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Abstract 
 
Lindh, Markus (2014). Bacterioplankton population dynamics in a changing ocean. Linnaeus 
University Dissertations No 204/2014. ISBN: 978-91-87925-38-2. Written in English 
with a summary in Swedish.  
 
Bacterioplankton is characterized by high diversity, short generation times and rapid 
turnover. Despite their small size, these numerous microorganisms are a fundamental piece 
of aquatic ecosystems by channeling carbon to higher trophic levels through dissolved 
organic matter utilization. Yet, several gaps remain in our knowledge and understanding of 
bacterioplankton populations regarding detailed temporal dynamics, and mechanisms 
determining biogeographical patterns and potential responses to climate change. The aim 
of this thesis was to examine responses in bacterioplankton community composition and 
function when challenged by natural and anthropogenically-induced change in 
environmental conditions. 

High temporal resolution analysis of bacterioplankton population dynamics in the Baltic 
Sea indicated detailed seasonal responses. It also showed a similar but wide spectrum of 
niche differentiation patterns within several major bacterial groups. Analysis of geographic 
distributions of marine bacterial populations revealed bimodal occupancy-frequency 
patterns in bacterial communities, indicating that the presence of many locally rare taxa 
along with a few locally abundant taxa were explained by stochastic variation in 
colonization and extinction rates. Experimental manipulations with natural marine 
bacterioplankton assemblages revealed both specialist and generalist strategies in utilizing 
specific dissolved organic carbon compounds. When subjected to experimentally increased 
sea surface temperatures, lowered pH and additions of terrigenous carbon, some 
populations decreased in relative abundance while others were stable; concomitantly, many 
populations increased in relative abundance. Shifts in bacterial community composition 
were shown to correlate with changes in community functioning, but detection of such 
correlations depended largely on the detail of phylogenetic analysis and successional stage of 
the communities. 

The results in this thesis suggest that both natural and anthropogenically-induced changes 
in environmental conditions promote simultaneous adjustment and replacement of bacterial 
populations tightly linked with metabolic plasticity. These trade-offs play a significant role 
for understanding the relationship between bacterioplankton population dynamics and 
potential shifts in carbon cycling properties. We also show the importance of regional 
effects in shaping bacterial community composition, crucial for interpreting 
bacterioplankton distribution patterns. In conclusion, this thesis emphasizes the critical 
importance of connecting analysis of bacterioplankton population dynamics with 
examination of ecological mechanisms to improve our understanding of factors that 
regulate the distribution and activity of distinct bacterioplankton populations. 
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climate change, environmental disturbance 
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Sammanfattning 
 

Hälften av all fotosyntes på vår planet utförs av växtplankton. De producerar organiskt 
material som utgör grunden för näringskedjan i havet. Ungefär hälften av det organiska 
material som produceras av växtplankton utnyttjas inte direkt, utan omsätts istället av 
bakterieplankton som lever och växer fritt i vattenmassan eller på olika partiklar. 
Bakterieplankton spelar därmed en nyckelroll i ekosystemet genom sin konsumtion av 
organiskt kol som för energi högre upp i näringskedjan. Trots deras nyckelroll i akvatiska 
miljöer vet vi fortfarande mycket lite om bakteriernas detaljerade säsongsmönster, 
mekanismer bakom rumsliga mönster och hur olika populationer kan komma att svara på 
klimatförändringar. Målet med denna avhandling var att undersöka hur specifika 
populationers dynamik och ekosystemfunktion påverkas av naturliga eller klimatorsakade 
förändringar i havsmiljön.  

Våra resultat av högupplöst säsongsbunden dynamik i Östersjöns bakteriesamhälle avslöjar 
en liknande bred uppdelning av ekologiska strategier inom varje större grupp av bakterier, 
både i relativ abundans och temporal fördelning. Utbredning i rum och tid av många lokalt 
ovanliga populationer jämfört med få lokalt vanliga populationer förklarades genom 
stokastisk variation i kolonisations- och utdöendehastigheter. Vidare tyder experimentella 
studier med tillsatser av olika kolkällor på att marina bakterier har olika ekologiska 
strategier, där populationer är specialister eller generalister i utnyttjandet av enskilda 
kolkällor. Med hjälp av experiment med naturliga bakteriesamhällen bekräftade vi tydliga 
temperatureffekter på bakteriesamhällets sammansättning, och en mindre effekt av lägre 
pH - som dock tillsammans med förhöjd temperatur bidrog till en tydlig synergistisk effekt 
på artsammansättningen. Ökad temperatur tillsammans med tillsats av terrestert kol gav 
också en stor effekt på bakteriesamhällets struktur och ekosystemfunktion och pekar på en 
potentiellt viktig påverkan av ökad framtida nederbörd och avrinning från vattendrag till 
havet. Samtliga tre experiment med fokus på klimatpåverkan bekräftade förekomsten av 
populationer som försvann eller minskade i relativ abundans vid klimatpåverkan 
(känslighet), medan andra var stabila (resistens). Samtidigt svarade många populationer 
positivt på klimatorsakade förändringar i havsmiljön och ökade i relativ abundans (respons) 
samtidigt som bakteriernas ekosystemfunktion påverkades positivt. 

Sammanfattningsvis visar denna avhandling att vissa nya bakteriepopulationer kan etablera 
sig och ersätta andra samtidigt som vissa befintliga populationer anpassar sin livsstrategi 
och ekologi till förändringar i havsmiljön. Vi visar också vikten av regionala effekter, d.v.s. 
kolonisation och utdöende, för bakteriesamhällets struktur, viktigt för tolkningen av 
biogeografiska mönster och den genomiska potentialen hos specifika populationer. Denna 
avhandling poängterar därmed betydelsen av att koppla studier av ekologiska mekanismer 
till både rumsliga och temporala spridningsmönster hos bakterier och till populationers 
kapacitet att svara på och anpassa sig till förändringar i havsmiljön.  
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“ 
To see the world, things dangerous to come to, to see behind walls, draw 

closer, to find each other, and to feel. That is the purpose of life. 

” ALife Magazine motto in Secret life of Walter Mitty 
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 3 

The Microbial Loop 
It was not until the 1970’s and early 1980’s that the status of bacterioplankton 
was recognized to be a significant part of organic matter flux and recycling to 
higher trophic levels via the so-called microbial loop (Pomeroy 1974; Azam et 
al., 1983) (Fig. 1). About 50% of the atmospheric CO2 is fixed by 
photosynthesizing phytoplankton in surface waters (Field et al., 1998) resulting 
in 45 gigatons of organic matter per year (Falkowski et al., 1998). Although a 
matter of debate and depending on ecosystem, around 50% of the organic 
matter produced by phytoplankton, are utilized by bacterioplankton (Cole et al., 
1988), and re-enters the “traditional food-web” by predation and grazing (Azam 
et al., 1983). Recent data suggest that this portion of organic matter, around 25 
gigatons per year, is also corresponding to a spectrum of labile to recalcitrant 
dissolved organic carbon (DOC), collectively forming the largest flux of carbon 
in the sea (Hansell 2013). Thus, a major part of the carbon in the sea is 
channeled to higher trophic levels by bacterioplankton through dissolved 
organic matter utilization. 

 
Figure 1. The Microbial loop (Azam et al., 1983). The grey arrow denotes the direction of 

organic matter utilization and transfer to higher trophic levels by bacterioplankton and the 

white arrow denotes the recycling of organic matter by predation and grazing. Modified 

from (Azam and Malfatti 2007). 

 2 

INTRODUCTION 

“We know more about space than we know about the oceans.” 
D. Attenborough 

 
Marine bacteria and Archaea, collectively known as bacterioplankton, are a 
fundamental piece of the planktonic food-web puzzle and the whole aquatic 
ecosystem. It has been estimated that there are 1029 prokaryotic cells inhabiting 
the oceans, vastly outweighing any larger organisms, both in sheer numbers 
and, despite their microscopic size, in total biomass (Whitman et al., 1998). In 
fact, a typical bacterial cell is approximately 1 µm in diameter and if one would 
place each cell of the oceans on a straight line, it would extend about 2.5 
million light years (reaching the Andromeda galaxy; oral presentation by Jed 
Fuhrman). However, bacterioplankton is not only numerically abundant but is 
also characterized by large diversity, short generation times and rapid turnover 
(Pedros-Alio, 2006, Noble and Fuhrman 2000). Microbial ecologists have 
asked three fundamental questions during the last couple of decades concerning 
bacterioplankton: Who are they? What do they do? What is their ecological role 
in the marine environment? In order to interpret bacterioplankton processes in 
the marine environment, there is a need to identify bacterial community 
composition and functional patterns. In addition, microbial ecologists need to 
differentiate between superficially minor details that may be critical for the big 
picture and those that are simply local outliers of no broad significance. There 
is now ample evidence that bacterioplankton activity and community 
composition play a central role in regulating biogeochemical cycles of 
elements, primarily carbon (Azam et al., 1983, Azam et al., 1994, Pinhassi et 
al., 1999, Carlson et al., 2004,  Moran et al., 2004, Bidle and Azam 2001, 
Robinson and Williams 2005, Arnosti et al., 2005). However, several gaps 
remain in our knowledge and understanding of bacterioplankton regarding 
detailed temporal dynamics, and mechanisms determining biogeographical 
distribution and potential responses to climate change.  
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from (Azam and Malfatti 2007). 

 2 

INTRODUCTION 

“We know more about space than we know about the oceans.” 
D. Attenborough 

 
Marine bacteria and Archaea, collectively known as bacterioplankton, are a 
fundamental piece of the planktonic food-web puzzle and the whole aquatic 
ecosystem. It has been estimated that there are 1029 prokaryotic cells inhabiting 
the oceans, vastly outweighing any larger organisms, both in sheer numbers 
and, despite their microscopic size, in total biomass (Whitman et al., 1998). In 
fact, a typical bacterial cell is approximately 1 µm in diameter and if one would 
place each cell of the oceans on a straight line, it would extend about 2.5 
million light years (reaching the Andromeda galaxy; oral presentation by Jed 
Fuhrman). However, bacterioplankton is not only numerically abundant but is 
also characterized by large diversity, short generation times and rapid turnover 
(Pedros-Alio, 2006, Noble and Fuhrman 2000). Microbial ecologists have 
asked three fundamental questions during the last couple of decades concerning 
bacterioplankton: Who are they? What do they do? What is their ecological role 
in the marine environment? In order to interpret bacterioplankton processes in 
the marine environment, there is a need to identify bacterial community 
composition and functional patterns. In addition, microbial ecologists need to 
differentiate between superficially minor details that may be critical for the big 
picture and those that are simply local outliers of no broad significance. There 
is now ample evidence that bacterioplankton activity and community 
composition play a central role in regulating biogeochemical cycles of 
elements, primarily carbon (Azam et al., 1983, Azam et al., 1994, Pinhassi et 
al., 1999, Carlson et al., 2004,  Moran et al., 2004, Bidle and Azam 2001, 
Robinson and Williams 2005, Arnosti et al., 2005). However, several gaps 
remain in our knowledge and understanding of bacterioplankton regarding 
detailed temporal dynamics, and mechanisms determining biogeographical 
distribution and potential responses to climate change.  
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populations are therefore expected to change on shorter time-scales than the 
typically monthly samplings carried out in seasonal studies (Fuhrman et al., 
2006,  Andersson et al., 2010,  Pinhassi and Hagström 2000). Moreover, high 
temporal resolution sampling was recently shown to catch responses from days 
to weeks in the relative abundance of specific bacterial populations in two 
independent studies (Needham et al., 2013, Teeling et al., 2012). In addition, 
Vergin and colleagues (2013) noted that there are few established links between 
standard environmental variables and particular bacterial populations. Thus, 
high temporal resolution analyses of bacterioplankton population dynamics 
over longer time scales within a year could be a way for achieving an improved 
understanding of bacterioplankton responses and ecological mechanisms to 
changes in environmental conditions. 

 
Figure 2. Seasonal succession of phytoplankton and bacterioplankton. Curves indicate 

population abundance. Arrows denote light (hv). Green points are spring phytoplankton 

(diatoms and dinoflagellates) and green filaments are summer Cyanobacteria. Modified from 

(Martin 2012). Insert is a satellite picture from a Baltic Sea summer cyanobacterial bloom 

on the 5th of July 2005, Credit: Jeff Schmaltz NASA. 

Biogeographic distribution 

Biogeography is the study of species distributions over space and time. 
Biogeographical patterns on both small scales (1-100 km) and larger scales 
(>100 km) show that specific bacterioplankton populations can be widespread, 
but also that most populations are biogeographically distinct and often 
separated by currently unknown physical or biological barriers (Barberan and 
Casamayor 2010,  Pommier et al., 2007,  Pinhassi et al., 2003,  Brown et al., 
2012,  Sul et al., 2013,  Ghiglione et al., 2012). An alternative hypothesis 
suggests that if the sequencing resolution would increase further, everything 
would in fact be everywhere, i.e. all populations are cosmopolitan and not 

 4 

Community Composition 
As for macroorganisms, microbial community composition or community 
structure refers to the identity of organisms (taxa) and their frequency 
distribution in an environment/ecosystem. A multitude of experimental and in 

situ approaches have revealed the importance of different factors, in regulating 
bacterioplankton community composition, including for example a series of 
physicochemical and biological factors (Teeling et al., 2012, Kritzberg et al., 
2006, von Scheibner et al., 2014, Allgaier et al., 2008, Sjöstedt et al., 2012b). In 
addition, years of research have shown a close link between bacterial 
community composition and ocean biogeochemistry (Carlson et al., 2004,  
Moran et al., 2004, Bidle and Azam 2001, Robinson and Williams 2005, 
Arnosti et al., 2005). Since only a small fraction of all bacteria are cultivable, 
phenotypic identification of bacteria is problematic and does not mirror the 
complete bacterioplankton diversity. Microbiologists therefore use culture-
independent genetic identification techniques to differentiate between bacterial 
taxa. Identification of individual populations is often done by division of 
bacterioplankton into specific phylotypes or operational taxonomic units 
(OTUs) following sequencing of the 16S rRNA gene fragments and taxon 
delineation at a specific sequence identity threshold (typically 97%). The 
relatively highly conserved 16S rRNA genes are parts of prokaryotic ribosomes 
(18S rRNA genes in eukaryotes) but also contain hypervariable regions (Head 
et al., 1998). Technical advances in the form of high-throughput sequencing 
have increased the sequencing resolution and thereby the detection levels of 
individual OTUs by several orders of magnitude. As a result the field of marine 
microbial ecology have advanced from describing mostly major bacterial 
groups or a few dominant populations to resolving up to thousands populations 
over different temporal and spatial scales (Poisot et al., 2013).  

Seasonal succession  

Stratification and physical mixing of the water column lead to changes in 
environmental conditions for many ecosystems. Concurrent utilization of 
nutrients by phytoplankton in spring, summer and autumn, cause a seasonal 
succession of phytoplankton and bacterioplankton populations (Martin 2012) 
(Fig. 2). Seasonal studies of dynamics in bacterioplankton composition have 
mostly sampled natural populations monthly over single or several years 
(Cotner et al., 1997, Pinhassi and Hagström, 2000, Church et al., 2003, Schauer 
et al., 2003, Fuhrman et al., 2006, Alonso-Saez et al., 2008, Nelson et al., 2008, 
Andersson et al., 2010, Gilbert et al., 2012, Hatosy et al., 2013). These studies 
have established that there are broad scale seasonal changes in community 
composition of bacterioplankton over the year, with a pronounced regularity in 
the reappearance of major populations between years. However, to fully 
recognize bacterial community responses to seasonal events, it is critical to 
measure the presence/absence and relative abundance of specific bacterial 
populations on relevant temporal scales in situ. Bacterioplankton communities 
have turnover times of around 3-5 days (Noble and Fuhrman 2000) and specific 
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plants, to understand the correlations between local abundance and regional 
occupancy. Hanski’s core-satellite hypothesis predicts a bimodal occupancy 
frequency distribution (i.e. the number of species occupying different number 
of sites) where regionally common organisms (core populations) have a higher 
colonization probability and a lower mortality risk as opposed to regionally rare 
organisms (satellite populations) (Hanski 1982; Box 1). An alternative model 
predicts instead a unimodal distribution and a linear relationship between 
colonization/extinction rates and occupancy (Levin, 1974). 

 
Bimodal occupancy frequency distributions are characterized by a pattern 
where most species are found at a single site and an initial, monotonical 
decrease of species with number of sites occupied, followed by an increase in 
species that occur at all sites. Hanski’s prediction of bimodality is different 
from other occupancy frequency distributions like unimodality described in 
Levin (1974), by incorporating the rescue effect - the idea that immigration of 
populations from surrounding sites reduces the probability of local extinction 
(Hanski and Gyllenberg 1993) (Box 1). The value of the core-satellite 
hypothesis is significant since it explains the long known bimodal distribution 
pattern of species described by the “Law of frequency” (Raunkiaer 1913, 1918, 
1934). Hanski’s model further contributed to put focus on metapopulation 
dynamics and distribution patterns in local patches influenced by regional 
dynamics instead of considering the local environments as the essential 
ecological units. Efforts to connect diversity with ecosystem function and the 
disproportionate role of dominant species in controlling this relationship have 
been linked to Hanski’s core-satellite hypothesis (Gibson et al., 1999). For 
example, Hanski’s model provides a theoretical basis for the division between 
“subordinate” (satellite), “transient” and “dominant” (core) species and how 
successful traits are determined by colonization and extinction probabilities. 
Although, the core-satellite hypothesis have been tested and confirmed 
frequently in terrestrial environments (Gotelli and Simberloff 1987; Ely and 

Box 1. Hanski’s metapopulation model 
Hanski’s core-satellite hypothesis (1982) is based on Levin’s original model (Levin, 1974) 
calculated as follows: 

dP/dt = CP(1 – P) – EP        
where P is the fraction of occupied sites, C is colonization rate and E is extinction rate. 
When P = 1, occupancy is 100% and all sites are occupied and when P = 0, occupancy is 
0%, meaning regional extinction. Colonization rate is the change in number of colonized 
empty sites over time. Extinction rate is the change in number of lost sites over time. If C 

is greater than E plus the variance in E (C > E+ 2
E), then Levin’s model predicts a 

unimodal distribution (i.e. a occupancy-frequency pattern characterized by one peak). 
Hanski modified the model to: 

dP/dt = CP(1 – P) – EP(1 – P)        
Hanski’s model predicts a quadratic function of both C and E and takes into account 
regional effects, i.e. immigration of species from a regional pool, also known as the rescue 
effect. Thus, if the variance in S (C – E) is greater than S (i.e. 2

S > S) the model predicts a 
bimodal species distribution (i.e. a occupancy-frequency pattern characterized by two 
peaks). 
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endemic (Gibbons et al., 2013). Nevertheless, the underlying cause of specific 
biogeographical patterns among marine bacterioplankton is poorly understood. 
In addition, high-throughput sequencing is remarkably underused in the context 
of investigating biogeography of bacterioplankton (Poisot et al., 2013). Several 
mechanisms ranging from neutral mechanisms to dispersal limitation and 
species sorting have been suggested to explain bacterioplankton distribution 
patterns (Hellweger et al., 2014,  Hanson et al., 2012,  Lindström and 
Langenheder 2012). However, efforts to investigate species abundance patterns 
over both spatial and temporal scales incorporating positive feedback 
mechanisms between local abundance and regional distribution are essentially 
lacking in aquatic systems (Fig. 3) (McGeoch and Gaston, 2002). Species-
abundance patterns may be simply yet intrinsically linked to processes involved 
in structuring ecological communities and could reveal underlying patterns and 
generalities of how organisms appear in nature.  

 
Figure 3. Regional and local dynamics involved in shaping species composition. Species 

from a regional pool are filtered by abiotic and biotic factors and successful populations 

colonize a local site thus establishing the local species composition. But species are also 

subjected to local extinction. If species are regionally rare the chances of successful 

dispersal diminishes rapidly, as exemplified by green and yellow populations. Modified from 

(Gibson et al., 2012).  

A metapopulation is a regional group of connected species where each 
metapopulation is influenced by population increases (i.e. replication and 
immigration) and population decreases (i.e. mortality and emigration). 
Metapopulation models are frequently used to describe species-abundance 
patterns for terrestrial animals, plants and insects (McGeoch and Gaston, 2002 
and references within), and in a few cases for aquatic organisms (Soininen and 
Heino, 2005; Hercos et al., 2013). In general, metapopulation theory has 
provided insight in conservation biology and whether colonization takes place 
despite extinctions resulting from natural causes e.g. forest wildfires and 
anthropogenic causes e.g. agriculture, other land-use goals and overfishing. But 
more importantly, metapopulation models have the potential of connecting 
bacterial species-abundance patterns and regional vs. local effects in terms of 
colonization and extinction of species (gain and loss of OTUs). For example, 
Hanski (1982) suggested a framework based on observations of bimodal 
occupancy frequency distribution of different species ranging from insects to 
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Marine dissolved organic matter (DOM) composition  

The quality and composition of DOM is partly dependent on its origin, which 
can be: allochtonous (i.e. transported into the sea by e.g. river outflows) or 
autochtonous (i.e. produced in situ by e.g. phytoplankton) (Kirchman, 2008; 
Kritzberg et al., 2004). It is known that the composition of autochtonous DOM 
influences the community composition of bacterioplankton and thereby 
potentially biogeochemical cycling of carbon (Riemann et al., 2000, Pinhassi et 
al., 2004, Teeling et al., 2012, Dinasquet et al., 2013, Sarmento et al., 2013). 
For example, Sarmento and colleagues (2013) recently showed that 
phytoplankton produce species specific DOM, varying in composition and 
resulting in a differential response in bacterial community composition. In 
comparison, the effect of allochtonous DOM and subsequent microbial 
responses in community composition in the marine environment is less studied 
(Herlemann et al., 2014, Kisand et al., 2002, Rochelle-Newall et al., 2004, 
Kisand et al., 2008, Teira et al., 2009, Grubisic et al., 2012, Rocker et al., 
2012). However, shifts in bacterioplankton community composition in response 
to allochtonous DOM additions are well documented in freshwater systems 
(e.g. Lindström, 2000, Eiler et al., 2003, Haukka et al., 2005, Kritzberg et al., 
2006, Hutalle-Schmelzer et al., 2010). Since bacterioplankton are the main 
contributors to the transformation of marine DOM, much attention have been 
put on the role of bacterioplankton community composition in this 
biogeochemical process. However, the relationship between DOM composition 
and bacterioplankton community composition is still not completely 
understood. 

A potential reason for changes in community composition in response to 
exposure to DOM of different origin/quality could be niche differentiation at 
the population level. For example, particular bacterial populations may be able 
to utilize several DOC compounds while others are only capable of utilizing a 
few specific compounds, i.e. generalist and specialist dynamics (Langenheder et 
al., 2005). Different degrees of generalist versus specialist behavior in bacterial 
communities may also explain why community composition does not 
necessarily need to change when subjected to an environmental disturbance 
(Langenheder et al., 2005, Allison and Martiny, 2008, Mou et al., 2008). Thus, 
to establish the level of adaptation or sensitivity of bacterioplankton 
communities to natural changes in environmental conditions it is essential to 
investigate specific bacterial populations and their responses to different DOM 
sources and specific DOC compounds. 

Community composition and ecosystem function 

A fundamental question in ecology focuses on whether shifts in diversity and 
community composition due to changes in environmental conditions also result 
in changes in bacterial community ecosystem functioning. Traditionally, two 
important ecological frameworks can be recognized, targeted alone or 
simultaneously: (i) population and community ecology, typically aiming to 
understand population interactions and differences in community composition 
between and within communities, and (ii) ecosystem ecology typically aiming 
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Gibson 1996; Unterseher et al., 2011; Simons et al., 2014) few have 
investigated this model in aquatic environments (Soininen and Heino, 2005; 
Hercos et al., 2013). The often negative effects of dominance on ecosystem 
function was highlighted by Hillebrand et al., (2008), and core-satellite 
dynamics may be key in understanding and monitoring anthropogenic effects 
on ecosystems strongly influenced by bacterioplankton diversity and 
functioning. Taken together, empirical testing of metapopulation models is 
generally lacking and may provide knowledge and mechanisms to explain 
biogeographic patterns of bacterioplankton in the sea and the distribution of 
many rare vs. a few abundant populations in the local environment.  

Rare vs. Abundant  

Studies focusing on bacterioplankton community composition have typically 
shown a general rank-abundance distribution of few abundant taxa followed by 
a long tail of many rare taxa among populations in the sea (Rappe and 
Giovannoni, 2003, Pedros-Alio, 2006, Sogin et al., 2006, Pedros-Alio, 2012, 
Galand et al., 2009) (Box 2). The rare bacterioplankton contribute to most of 
the diversity in the ecosystem but populations in this “seedbank” may be 
growing slowly or not at all (Pedros-Alio, 2006). However, it is becoming 
increasingly clear that although currently abundant taxa likely carry out most of 
the activity in the ecosystem, rare taxa can rapidly become abundant in 
response to changes in environmental conditions (Lennon and Jones, 2011, 
Sjöstedt et al., 2012b). Still, only few studies have carried out sampling at 
temporal resolution necessary to observe such transitions in situ (but see 
Campbell et al., 2011, Teeling et al., 2012, Needham et al., 2013, Alonso-Saez 
et al., 2014). At present, the factors that govern this general pattern of rare and 
abundant bacterial populations are unknown, but may for example result from 
unidentified biological or physical niche constraints in the aquatic environment 
(Pedros-Alio, 2012, Lennon and Jones, 2011). Alternatively, positive feedback 
mechanisms between local abundance and the regional distribution of 
populations, as described above, could shape the division of rare vs. abundant 
populations. Altogether, for bacterioplankton, it is very common to be rare and 
very rare to be common in the sea. However, ecological mechanisms and 
temporal transitions between being rare and abundant remain largely unknown. 
 
Box 2. Rare vs. Abundant 

For clarification purposes it is common to define at which relative abundance an OTU is 
abundant or rare in a community (Pedros-Alio, 2006). Common abundance ranges are: 
 
”Rare” – Relative abundance < 0.1% 
 
“Abundant” – Relative abundance >1% 
 
Other definitions typically shift the range of rare to lower relative abundances e.g. <0.01% 
(Galand et al., 2009).  
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populations. Altogether, for bacterioplankton, it is very common to be rare and 
very rare to be common in the sea. However, ecological mechanisms and 
temporal transitions between being rare and abundant remain largely unknown. 
 
Box 2. Rare vs. Abundant 

For clarification purposes it is common to define at which relative abundance an OTU is 
abundant or rare in a community (Pedros-Alio, 2006). Common abundance ranges are: 
 
”Rare” – Relative abundance < 0.1% 
 
“Abundant” – Relative abundance >1% 
 
Other definitions typically shift the range of rare to lower relative abundances e.g. <0.01% 
(Galand et al., 2009).  
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important for understanding bacterial communities responding to changes under 
other environmental conditions, e.g. anthropogenically-induced changes. 
Projections of climate change in the aquatic environment implicate ecosystem 
changes of unparalleled extent. In the “business as usual” scenario, the 
Intergovernmental Panel on Climate Change (IPCC) projects a global 
temperature increase of 1.4 to 5.8°C and a global atmospheric CO2 increase of 
400 atm, resulting in lower pH by approximately 0.4 units until 2100 (Stocker 
et al., 2013). Moreover, in the Baltic Sea region the Swedish meteorological 
and hydrological institute (SMHI) projects increased precipitation by up to 48% 
until 2100, leading to lower salinities and increased output of allochtonous 
matter from river discharge (Meier, 2006).  

Temperature regulates bacterial growth and can be a major driver of 
compositional shifts among bacterioplankton (Müren et al., 2005, Sommer et 
al., 2007, Hoppe et al., 2008, von Scheibner et al., 2014). Therefore, increased 
sea surface temperatures due to climate change will likely affect the seasonal 
dynamics of particular bacterial populations. Similarly, increased CO2 

concentrations resulting in lowered seawater pH may affect bacterioplankton 
growth and composition directly or indirectly by affecting DOM release and 
composition of higher trophic levels (Allgaier et al., 2008, Vega Thurber et al., 
2009, Arnosti C et al., 2011, Joint et al., 2011, Witt et al., 2011). Further, like 
increased temperature and lowered pH, an increase in loading of allochtonous 
carbon and lower salinity will likely influence growth and community 
composition of marine bacterioplankton. In fact, bacterioplankton respond to 
allochtonous carbon (Kisand et al., 2002, Rochelle-Newall et al., 2004, Kisand 
et al., 2008, Teira et al., 2009, Kritzberg et al., 2004, Kritzberg et al., 2006, 
Grubisic et al., 2012, Rocker et al., 2012), and salinity (Langenheder et al., 
2003, Sjöstedt et al., 2012b), affecting the composition of bacterial 
communities. Although bacterioplankton responses to climate change-related 
variables have been tested individually, they have not been considered in 
combination, and documented responses at high taxonomic resolution are 
essentially lacking. 

The Baltic Sea and Linnaeus Microbial Observatory 
The primary study area of the papers included in this thesis is the Baltic Sea, 
but also material from the Mediterranean Sea and global data from the 
International Census of Marine Microbes (ICoMM) have been used. In addition 
to Linnaeus Microbial Observatory (LMO), (N 56°55.851, E 17°03.640), other 
Baltic Sea stations are located in the Western Gotland Sea, west to Northwest 
of Öland (see insert Fig. 4) and the NB1 station (N 63°31.0000, E 19°48.1166) 
in the Bothnian Sea approximately 7 km off the coast of Norrbyn, close to the 
Öre river outflow (Ågren et al., 2008) are also studied in the present thesis (Fig. 
4). The following paragraphs is an attempt to summarize key hydrological and 
physicochemical features of the Baltic Sea and the main field station LMO, but 
also known literature regarding pelagic bacterioplankton community 
composition in this semi-enclosed sea.  

 10 

to understand bacterial community functioning and energy flows in different 
systems (Loreau, 2000). Since bacterioplankton communities are characterized 
by high productivity, rapid turnover and relatively short generation times, they 
have a remarkable capability in responding both in metabolic activity and in 
community composition to environmental disturbances, such as changes in 
temperature, pH and nutrient additions (Allison and Martiny, 2008). 
Considering the above sections on community composition, it is clear that 
bacterioplankton regulate the biogeochemical cycling of nutrients (e.g. carbon) 
where changes in bacterial community composition affects metabolic activity 
relevant for this processing (Bidle and Azam, 2001, Moran et al., 2004, Arnosti 
et al., 2005, Robinson and Williams, 2005). Alternatively, rearrangement of 
bacterial assemblages affects only the pathway of responses but not the 
resulting metabolic activity (Comte and Del Giorgio, 2011). Still, little is 
known about how bulk bacterial community composition affect community 
functioning and how sensitive or resistant bacterial communities and individual 
bacterial taxa are to environmental disturbances (Allison and Martiny, 2008, 
Comte and Del Giorgio, 2011, Langenheder et al., 2005). Bacterial 
communities could in theory respond to environmental disturbances in 4 
distinct ways (Box 3).  

 
In addition, the insurance hypothesis or portfolio effect stipulates that 

sensitive communities may perform like the original community, or better, by 
the ability to recruit new taxa, from the large number of species held by the 
community (Allison and Martiny, 2008, Loreau, 2000). This hypothesis is 
particularly important for interpreting changes in bacterioplankton diversity 
when communities are challenged by alterations in environmental conditions. 
Potential links between changes in environmental conditions and bacterial 
community composition, diversity and functioning are not completely 
understood. More specifically, there are few studies focusing on this 
relationship between bacterial community composition and functioning for 
bacterioplankton responding to anthropogenically-induced environmental 
change.  

Climate change  

The issue of adaptation or sensitivity, i.e. adjustment or replacement of OTUs 
sensu (Allison and Martiny, 2008, Comte and Del Giorgio, 2011) is critically 

Box 3. Community responses to environmental disturbance  
 
Sensitivity – when community composition is altered by environmental disturbance. 
 
Resistance – when community composition is not altered by environmental disturbance.  
 
Resilience – when community composition is initially altered by environmental 
disturbance but returns to the original composition. 
 
Functional redundancy – when composition remains altered but contains functionally 
redundant taxa that performs like the original community.  
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Figure 4. Satellite picture of the Baltic Sea on April 1st 2004. Red circles denote LMO and 

NB1 field stations. Yellow circle denote SMHI/HELCOM station BY38. BP = Baltic Proper, 

BS = Bothnian Sea, BB = Bothnian Bay. Insert show stations sampled in the western 

Gotland Sea. Image courtesy: the SeaWiFS Project, NASA/Goddard Space Flight Center, 

and ORBIMAGE. More information, collection of data and live monitoring are now 

available from an automated buoy at LMO “Öland Öst”: 
http://www.smhi.se/hfa_coord/BOOS/Kustmat/Kustmat.html showing temperature, salinity, 

chlorophyll a and water oxygen measurements. 
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The 377,000 km2 large Baltic Sea is the second largest brackish sea on 
Earth, next after the Black Sea. The water volume is around 21,700 km3 and the 
drainage area spans ~90 million people in 14 different countries. This brackish 
system varies in both hydrology and physicochemical features and consists of a 
2000 km long salinity gradient ranging from marine to truly freshwater 
conditions through several basins of which three are major; the Baltic Proper 
(BP), the Bothnian Sea (BS) and the Bothnian Bay (BB) (Omstedt et al., 2014) 
(Fig. 4). In addition to strong shifts in salinity, the Baltic Sea is also 
characterized by different magnitudes of river outflows, transferring freshwater 
and terrestrial DOM to coastal waters, with seasonal variation (Omstedt et al., 
2014; Zweifel et al., 1993, Hansson et al., 2011). Areas in the Baltic Sea are 
also periodically affected by wind-driven upwellings, relatively common due to 
the geography of this semi-enclosed system (Omstedt et al., 2014; Lehmann A., 
2008). Our main field station LMO is located in the Western Gotland Sea, 
approximately 12 km off the coast of Öland (Fig. 4). Water samples are taken 
from the surface around 2 m and the depth on the site is around 40 m. LMO is 
situated between SMHI/HELCOM monitoring stations BY38 and BY39. 
Station BY38 illustrates the general hydrology, nutrient and oxygen dynamics 
in the Western Gotland Basin (Fig. 5). Isopleths in Figure 5 show a permanent 
halocline at approximately 60-70 m depth that has slightly shallowed during the 
1990s. Below the halocline water renewal follows the major Baltic inflow 
pattern with a salinity peak following e.g. the 2003 inflow. Below the halocline 
the water has been anoxic since the end of the 1990s, as shown by oxygen 
concentrations, absence of nitrate and accumulation of ammonia. However, the 
entire water column of LMO is located above the permanent halocline. A 
seasonal thermocline is established at approximately 20 m depth in summer that 
deepens during autumn. Between the seasonal thermocline and the permanent 
halocline a cold winter water layer is established. Nutrient depletion by 
phytoplankton during the productive season, however, reaches down to the 
permanent halocline. In essence, the distribution of individual bacterioplankton 
populations at LMO is likely not limited by any hydrological barriers and only 
occasionally affected by strong vertical mixing of the water column.  

Several experiments focusing on surface bacterioplankton community 
composition have been carried out in the Baltic Sea, as summarized in Table 1. 
Most of these investigations have focused on spatial distributions and effect of 
nutrient additions (Table 1). A majority of the studies show that bacterial 
community composition is sensitive to changes in environmental conditions 
such as nutrient inputs and changes in salinity (Dinasquet et al., 2013, Sjöstedt 
et al., 2012b). In fact, salinity changes have been reported to be the major driver 
of the spatial OTU distribution in the Baltic Sea (Herlemann et al., 2011, 
Dupont et al., 2014). Although these effects influence bulk bacterioplankton 
community composition, adjustment and replacement of taxa likely occur at 
different taxonomic levels. Thus, studies of the potential sensitivity or 
adaptability of particular populations in Baltic Sea bacterial communities 
responding to e.g. increased temperature and precipitation may provide 
understanding as to what ecological consequences climate change will have on 
the Baltic Sea ecosystem. 
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responding to e.g. increased temperature and precipitation may provide 
understanding as to what ecological consequences climate change will have on 
the Baltic Sea ecosystem. 

896149_Markus_Lindh_inl.indd   27 2014-12-10   08:06



 15 

Table 1. Summary of Baltic Sea pelagic microbial studies in which data on bacterioplankton 

community composition is available. Asterisk (*) denote papers included in this thesis. 

Study/ 

Disturbance 

No. of 

studies 

Total: 

46 

Location/Source Key findings References 

Seasonal 5 Baltic Proper, 
Gulf of Gdansk, 
Gulf of Finland 

Bacterial taxa display 
seasonal niche 
differentiation. 

(Pinhassi and Hagström, 2000, Riemann 
et al., 2008, Andersson et al., 2010, 
Piwosz et al., 2013, Kaartokallio et al., 
2008) 

Spatial 11 Entire Baltic Sea, 
Bothnian Sea, 
Bothnian Bay, 
Gulf of Finland 

Abundance and 
distribution of bacterial 
taxa change with 
environmental 
conditions and differ 
between the Basins. 

(Hagström et al., 2000, Kisand et al., 
2005, Salka et al., 2008, Holmfeldt et al., 
2009, Herlemann et al., 2011, Koskinen 
et al., 2011, Brettar et al., 2012, Bergen et 
al., 2014, Dupont et al., 2014, Laas et al., 
2014, Salka et al., 2014) 

Temperature 6 Bothnian Sea, 
Bothnian Bay, 
Kiel Bight, Gulf 
of Finland, 
Western Baltic 
Sea 

Bacterial communities 
and specific taxa respond 
to changes in 
temperature. 

(Sommer et al., 2007, Kuparinen et al., 
2011, Lindh et al., 2013*, Eiler et al., 
2007, Sjöstedt et al., 2012a, von 
Scheibner et al., 2014,) 

Nutrient 
additions 

9 Baltic Proper, 
Bothnian Sea, 
Gulf of Finland, 
Bothnian Bay 

Bacterial communities 
and specific taxa can 
respond to changes in 
DOM and can often 
utilize allochtonous 
DOM. 

(Gomez-Consarnau et al., 2012*, Kisand 
et al., 2002, Kisand and Wikner, 2003, 
Sipura et al., 2005, Grubisic et al., 2012, 
Tammert et al., 2012, Degerman et al., 
2013, Dinasquet et al., 2013, Herlemann 
et al., 2014) 

Salinity 3 Bothnian Sea, 
Gulf of Finland, 
Baltic Proper 

Salinity regulates 
bacterioplankton 
community composition. 

(Langenheder et al., 2003, Kaartokallio et 
al., 2005, Sjöstedt et al., 2012b) 

Other studies 12 Gulf of Finland, 
Bothnian Sea, 
Baltic Proper, 
Western Baltic 
Sea 

Specific bacterial taxa 
degrade hydrocarbon. 
Antibiotic resistance 
genes are correlated with 
community composition. 
Vibrio bacteria depend 
on environmental 
conditions. The 
underlying water 
community and specific 
environmental 
conditions shape 
Bacterioneuston 
communities. 

(Hofle and Brettar, 1995, Pinhassi et al., 
1997, Simu and Hagström, 2004, Eiler 
and Bertilsson, 2006, Eiler et al., 2006, 
Tuomainen et al., 2006, Stolle et al., 
2010, Lindroos et al., 2011, Stolle et al., 
2011, Reunamo et al., 2013, Viggor et al., 
2013, Tiirik et al., 2014) 
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Figure 6. Schematic representation of the contents and aims of papers included in this thesis. 

Paper I-III cover bacterial responses to natural changes (green bubbles), while Paper IV-

VI cover responses to anthropogenically induced changes in the marine environment (purple 

bubbles), which both potentially contribute to shifts in bacterioplankton community and 

ecosystem function (light-red bubbles). The light-brown bubbles and outer arrows indicate 

themes to which the studies in the thesis may contribute deepened understanding.  
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AIMS 

“As for me, I am tormented with an everlasting itch for things remote. 

I love to sail forbidden seas, and land on barbarous coasts.” 
H. Melville – Moby Dick 

 
The overall objective of this PhD study was, firstly, to determine how natural 
environmental changes occurring on different temporal scales affect 
bacterioplankton populations, and to determine mechanisms that contribute to 
determining biogeographical patterns. Secondly, to investigate how climate 
change-induced shifts in key environmental factors, i.e. lowered pH, increased 
temperature, lowered salinity and increases in allochtonous carbon, affect the 
dynamics of specific bacterial groups or populations. A schematic summary of 
the aims is presented in Figure 6, and the specific aims were as follows: 
 
 The aim of Paper I and II was to investigate niche differentiation and the 

relative importance of regional dynamics among bacterioplankton on 
relevant spatio-temporal scales in the sea. 

 The aim of Paper III was to investigate the relevance of different carbon 
substrates in promoting the success of specific bacterial taxa. 

 The aim of Paper IV, V and VI was to resolve combined climate change 
effects on bacterioplankton dynamics. This included effects of increased 
temperature and lowered pH (Paper IV), and increased temperature and 
allochtonous carbon (Paper V). To simulate effects of increased riverine 
discharge, transplant and re-transplant experiments with bacterial 
assemblages between Baltic Proper seawater (salinity 7) and Bothnian Sea 
water (salinity 3) were carried out (Paper VI).  
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In Paper II we observed a positive interspecific relationship between local 
abundance and regional occupancy. This is in accordance with several studies, 
both in terrestrial and aquatic ecosystems and for micro- and macro-organisms 
(e.g. Östman et al., 2010). However, this relationship is highly dependent on 
community similarity and may change on different spatial scales. Nevertheless, 
the finding of locally abundant species also being regionally widespread is 
linked to a second pattern; the species-abundance distribution. The data 
presented in Paper II is the first to describe bimodal occupancy frequency 
patterns in bacterioplankton communities (Fig. 7A). These findings suggest that 
stochastic variation in the rates of local extinction and/or colonization (Fig. 7B; 
C) are sufficiently large to result in a bimodal species distribution pattern, 
following the previously mentioned core-satellite hypothesis (Hanski, 1982). 
The key factor in the core-satellite hypothesis is the significance of rescue 
effects for common species and that the effect of stochastic variation in 
colonization- and extinction rates is highest on species with intermediate 
occupancy (Gyllenberg and Hanski, 1997). In other words, due to strong 
regional effects few locally rare populations succeed to colonize new habitats 
(satellite populations). In contrast, it is common that populations with high 
abundance and high occupancy (core populations) become more established, 
and that rare populations become even rarer. Nevertheless, Paper II also 
showed that some populations were occasionally easily dispersed despite low 
regional occupancy, what we refer to as “microbial rain”. This expands the 
concept of "propagule rain" (Gotelli, 1991) in general ecology for use also in 
microbial oceanography. Overall, this study moves beyond describing patterns 
among specific bacterioplankton populations to infer evidence from theoretical 
ecology and ecological mechanisms by using metapopulation models to explain 
dynamics of bacterioplankton communities. 

 
Figure 7. Example of a bimodal occupancy frequency distribution of OTUs (A), colonization 

rate (B), and extinction rates (C) from the spatiotemporal study in June 2010, Paper II. 
Colonization and extinction rates are plotted against occupancy. Each dot represents the 

change in fraction of sites occupied from June to July for individual OTUs. The red line 

indicates mean and the red shaded area around the mean is standard error. Blue dashed line 

indicates the quadratic curve of observed data fitted by non-linear least squares to the 

metapopulation model by Hanski (1982).  

Overall, the bimodality and observed colonization and extinction rates in 
Paper II is in agreement with Hanski’s core-satellite hypothesis (1982) and not 

- July10 - July10 
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RESULTS AND DISCUSSION 

“I seldom end up where I wanted to go, but almost always end up 

where I need to be.” 
                    D. Adams 

Natural environmental change 

Paper I & II – Spatiotemporal population dynamics 
Seasonal studies define broad shifts in bacterioplankton composition (Fuhrman 
et al., 2006, Andersson et al., 2010, Pinhassi and Hagström 2000). The findings 
in Paper I confirm a distinct seasonal succession among marine bacterial 
populations, and contribute to establishing links between community 
compositional shifts and change in environmental parameters on a more 
detailed timescale. Paper I further highlights that high temporal resolution 
sampling has the potential to uncover a very wide spectrum of bacterioplankton 
population dynamics, resulting both from differences in abundances and in 
temporal patterns of individual populations. Specifically, similar variations in 
niche differentiation of being mostly abundant, transient and rare were found 
within each major bacterial group. This variety of population dynamics is 
intriguing, but may to some extent complicate ambitions of finding causal 
relationships between environmental variables and changes in bacterial 
community composition.  

Analyses based on sampling at any particular geographic location may raise 
questions about whether the temporal dynamics observed at that location reflect 
arbitrary shifts in water masses or represent actual biological succession in 
bacterioplankton communities driven by changes in environmental conditions. 
However, beyond the correlation analyses with environmental variables 
observed in Paper I, the high frequency of sampling indicates potential links 
between seasonal "events" and dynamics in bacterioplankton community 
composition, suggesting that a major part of observed population dynamics 
reflects successional transitions. Thus, bacterial population dynamics in the 
offshore Baltic Sea appear to reflect primarily the impact of biological 
transitions, allowing interpretations of ecological processes coupled with 
bacterioplankton communities. 
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Anthropogenic environmental change 
The results in Paper I-III highlighted different ecological strategies (niche 
differentiation) and degrees of generalist and specialist behavior among specific 
bacterial populations. In Paper IV-VI potential adaptations among 
bacterioplankton populations in responding to climate change were examined, 
as summarized in Table 2. 

Paper IV – Temperature and pH effects  
In the mesocosm experiment with increased temperature and lowered pH 
presented in Paper IV, temperature had a higher impact on Baltic Proper 
bacterioplankton communities than lowered pH. The results in Paper IV 
further show that while some bacterioplankton populations were predominately 
abundant at ambient temperature, they were sensitive to increased temperature. 
On the other hand, other populations replaced these sensitive populations at 
increased temperatures (Table 2). Temperature regulates the composition of 
bacterial communities in various aquatic environments (Simon et al., 1999, 
Hoppe et al., 2008, Adams et al., 2010, Dziallas and Grossart, 2011, von 
Scheibner et al., 2014). For example, von Scheibner and colleagues (2014) 
showed that specific populations replaced others at higher temperatures, 
emphasizing a shift towards a more heterotrophic system in the Baltic Sea due 
to increased temperatures. In addition, temperature shifts may change the 
capability of bacterioplankton to degrade and utilize dissolved organic matter 
(Kirchman et al., 2005). Thus, climate warming poses a substantial threat for 
the structure and function of the entire aquatic food-web by changing the flow 
of energy, with specific bacterioplankton populations playing key roles. 

Climate warming will not be the only driver to potentially influence 
bacterioplankton dynamics, but will most likely be accompanied by lowered pH 
resulting from increased atmospheric concentrations of CO2 (Stocker et al., 
2013). The direct effects of lowered pH in shaping bacterioplankton community 
composition can be different due both to seasonal changes and to biological 
shifts in pH by e.g. phytoplankton blooms (Joint et al., 2011). Nevertheless, 
indirect effects mediated through phytoplankton are highly relevant for 
understanding potential pH responses of bacterioplankton (Allgaier et al., 
2008). However, such trophic cascades may complicate the interpretations of 
lowered pH and is difficult to reproduce in mesocosm experiments. In Paper 

IV a limited impact of acidification on bacterioplankton community 
composition was found, but when combined with increased temperature 
specific phylotypes proliferated (Table 2). In other words, by combining two 
relevant climate change factors we observed a synergistic effect on 
bacterioplankton community composition. These results emphasize the 
importance of combining several anthropogenically-induced environmental 
conditions to fully understand consequences of future climate change scenarios 
for bacterioplankton. 

 

 20 

with alternative models like unimodality suggested by Levin (1974). However, 
the lack of bimodality observed in several global datasets may suggest 
important scale effects of time and space. Alternatively, strong shifts in 
environmental conditions within different oceanic regions could affect the 
shape of the occupancy frequency distribution. Observations of frequently 
occurring species also being locally abundant may also be explained by neutral 
mechanisms in combination with dispersal (Sloan et al., 2006, Woodcock et al., 
2006; Economo and Keitt, 2008). Nevertheless, the observed bimodality, 
coupled with strong regional effects, suggests that most bacterial populations 
exhibit biogeographical endemism as opposed to everything being everywhere 
(Pommier et al., 2007, Sul et al., 2013, Ghiglione et al., 2012, Gibbons et al., 
2013). Collectively, the core-satellite hypothesis provides a framework for the 
biogeographic distribution of bacterial populations and the classification of 
abundant and rare taxa. Thus, origin, dispersal and extinction of species in 
addition to interactions among organisms as well as with their physical and 
biotic environments collectively play important roles for determining 
bacterioplankton population dynamics. 

 

Paper III – Dissolved organic compound utilization  
The concentration and quality of specific dissolved organic carbon compounds, 
resulting largely from the decay of phytoplankton blooms, vary on both 
temporal and spatial scales (Suttle et al., 1991, Rich et al., 1996, Obernosterer 
et al., 1999, Covert and Moran, 2001, Ho et al., 2002). These variations cause a 
succession of bacterial community composition (Martin, 2012, Teeling et al., 
2012, Sarmento et al., 2013, Riemann et al., 2000, Pinhassi et al., 2004). It is 
therefore not surprising that particular bacterial populations differ in their 
preference for different dissolved organic compounds due to niche 
differentiation (Teeling et al., 2012, Sarmento et al., 2013). However, Mou and 
colleagues (2008) showed that most bacterial phylotypes responded to additions 
of specific carbon compounds, i.e. a dominant generalist behavior. Results from 
Paper III showed distinct but variable degrees of substrate utilization among 
bacterioplankton populations. The spectrum of organic compound utilization 
could be divided into “strict specialists”, i.e. bacteria responding to only one 
carbon compound, “moderate specialists”, i.e. populations responding to a few 
carbon compound and “generalists”, i.e. populations responding to many 
different carbon compounds. Still, it is likely that even “strict specialists” can 
utilize more than one organic compound. Similarly, “generalists” may not be 
able to consume all available carbon compounds in the sea. These data 
highlight mechanisms and ecological adaptations of specific bacterial 
populations, relevant for understanding carbon compound utilization but also 
for interpreting the effect of environmental disturbances.  
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Table 2. Examples of bacterioplankton population dynamics in response to 

anthropogenically induced changes in environmental conditions in Paper IV-VI. Group 

names are abbreviated: Actino – Actinobacteria, Alpha – Alphaproteobacteria, Bact. – 

Bacteroidetes, Beta – Betaproteobacteria, Cyano – Cyanobacteria, Gamma – 

Gammaproteobacteria, Verr. – Verrucomicrobia. tDOMH+T indicate increased terrestrial 

DOM and temperature. Resistant, sensitive and responsive indicate stability, decrease and 

increase in relative abundance to changes in environmental conditions, respectively. In 

Paper VI transplants are indicated with bacterial source (b)  seawater media (sw). 

OTU Species (closest relative) Group Response Legend 
KM-13 Unc. Betaprot. clone 4887-27F Beta  

Paper IV 
No resp. (resistant) 
3°C  
6°C 
Low pH 

KM-12 Unc. Bact. DGGE band B4-A2 Bact.  
KM-25 Flavobacterium terrigena DS-20 Bact.  
KM-6 Arctic sea ice bacterium Beta  
KM-15 Unc. bacterium clone GOP_J Cyano  
KM-11 Unc. bacterium DGGE gel band Bact.  
KM-14 Unc. Alphaprot. clone 4473-27F Alpha  
KM-30 Unc. Betaprot clone Beta + 
UMU_000004 uncl. Roseobacter clade Alpha  

Paper V 
Resistant to tDOMH+T 
Sensitive to tDOMH+T 
Responsive to tDOMH+T 

UMU_000001 hgcI clade Actino  
UMU_000002 CL500-29 Actino  
UMU_000026 LD-29 Verr.  
UMU_000003 SAR11 clade Alpha  
UMU_000000 Burkholderia Beta  
UMU_000011 Comamonadaceae Beta  
UMU_000009 Owenweeksia Bact.  
TR_000037 SAR11 clade Alpha In situ only Paper VI 

LMOb  LMOsw 

NB1b  NB1sw
NB1bLMOsw
LMObNB1sw 
* LMOb NB1sw  NB1sw 

* NB1b LMOsw  LMOsw 

LMOb NB1sw  LMOsw 

NB1b LMOsw  NB1sw 

TR_000014 uncl. Roseobacter clade Alpha In situ ++ 
TR_000006 Rheinheimera sp. Gamma + +* 
TR_000010 Pseudomonas sp. Gamma  +*+ 
TR_000005 Limnobacter sp. Beta  +*+ 
TR_000033 Brevundimonas sp. Alpha *+ 
TR_000007 Rheinheimera sp. Gamma +*+ 
TR_000001 Pseudomonas sp. Gamma ++*+ 

 
Populations from the Baltic Proper were particularly successful in the Bothnian 
Sea environment, and were coupled to increased metabolic activity (Table 2). 
Moreover, a significant relationship between changes in bacterial community 
composition and shifts in community functioning was found in Paper VI. This 
relationship was not found at low phylogenetic resolution and not in the re-
transplant experiment. The latter could be argued to be an effect of investigated 
bacterial populations being functionally redundant. However, our analysis 
suggests that successional progression following the additional disturbance (re-
transplant) could temporarily affect relationships between community 
composition and community functioning - thus cautioning against rapid 
conclusions on functional redundancy of bacterial populations/species. Taken 
together, increased riverine discharge could have a significant effect on 
bacterial community structure tightly linked with metabolic activity. Further, 
our findings suggest that priming effects resulting from sizeable environmental 
events could translate into long-term changes in bacterial carbon cycling 
properties. 
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Paper V & VI – Increased precipitation  
In Paper V the effect of increased temperature combined with additions of 

allochtonous matter for Bothnian Sea bacteria was investigated. The results in 
Paper V indicate differential responses among different bacterial populations to 
combined alterations in temperature and allochtonous matter (Table 2). 
Lefébure et al., (2013) reported an increase of bacterial heterotrophic 
production in the same mesocosm experiment as analyzed in Paper V. Thus, 
the two studies collectively indicate the potential of these climate effects to 
induce shifts in both bacterial community composition and community 
functioning.  Ultimately this could affect carbon cycling in the future Baltic 
Sea. Substantial effects of temperature and terrestrial DOM on bacterioplankton 
growth and composition was also shown in the northern Baltic Sea (Degerman 
et al., 2013). In that study, temperature increases were shown to regulate 
bacterial composition to a small extent while enhanced terrestrial DOM inputs 
affected community structure substantially. Overall, the results in Paper V are 
in accordance with previous studies reporting both adaptation and replacement 
of populations in other aquatic systems (Langenheder et al., 2005, Comte and 
Del Giorgio, 2011). Thus, how individual bacterial populations differ in their 
response to environmental disturbance has implications for metabolic activity 
that heavily influence community functioning and the flow of carbon, 
potentially pushing toward a more heterotrophic system in brackish seawater. 

 In addition, current models on climate change project that the Baltic Proper 
will develop an environment similar to the Bothnian Sea, i.e. lower salinity and 
increased allochtonous matter inputs (Meier 2006). Salinity is an important 
factor in structuring bacterioplankton communities and salinity dependent 
distribution of bacterial populations has been reported in the Baltic Sea 
(Herlemann et al., 2011, Dupont et al., 2014). In the Baltic Sea, these salinity 
dependent patterns may also be enhanced due to the long residence time (i.e. >5 
yrs) (Riemann et al., 2008). 

 Also allochtonous matter is known to influence bacterioplankton 
community composition (Lindström, 2000, Kisand et al., 2002, Eiler et al., 
2003, Rochelle-Newall et al., 2004, Haukka et al., 2005, Kritzberg et al., 2006, 
Kisand et al., 2008, Teira et al., 2009, Hutalle-Schmelzer et al., 2010, Grubisic 
et al., 2012, Rocker et al., 2012). In Paper VI the relationships between 
metabolic activity and phylogenetic placement of different taxa responding to 
changes in environmental conditions were investigated. Transplant and re-
transplant microcosms with Baltic proper bacteria growing in Bothnian Sea 
water and vice versa and with re-transfer to water from their original 
environment was used as a proxy to the effect of increased riverine discharge. 
The results in Paper VI emphasize distinct basin-specific responses of the 
investigated bacterial communities. Specific bacterial populations replaced 
others when challenged by new environmental conditions, but also adjustable 
populations were successful when challenged by new environmental conditions. 
Some populations were primed and responded slightly in the first transplant to a 
specific seawater medium, but thanks to this priming continued to increase 
considerably during the re-transplant in both seawater media (Table 2).  
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Populations from the Baltic Proper were particularly successful in the Bothnian 
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Paper V & VI – Increased precipitation  
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disturbances, coupled with metabolic plasticity. A change in environmental 
conditions will therefore likely be advantageous to many bacterial 
populations, while disadvantageous to others, potentially shifting the 
metabolic outcome and energy flows in the Baltic Sea ecosystem. In order 

to fully understand and predict future climate change effects, 

bacterioplankton should be integrated in food-web and biogeochemical 

models. Such efforts can be aided by measurements of primary production, 

respiration and bacterial heterotrophic production coupled with 

environmental data and bacterial community composition over spatio-

temporal scales.  
 The distribution of microbes in the sea is supposed to be little limited by 

physical barriers. While dispersal may be widespread, the present work 
shows that regional effects are important for structuring bacterioplankton 
composition. Thus, as generally recognized in terrestrial ecology, the 
colonization of local sites by populations from a regional pool could be an 
important mechanism for regulating the genomic potential among 
bacterioplankton for biogeochemical processes. However, whether there is a 

scale effect for regional dynamics needs further attention. Such efforts could 

in part be resolved by comparing beta-diversity patterns and bimodality in 

samples covering different spatial scales and different ecosystems. 

Experiments with entrapment of bacteria (i.e. allowing only flow of nutrients 

without immigration of bacteria) vs. natural in situ conditions (i.e. both 

nutrients and bacterial immigration) at a single station would also be 

needed to examine regional effects on both community structure and 

ecosystem functioning. 
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CONCLUSIONS AND PERSPECTIVES 

In this thesis, I have mainly covered the Baltic Proper, but conclusions can in 
theory be applied to all three major basins of the Baltic Sea as well as coastal 
and semi-enclosed seas around the world. The results showed distinct niche 
differentiation and substantial population-level responses occurring within each 
major bacterial group to both natural and anthropogenically-induced changes. 
Moreover, regional effects influence the dynamics and distribution of 
bacterioplankton in the sea. This understanding is essential for interpreting 
biogeographical patterns of bacterioplankton in the sea. In addition, shifts in 
community composition were linked to responses in metabolic activity on 
several occasions. Changes in environmental conditions are important for the 
structure and function of bacterial communities, and may ultimately lead to 
shifts in biogeochemical cycling of elements such as carbon (Fig. 8). In 
conclusion, this thesis emphasizes the critical importance of connecting 
analysis of bacterioplankton population dynamics with examination of 
ecological mechanisms in order to improve our understanding of factors that 
regulate the distribution and activity of distinct bacterioplankton populations. In 
addition, the studies included in this thesis show that (with future perspectives 
in italics): 
 
 Seasonality and variation in environmental conditions and subsequent 

microbial responses play significant roles in shaping marine 
bacterioplankton communities. This thesis shows that analysis of shifts in 
bacterial community composition and rates of change in relative abundance 
at a high phylogenetic and temporal resolution may provide clues to how 
often environmental disturbances of different impact occur. In this sense, 

individual populations may act as bioindicators providing a feasible way of 

constraining the periods during which currently unknown specific variables, 

be it physical, chemical or biological, affect the planktonic community. 

Measurements of specific populations over time may provide a framework to 

monitor the health status of the sea. 

 Future selective forces in the marine environment will include among others 
increased sea surface temperatures, lower pH, increased allochtonous carbon 
inputs and decreased salinity. I show that bacterioplankton populations are 
adjustable and in part replaceable in the event of such environmental 
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Figure 8. Causal-loop diagram indicating ecosystem-wide effects in carbon cycling due to 

responses among bacterioplankton populations to natural and anthropogenic disturbances. 

Italics and dashed lines denote changes in environmental variables covered in this thesis and 

asterisks indicate significant effects on bacterioplankton community composition. SST = sea 

surface temperature. Modified from (Azam and Malfatti, 2007). 
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