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Abstract

A proper description of quasi-brittle failure within the frame of Continuum Mechanics

can only be achieved by models based on so-called generalised continua. This thesis

focuses on a strain gradient generalised continuum and provides a specific method-

ology to derive corresponding models which account for the essential features of

quasi-brittle failure. This methodology is discussed by means of four peer-reviewed

journal articles.

Furthermore, an extensive overview of the state of the art in the field of generalised

continua is given at the beginning of the thesis. This overview discusses phenomeno-

logical extensions of standard Continuum Mechanics towards generalised continua

together with corresponding homogenisation strategies for materials with periodic or

random microstructure.

Kurzfassung

Eine geeignete, kontinuumsmechanische Beschreibung quasi-spröden Versagens ist

nur unter Verwendung verallgemeinerter Kontinuumstheorien möglich. In dieser Ha-

bilitationsschrift stehen sogenannte Gradientenkontinua im Vordergrund. Für diese

wird eine Methodik vorgeschlagen, welche die Herleitung von Modellen erlaubt, die

in der Lage sind, quasi-sprödes Versagen adäquat abzubilden. Diese Methodik wird

anhand von vier Publikationen dargestellt und diskutiert.

Ein umfangreicher Überblick über den Stand der Forschung auf dem Gebiet der ve-

ralgemeinerten Kontinuumstheorien wird am Anfang der Habilitationschrift gegeben.

Dabei werden neben phänomenologischen Ansätzen zur Ableitung verallgemein-

erter Kontinuumstheorien auch die entsprechenden Homogenisierungskonzepte

dargestellt. Letztere werden für Materialien mit periodischer Mikrostruktur und für

Materialien mit zufälliger Mikrostruktur diskutiert.
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1 Introduction

The primary motivation for this thesis was to properly describe the quasi-brittle failure

of porous elastic solids by means of an effective continuum approach. One of the

principal characteristics of quasi-brittle rupture is the accumulation of damage prior to

final failure. Therefore, the effective continuum approach aimed for has to account

for the evolution of damage. This requirement, together with a number of further

facts and arguments to be discussed in more detail later, lead to the conclusion

that only an effective continuum model derived within the framework of so-called

generalised continua has any chance to describe the problem satisfactorily. Due to the

variety of generalised continuum theories, the first question to be answered is which

particular type of those non-standard continuum approaches should be used. Based

on a number of arguments, the decision was taken in favour of the strain gradient

elasticity approach as developed by MINDLIN AND ESHEL (1968). Constitutive relations

for porous elastic solids which fit into the framework of strain gradient elasticity were

derived employing a homogenisation concept. Eventually, this model was used as a

basis to develop a continuum damage model for simulating quasi-brittle fracture. All

these steps have been reported in four journal articles, and this document aims to

discuss those papers in the light of the current knowledge on generalised continua.

The current state of the art of generalised continua is reviewed by discussing a se-

lected part of the vast literature on this subject within the next chapter. Of course,

such a selection is partially a matter of taste and equally valuable references could be

given with respect to certain topics. Here, particular emphasis is placed on the gen-

uine motivations of different theories and how they can be derived, e.g. by extending

familiar concepts of continuum mechanics. The similarities and distinctions between

different generalised continuum theories are examined. After this, a synthesis of the

four journal articles mentioned above is provided explaining in more detail the rea-

soning which lead to the methodology used here, presenting the essential results and

discussing the achievements.

Print versions of those articles which document the author’s contribution on the

subject can be found at the end of the document.
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2 Generalised Continua - a journey

2.1 Overview

A large number of generalised continuum theories can be derived by focusing on

either one of the following basic ingredients of deterministic continuum mechanics:

kinematics of the continuum, stress concept and constitutive relations. Extending one

of them and working out a consistent theory by using general conservation and /

or invariance principles implies consequences for the remaining constituents, which

then have to accommodate accordingly. Here, generalised continua are divided

into two main classes: polar continua and non-local continua, where the former

includes multipolar, micromorphic as well as strain-gradient continua. Of course,

every generalised continuum is in some way non-local. However, in the following,

the term non-local is strictly used in the sense that the response at some spatial

position depends in general on the related information at all other points of the body.

Although non-local theories are not of primary interest here, the fundamentals are

discussed briefly for the sake of completeness.

According to the statement at the beginning, the same generalised continuum the-

ory can be obtained by choosing different points of departure. Here, these theories

are discussed in keeping with the corresponding historical evolution.

Because the continuum concept is always an idealisation of real matter, every con-

tinuum theory can be seen as the result of some homogenisation process, even if

the continuum description is derived on purely phenomenological grounds. This be-

comes apparent at the latest when material parameters have to be determined, which

requires specimens containing a minimum amount of matter. Nevertheless, such a

homogenisation process can be undertaken as well explicitly starting from a material

with given micro-structure and replacing the body under consideration by a so-called

effective continuum.

Deriving a continuum theory not only in a phenomenological way but also by ex-

plicit homogenisation is a rather favourable situation. This, however, is not just be-

cause of the deeper theoretical insight which can be gained. An additional practical

benefit is that the homogenisation approach reveals information and concepts about

how to determine the material parameters for a particular continuum theory.
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Apart from the fully generalised continuum theories considered here, somewhat

simplified versions of non-standard continua can be derived by starting from the the-

ory of simple materials and focussing exclusively on the internal variables. Those can

be replaced by corresponding non-local counterparts. Alternatively, spatial gradients

of internal variables can be incorporated into the constitutive equations. Albeit heuris-

tic and rather simplistic at first glance, these models can be sufficiently powerful to

solve particular problems with much less theoretical and numerical effort compared

to fully-generalised continuum approaches. A unifying scheme which includes both

kind of generalised continuum theories has been recently proposed by FOREST (2009).

However, the simplified versions of non-standard continua are not within the scope

of this work. Therefore, the reader is referred to the review articles of BAŽANT AND

JIRASEK (2002) and AIFANTIS (2003) which discuss thoroughly the key aspects of

these approaches.

2.2 Principal classes of generalised continua

2.2.1 Polar field theories and their relatives

Multipolar continua

Since the Theory of Mechanics rests upon the fundamental concepts of material body,

motion and force, so does continuum mechanics. While the motion of a material

body in space is the effect measurable by an observer having a notion of space and

time, force, on the other hand is an abstract idea to express what causes this motion

or the change of it, respectively. Changes in behaviour of the body are attributed to

its interaction with the world. Hence, forces acting upon a body simply reflect this

interaction, which is taken into account, e.g. in the energy balance via the power

of body forces and the power of tractions at the body’s outer surface. Classical

continuum mechanics deals only with monopolar body forces and surface tractions,

where the corresponding work conjugate quantities are the usual velocities.

Influenced by a discussion about generalised stresses by TRUESDELL C. AND TOUPIN

R. (1960), GREEN AND RIVLIN (1964)b developed a continuum theory regarding mul-

tipolar body forces and surface tractions of arbitrary order. Multipolar quantities

emerge naturally in the theories for beams, plates and shells due to the transition

from a three-dimensional problem to a one-dimensional or two-dimensional model,

respectively. However, for a three dimensional continuum, multipolar body forces and

surface tractions are rather unusual at first glance. Perhaps because of this seeming

oddity, the founders of the theory felt obliged to give an illustrative example in the

appendix of the paper by GREEN AND RIVLIN (1964)a. The authors associate a mate-
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rial point of the continuum with the center of gravity of a set of M rigid particles. The

discrete forces per unit mass acting on these particles are computed from the Taylor

expansion of a supposed continuous force field around the center of gravity. Associat-

ing the specific power of the material point with the power of the corresponding set of

discrete particles, n-polar forces related to the nth order term in the series expansion

emerge together with corresponding n-polar velocities. An equivalent treatment is

discussed focussing on the discrete velocities of the particles. The example indicates

that the larger the spatial extension of the associated particle set in the reference

configuration, the higher the degree of the multipolar medium has to be in order to

derive a suitable continuum approximation.

An energy balance which incorporates multipolar tractions and body forces to-

gether with their work-conjugate multipolar velocities was postulated by GREEN AND

RIVLIN (1964)b. Furthermore, multipolar stresses were derived by applying this en-

ergy balance to a tetrahedron and performing the limit of the tetrahedron’s volume

towards zero. However, multipolar stresses can be deduced from multipolar tractions

in a most natural way by assuming that the tractions depend only linearly on the unit

normal vector or, its dual respectively. It turns out that n-polar stresses are, in general,

tensors of rank n+1. Such quantities are referred to in the following as hyper-stresses

in order to distinguish them from the so-called generalised stress tensors to be dis-

cussed in section 2.3.2 which are always of order two. The local balance equations

were derived by the authors from the energy balance mentioned above demanding

its invariance under superimposed rigid motions.

At first glance, one could get the impression that multipolar velocities of arbitrary

order can be incorporated without even specifying their particular meaning or ori-

gin. However, in order to deduce local balance laws from the invariance of the

energy balance, the transformation behaviour of these multipolar velocities under su-

perimposed rigid motion either has to be deduced from their physical meaning or

additional assumptions regarding the transformation properties are necessary.

It was shown by GREEN, NAGHDI, AND RIVLIN (1965) and GREEN (1965) that an

oriented medium can be regarded as a special case of a multipolar continuum. Ori-

ented media are characterised by the existence of a number of independent vectors,

the so-called directors, attached to a material point of the continuum.

Micromorphic continua

The mental picture which led to the theory of mircomorphic continua does not differ

much from that used by GREEN AND RIVLIN (1964)b in the context of multipolar

continua discussed above. Here, some deformable micro-continuum is attached to

every point of the effective continuum. The former would have, in general, an infinite
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number of degrees of freedom. However, the motion of this micro-continuum is

restricted in order to allow exclusively for homogeneous deformations, which reduces

the number of additional degrees of freedom to nine. This in turn allows for an

interpretation in terms of so-called deformable directors. It means that a set of three

linearly independent vectors is attached to every point of the macro-continuum. In the

course of the motion of the macro-continuum, this triad of directors can undergo rigid

rotations. In addition, the directors can exhibit individual changes in length, and the

mutual angles between these directors may change as well. If the motion of the micro-

continuum is restricted to pure rotations, the so-called micro-polar continuum results.

The restriction to pure stretch and pure shear lead to the so-called micro-stretch and

micro-shear theories respectively. The micro-polar continuum is equivalent to the

Cosserat-theory developed long ago by COSSERAT AND COSSERAT (1909). Usually, it is

quite helpful and instructive to recall that the Timoshenko-beam is a one-dimensional

Cosserat-medium. Direct coupling between the micro-rotation and macro-rotation

leads to the so-called couple stress theory or couple-stress solid respectively. The

one-dimensional analogue of the latter is the Euler-Bernoulli beam.

A historical review of the contributions prior to the emergence of the theory of mi-

cromorphic continua, but certainly decisive for the progress in this field, can be found

in TOUPIN (1964). Although, the specific term was coined only later by Eringen, a mi-

cromorphic approach for linear elasticity was proposed already by MINDLIN (1964).

However, the general framework of micromorphic continua was developed by ERIN-

GEN AND SUHUBI (1964), SUHUBI AND ERINGEN (1964), without imposing restrictions

in terms of linear kinematics, linear material behaviour or quasi-static motion. It

is interesting to note that the authors based their theory rigorously on volume av-

eraging. The micromorphic continuum is established as a macroscopic description

assuming explicitly the existence of an underlying micro-structure. Field variables at

a macroscopic point are defined as volume averages of the corresponding quanti-

ties with respect to a finite microscopic region, the deformation of which is assumed

to be homogeneous. Hence, the interpretation in terms of a micro-continuum at-

tached to every macroscopic point. Furthermore, balance of momentum, angular

momentum as well as entropy inequality are derived by averaging, assuming that the

micro-continuum is a simple one.

Later on, the local balance laws were obtained by ERINGEN (1995), ERINGEN (1999)

from the invariance of the global energy balance for a micromorphic continuum

under superimposed rigid body motion.

Classifying the theory developed so far as micromorphic of degree one, not only

the governing equations of this theory were derived by GERMAIN (1973) from the

Principle of Virtual Power but, in addition, micromorphic continua of arbitrary degree
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could be worked out systematically. For further discussion related to the Principle of

Virtual Power in the context of generalised continua see as well MAUGIN (2013).

Strain-gradient continua

Assuming, that the thermodynamic state of a material point is completely defined by

a set of thermodynamic state functions, the structure of the corresponding contin-

uum theory is determined by the properties of these functions. Standard continuum

mechanics uses state functions which depend exclusively on local deformation mea-

sures. So-called strain gradient theories result, if in addition gradients of deformation

measures of arbitrary order are taken into account. Some authors prefer to call such

theories grade-n continua, but care should be taken here because this terminology

is also used in the context of materials with memory, see e.g. GURTIN (1968) or

TRUESDELL AND NOLL (2004), where it has a different meaning.

Non-linear elastic strain gradient continua were first proposed by TOUPIN (1964).

The linear version has been worked out by MINDLIN AND ESHEL (1968), extending the

elastic strain energy density by the spatial gradients of the strains. Alternatively, the

second gradients of the displacements can be used and even a third possibility exists.

However, it can be shown that all three options are completely equivalent and a par-

ticular preference is more or less a matter of taste. Constitutive relations are defined

by assuming that stresses and hyper-stresses are given by the partial derivatives of the

strain energy density with respect to the strains and the strain gradients, respectively.

Applying Hamilton’s principle, an extended local equilibrium statement together with

the corresponding boundary conditions were derived.

For linear materials, the constitutive relations can be expressed by means of re-

spective elasticity tensors. In the most simple case, the stresses and the strains can be

related by the usual fourth-order elasticity tensor, whereas hyper-stresses and strain

gradients are connected via a sixth-order tensor. Due to the general properties of the

latter, an isotropic linear strain gradient solid implies the existence of five indepen-

dent material parameters in addition to the usual two Lame’s constants of classical

linear elasticity. Incorporating not only the first but also the second gradients of the

strains, a linear second order strain gradient elasticity theory was derived by MINDLIN

(1965). Here, even sixteen additional material parameters exist for an isotropic sec-

ond order strain gradient medium. Hence, the experimental characterisation of a

strain gradient solid requires considerable effort even for the most simple case of

isotropic behaviour. On the other hand, these parameters should be related some-

how to general characteristics of the underlying micro-structure. Reduced material

laws have been proposed by various authors, setting certain parameters equal to

zero and postulating algebraic relations between the remaining ones. The most com-
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mon simplifications, originally proposed by KOITER (1964), KLEINERT (1989), YANG,

CHONG, ET AL. (2002), AIFANTIS (2003) and FLECK AND HUTCHINSON (2001), were

summarised and classified by ZHANG AND SHARMA (2005).

Based on the linear theory of MINDLIN AND ESHEL (1968), a first order strain gra-

dient plasticity theory was developed by Fleck and co-authors, see FLECK, MULLER,

ET AL. (1994), SMYSHLYAEV AND FLECK (1996), FLECK AND HUTCHINSON (1997).

The relation between strain gradient elasticity and the non-local effective medium

approach for random elastic composites has been discussed by BERAN AND MCCOY

(1970) based on the problem of a concentrated force in an infinite medium, and

considering only small statistical fluctuations of the material properties. An analytical

solution was obtained for the latter problem which can be split into a Kelvin-type

solution and a so-called force layer part. It turns out that the predictions obtained by

means of the strain gradient theory within the force layer are of dubious nature.

Relations between the different approaches

Although, a comprehensive and detailed comparison between the different theories

discussed within this section is beyond the scope of this work, some remarks on this

topic seem appropriate.

The relation between micromorphic continua and the theory of multipolar media

was discussed explicitly by GREEN (1965), showing that the latter can be classified as

a special case of the former. The resemblance between these two approaches be-

comes even more obvious, if the global energy balances used by GREEN (1965) and

ERINGEN (1995) are compared. On the other hand, a closer look on the boundary

terms in MINDLIN (1965) reveals that strain gradient continua of order n are actually

n-polar media employing a specific definition of the n-polar surface tractions. Fur-

thermore, it is well known that first order strain gradient theories can be derived from

mircomorphic continua by imposing particular constraints. These links have been

summarised schematically for the linear theories for example by TEKOGLU (2006).

A unifying viewpoint regarding multipolar, micromorphic and strain gradient con-

tinua was sketched by GODDARD (2008). However, to the author’s knowledge, a

comprehensive classification of the different variants within one single document, dis-

cussing and comparing as well the various possibilities to derive these theories, is still

missing.

2.2.2 Non-local continua

In contrast to the generalised continua discussed so far, truly non-local continua do

not fulfil the Principle of Local Action. They can be derived from at least two equivalent
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points of view. Non-local constitutive relations can be assumed. For instance, the

stress state at some point of the continuum is given by means of an integral equation.

More precisely, the stress tensor is given in terms of an integral over the whole body

where the integrand is a product of two objects, a kernel decaying with increasing

distance and the usual strain tensor.

Alternatively, global statements, like the usual global energy balance, can be used

as a starting point. However, the localisation of such balances must take into account

non-local residuals. Furthermore, those residuals must obey certain additional con-

ditions. Since the interaction of the body with the surroundings is already expressed

completely by means of fluxes via the body’s outer surface and specific body forces,

the non-local residuals must not cause any further artificial interactions. Therefore,

the integrals of the residuals over the whole configuration of the body must vanish

at any time. The latter is known as insulation condition. The argumentation used

so far indicate that strain gradient theories that make use of non-local residuals fit

into the non-local framework and, therefore, have to be distinguished from the strain

gradient continua discussed within the previous section.

There is one exception regarding the localisation argument used above. As stressed

by POLIZZOTTO (2003), the entropy inequality is assumed to be valid point-wise, since

it is a statement of reversibility or irreversibility, respectively, which in turn is seen as a

local property. For instance, as long as a material point undergoes exclusively elastic

deformation, its behaviour is reversible no matter how many points of its surroundings

deform already inelastically. Hence, the localisation of the global entropy inequality

must not involve any non-local residuals.

Since non-local continua are not of primary interest here, the reader is referred to

the article by EDELEN, GREEN, AND LAWS (1971) and the textbook by ERINGEN (2002)

for further information about this topic.

2.3 Generalised continua by explicit homogenisation

2.3.1 Random micro-structures

Continuum theories dealing explicitly with an underlying random micro-structure are

usually subsumed under the term Theory of Effective Media. In most cases, the micro-

structure is seen as a simple continuum with randomly-distributed material properties.

Thus, the micro-structure is essentially a random field for which, in general, an infinite

number of particular realisations exists. Random fields are in general rather compli-

cated entities, primarily because every particular material property such as Young’s

modulus or thermal conductivity, at every point of the body is a random variable.



16 2 Generalised Continua - a journey

Hence, there is in general an infinite number of such variables, and a random field is

only specified completely if, for each finite set of spatial positions, the joint distribution

function for the corresponding random variables is known.

The coefficients of the differential operator in the associated boundary value prob-

lem are directly related to the material properties. If the latter vary randomly with

spatial position, then the respective coefficients are random fields and the differential

operator becomes stochastic. Now, even more random variables are involved, be-

cause the field to which the differential operator applies becomes a random field too.

In other words, each physical quantity of the boundary value problem, like tempera-

ture or the components of the displacement vector, etc, at some point of the body is

one particular random variable. Furthermore, the values of these physical variables

at different locations are by no means unrelated, but their mutual dependence is

given implicitly by the stochastic boundary value problem mentioned above. There-

fore, the micro-structure can be seen as a primary random field of certain complexity

from which another, even more complex random field is generated by the boundary

value problem. In the following, the term physical random field is used for the latter.

The Theory of Effective Media aims to derive equations for the statistical moments

of the considered physical variables from the stochastic boundary value problem.

The most simple of these moments is the average of the respective variable, e.g. dis-

placements or temperature, at every point of the continuum over an infinite number

of realisations. This first moment is also known as ensemble average or mean field.

However, the derivation of an equation for a particular statistical moment always in-

volves the next higher moment. Therefore, an infinite hierarchy of equations results,

and some closure argument is needed in order to truncate this sequence of equa-

tions. This leads to a finite set of equations for the statistical moments of the relevant

unknowns. Of course, the mean field is of primary interest and most of the research

focusses almost exclusively on this part. Provided that source terms like volume forces,

heat sources, as well as the boundary conditions are deterministic, deriving the equa-

tions governing the mean field is equivalent to replacing the essential variable in

the boundary value problem, for instance the displacement vector, by its ensemble

average and the stochastic differential operator by an effective one. The latter is in

general non-local. Strictly speaking it is an integro-differential operator that contains

the properties of the primary random field in terms of all-order correlation functions.

Usually, the mean field approach is interpreted in terms of scales as follows. The

primary random field characterises the microstructure of the problem whereas the

effective continuum is seen as the modelling approach valid at the macro-scale.

The fundamentals of the Theory of Effective Media can be found, e.g. in the text-

books by BERAN (1968), SOBCZYK AND KIRKNER (1970), BURYACHENKO (2007) and in



2.3 Generalised continua by explicit homogenisation 17

the CISM course material edited by JEULIN AND OSTOJA-STARZEWSKI (2002). A concise

overview focussing on continuum mechanics was given by BERAN (1971). Consider-

able progress in deriving mean field approximations in linear continuum mechanics

has been made by employing the concept of polarisation stresses and strains respec-

tively, originated by ESHELBY (1957). What seems to be just an alternative way of

formulating the original problem turns out to be a very useful concept to work out

a powerful methodology of admirable elegance. This is mainly due to the implied

definition of a homogeneous comparison medium, which allows for the use of the

standard Green’s-function approach. Together with the usual ensemble averaging,

the general non-local character of the effective medium can be shown formally in a

concise and transparent way, see e.g. KRÖNER AND KOCH (1976). Variational prin-

ciples like those derived by HASHIN AND SHTRIKMAN (1962) can be used to derive

bounds for these non-local operators as well as to construct suitable approximations,

see e.g. DIENER, HÜRRICH, AND WEISSBARTH (1984). This method has been devel-

oped further and applied successfully to random elastic composites by Willis and

co-workers, see e.g. WILLIS (1987), LUCIANO AND WILLIS (2000)a, DRUGAN (2003).

Gradient approximations for the non-local effective operator have been derived by

DRUGAN AND WILLIS (1996) and DRUGAN (2000) for two-phase composites. The

question, how to establish a link to periodic micro-structures as a particular case of

fluctuations has been addressed, e.g. by FISHMAN AND MCCOY (1981) and LUCIANO

AND WILLIS (2000)b.

The foregoing exposition shows that a simple continuum with random variations of

the material properties corresponds in general to a non-local and, therefore, gener-

alised effective continuum. Only if certain conditions are fulfilled, the effective con-

tinuum obeys the same structure as the continuum used at the micro-level. The most

popular concept which leads to a simple effective continuum relies on the assump-

tion that energetic fluctuations are negligible, see e.g. HUET (1982), HUET (1990),

which is termed as non-correlation postulate or macro-homogeneity assumption in

the literature. Assuming in addition that the ensemble averages can be replaced by

spatial averages, which is referred to as ergodicity hypothesis, the celebrated and

widely used concept of the representative volume element (RVE) can be derived. A

necessary but not sufficient condition for the existence of an RVE is the statistical uni-

formity of the primary random field, see SOBCZYK AND KIRKNER (1970). The concept’s

appeal is that instead of a large number of realisations of the physical random field,

just a spatially limited part of one realisation for the primary random field has to

be considered. This part, which captures to a certain extent the statistical features

of the micro-structure, can be exposed directly to physical boundary conditions, e.g.

in terms of surface tractions or boundary displacements. These boundary data must
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be in agreement with the macro-homogeneity assumption, expressed by the so-called

Hill-Mandel condition, see e.g. HILL (1963). This will be discussed at the beginning of

section 2.3.3 in more detail. The constitutive relations are then simply obtained from

the solution of the boundary value problem for the RVE. Furthermore, the concept is

not limited to linear problems.

There is a vast amount of literature related explicitly to the RVE-approach, including

the textbooks by NEMAT-NASSER AND HORI (1999), QU AND CHERKAOUI (2006) and

the review article by ZAOUI (2002). The increase of computational power over the

last decades has recently caused a revival of the discussion related to the question

of how much statistical information of a particular micro-structure should the RVE

contain as a minimum, see e.g. OSTOJA-STARZEWSKI (2006), KANIT, FOREST, ET AL.

(2003). Nowadays, there are investigations which assume even a generalised con-

tinuum with randomly varying coefficients at the micro-level. In OSTOJA-STARZEWSKI

(2011) for example, a micro-polar medium has been considered. Obviously, the

general methodology of the Theory of Effective Media applies as well, and the mean

field approximation would be in general a non-local micro-polar continuum. Fur-

thermore, the conditions can be worked out under which an RVE approach applies.

Naturally, the latter will be somewhat more complex than in the case of a simple

micro-continuum, but it is not far fetched to anticipate, that the results of such inves-

tigations will be particularly useful in the near future, e.g. for granular media with

randomly varying particle size.

2.3.2 Periodic micro-structures

Particular solution methods apply if the micro-structure can be idealised as a peri-

odic pattern generated by regular repetition of identical unit cells. The characteristic

dimension λ of the unit cell then becomes the essential length property of the micro-

structure to be contrasted with the dominant macroscopic length property L, e.g.

some length related to the overall dimensions of the considered body, or the wave-

length of the macroscopic loading.

If the length-scale ratio ǫ = λ/L is small, solving the corresponding boundary

value problem directly becomes laborious or may even prove infeasible. Therefore,

it seems to be more efficient to focus on the asymptotic solution for ǫ approaching

zero. A common way to attack the problem is to define two scales, together with their

respective coordinates; a slowly varying macro-scale and a rapidly varying micro-

scale. The rapidly varying coordinates are defined simply by multiplying the slowly

varying coordinates with 1/ǫ.

The solution of the reformulated boundary value problem is expressed by a two-
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scale asymptotic series expansion in the form of an infinite sum of unknown functions,

each of them labelled by the summation index, e.g. m with m = 0, 1, ...∞, and mul-

tiplied by ǫm. Introducing the series expansion into the boundary value problem,

sorting and grouping all terms with respect to the powers of the length-scale ratio

leads to an infinite sequence of boundary value problems for the unit cell. For in-

stance, in the case of periodic elastic media, the grouping involves the powers ǫ−2,

ǫ−1, ..., ǫ∞. Theoretically, all unknown functions in the asymptotic expansion can

be determined up to a constant by solving successively the cell problems, starting

with the one related to the lowest power of ǫ. Demanding that the boundary value

problem is satisfied at each order of the length-scale ratio, a formal representation

of the solution has been derived by BAKHVALOV AND PANASENKO (1989). It consists

of a slowly varying solution to which an infinite sum of correction terms is superim-

posed. Every correction term contains a derivative, the order of which coincides with

the summation index of the slowly varying solution with respect to the slowly varying

coordinates. This derivative is modulated by a periodic field depending only on the

rapidly varying coordinates. This formal representation indicates that the solution at

the micro-level contains, in general, gradients of the macro-fields of arbitrary order.

If the length-scale ratio approaches zero, only the cell problems up to the order ǫ0

are taken into account. This, on the other hand, implies truncation of the asymptotic

expansion after the three leading terms. Eventually, the homogenised boundary value

problem results from averaging the cell problem related to ǫ0, where the averaging

procedure is established quite naturally by the solvability condition for periodic prob-

lems, also known as Fredholm’s alternative. Hence, an effective medium is defined

by means of the homogenised boundary value problem. The latter coincides with the

original boundary value problem, except that the material properties are replaced by

their homogenised counterparts. A huge amount of literature related to homogeni-

sation based on asymptotic series expansion exists. The fundamentals are presented

in detail, for example in the textbooks by BENSOUSSAN, LIONS, AND PAPANICOLAOU

(1978), BAKHVALOV AND PANASENKO (1989), PANASENKO (2005) or the review article

by SANCHEZ-PALENCIA (1986).

If ǫ is still significantly smaller than one but not likely approaching zero, additional

terms of the asymptotic expansion have to be taken into account. Obtaining the

corresponding solution at the micro-level, albeit laborious, is still straightforward, at

least for linear problems. However, there is no single and unique concept to perform

the passage from the micro-field solution to the effective continuum. Therefore, var-

ious approaches can be found in the literature. To the authors’ knowledge, the first

attempt in this direction was undertaken by GAMBIN AND KRÖNER (1989). Here, a

macroscopic stress-strain relation containing strain gradients up to infinite order was
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derived essentially by averaging the stress-strain relation at the micro-level obtained

from the asymptotic expansion. Later, BOUTIN (1996) investigated the problem in

a broader sense, focussing on the averaged balance equations at different orders

of the length-scale ratio and discussing the meaning of the involved higher order

stresses. It should be noted that the latter are second order tensors contrary to the

so-called hyper-stresses discussed earlier. Furthermore, it has been shown by BOUTIN

(1996) that the higher order stresses cannot be interpreted in terms of force fluxes

which demonstrates that these quantities are not stresses in the usual sense. Similar

research was performed by TRIANTAFYLLIDIS AND BARDENHAGEN S. (1996), although

focussing on the onset of instability in the case of elastic-plastic micro-structures.

Starting from the formal representation of the asymptotic series mentioned above,

SMYSHLYAEV AND CHEREDNICHENKO (2000) observed, among other things, that sim-

ply cutting off the series at some order of ǫ might cause the loss of ellipticity of the

homogenised boundary value problem. In order to avoid this problem, a combina-

tion of the asymptotic expansion with a variational approach has been proposed to

derive the homogenised boundary value problem. A link to strain-gradient elasticity

has been established. Following this idea, PEERLINGS AND FLECK (2004) developed

a scheme to compute the homogenised material tensors by numerically solving a

sequence of boundary value problems for the unit cell.

Similar to the case of random micro-structures, the two-scale asymptotic approach

has been discussed already considering not only simple micro-continua but also pe-

riodic generalised micro-continua, see e.g. FOREST (2002).

All contributions mentioned above deal with static situations. First steps towards

dynamic problems have been reported by ANDRIANOV, BOLSHAKOV, ET AL. (2012).

2.3.3 Generalised homogenisation based on polynomials

The Hill-Mandel condition, crucial for the RVE-concept discussed at the end of sec-

tion 2.3.1, requires application of so-called homogeneous boundary conditions to

the RVE. Focussing on mechanical problems, the latter can be accomplished by pre-

scribing either boundary displacements, which vary linearly with spatial position, or

constant surface tractions. Also certain combinations of these two cases are possible.

Furthermore, periodic fluctuations can be superimposed.

Inspired by the RVE-concept, a volume element exposed to displacement or traction

boundary conditions respectively is considered. The volume element is supposed

to capture the essential features of the micro-structure. However, contrary to the

RVE-concept, inhomogeneous boundary conditions are applied. A first step towards

inhomogeneous boundary data can be made by adding a term with quadratic spatial
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dependence to the usual linear boundary displacements discussed above. A similar

extension is possible if surface tractions are prescribed. To the author’s knowledge,

this concept was used for the first time by GOLOGANU, LEBLOND, ET AL. (1997) in

order to derive a continuum model of Mindlin-type for ductile damage, the numerical

implementation of which was reported by ENAKOUTSA, LEBLOND, AND PERRIN (2007).

Usually, the volume element is seen as a simple but heterogeneous continuum

subjected to prescribed boundary displacements. Even though the concept itself is not

limited to this specific type of micro-continuum nor to this kind of boundary data, this

is the most common case so far. Therefore, it will be considered here as well, at least

to begin with. Furthermore, the straightforward generalisation of the concept will be

examined first for linear micro-continua. This rather obvious generalisation consists

in expressing the spatial dependence of the boundary displacements by means of a

polynomial of order M . The applied boundary conditions generate displacement,

strain and stress fields inside the volume element. These fields are interpreted as

the micro-fields. The effective strains are defined as usual as the volume averages

with respect to the corresponding micro-strains. The coefficients of the linear part

of the polynomial can be related to these effective strains, whereas the remaining

coefficients correspond to the macroscopic gradients of the effective strains up to the

order M − 1. Effective stresses and hyper-stresses can be defined consistently and

averaging rules can be derived for these stress quantities.

The approach coincides with the RVE-concept if only linear displacements are pre-

scribed at the outer surface of the volume element. This, in turn, corresponds to a

polynomial of degree one. In this case, the classical Hill-Mandel condition is recov-

ered, which states that the true strain energy density of the volume element, com-

puted by averaging the strain energy density obtained from the micro-fields, equals

the scalar product of effective stresses and effective strains, multiplied by one half. For

polynomials of higher degree, extended Hill-Mandel relations can be obtained where

the computation of the true strain energy density does not change at all. However,

the latter is now equal to a sum whose first term is the usual scalar product between

effective strains and effective stresses followed by the scalar products of the strain

gradients up to the order M − 1 with their corresponding hyper-stresses.

The constitutive equations which establish relations between the effective stress and

strain quantities are obtained from the solution of the boundary value problem for

the volume element. Depending on what particular polynomial is used, constitutive

equations can be obtained whose structure is compatible with certain generalised

continua.

The method has been explored further and developed considerably by Forest and

co-workers, see e.g. FOREST (1998), FOREST AND SAB (1998), FOREST (2002). Mo-
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tivated by the observation that, seemingly, only effective generalised continua with

internal constraints can be deduced by straightforward application of the concept, the

proper construction of the polynomials related to the boundary data has been inves-

tigated in detail by FOREST AND SAB (1998) and FOREST (2002). For this purpose, the

authors adapted a mircomorphic point of view at the macro-level by interpreting the

displacements of the effective continuum as some macroscopic displacement vector

to which the homogeneous motion of an attached micro-continuum is superimposed.

Least square minimisation of the error between the mircomorphic approximation and

the micro-displacements (the displacement fields inside the volume element) leads

to proper averaging rules. Finally, the construction of the polynomials sought for

requires the choice of a particular mircomorphic continuum and the approximation

of the micro-displacements within the volume element by polynomials. It has been

shown that the coefficients of these polynomials can either be ruled out or that they

can be related to the characteristics of the mircomorphic effective continuum as was

done for an unconstrained Cosserat medium by the authors.

In order to complete the procedure, a fluctuation field has to be superimposed be-

cause the stresses computed from the polynomial micro-displacements do not fulfil in

general the equilibrium conditions inside the volume element. As already discussed

in TRINH, JÄNICKE, ET AL. (2012), there exist at least three possible choices: (i) the

fluctuations vanish at the boundary of the volume element, (ii) the fluctuations are

assumed to be periodic at homologous points of the volume element and, (iii) the

fluctuations do not obey any constraints but the volume element is embedded into

a periodic arrangement of sufficiently many other volume elements as performed by

FOREST AND TRINH (2010). It turns out that the homogenisation methodology pro-

posed by GOLOGANU, LEBLOND, ET AL. (1997) is recovered by combining a strain

gradient medium at the macro-level with a fluctuation field according to (i). This par-

ticular choice for the fluctuation field was used as well by CHEN, LIU, ET AL. (2009)

in order to obtain an analytical estimation for the material properties of an uncon-

strained Cosserat continuum as a homogeneous replacement medium for an elastic

two-phase composite.

A strongly related approach has been developed by KOUZNETSOVA (2002)

KOUZNETSOVA, GEERS, AND BREKELMANS (2002) for geometrically and physically

non-linear problems in terms of a gradient enhanced computational homogenisation

procedure. Here, the boundary conditions of a volume element related to a point of

the macro-continuum are expressed by means of the first and second gradients of the

motion supplemented by periodic fluctuations. The macro-continuum is a non-linear

strain gradient continuum, which is why the method can be characterised concisely

as an FE2-method of Mindlin-type.
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Unfortunately, the approach discussed so far exhibits a number of drawbacks. First

of all, trying to enforce equality between the macroscopic gradient of the mean of a

variable and, the mean with respect to the gradient of the very same variable, leads

to conflicting boundary conditions at the outer surface of the volume element. Hence,

although certain coefficients of the polynomials discussed above can be related to

macroscopic gradient of effective variables, for instance the gradient of the mean

strain with respect to the macroscopic coordinate, the mean of the gradient of these

variables cannot be rigorously prescribed for the volume element, as pointed out

for example by TRINH, JÄNICKE, ET AL. (2012). Furthermore, numerical investigations

performed by FOREST AND TRINH (2010) indicate that the boundary conditions for

the volume element in terms of polynomials with superimposed fluctuations do not

necessarily reflect the real situation. In addition, the concept can not be related con-

sistently to periodic nor to random micro-structures because of the following reasons.

If the micro-structure is periodic and the heterogeneity at the micro-scale vanishes, it

vanishes everywhere. Therefore, in this case the effective continuum should turn into

the micro-continuum. However, a closer look at the constitutive relations obtained

by higher order homogenisation reveals that the higher order terms do not cancel

out automatically for vanishing micro-heterogeneity, see e.g. ZYBELL, MÜHLICH, AND

KUNA (2008) or CHEN, LIU, ET AL. (2009). This point has been discussed, e.g. by

BIGONI AND DRUGAN (2007) and YUAN, TOMITA, AND ANDOU (2008). In order to

remedy this situation, the solution of the asymptotic approach discussed within the

previous section was used by TRAN, MONCHIET, AND BONNET (2012) to compute the

averaged energy density of the unit cell. The authors derived an extended version of

the Hill-Mandel condition which in turn establishes a homogenised elastic potential

in the spirit of strain gradient theories.

The situation becomes even more complicated for random micro-structures. The

classical Hill-Mandel condition corresponds to the case of vanishing energetic fluc-

tuations. A conceptual difficulty consists in the interpretation of the extended Hill-

Mandel condition in terms of statistical information. So far, this question has not yet

been investigated. However, reflections on the validity of classical homogenisation

schemes such as those by FOREST (1998) suggest that the additional terms in the

Hill-Mandel condition are somehow related to the ergodic hypothesis. In fact, re-

placing the ensemble averages by corresponding volume averages implies that the

region over which the volume integration is performed has to be considerably large.

If the volume element is too small and the difference between ensemble and volume

averages cannot be neglected, the higher order terms might be necessary to correct

this difference. Similar to periodic micro-structures, the effective continuum should

turn into the micro-continuum if the randomness vanishes everywhere. A concept
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which tries to accomplish this has been proposed by JIA L. (2011). Here, an RVE is

defined as a collection of a number of volume elements for which the boundary value

problem is solved as described at the beginning of this subsection. The strain energy

of the RVE is then computed by averaging with respect to this collection of volume

elements. Eventually, the computation of the higher order effective elasticity tensor

involves two sixth-order tensors. The first one coincides with the higher order elastic-

ity tensor obtained for prescribed higher order boundary conditions. The second one

corresponds to the response of the RVE for vanishing material contrast at the micro-

level, and hence homogeneous micro-structure. Since the second is subtracted from

the first, the strain gradient part cancels out if the micro-structure is homogeneous.

However, if interpreting the concept in the sense of some moving average, then

vanishing micro-homogeneity at some point in the effective continuum does not nec-

essarily mean that the micro-homogeneity vanishes everywhere. Furthermore, there

is no need for the higher order terms to vanish at some point with vanishing micro-

heterogeneity if the latter still exists in the vicinity of that point. How to modify the

concept in order to capture the different viewpoints and to resolve the existing prob-

lems mentioned above are open questions which are part of an intense ongoing

discussion.

Regardless of the number of open problems related to the polynomial approach,

the inherent potential of this method should not be underestimated. Although the

homogenisation methods discussed within the subsections 2.3.1 and 2.3.2 provide

apparently more rigour, their application is rather limited to linear problems. Only

a few extensions towards non-linear behaviour exist. The polynomial approach, on

the other hand, is by no means limited to linear problems. Furthermore, there is

no general objection so far to apply it only to periodic micro-structures although, an

accurate treatment with respect to random materials is still missing.
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3 Modelling of quasi-brittle failure

3.1 Overview

As already mentioned at the beginning, the primary motivation of this work con-

sists in the modelling of quasi-brittle failure in porous elastic solids by means of a

continuum approach. The latter implies replacement of a considered body, whose

micro-structure consists of voids surrounded by a linear elastic matrix material, by

some effective continuum.

Quasi-brittle rupture is characterised by the evolution of damage prior to final fail-

ure and exhibits strong size effects, see e.g. BAŽANT (2005). Hence, the effective

continuum must capture deterministic size effects, it must account for damage evo-

lution and last but not least, softening induced by the evolution of damage must not

lead to spurious results. These requirements can be accomplished only by models

derived from a generalised continuum theory.

The successive development of the effective continuum approach is documented in

the following four journal publications:

A ZYBELL, L., MÜHLICH, U., KUNA, M. (2008) “Constitutive equations for porous

plane-strain gradient elasticity obtained by homogenization”. In: Archive of

Applied Mechanics 79(4):359-375

B MÜHLICH, ZYBELL, L., KUNA, M. (2009) “Micromechanical modelling of size

effects in failure of porous elastic solids using first order plane strain gradient

elasticity”. In: Computational Materials Science 46(3):647-653

C MÜHLICH, ZYBELL, L., KUNA, M. (2012) “Estimation of material properties for lin-

ear elastic strain gradient effective media”. In: European Journal of Mechanics,

A/Solids. 31(1):117-130

D MÜHLICH, U., ZYBELL, L., HÜTTER, G., KUNA, M. (2013) “A first order strain gra-

dient damage model for simulating quasi-brittle failure in porous elastic solids”.

In: Archive of Applied Mechanics DOI: 10.1007/s00419-013-0729-6

These articles will be summarised in the remaining part of this chapter, focussing

on the general methodology and the primary motivation for certain choices. Fur-
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thermore, the main results will be reported and alternative ways of development for

future work will be discussed.

3.2 Methodology

The articles mentioned in the previous section cover particular steps or aspects of a

general methodology which can be summarised as follows:

1. The strain energy density for the effective generalised continuum has to be pro-

vided for the pure elastic response, preferably by some homogenisation scheme;

2. Based on the elastic strain energy density, a damage potential can be derived

using the standard continuum thermodynamics scheme with internal variables;

3. The evolution equations for the internal variables have to be specified.

Of course, some generalised continuum framework had to be chosen first. Here,

strain gradient elasticity as derived by MINDLIN AND ESHEL (1968) has been favoured

as the basis for further development because of the following main reasons. It can be

obtained from a straightforward extension of the strain energy density. How constitu-

tive equations which fit into the framework of strain gradient theories can be derived

transparently by higher order homogenisation was shown already by GOLOGANU,

LEBLOND, ET AL. (1997). Retrospectively, this was probably the most decisive argu-

ment. Although the appearance of the second gradient of the displacement field in

the governing equations requires additional effort with respect to numerical solution

techniques based on the Finite Element Method, suitable strategies to deal with this

problem were known already from the theory of plates and shells. Here, a mixed

formulation has been used for which suitable finite elements were already developed

by SHU, KING, AND FLECK (1999).

3.3 Discussion of main results

In a first step, the constitutive equations for plane porous strain gradient elasticity

have been derived by the higher order homogenisation scheme described at the be-

ginning of subsection 2.3.3. In order to obtain a closed form solution, a cylindrical

volume element of linear elastic material with a cylindrical void in its center was con-

sidered. Plane stress, respectively plane strain conditions were enforced. Quadratic

boundary displacements, related to the macroscopic strains and their gradients, were

prescribed. Airy’s stress function approach together with a Fourier’s series repre-

sentation of the solution was used to derive the corresponding micro-fields. From
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the definition of the macroscopic stresses and hyper-stresses, the desired constitutive

equations were obtained in closed form. Due to the centro-symmetry of the con-

sidered volume element, the constitutive equations admit a rather simple structure.

Stresses and strains are related by the usual fourth-order elasticity tensor C, whereas

the relation between hyper-stresses and strain gradients is given by a sixth-order ten-

sor D. While C depends only on the void volume fraction and the elastic constants

of the matrix material, D hinges in addition on the outer radius of the volume ele-

ment R. Hence, the internal length R, related to the mean distance between adjacent

voids, enters the model. The solution has been reported in publication [A] together

with some numerical studies. Furthermore, a failure criterion was proposed based on

the maximum circumferential stress at the micro-void’s surface.

The failure criterion mentioned above has been explored in publication [B] by

means of an illustrative example. The capability of the model to capture size ef-

fects in the elastic response has been shown. At this stage of development, however,

the failure criterion could solely be used either to indicate the collapse of the complete

structure in the case of weakest-link failure or to predict only the onset of damage evo-

lution. The initial idea to take this criterion as a basis to derive a continuum damage

model has been rejected for the following reasons. Since the criterion was derived

from an analytical solution, the involved formulas are rather cumbersome. It is lim-

ited to plane stress or plane strain respectively, and the transition to three-dimensions

would require a different analytical solution which would be even more complicated.

On the other hand, it is easier to obtain suitable estimates for the elastic strain en-

ergy density, and a continuum damage model based on that quantity provides more

flexibility at lower costs.

Estimates for the higher order elasticity tensor were derived in publication [C]. The

methodology developed by the authors is not limited to two dimensions nor to porous

micro-structures. On the contrary, it can be adapted easily for more general centro-

symmetric composites.

Finally, a continuum damage model has been derived in publication [D]. Its basic

ingredient is the elastic strain energy density of the effective continuum. Envisaging

the damage process as the formation of micro-cracks evolving from the surface of

existing micro-voids, a damage potential was derived. The void volume fraction

f plays the role of an internal variable and its evolution accounts for the damage

process in terms of an effective quantity, the growth of which reflects the decrease

in load-bearing capacity at a point in the effective continuum due to the underlying

micro-crack evolution.
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3.4 Outlook

In order to take full advantage of the approach worked out here, certain problems

have to be solved in the future. For instance, as a consequence of the use of ro-

tationally symmetric volume elements in the homogenisation procedure, the higher

order elasticity tensors are only positive semi-definite. This may effect uniqueness and

stability of the solution of the boundary value problem at the macro-scale. A possible

remedy consists in using honeycomb or Kelvin-cell like volume elements.

Even if the macroscopic fields indicate anisotropic damage evolution, the actual

continuum damage model predicts exclusively the evolution of the effective void vol-

ume fraction, and hence isotropic evolution of damage. In order to account for the

evolving anisotropy, estimates for the elastic strain energy density must be provided

for volume elements with elliptical voids and arbitrary position of the void’s center. It

should be noted that the latter leads to the loss of the centro-symmetry of the volume

element and more complex constitutive equations will result.
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Constitutive equations for porous plane
strain gradient elasticity obtained by

homogenization

Lutz Zybell Uwe Mühlich Meinhard Kuna

The paper addresses the problem of plane strain gradient elasticity models
derived by higher order homogenization. A microstructure which consists
of cylindrical voids surrounded by a linear elastic matrix material is con-
sidered. Both plane stress or plane strain conditions are assumed and
the homogenization is performed by means of a cylindrical RVE subjected
to quadratic boundary displacements. The constitutive equations for the
equivalent medium at the macro-scale are obtained analytically by means
of Airy’s Stress Function in conjunction with Fourier-Series. Furthermore,
a failure criterion based on the maximum hoop stress on the void surface
is formulated. A mixed finite element formulation has been implemented
into the commercial finite-element program Abaqus. Using the constitutive
relations derived above, numerical simulations were performed in order to
compute the stress concentration at a hole with varying parameters of the
constitutive equations. The results predicted by the model are discussed in
comparison with the results of the theory of simple materials.

1. Introduction

Because of the discontinuous and heterogeneous nature of real materials, continuum
mechanics can always be interpreted as the result of a certain kind of homogeniza-
tion. The homogenization process may pass through various levels, each one related
to a different material length scale.
Most of existing homogenization methods in literature are based on the concept of

the representative volume element (RVE). In this context, a theory of simple materials
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on the microscale implies a theory of simple materials on the macroscale if the clas-
sical form of the Principle of Macrohomogeneity applies. The latter can be directly
derived from the so-called Hill-Mandel Lemma if linear displacements or constant
surface tractions are assumed on the outer boundary of the RVE. The constitutive re-
lations for the effective material at the macro-scale are determined by solving the
boundary value problem for the RVE. For a detailed exposition of this topic the reader
is referred to Nemat-Nasser and Hori [20]. The continuum models derived by the
homogenization approach outlined above account, to a certain extent, for the influ-
ence of the micro-structure on the macroscopic material properties. However, only
specific values enter into these models. Therefore, experimentally observed size ef-
fects cannot be reflected. Furthermore, that approach is no longer justified if strong
gradients appear in the macroscopic fields since the classical form of the Principle of
Macrohomogeneity does not apply in this case.

On the other hand, the serious drawbacks of continuum damage models derived
within the framework of simple materials have caused a growing interest in higher
order continuum theories, like gradient enhanced theories, micropolar theories or
nonlocal theories. The spurious mesh dependence of the numerical results which is
characteristic for continuum models including softening can be avoided or at least
reduced by applying higher order continuum theories as shown e.g. by De Borst et
al. [7]. Furthermore, size effects can be reflected because additional length param-
eters always emerge. In general higher order continuum theories are more complex
and imply considerable effort in the theoretical treatment, the numerical implemen-
tation and parameter identification. On the other hand, the mesh dependence can
be avoided even if only the damage variable is treated as nonlocal. For an extensive
discussion of nonlocal continuum damage models the reader is referred to Baz̆ant
[4]. Although this heuristic approach is capable to regularize the numerical results
with much less effort, the comparison of different models performed by Engelen et
al. [9] revealed that size effects can not correctly be predicted in contrast to the strain
gradient models included in the analysis recorded in [9].

A strain gradient elasticity theory was derived by Mindlin [18] based on reasoning
about micro-structure and homogenization. This approach which also covers the
linear Cosserat elasticity was further developed in [19]. This is referred as Mindlin-
type theory in the sequel and has been extended towards strain gradient plasticity by
Fleck and Hutchinson [11]. Subsequently, the latter was simplified in order to reduce
complexity in [12] which, however, corrupts the capability of regularization as shown
by Engelen et al. [9].

An advantage of continuum models of Mindlin-type is that they can be transpar-
ently obtained from higher order homogenization, i.e. homogenization with more
complex conditions prescribed at the boundary of the RVE. A comprehensive treatise
about higher order homogenization related to elasticity problems is given by Forest
[13], including the discussion of different kinds of boundary conditions. In general,
an extension of the Principle of Macrohomogeneity is derived. Similar to the theory
of simple materials, the constitutive equations have to be determined by solving the
boundary problem for the RVE, which has been numerically performed considering
Cosserat elasticity e.g. by Kruch and Forest [16]. Quadratic boundary displace-
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ments were applied by Gologanu et al. [14] in the context of ductile damage and a
semi-analytical model was derived. A numerical homogenization approach based on
higher order deformation gradients has been developed by Kouznetsova et al. [15].
The use of Mindlin-type models in conjunction with the finite-element method re-

quires in general C(1)-continuous elements. In order to overcome this difficulty, so-
called mixed-type formulations might be used. According to [19], strain gradient
elasticity can be formulated in three different but equivalent ways. A mixed-type for-
mulation based on one of these models was derived by Shu et al. [21] and various
finite elements were developed and tested. Mixed finite elements for Mindlin-type
gradient elasticity were developed as well by Amanatidou et al. [2] [3], although a
different formulation was chosen.
In our model the simplest case of homogenization with only two different scales,

a continuous macro-scale and one underlying discontinuous and heterogeneous mi-
croscale, is considered. It is assumed that the mechanical behavior at the microscale
can be completely described by means of a continuum theory of simple materials.
The microstructure consists of cylindrical voids surrounded by a linear elastic matrix
material. Corresponding macroscopic constitutive equations are derived within the
framework of strain gradient elasticity by means of a homogenization procedure us-
ing a cylindrical representative volume element (RVE) under plane strain conditions
and assuming quadratic displacements on the outer boundary of the RVE. The model
has been implemented into the commercial finite element program Abaqus using a
mixed-type formulation in order to deal with the continuity requirements due to the
presence of the macroscopic strain gradients. Finally, numerical studies were per-
formed with varying the parameters of the constitutive equations. The results are
discussed with respect to length scales and are compared with the theory of simple
materials.
This paper is organized as follows: In the first part the homogenization is per-

formed and the constitutive relations are derived analytically. The second part deals
with the numerical validation of the model and the simulation results of the stress
concentration due to a hole are compared with analytical ones. Finally, the paper is
summarized and possible extensions and applications of the model are discussed.
In the following, symbolic notation is used. Vectors and second order tensors are

indicated by boldface letters. The rank of higher order tensors is indicated by the
corresponding number, for example 4

a. The dyadic product of two vectors a and
b is expressed by a ⊗ b and the scalar product by a · b. If the symbolic notation
becomes ambiguous, then index notation [5] together with the summation convention
is used. Macroscopic field variables refer to the macroscopic pointX unless otherwise
indicated.

2. Representative Volume Element (RVE)

2.1. Preliminary considerations

In the following, two different scales are considered: a heterogeneous and discon-
tinuous microscale and a continuous macroscale. The geometrical and mechanical
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properties at the microscale are known and we look for an equivalent formulation of
the problem at the macroscale where the real material is replaced by a so-called ef-
fective medium. Every macroscopic point X is associated with a surrounding volume
at the microscale. Furthermore, it is assumed that a volume element at the microscale
can be chosen which fully represents the microstructural properties at least in a statis-
tical sense. This volume is referred to as representative volume element (RVE) in the
following. The RVE considered here is supposed to be of cylindrical shape and con-
sists of a cylindrical void surrounded by an isotropic linear elastic matrix material as
indicated in Figure 1. The macroscopic stresses and strains at a point X are defined

x

X

ξ

∂BX1

X2

ξ1

ξ2

r

ϕ

n

R
a

Fig. 1: Cross section of the representative volume element (RVE).

as mean values with respect to the corresponding microscopic quantities

Σ =
1

B

∫

Bm

σ dV , (1)

E =
1

2B

∫

∂B

[u⊗ n+ n⊗ u] dA , (2)

where B denotes the total volume of the RVE and B
m
is the volume of the matrix

material. Furthermore, n is the outward normal unit vector of the outer boundary
∂B. Assuming linear elastic matrix material the Hill-Mandel Lemma reads

1

2B

∫

Bm

σ : ε dV =
1

2
Σ : E +

1

2B

∫

∂B

[n · (Σ− σ)] · [x ·E − u] dA . (3)

In the sequel, prescribed displacements at the outer boundary of the volume element
are considered. The boundary displacements are split into a linear and an oscillating
residual term

u|
∂B

= ū|
∂B

+ û|
∂B

(4)
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with
ū|

∂B
= x ·E (5)

and
û = u|

∂B
− x ·E . (6)

Since the matrix material is linear elastic, all microscopic fields can be written as the
sum of two superimposed fields

σ = σ̄ + σ̂ (7)
ε = ε̄+ ε̂ (8)

This applies as well to the corresponding mean values

Σ = Σ̄+ Σ̂ (9)
E = Ē + Ê . (10)

However, it follows from (6), (2) and (1) that Σ̂ and Ê, which are associated with the
boundary displacements û, vanish because of their mean-value property, as already
discussed in [13]. Therefore, the stress tensor Σ corresponds to the stress tensor of
the theory of simple materials

Σ =
4
C̄ : E (11)

where 4
C̄ is the overall elasticity tensor of the theory of simple materials. Based on

the results obtained above, the strain energy density of the RVE can be written as

1

2B

∫

Bm

σ : ε dV =
1

2
Σ : E +

1

2B

∫

Bm

σ̂ : ε̂ dV . (12)

Summarizing so far, the boundary displacements û oscillate around the mean bound-
ary displacements ū and the strain energy density increases due to the presence of û
as it was expected. The objective of the following steps is to express the second term
of the right hand side of (12) by macroscopic quantities.

2.2. General Solution by means of Airy’s Stress Function and

Fourier-Series

The concept of Airy’s Stress Function is applied in order to derive the general solution
for the microscopic fields. Polar coordinates are used because of the geometry of the
RVE. The stress function F (r, ϕ) must satisfy the biharmonic equation

∆∆F (r, ϕ) = 0 , (13)

where the Laplace operator ∆ is given by

∆() =
∂2()

∂r2
+

1

r

∂()

∂r
+

1

r2
∂2()

∂ϕ2
. (14)
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The stresses are calculated from the solution of (13) by

σ
rr

=
1

r

∂F

∂r
+

1

r2
∂2F

∂ϕ2
, σ

ϕϕ
=

∂2F

∂r2
(15)

σ
rϕ

= −

∂

∂r

(

1

r

∂F

∂ϕ

)

(16)

and the corresponding strains can be obtained from the constitutive relations. A
general solution of (13) based on Fourier-series was derived by Mitchel (see e.g. [22]).
This solution is split into two parts

F = F̄ + F̂ , (17)

where F̄ and F̂ correspond to the linear (5) and oscillating boundary displacements
(6), respectively. Here, only the stress and strain fields corresponding to F̂ are of
interest, because F̄ represents the solution of the theory of simple materials from
which 4

C̄ is determined in general. The determination of 4
C̄ is meanwhile standard

(see e.g. [20]) and, therefore, omitted here. The final result is given in Appendix C.

m̆
(1)

ijk
ij = 11 22 12 m̆

(2)

ijk
ij = 11 22 12

k = 1 g1 3g1 0 k = 1 0 0 -g1
2 0 0 -g1 2 3g1 g1 0

m̆
(3)

ijk
ij = 11 22 12 m̆

(4)

ijk
ij = 11 22 12

k = 1 -g3 g3 0 k = 1 0 0 -g3
2 0 0 g3 2 -g3 g3 0

Tab. 1: Components of the couple stress tensors 3
m̆

(s).

The tractions at the surface of the cylindrical void must vanish which implies that
the stress fields given by F̂ must satisfy the conditions

σ
rr
(r = a, ϕ) = 0 (18)

σ
rϕ
(r = a, ϕ) = 0 , (19)

where a denotes the void radius as indicated in Figure 1. The final result for stress
function which corresponds to the oscillating boundary displacements reads

F̂ =

(

r3 +
a4

r

)

(B1 cosϕ+D1 sinϕ) +

(

a2

2r
+ r ln r

)

(b1 cosϕ+ d1 sinϕ)

+

∞
∑

n=3

{[

f (1)

n
(r)B

n
+ f (2)

n
(r)b

n

]

cos(nϕ) +
[

f (1)

n
(r)D

n
+ f (2)

n
(r)d

n

]

sin(nϕ)
}

, (20)

where f
(1)

n (r) and f
(2)

n (r) are given by

f (1)

n
(r) = rn+2

−

a2n

rn−2
+ n

a2(n+1)

rn
− n

a2n

rn−2
(21)

f (2)

n
(r) = rn −

a2n

rn
− n

a2(n−1)

rn−2
+ n

a2n

rn
. (22)

The coefficients B1, b1, D1, d1, Bn
, b

n
, D

n
and d

n
are determined from the boundary

conditions of the RVE.
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2.3. Solution for quadratic boundary displacements

Following the argumentation of Gologanu [14], the boundary displacements

û
i
|
∂B

=
1

2
K

ijk
x
j
x
k
−

1

2
[K

ijk
+K

jki
]X

k
x
j
, (23)

are considered. The third order tensor 3
K can be expressed by means of the gradi-

ents of the macroscopic strains

K
ijk

= E
ij,k

− E
jk,i

+ E
ki,j

, (24)

where ()
,k
denotes the partial derivative of () with respect to the macroscopic coordi-

nate X
k
. It should be noticed that (24) holds only for moderate macroscopic strain

gradients. Furthermore, 3
K is symmetric with respect to its second and third indexes

K
ijk

= U
i,jk

= U
i,kj

= K
ikj

(25)

since E is symmetric and the order of differentiation is commutable. As shown in
[14], the standard definition of macroscopic strains

E
ij
=

1

2
[U

i,j
+ U

j,i
] (26)

holds if an arbitrary extension of the microscopic displacement fields over the voids is
permitted. Due to the boundary conditions (23), the coefficients b1 and d1 in (20) can
be expressed by means of B1 and D1

b1 = ωB1 (27)
d1 = ωD1 . (28)

Furthermore, owing to the boundary conditions all coefficients vanish for n > 3 which
shows that the derived solution is exact and

b3 = ω∗B3 (29)
d3 = ω∗D3 (30)

holds, where ω and ω∗

n
are given together with the corresponding calculations in

Appendix A and Appendix B, respectively. Using (27) and (28), the stress function
which corresponds to the oscillating boundary displacements can be formally written
as

F̂ =

4
∑

k=1

A
k
F̃
k
(r, ϕ) , (31)

where the remaining coefficients A1 ... A4 are related to those used in (20) by A1 = B1,
A2 = D1, A3 = B3 and A4 = D3. However, no particular order exists and the choice
made here is arbitrary and just a matter of convenience.
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111 221 112 222 121 211 122 212

111 h1 h2 0 0 0 0 −h1 −h1
221 h2 h3 0 0 0 0 −h2 −h2
112 0 0 h3 h2 −h2 −h2 0 0
222 0 0 h2 h1 −h1 −h1 0 0
121 0 0 −h2 −h1 h1 h1 0 0
211 0 0 −h2 −h1 h1 h1 0 0
122 −h1 −h2 0 0 0 0 h1 h1
212 −h1 −h2 0 0 0 0 h1 h1

h1 = a1 + a2
h2 = 3a1 − a2
h3 = 9a1 + a2

Tab. 2: Components of the material tensor 6
Ď written in matrix form (

[

Ď
]

(ijk)(lmn)
).

Because of the linearity of the considered problem, the microscopic stresses and
strains as well as the boundary displacements û and surface tractions t̂ can be written
analogously as

σ̂ =

4
∑

k=1

A
k
σ̃

(k) , ε̂ =

4
∑

k=1

A
k
ε̃
(k)

t̂ =

4
∑

k=1

A
k
t̃
(k) , û =

4
∑

k=1

A
k
ũ

(k)

(32)

It follows from the orthogonality properties of the trigonometric functions that

1

B

∫

Bm

σ̃
(k)

: ε̃
(l)dV =

{

κ
k

k = l
0 k 6= l

(33)

and therefore

1

2B

∫

Bm

σ̂ : ε̂ dV =
1

2

4
∑

k=1

A2

k
κ
k
. (34)
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The coefficients κ
k
are given by 1

κ1 = κ2 =R2
4

E

[

(3− ν)− (1 + ν)f 4
− 2(1− ν)f 2

]

−

ω2

R2

1

E

[

(1 + ν)(1− f)2 + 2 ln(f)
]

+4ω
1

E

[

(f 2
− f 3

)(1 + ν) + (1− f)(3− ν)
]

(35)

κ3 = κ4 =4
R6

E

[

18(1 + ν)(16f 7
− 9f 8

) + 4(1− ν)(16f 3
− 9f 4

) + 2(11 + 7ν)(1− 8f 6
)

+24
ω∗

R2

{

(1 + ν)(16f 6
− 9f 7

+ 1)− (11 + 7ν)f 5
+ 2(1− ν)f 2

}

+ 9
(ω∗

)
2

R4

{

(1 + ν)(16f 5
− 8f 6

+ 1)− (11 + 7ν)f 4
+ 2(1− ν)f 2

}

]

. (36)

where f =
a
2

R
2 is the void volume fraction.

The determination of the coefficients A
k
is the objective of the following steps. The

sought solution must obey the boundary conditions (23). Using (32) we can express
this in the following way:

û
i
|
∂B

=

4
∑

r=1

A
r
ũ
(r)

i
|
∂B

=
1

2
K

ijk
x
j
x
k
−

1

2
[K

ijk
+K

jki
]X

k
x
j
, (37)

and the coefficients A
k
can be determined directly from (37). Calculating the scalar

product of both sides of equation (37) with the surface tractions t̃(s) and integration
over the outer boundary ∂B leads to

A
s
κ
s
=
1

2
K

ijk

1

B

∫

∂B

x
j
x
k
t̃
(s)

i
dA−

1

2
[K

ijk
+K

jki
]
1

B

∫

∂B

X
k
x
j
t̃
(s)

i
dA (no sum over s!) , (38)

where (33) was taken into account and the identities from Appendix D were used.
Further algebraic manipulations yield

A
s
κ
s
=
1

2
K

ijk





1

B

∫

B

x
k
σ̃
(s)

ij
dV +

1

B

∫

B

x
j
σ̃
(s)

ik
dV



−

1

2
[K

ijk
+K

jki
]
1

B

∫

B

X
k
σ̃
(s)

ij
dV

(39)

Due to the symmetry properties of σ and 3
K equation (39) can be written as

A
s

=
1

κ
s

K
ijk

1

B

∫

B

(x
k
−X

k
) σ̃

(s)

ij
dV =

1

κ
s

K
ijk
m

(s)

ijk
(40)

1Unfortunately, there were some mistakes regarding this results in the article originally published. For
the correct values, please see the appendix in: Micromechanical modelling of size effects in failure
of porous elastic solids using first order plane strain gradient elasticity. In: Computational Materials
Science 46(3):647-653
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if the definitions
m

(s)

ijk
=

1

B

∫

B

ξ
k
σ̃
(s)

ij
dV (41)

and ξ
k
= x

k
−X

k
are used (see Figure 1). Using (25)

Ȟ
ijk

:=
1

2
[U

i,jk
+ U

j,ik
] (42)

equation (40) can be rewritten as

A
s
=

1

κ
s

m
(s)

ijk
Ȟ

ijk
(no sum over s!) (43)

The third order tensors 3
m

(s) (41) are interpreted as couple stresses which result from

111 221 112 222 121 211 122 212

111 h1 −h1 0 0 0 0 h h
221 −h1 h1 0 0 0 0 −h −h
112 0 0 h1 −h1 −h −h 0 0
222 0 0 −h1 h1 h h 0 0
121 0 0 −h h h1 h1 0 0
211 0 0 −h h h1 h1 0 0
122 h −h 0 0 0 0 h1 h1
212 h −h 0 0 0 0 h1 h1

h = a1 − a2
h1 = a1 + a2

Tab. 3: Components of the material tensor 6
D written in matrix form ([D](ijk)(lmn)).

the stress fields σ̃(s); the components are given in Table 1 with with

g1 = g2 =
R2

4

[

2(1− f 2
) +

ω

R2
(1− f)

]

(44)

g3 = g4 =
R4

2

[

4(1− f 3
) +

3ω∗

R2
(1− f 2

)

]

(45)

Using (34) and (41), the second term of the right hand side of (12) gives

1

2B

∫

B

σ̂
ij
ε̂
ij
dV =

1

2

4
∑

r=1

κ
r
A2

r
=

1

2
M̌

ijk
Ȟ

ijk
, (46)

where the third order couple stress tensor 3
M̌ is defined by

M̌
ijk

= Ď
ijklmn

Ȟ
lmn

. (47)

The sixth order tensor 6
Ď can be calculated by

Ď
ijklmn

=

4
∑

r=1

1

κ
r

m
(r)

ijk
m

(r)

lmn
. (48)
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and possesses the symmetries

Ď
ijklmn

= Ď
jiklmn

= Ď
ijkmln

(49)

and
Ď

ijklmn
= Ď

lmnijk
(50)

which can be immediately read from (41) and (48). The Hill-Mandel Lemma (3) for
the considered case can now be written as

1

2B

∫

B

σ
ij
ε
ij
dV =

1

2
Σ

ij
E

ij
+

1

2
M̌

ijk
Ȟ

ijk
, (51)

which is in accordance with the results given in [14]. Equation (51) constitutes an
extension of the classical Principle of Macrohomogeneity which allows for gradients
of macroscopic strains E. Further consequences of (51) in terms of equilibrium con-
ditions, boundary conditions, etc. are discussed e.g. in [19]. The macroscopic couple
stress tensor 3

M̌ (47) can be obtained as well from

M̌
ijk

=
1

B

∫

Bm

σ̂
ij
ξ
k
dV (52)

if (32) and (43) are taken into account. The components of 6
Ď are given in Table 2.

For the case of plane stress, the basic coefficients a1 and a2 of this tensor are defined
by

a1 =
g2
1

κ1

, a3 =
g2
2

κ2

(53)

As the void volume fraction f diminishes, the coefficients a1 and a2 achieve the
limits

lim
f→0

a1 =
ER2

16(3− ν)
(54)

lim
f→0

a3 =
ER2

16(1 + ν)
. (55)

The normalized coefficients of 4
C̄ are plotted together with the normalized coeffi-

cients a1 and a2 in Figure 2. In order to obtain the corresponding coefficients for
plane strain, E and ν must be replaced by E/(1 − ν2) and ν/(1 − ν), respectively.
From the material tensor 6

Ď given in Table 2 and (47) it can be seen that the couple
stresses obey the condition

M̌
ijj

= 0
i
. (56)

It follows from (56) that rigid body motions are excluded from the constitutive equa-
tions. For a more detailed discussion on this topic the reader is referred to [14].
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Fig. 2: Normalized material coefficients related to 4
C̄ and normalized coefficients a1, a2 plotted as

functions of the void volume fraction f for ν = 0.3.

2.4. Strength criterion

The maximum hoop stress at the void, σmax
ϕϕ

(r = a) may serve as a possible strength
criterion. If the macroscopic strains E and the strain gradients 3

Ȟ are known, the
hoop stress at r = a is given by

σ
ϕϕ
(r = a, ϕ) = σ̄

ϕϕ
(r = a, ϕ) +

[

4
∑

s=1

σ̃(s)

ϕϕ
(r = a, ϕ)

1

κ
s

m
(s)

ijk

]

Ȟ
ijk

, (57)

where (32) and (40) are taken into account. The κ
s
are given by (35) and (36),

whereat κ2 = κ1 and κ4 = κ3 hold. The hoop stress from the theory of simple
materials reads

σ̄
ϕϕ
(r = a, ϕ) = k

A0
(E11 + E22) + 2(6k

B2
f + k

A2
) cos(2ϕ)(E11 −E22)

+ 4(8k
B2
f + k

A2
) sin(2ϕ)E12 (58)

with the coefficients k
A0
, k

A2
and k

B2
given in Appendix C. The stresses σ̃

(s)

ϕϕ are
obtained from

σ̃(1)

ϕϕ
(r = a, ϕ) = 2R(4

√

f +
ω
√

f
) cos(ϕ) (59)

σ̃(2)

ϕϕ
(r = a, ϕ) = 2R(4

√

f +
ω
√

f
) sin(ϕ) (60)

σ̃(3)

ϕϕ
(r = a, ϕ) = 24R

√

f(2R2f + ω∗

) cos(3ϕ) (61)

σ̃(4)

ϕϕ
(r = a, ϕ) = 24R

√

f(2R2f + ω∗

) sin(3ϕ) . (62)
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It has been checked that

lim
f→0

σ̃(s)

ϕϕ

1

κ
s

m
(s)

ijk
= 0 (63)

holds, which means that the hoop stress σ̂
ϕϕ
(r = a, ϕ) vanishes as f tends to zero. The

angle ϕ = ϕ∗ were the hoop stress reaches its maximum value depends on 3
Ȟ via

(57) and has to be determined numerically at a macroscopic point X by solving the
corresponding extrem value problem. A failure criterion can be formulated assuming
that failure at a macroscopic point occurs if the condition

σmax
ϕϕ

(r = a) = σ
ϕϕ
(r = a, ϕ∗

) ≥ σ
c

(64)

is fulfilled, where the material parameter σ
c
has to be identified by experiments. Such

a failure criterion which is able to predict size effects due to the presence of the micro-
structural length R can be applied to strength analysis of components made of porous
ceramics or aircrete. This will be the objective of future work.

2.5. Alternative representation

In order to simplify the numerical implementation it is useful to express the internal
strain energy by means of the second displacement gradients instead of the strain
gradients. Different representations of the internal strain energy density were already
discussed by Mindlin [19] for the case of an isotropic linear elastic material. However,
due to the geometry of the RVE, 6

Ď is only transversely isotropic (see Figure 1) and
the results given in [19] do not apply here. Following the general idea outlined in
[19], we define the third order tensor 3

H

H
ijk

:= U
k,ij

(65)

and a material tensor 6
D demanding that

D
ijklmn

H
ijk
H

lmn
= Ď

ijklmn
Ȟ

ijk
Ȟ

lmn
. (66)

Furthermore,

M
ijk

=
∂Ŵ

∂H
ijk

= M
jik

(67)

must hold because of the symmetry properties of 3
H, with Ŵ = 3

H
... 6

D
... 3

H. It
can be shown that 6

D given by

D
ijklmn

=
1

4

[

Ď
jkimnl

+ Ď
jkinlm

+ Ď
kijmnl

+ Ď
kijnlm

]

(68)

fulfills the requirements discussed above and the components of 6
D are given in

Table 3.
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Fig. 3: Undeformed mesh of the RVE used for the validation of the model together with an example of
a deformed mesh.

3. Numerical studies

3.1. Numerical validation of the model

In order to validate the model, the response of the RVE has been simulated using
finite-element calculations and the coefficients a1 and a2 were determined numerically
for f = 0, 0.1, 0.2, 0.4, 0.6 and f = 0.8. The boundary displacements were prescribed
according to (23) and the higher order stresses were calculated by means of (52). The
undeformed finite element mesh for f = 0.2 is shown in Figure 3 together with the
deformed mesh which corresponds to the case where only Ȟ111 differs from zero. The
numerically determined coefficients are depicted together with the analytical solution
for ν = 0.3 in Figure 2. The analytical solution is in excellent accordance with the
numerical results.

3.2. Stress concentration at a hole

In the following, the macroscopic boundary value problem of a stress concentration
at a cylindrical hole in an infinite plane subjected to uni-axial remote tension σ0 is
investigated. Plane strain conditions are assumed and a quadratic domain of length
L = 20ρ is considered. Since L is large compared to ρ, the solution will be sufficiently
close to that of an infinite domain. Owing to symmetry only a quarter of the problem
had to be modeled. Following [21], strain gradient elasticity was implemented into
the commercial finite-element program Abaqus [1] for plane strain conditions. The
implementation is described comprehensively in [23].
Finite element calculations were performed using the strain gradient elasticity

model derived within the previous section. The finite element mesh is shown in Figure
5. The stress concentration factor T is defined by the maximum hoop stress divided
by the remote stress

T =
Σ11(X1 = 0, X2 = ρ)

σ0

. (69)

The values of T predicted by the strain gradient model are shown in Figure 4 whereat
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Fig. 4: Stress concentration at a hole under uni-axial tension.

the ratio R/ρ and the specific void volume fraction f have been varied. As R/ρ tends
to zero, T matches the classical solution with T = 3. For finite values R/ρ however,
the strain gradient model predicts a size effect manifested by a stress concentration
always lower than three.
The problem of stress concentration was solved analytically for isotropic strain gra-

dient elasticity by Eshel and Rosenfield [10]. Due to the general representation of
isotropic tensors of sixth order and additional symmetry properties, the higher order
constitutive behavior of an isotropic strain gradient solid is completely characterized
by five independent material parameters. These parameters do not have a clear
micro-mechanical interpretation in terms of void spacing or grain size, etc. Because
of the anisotropy included in present the model, the predictions are not exactly com-
parable. But our results are qualitatively in accordance with those obtained in [10].
Furthermore, the predictions of our model are reasonable for certain combinations
of R/ρ and f . However, the model predicts an unreasonable large size effect also
for R/ρ = 1 and very small void volume fractions f . These parameters correspond
to micro-structures with very small voids far away from each other and one would
expect a result closer to the theory of simple materials.
Furthermore, zero void volume fraction implies in any case classical linear elasticity

but the higher order material parameters take a finite value which prevents the higher
order terms from vanishing as long as macroscopic strain gradients appear. However,
the result is formally correct and can be explained by the fact that if a RVE with radius
R is subjected to higher order boundary displacements then higher order stresses
must emerge even if there is no void at all. Of course, for f = 0 the limit process
R → 0 can be performed from which classical elasticity would result but this case
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is not a priori included in the model which is a quite unsatisfactory circumstance.
Because of the explicit meaning of the micro-structural parameters R and f , these
problems arise. It is to be expected that they reflect a more general difficulty of models
obtained by higher order homogenization techniques. For example, a closer look at
the ductile damage model derived in [14] reveals that this model suffers from the
same problems. On the other hand, the strain gradient elasticity model obtained by
Drugan and Willis [8] using statistical mechanics in conjunction with homogenization
based on eigenstrains approaches classical elasticity if the void volume fraction tends
to zero. Furthermore, increasing stress concentration has been predicted by Cowin
[6] by means of a different approach, whereas strain gradient elasticity predicts in
the most cases lower stress concentrations. In addition, couple stress elasticity which
can be interpreted as a special case of the strain gradient theory always predicts
stress concentrations lower or equal to three [17]. Therefore, it is not clear whether
strain gradient elasticity is able to predict the actual stress concentration at a hole.
Numerical simulations taking into account the corresponding micro-structure could
help to enlighten this problem by contrasting the results with the predictions obtained
by using strain gradient elasticity.

1

2

3

1

2

3

Fig. 5: Finite-element mesh used for the stress concentration problem.

4. Summary and Outlook

Based on the concept of the representative volume element (RVE) higher order ho-
mogenization was performed for materials, whose micro-structure consists of cylin-
drical voids surrounded by a linear elastic matrix material. Effective constitutive equa-
tions were derived analytically within the framework of plain strain gradient elasticity.
Furthermore, a simple failure criterion for porous brittle materials has been devel-
oped which is able to predict size effects. The method developed here is based on
Fourier-Series approximation. It can be applied to more complex micro-structures,
e.g. voids with elliptic cross section, inclusions, etc.
The predicted stress concentrations due to a hole in an infinite domain subjected to

uniaxial tension indicate some general problems of strain gradient models obtained
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by higher order homogenization. These problems become obvious due to the explicit
meaning of the micro-structural parameters.
The solution strategy applied here is limited to two dimensional problems. The de-

rived constitutive equations are based on simplifications with respect to the geometry
of the RVE and the character of the macroscopic strain gradients. The model can be
used for strength analysis and also for the validation of numerical homogenization
schemes.
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Appendix

A. Calculation of ω in equations (27), (28)

The boundary displacements û|
∂B

which result from (20) can be formally written as

û|
∂B

= B1ũ
(B1)

|
∂B

+ b1ũ
(b1)

|
∂B

+D1ũ
(D1)

|
∂B

+ d1ũ
(d1)

|
∂B

+

∞
∑

n=3

[

B
n
ũ

(Bn)
|
∂B

+ b
n
ũ

(bn)
|
∂B

+D
n
ũ

(Dn)
|
∂B

+ d
n
ũ

(dn)
|
∂B

]

. (A.1)

Taking into account (A.1), multiplying both sides of (23) with the surface tractions
t̃
(B1)

|
∂B

and executing the integration with respect to the outer surface of the volume
element finally gives

B1κ̆11 + b1κ̆12 =
1

2
K

ijk
m̆

(B1)

ijk
(A.2)

after dividing by the total volume of the volume element B. The simple structure of
(A.2) results from the orthogonality relations of the trigonometric functions. Perform-
ing the same calculation using t̃

(b1)
|
∂B
, t̃(D1)

|
∂B
, and t̃

(d1)
|
∂B
, respectively, instead of

t̃
(B1)

|
∂B

leads to

B1κ̆12 + b1κ̆22 =
1

2
K

ijk
m̆

(b1)

ijk
(A.3)

D1κ̆11 + d1κ̆12 =
1

2
K

ijk
m̆

(D1)

ijk
(A.4)

D1κ̆12 + d1κ̆22 =
1

2
K

ijk
m̆

(d1)

ijk
, (A.5)

where the coefficients κ̆11, κ̆12, κ̆22 are given by

κ̆11 = R2
4

E

[

(3− ν)− 2f 2
(1− ν)− (1 + ν)f 4

]

(A.6)

κ̆22 = −

1

R2

1

E

[

2 ln(f) + (1 + ν)(1 + f)2
]

(A.7)

κ̆12 =
2

E

[

(3− ν)(1 − f)− (1− ν)f 2
− (1 + ν)f 3

]

. (A.8)

The components of the third order tensor 3
m̆

(B1) are calculated by means of

m̆
(B1)

ijk
=

1

B

∫

B

ξ
k
σ̃
(B1)

ij
dV (A.9)

and the components of the other tensors 3
m̆

(b1), 3
m̆

(D1), 3
m̆

(d1) are computed
analogously using the corresponding stress fields. The results given in matrix form in
Table 4 reveal that the right hand sides of the equations (A.2) and (A.3) differ only by
the factors G1 and G2

G1 =
R2

2
(1− f 2

) (A.10)

G2 =
1

4
(1− f) . (A.11)
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The same argumentation applies for the equations (A.4) and (A.5) and therefore,

b1 = ωB1 (A.12)
d1 = ωD1 (A.13)

with

ω =
G1κ̆12 −G2κ̆11

G2κ̆12 −G1κ̆22

. (A.14)

m̆
(B1)

ijk
ij = 11 22 12 m̆

(b1)

ijk
ij = 11 22 12

k = 1 G1 3G1 0 k = 1 G2 3G2 0
2 0 0 -G1 2 0 0 -G2

m̆
(D1)

ijk
ij = 11 22 12 m̆

(d1)

ijk
ij = 11 22 12

k = 1 0 0 −G1 k = 1 0 0 −G1

2 3G1 G1 0 2 3G1 G1 0

Tab. 4: Components of the third order tensors 3
m̆

(B1), 3
m̆

(b1), 3
m̆

(D1), 3
m̆

(d1).

B. Result for ω∗ in equations (29), (30)

Similar calculation can be performed with respect to the coefficients b
n
, B

n
and d

n
and

D
n
. Furthermore, it turns out that the higher order stresses 3

m̆
(Bn), 3

m̆
(bn), 3

m̆
(Dn)

and 3
m̆

(dn) vanish for n > 3 from which follows that the corresponding coefficients
vanish, too. The result for n = 3 reads

b3 = ω∗B3 (B.1)
d3 = ω∗D3 (B.2)

with
ω∗

3
=

G∗

1
κ∗

12
−G∗

2
κ∗

11

G∗

2
κ∗

12
−G∗

1
κ∗

22

. (B.3)

The coefficients G∗

1
and G∗

2
are given by

G∗

1
= 2R4

(1− f 3
) (B.4)

G∗

2
=

3

2
R2

(1− f 2
) . (B.5)

Finally, the coefficients κ∗

11
, κ∗

22
and κ∗

12
result in

κ∗

11
=8

R6

E

[

9(1 + ν)(16f 7
− 9f 8

) + (11 + 7ν)(1− 8f 6
) + 2(1− ν)(16f 3

− 9f 4
)
]

(B.6)

κ∗

22
=36

R2

E

[

(1 + ν)(1 + 16f 5
− 8f 6

)− (11 + 7ν)f 4
+ 2(1− ν)f 2

]

(B.7)

κ∗

12
=48

R4

E

[

(1 + ν)(1 + 17f 6
− 9f 7

) + 2(1− ν)f 2
− (11 + 7ν)f 5

]

. (B.8)
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C. Effective elasticity matrix 4
C̄

The macroscopic stresses are given by

Σ11 = C̄1111E11 + C̄1122E22 (C.1)
Σ22 = C̄2211E11 + C̄2222E22 (C.2)
Σ12 = 2C̄1212E12 (C.3)

with

C̄1111 = +
1

2
(1− f) [(k

A0
− k

A2
− 3k

B2
(1 + f)] = C̄2222 (C.4)

C̄1122 = +
1

2
(1− f) [(k

A0
+ k

A2
+ 3k

B2
(1 + f)] = C̄2211 (C.5)

C̄1212 = −

1

2
(1− f) [k

A2
+ 3k

B2
(1 + f)] . (C.6)

For the case of plane stress, the coefficients k
A0
, k

A2
, k

B2
and g11 read

k
A0

=
E

1− ν + f(1 + ν)
(C.7)

k
A2

=
E

g11

[

(1 + ν)(4f 3
− 3f 2

) + 3− ν
]

(C.8)

k
B2

=
E

g11
f(1− f)(1 + ν) (C.9)

g11 = (ν2
− 2ν − 3)(1 + f 4

) + 2(1 + ν)2(3f 2
− 2f 3

)− 4f(ν2
+ 3) . (C.10)

D. Useful identities

In the following, some useful identities needed for the calculation of the A
k
(40) are

given.

∫

∂B

x
k
t̃
(s)

i
dA =

∫

∂B

x
k
σ̃
(s)

ip
n
p
dA =

∫

B

(x
k
σ̃
(s)

ip
)
,p
dV =

∫

B

σ̃
(s)

ik
dV = Σ̃

s

ik
= 0

ik
(D.1)

∫

∂B

x
j
x
k
t̃
(s)

i
dA =

∫

∂B

x
j
x
k
σ̃
(s)

ip
n
p
dA =

∫

B

(x
j
x
k
σ̃
(s)

ip
)
,p
dV =

∫

B

x
k
σ̃
(s)

ij
dV +

∫

B

x
j
σ̃
(s)

ik
dV(D.2)
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Micromechanical modelling of size
effects in failure of porous elastic solids
using first order plane strain gradient

elasticity

Uwe Mühlich Lutz Zybell Meinhard Kuna

In this paper a first order porous strain gradient elasticity model is pre-
sented. The constitutive equations have been obtained by higher order
homogenization and the model is used with a failure criterion in order to
discuss size effects in failure of porous elastic solids. The model contains
two microstructural parameters namely the void volume fraction and the
half void spacing. After an extended numerical validation of the porous
strain gradient elasticity model, the boundary value problem of a plate
with a hole under bi- and uniaxial remote tension is investigated. The
numerical simulations have been performed varying both microstructural
parameters in order to study the influence of different microstructural di-
mensions on the onset of macroscopic failure. The numerical results show
that the presented model is able to predict size effects and that size effects
in failure do not only depend on the microstructural properties but also on
the macroscopic geometry, loading conditions, and the failure mechanism.

1. Introduction

Size effects have been reported in failure of parts made of porous elastic material as
e.g. porous concrete [1, 2] and various porous ceramics [3, 4]. Within this paper,
the size effect is understood as the influence of the ratio between the macroscopic
dimensions and the microstructural length properties on the failure strength of a con-
sidered part or structural component, provided that geometrically similar parts are
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compared. This is a slightly modified version of the definition given in [5] for parts or
structures made of brittle or quasi-brittle materials. Microstructural length properties
are material properties such as void spacing and grain size. As pointed out e.g. in
[6], size effects are in general the result of an interplay of statistical and deterministic
effects. However, only deterministic size effects are considered here.

Continuum models formulated within the theory of simple materials are not able
to account for these size effects, because the influence of the microstructure on the
macroscopic behaviour can only be incorporated by means of specific values like
void volume fraction, microcrack density, etc., as extensively discussed in the liter-
ature. With respect to the class of materials considered here, this means that the
aforementioned models cannot distinguish between a material whose microstructure
consists of many small voids surrounded by linear elastic matrix material and another
material with less but bigger voids as long as the void volume fraction is the same
in both cases. The obvious need to incorporate additional length parameters into
the continuum models led to an increasing interest in so-called higher order contin-
uum theories over the past decades. Here, we focus on first order strain gradient
elasticity developed in [7]. Within this framework, additional parameters which are
related somehow to microstructural length properties appear almost naturally due to
the incorporation of higher order displacement gradients into the formulation of the
macroscopic strain energy density. The major challenge, however, is the determina-
tion of these additional parameters. There are homogenization schemes based on
higher order boundary conditions for a single representative volume element (RVE)
[8, 9] and procedures regarding interaction between RVEs arranged in clusters [10]
developed more recently. Here we focus on the first approach, where the constitutive
equations do not only fit into the framework of strain gradient elasticity / plasticity, de-
pending on the underlying microstructural behaviour, but also the additional material
parameters can be linked transparently to measurable microstructural quantities like
the mean spacing of the microvoids. Based on this approach, constitutive equations
for plane porous strain gradient elasticity were obtained in [11] and a failure criterion
has been formulated, which will be explored in more detail within this paper.

The paper is organized as follows: In the first section the fundamental equations
of strain gradient elasticity are reviewed, the higher order homogenization procedure
is discussed and two failure criteria based directly on the homogenization are briefly
outlined. Next, an extended validation of the analytical model is presented and nu-
merical results of the failure criteria are described in detail. Finally, the numerical
results are discussed and an outlook on the porous strain gradient elasticity model is
given.

In this paper index notation together with the summation convention is used and
capital letters are related to macroscopic variables. Macroscopic and microscopic
variables depend on the macroscopic coordinates X and the microscopic coordi-
nates x, respectively. The abbreviation ()

,i
indicates the partial derivative of the con-

sidered quantity () with respect to the corresponding spatial coordinate and δ
ij
are

the components of the identity tensor.
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2. First order porous strain gradient elasticity

2.1. Fundamental equations of strain gradient elasticity

Strain gradient elasticity was first introduced by Mindlin [7] based on an earlier work
of Toupin [12]. He extended the strain energy density W , which depends in the case
of linear elasticity only on the strains E

ij
, by the strain gradients H̆

ijk
. There exist two

other possibilities to express W resulting in equivalent formulations, what is briefly
outlined in [13].
Based on the extended strain energy density the following set of equations holds

for the variables on the macrolevel X:

Equilibrium equation:
(

Σ
ij
− M̆

kij,k

)

,j

= 0
i

(1)

Kinematic relations:
E

ij
=

1

2
[U

i,j
+ U

j,i
] , H̆

ijk
= E

ij,k
(2)

Constitutive relations:

Σ
ij
= C̄

ijkl
E

kl
, M̆

ijk
= D̆

ijklmn
H̆

lmn
. (3)

In (2) U
i
are the components of the displacement vector. The macroscopic stress

tensor Σ and the higher order stress tensor M̆ are related to their work conjugate
kinematic variables, namely the strain tensor E and the strain gradient tensor H̆, by
the fourth and sixth order material tensors C̄ and D̆, respectively.
The boundary value problem at the macrolevel is completely defined, if in addition

to (1)–(3) the following natural boundary conditions related to the surface tractions T
i

and the higher order surface tractions R
i
are taken into account

T
i
= N

j
(Σ

ij
− M̆

kji,k
)−D

j
(N

k
M̆

kji
) + (D

p
N

p
)N

j
N

k
M̆

kji
= T ∗

i
X ∈ ∂BT (4)

R
i
= N

k
N

j
M̆

kji
= R∗

i
X ∈ ∂BR (5)

as well as the essential boundary conditions

U
i
= U∗

i
X ∈ ∂B

U
(6)

N
p
U
i,p

= V ∗

i
X ∈ ∂B

V
. (7)

In (4)–(7) N
i
are the components of the unit normal vector,

D
j
(.) = (δ

jp
−N

p
N

j
)(.)

,p
(8)

are the components of the surface gradient and variables marked with an asterisk (*)
indicate prescribed values. In order to apply strain gradient elasticity to real problems
the main difficulties arise from the determination of the material parameters included
in (3). Since the determination of all these material parameters implies considerable
effort we used higher order homogenization to derive the constitutive relations.
The strain gradient elasticity model was implemented as a User Element (UEL) in the

commercial finite element software Abaqus [14]. We used a mixed-type formulation
by Shu et. al [15] based on the second gradients of the displacements. Details of the
implementation are given in [16].
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Fig. 1: Cylindrical volume element (VE) containing a cylindrical void used for the homogenization and
macroscopic interpretation of a periodic assembly of VEs

2.2. Constitutive relations obtained by higher order

homogenization

The homogenization was performed using a cylindrical volume element (VE) consist-
ing of a cylindrical void surrounded by linear elastic matrix material as shown on the
left of Fig. 1.
We assume that the VE represents the main features of the microstructure. In the

context of random media the overall behaviour of the VE depends on its size as well
as on the boundary data and it can no longer be interpreted as representative in
a statistical sense. Therefore, the VE might be seen as a volume which does not
capture all statistical information of the microstructure. In the context of materials
with periodic microstructure one may still interpret the VE as the unit cell defining
the geometry of the microstructure. Thus, regarding the cylindrical VEs as idealized
honeycombs results in a periodic assembly of VEs on the macrolevel which is depicted
on the right of Fig. 1.
We distinguish between macroscopic coordinates X and microscopic coordinate

x, whose meanings are shown on the left of Fig. 1. Following the general idea of
homogenization, we assume that every macroscopic point X is related to a corre-
sponding VE. Plane stress and plane strain conditions are assumed and quadratic
boundary displacements according to Gologanu et. al [8] which are related to the
macroscopic strains and strain gradients are prescribed on the outer boundary of the
VE

u
i
|
∂B

= E
ij
x
j
+

1

2
K

ijk
x
j
x
k
−

1

2
[K

ijk
−K

jki
]X

k
x
j

(9)

with

K
ijk

= H̆
ijk

+ H̆
kij

− H̆
jki

. (10)

Due to considerable gradients in the macroscopic fields, the microscopic stresses and
strains are no longer periodic and the quadratic terms in (9) reflect the deviation of
the microscopic fields from periodicity.
At the inner boundary of the VE zero tractions are prescribed. The macroscopic

stresses and higher order stresses are defined as mean values with respect to the
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corresponding microscopic fields

Σ
ij

=
1

B

∫

B

σ
ij
dV (11)

M̆
ijk

=
1

B

∫

B

σ
ij
(x

k
−X

k
) dV (12)

and solving the boundary value problem for the VE leads to the material tensors
C̄ and D̄. The solution has been derived analytically and detailed information is
given in [11]. The material tensor C̄ depends on the void volume fraction f = a2/R2

and the properties of the matrix material, whereas the material tensor D̄ hinges, in
addition, on the outer radius R of the VE, where R is interpreted as the half mean
spacing between the microvoids. Due to the choice of the VE transverse isotropy
is included on the microscale and the material tensor D̄ cannot be rewritten in the
general isotropic representation by Mindlin [17] containing five independent material
parameters.
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Fig. 2: Numerical validation of the analytical model: Comparison of the stress results σij between
unit cell calculation and the analytical solution at the inner boundary of the VE and corresponding
deformed mesh for case 4

2.3. Discussion of the failure criteria

After solving the boundary value problem at the macrolevel, the macroscopic strains
and strain gradients are known for every macroscopic point X. Furthermore, the
microscopic stress and strain fields inside the corresponding VE are known. In order to
obtain a failure criterion, it is postulated that failure occurs if the hoop stress σ

ϕϕ
(r =

a, ϕ) at the microvoid reaches a critical value σcr. The hoop stress given in [11] can
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be split into

σ
ϕϕ
(r = a, ϕ) =

[

3
∑

s=1

σ̄(s)

ϕϕ
(r = a, ϕ)α

(s)

ij

]

E
ij
+

[

4
∑

s=1

σ̃(s)

ϕϕ
(r = a, ϕ)

1

κ
s

m
(s)

ijk

]

Ȟ
ijk

(13)

where the first part with the coefficients

α
(1)

ij
=

[

1 0

0 1

]

, α
(2)

ij
=

[

1 0

0 −1

]

, α
(3)

ij
=

1

2

[

0 1

1 0

]

(14)

is related to theory of simple materials and the second part is related to higher order
theory. In order to evaluate the extremum problem (34) more easily equation (13) is
rewritten as a truncated Fourier series

σ
ϕϕ
(r = a, ϕ) = A0 +

3
∑

i=1

A
i
sin(iϕ) +B

i
cos(iϕ) (15)

with the coefficients

case 1 2 3 4 5 6 7
E11 0.1 0.1 0 0 0 0 0
E22 0.1 –0.1 0 0 0 0 0
E12 0 0 0.1 0 0 0 0
Ȟ111 0 0 0 0.2 0.1 0 0
Ȟ221 0 0 0 0.1 0.1 0 0
Ȟ122 0 0 0 0.1 0.4 0 0
Ȟ112 0 0 0 0 0 0.1 0.1
Ȟ222 0 0 0 0 0 0.2 0.1
Ȟ121 0 0 0 0 0 0.1 0.4

Tab. 1: Components of strains Eij and strain gradients Ȟijk for the seven cases investigated for the
numerical validation of the coefficients Ai and Bi in Eq. (15).

A0 = kA0
(E11 + E22) (16)

A1 = 2R

(

4
√

f +
ω

R2

1
√

f

)

1

κ2

m
(2)

ijk
Ȟ

ijk
(17)

B1 = 2R

(

4
√

f +
ω

R2

1
√

f

)

1

κ1

m
(1)

ijk
Ȟ

ijk
(18)

A2 = 4(6kB2
f + kA2

)E12 (19)
B2 = 2(6kB2

f + kA2
)(E11 −E22) (20)

A3 = 24R3
√

f

(

2f +
ω∗

R2

)

1

κ4

m
(4)

ijk
Ȟ

ijk
(21)

B3 = 24R3
√

f

(

2f +
ω∗

R2

)

1

κ3

m
(3)

ijk
Ȟ

ijk
. (22)
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The coefficients kA0
, kA2

, kB2
read

kA0
=

E ′

1− ν ′ + f(1 + ν ′)
(23)

kA2
= E ′

[

(1 + ν ′

)(4f 3
− 3f 2

) + 3− ν ′

]

/ g11 (24)
kB2

= E ′ f (1− f) (1 + ν ′

) / g11 (25)

and
g11 = (ν ′2

− 2ν ′

− 3)(1 + f 4
) + 2(1 + ν ′

)
2
(3f 2

− 2f 3
)− 4f(ν ′2

+ 3) , (26)

where the elastic parameters E ′ and ν ′ have to be chosen according to

E ′

=

{

E
E/(1− ν2)

, ν ′

=

{

ν plane stress
ν/(1− ν) plane strain

. (27)

and the calculation of the coefficients κ
k
(k=1...4) can be found in Appendix A.

Finally, the products m(s)

ijk
Ȟ

ijk
read

m
(1)
...Ȟ = g1

[

Ȟ111 + 3 Ȟ221 − 2 Ȟ122

]

(28)

m
(2)
...Ȟ = g2

[

3 Ȟ112 + Ȟ222 − 2 Ȟ121

]

(29)

m
(3)
...Ȟ = g3

[

−Ȟ111 + Ȟ221 + 2 Ȟ122

]

(30)

m
(4)
...Ȟ = g4

[

−Ȟ112 + Ȟ222 − 2 Ȟ121

]

(31)

with

g1 = g2 = G1 + ωG2 (32)
g3 = g4 = G∗

1
+ ω∗G∗

2
(33)

and the coefficients G
i
and G∗

i
from Appendix A. Hence all coefficients within (15)

are known.
The assumption that failure occurs if the hoop stress at the inner boundary of the

microvoid σ
ϕϕ
(r = a, ϕ) reaches a critical value includes actually two failure criteria.

Failure by tension occurs if the maximum positive hoop stress σmax+
ϕϕ

reaches a critical
value σ+

cr and failure by compression takes place if the minimum negative hoop stress
σmax−
ϕϕ

becomes smaller than or equal to a critical value σ−

cr . Both criteria are used in
the following in order to predict the onset of failure of the considered body.
In order to calculate the maximum positive and negative hoop stresses from (13)

the extremum problem
dσ

ϕϕ
(a, ϕ)

dϕ
= 0 (34)

has to be solved at all integration points. Then the absolute extreme values σmax+
ϕϕ

and σmax−
ϕϕ

have to be found within the structural component in order to be able to
evaluate the failure criteria

σmax+
ϕϕ

> σ+

cr , σmax−
ϕϕ

< σ−

cr . (35)

An analytical solution of (34) can be obtained only in a few special cases. Therefore,
the problem is solved numerically in general within a postprocessing routine.
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Fig. 3: Failure criterion by tension σmax+ϕϕ /σ0 along boundary s of a circular hole under biaxial remote
tension for different void volume fractions f and ratios R/ρ and geometry of the macroscopic boundary
value problem

3. Numerical results

3.1. Extended validation of the constitutive equations

The validation of the model was extended beyond the verification of the coefficients
a1 and a3 which were already investigated in [11]. In order to check the analytical
results, e.g. the definitions of the coefficients in (13), numerical simulations of the
cylindrical volume element (VE) containing a void (see Fig. 2 on the bottom right)
were performed and the stresses σ

ij
at the inner boundary were analyzed. The seven

cases defined in Table 1 were investigated in order to isolate the effects of the terms
related to the A

i
and B

i
in (13).

The displacements on the outer boundary of the VE were prescribed in terms of the
strain gradient Ȟ

u1(r = R,ϕ) = E11x1 + E12x2 +
1

2

[

Ȟ111x1x1 + 2Ȟ112x1x2 + (2Ȟ122 − Ȟ221)x2x2

]

(36)

u2(r = R,ϕ) = E21x1 + E22x2 +
1

2

[

(2Ȟ121 − Ȟ112)x1x1 + 2Ȟ221x1x2 + Ȟ222x2x2

]

.

(37)

Investigations of all seven cases unveiled incorrect definitions of the coefficients κ
k
in

[11]. Finally, all deviations between analytical and numerical solution for the stresses
at the inner boundary of the VE could be removed. The comparison between analyt-
ical and numerical results is exemplarily depicted for the study case 4 in Fig. 2.
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Fig. 4: Failure criterion by compression σmax−ϕϕ /σ0 along boundary s of a circular hole under uniaxial
remote tension with different void volume fractions f and ratios R/ρ and geometry of the macroscopic
boundary value problem

3.2. Application of the failure criteria

The failure criteria σmax+

ϕϕ
and σmax−

ϕϕ
proposed in [11] were investigated at a cylindri-

cal hole surrounded by linear elastic strain gradient material under bi- and uniaxial
remote tension. Due to symmetry only a quarter of the problem had to be modeled
as shown on the bottom right of Fig. 3.
The geometry is given by a quadratic domain of length L containing a macroscopic

hole with the constant radius ρ=L/20. Plane strain conditions were assumed and
the elasticity constants E=1000 MPa and ν=0.3 were used for all calculations.
The microstructure of the material was characterized by the void volume fraction
f = a2/R2 and the half void spacing R. Different microstructures were realized by
varying the void volume fraction f between 0.001 and 0.25 and setting the ratio of
half void spacing R divided by the radius of the macroscopic hole ρ equal to 0.01,
0.1 and 0.15. For a fixed void volume fraction f this results either in a microstructure
with many small voids characterized by small values of R/ρ or in a microstructure
with less but bigger voids for large values of R/ρ.
First the cylindrical hole surrounded by linear elastic strain gradient material was

loaded in biaxial remote tension. The numerical results of the failure criterion σmax+
ϕϕ

along the boundary s of the macroscopic hole are depicted for the biaxial loading
case in Fig. 3. The numerical values of σmax+

ϕϕ
are constant along the boundary s, what

is consistent with the analytical solution of Eshel and Rosenfield [18], who showed
that for a rotational symmetric problem the solution including higher order terms is
independent of the angle. Furthermore, it can be seen that for high porosities f the
failure σmax+

ϕϕ
increases as R/ρ grows, whereas there is almost no size effect for low

porosities. Therefore, the failure criterion of maximum hoop stress in tension σmax+
ϕϕ
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predicts that the onset of failure occurs for higher porosities at lower applied loads
if the material has a coarse microstructure (R/ρ large), compared with the case of a
dense microstructure (R/ρ small).
Next, the boundary value problem discussed above was investigated in the loading

case of uniaxial remote tension, while geometry and material parameters were kept
constant. The results of the failure criterion by compression σmax−

ϕϕ
/σ0 are shown in

Fig. 4. Obviously, the critical stress σmax−
ϕϕ

is no longer constant along the boundary
s since the macroscopic problem lost its rotational symmetry. All maximum values
of σmax−

ϕϕ
are located at approximately 0.2 s and there is a regularization effect for

increasing ratios R/ρ, i.e. the curve of σmax−
ϕϕ

becomes smoother.
The maximum values of the failure criteria by tension σmax+

ϕϕ
/σ0 and compression

σmax−
ϕϕ

/σ0 are compared for all simulations of the biaxial loading case in Fig. 5. Ob-
viously, the results for σmax+

ϕϕ
increase for growing void volume fraction as well as

for growing ratios R/ρ, i.e. microstructures with a larger ratio R/ρ fail earlier than
microstructures with small R/ρ.
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Fig. 5: Failure criterion by tension σmax+ϕϕ /σ0 and failure criterion by compression |σmax−ϕϕ |/σ0 for cir-
cular hole under biaxial remote tension for all realized variations of void volume fraction f and ratio
R/ρ

The numerical results for σmax−
ϕϕ

show a total different behavior by decreasing val-
ues for growing ratios R/ρ. Furthermore, for small void volume fraction f combined
with negligible ratios R/ρ, the results of σmax−

ϕϕ
are astonishingly larger than for larger

values of f . If R/ρ → 0 the higher order terms in (13) are negligible resulting in
a failure criterion for theory of simple materials. It has been proved for theory of
simple materials in the biaxial loading case, that the analytical solution for σmax−

ϕϕ
cor-

responds to the numerical values for small R/ρ, i.e. the values of σmax−
ϕϕ

for very small
f are greater than those for larger f .

Figure 6 shows the maximum values of the failure criteria by tension σmax+
ϕϕ

/σ0 and
compression σmax−

ϕϕ
/σ0 for all simulations of the uniaxial loading case. Both figures

show a trend of decreasing values of σmax+
ϕϕ

and σmax−
ϕϕ

, resp., with increasing ratios
R/ρ after a certain maximum value. This trend was further investigated for a wider
range of R/ρ at a fixed void volume fraction f and it turns out that there is such
a global maximum of σmax−

ϕϕ
at a certain R/ρ for any void volume fraction f . This

implies that both failure criteria by tension σmax−
ϕϕ

and by compression σmax−
ϕϕ

predict
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that there is a microstructure with a certain ratio of R/ρ which is most endangered in
the uniaxial loading case.

4. Conclusions

Strain gradient elasticity has been applied in order to simulate size effects in the
failure of structures consisting of porous elastic material. The numerical results for the
considered examples indicate that size effects in failure do not only depend on the
microstructural properties but also on the macroscopic geometry, loading conditions,
and the failure mechanism.
It has been shown that the presented strain gradient elasticity model obtained by

higher order homogenization is able to predict size effects. However, the failure cri-
teria used herein have been chosen more or less arbitrarily without any experimental
background. Thus, other failure criteria e.g. based on maximum shear stress inside
the VE or energetic criteria will be investigated in conjunction with corresponding
experiments to validate the approach. In order to simulate real porous materials
a combination of the strain gradient elasticity model with a statistical approach is
currently under preparation.

A. Calculation of the coefficients κk

Due to some unexpected results the calculation of the coefficients κ
k
in [11] was

reviewed and existing errors were fixed. Therefore, a reformulated version of the
calculation of the κ

k
is given in the following.

The coefficients κ
k
needed in equations (16)–(22) can be calculated in a more

convenient way than in [11] as follows

κ1 = κ2 = κ̆11 + 2 κ̆12 ω + κ̆22 ω
2 (A.1)

κ3 = κ4 = κ∗

11
+ 2 κ∗

12
ω∗

+ κ∗

22
(ω∗

)
2 . (A.2)
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The term ω is given by

ω = (G1κ̆12 −G2κ̆11) / (G2κ̆12 −G1κ̆22) (A.3)

and the corrected coefficients κ̆
ij
read

κ̆11 = 4R2
[

(3− ν ′

)− 2f 2
(1− ν ′

)− (1 + ν ′

)f 4
]

/E ′ (A.4)

κ̆22 = −

[

2 ln(f) + (1 + ν ′

) (1− f)2
]

/ (R2E ′

) (A.5)

κ̆12 = 2
[

(3− ν ′

) (1− f) + (1 + ν ′

) (f 2
− f 3

)
]

/E ′ . (A.6)

The factors G1 and G2 can be calculated by

G1 = R2
(1− f 2

) / 2 , G2 = (1− f) / 4 . (A.7)

The terms appearing in (A.2) are given by

ω∗

= (G∗

1
κ∗

12
−G∗

2
κ∗

11
) / (G∗

2
κ∗

12
−G∗

1
κ∗

22
) (A.8)

and

κ∗

11
= 8R6

[

9(1 + ν ′

) (16f 7
− 9f 8

) + (11 + 7ν ′

) (1− 8f 6
)

+ 2(1− ν ′

) (16f 3
− 9f 4

)
]

/E ′ (A.9)

κ∗

22
= 36R2

[

(1 + ν ′

) (1 + 16f 5
− 8f 6

)

− (11 + 7ν ′

)f 4
+ 2(1− ν ′

)f 2
]

/E ′ (A.10)

κ∗

12
= 48R4

[

(1 + ν ′

) (1 + 17f 6
− 9f 7

)

+ 2(1− ν ′

)f 2
− (11 + 7ν ′

)f 5
]

/E ′ (A.11)

and the coefficients G∗

1
and G∗

2
read

G∗

1
= 2R4

(1− f 3
) , G∗

2
= 3R2

(1− f 2
)/2 . (A.12)
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Estimation of material properties for
linear elastic strain gradient effective

media

Uwe Mühlich Lutz Zybell Meinhard Kuna

In this paper materials with microstructures, composed of linear elastic
constituents are considered. Spherical volume elements with spherical
inclusions are used to obtain Voigt and Reuss bounds for the material prop-
erties of a corresponding strain gradient effective continuum. The bounds
are derived following the general line of argumentation well established for
simple effective continua presenting in detail the major differences arising
in the case of a strain gradient continuum. Furthermore, an alterna-
tive method for the approximation of the material properties is developed,
where the volume element is exposed entirely to a kinematically admissi-
ble quadratic displacement field. Since the resulting stresses do not fulfil
the equilibrium conditions, a second strain field is superimposed which is
approximated by a third order polynomial. The coefficients of this polyno-
mial are determined from an energy principle together with a constraint
equation in order to fulfil the equilibrium conditions in an integral sense
and to assure that the resulting effective constitutive relations are insensi-
tive to rigid body motions. Based on this approximate solution, the com-
ponents of the sixth order material tensor which relates the gradients of
the macroscopic strain with the corresponding higher order stresses can
be approximated analytically. In spite of the fact that these estimations are
no bounds in general, useful results for the effective material parameters
can be derived. This is shown by comparing the obtained approximations
with the corresponding numerical results from finite element solutions of
the boundary value problem for a spherical volume element considering
different void volume fractions.
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1. Introduction

Since generalized continuum theories have been shown to be very useful for the the-
oretical description of size effects and because of their regularization properties, a
growing interest in these theories has been developed over the past decades. Nowa-
days, a great variety of such theories exists, among them nonlocal continuum theories
motivated by the aim to capture interactions at length scales in the range of atomic
spacing (see e.g. A. C. ERINGEN (2002) ) or those nonlocal theories developed for
the description of random composites by means of effective continuous media e.g. in
BERAN (1971), WILLIS (1987) and DRUGAN AND WILLIS (1996), just to mention a few.
Furthermore, the so-called micromorphic continua as laid out e.g. in C. ERINGEN
(1999) and the strain gradient continua as developed in MINDLIN AND ESHEL (1968)
and MINDLIN (1965) do belong as well to the class of generalized continuum theo-
ries. A feature common to all these theories is the incorporation of length parameters
which are related somehow to genuine material length properties like defect spacing,
grain size etc.. This fact distinguishes them from theories like conventional linear elas-
ticity, plasticity etc., which belong to a class of materials denominated simultaneously
by simple continua, Boltzmann continua or Cauchy continua in the literature.
Here, we focus exclusively on strain gradient elasticity. Nevertheless, in some cases

micromorphic continua and strain gradient continua are closely related as pointed out
already in TRUESDELL AND NOLL (2004) or e.g. in TEKOǦLU AND ONCK (2008) for
the corresponding linearized theories. Linear strain gradient elasticity can be derived
by extending the strain energy density, which in the case of simple continua depends
only on a local deformation meassure, by additional kinematic variables related to
the gradient of the local deformation. The general structure of the resulting theory is
well known. For instance, for an isotropic linear strain gradient material, five material
parameters appear in addition to the usual Young’s modulus and Poisson’s ratio.
On the other hand, constitutive relations which fit into the framework of strain gra-

dient continua or micromorphic continua, respectively, can be derived by extending
homogenization concepts known from the theory of simple continua. Considering
a volume element which captures the important micro-structural information, these
constitutive relations can be obtained from the solution of the boundary value prob-
lem for such a volume element under generalized boundary conditions, provided that
the mean quantites are defined properly. To the authors knowledge, this concept was
used for the first time in GOLOGANU, LEBLOND, ET AL. (1997) in order to obtain
an extension of the Gurson-model within the framework of strain gradient plasticity.
Furthermore, in FOREST AND SAB (1998) and FOREST (1998) it has been investi-
gated which type of displacement boundary conditions corresponds to which kind of
generalized continuum.
The boundary value problem for the volume element can be solved analytically or

numerically. While numerical schemes are more flexible with respect to the micro-
structure at hand, analytical solutions provide a better insight with respect to general
tendencies. Furthermore, analytical estimates and bounds allow e.g. for the formu-
lation of energetically based fracture and yield criteria in closed form which are simple
enough to be manageable while still capturing the most important mechanisms.
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Numerical schemes for the extraction of the additional material parameters of gen-
eralized continua have been developed and applied e.g. in FOREST, DENDIEVEL, AND
CANOVA (1999), FOREST AND SAB (1998), PEERLINGS AND FLECK (2004), KOUZNETSOVA

(2002), KACZMARCYK, PEARCE, AND BICANIC (2008) and BACIGALUPO AND GAM-
BAROTTA L. (2010). Analytical solutions were derived only for two-dimensional prob-
lems e.g. in ZYBELL, MÜHLICH, AND KUNA (2008), CHEN, LIU, ET AL. (2009), BIGONI

AND DRUGAN (2007). Although the numerical schemes mentioned above have been
employed in general only for two-dimensional examples, their application to three-
dimensional situations seems to be straight forward. This is different for the analyti-
cal solutions. Analytical solutions of the corresponding three-dimensional boundary
value problems are difficult to derive because the calculations involved become very
lengthy even for significantly simplified problems restricting the outcome e.g. to small
fractions of second phase particels etc., or employing simple rules of mixture as e.g.
in MAYE (1969). Therefore, it seems more promising to adopt methods well estab-
lished for simple continua like those of Voigt and Reuss estimates which in addition
provide bounds of the effective material properties.

The strategy to obtain Voigt and Reuss estimates is extended here for linear strain
gradient effective continua. Furthermore, an alternative approximation scheme is
presented which does not provide bounds. Nevertheless, it provides useful approx-
imations of the effective material parameters. This is shown by comparing the ob-
tained approximations with the corresponding results from the numerical solution of
the boundary value problem for the volume element.

In order to keep the calculations as simple as possible, a volume element of spher-
ical shape has been chosen. Unfortunately, the choice of an isotropic geometry for
the VE leads to higher order material tensors which are only positive semi-definite.
This has been discussed aleady for the two-dimensional case and cylindrical volume
elements in AUFFRAY, BOUCHET, AND BRECHET (2010). Here, this fact is proven ana-
lytically for three dimensions.

The paper is organized as follows. First, the problem envisaged here is summa-
rized in section 2. Section 3 sketches the general idea of Voigt and Reuss estimates for
simple effective continua. This idea is adopted for strain gradient effective continua
considering a completely isotropic volume element in section 4. The geometrical mo-
ments appearing in the subsequent calculations are presented at the beginning of this
section for volume elements of isotropic geometry. The discussion of some general
aspects related to the averaging scheme for strain gradient elasticity is followed by a
close examination of the general properties of the higher order elasticity tensor before
deriving its Voigt and Reuss bounds. An alternative method for the approximation
of the effective material properties is developed in section 5. In order to present the
calculations as transparent as possible, we focus on linear strain gradient effective
media for porous linear elastic materials. Finally, the analytical results are compared
with the numerical solution of the boundary value problem for a spherical volume
element with a spherical void in its centre.
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2. Formulation of the problem

In the sequel, a global cartesian coordinate system is used together with the index
notation and the summation convention. The variables x

k
are used to denote the

spatial coordinates, where the index k can take the values 1, 2 and 3. The derivative
of some term “()” with respect to the spatial coordinate x

k
is written as follows

()
,k
:=

∂()

∂x
k

. (1)

(2)

Bold face symbols indicate tensors whose rank is given by the context.
We consider a body which consists of a linear composite material and occupies the

region B
∗ with boundary ∂B∗. The body is exposed to some mechanical loading and

the governing equations of the corresponding boundary value problem are given as
follows for all x ∈ B

∗

σ
ij,j

+ f
i
= 0

i
(3)

ε
ij
=

1

2
[u

i,j
+ u

j,i
] (4)

σ
ij
= L

ijkl
ε
kl

(5)

together with the corresponding boundary conditions. The σ
ij
, ε

ij
, u

i
and f

i
are

the components of the stress and strain tensors, the displacements and the volume
loads, respectively. The fourth order material tensor L reflects the microstructure of
the material and may vary rapidly with spatial position. This makes it difficult to
solve the boundary value problem outlined above. Therefore, we wish to replace the
original material by an effective macro-continuum defining that way a corresponding
boundary value problem, calling it e.g. macro-problem, which is much simpler to
solve.
In order to distinguish between the two levels mentioned above, a slowly varying

coordinateX is introduced in addition to the fast varying coordinate x, see Figure 1.
For the derivatives with respect to the coordinates X the following notation is used

∂
k
() :=

∂()

∂X
k

. (6)

As usual, the field variables at a pointX of the effective macro-continuum are defined
as averages of the corresponding micro-fields over a certain surroundings of the
considered point which occupies the region B with volume B and boundary ∂B,
using the operator

< ⋄ >:=
1

B

∫

B

⋄ dV . (7)

These surroundings are termed as volume element (VE) and an example for a spher-
ical volume element is depicted in Figure 1. Then, the stresses and strains in the



81

macro-continuum are given as follows

Σ
ij
=< σ

ij
> (8)

E
ij
=< ε

ij
> . (9)

According to the definition above, the micro-fields have to be known in order to
determine the corresponding macro-fields. However, the objective is just to avoid
the solution of the problem at the micro-level. Therefore, the volume element which
corresponds to a point X is considered together with proper boundary conditions
in terms of prescribed displacements or tractions on ∂B. From the solution of this
boundary value problem the constitutive relations for the macro-level are derived.
Furthermore, the question arises which kind of theory applies at the macro-level. It

turns out that in the case of prescribed linear displacements or constant tractions the
macro-continuum corresponds to a simple continuum, whereas for quadratic bound-
ary displacements or linear tractions a strain gradient continuum results as discussed
e.g. in FOREST (2002) and GOLOGANU, LEBLOND, ET AL. (1997).
As mentioned above, a boundary value problem for the VE has to be solved in

order to obtain the constitutive relations at the macro-level. If an analytical solution
cannot be obtained, estimates are a favoured alternative to numerical solutions. This
is because estimates may provide bounds on material parameters and the influence
of certain variables on the constitutive behaviour can be seen more clearly. Therefore,
within the next section the principles of this method will be revised briefly for simple
effective continua. Then, this concept will be extended for strain gradient effective
continua.

3. Classical estimates of the material properties for the

effective medium

Nowadays, estimates for simple effective continua are well established and the the-
oretical fundamentals can be found already in many textbooks. Therefore, only the
informations needed within this paper are outlined briefly. More detailed expositions
of this topic can be found e.g. in NEMAT-NASSER AND HORI (1999) or QU AND

CHERKAOUI (2006).
If the Hill-condition

1

2
< σ

ij
ε
ij
>=

1

2
Σ

ij
E

ij
(10)

is fulfilled, a simple continuum approach is justified at the macro-level. For this kind
of problem we are dealing with, this means that we can apply linear elasticity at the
macrolevel and we are looking for the constitutive equations of the effective medium
in the form

Σ
ij
= C

ijkl
E

kl
. (11)

Defining the strain energy density W of the volume element by

W =
1

2
< L

ijkl
ε
ij
ε
kl
> (12)
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it can be seen from (5) that the left hand side of the Hill-condition (10) equals W.
Incorporating (11), the Hill-condition finally reads

W =
1

2
E

ij
C

ijkl
E

kl
. (13)

The fourth order tensor C has to be determined in general by solving the bound-
ary value problem for the considered volume element for given boundary data so
that the Hill-condition (10) is fulfilled. There are various kinds of possible boundary
conditions. Two of them are

u
i

= E
ij
x
j

t
i

= Σ
ij
n
j

}

x ∈ ∂B (14)

which means that either linear displacements or constant tractions are prescribed at
the outer boundary of the volume element. Furthermore, mixed boundary conditions
or periodic boundary conditions are also possible. Here, we focus on prescribed
displacements. The boundary problem for the volume element can be quite complex.
Therefore, various methods have been established to approximate C and its inverse
C

−1, respectively, see e.g QU AND CHERKAOUI (2006). The simplest estimates for
C and C

−1 can be derived by combining the minimum potential energy principle
or the minimum complementary potential energy principle respectively, with either
prescribed displacements or prescribed surface tractions. The potential energy and
the complementary energy of the volume element are given by

Π =
1

2

∫

B

L
ijkl

ε
ij
ε
kl
dV −

∫

∂Bt

t̄
i
u
i
dA (15)

and

Π
c
=

1

2

∫

B

L−1

ijkl
σ
ij
σ
kl
dV −

∫

∂Bu

t
i
ū
i
dA (16)

respectively, where t̄
i
and ū

i
are prescribed values. The corresponding extremum

principles read

Π(u) ≤Π(û) (17)
u
i
= ū

i
x ∈ ∂B

u
(18)

and

Π
c
(σ) ≤Π

c
(σ̂) (19)

t
i
= t̄

i
x ∈ ∂B

t
, (20)

which means that among all kinematically admissible displacement fields û the true
field u renders the potential energy an absolute minimum and that among all stati-
cally admissible fields σ̂ the true stress field σ renders the complementary potential
energy an absolute minimum.
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For prescribed displacements according to (14 a) ∂B = ∂B
u
which implies ∂B

t
= ∅

holds. The energy and the complementary energy read

Π =
1

2

∫

B

L
ijkl

ε
ij
ε
kl
dV = W B (21)

Π
c
=

1

2

∫

B

L−1

ijkl
σ
ij
σ
kl
dV −

∫

∂B

t
i
x
j
dAE

ij
= −W B (22)

if (12) and (7) are taken into account. The Voigt-estimate consists in evaluating Π for
a constant strain field which in addition has to fulfill the boundary conditions (14 a).
Therefore,

û
i
=E

ij
x
j

x ∈ B (23)

is used. Regarding the complementary energy (22), the boundary conditions (14 a)
are already incorporated explicitely in the surface integral. According to the Reuss-
approach, Πc is evaluated for a constant stress field S

σ̂
ij
=S

ij
x ∈ B (24)

which is the simplest choice for a statically admissible stress field. This results in

Π(û) =
1

2
E

ij
< L

ijkl
> E

kl
(25)

and

Π
c
(σ̂) =

1

2
S
ij
< L−1

ijkl
> S

kl
− S

ij
E

ij
, (26)

respectively. Obviously, Πc
(σ) ≤ Π

c
(σ̂) holds but the question arises which would be

the best choice for S in order to minimize Πc(σ̂). The first variation of Π̂c reveals that
the optimal choice is

S
ij
=< L−1

ijkl
>

−1 E
kl

(27)

and Πc(σ̂) then reads

Π
c
(σ̂) = −

1

2
E

ij
< L

ijkl
>

−1 E
kl
. (28)

It follows from (17), (19), (21) and (22) that

E
ij
< L−1

ijkl
>

−1 E
kl

≤ E
ij
C

ijkl
E

kl
≤ E

ij
< L

ijkl
> E

kl
. (29)

Analogously, the compliance tensor C−1 can be estimated considering constant sur-
face tractions instead of linear displacements at the outer boundary of the volume
element.
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ξ1

ξ2

ξ3

x

X
ξ

e1

e2

e3

a

R

Fig. 1: Spherical volume element with radius R containing an inclusion or void, respectively, with
radius a, together with the different coordinate systems.

4. Voigt and Reuss estimates for strain gradient

effective continua

4.1. Geometrical moments due to averaging for fully isotropic

volume elements

In the following, the geometrical quantities

Ξ
ij...z

:= < ξ
i
ξ
j
...ξ

z
> with i, j, ..., z = 1, 2, 3 (30)

will be needed up to order six. The ξ
k
are the spatial coordinates referring to a

cartesian coordinate system in the center of the volume element as shown in Figure 1.
Here, we limit ourself to isotropic volume elements like spheres. Then, all geometrical
tensors of even order are fully isotropic and symmetric, whereas all tensors of odd
order vanish. We recieve for the tensors up to order six

< ξ
i
> = 0

i
(31)

< ξ
i
ξ
j
> = κ δ

ij
(32)

< ξ
i
ξ
j
ξ
k
> = 0

ijk
(33)

A
ijkl

= < ξ
i
ξ
j
ξ
k
ξ
l
> = φ(δ

ij
δ
kl
+ δ

ik
δ
jl
+ δ

il
δ
jk
) (34)

< ξ
i
ξ
j
ξ
k
ξ
l
ξ
m
> = 0

ijklm
(35)

B
ijklmn

= < ξ
i
ξ
j
ξ
k
ξ
l
ξ
m
ξ
n
> = χ(J

ijklmn
+K

ijklmn
+ P

ijklmn
) (36)
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where J , K and P are given in C.
In the following, the components of the contracted tensor B

ijkkmm

B
ijkkmm

= θδ
ij

(37)

will be needed, where θ = 35χ in the case of an isotropic VE . The values of the
different coefficients depend on the considered geometry and are given for the sphere
with Radius R in Table 1.
For microstructures which consist of voids or inclusions with constant elastic prop-

erties surrounded by a matrix material whose elastic properties are constant as well,
the averaging operator can be splitted as follows

<>= f <>
B
I +(1− f) <>

B
M (38)

where the volume fraction of the inclusion or void, respectively, is given by

f =
BI

B
(39)

and the indices I and M stand for inclusion and matrix, respectively. With respect to
the spherical volume element depicted in Figure 1, the volume fraction f is given by
f = a3/R3. The averaging operators <>

B
I and <>

B
M are defined as follows

<>
B
I=

1

BI

∫

B
I

dV , <>
B
M=

1

BM

∫

B
M

dV . (40)

Applying (38) with respect to the geometrical moment (32), it follows that

κ = fκI
+ (1− f)κM (41)

with

κM
=

1

1− f
[κ− fκI

] (42)

and analogously for φM, χM and θM. The values of these constants are also given in
Table 1 for a spherical volume element containing a spherical inclusion or void with
radius a in its center.

κ κI κM φ φI φM χ χI χM θ θI θM

R2

5
a2

5
κ
1− 3
√

f5

1−f
R4

35
a4

35
φ
1− 3
√

f7

1−f
R6

315
a6

315
χ1−f3

1−f
R6

9
a6

9
θ 1−f3

1−f

Tab. 1: Coefficients of the geometrical moment tensors for the sphere with radius R containing a
spherical void or inclusion of radius a in its center. The volume fraction f equals a3/R3.
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4.2. Averaging scheme for strain gradient elasticity

According to GOLOGANU, LEBLOND, ET AL. (1997), the follwing boundary conditions
for the volume element

u
i
=E

ij
x
j
+

1

2
[H

ijk
−H

jki
+H

kij
]x

j
x
k
−H

ijk
X

k
x
j

x ∈ ∂B , (43)

are considered. These boundary conditions constitute a straight forward extension
from linear boundary displacements (14 a), resulting in a simple effective continuum,
to quadratic ones. The H

ijk
in (43) are the gradients of the macroscopic strains

H
ijk

= ∂
k
E

ij
(44)

with respect to the slowly varying coordinate X. The meaning of the coordinates x,
X and ξ is depicted in Figure 1. Regarding only centro-symmetric volume elements,
it can be shown that the extended Hill-condition reads for this case

1

2
< σ

ij
ε
ij
>=

1

2
Σ

ij
E

ij
+

1

2
M

ijk
H

ijk
(45)

with the higher order stresses

M
ijk

=< σ
ij
ξ
k
> (46)

which can be obtained also from the boundary data as sketched in B. It can be seen
from (45) that due to the limitation to centro-symmetry the effects related to the strain
gradients are completely decoupled from the strains.
Comparision of (43) with (14) motivates the attempt to formulate as well corre-

sponding traction boundary conditions. A straight forward extension of the boundary
conditions (43) consists in the formulation of prescribed linear tractions at the outer
boundary of the volume element which finally leads to

t
i
=Σ

ij
n
j
+ ˜M

ijk
n
j
(x

k
−X

k
) x ∈ ∂B (47)

where the corresponding calculation is outlined in A. The ˜M
ijk

are the gradients of
the macroscopic stresses

˜M
ijk

= ∂
k
Σ

ij
, (48)

with respect to the slowly varying coordinate X. The n
i
are the components of the

outward normal vector on ∂B. The corresponding work conjugate kinematic variables
˜H
ijk

is given by

˜H
ijk

=< ε
ij
ξ
k
> (49)

as outlined in A. It turns out that the higher order tensors H and ˜H are not com-
patible. Therefore, the boundary conditions (47) may be better suited for a stress
gradient theory. This is different from the theory of simple effective continua, where
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the work conjugate variables are alwaysΣ andE no matter if linear displacements or
constant surface tractions are prescribed at the outer surface of the volume element.
In the following, we focus on prescribed displacements. The constitutive equations

relating the higher order stresses M and the strain gradients H have the general
form

M
ijk

= D
ijklmn

H
lmn

(50)

with the sixth order tensor D. Using (5) and (50), the extended Hill-condition (45)
can be written as

W =
1

2
E

ij
C

ijkl
E

kl
+

1

2
H

ijk
D

ijklmn
H

lmn
. (51)

Furthermore, using (51) it can be shown that

Π =W (52)

and

Π
c
= −W (53)

hold as well for the boundary displacements (43). This, on the other hand, indicates
that estimates for the strain gradient effective media can be obtained by a strategy
similar to those discussed above for simple effective media. However, there are some
significant differences. For instance, considering a completely homogeneous volume
element and applying the displacement field given by (43) not only at the boundary
but for the entire volume element leads to the following stress response

σ
ij
=L

ijkl
H

klp
ξ
p

(54)

whose divergence

σ
ij,j

=L
ijkl

H
klj

(55)

does not vanish in general. This indicates that, contrary to the situation for simple
effective continua, the exact solution for a homogeneous material is not just given by
the field (43) for the entire volume element. Other differences will be discussed within
the next section.

4.3. General discussion of the higher order elasticity tensor D

For an isotropic material, D is an isotropic sixth-order tensor. Every isotropic sixth-
order tensor is fully determined by fifteen independent coefficients as discussed eg.
in MOAKHER (2007). Due to the symmetries

D
ijouvw

= D
iojuvw

= D
ijouwv

= D
uvwijo

(56)
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the number of independent coefficient reduces to five and D can be written as

D
ijouvw

= η1δijδuvδow + η2(δiuδjv + δ
iv
δ
ju
)δ

ow

+ η3[δij(δouδvw + δ
ov
δ
uw
) + δ

uv
(δ

iw
δ
jo
+ δ

io
δ
jw
)]

+ η4[δio(δjuδvw + δ
jv
δ
uw
) + δ

jo
(δ

iu
δ
vw

+ δ
iv
δ
uw
)]

+ η5[δov(δiuδjw + δ
iw
δ
ju
) + δ

ou
(δ

iv
δ
jw

+ δ
iw
δ
jv
)] . (57)

In order to ensure the strain energy density being always positive, D must be positive
definite which means that for all eigenvalues ω

k
of D

ω
k
> 0 (58)

must hold. In the following, the eigenvalues of D are determined employing the
method used in AUFFRAY, BOUCHET, AND BRECHET (2010) and originally proposed in
MEHRABADI AND COWIN (1991). This method rests on the idea to transform a tensor
of n-th order of a three-dimensional vector space V

3 into a second order tensor of a
m-dimensional vector space V

m . For the problem considered here, the sixth-order
tensor D

D = D
ijouvw

e
i
e
j
e
o
e
u
e
v
e
w

(59)

has to be transformed into a second order tensor D̂ of an eighteen-dimensional
vector space

D̂ = D̂
αβ
ê
α
ê
β
. (60)

The latter is defined by the following base vectors

ê1 = e1e1e1 ê7 = e3e3e2 ê13 = e1e1e3

ê2 = e2e2e1 ê8 = e1e1e2 ê14 =
1
√

2
[e1e3 + e3e1]e1

ê3 = e3e3e1 ê9 =
1
√

2
[e1e2 + e2e1]e1 ê15 =

1
√

2
[e2e3 + e3e2]e2

ê4 =
1
√

2
[e1e3 + e3e1]e3 ê10 =

1
√

2
[e2e3 + e3e2]e3 ê16 =

1
√

2
[e1e2 + e2e1]e3

(61)

ê5 =
1
√

2
[e1e2 + e2e1]e2 ê11 = e3e3e3 ê17 =

1
√

2
[e1e3 + e3e1]e2

ê6 = e2e2e2 ê12 = e2e2e3 ê18 =
1
√

2
[e2e3 + e3e2]e1

where e
i
e
k
e
j
(i, j, k = 1, 2, 3) denotes the dyadic product of the orthonormal base

vectors of the three-dimensional vector space. The ê
α
are orthonormal base vectors

ê
α
⊙ ê

β
= δ

αβ
(62)
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where the scalar product has to be evaluated according to

(e
i
e
j
e
k
)⊙ (e

u
e
v
e
w
) = (e

i
· e

u
)(e

j
· e

v
)(e

k
· e

w
) . (63)

First, the transformation of the third-order tensor H into a first order tensor Ĥ in
V

18 is discussed. Setting

H = Ĥ (64)

and employing the orthogonality relation (62) the coordinates of Ĥ can be calculated
according to

Ĥ
α
= H

ijk
(e

i
e
j
e
k
)⊙ ê

α
. (65)

The resulting coordinates are

Ĥ1...Ĥ5 : H111, H221, H331,
√

2H133,
√

2H122

Ĥ5...Ĥ10 : H222, H332, H112,
√

2H121,
√

2H233 (66)

Ĥ11...Ĥ15 : H333, H223, H113,
√

2H131,
√

2H232

Ĥ16...Ĥ18 :
√

2H123,
√

2H132,
√

2H231 (67)

Analogously, setting

D = D̂ (68)

the coordinates of D̂ can be calculated using (62). Furthermore, the coordinates
of Ĥ and D̂ can be arranged as elements of an algebraic vector Ĥ and an alge-
braic quadratic matrix D̂, respectively. The transformation ensures that the matrix

operation Ĥ
T

· D̂ · Ĥ is a proper representation of the tensorial operation H
...D

...H .
Therefore, the matrix representation of D̂ can be used in order to determine the
eigenvalues of D as well as to calculate its inverse. The matrix representation of D̂
reads

D̂
[18×18]

=











A
[5×5]

A
[5×5]

A
[5×5]

B
[3×3]











(69)

with

A =













η12 + 4(η3 + η4 + η5) η1 + 2η3 η1 + 2η3 (η3 + 2η4)
√

2 (η3 + 2η4)
√

2

η12 η1 η3
√

2 (η3 + 2η5)
√

2

symm. η12 (η3 + 2η5)
√

2 η3
√

2

(η2 + η4 + η5)2 η42
(η2 + η4 + η5)2













(70)
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and

B =





2η2 2η5 2η5
2η2 2η5

symm. 2η2



 (71)

where

η12 = η1 + 2η2 . (72)

The following eigenvalues are obtained

ω1 =
3

2
η1 + 2η2 + 2η3 + 4η4 + η5 −

1

2

√

P ω5 =ω4

ω2 =
3

2
η1 + 2η2 + 2η3 + 4η4 + η5 +

1

2

√

P ω6 =ω3

ω3 =2(η2 − η5) ω7 =ω4 (73)
ω4 =2η2 + 4η5 ω8 =ω4

with

P := 9(η2
1
+ 4η2

5
) + 4η1(6η3 + η5) + 64η4(−

1

2
η1 + η3 + η4 + η5) + 16η3(6η3 + 7η5) .

(74)

The ω1 to ω5 belong to A and are therefore of multiplicity three, whereas ω6, ω7 and
ω8 are the eigenvalues of B.
If a spherical volume element is considered, then the η

k
are not completely inde-

pendent of each other. The reason for this is that in this caseH includes a rigid body
motion as already shown in GOLOGANU, LEBLOND, ET AL. (1997). For the sake of
clarity, parts of the argumentation will be repeated here. The strain gradient tensor
H can be splitted into two parts

H
ijk

= H ′

ijk
+ H̆

ijk
(75)

with

H̆
ijk

=
1

4
[δ

ik
H

jmm
+ δ

jk
H

imm
] (76)

and

H ′

ijk
= H

ijk
− H̆

ijk
. (77)

Evaluating (43 a) setting H = H̆, reveals that for this case

u
i
=

1

4
H

imm
ξ
k
ξ
k
+

[

1

4
H

imm
X

k
−

1

4
H

kmm
X

i
+ E

ik

]

ξ
k
−

1

4
H

jmm
X

i
X

j
x ∈ ∂B

(78)
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if x = X + ξ is taken into account. The first term reads e.g. for a spherical volume
element with outer radius R

u
i
=

1

4
H

imm
R2

ξ ∈ ∂B (79)

because of ξ2
k
= R2 if ξ

k
∈ ∂B. Therefore, this is a rigid body motion at least for a

spherical volume element. Obviously, the last term in (78) is a rigid body motion too,
while the second term corresponds to a linear displacement at ∂B which should be
covered completely by the material tensor C. Because (78) contains only rigid body
motions and linear boundary displacements, H̆ must not generate any higher order
stresses, i.e.

D
... H̆ = 0 . (80)

Taking into account the symmetry properties of D, it follows from (80) and (76) that

D
ijklvv

= D
ivvjkl

= D
vivjkl

= D
ijkvlv

= 0
ijkl

(81)

must hold. Evaluating (81) for (57) leads to

η4 =
1

8
η1 −

1

4
η2 +

1

4
η3 (82)

η5 = −

1

2
η1 − 2η3 (83)

and the following eigenvalues result from (73)

ω1 =
3

2
η1 + η2 + η3 −

∣

∣

∣

∣

3

2
η1 + η2 + η3

∣

∣

∣

∣

(84)

ω2 =
3

2
η1 + η2 + η3 +

∣

∣

∣

∣

3

2
η1 + η2 + η3

∣

∣

∣

∣

(85)

ω3 =η1 + 2η2 + 4η3 (86)
ω4 =2(−η1 + η2 − 4η3) (87)

where |a| indicates the absolute value of a. Whether 3

2
η1 + η2 + η3 is positive or

negative, either ω1 or ω2 is zero. The conclusion is that if D is determined using a
spherical volume element it cannot be positive definite but only positive semi-definite.
This was observed numerically already in AUFFRAY, BOUCHET, AND BRECHET (2010)
for the two-dimensional case.
Finally, in order to ensure that the remaining eigenvalues of D are strictly positive,

one of the following conditions has to be fulfilled

η1 > 0 η2 > 0 −

1

4
η1 −

1

2
η2 < η3 < −

1

4
η1 +

1

4
η2 (88)

η1 ≤ 0 η2 > −

5

2
η1 −

1

4
η1 −

1

2
η2 < η3 < −

1

4
η1 +

1

4
η2 (89)

η1 < 0 −η1 < η2 ≤ −

5

2
η1 −

3

2
η1 − η2 < η3 < −

1

4
η1 +

1

4
η2 (90)

The estimates obtained within this contribution will be discussed with respect to the
above relations in section 6.
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4.4. Voigt-estimates for strain gradient effective media

As it can be seen e.g. from (43) and (51), the strain gradient part can be discussed
isolated by setting E = 0. The whole set of equations can be derived by superimpos-
ing the results with the corresponding counterparts of the theory of simple continua
discussed above.
Following the general idea of the Voigt-estimate, we evaluate Π for a kinematically

admissible strain field by setting

û
i
=

1

2
[H

ijk
−H

jki
+H

kij
] x

j
x
k
−H

ijk
X

k
x
j

, x ∈ B (91)

which means that we assume that the displacements (43 a) are not only prescribed
at the outer boundary but also inside the volume element. The corresponding strains
are

ε̂
kl
=

1

2
(H

klp
+H

lkp
)ξ

p
(92)

and we obtain for Π(û)

Π(û) =
1

2
H

ijo
D∗

ijoklp
H

klp
(93)

with

D∗

ijoklp
=< L

ijkl
ξ
o
ξ
p
> . (94)

It follows from (17) together with (53) and (51) that

H
...D

...H ≤ H
...D∗

...H . (95)

However, (94) doesn’t fulfill the requirements (81). Therefore, it cannot be used as an
approximation for D. In fact, e.g.

D∗

ijjklp
=< L

ijkl
ξ
p
ξ
j
> (96)

does not vanish in general. Though, D∗ can be modified properly in order to obtain
a useful approximation. To do so we express H ′ as follows

H ′

ijk
= G

ijkuvw
H

uvw
(97)

with

G
ijkuvw

= δ
iu
δ
jv
δ
kw

−

1

4
[δ

ik
δ
uw
δ
jv
+ δ

iu
δ
jk
δ
vw
] (98)

where the sixth order tensor G possesses the symmetries

G
ijkuvw

= G
uvwijk

= G
jikuvw

= G
ijkvuw

. (99)
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We introduce a new constitutive tensor D̄, defined by

D̄ = G
...D∗

...G (100)

whose coordinates are given as follows

D̄
ijkxyz

=D∗

ijkxyz
−

1

4

[

D∗

ijktyt
δ
xz

+D∗

ijkxtt
δ
yz

]

−

1

4

[

D∗

tjtxyz
δ
ik
+D∗

ittxyz
δ
jk

]

+
1

16

[

δ
ik

(

D∗

vjvtyt
δ
xz

+D∗

vjvxtt
δ
yz

)

+ δ
jk

(

D∗

ivvtyt
δ
xz

+D∗

ivvxtt
δ
yz

)]

.

(101)

However, D̄ is no bound. In order to derive an upper bound which fulfills (81),
an isotropic sixth-order tensor D̄V is introduced. D̄

V is completely defined by its
coefficients

η̄V
1
= η̄1 +∆η̄1 η̄V

2
= η̄2 +∆η̄2 η̄V

3
= η̄3 +∆η̄3

η̄V
4
= η̄4 +∆η̄4 η̄V

5
= η̄5 +∆η̄5 (102)

where the ∆η̄
k
have to be determined by means of the following conditions. First,

∆η̄4 =
1

8
∆η̄1 −

1

4
∆η̄2 +

1

4
∆η̄3 (103)

∆η̄5 = −

1

2
∆η̄1 − 2∆η̄3 (104)

must hold to ensure that D̄V fulfills (81). Furthermore, demanding

H
...D∗

...H = H
... D̄V

...H (105)

ensures that

H
...D

...H ≤ H
... D̄V

...H (106)

holds. Therefore, the coefficients ∆η̄1, ∆η̄3 and ∆η̄2 can be determined by setting the
eigenvalues of the tensor D̄V

−D
∗ equal to zero and taking into account (103) and

(104). The solution reads in general

∆η̄1 =
8 η̄2

3

η̄1 + 6η̄3 − η̄2
∆η̄2 =0 ∆η̄3 = −

1

4
∆η̄1 (107)

This will be discussed for porous elastic micro-structures in section 6.

4.5. Reuss estimates for strain gradient effective media

In order to derive a Reuss estimate we start from the complementary potential Πc for
prescribed displacements given by (43). Setting X = 0 does not change the final
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result but it makes the calculations more transparent. Doing so, we have x = ξ. Then
Π

c reads

Π
c
(σ̂) =

1

2

∫

B

σ̂
ij
L−1

ijkl
σ̂
kl
dV −

1

2

∫

∂B

σ̂
iv
(H

ijk
−H

jki
+H

kij
)ξ

j
ξ
k
n
v
dA (108)

for any statically admissible stress field σ̂. Applying Gauss’s integral theorem for the
surface integral and taking into account the symmetries of σ̂ and H leads to

Π
c
(σ̂) =

1

2

∫

B

σ̂
ij
L−1

ijkl
σ̂
kl
dV −

∫

B

σ̂
ij
H

ijk
ξ
k
dV . (109)

We choose a linear stress field which fulfills the equilibrium conditions (3) by setting

σ̂
ij
=

(

α
ijp

−

1

4
[δ

ip
α
jkk

+ δ
jp
α
ikk

]

)

ξ
p

(110)

with constant coefficients α
ijk
. This can be written more concisely as

σ̂
ij
=G

ijpuvw
α
uvw

ξ
p

(111)

where G is already given by (98). Substituting (111) into (109) and normalizing by
the volume B of the VE gives

1

B
Π

c
(σ̂) =

1

2
α
uvw

G
uvwijp

< L−1

ijkl
ξ
p
ξ
q
> G

klqrst
α
rst

−G
ijpuvw

α
uvw

H
ijk

< ξ
p
ξ
k
> .

(112)

Using (32) as provided within Section 4.1 we obtain

1

B
Π

c
(σ̂) =

1

2
α
uvw

G
uvwijp

< L−1

ijkl
ξ
p
ξ
q
> G

klqrst
α
rst

−G
ijkuvw

α
uvw

H
ijk
κ , (113)

where κ is some number which depends on the geometry of the VE. For instance, for
a spherical VE with a spherical void located in its center κ = (1− f)κM has to be used
with κM as given in Table 1.
The optimal choice for α in order to minimize (113) is

α
ijq

=G−1

ijquvw
< L−1

uvkl
ξ
w
ξ
p
>

−1 H
klp

(114)

which results in

1

B
Π

c
(σ̂) = −

1

2
H

ijo

˜D∗

ijoklp
H

klp
(115)

with

˜D∗

ijoklp
=κ2

< L−1

ijkl
ξ
o
ξ
p
>

−1 . (116)

It follows from (19) together with (53) and (51) that

H
... ˜D∗

...H ≤ H
...D

...H (117)



95

holds, but, similar to the upper bound problem, ˜D
∗ does not fulfill the conditions

(81). The same strategy used before in section 4.4 will be applied to overcome this
problem. First, the tensor

˜D = G
... ˜D∗

...G (118)

is defined, which fulfills (81). Because ˜D is an isotropic tensor, it is completely de-
fined by the coefficients η̃1, ..., η̃5. Furthermore, an isotropic sixth-order tensor D̄R is
introduced, whose coefficients are defined by

η̄R
1
= η̃1 +∆η̃1 η̄R

2
= η̃2 +∆η̃2 η̄R

3
= η̃3 +∆η̃3

η̄R
4
= η̃4 +∆η̃4 η̄R

5
= η̃5 +∆η̃5 (119)

where the ∆η̃
k
have to be determined by means of the following conditions. First,

∆η̃4 =
1

8
∆η̃1 −

1

4
∆η̃2 +

1

4
∆η̃3 (120)

∆η̃5 = −

1

2
∆η̃1 − 2∆η̃3 (121)

must hold to ensure that D̄R fulfills (81). Furthermore, demanding

H
... ˜D∗

...H = H
... D̄R

...H (122)

ensures that

H
... D̄R

...H ≤ H
...D

...H (123)

holds. The coefficients ∆η̃1, ∆η̃2 and ∆η̃3 can be determined by setting the eigenval-
ues of the tensor D̄R

−
˜D

∗ equal to zero and taking into account (120) and (121).
The solution of the problem is given analogously to (107).

5. Alternative approximation scheme

If linear strains according to (91) are assumed inside the VE, the equilibrium condi-
tions cannot be fulfilled. Therefore, a second strain field ε̃(x) is superposed. For ε̃(x)
a third order polynomial is chosen here

ε̃
kl
= a

kl
+ b

klp
ξ
p
+ c

klpq
ξ
p
ξ
p
+ d

klpqr
ξ
p
ξ
q
ξ
r
. (124)

We demand that the mean values of ε̃
kl
vanish

< ε̃
kl
>= a

kl
+ b

klp
< ξ

p
> +c

klpq
< ξ

p
ξ
q
> +d

klpqr
< ξ

p
ξ
q
ξ
r
>= 0

kl
. (125)

The mean values of the odd functions in (124) vanish automatically and with respect
to the even functions

a
kl
= −κ c

klpp
(126)
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must hold. However, it turns out that a polynomial of second order taking into account
(126) leads to the trivial result

b
ijk

= −H
ijk

, c
ijkl

= 0
ijkl

. (127)

Therefore, we limit ourself to the ansatz

ε̃
kl
= d

klpqr
ξ
p
ξ
q
ξ
r
. (128)

In what follows, we use the abbreviation

H̄
ijk

=
1

2
(H

ijk
+H

jik
) (129)

in order to deal with shorter equations. At the end, we will incorporate the symmetries
into the constitutive equations. The corresponding stresses according to (5) read

σ
ij
= L

ijkl

[

H̄
klp

ξ
p
+ d

klpqr
ξ
p
ξ
q
ξ
r

]

. (130)

For an arbitrary spatial dependence of L, the equilibrium conditions cannot be ful-
filled in general,

σ
ij,j

= L
ijkl,j

[

H̄
klp
ξ
p
+ d

klpqr
ξ
p
ξ
q
ξ
r

]

+ L
ijkl

[

H̄
klj

+ 3d
klpqj

ξ
p
ξ
q

]

6= 0
i
. (131)

There are various way to proceed in order to calculate the coefficients d
klpqr

properly.
Here, we will discuss two of them:

• Demanding that the equilibrium conditions are fulfilled in a least square sense

Ω1 = < σ
ij,j

σ
iv,v

> ⇒ Min (132)

or

• demanding that the strain energy density reaches a mimimal value,

Ω2 =
1

2
< σ

ij
ε
ij
> ⇒ Min . (133)

While the second choice works without problems for every reasonable spatial vari-
ation of the material properties at the microlevel, the first strategy will obviously fail
for discontinuities with respect to these properties. This can be seen by the following
example. Imagine a two-phase composite where every phase can be described by
isotropic linear elasticity with constant elastic properties denoted by Lame’s constants
λ and µ. Furthermore, we assume a spherical VE, where the spatial variation of the
material properties depend only on the distance from the origin, meassured by the
radius r. If e.g. λ is expressed now by means of a Heaviside-function, integrals
over squared Dirac-delta functions will appear in (132) which causes infinite effective
properties. It is worth noting, that none of these two concepts mentioned above gives
a result which automatically fulfills (81).
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In the sequel, we restrict ourself to microstructures with spherical voids surrounded
by an isotropic linear elastic matrix material. The matrix material has constant elastic
properties given by

L
ijkl

=

{

λδ
ij
δ
kl
+ µ(δ

ik
δ
jl
+ δ

il
δ
jk
) ξ ∈ B

M

0 ξ ∈ B
I

(134)

with the Lame’s constants λ and µ.
Evaluating (80) for (130) yields the constraint

M
ijj

=< σ
ij
ξ
j
>= (1− f)

[

αML
ijkl

H̄
klj

+ L
ijkl

d
klvvj

]

= 0
i

(135)

with

αM
=

κM

3φM
(136)

if (38) is taken into account. Equation (135) will be satisfied via Lagrange’s technique
using the multipliers Λ

i
. This will be discussed in the following only for the energetic

criterion (133). The constraint extreme value problem reads

Ω2 :=
1

2
(1− f) < L

ijkl

[

H̄
klp

ξ
p
+ d

klpqr
ξ
p
ξ
q
ξ
r

] [

H̄
ijs
ξ
s
+ d

ijstv
ξ
s
ξ
t
ξ
v

]

>
B
M

+ (1− f) Λ
i

[

αML
ijkl

H̄
klj

+ L
ijkl

d
klvvj

]

⇒ Min . (137)

Derivation of (137) with respect to the coefficients d
abxyz

and Λ
v
, respectively, gives

∂Ω2

∂ d
abxyz

=(1− f)
{

L
abkl

[

H̄
klp

A
pxyz

+ d
klpqr

B
pqrxyz

]

+ Λ
i
L
izab

δ
xy

}

=0
abxyz

(138)

∂Ω2

∂Λ
v

=(1− f)
{

αML
vjkl

H̄
klj

+ L
vjkl

d
klwwj

}

=0
v
. (139)

For arbitrary void volume fractions f , f ∈ (0, 1), these conditions can only be satisfied
if the terms within the curly brackets vanish. The geometrical moment tensors A and
B have to be evaluated by integrating only over the matrix volume. In the following
we omit indicating this explicitely by the superindex M, in order to avoid overloaded
equations.
Equation (138) can be used to express the d

klvwj
as functions of the Λ

i

d
klvwj

= − H̄
klp

A
pxyz

B−1

xyzvwj
− Λ

i
I
kliz

δ
xy
B−1

xyzvwj
(140)

where I is the fourth-order unit tensor

I
kliz

=
1

2
[δ

ik
δ
lz
+ δ

kz
δ
il
] . (141)

Putting (140) and (139) together leads to

Λ
m
=

[

αML
vjkl

H̄
klj

− L
vjkl

H̄
klp

A
pxyz

B−1

xyzwwj

]

γ−1

vm
(142)
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Fig. 2: Comparision between numerically determined coefficients D111111 and the corresponding es-
timations for ν = 0.3 and varying porosity f . All results have been normalized by the value obtained
for D111111 from the numerical solution of the boundary value problem for f = 0.

with

γ
iv
=L

izvj
B−1

jzwwyy
. (143)

Using the relations for isotropic and fully symmetric tensors provided in C, γ
iv
can be

expressed by

γ
iv
=

1

θM
L
ijvj

. (144)

Using the elasticity tensor (134), the γ
iv
can be written as

γ
iv
=
λ+ 4µ

θM
δ
iv
. (145)

Furthermore, the Λ
m
can be simplified as follows

Λ
m
=L

vjkl

θM

λ+ 4µ
δ
vm

[

αMδ
jp
− φM

(δ
px
δ
yz

+ δ
py
δ
xz

+ δ
pz
δ
xy
)B−1

xyzwwj

]

H̄
klp

=
θM

λ+ 4µ
L
mjkl

[

αMδ
jp
− 3φM

1

θM
δ
pj

]

H̄
klp

=ΓL
mklp

H̄
klp

(146)
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with

Γ =
αMθM − 3φM

λ+ 4µ
. (147)

Using the result (146) for the Λ
i
, the coefficients d

klvwj
can be derived from (140)

d
klpqr

= − H̄
klv

A
vxyz

B−1

xyzpqr
− ΓL

iuvw
H̄

uvw
I
kliz

δ
xy
B−1

xyzpqr

= − H̄
klv

A
vxyz

B−1

xyzpqr
− ΓL

kuvw
H

uvw
B−1

lzzpqr

= − 3φMH̄
klv

B−1

vzzpqr
− ΓL

kuvw
H̄

uvw
B−1

lzzpqr
. (148)

The stress field within the matrix material is now completely determined by (130) while
the stresses within the void vanish. According to (50), the corresponding higher order
stresses have to be calculated in order to derive the approximation ¯̄

D for the higher
order elasticity tensorD. From the definition of theM

ijk
(46) together with (38), (146)

and (148), we obtain

< σ
ij
ξ
o
>= (1− f)L

ijkl

[

κMH̄
klo

− 3φMH
klv

B−1

vzzpqr
A

qpro
− ΓL

kuvw
H̄

uvw
B−1

lzzpqr
A

pqro

]

=(1− f)L
ijkl

[

κMH̄
klo

− 9(φM
)
2H̄

klv
B−1

vzzppo
− ΓL

kuvw
H̄

uvw
B−1

lzzppo
3φM

]

=(1− f)L
ijkl

[(

κM
−

9(φM)2

θM

)

δ
ku
δ
vl
δ
ow

− Γ
3φM

θM
L
kuvw

δ
lo

]

H̄
uvw

(149)

where again the relations given in C have been used. It can be show that< σ
ij
ξ
j
>=

0
i
holds. Finally, the sixth order constitutive tensor ¯̄

D can be directly deduced from
(149)

¯̄D
ijouvw

= ¯̄η
1
δ
ij
δ
uv
δ
ow

+ ¯̄η
2
(δ

iu
δ
jv
+ δ

iv
δ
ju
)δ

ow

+ ¯̄η
3
[δ

ij
(δ

ou
δ
vw

+ δ
ov
δ
uw
) + δ

uv
(δ

iw
δ
jo
+ δ

io
δ
jw
)]

+ ¯̄η
4
[δ

io
(δ

ju
δ
vw

+ δ
jv
δ
uw
) + δ

jo
(δ

iu
δ
vw

+ δ
iv
δ
uw
)] (150)

with

¯̄η
1
=λβ1 + λ2β2

¯̄η
2
=µβ1 (151)

¯̄η
3
=λµβ2

¯̄η
4
=µ2β2 (152)

and

β1 =(1− f)

(

κM
−

9(φM)2

θM

)

β2 = −

β1

λ+ 4µ
(153)

if H is replaced by (129). The approximation ¯̄
D is no bound at all because the

displacement field which corresponds to the employed strain field does not fulfill the
boundary conditions (43 a).
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Fig. 3: Numerically obtained results for the independent coefficients η1, η2 and η3, together with the
corresponding analytical approximations for ν = 0.3 and varying porosity f . All results have been nor-
malized by the values obtained for the corresponding ηk from the numerical solution of the boundary
value problem for f = 0.
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Voigt-estimate Reuss-estimate

k D
∗

D̄ D̄
V

˜D
∗

˜D D̄
R

1 λ λ 4λµ

λ+4µ
−

λµ

3λ+µ
−

λµ

3λ+µ
−

4λµ

11λ+4µ

2 µ µ µ µ µ µ

3 0 −
1

4
λ −

λµ

λ+4µ
0

1

4

λµ

3λ+µ

λµ

11λ+4µ

4 0
1

16
(λ− 4µ) −

µ
2

λ+4µ
0 −

1

16

µ(13λ+4µ)

3λ+4µ
−

µ(3λ+µ)

11λ+4µ

5 0 0 0 0 0 0

Tab. 2: Coefficients ηk, k = 1, ..., 5 of the different isotropic sixth-order elasticity tensors involved in the
calculations of the Voigt and Reuss bounds for porous elastic microstructures normalized by β̄.

6. Discussion of the results for porous elastic

microstructures

In order to evaluate the quality of the analytical approximations, the boundary value
problem has been solved numerically for a spherical VE with a spherical void in its
center. Different values of the void volume fraction f have been considered and the
multi-purpose finite element program Abaqus ABAQUS (2005) was used.
The matrix material was supposed to be characterized by (134) and E = 200000MPa

and ν = 0.3 have been chosen for the Young’s modulus E and the Poisson’s ratio ν,
respectively. All simulations were performed using 10-node bi-quadratic terahedral
elements.
Taking into account (38) together with the other relations discussed within the pre-

vious section, the material tensor D∗ (94) is given by

D∗

ijouvw
= η∗

1
δ
ij
δ
uv
δ
ow

+ η∗
2
(δ

iu
δ
jv
+ δ

iv
δ
ju
)δ

ow
(154)

with the two material parameters

η∗
1
= β̄λ η∗

2
= β̄µ (155)

where

β̄ =
R2

5
(1−

3

√

f 5) . (156)

The material tensor D̄ was already given by (101) for the general case. Based on
(154), D̄ can be calculated for a spherical VE with a spherical void in its center. The
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final result reads

D̄
ijouvw

= η̄1δijδuvδow + η̄2(δiuδjv + δ
iv
δ
ju
)δ

ow

+ η̄3[δij(δouδvw + δ
ov
δ
uw
) + δ

uv
(δ

iw
δ
jo
+ δ

io
δ
jw
)]

+ η̄4[δio(δjuδvw + δ
jv
δ
uw
) + δ

jo
(δ

iu
δ
vw

+ δ
iv
δ
uw
)] (157)

with four independent material constants

η̄1 = β̄λ η̄2 = β̄µ (158)

η̄3 = −

1

4
β̄λ η̄4 =

1

16
β̄(λ− 4µ) (159)

where β̄ is given by (156). From (154) and (157) it can be seen that η∗
1
= η̄1 and

η∗
2
= η̄2. The Voigt estimate was determined as proposed at the end of section 4.4.

Also the Reuss-estimate has been calculated, where the scheme outlined in section
4.3 was used in order to perform the involved calculation of the inverse of a sixth-
order tensor. Both estimates have the very same structure as D̄. Therefore, D̄V and
D̄

R can be obtained from (157) just by replacing the η̄
k
by η̄V

k
and η̄R

k
, respectively.

The coefficients of D̄V and D̄
R are given by

η̄V
1
= 4β̄

λµ

λ+ 4µ
η̄V
2
= β̄µ (160)

η̄V
3
= − β̄

λµ

λ+ 4µ
η̄V
4
= − β̄

µ2

λ+ 4µ
(161)

and

η̄R
1
=− β̄

4λµ

11λ+ 4µ
η̄R
2
= β̄µ (162)

η̄R
3
= β̄

λµ

11λ+ 4µ
η̄R
4
= − β̄

µ(3λ+ µ)

11λ+ 4µ
, (163)

respectively. The η̄R
k
fulfill (88) while the η̄R

k
met the condition (89). Therefore, D̄V

and D̄
R are positive semi-definit with no more than three zero eigenvalues. The

coefficients of all tensors involved in the calculation of D̄V and D̄
R are summarized

in Table 2. A somewhat surprising result is the fact that η̄V
2
and η̄R

2
are identical. The

approximation ¯̄
D was already obtained only for porous elastic materials within the

previous section, see (150) and it can be proven that ¯̄
D fulfills (88).

Exemplarily, D̄V

111111
, D̄R

111111
and ¯̄D111111 are compared with the corresponding nu-

merical results for different values of the porosity f what is shown in Figure 2. These
components contain all coefficients η̄V

k
, η̄R

k
and ¯̄η

k
, respectively. That’s why they have

been chosen for the discussion of the results. The numerical values for D111111 were
obtained by prescribing the boundary displacements according to (43a) setting all co-
efficients equal to zero except H111 for which H111 = 0.1 was used. The corresponding
higher order stressesM111 were determined by a postprocessing routine according to
its definition (46), where the value 1952N/mm was obtained for example for M111 in
the case of f = 0. Then

D111111 =
M111

H111

(164)
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has been determined for all considered void volume fractions. An example for the
finite element meshes used for the numerical calculations is shown in Figure 4.
The Voigt-estimate D̄V

111111
is almost exact for f = 0 and approximates well the true

material parameter D111111 for small values of f . On the other hand, the alternative
approximation ¯̄D111111 underestimates the behaviour of the VE especially for small
void volume fractions, while the approximation gets better as the void volume fraction
increases. However, constitutive relations for strain gradient elasticity obtained by
prescribing quadratic displacements make the material in general too stiff. Therefore,
an underestimation of the material properties is not necessarily a disadvantage.
Solving the boundary value problem for more eloborated choices with respect to the

H
ijk

allows to extract the particular η
k
separately. The results are shown together with

the corresponding analytical approximations in Figure 3. Again, the Voigt-estimates
are almost exact for f = 0 and approximate well the corresponding numerical results
for small void volume fractions while the alternative approximations are closer to
the numerical results for large values of f . Although the importance of the Reuss-
estimate D̄R

111111
is undoubted because of its lower bound property, the results plotted

in Figure 3 show that it does not provide a useful approximation.
The fifth coefficient is zero for all approximations but the numerical results reveal

that the true η5 does not vanish. However, η5 is small compared with all other coeffi-
cients, e.g |η5|

|η1|
< 0.05.

It can be seen from (46) that the components of D have to be proportional to
the Young’s modulus of the matrix material. Furthermore, all geometrical quantites
included in D can be expressed by R2 and the void volume fraction f . Hence, the
D

ijouvw
can be written as follows

D
ijouvw

= ER2 h
ijouvw

(ν, f) , (165)

where the h
ijouvw

are some functions of ν and f . It follows from (154) and (157) that
the estimatesD∗ and D̄ are proportional to ER2 as well. Therefore, all results shown
in Figure 2 and Figure 3 are independent of E and R because they are normalized
with respect to the corresponding values from the numerical solution of the boundary
value problem for f = 0.
One might argue that for vanishing porosity a Cauchy continuum should be re-

covered which would imply that all coefficients of the strain gradient elasticity tensor
must vanish for f = 0. However, the porosity in the constitutive equations refers to the
porosity at a given macroscopic point. Therefore, vanishing f means that the poros-
ity vanishes only locally at this very point of the continuum. Of course, a Cauchy
continuum has to be obtained if f approaches zero everywhere in the body but this
cannot be decided by a local meassure. Thatswhy, the strain gradient constants must
not vanish only because f goes to zero locally. This is different compared with the
approach developed by DRUGAN AND WILLIS (1996). Here, a statistical homoge-
nization procedure has been developed, assuming a statistical spatial distribution of
the porosity. Vanishing porosity in DRUGAN AND WILLIS (1996) is tantamount to a
vanishing spatial distribution which implies that the porosity vanishes everywhere.
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Fig. 4: Example for the finite element mesh of the sphere model used for the numerical verification of
the analytical results. The void has been modeled as inclusion with vanishing Young’s modulus and a
quarter of the matrix material has been clipped in the drawing in order to get a better visualization of
the mesh.

7. Concluding remarks

The methods to derive approximations for strain gradient effective continua have
been discussed focusing especially on porous elastic microstructures. However, the
presented concepts can be applied straight forward to the case of elastic inclusions
which enables us to approximate the higher order material tensors analytically at
least for two important types of idealized microstructures. The restriction with respect
to isotropic volume elements is a clear disadvantage because it provides only positive
semi-definite higher order elasticity tensors. However, it allows for much more concise
notations by employing the tensor concept compared with the calculations necessary
for non-isotropic volume elements as e.g. performed in FOREST AND SAB (1998).
The approximations obtained within the work are based on a fundamental concept
introduced in GOLOGANU, LEBLOND, ET AL. (1997) which consists in the considerion
of a volume element under so-called higher order boundary conditions in order to
derive contitutive relations for generalized continua. This has been sketched here
for strain gradient elasticity in Section 4.2. Although this concept is quite compelling
at a first glance, it provokes most naturally conceptual problems when discussing
it together with the origins of estimates. Estimates have been discussed especially
within the context of materials with statistically varying properties, see e.g. KROENER

(1967) in order to derive a corresponding effective medium, ensemble averages are
employed. This concept is also known as mean-field approach. A key point of this
aproach is the Principle of Macrohomogeneity also known as non-correlation postu-
late, which is valid if fluctuations of energetic ensemble averages can be neglected.
It can be shown that if this principle holds then the effective medium is a simple con-
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tinuum as long as the underlying microstructure can be fully described by a simple
continua. Assuming now ergodicity, which means replacing the ensemble averages
by volume averages, leads to the alternative consideration of representative volume
element under defined boundary conditions. Then the statement which corresponds
to the Principle of Macrohomogeneity is the Hill condition and simple estimates can
be derived as outlined in Section 3. Arguing in the reverse sense with respect to the
concept outlined in Section 4.2 would mean that in this case at least a certain kind
of fluctuations in the energetic ensemble averages is taken into account. By applying
the ergodicity assumption the flucation should correspond to e.g. quadratic boundary
displacements. However, this link is still missing what is seen here as an open ques-
tion which should be discussed thoroughly in the future. The same argumentation
holds of course for micromorphic continua and deeper insight can be expected by
comparing the approach used here with the nonlocal mean field concept employed
e.g. in DRUGAN AND WILLIS (1996).

A. Traction boundary conditions for homogenization

relation to strain gradient elasticity

In the following a centrosymmetric volume element with prescribed linear tractions

t
i
=R

ik
n
k
+ T

ikl
n
k
x
l

x ∈ ∂B (166)

at the outer boundary ∂B is considered. From the balance of momentum for the
volume element

∫

∂B

t
i
dA = R

ik

∫

∂B

n
k
dA+ T

ikl

∫

∂B

x
l
n
k
dA = 0 (167)

it follows

T
ikk

= 0
i

(168)

because of
∫

∂B

n
k
dA =0

k
and

∫

∂B

x
l
n
k
dA = δ

kl
B . (169)

The balance of momentum of momentum
∫

∂B

ǫ
ijk
x
j
t
k
dA = 0

i
(170)

reads using (166) after some algebra

ǫ
ijk

(R
kj
+ T

ijq
X

q
) = 0

i
. (171)
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where ǫ
ijk

stands for the Levi-Cevita-tensor. It follows from (171) that

R
kj

=R
jk

and T
kjq

=T
jkq

. (172)

From the definition of the macro-stresses Σ
ij
it can be seen that

Σ
ij
=

1

B

∫

∂B

σ
ik
x
j
n
k
dA =

1

B

∫

∂B

t
i
x
j
dA = R

ij
+ T

ijl
X

l
(173)

and therefore

∂
m
Σ

ij
:=

∂Σ
ij

∂X
m

= T
ijm

(174)

by which we can identify the T
ijk

with the gradients of the macroscopic stresses. In
order to be consistent with the notation used throughout the paper, we define

˜M
ijk

:= ∂
m
Σ

ij
. (175)

The coefficients A
ij
can be calculated from (173)

R
ij
= Σ

ij
−

˜M
ijl
X

l
. (176)

Therefore, (166) finally reads

t
i
=Σ

ik
n
k
+ ˜M

ikl
n
k
(x

l
−X

l
) x ∈ ∂B . (177)

Using this result in order to evaluate the Hill-Mandel lemma

1

2B

∫

B

σ
ij
ε
ij
dV =

1

2
Σ

ij
E

ij
+

1

2B

∫

∂B

(u
i
− E

ip
ξ
p
)(t

i
− Σ

ij
n
j
) dA (178)

gives an extended Hill-condition

1

2B

∫

B

σ
ij
ε
ij
dV =

1

2
Σ

ij
E

ij
+

1

2

˜M
ikl

˜H
ikl

(179)

with

˜H
ikl

=
1

B

∫

B

ε
ik
ξ
l
dV (180)

where

ξ
l
= x

l
−X

l
. (181)
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B. Calculating the higher order stress tensor M from

boundary data

The higher order stresses M
ijk

given by (46) can be written as

M
ijk

=
1

B

∫

B

σ
ij
ξ
k
dV =

1

B

∫

B

(σ
ip
ξ
j
)
,p
ξ
k
dV =

1

B

∫

∂B

σ
ip
ξ
j
ξ
k
n
p
dA−

1

B

∫

B

σ
ik
ξ
j
dV .

(182)

Defining

N
ijk

=
1

B

∫

∂B

σ
ip
ξ
j
ξ
k
n
p
dA (183)

equation (182) can be written as

M
ijk

+M
ikj

= N
ijk

(184)

By cyclic permutation of the indices we obtain three linear equations with the result
that

M
ijk

=
1

2
(N

ikj
+N

jik
−N

kji
) (185)

because of the symmetry properties of M . This shows that the M
ijk

can be obtained
completely from the boundary data.

C. Relations for isotropic and symmetric sixth-order

tensors

In the following, some standard relation with respect to isotropic and fully symmetric
sixth-order tensors are provided. For further details see e.g. MOAKHER (2007). Every
fully symmetric and isotropic sixth-order tensor B can be written as

B
ijklmn

= c1Jijklmn
+ c2Kijklmn

+ c3Pijklmn
(186)

with

J
ijklmn

= δ
ij
δ
kl
δ
mn

(187)

K
ijklmn

= δ
ij
δ
km

δ
ln
+ δ

ij
δ
kn
δ
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+ δ
kl
δ
im
δ
jn

+ δ
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δ
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δ
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+ δ
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δ
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δ
jl
+ δ
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δ
il
δ
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(188)

P
ijklmn

= δ
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δ
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δ
ln
+ δ

ik
δ
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δ
lm

+ δ
il
δ
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δ
jn

+ δ
il
δ
kn
δ
jm

+ δ
im
δ
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δ
ln
+ δ

im
δ
kn
δ
lj
+ δ

in
δ
kj
δ
lm

+ δ
in
δ
km

δ
lj
. (189)
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Here, especially the contracted tensors B
ijklmm

and B
ijkkmm

and their reciprocal ten-
sors are needed. Contracting B

ijklmn
with respect to the indices m and n gives

B
ijklmm

= c1Jijklmm
+ c2Kijklmm

+ c3Pijklmm
(190)

with

J
ijklmm

=3δ
ij
δ
kl

(191)
K

ijklmm
=4δ

ij
δ
kl
+ 3(δ

ik
δ
jl
+ δ

il
δ
jk
) (192)

P
ijklmm

=4 (δ
ik
δ
jl
+ δ

il
δ
jk
) . (193)

This can be expressed as follows

B
ijklmm

= g1δijδkl + g2(δilδjk + δ
ik
δ
jl
) (194)

with

g1 =3c1 + 4c2 g2 = 3c2 + 4c3 . (195)

Further contraction with respect to the indices k and l leads to

B
ijkkmm

= c1Jijkkmm
+ c2Kijkkmm

+ c3Pijkkmm
(196)

with

J
ijkkmm

=9δ
ij

(197)
K

ijkkmm
=18δ

ij
(198)

P
ijkkmm

=8δ
ij
. (199)

This can be written more concisely as

B
ijkkmm

=θδ
ij

(200)

with

θ = 9c1 + 18c2 + 8c3 . (201)

The reciprocal tensors needed here can be written as follows

B−1

ijkkmm
=

1

θ
δ
ij

(202)
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ijklmm
=

1

4g2
(δ
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2g2(3g1 + 2g2)
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ij
δ
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(203)
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A first order strain gradient damage
model for simulating quasi-brittle failure

in porous elastic solids

Uwe Mühlich Lutz Zybell Geralf Hütter Meinhard Kuna

In order to simulate quasi-brittle failure in porous elastic solids, a contin-

uum damage model has been developed within the framework of strain

gradient elasticity. An essential ingredient of the continuum damage

model is the local strain energy density for pure elastic response as a func-

tion of the void volume fraction, the local strains and the strain gradients,

respectively. The model adopts Griffith’s approach, widely used in linear

elastic fracture mechanics, for predicting the onset and the evolution of

damage due to evolving micro-cracks. The effect of those micro-cracks

on the local material stiffness is taken into account by defining an effective

void volume fraction. Thermodynamic considerations are used to specify

the evolution of the latter.

The principal features of the model are demonstrated by means of a one-

dimensional example. Key aspects are discussed using analytical results

and numerical simulations. Contrary to other continuum damage models

with similar objectives, the model proposed here includes the effect of the

internal length parameter on the onset of damage evolution. Furthermore,

it is able to account for boundary layer effects.

1 Introduction

One important feature of quasi-brittle rupture is the accumulation of damage prior
to final failure, see e.g. [2]. Furthermore, considering specimens of different sizes but
with self-similar geometry and made of the same material, different nominal failure
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stresses are observed in general. This phenomenon is known as size effect and a
widely accepted explanation for it is the following: The size of the damage zone is
mainly controlled by intrinsic length properties of the considered material like e.g.
the initial defect spacing. Applying the same nominal load to specimens of different
sizes, the damage zones within the different specimens will have similar geometrical
extensions. However, the smaller the specimen the higher the proportion of damaged
material. Therefore, contrary to the weakest link theory, smaller specimens may break
at lower nominal loads if quasi-brittle failure occurs as reported e.g. for porous
concrete in [21].

Moreover, size effects in structural components made of brittle or quasi-brittle ma-
terials such as concrete, ceramics, etc. are in general the result of an interplay of
deterministic and statistical effects, as pointed out e.g. in [20]. Hence, numerical
investigations were performed e.g. in [19, 10, 6] incorporating the details of the mi-
crostructure of the material to a certain account by using beam networks, the discrete
element method or similar techniques. This approach has the advantage to reflect a
priori the ratio of the microstructural length properties like defect spacing, cell size,
etc. to the macroscopic dimensions of the considered problem. Furthermore, ran-
dom variations of microstructural properties can be incorporated rather intuitively.
Although important information can be gathered by this approach, its applicability is
limited by the simulation time and the amount of data to be processed. Because the
model size increases rapidly with increasing overall dimensions, simulations may be-
come hardly feasible even for relatively moderate macroscopic dimensions. Further-
more, statistical investigations require always a considerable number of simulations.
Hence, model size becomes an important issue.

Therefore, an effective continuum description is desirable not only for practical
reasons but also to supplement the discrete approach. However, continuum models
formulated within the theory of simple materials cannot account for deterministic size
effects because the influence of the microstructure on the macroscopic behaviour can
only be incorporated by means of specific values like void volume fraction, microcrack
density, etc. as extensively discussed in the literature. For porous materials which
are considered here this means that the aforementioned models cannot distinguish
between a material whose microstructure consists of many small voids surrounded by
linear elastic matrix material and another material with less but bigger voids as long
as the void volume fraction is the same in both cases.

Furthermore, if quasi-brittle failure is attempted to be described by a continuum
approach, the softening behaviour due to the evolution of damage causes particular
difficulties. In general, rupture is supposed to be initiated by local softening accom-
panied by localization of damage and deformation in narrow zones. Nowadays, it
is well understood that continuum theories belonging to the class of simple continua
are not suitable to describe this phenomenon properly. This becomes apparent e.g.
by the spurious dependence of the numerical results obtained with those models on
the spatial discretization after the onset of localization of the deformation.

From the preliminary discussion above it becomes evident that a continuum ap-
proach which aims to describe properly quasi-brittle failure must meet the following
minimum requirements:
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• It has to account for the evolution of damage.

• It must incorporate at least one length scale which correlates to a genuine ma-
terial length scale associated with the damage process.

• The numerical results must not show any spurious dependence on the spatial
discretization.

All three topics, continuum damage mechanics, size effects and the proper modeling
of localization behaviour are subjects of intensive research since various decades now.
The reader is referred to the following review articles and text books: [9], [2], [3], [5]
which provide most of the needed information. However, due to the huge amount of
literature regarding the topics under consideration, such a selection is mostly a matter
of convenience and equally valuable references from other authors could be given.
Spurious mesh dependence of the numerical results after the onset of localization

can be avoided if so-called generalized continuum theories, like non-local continua,
gradient enhanced continua, micromorphic continua, etc., are employed. A feature
common to all these approaches is the presence of at least one internal length scale.
On the other hand, an internal length scale is needed as well to take into account
size effects. However, the mere existence of such a length parameter does not au-
tomatically ensure that a considered model is suitable for localization phenomena
and captures well the observed size effects at the same time as shown e.g. in [7].
According to the investigation reported in [7], strain gradient elasticity as developed
in [14] and [15] is a good candidate to handle both problems simultaneously.
The constitutive relations of linear strain gradient elasticity can be expressed by

means of the conventional fourth order elasticity tensor and an additional tensor of
order six. Considering an isotropic material, the fourth order tensor is given com-
pletely by two independent constants, e.g. Young’s modulus and Poisson’s number.
The higher order elasticity tensor however, involves already five independent material
constants in this case as shown for example in [15]. Hence, the effort to determine the
material parameters is considerably higher compared to classical elasticity and the
whole procedure can be a rather challenging task. However, key insight with respect
to the correlations between material parameters and quantities measurable with rea-
sonable effort can be gained by homogenization methods. Here, we focus on porous
elastic solids with only four genuine material characteristics: Young’s modulus and
Poisson’s ratio of the elastic matrix, the void volume fraction and the mean spacing
between adjacent voids. The material parameters for plane porous strain gradient
elasticity without damage have been already estimated in [23], where the general-
ized homogenization concept proposed in [8] was used. Based on these constitutive
relations a continuum damage model is derived in the present paper, which rests on
an energetic criterion for the onset of damage evolution. It should be noted that
the methodology proposed here is by no means limited to plane problems. What
matters is that a strain energy density of Mindlin-type is available for the pure elas-
tic response. The plane case is chosen here because an analytical solution for the
strain energy density exists. Furthermore, it is easier to illustrate certain points in two
dimensions which seems advantageous The passage from two dimensions to three-
dimensional problems is rather straight forward and estimates for the strain energy
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density considering micro-structures characterised by spherical voids surrounded by
linear elastic matrix material were already derived in [16]
The paper is organized as follows. Within the next two sections, strain gradient

elasticity and the corresponding generalized homogenization concept are briefly re-
viewed. Furthermore, the continuum damage model is derived. After that, particular
aspects of the implementation into a finite element framework are discussed. Finally,
the general behaviour of the model is discussed by means of a numerical example.
In the sequel, symbolic notation as well as index notation together with the sum-

mation convention are used simultaneously for tensorial quantites. With respect to
the symbolic notation, boldface symbols indicate tensors whose rank is given by the
context. Capital letters refer to macroscopic variables. Macroscopic and microscopic
variables depend on the macroscopic coordinatesX and the microscopic coordinates
x, respectively. The abbreviation ()

,i
indicates the partial derivative of the considered

quantity () with respect to the corresponding spatial coordinate. For the numerical
implementation, tensors are converted into algebraic forms, where underlined and
double underlined bold symbols indicate algebraic vectors and matrices, respectively.

2 First order strain gradient elasticity

Strain gradient elasticity was first introduced in [14] based on an earlier work of [18].
It rests on the idea to extend the strain energy density W , which depends in the case
of linear elasticity only on the strains E, either by the strain gradients H̆ or the second
gradients of the displacements H. There exists also a third possibilitiy. However, all
three approaches lead to equivalent formulations, see e.g. [15] or [1]. The second
gradients of the displacements are used in this work, because this provides some
advantages with respect to the numerical implementation.
Based on the extended strain energy density the following set of equations holds

for a body which occupies the region B with boundary ∂B if the cartesian coordinate
vector X is used for the spatial description:

Equilibrium conditions:

(Σ
ij
−M

kji,k
)
,j
=0

i
X ∈B (1)

Kinematic relations:

E
ij
=

1

2
[U

i,j
+ U

j,i
] X ∈B (2)

H
ijk

=U
k,ij

X ∈B (3)

Constitutive equations:

Σ
ij
=C

ijkl
E

kl
X ∈B (4)

M
ijk

=D
ijklmn

H
lmn

X ∈B (5)
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Natural boundary conditions:

T
i
= T

i
X ∈ ∂B

T
(6)

R
i
=R

i
X ∈ ∂B

R
(7)

Essential boundary conditions:

U
i
=U

i
X ∈ ∂B

U
(8)

N
p
U
i,p

= V
i

X ∈ ∂B
DU

(9)

In the equations above, the U
i
are the components of the displacement vector. The

macroscopic stress tensor Σ and the higher order stress tensor M are related to
their work conjugate kinematic variables, namely the strain tensor E and the strain
gradient tensor H, by the fourth and sixth order tensors C and D, respectively.

The surface tractions T
i
and the higher order surface tractions R

i
in (6) and (7)

read

T
i
=N

j
(Σ

ij
−M

kji,k
)−D

j
(N

k
M̆

kji
) + (D

l
N

l
)N

j
N

k
M

kji
(10)

R
i
=N

k
N

j
M

kji
(11)

where N
i
are the components of the unit normal vector. The components D

j
of the

surface gradient operator are given by

D
j
(.) =(δ

jp
−N

j
N

p
)(.)

,p
. (12)

Overlined quantities denote prescribed values.

x

X
ξ

∂BX1

X2

ξ1

ξ2

r

ϕ

n

R
a

Fig. 1: Cylindrical volume element (VE) containing a cylindrical void used for the homogenization
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3 Constitutive relations

3.1 Plane porous strain gradient elasticity

Constitutive equations for plane porous strain gradient elasticity were derived in [23]
using a generalized homogenization procedure as proposed in [8]. A cylindrical
volume element (VE) with a cylindrical void in its center surrounded by linear elastic
matrix material as shown in Figure 1 was considered by the authors.

Plane strain respectively plane stress conditions were assumed and quadratic dis-
placements

u
i
|
∂B

= E
ij
x
j
+

1

2
H

ijk
x
j
x
k
−

1

2
[H

ijk
−H

jki
]X

k
x
j

(13)

were prescribed at the outer boundary of the volume element. The homogenization
in [23] was carried out using the strain gradients H̆ = E

ij,k
instead of the second gra-

dients of the displacements. However, the results can be converted into one another
in a straightforward manner.

The macroscopic stresses and higher order stresses were defined as mean values
with respect to the corresponding microscopic fields

Σ
ij

=
1

B

∫

B

σ
ij
dV (14)

M
ijk

=





1

B

∫

B

σ
ki
(x

j
−X

j
) dV +

1

B

∫

B

σ
kj
(x

i
−X

i
) dV



 (15)

where B is the total volume of the volume element. Solving the boundary value
problem for the VE leads to the material tensors C and D. The material tensor C
depends on the void volume fraction

f =
a2

R2
(16)

and the properties of the matrix material, whereas the material tensor D hinges, in
addition, on the outer radius R of the VE, where R is interpreted as the half mean
spacing between adjacent microvoids. The solution was derived analytically. How-
ever, the final results obtained in [23] support the use of the following approximation
for the elasticity tensor C

C = (1− f)2 C̄ (17)

where C̄ denotes the well-known elasticity tensor for an elastic bulk material without
voids.

The higher order elasticity tensor D is given in matrix form in Table 1. The coeffi-
cients b1 and b3 are rather complex functions of the void volume fraction f , Young’s
modulus and Poisson’s ratio whose derivatives, needed for the finite element approx-
imation scheme, become even more complex and lengthy. Therefore, b1 and b3 are
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approximated as follows

b1 =
ÊR2

16(3− ν̂)

1

2
[1.0 + cos (πf)] (18)

b3 =
ÊR2

16(1 + ν̂)

1

2
[1.0 + cos (πf)] (19)

where the terms including Ê, ν̂ and R2 are the respective limits for f → 0 of the
corresponding exact solutions. The parameters Ê and ν̂ have to be chosen according
to

Ê, ν̂ =

{

E, ν plane stress
E/(1− ν2), ν/(1 − ν) plane strain

. (20)

For the problem considered later on, plane strain conditons are assumed.
Finally, the overall elastic strain energy density of the volume element is given by

W =
1

2

[

E : C : E +H
...D

...H

]

. (21)

which is one of the basic ingredients in the derivation of the continuum damage
model within the next section. The triple scalar product used in (21) is defined here
as

α
...β = α

ijk
β
lmn

(e
i
· e

l
)(e

j
· e

m
)(e

k
· e

n
) = α

ijk
β
ijk
. (22)

111 221 112 222 121 211 122 212

111 h1 −h1 0 0 0 0 h h
221 −h1 h1 0 0 0 0 −h −h
112 0 0 h1 −h1 −h −h 0 0

222 0 0 −h1 h1 h h 0 0

121 0 0 −h h h1 h1 0 0

211 0 0 −h h h1 h1 0 0

122 h −h 0 0 0 0 h1 h1
212 h −h 0 0 0 0 h1 h1

h = b1 − b3
h1 = b1 + b3

Tab. 1: Components of the material tensor 6
D written in matrix form ([D](ijk)(lmn)).

3.2 Continuum damage model

The constitutive model outlined within the previous subsection does not account for
damage evolution. In order to derive a continuum damage model, it is assumed that
under certain loading conditions, material degradation starts at the void surface, e.g.
due to the evolution of micro-cracks as illustrated in Figure 2. After reaching a certain
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degradation level, the affected material loses its load bearing capacity. Here, this is
accounted for by interpreting f as an effective void volume fraction whose value can
increase. The volume element is seen as a system in thermodynamic equilibrium,
where for the moment it is supposed that any thermodynamic equilibrium state is
completely defined by the strain tensor E, the second gradient of the displacements
H and the effective void volume fraction f . The total elastic strain energy of the
volume element can be expressed by

W =W B (23)

with the total volume B of the volume element and the strain energy density W given
by (21). Following the general idea of Griffith’s criterion used in linear elastic fracture
mechanics, it is assumed that the volume element can relax its actual state but only
by void growth. Neglecting the dynamics of such a process, the actual equilibrium
state is compared with the equilibrium state after the process of effective void growth
has been completed. The energy balance for the transition from f to f + ∆f reads
for fixed E and H

∆W B +∆Γ =0 (24)

with ∆W = W (f + ∆f) − W (f). The right hand side of the balance (24) is zero
because the work of external loads vanishes due to the fact that the displacements
are prescribed at the outer surface of the volume element, see as well (13).
In order to specify the amount of energy ∆Γ needed to let the void grow, the mech-

anism already mentioned above and illustrated in Figure 2 is envisaged. Starting
from the actual void surface, geometrically described by the radius a, n microcracks
evolve up to an average crack length of ∆a. The zone affected by these microcracks
is supposed to be completely damaged after a critical microcrack density

̺cr =
ncr

2πa
(25)

is reached. The damaged volume is no longer taken into account and the void is
replaced by a larger void with radius a + ∆a. The energy ∆Γ consumed by this
process is therefore given by

∆Γ = ncr β 2∆a h = 2̺crβ 2πa∆a h (26)

where h is the height of the volume element and β is the amount of energy needed
in order to generate a unit surface. From the definition of the void volume fraction f
(16)

∆a =
R2

2a
∆f +O

(

(∆f)2
)

(27)

results and defining γ̄ := 2̺crβ the energy ∆Γ can finally be expressed as

∆Γ = γ̄B∆f . (28)



3.2 Continuum damage model 121

Using (28), it follows from (24) that

−∆W = γ̄∆f (29)

holds. The left hand side of (29) can be associated with the energy supply whereas
the right hand side is equal to the amount of energy needed in order to increase the
void volume fraction by ∆f .

a

a+∆a

0 1f
W

Fig. 2: Interpretation of the damage process for the volume element (lhs) and the qualitative behavior
of the strain energy density W of the volume element for increasing void volume fraction f and fixed
overall strains E and overall second gradients H , respectively.

The constitutive relations given in Section 3.1 show that for constant E and H the
strain energy density decreases monotoneously with increasing void volume fraction,
see as well Figure 2. Therefore, two cases can be distinguished

∆W < 0 ⇐⇒ ∆f > 0 (30)

∆W > 0 ⇐⇒ ∆f < 0 (31)

where (31) must be excluded on physical grounds because a “healing” of the material
is unreasonable.

Dividing both sides of (29) by ∆f and taking the limit ∆f → 0 finally gives

Y − γ̄ = 0 (32)

where the Y is defined by

Y = −W ′ (33)

and the prime indicates the differentiation with respect to f ( ()′ :=
∂

∂f
()|E,H) for

fixed strains and second gradients of the displacements. If (32) holds, then the state
characterised by E,H and f is a thermodynamic equilibrium state which means that
there is no change in the void volume fraction f . A left hand side of (32) greater than
zero indicates a non-equilibrium state because of the surplus in the energy supply.
However, if the left hand side of (32) turns out to be lower than zero, the volume



122 3 Constitutive relations

element just maintains its actual equilibrium state because the energy supply is not
sufficient to initiate any change of the void volume fraction. Therefore,

Φ := Y − γ̄ ≤ 0 (34)

holds for any equilibrium state.
For the following discussion thermodynamics of internal variables is adopted, where

E and H are defined as the observable quantities and the actual void volume frac-
tion f is treated as internal variable. Following [17], a second internal variable θ is
introduced in order to account for hardening behaviour as well. It is supposed that
the free energy Ψ of the volume element can be split into an elastic part and a second
part related to the hardening during the damage process

Ψ = Ψ
el
(E,H , f) + Ψ

D
(θ) =

1

̺
W +Ψ

D
(θ) (35)

where ̺ is the density related to the volume element given by ̺ = (1 − f0)̺
M with

the initial void volume fraction f0 and the density of the matrix material ̺
M. It should

be noted that due to the damage mechanism envisaged here, the density of the
material does not correlate at all with the void volume fraction f but only with its
initial value. This is because f is an effective quantity which only accounts for the
portion of degraded material whereas the material itself does not vanish (see also
Figure 2).
The Clausius-Duhem inequality can be obtained by the usual procedure similar to

the case of ordinary elasticity with damage. Here, it reads

[

Σ
ij
− ̺

∂Ψ

∂E
ij

]

Ė
ij
+

[

M
ijk

− ̺
∂Ψ

∂H
ijk

]

Ḣ
ijk

− ̺
∂Ψ

∂f
ḟ − ̺

∂Ψ

∂θ
θ̇ ≥ 0 (36)

and the first two terms can be canceled out by the classical argumentation, that (36)
must hold as well for pure elastic response (ḟ = 0∧ θ̇ = 0), which gives simultaneously
the constitutive equations for Σ and M already reported in Section 3.1. Using (33)
and defining in addition

Z := −̺
∂Ψ

∂θ
= −̺

∂Ψ

∂θ

D

(37)

the inequality (36) can be written as

Y ḟ + Z θ̇ ≥ 0 . (38)

In order to separate hardening behaviour from the onset of damage evolution, γ̄ in
(34) is replaced by γ + γ0, and Z is set to

Z = −γ . (39)

The modified damage potential reads

Φ = Y + Z − γ0 ≤ 0 (40)
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with the material constant γ0. Postulating the principal of maximum dissipation im-
plies to maximize the left hand side of (38) for given fluxes ḟ and θ̇ under the con-
straint imposed by (40) in the case of the equality sign. Incorporating the constraint is
equivalent to demand that the system passes continuously through equilibrium states.
The corresponding Lagrangian reads

L(Y, Z, λ) = Y ḟ + Z θ̇ − λΦ (41)

with the Lagrange-multiplier λ and Φ given by (40) together with (39). Two particular
cases have to be distinguished. If the constraint is not active (λ = 0) then

ḟ =0 ∧ θ̇ = 0 (42)

must hold. However, if the constraint is active it follows from (41) that

ḟ = λ
∂Φ

∂Y
= λ (43)

θ̇ = λ
∂Φ

∂Z
= λ (44)

and hence

θ = θ0 + f (45)

with some constant θ0. Therefore, only one internal variable remains. This is mainly
due to the choice (39).
Using (37) and (39) together with the information that the hardening variable and

f are equal up to some constant as given by (45), ΨD can be put into concrete terms
as follows

Ψ
D
=

1

̺

f
∫

f0

γ(f̄)df̄ (46)

with γ(f) > 0. The function γ(f) is seen as an R-curve for the matrix material during
the growth of micro-cracks. In addition it accounts heuristically for the rather complex
interaction between micro-cracks during the degradation process.
Finally, the dissipation rate can be expressed in terms of γ0 and ḟ by re-writing the

Clausius-Duhem inequality (36) incorporating (43), (44) and γ0 = Y + Z where the
latter results from (40) for active constraint. The result reads

Ḋ = γ0ḟ > 0 . (47)

A summary of the model is given in Table 2.
It should be noted that the general structure of damage model derived within this

section is similar to that of Marigo, see e.g [11] or [12]. It differs from the latter
by the choice of the strain energy density which has been obtained here by means
of a homogenization procedure. The use of homogenization techniques not only
provides a deeper insight into the model itself but it also facilitates a micromechanical
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Free energy density:

Ψ(E,H, f) =
1

̺
W +

1

̺

f
∫

f0

γ(f̄)df̄ =
1

2ρ

[

E : C : E +H
...D

...H

]

+
1

̺

f
∫

f0

γ(f̄)df̄

Damage potential:

Φ = −W ′

− γ(f)− γ0

Case differentiation (loading - unloading):

elastic response: Φ < 0 → ḟ = 0

damage: Φ = 0 ∧ ḟ > 0

Tab. 2: Summary of the continuum damage model within the framework of thermodynamics of inter-
nal variables. The prime indicates the differentiation with respect to the effective void volume fraction
f .
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2w

2h
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x2

Fig. 3: Geometry of the strip with a zone of reduced damage initiation resistance.
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interpretation of the results obtained from them. Furthermore, the formulation of
elastic damage models by means of the strain energy density provides the advantage
that this quantity can be estimated much easier by homogenization techniques than
other quantites like the distributions of micro-stresses or micro-strains.

It is clear from the applied homogenisation procedure that f corresponds to a per-
fectly cylindrical void, at least for the constitutive equations used here. This does not
mean that the model predicts damage evolution only for macroscopic strain or stress
states, respectively, which induce certain symmetries at the micro-scale. On the con-
trary, the strain energy density (21) and, hence the damage potential is meaningful
for any finite macroscopic stress / strain state. It just means that isotropic as well as
anisotropic micro-crack evolution are associated with a rotational symmetric growth
of the corresponding effective void. In other words, the model does not account for
the evolution of anisotropy at the macro-scale due to anisotropic micro-crack evolu-
tion. However, since such anisotropy effects can be incorporated by means of ana-
lytical solutions or proper estimates for the strain energy density of a volume element
with an elliptical void, this is not a conceptual problem.

4 Example with forced damage localisation

4.1 Objectives, geometry, boundary conditions and material

parameters

M N
s

l
e

R =
s

2
R = s R =

3

2
s R = 2s R = 3s

1 1 s 2 1
2

3

1

2

1

3

2 3
s

3

2

3

1

3

2

9

1

6

1

9

3 5
s

5

2

5

1

5

2

15

1
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1

15

4 7
s

7

2

7

1

7

2

21

1

14

1

21

5 9
s

9

2

9

1

9

2

27

1

18

1

27

Tab. 3: Overview of the performed simulations varying the mesh density for different values of the
internal length R. The table shows the ratios between the element width le and the internal length
R for the respective simulations. Ns denotes the number of elements over the width of the zone with
reduced initial initiation resistance.

Some general features of the continuum damage model are demonstrated within
this section by means of a standard example with forced damage localization. A
strip of width 2w and height 2h is considered as sketched in Figure 3 together with the
denominations used in the following and the chosen coordinate system. The following
displacement boundary conditions are applied

u1(x1 = −w, x2) =− ū, u1(x1 = w, x2) =ū . (48)
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Furthermore, u2 = ψ11 = ψ12 = ψ21 = ψ22 = 0 is prescribed at the outer left hand side
and the outer right hand side of the strip. In addition u2 = ψ21 = ψ12 = ψ22 = 0 is
enforced at the bottom and the top of the stripe, where ψ

ij
= u

j,i
.

All computations were performed with Poisson’s ratio ν = 0.3. An initial void volume
fraction f0 = 0.1 was chosen The resistance curve γ(f) was assumed to be a linear
function of f with γ(f = f0) = γ0 and γ(f = 1) = γ̂

γ(f) =
1

1− f0
[(γ̂ − γ0)f + γ0 − f0γ̂] (49)

with f ∈ [f0, 1), γ0/E = 10−5 and γ̂/E = 8.3 10−3, where E denotes Young’s modulus.
The material parameters have been chosen more or less arbitrarily.
Localization of damage is enforced by reducing the resistance to damage initiation

in the center part of the strip (x1 ∈ [−s/2, s/2]) while in the remaining part γ0 is
used. A value of 0.1γ0 is used for x1 ∈ [−s/2, s/2] and the hardening parameter
γ̂ is adapted in order to assure the same hardening behaviour everywhere in the
strip. The following values, given in length units, were employed for the geometrical
quantities: w = 1.0, s = 0.05.
Due to the geometry and the boundary conditions the considered problem is in

fact one-dimensional. As long as the problem remains purely elastic, i.e. before
damage evolution initiates, and if the material properties do not vary with respect
to the spatial position, an analytic solution exists. Using the constitutive relations
given in section 3.1, the solution for the displacement u1 as a function of the spatial
coordinate x1 reads

u1(x1)

ū
= ax1 − b sinh

(

√

κ
w

R
x1

)

(50)

with

κ =
(1− f)2

1 + cos(πf)

8(3− ν̂)

1− ν̂
(51)

and

a =
cosh

(√

κw

R

)√

κ 1

R

cosh
(√

κw

R

)√

κw

R
− sinh

(√

κw

R

) b =
1

cosh
(√

κw

R

)√

κw

R
− sinh

(√

κw

R

) ,

(52)

where f is equal to the initial void volume fraction f0. The solution for the dis-
placement which corresponds to a prescribed displacement ū/w = 0.001 is shown
in Figure 4 (lhs) for three different ratios between the internal length R and the half
width of the strip w. Because of the boundary conditions used here, a boundary layer
effect due to the presence of the internal length parameter R can be observed. Of
course, this boundary layer effect becomes apparent as well in the related damage
potentials shown in Figure 4 (rhs). Figure 4 reveals in addition that the model predicts
the onset of damage evolution at lower prescribed displacements as R/w increases.
Furthermore, it can be shown that the analytical solution predicts an increase in the
overall stiffness of the strip with increasing R/w.
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R/w = 0.025

R/w = 0.1

R/w = 0.5

x1/w

u
1
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ū
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1

R/w = 0.025

R/w = 0.1

R/w = 0.5
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Φ
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Fig. 4: Exact solution for the one-dimensional example considered here in terms of the displacement
prior to the initiation of damage evolution (lhs) and the corresponding damage potentials Φ(x) as given
in Table 2 normalized by the Young’s modulus for a fixed prescribed displacement ū/w = 0.0005. The
damage potentials evolve for the different R/w ratios with increasing ū/w and damage starts when
the respective Φ hits the shaded area. The solution for the displacement has been normalized by the
prescribed boundary displacement ū (see (48)). The results correspond to three different values for the
ratio between internal length R and the half width of the strip w (see also Figure 3).
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Fig. 5: Illustration of the global convergence behaviour for R = 3
2s by means of the load normalised

by the height of the strip versus normalised displacement for different mesh densities. The box in the
upper left corner shows a zoom of the primary snap-back.
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R = 3s
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0 0.01 0.02 0.03 0.04
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ū/w

Fig. 6: Load normalised by the height of the strip versus normalised displacement for different values
of the internal length R. In addition, the pure elastic response for R = 3s (bold solid line) is plotted.
The box in the upper left corner shows a zoom of the first snap-back.
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Fig. 7: Distribution of the normalised void volume fraction f

f0
along the strip at maximum load for

different values of the internal length R.
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4.2 Finite-Element implementation, spatial discretization and

numerical studies

A finite-element scheme has been implemented for the numerical solution of the
problem described within the previous section using MATLAB [13]. One-dimensional
elements based on Hermite shape functions have been used in order to assure C(1)-
continuity of the global displacement field. The implementation incorporates an arc-
length method with quadratic constrained as discussed e.g. in [4] and [22].

The mesh density was varied in order to obtain N
s
elements within the zone of

reduced damage initiation resistance. In total five different finite element meshes
have been used, each of it characterized by the length l

e
of the finite elements within

the zone of reduced damage initiation implied directly by the choice for N
s
, l

e
= s/N

s
.

In addition, the internal length R can be varied independently on the finite element
discretization giving different ratios l

e
/R as listed in Table 3.

The global convergence behaviour is illustrated in Figure 5 by means of the load
displacement response for R =

3

2
s. Up to the primary snap-back, a converged

solution is obtained already for l
e
/R = 2/9. This mesh density is sufficient even for

the initial part after the first snap-back. However, a significant change in the slope
can be observed at a certain arc-length of the curve. After reaching this point, a much
higher mesh density is necessary in order to get converged results. This behaviour is
characteristic for all cases investigated here.

The effect of the internal length R on the mechanical response is examined next.
The following discussion is based on the results obtained with the finest mesh for
each particular value of R as listed in Table 3. All load displacement curves
shown in Figure 6 start with a linear part followed by a nonlinear behaviour and
a significant snap-back after reaching the maximum load. Furthermore, the model
predicts changes in the post-peak behaviour with increasing R. While for smaller
ratios R/w the final failure is preceded by a single snap-back, the breakdown is
accompanied by multiple snap-backs for higher R/w ratios. In addition, R effects
significantly the slope of the load displacement curve after the initial snap-back.

Finally, the regularisation capabilities of the model become apparent from the dis-
tribution of the normalised void volume fraction along the strip at maximum load
which are depicted in Figure 7. The results show the expected smoothing of the
damage distribution with increasing internal length R. Furthermore, the expected
boundary layer effect can be observed. The regularization capability of the model
becomes also apparent by the symmetry of the obtained numerical solutions because
symmetry was not enforced here a priori but it is a result of the simulations.

5 Concluding remarks

A continuum damage model within the framework of generalized continua has been
derived for porous elastic materials. The model has been developed by combin-
ing micro-mechanical arguments and thermodynamical considerations. It has been
shown by means of a numerical example that the continuum damage model pre-
sented in Section 3.2 gives meaningfull results. It provides the necessary regulariza-
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tion capabilities for the simulation of quasi-brittle failure. Furthermore, it is able to
capture boundary layer effects prior to the initiation of the damage evolution as well
as in the course of the latter. This is a clear advantage over models developed within
the framework of simple continua and heuristically modified by means of a non-local
evolution equation for the damage variable. The model presented here involves a
manageable number of material parameters. In addition, the inital void volume frac-
tion f0 and the mean distance between adjacent voids have a transparent meaning.
More difficulties have to be expected with regard to the determination of the elastic
constants of the matrix material. The most challenging material property in the model
is certainly the resistance curve of the matrix material γ(f).
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