
A Framework and Calculation Engine for Modeling and
Predicting the Cyber Security of Enterprise Architectures

HANNES HOLM

Doctoral Thesis
Stockholm, Sweden 2014

TRITA EE 2014:001
ISBN 978-91-7595-005-1
ISSN 1653-5146
ISRN KTH/ICS/R--14/01--SE

Industrial Information and Control Systems
KTH, Royal Institute of Technology

Stockholm, Sweden

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

© Hannes Holm, January 2014. Copyrighted articles are reprinted with kind permission
from IEEE, Elsevier, and Emerald. Cover illustration by Jesper Holm.

Set in LATEX by the author
Printed by Universitetsservice US AB

Abstract

Information Technology (IT) is a cornerstone of our modern society and essential for gov-
ernments’ management of public services, economic growth and national security. Conse-
quently, it is of importance that IT systems are kept in a dependable and secure state.
Unfortunately, as modern IT systems typically are composed of numerous interconnected
components, including personnel and processes that use or support it (often referred to as
an enterprise architecture), this is not a simple endeavor. To make matters worse, there
are malicious actors who seek to exploit vulnerabilities in the enterprise architecture to
conduct unauthorized activity within it. Various models have been proposed by academia
and industry to identify and mitigate vulnerabilities in enterprise architectures, however,
so far none has provided a sufficiently comprehensive scope.

The contribution of this thesis is a modeling framework and calculation engine that
can be used as support by enterprise decision makers in regard to cyber security matters,
e.g., chief information security officers. In summary, the contribution can be used to model
and analyze the vulnerability of enterprise architectures, and provide mitigation suggestions
based on the resulting estimates. The contribution has been tested in real-world cases and
has been validated on both a component level and system level; the results of these studies
show that it is adequate in terms of supporting enterprise decision making.

This thesis is a composite thesis of eight papers. Paper 1 describes a method and dataset
that can be used to validate the contribution described in this thesis and models similar
to it. Paper 2 presents what statistical distributions that are best fit for modeling the
time required to compromise computer systems. Paper 3 describes estimates on the effort
required to discover novel web application vulnerabilities. Paper 4 describes estimates on the
possibility of circumventing web application firewalls. Paper 5 describes a study of the time
required by an attacker to obtain critical vulnerabilities and exploits for compiled software.
Paper 6 presents the effectiveness of seven commonly used automated network vulnerability
scanners. Paper 7 describes the ability of the signature-based intrusion detection system
Snort at detecting attacks that are more novel, or older than its rule set. Finally, paper 8
describes a tool that can be used to estimate the vulnerability of enterprise architectures;
this tool is founded upon the results presented in papers 1-7.

Keywords: Computer security, security metrics, vulnerability assessment, attack graphs,
risk management, architecture modeling, Enterprise Architecture

Sammanfattning

Informationsteknik (IT) är en grundsten i vårt moderna samhälle och grundläggande för
staters hantering av samhällstjänster, ekonomisk tillväxt och nationell säkerhet. Det är där-
för av vikt att IT-system hålls i ett tillförlitligt och säkert tillstånd. Då moderna IT-system
vanligen består av en mångfald av olika integrerade komponenter, inklusive människor och
processer som nyttjar eller stödjer systemet (ofta benämnd organisationsövergripande ar-
kitektur, eller enterprise architecture), är detta tyvärr ingen enkel uppgift. För att förvärra
det hela så finns det även illvilliga aktörer som ämnar utnyttja sårbarheter i den organisa-
tionsövergripande arkitekturen för att utföra obehörig aktivitet inom den. Olika modeller
har föreslagits av den akademiska världen och näringslivet för att identifiera samt behandla
sårbarheter i organisationsövergripande arkitekturer, men det finns ännu ingen modell som
är tillräckligt omfattande.

Bidraget presenterat i denna avhandling är ett modelleringsramverk och en beräknings-
motor som kan användas som stöd av organisatoriska beslutsfattare med avseende på sä-
kerhetsärenden. Sammanfattningsvis kan bidraget användas för att modellera och analysera
sårbarheten av organisationsövergripande arkitekturer, samt ge förbättringsförslag baserat
på dess uppskattningar. Bidraget har testats i fallstudier och validerats på både komponent-
nivå och systemnivå; resultaten från dessa studier visar att det är lämpligt för att stödja
organisatoriskt beslutsfattande.

Avhandlingen är en sammanläggningsavhandling med åtta artiklar. Artikel 1 beskriver
en metod och ett dataset som kan användas för att validera avhandlingens bidrag och andra
modeller likt detta. Artikel 2 presenterar vilka statistiska fördelningar som är bäst lämpa-
de för att beskriva tiden som krävs för att kompromettera en dator. Artikel 3 beskriver
uppskattningar av tiden som krävs för att upptäcka nya sårbarheter i webbapplikationer.
Artikel 4 beskriver uppskattningar för möjligheten att kringgå webbapplikationsbrandväg-
gar. Artikel 5 beskriver en studie av den tid som krävs för att en angripare skall kunna
anskaffa kritiska sårbarheter och program för att utnyttja dessa för kompilerad programva-
ra. Artikel 6 presenterar effektiviteten av sju vanligt nyttjade verktyg som används för att
automatiskt identifiera sårbarheter i nätverk. Artikel 7 beskriver förmågan av det signatur-
baserade intrångsdetekteringssystemet Snort att upptäcka attacker som är nyare, eller äldre,
än dess regeluppsättning. Slutligen beskriver artikel 8 ett verktyg som kan användas för att
uppskatta sårbarheten av organisationsövergripande arkitekturer; grunden för detta verktyg
är de resultat som presenteras i artikel 1-7.

Nyckelord: Cybersäkerhet, säkerhetsmetriker, sårbarhetsanalys, attackgrafer, riskhante-
ring, arkitekturmodellering, organisationsövergripande arkitektur

Acknowledgments

While it is difficult to produce an exhaustive list of all those who have contributed to this
thesis, or supported me during this journey, it is clear that it would not have been possible
without your aid.

Mathias Ekstedt, Robert Lagerström and Göran Ericsson provided valuable input in
their role of supervisors. Judith Westerlund and Annica Johannesson deserve many thanks
for making the administrative aspects of my academic life so much easier.

My colleagues at both ICS and abroad (in particular, the Argus group) have all con-
tributed to this thesis with interesting discussions and for having created an atmosphere
that made work both rewarding and joyful. It has sincerely been a pleasure working with
you. I am particularly grateful to my paper co-authors, especially Teodor Sommestad who
served almost as a fourth supervisor during my first year as a Ph.D. student. Another
special thanks goes to Kun Zhu and Markus Buschle for all pain spent at KTH-hallen.

A number of people within the industry have aided the development of this thesis with
unvaluable practical insight and data; it could definitely not have been done without you.

Finally, I would like to thank Anna, my family - Helen, Stefan and Jesper - and my
friends - in particular, Ricard and Markus. Thank you for your support, and especially, for
tolerating my endless monologues on IT security!

Stockholm, January 2014
Hannes Holm

vii

Papers

Papers included in the thesis

[1] Hannes Holm, Mathias Ekstedt, and Dennis Andersson,“Empirical Analysis of System-
Level Vulnerability Metrics through Actual Attacks”, in Dependable and Secure Com-
puting, IEEE Transactions on, vol. 9, no. 6, pp. 825–837, Nov.-Dec. 2012, DOI:
10.1109/TDSC.2012.66.

[2] Hannes Holm, “A Large-Scale Study of the Time Required to Compromise a Computer
System”, in Dependable and Secure Computing, IEEE Transactions on, vol. 10, no. 6,
Nov.-Dec. 2013, DOI: 10.1109/TDSC.2013.21.

[3] Hannes Holm, Mathias Ekstedt, and Teodor Sommestad, “Effort Estimates for Web Ap-
plication Vulnerability Discovery”, in 46th Hawaii International Conference on Systems
Sciences (HICSS), Maui, Hawaii, January 7-10 2013, pp. 5029–5038.

[4] Hannes Holm, and Mathias Ekstedt, “Estimates on the Effectiveness of Web Applica-
tion Firewalls Against Targeted Attacks”, in Information Management and Computer
Security, vol. 21, no. 4, pp. 250–265, Nov. 2013, DOI: 10.1108/IMCS-11-2012-0064.

[5] Hannes Holm, Matus Korman, and Mathias Ekstedt, “A Bayesian Model for Likelihood
Estimations of Acquirement of Critical Software Vulnerabilities and Exploits”, submit-
ted manuscript.

[6] Hannes Holm, “Performance of Automated Network Vulnerability Scanning at Remedi-
ating Security Issues”, in Computers & Security, vol. 31, no. 2, pp. 164–175, Mar. 2012,
DOI: 10.1016/j.cose.2011.12.014.

[7] Hannes Holm, “Signature Based Intrusion Detection for Zero-Day Attacks: (Not)
A Closed Chapter?”, in 47th Hawaii International Conference on Systems Sciences
(HICSS), Big Island, Hawaii, January 6-9 2014, pp. 4895–4904.

[8] Hannes Holm, Khurram Shahzad, Markus Buschle, and Mathias Ekstedt, “P2CySeMoL:
Predictive, Probabilistic Cyber Security Modeling Language”, submitted manuscript.

Author contributions
In all papers, Hannes Holm has been the leading researcher and primary author.

In [1], the general research concept is due to Holm, the data collection to Holm and
Andersson, the analysis to Holm and Ekstedt, and the authoring mostly to Holm.

[2, 6, 7] were authored solely by Holm.

ix

x RELATED PAPERS NOT INCLUDED IN THE THESIS

In [3], the general research concept is due to Holm and Ekstedt, the survey instrument to
Holm, Sommestad and Ekstedt, the data collection and analysis to Holm, and the authoring
mostly to Holm and Sommestad.

In [4], the general research concept, survey instrument and authoring are due to Holm
and Ekstedt, and the data collection and analysis to Holm.

In [5], the general research concept is due to Holm and Ekstedt, the survey instrument,
scripts, data collection and analysis to Holm, and the authoring to Holm with assistance
from Korman and Ekstedt.

In [8], the general research concept is mostly due to Holm and Ekstedt, the P2AMF
implementation to Holm, Shahzad, Buschle and Ekstedt, the case studies to Holm with
assistance from Ekstedt, the validation to Holm, and the authoring mostly to Holm, Buschle
and Ekstedt.

Related papers not included in the thesis

[9] Robert Lagerström, Liv Marcks von Würtemberg, Hannes Holm, and Oscar Luczak,
“Identifying factors affecting software development cost,” in Fourth International
Workshop on Software Quality and Maintainability (SQM), Mar. 2010.

[10] Mark Jensen, Cumhur Sel, Ulrik Franke, Hannes Holm, and Lars Nordstrom, “Avail-
ability of a SCADA/OMS/DMS system - A case study,” in Innovative Smart Grid
Technologies Conference Europe (ISGT Europe), pp. 1–8, Oct. 2010.

[11] Per Närman, Hannes Holm, Pontus Johnson, Johan König, Moustafa Che-
nine, and Mathias Ekstedt, “Data accuracy assessment using enterprise architec-
ture,” in Enterprise Information Systems, vol. 5, no. 1, pp. 37–58, 2011, DOI:
10.1080/17517575.2010.507878.

[12] Hannes Holm, Teodor Sommestad, Ulrik Franke, and Mathias Ekstedt, “Expert assess-
ment on the probability of successful remote code execution attacks,” in 8th Interna-
tional Workshop on Security in Information Systems – WOSIS 2011, Jun. 2011.

[13] Teodor Sommestad, Mathias Ekstedt, and Hannes Holm, “Security mistakes in infor-
mation system deployment projects,” in Information Management & Computer Secu-
rity, vol. 19, no. 2, pp. 80–94, 2011, DOI: 10.1108/09685221111143033.

[14] Teodor Sommestad, Hannes Holm, and Mathias Ekstedt, “Estimates of success rates
of Denial-of-Service attacks,” in Trust, Security and Privacy in Computing and Com-
munications (TrustCom), 2011 IEEE 10th International Conference on, pp. 21–28,
2011.

[15] Waldo Rocha Flores, Teodor Sommestad, and Hannes Holm, “Assessing future value
of investments in IT governance control objectives - an expert-based evaluation,” in
Electronic Journal of Information Systems Evaluation, vol. 14, no. 2, pp. 216–227,
2011.

[16] Waldo Rocha Flores, Teodor Sommestad, and Hannes Holm, “Assessing future value
of investments in IT governance control objectives - an expert-based evaluation,” in
5th International Conference on Information Management and Engineering (ICIME),
Apr. 2011.

RELATED PAPERS NOT INCLUDED IN THE THESIS xi

[17] Markus Buschle, Hannes Holm, Teodor Sommestad, and Mathias Ekstedt, “Architec-
tural analysis using automated vulnerability assessment,” in 23rd International Con-
ference on Advanced Information Systems Engineering (CAiSE’11), Jun. 2011.

[18] Dennis Andersson, Magdalena Granåsen, Thomas Sundmark, Hannes Holm, and Jonas
Hallberg, “Analysis of a Cyber Defense Exercise using Exploratory Sequential Data
Analysis,” in Proceedings of the 16th International Command and Control Research
and Technology Symposium (ICCRTS), Jun. 2011.

[19] Hannes Holm, Teodor Sommestad, Jonas Almroth, and Mats Persson, “A quantita-
tive evaluation of vulnerability scanning,” in Information Management & Computer
Security, vol. 19, no. 4, pp. 231–247, 2011, DOI: 10.1108/09685221111173058.

[20] Dennis Andersson, Magdalena Granåsen, Thomas Sundmark, Hannes Holm, and Jonas
Hallberg, “Exploratory Sequential Data Analysis of a Cyber Defence Exercise,” in
Proceedings of the International Defense and Homeland Security Simulation Workshop
(DHSS), Sep. 2011.

[21] Teodor Sommestad, Hannes Holm, and Mathias Ekstedt, “Threats and vulnerabilities,
final report,” Stockholm, Sweden: Report of The VIKING project, 2011.

[22] Hannes Holm, Teodor Sommestad, Mathias Ekstedt, “Vulnerability assessment of
SCADA systems,” Stockholm, Sweden: Report of The VIKING project, 2011.

[23] Teodor Sommestad, Hannes Holm, and Mathias Ekstedt, “Effort estimates for vulner-
ability discovery projects,” in 45th Hawaii International Conference on System Science
(HICSS), pp. 5564–5573, Jan. 2012.

[24] Hannes Holm, Teodor Sommestad, Ulrik Franke, and Mathias Ekstedt, “Success rate
of remote code execution attacks – expert assessments and observations,” Journal of
Universal Computer Science, vol. 18, no. 6, pp. 732–749, Mar. 2012.

[25] Teodor Sommestad, Hannes Holm, and Mathias Ekstedt, “Estimates of success rates
of remote arbitrary code execution attacks,” in Information Management & Computer
Security, vol. 20, no. 2, pp. 107–122, 2012, DOI: 10.1108/09685221211235625.

[26] Markus Buschle, Hannes Holm, Teodor Sommestad, and Mathias Ekstedt, “A Tool for
Automatic Enterprise Architecture Modeling,” in IS Olympics: Information Systems
in a Diverse World, vol. 107, pp. 1–15, 2012.

[27] Robert Lagerström, Liv Marcks von Würtemberg, Hannes Holm, and Oscar Luczak,
“Identifying factors affecting software development cost and productivity,” in Software
quality journal, vol. 20, no. 2, pp. 395–417, Jun. 2012, DOI: 10.1007/s11219-011-9137-8.

[28] Hannes Holm, Markus Buschle, Robert Lagerström, and Mathias Ekstedt, “Automated
data collection for enterprise architecture models,” in Software & Systems Modeling,
pp. 1–17, Jun. 2012, DOI: 10.1007/s10270-012-0252-1.

[29] Per Närman, Hannes Holm, David Höök, Nicholas Honeth, and Pontus Johnson, “Using
enterprise architecture and technology adoption models to predict application usage,”
in Journal of Systems and Software, vol. 85, no. 8, pp. 1953–1967, Aug. 2012, DOI:
10.1016/j.jss.2012.02.035.

[30] Hannes Holm, “Baltic Cyber Shield: Research from a red team versus blue team exer-
cise,” in PenTest magazine, vol. 2, no. 5, pp. 80–86, 2012.

xii RELATED PAPERS NOT INCLUDED IN THE THESIS

[31] Hannes Holm and Mathias Ekstedt, “A metamodel for web application injection attacks
and countermeasures,” in Trends in Enterprise Architecture Research and Practice-
Driven Research on Enterprise Transformation (TEAR), pp. 198–217, Oct. 2012.

[32] Per Närman, Hannes Holm, Mathias Ekstedt, and Nicholas Honeth, “Using enterprise
architecture analysis and interview data to estimate service response time,” in The
Journal of Strategic Information Systems, vol. 22, no. 1, pp. 70–85, Mar. 2013, DOI:
10.1016/j.jsis.2012.10.002.

[33] Hannes Holm, Teodor Sommestad, and Mathias Ekstedt, “CySeMoL: A tool for cyber
security analysis of enterprises,” in CIRED, Jun. 2013.

[34] Teodor Sommestad, Mathias Ekstedt, and Hannes Holm, “The Cyber Security
Modeling Language - A Tool for Vulnerability Assessments of Enterprise Architec-
tures,” in Systems Journal, IEEE, vol. 7, no. 3, pp. 363–373, Sept. 2013, DOI:
10.1109/JSYST.2012.2221853.

[35] Waldo Rocha Flores, Hannes Holm, Gustav Svensson, and Göran Ericsson, “Using
Phishing Experiments and Scenario-based Surveys to Understand Security Behaviours
in Practice,” in 7th International Symposium on Human Aspects of Information Secu-
rity and Assurance (HAISA), May 2013.

[36] Hannes Holm, Teodor Sommestad, Mathias Ekstedt, and Nicholas Honeth, “Indicators
of expert judgement and their significance: an empirical investigation in the area of
cyber security,” in Expert Systems, 2013, DOI: 10.1111/exsy.12039.

[37] Hannes Holm, Waldo Rocha Flores, and Göran Ericsson, “Cyber Security for a Smart
Grid – What About Phishing?,” in 4th European Innovative Smart Grid Technologies
(ISGT) Conference, Oct. 2013.

[38] Hannes Holm, Mathias Ekstedt, Teodor Sommestad, and Matus Korman, “A Manual
for the Cyber Security Modeling Language,” Stockholm, Sweden: Report from ICS
KTH, Nov. 2013.

[39] Waldo Rocha Flores, Hannes Holm, Gustav Svensson, and Göran Ericsson, “Using
Phishing Experiments and Scenario-based Surveys to Understand Security Behaviours
in Practice,” in Information Management & Computer Security, To be available.

[40] Teodor Sommestad, Hannes Holm, Mathias Ekstedt, and Nicholas Honeth, “Quantify-
ing the effectiveness of intrusion detection system in different operational environments
through domain experts,” Journal of Information System Security, To be available.

Table of contents

I Introduction 1

1 Introduction 3
1.1 Outline of the thesis . 3
1.2 Background . 3
1.3 Purpose . 5

2 Related work 7
2.1 Quantitative security measurements . 8
2.2 Quantitative security models and metrics 9
2.3 Attack graph approaches . 12
2.4 The Cyber Security Modeling Language . 14

3 Thesis contribution 15
3.1 Overview of contribution . 15
3.2 Implementation in a new framework . 16
3.3 Scope of contribution . 19
3.4 Modeling variable attacker effort . 23
3.5 A method and dataset for validation . 24
3.6 Practical utility . 24

4 Research design 31
4.1 Creation of framework . 32
4.2 Creation of quantitative security theory . 32
4.3 Sampling based on attacker effort . 34
4.4 Validation . 34

5 Conclusions and future work 37

Bibliography 41

II Papers 1 to 8 55

1 Empirical Analysis of System-Level Vulnerability Metrics through Ac-
tual Attacks 57

2 A Large-Scale Study of the Time Required to Compromise a Computer
System 73

3 Effort Estimates for Web Application Vulnerability Discovery 89

xiii

4 Estimates on the Effectiveness of Web Application Firewalls Against
Targeted Attacks 101

5 A Bayesian Model for Likelihood Estimations of Acquirement of Critical
Software Vulnerabilities and Exploits 119

6 Performance of Automated Network Vulnerability Scanning at Reme-
diating Security Issues 159

7 Signature Based Intrusion Detection for Zero-Day Attacks: (Not) A
Closed Chapter? 173

8 P2CySeMoL: Predictive, Probabilistic Cyber Security Modeling Lan-
guage 185

Part I

Introduction

Chapter 1

Introduction

1.1 Outline of the thesis

This thesis consists of two parts. The first part provides an overview of the second part that
contains the research papers which constitutes the core of this thesis. This first part presents
a motivation behind the thesis, related work, the results, and the employed research design.
The second part consists of eight papers that have either been published in (papers 1, 2, 4,
and 6), or submitted to (papers 5, 8) peer-reviewed academic journals, or published in the
proceedings of peer-reviewed academic conferences (paper 3, 7).

1.2 Background

Information Technology (IT) is essential to businesses as it is used to support most, if not all,
organizational functions. Dependable IT systems are thus essential as their failure generally
has a large impact on the services provided by an enterprise. This is especially important
if the IT system in question controls a physical process that enables a widely used service,
such as the power grid [118], where a failure can provide significant consequences for the
society - as demonstrated by, for example, the North American blackout during 2003 [14].

Here, a service failure is an event that occurs when a delivered service deviates from
the correct service. A failure origins from one or more errors; parts of a systems total state
that may lead to failures. Errors are produced by active faults. Faults stem from failures
of hardware, software, humans, or the physical world with its natural phenomena [17].

As an IT architecture typically is made up of a complex “cobweb” of interconnected
IT, personnel and processes [13], often referred to as an enterprise architecture [103], an
error in one small component - that is insignificant on its own - can have radical effects on
the dependability of the overall system-of-systems [17, 137]. Consequently, it is a difficult
endeavor to achieve dependable IT and various models have been proposed to measure and
improve dependability [128].

To make matters worse, some active faults can enable motivated actors to conduct
unauthorized activity in the enterprise architecture. If this is the case, the fault can be
considered a security vulnerability to the dependable and secure state of the enterprise
architecture [17, 22, 70].

It is certainly in the interest of enterprise decision makers to estimate where security
vulnerabilities currently exist, where they might occur, and what consequences they have
if successfully exploited. Unfortunately, to estimate the security vulnerability of modern
enterprise architectures, an enormous amount of factors need to be considered. It is not

3

4 CHAPTER 1. INTRODUCTION

enough to gather information about every single known vulnerability in the architecture;
there is also a need to understand, in particular, how these relate and where novel vul-
nerabilities might occur [181]. For instance, a critical client-side kernel vulnerability in a
web server might be rather insignificant on its own as the server is not used as a client.
However, this vulnerability would be problematic if the attacker is able to exploit some
other vulnerability to reach it.

Decisions on how to measure and improve enterprise IT security are ultimately made by
some type of enterprise decision maker, often the Chief Information Security Officer (CISO)
[23]. Goodyear et al. [67] study the skills and responsibilities of the CISO, and finds that
non-technical skills are in greater demand than technical skills:

“While technical education remains important, the CISO role has grown far
beyond technical management of cybersecurity tools. States should modernize
the philosophical approach to cybersecurity management. At the core of effective
CISO skills and competencies is a philosophy that cybersecurity problem solving
is more than an exercise in technical proficiency. State CISOs themselves identify
non-technical skills as particularly important, including collaboration/conflict
management, communication skills, and political skills.”

Consequently, a cybersecurity enterprise decision maker cannot be expected to have
a deep understanding of IT security vulnerabilities and their dependencies; rather, they
should be expected to have a basic understanding of their enterprise architecture and the
losses incurred if assets are compromised [159].

Due to this knowledge gap, enterprise decision makers typically consult experts in order
to estimate the IT security of their architectures. While consulting experts certainly is valu-
able, resulting estimates come with three significant delimitations: they are only valid for
1) the time that they were carried out, 2) the parts of the enterprise architecture that were
studied by the expert, and 3) the competence of the consulted expert. These delimitations
are especially problematic given the dynamic nature of enterprise architectures and the lack
of resources available for analyses. Another means of managing cybersecurity, often tightly
coupled with expert investigations, is to implement the guidelines prescribed by standards
or frameworks such as the ISO/IEC 27000 series [94] or the Common Criteria [32]. However,
these guidelines are by design very general and do not provide any readily available means
to measure and improve security; rather, they aid with the development of metrics that can
be used to measure and improve security. As a consequence, application of them can be
vague and troublesome. For instance, Ross Andersson [12] reports that:

“In none of the half-dozen or so affected cases I’ve been involved in has the
Common Criteria approach proved satisfactory.”

As there is no “silver bullet”, and IT security is a complex issue, a sometimes employed
method is what Bruce Schneier refer to as Security Theater [142]:

“Security theater refers to security measures that make people feel more secure
without doing anything to actually improve their security.”

In other words, to invest in some IT security policy, education or tool to at least make
it seem as if the topic is adequately managed. While a perception of security can have its
merits [134], implementation of security measures without proper evidence can naturally
also be problematic - its cost is real, but its benefits are generally negligible.

1.3. PURPOSE 5

Enterprise decision makers are thus in need of tools that can help estimate the cyber-
security of enterprise architectures in a both useful and easy-to-understand fashion. There
are various research efforts that have been conducted for this purpose (see Chapter 2 for an
overview). Of these, the attack graph approach is often considered the best suited method
for estimating the security of enterprise architectures. Attack graphs involve usage of for-
mal reasoning and graphical modeling to present possible attack paths corresponding to a
certain architecture. According to a recent survey by [101], there are more than 30 differ-
ent types of attack graph approaches. However, while there is a myriad of methodologies,
there is not yet any tool that provides satisfactory analysis of the security of an enterprise
architecture; they are either limited in terms of assumptions, scope or too effort-demanding
to employ.

1.3 Purpose

The purpose of this research is to help enterprise decision makers analyze the cybersecurity,
or vulnerability, of their enterprise architectures in a meaningful and understandable way.
More specifically, this involves creation of a model that can be used to estimate the vul-
nerability of an enterprise architecture. This model should allow modifications of depicted
architectures to enable estimates on the vulnerability of alternative configurations. More-
over, it should not be overly costly to employ, or require any major security expertise to
use. Finally, it should be reasonably correct, i.e., there should exist a reasonable trade-off
between data collection costs and quality of estimates. The gain of allowing some uncer-
tainty in the result is that the data collection effort can be kept at an acceptable level, thus
enabling practical usage of the model.

Chapter 2

Related work

The contribution of this thesis is a tool that can be used to measure the vulnerability of
enterprise architectures. Thus, the related works described in this chapter concern the sub-
ject of security measurement. To understand the purpose of measurement, we paraphrase
Lord Kelvin:

“To measure is to know.”

“If you can not measure it, you can not improve it.”

“In physical science the first essential step in the direction of learning any subject
is to find principles of numerical reckoning and practicable methods for measur-
ing some quality connected with it. I often say that when you can measure what
you are speaking about, and express it in numbers, you know something about
it; but when you cannot measure it, when you cannot express it in numbers,
your knowledge is of a meagre and unsatisfactory kind; it may be the beginning
of knowledge, but you have scarcely in your thoughts advanced to the state of
Science, whatever the matter may be.”

A measurement is the outcome of an event described according to some method. Typi-
cally, we measure to enable prediction and control [16]. A metric assigns measurements onto
a scale in order to correctly represent some phenomenon [19]. A security metric concerns
a metric used to correctly represent some security attribute of a system under considera-
tion [16]. A security model provides a formal representation (e.g., a set of equations) that
corresponds to some security attribute [176].

On an overall level, a security model or metric can be either qualitative or quantitative
[139, 178]. While qualitative models such as the ISO/IEC 27004, Common Criteria, OC-
TAVE [3] and CORAS [45] often are used in practice, they suffer from being vague, and
ultimately subjective [178]. The contribution described in this thesis is a quantitative model
that allows modeling assets of enterprise architectures, and then calculating the likelihood
of different attacks being successful against these assets. Consequently, this chapter delimits
from presenting qualitative research and focuses on describing quantitative efforts. As the
contribution computes vulnerability estimates based on measurements describing different
security phenomena, Section 2.1 presents research that provide security measurements; an
overview of relevant security models and metrics can be found in Section 2.2. As the con-
tribution presented in this thesis is an attack graph approach [110], Section 2.3 is devoted
to presenting related such models. Finally, the contribution is based on an existing attack

7

8 CHAPTER 2. RELATED WORK

graph model, the Cyber Security Modeling Language (CySeMoL). This model is presented
in Section 2.4.

2.1 Quantitative security measurements

Some research focus on measuring the effectiveness of different defense mechanisms under
certain circumstances. These efforts can have merit for enterprise decision makers. They
could also serve as input to metrication frameworks such as CORAS, OCTAVE, ISO/IEC
27004, or the contribution of this thesis.

There is a vast variety of attacks and defense mechanisms available. Exploiting an indi-
viduals’ lack of security awareness to make the individual comply with a malicious request
(i.e., social engineering [83]), and exploiting a vulnerable memory buffer (e.g., a buffer over-
flow [131]) to inject arbitrary code in a process, are examples of two radically different
types of attacks that both need to be considered by an enterprise decision maker. Similarly,
there are various types of defenses that aim to mitigate the same class of vulnerability. For
instance, arbitrary code execution through a buffer overflow can be prevented by, e.g., appli-
cation sandboxing [98], process address-space randomization [146], network- and host-based
intrusion detection systems [66], proper coding practices [145], and type-safe Application
Programming Interfaces (APIs) or dialects [90]. This section presents significant research
that provide measurements on topics related to the scope of the contribution of this thesis
(see Section 3.3).

Memory corruption attacks is a common and severe type of attack that involves redirect-
ing the control-flow of an application to code controlled by the attacker (buffer overflow is an
example from this category). Effectiveness of defenses against memory corruption attacks
have been studied by, e.g., [146, 183]. Shacham et al. [146] studied Address Space Layout
Randomization (ASLR), a cryptographic defense used to randomize the address space of
applications in order to increase the effort by attackers to predict sought addresses. Wilan-
der et al. [183] devised a tool for automated tests of defenses against buffer overflow attacks
and used this to estimate the effectiveness of several defenses, including non-executable
memory in Ubuntu 9.10. The tool first compiles a vulnerable software with the designated
defenses, and then executes automated buffer overflow attacks of different types against this
software. Effectiveness of a defense is given by the number of successful attacks compared
to the number of unsuccessful attacks.

Detection rate of intrusion detection systems (IDSs) has been studied on previous occa-
sions, e.g., [68, 112, 111]. The Lincoln Laboratory at MIT examined the effectiveness of 18
IDSs during 1998 and 1999, and found that the best systems detected between 63% to 93%
of the tested known attacks and approximately 50% of the tested novel attacks [112, 111].
Hadžiosmanovic et al. [68] studied the effectiveness of four anomaly-based IDS at detecting
various attacks (e.g., those used by [112, 111]). The authors found that the mechanisms
could not provide both high detection and low false positive rates in presence of data with
high variability.

The effectiveness of automated discovery of web application vulnerabilities, and detec-
tion of attacks against these, have been studied previously [15, 50, 55, 57, 168]. Fonseca
et al. [57] estimated the effectiveness of different vulnerability scanners at identifying SQL
and cross site scripting vulnerabilities (similar studies are presented in [15, 50]). Suto [168]
examined the effectiveness of eight commercial web application firewalls. In a similar study,
Elia et al. [55] examined the effectiveness of five SQL injection detection tools that operate
at an application-, database-, or network-level.

2.2. QUANTITATIVE SECURITY MODELS AND METRICS 9

Surveys of software vulnerabilities and exploits are frequently conducted by researchers
and practitioners to provide knowledge on their properties (e.g., [20, 58, 60, 133, 143,
147]). Shahzad et al. [147] performed an exploratory study of archival vulnerability data
spanning over 23 years, investigating aspects related to the life cycle of vulnerabilities (e.g.,
vulnerability disclosure and exploit release dates). Ozment and Schechter [133] examined the
code base of the OpenBSD operating system to determine whether its security is increasing
over time. Bilge and Dumitras [20] studied the time until discovery of zero-day attacks
by observing when currently known malicious software first appeared on systems. Frei et
al. [60] studied the zero-day patching efficiency of Microsoft and Apple. Fonseca et al.
[58] studied 312 web application exploits and found that SQL injection and Remote File
Inclusion accounted for for almost 90% of exploits analyzed. Scholte et al. [143] conducted a
study of the sophistication level of over 2600 web application vulnerabilities and found that
the complexity of the attacks have not changed significantly, and that many web problems
still were simple in nature. By surveying known software vulnerabilities, many researchers
hope to derive conclusions regarding novel software vulnerabilities that are unknown to the
public community, also called zero-days’ [108]. These are attractive to attackers as their
exploitation cannot be prevented by applying software updates, and as a consequence, the
price of these vulnerabilities can reach up to $250,000 [122].

A problem with these studies is however that they often have practical delimitations
that limit their usefulness to enterprise decision making. To exemplify this problem, we
consider [146], which studied the effectiveness of ASLR for a software using fork() on a 32-
bit system. If the tested software would not have employed fork() (spawning a new process
each time a crash occur from to a failed exploit), or the system had been 64-bit, it would
likely have been radically more difficult to bypass ASLR. Furthermore, the effectiveness of
ASLR is often regarded as limited in the absence of non-executable memory pages [189]
due to the many means of reducing the entropy of the address-space of applications (e.g.,
through heap spray [136]). Also, it can be enough that a single attacker-available executable
module is not compiled with ASLR to completely circumvent it (e.g., msvcr71.dll allowed
universal bypass of ASLR and non-executable memory pages for any version of Windows
during 2011 [182]). Thus, the results found by [146] might not be an accurate representation
of the actual difficulty required to bypass ASLR in a non-laboratory environment. Another
example is the IDS studies by [112, 111], where significant shortcomings were identified by
[114, 119] - shortcomings that delimit the usefulness of these results to a real-world scenario
(e.g., regarding the chosen attacks). A third example is [183], where it is unknown how
common the different tested buffer overflow attack types are in practice.

One of the contributions of this thesis is to provide quantitative data on significant
cybersecurity phenomena, on a level that is useful for enterprise decision making - these
studies are presented in papers 3-7.

2.2 Quantitative security models and metrics

There is a large variety of quantitative security models and metrics that can be used as aid
by enterprise decision makers. This section provides an overview of these approaches.

The arguably most well established security models concern measuring the algorithmic
strength of cryptographic solutions [86]. These traditionally approximate the costs that
would be incurred by an adversary to break the system by buying the latest (cheapest) tools
and using the best known techniques [140]. A practical example of this concerns the RSA
algorithm, which previously offered rewards of up to $200,000 for breaking the security of
the keys used by its cryptosystem [138]. RSA-768, the strongest variant that was factored

10 CHAPTER 2. RELATED WORK

during the challenge, had a reward of $50,000 and took almost 2000 2.2GHz-Opteron-
CPU years (just short of 3 years of calendar time) [99]. A problem with these models is
however that many cryptosystems are not broken by weaknesses in their algorithms, but by
weaknesses that originate from their implementation [141].

A number of models focus on estimating the investment opportunity aspects of cyber-
security. Cavusoglu et al. [30] propose a model based on Return on Security Investment
(ROSI) [165], which considers the expected trade-off by the attacker, the cost of security
detection mechanisms, and expected loss due to undetected intrusions. In [100], the author
presents a method for estimating costs of malware incidents and simulates the cost for 104
incidents on 10 hosts. Lelarge [104] propose a cost estimation model where strategic agents
are interconnected on graphs on which malware epidemics occur. Dornseif and May [49]
model the cost and benefits of a specific security tool, Honeynets. Various similar models
exist, for instance, [33, 87, 148, 171].

Another group of models focus on measuring individuals’ security awareness and will-
ingness to follow organizational security policies, and how different factors affect aware-
ness and compliance [155, 170]. In this category of models, one can find, for instance,
[26, 42, 47, 149, 175, 187]. Similar models instead focus on the effectiveness of technical
security mechanisms that have the purpose to increase user security awareness (e.g., the
“lock” and coloring in modern web browsers to denote presence of SSL) [46, 54, 188]. A
problem with security awareness related studies is however that their results often point in
different directions [157]. For example, [42] found a Pearson correlation coefficient of 0.82
between subjective norms and intention to follow security policies; in a different study [109]
this correlation was found to be −0.04.

Other models, often denoted as code metrics, focus on measuring source code char-
acteristics thought to correlate with the occurrence of software vulnerabilities. Some of
these efforts apply existing metrics originally developed with the purpose to estimate some
general notion of software quality. For instance, Shin et al. [154] test whether 28 existing
metrics related to complexity, code churn and developer activity correlate with occurence of
software vulnerabilities within Mozilla Firefox and Red Hat Enterprise distributions. Their
results indicate that 24 out of the 28 metrics are discriminative of vulnerabilities. A prob-
lem with applying such models is however that they were not developed with a focus on
security. Furthermore, many of these metrics, and studies of them, have been heavily crit-
icized [41, 56]. For instance, McCabe’s cyclomatic complexity metric, which is extensively
used by both researchers and practitioners (e.g., it is available in Microsoft’s Visual Studio
platform), received critique already during the 1980’s [151].

When new models are proposed, there is typically not sufficient evidence to support
them. For example, Chowdhury et al. [34] propose (among other things) a metric they
denote as “stall ratio”. This metric involves measuring the occurrence of statements that do
not contribute to the overall progress of a program (e.g., a = a + 0). However, why this is
presumed to be correlated with occurrence of software vulnerabilities is not explored. Sim-
ilarly, Haller et al. [69] propose ten metrics that are presumed to correlate with occurrence
of buffer errors. The authors couple each metric to a number of points (from 0 - 500) that
they believe reflect the metric’s relative significance. However, the motivation behind these
metrics and their corresponding points is only very briefly discussed.

A group of models, often referred to as Vulnerability Discovery Models (VDMs) [4],
have been proposed for predicting the occurrence of software vulnerabilities. Alhazmi et
al. [5, 6, 8, 7] propose an S-shaped VDM to predict occurrence of vulnerabilities over time.
The S-shape is chosen as the authors believe that vulnerability discovery begins with a long
learning phase, when software testers learn how it functions. This phase is then followed by
a linear accumulation phase, when testers are familiar with it and many vulnerabilities are

2.2. QUANTITATIVE SECURITY MODELS AND METRICS 11

discovered. In the third phase the software has been replaced by newer variants, leading to
a smaller user-base and consequently less interest from software testers. Similar models are
proposed by [91, 97, 185].

A recent study of six significant VDMs for 17 versions of Firefox, Chrome and Internet
Explorer however indicate that fit generally is poor for all tested models [127]. The authors
believe that this is due to irregular vulnerability disclosures, for example, when the code
base of a software is inherited in later releases.

An approach with similar purpose as VDMs, but using a different methodology, is the
attack surface metric by Howard et al. [79], and Manadhata and Wing [115]. This type of
metric estimates the vulnerability of software based on its attacker-accessible methods and
corresponding privilege levels (here, method refers to the software engineering meaning of
the word). Attack surface has been implemented for Microsoft Windows [172].

A wide variety of models and metrics estimate the vulnerability of systems in opera-
tion. These are related to VDMs and attack surfaces in the sense that they all concern
some notion of “risk” [9]; however, they differ in the regard that they relate vulnerabilities
existing in different systems in order to provide overall security estimates for systems in
operation. Of these, the most common approach concerns attack graphs - these are de-
scribed in Section 2.3. A few noteworthy non-attack graph based models are described
next. Boyer and McQueen [24] propose a set of security metrics that can be used by op-
erators of industrial control systems. Ahmed et. al [1] describe a model that estimates
risk based on the aggregated current and historical vulnerability of operational software.
Houmb et al. [78] use Bayesian belief networks to estimate the vulnerability of systems in
operation. Marconato et al. [116] use stochastic activity networks, vulnerability archival
data, and theory on attacker and administrator behavior to model the vulnerability of sys-
tems in operation. Alves-Foss and Salvador [11] propose a metric that is based on system
characteristics, potentially neglectful acts, and potentially malevolent acts.

There are also models that focus on the architectural aspects of cyber security analyses.
These models are similar to VDMs, attack surfaces and operational models in the sense
that they also concern an evaluation of “risk”. However, they differ in the regard that they
spend particular focus on how different objects should be visually depicted and connected.
Some architecture models focus on risks that might arise during software development; a
significant example in this category is UMLsec [96], which extends the Unified Modeling
Language (UML) with the ability to consider security issues. Other architeture models con-
cern modeling the overall security for enterprise systems in operation. An example from this
category is the model by Breu et al. [25], which provides a metamodel that concerns secu-
rity issues in three layers: the business layer (business roles, activities and information), the
application layer (applications used by business activities), and the technical layer (software
and hardware that enables application services). A user of this model would depict and
connect architecture objects in these layers that are relevant to the enterprise in question,
and then quantify the likelihood of threats occurring against these objects.

Architecture models are useful in the sense that they allow enterprise decision makers
to depict objects they can understand and relate to, and analysis results that are easy to
comprehend. However, a problem with current architecture models is that they require the
user to manually determine which objects that are reasonable to include in the model, and
the risk (i.e., numbers) associated with each object. For instance, [25] does not specify what
actual objects (e.g., regarding granularity) that are applicable to the application layer, or
how likely different attacks are to succeed against these objects. These are both abstract
and difficult tasks to manage for enterprise decision makers with limited resources available
for modeling and analyses. Consequently, current architectural models suffer from the same
issues as qualitative models such as the Common Criteria; i.e., they are vague, and thus

12 CHAPTER 2. RELATED WORK

subjective [178]. The contribution described in this thesis is an architecture model that
provides a comprehensive scope of objects, with less room for misinterpretation. Further-
more, it is already populated with quantitative data on the likelihood of different threats
being fulfilled for these objects.

In conjunction to modeling the occurrence of software vulnerabilities, it is important to
also estimate the severity of these vulnerabilities. The current standard for this purpose is
the Common Vulnerability Scoring System (CVSS) [121], suite of metrics used to quantify
the severity of IT vulnerabilities. The CVSS Base score, the only metric that each CVSS
scored vulnerability provides measurements for, is scored on a scale from 1 (least severe) -
10 (most severe). For instance, CVE-2013-3375 (a cross-site scripting vulnerability) has a
CVSS score of 4.3, and CVE-2012-6569 (a buffer overflow vulnerability) has a score of 9.3.
While discussion has been raised towards the validity of the CVSS [65, 78, 113, 179], it is
widely adopted by both practitioners and researchers. For example, automated vulnerability
scanners such as Nessus [169] typically describe the criticality of a system through the
number of vulnerabilities of different CVSS severity that are present [72]. This is also a
common practice by researchers, e.g., by [78, 116, 147].

2.3 Attack graph approaches

An attack graph models how an intruder can traverse a network of nodes through vulner-
abilities on the nodes and interconnections between them [110]. Each path in an attack
graph concerns a series of exploits, or actions, that leads to a certain undesirable state, e.g.,
that an intruder gains access to confidential information [153]. Originally, attack graphs
were composed manually by red teams; however, as this process is tedious, error-prone and
impractical [153] various efforts have been spent to automate it.

According to a recent survey by [101], there are more than 30 types of attack graph
approaches published, and a vast number of proposed tools within these categories. This
section focuses on describing the more mature approaches that have been published. Notable
work that are not detailed include, for instance, the model by Byres and Leversage [106],
which adds attack graph capability to the time to compromise model presented in [120], the
model by Sheyner and Wing [152], which couples IDSs to attack graphs, and various other
efforts [63, 102, 135, 173, 180].

MulVAL [76, 77, 80, 132] uses the output from network vulnerability scanners to model
possible attacks on IT architectures. In MulVAL, each vulnerability is associated with a
probability that represents how likely an attacker is to successfully exploit it [77]. These
probabilities are derived from each vulnerability’s denoted access-complexity value accord-
ing to the Common Vulnerability Scoring System (CVSS) v2 [121] and intuition by the
authors. As MulVAL bases its estimations on the output from vulnerability scanners,
important attacks (e.g., social engineering and discovery of novel vulnerabilities, i.e., zero-
days’) and the effectiveness of defenses (e.g., anti-malware and host firewalls) need to be
depicted manually by the end-user.

NetSPA [81] and its successors GARNET [184] and NAVIGATOR [35] are similar to Mul-
VAL in the sense that they base their attack graphs on output from network vulnerability
scanners. However, they differ in the regard that they treat all identified vulnerabilities as
directly exploitable by the attacker. This is an unrealistic assumption as various factors
related to successful exploitation are not gathered by network scanners (e.g., effectiveness
of intrusion detection systems and attacker knowledge). NetSPA models zero-day attacks
by assuming that each depicted software is vulnerable.

2.3. ATTACK GRAPH APPROACHES 13

TVA-tool [84] (made available commercially as Cauldron [85]) is similar to MulVAL
and NetSPA in terms of required data collection and produced results, but uses a database
of exploits known to the attacker instead of a database of vulnerabilities. Each exploit is
associated with pre- and post-conditions that describe when it can be applied and what
state that is reached after exploitation. These exploit conditions are gathered from the
commercial database Symantec DeepSight [129].

k-Zero Day Safety [181] extends the attack graph reasoning used by MulVAL and TVA-
tool with the ability to model zero-day attacks in a similar fashion to what is used by
NetSPA. In short, this method computes the k number of zero-days required to compromise
an asset by assuming that each modeled service is vulnerable to zero-day attacks. The tool
is able to automatically identify means of reducing k, e.g., by varying the degree of known
vulnerabilities in the network (i.e., patching efficiency). However, as noted by the authors,
this model should be extended with the ability to weight different zero-day vulnerabilities
as not all are equally exploitable or equally likely to occur.

Frigault et al. [62, 63] propose an attack graph method that is based on Bayesian Net-
works. The authors utilize TVA-tool for computing “raw” attack graphs and the CVSS for
estimating the relative severity of each vulnerability. As the CVSS Base Score ranges from
0-10 the authors propose dividing it by 10 to yield a probability (no empirical evidence
is however given to support this translation). The authors also provide a method for in-
corporating the CVSS Temporal Metrics into this probability. However, as vulnerabilities
are not required to be scored in respect to Temporal Metrics, these are rarely available
in practice. Conditional probability tables (CPTs) are created using these probabilities in
combination with exploit conditions gathered by TVA-tool. If the pre-conditions for an
exploit are fulfilled, the probability of using it depends solely on the value associated with
it and the number of alternate paths of reaching it. Unfortunately, this means that the
method is unable to capture a plethora of common real-world scenarios. For instance, that
the effectiveness of an IP-based black list and an intrusion detection system often partially
overlap.

ADVISE [59, 105] automatically generates attack graphs representing how an adversary
is likely to attack portrayed architectures based on attack steps manually depicted by system
experts and adversary experts. As attack steps are manually depicted, very granular aspects
can be modeled, for instance, the level of skill an adversary possesses in performing SQL
injection attacks. However, it is neither a simple nor quick task to manually compose attack
steps relevant to a particular architecture.

The contribution presented in this thesis differs from these tools in the sense that it
employs the type of architectural modeling that typically is used in the area of Enterprise
Architecture (e.g., ArchiMate [103]). In short, this means that it couples attacks and de-
fenses to objects that the end-user can easily model and understand. It also differs from
these tools in respect to its large variety of modeled defenses. It differs from MulVAL,
NetSPA, TVA-tool, k-Zero Day Safety, and the work by Frigault et al. in the sense that it
provides a more holistic, but less granular, set of attacks that are automatically depicted
based on the specified object model. It differs from MulVAL, NetSPA, TVA-tool, k-Zero
Day Safety and ADVISE in the sense that all attack steps and defenses are related proba-
bilistically by Bayesian Networks. It differs from the work by Frigault et al. in the sense
that it does not make any overarching assumptions to express CPTs of different phenomena
- it instead contains a large set of unique predefined CPTs (one for each attack step and
defense).

14 CHAPTER 2. RELATED WORK

2.4 The Cyber Security Modeling Language

The Cyber Security Modeling Language (CySeMoL) [159, 162], developed at the Royal
Institute of Technology (KTH), is a probabilistic relational model (PRM) [61] for estimating
the cybersecurity of enterprise-level system architectures, with special focus on Supervisory
Control and Data Acquisition (SCADA) systems [167]. A PRM specifies how a Bayesian
network [88] should be constructed from an object model, which in turn is depicted according
to the constraints of a class model.

CySeMoL includes theory on how attacks and defenses relate quantitatively; thus, se-
curity expertise is not required from the user of the PRM. Users must only model their
system architecture (e.g., services, operating systems, networks, and users) and some char-
acteristics of these assets (e.g., if an operating system has a host firewall enabled) in order
to enable calculations. In total, CySeMoL contains 22 assets, 102 attacks and defenses, and
32 asset relationships. For all attacks in CySeMoL, it is assumed that the attacker is a
professional penetration tester who spends one work-week carrying out the attack.

Significant attacks (and corresponding defenses) covered by CySeMoL includes zero-day
discovery [163], memory corruption attacks [74, 164], intrusion detection [158], denial of ser-
vice attacks [161], configurational vulnerabilities [160, 186], attacks on password protection
[31, 44, 117] and social-engineering attacks [48, 82, 166].

The contribution in this thesis builds on CySeMoL and adds significant improvements
to the model in terms of correctness (papers 1, 8), scope of attacks and defenses (papers
3-7), variable attacker effort (papers 2,8), ease of use and performance (paper 8).

Chapter 3

Thesis contribution

This chapter describes the main contribution of this thesis, hereafter referred to as the
Predictive, Probabilistic Cyber Security Modeling Language (P2CySeMoL). P2CySeMoL is
based on CySeMoL [162], an attack graph model that the author of the present thesis also
contributed to. An overview of P2CySeMoL is provided in Section 3.1.

The primary purpose of P2CySeMoL is to support enterprise decision makers with vul-
nerability estimates and mitigation suggestions. CySeMoL was created for the same pur-
pose; however, it contains limitations that hinder its ability to comprehensively model
modern enterprise architectures. The contribution of P2CySeMoL is that it addresses these
limitations and improves upon an already versatile tool for vulnerability estimates of enter-
prise architectures.

A problem with CySeMoL concerns its employed formalism - PRMs. While PRMs
certainly have their merits [61], they lack the flexibility necessary for many useful computa-
tions. For this purpose, P2CySeMoL has been implemented in the Predictive, Probabilistic
Architecture Modeling Framework (P2AMF) [93]. This first contribution is described in
Section 3.2.

Due to time-constraints and CySeMoL’s focus on SCADA systems, it lacks the ability
to model Assets, AttackSteps, Defenses and connections between these that commonly
exist in enterprise architectures. For P2CySeMoL, effort has been spent to fulfill these gaps;
this second contribution is described in Section 3.3.

A third problem with CySeMoL is that its estimates only are valid for a single work-week
spent by a single attacker. P2CySeMoL allows the user to specify an arbitrary amount of
time spent by one or more attackers; this third contribution is explained in Section 3.4.

A fourth contribution of this thesis concerns the difficult task of validating of security
estimation models such as P2CySeMoL; this is presented in Section 3.5.

Finally, Section 3.6 discusses the practical utility of the contribution.

3.1 Overview of contribution

Kordy et al. [101] present a taxonomy consisting of 13 aspects that can be used to catego-
rize attack graph approaches. The overall characteristics of P2CySeMoL according to this
taxonomy can be seen in Table 3.1 (see [101] for an extensive description of it). In short,
P2CySeMoL is a directed acyclic attack graph model that estimates the likelihood that one
or more professional penetration testers, who each have some designated time to spend,
are able to succeed with different attack steps against some enterprise architecture. These
likelihood estimates are produced based on documented success rates of the correspond-

15

16 CHAPTER 3. THESIS CONTRIBUTION

ing attacks given different circumstances. The user of P2CySeMoL does not need any IT
security knowledge; merely knowledge of how the enterprise architecture in question is com-
posed. P2CySeMoL has been tested in real-world case studies and has been implemented
in a software tool1. P2CySeMoL builds on a previous modeling framework, CySeMoL [162],
which first appeared in press during 2010 and is described in Section 2.4. Consequently,
a reasonable starting point for anyone who wish to understand the background and foun-
dation of P2CySeMoL can be found by studying CySeMoL. So far, six papers have been
written specifically mentioning P2CySeMoL or CySeMoL. This number however excludes
papers that have evolved the frameworks without necessarily mentioning them, e.g., master
theses and papers that populate the model with measurements of some phenomenon (e.g.,
papers 3-7 in the present thesis). If counting any paper conducted with P2CySeMoL in
mind, the total count is 33.

Table 3.1: P2CySeMoL characteristics according to the taxonomy by [101].

Aspect P2CySeMoL
Attack or defense Integrates attack and defense modeling
Static or sequential Supports time and order dependencies
Quantification Supports numerous generic and diverse metrics
Main purpose Support risk assessment
Extensions New connectors, extended graph structure
Structure Directed acyclic graph
Connectors Derived and depicted connections according to the Object

Constraint Language (OCL)
Formalization Bayesian networks and OCL queries
Tool availability A prototype tool exists
Case study Real and fictional case studies have been documented
External use People and institutions who did not invent the formalism

have used it
Paper count 6 (33)
Year 2010

3.2 Implementation in a new framework

Predictive, Probabilistic Architecture Modeling Framework
To enable attack graph modeling and calculation, there is need of a framework that dictates
how attacks and defenses relate. For this purpose, P2CySeMoL employs P2AMF [93]. In
short, P2AMF combines the Object Constraint Language (OCL) [174] with probabilistic
analysis to enable assessment and prediction of system properties. The main feature of
P2AMF is its ability to express uncertainties of objects, relations and attributes in Unified
Modeling Language (UML) models and perform probabilistic assessments incorporating
these uncertainties.

The probabilistic aspects are considered in a Monte-Carlo fashion: First, the user spec-
ifies a desired number of samples. Thereafter, a set of object models corresponding to the
chosen sample size is created. The stochastic variables of the class model are instantiated

1www.ics.kth.se/eaat

3.2. IMPLEMENTATION IN A NEW FRAMEWORK 17

with instance values according to their respective designated distribution. This includes the
existence of classes and relationships, which are instantiated on a frequency depicted by the
corresponding probability distributions. Then, each P2AMF statement is transformed into
an OCL statement that can be evaluated by the OCL parser. Once the evaluation of all
samples has been performed, results are aggregated and visualized according to the design
of the class model.

Framework of contribution
An overview of the P2CySeMoL implementation in P2AMF can be seen in Figure 3.1. There
are four types of classes in P2CySeMoL: Attacker, AttackStep, Defense and Asset. Each
AttackStep and Defense is connected to an Asset that it compromises or protects. These
connections are not required to be specified by a user of P2AMF; the user is only required
to depict and connect Assets, and if needed, specify the state of different Defenses. An
example of this can be seen for the classes related to the P2CySeMoL concept NetworkZone
(a connection point of various IT devices, e.g., a Local Area Network [LAN]) in Figure 3.2.
When the Asset NetworkZone is depicted in an object model, the three AttackSteps and
two Defenses connected to it are depicted as well.

Figure 3.1: Attacker, AttackStep, Defense and Asset. OCL operations are given in the
lower box of each class; attributes are given in the upper box of each class.

Figure 3.2: Classes corresponding to NetworkZone.

18 CHAPTER 3. THESIS CONTRIBUTION

Connections between AttackSteps are derived automatically depending on how the
user has connected Assets in an object model. For example, if a user has connected two
NetworkZones NZ1 and NZ2 to a NetworkInterface NI (e.g., a router), then there will be
a derived connection from the AttackStep NZ1.ObtainAddress to the AttackStep NZ2.-
FindUnknownEntry (see Figure 3.3).

Figure 3.3: Example describing derived connections between AttackSteps (these are de-
noted by red arrows).

The OCL operations serve to compute the likelihood of one or more Attackers be-
ing able to reach the different parts of an object model through any means possible (us-
ing the derived connections between AttackSteps and probabilistic logic present for each
AttackStep). Any AttackStep that an Attacker is connected to is considered source for
the attack; it evaluates to TRUE regardless of the properties of the object model in question.

AttackStep.Likelihood denotes the probability of an attacker being able to success-
fully utilize a particular AttackStep; it is the fraction of samples where that particular
AttackStep could be reached. Defense.Functioning denotes the likelihood that a Defense
is available. Attacker.Time denotes how much time (in work days) that the attacker has
available for an attack.

The P2AMF implementation of P2CySeMoL enables a range of improvements compared
to CySeMoL, in particular:

• Its performance scales linearly with the number of AttackSteps in an object model.

• It does not require specifying the target of an attack as it considers all AttackSteps
as targets. This allows computing and presenting the entire vulnerability of an object
model using a single calculation.

• It can model an arbitrary amount of attackers, with arbitrary number of connected
AttackSteps.

3.3. SCOPE OF CONTRIBUTION 19

The framework and its contributions are described in detail in paper 8.

3.3 Scope of contribution

An overview of the scope of the P2CySeMoL class model can be seen in Figure 3.4. Here,
AttackSteps and Defenses are coupled to their corresponding Assets. Derived connec-
tions between AttackSteps and Defenses are for presentation purposes not illustrated in
Figure 3.4. Attacker (with the attribute Time) is due to the same reason not shown (it
can be related to any AttackStep).

ZoneManagementProcess

NetworkZone

DNSsec

PortSecurity

Protocol

FreshnessIndicator

CryptographicAuthentication

CryptographicObufuscation

Data Flow

Disrupt

Replay

Eavesdrop

ManInTheMiddle

ProduceRequest

ProduceResponse

DataStore

ReadData

WriteData

DeleteData

NetworkInterface

ARPSpoof

DenialOfService

StaticARPTables

IDSsensor

ApplicationServer

OperatingSystem

Access

DenialOfService

FindCriticalVulnerability

ConnectToService

ExecutionOfArbitaryCode

HasAllSecurityPatches

StaticARPTables

HostFirewall

AddressSpaceLayoutRandomization

NonExecutableMemory

AntiMalwareSolution

USBAutoRunDisabled

Person

SecurityAwarenessProgram

PasswordAccount

GuessAuthenticationCodesOffline

SocialEngineerAuthenticationCode

GuessAuthenticationCodeOnline

PasswordAuthentication

Mechanism

AllowedDF

Protocol

Read

Write

Owner

AwarenessProgram

HIDS

Owner

Server

Client

ApplicationClient

ACLsubject

CryptographicObufuscation

IncidentHandlingProcedures

HostHardeningProcedures

FormalPatchAndUpdatingProcess

RegularLogReviews

RegularSecurityAudits

FormalChangeManagentProcess

ManagedByAntiMalwareSolution

USBAutorunDisabledInDomain

DeepPacketInspection

DPI

ExtractPasswordRepository

BackoffTechnique

AutomatedPolicyEnforcer

HashedRepository

HashedRepositorySalted

DefaultPasswordsRemoved

Access

DenialOfService

FindCriticalVulnerability

ExecutionOfArbitaryCode

Access

DenialOfService

FindCriticalVulnerability

ExecutionOfArbitaryCodeInUnknownServices

AccessThroughPortableMedia

AccessTroughUI

FindUnknownService

ARPspoof

ExecuteMaliciousPayload

Firewall

Firewall

AccessControlPoint

Bypass

Functioning

Tuned

Updated

DNSspoof

DenialOfService

FindUnknownEntryPoint

ObtainOwnAddress

TerminalService

Functioning

KnownRuleSet

Functioning

Functioning

HasAllSecurityPatches

HasAllSecurityPatches
Product

Zone

WebApplicationFirewall

Functioning
MonitoredByOperator
TunedUsingBlackBoxTool
TunedByExperiencedProfessional
TunedWithSignificantManualEffort

MonitoredBy

WebServer

AccessControl

AccessControl

OperatingSystem

Owner

Client Server

AuthenticationMechanism

NetworkVulnerabilityScanner

Functioning

PhysicalZone

Access

PhysicalZone

UntrustedZone

Owner

Product

SoftwareProduct

GetProductInformation

ObtainSourceCode

ObtainBinaryCode

DevelopZeroDayExploit

FindPublicPatchableCriticalVulnerability

FindPublicUnpatchableCriticalVulnerability

FindPublicExploitForPublicPatchableCriticalVulnerability

FindPublicExploitForPublicUnpatchableCriticalVulnerability

DevelopExploitForPublicPatchableCriticalVulnerability

DevelopExploitForPublicUnpatchableCriticalVulnerability

CheckedWithStaticCodeAnalysis

HasBeenScrutinized

OnlyUsesSafeLanguages

SourceCodeClosed

BinaryCodeSecret

HasPublicExploitForPublicPatchableCriticalVulnerability

HasPublicExploitForPublicUnpatchableCriticalVulnerability

DaysSinceReleaseOfSoftware

WebApplication

TypeSafeAPI
DeveloperSecurityTraining
BlackBoxTesting
StaticCodeAnalysis
HasPublicCommandInjection
HasPublicCrossSiteScripting
HasPublicRemoteFileInclusion
HasPublicSQLInjection

FindPublicCommandInjection
FindPublicCrossSiteScripting
FindPublicRemoteFileInclusion
FindPublicSQLInjection
DiscoverVulnerability
ExploitCommandInjection
ExploitCrossSiteScripting
ExploitRemoteFileInclusion
ExploitSQLInjection

UnauthenticatedScanOfZone

AuthenticatedScanOfZone

OSNotpartOfScanPolicy

SocialZone

PhysicalZone

PartOfSocialZone

Product

OperatingSystem

Zone

Zone

Proxy

UnauthenticatedScanOfOS

AuthenticatedScanOfOS

TrustedZone

AccessControl

ManagementProcess

ProxyGateway

AccessControl

PerimeterIDS

AccessControl

AccessControl

AccessControl

AccessControl

RemoteAccessOf

Figure 3.4: An overview of the P2CySeMoL class model. The upper box of an asset contains
the defenses associated with it. The lower box contains the attack steps associated with the
asset. Colors are used only to make asset relations more clear.

20 CHAPTER 3. THESIS CONTRIBUTION

As P2CySeMoL is founded upon CySeMoL, it inherits much of its scope:

• Its theory is only valid for a specific threat model; the relationships have been ex-
pressed for the case when the threat agent is a professional penetration tester with
access to publicly available tools.

• It models objects of relevance for enterprise decision making.

• It does not require that its users are security experts.

P2CySeMoL also inherits the majority of CySeMoL’s class model. However, partly
due to CySeMoL’s focus on SCADA systems, and partly due to time constraints during
its creation, CySeMoL is not sufficient for modeling enterprise architectures. P2CySeMoL
extends the scope of CySeMoL in a various ways; an overview of the most significant
extensions in terms of added Assets, AttackSteps and Defenses are shown in Table 3.2
and described in the remainder of this section.

Table 3.2: Overview of added Assets, AttackSteps and Defenses

Asset Added attack steps and defenses
WebApplication Completely new concept
WebApplicationFirewall Completely new concept
SocialZone Completely new concept
NetworkVulnerabilityScanner Completely new concept
IDSSensor Probabilities for detection of arbitrary code execu-

tion attacks have been updated
Firewall KnownRuleSet
ZoneManagementProcess ManagedByAntiMalwareSolution and

USBAutoRunDisabledInDomain
OperatingSystem ExecuteMaliciousPayload, AntiMalwareSolution

and USBAutoRunDisabled
SoftwareProduct HasPublicExploitForPublic-

PatchableCriticalVulnerability,
HasPublicExploitForPublic-
UnpatchableCriticalVulnerability,
DaysSinceReleaseOfSoftware,
FindPublicExploitForPublic-
PatchableCriticalVulnerability,
FindPublicExploitForPublic-
UnpatchableCriticalVulnerability,
DevelopExploitForPublic-
PatchableCriticalVulnerability,
DevelopExploitForPublic-
UnpatchableCriticalVulnerability,
FindPublicPatchableCriticalVulnerability
and FindPublicUnpatchable-
CriticalVulnerability

AccessControlPoint Can now also be related to IDSsensor,
DeepPacketInspection, Firewall

3.3. SCOPE OF CONTRIBUTION 21

SCADA systems have many similarities to traditional business IT [167]. However, there
are exceptions that have resulted in delimitations regarding the scope of CySeMoL. In par-
ticular, integrity and availability are generally viewed as more important than confidentiality
as unavailability (i.e., failure to observe and control the state of the physical process) can
have severe effects for the society at large [14]. As a result, various common cyber security
tools that can have a negative impact on availability are not used in SCADA systems, or
part of CySeMoL. For instance, anti-malware and network scanners can impact the avail-
ability of IT components, and thus need to be used with care [167, 51], or sometimes not
at all [126] in SCADA architectures. In P2CySeMoL, these tools are possible to model by
the user, satisfying SCADA and regular business IT alike.

Another major addition is the concept of SocialZone; a group of individuals who
are prone to sharing documents and devices, e.g., a work-group in an office space.
SocialZone enables modeling attacks against IT-wise isolated devices (which often is
the case in information-critical environments, e.g., critical infrastructure control sys-
tems). In practice, this is managed by connecting Access of an OperatingSystem to
AccessThroughPortableMedia of other OperatingSystems that have local users who share
the same SocialZone.

To enable quantitative analysis incorporating the extensions shown in Table 3.2, various
sources of quantitative data have been consulted. Some data were readily available through
previous studies by other researchers. For instance, regarding the effectiveness of anti-
malware solutions (e.g., [18, 125]) and regarding code injection using USB drives (e.g., [82]).
When no data was available, new empirical studies were conducted to extend CySeMoL’s
scope; these are described in the next four subsections and elaborated in papers 3-7.

It is worth mentioning that this research not only involved extending CySeMoL; it also
involved removing AttackSteps. In particular, CySeMoL differentiates between “Other-
Zone” and “SameZone” (attacks conducted within a network zone compared to between
network zones) in order to increase computational performance (only a single attack type
can be conducted within the same network). This concept is not necessary to keep in
P2CySeMoL as P2CySeMoL’s performance scales linearly with the number of AttackSteps
in an object model. With this concept removed, results are not only more realistic, but also
less confusing.

Attacks against web applications
While considerable effort has been spent by both academia and industry to mitigate web
application vulnerabilities, a recent study [144] shows that vulnerabilities still are frequent.
This study also shows that most vulnerabilities can be prevented by straight-forward vali-
dation mechanisms based on common data types.

A reason behind this could be the lack of useful data on the effectiveness of different web
application security measures. The empirical studies that do exist (e.g., [15, 50, 55, 57, 168])
focus on the effectiveness of technical defenses in isolation (black-box vulnerability scanners
in particular), when combinations of defenses frequently are used in practice. Furthermore,
these studies do not consider common measures considered by enterprise decision makers,
e.g., developer security training. Papers 3 and 4 describe empirical studies used to extend
P2CySeMoL in terms of security measures used during both the development (paper 3) and
the operation (paper 4) of web applications.

Paper 3 extends P2CySeMoL with the Asset WebApplication, which needs to be
connected to an ApplicationServer that runs it (i.e., a web server). This enables
the possibility of discovering a CommandInjection, CrossSiteScripting, RemoteFile-
Inclusion, or SQLInjection vulnerability in a WebApplication given the presence or

22 CHAPTER 3. THESIS CONTRIBUTION

absence of four Defenses: TypeSafeAPI, DeveloperSecurityTraining, BlackBoxTesting
and StaticCodeAnalysis.

If an attacker is able to find a vulnerability, (s)he can attempt to exploit it. An SQL
injection vulnerability can be exploited to read, write or delete data in a DataStore. Com-
mand injection, remote file inclusion and SQL injection vulnerabilities can be exploited
to ExecuteMaliciousPayload in an OperatingSystem operating the ApplicationServer
that runs the WebApplication. A cross site scripting vulnerability can be exploited for
ExecutionOfArbitaryCode in an ApplicationClient (a web browser) exploring the con-
tent of the compromised WebApplication.

Paper 4 extends P2CySeMoL with the Asset WebApplicationFirewall. If a Web-
ApplicationFirewall is connected to a WebApplication, it has a possibility of pre-
venting attacks against it. The likelihood of prevention depends on whether the
WebApplicationFirewall is MonitoredByOperator, TunedUsingBlackBoxTool, TunedBy-
ExperiencedProfessional or TunedWithSignificantManualEffort.

Acquisition of critical vulnerabilities and exploits

CySeMoL does not distinguish between software vulnerabilities and exploits. Furthermore,
it does not consider that an attacker might wait for public vulnerabilities and exploits to
appear in the public domain. Paper 5 mitigates these issues; this paper describes a study
where 13 states on the topic of vulnerability and exploit acquisition are related quantita-
tively by 17 activities. The corresponding AttackSteps and Defenses are incorporated in
the Asset SoftwareProduct.

Automated network vulnerability scanning

A network vulnerability scanner is a commonly used tool to identify vulnerabilities such as
unpatched software and weak passwords. CySeMoL does not model these as they some-
times cause unavailability problems, and thus rarely are used in SCADA environments [51].
However, they are frequently used in office environments, and thus essential to model to
fulfill the purpose of P2CySeMoL.

Paper 6 extends P2CySeMoL with the Asset NetworkVulnerabilityScanner and data
on the general effectiveness of the tool. This Asset can be connected to a NetworkZone
or OperatingSystem denoting either an authenticated or unauthenticated scan. During an
unauthenticated scan, the scanner probes for vulnerabilities that are testable through TCP
or UDP without any privileges on the studied systems - i.e., any ApplicationServer (e.g.,
an FTP service) connected to the probed OperatingSystem. If an ApplicationServer
has a login interface (e.g., SSH or FTP), the scanner can also attempt to evaluate any
poor passwords for this interface. During an authenticated scan, the scanner is allowed
to log in to the probed systems. Thus, an authenticated scan is typically both more ef-
fective and can not only evaluate vulnerabilities for the ApplicationServer, but also for
any ApplicationClient (e.g., a web browser) residing on the probed OperatingSystem.
Both scanning types can also help find ApplicationServers unknown to the network ad-
ministrator (OperatingSystem.FindUnknownService). An OperatingSystem can also be
designated to not be part of the scanning policy (this is common in practice as scans can
cause availability issues).

3.4. MODELING VARIABLE ATTACKER EFFORT 23

Signature-based network intrusion detection systems

CySeMoL contains estimates on the general effectiveness of signature-based network intru-
sion detection systems (SNIDS) at detecting arbitrary code execution attacks [158]; however,
these are based solely on expert judgment. Paper 7 presents an experiment employed to
refine these data. This study is an example of how quantitative data in P2CySeMoL can be
updated without requiring any change to connections between AttackSteps and Defenses.
Both a network SNIDS’s ability to detect zero-days’ and standard attacks given a Tuned
SNIDS, which rule set either is or is not Updated are renewed by paper 7.

3.4 Modeling variable attacker effort

All quantitative estimates in CySeMoL are made based on the assumption that the at-
tacker has a single work week to spend. This is problematic as 1) it is unknown how
much attacker effort that is reasonable in general and 2) it is certain that some enter-
prises are more attractive to attackers than others (e.g., a bank compared to a personal
web page). Thus, it would be valuable to calculate the probability of attacks given dif-
ferent amounts of effort spent by an attacker. P2CySeMoL does this by sampling based
on probabilities elicited from cumulative density functions (CDFs). As the outcome of
these operations are deterministic, P2AMF only executes them once, rather than for
each sample. An example of how time-based sampling is implemented in P2CySeMoL
can be seen in Algorithm 1. Here, bernoulli(exp(0.0715,Attacker.Time)) is equiv-
alent to P = P (X ≤ Attacker.Time|X ∈ Exponential(0.0715)). For example, given
Attacker.Time = 5 days, P = 30%. This is further described in paper 8.

let awarenessprogramTrue : Real = bernoulli(exp(0.0715,Attacker.Time))
let awarenessprogramFalse : Real = bernoulli(exp(0.241,Attacker.Time))
if visited− >intersection(self.interface)− >notEmpty() then

if self.person.awarenessprogram.functioning then
awarenessprogramTrue

else
awarenessprogramFalse

end
else

False
end

Algorithm 1: SocialEngineerCredentials.isAccessible

For this procedure to work, there is a need to compose CDFs that well describe the
data of interest. Unfortunately, for some datasets (e.g., [164]), distribution fitting was not
feasible. Given this scenario, there is a need to assume some CDF, preferably based on
empirical results from similar studies. Paper 2 provides support regarding this property by
presenting what distribution that is best fit for modeling the time required to compromise
a computer system in general. More specifically, it studies the time from installation of a
computer system to compromise of that system, using a dataset of all malware incidents
across 260,000 computers over three years. The results from the study show that the
two-parameter generalized Pareto (PAR) is best suited for this purpose. Paper 2 further
examines the validity of this finding by examining which distribution that is best fit for
modeling the dataset described in paper 1; the findings from this study also suggest that

24 CHAPTER 3. THESIS CONTRIBUTION

PAR is the best fit. Consequently, when applicable, PAR was chosen to model uncertain
variables.

3.5 A method and dataset for validation

To validate cybersecurity models is a difficult task as both data and methods available
for this purpose are scarce. Paper 1 provides a method and dataset that can be used
to validate cybersecurity estimation models. This method is essentially the same as the
concept of Net Working Time (NWT) [107]; the time spent attempting to break into a
safe by testers using specified sets of tools, such as diamond-grinding tools and high-speed
carbide-tip drills. Different safes’ NWT can be compared to determine the relative security
level of each safe. In the context of paper 1: to compare the time required by one or
more attackers to compromise some asset with security estimates of this asset given by a
model or metric. An asset that is deemed more secure by a model or metric should also
require a higher Time to Compromise (TTC). The dataset presented in paper 1 consists of
34 TTC estimates extracted from an international cyber defense exercise with more than
100 participants. In paper 1, this dataset is used to examine the correlation between TTC
and security estimates by 18 security metrics, including both academic contributions and
commonly practiced methods. The results from this study show that none of the metrics
significantly correlate with TTC. In paper 8, this method and dataset are reused to examine
the validity of P2CySeMoL.

3.6 Practical utility

Atzeni and Lioy [16] present five properties that any security measurement system should
exhibit in order to be effective and useful:

• Succinctness: Only important parameters should be considered, letting aside aspects
not important to the definition and/or the comprehension of the entity under mea-
surement. Such property aims to reduce both a measure’s complexity and uncertainty.

• Repeatability: If repeated in the same context, with exactly the same conditions, the
measure should return the same result.

• Objectiveness: The measure should not be influenced by the measurers’ will, beliefs,
or actual feelings.

• Easiness: The measure of an attribute should raise knowledge about the entity itself,
sometimes with the purpose of improving the usefulness of the entity. However, if
the measure is too difficult to be performed, or simply impossible to accomplish, the
knowledge’s gain is not sufficient to motivate the measurement.

• Clarity: A measure should be easy to interpret, at least in its operative context.

P2CySeMoL has been tailored to only include theory that is of critical importance
towards practical vulnerability estimates (see Section 4.2); thus, we argue that the contri-
bution satisfies the criterion of Succinctness. P2CySeMoL produces the same result if it
is provided the same input, regardless of the measurers will, beliefs, or feelings; thus, it
satisfies the criteria of Repeatability and Objectiveness.

P2CySeMoL has been implemented in a software tool called the Enterprise Architec-
ture Analysis Tool (EAAT) [28]. To perform modeling and analysis with P2CySeMoL in

3.6. PRACTICAL UTILITY 25

EAAT, there is a need to: 1) create an object model, 2) connect one or more Attackers to
one or more Assets, and 3) press “calculate”. The first step can be managed by dragging
and dropping Assets and then connecting these in some manner valid to the constraints
of P2CySeMoL’s class model. It could also be partially automated by feeding a resulting
XML from a network vulnerability scan by Nexpose to P2CySeMoL [27, 73]. Defenses
all have default states corresponding to what is believed to be the most common in prac-
tice (e.g., ASLR is TRUE per default as modern operating systems support it) or derived
from the existence of other Defenses (e.g., ZoneManagementProcess.FormalPatchAnd-
UpdatingProcess affects the likelihood of software being fully patched). The number of
work days that an Attacker is able to spend on an attack is fully customizable by the user
(per default, this value is five). Finally, each Asset in P2CySeMoL has been color coded
to enable more user-friendly overviews (see Figure 3.5 for some examples). With this work,
we argue that P2CySeMoL satisfies the criterion of Easiness.

When a calculation is complete, the probability of each AttackStep in the object model
being TRUE is illustrated with a probability distribution and a color on a scale from [0:
green, 50: yellow, 100: red]. This probability denotes the likelihood that one of the depicted
attackers are able to conduct this AttackStep. To allow easy-to-overview results, Assets
are color-coded based on a profile chosen by the user (this overwrites the default color code
of any Asset previous to the calculation). Current profiles include, for example, the mean
of all corresponding AttackSteps, only denial-of-service type AttackSteps, only remote
access of Assets as root/administrator, and no coloring. The visualized profile can be
swapped on the fly by the user. An example object model before and after calculation
can be seen in Figure 3.5 and Figure 3.6; Figure 3.7 and Figure 3.8 depicts the same
object model before and after calculation with AttackSteps and Defenses shown. This
small object model also provides a hint of the wide range of attacks that P2CySeMoL can
simulate. For instance, that an attacker on the Internet can find an unknown entry point
through the firewall, that the office system can be compromised through code injection of
its software or social engineering of the individual using the system, and that the IT-wise
isolated system can be compromised due to that the individual using this system shares the
same social zone as the individual using the office system (given three days spent on the
attack, the likelihood of the attacker gaining access to the isolated system is 23%). What
Assets, AttackSteps and Defenses that should be visible in a particular viewpoint can
be fully customized by a user of P2CySeMoL. Due to these features, we argue that the
contribution satisfies the criterion of Clarity.

Apart from main practical utility of the contribution, to estimate vulnerability and
mitigation options, there are a number of positive side-effects from usage of P2CySeMoL that
can be theorized based on our experiences from case studies of CySeMoL and P2CySeMoL.

Next to every enterprise log their overall IT architecture through some means, often
using Microsoft Visio or similar tools. Object models created by usage of these tools suffer
from their lack of any viable security ontology, which can result in a number of different
issues [124]; for instance, different individuals might depict the same aspect using differ-
ent notation, or different aspects using the same notation, causing confusion for others’
interpreting this model.

Even if the numbers produced by P2CySeMoL are not trusted, it might still prove
effective in terms of decreasing vulnerability as it provides an ontology describing what to
model, how to model, and how to interpret a model. Furthermore, as many enterprises
log their architectures already anyway, it should be a small endeavor to instead do it using
P2CySeMoL. Along the same line of argument, P2CySeMoL could be used an an interface
to facilitate communication between different stakeholders, and thus manage the common
organizational problem of miscommunication [40].

26 CHAPTER 3. THESIS CONTRIBUTION

Figure 3.5: An example P2CySeMoL object model.

Finally, P2CySeMoL could be used as a tool for education. Using software tools for
security awareness training is something that several previous research efforts have studied
and shown useful. For instance, Sheng et al. [150] developed an online computer game
aimed to teach users about how to avoid phishing attempts and observed that the amount
of correctly identified phishing attempts increased from 69% to 83% after that participants
had played the game. A similar educational tool is presented by [37]; however, this tool
focuses on end-user security threats in general. To our best knowledge, there is however no
educational tool regarding enterprise security threats - which happens to be the scope of
P2CySeMoL.

3.6. PRACTICAL UTILITY 27

Figure 3.6: Example object model with results shown (given three days spent on the attack
and asset coloring based on means).

28 CHAPTER 3. THESIS CONTRIBUTION

Figure 3.7: Example object model with AttackSteps and Defenses shown.

3.6. PRACTICAL UTILITY 29

Figure 3.8: Example object model with AttackSteps, Defenses and results shown.

Chapter 4

Research design

The work on this thesis began during 2010, when CySeMoL was first published [159]. Cy-
SeMoL was initiated due to the lack of methods for examining the cybersecurity of enterprise
architectures; this first publication included a method (PRMs) and a set of abstract classes
based on the Common Criteria framework (e.g., ThreatAgent, Asset, and AttackStep).

The next step of CySeMoL’s creation involved populating its qualitative structure with
AttackSteps, Defenses and Assets, and identifying relations between these. The first step
in this process involved creating a preliminary qualitative structure through an extensive
literature review. The second step involved performing a large number of interviews with
system owners and cybersecurity experts to extract a structure with classes and relations
that are valid to the real world. During this step, some classes were removed, and others
added.

When a qualitative structure had been composed, the process of populating this struc-
ture with quantitative data began. Some data could be derived through logical constraints
(e.g., it is impossible to inject code if the attacker cannot reach the vulnerable software).
Non-deterministic variables were specified using secondary data on observational studies
when these were available (e.g., regarding password cracking [31, 44, 117]), and primary
data collection through surveys with domain experts when necessary. The work on Cy-
SeMoL culminated during 2012 with a paper [162] and a thesis/dissertation [156].

CySeMoL is to our knowledge the most comprehensive attack graph model available
in terms of quantitative enterprise architecture security estimations. However, it does not
come without faults. In particular, it lacks the ability to model AttackSteps, Defenses
and Assets that are common in modern enteprise architecturs - especially those related
to web applications. Furthermore, during CySeMoL’s development and testing (e.g., its
case studies, research discussions, and paper reviews) a number of important improvement
possibilities were discovered. For instance, that it is demanding to compare attack graph
results created by CySeMoL, and that its estimates should be valid for any amount of
attacker effort; not only a scenario where an attacker spends a single work-week on the
attack.

A reasonable means of developing a model for cybersecurity analysis of enterprise archi-
tectures is thus to reuse the extensive work that has been put into CySeMoL, and improve
upon its flaws. This was also the method for producing the contribution described in this
thesis; an overall illustration of how it was managed can be seen in Figure 4.1. Here, the
method for creating the P2CySeMoL framework is described in Section 4.1, the methods
for creating quantitative security theory in Section 4.2, the methods for enabling variable
attacker effort in Section 4.3, and the validation in Section 4.4.

31

32 CHAPTER 4. RESEARCH DESIGN

ZoneManagementProcess

NetworkZone

DNSsec

PortSecurity

Protocol

FreshnessIndicator

CryptographicAuthentication

CryptographicObufuscation

Data Flow

Disrupt

Replay

Eavesdrop

ManInTheMiddle

ProduceRequest

ProduceResponse

DataStore

ReadData

WriteData

DeleteData

NetworkInterface

ARPSpoof

DenialOfService

StaticARPTables

IDSsensor

ApplicationServer

OperatingSystem

Access

DenialOfService

FindCriticalVulnerability

ConnectToService

ExecutionOfArbitaryCode

HasAllSecurityPatches

StaticARPTables

HostFirewall

AddressSpaceLayoutRandomization

NonExecutableMemory

AntiMalwareSolution

USBAutoRunDisabled

Person

SecurityAwarenessProgram

PasswordAccount

GuessAuthenticationCodesOffline

SocialEngineerAuthenticationCode

GuessAuthenticationCodeOnline

PasswordAuthentication

Mechanism

AllowedDF

Protocol

Read

Write

Owner

AwarenessProgram

HIDS

Owner

Server

Client

ApplicationClient

ACLsubject

CryptographicObufuscation

IncidentHandlingProcedures

HostHardeningProcedures

FormalPatchAndUpdatingProcess

RegularLogReviews

RegularSecurityAudits

FormalChangeManagentProcess

ManagedByAntiMalwareSolution

USBAutorunDisabledInDomain

DeepPacketInspection

DPI

ExtractPasswordRepository

BackoffTechnique

AutomatedPolicyEnforcer

HashedRepository

HashedRepositorySalted

DefaultPasswordsRemoved

Access

DenialOfService

FindCriticalVulnerability

ExecutionOfArbitaryCode

Access

DenialOfService

FindCriticalVulnerability

ExecutionOfArbitaryCodeInUnknownServices

AccessThroughPortableMedia

AccessTroughUI

FindUnknownService

ARPspoof

ExecuteMaliciousPayload

Firewall

Firewall

AccessControlPoint

Bypass

Functioning

Tuned

Updated

DNSspoof

DenialOfService

FindUnknownEntryPoint

ObtainOwnAddress

TerminalService

Functioning

KnownRuleSet

Functioning

Functioning

HasAllSecurityPatches

HasAllSecurityPatches
Product

Zone

WebApplicationFirewall

Functioning
MonitoredByOperator
TunedUsingBlackBoxTool
TunedByExperiencedProfessional
TunedWithSignificantManualEffort

MonitoredBy

WebServer

AccessControl

AccessControl

OperatingSystem

Owner

Client Server

AuthenticationMechanism

NetworkVulnerabilityScanner

Functioning

PhysicalZone

Access

PhysicalZone

UntrustedZone

Owner

Product

SoftwareProduct

GetProductInformation

ObtainSourceCode

ObtainBinaryCode

DevelopZeroDayExploit

FindPublicPatchableCriticalVulnerability

FindPublicUnpatchableCriticalVulnerability

FindPublicExploitForPublicPatchableCriticalVulnerability

FindPublicExploitForPublicUnpatchableCriticalVulnerability

DevelopExploitForPublicPatchableCriticalVulnerability

DevelopExploitForPublicUnpatchableCriticalVulnerability

CheckedWithStaticCodeAnalysis

HasBeenScrutinized

OnlyUsesSafeLanguages

SourceCodeClosed

BinaryCodeSecret

HasPublicExploitForPublicPatchableCriticalVulnerability

HasPublicExploitForPublicUnpatchableCriticalVulnerability

DaysSinceReleaseOfSoftware

WebApplication

TypeSafeAPI
DeveloperSecurityTraining
BlackBoxTesting
StaticCodeAnalysis
HasPublicCommandInjection
HasPublicCrossSiteScripting
HasPublicRemoteFileInclusion
HasPublicSQLInjection

FindPublicCommandInjection
FindPublicCrossSiteScripting
FindPublicRemoteFileInclusion
FindPublicSQLInjection
DiscoverVulnerability
ExploitCommandInjection
ExploitCrossSiteScripting
ExploitRemoteFileInclusion
ExploitSQLInjection

UnauthenticatedScanOfZone

AuthenticatedScanOfZone

OSNotpartOfScanPolicy

SocialZone

PhysicalZone

PartOfSocialZone

Product

OperatingSystem

Zone

Zone

Proxy

UnauthenticatedScanOfOS

AuthenticatedScanOfOS

TrustedZone

AccessControl

ManagementProcess

ProxyGateway

AccessControl

PerimeterIDS

AccessControl

AccessControl

AccessControl

AccessControl

RemoteAccessOf

ZoneManagementProcess

NetworkZone

DNSsec

PortSecurity

Protocol

FreshnessIndicator

CryptographicAuthentication

CryptographicObufuscation

Data Flow

Disrupt

Replay

Eavesdrop

ManInTheMiddle

ProduceRequest

ProduceResponse

DataStore

ReadData

WriteData

DeleteData

PhysicalZone

Access

SoftwareInstallation

SoftwareProduct

GetProductInformation

ObtainSourceCode

ObtainBinaryCode

DevelopPatchableExploitForLowSeverityVuln

DevelopPatchableExploitForMediumSeverityVunl

DevelopPatchableExploitForHighSeverityVuln

DevelopUnpatchableExploitForLowSeverityVuln

DevelopUnpatchableExploitForMediumSeverityVunl

DevelopUnpatchableExploitForHighSeverityVuln

NetworkInterface

ARPSpoof

DenialOfService

StaticARPTables

IDSsensor

Service

OperatingSystem

ConnectToFromOtherZone

ExecutionOfArbitaryCodeFromOtherZone

ConnectToFromSameZone

ExecutionOfArbitaryCodeFromSameZone

StaticARPTables

HostFirewall

AddressSpaceLayoutRandomization

NonExecutableMemory

Person
SecurityAwarenessProgram

Account

GuessAuthenticationCodesOffline

SocialEngineerAuthenticationCode

GuessAuthenticationCodeOnline

PasswordAccount

AuthenticationMechanism

PasswordAuthentication

Mechanism

AutomatedPolicyEnforcer

HashedRepository

HashedRepositorySalted

DefaultPasswordsRemoved

UntrustedZone
TrustedZone

AllowedDF

PerimeterIDS

Protocol

Read Write

Medium

PhysicalZone

Product

PhysicalZone

ManagementProcess

AuthenticationMechanism

Owner

AwarenessProgram

HIDS

OperatingSystem

Owner

Zone

VPN Gateway

Server

Client

Server

Client

ApplicationClient

ACLsubject

CryptographicObufuscation

IncidentHandlingProcedures

HostHardeningProcedures

FormalPatchAndUpdatingProcess

RegularLogReviews

RegularSecurityAudits

FormalChangeManagentProcess

DeepPacketInspection

DPI

Proxy

ExtractPasswordRepository
BackoffTechnique

ProxyGateway

ExecutionOfArbitaryCodeFromSameZone

ExecutionOfArbitaryCodeFromOtherZone

CheckedWithStaticCodeAnalysis

HasBeenScrutinized

OnlyUsesSafeLanguages

SourceCodeClosed

BinaryCodeSecret

HasPublicPatchableSeverityVuln

HasPublicPatchableMediumSeverityVuln

HasPublicPatchableHighSeverityVuln

HasPublicUnpatchableLowSeverityVuln

HasPublicUnpatchableMediumSeverityVuln

HasPublicUnpatchableHighSeverityVuln

FindUnknownServiceFromOtherZone

ExecutionOfArbitaryCodeInUnknownServicesFromOtherZone

AccessThroughPortableMedia

AccessTroughUIFromOtherZone

AccessFromOtherZone

FindUnknownServiceFromSameZone

ExecutionOfArbitaryCodeInUnknownServicesFromSameZone

AccessTroughUIFromOtherZone

AccessFromSameZone

ARPspoof

Firewall

Firewall

AccessControlPoint

AccessControl

Bypass

Functioning

Tuned

Updated

DNSspoof

DenialOfService

FindUnknownEntryPoint

ObtainOwnAddress

HasAllLowSeverityPatches

HasAllMediumSeverityPatches

HasAllHighSeverityPatches

OperatingSystem

TerminalService

Access

DenialOfService

FindLowSeverityVulnerability

FindMediumSeverityVulnerability

FindHighSeverityVulnerability

Functioning

Functioning

Functioning

CySeMoL

P2CySeMoL

Framework and

validation

Extending

scope

Variable

attacker effort

Method and

dataset for

validation

There is a software to

compromise

A zero-day vulnerability and exploit can be developed

A zero-day vulnerability and exploit can be purchased

1

2

An unpatchable

vulnerability is

publicly available

An exploit for a public

unpatchable

vulnerability can be

developed

8

7b

An exploit for an

unpatchable

vulnerability is

publicly available

Have an exploit for a

public unpatchable

vulnerability

14

15

Have an exploit for a

zero-day vulnerability

9

10

An exploit for a public

patchable vulnerability

can be purchased
5 12

3b

Have an exploit for a

public patchable

vulnerability

An exploit for a

patchable vulnerability

is publicly available

An exploit for a public

patchable vulnerability

can be developed

4

13

11

A patchable

vulnerability is

publicly available
3a

7a

6

M

A

B

C

D

E

F

G

H

I

J

K

L

%1.371 PPB

 %3.12 PPC

 %8.893  aD PP

 %8.273  bE PP

%8.804  PPP DF

 %8.25  PPP DG

 %9.7676  aEDH PPPPP

 %3.257  bEI PPP

 %5.178  PPP EJ

 %0.38109  PPPPP CBK

 %7.95131211  PPPPPPP HGFL

 %3.381514  PPPPP JIM

Paper 1 Paper 2 Papers 3-7 Paper 8

Figure 4.1: Overall research process.

4.1 Creation of framework

The overall choices in terms of classes and terminology in P2CySeMoL are based on Cy-
SeMoL, and hence also the Common Criteria (along with numerous other literature). Its
implementation in P2AMF is a process that began during 2012. Choices made during this
process were based on literature reviews and extensive usage through fictional and real-world
case studies. Usability features such as color profiles for calculations are also products of
this process.

4.2 Creation of quantitative security theory

The choice of research strategy in information systems research is not a simple task [177].
It is no different in the IT security domain, where a wide variety of methods have been used
to obtain data on different phenomena (see Section 2.1).

Easterbrook et al. [53] presents an overview of the different strategies that can be utilized
in empirical software engineering research. Each paper described in this thesis involves some
sort of data collection; the strategies employed by them according to the categories in [53]
can be seen in Table 4.1. As can be seen, case studies have been used extensively for the
present research. The reason behind this methodological choice is that qualitative data from
case studies can provide valuable insight in terms of how to carry out and analyze results
by quantitative studies [64, 89]. For paper 2, an exploratory case study was employed to
gain insight into how incidents were collected and archived, and to understand contextual
reasons behind malware trends; for papers 3-7, exploratory case studies were conducted to
derive variables, states and tools useful to the purpose of the overall research (to support
enterprise decision making); for paper 8, two confirmatory case studies were carried out
to examine the usefulness of P2CySeMoL as a whole. For instance, three interviews and
a workshop with three respondents were conducted to elicit variables and states for the
surveys presented in papers 3 and 4, on an abstraction level useful for enterprise decision
making [71].

Of the quantitative methods employed to extend the security theory of P2CySeMoL,
papers 1, 6 and 7 describe controlled experiments, and papers 2-5 present survey research.
More detailed descriptions of these follows next.

Paper 1 features data gathered from an international cyber defense exercise with more

4.2. CREATION OF QUANTITATIVE SECURITY THEORY 33

Table 4.1: Chosen research strategies, following [53].

Paper
Strategy 1 2 3 4 5 6 7 8
Controlled experiments x x x
Case studies x x x x x x x
Survey research x x x x
Ethnographiesa

Action Researcha

aNot employed

than 100 participants. Data was collected using TCP-dump sniffers and parsed by the
SNIDS Snort to identify malicious traffic. As attackers could be identified through their
corresponding MAC addresses, activity by defenders could be filtered out. TTC was mea-
sured as the calendar time from first Snort alarm for a system until successful compromise
of it; the latter was discovered based on logs from attackers, defenders and observers. Of the
systems employed in the exercise architecture, six were targeted during the entire exercise
and had static environments in terms of what services that were required to be operated
by the defenders. Attacks against these were chosen to be studied, providing a total of 34
TTC values for analysis.

Paper 2 presents archival data on 5.6 million malware events gathered from approxi-
mately 260,000 computer systems during a period of three years. Time to first compromise
was measured as the time of first installation of a system in the enterprise until the time of
the first malware alarm observed on this system.

Paper 3 describes a study where the judgment of 21 experts was utilized to estimate the
effort required by a professional penetration tester to discover a critical vulnerability in a
web application that had been developed with or without the aid of four common security
mechanisms. Experts were invited to a web survey based on participation in relevant email
lists. The possibility of non-experts participating was handled by Cooke’s classical method
[38] as this method weights the answers of respondents based on their performance on a
(unknown to the respondents) knowledge test. Expert elicitation is a common means of
creating Bayesian models when available data is sparse compared to the number of nodes
that need be populated [92].

Paper 4 features the same approach as paper 3, but instead estimates the effectiveness
of web application firewalls, a type defense commonly used to improve the security of web
applications in operation. In this study, experts were invited not only based on participation
in relevant email lists (as paper 3), but also based on whether they had authored any peer-
reviewed publications on the topic. A total of 49 experts fully answered the web survey and
were scored by Cooke’s classical method.

Paper 5 gathered data relevant to vulnerability and exploit acquisition from previous
empirical studies, vulnerability databases and a survey with 58 experts. This expert elici-
tation process used a similar web survey as paper 3 and 4, but using a different sampling
frame. Here, only those who had actually been credited for the discovery of vulnerabilities
were invited. Consequently, usage of Cooke’s classical method was judged unnecessary for
this study.

Paper 6 describes an experiment where seven of the more commonly employed commer-
cial scanners were studied in terms of, in particular, missed vulnerabilities and mitigation
suggestions (false negatives), and how many non-existent vulnerabilities that a scanner in-

34 CHAPTER 4. RESEARCH DESIGN

correctly claims exist (false positives). A total of 50 false negatives and 40 false positives
per scanner were analyzed, all being vulnerabilities of CVSS High severity (i.e., a CVSS
score higher than 7). The experimental architecture was designed by a group of computer
security specialists and computer security researchers, incorporating a total of 28 different
systems running a diverse set of applications.

Paper 7 presents an experiment that involved 356 attacks and the industry-standard
SNIDS Snort. Of the tested 356 attacks, 183 were more novel than the used Snort rule set
and 173 older than the rule set. The results from this study thus both hint towards SNIDS
effectiveness at detecting both attacks more novel than the rule set (i.e., zero-days’) and
“standard” attacks. The study then analyzed how the zero-days’ were detected, how prone
the corresponding rules are to false alarms, and how easily these rules can be circumvented.

Paper 8 does not include any new quantitative data. However, it incorporates the essence
of the data presented in papers 1-7.

4.3 Sampling based on attacker effort

A number of methods were used to enable modeling variable attacker effort (measured as
time) spent. First, some quantitative data in CySeMoL were readily available as time-
based. For instance, the effort required to discover a zero-day vulnerability was measured
on a scale of work days [163]. For these datasets, Akaike Information Criterion [2] was used
to find the distribution best fit for modeling its properties, with tested distributions selected
based on choices and findings from paper 2. If no distribution was well fit, some kind of
interpolation method was employed to derive a custom CDF; typically, linear interpolation
as the questions of the expert surveys used to populate CySeMoL and P2CySeMoL were
presented to respondents with graphs depicting linearly connected dots (see Figure 1 in
paper 3 for an example).

Some datasets have very limited variety of different time estimations, prohibiting both
distribution fitting and any reasonable interpolation methodology. For instance, the like-
lihood of successful arbitrary code execution was estimated using a constant time spent
preparing for the attack (one work week) [164]. For these datasets, paper 2 provided em-
pirical justification towards what distribution to assume. If possible, the two-parameter
generalized Pareto (PAR) was chosen as this was found best fit. When only a single data-
point of a CDF is available (e.g., [164]), there are however an infinite number of parameter
solutions for PAR. For such data, the one-parameter generalized Pareto, also known as
the exponential distribution, was employed instead (that there is only a single solution for).
This choice is supported by [95], who found the exponential distribution well fit for modeling
TTC.

4.4 Validation

Showing that a model or metric is “correct” is essential towards its utility as an incorrect
system can cause costly errors [130]. In theory, a security metric can prove the absence of
vulnerabilities [178]. In practice, however, the great complexity of the issue means that no
methodology can provide absolute assurance that a system is secure [21, 178]. A model’s cor-
rectness might although be sufficient as long as its estimates, while being inaccurate, point
to the right conclusions [130]. In other words, the exact values provided by P2CySeMoL
might not be terribly important. Rather, it is important that the relative ranking in terms
of vulnerability is reasonable.

4.4. VALIDATION 35

O’Keefe et al. [130] argue that an expert system can be validated both on a component
level and on a system level. Component level validation concerns analyzing the individual
“parts” of the system; system level validation concerns analyzing the operation of the system
as a whole.

Each component in P2CySeMoL has been validated qualitatively by literature reviews,
interviews with domain experts and case studies, and quantitatively by experiments and/or
surveys. For example, the effectiveness of automated network vulnerability scanners was
first studied through a literature review, then by four interviews with domain experts, then
using an experiment, and finally through two case studies. The validation of each compo-
nent has also been addressed from various perspectives. For instance, the rule set used in
the study described in paper 7 was chosen based on a longitudinal analysis on the yearly de-
velopment of the Snort Sourcefire rule set. Similarly, the survey based studies described in
papers 3-5 were based on best-practice recommendations regarding data collection method-
ology [29, 36, 43, 123] and analysis [38, 39, 75].

A Turing test was used to analyze the system level validity of CySeMoL [162]. This
test involved estimating the vulnerability of a specific object model using CySeMoL and
five experts. The validity of the estimates provided by each entity were then scored by two
expert evaluators. In summary, CySeMoL performed worse than the best expert, better
than the worst expert, and on par with an average expert. As P2CySeMoL builds (and
improves) upon CySeMoL, this result could be valid also for P2CySeMoL. However, no new
Turing test has been performed to validate such a claim.

To further study the validity of P2CySeMoL on a system level, this research used the data
and methodology presented in paper 1. The P2CySeMoL object model of the architecture
presented in paper 1 includes 101 assets, 511 attack steps, 332 defenses, 996 connections
between assets, and 1425 connections between attack steps. Of especial importance to
the analysis: 6 operating systems, 30 application servers, 16 software products, 6 web
applications, 30 access control points, and two work-days available for the attack. While
this architecture only covers a subset of P2CySeMoL’s scope (see Section 3.3), there is
to the authors knowledge no better empirical alternative available. Consequently, it can
be seen as a reasonable starting point for further empirical validation. As is described
in paper 8, P2CySeMoL shows a significant correlation in the expected direction (−0.388,
p = 0.023). This is a stronger correlation than for any of the other 18 metrics tested by the
study presented in paper 1. While promising, it should still be viewed with care due to the
specific scenario and lack of samples.

Perhaps of higher merit, P2CySeMoL has been tested in two real-world case studies
with positive results. In the more comprehensive of these two, the experts who designed and
implemented the analyzed architecture reviewed - and agreed on - the mitigation suggestions
provided by P2CySeMoL (in the other study, no review was made). This suggests that while
the estimates produced by P2CySeMoL likely are not perfect, they prove satisfactory for
supporting enterprise decision making.

Chapter 5

Conclusions and future work

The purpose of this thesis is to help enterprise decision makers analyze the cybersecurity, or
vulnerability, of their enterprise architectures in a meaningful and understandable way. To
accomplish this purpose, the attack graph model P2CySeMoL was developed. P2CySeMoL
extends CySeMoL, a security tool that was built for the same purpose, but with a focus on
SCADA systems. In summary, P2CySeMoL extends CySeMoL with:

• A new modeling and analysis framework (P2AMF)

• New assets, attack steps and defenses

• Possibility to model arbitrary attacker effort

• Validation and case studies

The results indicate that the contribution help to facilitate decision making of cyber
security matters. They also suggest that this can be achieved with minor effort required
for data collection and analysis. Thus, we argue that the main purpose of this thesis has
been accomplished. Additionally, researchers can use P2CySeMoL to extend existing risk-
based assessment methods, for instance, as a plug-in to models that measure the potential
economical losses due to successful cyber attacks [30]. The causal relations and variables in
it could also aid with the design of security experiments. For instance, P2CySeMoL denotes
that security training has a strong correlation with the efficiency of static code analyzers
in terms of reducing the vulnerability of web application. Any investigation of static code
analyzers for discovering and mitigating web application vulnerabilities should thus also
measure the training of the individuals using these tools.

There are however many aspects of P2CySeMoL that could be further improved. The
perhaps most important aspect is related to how results are presented to the end user.
Currently, the user is required to manually make changes to an object model and recalculate
the result in order to investigate whether one configuration is more secure than another.
This can be problematic given the designated user profile of P2CySeMoL - CISOs can neither
be expected to have significant time to spend on such analysis, nor sufficient knowledge of
IT security vulnerabilities and their dependencies to elicit key scenarios to compare [159].
To manage this property, P2CySeMoL should be extended to allow automated generation
and execution of different configurational scenarios, and then present the most beneficial
solutions (the configurations that have the lowest vulnerability) to the end user.

A second aspect is related to the scope of P2CySeMoL. There are various assets, attacks
and defenses that are not available in it. In particular, it only models software exploits that

37

38 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

result in administrator/root privileges; whereas in practice, attackers might first exploit
some vulnerability to gain user privileges, and then escalate these privileges to administrator
through a second vulnerability. Future work would benefit from extending P2CySeMoL to
cover software attacks involving privileges other than administrator.

A third aspect is related to how data is collected to create P2CySeMoL object models.
While effort has been spent to make this process less time-consuming, it could still be im-
proved. For example, pose that a user wants to depict a clean installation of the operating
systemWindows 7 Professional SP1. To accomplish this in P2CySeMoL, the user is required
to model the assets OperatingSystem, SoftwareProduct, AccessControlPoint, the vari-
ous ApplicationServers and ApplicationClients that are installed by default, and then
connect these in an appropriate means. As this configuration would be the same for any
clean installation of Windows 7 Professional SP1, it means a lot of redundant work for the
end user. One solution to this problem would be to create default templates for common
use-cases that end users model frequently. Another means of decreasing data collection costs
could be to couple P2CySeMoL to data sources that contain structured information about
different configurations. For instance, the US National Vulnerability Database1 (NVD) re-
lates information about software vulnerabilities to software products; thus, if a user inputs a
software name according to the standard in NVD, this website could be queried to automat-
ically populate the software with information about any public vulnerabilities. Similarly,
the Exploit Database2 (EDB) could be queried to investigate whether there are any public
exploits for vulnerabilities elicited using NVD.

A fourth aspect is related to the attacker profile covered by P2CySeMoL - professional
penetration testers. Not only is this profile wide and informal, some enterprises might
also perceive other threats as more critical to consider. For instance, some might prefer
considering script-kiddies, adversaries with very limited technical capability who rely on
readily available tools created by more experienced individuals; others might prefer modeling
extremely competent adversaries such as nations or states (i.e., advanced persistent threats).
To enable modeling these attacker profiles, there is a need to alter the scope of P2CySeMoL’s
metamodel (some attacks are not applicable for certain attacker profiles), and alter the
quantitative data within it.

A fifth aspect, tightly coupled to the attacker profile, is regarding the actual likelihood
that different types of vulnerabilities are exploited. That is, just because a vulnerability can
be exploited does not suggest that it actually will be. Allodi et al. [9, 10] compare the over-
lap between different datasets of software vulnerabilities to examine this property: 1) the
overall number of public vulnerabilities of different severity (using NVD), 2) vulnerabilities
that have public exploits (using EDB), 3) Symantec’s threat databases of vulnerabilities
that are exploited in the wild3,4, 4) observations of actual data gathered in the wild by
Symantec (WINE [52]), and 5) vulnerabilities actively exploited by exploit kits gathered
by the authors (EKITS [9]). The authors found that few critical software vulnerabilities
are exploited in practice (i.e., present in WINE or EKITS). In addition, they observed that
presence of public exploits is a poor indicator regarding whether an exploit actually will
show up in the wild. To increase the practical usability of P2CySeMoL, vulnerabilities that
currently are exploited in the wild could receive a stronger weighting factor when presenting
calculation results; highlighting that these are critical to mitigate.

A sixth aspect concerns that the effectiveness of different defenses and attacks naturally
vary over time, an issue that P2CySeMoL’s more static estimates currently fail to capture.

1http://nvd.nist.gov/
2http://www.exploit-db.com/
3http://www.symantec.com/security_response/attacksignatures/
4http://www.symantec.com/security_response/threatexplorer/

39

The deterioration of different theory within P2CySeMoL should be studied in depth to
determine when different assets, attacks, defenses, relations and quantitative data should
be revised.

Finally, P2CySeMoL could certainly use more thorough usability and validation tests to
ascertain correctness and ease of use.

Bibliography

[1] M. Ahmed, E. Al-Shaer, and L. Khan. A novel quantitative approach for measuring
network security. In INFOCOM 2008. The 27th Conference on Computer Communi-
cations. IEEE, pages 1957–1965, 2008. doi: 10.1109/INFOCOM.2008.260.

[2] H. Akaike. Factor analysis and AIC. Psychometrika, 52, 1987. doi: 10.1007/
BF02294359.

[3] C. Alberts, A. Dorofee, J. Stevens, and C. Woody. Introduction to the octave ap-
proach. Pittsburgh, PA, Carnegie Mellon University, 2003.

[4] O. Alhazmi and Y. Malaiya. Modeling the vulnerability discovery process. In Software
Reliability Engineering, 2005. ISSRE 2005. 16th IEEE International Symposium on,
pages 10–pp. IEEE, 2005.

[5] O. Alhazmi and Y. Malaiya. Quantitative vulnerability assessment of systems soft-
ware. In Proc. Annual Reliability and Maintainability Symposium, pages 615–620,
January 2005.

[6] O. Alhazmi and Y. Malaiya. Measuring and enhancing prediction capabilities of
vulnerability discovery models for apache and iis http servers. In Software Reliabil-
ity Engineering, 2006. ISSRE’06. 17th International Symposium on, pages 343–352.
IEEE, 2006.

[7] O. Alhazmi and Y. Malaiya. Application of vulnerability discovery models to major
operating systems. Reliability, IEEE Transactions on, 57(1):14–22, 2008.

[8] O. Alhazmi, Y. Malaiya, and I. Ray. Measuring, analyzing and predicting security
vulnerabilities in software systems. Computers & Security, 26(3):219–228, 2007.

[9] L. Allodi and F. Massacci. A preliminary analysis of vulnerability scores for attacks
in wild: the ekits and sym datasets. In Proceedings of the 2012 ACM Workshop on
Building analysis datasets and gathering experience returns for security, pages 17–24.
ACM, 2012.

[10] L. Allodi, W. Shim, and F. Massacci. Quantitative assessment of risk reduction with
cybercrime black market monitoring. 2013.

[11] J. Alves-Foss and S. Barbosa. Assessing computer security vulnerability. ACM
SIGOPS Operating Systems Review, 29(3):3–13, 1995.

[12] R. Anderson. Why information security is hard-an economic perspective. In Computer
Security Applications Conference, 2001. ACSAC 2001. Proceedings 17th Annual, pages
358–365. IEEE, 2001.

41

42 BIBLIOGRAPHY

[13] R. Anderson and T. Moore. The economics of information security. Science, 314
(5799):610–613, 2006.

[14] G. Andersson, P. Donalek, R. Farmer, N. Hatziargyriou, I. Kamwa, P. Kundur,
N. Martins, J. Paserba, P. Pourbeik, J. Sanchez-Gasca, et al. Causes of the 2003
major grid blackouts in north america and europe, and recommended means to im-
prove system dynamic performance. Power Systems, IEEE Transactions on, 20(4):
1922–1928, 2005.

[15] N. Antunes and M. Vieira. Benchmarking vulnerability detection tools for web ser-
vices. In Web Services (ICWS), 2010 IEEE International Conference on, pages 203–
210. IEEE, 2010.

[16] A. Atzeni and A. Lioy. Why to adopt a security metric? a brief survey. In Quality of
Protection, pages 1–12. Springer, 2006.

[17] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxon-
omy of dependable and secure computing. Dependable and Secure Computing, IEEE
Transactions on, 1(1):11–33, 2004.

[18] M. Baggett. Effectiveness of Antivirus in Detecting Metasploit Payloads .
Available on http://www.sans.org/reading_room/whitepapers/casestudies/
effectiveness-antivirus-detecting-metasploit-payloads_2134, accessed
April 19, 2013, 2008.

[19] R. Böhme and F. Freiling. On metrics and measurements. In I. Eusgeld, F. Freiling,
and R. Reussner, editors, Dependability Metrics, volume 4909 of Lecture Notes in
Computer Science, pages 7–13. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-
68946-1. doi: 10.1007/978-3-540-68947-8_2. URL http://dx.doi.org/10.1007/
978-3-540-68947-8_2.

[20] L. Bilge and T. Dumitras. Before we knew it: an empirical study of zero-day attacks
in the real world. In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 833–844. ACM, 2012.

[21] M. Bishop. What is computer security? Security & Privacy, IEEE, 1(1):67–69, 2003.

[22] M. Bishop. Introduction to computer security. Addison-Wesley Professional, 2004.

[23] L. D. Bodin, L. A. Gordon, and M. P. Loeb. Evaluating information security in-
vestments using the analytic hierarchy process. Communications of the ACM, 48(2):
78–83, 2005.

[24] W. Boyer and M. Mcqueen. Ideal based cyber security technical metrics for control
systems. Critical Information Infrastructures Security, pages 246–260, 2008.

[25] R. Breu, F. Innerhofer-Oberperfler, and A. Yautsiukhin. Quantitative assessment of
enterprise security system. In Availability, Reliability and Security, 2008. ARES 08.
Third International Conference on, pages 921–928. IEEE, 2008.

[26] B. Bulgurcu. Information security policy compliance: an empirical study of
rationality-based beliefs and information security awareness. MIS Quarterly, 34(3):
523–548.

http://www.sans.org/reading_room/whitepapers/casestudies/effectiveness-antivirus-detecting-metasploit-payloads_2134
http://www.sans.org/reading_room/whitepapers/casestudies/effectiveness-antivirus-detecting-metasploit-payloads_2134
http://dx.doi.org/10.1007/978-3-540-68947-8_2
http://dx.doi.org/10.1007/978-3-540-68947-8_2

BIBLIOGRAPHY 43

[27] M. Buschle, H. Holm, T. Sommestad, M. Ekstedt, and K. Shahzad. A tool for au-
tomatic enterprise architecture modeling. In IS Olympics: Information Systems in a
Diverse World, pages 1–15. Springer, 2012.

[28] M. Buschle, P. Johnson, and K. Shahzad. The enterprise architecture analysis tool–
support for the predictive, probabilistic architecture modeling framework. 2013.

[29] S. Cavusgil and L. Elvey-Kirk. Mail survey response behavior: A conceptualization of
motivating factors and an empirical study. European Journal of Marketing, 32(11/12):
1165–1192, 1998.

[30] H. Cavusoglu, B. Mishra, and S. Raghunathan. A model for evaluating it security
investments. Communications of the ACM, 47(7):87–92, 2004.

[31] J. A. Cazier and B. D. Medlin. Password security: An empirical investigation into
e-commerce passwords and their crack times. Information Systems Security, 15(6):
45–55, 2006.

[32] CCRA. Common Criteria for Information Technology Security Evaluation. Available
on http://www.commoncriteriaportal.org/, accessed June 24, 2013, 2012.

[33] S. Chai, M. Kim, and H. R. Rao. Firms’ information security investment decisions:
Stock market evidence of investors’ behavior. Decision Support Systems, 50(4):651 –
661, 2011. doi: http://dx.doi.org/10.1016/j.dss.2010.08.017.

[34] I. Chowdhury, B. Chan, and M. Zulkernine. Security metrics for source code struc-
tures. In Proceedings of the fourth international workshop on Software engineering
for secure systems, pages 57–64. ACM, 2008.

[35] M. Chu, K. Ingols, R. Lippmann, S. Webster, and S. Boyer. Visualizing attack graphs,
reachability, and trust relationships with navigator. In Proceedings of the Seventh
International Symposium on Visualization for Cyber Security, pages 22–33. ACM,
2010.

[36] R. Clemen and R. Winkler. Combining probability distributions from experts in risk
analysis. Risk Analysis, 19(2):187–203, 1999.

[37] B. D. Cone, C. E. Irvine, M. F. Thompson, and T. D. Nguyen. A video game for
cyber security training and awareness. Computers & Security, 26(1):63–72, 2007.

[38] R. M. Cooke. Experts in Uncertainty. Opinion and Subjective Probability in Science.
Oxford University Press, 1991.

[39] R. M. Cooke and L. L. Goossens. Tu delft expert judgment data base. Reliability
Engineering & System Safety, 93(5):657–674, 2008.

[40] J. Coughlan, M. Lycett, and R. D. Macredie. Communication issues in requirements
elicitation: a content analysis of stakeholder experiences. Information and Software
Technology, 45(8):525–537, 2003.

[41] R. E. Courtney and D. A. Gustafson. Shotgun correlations in software measures.
Software Engineering Journal, 8(1):5–13, 1993.

http://www.commoncriteriaportal.org/

44 BIBLIOGRAPHY

[42] J. Cox. Information systems user security: A structured model of the knowing-doing
gap. Computers in Human Behavior, 28(5):1849 – 1858, 2012. ISSN 0747-5632. doi:
http://dx.doi.org/10.1016/j.chb.2012.05.003. URL http://www.sciencedirect.
com/science/article/pii/S0747563212001318.

[43] L. Cronbach. Coefficient alpha and the internal structure of tests. Psychometrika, 16
(3):297–334, 1951.

[44] M. Dell’Amico, P. Michiardi, and Y. Roudier. Password strength: an empirical anal-
ysis. In INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[45] F. den Braber, I. Hogganvik, M. S. Lund, K. Stølen, and F. Vraalsen. Model-based
security analysis in seven steps-a guided tour to the coras method. BT Technology
Journal, 25(1):101–117, 2007.

[46] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing works. In Proceedings of the
SIGCHI conference on Human Factors in computing systems, pages 581–590. ACM,
2006.

[47] R. Dodge, C. Carver, and A. Ferguson. Phishing for user security awareness. Com-
puters & Security, 26(1):73–80, 2007.

[48] R. C. Dodge and A. J. Ferguson. Using phishing for user email security awareness.
In Security and Privacy in Dynamic Environments, pages 454–459. Springer, 2006.

[49] M. Dornseif and S. May. Modelling the costs and benefits of honeynets. arXiv preprint
cs/0406057, 2004.

[50] A. Doupé, M. Cova, and G. Vigna. Why johnny can’t pentest: An analysis of black-
box web vulnerability scanners. In Detection of Intrusions and Malware, and Vulner-
ability Assessment, pages 111–131. Springer, 2010.

[51] D. P. Duggan, M. Berg, J. Dillinger, and J. Stamp. Penetration testing of industrial
control systems. Sandia National Laboratories, 2005.

[52] T. Dumitras and D. Shou. Toward a standard benchmark for computer security
research: The worldwide intelligence network environment (wine). In Proceedings of
the First Workshop on Building Analysis Datasets and Gathering Experience Returns
for Security, pages 89–96. ACM, 2011.

[53] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting empirical methods
for software engineering research. InGuide to advanced empirical software engineering,
pages 285–311. Springer, 2008.

[54] S. Egelman, L. F. Cranor, and J. Hong. You’ve been warned: an empirical study
of the effectiveness of web browser phishing warnings. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 1065–1074. ACM, 2008.

[55] I. A. Elia, J. Fonseca, and M. Vieira. Comparing sql injection detection tools using
attack injection: An experimental study. In Software Reliability Engineering (ISSRE),
2010 IEEE 21st International Symposium on, pages 289–298. IEEE, 2010.

[56] N. Fenton. Software measurement: A necessary scientific basis. Software Engineering,
IEEE Transactions on, 20(3):199–206, 1994.

http://www.sciencedirect.com/science/article/pii/S0747563212001318
http://www.sciencedirect.com/science/article/pii/S0747563212001318

BIBLIOGRAPHY 45

[57] J. Fonseca, M. Vieira, and H. Madeira. Testing and comparing web vulnerability
scanning tools for sql injection and xss attacks. In Dependable Computing, 2007.
PRDC 2007. 13th Pacific Rim International Symposium on, pages 365–372. IEEE,
2007.

[58] J. Fonseca, M. Vieira, and H. Madeira. The web attacker perspective-a field study. In
Software Reliability Engineering (ISSRE), 2010 IEEE 21st International Symposium
on, pages 299–308. IEEE, 2010.

[59] M. D. Ford, K. Keefe, E. LeMay, W. H. Sanders, and C. Muehrcke. Implementing
the advise security modeling formalism in mobius. In roceedings of the 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
2013.

[60] S. Frei, B. Tellenbach, and B. Plattner. 0-day patch exposing vendors (in) security
performance. BlackHat Europe, Amsterdam, NL, 2008.

[61] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational
models. In International Joint Conference on Artificial Intelligence, volume 16, pages
1300–1309. LAWRENCE ERLBAUM ASSOCIATES LTD, 1999.

[62] M. Frigault and L. Wang. Measuring network security using bayesian network-based
attack graphs. In 32nd Annual IEEE International Computer Software and Applica-
tions, pages 698–703. IEEE, 2008.

[63] M. Frigault, L. Wang, A. Singhal, and S. Jajodia. Measuring network security using
dynamic bayesian network. In Proceedings of the 4th ACM workshop on Quality of
protection, pages 23–30. ACM, 2008.

[64] G. G. Gable. Integrating case study and survey research methods: an example in
information systems. European Journal of Information Systems, 3(2):112–126, 1994.

[65] L. Gallon. On the impact of environmental metrics on cvss scores. In Social Computing
(SocialCom), 2010 IEEE Second International Conference on, pages 987–992. IEEE,
2010.

[66] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández, and E. Vázquez. Anomaly-
based network intrusion detection: Techniques, systems and challenges. computers &
security, 28(1):18–28, 2009.

[67] M. Goodyear, H. T. Goerdel, S. Portillo, and L. Williams. Cybersecurity management
in the states: The emerging role of chief information security officers. IBM Center
for the Business of Government, 2010.

[68] D. Hadžiosmanović, L. Simionato, D. Bolzoni, E. Zambon, and S. Etalle. N-gram
against the machine: on the feasibility of the n-gram network analysis for binary
protocols. In Research in Attacks, Intrusions, and Defenses, pages 354–373. Springer,
2012.

[69] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. Dowsing for overflows: a
guided fuzzer to find buffer boundary violations. In Proceedings of the 22nd USENIX
conference on Security, pages 49–64. USENIX Association, 2013.

[70] S. Hansman and R. Hunt. A taxonomy of network and computer attack methodologies.
Retrieved March, 22:2007, 2003.

46 BIBLIOGRAPHY

[71] H. Holm and M. Ekstedt. A metamodel for web application injection attacks and
countermeasures. In Trends in Enterprise Architecture Research and Practice-Driven
Research on Enterprise Transformation, pages 198–217. Springer, 2012.

[72] H. Holm, T. Sommestad, J. Almroth, and M. Persson. A quantitative evaluation of
vulnerability scanning. Information Management & Computer Security, 19(4):231–
247, 2011. doi: 10.1108/09685221111173058.

[73] H. Holm, M. Buschle, R. Lagerström, and M. Ekstedt. Automatic data collection for
enterprise architecture models. Software & Systems Modeling, pages 1–17, 2012.

[74] H. Holm, T. Sommestad, U. Franke, and M. Ekstedt. Success rate of remote code ex-
ecution attacks–expert assessments and observations. Journal of Universal Computer
Science, 18(6):732–749, 2012.

[75] H. Holm, T. Sommestad, M. Ekstedt, and N. Honeth. Indicators of expert judgement
and their significance: an empirical investigation in the area of cyber security. Expert
Systems, pages n/a–n/a, 2013. ISSN 1468-0394. doi: 10.1111/exsy.12039. URL
http://dx.doi.org/10.1111/exsy.12039.

[76] J. Homer and X. Ou. Sat-solving approaches to context-aware enterprise network
security management. Selected Areas in Communications, IEEE Journal on, 27(3):
315–322, 2009.

[77] J. Homer, S. Zhang, X. Ou, D. Schmidt, Y. Du, S. R. Rajagopalan, and A. Singhal.
Aggregating vulnerability metrics in enterprise networks using attack graphs. Journal
of Computer Security, 21(4):561–597, 2013.

[78] S. H. Houmb, V. N. Franqueira, and E. A. Engum. Quantifying security risk level
from cvss estimates of frequency and impact. Journal of Systems and Software, 83
(9):1622–1634, 2010.

[79] M. Howard, J. Pincus, and J. M. Wing. Measuring relative attack surfaces. Springer,
2005.

[80] H. Huang, S. Zhang, X. Ou, A. Prakash, and K. Sakallah. Distilling critical attack
graph surface iteratively through minimum-cost sat solving. In Proceedings of the
27th Annual Computer Security Applications Conference, ACSAC ’11, pages 31–40,
New York, NY, USA, 2011. ACM. doi: 10.1145/2076732.2076738.

[81] K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer. Modeling modern network
attacks and countermeasures using attack graphs. In Computer Security Applications
Conference, 2009. ACSAC ’09. Annual, pages 117–126, dec. 2009. doi: 10.1109/
ACSAC.2009.21.

[82] J. R. Jacobs. Measuring the Effectiveness of the USB Flash Drive as a Vector for
Social Engineering Attacks on Commercial and Residential Computer Systems. PhD
thesis, Embry Riddle Aeronautical University, 2011.

[83] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and F. Menczer. Social phishing. Com-
munications of the ACM, 50(10):94–100, 2007.

[84] S. Jajodia, S. Noel, and B. O’Berry. Topological analysis of network attack vulnera-
bility. In Managing Cyber Threats, pages 247–266. Springer, 2005.

http://dx.doi.org/10.1111/exsy.12039

BIBLIOGRAPHY 47

[85] S. Jajodia, S. Noel, P. Kalapa, M. Albanese, and J. Williams. Cauldron mission-
centric cyber situational awareness with defense in depth. In MILITARY COMMU-
NICATIONS CONFERENCE, 2011-MILCOM 2011, pages 1339–1344. IEEE, 2011.

[86] W. Jansen. Directions in security metrics research. DIANE Publishing, 2010.

[87] N. Jegadeesh. Evidence of predictable behavior of security returns. The Journal of
Finance, 45(3):881–898, 1990.

[88] F. V. Jensen. An introduction to Bayesian networks, volume 74. UCL press London,
1996.

[89] T. D. Jick. Mixing qualitative and quantitative methods: Triangulation in action.
Administrative science quarterly, 24(4):602–611, 1979.

[90] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang. Cyclone:
A safe dialect of c. In USENIX Annual Technical Conference, General Track, pages
275–288, 2002.

[91] H. Joh, J. Kim, and Y. K. Malaiya. Vulnerability discovery modeling using weibull dis-
tribution. In Software Reliability Engineering, 2008. ISSRE 2008. 19th International
Symposium on, pages 299–300. IEEE, 2008.

[92] F. Johansson and G. Falkman. Implementation and integration of a bayesian network
for prediction of tactical intention into a ground target simulator. In Information
Fusion, 2006 9th International Conference on, pages 1–7. IEEE, 2006.

[93] P. Johnson, J. Ullberg, M. Buschle, U. Franke, and K. Shahzad. P2amf: Predic-
tive, probabilistic architecture modeling framework. In International IFIP Working
Conference on Enterprise Interoperability Information, Services and Processes for the
Interoperable Economy and Society, 2013.

[94] Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee
SC 27, IT Security techniques. ISO 27000. Available on http://standards.iso.
org/ittf/, accessed June 24, 2013, 2012.

[95] E. Jonsson and T. Olovsson. A quantitative model of the security intrusion process
based on attacker behavior. Software Engineering, IEEE Transactions on, 23(4):
235–245, 1997.

[96] J. Jürjens. Umlsec: Extending uml for secure systems development. In « UML »
2002 – The Unified Modeling Language, pages 412–425. Springer, 2002.

[97] J. Kim, Y. K. Malaiya, and I. Ray. Vulnerability discovery in multi-version software
systems. In High Assurance Systems Engineering Symposium, 2007. HASE’07. 10th
IEEE, pages 141–148. IEEE, 2007.

[98] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure execution via program
shepherding. In USENIX Security Symposium, volume 92, 2002.

[99] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry,
A. Kruppa, P. L. Montgomery, D. A. Osvik, et al. Factorization of a 768-bit rsa
modulus. In Advances in Cryptology–CRYPTO 2010, pages 333–350. Springer, 2010.

http://standards.iso.org/ittf/
http://standards.iso.org/ittf/

48 BIBLIOGRAPHY

[100] S. Kondakci. A concise cost analysis of internet malware. Computers & Security, 28
(7):648–659, 2009.

[101] B. Kordy, L. Piètre-Cambacédès, and P. Schweitzer. Dag-based attack and defense
modeling: Don’t miss the forest for the attack trees. arXiv preprint arXiv:1303.7397,
2013.

[102] Y. Lai and P. Hsia. Using the vulnerability information of computer systems to
improve the network security. Computer Communications, 30(9):2032–2047, 2007.
ISSN 0140-3664.

[103] M. Lankhorst. Enterprise Architecture At Work. Springer, Heidelberg, 2005.

[104] M. Lelarge. Economics of malware: Epidemic risks model, network externalities and
incentives. In Communication, Control, and Computing, 2009. Allerton 2009. 47th
Annual Allerton Conference on, pages 1353–1360. IEEE, 2009.

[105] E. LeMay, M. D. Ford, K. Keefe, W. H. Sanders, and C. Muehrcke. Model-based
security metrics using adversary view security evaluation (advise). In Quantitative
Evaluation of Systems (QEST), 2011 Eighth International Conference on, pages 191–
200. IEEE, 2011.

[106] D. Leversage and E. James. Estimating a system’s mean time-to-compromise. Security
& Privacy, IEEE, 6(1):52–60, 2008.

[107] D. J. Leversage and E. J. Byres. Comparing electronic battlefields: Using mean time-
to-compromise as a comparative security metric. In Computer Network Security, pages
213–227. Springer, 2007.

[108] E. Levy. Approaching zero [attack trends]. Security & Privacy, IEEE, 2(4):65–66,
2004.

[109] H. Li, J. Zhang, and R. Sarathy. Understanding compliance with internet use policy
from the perspective of rational choice theory. Decision Support Systems, 48(4):635–
645, 2010.

[110] R. P. Lippmann and K. W. Ingols. An annotated review of past papers on attack
graphs. Technical report, DTIC Document, 2005.

[111] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. McClung,
D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham, et al. Evaluating
intrusion detection systems: The 1998 darpa off-line intrusion detection evaluation.
In DARPA Information Survivability Conference and Exposition, 2000. DISCEX’00.
Proceedings, volume 2, pages 12–26. IEEE, 2000.

[112] R. P. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das. The 1999 darpa
off-line intrusion detection evaluation. Computer networks, 34(4):579–595, 2000.

[113] Q. Liu and Y. Zhang. Vrss: A new system for rating and scoring vulnerabilities.
Computer Communications, 34(3):264–273, 2011.

[114] M. V. Mahoney and P. K. Chan. An analysis of the 1999 darpa/lincoln laboratory
evaluation data for network anomaly detection. In Recent Advances in Intrusion
Detection, pages 220–237. Springer, 2003.

BIBLIOGRAPHY 49

[115] P. K. Manadhata and J. M. Wing. An attack surface metric. Software Engineering,
IEEE Transactions on, 37(3):371–386, 2011.

[116] G. V. Marconato, M. Kaâniche, and V. Nicomette. A vulnerability life cycle-based
security modeling and evaluation approach. The Computer Journal, 2012. doi: 10.
1093/comjnl/bxs112.

[117] S. Marechal. Advances in password cracking. Journal in computer virology, 4(1):
73–81, 2008.

[118] S. Massoud Amin and B. F. Wollenberg. Toward a smart grid: power delivery for the
21st century. Power and Energy Magazine, IEEE, 3(5):34–41, 2005.

[119] J. McHugh. Testing intrusion detection systems: A critique of the 1998 and 1999
darpa intrusion detection system evaluations as performed by lincoln laboratory. ACM
transactions on Information and system Security, 3(4):262–294, 2000.

[120] M. McQueen, W. Boyer, M. Flynn, and G. Beitel. Time-to-compromise model for
cyber risk reduction estimation. Quality of Protection, pages 49–64, 2006.

[121] P. Mell, K. Scarfone, and S. Romanosky. CVSS: A Complete Guide to the Common
Vulnerability Scoring System Version 2.0. FIRST: Forum of Incident Response and
Security Teams, jun 2007. URL http://www.first.org/cvss/cvss-guide.html#
i3.

[122] C. Miller. The legitimate vulnerability market: the secretive world of 0-day exploit
sales. In Workshop on the Economics of Information Security (WEIS), pages 7–8,
2007.

[123] D. C. Montgomery, D. C. Montgomery, and D. C. Montgomery. Design and analysis
of experiments, volume 7. Wiley New York, 1984.

[124] D. Moody. The “physics” of notations: toward a scientific basis for constructing visual
notations in software engineering. Software Engineering, IEEE Transactions on, 35
(6):756–779, 2009.

[125] J. A. Morales, R. Sandhu, and S. Xu. Evaluating detection and treatment effec-
tiveness of commercial anti-malware programs. In Malicious and Unwanted Software
(MALWARE), 2010 5th International Conference on, pages 31–38. IEEE, 2010.

[126] I. Nai Fovino, A. Carcano, M. Masera, and A. Trombetta. An experimental in-
vestigation of malware attacks on scada systems. International Journal of Critical
Infrastructure Protection, 2(4):139–145, 2009.

[127] V. H. Nguyen and F. Massacci. An idea of an independent validation of vulnerability
discovery models. In Engineering Secure Software and Systems, pages 89–96. Springer,
2012.

[128] D. Nicol, W. Sanders, and K. Trivedi. Model-based evaluation: From dependability
to security. Dependable and Secure Computing, IEEE Transactions on, 1(1):48–65,
2004.

[129] S. Noel, M. Elder, S. Jajodia, P. Kalapa, S. O’Hare, and K. Prole. Advances in topolog-
ical vulnerability analysis. In Conference For Homeland Security, 2009. CATCH’09.
Cybersecurity Applications & Technology, pages 124–129. IEEE, 2009.

http://www.first.org/cvss/cvss-guide.html#i3
http://www.first.org/cvss/cvss-guide.html#i3

50 BIBLIOGRAPHY

[130] R. M. O’Keefe and D. E. O’Leary. Expert system verification and validation: a survey
and tutorial. Artificial Intelligence Review, 7(1):3–42, 1993.

[131] A. One. Smashing the stack for fun and profit. Phrack magazine, 7(49):365, 1996.

[132] X. Ou, W. F. Boyer, and M. A. McQueen. A scalable approach to attack graph
generation. In Proceedings of the 13th ACM conference on Computer and commu-
nications security, CCS ’06, pages 336–345, New York, NY, USA, 2006. ACM. doi:
10.1145/1180405.1180446.

[133] A. Ozment and S. E. Schechter. Milk or wine: does software security improve with age.
In Proceedings of the 15th conference on USENIX Security Symposium, volume 15,
pages 93–104, 2006.

[134] Peter Glaskowsky. Bruce Schneier’s new view on Security Theater. Available on
http://news.cnet.com/8301-13512_3-9915030-23.html, accessed June 24, 2013,
2008.

[135] N. Poolsappasit, R. Dewri, and I. Ray. Dynamic security risk management using
bayesian attack graphs. Dependable and Secure Computing, IEEE Transactions on,
9(1):61–74, 2012.

[136] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle: A defense against heap-
spraying code injection attacks. In Proceedings of the 18th conference on USENIX
security symposium, pages 169–186. USENIX Association, 2009.

[137] R. H. Reussner, H. W. Schmidt, and I. H. Poernomo. Reliability predic-
tion for component-based software architectures. Journal of Systems and Soft-
ware, 66(3):241 – 252, 2003. ISSN 0164-1212. doi: http://dx.doi.org/10.1016/
S0164-1212(02)00080-8. URL http://www.sciencedirect.com/science/article/
pii/S0164121202000808. <ce:title>Software architecture – Engineering quality at-
tributes</ce:title>.

[138] RSA Laboratories. The RSA Factoring Challenge. Available on http://www.rsa.
com/rsalabs/node.asp?id=2092, accessed June 25, 2013, 2007.

[139] J. Ryan and D. J. Ryan. Performance metrics for information security risk manage-
ment. Security & Privacy, IEEE, 6(5):38–44, 2008.

[140] S. E. Schechter. Quantitatively differentiating system security. In The First Workshop
on Economics and Information Security, pages 16–17. Citeseer, 2002.

[141] B. Schneier. Cryptographic design vulnerabilities. Computer, 31(9):29–33, 1998.

[142] B. Schneier. Beyond Security Theater. Available on http://www.schneier.com/
essay-292.html, accessed June 24, 2013, 2009.

[143] T. Scholte, D. Balzarotti, and E. Kirda. Have things changed now? an empirical
study on input validation vulnerabilities in web applications. Computers & Security,
31(3):344–356, 2012.

[144] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda. An empirical analysis of input
validation mechanisms in web applications and languages. In Proceedings of the 27th
Annual ACM Symposium on Applied Computing, pages 1419–1426. ACM, 2012.

http://news.cnet.com/8301-13512_3-9915030-23.html
http://www.sciencedirect.com/science/article/pii/S0164121202000808
http://www.sciencedirect.com/science/article/pii/S0164121202000808
http://www.rsa.com/rsalabs/node.asp?id=2092
http://www.rsa.com/rsalabs/node.asp?id=2092
http://www.schneier.com/essay-292.html
http://www.schneier.com/essay-292.html

BIBLIOGRAPHY 51

[145] R. Seacord. Secure coding in c and c++ of strings and integers. Security & Privacy,
IEEE, 4(1):74–76, 2006.

[146] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the effec-
tiveness of address-space randomization. In Proceedings of the 11th ACM conference
on Computer and communications security, pages 298–307. ACM, 2004.

[147] M. Shahzad, M. Shafiq, and A. Liu. A large scale exploratory analysis of software
vulnerability life cycles. In Software Engineering (ICSE), 2012 34th International
Conference on, pages 771 –781, june 2012. doi: 10.1109/ICSE.2012.6227141.

[148] W. F. Sharpe. Imputing expected security returns from portfolio composition. Journal
of Financial and Quantitative Analysis, 9(03):463–472, 1974.

[149] R. Shaw, C. C. Chen, A. L. Harris, and H.-J. Huang. The impact of information rich-
ness on information security awareness training effectiveness. Computers & Education,
52(1):92 – 100, 2009. doi: http://dx.doi.org/10.1016/j.compedu.2008.06.011.

[150] S. Sheng, B. Magnien, P. Kumaraguru, A. Acquisti, L. Cranor, J. Hong, and E. Nunge.
Anti-phishing phil: The design and evaluation of a game that teaches people not to
fall for phish. In Proceedings of the 3rd symposium on Usable privacy and security,
pages 88–99. ACM, 2007.

[151] M. Shepperd. A critique of cyclomatic complexity as a software metric. Software
Engineering Journal, 3(2):30–36, 1988.

[152] O. Sheyner and J. Wing. Tools for generating and analyzing attack graphs. In Formal
methods for components and objects, pages 344–371. Springer, 2004.

[153] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated generation
and analysis of attack graphs. In Security and Privacy, 2002. Proceedings. 2002 IEEE
Symposium on, pages 273–284. IEEE, 2002.

[154] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne. Evaluating complexity, code
churn, and developer activity metrics as indicators of software vulnerabilities. Software
Engineering, IEEE Transactions on, 37(6):772–787, 2011.

[155] M. Siponen, S. Pahnila, and A. Mahmood. Employees’ adherence to information
security policies: an empirical study. In New Approaches for Security, Privacy and
Trust in Complex Environments, pages 133–144. Springer, 2007.

[156] T. Sommestad. A framework and theory for cyber security assessments. PhD thesis,
KTH, 2012.

[157] T. Sommestad and J. Hallberg. A review of the theory of planned behaviour in the
context of information security policy compliance. In 28th IFIP TC-11 SEC 2013
International Information Security and Privacy Conference. ifip, Jul. 2013.

[158] T. Sommestad, H. Holm, M. Ekstedt, and N. Honeth. Quantifying the effectiveness
of intrusion detection systems in operation through domain experts.

[159] T. Sommestad, M. Ekstedt, and P. Johnson. A probabilistic relational model
for security risk analysis. Computers & Security, 29(6):659 – 679, 2010. ISSN
0167-4048. doi: http://dx.doi.org/10.1016/j.cose.2010.02.002. URL http://www.
sciencedirect.com/science/article/pii/S0167404810000209.

http://www.sciencedirect.com/science/article/pii/S0167404810000209
http://www.sciencedirect.com/science/article/pii/S0167404810000209

52 BIBLIOGRAPHY

[160] T. Sommestad, M. Ekstedt, H. Holm, and M. Afzal. Security mistakes in information
system deployment projects. Information Management & Computer Security, 19(2):
80–94, 2011.

[161] T. Sommestad, H. Holm, and M. Ekstedt. Estimates of success rates of denial-of-
service attacks. In Trust, Security and Privacy in Computing and Communications
(TrustCom), 2011 IEEE 10th International Conference on, pages 21–28. IEEE, 2011.

[162] T. Sommestad, M. Ekstedt, and H. Holm. The cyber security modeling language: A
tool for assessing the vulnerability of enterprise system architectures. Systems Journal,
IEEE, 7(3):363–373, Sept. 2012. ISSN 1932-8184. doi: 10.1109/JSYST.2012.2221853.

[163] T. Sommestad, H. Holm, and M. Ekstedt. Effort estimates for vulnerability discovery
projects. In 45th Hawaii International Conference on System Science (HICSS), pages
5564–5573. IEEE, 2012.

[164] T. Sommestad, H. Holm, and M. Ekstedt. Estimates of success rates of remote
arbitrary code execution attacks. Information Management & Computer Security, 20
(2):107–122, 2012.

[165] W. Sonnenreich, J. Albanese, and B. Stout. Return on security investment (rosi)-
a practical quantitative model. Journal of Research and Practice in Information
Technology, 38(1):45–56, 2006.

[166] S. Stasiukonis. Social engineering, the usb way. Dark Reading, 7, 2006.

[167] K. Stouffer, J. Falco, and K. Scarfone. Guide to industrial control systems (ics)
security. NIST Special Publication, 800(82):16–16, 2008.

[168] Suto, Larry. Analyzing the Effectiveness of Web Application Firewalls, 2011.

[169] Tenable. Nessus Vulnerability Scanner. Available on http://www.tenable.com/
products/nessus, accessed June 26, 2013, 2013.

[170] M. Thomson and R. Von Solms. Information security awareness: educating your users
effectively. Information Management & Computer Security, 6(4):167–173, 1998.

[171] C. Tichenor. A model to quantify the return on investment of information assurance.
The DISAM Journal of International Security Assistance Management, 29(3):125–
134, 2007.

[172] Trustworthy Computing Security group. Attack Surface Analyzer. Available on http:
//www.microsoft.com/en-us/download/details.aspx?id=24487, accessed June
27, 2013, 2012.

[173] M. Tupper and A. Zincir-Heywood. Vea-bility security metric: A network security
analysis tool. In Availability, Reliability and Security, 2008. ARES 08. Third Inter-
national Conference on, pages 950–957. IEEE, 2008.

[174] O. Uml. 2.0 OCL Specification. OMG Adopted Specification (ptc/03-10-14), 2003.

[175] A. D. Veiga and J. Eloff. A framework and assessment instrument for infor-
mation security culture. Computers & Security, 29(2):196 – 207, 2010. ISSN
0167-4048. doi: http://dx.doi.org/10.1016/j.cose.2009.09.002. URL http://www.
sciencedirect.com/science/article/pii/S0167404809000923.

http://www.tenable.com/products/nessus
http://www.tenable.com/products/nessus
http://www.microsoft.com/en-us/download/details.aspx?id=24487
http://www.microsoft.com/en-us/download/details.aspx?id=24487
http://www.sciencedirect.com/science/article/pii/S0167404809000923
http://www.sciencedirect.com/science/article/pii/S0167404809000923

BIBLIOGRAPHY 53

[176] V. Verendel. Quantified security is a weak hypothesis: a critical survey of results
and assumptions. In Proceedings of the 2009 workshop on New security paradigms
workshop, pages 37–50. ACM, 2009.

[177] I. Vessey, V. Ramesh, and R. L. Glass. Research in information systems: An em-
pirical study of diversity in the discipline and its journals. Journal of Management
Information Systems, 19(2):129–174, 2002.

[178] A. J. A. Wang. Information security models and metrics. In Proceedings of the 43rd
annual Southeast regional conference-Volume 2, pages 178–184. ACM, 2005.

[179] J. A. Wang, F. Zhang, and M. Xia. Temporal metrics for software vulnerabilities. In
Proceedings of the 4th annual workshop on Cyber security and information intelligence
research: developing strategies to meet the cyber security and information intelligence
challenges ahead, number 44. ACM, 2008.

[180] L. Wang, A. Singhal, and S. Jajodia. Toward measuring network security using attack
graphs. In Proceedings of the 2007 ACM workshop on Quality of protection, pages
49–54. ACM, 2007.

[181] L. Wang, S. Jajodia, A. Singhal, P. Cheng, and S. Noel. k-zero day safety: A network
security metric for measuring the risk of unknown vulnerabilities. IEEE Transactions
on Dependable and Secure Computing, 2013.

[182] White Phosphorus. White Phosphorus Exploit Pack Sayonara ASLR DEP By-
pass Technique. Available on http://www.whitephosphorus.org/sayonara.txt, ac-
cessed June 26, 2013, 2011.

[183] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen. Ripe: runtime
intrusion prevention evaluator. In Proceedings of the 27th Annual Computer Security
Applications Conference, pages 41–50. ACM, 2011.

[184] L. Williams, R. Lippmann, and K. Ingols. GARNET: A graphical attack graph and
reachability network evaluation tool, volume 5210. Springer, 2008.

[185] S.-W. Woo, O. H. Alhazmi, and Y. K. Malaiya. An analysis of the vulnerability
discovery process in web browsers. Proc. of 10th IASTED SEA, 6:13–15, 2006.

[186] A. Wool. A quantitative study of firewall configuration errors. Computer, 37(6):62–67,
2004.

[187] M. Workman. A test of interventions for security threats from social engineering.
Information Management & Computer Security, 16(5):463–483, 2008.

[188] M. Wu, R. C. Miller, and S. L. Garfinkel. Do security toolbars actually prevent
phishing attacks? In Proceedings of the SIGCHI conference on Human Factors in
computing systems, pages 601–610. ACM, 2006.

[189] Y. Younan. Efficient countermeasures for software vulnerabilities due to memory
management errors. Katholieke Universiteit Leuven, 2008.

http://www.whitephosphorus.org/sayonara.txt

Part II

Papers 1 to 8

Paper 1

Empirical Analysis of System-Level
Vulnerability Metrics through Actual
Attacks

57

Paper 2

A Large-Scale Study of the Time
Required to Compromise a Computer
System

73

Paper 3

Effort Estimates for Web Application
Vulnerability Discovery

89

Paper 4

Estimates on the Effectiveness of Web
Application Firewalls Against
Targeted Attacks

101

Paper 5

A Bayesian Model for Likelihood
Estimations of Acquirement of Critical
Software Vulnerabilities and Exploits

119

Paper 6

Performance of Automated Network
Vulnerability Scanning at Remediating
Security Issues

159

Paper 7

Signature Based Intrusion Detection
for Zero-Day Attacks: (Not) A Closed
Chapter?

173

Paper 8

P2CySeMoL: Predictive, Probabilistic
Cyber Security Modeling Language

185

	Introduction
	Introduction
	Outline of the thesis
	Background
	Purpose

	Related work
	Quantitative security measurements
	Quantitative security models and metrics
	Attack graph approaches
	The Cyber Security Modeling Language

	Thesis contribution
	Overview of contribution
	Implementation in a new framework
	Scope of contribution
	Modeling variable attacker effort
	A method and dataset for validation
	Practical utility

	Research design
	Creation of framework
	Creation of quantitative security theory
	Sampling based on attacker effort
	Validation

	Conclusions and future work
	Bibliography

	Papers 1 to 8
	Empirical Analysis of System-Level Vulnerability Metrics through Actual Attacks
	A Large-Scale Study of the Time Required to Compromise a Computer System
	Effort Estimates for Web Application Vulnerability Discovery
	Estimates on the Effectiveness of Web Application Firewalls Against Targeted Attacks
	A Bayesian Model for Likelihood Estimations of Acquirement of Critical Software Vulnerabilities and Exploits
	Performance of Automated Network Vulnerability Scanning at Remediating Security Issues
	Signature Based Intrusion Detection for Zero-Day Attacks: (Not) A Closed Chapter?
	P2CySeMoL: Predictive, Probabilistic Cyber Security Modeling Language

