n/2

š√
2s
·2n/2

≈
√

s ·0.800 · (k− š ·
√

s
π
)

general steps (and initialization phase), where p4(s) is the probability that a single step
succeeds (p4(s)≈ 0.71533 when s is large).

This means that the expected size of the created collision is more than

(2.23)k−š·
√ s

π

√
s ·0.800 · (k− š ·

√ s
π
)+ s

.

73

Thus the variant would have a slight edge over the standard version of Joux’s attack,
when creating really large multicollisions.

However, it is worth noticing that in the comparison above the standard Joux’s attack
is run the optimal way, while our variant is still caried out in the model, where the
attacker tries to complete a step and if unsuccessful, starts the whole step again. Our
variant would certainly also benefit from the approach, where the new hash values are
created one by one and the process stops immediately, when a collision is found.

The reason, why such an approach has been chosen in [23] and in this work, is
simplicity. We need some way to compare the effectiveness of this attack with the
efficiency of Joux’s attack and it would be extremely hard to compute the complexity of
our attack variant in the most efficient form. On the whole, the considerations above
give us reason to believe that our attack variant could outperform the standard Joux’s
attack when there is enough memory available and the attacker is creating really large
multicollisions.

74

5 Diamond Structures and Trojan Messages

In this chapter we will present some new results concerning diamond structures and
Trojan messages (see Chapter 3). In the first section we will prove that it is indeed
possible to create a diamond structure with 2d chaining hash values and length d with
complexity O(2

n+d
2) . In the second section we will create more efficient versions of the

Trojan message attacks. The results of this chapter have been published in [22].

5.1 A New Method for a Diamond Structure Creation

5.1.1 A Pairing Set

We will now give a definition of a pairing set that will later be used in our attack
construction.

Let H ⊆ {0,1}n be a finite nonempty set of hash values. A pairing set of H is any
set B⊆H×{0,1}m (where {0,1}m is the message block alphabet of the hash function)
such that

(i) for each h ∈ H there exists exactly one x ∈ {0,1}m such that (h,x) ∈ B ; and
(ii) for each (h1,x1) ∈ B there exists (h2,x2) ∈ B such that h1 6= h2 and f (h1,x1) =

f (h2,x2) .

5.1.2 Intuitive Description of the Diamond Structure Construction
Method

Our method advances in jumps, phases and steps.

• To complete our method, i.e. to create a diamond structure with breadth 2d we need
to carry out d jumps.

• In each jump we carry out several phases.
• In each phase we carry out numerous steps.
• In each step we find two distinct hash value and message block pairs (h1,x1) , (h2,x2)

such that f (h1,x1) = f (h2,x2) .

By dividing the process in an aforementioned manner and recycling the hash value and
message block sets we are able to decrease the number of compression function queries.

75

It is quite easy to see that our method is not optimal, but we have to make a compromise
between the completeness and the simplicity of computations. We will now present the
pseudocode of the attack to give the reader some insight to the structure of the attack. A
more rigorous description of the method will follow. As stated before these results can
be found in [22].

Diamond Structure Construction Method: The Pseudocode

1. Input: d ∈ N+ , (1 < d < n
2) ; Hd ⊆ {0,1}n , |Hd |= 2d

2. for i = d downto 2 do {Jumps jump(d) , jump(d−1) , ..., jump(2) .}

{Input to jump jump(i): a set Hi of 2i distinct hash values.}
2.1. Ai,0 := Hi

2.2. Generate a set Mi,0 ⊆ {0,1}m such that |Mi,0| = 2
n−i

2 −1 and | f (Ai,0,Mi,0)| =
2

n+i
2 −1 . {Initialization}

2.3. Hi,0 := f (Ai,0,Mi,0) ; Bi := /0
2.4. for j = i downto 2 do {Phases phase(i, i) , phase(i, i−1) , ..., phase(i,2) .}

{Input to phase phase(i, j): The sets Bi , A j,0 , M j,0 , and H j,0 }
2.4.1. for k = 0 to 2 j−2−1 do {Steps step(i, j,0) , step(i, j,1) , ...,

step(i, j,2 j−2−1) .}

{Input to step(i, j,k): the sets A j,k ⊆ {0,1}n , M j,k ⊆ {0,1}m , H j,k =

f (A j,k,M j,k) , and Bi such that |A j,k| = 2 j − 2k , |M j,k| = s j,k , and

|H j,k|= |A j,k| · |M j,k| .}
a. Generate a set M′j,k ⊆ {0,1}m of cardinality ds j,k+1− s j,ke (see lemma

3) such that M′j,k ∩M j,k = /0 and | f (A j,k,M′j,k)| ≥ 2
n− j

2 +1 .
b. Search distinct hash values h j,k,h′j,k ∈ A j,k and message blocks x j,k ∈

M j,k , x′j,k ∈M′j,k such that f (h j,k,x j,k) = f (h′j,k,x
′
j,k) .

c. A j,k+1 = A j,k \{h j,k,h′j,k} ; M j,k+1 = M j,k ∪M′j,k ; H j,k+1 =

f (A j,k+1,M j,k+1) ; Bi = Bi∪{(h j,k,x j,k),(h′j,k,x j,k)}
d. if k = 2 j−2−1 then

(i) A j−1,0 := A j,2 j−2−1 , M j−1,0 := M j,2 j−2−1 ; H j−1,0 := H j,2 j−2−1

{Input to phase phase(i,1): the set A1,0 := {h1,0,h′1,0} of two distinct hash

values.}
2.5. Generate a set M′1,0 ⊆ {0,1}m of 2

n
2 message blocks such that there exist

x1,0,x′1,0 ∈M′1,0 for which f (h1,0,x1,0) = f (h′1,0,x
′
1,0) . {Phase phase(i,1) .}

76

2.6. Bi := Bi∪{(h1,0,x1,0),(h′1,0,x
′
1,0)} ; Hi−1 := { f (h,x)

∣∣(h,x) ∈ Bi}

{Input to jump jump(1): the set H1 := {h1,h2} of two distinct hash values.}
3. Generate a set M1 ⊆ {0,1}m of 2

n
2 message blocks such that there exist x1,x2 ∈M1

for which f (h1,x1) = f (h2,x2) . {Jump jump(1) .}
4. B1 := {(h1,x1),(h2,x2)} ; H0 := {h0} where h0 = f (h1,x1) = f (h2,x2)

5. Output: Bd ,Bd−1, . . . ,B1

Jumps

The construction of a diamond structure D with 2d chaining hash values d ≥ 2 is
carried out in d jumps jump(d) , jump(d−1) , . . . , jump(1) . We proceed from the
leaves towards the root of the structure. Let Hd be the set of the 2d chaining hash
values. In the jump jump(d) , a pairing set Bd of Hd is created. The set Bd is so
constructed that the cardinality of the set Hd−1 := { f (h,x)

∣∣(h,x) ∈ Bd} is 2d−1 . In
the jump jump(d−1) a pairing set Bd−1 of Hd−1 is created so that the cardinality of
the set Hd−2 := { f (h,x)

∣∣(h,x) ∈ Bd−1} is 2d−2 . We continue like this until in the last
jump jump(1) a pairing set B1 of H1 containing only two hash values is generated.
The set H0 := { f (h,x)

∣∣(h,x) ∈ B1} contains only one element, which is the root of
the diamond structure. By each jump the distance to the root of the diamond structure
is decreased by one. Obviously, we are herding the chaining hash values towards the
final hash value, which labels the root of our structure. We call this final hash value the
diamond value of the diamond structure.

Now, each jump consists of several phases; since the structures of jumps are mutually
identical, we give below an intuitive description of the phases (and steps) of the jump
jump(d) only.

Phases

The Jump jump(d) begins with initialization phase I(d) that we will describe later.
After this the jump jump(d) is made up of d phases

phase(d,d), phase(d,d−1), · · · , phase(d,2), phase(d,1).

In the phase phase(d,d) of the jump jump(d) we create a pairing set Td−1 of a subset
Kd−1 ⊆ Hd of cardinality 2d−1 , in the phase phase(d,d−1) a pairing set Td−2 of a
subset Kd−2 ⊆ Hd \Kd−1 of cardinality 2d−2 , and so on, ..., in the phase phase(d,2) a

77

pairing set T1 of a subset K1 of Hd \ (Kd−1∪Kd−2∪ ·· ·∪K2) of cardinality 2. This
means that in each phase, phase(d, i) where i ∈ {d,d−1, · · · ,2} we halve the number
of hash values in Hd still without a pairing.

There are two hash values (forming the set K0) still without a pairing left in
Hd , so in the phase phase(d,1) we search a pairing T0 of K0 . Then we set Bd :=
Td−1∪Td−2∪ ·· · ∪T0 . Thus the jump jump(d) consists of d phases after which we have
created a pairing set Bd of Hd ; moreover the input set Hd−1 := { f (h,x)

∣∣(h,x) ∈ Bd}
of the jump jump(d−1) is of cardinality 2d−1 .

Steps

Each phase is made up of several steps in the following way. Consider the phase
phase(d, j) of the jump jump(d) , where j ∈ {2,3, . . . ,d} . As told above, in this phase
we create a pairing set for a subset K j−1 of Hd \ (Kd−1∪Kd−2∪·· ·∪K j) of cardinality
2 j−1 . The phase is divided into 2 j−2 steps

step(d, j,0), step(d, j,1), . . . , step(d, j,2 j−2−1) .

In each step we create a pairing for two hash values in Hd \ (Kd−1∪Kd−2∪ ·· · ∪K j) so
that together the hash values in the pairs form a set K j−1 of cardinality 2 j−1 .

A more rigorous description of each step with appropriate input and output follows.
However, before we begin, we need the following lemma.

Lemma 3. Let r ≥ 2 and n be positive integers. Define the integers sr,0,sr,1, sr,2, . . . ,

sr,2r−2 as follows.

sr,0 = d2
n−r

2 −1e sr,k+1 = sr,k +

⌈
2

n−r
2 +1

2r−2k

⌉
for k = 0,1, . . . ,2r−2−1

Then sr, j ≥ 2
n+r

2 −1

2r−2 j for each j ∈ {0,1, . . . ,2r−2} .

Proof. Proceed by induction on j . The case j = 0 is clear. Suppose that sr,k ≥ 2
n+r

2 −1

2r−2k

where k ∈ {0,1, . . . ,2r−2−1} . Then, by definition, the inequality

sr,k+1 ≥
2

n+r
2 −1 +2

n−r
2 +1

2r−2k
holds. It suffices to show that

2
n+r

2 −1 +2
n−r

2 +1

2r−2k
≥ 2

n+r
2 −1

2r−2(k+1)
.

78

But this follows from the inequality

(2
n+r

2 −1 +2
n−r

2 +1)[2r−2(k+1)] ≥ 2
n+r

2 −1(2r−2k)

is equivalent with k ≤ 2r−2−1.

Initialization I(d)

As an input, we have a set Ad,0 := Hd of 2d hash values. We first create a message
block set Md,0 ⊆ {0,1}m such that

1. the cardinality of Md,0 is 2
n−d

2 −1 and
2. the cardinality of the set f (Ad,0,Md,0) = { f (h,x)

∣∣h ∈ Ad,0,x ∈Md,0} is 2
n+d

2 −1 .

Let Hd,0 = f (Ad,0,Md,0) . The complexity to construct such an Hd,0 is approximately
2

n+d
2 −1 . Note that our assumption on the cardinality of the set Hd,0 has an insignificant

impact on the complexity. When we first create the message set Md,0 , we will almost
certainly have message blocks x,y ∈Md,0 such that x 6= y and f (h1,x) = f (h2,y) for
some h1,h2 ∈ As,0 . However, we can easily replace the colliding message blocks one by
one with new ones. The output of the initiation step is Ad,0 , Md,0 , Hd,0 .

Let now j ∈ {2,3, . . . ,d} and k ∈ {0,1,2, . . . ,2 j−2−1} .

Step step(d, j,k)

The step takes as an input A j,k , M j,k , H j,k . Here A j,k is a set of 2 j−2k hash values,

M j,k is a set of s j,k message blocks, where s j,k ≥ 2
n+ j

2 −1

2 j−2k , and

H j,k = { f (x,h)
∣∣x ∈ A j,k,x ∈M j,k}

is a set of hash values such that |H j,k|= |A j,k| · |M j,k| . Note that |H j,k|= (2 j−2k)s j,k ≥
2

n+ j
2 −1 .

A set M′j,k of ds j,k+1− s j,ke new messages is generated so that the cardinality of the set

f (A j,k,M′j,k) = { f (h,x)
∣∣h ∈ A j,k,x ∈M′j,k}

is at least 2
n− j

2 +1 . We search for hash values h jk ,h
′
jk ∈ A j.k and message blocks

x jk ∈ M j,k , x′jk ∈ M′j,k such that f (h jk ,x jk) = f (h′jk ,x
′
jk) . Note that since |H j,k ×

f (A j,k,M′j,k)| ≥ 2n , the expected number of hash values h such that h∈H j,k∩ f (A j,k,M′j,k)

is at least one. Furthermore, for the sake of simplicity of computations, we assume

79

that (h jk ,x jk) and (h′jk ,x
′
jk) are the only colliding pairs in A j,k× [M j,k ∪M′j,k] (more

colliding pairs would of course be a good thing).
Now, what is the complexity of the actions and assumptions above? We may create

the message set M′j,k as a statistical experiment and then compute the hash values
in the set f (A j,k,M′j,k) . Since |Hi,k× f (A j,k,M′j,k)| ≥ 2n , the probability that we find
a colliding pair is according to Lemma 2 approximately e−1

e . This means that the
expected number of times we have to repeat the experiment is e

e−1 , according to Fact 2.
Thus the complexity to create the set M′j,k , compute the values in f (A j,k,M′j,k) , and find

the colliding pair is at most e
e−1 ·2

n− j
2 +1 .

Our assumptions on the cardinality of f (A j,k,M′j,k) and on the number of colliding
pairs do not increase the complexity significantly. This is ensured by replacing the
colliding messages in the set M′j,k one by one with new ones.

Let A j,k+1 := A j,k \{h jk ,h
′
jk} , M j,k+1 := M j,k∪M′j,k , and H j,k+1 := f (A j,k+1, M j,k+1) .

Furthermore we set Bd := Bd ∪{(h jk ,x jk),(h
′
jk ,x
′
jk)} .

As an output of this step we get A j,k+1 , M j,k+1 , H j,k+1 , and Bd .

The output of the step step(d, j,2 j−2−1) (the last step of the phase phase(d, j))
serves as the input to the step(d, j−1,0) (the first step of the phase phase(d, j−1)) for
each j ∈ {3,4, . . . ,d} . We thus define A j−1,0 := A j,2 j−2−1 , M j−1,0 := M j,2 j−2−1 , and
H j−1,0 := H j,2 j−2−1 .

We carry out our diamond structure construction by running the jumps jump(d) ,
jump(d− 1) , . . . , jump(2) , jump(1) one after another in this order. We describe
the inner realization of the jump jump(d) more accurately; all the other jumps are
carried out completely analogously. The jump jump(d) is implemented by running
all its phases I(d) , phase(d,d) , phase(d,d−1) , . . . , phase(d,2) , phase(d,1) . The
last phase phase(d,1) takes as its input only the set A1,0 := A2,1 of two (remaining)
hash values and the pairing set Bd . It searches a pairing set for A1,0 on its own. Each
phase phase(d, j) , j ∈ {2,3, . . . ,d} is realized by running all its steps step(d, j,0) ,
step(d, j,1) , . . . , step(d, j,2 j−2−1) subsequently in this order.

Note that in each phase (step, resp.), the message blocks and hash values generated
in the previous phases (steps, resp.) are utilized, recycled, one could say. This means
that in our method the excessive growth of the complexity can be prevented. This will
be verified in the next subsection.

80

h1

H j ,k

h2

h2d-2k

H j ,k

H j ,k

h1

H j ,k

h2

H j ,k

H j ,k

H j ,k

H j ,k

h2d-2k

.
.
.

.
.
.

.
.
.

f(hj k ,xj k)

f(h'j k ,x'j k)

xj k

x'j k

f(hj k ,xj k) =
f(h'j k ,x'j k)

f (A j ,k ,M 'j ,k)
h1

H j ,k + 1

h2

H j ,k + 1

H j ,k + 1
h2d-2k

.
.
.

.
.
.

.
.
.

.
.
.

hj k

H j ,k

H j ,k

.
.
.

h'j k

hj k

h'j k

f (A j ,k ,M 'j ,k)

f (A j ,k ,M 'j ,k)

f (A j ,k ,M 'j ,k)

f (A j ,k ,M 'j ,k)

h'j k

hj k

Fig 20. Step S(d, j,k) of diamond structure creation.

81

5.1.3 The Overall Complexity of the Construction

Let us first compute the complexity of the jump jump(d) ; recall that it consists
of phases phase(d,d) , phase(d,d−1) , . . . , phase(d,2) , phase(d,1) . Certainly the
complexity of the jump jump(d) is the sum of the expected number of compression
function queries in I(d) and phases phase(d,d) , phase(d,d− 1) , . . . , phase(d,2) ,

phase(d,1) . Applying Lemma 3 and induction on j and k we see that s j,k ≥ 2
n+ j

2 −1

2 j−2k
holds for each j ∈ {2,3, . . . ,d} and k ∈ {0,1, . . . ,2 j−2 − 1} . This means that the
complexity analysis given in the description of the step step(d, j,k) holds. This implies
that given j ∈ {2,3, . . . ,d} , the expected number of compression function queries to
carry out the phase phase(d, j) is at most e

e−1 2 j−2 ·2
n− j

2 +1 ; here 2 j−2 naturally refers
to the number of steps in the phase. The complexity of I(d) is approximately 2

n+d
2 −1

and of phase(d,1) can be approximated to be less than e
e−1 2

n
2+1 . The total complexity

of the jump jump(d) is thus approximately

2
n+d

2 −1 +
e

e−1
·

[
d

∑
j=2

[2 j−2 ·2
n− j

2 +1]+2
n
2+1

]

< 2
n+d

2 −1 +
e

e−1

[
(1+

1√
2
)2

n+d
2 +2

n
2+1
]
.

By the considerations above we can deduce that the complexity of the jump jump(i)

is at most

2
n+i

2 −1 +
e

e−1

[
(1+

1√
2
)2

n+i
2 +2

n
2+1
]

for i = 2,3, . . . ,d . Once again Lemma 2 and Fact 2 prove that the complexity of the
jump jump(1) is at most 2 · e

e−1 ·2
n
2 compression function queries. It follows that the

overall complexity of our diamond structure construction is not more than

d

∑
i=2

[
2

n+i
2 −1 +

e
e−1

[
(1+

1√
2
)2

n+i
2 +2

n
2+1
]]

+2 · e
e−1

·2
n
2

< (1+
1√
2
)2

n+d
2 +2

e
e−1

(1+
1√
2
)22

n+d
2 +2d

e
e−1

2
n
2 .

If we assume for example that d ≥ 20, as is certainly reasonable in the attack construc-
tions that apply a diamond structure, the total complexity will be less than

11 ·2
n+d

2 .

82

Certainly it is clear that the total complexity of the attack is O(2
n+d

2) .
It is worth noticing that this construction method uses a more strict model in the

complexity analysis than the one used in [5]. Namely, in our method each step is caried
out and if it is unsuccessful, repeated again until it succeeds. Using the model of [5] we
could drop the e

e−1 multiplier from the complexity of each of our steps. This would
reduce the whole complexity to less than 7.6 ·2 n+d

2 .
In [17] it is claimed that it is possible to create a diamond structure with approx-

imately 2
n+d

2 +2 compression function calls. The intuitive reasoning proved to be
incorrect. However, our method brings the complexity quite close to 2

n+d
2 +2 . Since our

method is not optimal (for the sake of simplicity) the original claim may well hold.

5.1.4 Memory Requirements

In order to run this construction method optimally, the attacker has to be able to store
H j,k and f (A j,k,M′j,k) in each step step(d, j,k) . |H j,k|+ | f (A j,k,M′j,k)| is largest when

j = d but even then it is well below 2
n+d

2 . Thus the optimal memory requirement of
this construction method can be approximated to be at most 2

n+d
2 . The online memory

requirement of the diamond structure remains of course the same as before, i.e. 3 ·2d .

5.1.5 Reducing the Complexity

It is quite easy to slightly reduce the complexity of the first pairing (i.e., jump(d)), if
we can choose chaining hash values freely. One can choose an arbitrary hash value set A

such that |A|= 2
n+d

2 . After this we can fix a single message block x and compute the
value f (h,x) for all h ∈ A . Thus we have 2

n+d
2 hash values and the number of possibly

colliding pairs is

(
2

n+d
2

2

)
= 2n+d−1−2

n+d
2 −1 ≈ 2n+d−1.

Since the codomain of f consists of 2n elements, there should be approximately 2d−1

pairs h,h′ ∈A such that f (h,x) = f (h′,x) . We have now found 2d−1 colliding pairs with
the approximated complexity 2

n+d
2 (instead of 2

n+d
2 −1 + e

e−1

[
(1+ 1√

2
)2

n+d
2 +2

n
2+1
]

).
As stated before, the method presented in this section does not give us the optimal

complexity. A more efficient approach would be to create new message blocks one by
one, to compute the respective hash values, and to search for colliding pairs after each

83

new message block. However, we certainly still need to apply the compression function
at least 2

n+d−i
2 times to create 2d−i pairs and so the total complexity of our diamond

structure construction will thus not drop below Ω(2
n+d

2) .

5.2 New Versions of the Trojan Message Attacks

In this section we will present two new versions of the Trojan message attacks (see [1]).
First however we will take a look at the Trojan message attack against the random oracle
hash function.

5.2.1 Trojan Message Resistance

Assume for a moment that H : {0,1}∗→{0,1}n is a random oracle hash function and
P is a set of messages with cardinality k ∈ N+ . Suppose that M is another set of
messages such that |M|= 2s for some s ∈ N+ . The probability that a random message
t satisfies property: for each p ∈ P there exists x ∈M satisfying H(pt) = H(x) , is at

most
(

2s

2n

)k
. Assume now that we create a new message set T where |T |= 2 j , j ∈N+ .

The expected number of messages t ∈ T such that for each y ∈ P there exists x ∈M

satisfying H(yt) = H(x) is 2 j ·
(

2s

2n

)k
= 2 j+k s−k n . In order to successfully complete

the attack we should be able to create at least one Trojan message satisfying the given
conditions, so the above expected number of messages should be at least one. This
means that j+ k s− k n≥ 0.

The number of hash function queries needed to create the sets M and T is of order
2 j +2s . We can minimize this by setting j = s = k n

k+1 . So the number of hash function

queries needed is bounded from below by Ω(2
k

k+1 ·n) . It is interesting to see that this is
almost equal to the number of hash function queries needed to create a k−collision [32].

5.2.2 Weak Trojan Attack

We shall now present a new variant of the Collision Trojan Attack. The complexity of
our construction is lower than that of the original one, while it gives the attacker more
freedom to choose the content of the created second preimage. To ensure this we will
assume that the attacker is, in addition to the prefix choice p from the set P , challenged
with another prefix choice v from a prefix set V such that |V | ≤ 2r in the second phase

84

of the attack. The attacker now has to find a suffix s such that f+(h0,vs) = f+(h0, pt) ,
where t is the Trojan message created by the attacker in the first phase.

The attack proceeds through the following steps in the offline phase:

(1) Create a diamond structure D with chaining hash values f+(h0,v) , where v ∈V .
Denote the diamond value with h′ .

(2) Create an expandable message with the initial value h′ and the expanding value h′′ .
(3) Create a large set of message blocks Y and calculate f (h′′,y) for each y ∈ Y .
(4) Connect the prefix set P to the expandable message, one prefix at a time by searching

for collisions to hash values created in the step (3).

In the online phase the attacker uses the expandable message to ensure that the created
second preimage has the same length as the original message. We will now describe the
process with more details.

In the offline phase the attacker creates a diamond structure with chaining hash
values { f+(h0,v)|v ∈V} . Since |V | ≤ 2r , the complexity of this certainly is O(2

n+r
2) .

Assume that r ≥ 20. We can now approximate the complexity to be at most 11 ·2 n+r
2 .

Assume now that the diamond value is h′ . Next the attacker creates an expandable
message, starting from the hash value h′ , with minimum block length r + 1 and
maximum block length 2r+1 + r . The complexity of this effort is at most e

e−1 (r+1) ·
2

n
2+1 [18]. Assume that the final hash value of the expandable message is h′′ .

The attacker then creates a set Y consisting of 2
n+r

2 random message blocks and
computes the respective hash values f (h′′,y) for each y ∈ Y . This requires 2

n+r
2

compression function queries. In addition, the attacker now chooses any message x0

such that the length of x0 is 2r+1.
Now the attacker searches for a message block x1 such that f +(h0,1,x0x1) = f (h′′,y)

for some y ∈ Y . Denote h1 := f +(h0,1,x0x1) . The complexity of finding such an x1 is
approximately 2

n−r
2 . The attacker sets y1 := y and is now ready for the second step of

the first phase.
Consider the step i ∈ {2,3, · · · ,2r} of the first phase of the attack. The attacker

computes h′i−1 := f +(h0,i,x0x1x2 · · ·xi−1) and searches for a message block xi such that
f (h′i−1,xi) = f (h′′,y) for some y ∈ Y . Once again the complexity of finding xi is 2

n−r
2 .

Denote hi := f (h′i−1,xi) and yi := y . Once the attacker has completed the 2r steps, the
offline phase is done. The attacker now forms the Trojan message t = x0x1x2 · · ·x2r .

Assume that in the second phase the attacker is challenged with the prefix p j

from the prefix set P , j ∈ {1,2, . . . ,2r} and a second prefix v ∈ V . Assume that z

85

p2

p1

p3

p4

x1 x2
x0 x3 x4

x0

x0

x0

x1 x2 x3 x4

x1 x2
x3 x4

x1 x2 x3 x4

v2

v1

v3

v4

h' h''
Y

h1

h2

h3

h4

h4

h3

h1

h2

h0,1

h0,2

h0,3

h0,4

Fig 21. Weak Trojan Attack example when r = 2 .

86

is the expandable message with length j+ r and y is the path from f+(h0,v) to h′ ,
i.e., f+(f+(h0,v),y) = h′ . Obviously f+(h0, p jx0x1 · · ·x2r) = f+(h0,vyzy jx j+1x j+2

· · ·x2r) , so clearly vyzy jx j+1x j+2 · · ·x2r is a second preimage for p jt .
The messages created in this way have the length k+ 2r + 1+ 2r . The offline

complexity of this attack is 13 ·2 n+r
2 , while the online complexity is negligible. Since

Collision Trojan Attack has the complexity of approximately 2.5 ·2 n
2+r , when completed

in the manner described in this work, the advantage of Weak Trojan Attack is obvious,
when considering the number of required compression function calls. The algorithm
memory requirement of Weak Trojan Attack is however somewhat higher 2

n+r
2 . The

online memory requirement of Weak Trojan Attack is approximately 6 ·2r .

5.2.3 Strong Trojan Attack

We shall use both expandable messages [18] and elongated diamond structures [17] to
reduce the complexity of the original Herding Trojan Attack.

In the offline phase the attacker goes through the following steps:

(1) Create an elongated diamond structure De and denote the final hash value with h′ .
(2) Connect the hash value h′ to the prefix set P in the same manner as was done in

Weak Trojan Attack.

In the online phase the attacker goes through steps:

(3) Connect the new prefix p to the elongated diamond structure De .
(4) Use the expandable message to ensure that the created second preimage has the

same length as the original one.

The attacker begins the first phase of the attack by creating a random message
z = z1z2 · · ·z2s , where s≥ r and z1,z2, . . . ,z2s are message blocks. Then she/he chooses
random hash values b1,b2, · · ·b2d (where d ∈ N+,d ≤ s), computes ai := f+(bi,z) for
i = 1,2, . . .2d , and creates a diamond structure with chaining hash values a1,a2, . . . ,a2d .
The number of compression function queries needed is 11 ·2 n+d

2 . Assume that the final
root hash value of the structure is h′ . The attacker then continues by constructing an
expandable message, starting from the hash value h′ with the minimum length s+1 and
the maximum length s+2s+1 . The complexity of the construction is e

e−1 (s+1) ·2 n
2+1 .

Suppose that the final hash value of the expandable message is h′′ .

87

The attacker now creates a set Y containing 2
n+r

2 random message blocks and
computes all the hash values f (h′′,y) , y ∈ Y . She also chooses an arbitrary message x0

of length 2s +d + s+1, and searches a message block x1 such that f+(h0,1,x0x1) =

f (h′′,y) for some y ∈ Y . The complexity of finding such x1 and y is 2
n−r

2 . Denote
h1 := f+(h0,1,x0x1) and y1 := y .

Let i ∈ {2,3, · · · ,2r} . In the step i of the first phase of the attack, the attacker
computes h′i−1 := f+(h0,i,x0x1x2 · · ·xi−1) and searches for a message block xi such that
f (h′i−1,xi) = f (h′′,y) for some y ∈ Y . To find such xi and y takes approximately 2

n−r
2

compression function queries. Finally the attacker sets hi := f (h′i−1,xi) = f (h′′,y) and
yi := y .

After the 2r steps our attacker chooses t := x0x1x2 · · ·x2r for the Trojan message
and has completed the first (offline) phase of the attack. Since there were altogether 2r

steps above, the complexity of completing them all is 2
n+r

2 . This means that the total
complexity of the offline phase is approximately 11 ·2 n+d

2 +2
n+r

2 +1 .
Assume now that the attacker is challenged with a prefix p j ∈ P and another prefix

p with the length smaller than |p j| . The attacker now searches for a connection
message x such that the length of px is |p j| , and f +(h0, px) = h′′′ for some hash value
h′′′ that satisfies the condition h′′′ = f +(bi,z1z2 · · ·zk) for some i ∈ {1,2, · · ·d} and
k ∈ {1,2, · · ·2s} . Assume now that message y is the path from h′′′ to the hash value h′

in the diamond structure, i.e., f +(h0, pxy) = h′ ; the length of y is clearly 2s +d− k .
Assume furthermore that w is the expandable message chosen so that the total length of
the message pxywy jx j+1x j+2 · · ·x2r is 2s +2r + |p j|+d + s+1.

Now f +(h0, pxywy j) = f +(h0, p jx0x1 · · ·x j) = h j so pxywy jx j+1x j+2 · · ·x2r is the
second preimage for the message p jt . The length of both messages is 2s +2r + k+d +

s+1. The complexity of finding x is in 2n−d−s , which means that the complexity of the
online phase is also 2n−d−s . The algorithm memory requirement of the attack is 2

n+d
2 or

2
n+r

2 , whichever is higher. Thus the algorithm memory requirement is max{2 n+d
2 ,2

n+r
2 } .

The attacker has to store the elongated diamond structure and thus the online memory
requirement of the attack is approximately 2d+s+1 +2r+1 . If we choose d = n−2s

3 , the
total complexity of the attack is 12 ·2 2n−s

3 +2
n+r

2 +1 .
This of course means that, if we are able to create longer messages and are able

to store the elongated diamond structure, we can reduce the total complexity of the
attack. Ideally, we could choose s = n−3r

2 , giving us the total complexity of 14 ·2 n+r
2 .

For example in SHA-1 the maximum length of the message is 254 message blocks
while n = 160. This implies that for r = 20 we will have 14 ·2 n+r

2 = 14 ·290 , if we can

88

p2

p1

p3

p4

x1 x2
x0 x3 x4

x0

x0

x0

x1
x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

h' h''
Y

z1

h1

h2

h3

h4

h2

h1

h3

h4

h0,1

h0,2

h0,3

h0,4

z2 z3 z4

z1 z2 z3 z4

z1 z2 z3 z4

z1 z2 z3 z4

Fig 22. Example of the offline phase in Strong Trojan Attack when d = s = r = 2 .

89

choose the length of the message to be 250 message blocks. Creating basic second
preimage attacks, presented in [18] and [2], against messages with that length would
have complexity greater than 2110 .

In practice messages are of course a lot shorter. However, if we are able to choose, for
example s = n

5 , we would have the total complexity of less than 12 ·2 3n
5 in comparison

to over 2
4n
5 offered by ordinary second preimage attacks against messages with the

length 2
n
5 , while s = n

11 would give us complexity less than 12 ·2 7n
11 in comparison to

complexity over 2
10n
11 .

5.3 Tables

The results of this chapter are summarized on the following tables. We have also
summarized the effect the new diamond construction method has on the complexities
and algorithm memory requirements of some of the attacks analyzed in Chapter 3.
It is worth noticing that the model used to evaluate the complexity and algorithm
memory requirement of the new construction method for the diamond structure is more
demanding than the one used for the original version. Using the same method would
decrease the constant multipliers of the complexities of all the attacks that apply the new
method of the diamond structure creation.

Once again we wish to point out that the results concern the attacks carried out in
the way described in this work. They are thus certain but rough upper bounds.

90

Table 5. Complexities and memory requirements of diamond structure construction meth-
ods.

Diamond Structure Creation Method Complexity AMR OMR

Old Method [5, 17] 4 ·
√

d ·2 n+d
2 0.83 ·

√
d ·2 n+d

2 3 ·2d

New Method [22] 11 ·2 n+d
2 2

n+d
2 3 ·2d

The complexity, AMR and OMR of the old diamond structure creation mehthod are

based on analysis presented in [5]. The original work [17] claims the complexity of

approximately 2
n+d

2 +2 . However, the analysis was not correct as was proven in [5].

Table 6. Offline and online complexities of Trojan message attacks.

Trojan Message Attack Type Offline Online

Collision Trojan Attack [1] 2.5 ·2 n
2 +r Negligible

Herding Trojan Attack [1] 11 ·2 n+d
2 + e

e−1 ·2
n
2 +r+1 2n−d

Weak Trojan Attack [22] 13 ·2 n+r
2 Negligible

Strong Trojan Attack [22] 11 ·2 n+d
2 +2

n+r
2 +1 2n−d−s

The length of the created message is 2s and the size of the prefix set is 2r , where r < s .

We assume that the attacks use the diamond structure creation method of this work.

Table 7. Memory requirements and attacker’s conrol of Trojan message attacks.

Trojan Message Attack Type AMR OMR Control

Collision Trojan Attack [1] 2
n
2 +1 2r+1 None

Herding Trojan Attack [1] 2
n+d

2 3 ·2d +2r+1 Any pr.

Weak Trojan Attack [22] 2
n+r

2 6 ·2r Restricted pr.

Strong Trojan Attack [22] max{2 n+d
2 ,2

n+r
2 } 2d+s+1 +2r+1 Any pr.

We assume that the attacks use the diamond structure creation method of this work.

Control refers to the control the attacker has over the created second preimage in the

online phase. Restricted pr. means that the attacker can choose the prefix of the second

preimage from the pregenerated set with 2r prefixes. Any pr. means that only the length

of the prefix is restricted.

91

Table 8. The effect of the new diamond construction method on complexities and memory
requirements of some attacks when d=n/3.

Attack Type Complexity AMR

Old Herding Attack [17] (4 ·
√ n

3 +1) ·2
2n
3 0.83 ·

√ n
3 ·2

2n
3

Old Hash Twice Herding [1] (12 ·
√ n

3 +3) ·2
2n
3 0.83 ·

√ n
3 ·2

2n
3

Old Zipper Hash Herding Variant [1] (8 ·
√ n

3 +2) ·2
2n
3 0.83 ·

√ n
3 ·2

2n
3

Old Hash Twice Second Preimage [1] (8 ·
√ n

3 +2) ·2
2n
3 +2n−l 0.83 ·

√ n
3 ·2

2n
3

New Herding Attack [17] 12 · 2n
3 2

2n
3

New Hash Twice Herding [1] 36 ·2
2n
3 2

2n
3

New Zipper Hash Herding Variant [1] 24 ·2
2n
3 2

2n
3

New Hash Twice Second Preimage [1] 24 ·2
2n
3 +2n−l 2

2n
3

Hash Twice second preimage attacks are against original message with length 2l in

message blocks.

92

6 Generalized Iterated Hash Functions I:
Attack Consideration Based on Classical
Combinatorics and Permutations

As we have seen, it is possible to use the Joux’s method to create large, exponential size
multicollisions, while at the same time the complexity of the attack rises only linearly.
This means that the standard iterated hash function is unable to achieve the generalized

collision resistance of the random oracle hash functions. The question arises whether or
not the ideas of Joux’s can be applied in a broader setting, i.e.: can Joux’s approach be
used to create multicollisions in generalized iterated hash functions? In the following we
shall see that under certain assumptions this is indeed possible.

One possible way to use generalized iterated hash functions would be to apply them
to the concatenation structure (see. 2.5.1) so that f1

+ and f+2 are generalized iterated
hash functions instead of standard iterated hash functions. The results of this chapter
imply that the collision attack against concatenated structure presented in [15] (see also
3.1.1) can be applied against such a structure as well.

Traditionally, in combinatorics on words one studies unavoidable regularities that
appear in sufficiently long strings over a fixed size alphabet. The viewpoint inspired
by the generalized iterated hash functions is different. Assume that the sequence
α̂ = (α1,α2 . . .) and the compression function f define a generalized iterated hash
function Hα̂, f (see Definition 3). Since in practice each message block can certainly be
used in the hashing process only a limited number of times, we assume that the number
of occurrences of each symbol in αi, i ∈ {1,2, · · ·} is restricted by a fixed given constant.
In other words, we assume that, for some q ∈ N+ , the sequence α̂ is q−bounded. On
the other hand, we assume that each message block is used in the hashing process at
least once.

So our question is whether Hα̂, f can achieve the generalized collision resistance of
a random oracle hash function when q > 1. In this chapter, we will study previously
proven results that show that this is not the case.

This question was investigated first for 2-bounded hash functions in [30]. In the
article [14] the results of [30] were further generalized and used to study any generalized
hash function that is based on a q−bounded sequence. The approach and basic ideas of

93

[14] are correct and brilliant. A mathematically rigorous consideration of the results was
provided in [19] (see also [13]).

It was shown that it is possible to create a 2k -collision in any q -bounded generalized
iterated hash function with O(g(n,q,k)2

n
2) queries on f , where g(n,q,k) is a function

of n,q and k which is polynomial with respect to n and k , but triple exponential with
respect to q .

The results were studied and improved further in [21] (see also [20]), where it
was shown that it is possible to create 2k -collision in any q-bounded generalized
iterated hash function with O(g(n,q,k)2

n
2) queries on f , where g(n,q,k) is only

double exponential with respect to q . In Chapter 7 we will show that it is possible to
lower the g(n,q,k) even further.

6.1 Nested Multicollision Attack Schema (NMCAS)

Below we will describe a general (and informal) attack procedure that, given Hα̂, f ,
h0 ∈ {0,1}n and k ∈N+ creates a 2k -collision on any generalized iterated hash function
Hα̂, f with initial value h0 . The attacks of this chapter and next chapter follow the
procedure that was presented in [19].

Procedure Schema NMCAS

Input: A generalized iterated hash function Hα̂, f , initial value h0 ∈ {0,1}n , positive
integer k .
Output: A 2k -multicollision on Hα̂, f .
Step 1: Choose (a large) l ∈ N+ . Consider the l th element αl of the sequence α̂ . Let
αl = i1i2 · · · is , where s ∈ N+ and i j ∈ Nl for j = 1,2, . . . ,s .
Step 2: Fix a (large) set of active indices A⊆ Nl = {1,2, . . . , l} .
Step 3: Factorize the word αl into nonempty strings appropriately , i.e., find p ∈
{1,2, . . . ,s} and βi ∈ N+

l such that αl = β1β2 . . .βp and A⊆ alph(βi) for i = 1,2..., p .
Step 4: Based upon the active indices, create a large multicollision on fβ1 . More
precisely, find message block sets M1,M2, . . . ,Ml satisfying the following properties.

(i) If i ∈ Nl \A , then the set Mi consists of one (constant) message block xi1 = iv .
(ii) If i ∈ A , then the set Mi consists of two different message blocks xi1 and xi2 .
(iii) The set M = M1M2 · · ·Ml = {u1u2 · · ·ul |ui ∈Mi for i = 1,2, . . . , l} is a

2|A| -multicollision on fβ1 with initial value h0 .

Step 5: Based on the set C1 = M , find message sets C2,C3, . . . ,Cp such that

94

(iv) Cp ⊆Cp−1 ⊆ ·· · ⊆C1 = M .
(v) For each j ∈ {1,2, . . . , p} the set C j is a (large) multicollision on fβ1β2···β j with

initial value h0 .
(vi) |Cp|= 2k .

Step 6: Output Cp .

It should be clear that, if the above procedure is successfully carried out, then

Hα̂, f (h0,x) = Hα̂, f (h0,x′)

for all x,x′ ∈Cp .

6.2 Basic Structure of the Attack

In Chapter 7, we will present the best known attack against the q−bounded generalized
iterated hash function. We will now take a closer look at these previous versions
of the attacks against q−bounded generalized iterated hash functions presented in
[14, 19, 21, 30]. For this we need the following definitions.

A binary relation R of the set X is a partial order (in X), if it is irreflexive
(∀x ∈ X : (x,x) /∈ R), antisymmetric (∀x,y ∈ X : (x,y) ∈ R⇒ (y,x) /∈ R) and transitive
(∀x,y,z ∈ X : (x,y) ∈ R∧ (y,z) ∈ R⇒ (x,z) ∈ R).

Let ≺ be a partial order in X . Call (X ,≺) a partially ordered set. The elements
x,y ∈ X are incomparable (in (X ,≺)) if neither x≺ y nor y≺ x holds. The nonempty
finite sequence x1,x2, . . . ,xr of elements of X is a chain of (X ,≺) if xi ≺ xi+1 for
i ∈ {1,2, . . . ,r−1} . Above r ∈ N+ is the length of the chain x1 ≺ x2 · · · ≺ xr .

Consider now a finite partially ordered set (X ,≺) , i.e., a partially ordered set
such that X is finite. The maximum number of incomparable elements of (X ,≺)
is the cardinality of the largest set Y ⊆ X such that the elements of Y are pairwise
incomparable. Finally, let the maximum chain length of (X ,≺) be the largest number
r ∈ N+ such that there exists a chain of length r in (X ,≺) .

Let us now investigate partial orders induced by words. Let α be a nonempty
word. Define the binary relation ≺α of alph(α) as follows. For each a,b ∈ alph(α) ,
let a≺α b hold if and only if a 6= b and each occurrence of a in α happens before
each occurrence of b in α . Certainly, if a≺α b , then there exist words α1 and α2 such
that α = α1α2 and |α1|b = |α2|a = 0. Obviously, ≺α is irreflexive, antisymmetric
and transitive, so (alph(α),≺α) is a partially ordered set. Call the elements of a

95

nonempty set A⊆ alph(α) independent (with respect to ≺α), if they form a chain in
(alph(α),≺α) .

The projection morphism πB from A∗ into B∗ , where B is nonempty and B⊆ A ,
is defined by πB(c) = c if c ∈ B and πB(c) = ε if c ∈ A \B . Given a word w over
the alphabet A , define the word (w)B as follows: (w)B = ε if πB(w) = ε and (w)B =

a1a2 · · ·as if πB(w) ∈ a+1 a+2 · · ·a+s , where s ∈ N+ , a1,a2, . . . ,as ∈ B , and ai 6= ai+1 for
i = 1,2, . . . ,s−1.

Example 1. Let α = 1 ·3 ·3 ·5 ·1 ·2 ·4 and B = {1,3,4} . Now πB(α) = 1 ·3 ·3 ·1 ·4
and (α)B = 1 ·3 ·1 ·4

Let α be a word such that alph(α)⊆N+ and u a word in ({0,1}m)+ . Assume that
α = a1a2 · · ·as , where s ∈ N and ai ∈ N+ for i = 1,2, . . . ,s and u = u1u2 · · ·ul where
u j is a message block for j = 1,2, . . . , l . Let uk = iv , where iv is any fixed message
block, for all k ∈ alph(α)\Nl . Define

u(α) = ua1ua2 · · ·uas .

Then u(α) is the word in which the message blocks u1,u2, . . . ,ul of u are written in the
order determined by α so that, if k is an element of alph(α) , but does not belong to
Nl = {1,2, . . . , l} , then the respective uk is equal to the constant message block iv .

Example 2. Let u = u1u2u3u4u5 , where ui is a message block for i = 1,2, · · · ,5 and
α = 1 ·3 ·3 ·5 ·1 ·2 ·4. Now u(α) = u1u3u3u5u1u2u4 and

fα(h0,u) = f+(h0,u1u3u3u5u1u2u4).

The idea behind the successful construction of the attack is the fact, that since α̂ is
q-bounded, unavoidable regularities start to appear in the word αl of α̂ , when l is
increased. The attacks presented in the articles [14, 19, 21, 30] create a 2k−collision by
finding a factorization αl = β1β2 · · ·βp and a set A⊆ alph(αl) , such that |A|= knp−1

and the following properties are satisfied.

(P1) αl = β1β2 · · ·βp and the word (βi)A is a permutation of A for i = 1,2, . . . , p

(P2) For any i ∈ {1,2, . . . , p−1} , if (βi)A = z1z2 · · ·znp−ik is a factorization of (βi)A

such that |alph(z j)|= ni−1 for j = 1,2, . . .np−ik and (βi+1)A = u1u2 · · ·unp−i−1k is
a factorization of (βi+1)A such that |alph(u j)| = ni for j = 1,2, . . .np−i−1k , then
for each j1 ∈ {1,2, . . . , np−ik} , there exists j2 ∈ {1,2, . . . , np−i−1k} such that

96

alph(z j1) ⊆ alph(u j2) . In other words, for each j2 ∈ {1,2, . . . , np−i−1k} there
exist exactly n integers j1 ∈ {1,2, . . .np−ik} such that alph(z j1)⊆ alph(u j2) , while
alph(z j1)

⋂
alph(u j3) = /0 for all j3 ∈ {1,2, . . . , np−i−1k} , j3 6= j2 .

It is worth noticing that here l tells us the length of the message in message blocks.
When we increase the number of message blocks in the message, we increase l . On the
other hand, since we assume that each message block is used in the hashing process at
least once, the number of the message blocks is equal to |alph(αl)|= l .

So our goal is to create a 2k -collision on fαl , with messages that are l message
blocks long. Now the question is, how large l , i.e. the number of message blocks in the
message, must be in order to ensure that the attacker is able to find a set A such that (P1)
and (P2) are satisfied.

When we have found a factorization of α and a set A satisfying properties (P1) and
(P2) we have also completed steps 1, 2 and 3 of the NMCAS . Previous versions of the
attacks (found in [14, 19, 21]) all approach the problem in the same manner. First the
attacker searches for a huge set A′ ⊆ alph(αl) that satisfies property (P1). After this, the
attacker searches for such A⊆ A′ that A satisfies property (P2) and |A|= knp−1 .

In the next chapter, we will abandon this approach and create a new one. However,
first we will take a look at the approaches that have been used in articles [14, 19, 21]) to
search such an αl and a set A that properties (P1) and (P2) are satisfied.

6.3 First Step: Creating Unavoidable Permutations

The attacks in articles [14, 19, 30] are all based on the same result, formalized in [19] as
Lemma 4.8. We present the result below.

Lemma 4. Let r,n and q be positive integers and α a q−bounded word such that
alph(α) ≥ r · s . Then either (i) the maximum chain length of (alph(α),≺α) is at least
r ; or (ii) the maximum number of pairwise incomparable elements in (alph(α),≺α) is
greater than s .

We omit the proof that is based on Dilworth’s Theorem [9]. The proof can be found
in [19].

As stated before, [30] studies generalized hash functions where α̂ is 2−bounded.
By using the lemma above, it is easy to see that, when |alph(α)| = k2n and α ∈ α̂

either:

97

1. there exists a set A1 of size k that forms a chain in α . This is equivalent to claiming
that they satisfy the condition: (α)A1 is a permutation of A1 or

2. there exists a set A2 of size nk that satisfies condition: There exists a factorization
α = β1β2 , where each symbol of A2 appears exactly once in β1 and β2 . This means
that (β1)A2 and (β2)A2 are permutations of A2 for some α = β1β2 .

It is worth noticing that here |A1| 6= |A2| , while clearly both A1 and A2 satisfy
property (P1). In case 1, we have only one permutation and thus also (P2) is satisfied. In
case 2, the attacker simply divides (β2)A2 into k equal length (n) intervals and (β1)A2

into nk equal length (1) intervals, in order to satisfy property (P2). Later Theorem 3
will show that we are now able to produce a 2k -collision.

In their work [14] Hoch and Shamir generalized this problem and used chains (or
independent elements) and intervals in sequence to solve it. They showed that, assuming
that αl is q-bounded and |alph(αl)| is large enough, the attacker is able to create a
set A and factorization αl = β1β2 · · ·βp satisfying properties (P1) and (P2). In the
article [19], the question was formalized as a problem of word combinatorics and the
boundaries of the proofs of [14] were corrected.

Assume that |alph(αl)| > rs . The basic idea of the attack is first to search for a
chain with r elements in αl . If such a chain with a large enough number of elements is
found, we can directly use its elements to create a set A′ such that (alph(αl))A′ is a
permutation of A′ . If such a chain is not found, we know, by using Lemma 4 that there
is at least s pairwise incomparable elements in αl and factorize the word αl = α1α2 in
such a way that each of these pairwise incomparable elements appear in α1 and α2 .
Then we proceed to attack both α1 and α2 separately in the same manner.

While this “divide and conquer” idea is sound, it turns out that the upper bound of
the required message length is rather high. To ensure that the attacker is able to find a
set A′ such that |A′| ≥ t and A′ satisfies property (P1) the length of the word αl should
be at least rqtsq where sq is O(22q−1) and rq is O(222q−3

) . Effectively, this means that
when creating large collisions, the length of the word is triple exponential in respect to
q . This of course raises the question: could this upper bound be lowered?

In the article [20] the problem was studied even further from the point of view of
word combinatorics. The proof of the following theorem offered a new and much lower
upper bound for the required message length.

Theorem 1. For all positive integers t and q there exists a (minimal) positive integer
N(t,q) such that the following is true. Let α be a word for which |alph(α)| ≥ N(t,q)

98

and |α|a ≤ q for each a ∈ alph(α) . There then exists A⊆ alph(α) with |A|= t and
p ∈ {1,2, . . . ,q} as well as words α1,α2, . . . ,αp such that α = α1α2 · · ·αp and for all
i ∈ {1,2, . . . , p} , the word (αi)A is a permutation of A .

Proof. We proceed by induction on q .
Consider first the case q = 1. Assume that t ∈N+ and α is a word such that |α| ≥ t

and |α|a = 1 for each a ∈ alph(α) . Choosing p = 1 and letting A⊆ alph(α) be any
such set that |A|= t , we note that (α)A is a permutation of A . Thus N(t,1) exists and
is less than or equal to t . Trivially N(t,1)≥ t , so we conclude that N(t,1) = t .

Let us now turn to the general case. Let q ≥ 2 and α be a word such that
|alph(α)| ≥ N(t2− t +1,q−1) and |α|a ≤ q for all a ∈ alph(α) .

Suppose that β is the word achieved from α when, for each a ∈ alph(α) such
that |α|a = q , the qth occurrence of the symbol a is erased. Since |alph(β)| =
|alph(α)| ≥ N(t2− t +1,q−1) , there exist, by the induction hypothesis, B⊆ alph(α) ,
|B|= t2−t+1, p∈ {1,2, . . . ,q−1} , and words β1,β2, . . . ,βp such that β = β1β2 · · ·βp

and for each i∈{1,2, . . . , p} , the word (βi)B is a permutation of B . Now B⊆ alph(βi)⊆
alph(β) for i = 1,2, . . . , p .

Let α1,α2, . . . ,αp be words such that α = α1α2 · · ·αp and βi is a subword of αi for
i = 1,2, . . . , p such that for each i ∈ {1,2, . . . , p−1} and b ∈ B we have |αi|b = |βi|b .
Since β is a subword of α and βp contains an occurrence of b for each b ∈ B , the
words α1,α2, . . . ,αp clearly exist.

Note that, by the facts above, we have πB(βi) = πB(αi) for i = 1,2, . . . , p−1.

Claim 1. Let b ∈ B . If |α|b < q , then |αi|b = |βi|b for i = 1,2, . . . , p . If |α|b = q , then
|αi|b = |βi|b for i = 1,2, . . . , p−1 and |αp|b = |βp|b +1.

Proof. By the definition of the words β and α1,α2, . . . ,αp , the following hold:

(1) |αi|b = |βi|b for i = 1,2, . . . p−1 and |αp|b ≥ |βp|b
(2) |β |b +1 = (Σp

i=1|βi|b)+1≥ Σ
p
i=1|αi|b = |α|b ≥ |β |b

If |α|b < q , then |α|b = |β |b and, by (1) and (2) , the equality |αp|b = |βp|b holds. If
|α|b = q , then |α|b = |β |b +1 and, again by (1) and (2) , we have |αp|b = |βp|b +1.

Assume, without loss of generality that πB(βp) = ad1
1 ad2

2 · · ·a
dt2−t+1
t2−t+1 , where d j ∈ N+

for j = 1,2, . . . , t2 − t + 1 and a1,a2, . . . ,at2−t+1 are the t2 − t + 1 (pairwise dis-
tinct) symbols of B . Write πB(βp) in the form πB(βp) = γ1γ2 · · ·γt , where γi =

99

a
d(i−1)t+1
(i−1)t+1a

d(i−1)t+2
(i−1)t+2 · · ·a

di·t
i·t for i= 1,2, . . . , t−1 and γt = a

d(t−1)t+1
(t−1)t+1 . Then |alph(γi)|= t for

i= 1,2, . . . t−1 and |alph(γt)|= 1. Let δ1,δ2, . . . ,δt be words such that αp = δ1δ2 . . .δt ,
γi is a subword of δi and alph(δi)∩alph(γi+1γi+2 · · ·γt) = /0 for i= 1,2, . . . , t−1. Since,
by the definition of β , the dth

i occurrence of ai in αp lies before the first occurrence of
ai+1 for each i ∈ {1,2, . . . , t2− t} , the words δ1,δ2, . . . ,δt certainly can be found.

Claim 2. Let i ∈ {1,2, . . . , t−1} and a ∈ alph(γi) . Then |δi+1δi+2 · · ·δt |a ≤ 1.

Proof. Suppose that Claim 2 does not hold, i.e., |δi+1δi+2 · · ·δt |a ≥ 2. Then

|αp|a = |δi|a + |δi+1δi+2 · · ·δt |a ≥ |γi|a +2 = |βp|a +2

and we have a contradiction with Claim 1.

For each i ∈ {1,2, . . . , t} , let bi ∈ alph(γi) be a symbol that does not occur in
δi+1δi+2 · · ·δt , if such a symbol exists. By the definition of δ1,δ2, . . .δt , such a bi does
not occur in δ1δ2 · · ·δi−1 . Are we able to find t symbols b1,b2, . . . ,bt ? If so, choose
A = {b1,b2, . . . ,bt} and note that α = α1α2 . . .αp and (αi)A is a permutation of A for
i = 1,2, . . . , p .

Suppose that j ∈ {1,2, ..., t− 1} is such that each symbol in alph(γ j) occurs in
δ j+1δ j+2 · · ·δt . By Claim 2, all these occurrences are the last ones of the respective
symbol in α . Recall that |alph(γ j)|= t . Choose A = alph(γ j) , α ′p = δ1δ2 · · ·δ j , and
α ′p+1 = δ j+1δ j+2 · · ·δt . Then α = α1α2 . . .αp−1α ′pα ′p+1 and

(α1)A,(α2)A, . . . ,(αp−1)A,(α
′
p)A,(α

′
p+1)A

are permutations of A . Since p < q , we have p+1≤ q . We may deduce that N(t,q)

exists and is less than or equal to N(t2− t +1,q−1) . The induction is thus extended
and our proof is complete.

This approach is much more efficient than the one presented in [14]. It allows the
attacker to decrease the minimum length of α and so also the complexity of the attack
significantly. Now N(t,q) gives us the upper bound for the message length required to
create a set A′ such that A′ satisfies property (P1) and |A′| ≥ t . It is easy to see that
N(t,q)≤ t2q

. Thus the upperbound of the message length has been lowered from triple
exponenetial to double exponential. In the next chapter, we will take a closer look at
N(t,q) , lower the upper bound and create a lower bound for it.

100

6.4 Second Step: Using the Permutations

Once the attacker has found a set A′ such that |A′|= t and factorized αl = β1β2 · · ·βp

so that (βi)A′ is a permutation of A′ she/he is ready to use this factorization to produce
a set A⊆ A′ that satisfies property (P2). This will result in a set A that will satisfy both
properties (P1) and (P2).

In the general case, where αl is q−bounded the situation is quite complex. In order
to create A , the article [14] uses a result labeled as Lemma 1. The article [19] uses the
following theorem that contains the same result.

Theorem 2. Let k ∈ N+ and A be a finite nonempty set such that k divides |A| .
Furthermore, let {Bi}k

i=1 and {C j}k
j=1 be partitions of A such that |Bi| = |C j| for

i, j = 1,2, . . . ,k . Then for each x ∈ N+ such that |A| ≥ k3 · x , there exists a bijection
σ : {1,2, . . . ,k}→ {1,2, . . . ,k} for which |Bi∩Cσ(i)| ≥ x for i = 1,2, . . . ,k .

We omit the proof of this Theorem. Detailed proof can be found in [19]. For the
original proof see [14].

The attacker proceeds by dividing βp and βp−1 to k intervals and pairing them
using Theorem 2. Then both βp−1 and βp−2 are divided to kn intervals and paired and
so on. It is shown in [19] that, if |A′| ≥ k2q−3 ·n(q−1)2

, then the attacker will also be
able to create a set A⊆ A′ that satisfies also property (P2) and has |A|= knq−1 .

This means that the articles [14, 19] prove that the attacker can create a set A that
satisfies (P1) and (P2), by choosing the length of the message to be
222q−3

k(2q−3)22q−1
n(q−1)222q−1

. This upper bound of the message length is lowered in
[20] to k(2q−3)2q

n(q−1)22q
.

6.5 Third Step: Completing the Attack

Assume now that the attacker has found a set A and a factorization αl = β1β2 · · ·βp that
satisfy properties (P1) and (P2) and thus first three steps of NMCAS are done. Now
the attacker has to create a 2k -collision. In order to do this we will need a couple of
new results. These results can be found in [19]. They are included here for the sake
of completeness. The following lemma allows the attacker to complete step 4 of the
NMCAS .

In the following proofs, we assume that the attacker is able to find a collision in
a set of 2n messages with probability equal to one. If we assume that n is constant,
this is strictly speaking not true, although the probability that this is not the case, is

101

extremely small (the attacker requires 2n +1 messages to find a collision certainly). The
attacker can avoid this problem by simply starting the attack again, if it unsuccessful
after 2n -compression function calls or by replacing n with n+1 in the constructions.
We have chosen to use n for the sake of notational simplicity.

Lemma 5. Let α be a word over the alphabet Nl , r a positive integer and a1,a2, . . . ,ar

in alph(α) symbols such that a1 ≺α a2 ≺α . . .≺α ar . Furthermore, let α = α1α2 · · ·αr

be a factorization of α such that for each i ∈ {1,2, . . . ,r} , all occurrences of the
symbol ai in α lie in αi . Given an initial value h0 ∈ {0,1}n , we can, with probability
equal to one, find message block sets M1,M2, . . . ,Ml ⊆ {0,1}m as well as values
h1,h2, . . . ,hr ∈ {0,1}n such that

(1) Mb = {iv} for each b ∈ Nl \A , where A = {a1,a2, . . . ,ar} ;
(2) Mai = {ui,u′i} , where ui 6= u′i for each i ∈ {1,2, . . . ,r} ;
(3) for each i ∈ {1,2, . . . ,r} the set M = M1M2 · · ·Ml is such that ∀u,u′ ∈M :

hi = fαi(hi−1,u) = fαi(hi−1,u′)

= fα1α2···αi(h0,u) = fα1α2···αi(h0,u′) .

Moreover, the expected number of queries on f needed for finding M is less than
2.5|α|2 n

2 .

Proof. Let initially Mi = {iv} for i= 1,2, . . . , l . Proceed by induction on i∈{1,2, . . . ,r} .
Suppose that, given the initial value h0 ∈ {0,1}n , we are, with probability equal to one,
able to find message block sets Ma j = {u j,u′j} , j = 1,2, . . . , i−1, as well as values
h1,h2, . . . ,hi−1 ∈ {0,1}n such that after updating M := M1M2 · · ·Ml the following holds:
for each j ∈ {1,2, . . . , i−1} the set M satisfies property

∀u,u′ ∈M : h j = fα j(h j−1,u) = fα j(h j−1,u′) .

Furthermore, assume that the expected number of queries on f has been 2.5|α1α2

· · ·αi−1|2
n
2 .

Assume now that we have updated M . Create then a set T = T1T2 · · ·Tl such that
Tj = {iv} for all j 6= ai and Tai is a set of 2

n
2 random message blocks. Among the

messages, a 2-collision on fαi with initial value hi−1 , is tried to be found. Using results
from subsection 2.7.2 it is easy to deduce that the expected number of times that the
generation of the set Tai of 2

n
2 random message blocks has to be repeated is less than

2.5. Thus the expected number of queries on f is less than 2.5|αi|2
n
2 (one could lower

the multiplier 2.5 here to ǎ≈ 2.2) .

102

Note two things in the construction of the collision on fαi :

(i) only message blocks from those sets Tj for which j ∈ alph(αi) are used; and
(ii) for each j ∈ alph(αi) , if j 6= ai , then M j = {iv} .

Let x,y ∈ T , x 6= y , be such that fαi(hi−1,x) = fαi(hi−1,y) . Let x = x1x2 · · ·xl and
y = y1y2 · · ·yl , where x j,y j ∈ {0,1}m for j = 1,2, . . . , l . By properties (i) and (ii)

above, xai 6= yai . Choose ui = xai and u′i = yai . Let Mai = {ui,u′i} and hi = fαi(hi−1,x) .
Update M = M1M2 · · ·Ml and deduce that ∀u,u′ ∈M :

hi = fαi(hi−1,u) = fαi(hi−1,u′)

= fα1α2···αi(h0,u) = fα1α2···αi(h0,u′) .

The expected number of queries on f is altogether 2.5|α1α2 · · ·αi|2
n
2 . The induction is

now extended.

Assume now that the attacker has created a set A and a factorization αl = β1β2 · · ·βp

that satisfies properties (P1) and (P2). The attacker will use Lemma 5 at the beginning
of the attack against the word β1 . This Lemma allows the attacker to create a set
M = M1M2 · · ·Ml in such a way that Ma is some fixed message block (referred as iv)
for all a /∈ A , while for all a ∈ A there are two possible message blocks for Ma . In
other words, the attacker searches 2−collisions for all knp−1 elements of A .

The attacker has now created an advantage that she/he can use later. This advantage
is that the attacker knows that fβ1(h0,u) = fβ1(h0,u′) for all u,u′ ∈ M while at the
same time the attacker can freely choose the Ma between two different options for all
a ∈ A . This will allow the attacker to mount an attack against β2 and so on. Before
continuing however, we need the following result.

Lemma 6. Let α be a word over the alphabet Nl , d and r positive integers, A⊆ alph(α)

a set of cardinality |A|= dnr , and α = β1β2 · · ·βnrγ1γ2 · · ·γr a factorization of α with
the following properties.

(1) A⊆ alph(β)∩ alph(γ) where β = β1β2 · · ·βnr and γ = γ1γ2 · · ·γr ;
(2) |alph(βi)∩A|= d for i = 1,2, . . . ,nr , and |alph(γ j)∩A|= nd for j = 1,2, . . . ,r ;

and
(3) for each i ∈ {1,2, . . . ,nr} there exists j ∈ {1,2, . . . ,r} such that alph(βi) ⊆

alph(γ j) .

Furthermore, let u1,u′1,u2,u′2, . . . ,unr,u′nr ∈ {0,1}ml be messages and h0,h1, . . . hnr in
{0,1}n be values such that for each i ∈ {1,2, . . . ,nr} :

103

(4) ∀b ∈ Nl \A : ui(b) = u′i(b) = iv ; and
(5) ui(βi) 6= u′i(βi) and hi = fβi(hi−1,ui) = fβi(hi−1,u′i) .

The set S of all messages u ∈ {0,1}ml , such that for each b ∈ Nl \A : u(b) = iv and
for each i ∈ {1,2, . . . ,nr} : u(βi) ∈ {ui(βi),u′i(βi)} is then well-defined and satisfies
for each i ∈ {1,2, . . . ,nr} and u ∈ S the equality hi = fβi(hi−1,u) . Moreover we can,
with probability equal to one, find messages v1,v′1,v2,v′2, . . . ,vr,v′r in S and values
h′0,h

′
1, . . .h

′
r , h′0 = hnr , such that for each j ∈ {1,2, . . . ,r} :

(6) v j(γ j) 6= v′j(γ j) and h′j = fγ j(h
′
j−1,v j) = fγ j(h

′
j−1,v

′
j) .

The expected number of queries on f , needed to carry out the task, is less than 2.5|γ|2 n
2 .

Finally, the set T of all messages v ∈ {0,1}ml such that for each b ∈ Nl \A : v(b) = iv

and for each j ∈ {1,2, . . . ,r} : v(γ j) ∈ {v j(γ j),v′j(γ j)} is then a well-defined subset of
S and forms a 2r -collision on fα with the initial value h0 .

Proof. Note first that, since |A|= dnr , A⊆ alph(β) , and |alph(βi)∩A|= d for each
i ∈ {1,2, . . . ,nr} , the indexed family of sets {alph(βi)∩A}nr

i=1 forms a partition of A .
With analogous reasoning, {alph(γ j)∩A}r

j=1 is a partition of A , too.
Now, let xi ∈ {ui,u′i} for i = 1,2, . . . ,nr . Consider the sequence

x1(β1) , x2(β2) ,...,xnr(βnr) . Define t1, t2, . . . , tl ∈{0,1}m as follows. For each b∈Nl \A ,
let tb = iv . For each a ∈ A and i ∈ {1,2, . . . ,nr} , if a ∈ alph(βi)∩A , then ta = xi(a) .
Since {alph(βi)∩A}nr

i=1 is a partition of A , the message block ta is uniquely determined.
Thus the sequence x1(β1) , x2(β2) ,...,xnr(βnr) uniquely defines the message t1t2 · · · tl .
We deduce that the set S is well-defined.

Consider now the sets {u(γ1)|u ∈ S} , {u(γ2)|u ∈ S} ,..., {u(γr)|u ∈ S} . Since
{alph(γ j)∩A}r

j=1 is a partition of A and the property (3) holds, the cardinality of the
set {u(γ j)|u ∈ S} is 2n for each j ∈ {1,2, . . . ,r} . Furthermore, since γ = γ1γ2 · · ·γr ,
the equality

{u(γ)|u ∈ S} = {u(γ1)|u ∈ S}{u(γ2)|u ∈ S}· · ·{u(γr)|u ∈ S}

holds, so the cardinality of the set {u(γ)|u ∈ S} is 2nr .
Let u ∈ S . Then

fβ (h0,u) = f+(h0,u(β)) = f+(h0,u(β1)u(β2) · · ·u(βnr)) = hnr .

Thus S is a 2nr -collision on fβ with the initial value h0 .

104

Now set, h′0 = hnr . Continue by induction; assume that k is in {1,2, . . . ,r} and
with the probability equal to one, messages v1,v′1,v2,v′2, . . . ,vk,v′k in S and values
h′1,h

′
2, . . . ,h

′
k in {0,1}n have been found such that for each j ∈ {1,2, . . . ,k}

v j(γ j) 6= v′j(γ j) and h′j = fγ j(h
′
j−1,v j) = fγ j(h

′
j−1,v

′
j) .

Furthermore, the expected number of queries on f is 2.5|γ1γ2 · · ·γk|2
n
2 . Since, for each

u ∈ S , the equality
fγk+1(h

′
k,u) = f+(h′k,u(γk+1))

holds and the cardinality of the set {u(γk+1)|u∈ S} is 2n , we can, choosing message sets
of cardinality 2

n
2 randomly from the set S , find messages vk+1,v′k+1 in {0,1}ml and a

value h′k+1 in {0,1}n such that vk+1(γk+1) 6= v′k+1(γk+1) and h′k+1 = fγk+1(h
′
k,vk+1) =

fγk+1(h
′
k,v
′
k+1) . The expected number of queries on f is less than 2.5|γk+1|2

n
2 .

The induction is now extended and messages v1,v′1 , v2,v′2 , . . . , vr,v′r in S and
values h′0,h

′
1, . . . ,h

′
r in {0,1}n satisfying (6) found with the expected number 2.5|γ|2 n

2

of queries on f . The task is successful with probability equal to one.
Reasoning as with the set S and noting that v j,v′j are in S for each j ∈ {1,2, . . . ,r} ,

it is straightforward to see that T is a well-defined subset of S . Since v j(γ j) 6= v′j(γ j)

for each j ∈ {1,2, . . . ,r} and v j(b) = v′j(b) for all b ∈ Nl \A , the cardinality of T is
2r . Certainly fα(h0,u) = h′r for each u ∈ T . The proof is now complete.

This lemma allows the attacker to proceed in the attack step by step. First the attacker
proceeds from β1 to β2 , then from β2 to β3 and so on. The following theorem combines
the results of the two previous lemmata thus creating a tool that proves that the attack
works and allows the attacker to complete the step 5 of NMCAS .

Theorem 3. Let α be a word over the alphabet Nl , k and p positive integers, A

a subset of the alphabet alph(α) of cardinality |A| = np−1k , and α = α1α2 · · ·αp a
factorization of α such that for each i ∈ {1,2, . . . , p} , the elements of A form a chain
in the partially ordered set (alph(αi),≺αi) (i.e., the elements of A are independent
with respect to ≺αi). Furthermore, assume that for each i ∈ {1,2, . . . , p} , there exists a
factorization αi = αi1αi2 · · ·αi,np−ik of the word αi such that the following conditions
are satisfied.

(1) |alph(αi j)∩A|= ni−1 for each i ∈ {1,2, . . . , p} and j ∈ {1,2, . . . ,np−ik} ; and
(2) for each i ∈ {1,2, . . . , p} and j ∈ {1,2, . . . ,np−ir} there exists r ∈ {1,2, . . . ,

np−i−1k} such that alph(αi j)∩A is a subset of alph(αi+1,r)∩A .

105

Then, given an initial value h0 ∈ {0,1}n we can, with probability equal to one, find
a 2k -collision on fα with the messages of length l message blocks. Moreover, the
expected number of queries on fα needed to carry out the task, is 2.5|α|2 n

2 .

Proof. We first apply Lemma 5 to generate a 2np−1k -collision B1 on fα1 and then, by
using Lemma 6 repeatedly, show that there exists a 2np−ik -collision Bi on fα1α2···αi for
i = 2,3, . . . , p such that B1) B2) · · ·) Bp .

Choose in Lemma 5 parameters as follows: α is equal to α1 and r is equal to
np−1k . Let A = {a1,a2, . . . ,anp−1k} and a1 ≺α1 a2 ≺α1 . . .≺α1 anp−1k . By property (1) ,
these assumptions can be made.

Then α1 = α11α12 · · ·α1,np−1k is a factorization of α1 such that for each j ∈
{1,2, . . . ,np−1k} , all occurrences of the symbol a j in α1 lie in α1 j . Let h0 ∈ {0,1}n be
given. Applying Lemma 5 one can, with probability equal to one and with the expected
number 2.5|α1|2

n
2 of queries on f , find message block sets M1,M2, . . . ,Ml ⊆ {0,1}m

as well as values h1,h2, . . . ,hnp−1k such that

(a) Mb = {iv} for each b ∈ Nl \A ;
(b) Mai = {wi,w′i} , where wi 6= w′i for each i ∈ {1,2, . . . ,np−1k} ; and
(c) for each i ∈ {1,2, . . . ,np−1k} , the set M = M1M2 · · ·Ml is such that ∀w,w′ ∈M :

hi = fα1i(hi−1,w) = fα1i(hi−1,w′) = fα11α12···α1i(h0,w) = fα11α12···α1i(h0,w′).

For all i ∈ {1,2, . . . ,np−1k} , let messages ui,u′i ∈ {0,1}ml be defined as follows. For
each b ∈Nl \A , let ui(b) = u′i(b) = iv ; for each a ∈ A , let ui(a) = u′i(a) = wi , if a = a j

for some j ∈ {1,2, . . . ,np−1k} , j 6= i , and ui(a) = wi and u′i(a) = w′i if a = ai . The set
B1 = M is a 2np−1k -collision (of complexity 2.5|α1|2

n
2) on fα1 with an initial value h0 .

Choose the parameters of Lemma 6 as follows. Let β be α1 , γ be α2 and r be
np−2k . Let d be equal to 1, βi equal to α1i for i = 1,2, . . . ,np−1k , and γ j equal to α2 j

for j = 1,2, . . . ,np−2k . Then the assumptions of Theorem 3 for α1 and α2 imply that
all the assumptions of Lemma 6 (with parameters chosen as above) are valid. Thus we
can, with a probability equal to one and expected number 2.5|α2|2

n
2 of queries on f ,

find messages v1,v′1 , v2,v′2 , . . . , vnp−2r,v
′
np−2r in {0,1}ml and values h′0,h

′
1, . . . ,h

′
np−2r

in {0,1}n , h′0 = hnp−1r , such that for each j ∈ {1,2, . . . ,np−2r} , ∀b ∈ Nl \A : v j(b) =

v′j(b) = iv and v j(α2 j) 6= v′j(α2 j) and h′j = fα2 j(h
′
j−1,v j) = fα2 j(h

′
j−1,v

′
j) . The set S

of Lemma 6 is clearly our set B1 = M . Choose B2 to be the set T guaranteed by
Lemma 6. Then B2 (B1 is a 2np−2k -collision on fα1α2 with an initial value h0 .

106

Continue by induction and let r ∈ {2,3, . . . , p−1} . Let x1,x′1 , x2,x′2 , . . . , xnp−rk,

x′np−rk in {0,1}ml and values d0,d1, . . . ,dnp−rk in {0,1}n be such that for each i ∈
{1,2, . . . ,np−rk} , ∀b ∈ Nl \ A : xi(b) = x′i(b) = iv and xi(αri) 6= x′i(αri) and di =

fαri(di−1,xi) = fαri(di−1,x′i) . Let Br be the set of all messages u ∈ {0,1}ml such
that for each b ∈ Nl \A : u(b) = iv and for each j ∈ {1,2, . . . ,np−rk} : u(αr j) is in
{x(αr j),x′(αr j)} . Suppose that Br is a subset of Br−1 and that Br is a 2np−rk -collision
on fα1α2...αr with an initial value h0 . Choose the parameters of Lemma 6 as follows.
Let d be equal to nr−1 , β be equal to αr , βi be equal to αri for i = 1,2, . . . ,np−rk ,
and γ j be equal to αr+1, j for j = 1,2, . . . ,np−r−1k . By the assumptions of Theorem
3, all the assumptions of Lemma 6 are valid (with the chosen parameter values).
Lemma 6 implies that one may, with a probability equal to one and expected num-
ber 2.5|αr+1|2

n
2 of queries on f , find messages y1,y′1 , y2,y′2 , . . . , ynp−r−1k,y

′
np−r−1k

in {0,1}ml and values d′0,d
′
1, . . . ,d

′
np−r−1k in {0,1}n , d′0 = dnp−rk , such that for each

j ∈ {1,2, . . . ,np−r−1k} , ∀b ∈ Nl \A : y j(b) = y′j(b) = iv and y j(αr+1, j) 6= y′j(αr+1, j)

and d′j = fαr+1, j(d
′
j−1,y j) = fαr+1, j(d

′
j−1,y

′
j) . The set T of all messages y in {0,1}ml

such that for each b ∈Nl \A : y(b) = iv and for each j ∈ {1,2, . . . ,np−r−1k} : y(αr+1, j)

is in {y j(αr+1, j),y′j(αr+1, j)} is then a well-defined subset of Br and forms a 2np−r−1k -
collision on fαrαr+1 with an initial value d0 . By the induction assumption, T is a
2np−r−1k -collision on fα1α2···αr+1 with an initial value h0 . Choose Br+1 = T and the
induction is extended. We deduce that we can, with probability equal to one, find a
2k -collision on fα with an initial value h0 . The expected number of queries on f is
altogether 2.5|α|2 n

2 .

Since against the generalized 2−bounded hash function we had to choose the message
length to be at least k2n , the total complexity of the 2k−collision attack against it
will be approximately 2.5 · 2 · k2 · n · 2 n

2 according to our complexity analysis. The
complexity bound offered in [30] is O(k2 · (lnk) · (n+ ln(ln2k)) ·2n/2) .

Since α is q−bounded |α| ≤ q|alph(α)| . This means that in [14, 19] the total
complexity of the attack will be less than

2.5 ·q ·222q−3
k(2q−3)22q−1

n(q−1)222q−1
2

n
2 .

This is enough to imply that, given q,k ∈ N+ for sufficiently large n , for all q-
bounded generalized iterated hash functions, the complexity of creating a 2k−collision
is much lower than, the complexity required when using a random search. However, if

107

we assume that for example n = 256, k = 4 and q = 3, the only guarantee we get is
that the expected number of compression function calls is less than

2.5 ·3 ·2223−3
4(2

3−3)223−1
256(3−1)2223−1

2
256

2 = 7.5 ·28630.

Since the complexity of the preimage attack is approximately 2256 this is not very
reassuring.

As we have seen Theorem 1 (presented first in [20]) offers a more efficient way to
create permutations and lowers the minimum length of the required word and thus also
the complexity drops to

2.5 ·q · k(2q−3)2q
n(q−1)22q

2
n
2 .

However, even this better way to create multicollisions against generalized iterated
hash functions still gives us huge complexity. If we once again assume that n = 256,
k = 4 and q = 3, we get the upper bound of the attack to be 7.5 ·2432 . This bound is
much better than the one offered by the previous version, but still clearly more than the
complexity of finding a preimage for any given message.

Consider now a situation, where the inner state of the hash function is larger or
equal to the message block size (in bits) i.e. m≤ n in Definition 2. In this situation, the
attacker can ensure that it is possible to find the required collisions in fα1 of Theorem 3,
by ensuring that each α1, j contains at least i elements of A , where i is the smallest
possible integer such that im > n . This increases the complexity of the attack with
i(knp−1)2 in our complexity considerations. We omit the details of this consideration,
since the next chapter offers us a better way to create multicollision attacks and handles
this kind of situation more efficiently.

Remark 11. The complexity bounds are presented here in the same form as they have
been presented in [14, 19, 21]. The results of subsection 2.7.2 would allow us to drop
the 2.5 multiplier of the complexity to ǎ≈ 2.22.

108

7 Generalized Iterated Hash Functions II:
Attacks Based on Nonuniform Words

We will now create a new way of attacking generalized q−bounded hash functions.
Later we will take a look at the word combinatorial properties and results in a more
general sense. These results are refined versions of the results in [24].

We begin by pointing out that property (P1) (see Section 6.3) can be somewhat
loosened and the proof of the Theorem 3 will still remain valid. Let us define two new
properties:

(Q1) αl possesses a factorization αl = β1β2 · · ·βp , where A⊆ alph(βi) for i= 1,2, . . . ,
p , (β1)A is a permutation of A ; and

(Q2) for any i ∈ {1,2, . . . , p−1} , if (βi)A = z1z2 · · ·znp−ik is a factorization of (βi)A

such that |alph(z j)|= ni−1 for j = 1,2, . . .np−ik and (βi+1)A = u1u2 · · ·unp−i−1k is
a factorization of (βi+1)A such that |alph(u j)|= ni for j = 1,2, . . . ,np−i−1k , then
for each j1 ∈ {1,2, . . . , np−ik} there exists j2 ∈ {1,2, . . . , np−i−1k} such that
alph(z j1)⊆ alph(u j2) .

As before, property (Q2) means also that for each j2 ∈ {1,2, . . . , np−i−1k} there
exist exactly n integers j1 ∈ {1,2, . . .np−ik} such that alph(z j1) ⊆ alph(u j2) , while
alph(z j1)

⋂
alph(u j3) = /0 for all j3 ∈ {1,2, . . . , np−i−1k} , j3 6= j2 .

It is easy to see that the only difference between properties (P1), (P2) (see Section
6.2) and (Q1), (Q2) is that (Q1) does not force (βi)A to be a permutation of A for
i ∈ {2,3, · · · , p} . In addition it is also easy to see that (Q1) and (Q2) mean that
|A|= knp−1 .

We are now able to formulate a new theorem based on Theorem 3.

Theorem 4. Let αl be a word, alph(αl) =Nl , k and p positive integers and A a subset
of the alphabet alph(αl) of cardinality |A|= np−1k . Assume furthermore that A and the
factorization αl = β1β2 · · ·βp satisfy properties (Q1) and (Q2). Then, given an initial
value h0 ∈ {0,1}n we can, with probability equal to one, find a 2k -collision on fαl with
the messages of length l message blocks. Moreover, the expected number of queries on
f needed to carry out the attack is at most 2,5|α|2 n

2 .

Proof. The proof of the theorem is analogous to the proof of Theorem 3.

109

In the previous chapter, we created our attack by constructing a set A′ that satisfied
(P1) and then a set A⊆ A′ satisfying (P2).

We will now abandon this approach and proceed to create a single tool that will allow
us to create a set A and a factorization αl = β1β2 · · ·βp that satisfies both (Q1) and
(Q2) for large enough integer l . This goal will be finally reached, when we formulate
Theorem 9. For this we need a large set of results concerning the so called uniform
words that we will define next.

7.1 Uniform and Distinct Words

Given any word β , it seems intuitively evident that there exists a factorization β = γδ

of β such that either ratio |alph(γ)∩alph(δ)|
|alph(β)| is fairly large or both |alph(γ)\alph(δ)|

|alph(β)| and
|alph(δ)\alph(γ)|
|alph(β)| are fairly large. We shall now formalize these two properties and study

their relationship in detail.
Let thus α be a word, A a subset of alph(α) , and s an integer. We say that the

word α is (A,s)-uniform, if there exists a factorization α = α1α2 of α such that
|alph(α1)∩ alph(α2)∩A| ≥ s . Given an (A,s)-uniform word α , any word β such that
α is a subword of β is (A,s) -uniform as well. Moreover, α itself is (B,d) -uniform for
each set B and integer d such that A⊆ B⊆ alph(α) and d ≤ s .

A dual concept to uniformity is that of distinction. The word α is (A,s)-distinct if
there exists a factorization α = α1α2 of α such that |[alph(α1)\alph(α2)]∩A| ≥ s and
|[alph(α2)\ alph(α1)]∩A| ≥ s . Given an (A,s)-distinct word α any subword β of α

such that A⊆ alph(β) is also (A,s)-distinct. Moreover, the word α is (B,d)-distinct
always, when A⊆ B⊆ alph(α) and d ≤ s .

Note that, for notational reasons, uniformity and distinction are defined also on
the negative values of the parameter s . The following theorem tells us, how the two
concepts are connected.

Theorem 5. Let α be a word, A⊆ alph(α) , and s ∈ Z .

(a) If α is not (A,s)-uniform, then α is (A,b |A|−s+1
2 c)-distinct.

(b) If α is not (A,s)-distinct, then α is (A, |A|−2s+1)-uniform.

Proof. If s≤ 0 or s≥ |A| , then both claims certainly hold.
Suppose thus that s is an integer such that 0 < s < |A| and that α is a word,

which is not (A,s)-uniform. Let α = βγ be a factorization of α such that β is the

110

longest prefix of α for which |[alph(β)\ alph(γ)]∩A| ≤ b |A|−s+1
2 c . Since we assumed

that s is a positive integer, such a factorization always can be found. Suppose that
|[alph(β) \ alph(γ)]∩A| < b |A|−s+1

2 c . Then certainly the word γ is nonempty; let
γ = cρ where c ∈ alph(γ) . If c /∈ A or c ∈ alph(ρ) , then |[alph(β)\ alph(γ)]∩A| =
|[alph(β c)\alph(ρ)]∩A| and we are in contradiction with the definition of β . Suppose
thus that c ∈ A and c /∈ alph(ρ) . Then

|[alph(β c)\ alph(ρ)]∩A| = |[alph(β)\ alph(γ)]∩A|+1
≤ b |A|−s+1

2 c

and we are still in contradiction with the length property of β . Thus |[alph(β) \
alph(γ)]∩A| = b |A|−s+1

2 c . Moreover, since α is not (A,s)-uniform, the following
holds:

|[alph(γ)\ alph(β)]∩A| = |A|− |[alph(β)\ alph(γ)]∩A|− |alph(β)∩ alph(γ)∩A|
≥ |A|−b |A|−s+1

2 c− s+1 = d |A|−s+1
2 e

≥ |A|−s+1
2 ≥ b |A|−s+1

2 c .

We deduce that α is (A,b |A|−s+1
2 c)-distinct.

Consider then claim (b). We could use the result of (a) and prove (b) by contraposi-
tion, but we prefer direct verification. If s > d |A|2 e , then (b) certainly holds. Assume thus
that s is an integer such that 0 < s≤ d |A|2 e and that the word α is not (A,s) -distinct. Let
α1 be the longest prefix of α such that |[alph(α1)\alph(α2)]∩A|< s where α = α1α2 .
Since s ∈ N+ , such an α1 can always be found.

We first show that |[alph(α2) \ alph(α1)]∩ A| ≤ s . Assume the contrary, i.e.,
|[alph(α2)\alph(α1)]∩A|> s . Let α2 = aβ2 where a ∈ alph(α) and β2 ∈ (alph(α))∗ .
Denote β1 = α1a . By the definition of α1 , the inequality |[alph(β1)\alph(β2)]∩A| ≥ s

must hold. On the other hand,

|[alph(β2)\ alph(β1)]∩A| ≥ |[alph(α2)\ alph(α1)]∩A|−1 ,

so |[alph(β2)\ alph(β1)]∩A| ≥ s . This means that α is (A,s)-distinct, a contradiction.
Thus, let |[alph(α2)\ alph(α1)]∩A| ≤ s . This implies that

|[alph(α1)∩ alph(α2)]∩A| = ‖alph(α)∩A|− |[alph(α1)\ alph(α2)]∩A|
−|[alph(α2)\ alph(α1)]∩A|

> |A| − 2s .

Since |[alph(α1)∩alph(α2)]∩A| ≥ |A|−2s+1, the word α is (A, |A|−2s+1) -uniform.
The proof is now complete.

111

Remark 12. Let r,s ∈ N+ and A the alphabet that consists of the 2r+ s−2 distinct
symbols a1,a2, . . . ,ar−1 , b1,b2, . . . ,bs−1 , c1,c2, . . . ,cr . Furthermore, let u be the
following word:

u = b1b2 · · · bs−1 a1a2 · · · ar−1 c1c2 · · · cr b1b2 · · · bs−1.

A short inspection shows that u is (A,s− 1)-uniform and u is not (A,s)-uniform.
Furthermore, u is (A,r−1) distinct and u is not (A,r) -distinct. Now r−1 = b |A|−s+1

2 c
and s− 1 = |A| − 2r + 1, so the parameter values b |A|−s+1

2 c in Theorem 5 (a) and
|A|−2r+1 in Theorem 5 (b) are optimal.

We say that the word α is (A,s)-nonuniform if A⊆ alph(α) and α is not (A,s)-
uniform. If α is an (A,s)-nonuniform word, then for any subword β of α , any
subset B of A∩ alph(β) and any integer r such that r ≥ s , the word β is clearly
(B,r)-nonuniform.

Lemma 7. Let d,s and t be positive integers, A an alphabet such that |A| ≥ d (s+t−1)
and α an (A,s) -nonuniform word. Then there exists a factorization α = α1α2 · · ·αd of
α and subsets A1,A2, . . . ,Ad of A such that for each i ∈ {1,2, . . . ,d} :

1. Ai ⊆ alph(αi) ;
2. |Ai| ≥ t ; and
3. Ai∩ alph(α j) = /0 for all j ∈ {1,2, . . . ,d} , j 6= i .

Proof. Let α = α1α2 · · ·αd be a factorization of α such that for all i ∈ {1,2, . . . ,d} ,
αi contains at least s+ t−1 symbols that do not occur in the word α1α2 · · ·αi−1 . Since
|A| ≥ d(s+ t−1) , the factorization can always be found. Since α is (A,s) -nonuniform,
each factor of it is as well. Thus for i ∈ {1,2, . . . ,d} , there exists a subset Ai of
alph(αi)\alph(α1α2 · · ·αi−1) of cardinality at least t such that Ai∩(∪d

j=i+1alph(α j)) =

/0 . The claim follows.

Now, we wish to generalize the result of Theorem 5 (a) to two directions; first for
any number of nonuniform words. For this purpose we introduce the function Ts , by
which we are able to evaluate the cardinalities of the disjoint subsets in distinct words. It
appears that the function Ts : x→

⌊ x−s+1
2

⌋
provided by Theorem 5 (a) is exactly what

we need.
Thus, let s be any positive integer. Define the function Ts : Z→ Z by

Ts(x) =
⌊

x− s+1
2

⌋
.

112

The powers of Ts are defined recursively as follows:

T 1
s (x) = Ts(x)

T k+1
s (x) = T 1

s (T
k

s (x)) =
⌊

T k
s (x)−s+1

2

⌋
(k ∈ N+)

Our next task is to determine a closed form for T k
s (x) .

Lemma 8. Let x be a real number, z ∈ Z and p,q ∈ N+ . Then⌊
x
p

⌋
+ z =

⌊
x+ pz

p

⌋
and

⌊
b x

pc
q

⌋
=

⌊
x
pq

⌋
.

Proof. There exist unique k1,k2 ∈ Z and real numbers r1,r2 , 0≤ r1 < p , 0≤ r2 < pq

such that x = k1 p+ r1 and x = k2(pq)+ r2 . Certainly
⌊

x
p

⌋
+ z =

⌊
x+pz

p

⌋
= k1 + z and⌊ b x

p c
q

⌋
=
⌊

x
pq

⌋
= k2 .

Theorem 6. For each r ∈ N+ and x ∈ Z , the equality T r
s (x) =

⌊
x−(s−1)(2r−1)

2r

⌋
holds.

Proof. We proceed by induction on r . Let x ∈ Z . Consider the case r = 1. Clearly
T 1

s (x) =
⌊ x−s+1

2

⌋
=
⌊

x−(s−1)(21−1)
21

⌋
.

Let then k ∈ N+ and assume that the claim holds, when r = k :

T k
s (x) =

⌊
x− (s−1)(2k−1)

2k

⌋
.

Consider finally the case r = k+1. We have

T k+1
s (x) = Ts(T k

s (x)) = Ts(
⌊

x−(s−1)(2k−1)
2k)

⌋
) =

⌊
b x−(s−1)(2k−1)

2k c−s+1
2

⌋

=
⌊

x−(s−1)(2k−1)−(s−1)2k

2k+1

⌋
=
⌊

x−(s−1)(2k+1−1)
2k+1

⌋
.

Above, the second equality holds by the induction hypothesis, the third by the definition
of Ts , and the fourth by Lemma 8. The induction is now extended.

Note that, given a large x ∈ N+ , the sequence (T r
s (x))

∞
r=1 decreases exponentially

with respect to r . Eventually, the elements of the sequence will be negative and
T r

s (x)→−s+1 as r→ ∞ .

113

What follows now is a series of quite technical lemmata in which the structural
properties of (a sequence) of nonuniform words are gradually fortified. To simplify the
appearance of the results, one more notion is needed.

Let β be a word, r a positive integer and B1,B2, . . . ,Br pairwise disjoint sets of
symbols. The word β is {Bi}r

i=1 -distinct, if there exist a factorization β = β1β2 · · ·βr

of β and a permutation σ of 1,2, . . . ,r such that for each i ∈ {1,2, . . . ,r}

1. Bi ⊆ alph(βσ(i)) ; and
2. Bi∩ alph(β j) = /0 for each j ∈ {1,2, . . . ,r} such that j 6= σ(i) .

The first result is a generalization of Theorem 5 (a) for a sequence of nonuniform
words.

Lemma 9. Let p and s be positive integers, A an alphabet and α1,α2, . . . ,αp a
sequence of (A,s)-nonuniform words. Then there exists (pairwise disjoint) sets
A1,A2 ⊆ A such that each of the words α1,α2, . . . ,αp are {Ai}2

i=1 -distinct. Furthermore,
|A1| ≥ T p

s (|A|) and |A2| ≥ T p
s (|A|) .

Proof. We proceed by induction on p . Consider the case p = 1. The word α1 is (A,s) -
nonuniform, so Theorem 5 (a) implies that it is (A,b |A|−s+1

2 c)-distinct. By definition,
there thus exists pairwise distinct sets A1,A2 ⊆ A such that α1 is {Ai}2

i=1 -distinct
and |A1|, |A2| ≥ b |A|−s+1

2 c . Certainly b |A|−s+1
2 c= T 1

s (|A|) , so our lemma is true when
p = 1.

Suppose then that p= k+1, k∈N+ . Consider the sequence of words α1,α2, . . . ,αk .
By the induction hypothesis, there exist pairwise disjoint sets A′1,A

′
2 ⊆ A such that each

of the words α1,α2, . . . ,αk is {A′i}2
i=1 -distinct and |A′1|, |A′2| ≥ T k

s (|A|) .
Let A′ = A′1∪A′2 . Clearly |A′| ≥ 2T k

s (|A|) . Since αk+1 is (A,s)-nonuniform and
A′ ⊆ A , the word αk+1 is also (A′,s)-nonuniform. By Theorem 5 (a), αk+1 is (A′, t)-
distinct, where t = b |A

′|−s+1
2 c . Then there exists a factorization αk+1 = β1β2 of αk+1

and sets X ,Y ⊆ A′ such that X = [alph(β1)\alph(β2)]∩A′ , Y = [alph(β2)\alph(β1)]∩
A′ , and |X |, |Y | ≥ b 2T k

s (|A|)−s+1
2 c . Then let X =B1∪C1 and Y =B2∪C2 , where Bi⊆A′1

and Ci ⊆ A′2 for i = 1,2. Moreover, let D = alph(β1)∩ alph(β2)∩A′ . Since αk+1 is
(A′,s)-nonuniform, the cardinality of D is at most s−1 and |B1|+ |B2|, |C1|+ |C2| ≥
T k

s (|A|)− s+1.

114

We claim that either |B1|, |C2| ≥ T k
s (|A|)−s+1

2 or |B2|, |C1| ≥ T k
s (|A|)−s+1

2 . Suppose

that, for instance, |B2|< T k
s (|A|)−s+1

2 . Then, by the facts above, |B1|> T k
s (|A|)−s+1

2 and

|C2| >
2T k

s (|A|)− s
2

− T k
s (|A|)− s+1

2
=

T k
s (|A|)−1

2
.

We deduce that |C2| ≥ T k
s (|A|)−s+1

2 . Thus |B2| < T k
s (|A|)−s+1

2 implies that |B1|, |C2| ≥
T k

s (|A|)−s+1
2 , so our claim holds.

Assume that |B1|, |C2| ≥ T k
s (|A|)−s+1

2 and choose A1 = B1 and A2 =C2 . Then αk+1 ,
as well as the words α1,α2, . . . ,αk are {Ai}2

i=1 -distinct and moreover, |A1|, |A2| ≥⌊
T k

s (|A|)−s+1
2

⌋
= T k+1

s (|A|) . The induction is extended.

In our future considerations, we need a much stronger tool than the previous lemma
can provide. The factorization of each nonuniform word α1,α2, . . . ,αp in Lemma 9
should be refined and the common alphabets for refinements created.

Theorem 7. Let p and s be positive integers, A an alphabet, and α1,α2, . . . ,αp a
sequence of (A,s)-nonuniform words. Then, given d ∈ N+ , there exist (pairwise
disjoint) sets A1,A2, . . . ,A2d ⊆ A such that the word α j is {Ai}2d

i=1 -distinct for j =

1,2, . . . , p and |Ai| ≥ T p·d
s (|A|) for i = 1,2, . . . ,2d .

Proof. Proceed by induction on d . In the case d = 1 our theorem restates the result of
Lemma 9.

Consider the case d = k+ 1, where k ∈ N+ . By Lemma 9 there exist disjoint
alphabets D1,D2⊆A such that each of the words α1,α2, . . . , αp is {Di}2

i=1 -distinct and
|D1|, |D2| ≥ T p

s (|A|) . By definition, for each j ∈ {1,2, . . . , p} there exists a permutation
σ j of 1,2 and a factorization α j = α j,1α j,2 of α j such that, for each i ∈ {1,2} ,
(i) Di ⊆ alph(α j,σ j(i)) ; and (ii) Di∩ alph(α j,k) = /0 for k ∈ {1,2} such that k 6= σ j(i) .
Let β j = α j,σ j(1) and γ j = α j,σ j(2) for j = 1,2, . . . , p . Obviously α j = β jγ j (α j = γ jβ j ,
resp.) if σ j(1) = 1 and σ j(2) = 2 (σ j(1) = 2 and σ j(2) = 1, resp.).

Certainly, for each j ∈ {1,2, . . . , p} the word β j is (D1,s)-nonuniform and the
word γ j is (D2,s)-nonuniform.

Apply the induction hypothesis to the words β1,β2, . . . ,βp to obtain alphabets
B1,B2, . . . ,B2k ⊆ D1 such that the word β j is {Bi}2k

i=1 -distinct for j = 1,2, . . . , p and
|Bi| ≥ T p·k

s (|D1|) for i = 1,2, . . . ,2k .
Apply the induction hypothesis once more, now to the words γ1,γ2, . . . ,γp , to

obtain alphabets C1,C2, . . . ,C2k ⊆ D2 such that the word γ j is {Ci}2k

i=1 -distinct for
j = 1,2, . . . , p , and |Ci| ≥ T p·k

s (|D2|) for i = 1,2, . . . ,2k .

115

Note that |Bi|, |Ci| ≥ T p·k
s (T p

s (|A|)) = T p·(k+1)
s (|A|) for i = 1,2, . . . ,2k . Let Ai = Bi

and A2k+i =Ci for i = 1,2, . . . ,2k . Since the word β j is {Bi}2k

i=1 -distinct, the word γ j

is {Ci}2k

i=1 -distinct and Bi∩C j = /0 for i, j ∈ {1,2, . . . ,2k} , the word α j is {Ai}2k+1

i=1 -
distinct, when j = 1,2, . . . , p . Moreover, |Ai| ≥ T p·(k+1)

s (|A|) for i = 1,2, . . . ,2k+1 .
The induction is thus extended and the proof is complete.

Note that in the previous theorem, the sets A1,A2, . . . , A2d are pairwise disjoint. The
theorem is evidently a generalization of Theorem 5 (a): in case p = d = 1 it provides
the boundary

⌊
|A|−s+1

2

⌋
for the cardinalities of the sets A1 and A2 .

Given p ∈ N+ , we are interested in those (positive) x ∈ Z that T p
s (x)≥ 1. For each

r ∈N+ , denote Ds(r) = 2r +(s−1)(2r−1) . Obviously T p
s (x) =

⌊
x−(s−1)(2p−1)

2p

⌋
is an

increasing function; since T p
s (Ds(p)) = 1, we deduce that Ds(p) is the smallest integer

z such that T p
s (z)> 0.

The defintion of Ds(r) straightforwardly implies that, for each i ∈ N+ , we have

Ds(p+ i) = 2pDs(i)+(s−1)(2p−1) and T p
s (Ds(p+ i)) = Ds(i) .

The previous theorem describes the division of p nonuniform words α1,α2, . . . ,αp

into factors containing pairwise distinct alphabets (which, however, are common to all
words α1,α2, . . . ,αp). The main result of this section follows and further generalizes
Theorem 7. In the first phase Theorem 7 is applied to (nonuniform) words α1,α2, . . . ,αp ,
then in p−1 further phases Theorem 7 is applied to words α1,α2, . . . ,αp−i , where
i = 1,2, . . . , p−1.

Theorem 8. Let p and s be positive integers, A an alphabet, and α1,α2, . . . ,αp a
sequence of (A,s)-nonuniform words. Given d1,d2, . . . ,dp ∈ N+ , there exist sets
Ai, j ⊆ A (i = 1,2, . . . , p ; j = 1,2, . . . ,2∑

p
l=i dl) such that

1. for each i ∈ {1,2, . . . , p} , the word αi is {Ai, j}2∑
p
l=i dl

j=1 -distinct;
2. for each i ∈ {1,2, . . . , p} and j ∈ {1,2, . . . ,2∑

p
l=i dl}

|Ai, j| ≥ T ∑
p
l=i l·dl

s (|A|) ;

and
3. for each i ∈ {2,3, . . . , p} and j ∈ {1,2, . . . ,2∑

p
l=i dl} there exist 2di−1 indices j′ ∈

{1,2, . . . ,2∑
p
l=i−1 dl} such that Ai−1, j′ ⊆ Ai, j .

Proof. We proceed by induction on p . Our claims in case p= 1 are a direct consequence
of Theorem 7.

116

Consider the case p = k+1. Apply again Theorem 7 to p = k+1 and d = dk+1

to discover sets B1,B2, . . . ,B2dk+1 ⊆ A such that the word αi is {B j}2dk+1
j=1 -distinct for

i = 1,2, . . . ,k+1, and |B j| ≥ T (k+1)·dk+1
s (|A|) for j = 1,2, . . . ,2dk+1 .

For each i ∈ {1,2, . . . ,k+1} , let αi = βi,1βi,2 · · ·βi,2dk+1 be a factorization of αi ,
and ρi a permutation of 1,2, . . . ,2dk+1 such that for each j ∈ {1,2, . . . ,2dk+1}

(a) B j ⊆ alph(βi,ρi(j))

(b) B j ∩ alph(βi, j′) = /0 for each j′ ∈ {1,2, . . . ,2dk+1} such that j′ 6= ρi(j) ; and
(c) |B j| ≥ T (k+1)·dk+1

s (|A|) .

Let t ∈ {1,2, . . . ,2dk+1} be arbitrary, but fixed. Then Bt ⊆ alph(βi,ρi(t)) for each
i ∈ {1,2, . . . ,k} . Furthermore, each of the words β1,ρ1(t) , β2,ρ2(t) , . . . , βk,ρk(t) is (Bt ,s) -
nonuniform. Denote, for the sake of simplicity, τi = βi,ρi(t) for i = 1,2, . . . ,k . Apply the
induction hypothesis to the set Bt , the words τ1,τ2, . . . ,τk and the integers d1,d2, . . . ,dk .

Let Bt
i, j ⊆ Bt (i = 1,2, . . . ,k ; j = 1,2, . . . ,2∑

k
l=i dl) be pairwise disjoint sets such

that

1◦ for each i ∈ {1,2, . . . ,k} , the word βi is {Bt
i, j}2∑

k
l=i dl

j=1 -distinct;

2◦ for each i ∈ {1,2, . . . ,k} and j ∈ {1,2, . . . ,2∑
k
l=i dl}

|Bt
i, j| ≥ T ∑

k
l=i l·dl

s (|Bt |) ;

and
3◦ for each i ∈ {2,3, . . . ,k} and j ∈ {1,2, . . . ,2∑

k
l=i dl} there exist exactly 2di−1 indices

j′ ∈ {1,2, . . . ,2∑
k
l=i−1 dl} such that Bt

i−1, j′ ⊆ Bt
i, j .

For each i ∈ {1,2, . . . ,k} , let Ai,1, Ai,2, . . . ,A
i,2∑

k+1
l=i dl

be the sets

B1
i,1, B1

i,2, . . . ,B
1

i,2∑
k
l=i dl

, B2
i,1, B2

i,2, . . . ,B
2

i,2∑
k
l=i dl

,

. . . , B2dk+1
i,1 , B2dk+1

i,2 , . . . ,B2dk+1

i,2∑
k
l=i dl

,

respectively. Furthermore, let Ak+1,1,Ak+1,2, . . . ,Ak+1,2dk+1 be the sets B1,B2, . . . ,

B2dk+1 , respectively.
It is clear that the three claims of our theorem hold, when p = k+1. The induction

is thus extended and the proof is complete.

117

7.2 Factorizing q-Bounded Words

We shall next prove a result which is the most significant from the viewpoint of our
attack construction. Recall that, given q ∈ N+ , a word α is q-bounded if |α|a ≤ q for
all a ∈ alph(α) .

Let us first intuitively contemplate the method that is applied in the proof of the
subsequent theorem. Let α be a (hypothetical) q -bounded word. Our goal is to create a
factorization of α and a set A that satisfy properties (Q1) and (Q2). This can be done by
applying Theorem 8 when α = α1α2 · · ·αp , A⊆ alph(αi) when i∈ {1,2, . . . , p} , words
α1,α2, ...,αp are (A,s)−nonuniform and positive integers d1,d2, . . . ,dp are chosen
appropriately (we shall later see how). In addition the set A has to be large enough
when compared with s to ensure that all the created sets Ai, j are nonempty.

To begin with, imagine that we have factorized α into the form α = α1α2 · · ·αq .
Suppose that ∩q

j=1alph(α j) 6= /0 . Certainly each αi is (∩q
j=1alph(α j), 1)-nonuniform.

How large should the set ∩q
j=1alph(α j) be to guarantee that all the sets Ai, j in Theorem

8 are nonempty when p = q? The definition of the constant Ds(r) implies that if
the condition | ∩q

j=1 alph(α j)| ≥ D1(∑
q
j=1 j · d j) holds the sets are nonempty. Let

sq = D1(∑
q
j=1 j ·d j) = 2∑

q
j=1 j·d j .

In the second step, imagine that we have factorized α into the form α = α1α2 · · ·
αq−1 . Suppose that ∩q−1

j=1alph(α j) 6= /0 and each word α1,α2, . . . ,αq−1 is
(∩q−1

j=1alph(α j),sq) -nonuniform. How large should the set ∩q
j=1alph(α j) be to guarantee

that all the sets Ai, j in Theorem 8 were nonempty when p = q−1? Again, the definition
of the constant Ds(r) implies that if the condition |∩q−1

j=1 alph(α j)| ≥ Dsq(∑
q−1
j=1 j ·d j)

holds, then the sets are nonempty. Let sq−1 = Dsq(∑
q−1
j=1 j ·d j) .

Continuing like this, we reach in the (q−1)st step the situation where we have
factorized α into the form α = α1α2 . Suppose that alph(α1)∩ alph(α2) 6= /0 and
both of the words α1,α2 are (alph(α1)∩ alph(α2),s3)-nonuniform. If |alph(α1)∩
alph(α2)| ≥ Ds3(d1 +2d2) the sets Ai, j in Theorem 8 for p = 2 are nonempty . Let
s2 = Ds3(d1 +2d2) .

Finally, in the qth step, we are in the situation where α is (alph(α),s2) -nonuniform.
If |alph(α)| ≥ Ds2(d1) , then certainly the sets of A1, j of Theorem 8 are all nonempty.
We then put s1 = Ds2(d1) and approximate the size of the alphabet alph(α) with s1 .

The procedure above suggests the following: If d1,d2, . . . ,dq are positive integers
and α is a q-bounded word for which |alph(α)| ≥ s1 , where the true value of s1

is achieved through the sequence si = Dsi+1(∑
i
j=1 j ·d j) for i = 1,2, . . . ,q−1, sq =

118

D1(∑
q
j=1 j · d j) , then, for some p ∈ {1,2, . . . ,q} , Theorem 8 can be applied and a

factorization for the word α and a set A satisfying properties (Q1) and (Q2) created.
The next theorem is a rigorous reasoning that our intuition works.

Theorem 9. Let q≥ 2 and d1,d2, . . . ,dq ≥ 1 be integers and s1,s2, . . . ,sq parameters
defined as follows: sq = 2∑

q
j=1 j d j , sk = Dsk+1(∑

k
i=1 i ·di) , for k = 2,3, . . . ,q−1, and

s1 = 2d1s2 . Furthermore, let α be a q-bounded word such that |alph(α)| ≥ s1 . Then
there exist p ∈ {1,2, . . . ,q} , a factorization α = α1α2 · · ·αp of α , and sets Ai, j ⊆
alph(α) (i = 1,2, . . . p ; j = 1,2, . . . ,2∑

p
k=i dk) such that

1. for each i ∈ {1,2, . . . , p} , the word αi is {Ai, j}2∑
p
k=i dk

j=1 -distinct;
2. for each i ∈ {1,2, . . . p} and j ∈ {1,2, . . . ,2∑

p
k=i dk} :

|Ai, j| ≥ 2∑
i−1
k=1 k dk ;

and
3. for each i ∈ {2,3, . . . , p} and j ∈ {1,2, . . . ,2∑

p
k=i dk} there exist exactly 2di−1 indices

l ∈ {1,2, . . . ,2∑
p
k=i−1 dk} such that Ai−1,l ⊆ Ai, j .

Proof. We proceed stepwise as follows.
In the first step we ask whether or not the word α is (alph(α),s2)-uniform.
Assume first that α is (alph(α),s2)-nonuniform. Let then α = α1α2 · · ·α2d1 be a

factorization of α such that for each i ∈ {1,2, . . . ,2d1} , the word αi contains (at least)
s2 different symbols that do not occur in α1α2 · · ·αi−1 . Since |alph(α)| ≥ 2d1s2 , the
factorization always can be found. Let A1,i be the set of all symbols in alph(αi) that do
not occur in alph(α1 · · ·αi−1αi+1 · · ·α2d1) . Since α is (alph(α),s2)-nonuniform, each
of the sets A1,1 , A1,2 , . . . , A1,2d1 is nonempty. By choosing p = 1, we note that the
claims of the theorem hold. We use here the convention ∑

p−1
k=1 k dk = ∑

0
k=1 k dk = 0, i.e.,

2∑
p−1
k=1 k dk = 1.
Suppose then that the word α is (alph(α),s2)-uniform. Let then α = α1α2 be

a factorization of α such that |alph(α1)∩ alph(α2)| ≥ s2 . Recall that, by definition,
s2 = Ds3(d1 +2d2) .

In the second step we ask whether there exists an alphabet B ⊆ alph(α1)∩
alph(α2) such that one of the words α1 and α2 is (B,s3)-uniform.

Assume first that each of the words α1 and α2 is (A,s3)-nonuniform, where
A = alph(α1)∩ alph(α2) . Since |A| ≥ Ds3(d1 +2d2) , the claims hold by Theorem 8.

Suppose then in the second step that there exists a set B⊆ alph(α1)∩ alph(α2)

such that one of the words α1,α2 , say α2 , is (B,s3)-uniform. Let α2 = γ1γ2 be a

119

factorization of α2 such that |alph(γ1)∩ alph(γ2)∩B| ≥ s3 . Redenoting α2 := γ1 and
α3 := γ2 , we have α = α1α2α3 and |∩3

i=1 alph(αi)| ≥ s3 .
Continuing like this, we describe the general step k , k ∈ {1,2, . . . ,q} as follows.

Let α = α1α2 · · ·αk be a factorization of α such that | ∩k
i=1 alph(αi)| ≥ sk . Assume

first that k < q . Recall that sk = Dsk+1(∑
k
i=1 i · di) . We pose the question whether

there exists an alphabet B⊆ ∩k
i=1alph(αi) such that one of the words α1,α2, . . . ,αk is

(B,sk+1)-uniform.
Assume first that in step k , the answer to the question is negative. Then each

of the words α1,α2, . . . ,αk is (A,sk+1)-nonuniform; here we have A = ∩k
i=1alph(αi) .

Since |A| ≥ Dsk+1(∑
k
i=1 i ·di) , the claims hold by Theorem 8.

Suppose then that the answer to the question is positive. Let then B be a subset of
∩k

i=1alph(αi) such that one of the words α1,α2, . . . ,αk , say αk is (B,sk+1) -uniform. Let
αk =ω1ω2 be a factorization of αk such that |alph(ω1)∩alph(ω2)∩B| ≥ sk+1 . Redenot-
ing αk := ω1 and αk+1 := ω2 , we have α = α1α2 · · ·αk+1 and |∩k+1

i=1 alph(αi)| ≥ sk+1 .
Suppose that in the general step we have k = q . Then, since α is q-bounded, we

know that all the words α1,α2, . . . ,αk are (A,1) -nonuniform, where A = ∩q
i=1alph(αi) .

Since sq = 2∑
q
i=1 i si , we are again through by Theorem 8.

Corollary 1. Let q≥ 2 and d1,d2, . . . ,dq ≥ 1 be integers and α a q-bounded word
such that |alph(α)| ≥ 2∑

q
i=1(q−i+1) idi . Furthermore, let s1,s2, . . . ,sq be as in Theorem 9.

Then |alph(α)| ≥ s1 and all the claims of Theorem 9 hold.

Proof. Recall that sq = 2∑
q
j=1 j d j , sk =Dsk+1(∑

k
i=1 i ·di) , for k = 2,3, . . . ,q−1, and s1 =

2d1s2 . It is easy to see that sk = Dsk+1(∑
k
i=1 i ·di))≤ sk+12∑

k
i=1 idi for k = 1,2, . . . ,q−1.

We get
s1 = 2d1s2 ≤ 2d1 ·2d1+2d2 · s3 ≤ ·· ·
≤ 2d1 ·2d1+2d2 · · ·2d1+2d2+···+qdq

= 2∑
q
i=1(q−i+1) idi .

Then |alph(α)| ≥ s1 and the claims of Theorem 9 are valid.

7.3 Attacking Bounded Generalized Iterated Hash Functions

Finally, we have found an upper bound l1 which will ensure that, if α is q−bounded and
|alph(α)|> l1 , then it is possible to create a set A and a factorization α = β1β2 · · ·βp

that will satisfy both (Q1) and (Q2).
We are now ready to state the main result of this chapter.

120

Theorem 10. Let m, n and q be positive integers such that m > n and q ≥ 2, f :
{0,1}n×{0,1}m→{0,1}n a compression function, and α̂ = (α1,α2, . . .) a q -bounded
sequence of words such that alph(αl) = Nl for each l ∈ N+ . Then, for each k ∈ N+ ,
there exists a 2k -collision attack on the generalized iterated hash function Hα̂, f such that

the expected number of queries on f is at most 2.5 ·q ·2dlog2 ne (q+4)q(q−1)
6 +dlog2 keq ·2 n

2 .

Proof. Choose di = dlog2 ne for i = 1,2, . . . ,q−1 and dq = dlog2 ke . Then

∑
q
i=1(q− i+1) idi = ∑

q−1
i=1 (q− i+1) idlog2 ne + qdlog2 ke

= (q+4)q(q−1)
6 dlog2 ne + qdlog2 ke .

Let |alph(α)| ≥ 2dlog2 ne (q+4)q(q−1)
6 +dlog2 keq . Now Corollary 1 (and Theorem 9) imply

that the properties (Q1) and (Q2) hold. Thus Theorem 4 guarantees that we are able to
find a 2k -collision.

We can combine this result to the one offered in subsection 2.7.2. Thus once again
lowering the upper bound of the attack to ǎ ·q ·2dlog2 ne (q+4)q(q−1)

6 +dlog2keq ·2 n
2 .

Our new upper bound gives us, for n = 256, k = 4 and q = 3, the complexity of
7,5 ·2190. This is clearly well below the complexity 16√16! ·2240 offered by the brute
force attack (see [32]).

Consider once again a situation, where the inner state of the hash function is larger
or equal to the message block size (in bits) i.e. m≤ n in Definition 2. To guarantee that
the attack succeeds, the attacker has to ensure that, when applying Theorem 9, |A1, j| ≥ i

for all j ∈ {1,2, · · · ,2∑
p
k=1 dk} , where i is the smallest positive integer such that im > n .

This can be done by simply replacing d1 in Theorem 9 with d1 + log2i . This multiplies
the complexity of the attack with iq .

121

Table 9. Complexities of different attack versions.

Published article Complexity

[14] O(g(n,k,q)2
n
2)

[19] 2.5 ·q ·222q−3
k(2q−3)22q−1

n(q−1)222q−1
2

n
2

[21] 2.5 ·q · k(2q−3)2q
n(q−1)22q

2
n
2

[24] 2.5 ·q ·2dlog2 ne (q+4)q(q−1)
6 +dlog2 keq ·2 n

2

The attacks create a 2k -collision on q−bounded generalized iterated hash function. In

[14] g(n,q,k) is a function of n,q and k which is polynomial with respect to n and k ,

but triple exponential with respect to q.

7.4 Supplementary Combinatorial Considerations

Often the problems of combinatorics on words consider a situation, where the alphabet
is fixed (finite) and the length of a word can be arbitrarily long [26]. Then, as the length
of the word increases, unavoidable regularities start to appear and some classic results of
combinatorics on words, like Ramsey’s, Shirshov’s and van der Waerden’s Theorems,
can be applied. The unavoidable regularities thus result from the fact that the number of
symbols that can appear in the word is restricted.

The approach induced by q−bounded generalized iterated hash functions is some-
what different. The number of times a symbol can appear in a word is restricted and
we increase the number of symbols that appear in a word. As we have already seen,
unavoidable regularities start to appear in this case as well. We will now take a short
look at these regularities.

Let us further study permutations inside q-bounded words. The results are not
needed in our attack construction, but have an independent combinatorial interest. We
wish to find a (good) upper and lower bound for the number N(t,q) defined in Theorem
1. As we have seen in [21] the upper bound N(t,q+1) ≤ N(t2− t +1,q) ≤ t2q

was
attained. The existence of N(t,q) was first (implicitely) proved in [14], where also the
first (very large) upper bound for it was evolved.

Using the results of this chapter we are now able to create more efficient tools and
thus lower the previous upper bound.

122

Theorem 11. Let t ≥ 2 and q ≥ 2 be integers and α be a q-bounded word such

that |alph(α)| ≥ 2dlog2 te· q
2−q+2

2 . Then there exist p ∈ {1,2, · · ·q} , a factorization α =

α1α2 · · ·αp of α and a set A⊆ alph(α) such that |A|= t and (αi)A is a permutation of
A for all i ∈ {1,2, · · · , p} .

Proof. Analogous (although simpler) to that of Theorem 9.

As a consequence of Theorem 11, we get the following upper bound.

Corollary 2. For all integers t ≥ 2 and q≥ 2 the inequality

N(t,q) ≤ 2dlog2 te· q
2−q+2

2

holds.

In the following, we shall search for a lower bound for N(t,q) .
Given p,q ∈ N+ , call a word α a P(t,q)-word, if α is q-bounded and there

exists an alphabet A ⊆ alph(α) , |A| = t , integer p ∈ {1,2, . . . ,q} , and permutations
σ1,σ2 . . . ,σp of 1,2, . . . , t such that

πA(α) ∈ a+
σ1(1)

a+
σ1(2)
· · ·a+

σ1(t)
· · ·a+

σp(1)
a+

σp(2)
· · ·a+

σp(t)
.

We have shown that there exists a smallest positive integer N(t,q) such that if α is
q -bounded and |alph(α)| ≥N(t,q) , then α is a P(t,q) -word. Let T (t,q) = N(t,q)−1.
Then there exists a word β such that β is q-bounded and |alph(β)|= T (t,q) , and β

is not a P(t,q)-word.
Let r be a positive integer, a1,a2, . . . ,ar pairwise distinct symbols, and α a word

such that alph(α) = {a1,a2, . . . ,ar} . Furthermore, assume that for all i ∈ {1,2, . . . ,r−
1} , the first occurrence of ai in α happens before the first occurrence of ai+1 in α . To
emphasize this, we write α = α(a1, . . . ,ar) . For any symbol b , let v[α(a1, . . . ,ar),b] =

a1a2 · · ·arbα(a1, . . . ,ar) . For any r new symbols b1,b2, . . . ,br , denote by α(b1, . . . ,br)

the word achieved from α by replacing each occurrence of ai with bi for i = 1,2, . . . ,r .

Lemma 10. Let t ≥ 2 and q be positive integers and α = α(a1, . . . ,ar) a q-bounded
word, which is not a P(t,q)-word. Let ar+1 be a new symbol. Then for the word
v[α(a1, . . . ,ar),ar+1] = a1a2 · · ·arar+1α(a1, . . . ,ar) the following holds:

1. v[α(a1, . . . ,ar),ar+1] is not a P(t,q+1)-word; and

123

2. for all A ⊆ {a1,a2, . . . ,ar+1} , |A| > 1 the word (v[α(a1, . . . ,ar),ar+1])A is not a
permutation of A .

Proof. The second claim is clearly true, since the letters a1,a2, . . . ,ar occur in α .
Let us assume that x= v[α(a1, . . . ,ar),ar+1] is a P(t,q+1) -word. Let A⊆ alph(α) ,

be an alphabet and x = x1x2 · · ·xk , where k ∈ {1,2, . . . ,q+ 1} , a factorization of x

such that |A|= t and (x1)A,(x2)A, . . . ,(xk)A are all permutations of A . Note that ar+1 ,
because of its role as a separator, cannot be in A . If (x1)A is a factor of a1a2 . . .al

for some l ∈ {1,2, . . . ,r+ 1} , then the symbols al+1,al+2, . . . ,ar+1 do not occur in
(x1)A,(x2)A, . . . ,(xk)A , so, by removing the prefix a1a2 . . .ar+1 from t , we notice that
α is a P(t,q)-word, a contradiction.

Let us then assume that

x1 = a1a2 . . .ar+1b1b2 . . .bl

where l is a positive integer, b1,b2, . . . ,bl are in alph(α) (b1b2 . . .bl thus being a prefix
of α with b1 = a1) and (b1b2 · · ·bl)A 6= ε . Now each symbol in {b1,b2, . . . ,bl} occurs
in x1 before the symbol ar+1 and (x1)A is a permutation, so the following holds:

(i) (b1b2 · · ·bl)A ∈ a+s , where s ∈ {1,2, . . . ,r} ; and
(ii) (x1)A contains only symbols in {a1,a2, . . . ,as} .

Suppose that (x1)A contains a symbol a j such that j ∈ {1,2, . . . ,s−1} . Then, since a j

occurs in the prefix b1b2 · · ·bl of α before as , we are in contradiction with (i) above.
The previous facts imply that |A|= 1, again a contradiction, since |A|= t ≥ 2. We thus
deduce that x is not a P(t,q+1)-word.

We can make the following conclusion.

Corollary 3. Let t,q ∈ N+ and α be as in the previous lemma. Moreover, let

a1,1,a1,2, . . . ,a1,r+1,a2,1,a2,2, . . . ,a2,r+1 . . . ,at−1,1,at−1,2 . . . ,at−1,r+1

be (t−1)(r+1) pairwise distinct symbols. Then the word

v[α(a1,1, . . . ,a1,r),a1,r+1]v[α(a2,1, . . . ,a2,r),a2,r+1] · · ·v[α(at−1,1, . . . ,at−1,r),at−1,r+1]

is not a P(t,q+1) word.

124

Proof. Denote vi = v[α(ai,1, . . . ,ai,r),ai,r+1] for i = 1,2, . . . , t−1 and x = v1v2 · · ·vt−1 .
Assume that A⊆ alph(x) , |A|= t and x = x1x2 · · ·xk , where (xi)A is a permutation of
A .

Assume first that k = 1 and thus (x)A is a permutation of A . Now (x)A =

(v1)A(v2)A · · ·(vt−1)A , so we have i ∈ {1,2, . . . , t − 1} such that A1 = alph(vi)∩ A

contains at least two elements and (vi)A1 is a permutation of A1 . This is a contradiction
with Lemma 10.

Assume now that k > 1. Let x1 = v1v2 · · ·vsb , where s ∈ {0,1, ..., t−2} and b is a
prefix of vs+1 . Since no elements of alph(v1v2 · · ·vs) appear in the word x2x3 · · ·xk we
can deduce that (vi)A = ε for i = 1,2, . . . ,s . This means that A⊆ alph(b)⊆ alph(vs+1) .
It follows that (x)A = (vs+1)A and vs+1 is thus a P(t,q+1)-word, a contradiction with
Lemma 10.

Corollary 4. For all t,q ∈ N+ , the inequality

T (t,q+1) ≥ (t−1)(T (t,q)+1)

holds.

Proof. In the construction of the lemma we add one letter to the word and then (in the
corollary) we make t−1 copies of the word.

Theorem 12. For all t,q ∈ N+ , t ≥ 2, the following inequality holds:

N(t,q) ≥ t(t−1)q−1 +(t−1)q−2 + · · · +(t−1)+1

Proof. Let us prove by induction on q that

T (t,q) ≥ [t(t−1)q−1 +(t−1)q−2 + · · · +(t−1)+1]−1 .

If q = 1, then T (t,q) = t− 1 = t(t− 1)0− 1. Suppose that T (t,q) ≥ [t(t− 1)q−1 +

(t−1)q−2 + · · · +(t−1)+1]−1. Then

T (t,q+1) ≥ (t−1)[t(t−1)q−1 +(t−1)q−2 + · · · +(t−1)+1]
= t(t−1)q +(t−1)q−1 + · · · +(t−1)+1−1 .

Thus the induction is extended and N(t,q) ≥ t(t−1)q−1+(t−1)q−2+ · · ·+(t−1)+1
for all positive integers t and q such that t ≥ 2.

125

Corollary 5. For all integers t ≥ 2 and q≥ 2 the inequalities

t(t−1)q−1 +(t−1)q−2 + · · · +(t−1)+1 ≤ N(t,q) ≤ 2dlog2 te· q
2−q+2

2

hold. Furthermore N(t,2) = t2− t +1 for each integer t ≥ 1.

Proof. The result

t(t−1)q−1 +(t−1)q−2 + · · · +(t−1)+1 ≤ N(t,q) ≤ 2dlog2 te· q
2−q+2

2

follows directly from Theorem 11 and Theorem 12. The proof of Theorem 1 shows
that N(t,2) ≤ N(t2− t + 1,1) = t2− t + 1 while Theorem 12 shows that N(t,2) ≥
t(t−1)1 +1 = t2− t +1.

126

8 Conclusion

In this thesis, we have presented a new algorithm for creating a diamond structure and
proven that time complexity of that algorithm is O(2

n+d
2) thus lowering the estimated

complexity of all attacks that involve diamond structures. These include the herding
attack and the second preimage attack against standard iterated hash functions and
several of its variants like Hash Twice and Zipper Hash.

We have also formulated a new security property, labeled Trojan message resistance,
required from all hash functions. We have studied the lower bound of hash function
queries required to break Trojan message resistance, when the hash function is a random
oracle. In addition we have created two new versions of Trojan message attacks that
have lower time complexities than the previous ones. We have presented a new variant
of Joux’s multicollision attack that allows the attacker to lower the complexity of the
attack, when there is enough memory available and the attacker is creating a large
multicollision.

Finally, we studied the complexity of creating a Joux’s type multicollision attack
against generalized iterated q−bounded hash functions and lowered the upper bound of
the complexity of creating such an attack. We have also stated a reason to consider
combinatorics on words from a new viewpoint, where the number of times a symbol can
appear in a word is restricted, and proven some results in this new research frame.

An obvious research topic in the future would be to search to generalize and sharpen
the results of this thesis or implement them in practice. Especially it would be interesting
to see, if it is possible to increase the lower bounds for many attacks presented here.

127

128

References

1. Andreeva E, Bouillaquet C, Dunkelman O & Kelsey J (2009) Herding, second preimage
and Trojan message attacks beyond Merkle-Damgård. Proceedings of the 16th Annual
International Workshop on Selected Areas in Cryptography – SAC 2009: 393–414 .

2. Andreeva E, Bouillaquet C, Fouque P-A, Hoch J, Kelsey J, Shamir A & Zimmer S (2008)
Second preimage attacks on dithered hash functions. Proceedings of the 27th Annual
International Conference on the Theory and Applications of Cryptographic Techniques –
EUROCRYPT 2008: 270–288.

3. Bellare M & Rogaway P (2007) Random oracles are practical: a paradigm for designing effi-
cient protocols. Proceedings of the 1st ACM Conference on Computer and Communications
Security – CCS 1993: 62–73.

4. Biham E & Dunkelman O (2007) A framework for iterative hash functions — HAIFA.
Cryptology ePrint Archive, Report 2007/278, URL:http://eprint.iacr.org. Cited 2014/29/10.

5. Blackburn S, Stinson D & Upadhyay J (2012) On the complexity of the herding attack and
some related attacks on hash functions. Designs, Codes and Cryptography 64(1–2): 171–193.

6. Damgård I (1990) A design principle for hash functions. Proceedings of the 9th Annual
International Cryptology Conference – CRYPTO 1989: 416-427.

7. Dean R (1999) Formal aspects of mobile code security. PhD thesis, Princeton University.
8. Diaconis P & Mosteller F (1989) Methods for studying coincidences. Journal of the American

Statistical Association 84: 853–861.
9. Dilworth R (1950) A Decomposition theorem of partially ordered sets. Annals of Mathematics

51: 161–166.
10. Dobbertin H (1998) Cryptanalysis of MD4. Journal of Cryptology 11: 253–271.
11. Dunkelman O & Preneel B (2009) Generalizing the herding attack to concatenated hashing

schemes. URL:http://events.iaik.tugraz.at/HashWorkshop07/program.html. Cited 2014/29/10.
12. Flajolet P & Odlyzko A (1990) Random mapping statistics. Proceedings of the Workshop on

the Theory and Application of Cryptographic Techniques – EUROCRYPT 1989: 329–354.
13. Halunen K, Kortelainen J & Kortelainen T (2010) Combinatorial multicollision attacks on

generalized iterated hash functions. Proceedings of the 8th Australasian Information Security
Conference – AISC 2010: 86–93.

14. Hoch J & Shamir A (2006) Breaking the ICE - finding multicollisions in iterated concatenated
and expanded (ICE) hash functions. Proceedings of the 13th International Workshop on Fast
Software Encryption – FSE 2006: 179–194.

15. Joux A (2004) Multicollisions in iterated hash functions. Application to cascaded construction.,
Proceedings of the 7th European Conference on Case-Based Reasoning – ECCBR 2004:
306–316.

16. Katz J & Lindell Y (2007) Introduction to modern cryptography. Boca Raton Chapman &
Hall.

17. Kelsey J & Kohno T (2006) Herding hash functions and nostradamus attack. Proceedings of
the 25th Annual International Conference on the Theory and Applications of Cryptographic
Techniques – EUROCRYPT 2006: 183–200.

18. Kelsey J & Schneier B (2005) Second preimage on n -bit hash functions for much less
than 2n work. Proceedings of the 24th Annual International Conference on the Theory and

129

Applications of Cryptographic Techniques – EUROCRYPT 2005: 474–490.
19. Kortelainen J, Halunen K & Kortelainen T (2010) Multicollision attacks and generalized

iterated hash functions. Journal of Mathematical Cryptology 4: 239–270.
20. Kortelainen J, Kortelainen T & Vesanen, A (2011) Unavoidable regularities in long words

with bounded number of symbol occurences. Proceedings of the 17th Annual International
Conference on Computing and Combinatorics – COCOON 2011: 519–530.

21. Kortelainen J, Kortelainen T & Vesanen A (2013) Unavoidable regularities in long words
with bounded number of symbol occurrences. Journal of Combinatorial Optimization 26:
670–686.

22. Kortelainen T & Kortelainen J (2013) On diamond structures and Trojan message attacks.
Proceedings of the 19th International Conference on the Theory and Application of Cryptology
and Information Security – ASIACRYPT 2013: 524–539.

23. Kortelainen T, Kortelainen J & Halunen K (2010) Variants of multicollision attacks on
iterated hash functions. Proceedings of the 6th International Conference on Information
Security and Cryptology – INSCRYPT 2010: 139–154.

24. Kortelainen T, Vesanen A & Kortelainen J (2012) Generalized iterated hash functions revisited:
new complexity bounds for multicollision attacks. Proceedings of the 13th International
Conference on Cryptology in India – INDOCRYPT 2012: 172–190.

25. Liskov M (2007) Constructing an ideal hash function from weak ideal compression functions.
Proceedings of the 13th International Workshop on Selected Areas in Cryptography – SAC
2006: 358–375.

26. Lothaire M (2002) Algebraic combinatorics on words. Encyclopedia of Mathematics and its
Applications 90. London Cambridge University Press.

27. Lucks S (2005) A failure-friendly design principle for hash functions. Proceedings of the
11th International Conference on the Theory and Application of Cryptology and Information
Security – ASIACRYPT 2005: 474–494.

28. Menezes A, van Oorschot P & Vanstone S (1996) Handbook of Applied Cryptography. Boca
Raton CRC Press.

29. Merkle R (1990) One way hash functions and DES. Proceedings of the 9th Annual Interna-
tional Cryptology Conference – CRYPTO 1989: 428-446.

30. Nandi M & Stinson D (2007) Multicollision attacks on some generalized sequential hash
functions. IEEE Transactions on Information Theory 53: 759–767.

31. Pin L, Wenling W, Chuankun W & Tian Q (2008) Analysis of zipper as a hash function.
Proceedings of the 4th International Conference on Information Security Practice and
Experience – ISPEC 2008: 392–403.

32. Suzuki K, Tonien D, Kurosawa K & Toyota K (2008) Birthday paradox for multicollisions.
IEICE Transactions 91–A: 39–45.

33. Stevens M (2006) Fast Collision Attack on MD5. Cryptology ePrint Archive, Report 2006/104
URL:http://eprint.iacr.or/. Cited 2014/29/10

34. van Oorschot P & Wiener M (1999) Parallel collision search with cryptanalytic applications.
Journal of Cryptology 12: 1–28.

35. Wang X, Yin Y & Yu H (2005) Finding collisions in the full SHA-1. Proceedings of the 25th
Annual International Cryptology Conference – CRYPTO 2005: 17-36.

36. Wang X & Yu, H (2005) How to break MD5 and other hash functions. Proceedings of the
24th Annual International Conference on the Theory and Applications of Cryptographic
Techniques – EUROCRYPT 2005: 19–35.

130

37. Wendl M (2003) Collision probability between sets of random variables. Statistics &
Probability Letters 64: 249–254.

38. Yu H & Wang, X (2007) Multi-collision attack on the compression function of MD4 and
3-pass HAVAL. Proceedings of the 10th International Conference on Information Security
and Cryptology – ICISC 2007: 206–226.

131

A C T A U N I V E R S I T A T I S O U L U E N S I S

Book orders:
Granum: Virtual book store
http://granum.uta.fi/granum/

S E R I E S A S C I E N T I A E R E R U M N A T U R A L I U M

622. Matusek, Florian (2014) Selective privacy protection for video surveillance

623. Virtanen, Elina (2014) Effects of haulm killing and gibberellic acid on seed potato
(Solanum tuberosum L.) and techniques for micro- and minituber production in
northern latitudes

624. Kopatz, Alexander (2014) Genetic structure of the brown bears (Ursus arctos) in
Northern Europe

625. Loukola, Olli (2014) Information networks among species : adaptations and
counter-adaptations in acquiring and hiding information

626. Langrial, Sitwat (2014) Exploring the influence of persuasive reminders and virtual
rehearsal on the efficacy of health behavior change support system

627. Jaakkonen, Tuomo (2014) Intra- and interspecific social information use in nest
site selection of a cavity-nesting bird community

628. Päätalo, Heli (2014) Stakeholder interactions in cross-functional productization :
the case of mobile software development

629. Koskela, Timo (2014) Interaction in asset-based value creation within innovation
networks : the case of software industry

630. Stibe, Agnis (2014) Socially influencing systems : persuading people to engage with
publicly displayed Twitter-based systems

631. Sutor, Stephan R. (2014) Large-scale high-performance video surveillance

632. Niskanen, Alina (2014) Selection and genetic diversity in the major
histocompatibility complex genes of wolves and dogs

633. Tuomikoski, Sari (2014) Utilisation of gasification carbon residues : activation,
characterisation and use as an adsorbent

634. Hyysalo, Jarkko (2014) Supporting collaborative development : cognitive
challenges and solutions of developing embedded systems

635. Immonen, Ninna (2014) Glaciations and climate in the Cenozoic Arctic : evidence
from microtextures of ice-rafted quartz grains

636. Kekkonen, Päivi (2014) Characterization of thermally modified wood by NMR
spectroscopy : microstructure and moisture components

637. Pietilä, Heidi (2014) Development of analytical methods for ultra-trace
determination of total mercury and methyl mercury in natural water and peat soil
samples for environmental monitoring

A
B
C
D
E
F
G

UNIVERSITY OF OULU P .O. B 00 F I -90014 UNIVERSITY OF OULU FINLAND

A C T A U N I V E R S I T A T I S O U L U E N S I S

S E R I E S E D I T O R S

SCIENTIAE RERUM NATURALIUM

HUMANIORA

TECHNICA

MEDICA

SCIENTIAE RERUM SOCIALIUM

SCRIPTA ACADEMICA

OECONOMICA

EDITOR IN CHIEF

PUBLICATIONS EDITOR

Professor Esa Hohtola

University Lecturer Santeri Palviainen

Postdoctoral research fellow Sanna Taskila

Professor Olli Vuolteenaho

University Lecturer Veli-Matti Ulvinen

Director Sinikka Eskelinen

Professor Jari Juga

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-952-62-0642-4 (Paperback)
ISBN 978-952-62-0643-1 (PDF)
ISSN 0355-3191 (Print)
ISSN 1796-220X (Online)

U N I V E R S I TAT I S O U L U E N S I SACTA
A

SCIENTIAE RERUM
NATURALIUM

U N I V E R S I TAT I S O U L U E N S I SACTA
A

SCIENTIAE RERUM
NATURALIUM

OULU 2014

A 638

Tuomas Kortelainen

ON ITERATION-BASED
SECURITY FLAWS IN
MODERN HASH FUNCTIONS

UNIVERSITY OF OULU GRADUATE SCHOOL;
UNIVERSITY OF OULU,
FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICAL SCIENCES;
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING,
DEPARTMENT OF INFORMATION PROCESSING SCIENCE

A
 638

AC
TA

Tuom
as K

ortelainen

	Abstract
	Tiivistelmä
	Acknowledgements
	Contents
	1 Introduction
	2 Basics
	2.1 Words
	2.2 Some Mathematical Tools
	2.3 General Description of Hash Functions
	2.3.1 Why Are These Security Properties Important?

	2.4 Iterated Hash Functions
	2.5 Different Types of Hash Functions
	2.5.1 Concatenated Hash Functions
	2.5.2 Hash Twice
	2.5.3 Zipper Hash
	2.5.4 Generalized Iterated Hash Functions

	2.6 Attack Algorithms and Their Complexity
	2.6.1 The Complexity of the Attack Algorithm
	2.6.2 Asymptotic Complexity
	2.6.3 Complexity Analysis in This Work
	2.6.4 On Memory Requirements
	2.6.5 About Wide-Pipe Hash

	2.7 About Collisions
	2.7.1 The Probability of Finding a Collision
	2.7.2 Collision Complexity
	2.7.3 Multicollision Complexity
	2.7.4 Preimage and Second Preimage Complexities

	3 What is Known Before
	3.1 Joux’s Attack
	3.1.1 Joux’s Attack on Concatenated Constructions
	3.1.2 Multicollisions on Generalized Hash Functions

	3.2 Creating Expandable Messages
	3.3 Second Preimage Attacks with Expandable Messages
	3.4 Creating a Diamond Structure
	3.4.1 Elongated Diamond Structure
	3.4.2 Multicollision Diamond

	3.5 Herding Attack with a Diamond Structure
	3.5.1 Herding Attack against Concatenated Hash
	3.5.2 Herding Attack against Hash Twice

	3.6 Second Preimage Attack with Diamond Structure
	3.6.1 Second Preimage Attack against Hash Twice

	3.7 Trojan Message Attack

	4 A Variant of Joux’s Attack
	4.1 About Probabilites
	4.2 Probabilistic Attack Algorithm
	4.4 Comparing the Procedure to Joux’s Attack
	4.4.1 Bypassing Merkle-Damgård Strengthening

	4.5 Special Cases with Small Parameter Values
	4.6 Improved Results
	4.7 Further Thoughts

	5 Diamond Structures and Trojan Messages
	5.1 A New Method for a Diamond Structure Creation
	5.1.1 A Pairing Set
	5.1.2 Intuitive Description of the Diamond Structure ConstructionMethod
	5.1.3 The Overall Complexity of the Construction
	5.1.4 Memory Requirements
	5.1.5 Reducing the Complexity

	5.2 New Versions of the Trojan Message Attacks
	5.2.1 Trojan Message Resistance
	5.2.2 Weak Trojan Attack
	5.2.3 Strong Trojan Attack

	5.3 Tables

	6 Generalized Iterated Hash Functions I:Attack Consideration Based on ClassicalCombinatorics and Permutations
	6.1 Nested Multicollision Attack Schema (NMCAS)
	6.2 Basic Structure of the Attack
	6.3 First Step: Creating Unavoidable Permutations
	6.4 Second Step: Using the Permutations
	6.5 Third Step: Completing the Attack

	7 Generalized Iterated Hash Functions II:Attacks Based on Nonuniform Words
	7.1 Uniform and Distinct Words
	7.2 Factorizing q-Bounded Words
	7.3 Attacking Bounded Generalized Iterated Hash Functions
	7.4 Supplementary Combinatorial Considerations

	8 Conclusion
	References

