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Abstract

The main scope of this thesis is the design and analysis of distributed control strate-

gies for achieving optimum area coverage in mobile sensor networks. Due to the

numerous applications of the latter in missions as area exploration, environmen-

tal sampling, patrolling, or even security, a large part of the scientific community

has turned its interest on developing methods for achieving optimum, if possible,

sensing environmental perception by groups of autonomous mobile agents. Such

robotic teams, randomly deployed in areas of interest initially, are designed to co-

ordinate their motion in a distributed manner, rather than via a global supervisory

system, in order to succeed in the corresponding mission objective.

At the first stages of this thesis, the coverage problem of an area of interest by a

group of identical nodes is examined from a numerical point of view. The mobile

nodes are considered to be governed by simple discrete–time kinodynamic motion,

while their sensing performance is assumed radial, range–limited, uniform around

the node. As a first approach, the optimum direction at each time step for optimum

deployment achievement is determined based on proper distance–based space par-

titioning techniques. The developed concept allows for gradual increase in the

covered area among consecutive steps, although suffers from allowing motion of

one node at a time.

In the sequel, the aforementioned concept is extended to the case of heterogeneous

networks, where heterogeneity lays mainly in the unequal limited–range of the

sensing performance of the nodes. In addition, extension to continuous–time al-

lows for simultaneous motion of the nodes, increasing drastically the convergence

time towards the optimal state, especially for large–scale networks. An alternate

partitioning of the space is developed that is mainly based on the nodes’ footprints,

rather than their spatial positions only. The resulting assigned cells form the main



core for the coordination algorithm proposed, in order to distributedly organize the

mobile swarm to achieve optimum sensing performance.

Motivated by the high–degree anisotropy that governs the sensing domains of

certain types of sensors, i.e. directional microphones for sound sensing mainly

for security applications, or even the radiation patterns of directional antennas in

communication–coverage scenarios, our research is extended beyond the standard

disc model of sensing. Based on certain properties for planar convex curves, a

distributed strategy is developed for networks characterized by convex sensing do-

mains of same orientation. Although convexity of the sensing sets may seem to

impose a high level restriction to the overall setup, in fact can be assigned as the

maximal convex inscribed set in any (originally) anisotropic pattern. The control

scheme is further extended, in the sequel, for the case of adding an extra degree of

freedom to the node’s mobility abilities, incorporating different and time–varying

orientations among the nodes patterns. The resulting scheme is proven to lead

anisotropic networks in optimum configurations, considering their sensing foot-

prints, by properly controlling both the nodes’ positions and orientations, via an

innovative pattern–based partitioning scheme of the sensed space.

The thesis ends by examining the case where radio–range constraints are imposed

on inter–agents communication. In the majority of the related works, this issues is

usually overcome by allowing RF range as double the sensing one, guaranteeing

that way distributed nature of the control schemes. The proposed scheme allows

for uncorrelated RF and sensing ranges in the network, while guarantees conver-

gence of the network towards the optimal state, via simultaneous preservation of

a–priori imposed radio–range constraints. Concluding remarks along with com-

parative discussion are presented in the last chapter, where future research plans

and ways to improve the already developed schemes are proposed.
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sequential Bézier curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Case Study I — Coordination results derived via control schemes (4.6) [top

row] and (4.5) [bottom row], respectively. [Left column] Initial network con-

figuration. [Middle column] Network evolution through time. The black cir-

cles (blue squares) represent the nodes’ final (initial) positions. [Right column]

Final network state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Percentage of sensed area w.r.t. time for Case Study I [left] and II [right], when

control schemes (4.6) [blue line] and (4.5) [red line] are applied, respectively.

The black dotted line represents the maximum possible coverage ratio in each

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Case Study II — Coordination results derived via control schemes (4.6) [top

row] and (4.5) [bottom row], respectively. [Left column] Initial network con-

figuration. [Middle column] Network evolution through time. The black cir-

cles (blue squares) represent the nodes’ final (initial) positions. [Right column]

Final network state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.8 Case Study III — Coordination results derived via control schemes (4.6) [top

row] and (4.5) [bottom row], respectively. [Left column] Initial network con-

figuration. [Middle column] Network evolution through time. The black cir-

cles (blue squares) represent the nodes’ final (initial) positions. [Right column]

Final network state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9 Percentage of sensed area w.r.t. time for Case Study III, when control schemes

(4.6) [blue line] and (4.5) [red line] are applied, respectively. . . . . . . . . . . 72

4.10 Graphical representation of the evolution of suggested techniques for non–

uniform sensor footprints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.11 Graphical representation of the need for alternate partitioning in non–uniform

sensor networks. (a) Anisotropic heterogeneous network approximated with

disc–model. (b) Corresponding power diagram based on the approximation of

node–centered maximal inscribed circles. (c) Real network’s coverage via the

original non–uniform patterns, as evaluated through the simultaneously sensed

and assigned cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.12 Illustrative example indicating the partitioning of the sensed space via the pro-

posed technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xi



LIST OF FIGURES

4.13 Decomposition of ∂Wi into mutually disjoint sets. . . . . . . . . . . . . . . . . 79

4.14 Notations concerning the proof of the main theorem. . . . . . . . . . . . . . . 80

4.15 Normalized patterns used in the first [left] and second [right] simulation study,

respectively, along with their maximal inscribed node–centered discs. . . . . . 82

4.16 [Case–Study 1]: Coordination results derived via control schemes (4.6) [top

row] and (4.13)–(4.14) [bottom row], respectively. [Left column] Initial net-

work configuration. [Middle column] Network evolution through time. The

black circles (blue squares) represent the nodes’ final (initial) positions. [Right

column] Final network state. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.17 [Case–Study 1]: [Left] Evolution of covered area percentage w.r.t. time evalu-

ated via the non–uniform original patterns. Blue (Red) line corresponds to top

(bottom) row of Fig. 4.16. [Right] Evolution of nodes’ orientation w.r.t. time

corresponding to the bottom row of Fig. 4.16. . . . . . . . . . . . . . . . . . . 84

4.18 [Case–Study 2]: Coordination results derived via control schemes (4.6) [top

row] and (4.13)–(4.14) [bottom row], respectively. [Left column] Initial net-

work configuration. [Middle column] Network evolution through time. The

black circles (blue squares) represent the nodes’ final (initial) positions. [Right

column] Final network state. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.19 [Case–Study 2]: [Left] Evolution of covered area percentage w.r.t. time evalu-

ated via the non–uniform original patterns. Blue (Red) line corresponds to top

(bottom) row of Fig. 4.18. [Right] Evolution of nodes’ orientation w.r.t. time

corresponding to the bottom row of Fig. 4.18. . . . . . . . . . . . . . . . . . . 86

5.1 Graphical representation of the Delaunay [left] and 2r–limited Delaunay [right]

neighbors in a sensor network. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Example of area–optimal configurations achieved via (4.6) for an arbitrary sen-

sor network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Graphical representation of the need for multi–hopping in order to acquire suf-

ficient information for distributed V r
i evaluation. . . . . . . . . . . . . . . . . . 92

5.4 Evolution of DN
i –set identification during a time-step interval T . The 3–hops

neighbors of the yellow diamond–shaped node are identified sequentially (red

ones) via chained neighbors–transmission. The repeated RX/TX process takes

place during the time–step interval T . . . . . . . . . . . . . . . . . . . . . . . 94

xii



LIST OF FIGURES

5.5 Graphical illustration of the connectivity–oriented motivation for demanding

motion of one node at each step in a simple network of two nodes. . . . . . . . 94

5.6 Graphical representation of topologies where connectivity among 2r–limited

Delaunay neighbors cannot be forced. . . . . . . . . . . . . . . . . . . . . . . 95

5.7 Coordination results derived via Algorithm 5.2. [Left] Initial network config-

uration. [Right] Final network state. Communication graph indicates 2–hops

connectivity among the 2r–limited Delaunay neighbors. . . . . . . . . . . . . . 97

5.8 Categorization of nodes into interior and exterior ones. Blue (red) dots repre-

sent the interior (exterior) ones. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.9 Graphical depiction of the suboptimal directions allowed in chapter 5 to avoid

deadend–configurations, while preserving connectivity. . . . . . . . . . . . . . 99

5.10 Notations concerning the proof of Lemma 5.1 . . . . . . . . . . . . . . . . . . 102

5.11 Converged state along with communication graph when 1–hop [left], 2–hops

[middle] and 3–hops [right] connectivity is demanded. . . . . . . . . . . . . . 103

5.12 Effect of allowed number of hops for connectivity preservation in coverage

performance [1–hop:blue, 2–hops:green, 3–hops:black]. . . . . . . . . . . . . . 104

5.13 Categorization of nodes into interior(exterior)[boundary] nodes, denoted with

blue(red)[black] dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.14 Coordination results derived via the heuristically extended control scheme.

[Left] Initial network configuration. [Middle] network evolution. [Right] Final

network state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.15 Percentage of sensed area during network evolution. Blue (green) line corre-

sponds to Fig. 5.14 (5.11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xiii



LIST OF FIGURES

xiv



List of Algorithms

2.1 Communication Range Adjustment for Connectivity with Nk
i . . . . . . . . . . 19

2.2 Communication Range Adjustment Algorithm for Connectivity with Fk
i . . . . 23

3.1 Distributed Radio–Range Adjustment Scheme for Heterogeneous Networks . . 53

5.1 Identification of N2r
i neighbors via multi–hopping for fixed RF range . . . . . . 93

5.2 Motion planning for coverage control in networks under non–trivial communi-

cation constraints (base pattern) . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Proposed control scheme based on interior/exterior nodes–categorization . . . . 100

xv



LIST OF ALGORITHMS

xvi



1

Introduction

1.1 Subject of the Thesis

Distributed coordination of robotic swarms has been studied widely in the last years due its di-

rect application in missions where human interference involves risk or is even prohibited, while

on–time detection of certain events is crucial [3, 4]. Mobile platforms with sensing, computa-

tional and communication capabilities are in most cases spread in areas of interest in order to

investigate various physical quantities [5] and/or even take responsibility of surveying the area

assuming applications related to environmental sensing [6], patrolling [7], exploration [8, 9],

precaution [10] or even security [11]. In most cases, these tasks are almost impossible to be

carried out by a single robotic agent, while a properly organized team benefits from robustness

in nodes’ failure and allows flexibility of the network [12]. Thus, efficiently designed cooper-

ative strategies can lead the network in an optimal state, dependent on a predefined aggregate

criterion [13].

We focus in utilization of mobile robotic teams in coverage/surveillance applications mainly.

Mobility offers the advantage of allowing to the members of the team to evolve in space through

time autonomously and seek the optimum configuration that would serve the common purpose.

In either case, the mobile platforms are equipped with appropriate means for inter–agents com-

munication, along with sensing devices such as microphones, cameras, humidity/temperature

sensors, smoke detectors and others, dependent on the application. Information exchange along

with mobility provide the major advantage of allowing the network to reconfigure itself in case

of topological alteration and adapt to the current purpose, as in search and rescue missions.

It is essential though that the corresponding control laws that serve towards the aggregate
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1. INTRODUCTION

criterion are decentralized in the sense that they should not demand global information, but

only from nodes in the proximity neighborhood of each agent [14]. Partitioning of the space

is the core in distributed control, allowing proper assignments of regions among the nodes, so

that individual action serves the global network performance. This thesis serves towards the

development of distributed control strategies for mobile teams that are able to lead the network

towards area–optimal topological configurations.

We mainly emphasize in issues that arise by assuming non–trivial sensing models, as di-

rected by the sensor type itself in most applications. Starting from the standard uniform radial

model, we extend the results for nodes with unequal ranges via properly partitioning the space

among the members of the team in a pattern–based framework. Control strategies are presented

that lead the nodes in area–optimal topology. The concept is generalized for sensors with ar-

bitrary footprints, where the space is tessellated in a non–distance–based manner. Communi-

cation issues that arise from the distributed demand of the corresponding laws are analyzed in

order to maintain connectivity routes among the members during network’s evolution.

1.2 Structure of Thesis

The remaining of the thesis is organized as follows. In chapter 2 the core coverage prob-

lem is examined for a group of nodes with uniform radial sensing patterns assuming discrete

time evolution. Utilizing the main results of Euclidean Voronoi partitioning, proper analysis

is performed in order for the node–to–move to acquire information from its current and future

Delaunay neighbors, in order to guarantee strict increase in the overall network’s performance

between sequential time steps via its motion.

In chapter 3 networks with inherent heterogeneity are examined, where the latter is captured

in the different ranges that the various sensors of the nodes can sense. The discrete evolution

model is abandoned, allowing for faster convergence rates in the overall network’s performance

Insisting in convex partitioning of the space, while emphasizing in the pattern–based approach,

a control strategy has been developed for leading a group of nodes towards locally optimal

topology.

Inspired by the highly anisotropic nature of certain sensors, the case of nodes with non–

radial footprints is examined in chapter 4. Utilizing special properties for planar strictly convex

curves we develop a partitioning scheme of the sensed space, for the case of nodes with com-

mon orientation. A distributed coordination law based on the aforementioned tessellation is
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presented, able to organize the nodes in an area–optimum configuration. In order to amend for

dropping the somehow conservative restriction of common headings, an extra rotational degree

of freedom is added in the kinematic model. An innovative partitioning technique is devel-

oped in the sequel, along with an appropriate law that serves the coverage problem, properly

controlling both the nodes translation and headings towards the converged optimal topology.

Chapter 5 revisits the discrete model for the motion of the nodes. Unlike previous works

that assume the RF range at least equal to twice the sensing one, we impose non–trivial con-

straints concerning connectivity among the agents. Considering the uniform radial model, we

design a control law that is able to guarantee monotonic increase in the network’s coverage

performance, while simultaneously maintain end–to–end connectivity among the agents dur-

ing evolution, by properly adding/removing communication links, given the a–priori fixed RF

range.

The thesis ends with concluding remarks in chapter 6, followed by discussion on how the

current results can be extended for future research.
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2

Directional–Search Approach for Area

Coverage

2.1 Introduction

Area–coverage of a certain region by a set of mobile nodes can been examined via the “bin

packing” or “disc covering” problem. According to the first approach, the goal is to find the

nodes’ maximum sensing range (considered equal for all members of the network) such that

there exists a configuration where the nodes are deployed in the interior of a region of interest

covering the maximum possible area with no overlapping among their sensing patterns. On the

other hand, the “disc covering” problem is posed as finding the minimum sensing range of the

nodes in a way that all parts of the region of interest are sensed by at least on node.

In both algorithms, the sensing radius of the nodes is considered as a variable and the goal

is to determine the nodes’ positions and radius in order to fulfill the appropriate area–related

demand [15]. We assume the nodes’ sensing pattern to be fixed, seeking to define (locally)

optimal positions such that the sensed area of the region of interest is maximized.

The centralized coverage problem has been examined from an instantaneous coverage point

of view (aka awareness control) by [8], where the agents coordinate their motion such that all

points in the environment are surveyed through time by an equal amount, resulting in a fully

scanned area in finite time. Centroidal Voronoi schemes (CVT) have been developed for the

distortion–minimization criterion in [13, 16] so that the network converges to a topology that

minimizes the sensing–uncertainty in the environment.

We initially examine the problem in discrete evolution time. The nodes are equipped with
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2. DIRECTIONAL–SEARCH APPROACH FOR AREA COVERAGE

radio transceivers with variable range, apart from the fixed–range sensors, leading in a hybrid

coverage/connectivity research approach.

Considering optimum coverage of a certain region of interest by a set of nodes with sensing

capabilities, the main problem lays in defining the optimum network configuration such that the

sensing overlapping is minimized. Apart from that, since the nodes in most practical scenarios

represent mobile robotic vehicles, a set of non–colliding trajectories is required so that the

nodes can reach that optimum state. Centralized coordination frameworks though suffer from

computational complexity, while they are characterized by the lack of adaptation to possible

network alteration.

In this chapter coverage optimization is performed distributedly by the nodes, leading the

network toward the optimum state, based on Voronoi partitioning of the space. Algorithmic

implementations on the communication range adjustment (considering connectivity issues) are

presented, along with corresponding bounds on them for connectivity preservation with the

appropriate subset of nodes. Despite the absence of a centralized coordinator, the proposed

scheme is built in a way such that the total area covered by the network is increasing from

one step to another. Decision for motion is taken by the nodes autonomously, while assump-

tions concerning knowledge of current and future Delaunay neighbors are examined in detail,

providing the corresponding communication radii needed for them to hold.

2.2 Preliminaries

2.2.1 Coverage problem setup

Let the region under surveillance Ω be a convex compact set in R2. Suppose that n is the num-

ber of available mobile nodes responsible for the sensing coverage of Ω. Let us define the set

In = {i ∈ N : i≤ n} for any n∈N. The agents are considered to move on the R2 Euclidean con-

figuration space and their positions are denoted as xi ∈ R2, i ∈ In. The following assumptions

are made for the network.

Assumption 2.1. The nodes are supposed to move in the interior of Ω⊂R2 through two control

inputs each, ui ∈ R2, i ∈ In, while obeying the discrete evolutionary equation

xk+1
i = xk

i +uk
i , ui, xi ∈R2, i ∈ In. (2.1)

The superscript index denotes the corresponding time–step, k = 0,1,2 . . . , while only one node

is supposed to move at each step.
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Assumption 2.2. Each node is supposed to have a uniform circular sensing pattern centered

at its position xi and is limited by a fixed maximum sensing radius r. The latter is the same for

all nodes and the network is considered homogeneous, as far as concerns the nodes’ sensing

abilities. Let us denote as Ci the sensing region of each agent i, i.e.

Ci =
{

x ∈ R2 : ‖x− xi‖ ≤ r
}

, i ∈ In. (2.2)

Assumption 2.3. Each node is supposed to be equipped with radio transceivers in order to be

able to exchange spatial information with other members of the network. The radiation pattern

Si of the antennas is considered as a uniform circular one, centered at xi, i.e.

Si =
{

x ∈R2 : ‖x− xi‖ ≤ Ri

}

, i ∈ In, (2.3)

while the communication radii of the nodes, Ri, are considered to be adjustable.

As far as the motion of the nodes is concerned, the selection of the node–to–move must be

performed by the nodes themselves, and not by a global supervisor, considering decentralized

applications. This can be achieved by determining the corresponding node either in a cyclic

or in a random manner. In the first case, an arbitrary node i moves only at time–steps k =

i+ p n, p ∈ N, while in the intermediate time–intervals it can be set in standby mode in order

to preserve power. Alternatively, the node that is to perform possible motion can be chosen

randomly by the group itself, where the random generators that run on each processor have the

same “seed” value, so that at each step the node–to–move is unique and same for all members

of the network.

The nodes are initially deployed randomly in Ω. Considering coverage optimization sce-

narios, the goal is to find in a distributed way their optimal positions such that the area of

the covered domain of Ω by the network is the maximum possible. For a compact polygonal

set P ⊂ R2 let ∂P be its boundary. Then P is fully defined by the vertices of ∂P denoted as

p j, j ∈ IN(P), where N(P) is the number of the latter’s vertices.

From a numerical aspect, for any polygonal set P, the area–function A(·) is then defined

as [16]

A(P) =
1

2

∥

∥

∥

∥

∥

∑
j∈IN(P)

(p j× p j+1)

∥

∥

∥

∥

∥

, (2.4)

where × corresponds to the cross–product of two vectors, the vertices p j are set in counter–

clockwise order and pN(P)+1 ≡ p1, by convention. The main objective is to position the nodes
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2. DIRECTIONAL–SEARCH APPROACH FOR AREA COVERAGE

at certain spatial coordinates such that the total region of Ω surveyed by the network, i.e.

Ω∩
⋃

i∈In
Ci, has the maximum possible area (at the optimal state), while providing at the same

time non–degenerate trajectories for the nodes to reach that state.

2.2.2 Control policies for coverage optimization

In order to find the planar coordinates for each node xi ∈ Ω, i ∈ In so that A
(

Ω∩
⋃

i∈In
Ci

)

is

optimized, a numerical approach will be followed. The aforementioned problem is a standard

constrained numerical optimization one, the solution of which may converge to possible local

extrema. Let X =
(

xT
1 ,x

T
2 , . . .x

T
n

)T
be the vector containing the coordinates of all agents, X ∈

R2n. The constraint xi ∈ Ω, ∀i ∈ In can be cast in a linear compact form as A X ≤ B, where

the matrices A, B are explicitly defined by the vertices ω j of Ω, j ∈ IN(Ω) [17]. Consequently,

a centralized approach to the coverage problem can be defined as the solution of the following

constrained optimization

find X : maximize A

(

Ω∩
⋃

i∈In

Ci

)

, subject to A X ≤ B (2.5)

Considering centralized optimization approaches, this is a computationally intensive prob-

lem to solve, due to the large number of its local extrema and the time it takes (for even a small

number of nodes). Apart from that, one of the most significant disadvantages in these cases is

its lack of adaptation. Consequently, in case the region of interest changes or if a node runs out

of energy, then a new optimization should be performed for defining the “new” optimal posi-

tioning of the nodes, which may be disastrous in cases of emergency. On top of that, despite

the centralized nature of the algorithms, global optimal solution is not guaranteed. Finally,

it should be noted that, once the optimum network state is defined, path planning schemes

must be applied afterwards so that the mobile agents can be able to reach this optimum, while

avoiding collision with each other.

Distributed algorithms are faster from an implementation point of view and are adaptive by

nature, since optimization is performed real–time individually by the members of the network

itself. Each node self–organizes its action so that its motion contributes to network coverage,

while decision is taken based only on local information, without the need of having global

knowledge of the whole network’s state. Local information (obtained by radio transceivers

attached on the nodes) is the one that poses the inherent adaptive nature of these algorithms,

while the performed optimizations (executed on the on–board nodes’ processors) are by–far
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less computationally intensive, making them applicable in real–time scenarios. Finally, one of

the main differences, compared to the centralized approaches, is that the nodes do not focus

in defining their final optimal positions, but they plan their positions at each time–step, such

that (if possible) the total area coverage is an increasing function of time during this optimum–

seeking procedure.

Considering the discussion above, it is clear that, although decentralized algorithms may

converge to local extrema of (2.5), they are closer to real–time applications. What needs to

be clearly defined is the term of “local information”, along with the coordination algorithm,

according to which the nodes should organize their action in order to converge to a state where

the total area covered by the network is optimal.

2.2.3 Spatial Voronoi tessellation

Considering the region under surveillance Ω, a responsibility region can be assigned at each

agent based on its spatial coordinates on the plane. The set of these regions is known as

a Voronoi diagram [14]. For the convex compact set Ω and the n nodes, the region under

surveillance is partitioned into n convex compact subsets Vi, i ∈ In, which are defined as

Vi =
{

x ∈Ω : ‖x− xi‖ ≤
∥

∥x− x j

∥

∥ , ∀ j ∈ In

}

, i ∈ In. (2.6)

The set Vi is known as the Voronoi cell of node i. It should be noted that a Voronoi diagram is

a full tessellation of Ω⊂R2, since
⋃

i∈In
Vi = Ω and Int Vi∩ Int Vj = /0, ∀i, j ∈ In, i 6= j, where

Int · is the interior of the set–argument. A Voronoi cell Vi is uniquely characterized by the set

of its vertices vi, j, j ∈ IN(Vi).

Two nodes that share an edge of their Voronoi cells (i.e. their Voronoi cells are adjacent)

are considered as Delaunay neighbors [14]. The Delaunay neighbors Ni of an arbitrary node i

are then defined as

Ni =
{

j ∈ In : Vi∩Vj 6= /0 non singleton, j 6= i
}

, i ∈ In, (2.7)

where a is an arbitrary point in R2. It should be noted that when Vi∩Vj is a singleton, then the

two nodes share a common Voronoi vertex (instead of a Voronoi edge) and are not considered

as Delaunay neighbors. Figure 2.1 depicts the Voronoi diagram along with the corresponding

Delaunay graph for a set of nodes in a compact region. It should be noted that node i itself is

9
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Figure 2.1: Voronoi diagram [left] and Delaunay graph [right] for a set of nodes in a compact

domain.

not included into the set of its neighbors Ni, as shown by (2.7). The edges of the Voronoi cell

of an arbitrary node i that do not lay on the boundary of Ω are then defined as

∆i j =Vi∩Vj, i ∈ In, j ∈Ni. (2.8)

In this work the agents move in a way to try and cover (ideally, if possible) the whole space

Ω, considering their limited sensing capabilities. Thus, the Voronoi tessellation alone is not

sufficient for the motion algorithm, since it is based only on the nodes’ positioning, but the

sensing regions Ci should be taken into account. The r–limited Voronoi cells are then defined

as

V r
i =Vi∩Ci, i ∈ In. (2.9)

An important property of these sets is that, since Ω,Vi,Ci are convex sets, then V r
i are all convex

sets, too. However, they do not always consist a full tessellation of Ω.

For each node, the unexploited regions of its sensing pattern (parts of the sensing region of

the node that do not contribute to coverage of Vi) are defined as

Ui =Ci \V r
i , i ∈ In. (2.10)

Although Vi,V
r

i ⊆Ω, ∀i ∈ In by definition, the same does not always hold for Ui, as concluded

by (2.10) and (2.2). In fact, the set
⋃

i∈In
Ui corresponds to the parts of the nodes’ sensing

regions that overlap among each other or lay in the exterior of Ω. However, the set Ui can be

decomposed as a union of smaller sets which are disjoint among each other, as

Ui =UΩ
i

⋃

j∈Ni

U
j

i , i ∈ In, (2.11)
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where UΩ
i =Ci \Ω, i.e. parts of the sensing region that do not lay in Ω, and U

j
i =Ui∩Vj, i.e.

parts of the node’s unexploited regions that lay in the Voronoi cell of a neighbor node. The

aforementioned definition along with its decomposition will be proven helpful in section 2.3.3.

The above regions for an arbitrary node are shown graphically in Fig. 2.2.

Unexploited regions

Blind regions

Sensing region

r-limited Voronoi cell

Voronoi cell

xi

ri

Figure 2.2: Characterization of the different regions concerning a node and its Voronoi cell.

Consequently, the area of the total region of Ω surveyed by the network, can be written as

H =A

(

Ω∩
⋃

i∈In

Ci

)

= ∑
i∈In

A(V r
i ) . (2.12)

The main advantage in computation of H via (2.12) is that, since Int V r
i ∩ Int V r

j = /0, ∀i, j ∈

In, i 6= j, the area covered by the network can be computed as the summation of the areas of the

independent r–limited Voronoi cells, and thus leads in ease of implementation of decentralized

techniques.

2.3 Proposed Coordination Scheme

2.3.1 Main concept

Considering sensing coverage applications, the nodes should one–by–one (Assumption 2.1)

move to such spatial locations in a way that the total covered area H of Ω is non–decreasing

as time evolves [18]. Taking into account that, in most practical scenarios, global knowledge

of the network’s state by a node is impossible (since that would lead to extremely large com-

munication ranges), each node should have sufficient spatial information of the nodes in its

neighborhood, in order to determine its position at the next step in a way that network’s cover-

age will increase via its motion.

11
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However, considering (2.12), in order for the node–to–move to decide if its motion will

contribute to coverage–increase at an arbitrary time–step, it should have appropriate knowledge

of the state of the nodes whose Voronoi cells are to be affected via its motion. In fact, spatial

information from these nodes is adequate in order for the node–to–move to take decision about

the spot to move at, in a decentralized concept. Throughout the rest of the section, the index i

will stand for the node–to–move at step k, and not for an arbitrary node.

2.3.2 Local Delaunay graph alteration

Considering the Voronoi space–partitioning defined in (2.6), the selected node should first de-

fine the region of responsibility (own Voronoi cell) that is assigned to it. The nodes are sup-

posed to be capable of exchanging information concerning their spatial coordinates (Assump-

tion 2.3). Taking into account the fact that no other node (apart from i) moves at that time–step,

the only part of the network that alters (considering coverage performance) are the Voronoi

cells of the union of Delaunay neighbors of node i before and after its motion, along with the

Voronoi cell of the moving node itself.

Let us denote as Nk
i and N

k+1
i the Delaunay neighbors of node i at steps k and k+1, which

correspond to the time–instances before and after the motion of the latter, respectively. Figure

2.3 shows such a scenario, where a node moves in the interior of its Voronoi cell, resulting

in alteration of its Delaunay neighbors. The red dot represents the node–to–move to the spot

(b)

Figure 2.3: Alteration of the Delaunay neighbors of a node caused by the motion of the latter.

denoted with the × sign in Fig. 2.3(a). Consider that Fig. 2.3(a) and 2.3(b) correspond to

time–steps k and k+ 1, respectively. The green dots correspond to the Delaunay neighbors of
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the red node in each case, i.e. Nk
i (Fig. 2.3(a)) and N

k+1
i (Fig. 2.3(b)). The grey sign at Fig.

2.3(b) corresponds to the position of the red node before its motion, i.e. xk
i .

Each Delaunay neighbor of the red node is reflected on an edge of the latter’s Voronoi cell.

It is easy to see that if a node j ∈ Nk
i is to leave the set Ni at the next step, i.e. j ∈ Nk

i \N
k+1
i ,

then the edge of the moving node’s Voronoi cell that corresponds to that node degenerates into

a vertex in the next step. In a similar manner, if a “new” node j /∈ Nk
i is to enter the set of the

moving node’s Delaunay neighbors after motion of the latter is performed, i.e. j ∈ N
k+1
i \Nk

i ,

then a vertex of Vi will evolve into two vertices after its motion, adding ∆i j into the set of its

Voronoi edges. Important is the fact that the rest of the network’s state (considering Voronoi

cell alteration), apart from the set Nk
i ∪N

k+1
i ∪{i}, does not alter at all. Indeed, if we suppose

that the Voronoi cell of a node that does not belong in Nk
i ∪N

k+1
i ∪{i} alters, this means that a

Delaunay neighbor of that node has moved and thus has perturbed a Voronoi edge. But, since

the only node that moves is node i, then the aforementioned node should belong to the above

set.

Suppose now that the possible motion of node i at step k is restricted in a convex compact

subset of V k
i denoted as W k

i ⊂V k
i , containing xk

i , i.e. xk
i ,x

k+1
i ∈W k

i . Let us define the set Fk
i as

F
k
i =N

k
i ∪{i}

⋃

x k+1
i ∈W k

i

N
k+1
i , (2.13)

which corresponds to the union of the current (step k) Delaunay neighbors of node i, the moving

node itself, along with the union of all possible Delaunay neighbors at the next step for all

possible node’s motions in W k
i .

Lemma 2.1. The set Fk
i contains the nodes of the network whose Voronoi cell is possibly

affected by the motion of node i, given the restriction of x k+1
i ∈W k

i .

Proof. The proof is straightforward.

Assumption 2.4. The node–to–move i is considered to be able to exchange information at each

time–step k with the nodes in the set Fk
i for a given subset W k

i ⊂V k
i .

Information acquisition from a node’s Delaunay neighbors is a non–restrictive assumption,

which has appeared repeatedly in the existing literature [16, 19]. The main difference between

the above assumption and the existing ones lays in the fact that the corresponding node–to–

move needs connectivity with its current, along with its possible future Delaunay neighbors.

Communication issues concerning Assumption 2.4 are to be examined in detail in section 2.3.4.
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It should be noted that the notation Fk
i concerns motion at time–step k, while it is parameterized

by the set W k
i in which possible motion of node i is to be performed, i.e. xk+1

i ∈W k
i .

2.3.3 Coordination algorithm

Let the notation qℓ |I stand for the evaluation of the arbitrary variable q at step ℓ based on

information from nodes in the set I ⊆ In. In the above notation it is implied that evaluation

is performed by node i (i.e. node–to–move) at step k (i.e. before motion of the latter is per-

formed). It should be noted that when ℓ = k+ 1, it is supposed that motion of node i is to be

performed at a specified xk+1
i . The aforementioned point is specified for evaluation purposes at

step k and might not necessarily be the point at which node i decides to move at.

Considering Assumption 2.4, the r–limited Voronoi cell of a node j ∈ Fk
i as evaluated by

node i at step k is denoted as V r
j |Fk

i
. Considering coverage optimization scenarios, node i should

move at a point xk+1
i such that network’s coverage will be increased at the maximum possible

rate. Consequently, in order for the node–to–move to be able to evaluate its contribution to

coverage–increase (via its motion), it should be able to evaluate Hk+1−Hk (for a given xk+1
i ).

However, since the latter has spatial information only of the nodes in Fk
i , network’s coverage–

increase from its own point of view is provided as Hk+1 |
Fk

i
−Hk |

Fk
i
. The above become clear

via the following example.

Consider the homogeneous network shown in Fig. 2.4(a). The node to move i at the current

(a)

x

(b)

x

Figure 2.4: Illustrative example for definition of V
r,k
j |Fk

i
sets.

step k is denoted by the red dot, while its supposed position at the next step (for evaluation

purposes) is marked with an × sign. The Delaunay neighbors of node i are denoted by green
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dots, while the yellow dot corresponds to the future Delaunay neighbor of the latter at the next

step (if the motion is performed at that point). Considering Assumption 2.4, node i is informed

about existence of both yellow and green nodes, while connectivity issues for satisfying that

assumption will be discussed later. The r–limited Voronoi cells of the nodes V r
j are seen in Fig.

2.4(a) as the section of their Voronoi cells with the corresponding sensing patterns. However,

since node i does not have any knowledge of existence of the rest network’s nodes (apart from

Fk
i ), it can evaluate their r–limited Voronoi cells via Fig. 2.4(b). The grey dots in the latter

denote the rest of the network’s nodes that are not taken into account during the computation of

the aforementioned cells. Similar procedure is followed by the moving node in order to evaluate

V
r,k+1
j |

Fk
i
; supposing that its position is that in the × mark (for evaluation purposes only), it

should compute the corresponding Voronoi tessellation and then follow the same procedure as

before. Before proceeding to the main theorem, let us first prove the following lemma.

Lemma 2.2. For each node j ∈ Fk
i , it holds that

A

(

V
r,ℓ
j

)

=A

(

V
r,ℓ
j |Fk

i

)

− ∑
m∈Nℓ

j\F
k
i

A

(

U
m,ℓ
j

)

,

where ℓ ∈ {k,k+1}.

Proof. Let us first examine the case ℓ = k. Considering (2.10)–(2.11) and Fig. 2.2, for an

arbitrary node j ∈ Fk
i , it holds that

A(C j) =A

(

V
r,k
j

)

+∑m∈Nk
j
A

(

U
m,k
j

)

+A

(

U
Ω,k
j

)

=

=A

(

V
r,k
j

)

+∑m∈Nk
j∩F

k
i
A

(

U
m,k
j

)

+∑m∈Nk
j\F

k
i
A

(

U
m,k
j

)

+A

(

U
Ω,k
j

)

.

Furthermore, A(C j) can be written as

A(C j) =A

(

V
r,k
j |Fk

i

)

+∑m∈Nk
j∩F

k
i
A

(

U
m,k
j |

Fk
i

)

+A

(

U
Ω,k
j |

Fk
i

)

=

=A

(

V
r,k
j |Fk

i

)

+∑m∈Nk
j∩F

k
i
A

(

U
m,k
j

)

+A

(

U
Ω,k
j |

Fk
i

)

,

since the nodes m ∈Nk
j ∩F

k
i are already known to node i (which performs the evaluation), i.e.

Nk
j ∩F

k
i ⊆ Fk

i .

Combining the above expressions for A(C j) results in

A

(

V
r,k
j

)

=A

(

V
r,k
j |Fk

i

)

−∑m∈Nk
j\F

k
i
A

(

U
m,k
j

)

+
(

A

(

U
Ω,k
j |

Fk
i

)

−A

(

U
Ω,k
j

))

.

However, since U
Ω,k
j =C j \Ω is dependent only on the sensing pattern and the region of inter-

est, it holds that

A

(

U
Ω,k
j |

Fk
i

)

=A

(

U
Ω,k
j

)

,

and the result is proven.

The proof is identical for the case ℓ= k+1.
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Theorem 2.1. If the node–to–move i has spatial information of the nodes in Fk
i , then evaluation

of the network’s coverage–increase by ignoring the rest nodes in the network is the same as if

the latter had been evaluated supposing existence of all the network’s nodes, i.e.

H
k+1 |

Fk
i
−Hk |

Fk
i
=H

k+1−H
k. (2.14)

Proof. Considering (2.12), it holds that

Hk+1−Hk = ∑ j∈In

[

A

(

V
r,k+1
j

)

−A

(

V
r,k
j

)]

=

= ∑ j∈Fk
i

[

A

(

V
r,k+1
j

)

−A

(

V
r,k
j

)]

+∑ j∈In\Fk
i

[

A

(

V
r,k+1
j

)

−A

(

V
r,k
j

)]

.

But the second summation in the expression above is equal to zero, according to Lemma 2.1.

Furthermore, substitution of A
(

V
r,k
j

)

,A
(

V
r,k+1
j

)

from the result of Lemma 2.2 results in

Hk+1−Hk = ∑ j∈Fk
i

[

A

(

V
r,k+1
j |

Fk
i

)

−A

(

V
r,k
j |Fk

i

)]

−

∑ j∈Fk
i

{

∑m∈Nk
j\F

k
i

[

A

(

U
m,k+1
j

)

−A

(

U
m,k
j

)]}

.

However, the second term is consisted of the alteration in the unexploited regions of the nodes

in Fk
i that lay in the Voronoi cells of nodes that belong in Nk

j \F
k
i . Thus, since the ∆ jm edges

are not altered
(

m /∈ Fk
i

)

, the aforementioned term is zero.

Consequently, it holds that

Hk+1−Hk = ∑ j∈Fk
i

[

A

(

V
r,k+1
j |

Fk
i

)

−A

(

V
r,k
j |Fk

i

)]

.

Without loss of generality, since node i does not have information of existence of the nodes

In \F
k
i , their evaluated Voronoi cells can be arbitrarily be set to empty–sets, which results in

Hk+1−Hk = ∑ j∈Fk
i

[

A

(

V
r,k+1
j |

Fk
i

)

−A

(

V
r,k
j |Fk

i

)]

+

∑ j∈In\F
k
i

[

A

(

V
r,k+1
j |

Fk
i

)

−A

(

V
r,k
j |Fk

i

)]

=Hk+1 |
Fk

i
−Hk |

Fk
i
,

and the result is proven.

At this point, one can select the region W k
i as a circular one as

W k
i =

{

x ∈R2 :
∥

∥x− xk
i

∥

∥≤ αd
(

xk
i ,V

k
i

)}

, (2.15)

where 0 < α ≪ 1 and d (x,M) is the distance of point x from the set M defined as

d (x,M) := inf{‖x− y‖ : y ∈M} . (2.16)

It is clear that W k
i expresses a disc centered at the agent’s position. The advantage obtained

by the selection of a circular region for W k
i is its symmetry around xk

i . It is easy to see that

since xk+1
i ∈W k

i , then the node–to–move performs its motion in the interior of its Voronoi cell,
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2.3 Proposed Coordination Scheme

leading so in non–singular paths (in terms of none coinciding nodes) for the nodes until the

network reaches its optimum state.

Consequently, the destination point at which node i should move, i.e. the optimal x k+1
i ∈

W k
i denoted as x⋆ k+1

i , can be is obtained numerically via solving at each step k the following

optimization

find xk+1
i ∈W k

i :

maximize
{

H
k+1 |

Fk
i
−Hk |

Fk
i

}

subject to : H
k+1 |

Fk
i
>H

k |
Fk

i

, (2.17)

either via gradient–based nonlinear constrained optimization schemes [20] or griding on W k
i .

Considering Theorem 2.1 and (2.17), the area of the region surveyed by the network will be

increased at each step in the maximum possible rate (due to the node’s motion). The control

action in (2.1) can be then selected as

u k
i = x⋆ k+1

i − x k
i , (2.18)

where ‖ui‖ ≤ α , as of (2.15). It is clear that in the case where any admissible motion of the

node in W k
i results in less or equal coverage area than that in the current step, then the node

stays idle, since x k
i ∈W k

i . Via the proposed scheme, it is guaranteed not only that the total area

is increased in a monotonic manner, but with the highest possible rate, too.

2.3.4 Issues concerning spatial information exchange

As mentioned earlier, it is considered that node i should be able to receive spatial information

from the set of nodes Fk
i (Assumption 2.4). This section is dedicated into deriving a lower

bound on the communication radius of the node–to–move in order for the assumption to hold.

It is known that, in most practical scenarios, the maximum possible communication range of a

node’s transceiver is limited due to physical/manufacturing restrictions. Posing, though, such

a constraint is beyond the scope of the current analysis, but will be revisited in chapter 5.

2.3.4.1 Connectivity with current Delaunay neighbors

Considering communication issues, node i should be able to acquire information at step k from

the nodes of the set Fk
i , given the subset W k

i ⊂ V k
i , in order to be able to apply the coverage

algorithm presented in the previous section. Ignoring the trivial case of receiving information
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from the node itself, as far as concerns the first part of the aforementioned union set (2.13), the

node’s transceiver should first have adequate communication range so that it can communicate

with its current Delaunay neighbors Nk
i .

Let us denote by Rk
i (I) and Rk

i (I)wcs the minimum communication radius of node i at step

k required in order to exchange information with a set of nodes I ⊂ In, from a centralized and

decentralized point of view, respectively. It is easy to see that, from a centralized aspect, the

minimum range required for guaranteeing connectivity of node i with Nk
i at step k is equal to

Rk
i

(

N
k
i

)

= 2max
{

d
(

xk
i ,∆

k
i j

)

: j ∈N
k
i

}

= max
{

∥

∥xk
i ,x

k
j

∥

∥ : j ∈N
k
i

}

, (2.19)

where ∆i j and d (x,M) are defined in (2.8) and (2.16), respectively. Although, expression

(2.19) provides indeed the minimum range required, it cannot be used as a bound, from an

independent point of view. In fact, node i needs to increase even more its communication

range until it is ensured that its Voronoi cell will not be affected further, even if another node

falls in range.

Considering algorithmic implementations of communication range adjustment, the main

concept lays in gradual increase of the latter until sufficient information from neighbor nodes

is obtained [16]. In fact, node i gradually increases its range and updates its Voronoi cell

according to the nodes that fall in its range. The procedure ends when either Sk
i ⊇ Ω or the

node’s range becomes twice the distance between the node and its farthest Voronoi cell vertex,

i.e.

Rk
i

(

N
k
i

)

wcs
= 2max

{

∥

∥xk
i − vk

i, j

∥

∥ : j ∈ I
N(V k

i )

}

, (2.20)

since from that time on, any other node identified does not alter its Voronoi cell. The notation

N(·) stands for the number of the argument’s vertices, as stated already in section 2.2.1. It

should be noted that (2.20) seems to include some kind of recursiveness in its body; indeed,

in order to compute the minimum communication range in order to exchange information with

Nk
i , one needs V k

i (considering the second part), where Nk
i is needed for its evaluation. How-

ever, (2.20) depicts Rk
i

(

Nk
i

)

wcs
from an analysis point of view. The iterative algorithmic pro-

cedure for the latter’s numerical evaluation is shown in Algorithm 2.1.

Note also that Rk
i

(

Nk
i

)

wcs
is larger than the centralized bound, due to the distributed nature

of the scheme. During the rest of the analysis that follows in this section, node i will be

considered to obtain information from its current Delaunay neighbors Nk
i via proper adjustment

of its communication radius at Rk
i

(

Nk
i

)

wcs
.
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Algorithm 2.1 Communication Range Adjustment for Connectivity with Nk
i

1: ♦ Goal: Identify current Delaunay neighbors and Voronoi cell

2: Rk
i ← 0, Sk

i ← /0

3: V̂ k
i ← Ω, N̂k

i ← /0

4: while Rk
i ≤ 2max

{∥

∥

∥
xk

i − v̂k
i, j

∥

∥

∥
: j ∈ I

N(V̂ k
i )

}

and Sk
i ⊂Ω do

5: increase Rk
i

6: update Sk
i

7: if node j detected then

8: N̂k
i ← N̂k

i ∪ j

9: update V̂ k
i

10: end if

11: end while

12: V k
i ← V̂ k

i

13: isolate Nk
i from the set N̂k

i

2.3.4.2 Guaranteeing connectivity with all possible future Delaunay neighbors

Considering (2.12), what needs to be further ensured is connectivity of node i with the set
⋃

xk+1
i ∈W k

i
N

k+1
i , given W k

i . Suppose an arbitrary point xk+1
i ∈W k

i ⊂V k
i . The goal is to find the

minimum communication radius of node i at step k in order to guarantee connectivity at that

step with N
k+1
i , from a decentralized point of view. At step k, node i, positioned at xk

i with

communication range Rk
i

(

Nk
i

)

wcs
, has information about the coordinates of the nodes Nk

i of

the network. Thus, at that time, the first can evaluate its future Voronoi cell, supposing that

its motion is to be performed at xk+1
i , by taking into account only the nodes in Nk

i and itself

(i.e. ignoring the rest of the network, since it does not have knowledge of existence of the

rest nodes, yet). Let us denote as V k+1
i |

Nk
i

the aforementioned evaluated Voronoi cell. At this

point, node i can be aware if a node j ∈ Nk
i is about to leave the set of its Delaunay neighbors

at the next step, supposing that its motion will be performed at xk+1
i , via simple evaluation of

V k+1
i |

Nk
i
. What is unknown to the node–to–move yet are possible nodes of the network that

may enter Nk+1
i .

Let us consider again the worst case scenario. Suppose that m ∈ In is an extra node to

possibly enter the set Nk+1
i if motion is performed at xk+1

i , where existence of m is unknown to

node i yet. Considering (2.6), let hi j stand for the line that equally divides the space into two
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halfplanes between two arbitrary nodes of the network, i.e.

hi j =
{

x ∈ R2 : ‖x− xi‖=
∥

∥x− x j

∥

∥

}

, i, j ∈ In, i 6= j. (2.21)

The critical case for node m to enter the set Nk+1
i is when hk+1

im marginally crosses the farthest

vertex of V k+1
i |

Nk
i
. Let vk+1

i, j⋆ |Nk
i

denote the farthest vertex of V k+1
i |

Nk
i
, where the index j⋆ is

given as

j⋆ = argmax

{

∥

∥

∥
xk+1

i − vk+1
i, j |Nk

i

∥

∥

∥
: j ∈ I

N

(

V k+1
i |

Nk
i

)

}

. (2.22)

It is well–known that, given two points a,b ∈ R2 and a family of straight lines L, where

b ∈ ℓ, ∀ℓ ∈ L, the farthest line from a (where d (a, ℓ) is defined via (2.16)) is the one that is

perpendicular to the line that connects a and b. Considering the above, one can conclude that

the worst case scenario for the position of node m is when it lays along the line that connects

xk+1
i and vk+1

i, j⋆ |Nk
i
, at a distance from xk+1

i equal to twice that of the aforementioned points.

This case is depicted graphically in Fig. 2.5. The red dot represents xk+1
i , while the blue line

Figure 2.5: Worst case scenario for the existence of a node m that is to enter Nk+1
i .

connects that node with the farthest vertex of its evaluated Voronoi cell V k+1
i |

Nk
i
. The blue dot

represents the worst case scenario (comparing to the other possible cases denoted by grey color)

for the existence of node m. The rest of the nodes in the network are omitted for visualization

purposes.

Considering Fig. 2.5, the worst–case for the position of node m is

xk+1
m = xk+1

i +2
(

vk+1
i, j⋆ |Nk

i
−xk+1

i

)

.
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Thus, node i at xk
i should have adequate communication range so that it can at least exchange

information with that node, m, provided as

Rk
i

(

N
k+1
i

)

wcs
=
∥

∥

∥xk
i −
(

xk+1
i +2

(

vk+1
i, j⋆ |Nk

i
−xk+1

i

))∥

∥

∥=
∥

∥

∥

(

xk
i + xk+1

i

)

−2vk+1
i, j⋆ |Nk

i

∥

∥

∥ , (2.23)

where the index j⋆ is defined in (2.22). It should be noted that xk
i appears in the norm–argument

of the upper part of (2.23), and not xk+1
i , since we are interested in finding the appropriate

communication range of node i at step k in order to communicate with node m. Furthermore,

special attention should be given to the fact that the range defined in (2.23) is not the minimum

required radius for guaranteeing connectivity with N
k+1
i from a centralized point of view, since

the first depicts the worst case scenario (wcs). However, it is considered as the optimum range

from a decentralized point of view, considering that at that time, node i has knowledge of

existence for the nodes Nk
i .

The above become clearer via the following example. Consider the network depicted in

Fig. 2.6(a). Node i is depicted with the red dot, while the time–step is considered as k. The

Figure 2.6: Communication radius of the node–to–move (red color) required in order to guarantee

connectivity: (a) with Nk
i , (b) with N

k+1
i , for a given node’s motion (worst case scenario).

blue circle specifies the minimum communication radius of node i (from a decentralized point

of view) required in order to communicate with Nk
i , which are the green nodes of the figure.

One can observe that the corresponding radius allows information exchange with some nodes

of the network, other than the green ones.

Consider now that node i evaluates its future Voronoi cell, as if the network was consisted

only of the nodes Nk
i , i.e. V k+1

i |
Nk

i
, as depicted in Fig. 2.6(b). The red dot denotes the possible

destination of node i (depicted with the × mark at Fig. 2.6(a)), while the grey one is its real
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position at step k. The farthest vertex of V̂ k+1
i |

Nk
i

is needed to determine the worst–case for the

position of a possible node m. In Fig. 2.6(b), xk+1
i is connected with the imaginary xk+1

m via

the blue dashed line passing from vk+1
i, j⋆ |Nk

i
. One can see that no node lays in the worst–case

position of node m. Thus, at this point Rk
i

(

N
k+1
i

)

wcs
can be computed via (2.23). It should be

noted that the circle is centered at the grey sign (current node’s position) and not at the red one

(possible future node’s position). Apart from that, the most right green node that will enter the

set of Delaunay neighbors of node i, if the latter moves at xk+1
i , is not taken into account into

the computation of V k+1
i |

Nk
i
, since that is the node to be identified. In fact, the only nodes in

the network that play a role to its evaluation are the green nodes of Fig. 2.6(a). Finally, one

can observe that Rk
i

(

N
k+1
i

)

wcs
in Fig. 2.6(b) is not the minimum radius required to exchange

information with the green nodes of Fig. 2.6(b), since it corresponds to the worst case scenario.

Considering the above, the minimum communication radius of node i at step k required in

order to exchange information with the nodes in the set
⋃

xk+1
i ∈W k

i
N

k+1
i is

Rk
i





⋃

xk+1
i ∈W k

i

N
k+1
i





wcs

= sup
{

Rk
i

(

N
k+1
i

)

wcs
: xk+1

i ∈W k
i

}

, (2.24)

where Rk
i

(

N
k+1
i

)

wcs
is defined in (2.23). To summarize, the algorithm followed for evaluating

Rk
i

(

Fk
i

)

wcs
is provide in Algorithm 2.2. An issue of major importance is the fact that, after

identification of Nk
i via Algorithm 2.1, only evaluations are needed throughout the body of the

algorithm procedure, and no communication range adjustment is demanded until Rk
i

(

Fk
i

)

wcs
is

defined.

Corollary 2.1. The communication radius of node i at step k in order to guarantee connectivity

with both current and all possible future Delaunay neighbors, should be at least

Rk
i

(

F
k
i

)

wcs
= max







Rk
i

(

N
k
i

)

wcs
, Rk

i





⋃

xk+1
i ∈W k

i

N
k+1
i





wcs







, (2.25)

where the corresponding radii are given by (2.20) and (2.24).

2.3.5 Simulation results

Simulation studies are presented in this section in order to show the efficacy of the proposed

scheme. The region Ω to be surveyed is a convex set in R2. During network evolution the cov-

ered area is increasing until it converges to an extremum solution, while the agents’ kinematics
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Algorithm 2.2 Communication Range Adjustment Algorithm for Connectivity with Fk
i

1: ♦ Goal: Identify nodes whose Voronoi cells are possibly affected

2: Rk
i

(

⋃

xk+1
i ∈W k

i
N

k+1
i

)

wcs
← 0

3: identify Nk
i and V k

i via Algorithm 2.1

4: perform gridding on W k
i

5: for each xk+1
i ∈W k

i do

6: evaluate V k+1
i |

Nk
i

7: evaluate vk+1
i, j∗ |Nk

i

8: evaluate Rk
i

(

N
k+1
i

)

wcs

9: Rk
i

(

⋃

xk+1
i ∈W k

i
N

k+1
i

)

wcs
←max

{

Rk
i

(

⋃

xk+1
i ∈W k

i
N

k+1
i

)

wcs
,Rk

i

(

N
k+1
i

)

wcs

}

10: end for

11: Rk
i

(

Fk
i

)

wcs
←max

{

Rk
i

(

Nk
i

)

wcs
,Rk

i

(

⋃

xk+1
i ∈W k

i
N

k+1
i

)

wcs

}

12: update Sk
i

13: identify Fk
i

are described by (2.1). The control action is based on the coordination scheme proposed in

section 2.3.3. Two series of simulations follow: one considering a sparse network and another

considering a congested one. By the term sparse (congested), it is implied that there exists

(does not exist) configuration such that Ω is covered in the maximum possible ratio with no

overlapping among the nodes’ sensing patterns or with the boundary of Ω.

The number of agents in the first case (sparse network) is set to n = 18, while in the

second scenario the latter is set to n = 10. In both cases, the latter are deployed randomly

in Ω. The critical sensing radius of the agents’ patterns is considered equal to r = 1.5m

and r = 3m, respectively. The maximum theoretically (if possible) achievable sensing area,

supA
(
⋃

i∈In
Ci

)

= nπr2, corresponds to 127.23m2 and 282.74m2 in each case, while the area

of the region of interest is A(Ω) = 226.37m2. The convex area under surveillance is that

presented in [15] and [21]. Ideally, if possible, the agents should be able to cover the region

without any overlapping, and thus covering nπr2

A(Ω) = 56.2% and 100% of Ω, respectively, where

the latter maximum possible percentage ratio is trimmed at 100%. The value of α in (2.15) was

set to α = 0.1. Simulation is stopped when all nodes’ motions are unable to further increase

coverage.

Considering the sparse–network case, the agents’ initial positions, their evolution through

time, along with the final network’s state, when the control scheme presented in section 2.3.3
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is applied, are shown in the top part of Fig. 2.7, in this order. The black circles (blue dots)

represent the nodes’ final (initial) positions. As far as concerns the final nodes’ state, it is
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Figure 2.7: Sparse–network case study: [Left] Initial network configuration. [Middle] Network

evolution through time. [Right] Final network optimum state. [Bottom] Percentage of covered area

w.r.t. time.

obvious that the agents have self–positioned themselves in a way that there is no overlapping

between their sensing patterns or the boundary of the region under surveillance, while attaining

optimum coverage, i.e. H = nπr2.

The way in which the area of the covered region increases is shown in the bottom part of

Fig. 2.7. The blue straight line represents the maximum possible coverage ratio, which in this

case is 56.2%. The latter, starting from an initial value of 18.66% (dependent on the initial

network configuration) , increases as time passes by in a monotonic way, until it reaches its

optimum value in less than 2000 steps.

Similarly, considering a congested network, the network’s initial configuration, the nodes’

evolution through time, along with their optimum configuration are shown in the top part of

Fig. 2.8. It is apparent that in this case there exists overlapping among the nodes’ sensory. Con-

trary to the previous case, the maximum possible coverage percentage of 100% is not reached

24

Chapter2/figures/fig6a.eps
Chapter2/figures/fig6b.eps
Chapter2/figures/fig6c.eps
Chapter2/figures/fig6d.eps


2.3 Proposed Coordination Scheme

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

k

A
c
o
v

(%
)

Figure 2.8: Congested–network case study: [Left] Initial network configuration. [Middle] Net-

work evolution through time. [Right] Final network optimum state. [Bottom] Percentage of cov-

ered area w.r.t. time.

exactly, though approached at 97.33% in less than 1000 steps, starting from an initial value of

32.45%, as also seen by the bottom part of Fig. 2.8. In fact, the only way to guarantee existence

of a configuration for complete coverage of Ω is via global optimization techniques, something

that is beyond the scope of this thesis. Either way, the state that the network converged to is an

extremum of (2.12), while the coverage attained by the nodes is more than satisfactory.

Overall, one can see that the less the number of nodes in the network, the faster optimum

coverage is reached. Indeed, since one node moves at a time and the nodes are selected in a

random (or even in cyclic) manner, the less the number of nodes, the less possible is to come

for a node that cannot contribute to coverage to move. Comparing this work to previous ones, it

is seen that the network tries to optimize the total area covered by itself, while it does not base

its action on CVT coordination schemes or nearest–neighbor rules [12, 13, 15, 22]. The fact

that only one node moves at a time parts the main difference, while optimal area achievement

is guaranteed in a monotonic manner by sufficient knowledge of a node’s current and future

Delaunay neighbors.
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2.4 Conclusions

In this chapter a distributed control strategy for sensing coverage optimization by a group of

mobile agents that consist a homogeneous sensor network was presented. The coordination

scheme was based on Voronoi partitioning, where the nodes self–organize their action in a way

that the total area covered by the network is an increasing function of time. Each node plans its

current motion according to information obtained by its current and future Delaunay neighbors,

which is guaranteed by proper communication range adjustment. Simulations confirmed the

efficacy of the proposed scheme.
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Coverage by Heterogeneous Networks

3.1 Introduction

Voronoi tessellation forms the basis for decentralized self–decisioning schemes for the mobile

members of the network, where a responsibility domain is assigned to each node [14]. Such

a space–partitioning scheme greatly reduces the computational effort from a control point of

view. Computational issues on its construction are discussed in [23, 24, 25].

This assignment is performed based on the spatial coordinates of the agents, ignoring any

kind of heterogeneity. Hence, utilization of the latter implies that all nodes are homogeneous,

which in coverage–based terms can be expressed as being characterized by identical sensing

patterns. Weighted–Voronoi techniques have been developed [23, 26, 27], though, that take

into consideration this unevenness and thus provide responsibility regions at each node, based

not only on their spatial characteristics, but on their different power/range as well.

A major issue of additive/multiplicative weighted–Voronoi frameworks lays in their con-

struction, since the modified Voronoi cells tend to consist of curved edges rather than straight

lines (as in standard Euclidean Voronoi diagram) [27, 28], while the regions of responsibility

assigned to the nodes are in some cases non–convex sets. This makes Centroidal Voronoi Tes-

sellations (CVT) based coordination algorithms [13, 22, 29] even harder to be implemented in

cases of mobile networks, since they tend to force the node to abandon its assigned region of

responsibility (Voronoi cell).

Standard Voronoi tessellation for a set of static nodes imply that all nodes are homoge-

neous, in a general sense. Thus, it is assumed that they have identical sensing patterns and

equal sensing range. Direct application of such schemes to heterogeneous networks, where the
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3. COVERAGE BY HETEROGENEOUS NETWORKS

sensing radii of the nodes differ, results in unfair and incorrect region–assignment for the latter

[19, 30]. Heterogeneous networks’ coordination is examined in [31] by tessellating the space

via power diagrams [26] for the distortion case, coordinated via Centroidal Voronoi Tessella-

tion (CVT) rules [16].

We provide an space–partitioning technique for heterogeneous networks that is by far less

complex (from a computational effort point of view) comparing to weighted ones, while con-

vexity of the cells is kept active. The proposed technique degenerates in the standard Voronoi

diagram when dealing with homogeneous networks, while its application in heterogeneous

ones provides the sufficient conditions for internal properties of Voronoi diagram to hold. Dis-

tributed control action for optimizing network’s coverage is based on the corresponding cells

of the partitioning.

The main preliminaries concerning the network are presented initially, along with an intro-

duction to Voronoi diagram, its properties and its application in decentralized control. The de-

velopment of a space–partitioning scheme suitable for networks with uneven ranges in the sens-

ing domains follows. Important remarks along with properties of this scheme are discussed,

while a comparison with standard Voronoi partitioning follows. A distributed coordination

framework for coverage optimization based on the modified space partitioning is developed

in the sequel, along with connectivity issues concerning communication range adjustment of

the nodes in order to self–deploy and evaluate their own coverage–contribution in a decentral-

ized manner. Simulation studies are provided, in order to emphasize in the advantages of the

proposed scheme when dealing with heterogeneous networks, contrary to existing algorithms

based on standard partitioning.

3.2 Preliminaries — Motivation

3.2.1 Main Assumptions

A sensor network of n nodes is revisited in this chapter, similarly to Chapter 2. We will keep

the same terminology throughout this thesis, and indicate wherever something is changed. Let

us ignore mobility of the nodes at start in order to focus on the development of the partitioning

of the space. Similarly to (2.2), the nodes’ are assumed to be able to sense omnidirectionally

up to a maximum radius; however the latter differs among the nodes in this case. By denoting
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these critical radii as ri, the sensing region of each node i is

Ci =
{

x ∈ R2 : ‖x− xi‖ ≤ ri

}

, i ∈ In. (3.1)

The fact that the maximum sensing radii of the nodes are not equal is the one that imposes

network heterogeneity, and this is the reason for the repetition of the assumption.

Avoiding repeating the main preliminaries of Voronoi partitioning, the Voronoi and r–

limited Voronoi cell of a node, along with its unexploited regions are defined in (2.6), (2.9),

and (2.10), respectively. Apparently, these sets get affected by the network’s heterogeneity, as

of different sensing radii.

3.2.2 Properties of Voronoi diagram for homogeneous networks

As already mentioned, the Voronoi diagram for a set of nodes can be constructed only by

knowing the spatial coordinates of them, as in (2.6). In fact, what is implied is that the nodes

are all identical as far as concerns their capabilities (in a general sense). Thus, comparing two

nodes, the common Voronoi edge is the line that is perpendicular on the middle of the line

that connects the nodes themselves, providing so a fair equalized region–assignment. This fact

results in two special properties of Voronoi diagrams presented in the sequel, which hold only

for homogeneous networks.

In order to set them up, an alternative definition for the standard Voronoi cells Vi apart from

that in (2.6) is given as

Vi = Ω∩
⋂

j∈In

Hi j, i ∈ In, (3.2)

where Hi j are halfplanes in R2 that specify responsibility regions for node i based on compari-

son with node j and are defined as

Hi j =
{

x ∈R2 : ‖x− xi‖ ≤
∥

∥x− x j

∥

∥

}

, i, j ∈ In. (3.3)

By definition, it holds that Hii = R2, i ∈ In, and thus can be neglected, due to the presence of

Ω in (3.2). One can simply verify that definitions (2.6) and (3.2)–(3.3) are equivalent.

Theorem 3.1. When all nodes in a network are identical and space–partitioning is performed

by (2.6), if a point in the region under surveillance Ω lays in the unexploited region of a node,

then it lays in the sensing region of another node, i.e.

∃i ∈ In : x ∈Ui ⇒ ∃ j ∈ In, j 6= i : x ∈C j, x ∈Ω.
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Proof. Let x ∈ Ω∩Ui. Then x ∈ Ω∩ (Ci \Vi) according to (2.10). Since x ∈Ci, from (3.1) it

follows that ‖x− xi‖ ≤ r. Since x 6∈ Vi, it holds from (3.2)–(3.3) that x ∈
⋃

k 6=i Hki⇒ ∃ j, j 6=

i : x ∈ H ji⇒
∥

∥x− x j

∥

∥≤ ‖x− xi‖ ⇒
∥

∥x− x j

∥

∥≤ r⇒ x ∈C j.

Theorem 3.2. When space–partitioning is performed based on (2.6), the total region surveyed

by a network whose nodes are all identical can be written as

C= Ω∩
⋃

i∈In

Ci =
⋃

i∈In

V r
i , (3.4)

while its area is given by

A(C) = ∑
i∈In

A(V r
i ) ,

where the area–function is denoted by A(·).

Proof. Based on (2.9) and (2.10), it is easy to verify that Ci = V r
i ∪Ui, i ∈ In (see Fig. 2.2);

thus the total covered area can be written as

C= Ω∩
⋃

i∈In
Ci = Ω∩

⋃

i∈In
(V r

i ∪Ui) =
⋃

i∈In
(Ω∩ (V r

i ∪Ui)) =
⋃

i∈In
((Ω∩V r

i )∪ (Ω∩Ui)) =
⋃

i∈In
(V r

i ∪ (Ω∩Ui)) =
(
⋃

i∈In
V r

i

)

∪
(
⋃

i∈In
(Ω∩Ui)

)

.

What remains to be proven is that
⋃

i∈In
(Ω∩Ui)⊆

⋃

i∈In
V r

i , since that will lead to the result of

(3.4).

Let x ∈
⋃

i∈In
(Ω∩Ui). According to Theorem 3.1, ∃ j : x ∈C j⇒ x ∈

(

V r
j ∪U j

)

, U j ⊂Vi.

⋄ If x ∈V r
j , then x ∈

⋃

i∈In
V r

i and the result is proven.

⋄ If x∈U j, then x∈Vi, since U j ⊂Vi. But, since x∈Ui it follows that x∈Ui∩Vi = /0⊆
⋃

i∈In
V r

i .

Consequently,
⋃

i∈In
(Ω∩Ui)⊆

⋃

i∈In
V r

i , resulting in (3.4).

Thus, A(C) = A
(
⋃

i∈In
V r

i

)

, and since V r
i ∩V r

j = /0, ∀i, j ∈ In, i 6= j, it follows that A(C) =

∑i∈In
A(V r

i ).

The aforementioned properties hold only when all nodes in a network are identical (while

standard Voronoi tessellation is used for space–partitioning) and are the core for defining cover-

age performance of the network; hence, one can control either the sensing/transmission power

of the nodes (in cases of power–efficient static networks) or the motion of the latter (in cases

of mobile networks), accordingly.

For the sake of the development of a proper space–partitioning scheme, at this point let us

define in a formal way the coverage performance of a sensor network via the “Area Coverage

Percentage” (ACP) defined as the area of the sensed regions of Ω divided by the area of the

region of interest Ω, i.e.

ACP =
A
(

Ω∩
⋃

i∈In
Ci

)

A(Ω)
. (3.5)
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In fact, this ratio expresses the coverage performance of the network as evaluated via the sens-

ing regions Ci. Coverage performance of the network can moreover be evaluated via the inde-

pendent r–limited Voronoi cells V r
i , as of (2.9); let us define the “V r–Estimated Area Coverage

Percentage” ( ˆACP(V r)) as

ˆACP(V r) =
A
(
⋃

i∈In
V r

i

)

A(Ω)
=

∑i∈In
A(V r

i )

A(Ω)
. (3.6)

It is evident that, for a homogeneous network, it holds that ACP = ˆACP(V r), as concluded by

(3.5), (3.6) and Theorem 3.2.

3.2.3 Application in heterogeneous networks

The main disadvantage of the standard Voronoi tessellation scheme is that the space–partitioning

is performed based only on the nodes positioning xi in the plane and does not take into account

the heterogeneity in the sensing patterns of the latter. If Voronoi diagram is used for region–

assignment at the nodes and Theorem 3.2 holds, the nodes should try to optimize the area of

their r–limited Voronoi cells (in a coverage–optimization scenario), resulting in optimum net-

work sensing coverage. However, before optimizing the area of the nodes’ r–limited Voronoi

cells, it should first be ensured that any point sensed by a node, but does not lay inside its

r–limited Voronoi (i.e. lays in the unexploited region of the node), is sensed by another “neigh-

bor” node (Theorem 3.1). However, this does not hold true for heterogeneous networks, if

standard Voronoi tessellation is applied for the region–assignment.

A graphical example is presented in Fig. 3.1 of a heterogeneous network where partitioning

has been performed by standard Voronoi assignment. It is evident that there are large parts of

the space assigned to nodes whose coverage performance is somehow limited, considering their

relatively small maximum radii. On top of that, if someone examines the overall network’s

coverage from an “r–limited Voronoi cells”–perspective, will conclude that some nodes will

tend to move even if they already achieve optimum coverage (from an individual point of view).

Consequently, what needs to be re–defined is a more suitable space–partitioning scheme for the

case of heterogeneous networks, rather than a re–design of a coordination scheme.
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Figure 3.1: Inappropriateness of standard Voronoi tessellation when dealing with heterogeneous

networks.

3.3 Proposed Partitioning of the Space

3.3.1 Basic concept

The example presented above shows that the assignment of the region of responsibility for

each agent needs further attention when dealing with heterogeneous networks, and should be

performed in a fairer way. Unlike other Voronoi tessellation techniques in the existing literature

(also known as weighted or generalized Voronoi), the one that is proposed in this chapter keeps

the convexity property of the assigned cells. This means that a Voronoi cell of a node will be

a compact convex polygon in R2 with no holes, allowing easier implementation of coverage

control laws (compared to non–convex domains), from a computation point of view.

The scope of this chapter is to provide a modified Voronoi–originated definition for space–

partitioning, suitable for cases where the nodes have different sensing capabilities. The goal of

this scheme is to define each node’s Voronoi cell in a way such that the unexploited regions in

Ω of a node will be surveyed by another (similarly to Theorem 3.1). Achieving that, coverage

performance of the network can then be computed as the summation of the areas of the inde-

pendent r–limited Voronoi cells (similarly to Theorem 3.2), leading in ease of implementation

of distributed algorithms. Definitions along with the proofs of the corresponding properties

will be provided in the sequel, after the development of the proposed scheme.
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3.3.2 Development of the proposed space–partitioning technique

Using the alternative definition for a Voronoi cell in (3.2), the Voronoi cells via an arbitrary

scheme can be defined as

Ṽi = Ω∩
⋂

j∈In

H̃i j, i ∈ In, (3.7)

where repetition is important in order to avoid conflict of notations between standard and pro-

posed region–assignment Voronoi techniques. In the sequel H̃i j, instead of Hi j, will be used

to denote the halfplanes defined by the proposed region–assignment scheme, and not by the

standard one.

Such halfplanes H̃i j result from comparing node i with the remaining n− 1 nodes of the

network. In order to complete the definition in (3.7), let us consider a network consisting of

two nodes, as shown in Fig. 3.2. Suppose that the region under surveillance Ω is the whole

di

dj

Hij

Hjixi

xj
~

~

Figure 3.2: Notations for definition of H̃i j halfplanes.

Euclidean configuration space. This will not affect anything in the sequel, since Ω is already

present in (3.7). In Fig. 3.2, di (d j) denotes the signed distance of node i ( j) from the line

separating the two responsibility halfplanes, H̃i j and H̃ ji. The distance between nodes i and

j is denoted as w =
∥

∥xi− x j

∥

∥. It should be noted that di is measured from node i (whose

Voronoi cell is to be defined), with positive direction towards node j, along the straight line

that connects the nodes; thus, it can take both positive and negative values, depending on the

topology of the nodes.

In order to build a closed–form definition for the aforementioned halfplanes, considering

the above notations, let x lay on the common edge of the H̃i j and H̃ ji. Then, ‖x− xi‖
2 =

d2
i +
(

∥

∥x− x j

∥

∥

2
−d2

j

)

. Expressing d j in terms of di, the above expression is transformed into
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‖x− xi‖
2 = d2

i +
∥

∥x− x j

∥

∥

2
− (w−di)

2 =
∥

∥x− x j

∥

∥

2
−w2 + 2diw. The latter is the equation of

the common edge of the corresponding halfplanes; thus the H̃i j halfplanes are defined as

H̃i j =
{

x ∈ R2 : ‖x− xi‖ ≤
∥

∥x− x j

∥

∥+w(2di−w)
}

, i, j ∈ In, (3.8)

which is the generalized expression of (3.3).

In the subsequent analysis, node i is supposed to be at a fixed position, while node j can

slide along the straight line that connects them, in order to give a complete definition of H̃i j

(and consequently H̃ ji) for all possible configurations of pairs of nodes. It is evident that w > 0,

since w = 0 implies that the two nodes coincide.

In the case where Ω = R2, the Voronoi cells are unbounded sets; more specifically the

whole space is separated into two halfplanes (H̃i j and H̃ ji), while the separating line is perpen-

dicular to the line connecting the nodes. In standard Voronoi diagrams the value of di is equal

to di = d j =
w
2

, where d j is the distance of node j from the halfplanes’ separation–line, as mea-

sured from node j and towards node i. The maximum sensing radii of the nodes are denoted

as ri and r j, respectively. Figure 3.3 shows the region–assignment to the nodes based on their

radii and positioning. Hatched area corresponds to H̃i j (region of responsibility assigned to

di

(a)

xi xj

(b)

di

xi xj

(c)

di

xi xj

(d)

xi xj

Figure 3.3: Space–partitioning based on the radii and relative positioning of a pair of nodes.
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node i through comparison with node j), while non–hatched is for H̃ ji (region of responsibility

assigned to node j through comparison with node i). Without loss of generality it is supposed

that r j > ri; this does not restrict the definition, since if one can define H̃i j, then H̃ ji is also

defined univocally (as shown from Figs. 3.3). Finally, it should be noted that di > 0 holds in

Figs. 3.3(a)–3.3(b), while in Fig. 3.3(c) di < 0 holds, since di is measured from node i towards

node j.

3.3.2.1 Case I: The nodes’ sensing regions do not overlap

The first case examined is when w≥ ri + r j, as shown in Fig. 3.3(a). This is the case where the

sensing regions of the two nodes do not overlap, i.e Ci∩C j = /0. In order the assignment to be

fair, the separation of the regions of responsibility is chosen to be at

di =
ri

ri + r j

w, d j =
r j

ri + r j

w. ( ri + r j ≤ w ) (3.9)

Practically, this is a weighted version of the standard Voronoi diagrams; the greater the sensing

radius of a node is, the larger is the area it is responsible for, supposing that their sensing areas

do not overlap. This proportionality incorporated in (3.9), is the one that makes the difference

compared to the standard definition.

Equation (3.9) gives the distance at which the separation of the halfplanes takes place, as

measured from nodes i and j, respectively. For a complete space–tessellation, examining Fig.

3.3(a), di +d j = w holds, where both di,d j are positive.

3.3.2.2 Case II: The boundaries of the nodes’ sensing regions intersect

Considering again Fig. 3.3, by sliding node j towards the node i, there will be an instance

where ∂Ci∩∂C j 6= /0, where ∂Ck is the boundary of the set Ck, k ∈ In, which corresponds to a

circle. This condition holds as long as
∣

∣ri− r j

∣

∣≤ w≤ ri + r j. This corresponds to Figs. 3.3(b)–

3.3(c). What is needed to be ensured is a property similar to that in Theorem 3.1. Unique

solution to that is obtained iff di and d j are chosen as the distances from the line that connects

the points where the circles ∂Ci,∂C j intersect.

Let xc be an intersection point of ∂Ci,∂C j. It follows then that ‖xc− xi‖
2 = r2

i and
∥

∥xc− x j

∥

∥

2
=

r2
j . Subtraction of the two latter equations results in ‖xc− xi‖

2 −
∥

∥xc− x j

∥

∥

2
= r2

i − r2
j ⇒

(

d2
i +
∥

∥xc− x j

∥

∥

2
)

−
(

d2
j +
∥

∥xc− x j

∥

∥

2
)

= r2
i − r2

j ⇒ d2
i −d2

j = r2
i − r2

j . It should be noted that

in this scenario, di can take both positive and negative values. However, the nodes’ distance
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w in either case is written as di + d j; indeed, examining Fig. 3.3(c), it is seen that di < 0, and

thus w is written as di +d j. Thus, di +d j = w holds. Substitution of d j in the previous equality

results in d2
i − (w− di)

2 = r2
i − r2

j ⇒−w2 + 2diw = r2
i − r2

j . Solving for di, and in the sequel

computing d j by di +d j = w, the latter are given as

di =
r2

i − r2
j +w2

2w
, d j =

r2
j − r2

i +w2

2w
, ( |ri−Rr j| ≤ w≤ ri + r j ) (3.10)

where di +d j = w holds.

3.3.2.3 Case III: A node’s sensing region is subset of the other’s pattern

The last case examined is when a node’s sensing region is contained exclusively inside the

other’s, i.e. Ci ⊆ C j or C j ⊆ Ci. This case is depicted in Fig. 3.3(d). This is possible when

0 < w ≤
∣

∣ri− r j

∣

∣. In such situation, considering contribution of the node in the network, node

i is totally neglected, since its sensing coverage contribution is absolute zero. Thus, H̃ ji = R2

and H̃i j = /0 (resulting in Ṽi = /0).

What is important is the fact that this checking can be performed initially, and if a node’s

sensing region is found to be subset of another node’s sensing region, then no region of respon-

sibility is assigned to the first, which is neglected from the network. The space separation can

follow among the remaining nodes, according to the given definition. Practically, this means

that one can switch–off these redundant nodes in order to preserve consumed power of the

network.

3.3.3 Properties of the proposed partitioning scheme

3.3.3.1 Properties of proposed partitioning for heterogeneous and homogeneous net-

works

As already seen in section 3.2.3, when standard Voronoi tessellation technique is used for

space–tessellation in homogeneous networks, results of Theorem 3.1 and Theorem 3.2 both

hold. On the other hand, when dealing with heterogeneous ones, none of them hold. What

will be proven in this section is that, application of the proposed Voronoi–partitioning scheme

results in activeness of both properties when dealing with any kind of network (homogeneous

or heterogeneous).
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Theorem 3.3. In a heterogeneous network, where the space–partitioning has been performed

based on (3.7), if a point in the region under surveillance Ω lays in the unexploited region of a

node, then it lays in the sensing region of another node, i.e.

∃i ∈ In : x ∈ Ũi ⇒ ∃ j ∈ In, : x ∈C j, x ∈Ω.

Proof. Consider a heterogeneous network of m nodes. Let ℓ be the number of nodes whose

coverage pattern is subset of another node’s sensing region (Case III, section 3.3.2.3). Since

for those nodes holds that Ṽ = /0, ignoring them results in a network of n = m− ℓ nodes.

Let x ∈Ω∩Ũi. By (2.10) it follows that x ∈
(

Ci \Ṽi

)

.

⋄ Since x ∈Ci, it holds that ‖x− xi‖ ≤ ri.

⋄ Since x 6∈ Ṽi it follows that x ∈
⋃

k 6=i H̃ki⇒∃ j, j 6= i : x ∈ H̃ ji.

From (3.8) it holds that
∥

∥x− x j

∥

∥

2
≤ ‖x− xi‖

2 +w(2d j−w) ≤ r2
i +w(2d j−w), where w =

∥

∥xi− x j

∥

∥.

⋄ If
∣

∣ri− r j

∣

∣≤ w≤ ri + r j (Case II, section 3.3.2.2), then substitution of d j by (3.10) results in
∥

∥x− x j

∥

∥

2
≤ r2

i +w(2d j−w)= r2
i +w

(

2
r2

j−r2
i +w2

2w
−w

)

= r2
i +r2

j−r2
i +w2−w2 = r2

j⇒ x∈C j,

and the result is proven.

⋄ If w > ri + rk holds ∀k ∈ In, then it will be shown that Ũi = /0. The necessary and sufficient

condition for the existence of Ũi 6= /0 is di < ri, considering Fig. 3.3(a). By (3.9) it follows that

di =
ri

ri+r j
w > ri

ri+r j
(ri + r j) = ri. Thus, Ũi = /0 and the property holds.

Theorem 3.4. When space–partitioning has been performed based on (3.7), the total region

surveyed by a heterogeneous network can be written as

C= Ω∩
⋃

i∈In

Ci =
⋃

i∈In

Ṽ r
i , (3.11)

where Ṽ r
i is defined (equivalently to (2.9)) as

Ṽ r
i = Ṽi∩Ci, i ∈ In. (3.12)

Then, its area is given by

A(C) = ∑
i∈In

A
(

Ṽ r
i

)

.

Proof. The proof is identical to that of Theorem 3.2, where utilization of Theorem 3.3 is per-

formed. The only difference lays in the ∼–notations.
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At this point, the “Ṽ r–Estimated Area Coverage Percentage” ( ˆACP
(

Ṽ r
)

), which stands for

the network’s coverage performance as evaluated via the independent r–limited Voronoi cells

(computed via the proposed technique), can be defined as

ˆACP
(

Ṽ r
)

=
A
(
⋃

i∈In
Ṽ r

i

)

A(Ω)
=

∑i∈In
A
(

Ṽ r
i

)

A(Ω)
. (3.13)

Remark 3.1. When dealing with a network whose nodes are all identical (i.e. homogeneous),

the proposed space–partitioning degenerates into the standard one, as concluded by substitut-

ing ri = r j into (3.9)–(3.10). Thus, Theorems 3.1 and 3.2 still hold.

Proposition 3.1. By Theorem 3.4 and Remark 3.1 it follows that the estimated coverage per-

formance via the r–limited Voronoi cells is for any network (homogeneous or heterogeneous)

equal to the real coverage performance, when the region–assignment is performed based on

the proposed scheme, i.e. ACP = ˆACP
(

Ṽ r
)

.

3.3.3.2 Discussion on physical properties of the proposed scheme

In section 3.3.1 two important properties of the proposed scheme were mentioned: fairness and

convexity. Starting on how fair the algorithm is, one should examine more carefully Figs. 3.3.

When the nodes are far away one from the other, then a wise choice is to assign to a weak node

a small responsibility region, since due its very limited sensing capabilities, it has a low upper

bound on its maximum coverage performance (considering its positioning in the plane along

with the area it can cover). When the nodes’ sensing areas intersect, Theorem 3.3 provides a

metric of fairness since each node asserts the region that is covered by itself only, while the

part of the plane that is sensed by both of them is split correspondingly. Finally, when the

sensing region of a “weak” node is subset of that of a “stronger” one, then the “weak” one is

neglected, since its contribution to coverage is zero as long as it stays under the domination of

the “stronger” one.

The second property mentioned is convexity of the nodes’ Voronoi cells. The motivation

for imposing this property is because most coordination algorithms are based on Centroidal

Voronoi Tessellations (CVT) [19, 22, 30]. It is well–known that the centroid of a convex

polygon area lays in the interior of the latter; thus, moving a node towards the centroid of

its Voronoi cell ensures that the node will not leave its own region of responsibility. This is

a main advantage of the proposed scheme regarding weighted–Voronoi techniques that have

been presented in the existing literature [27], where Voronoi cells are in general non–convex
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sets. Regarding (3.7), since Ω is convex and Ω∩ H̃i j are convex (since H̃i j are open halfplanes

in R2), then each Ṽi, i ∈ In is indeed convex, too.

Another interesting issue is the way in which the di,d j change with respect to the nodes

distance w, which can be assured by (3.9), (3.10) and Fig. 3.3. In fact, one can see that no

discontinuity exists at the point where switching takes place, i.e. when w = Ri +R j, as far as

the distances di,d j are concerned.

3.3.3.3 Discussion on degenerate cases arising from the proposed scheme

It should be noted that the aforementioned properties also hold for homogeneous networks

when standard Voronoi tessellation (2.6) is utilized for the partitioning of the space, and form

the core for most Voronoi–based coordination algorithms. The main advantage of the pro-

posed scheme regarding additive/multiplicative weighted–Voronoi techniques that have been

presented in the existing literature [14, 27] is that the nodes’ modified Voronoi cells are all con-

vex sets (since they are the result of the intersection of convex sets), unlike the ones resulting

from weighted–Voronoi techniques, which are in general concave sets. However, the proposed

scheme is characterized as a “space partitioning” one, rather than a “tessellation”, as will be

shown later.

This section is dedicated into highlighting some degenerate cases that arise from applica-

tion of the proposed technique in heterogeneous sensor networks. Let us first examine a simple

scenario: a network consisted of three nodes with different sensing radii, as shown in Fig. 3.4.

In order to perform the proposed space–partitioning technique described in section 3.3.2 the

nodes should be taken in pairs and the H̃i j halfplanes should be defined according to their rel-

ative positioning and radii via Figs. 3.3. After the space–partitioning is completed, one can

observe a small region denoted with red in Fig. 3.4.

Let us call these regions as sole cells since they do not lay (by definition) in any of the

nodes’ Voronoi cells of the network. Let O denote the set of all sole cells in the plane. This

part of the plane neither is it assigned uniquely at one node nor is it assigned to all of them

simultaneously. If the network is homogeneous, then these cells disappear and shrink at a point

which is the common vertex of the neighbor Voronoi cells. What should be noted is that due to

the existence of sole cells, the Voronoi cells Ṽi, i ∈ In computed by the proposed definition do

not constitute a full tessellation of the space.

As seen, the reason that these cells exist is the insistence of keeping the convexity prop-

erty of the Voronoi cells. Indeed, in order to avoid them, one should: (a) either use standard
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Figure 3.4: Space–partitioning via the proposed algorithm for a network consisting of three nodes

in order to show the existence of sole cells.

weighted–Voronoi schemes which constitute a full tessellation of the configuration space, but

the regions of responsibility in that case are in general concave sets, while their computation is

by far more computationally intensive than the proposed one or, (b) use the standard Voronoi

diagrams, whose inappropriateness in heterogeneous networks has already been shown in sec-

tion 3.2.3. An important property concerning these cells follows.

Theorem 3.5. When dealing with a heterogeneous network, where the space–partitioning has

been performed via (3.7), no point in any sole cell belongs to the sensing pattern of any node,

i.e.

x ∈ O⇒ ∄ j : x ∈C j, x ∈Ω

Proof. Let x ∈ Ω∩O. Suppose that ∃ j : x ∈ C j. According to Theorem 3.4, Ω∩
⋃

i∈In
Ci =

⋃

i∈In
Ṽ r

i ; thus Ω∩C j ⊆
⋃

i∈In
Ṽ r

i . Consequently, Ω∩C j∩O⊆
⋃

i∈In
Ṽ r

i . Since x∈Ω∩C j∩O and
⋃

i∈In
Ṽ r

i ⊆
⋃

i∈In
Ṽi, it follows that x ∈

⋃

i∈In
Ṽi. But, since x ∈ O⇒ x 6∈

⋃

i∈In
Ṽi. Consequently,

the assumption that ∃ j : x ∈C j is incorrect; thus, the result of the theorem holds.

The last two cases examined have already been presented previously, but without any dis-

cussion. Referring to Fig. 3.3(c), it is easy to observe that in all cases node i, although owning

a Voronoi cell, is outside of it. Figure 3.3(c) differs from Fig. 3.3(d) in the fact that in the first,
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3.3 Proposed Partitioning of the Space

the r–limited Voronoi cell of the node is not empty; thus, the node does have the perception

that its contribution to coverage is not zero at all (as happens in Fig. 3.3(d)).

Remark 3.2. The set O∪
⋃

i∈In
Ṽi consists a complete tessellation of Ω.

Proof. The proof is straightforward by definition of O.

The cases discussed above are summarized and illustrated in Fig. 3.5, in order to provide

an insight to the resulting space partitioning scheme.

no cell
assigned

Figure 3.5: Voronoi partitioning via the standard [left] and modified [right] technique for a hetero-

geneous network to emphasize in the degenerate cases arisen.

Considering utilization of the aforementioned space partitioning scheme in swarm coordi-

nation applications, a smoothness analysis is essential. Observing Fig. 3.3, one can verify that

the modified Voronoi cell of a node does not alter in a continuous manner (during the transition

depicted in Figs. 3.3(c)–3.3(d)). However, considering coverage applications, the aforemen-

tioned analysis should be performed for the corresponding r–limited modified Voronoi cells of

the nodes instead, which capture their sensing performance.

Remark 3.3. The nodes’ r–limited modified Voronoi cells are smooth (rectifiable) sets.

Proof. Recalling (3.7), the r–limited modified Voronoi cell of a node i can be written as

Ṽ r
i = Ṽi∩Ci =

⋂

j∈In

H̃i j ∩Ci∩Ω.

The discontinuity in H̃i j halfspace during comparison of two arbitrary nodes lays during the

transition depicted in Figs. 3.3(c)–3.3(d). However, during this transition it is apparent that the

sets Ci∩ H̃i j and C j ∩ H̃ ji vary smoothly; more specifically, the sets Ṽ r
i , Ṽ r

j shrink at /0 (empty–

set) and C j (depending on the relation among their radii), respectively, in a continuous manner.

Consequently, Ṽ r
i is smooth, as the intersection of smooth sets.
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3. COVERAGE BY HETEROGENEOUS NETWORKS

3.3.4 Numerical results

Numerical studies are carried out in this section, in order to show the efficacy of the proposed

scheme. The region Ω to be surveyed is a convex set in R2, the area of which is A(Ω) =

5.08 units2.

The nodes are deployed in the interior of Ω in a random manner. At the first study, their

number is n = 7, while their sensing radii are chosen as ri = 0.08i units, i ∈ In, where the

network’s heterogeneity is evident.

The assigned regions of responsibility (Voronoi cells) for each node, via the standard

Voronoi tessellation scheme is shown in Fig. 3.6(a). The nodes are numbered from 1 to 7

according to their sensing radius. At first, one sees that the whole region Ω is partitioned into

cells that are assigned to all of the nodes. The problem though is, that the assignment is not as

fair as one should need. Indeed, considering nodes 1 and 7, it is apparent that, although node 1

is dominated by node 7, it is responsible for a large part of node’s 7 pattern. Furthermore, the

result of Theorem 3.1 does not hold at all, as expected. As a result, Theorem 3.2 does not hold,

too, giving the nodes an illusionary perception of their coverage contribution. Computation of

the network’s coverage performance via the covered parts of all nodes’ Voronoi cells (r–limited

Voronoi cells) via (3.6) results in ˆACP(V r) = 38.20%, while the real coverage performance is

given by (3.5) as ACP = 50.01%.

(a) (b)

Figure 3.6: Voronoi partitioning via the standard [left] and proposed [right] technique for a het-

erogeneous network consisted of n = 7 nodes (Case Study 1).

Figure 3.6(b) shows the region–assignment at the nodes, when the proposed technique is

used. At first, one can notice the existence of sole–cells (denoted with gray), which were
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described in section 3.3.3.3. However, important is the fact that, due to the way that the Ṽi

definition was built, no point inside any sole–cell is sensed by any node (Theorem 3.5). Apart

from that, one can see that no region of responsibility is assigned to node 1, since it is under

the influence of node 7. As for Theorem 3.3, it holds for any part of the network, which is also

seen clearly by the common Voronoi edge of any two nodes that their sensing patterns overlap.

Finally, computation of the network’s coverage performance via (3.13) results in ˆACP
(

Ṽ r
)

=

50.01 = ACP%, as expected due to Proposition 3.1. Thus, the nodes of the network are aware

of their own contribution in coverage, as evaluated by the area of their r–limited Voronoi cells,

while Theorem 3.4 holds.

In our second study, the nodes are not deployed randomly in Ω as previously, but are

positioned in a more “symmetric” manner. More specifically, the coordinates used are the final

positions of the agents in Fig. 4.5 of [15]. The number of nodes is n = 16, while their radii ri

are set uniformly randomly between 0.15 and 0.6 units.

The assigned regions of responsibility (Voronoi cells) for each node, via the standard and

proposed space–partitioning scheme are shown in Fig. 3.7(a) and 3.7(b), respectively. Unlike

previously, the nodes in this case are not numbered to avoid unreadability of the resulting

figures.

(a) (b)

Figure 3.7: Voronoi partitioning via the standard [left] and proposed [right] technique for a het-

erogeneous network consisted of n = 16 nodes (Example 2).

Considering Fig. 3.7(a), it is clear that the region–assignment among the nodes via (2.6) is

not preferable, since the heterogeneity of the nodes’ radii is not taken into account. On the other

hand, Fig. 3.7(b) indicates that, although the space is not completely tessellated, the resulting

region–assignment is the desired one, considering the heterogeneous nature of the network.
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As for the network’s coverage performance (in the three ways defined by (3.6), (3.5) and

(3.13)), it is computed as ˆACP(V r) = 68.32% and ACP = ˆACP
(

Ṽ r
)

= 84.66%. Furthermore,

it should be noted that the result of Theorem 3.5 concerning the sole cells (gray regions) holds,

as expected. Apart from that, it is seen that three of the nodes of the network (the ones with the

three smallest radii), although owning a Voronoi cell, do not lay in its interior. However, they

do contribute to its coverage, since Ṽi∩Ci 6= /0.

3.4 Proposed Algorithm for Optimum Area Coverage

3.4.1 Preliminaries

A space partitioning scheme suitable for heterogeneous networks has been developed and ana-

lyzed in previous section. The nodes are assumed to sense in an omnidirectional way, yet their

maximum reliable sensing distance differs. The design of a distributed motion coordination

scheme is to be developed in this section, based on the presented partitioning. Unlike the con-

cept in Chapter 2, where the nodes were evolving in discrete time steps, continuous time motion

of the latter is assumed in this chapter. Furthermore, let the density function φ : Ω⊂R2→R+

describe the importance of any point x ∈ Ω (considering surveillance purposes), representing

the probability of an event to take place at x.

Each mobile node is assumed to move in Ω via the control inputs ui ∈ R2, while governed

by simplified first–order kinodynamics, provided as

ẋi = ui, ui ∈ R2, xi ∈Ω, i ∈ In, (3.14)

where the nodes’s dimensions are assumed negligible. The sensing domain of the nodes in the

network is that presented in (3.1). A node’s performance function fi : Ω ⊂ R2 → R+ (repre-

senting the “amount” at which a point x is surveyed by node i) can be described by the indicator

function 1Ci∩Ω, where 1D (x) = 1 if x ∈ D and 0 if x /∈D, for an arbitrary set D⊂ R2.

In order for the members of the network to be able to exchange information among them

(concerning their spatial coordinates and sensing radii), radio transceivers are assumed to be

mounted on their platforms, where the latters’ node–centered radiation patterns are assumed

circular. All nodes that lay in the radiation pattern are assumed connected with the correspond-

ing node, while (bidirectional) communication is supposed to be performed instantaneously.

Let the nodes be initially deployed randomly in Ω; the main objective is to design a decen-

tralized coordination algorithm in a way that the nodes are able to self–position themselves at
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certain spatial coordinates, such that an aggregate objective function H is optimized. In this

thesis, the area–related problem is examined, since it is often met in most practical scenarios

on coordination of ground/aerial swarms [10, 32]. Considering (3.1) and the density φ over Ω,

the total area of Ω (weighted according to φ ) surveyed by the network (i.e. the area of the set

Ω∩
⋃

i∈In
Ci) that needs to be (locally) maximized can be written as

H =
∫

Ω
max
i∈In

fi (x)φ (x)dx. (3.15)

Note that (3.15) strays away from the numerical polygonal–based expressions presented in

Chapter 2, but allows for far more efficient control designs due to its analytical form.

In a coverage optimization scenario, the agents should move in a way to try and cover the

whole space Ω (ideally, if possible), considering their limited sensing capabilities. Utilization

of Voronoi tessellation in order to decompose the space and assign it among the nodes indicates

that itself alone is not sufficient for the motion algorithm, since it is based only on the nodes’

positioning, without having taken into consideration the sensing parts Ci. The main contribu-

tion of Voronoi diagrams in swarm coordination applications is the fact that their evaluation can

be performed independently by the nodes themselves (without the need for a global coordina-

tor) [16]; in fact, each node that needs to evaluate its Voronoi cell at an arbitrary time instance

needs information only from its Delaunay neighbors, ignoring the status of the rest members of

the network. The fact that only local information is required for the coordination algorithm is

the one makes them applicable in real–time applications. Among the different objectives that

can be assigned to a set of mobile nodes, in this thesis area–coverage maximization of a certain

domain of interest is examined.

It is easily proven that for homogeneous networks and for fi being the indicator function

1Ci∩Ω, the criterion (3.15) can be written as [16]

H= ∑
i∈In

∫

Vi

fi (x)φ (x)dx = ∑
i∈In

∫

V r
i

φ (x)dx = ∑
i∈In

Hi. (3.16)

Practically, the above expression indicates that the total (φ–weighted) area surveyed by the

network (H) is decomposed as the summation of the areas surveyed by each node in the interior

of their Voronoi cells (Hi). Unfortunately, the aforementioned property does not hold when

the nodes’ sensing radii differ. Hence, an issue of major importance is the partitioning scheme

according to which the responsibility spaces are assigned, before one should proceed to the

coordination algorithm design.
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3.4.2 Coordination Algorithm Development

As mentioned in the previous section, the main objective is to design a decentralized coordi-

nation algorithm, such that the total volume surveyed by the network, as provided in (3.15), is

(locally) maximized along the nodes’ trajectories. The problem has been treated in [21] and

[13] in a more generalized manner (i.e. for different performance criteria); however, the nodes

were considered homogeneous in regard to their sensing capabilities, while standard Voronoi

partitioning of the space was used. Before proceeding to the main result, let us define some

notations that will be used.

Let ni be the outward unit normal at an arbitrary point x of ∂V r
i , i.e. ‖ni (x)‖ = 1 and

ni (x) ⊥ ∂V r
i |x, x ∈ S ⊆ ∂V r

i , pointing towards the exterior of ∂V r
i , where ∂S stands for the

boundary of the compact set S. Then, taking into account the nodes’ kinodymanics described

in (3.14) and considering the network homogeneous (i.e. ri = r > 0, ∀i ∈ In), the control law

ui =
∫

∂V r
i ∩∂Ci

ni φ dx, i ∈ In, (3.17)

leads in a network configuration where H is maximum, as proposed in [21]. Apparently, in

the previous expression, the set ∂V r
i ∩ ∂Ci represents the parts of the sphere ∂Ci that lay in

the interior of Vi. It should be noted that since V r
i are compact sets, then ∂V r

i are closed and

non–self–intersecting; thus, the exterior of the latter is always well–defined, considering the

orientation of ni (x) , x ∈ ∂V r
i ∩∂Ci ⊂ ∂V r

i .

Thus, intuitively, one can consider the parts of the sphere ∂Ci that lay on the boundary of

the blind domains (∂Bi) as “attractors”. The network topology at the converged (optimum)

state is usually referred as area–centered configuration [21], due to the fact that, apart from H

being optimized, each integral Hi =
∫

V r
i

φdx, i ∈ In of (3.16) is also locally optimum.

This section proposes utilization of that philosophy for the coordination of a network con-

sisted of heterogeneous nodes. Unlike previous works which deal with mobile nodes of unequal

or anisotropic sensing patterns [19, 29, 30, 33], partitioning of the configuration space is based

on the modified Voronoi definition. Equivalently to the notations appearing in (3.17), let us

denote as ñi the outward unit normal at an arbitrary point x of ∂Ṽ r
i , in order to avoid conflicts

in the notations.

Theorem 3.6. Considering a mobile sensor network consisted of heterogeneous nodes with

sensing domains as in (3.1), governed by (3.14), the coordination scheme

ui =

∫

∂Ṽ r
i ∩∂Ci

ñi φ dx, i ∈ In (3.18)
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optimizes the performance criterion (3.15) along the nodes’ trajectories, leading in a (mod-

ified) volume–centered configuration of the network.

Proof. Considering (3.15) and Remark 3.2 it holds that

H=

∫

Ω
max
i∈In

fi φ dx =

∫

O

max
i∈In

fi φ dx+ ∑
i∈In

∫

Ṽi

max
i∈In

fi φ dx.

By Theorem 3.5, since Ci ∩O = /0, ∀i ∈ In it is concluded that fi (x) = 0, x ∈ O, ∀i ∈ In, and

thus the first integral vanishes. Considering the second part, it holds by Theorem 3.3 that

max
j∈In

f j (x) = fi (x) , x ∈ Ṽi.

More specifically, if x∈ Ṽ r
i then max j∈In

f j (x) = 1= fi (x). Alternatively, if x∈ B̃i, then fi (x) =

0 and f j (x) = 0, ∀ j ∈ In \{i}; indeed, if we suppose that f j (x) = 1 for some j ∈ In, then x∈ Ũ j.

But then it should hold that x ∈Ci by Theorem 3.3, which contradicts with the hypothesis that

x ∈ B̃i. Taking into account that Ṽ r
i and B̃i consist a tessellation of Ṽi leads to the result above.

Consequently, H can be written as

H = ∑
i∈In

∫

Ṽi

fi φ dx = ∑
i∈In

∫

Ṽ r
i

φ dx,

where fi = 1Ci
was utilized. Taking the partial derivative of H with respect to xi we have

∂H

∂xi

=
∂

∂xi

(

∫

Ṽ r
i

φ dx

)

+
∂

∂xi

(

∑
j 6=i

∫

Ṽ r
j

φ dx

)

.

At this point, taking into account that φ is independent of xi, and the fact that infinitesimal

motion of xi may affect Ṽ r
j iff ∂Ṽ r

i ∩ ∂Ṽ r
j 6= /0, the above expression can be rewritten via the

generalized Leibniz integral rule [34] as

∂H

∂xi

=
∫

∂Ṽ r
i

υ̃ i
i ñi φ dx+∑

j 6=i

∫

∂Ṽ r
i ∩∂Ṽ r

j

υ̃ i
j ñ j φ dx,

where ñi (ñ j) is the outward unit normal at ∂Ṽ r
i (∂Ṽ r

j ) and υ̃ i
i , υ̃

i
j stand for the Jacobian matrices

with respect to xi of the points x ∈ ∂Ṽ r
i , x ∈ ∂Ṽ r

j , respectively, i.e.

υ̃ i
j (x),

∂x

∂xi

, x ∈ ∂Ṽ r
j , i, j ∈ In. (3.19)

Considering the first integral, parts of ∂Ṽ r
i may possibly lay either on ∂Ω, ∂Ci, ∂O (possible

neighboring sole cells), or on the boundary of a neighboring modified r–limited Voronoi cell

47



3. COVERAGE BY HETEROGENEOUS NETWORKS

sole
cell

xi

Figure 3.8: Decomposition of the set ∂Ṽ r
i into mutually disjoint sets.

(
⋃

j 6=i ∂Ṽ r
i ∩∂Ṽ r

j ), as shown for visualization purposes in Fig. 3.8. Consequently, the boundary

∂Ṽ r
i can be decomposed as

∂Ṽ r
i =

{

∂Ṽ r
i ∩∂Ω

}

∪
{

∂Ṽ r
i ∩∂Ci

}

∪
{

∂Ṽ r
i ∩∂O

}

∪

{

∂Ṽ r
i ∩

⋃

j 6=i

∂Ṽ r
i ∩∂Ṽ r

j

}

.

But, since the above sets are disjoint, ∂H
∂xi

can be written as

∂H

∂xi

=

∫

∂Ṽ r
i ∩∂Ω

υ̃ i
i ñi φ dx+

∫

∂Ṽ r
i ∩∂Ci

υ̃ i
i ñi φ dx+

∫

∂Ṽ r
i ∩∂O

υ̃ i
i ñi φ dx+

∫

∂Ṽ r
i ∩
⋃

j 6=i ∂Ṽ r
i ∩∂Ṽ r

j

υ̃ i
i ñi φ dx+∑

j 6=i

∫

∂Ṽ r
i ∩∂Ṽ r

j

υ̃ i
j ñ j φ dx.

Considering the third integral, if we assume that Ṽ r
i ∩O 6= /0, then there exist parts of the

ball Ci that lay in O, which contradicts with Theorem 3.5. Thus, ∂Ṽ r
i ∩ ∂O is a singleton

or the empty–set, leading in vanishing the aforementioned integral term. As far as concerns

the first integral, it is apparent that υ̃ i
i = 0 at x ∈ ∂Ṽ r

i ∩Ω since all x ∈ ∂Ω remain unaltered

by infinitesimal motions of xi. Finally, simplifying the boundary set of the fourth integral as

∂Ṽ r
i ∩

⋃

j 6=i ∂Ṽ r
i ∩∂Ṽ r

j =
⋃

j 6=i ∂Ṽ r
i ∩∂Ṽ r

j leads in

∂H

∂xi

=

∫

∂Ṽ r
i ∩∂Ci

υ̃ i
i ñi φ dx+∑

j 6=i

∫

∂Ṽ r
i ∩∂Ṽ r

j

(

υ̃ i
i ñi + υ̃ i

j ñ j

)

φ dx.

With respect to the parts of the sphere that lay in Ṽi, i.e. ∂Ṽ r
i ∩ ∂Ci, any point x on that

set moves along the direction of xi with the same rate. Thus, it is apparent (considering pure

translational motion of xi) that υ̃ i
i (x) = IN , where IN stands for the N×N identity matrix.

In order to complete the proof, one should examine that υ̃ i
i (x) ñi (x) = −υ̃ i

j (x) ñ j (x) at

x ∈ ∂Ṽ r
i ∩∂Ṽ r

j . But, υ̃ i
i (x) = υ̃ i

j (x) on the set ∂Ṽ r
i ∩∂Ṽ r

j by definition of the Jacobian matrices
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υ̃ provided in (3.19). Furthermore, it is clear by Figs. 3.3(b)–3.3(c) that ñi = −ñ j at x ∈

∂Ṽ r
i ∩∂Ṽ r

j , since this is the common part of the line separating Ṽi,Ṽj. Indeed, even considering

the degenerate case where a node lays in the exterior of its Voronoi cell (see Fig. 3.9), it can be

seen that Ṽ r
i and Ṽ r

j lay on either side of the separating halfplane (degenerated in line in R2),

leading in the result at the common edge.

xi

ni

Vi Vj

xj

~~

~
nj

Vi Vj

xi xj

~

~

~

Figure 3.9: Graphical representation of ñi, ñ j at the common boundary ∂Ṽi∩∂Ṽ j for the degenerate

case where xi /∈ Ṽi.

Considering the above, ∂H
∂xi

is simplified into (3.18), while recalling (3.14) it is concluded

that (3.18) leads to a gradient flow of H along the nodes trajectories.

However, control law (3.18) assumes that each node is able to identify its own (modified)

r–limited Voronoi cell. Thus, in order for the algorithm to be considered decentralized over a

non–fully–connected graph of the network, the subset of nodes needed for its evaluation must

be defined properly.

3.4.3 Connectivity Issues

Considering distributed approaches, each mobile node is assumed to be equipped with radio

transceivers in order to be able to exchange information concerning its state with other members

of the network. Let node i with sensing radius ri be the arbitrary node for which the analysis

will be performed. In a neighbor–identification scheme, the main concept lays in gradual

increase of the communication radius from one step of the algorithm to another, until all nodes

that can possibly affect the node’s modified r–limited Voronoi cell are identified [16, 35, 36],

considering (3.18). What needs to be determined properly is a critical communication radius

Ri of node i which guarantees sufficient information from the neighboring nodes for evaluating

Ṽ r
i .
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Taking into account the heterogeneity of the network, it is apparent that the space partition-

ing presented in section 3.3 is based on the sensing radii of the nodes, apart from their spatial

coordinates, and thus it is assumed that each node transmits its sensing radius along with its

spatial coordinates during inter–communication. In this section, two scenarios are examined,

considering knowledge of other members’ sensing capabilities, as presented in the sequel.

3.4.3.1 Case A: A–priori knowledge of the maximum sensing radius among all nodes of

the network

Let us denote as r̄ the maximum sensing radius among all nodes of the network, i.e.

r̄ = max{ri, i ∈ In} . (3.20)

In the first case examined, each node is assumed to have a–priori knowledge of r̄. Discussing

on the applicability of the aforementioned assumption, since the sensing radii of the nodes are

fixed and do not alter during network evolution, it is not as conservative as it may seem. Apart

from that, although r̄ is assumed to be a–priori known to the members of the network, the node

to which that radius corresponds is not demanded to be known. At this point, a (conservative)

lower bound on the communication radius Ri of node i, so that the control law (3.18) can be

evaluated independently by each node, is stated in the following proposition.

Proposition 3.2. For an arbitrary node i, the sufficient information for evaluation of Ṽ r
i in a

decentralized manner is obtained by the nodes that lay within range of ri + r̄.

Proof. The main concept behind determining a low bound on the corresponding radius lays

in gradual increase of the latter, until it is guaranteed that any other “unidentified” node of

the network does not alter the node’s modified r–limited Voronoi cell (i.e. it does not affect

the result of the control law). Taking into account the definition for the sets Ṽ r
i (concluded

straightforward by (3.7) and (2.9)), along with the generalized expression of the halfspaces H̃i j

provided in (3.8), one can express the aforementioned condition equivalently to Ṽ r
i ⊂ H̃i j for

any other unidentified node j of the network.

However, examining Fig. 3.3(a), one can conclude that the critical case is when
∥

∥xi− x j

∥

∥=

ri+r j. Considering the worst case scenario, the arbitrary node j can be assumed to be the node

of the network at which r̄ corresponds (i.e. r j = r̄). Existence of another node k in a distance

from node i larger than ri + r̄, i.e. ‖xi− xk‖ ≥ ri + r̄, does not affect the evaluated modified r–

limited Voronoi cell; indeed, considering di the distance of node i from the halfplane separating
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H̃ik and H̃ki halfspaces (see Fig. 3.2), along with the expression of di that corresponds to Fig.

3.3(a) (i.e. ‖xi− xk‖ ≥ ri + rk) by equation (14) of [37], it holds that

di =
ri

ri + rk

‖xi− xk‖ ≥
ri

ri + rk

(ri + r̄)≥ ri.

Consequently, H̃ik ⊃Ci ⊇ Ṽ r
i , and thus the result is proven.

It should be noted that during network’s evolution there is no need for adjustment of the

nodes’ communication radii Ri, assuming that the latter have been pre–set to the bound derived

above, in order to guarantee inter–agent communication with the sufficient subset of nodes

needed for Ṽ r
i evaluation.

3.4.3.2 Case B: A–priori knowledge of the sensing–radii–set of the network

In this case–scenario, in order to derive a more strict bound on the communication radius Ri

of the nodes, it is assumed that each node of the network has a–priori knowledge of the set r,

which contains the sensing radii of all members the network, i.e.

r =
{

r j, j ∈ In

}

, (3.21)

whereas the bijection mapping from the set In onto the set r is unknown to any node. It should

be noted that in the case where two (or more) nodes have equal sensing radii (i.e. ri = r j for a

pair of nodes i 6= j), then their sensing radius is included twice (or more) in the set r.

Let us denote with (·)(k) a variable as evaluated by node i at the k–th iteration of the radio–

range adjustment scheme proposed. Let r
(k)
rem stand for the set containing the radii of the remain-

ing nodes that have not been identified until step k. An arbitrary node i gradually increases Ri

until another neighbor node is identified in its range. By denoting this arbitrary neighbor node

as m, the estimated modified r–limited Voronoi cell of node i at step k is then evaluated recur-

sively as Ṽ
r(k)

i = Ṽ
r(k−1)
i ∩ H̃im. By the time that node m is identified, node i can update the

radii–set of the remaining (i.e. unidentified yet) nodes of the network as r
(k)
rem = r

(k−1)
rem \{rm}.

At this stage, a worst case scenario approach is followed. More specifically, an estimation is

performed on the worst possible positioning and radius of any other node of the network, so

that the modified r–limited Voronoi cell, as already evaluated, is marginally altered. Hence, a

communication radius bound is computed to compensate for that (worst) case. The radio–range

adjustment algorithm terminates when the current radius is greater or equal to that bound. It

should be noted that the latter differs from one step of the algorithm to another.
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Proposition 3.3. At the k–th step of the radio–adjustment–range scheme, the minimum re-

quired range of node i, in order to compensate for the worst case scenario (considering posi-

tioning and sensing range) for any unidentified node is

R
wcs(k)
i =

(

1+
maxr

(k)
rem

ri

)

sup
{

‖xi− x‖ , x ∈ ∂Ṽ
r(k)

i

}

.

Proof. Following the same concept as in the previous case–scenario considered, let us assume

that the neighbor unidentified node m has sensing radius equal to rm =maxrrem. The worst case

scenario for the position of node m is to lay in such spatial coordinates where the halfplane that

separates the halfspaces H̃im,H̃mi marginally crosses the farthest point of ∂Ṽ r
i , as presented

graphically in Fig. 3.10. Considering Fig. 3.2, this is the case where the distance of node i

ri

Ri

wcs

maxrrem

xi

artificial node
(worst case scenario)

m

halfplane marginally

the boundary of

(worst case scenario)

Vi

r

crossing

nodes already
identified

Figure 3.10: Graphical representation of the worst case scenario determination during the radio–

range adjustment scheme.

from the aforementioned halfplane is

di = sup
{

‖x− xi‖ , x ∈ ∂Ṽ r
i

}

.

Combining the aforementioned expression with the one provided in the proposed space parti-

tioning definition [37], i.e.

di =
ri

ri + rm

‖xi− xm‖ ,

and solving for ‖xi− xm‖, results in

‖xi− xm‖=

(

1+
rm

ri

)

sup
{

‖x− xi‖ , x ∈ ∂Ṽ r
i

}

.

Considering the worst case scenario, i.e. rm = maxrrem, along with setting Rwcs
i equal to

‖xi− xm‖ leads to the result.
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Remark 3.4. The value for Ri resulting from Proposition 3.3 forms a tighter bound than the

one presented in Proposition 3.2.

Proof. The proof is straightforward by taking into account that sup
{

‖xi− x‖ , x ∈ ∂Ṽ
r(k)
i

}

≤ ri

(since Ṽ r
i ⊆Ci) and maxr

(k)
rem ≤ r̄.

The radio–range adjustment scheme proposed, based on Proposition 3.3, is summarized in

Algorithm 3.1.

Algorithm 3.1 Distributed Radio–Range Adjustment Scheme for Heterogeneous Networks

1: rrem← r\{ri}

2: Rwcs
i ← ri +maxrrem

3: while Ri < Rwcs
i & rrem 6= /0 do

4: increase Ri

5: identify nodes in range

6: if node m detected then

7: update Ṽ r
i

8: update rrem

9: update Rwcs
i

10: end if

11: end while

It should be noted that, although Proposition 3.2 provides a more conservative bound than

Proposition 3.3, radio–range adjustment is not required in the first case, which might be desir-

able, depending on the application.

3.4.4 Simulation Studies

Simulation studies are presented in this section in order to show the efficacy of the proposed

scheme. The region Ω to be surveyed is a convex set in R2, identical to that used in [15, 21].

The weighting function φ was selected constant and equal to unity for visualization purposes,

in both cases. In the first simulation study, the number of nodes is set to n = 10, while their

kinematics are described by (3.14). The network heterogeneity is captured into their sensing

radii, which were selected to vary between 0.18 and 0.5 units, resulting in a ratio between

maximum and minimum sensing radius of the network around 2.5, while the standard deviation

(std) of the set {ri, i ∈ In} is evaluated as σ = 0.1 units.
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Two series of simulations are performed for each study; at first, the control action is based

on standard Voronoi tessellation via the control law (3.17), while in the sequel, the modified

space partitioning scheme is utilized, while the control law is provided in this case by (3.18).

The nodes are initially deployed randomly in Ω, while the same initial configuration is used for

both control laws considered. Considering the radii of the nodes, the maximum theoretically (if

possible) achievable sensing area corresponds to ∑i∈In
πr2

i = 4.01 units2, while the area of the

region of interest is given as
∫

Ω dx = 5.081 units2. In the case that the nodes can self–position

themselves in a configuration where there is no overlapping among their sensing patterns or

with the boundary of Ω, they can cover
∑i∈In πr2

i
∫

Ω dx
= 78.9% of Ω (best case scenario).

Considering the standard Voronoi partitioning case, the nodes’ initial configuration, their

evolution through time, along with the final network’s state, when the control scheme presented

in (3.17) is applied, are shown in the top row of Fig. 3.11 (i.e. Figs. 3.11(a)–3.11(c)), in this

order. As far as concerns the final nodes’ state, it is apparent that the way they have self–

(a) (b) (c)

(d) (e) (f)

Figure 3.11: Case Study I — Coordination results derived via standard [top row] and modified

[bottom row] Voronoi partitioning, respectively. [Left column] Initial network configuration. [Mid-

dle column] Network evolution through time. The black circles (blue squares) represent the nodes’

final (initial) positions. [Right column] Final network state.

positioned themselves is not optimal at all, considering coverage criterion. The way in which

the area of the covered region increases during network evolution is shown with the blue line

in the left part of Fig. 3.12. The black dotted line represents the maximum possible coverage

ratio, i.e. 78.9%. More specifically, the sensed area percentage, starting from an initial value
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Figure 3.12: Percentage of covered area w.r.t. time for standard [blue line] and modified [red line]

Voronoi partitioning utilization in the control law. Left (Right) part stands for Case Study I (II).

of 21.64% (dependent on the initial network configuration), increases as time passes, until it

converges to 58.08% at around 4 secs.

In the sequel, the coordination algorithm proposed in this chapter—provided in (3.18)—is

applied, which bases its action on the modified space partitioning presented in Section 3.3. In a

similar manner, as in the previous case, the nodes’ initial configuration, their evolution through

time, along with their final topological state are shown in Figs. 3.11(d)–3.11(f), respectively.

Contrary to the previous case, the mobile network achieves coverage ratio equal to 78.81%

in less than 10 secs, as indicated by the red line in the right part of Fig. 3.12. It should be

noted that the total sensed area converges to the extremum in a monotonic manner, as proven

in Section 3.4.2.

During the second simulation study, a network consisted of n = 7 nodes is examined; how-

ever, in this case, there exists overlapping among the nodes’ sensing patterns in the converged

state. Apart from that, the network’s heterogeneity is emphasized even more via higher std in

the nodes’ radii (σ ≈ 0.2 units), while the maximum radius present in the network is about 3.5

times larger than the smallest one.

Similarly to the previous case–study examined above, the nodes’ initial configuration, their

evolution through time, along with their final configuration are shown in Figs. 3.13(a)–3.13(c)

for standard–Voronoi–based coordination, and Figs. 3.13(d)–3.13(f) when the modified parti-

tioning scheme is utilized, respectively. One can observe that, although the maximum (ideally)

coverage ratio is 100% in that case, none of the algorithms achieve it, while overlapping is

present in the final (converged) network’s state. However, as shown in the right part of Fig.

3.12, the region of interest is covered/sensed by approximately 95% via the proposed scheme,
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(a) (b) (c)

(d) (e) (f)

Figure 3.13: Case Study II — Coordination results derived via standard [top row] and modified

[bottom row] Voronoi partitioning, respectively. [Left column] Initial network configuration. [Mid-

dle column] Network evolution through time. The black circles (blue squares) represent the nodes’

final (initial) positions. [Right column] Final network state.

which is more than satisfactory, compared to the one provided via standard Voronoi partition-

ing, 80.5%.

It should be noted that, in both scenarios presented, convergence to the global optimum of

H is not the case; in fact, the only way to guarantee existence of a configuration for global

coverage optimization of Ω is via global optimization techniques, something that is beyond the

scope of this thesis.

3.5 Conclusions

In this chapter a control scheme for motion coordination of the nodes in a heterogeneous sensor

network has been proposed. The mobile agents are supposed to have circular sensing patterns

whose radii differ, while the control approach is based on a space partitioning algorithm suit-

able for heterogeneous networks. The proposed technique leads in an area–coverage optimum

configuration in a distributed manner. Results indicate the efficacy of the suggested control

scheme when the modified Voronoi definition is utilized, compared to standard Voronoi–based

ones.
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4

Area Coverage by Anisotropic

Networks

4.1 Introduction

Assuming networks with homogeneous capabilities among their mobile nodes, distributed co-

ordination algorithms have been developed in order to lead the nodes towards a desired topo-

logical configuration [38]. Cooperative action of agents via nearest neighbor rules for flocking

purposes have been proposed in [39, 40], while several approaches base their action in ge-

ometric characteristics of the Voronoi–tessellation–based assigned spaces among the nodes

[16, 21, 22].

The distributed nature of the previous approaches is either guaranteed via proper adjust-

ment of the RF power of the nodes’ antennas [12], or via incorporation of extra constraints

in the control design procedure [41, 42, 43]. Coordination of heterogeneous groups of agents

considering their sensing abilities has been performed via utilization of alternate schemes for

partitioning of the configuration space [26, 31, 37, 44, 45]. In these works the nodes’ sensing

patterns were assumed circular of fixed radii, though the latter were allowed to be unequal

among the members of the swarm.

Most of the works in the literature consider networks where the nodes’ sensing footprints

are node–centered circular ones [16, 21]; however, in most applications this is rather unusual.

This chapter examines the case where a node’s sensing region is approximated as any arbitrary

convex set, while the node is not demanded to be centered at the pattern’s centroid (equivalently

to the circle–scenarios). This provides a major advantage in the overall network’s coverage
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performance, although increasing the control law complexity. The nodes’ pattern is assumed

to be identical for all nodes of the network, both in orientation and scaling terms.

It should be stated that coordination schemes have been developed in the case where the

nodes have wedge–shaped sensing patterns [19, 30], while allowing rotation of the pattern dur-

ing the nodes’ motion. In this work, we develop a control law that relies on certain Helly–type

theorems concerning homothets of planar convex curves [46, 47], allowing no rotation. How-

ever, the nodes’ sensing domains are not restricted to wedge–shaped ones, but are considered

as any strictly convex compact planar set, instead.

In section 4.2 the main assumptions concerning the network are defined, while the area–

coverage objective by a set of mobile agents is introduced, in the case where the footprints are

governed by a high degree of anisotropy. Considering non–radial sensor patterns, the tessella-

tion of the space into subsets assigned at the nodes is defined in the sequel, based on properties

for homothets of planar convex curves. The proposed coordination algorithm is developed in

Section 4.3.2, the distributed nature of which is analyzed, assuming omnidirectional antennas.

Illustrative examples are provided that emphasize in the advantages of the proposed law over

approximating the sensing domain of the nodes as node–centered circular ones.

The coverage problem is revisited in section 4.4 in order to allow for rotating footprints of

the nodes. The proposed innovative generalized partitioning is utilized in the control frame-

work design in order to properly regulate both the nodes’ translation and rotation during their

convergence towards optimum topology. Its supremacy over existing techniques is further in-

dicated by simulations, amending for almost any arbitrary sensing pattern.

4.2 Preliminaries — Motivation

4.2.1 Main Assumptions and Definitions

Consider n available mobile nodes responsible for the sensing coverage of a convex compact

region Ω⊂R2. Let the density function φ : Ω⊂R2→R+ describe the importance of any point

x ∈Ω, considering sensing coverage purposes (e.g. representing the probability of an event to

take place at x). Let the set Ia contain all natural numbers up to a, i.e. Ia = {k ∈N | k ≤ a}.

The nodes positions are denoted by xi, i ∈ In.

Each node’s motion is assumed to be governed by simplified kinodynamics as

ẋi = ui, xi ∈Ω, ui ∈ R2, i ∈ In. (4.1)
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Each mobile agent is equipped with an on–board sensor, where its sensing domain, C (xi), is

assumed to be identical for all nodes. The role of the argument in the aforementioned notation

is to characterize the point at which the predefined pattern C is translated at. In this chapter,

the sensing pattern is not necessarily demanded to be circular and/or node–centered. Thus, the

sensed domain of the network, denoted as C, can be expressed as C := Ω∩
⋃

i∈In
C (xi).

Considering sensing coverage (i.e. fire surveillance [10], intruder [11], or survivor de-

tection [48]) of the planar domain Ω, the nodes should move in such spatial coordinates, so

that an area–based criterion is optimized. Let the nodes’ coverage performance indicator be

1C(xi) (x) = 1(0) if x ∈ (/∈)C (xi), i ∈ In, for the sensing domain C (xi). The selected perfor-

mance criterion under optimization is the total area sensed by the robotic network (i.e. area of

the union of the nodes’ footprints), corresponding to

H =
∫

Ω
max
i∈In

1C(xi) (x)φ (x)dx =
∫

C
φ (x)dx. (4.2)

The main objective from here on is the design of a spatially distributed coordination algorithm

that leads the robotic swarm in obtaining an φ–weighted area–optimal topology.

4.2.2 On Non–Uniform Sensing Patterns

In this chapter, the sensing region of the node is assumed any arbitrary convex compact set.

In some cases, though, the sensors’ footprints are by nature concave (non–convex) sets (i.e.

directional microphones [2]).

In other cases, where RF nodes [1] play the role of the sensing devices (i.e. commu-

nication coverage scenarios), the issues become more complicated, since the footprints are

time–varying (battery life–time dependent), or even environment–dependent in the presence

of obstacles, while their identification is unreliable. In this chapter it is assumed that omnidi-

rectional antennas are embedded on the mobile nodes, responsible for inter–agent information

exchange, while anisotropy is supposed to be encaptured in the nodes’ sensing footprints.

The standard approach for utilization of previously developed distributed coordination

schemes [12, 16, 21] is to define the largest node–centered disk inscribed in the pattern, and

use this set as the node’s sensing domain C (xi) in the sequel (see Fig. 4.1). In this chapter,

though, the demand for node–symmetric regions is relaxed, and larger (area–wise) subsets as

the nodes’ sensing domains can be used, as shown in Fig. 4.1, resulting in a more efficient

network’s optimal state. Algorithms for extracting the maximal–area convex subset inscribed
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original

footprints

maximal inscribed node-centred disk

maximal inscribed convex set

(approximated) maximal

inscribed convex set

maximal inscribed

node-centred disk

Figure 4.1: Graphical example to indicate the benefits arisen by allowing non–node–centered

sensing domains in coverage applications. [Left] The node’s patterns are the antenna’s radiation

pattern in T-mote Sky platforms as provided in [1]. [Right] The node’s pattern is a typical cardioid

footprint of directional microphones as provided in [2].

in planar sets (aka potato–peeling problem) have been proposed in [49, 50, 51], while their

analysis does not lie within the scopes of this thesis.

It should be noted, that approximating the nodes’ pattern with a convex inscribed set does

not imply that the original footprint is assumed convex, too. The main motivation arises from

the fact that approximating the first (non–convex, in the general case) as a larger set than

a node–centered disc one encapsulates the network’s sensing performance more efficiently.

The demand for convexity though arises from utilization of certain Helly-type properties for

planar curves [47] in the coordination algorithm development stage; however, even this does

not reduce its supremacy over the node–centered inscribed disc approximation.

4.3 Optimum Coverage in Anisotropic Networks

4.3.1 Space Partitioning

Voronoi diagrams [14], weighted–Voronoi diagrams and power diagrams [26] are efficient tools

for space partitioning, utilized in most control schemes concerning cooperative robotics. For

homogeneous networks, the main philosophy is that the space under consideration is parti-

tioned into n convex Voronoi cells, {Vi, i ∈ In}, as already defined in (2.6), assigned to the

mobile agents responsible for coverage of Ω. For networks where the nodes have circular sens-

ing footprints, coordination for area–coverage purposes is based on the parts of the Voronoi

cells that are sensed by the nodes [21, 45], also known as r–limited Voronoi cells, where r is

the common radius of the sensing disks.
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4.3 Optimum Coverage in Anisotropic Networks

It is apparent that, since the sensing regions of the nodes are arbitrary in our case, an alter-

native way for space partitioning is sought. This need arises from the fact that distance–based

tessellations are formed strictly on the nodes coordinates, while the coverage performance in-

dices 1C(xi) in (4.2) are not node–symmetric in our case. Before proceeding to the design of the

partitioning scheme, the following preliminaries on Helly–type properties for planar strictly

convex curves are needed.

Definition 4.1. [46] A planar convex curve C is defined as the boundary of a proper convex

subset D ⊂ R2, i.e. C : = ∂D. A strictly convex curve is a convex curve containing no line

segment.

Definition 4.2. Given a set D⊂ R2, any set of the form λD+υ , λ > 0, υ ∈R2 is a homothet

of D. Specifically, for λ = 1, the above family defines the translates of D. Equivalently are

defined the homothets/translates of a curve C.

Lemma 4.1. [46, 47] Any two distinct homothets of a planar strictly convex curve C have at

most two intersection points.

Unlike the majority of previous works, that perform space partitioning based on the nodes’

spatial coordinates, in this chapter, due to the anisotropy of the sensing patterns, the partitioning

is based on the footprints of the nodes, rather than their positions, resulting in a pattern–based

approach of the partitioning problem.

Remark 4.1. In the case where the boundaries of the nodes’ sensing domains are polygons

instead of strictly convex curves, Bezier–curves [52] under–approximation can be used in order

to provide the necessary conditions for utilization of Lemma 4.1, with a trade–off of a slight

area reduction in the approximated sensing domain.

Let W=O∪{Wi, i ∈ In} be a tessellation of the sensed space C, where the sets Wi are parts

of C assigned to node i, while O are possibly existing regions in C which are not assigned to

any node. Similarly to the concept of chapter 3, each cell Wi is defined as

Wi =
⋂

j∈In

Wi j, (4.3)

where the sets Wi j are convex compact subsets of C introduced in Definition 4.3.

Definition 4.3. Given two arbitrary nodes i, j, let ∂C (xi) ,∂C (x j) be the boundary strictly

convex curves enclosing their sensing domains. By denoting as |·| the cardinality of the set–

argument, the sets Wi j are defined as follows:
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• If
∣

∣∂C (xi)∩∂C (x j)
∣

∣≤ 1, then Wi j :=C (xi)∩Ω.

• Otherwise, i.e.
∣

∣∂C (xi)∩∂C (x j)
∣

∣ = 2 (Lemma 4.1), let x
(1)
i j ,x

(2)
i j be the intersection

points of the curves. The latter define a separating line, that tessellates C (xi)∪C (x j)

into two disjoint compact subsets, C
(1)
i j ,C

(2)
i j , respectively. Then

Wi j :=C
(ℓ)
i j ∩Ω, where ℓ ∈ {1,2} : C

(ℓ)
i j ⊆C (xi) . (4.4)

Apparently, the domain Wji is then defined univocally as Wji := Ω∩
{

C (xi)∪C (x j)
}

\Wi j.

Figure 4.2 depicts graphically the way that the sensed space of a network consisted of

six nodes is partitioned. At first, one can verify that if an arbitrary node i (take for example

1

2

3

4

5

6

7 1

2 3

4

5

6

Figure 4.2: Illustrative examples of the partitioning of the sensed domain of a network via Def-

inition 4.3 for RF (left) and acoustic (right) devices, based on their approximation as of Figure

4.1.

node 1 in both scenarios) is compared with any other node j for which
∣

∣∂C (xi)∩∂C (x j)
∣

∣≤ 1

holds, then this comparison does not affect Wi, considering (4.3) and Definition 4.3. In order

to provide the reader with an insight on what equation (4.4) represents, pairs 2–3 (right) or 2–4

(left) for example can be examined, where the nodes’ sensing domain is split correspondingly,

via the line that connects the two points where their boundaries intersect.

Furthermore, by observing the region among the nodes 4–5–6 (right), one can verify that

{Wi, i ∈ In} is not a tessellation of the sensed space C, since there exists a part of the plane that

is sensed by the nodes, although it is not assigned to any of them. Let us call the set of these

regions as sole cells, denoted as O, previously. Apparently, since O = C \ {Wi, i ∈ In}, then

W= O∪{Wi, i ∈ In} consists a tessellation of C.
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4.3.2 Spatially Distributed Coordination Algorithm

The core objective of this section is the design of a distributed coordination law that leads the

network in a covered–area–optimum spatial topology. More specifically, the nodes’ control

actions ui are determined so that the nodes’ trajectories represent a gradient ascending flow

of the criterion under optimization, H, while only local information is required, i.e. spatial

information from a subset of neighboring nodes.

It should stated that distributed gradient ascent laws in swarm robotics guarantee conver-

gence to a locally optimum state, rather than the global optimum one. In fact, global opti-

mization techniques require supervisory knowledge of the network’s state by all the members–

nodes, which cast them impractical to be implemented in real–time applications. Hybrid or

heuristic laws can be applied after convergence in order to try reach a “better” state in area–

wise terms [53], though such scenarios are not examined in this chapter. At this stage, let us

state the main result of the section in the following Theorem.

Theorem 4.1. Considering a mobile sensor network consisted of nodes with arbitrarily strictly

convex sensing patterns, governed by the kinodynamics described in (4.1), the coordination

scheme

ui = αi

∫

∂Wi∩∂C(xi)
ni φ dx, αi > 0, i ∈ In, (4.5)

where ni is the outward unit normal on ∂Wi, maximizes the performance criterion (4.2) along

the nodes’ trajectories in a monotonic manner, leading in a locally area–optimal configuration

of the network.

Proof. Considering (4.2) and taking into account that the sets Wi, i ∈ In are mutually disjoint,

the partial derivative of H with respect to xi is written as

∂H

∂xi

=
∂

∂xi

∫

O

φ +
∂

∂xi

∫

Wi

φ +∑
j 6=i

∂

∂xi

∫

Wj

φ ,

where integration variables were omitted for notation simplicity. At this point, the former

expression can be written via the generalized Leibniz integral rule [34] (by converting surface

integrals to line ones) as

∂H

∂xi

=

∫

∂Wi∩∂O
υ i

0 n0 φ +

∫

∂Wi

υ i
i ni φ +∑

j 6=i

∫

∂Wi∩∂Wj

υ i
j n j φ ,

where υ i
i ,υ

i
j stand for the Jacobian matrices with respect to xi of the points x ∈ ∂Wi, x ∈ ∂Wj,

respectively. In a similar manner, υ i
0 is defined as υ i

0 (x) := ∂x
∂xi

, x ∈ ∂O, i ∈ In, while n0 stands

for the outward unit normal at ∂O.
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Since parts of ∂Wi may possibly lie either on ∂Ω, ∂C (xi), ∂O (possible neighboring sole

cells), or on the boundary of neighboring sensed assigned cells, the expression ∂H
∂xi

can be

written as

∂H

∂xi

=
∫

∂Wi∩∂O
υ i

0 n0 φ +
∫

∂Wi∩∂Ω
υ i

i ni φ +
∫

∂Wi∩∂C(xi)
υ i

i ni φ +

∫

∂Wi∩∂O
υ i

i ni φ +∑
j 6=i

∫

∂Wi∩∂Wj

υ i
i ni φ +∑

j 6=i

∫

∂Wi∩∂Wj

υ i
j n j φ .

Equivalently to [21], the term concerning the static boundary Ω, along with the integrals on

the common part of the lines separating Wi,O and Wi,Wj, respectively, are nullified, resulting

in
∂H

∂xi

=

∫

∂Wi∩∂C(xi)
ni φ .

Hence, the proposed control law (4.5) leads to a gradient flow of H along the nodes trajectories,

while H increases monotonically, since

dH

dt
= ∑

i∈In

∂H

∂xi

· ẋi = ∑
i∈In

αi

∥

∥

∥

∥

∫

∂Wi∩∂C(xi)
ni φ

∥

∥

∥

∥

2

≥ 0.

4.3.3 Distributedness Issues

The main concept in the coordination scheme is that the network should organize its action

in a distributed manner; thus, an arbitrary node i should be able to identify the nodes in its

neighbourhood and evaluate the part of the sensed region that is assigned to it, i.e. Wi, without

requiring to acquire knowledge of the state/configuration of the whole network.

Power control techniques have been proposed in the existing literature for adaptively ad-

justing the communication radius of a node, for the purpose of identifying its neighbours or

establishing valid routing paths [16, 35, 54]. However, these techniques assume networks

whose sensing patterns are node–centered circular ones. The scope of the ensuing analysis

is to determine a worst case scenario topology, such that information from any other node is

redundant for evaluation of the proposed control law.

Let the radiation pattern of the RF devices correspond to a disc (i.e. omnidirectional anten-

nas). Assuming no adaptation of the latter’s radius, a worst case scenario approach is followed

in order to determine a critical value for the nodes’ radii, so that any other unidentified node

(i.e. does not lie in–range) is redundant for evaluating ui via (4.5). In fact, even in the case

where the pattern is allowed to alter through time (online communication radius adaptation),
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the power control scheme presented by the authors in [16] can be utilized, via modification of

that critical radius. The aforementioned bound is defined via the following Lemma.

Lemma 4.2. (Conservative bound) The subset of nodes required for distributed evaluation of

Wi are the ones in range of

sup{
∥

∥xi− x j

∥

∥ |
∣

∣∂C(xi)∩∂C(x j)
∣

∣= 1}.

Proof. Examining the proposed control law (4.5), one can verify that if a node can distribu-

tively evaluate Wi, then the former is spatially distributed, too. However, according to Defini-

tion 4.3, it is apparent that only the nodes for which
∣

∣∂C(xi)∩∂C(x j)
∣

∣ ∈ {1,2} holds, alter the

set Wi. Note that the case where the boundaries intersect at exactly one point is included as the

marginal case. Considering the worst case scenario (in terms of distance among two nodes), an

arbitrary node i should ensure that it is able to acquire information from the nodes that may lie

in such coordinates so that
∣

∣∂C(xi)∩∂C(x j)
∣

∣= 1.

A graphical interpretation of the computation of that conservative bound is provided in

Fig. 4.3. The red line denotes the geometric locus of the center of an arbitrary node so that

geometric locus

of nodes’ centres

minimum communication

radius to ensure distributedness

worst case scenario

topology

Figure 4.3: Graphical example of defining the topological worst case scenario among two arbitrary

nodes in order to determine the communication radius bound.

the boundaries of the two nodes intersect at a singleton. Along this curve there is a point

that represents the center of the worst case scenario topology [purple line] among the two
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4. AREA COVERAGE BY ANISOTROPIC NETWORKS

nodes, while the communication radius bound of Lemma 4.2 that ensures distributedness of

the partitioning scheme (and consequently the proposed control law) is defined as the distance

among the two nodes (at this worst case scenario topology) [green line].

Remark 4.2. The bound provided in Lemma 4.2 is common for all nodes, since i, j nodes

are arbitrary. Furthermore, if a communication link among two nodes i, j exists, then it is

bidirectional, since the radiation footprints are determined via the radius of Lemma 4.2 (worst

case scenario; see Fig. 4.3).

Remark 4.3. The bound on the communication radii of the nodes can be determined a–priori

and not during the coordination stage, since it is only dependent on the common nodes’ sensing

pattern.

4.3.4 Numerical studies

The control scheme proposed in this section is verified via simulation studies. The nodes in

the networks under consideration are initially deployed randomly in a convex compact planar

region. The latter is selected identical to that used in [21] for consistency, while the importance

function φ is set equal to unity for visualization purposes. As far as the sensing pattern of the

nodes is concerned, a non–trivial arbitrary convex one is selected. More specifically the latter

is chosen as the (approximated) maximal convex set inscribed in the interior of T–mote Sky

footprints [1], as depicted graphically initially in the left part of Fig. 4.1. A short discussion

is following on their determination in order to provide ease of re–productivity of the results

presented in the sequel.

Let v j, j ∈ I5 be a set of planar points normalized so that
∥

∥v j

∥

∥

∞
≤ 1, selected as

v j : (0,0) , (1,0) , (1, 3/8) , (1/2, 7/8) , (0, 11/16) .

Let m j, j ∈ I5 stand for the middle points of the line segments connecting v j,v j+1. By con-

vention, it holds that v6 ≡ v1 and m6 ≡ m1. The boundary of the sensors’ pattern selected

for the simulations following is consisted of the union of five Bézier curves of 3rd order, i.e.

∂Ci =
⋃

j∈I5
B j,

B j = (1− τ)3
Pj,0 +(1− τ)2 τPj,1 +(1− τ)τ2Pj,2 + τ3Pj,3,

where τ ∈ [0,1], while the control points Pj,k, k = 0, . . .3 are selected as

Pj,0 = m j, Pj,1 = Pj,2 = v j+1, Pj,3 = m j+1, j ∈ I5.
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The above are summarized graphically in Fig. 4.4, while the arbitrary node is selected in the

interior of the normalized pattern at (3/7, 3/10), in order to keep consistency with Fig. 4.1.

vj

Bj

m Pj j= ,0 v Pj+ j1 ,1= =Pj,2

m Pj+ j1 ,3=

vj+2

xi

Figure 4.4: Sensing pattern of the nodes utilized in the simulations, defined as the union of se-

quential Bézier curves.

As already discussed, most control techniques in the existing literature consider networks

with circular node–centered sensing footprints. However, in cases where the sensors are anisotropic,

a standard approach is to approximate their patterns with the maximal node–centered disk in-

scribed in the sensor footprint. In this chapter, the control scheme proposed in section 4.3.2 is

compared via simulations to the one proposed by the authors in [21], i.e.

ũi = αi

∫

∂Br
i∩∂V r

i

ni φ , αi > 0, i ∈ In, (4.6)

where the ∼–sign is used in order to distinguish between the control laws, while αi are strictly

positive scalars, equivalently to (4.5). In the former expression, Br
i := {x | ‖x− xi‖ ≤ r} repre-

sents a disc of radius r around xi, while V r
i :=Vi∩Br

i (r–limited Voronoi cell) is the intersection

of the aforementioned disc with the assigned Voronoi cell, as defined in (2.6).

It should be stated clearly that the coordination scheme (4.6) is proven to lead to area–

optimal network configuration when the nodes sensing patterns are circular. The scope of

the comparison that follows between the two control schemes is to show the benefits of the

proposed law when dealing with anisotropic sensors. In fact, when C(xi)≡Br
i , the coordination

scheme defined in (4.5) degenerates in (4.6), while the partitioning W is the standard Voronoi

tessellation, V.

Case Study I. In the first scenario examined, the network is consisted of n = 12 nodes,

initially deployed randomly in a region on the top–right part of Ω. Their sensing patterns

were selected as described above, scaled via a factor of λ = 0.6 around the node. Taking into

account the area of Ω,
∫

Ω φ = 5.0809 units2, along with that of an arbitrary sensor footprint,

i.e.
∫

Ci
φ = 0.2443 units2, the nodes can achieve coverage ratio, in a best case scenario, equal
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to 57.6952%. This case is when the nodes can self–position themselves (if possible) in a way

where there is no overlapping among their patterns or with the boundary Ω.

In the case where control law (4.6) is to be applied, the sensing domains of the nodes

are firstly approximated as node–centered discs of radius equal to r = 0.18 units (maximal

inscribed node–centered ones). In this case, the nodes’ initial configuration, their evolution

through time, along with the final network’s state, are shown in the top row of Fig. 4.5, in this

order, where the scalars αi was selected as αi = α = 3, i ∈ In.

Figure 4.5: Case Study I — Coordination results derived via control schemes (4.6) [top row] and

(4.5) [bottom row], respectively. [Left column] Initial network configuration. [Middle column]

Network evolution through time. The black circles (blue squares) represent the nodes’ final (initial)

positions. [Right column] Final network state.

It is apparent that the nodes have positioned themselves in a way that the discs do not

overlap among them or with the boundary of Ω. However, although the coordination scheme

assumes uniform omnidirectional coverage performance, one can verify that the (real) coverage

performance of the network via the patterns Ci can be increased even more. Figure 4.6 [left part]

depicts the evolution the network’s coverage ratio, i.e. H/
∫

Ω φ w.r.t. time when coordination

scheme (4.6) is applied [blue solid line]. It is apparent that, although the network’s performance

increases from 14.0857% to 36.3818% of Ω, this percentage is not satisfactory considering the

maximum possible coverage ratio 57.6952% (best case scenario). It should be noted, however,

that this deficiency is due to the approximation of the sensing patterns as discs and not due to

the control law.
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4.3 Optimum Coverage in Anisotropic Networks

Figure 4.6: Percentage of sensed area w.r.t. time for Case Study I [left] and II [right], when

control schemes (4.6) [blue line] and (4.5) [red line] are applied, respectively. The black dotted

line represents the maximum possible coverage ratio in each case.

On the other hand, applying the control scheme (4.5)—without the need for “altering” (ap-

proximating) the nodes’ patterns—one can observe the behavior of the network in the bottom

row of Fig. 4.5. Comparing the figures in the middle column (i.e. network evolution w.r.t. time

via the two control laws), one can verify that the nodes tend to “spread” more uniformly in this

case, since they (indirectly) try to avoid overlapping among their patterns. The red solid line in

Fig. 4.6 depicts the way that the coverage ratio of the network increases to its optimal value,

which in this case is equal to the maximum possible one, i.e. 57.6952%, while monotonic

increase of the latter is guaranteed.

Case Study II. In this study, the number of nodes is selected as n = 6, while their pattern

is the original one (presented at the beginning of the section) scaled by a factor of λ = 1.1.

The latter have area equal to
∫

Ci
φ = 0.8211 units2, while the network can cover ideally (if

possible) n
∫

Ci
φ = 96.9600%

∫

Ω φ . The nodes are initially deployed around the centroid of

Ω, covering 26.4291% of Ω. Applying the coordination scheme (4.6) with αi = α = 2, the

network’s evolution is depicted in the top row of Fig. 4.7, equivalently to Case Study I.

One can observe that, although the nodes have moved away from each other so that the

discs (of radius r = 0.33 units) do not overlap, there is still space that can be covered, taking

into consideration the patterns Ci. This is also verified by examining the total covered area

increase w.r.t. time, as depicted in the right part of Fig. 4.6 with the blue solid line, where the

area covered at the final configuration is equal to 69.7661%.

Alternatively, when the proposed control action (4.5) is applied, as one can observe from

the bottom row of Fig. 4.7 and the red solid line in the right part of Fig. 4.6, the network

achieves coverage ratio equal to 88.6032% monotonically, while the nodes’ performance is
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Figure 4.7: Case Study II — Coordination results derived via control schemes (4.6) [top row] and

(4.5) [bottom row], respectively. [Left column] Initial network configuration. [Middle column]

Network evolution through time. The black circles (blue squares) represent the nodes’ final (initial)

positions. [Right column] Final network state.

quite satisfactory.

Case Study III. A third simulation has been conducted with a different pattern than the one

in the two first. More specifically the latter is chosen as a strictly–convex approximation (see

Remark 4.1) of the maximal convex set inscribed in the interior of directional microphones

cardioid footprint [2], as depicted graphically initially in the left part of Fig. 4.1.

In the scenario following, the network is consisted of n = 10 nodes, initially deployed

randomly in a region on the top–right part of Ω. In a best case scenario, the nodes can achieve

coverage ratio equal to 100%, as the case when the nodes can self–position themselves (if

possible) in a way where there is no overlapping among their patterns or with the boundary Ω.

In the case where control law (4.6) is to be applied, the sensing domains of the nodes

are firstly approximated as node–centered discs (maximal inscribed node–centered ones). In

this case, the nodes’ initial configuration, their evolution through time, along with the final

network’s state, are shown in the top row of Fig. 4.8, in this order.

Even though there are no overlapping parts in the final configuration, it can be observed that

the (real) coverage performance of the network via the patterns C(xi) can be furthr increased.

Figure 4.9 depicts the evolution the network’s coverage ratio, i.e. H/
∫

Ω φ w.r.t. time when

coordination scheme (4.6) is applied [blue solid line]. It is apparent that, although there is an
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Figure 4.8: Case Study III — Coordination results derived via control schemes (4.6) [top row] and

(4.5) [bottom row], respectively. [Left column] Initial network configuration. [Middle column]

Network evolution through time. The black circles (blue squares) represent the nodes’ final (initial)

positions. [Right column] Final network state.

increase in the coverage performance, it is not satisfactory considering the maximum possible

coverage ratio, which is mainly due to the approximation of the original patterns.

On the other hand, applying the control scheme (4.5), the evolution of the the network is

depicted in the bottom row of Fig. 4.5. The figures indicate that the nodes are placed in a more

appropriate way in space, while the monotonicity property of coverage is verified also by Fig.

4.6.

4.4 Extensions via Allowing Rotation of the Footprints

4.4.1 Motivation

Standard uniform radial models are mainly assumed in the majority of the sensing applica-

tions due to its ease of manipulation when related to control design. Although these models

have the major advantages of avoiding issues that arise from nodes’ rotation (due to the sensor

model being rotation–invariant), they suffer from encapsulating scenarios such as visual in-

spection of areas (via wedge–shaped cameras [55]), intruder detection missions via utilization

of directional microphones [2], or even communication–coverage applications [5], where the

antennas play dual role, both “sensing” and information exchange [1]. The majority of these
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Figure 4.9: Percentage of sensed area w.r.t. time for Case Study III, when control schemes (4.6)

[blue line] and (4.5) [red line] are applied, respectively.

applications require development of control schemes that go beyond the assumption of radial

uniform sensing pattern, since they are either characterized by wedge–shaped ones or even ar-

bitrary (non)/convex ones. The usual way to overcome this restriction is to under–approximate

the sensor model via the largest node–centered inscribed circular one and apply the already

existing schemes.

This was overcome in the previous section, by developing a control strategy for anisotropic

sensors. However, in that case the sensors were considered to have common orientation, while

no rotation of the sensing domain was taken into account. Apart from that the sensory of the

nodes, although arbitrary, was assumed to be a compact convex set, derived as the maximal

inscribed convex set in the original footprint (in case of non–convex domains). The reason

for that demand was the utilization of specific Helly–type theorems for planar convex curves

[46, 47], during the development of the space partitioning.

This section is an extension of that work, by allowing the rotation of the patterns, thus

dropping the conservative demand for common orientation. Furthermore, the sensing footprint

for the nodes is not required to be a convex set (since the homothetic requirement [46] is

dropped), while heterogeneity in the network lies in the scaling factor of the (common) pattern

among the nodes. The proposed control scheme is based on an appropriate partitioning of the

sensed space, while in the sequel account for both translational and rotational motion of the

nodes in order to reach an area–optimum topological state.
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4.4.2 Problem Statement

We examine the problem for a team of nodes responsible for coverage of a domain of interest.

Let each node be equipped with a sensing device appropriate for the current swarm–objective.

In contrast to the majority of the works in coverage control, the sensing patterns considered in

this work are not required to be node–centered circular ones (standard disc model). In regard

to the extensions provided in comparison with the previous section, in this one:

• The approach of under–approximating the original pattern (non–convex in the general

case) with the maximal–area inscribed node–centered disc (Fig. 4.10a) or convex set

(Fig. 4.10b) is extended by taking into account the original footprints in the coordination

scheme (convex or not).

• The demand for common orientation among the nodes’ convex approximated footprints

(Fig. 4.10b) is dropped, allowing for different ones, not only during the initial configura-

tion, but throughout the network evolution, by adding extra control inputs for orientation

control.

• Although all nodes are assumed to be equipped with the same kind of sensor (i.e. same

sensing pattern), the latter is allowed to be scaled among the nodes (Fig. 4.10c), incor-

porating the network’s heterogeneity.

maximal inscribed node-centred discs

rotation-invariant

(approx) maximal inscribed convex set

common orientation demanded

no approximation required

no demand for common orientation

(a) (b) (c)

Figure 4.10: Graphical representation of the evolution of suggested techniques for non–uniform

sensor footprints.

Let C◦ be the common pattern of the nodes, the pinch–point (base–node) of which is as-

sumed, without loss of generality, at the origin. The sensing pattern of the node i is determined
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by the base–pattern C◦, translated at the node’s position, while rotated and scaled accordingly.

That is

Ci := xi +R(θi) λiC
◦, (4.7)

where xi are node’s–i spatial coordinates, θi, λi its orientation and scaling compared to the

base–pattern, while R(·) is the rotation matrix corresponding to the angle argument, that is

R(·) =

[

cos (·) −sin(·)
sin (·) cos (·)

]

.

Although different orientations are allowed among the nodes in this work, they are assumed

to be controlled via an extra control input at each nodes’ kinodynamics, that is

ẋi = ui, xi ∈ D⊂R2, ui ∈ R2, (4.8)

θ̇i = ωi, θi,ωi ∈ R, (4.9)

where (4.8) represents the node’s translation–part and (4.9) the part concerning the pattern’s

rotation.

Having defined the nodes’ footprints, one can formally associate the network’s perfor-

mance with them as of (3.15). It should be noted that although the indicator function fi is

parametrized/dependent on xi in previous works, i.e. fi (x;xi), in this work is also dependent on

the non–common orientation and scaling among the nodes, fi (x;xi,θi,λi).

The decision for the motion is taken based on own self–localization information along with

that acquired from the neighbouring nodes. In regard to the need for information exchange, it

is assumed that:

Assumption 4.1. Each node has sufficient transceiver RF–range so that it can exchange infor-

mation at any time with any node that it shares sensed parts with.

4.4.3 Proposed Pattern–based Partitioning

Having in mind the need for distributed coordination scheme towards the optimization of the

overall coverage performance of the network, a region of responsibility is assigned at each

node in a local manner, assisting in lowering the computational complexity in the optimization

problem via proper space decomposition.
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(a) (b) (c )

Figure 4.11: Graphical representation of the need for alternate partitioning in non–uniform sensor

networks. (a) Anisotropic heterogeneous network approximated with disc–model. (b) Correspond-

ing power diagram based on the approximation of node–centered maximal inscribed circles. (c)

Real network’s coverage via the original non–uniform patterns, as evaluated through the simulta-

neously sensed and assigned cells.

4.4.3.1 Related Approaches

The most common approach followed in swarm coordination for defining the way that the

configuration space is tessellated among the nodes is the well–known Voronoi partitioning [14].

More specifically, each node is set responsible for the parts of the area under consideration that

are closer to that node compared to any other in the network. The resulting Voronoi diagram

is proven to be the optimal way of tessellating the space in the Euclidean metric in a distance–

based manner, based only on the nodes’ coordinates, while suitably resolves the standard case

of swarms with disc–patterns. Alternatively, considering heterogeneity among the members of

the network via unequal disc–radii, the power diagram can be utilized for the space partitioning

purpose, which can be considered as the Voronoi diagram in the Laguerrean metric [37, 56].

The main issue with the previous approach lies mainly in the disc–model approximation

rather than the partitioning method itself. Although almost any sensing pattern can be approx-

imated with its maximal inscribed node–centered disc, resulting in rotation–invariant schemes,

the approximation cost is in some cases extremely conservative, comparing the real and ap-

proximated coverage performances of the network (see Fig. 4.11a).

Figure 4.11 depicts graphically a non–uniform network, along with its approximation via

the disc model. Due to the heterogeneity in the unequal radii, the space is tessellated via the

power diagram, as shown in Fig. 4.11b. Although the latter provides a fair way for assigning the

parts of the space at the nodes, considering their radial approximated performance, it appears to

be unsuitable if someone examines the original patterns via the corresponding sensed assigned
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cells (Fig. 4.11c).

An extension to this issue has been proposed in previous section, bypassing the standard

uniform model. However, the demand for common orientation of the sensors’ footprints, aris-

ing from utilization of particular Helly–type theorems [46], imposes a hard constraint from an

application point of view. We consider the case where the nodes have non–uniform, not neces-

sarily convex, unequally scaled sensing footprints, allowing for different pattern–orientations

as well. The partitioning is performed in the network’s sensed space, rather than the whole

region of interest.

4.4.3.2 Proposed Partitioning

Let Ci, i ∈ In be the sensing patterns of the n nodes of a network, which are assumed: a) non-

uniform and non–convex (in the general case), b) same in shape, though unequally scaled, c)

non–commonly oriented (in the general case). These features have been graphically summa-

rized in Fig. 4.10c. Each footprint is characterized by a pinch–point, which is the node itself;

its positioning is denoted as xi, while θi stands for the orientation of the pattern/sensing–node.

Unlike distance–based tessellation schemes that are based on the nodes’ positioning alone

and uniform disc sensing models, the approach presented in this section relies solely on the

footprints. Let Wi be the region of responsibility of node i, restricted in the domain of interest

Ω. The former is defined via comparison of that node’s footprint with the pattern of any other

neighbouring node, as the part of the sensed space that is sensed by that node only, that is

Wi : = Ω∩Ci \∪ j 6=iC j, i ∈ In. (4.10)

Apparently, the set–family {Wi, i ∈ In} does not consist a complete tessellation of the sensed

space, since the common parts of the sensing domains are not yet characterized. Let us denote

them as Wc, that is

Wc : =
⋃

i6= j

Ci∩C j∩Ω, (4.11)

which are not assigned at any node by definition.

Remark 4.4. The set Wc in (4.11) can alternatively be defined via the sets Wi as Wc = ∪i∈In
Ci \

∪i∈In
Wi. In a straightforward manner, the set {W1,W2, . . .Wn,Wc}, consisted of mutually disjoint

sets, tessellates completely the sensed space.
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Remark 4.5. Unlike the cells resulting from distance–based partitioning techniques [14] or

certain pattern–based ones [57], the sets defined in (4.3) are, in the generic case, non–compact.

Remark 4.6. In the case where a nodes’s pattern is completely included in the union of the

footprints of the rest of the network, that is Ci ⊂
⋃

j 6=iC j, no region of responsibility is assigned

at it (Wi = /0), as derived directly from definition.

In order to provide a visual aspect of the proposed partitioning scheme, the network initially

presented in Fig. 4.11 is revisited. Figure 4.12 presents visually the way that the sensed space

is partitioned and assigned among the nodes via the proposed scheme. The non–coloured parts

(a) (b)

1
2

3

4

5

6

7

Figure 4.12: Illustrative example indicating the partitioning of the sensed space via the proposed

technique.

of the sensed domain belong to the set Wc and correspond to the parts of the network that are

sensed by more than one node at the same time. It should be noted that the sensed domain of

the bottom small node (node 1) belongs to that set since it lies exclusively in the sensing region

of a “larger” node (in terms of pattern–scale; purple–coloured) (Remark 4.6). As defined in

(4.10), one can verify that the assigned parts are the ones that are sensed exclusively by one

node, while the issue stated in Remark 4.5 can be examined via the nodes 4–5, indicating the

(possibly) disjoint nature of the resulting cells.

Utilizing the formerly defined partitioning scheme, the network’s coverage performance

index H can be decomposed as

H = ∑
i∈In

∫

Wi

φ +
∫

Wc

φ , (4.12)
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resulting directly from Remark 4.4. Note that Wi,Wc are already defined as subsets of the

domain Ω.

4.4.4 Distributed Motion Coordination

Unlike the majority of works presented in the existing literature on the field of distributed

swarm coordination, this work incorporates rotation of the sensing pattern, thus allowing an

extra degree of freedom, and demanding an extended control design. The need for rotation

arises from the fact of a non–radial anisotropic sensing performance assumption, providing

however the ability to achieve far better optimal topological configurations.

Let us further introduce some notations at this point. For any set S with well–defined

exterior, let n(x) stand for the outward unit normal vector pointing towards the exterior of S

for any x ∈ ∂S, where ∂S is the boundary of the set. For the sake of notations’ simplicity, the

former definition is extended in the case where the set S is non–compact, too, as long as the

exterior of every sub–part of it is well–defined. These properties hold for both Wi and Wc, as

defined in (4.10)–(4.11), presented also visually in Fig. 4.12. We will refer to n(x) , x ∈ ∂Wi

and n(x) , x ∈ ∂Wc simply as ni and nc, respectively. At this point let us state the main result.

Theorem 4.2. In a mobile sensor network governed by (4.8)–(4.9) with arbitrary non–radial

nodes’ sensing performance, the control law

ui = αi,u

∫

∂Wi∩∂Ci

ni φ , (4.13)

ωi = αi,ω

∫

∂Wi∩∂Ci

R(90o) (x− xi) ·ni φ , (4.14)

where αi,u,αi,ω > 0, leads the network monotonically towards a locally area–optimal configu-

ration.

Proof. We start by evaluating the time derivative of the criterion under optimization H as

dH

dt
= ∑

i∈In

{

∂H

∂xi

· ẋi +
∂H

∂θi

θ̇i

}

.

Interested in the design of gradient–based control action, that is

ui = αi,u
∂H

∂xi

, ωi = αi,ω
∂H

∂θi

,

we begin with the translational part of the proposed law, ui, by evaluating the partial derivative

of the decomposed performance index w.r.t. xi, followed by the corresponding rotational part,

ωi.
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Falling along the lines of [21, 45], utilization of the Leibniz integral rule [34] in (4.12)

results in

∂H

∂xi

= ∑
j∈In

∫

∂Wj

∂x

∂xi

n jφ +

∫

∂Wc

∂x

∂xi

ncφ

= ∑
j 6=i

∫

∂Wj

∂x

∂xi

n jφ +
∫

∂Wi

∂x

∂xi

niφ +
∫

∂Wc

∂x

∂xi

ncφ .

Considering the second integral, the boundary ∂Wi can be decomposed into a) parts that lay

on the border of the area of interest, ∂Wi∩∂Ω, b) parts that are shared by ∂Wc, ∂Wi∩∂Wc, and

c) parts that orient towards the uncovered space, ∂Wi ∩ ∂Ci. This decomposition is depicted

graphically in Fig. 4.13 [upper part].

Wc

Wc

xi

xi

xj

xj

neighboring node

region boundary

nc

Wj

Wi

ni

nj

Figure 4.13: Decomposition of ∂Wi into mutually disjoint sets.

However, at x ∈ ∂Ω it holds that ∂x
∂xi

= 0, since we assume a static surveillance domain. In

addition, since at the common boundaries it holds that ∂x
∂xi

n j = −
∂x
∂xi

nc, j ∈ In (see Fig. 4.13

[bottom part]), the former expression simplifies into

∂H

∂xi

=

∫

∂Wi∩∂Ci

∂x

∂xi

niφ . (4.15)
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Exactly the same concept is repeated for the rotational part, by evaluating the partial derivative

of H w.r.t. θi as
∂H

∂θi

=

∫

∂Wi∩∂Ci

∂x

∂θi

·niφ . (4.16)

What remains is the evaluation of the partial derivatives ∂x
∂xi

, ∂x
∂θi

at x ∈ ∂Wi ∩ ∂Ci. However,

each point lying on the boundary of the a node’s sensing domain can be expressed as

x = xi +ρ (x)

[

cos (ξ (x)+θi)

sin(ξ (x)+θi)

]

, (4.17)

as also depicted graphically in Fig. 4.14, where it is evident that the parameters ρ ,ξ for each

xi

x

qi=0

x

r

xi

x

qi

x

r

Figure 4.14: Notations concerning the proof of the main theorem.

x are not dependent on the configuration of the sensor, i.e. xi,θi, but exclusively on the pattern

itself.

Consequently, ∂x
∂xi

= I2 as the identity matrix, resulting directly from (4.17), simplifying

the control action via (4.15) into (4.13). Similarly,

∂x

∂θi

= ρ (x)

[

−sin(ξ (x)+θi)

cos (ξ (x)+θi)

]

.

Utilizing the rotation matrix notation and substituting back the trigonometric terms via (4.17)

results in

∂x

∂θi

= ρ (x)

[

0 −1

1 0

][

cos (ξ (x)+θi)

sin(ξ (x)+θi)

]

= R(90o) (x− xi) ,

leading the gradient–based rotational control into (4.14).

Updating the time derivative of the sensed area via the proposed control law results in

dH

dt
= ∑

i∈In

{

αi,u

∥

∥

∥

∥

∂H

∂xi

∥

∥

∥

∥

2

+αi,ω

∣

∣

∣

∣

∂H

∂θi

∣

∣

∣

∣

2
}

≥ 0,

for αi,u,αi,ω > 0, guaranteeing monotonic convergence of the network towards the optimum

state. This completes the proof.
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Remark 4.7. The proposed control scheme degenerates into the one presented in chapter 3,

when the sensing domains are assumed circular node–centered ones, providing so an exten-

sion for arbitrarily non–radial patterns. Evidently, in the former case, due to the rotation–

invariance of the disc–model, the rotational part of the control action is not taken into account.

It should be noted that the proposed control law does not require global knowledge of the

network’s state, but instead only by those within an a–priori bounded range, as stated in the

following lemma.

Lemma 4.3. Assumption 4.1 serves as a conservative bound on the range required for the

control law (4.13)–(4.14) to be spatially distributed.

Proof. Examining (4.13)–(4.14), one can verify that the distributed nature of the control law

is directly inherited by that of the partitioning scheme proposed in section 4.4.3. Therefore,

if a node is able to evaluate its own region of responsibility Wi via local interaction, then this

information is adequate in order to evaluate the control. However, according to (4.10), one

can see that only the nodes that share common sensing parts are required (Assumption 4.1) or

even marginally the ones that their boundaries intersect at a singleton. Following a worst case

topology approach, a conservative upper–bound on the required range is provided as

sup
{∥

∥xi− x j

∥

∥ :
∣

∣∂Ci∩∂C j

∣

∣= 1
}

,

where |·| stands for the cardinality number of the set–argument. Although the aforementioned

bound may seem of high complexity, it has the advantage of being dependent only of the nodes

base patterns and therefore can be evaluated a–priori.

4.4.5 Simulation Studies

Numerical results derived from simulations studies conducted are presented in this section.

Two illustrative series of simulations follow for two kinds of sensing patterns. In both studies

the domain under surveillance is the same, identical to the one used in [21] for consistency

purposes. The proposed control law (4.13)–(4.14) based on the partitioning scheme (4.10)

is compared for evaluation purposes with the control proposed in [21], appropriate for disc–

modelled networks, as of (4.6).

Case–Study 1. In the first simulation presented, a homogeneous network of 8 nodes is

examined. Their sensing footprints are assumed ellipsoidal ones with their axes–parameters

set as a = 0.5 units, b = 0.3 units, while the relative position of the node to the footprint is set

81



4. AREA COVERAGE BY ANISOTROPIC NETWORKS

at half–way along the long axis, as shown in the left part of Fig. 4.15. All nodes are initially

randomly placed in a small region of the interior of Ω, with random patterns’ orientations.
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Figure 4.15: Normalized patterns used in the first [left] and second [right] simulation study, re-

spectively, along with their maximal inscribed node–centered discs.

Initially, the control scheme (4.6) is applied in order to control the nodes’ motion. The

ellipsoidal model is approximated as the maximal inscribed node–centered disc, while stan-

dard Voronoi partitioning is utilized during the coordination stage in order to perform region–

assignment and evaluate the control action. The nodes’ initial configuration, their paths fol-

lowed during transition, along with the final network’s configuration are presented from left to

right in the top row of Fig. 4.16, in this order.

Judging from the end–configuration one can observe at first that the nodes have indeed

positioned themselves in an area–optimal topology, considering the disc models, as expected.

Apparently, due to the rotation–invariance of the disc model, there is no control to amend

for orientation–regulation of the original footprints. Examining, though, the real network’s

performance evaluated via the original ellipsoidal patterns, it is evident that the network can

achieve far better sensing coverage ratio of the space under consideration. More specifically,

the network starting from an initial coverage percentage of Ω equal to 35.26% converges to

52.05%, as shown with the blue line in the left part of Fig. 4.17, which is the optimal network’s

performance if someone takes into account only the approximated discs. As before, this poor

performance is due to the demand for disc aapproximation of the original patterns, so that the

existing control strategies can be applied for network coordination.

On the other hand, utilizing the proposed control scheme for the nodes’ motion coordi-

nation, that takes into account both the patterns’ anisotropy and the need for their orientation
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Figure 4.16: [Case–Study 1]: Coordination results derived via control schemes (4.6) [top row]

and (4.13)–(4.14) [bottom row], respectively. [Left column] Initial network configuration. [Middle

column] Network evolution through time. The black circles (blue squares) represent the nodes’

final (initial) positions. [Right column] Final network state.

regulation, produces the results depicted in the bottom row of Fig. 4.16. It is apparent that the

nodes have been organized in a way that optimum coverage is attained, equal to 74.16% (red

line in left part of Fig. 4.17), while their orientation is controlled properly via (4.14), as also

seen in the right part of Fig. 4.17.

Case–Study 2. In the second scenario studied, a more application–oriented sensing pattern

has been selected in order to emphasize in the advantages of the scheme proposed in this sec-

tion. More specifically, the hypercardioid footprint is selected representing that of directional

microphones [2], suitable for application where specific sound needs to be captured even in

loud/noisy environments (i.e. environmental sensing, security applications). The normalized

pattern is depicted in the right part of Fig. 4.15.

In addition, the scaling of the pattern of each node differs, imposing heterogeneity in the

network’s nature, while the network’s maximum achievable coverage performance is quite

larger than that of case–study 1. When coordination is performed based on the disc–model

approximation of the pattern, the power diagram [14] is utilized for partitioning the space,

since the resulting circles are of unequal radii. The results in this case are depicted in the top

row of Fig. 4.18, where one can observe that the nodes have not spread much, even if optimum

disc–coverage has been achieved at the final configuration equal to 38.65% starting from an
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Figure 4.17: [Case–Study 1]: [Left] Evolution of covered area percentage w.r.t. time evaluated via

the non–uniform original patterns. Blue (Red) line corresponds to top (bottom) row of Fig. 4.16.

[Right] Evolution of nodes’ orientation w.r.t. time corresponding to the bottom row of Fig. 4.16.

initial value of 35.05%.

Simulation results derived by applying the proposed control scheme in this section are

presented in the bottom row of Fig. 4.18. Observing the nodes’ paths it is evident that the

latter have deployed themselves in Ω trying to cover as much space as possible taking into ac-

count their original non–convex domains, rather than approximating them (disc or convex–set

approximation). The percentage of area covered during network’s transition, evolving mono-

tonically towards the optimum value, is depicted in the left part of Fig. 4.19 [red line], where its

performance efficiency (97.91%) in comparison to the disc–model case [blue case] is apparent,

relying on proper regulation of both positioning and orientation (Fig. 4.19) of the patterns.

It should be noted that the proposed scheme has increased complexity in its evaluation

when dealing with arbitrary non–convex sensing domains, especially when compared with

approaches that are based on disc models. Particularly, the demand arises from the difficulty

in parametrizing complex boundary curves, when compared to evaluations that are based on

circle–arcs. In fact, even if numerical approaches are utilized in order to avoid complex curves’

descriptions, extra computational demand is needed at evaluating the corresponding boundary–

parts appearing in the proposed control law. However, the overall network’s performance in

our case is by far superior to that of disc–approximating techniques, arising so a trade–off to

balance: complexity vs. performance.
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Figure 4.18: [Case–Study 2]: Coordination results derived via control schemes (4.6) [top row]

and (4.13)–(4.14) [bottom row], respectively. [Left column] Initial network configuration. [Middle

column] Network evolution through time. The black circles (blue squares) represent the nodes’

final (initial) positions. [Right column] Final network state.

4.5 Conclusions

In this chapter, a distributed algorithm was proposed for area coverage optimization in mobile

sensor networks with arbitrary strictly convex sensing patterns. Unlike the majority of previous

works, the sensing domain of the nodes is not circular or node–centered, but is assumed to be

any general convex set in the plane. Distributed coordination is performed based on a space

partitioning scheme, developed via the footprints of the nodes. In order to confirm efficiency of

the proposed scheme, simulation results are provided, where typical directional microphones’

cardioid footprints were utilized, along with RF radiation patterns.

Results are extended to amend for non–common headings of the nodes’ footprints. The

network is considered anisotropic (arbitrary patterns) and heterogeneous (in terms of scaling),

allowing for almost any arbitrary sensory, highly differentiating from standard circular–case

assumptions appearing in the existing literature. Efficient partitioning of the sensed domain is

proposed in order for the nodes to distributively evaluate the corresponding parts that should

determine their motion for coverage–increase. The presented scheme was proven to guarantee

monotonic increase of the area sensed by the network while accounts not only for the nodes’

positioning, but sensor orientation as well, further evaluated via simulation studies.
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Figure 4.19: [Case–Study 2]: [Left] Evolution of covered area percentage w.r.t. time evaluated via

the non–uniform original patterns. Blue (Red) line corresponds to top (bottom) row of Fig. 4.18.

[Right] Evolution of nodes’ orientation w.r.t. time corresponding to the bottom row of Fig. 4.18.
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5

Coverage with Constraints in the

Communication Range

5.1 Introduction

In optimization scenarios by mobile robotic swarms, the agents plan their actions in a dis-

tributed way, while an aggregate team objective function is to be optimized . Henceforth,

ensuring valid paths for information flow among the nodes is crucial throughout the evolution

of network in order to guarantee distributed data transmission [58].

However, it is evident that demand for connectivity preservation and area coverage optimal-

ity cannot be achieved simultaneously, and thus there is trade–off to be balanced [40, 59, 60].

Distributed coordination of mobile networks for achieving consensus based on nearest neigh-

bor rules has been proposed by the authors in [39], while connectivity control of networks

has been examined in [41, 61]. A trade–off between area coverage and communication costs,

related with the power consumption needed for delivering information to a base station, is

addressed in [62].

In the majority of works presented in the existing literature, the communication range of

the nodes’ antennas is assumed either variable and bounded (in terms of upper limit) [35], or

fixed and bounded but greater than twice the sensing range [16, 21]. This dependence of the

radio range on the sensing one, although not encountered in practice, remarkably surpasses

any network connectivity issues, and subsequently concentrates on optimization of the covered

area.

In this chapter the distributed area coverage control problem is addressed in mobile robotic
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networks under communication constraints. The standard case of correlating the nodes’ radio

range with the sensing one is extended, allowing the first to take any value, and not necessarily

twice or larger of the sensing range. The members of the network are allowed to exchange

information among them in a number of hops, via internal broadcasting/forwarding messages

between consecutive motion steps. The proposed control framework is based on proper cate-

gorization of the nodes, according to the existence of arcs in their individual assigned cells or

their contact with the boundary of the region of interest. Their motion is performed in order to

increase the network’s coverage performance, while maintaining connectivity among neighbor-

ing nodes at same time. Simulation results indicate that the control plan achieves respectable

coverage performance in the case of RF–constrained networks.

5.2 Problem Setup — Preliminaries on Connectivity

5.2.1 Coverage Problem Formulation

Let us revisit the coverage setup of chapter 2, where the nodes’ motion is governed by the

discrete time model as of (2.1), while their sensing footprint is the uniform radial one in (2.2),

allowing r to be a range–threshold beyond which sensing results are considered unreliable. Let

the area–related criterion in (3.15) be the optimization cost to be maximized throughout the

network’s evolution.

Coordination schemes that are to be developed for a mobile sensor network should be char-

acterized by distributed nature. This means that each node should plan its motion according to

information acquired only from its “neighboring” nodes, while global knowledge of the net-

work should not be demanded, since it is never available in practice. For this purpose, each

mobile robot vehicle is assumed to be equipped with a radio transceiver, able to transmit in-

formation radially (omnidirectionally) around the corresponding node’s position up to a range

equal to R. Equivalently, each node receives messages from any neighboring node that trans-

mits in that range.

From an application perspective, the aforementioned radio–range, R, is somehow uncor-

related to the sensing one, r, since it is dependent on the antenna’s characteristics (i.e. trans-

mission power, antenna gain etc). This is exactly the case examined in this chapter; that is,

the antennas’ radius is permitted to take any arbitrary value independent of the sensing range,

contrary to the majority of works in the literature. Thus, communication range can even be less
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than twice the sensing one (i.e. the trivial case), while this value is assumed to be fixed and

common for all nodes.

Considering the above, the communication graph of the network can be defined, denoted

as Gc. In this graph, an edge exists between two nodes if
∥

∥xi− x j

∥

∥ ≤ R, entailing that, in

this case, a bidirectional communication link exists among nodes i, j for information flow. It

should be mentioned that the communication graph is independent of the nodes’ sensing range,

but depends only on nodes’ positions and their communication capabilities. The following

definitions are provided in order to determine neighboring relationships in the communication

graph.

Definition 5.1. For a given sensor network communication graph Gc, a routing path of length

ℓ among two nodes i, j is a sequence of ℓ+ 1 nodes i,k1,k2, . . .kℓ−1, j such that i←→ k1←→

k2 . . .←→ kℓ−1←→ j, where notation ←→ implies direct RF connectivity among two nodes.

A network is considered fully (end–to–end) connected if there exists an RF routing path among

any two nodes of it.

The main objective in an RF–aware coverage scenario that this chapter deals with can be

formulated as a proper design of distributed control action of the nodes, so that performance

criterion (3.15) is maximized, while network maintains end–to–end RF–connectivity, given

that initially the network is fully connected.

Utilizing Voronoi partitioning defined in (2.6), one can determine neighboring relationships

between nodes via utilization of the Voronoi cells. Two nodes are considered as Delaunay

neighbors if they share an edge of their Voronoi cells, as of (2.7). In a similar way, the 2r–

limited Delaunay neighbors can be defined as the pairs of nodes the share an edge of their

r–limited Voronoi cells, that is

N
2r
i =

{

j ∈ In : V r
i ∩V r

j 6= /0 (non singleton), j 6= i
}

, i ∈ In. (5.1)

Based on these relationships one can define the corresponding graphs. A graph G = {V,E}

consists of a set of vertices (nodes) V , along with a set of edges E containing the relationship

links among the nodes. The Delaunay graph Gd of a network is based on neighboring described

in (2.7), while the corresponding 2r–limited Delaunay graph, G2r
d , on (5.1), respectively. One

can easily verify that G2r
d ⊆Gd . The reader is encouraged to refer to [63] for additional details

on graph preliminaries.

Figure 5.1 shows the Voronoi and the r–limited Voronoi partitioning, along with the neigh-

boring relationships, for an arbitrary group of nodes. It should be noted that if two nodes are
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1

2

Figure 5.1: Graphical representation of the Delaunay [left] and 2r–limited Delaunay [right] neigh-

bors in a sensor network.

neighbors in G2r
d graph, then their distance is less than 2r; however, the reverse does not always

hold, as seen by the numbered bottom–right nodes of Fig. 5.1. Although the circles of these

nodes intersect (dashed line), this does not hold for their r–limited Voronoi cells.

Considering the criterion H in (3.15) along with Voronoi partitioning, the total area sensed

by the network can be expressed as the summation of the areas of the r–limited Voronoi cells

of the nodes as of (3.16). Figure 5.2 shows a simple scenario of an area–optimum network

configuration in the open space. Red links indicate the neighboring relationships among the 2r–

limited Delaunay neighbors. It is evident that if R ≥ 2r, the latter are trivially RF–connected.

Consequently, since any information required during the coordination stage is guaranteed, the

agents can plan their motion in order to maximize the network’s aggregate objective (3.15), or

equivalently minimize the area of their possible overlapping sensing parts. More specifically,

Figure 5.2: Example of area–optimal configurations achieved via (4.6) for an arbitrary sensor

network.

such configurations can be achieved if the nodes’ control action is selected as in (4.6), as
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proposed in [21], To associate (4.6) with Fig. 5.2, the nodes are pushed to move towards

the “arcs” of their corresponding r–limited Voronoi cells, heading thus towards the uncovered

space and increasing the overall network’s coverage performance.

5.2.2 Radio Connectivity Issues

According to the example presented above, along with (4.6), in order for the nodes to be able

to contribute in network’s coverage performance increase, they need information from their

current 2r–limited Delaunay neighbors, which is trivially guaranteed if R≥ 2r. In this chapter

this trivial assumption is ignored and by uncorrelating the aforementioned radii. At this point

let us introduce some definitions on multi–hopping interaction.

Definition 5.2. Two nodes i, j in Gc are defined as N–hops connected, denoted as i
N
←→ j, if the

minimum–length path among them has length N. For the trivial case of direct RF connectivity,

that is N = 1, we will simply refer as connected, i.e. i←→ j.

Definition 5.3. For any node i, the set DN
i is defined as the set of nodes that node i is at most

N–hops connected, that is

D
N
i =

{

j ∈ In : i
ℓ
←→ j, ℓ≤ N, j 6= i

}

, i ∈ In. (5.2)

Assumption 5.1. Initially, at time–step k = 0, each node is connected via at most N–hops with

all its 2r–limited Delaunay neighbors, for an a–priori given N ∈ In−1, that is

j ∈N
2r
i ⇒ j ∈D

N
i , i ∈ In.

Practically, the assumption indicates that if two nodes share parts of their sensing domains,

then there exists an at–most N–hops routing path connecting them, initially.

The main motivation to introduce the aforementioned assumption that demands at most

N–hops connectivity among 2r-limited Delaunay neighbors is the fact that, each node in order

to plan its motion appropriately, has to evaluate its r-limited Voronoi cell (see (4.6)), while

that set, N2r
i , is sufficient for V r

i evaluation. It should be noted, though, that proper design of

an alternate distributed control scheme is necessary in order to amend not only for network’s

coverage performance, but to maintain that N–hops connectivity among neighboring nodes

throughout the deployment stage.

91



5. COVERAGE WITH CONSTRAINTS IN THE COMMUNICATION RANGE

1

2

3

Figure 5.3: Graphical representation of the need for multi–hopping in order to acquire sufficient

information for distributed V r
i evaluation.

These issues are also presented visually in Fig. 5.3, depicting a simple network of seven

nodes with R= 1.5r. Neighboring relationships via the r–limited Voronoi sets is depicted in the

Figure’s left part, while the network’s communication graph is shown in solid line at the right

part, given the fixed RF–radii [middle part] (uncorrelated with the sensing performance of the

team). It should be observed that nodes 1 and 2, even though they are not directly connected,

they can exchange information via node 3, and hence considered 2–hops connected, that is

1
2
←→ 2, depicted with dashed line in the Figure. That multi–hopping connectivity nature of the

network can be proven to be crucial concerning optimization issues, since the aforementioned

nodes should have perception of existence of each other in order to properly evaluate their

corresponding cells and apply their corresponding coverage control in the sequel [see left part].

From an application point of view, the concept of multi–hopping can be considered as

sequential TX/RX services at each step of the motion–loop, in order to ensure sufficient in-

formation exchange among members that share common parts in their sensing domains. An

algorithmic sketch of that procedure is described in Algorithm 5.1. It is apparent that the

TX/RX loop and the motion–loop do not run in parallel, but in a somehow nested manner. It

should be noted that, since the 2r–limited Delaunay neighbors are initially N–hops connected,

it is up to the control design to ensure further connectivity maintenance in order to benefit from

its optimality–oriented nature.

Compared to the standard case —where at each iteration a node broadcasts its position,

receives the positions of its neighbors and determines its motion in the sequel, based on that

data,— in the case of N-hops each node repeats N times the broadcasting–reception proce-

dure, in order to fully identify its neighbors that are N–hops afar, in each step. The iterative

identification process of DN
i for N = 3 hops is depicted graphically in Fig. 5.4 for an arbitrary

network. Although, the broadcasting–reception iteration is executed N times at each “motion”–

time–step, and thus overweights the links’ load, it allows for guaranteeing monotonic increase
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Algorithm 5.1 Identification of N2r
i neighbors via multi–hopping for fixed RF range

1: loop

2: add self in PositionList

3: for m = 1: N do

4: broadcast PositionList

5: receive messages from nodes in range

6: add information received in PositionList

7: end for

8: . . .

9: (control scheme)

10: . . .

11: end loop

in the network’s coverage performance, as it will be shown in the sequel, assuming proper

control design.

The main problem though with connectivity preservation in mobile networks lies in the

fact that usually local information is insufficient to guarantee global results. A quite instructive

example is presented in Fig.4 of [41], where it is shown that if 2 pairs of nodes decide, inde-

pendently of each other, to drop the communication link among them, then global end–to–end

connectivity is violated, although the nodes assume that it is preserved form a decentralized

aspect.

In this chapter, in order to account for increase in coverage performance of the network in

time, only one node is allowed to move at each step k [35]. This can be performed by cyclic

operation of the nodes in a periodic mode. Although this demands some initial synchronization

of the network, it does not require any central supervision during operation. Consequently, at

an arbitrary time step, a node is able to identify if it is its turn to move or not, in a time–

based manner, similarly to the concept of chapter 2. It should be noted though, that the current

assumptions/approach do not account for packet losses or reception delays, unlike probabilistic

models. However, decision on motion is taken at the end of each time step (Fig. 5.4, at the end

of the T –interval), regardless of the information acquired, allowing for proper synchronization

of the network.

In fact, the demand for motion of one node at each step arises mainly from the need for

connectivity maintenance with the set N2r
i in order to evaluate properly in the sequel the corre-
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T-interval

1-hop 2-hops 3-hops

Figure 5.4: Evolution ofDN
i –set identification during a time-step interval T . The 3–hops neighbors

of the yellow diamond–shaped node are identified sequentially (red ones) via chained neighbors–

transmission. The repeated RX/TX process takes place during the time–step interval T .

sponding coverage optimization law. Figure 5.5, depicts a simple network of two nodes, which

share parts in their sensing domains. In the case both nodes are allowed to move, in order to

distributedly preserve the RF–link among them, they should move in the blue disk, so to main-

tain at least the critical distance allowing them to communicate [left part]. On the other hand,

1 2 1 2

Figure 5.5: Graphical illustration of the connectivity–oriented motivation for demanding motion

of one node at each step in a simple network of two nodes.

if we allow only to the right node to move, then, as shown in the right part of the figure, a quite

larger domain is allowed. Although this is not a rule of thumb, restricting the nodes to move to

one, although may delay the convergence process, it can amend for connectivity preservation

while allow more flexibility during the network evolution [right part].

It should be noted that, knowledge of the 2r–limited Delaunay neighbors of a node is

crucial for evaluating distributedly control laws that are based on geometric partitioning of the

space such as (4.6). Although it is up to the design of the control action in order to maintain

connectivity among the 2r–limited Delaunay neighbors, there are cases where connectivity

cannot be guaranteed/constructed.
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Let us consider a simple network consisted of 2 nodes, with R = r, as shown in the left

part of Fig. 5.6. Assuming control law (4.6), node 1 should not move since it already attains

optimum coverage, while node 2 is moved towards the direction shown with the green arrow, as

pushed away from the boundary. At this point the nodes do not have perception of each other.

Node 2 will keep moving to the left until it reaches the configuration shown, while node 1 will

still stay still. The main issue here is that both nodes “believe” that they have achieved optimal

area–coverage, since they still are out of RF–range of each other (and do not have knowledge

of existence of each other), while the real coverage performance of the network is less that the

distributedly estimated one, as the union of the discs.

1 12 2

Figure 5.6: Graphical representation of topologies where connectivity among 2r–limited Delaunay

neighbors cannot be forced.

In fact, the nodes cannot do anything about these cases, since they have wrong local per-

ception of the state of the network. Same scenarios is when the network is consisted of clusters

of nodes without any “bridge”–nodes to allow interaction between the groups, as shown in the

right part of Fig. 5.6. In such cases when these nodes ever come in range of each other, the

control law will try and maintain such connectivity links. Thus, although connectivity among

the 2r–limited Delaunay neighbors can be maintained, it cannot be enforced in some cases,

depending on the network topology.

5.3 Distributed Control for Optimum Coverage while Maintaining

Network Connectivity

The objective of the suggested control scheme is to lead the network in such configurations

where the sensed part of area Ω under consideration is as high as possible, while simultane-

ously end–to–end connectivity is preserved. In general, coordination should be performed in a

distributed way meaning that the node–to–move does not have global knowledge for the state

of the whole network. In this section, radio–connectivity among two nodes is extended further
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than the standard case, i.e. that two nodes are connected (and thus exchange information), if

they are within the radio–range among each other. Specifically, the term of N–hops connec-

tivity is introduced (previous section), allowing two nodes to share data if there exists a valid

N–hop corresponding communication path for information flow.

5.3.1 Motivation for extension of existing control laws

The presented results are based on the control scheme proposed by the authors in [21], which

is suitable for optimizing the area–coverage performance in a mobile sensor network. For the

limited sensing range in the nodes’ performance model, the control action (4.6) leads a network

in an area–optimal topology, following the gradient direction in order to achieve maximal–rate

increase of the network’s performance between time–steps. The main issue though is that the

aforementioned scheme correlates the radio range with the sensing one as explained in Fig. 5.2

in order to guarantee distributed evaluation of the corresponding Voronoi cells.

Applying that control law in a network though where the nodes have RF–range less than

twice the sensing one, can result in quite unsatisfactory performance, judging from the con-

verged topologies. The modification presented in Algorithm 5.2 is the main basis of the control

approaches following in the sequel, allowing for handling the communication constraints im-

posed, while ensuring distributed and correct evaluation of the corresponding r–limited Voronoi

cells.

Algorithm 5.2 Motion planning for coverage control in networks under non–trivial communi-

cation constraints (base pattern)

1: loop

2: implement TX/RX loop as in Algorithm 5.1

3: evaluate own V r
i based on N2r

i

4: implement FunctionMotionDirection()

5: perform line–search optimization along the selected direction as

{

maximize stepsize towards direction inside V r
i

subject to : connectivity not violated

6: end loop

We apply the scheme described in Algorithm 5.2 in a network of 10 nodes, where the sens-

ing radius is equal to the RF one for visualization purposes. The FunctionMotionDirection
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(line 4) in this case is selected as the area–gradient one, given in (4.6). The nodes are set to

move on condition that 2–hops connectivity in G2r
d is maintained. Figure 5.7 depicts the initial

configuration of the network along with the final one when the predescribed law is applied.

1

2

3

4

Figure 5.7: Coordination results derived via Algorithm 5.2. [Left] Initial network configuration.

[Right] Final network state. Communication graph indicates 2–hops connectivity among the 2r–

limited Delaunay neighbors.

Observing the results, it is clear that, besides the fact that the demanded 2–hop connectivity

is attained among the 2r–limited Delaunay neighbors and the area function H increases from

one step to the other (due to the gradient–based nature of the control law), the final coverage

performance of the network can be further increased. This issue appears due to two main

reasons:

• some nodes do not move further since their motion along the area–maximization–gradient

contradicts with connectivity preservation, and thus consist a “barrier” for the network

(see enumerated nodes in right part of Fig. 5.7),

• the control action for some nodes corresponds to null, since their r–limited Voronoi cells

do not contain any arc, resulting in their congestion in small areas (rest of the nodes).

This next two sections are dedicated in providing further extensions/modifications to achieve

area–wise “better” topological configurations.

5.3.2 Proposed Control Scheme – Modifications

The first step so to overcome the aforementioned problems is to categorize the nodes depending

on the characteristics of their corresponding r–limited Voronoi cells. The motion planning
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scheme for each node can then be designed, dependent on the category a node belongs at,

while determined via information from N–hops radio–connected nodes.

Definition 5.4. In a network where the nodes’ sensing performance is limited–range radial,

let E contain the set of nodes whose r–limited Voronoi cell contains at least one arc of the

boundary of their sensing domain. Let these nodes be called exterior ones, formally defined

as E : =
{

j ∈ In : ∂V r
j ∩∂C j 6= /0

}

. Univocally, we can define the set of interior nodes I : =

In \E, containing the rest nodes of the network, that is the nodes whose r–limited Voronoi cell

contains no arc.

Remark 5.1. The categorization proposed in Definition 5.4 can be performed in a distributed

manner by the nodes themselves, as long as connectivity among the 2r–limited Dealunay neigh-

bors is maintained. Indeed, if a node knows its aforementioned neighbors, then it can evaluate

its own r–limited Voronoi cell and thus identify the category it belongs at, managing properly

its control action in the sequel.

Examining Fig. 5.7 and taking into account the discussion at the end of the previous subsec-

tion, one can see that the exterior nodes are the ones to “block” network evolution by forming

some kind of barrier, while the interior ones stay still according to gradient law, until they ever

become exterior ones.

Figure 5.8 depicts the categorization of twelve nodes into interior and exterior ones. In or-

Figure 5.8: Categorization of nodes into interior and exterior ones. Blue (red) dots represent the

interior (exterior) ones.

der to avoid the above issues, we propose some modifications/extensions to the original control

scheme, based on Algorithm 5.2. According to the latter, which consists a connectivity–aware

version of the original scheme, an exterior node checks the area–gradient direction in order to
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move and increase the overall network’s performance, without breaking any link that is used

for connectivity among 2r–limited Delaunay neighbors. These checks are performed inside the

line–search optimization loop for determination of the appropriate step–size as already shown

in Algorithm 5.2.

Apparently, according to Algorithm 5.2, if no valid step size is found along the scan di-

rection that does not violate the connectivity demand, the node does not perform any motion.

The problem with this concept is that it “locks” the exterior nodes at a configuration, where any

infinitesimal motion along the optimum area–increase direction will break essential links in the

network. In this chapter analysis, the search procedure does not end in this point, but we allow

suboptimal direction–scan, too, in order to avoid reaching such spatial topologies. Particularly,

the directions that deviate from the gradient one at any range within a maximum of 90 degrees

can be selected, since these will also increase network’s coverage performance, though not in

the optimal manner, as shown graphically in Fig. 5.9.

r-limited Voronoi

cell

area coverage

gradient direction

directions increasing

coverage

Figure 5.9: Graphical depiction of the suboptimal directions allowed in chapter 5 to avoid

deadend–configurations, while preserving connectivity.

Considering the selection of the suboptimal directions, in the case where there is no non–

zero step–size along the area–gradient direction that maintains connectivity, the directions clos-

est to the latter are first examined, moving towards the outer directions during scanning proce-

dure. Assuming a predefined angle–step δθ , at the m–th iteration the direction scanned is set

to

vm = R((−1)m⌈m/2⌉δθ) ∇H, |m/2δθ | ≤ π/2, (5.3)

where ⌈·⌉ is the ceiling function, m is the iteration of the direction–scanning loop and R(·) is

the standard rotation matrix as previously presented in section 4.4.2.

Considering proper control of the motion of interior nodes, in order to avoid being idle until

they (ever) become exterior, we are based on the fact that infinitesimal motions do not affect
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the network’s coverage. Apparently, that is also the main reason that the control law (4.6) is

null for them. What we propose is to move in such a way so that they relax possible hard

RF constraints that may have “locked” exterior nodes, and hence give them the opportunity to

evolve in space for increasing network’s performance. Considering that, they are selected to

move in a direction towards their furthest 2r–limited Delaunay neighbor. It should be noted

that this motion is performed with the appropriate step-size so that N–hops connectivity is not

violated in G2r
D . That way, it is guaranteed that the overall network’s coverage performance

increases in a monotonic manner, a straightforward property of control action (4.6) [21, 45].

An algorithmic sketch of the described control scheme is presented in Algorithm 5.3

Algorithm 5.3 Proposed control scheme based on interior/exterior nodes–categorization

1: loop

2: implement TX/RX loop as in Algorithm 5.1

3: evaluate own V r
i based on N2r

i

4: identify own category (remark 5.1)

5: m : = 0

6: if exterior node then

7: evaluate search–direction via (5.3)

8: else

9: move towards own furthest 2r–limited Delaunay neighbor

10: end if

11: perform line–search optimization along the selected direction as

{

maximize stepsize towards direction inside V r
i

subject to : connectivity not violated

12: if exterior node and no feasible step found then

13: m← m+1

14: go to 6

15: end if

16: end loop

On network end–to–end connectivity. Before proceeding to the numerical results, an im-

portant issue on global connectivity in G2r
d should be discussed. As already presented, the

proposed control scheme maintains local connectivity in N2r
i , assuming that node i is the node

that moves. Consequently, since only one node moves at a time–state, the only alteration to
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the connectivity graph is in the neighborhood of node i. However, when a node decides during

its transition to drop a (redundant) link, even if does not affect connectivity in N2r
i , it must be

assured that it will not affect global connectivity in G2r
d , too, ensuring so that every other node

will still be allowed to have information from its 2r–limited Delaunay neighbors.

More specifically, the node–to–move decides to break a link via information from the set

DN
i . Apparently if two node of the network utilize a link of i for preserving their N–hops

connectivity among them, and node i knows about their existence, i.e. they belong to the set

DN
i , then it will not break the aforementioned link, as it is vital for end–to–end connectivity of

the network. The main question though is if this set is sufficient to guarantee that removal of this

link will not violate global connectivity of the network. Since this is not trivially guaranteed

when deciding via local information, this issue is formally stated and proven in the following

lemma.

Lemma 5.1. Consider a sensor network where each node has information from its N–hops

afar nodes, that is the set DN
i for any arbitrary node i. If the node–to–move decides to drop

a communication link during its transition to a new spot, deciding that it does not violate its

connectivity with N2r
i , then it does not violate global N–hops connectivity among any two 2r–

limited Delaunay neighbors of the network, without needing to have global perception of the

network.

Proof. Assume that node i is the node that moves, and that at this time it has information

from at–most N–hops–afar nodes, that is the set DN
i (Definition 5.3). Let d be the node with

whom node i decides to abandon RF link (Fig. 5.10). Apparently, before the motion it holds

i←→ d. What we need to prove is that, if there are two arbitrary nodes in the network that are

2r–limited Delaunay neighbors (among them) and utilized the i—d link for preserving N–hops

connectivity among them, then both nodes are already known to node i.

Let j,k be the aforementioned two nodes in the network and the link i—d is included in

the N–hops–path between them, as being 2r–limited Delaunay neighbors. The shortest path

among the nodes j and k (including i—d link) can be composed as shown in the two cases

below:

• j←→ q1←→ q2 . . .qm←→ d←→ i←→ qm+1←→ qm+2 . . .qm+p←→ k (a) or

• j←→ q1←→ q2 . . .qm←→ i←→ d←→ qm+1←→ qm+2 . . .qm+p←→ k (b),

where m, p ∈ N. For visualization purposes, topology–(a) is depicted graphically in Fig. 5.10.

One can get topology–(b) just by swapping nodes i and d.
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Figure 5.10: Notations concerning the proof of Lemma 5.1

Let us make the assumption that at least one node out of j,k is unknown to node i, which

without loss of generality can be assumed as node j.

Topology–(a): Since j ∈DN
k , as 2r–limited Delaunay neighbors, enumerating the links in

the path provides that (m+1)+1+(p+1)≤N. Furthermore, since j is considered unknown to

i, that is j /∈DN
i , it holds that the path from j to i has length at least N+1, that is m+2≥N+1.

Utilizing the fact that m+ p+3 ≤ N we get m+2 ≥ N +1⇒ m+ p+3 > N + p+2⇒ N ≥

N + p+2⇒ p≤−2, leading in contradiction since p ∈ N.

Topology–(b): The analysis in this case falls along the lines of the previous one. Again

simple enumeration of links gives m+ p+ 3 ≤ N. In this case, though, the path from j to i

consists of m+ 1 links, instead of m+ 2 previously. This results in m+ 1 ≥ N + 1. Working

on the last expression, as before, provides m+ 1 ≥ N + 1⇒ m+ p+ 3 > N + p+ 3⇒ N ≥

N + p+3⇒ p≤−3, which cannot hold as p ∈ N.

Consequently, the original assumption is proven wrong and thus both nodes j and k are

known to node i if they utilize the link i—d connectivity maintenance, that is j,k ∈DN
i . This

means that if two arbitrary nodes utilize the link for preserving N–hops connectivity among

them, then they belong to the set of nodes that node i has perception of and thus can amend

for not violating connectivity. But since nodes j,k are arbitrary, global connectivity among any

two 2r–limited Delaunay neighbors is guaranteed and this completes the proof.

Remark 5.2. When the nodes are organized via the proposed control scheme (Algorithm 5.3),
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Figure 5.11: Converged state along with communication graph when 1–hop [left], 2–hops [middle]

and 3–hops [right] connectivity is demanded.

then if the network is initially end–to–end connected (Assumption 5.1), it will remain connected

throughout evolution.

Simulation results are presented in order to further verify the efficiency of the proposed

control scheme. The area of interest is a convex compact planar set of total area
∫

Ω dx =

6.2 units2, which is identical to that used in [15] (also presented initially in Fig. 5.8). Let us

assume the network consisting of n = 10 nodes, identical to the one used in Fig. 5.7. These

initial conditions will be utilized throughout the section for comparative analysis of the cases

studied. The nodes are equipped with sensors of radius r = 0.2units, while their communication

range is selected equal to sensing (R = r) for visualization purposes. This is in fact a quite hard

constraint imposed, comparing with the trivial case of R = 2r.

Comparative studies are presented in order to emphasize in the advantages provided by

allowing multi–hopping inter–agent communication. Particularly, we examine the effect of the

demanded N–hops connectivity in the network’s coverage performance at the converged state,

while applying the proposed connectivity–aware coordination scheme. During the study, the

nodes were initially deployed in a way that Assumption 5.1 holds. The maximum possible

coverage ratio is 20.6%, while the network initially senses 3.6% of the area. Simulations were

conducted for different values of N hops allowed: 1, 2 and 3. The final network configuration

in all three cases are presented in Fig. 5.11.

The effect of the allowed number of hops for connectivity preservation in the network’s

coverage performance is presented in Fig. 5.12. It is apparent that increasing the permitted

number of hops among 2r–limited Delaunay neighbors results in a significant increase in the
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Figure 5.12: Effect of allowed number of hops for connectivity preservation in coverage perfor-

mance [1–hop:blue, 2–hops:green, 3–hops:black].

percentage of the sensed area. However, maximum coverage performance cannot be achieved,

since it is directly dependent on the sensing–to–radio radii ratio, encaptured in the overlapping

among the nodes’ sensing domains.

Besides the fact that fixed radio–range restrains the network from achieving maximum

coverage performance, it can be seen that the network’s performance index H increases among

any two consecutive time–steps. Note that at the time steps where network’s coverage stays

at same rate, it is the case where an interior node moves (one node at a time), trying to relax

the critical–range constraints, rather than emphasize in increasing coverage, as explained at the

deign procedure.

It should be noted that in the case of 3–hops, there exist two nodes in the network (at the

bottom–left side of the figure), which communicate via 4–hops instead of 3 (maximum al-

lowed), while being 2r–limited Delaunay neighbors. This is exactly the case that was depicted

and discussed in Fig. 5.6; these nodes became neighbors during evolution, although not in

N–hops–range, and did not abandon any link that used to preserve connectivity among them,

instead. However, this issue does not have to do with the selected coordination scheme, but

with a general fact that arises in RF–constaint networks.

5.3.3 Further heuristic extension

The achieved network’s coverage performance, when the previously presented coordination

scheme is applied may seem quite satisfactory given the imposed communication constraints.

However, observing the final network configurations in Fig. 5.11, one could argue that an even
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better performance can be achieved, since there are nodes that still sense outside the area of

interest. Apparently, if these nodes are to move away from the boundary, then the percentage

of sensed area can be increased even more.

Even though this is not some general fact, it still applies to cases where the area under

surveillance is quite larger than the maximum area that the nodes can sense. It should be

noted that moving away from the boundary of the area of interest does not guarantee mono-

tonic increase in the network’s coverage as before, but may be dropped, when two consecutive

time–steps are compared. Based on these remarks, an extended categorization of the nodes

is proposed that takes into account contact with the area boundary, while coordination plan

is modified accordingly, in order to amend for achieving possibly better results, in area–wise

terms.

Definition 5.5. In a network where the nodes’ sensing performance is limited–range radial,

let B̄ contain the set of nodes whose r–limited Voronoi cell shares parts with the boundary of the

region of interest. Let us call these as boundary nodes, defined as B̄ : =
{

j ∈ In : ∂V r
j ∩∂Ω 6= /0

}

.

Let us define as interior nodes, Ī, the ones that their r–limited Voronoi cell does not contain

any arc of the boundary of their sensing domain, while not belonging in the boundary–nodes

category, that is Ī : =
{

j ∈ In \ B̄ : ∂V r
j ∩∂Ci = /0

}

. Univocally, the last set of exterior nodes

Ē : = In \
{

Ī∪ B̄
}

, containing the rest nodes of the network, that is the nodes whose r–limited

Voronoi cell contains at least one circular arc, while not being boundary node, though.

Figure 5.13 depicts the categorization of twelve nodes into the above three categories, based

not only on the existence of arcs on their r–limited Voronoi cell boundary, but based on the

common parts with the boundary of the area under consideration. Apparently, these sets consist

a tessellation of the nodes–set In.

Adding this extra category of boundary nodes, in comparison to the previous case, we

select to plan their motion accordingly to the motivation that pushed us to discriminate them.

More specifically, the latter are selected to move away from the boundary of the area Ω, and

particularly in the opposite direction of that of the closest point of ∂Ω∩∂V r
i to the node.

In accordance to the previously presented scheme, a (boundary) node moves with an appro-

priate step–size, as derived from the corresponding line–search, in the aforementioned direction

providing that the demanded N–hops connectivity among its 2r–limited Delaunay neighbors

is maintained. In the case that no suitable step is found, the node stays idle. Although, the

selection of the scheme invests in achieving a “better” final network configuration as far as

coverage is concerned, it should be mentioned that monotonicity of the area evolution (3.15)
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Figure 5.13: Categorization of nodes into interior(exterior)[boundary] nodes, denoted with

blue(red)[black] dots.

is not guaranteed that way, since it is not selected to follow the gradient direction. This mo-

tion plan serves very well in cases where the area of interest is large enough, providing higher

probability of achieving topological configurations with all nodes’ sensing regions laying in

the interior of the area of interest.

As for the interior and exterior nodes, accordingly, they are selected to move as described

in section 5.3.2 on condition that, after their motions they should not be turned into boundary

nodes. The extra restriction imposed arises from the need to prevent them from switching to

boundary–category, since in that case the node will end in a cyclic loop. The main reason for

this fact is the intuitive strategy followed for the boundary nodes’ motion in order to assist the

network achieve better area configurations, rather than contribute to coverage–increase directly.

To avoid repetition, the control scheme in this section is not presented in some algorithmic

form, since it shares most parts with the Algorithm 5.3, with the exception that boundary–

nodes’ motion is included as to move away from closest boundary point.

The control technique presented above is validated in the same sensor network as before,

with exactly the same characteristics as in the previous case–study, that is same radii (sensing

and radio ones), environment, initial conditions and connectivity restrictions (set at 2–hops).

Figure 5.14 shows the network’s initial configuration, the nodes’ trajectories, along with the

converged state.

Examining the results derived from that control scheme, in comparison to the results ob-

tained before (for the 2–hops case), one can conclude that the network achieves better end–state

coverage–performance, while connectivity maintenance demand still applies. However, due to

the motion of boundary nodes heading away from the boundary, and not move with respect
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Figure 5.14: Coordination results derived via the heuristically extended control scheme. [Left]

Initial network configuration. [Middle] network evolution. [Right] Final network state.

Figure 5.15: Percentage of sensed area during network evolution. Blue (green) line corresponds

to Fig. 5.14 (5.11).
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to area–gradient–based headings, the percentage of sensed area is increased with reduced rate,

compared to the green line in Fig. 5.12, which is also repeated for ease of comparison in Fig.

5.15. This is though the trade–off to balance in order to hopefully achieve configurations of

better performance in coverage–terms.

5.4 Conclusions

In this chapter, two distributed coordination approaches were developed for controlling cov-

erage performance of a mobile robotic network, when the nodes’ antenna range can take any

arbitrary value, independently of the sensing range. In both proposed control schemes, the

nodes plan their motion via information acquired from N–hops radio–connected nodes so that

RF-connectivity among 2r–limited Delaunay neighbors is retained. In the first scheme, the

nodes are categorized based on the existence of arcs in their corresponding r–limited Voronoi

cells, guaranteeing that the percentage of sensed area increases from one time–step to the other.

In the sequel, an additional category is introduced based on contact with the boundary region,

forcing the boundary nodes to plan their motions via the aspect of assisting the network to

achieve a “better” (area–wise) final state, although monotonic increase in coverage during net-

work evolution is not guaranteed that way. Simulation results were presented to confirm the

efficiency of both control schemes in radio–range–constrained networks.
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6

Thesis Summary and Future Research

Plans

6.1 Research Contribution

The purpose of this chapter is to summarize and discuss the main contribution topics of this

thesis, along with providing insights on how the current results can be extended in the future.

The main topic of research addressed is the possible ways to treat the area coverage problem

in mobile robotic networks. The problem was initially approached for networks that evolve in

discrete time by properly adjusting the motion of the node–to–move in order to ensure overall

coverage increase [18]. It was shown that, although it suffers from relatively slow convergence

due to the assumption of moving one node at each step, it can lead to optimal coverage perfor-

mance [35]. The monotonic increase between each two consecutive steps is ensured by proper

identification of future Delaunay neighbors based on a worst case scenario plan [36].

The case of heterogeneous networks was examined in the sequel, where the anisotropy was

identified in the different radial sensing performance range of the nodes. The partitioning of

the space was performed via a proposed pattern–based scheme that suits robotic teams with

limited range sensory [37, 64], assigning convex domains of the configuration space among

the members, in order to base their control action. A distributed control law was designed in

order to lead a robotic team towards optimum surveillance of an area of interest, as based on

the aforementioned proposed partitioning scheme [45].

The preceding work posed the main inspiration for treating coverage control in a com-

bined “partitioning–development & controller–design” framework, allowing its extension for

109



6. THESIS SUMMARY AND FUTURE RESEARCH PLANS

swarms with heavily anisotropic sensing domains. At first stage, cooperative control action

for networks with non–radial sensors has been examined, where the sensors were supposed

to share the same heading (orientation) [65]. Based, on certain theorems for planar convex

curves, a distributed control law was developed to lead the agents to optimal topology as far

as the overall coverage is concerned [66]. The presented scheme was extended for networks

with additional distance–like unevenness captured in the different scaling factors of the patterns

[57].

Despite the fact that the aforementioned results were quite important in the overall dis-

tributed coverage concept, the assumption for common sensors orientation was still a hardly

conservative factor. An innovative pattern–based partitioning is proposed in [67] in order to

properly assign responsibility regions of the sensed configuration space among nodes with

non–common sensor heading. Allowing rotation degree on the members’ mobility, control ac-

tion was designed so that it properly regulates both the nodes’ positions and their orientations

in order to achieve coverage optimal performance. The developed framework is suitable for

any kind of sensory domain, making it quite attractive for real applications.

Although a communication range analysis followed each controller design in order to guar-

antee its distributed nature (since centralized schemes are somehow non realistic), it does not

engulf the case of a–priori fixed radio–range for the nodes’ communication devices. This prob-

lem is usually overcome by allowing the latter to be twice that of the sensing, assuming radial

performance. The coverage problem was examined from an RF–constraint point of view, by

imposing non–trivial assumptions in the overall problem formulation [68]. A combined control

action was developed that allowed for simultaneous distributed optimization of the network’s

coverage and connectivity preservation, by properly manipulating redundant RF links [69] via

self categorization of the nodes based on their topological state.

6.2 Extensions of current research

The results presented in this thesis have the potential to get extended or combined in order to

form strategies that can be useful in more realistic applications. The pattern–based partitioning

developed for the case of heterogeneous anisotropic sensors with rotation incorporated [67] is

mainly applicable for any sensing pattern of the nodes, allowing it to become a core result for

distributed control laws implemented the future. Although its complexity increases according

to that of the pattern, it is the proper tool to get past the radial performance models.
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6.2 Extensions of current research

Considering the rapid research development in the field of unmanned aerial vehicle control,

the proposed coordination schemes can be almost directly applied for 3d space networks. Cov-

erage control can be reformed as a continuous aerial surveillance problem for patrolling areas

of interest for precaution or security applications. Challenging is the case when the footprint

start to be treated as time–varying ones, where terms of convergence and optimal configuration

need to be treated carefully.

Judging from the majority of the control algorithms for distributed coordination of groups

of nodes, it is evident that incorporating different mobility models is still in research stage.

Allowing nonholonomic constraints in the overall problem emphasizes in the need for appli-

cability of the results in real experiments, while existence of radio constraints is something

that cannot be neglected. A combined framework that can incorporate the above would form a

significant advance in the current coverage formulation.
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