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Resumen

Estudio experimental de la dinámica inducida por
realimentación en láseres de semiconductor: análisis

simbólico y detección de posición de alta resolución

El objetivo de esta tesis es el estudio de la dinámica inducida por realimentación

óptica en láseres de semiconductor. Dicho estudio persigue, por un lado, profundizar

en el conocimiento de aspectos generales de los sistemas complejos, y por otro lado,

utilizar dicha dinámica para crear un protocolo para medir desplazamientos en dos

dimensiones con una resolución mucho menor que la longitud de onda del láser

utilizado.

La intensidad de la luz emitida por un láser de semiconductor es estable salvo

fluctuaciones debidas al ruido de emisión espontánea. Sin embargo, cuando la luz

del láser se refleja en una superficie y parte de esta luz vuelve a entrar en el láser, la

intensidad de la luz emitida se puede desestabilizar y mostrar una amplia gama de

comportamientos dinámicos.

Uno de los reǵımenes dinámicos presentes en láseres con realimentación óptica es

el de fluctuaciones de baja frecuencia (LFF de sus siglas en inglés). Está dinámica

se caracteriza por cáıdas abruptas de la intensidad del láser (hasta casi apagarse),

seguidas de recuperaciones graduales, siendo la separación temporal entre dos cáıdas

consecutivas irregular.

La primera parte de esta tesis está centrada en este régimen dinámico, habiéndose

realizado un detallado estudio experimental para caracterizarlo. Se ha utilizado un

análisis simbólico de series de datos basado en patrones ordinales, definidos mediante

la comparación de tiempos consecutivos entre cáıdas.
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En la dinámica del láser de semiconductor con realimentación intervienen varios

factores: la interacción no lineal entre luz y materia en el medio activo del láser,

el ruido cuántico debido a la emisión espontánea y la señal retardada de la reali-

mentación. Por ello las cáıdas en el régimen de LFFs pueden ser inducidas tanto por

ruido como por procesos deterministas. En esta tesis, mediante el análisis simbólico

se ha conseguido distinguir estad́ısticamente, qué cáıdas pueden ser inducidas por

ruido y cuales presentan una estad́ıstica que muestra señales de determinismo.

En esta tesis también se ha estudiado la dinámica simbólica del régimen de LFF

y se han encontrado correlaciones entre varias cáıdas consecutivas. También se ha

encontrado una estructura jerárquica en la dinámica simbólica que incluye empare-

jamientos de las probabilidades de los patrones simbólicos. Además se ha encontrado

un modelo simple a tiempo discreto (mapa) que describe adecuadamente la dinámica

simbólica del régimes de LFF.

Debido a la importancia de forzamientos externos en sistemas dinámicos, se han

realizado experimentos incorporando modulación en la corriente de inyección del

láser. Estos experimentos han permitido caracterizar el efecto de la amplitud de la

modulación en la dinámica simbólica, encontrando cambios claros en la estructura

simbólica, inducidos por la modulación, pero que se conservan los emparejamientos

observados sin modulación. El modelo simple ha sido verificado ya que reproduce

satisfactoriamente la dinámica simbólica encontrada en los datos experimentales.

Asimismo, en esta tesis se ha demostrado experimentalmente un protocolo que

permite detectar desplazamientos de dos objetos independientes en una escala muy

inferior a la longitud de onda de la luz empleada (λ/160). Para ello se ha diseñado

un experimento donde el láser esta sometido a realimentación de dos espejos que se

mueven de manera independiente. Además de la alta resolución, otra ventaja de este

protocolo reside en que únicamente es preciso medir una variable para calcular los

dos desplazamientos.



Abstract

Experimental study of feedback-induced dynamics in
semiconductor lasers: from symbolic analysis to

subwavelength position sensing

The aim of this thesis is the study of the dynamics induced by optical feedback in

semiconductor lasers. This study aims, on the one hand, to improve our knowledge

of stocahstic complex systems, and on the other hand, to use complex dynamics of

semiconductor lasers to develop a protocol for subwavelength position sensing.

The intensity of the light emitted by a semiconductor laser is stable, besides fluc-

tuations due to spontaneous emission noise. When the light of the laser is reflected

and part re-enters into the laser, the laser intensity can become unstable, displaying

a broad range of dynamical behaviors.

One of the dynamical regimes present in lasers with optical feedback is the low

frequency fluctuations (LFF). This dynamics is characterized by sharp drops in the

laser intensity (to almost switch the laser off), followed by gradual recoveries. The

time intervals between two consecutive drops is irregular.

The first part of this Thesis is focused on this dynamic regime, and a detailed

experimental study has been performed to characterize it. A symbolic time series

analysis has been used, based on the comparison of successive time intervals between

dropouts.

The dynamics of a semiconductor laser with feedback is governed by nonlinear

light-matter interaction in the active medium of the laser, quantum noise due to

spontaneous emission and time-delayed feedback. Therefore, the dropouts in the

LFF regime can be noise-induced or triggered by deterministic processes. In this
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Thesis symbolic ordinal analysis has been used to statisticlly distinguish dropouts

that can be noise-induced from those that have signatures of a deterministic origin.

In this Thesis, the symbolic dynamics in the LFF regime has also been studied,

and serial correlations have been found among several consecutive dropouts. It

has been found a hierarchical and clustered structure of the symbolic dynamics.

Moreover, a minimal iterative model has been found that, despite its simplicity,

describes successfully the correlations found in the experiments.

Because of the importance of external forcing in dynamical systems, the effect of

current modulation on the symbolic dynamics of the LFFs has been studied. These

experiments have allowed to characterize the effect of the modulation in the symbolic

dynamics. The clusters of ordinal patterns formed without forcing remain under

external periodic forcing. The minimal model has been verified, as it reproduces

satisfactorily the symbolic dynamics of the experimental data.

Also, in this Thesis a technique has been developed to detect displacements of

two independent objects at subwavelength resolution (λ/160). With this purpose, a

setup has been developed with a semiconductor laser with dual feedback. In addition

to the high resolution, this protocol offers the advantage of sensing two objects by

just measuring one variable.
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A todos ellos debo mi más sincero agradecimiento.

Mis directoras de tesis: Incuestionable e imprescindible ha sido en mi aprendizaje

la labor de Cristina Masoller y Maria Carme Torrent. Ellas me han abierto las
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Mariona, no sé si como modernistas tenemos mucho futuro o no, pero el hacer
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aqúı, no hay espacio. En cualquier caso, Egara, ha sido muy
interesante escuchar tus ideas sobre experimentos con láseres
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Part I: Introduction

If I have seen further it is by standing on the shoulders of giants.

Isaac Newton
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Five decades have elapsed since the first laser was buit [1, 2]. At that time

(1960) the laser was considered ’a solution looking for a problem’, but since then, it

has dramatically changed our technological society. Hundreds of applications for the

laser have emerged, while thousands of millions of dollars are generated by the laser

industry.

The first laser was a rubi laser, and since then many different types of lasers have

been developed: chemical lasers, dye lasers, solid-state lasers, metal-vapor lasers,

semiconductor lasers, free electron lasers, etc. [3, 4]. Semiconductor lasers have be-

come the most widespread type of laser (more than 90% of the lasers fabricated every

year). Because they cover a wide range of wavelenghts (0.4 µm to 20 µm), powers

(from mW to kW) and they are suitable for many applications (telecommunications,

CD, DVD, Blu-ray, printing, pointers, barcode readers, gas sensors, surgery, material

processing, pump sources for solid state lasers and optical amplifiers, etc.).

Besides their direct applications in our society, semiconductor lasers have been

shown to be relevant devices in the research of dynamical systems. One interesting

aspect of semiconductor lasers is that they are easily perturbed through optical

injection, optical feedback, electro-optical feedback, or pump current modulation.

These perturbations induce instabilities in the output intensity of the laser, which can

result in a wide range of dynamical regimes, including periodic behavior and broad

band chaos [5–8]. One situation that induces complex dynamics in a semiconductor

laser is by submitting the laser to external optical feedback from a reflecting surface.

This thesis aims to investigate experimentally the dynamics of a semiconductor

laser induced by optical feedback in two directions: on one hand, to exploit the

laser’s complex dynamics for improving the understanding of nonlinear and stochastic

dynamical systems, and on the other hand to exploit the laser’s complex dynamics

for finding new technological applications that exploit the laser’s complex dynamics.



Chapter 1

Stochastic complex systems in

nature

Lisa, in this house we obey the laws of thermodynamics!

Homer Simpson (The Simpsons)

1.1 Introduction

Nature presents many fascinating complex systems. These systems are constituted

by numerous elements that interact with each other, leading to collective emergent

phenomena that can not be explained by analyzing its elements individually. Exam-

ples of complex systems are the human brain, cellular networks, insect populations,

the climate, the stock market, social networks, car traffic, and earthquake activ-

ity, among many others [9]. These examples of complex systems might seem to be

disconnected from each other, as they refer to very different aspects of nature and

social behavior. However, they share common underlying characteristics, as they can

all be studied with the same perspective and the statistical tools developed by the

complex systems community. Therefore, some results obtained from one complex

system might be extrapolated for a better understanding of other systems.

Most complex systems in nature share the following three basic ingredients: they

are nonlinear (i.e., the output of the system is not directly proportional to the in-
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put), noise is present in the system (random fluctuations of some of the variables

of the system, as well as observational noise, are unavoidable), and the information

propagates at a finite velocity, giving rise to time-delayed interactions. In addition,

the lack of full information about state of the system (one can measure only one or a

few relevant variables, and with a limited spatial and/or temporal resolution) makes

identifying signatures of determinism very complicated, and a hot topic of research

nowadays [10–19].

In many systems, the dynamics can be described through sequences of events

(sequences of neuronal spikes, of heart beats, earthquake times, etc.). A successful

approach for studying such systems is by focusing on an event-level description of

their dynamics, considering, for example, intervals between consecutive events.

1.2 Semiconductor lasers with optical feedback as

stochastic complex systems

In photonics, a clear example of a system producing a sequence of spike-like events

is a semiconductor laser with optical feedback. Under specific conditions (which will

be explained in detail in Chapter 2), the laser can present sudden irregular dropouts

of its output intensity, followed by slow recoveries (see Fig. 1.2). This dynamical

regime is referred to as Low Frequency Fluctuations (LFF) and, it has attracted a

great deal of interest over the last three decades [20–35], it is not fully understood.

MIRROR

τ

L
ext

LASER

Figure 1.1: (a) Scheme of a semiconductor laser with external optical feedback. The
emitted light is reflected by a mirror placed at a distance Lext, and it takes a time
τ = 2Lext/c to make the round trip, where c is the speed of light.
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As will be discussed in Chapter 2, a semiconductor laser can be described by

two coupled differential equations [5], that describe the time evolution of the photon

density and the carrier density in the active region of the laser. These equations

only allow transient relaxation oscillations, but the inclusion of optical feedback can

lead to complex dynamics. When part of the laser’s emitted light is re-injected,

by means of a reflecting surface, the light needs time to travel from the laser to the

reflecting surface and back to the laser, and this introduces a delay time that enables

high-dimensional dynamics (see Fig. 1.1).

Specifically, the output intensity of a semiconductor laser with optical feedback

can display high and low dimensional chaos [36, 37], intermittency [38], quasiperi-

odicity [39], period doubling [40], bifurcation cascades [41], etc. This sensitivity to

external perturbations makes the semiconductor laser an attractive device from the

basic’s research perspective, as it is an excellent tool to study complex dynamics, and

in particular the dynamics induced by time-delayed feedback. Because of this wide

range of dynamical possibilities, semiconductor lasers with optical feedback provide a

controlable experimental setup to understand these phenomena, which can be found

in many natural systems.

Also from the practical applications perspective, a semiconductor laser with op-

tical feedback is very relevant: on one hand, the induced perturbations might be

seen as a nuisance for a proper operation, where spurious reflections can lead to

unavoidable optical feedback, which degrades the laser performance in telecommu-

nications, data storage or reading, etc. Therefore, understanding and controlling

the feedback induced effects is crucial in a wide range of laser applications. On the

other hand, improving our knowledge of feedback-induced dynamics, can lead to new

applications of semiconductor lasers, as will be discussed in Chapter 2. Nowadays,

semiconductor lasers with optical feedback are being used for reservoir computing,

a novel neuro-inspired computation method [42–44]. They are also used for random

number generation [45, 46], as well as for chaos-based telecommunications [47].

As discussed before, the LFF is a feedback induced regime that has attracted a

lot of attention since it was forst reported [20]. From the point of view of complex

systems, this spiking regime is relevant because many natural systems show similar

spiking behavior.
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(a)

(b)

Figure 1.2: (a) Time trace of the intensity of a semiconductor laser in the LFF
regime, acquired with a 1 GHz bandwidth oscilloscope (Agilent, DSO9104A). The
output intensity of the laser presents sudden, irregular dropouts, followed by slow
recoveries. (b) A detail of the sharp drops followed by slow recoveries. This Thesis
focusses in studying the statistics of the time intervals between consecutive dropouts,
which will be referred to as inter-dropout intervals, or IDIs. The analysis will be
performed using a symbolic methodology, referred to as ordinal analysis.
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Another dynamical regime, which can be observed in a semiconductor laser with

optical feedback is the quasi-periodic (QP) regime. This QP behavior arises when a

dynamical system is ruled by two, or a few, frequencies which are incommensurate.

This Thesis focuses in these two dynamical regimes of semiconductor lasers with

optical feedback. They are used to improve our knowledge of complex systems, and

to develop a novel technique for subwavelength position sensing.

1.3 Overview of the thesis, objectives, chapter sum-

maries and main results

The main objectives of this Thesis are twofold: first, to study the nonlinear dynamics

of a semiconductor laser with external optical feedback, in the LFF regime, to im-

prove our understanding of stochastic complex systems. In this direction, this work

focuses on distinguishing signatures of stochasticity and determinism from observed

time series; unveiling hidden statistical features in the LFF dynamics; comparing

with the predictions of a well known model; and finding a minimal model that

describes the dynamics. Second, to exploit the quasi-periodic regime for a novel

application, specifically, for two-dimension subwavelength position sensing.

This Thesis presents experimental results, numerical simulations, and data anal-

ysis. Most of the work has been done in the laboratory of the DONLL research group

(Dinàmica i Òptica No Lineal i Làsers), at UPC in Terrassa (Spain). The experi-

ments presented in Chapters 4 and 5, and the simulations of the circle map model,

presented in Chapters 5 and 6 were performed by the author of this Thesis. The

experiments on modulation, presented in Chapter 6, were performed by the author

and Taciano Sorrentino. The simulations of the LK model (Chapters 5 and 6) were

performed by Sandro Perrone. The experiments and data analysis on subwavelength

position sensing (Chapter 7) were performed by the author and Seth D. Cohen in the

laboratory of Professor Daniel J. Gauthier (Duke university, North Carolina, USA).

The Thesis is organized as follows:

In Chapter 2, the dynamics of a semiconductor laser with optical feedback is



Chapter 1. Stochastic complex systems in nature 22

described. In particular, the LFF regime is described, as it is the dynamical regime

investigated in Chapters 4 to 6. Typical experimental features and the details of a

well established model, the Lang & Kobayashi model (LK) model, are also presented.

Chapter 3 describes the method of symbolic analysis used to study the LFF

regimes. This analysis method transforms the time series of inter-dropout intervals

into ordinal patterns, and it is used in chapters Chapters 4 to 6 to characterize the

complexity of the LFF dynamics. Other analysis methods are presented, and the

advantages and drawbacks of the ordinal symbolic analysis are discussed.

In Chapter 4, ordinal analysis is used to distinguish signatures of determinism

and stochasticity in the LFF dynamics. It has been an open question since the

LFF discovery, whether they are noise-induced stochastic instabilities or triggered

by deterministic processes. The study presented in this chapter allows to statisticaly

determine which dropouts are consistent with a stochastic process and which have

signatures of a deterministic one.

In Chapter 5, ordinal analysis is employed to unveil a symbolic structure hidden

in the LFF dynamics. A clustered hierarchy of ordinal patterns is found, which

is a signature of an underlying attractor topology, and serial correlations among

several consecutive dropouts are uncovered. Moreover, a minimal model is found,

a modified circle map, that mimics the LFF symbolic dynamics. This minimal

model has been previously used to describe the neural activity of sensory neurons of

paddlefish [48]. This suggests that semiconductor lasers with feedback could be used

to simulate neural activity, as if they were optical neurons. From this perspective,

yielding new light into the spiking, high-dimensional and stochastic LFF dynamics

can improve our understanding of sequences of neuronal spikes, or other spiking

real-world systems. Also, the ordinal analysis is used in this chapter to verify the

validity of the LK model in an unprecedent long time-scale, as serial correlation

among several consecutive dropouts are also found in the simulations of the LK

model.

Chapter 6 is devoted to analyze the LFF dynamics of the laser under external

periodic forcing. The response to a direct sinusoidal modulation of the bias current

is studied, by employing the ordinal analysis. This forced situation is of special in-

terest, not only because the LFFs can be suppressed via current modulation [49, 50],
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but also, from a complex systems perspective, because the interplay of nonlinearity,

noise, and periodic forcing leads to entrainment and synchronization, providing a

controllable experimental setup for studying these phenomena. In addition, because

the LFF dynamics is excitable [25, 32, 51], the influence of external forcing has also

attracted attention from the point of view of improving our understanding of how

excitable systems (like neurons) respond to external signals to encode information.

The LK model is also analized considering the external forcing, finding a good quali-

tative agreement with experiments. Next, the modified circle map model is analyzed,

and its suitability to describe the symbolic dynamics of the LFFs with pump current

modulation is demonstrated.

Chapter 7 exploits the sensitivity of the multifrequency power spectrum of the

laser in the quasi-periodic regime to perform two-dimensional (2D) subwavelength

position sensing. In the literature, different approaches have been developed in

order to detect subwavelength changes in the external cavity length of a laser with

feedback, which use self-mixing interferometry (see [52] for a recent review). These

laser-based approaches are restricted to 1D sensing or have the drawback that they

need to perform scans to do 2D sensing. Here, an experimental setup consisting of

a semiconductor laser with two external cavities is used to demonstrate 2D position

sensing. Using a λ = 1550 nm wavelength laser, displacements of ∆x ∼ 10 nm are

resolved (λ/160). With this setup, by measuring just one input (the power spectrum

of the intensity) two independent displacements can be simultaneously measured

with subwavelength resolution.

Chapter 8 presents the conclusions and future work as result of this research.

Finally, a list of publications and conference contributions related with this Thesis

is presented.





Chapter 2

Dynamics of semiconductor lasers

with optical feedback

Yes, in 1917 when Albert Einstein established the theoretic foundation for the laser

in his paper ”Zur Quantentheorie der Strahlung,” his fondest hope was that the

resultant device be bitchin’.

Sheldon Cooper (The Big Bang Theory)

2.1 Introduction

In 1917 Albert Einstein predicted that a photon, interacting with an exited atom,

could stimulate the emission of a second photon by this atom, being the latter

identical to the former [53]. It was not until 1954 that Gordon, Zeiger and Townes

developed the first maser [54], by amplifying the electromagnetic radiation in the

microwave frequency region. This paved the way for the Light Amplification by

Stimulated Emission of Radiation (LASER), the first laser, which came into reality

in 1960 [1, 2]. Since then, an explosion of different types of lasers has followed.

In particular, in 1962 different groups demonstrated the first semiconductor laser

[55–58].

25
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Figure 2.1: (a) Schematic representation of a laser. Light excitates the active medium
inside the cavity. The mirrors make the photons to go back and forth, amplifying
the stimulated emission. (b) Schematic representation of the stimulated emission
process, where a photon induces a electron-hole pair to recombine, by emitting a
photon identical to the former.

2.1.1 The laser operating principles

Most lasers are formed by an active medium in a resonant cavity (see Fig. 2.1).

The active medium consists of a collection of atoms, molecules, or ions, which have

several energy levels or energy bands. When these particles are in an excited state,

they can decay to a lower energy state by emitting a photon. In semiconductor

lasers, the active medium is a p-n junction of a semiconductor diode (therefore also

called laser diodes), where recombination of electrons from the conduction band, and

holes from the valence band (charge carriers) induces light emission. This process is

due to spontaneous and stimulated emission.

When a direct voltage is applied to the p-n junction, the electrons are in the

conduction band and the holes are in the valence band. At this stage, when a pho-

ton passes through the medium (initial photons proceed from quantum spontaneous

emission noise) it stimulates the electron-hole recombination, emitting a second,

identical photon. The identical features of all photons refer to the same wavelength,

phase, polarization, and propagation direction. The frequency, ν, of the emitted pho-

tons is related to the energy difference of the electron-hole pair (∆E = hν, where

h is Planck’s constant). That is why only a range of photon frequencies can induce

this process.

To sustain the stimulated emission, the medium is placed in a cavity with mirrors
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at its ends (free electron lasers, random lasers, or distributed feedback lasers do

not require a resonant cavity, but these lasers are not studied in this Thesis). In

semiconductor lasers the medium facets constitute the cavity. These mirrors reflect

the emitted photons and make them go back and forth in the cavity, amplifying the

process. The size and design of the cavity also select the modes (frequencies) that can

lase: for constructive interference inside the cavity, the wavelength of the photons

has to be a sub-multiple of the cavity length (this set of eavalengths is referred to as

longitudinal modes).

By making one of the ends of the cavity slightly transparent, light (highly monocro-

matic and coherent) can escape the cavity. When the gain in the cavity is larger

than the losses (by absorption and cavity losses), the laser reaches its threshold and

begins lasing.
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Figure 2.2: Output power vs. pump current of a laser diode. When the gain is
larger than the losses the system begins to lase, this happens at the threshold,
indicated with an arrow (27.8 mA in this case). The laser used is a 675 nm AlGaInP
semiconductor laser (Hitachi Laser Diode HL6724MG).

Figure 2.2 shows the output power of the laser vs. the pump current (also referred

to as light vs. current characteristic, or L-I curve). For pump currents below the

threshold, the output power (due to spontaneous emission) hardly increases with the

pump current. Above the threshold (at 27.8 mA in Fig. 2.2) there is a sharp increase

in the the output power, then presenting a linear dependence on the pump current.
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2.1.2 Characteristic features of semiconductor lasers

Relaxation oscillations. When a laser diode is switched on, the carrier density

(i.e., pairs of electrons and holes) increases at a finite rate, which implies a delay

in the laser switch on [59]. The nonlinear coupling between photons and carriers

results in transient oscillations, referred to as relaxation oscillations [5]. Figure 2.3

shows the optical output of the laser when it is subject to a step-like pump injection.

The frecuency of the relaxation oscillations increases with the pump current. Due

to the characteristic life-times of the carriers and the photons (10−9 s and 10−12 s,

respectively) the relaxation oscillation frequency is of the order of a few GHz.
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Figure 2.3: Emitted optical power of the laser subject to a step-like pump current
at time = 0 ns. Simulations of the rate equations presented in Section 2.4 with
parameters: τp = 1 ps, τn = 1 ns, µ = 1.5, β = 10−4.

Thermal effects. Depending on the pump current, thegeometry and the di-

mensions of the cavity, a laser can emit in one or a few longitudinal modes (referred

to as single-mode or multi-mode laser, respectively). When a semiconductor laser is

switched on, and for low pump currents, it often emits several longitudinal modes,

but, as the pump current is increased one mode dominates the emission. The emis-

sion modes depend, not only on the pump current, but also on temperature. Changes

on temperature affect the refractive index of the active medium and, as consequence,

they produce a shift in the frequencies of the cavity modes. An increase in temper-

ature induces a reduction of the band gap in the active medium, and therefore, also

a shift of the maximum gain of the active medium, which results in a shift of the

emission modes towards longer wavelengths [60].
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Figure 2.4 shows the optical spectrum, normalized to the maximum intensity, of

a multi-mode laser for three pump currents (low to high from left to right).
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Figure 2.4: Normalized optical spectrum of a semiconductor laser of nominal wave-
length of 675 nm (Hitachi Laser Diode HL6724MG) at three pump currents: (a)
29.10 mA, (b) 29.70 mA, and (c) 30.30 mA.

Another thermal effect that occurs at high pump current is due to Joule heating

and results in gain saturation

Amplitude-phase coupling and linewidth enhancement. In a semiconduc-

tor laser, the refractive index depends on the carrier density in the active medium,

which in turn varies with the photon density. This results in a coupling of phase and

intensity fluctuations, which broades the linewidth of the laser. It is phenomenolog-

ically represented by the α-parameter or linewidth enhancement factor [21].

2.2 Applications of semiconductor lasers

Since 1962, different semiconductor materials have been used as active medium to

obtain lasing emission. Depending on the semiconductor material, the optical wave-

length of the emitted light goes from infrared to ultraviolet. This, and the wide

range of output powers attainable (from milliwatts to kilowatts), make semiconduc-

tor lasers suitable for many applications, for scientific and for commercial purposes.

Laser diodes aer used for optical information processing. Information can be

coded in a sequence of zeros and ones. The tracks on CDs, DVDs, or blue-rays are

written with sequences of dark-bright patches. The light from a semiconductor laser

scans these tracks recognizing the reflectivity of every patch (if it reflects light, then

it is a ’one’, otherwise it is a ’zero’). The amount of information that can be stored
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depends on the resolution to read it, which is directly related to the wavelength of

the light (the wavelength used for CDs is of 780 nm, for DVDs 650 nm, and for

blue-rays 405 nm), which in turn is inversely proportional to the storage capacity of

the disk (one CD can store 0.7 GB, while double-sided DVDs can store 9.4 GB, and

double-sided bue-ray 50 GB).

Another use of semiconductor lasers can be found in medicine and biology. In

surgery, they represent a source of heat that cuts organic tissues, as a scalp, based

on the phototermal interaction of laser light with the main components of the ex-

tracellular matrix of specific tissues [61]. They can also be used for single particle

tracking techniques to explore biomolecules dynamics in live cells [62].

The field where laser diodes are of most importance is in telecommunications.

Optical fibers are glass filaments, made basically of silica, that have a minimum

of absorption of light at around 1550 nm wavelength, and also at around 1310 nm

wavelength. Telecommunications through optical fiber use semiconductor lasers op-

erating at these wavelengths, and provide transmission rates up to several tens of

gigabytes/s. Because semiconductor lasers are unexpensive, compact, energy effi-

cient and reliable, they are the lasers used in fiber TV, local area networks (LAN),

and to optically pump Erbium-doped fiber amplifiers used in long distance telecom-

munications.

In position sensing and distance measurements, semiconductor lasers are also

very popular. By sending a modulated signal, detecting its reflection on a target, and

comparing the phase of the emitted light with the reflected one, it can be measured

the distance to the target with high resolution [63].

From the fundamental point of view, semiconductor lasers are relevant for un-

derstanding and investigating different phenomena of nonlinear systems.

Semiconductor lasers are described by two coupled rate equations, which do not

manifest chaos by themselves, but semiconductor lasers are very sensitive to external

perturbations (injection, modulation, optical feedback, etc.), that destabilize the

laser output, and can drive the system to display highly complex nonlinear dynamics

and bifurcations. This behavior openes a rich field of research, as diverse dynamical

phenomena can be observed, like excitability [25], low frequency fluctuations [24, 64],

coherence collapse [65, 66], synchronization [67], stochastic resonance, coherence
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resonance or ghost resonance [68–71]. Therefore, semiconductor lasers with feedback

are good testbed to improve our understanding of these phenomena.

These optical instabilities are seen as a nuisance for engineering performance, but

a challenge from the fundamental science point of view.

One of the first applications of optical feedback in semiconductor lasers is the

threshold reduction, as will be discussed in the next section. Optical feedback can

also induce a narrowing of the linewidth, with clear advantages in optical communi-

cations [72].

Other applications, related to the feedback-induced chaotic dynamics, are found

in chaotic secure communications [47, 73], as the high-dimensional dynamics can be

used to encrypt information, embedded in a chaotic signal, and transmit it securely.

Another application of laser dynamics is in the performance of chaotic radars [74],

as the chaotic dynamics generated by a semiconductor laser can be used to achieve

wide range high-resolution, secure detection. Chaotic semiconductor lasers also offer

a fast and reliable way to generate random numbers [43, 45, 46], which is of great

importance in numerical simulations, or in secure communications.

Recently, a novel computational method has been demonstrated, referred to as

reservoir computing [75]. It is inspired in the way the brain processes and computes

information. This concept takes advantage of the transient states that can be induced

by a nonlinear system, and it can be performed by using a semiconductor laser

network. The complex transient dynamics required in some of the experiments can

be obtained with a laser (as nonlinear system), submitted to a time-delayed feedback

[76, 77].

2.3 Semiconductor lasers with optical feedback

When a semiconductor laser is submitted to optical feedback, using a reflecting

surface, it can present a wide range of dynamics. One of the first effects of optical

feedback is on the laser threshold. Figure 2.5 depicts the dependence of the optical

output of the solitary laser, without feedback (blue), and with three feedback levels

(red, green and black), vs. the pump current. The vertical lines indicate the region

where LFF dynamics takes place for the highest feedback level, corresponding to the
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black L-I curve.
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Figure 2.5: Effect of optical feedback in the lasing threshold. The laser starst las-
ing at lower values of the pump current. Three feedback strengths are plotted,
corresponding to 6.5%, 8%, and 11% threshold reduction. The vertical lines indi-
cate the region of pump currents where the LFFs take place for highest feedback
case. The laser used is a 675 nm AlGaInP semiconductor laser (Hitachi Laser Diode
HL6724MG)

The laser threshold is reduced by optical feedback (the light re-entering the laser

cavity reduces the cavity losses and, thus, the threshold current). The stronger the

feedback, the greater the threshold reduction. The amount of feedback can then be

quantified by the reduction of the threshold pump current, as

ηreduction =
Isol − Ifb

Isol
× 100, (2.1)

where ηreduction stands for the percentage of the reduction of the threshold, Isol is

the threshold of the solitary laser (without feedback), and Ifb is the threshold of the

laser with feedback. The threshold reductions depicted in Fig. 2.5 correspond to

6.5% (red), 8% (green), and 11% (black).

A key parameter in the dynamics of a laser with feedback is the delay time, τ

(the time needed by the light to do a round trip in the external cavity), determined

by the cavity length. Figure 1.1(a) depicts schematically a semiconductor laser with

external optical feedback. The delay time is
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τ =
2Lext

c
. (2.2)

where Lext is the length of the external cavity and c is the speed of light.

Due to the relaxation oscillations of the semiconductor laser, the external cavity

can be classified as short cavity, if the delay time is of the order or smaller than

the relaxation time (of the order of hundreds of picoseconds) [64, 78]; or long cav-

ity, if the delay time is much longer than the relaxation time [79]. The dynamics

induced in these two regimes are qualitatively different. This Thesis is focussed on

the long cavity regime, as the lengths of the external cavities in the experiments

range from tens of centimeters to a few meters, which give delay times between 3 ns

and 55 ns (one or two orders of magnitude greater than the period of the relaxation

oscillations).

Figure 2.6: Dynamical behavior for a semiconductor laser with feedback in the injec-
tion current-feedback strength parameter space. Four regimes are indicated. Figure
from Heil et al., Phys. Rev. A, 60, 634, 1999 [66]. Feedback increases from right to
left.

The dynamics that arises in this long cavity regime is high dimensional [80], and

depends on several parameters. Figure 2.6 (taken from the work of Heil et al. [66])

maps the dynamics of a semiconductor laser with feedback, in the current-feedback

space. For different parameter combinations, four regimes can occur: i) coexistence
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of stable emission and LFFs, ii) LFFs, iii) coexistence of LFFs and coherence collapse,

and iv) fully developed coherence collapse. The coherence collapse term refers to a

large increase in the linewidth of the laser mode (from hundreds of MHz to tens of

GHz). This regime occurs for moderate and for high feedback strengths, and pump

currents well above the laser threshold (B in Fig. 2.6) [36, 38, 65, 81, 82]. Following

the dotted line from A to B in Fig. 2.6 the system explores all four regimes. Of

special relevance in this Thesis is the LFF regime.

2.3.1 The low-frequency fluctuations (LFFs) regime

For moderate feedback strengths and pump currents close to the laser threshold (as

indicated in Fig. 2.5), optical feedback induces irregular dropouts with a mean inter-

dropout interval of the order of hundreds of nanoseconds, that results in a peak in

the power spectrum (see Fig. 2.7) with a frequency of the order of a few tens of

MHz. These fluctuations (first observed by Risch et al. in 1977 [20]) have a longer

time scale than the other time scales of the system, like the relaxation oscillations

(smaller than nanoseconds for pump currents above the laser threshold) or the time

delay due to the external cavity (nanoseconds to tens of nanoseconds). That is

why they are referred to as low-frequency fluctuations (LFFs). Figure 2.7 shows

the radio-frecuency (RF) spectrum of the dynamics of a laser with optical feedback.

Two peaks are depicted, one about 20 MHz due to the LFFs, and another at about

250 MHz, due to the external cavity delay-time.

The LFFs consist of sudden dropouts of the laser intensity, followed by a slow

recovery (of a duration of several delay times). After one dropout has taken place,

the system recovers and then emits a nearly constant output power, until the next

dropout takes place, as seen in Fig. 1.1, that depicts a time series in the LFF regime,

recorded with a 1 GHz bandwidth oscilloscope and a time delay of 4 ns.

In fact, in this regime, the laser intensity manifests a fast pulsing dynamics, of the

order of picoseconds, but due to the limitations of the experimental detection system

in the laboratory, which has a limited bandwidth (1 GHz), it is only the envelope of

the fast dynamics that can be observed. This fast dynamics is predicted by a rate

equation model with delayed feedback (LK model, see Section 2.4 for details), and

was first observed experimentally by Fischer et al. in 1996 [24]. Figure 2.9, taken
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Figure 2.7: Power spectrum of the intensity of the laser, acquired with an RF spec-
trum analyzer (Anritsu MS2651B, 3 GHz). The photodetector used has a bandwidth
of 2 GHz. The horizontal scale ranges from 0 MHz to 300 MHz. Two peaks are seen,
at about 20 MHz, and at about 250 MHz. The first one corresponds to the LFFs,
while the second one to the external cavity frequency.
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Figure 2.8: Output intensity of the laser in the LFF regime. Experimentally recorded
with a 1 GHz bandwidth oscilloscope (Agilent DSO 9104A), for a time delay feedback
of 4 ns.

from Fischer et al. [24], shows in the top panel the slow dynamics in the LFF regime,

with the sudden dropouts and the inter-dropout intervals of the order of hundreds

of nanoseconds, and in the bottom panel the fast pulsing dynamics, of a much faster

time scale.

In this regime the laser can emit several longitudinal modes (optical frequencies).

Indeed, all the experiments performed in this Thesis in the LFF regime are done with

multimode lasers. Figure 2.10 shows the optical spectrum of a 675 nm wavelength

laser without feedback (a, d), and with feedback (b, c, e, f), acquired with an Optical

Spectrum Analyzer (Anritsu MS9710C). The figures of the top row correspond to

low pump currents, and the figures of the bottom row correspond to higher pump

currents. It can be observed that optical feedback induces the laser to emit in several

longitudinal modes, equally spaced (Fig. 2.10(b,e)). By using a diffraction grating as

external reflecting surface, almost single longitudinal mode emission can be achieved

(Fig. 2.10(c,f)).

A common way of characterizing the LFF dynamics is by focusing on the inter-

dropout intervals, i.e., the time intervals between two consecutive dropouts (IDIs). A
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Figure 2.9: (a) Output intensity of the laser with feedback, where the LFF dropouts
are observed. (b) Fast pulsing dynamics acquired with a fast streak camera. Figure
from I. Fischer et al., Phys. Rev. Lett., 76, 220, 1996. [24]
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Figure 2.10: (a,d) Optical spectrum of a laser of a nominal wavelength of 675 nm,
without feedback. (b,e) Optical spectrum of the laser with feedback from a mirror.
(c,f) Optical spectrum of the laser with feedback from a difraction grating. Top row
corresponds to low pump current. Bottom row corresponds to high pump current.



Chapter 2. Dynamics of semiconductor lasers with optical feedback 39

typical feature of the statistics of the IDIs is that, as the pump current is increased,

the dropouts become more frequent and regular. Figure 2.11 depicts the experimental

time series of a semiconductor laser with feedback in the LFF regime for two values of

the pump current (top row), and the corresponding histograms of the inter-dropout

intervals (middle row). It can be observed that the distribution of the IDIs presents a

two peak structure for low pump currents, while it becomes narrower for high pump

currents. Figure 2.11(e) displays the dependence of the mean inter-dropout interval,

〈∆T 〉, with the pump current. 〈∆T 〉 is depicted for the range of pump currents

where the LFF dynamics takes place. In Fig. 2.11(f) the effect of the pump current

on the normalized standard deviation (σ/〈∆T 〉) is depicted. There is a maximum

in the dispersion of the IDIs at low currents, followed by a decrease of σ/〈∆T 〉 with

increasing pump current.

2.3.2 Other dynamical regimes

As mentioned before, by following the vertical dotted line in Fig. 2.6 from A to B,

four dynamical regimes can be explored (LFFs, coexistence of stable emission and

LFFs, coexistence of LFFs and coherent collapse, and coherence collapse). For low

pump currents the coexistence between the LFFs and stable emission is found. In

this regime bursts of LFFs alternate with long times of stable, continuous emission.

Once the system reaches a fixed point in phase space, it stays there until noise kicks

it out, and a new burst of LFFs takes place. As the pump current is low, the system

stays in the fixed point for periods of time longer than the LFF recovery time. Figure

2.12(a) shows the time trace of the laser in the coexistence regime between LFFs

and stable emission.

By slightly increasing the pump current, the laser enters into the LFF regime.

The interval between dropouts (∆T ) decreases as the pump current increases, as

mentioned above. For large enough currents the dropouts are too frequent to be

distinguished and there is a continuous transition to the fully developed coherence

collapse [65]. Figure 2.12(b) depicts a time trace of the laser in the transition from

the LFF regime to the coherence collapse regime.
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Figure 2.11: Experimental time trace of the laser (top row) in the LFF regime: (a)
low pump current, I = 26.5 mA, (b) high pump current, I=27.3 mA. (c,d) Corre-
sponding histograms. (e) Mean inter-dropout interval (〈∆T 〉) vs. pump current.
(f) Normalized standard deviation (σ/〈∆T 〉) vs. pump current. These results are
consistent with previous works [26, 27, 33, 70].
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Figure 2.12: (a) Experimental time trace showing coexistence between LFFs and
stable emission. (b) Experimental time trace in the transition from the LFF regime
to the coherence collapse regime.

2.4 Modeling a semiconductor laser with optical

feedback: the Lang & Kobayashi model

As mentioned before, semiconductor lasers can be described by two coupled rate

equations [5, 60]. These equations describe the optical field, and the carrier density

in the active medium of a laser.

In 1980, Lang and Kobayashi proposed a model to describe the behavior of a

semiconductor laser submitted to optical feedback [83]. The Lang and Kobayashi

(LK) model consists of two coupled delay-differential rate equations governing the

evolution of the slowly varying complex electric field amplitude, E, and the carrier

density, N . The model equations are:

dE

dt
=

1

2τp
(1 + α)(G− 1)E + ηE(t− τ)e−iω0τ +

√

2βspξ, (2.3)

dN

dt
=

1

τN
(µ−N −G|E|2), (2.4)

where τp and τN are the photon and carrier lifetimes respectively. α is the linewidth

enhancement factor, that describes the coupling between the amplitude and the

phase of the electric field [21]. G is the optical gain, G = N/(1+ ǫ|E|2) (with ǫ being

a saturation coefficient). It describes the gain saturation, due to hole burning or
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carrier heating. µ is the normalized pump current parameter (µ = 1 at threshold).

η is the feedback strength, τ is the feedback delay time, ω0τ is the feedback phase,

βsp is the noise strength, representing spontaneous emission, and ξ is a complex

uncorrelated Gaussian noise, with zero mean and unit variance.

The LK model makes strong simplifications with respect to the experimental

situation. For the laser emission, it considers a single mode emission, while feedback

often induces multi-mode emission (except in single-mode lasers). It also assumes the

feedback strength to be weak or moderate, and neglects the effects of multiple round-

trips of the light in the external cavity. It neither considers spatial effects, or thermal

effects (in particular the shift of the emission wavelength with increasing current due

to Joule heating). However, these effects have been included in extensions of the

model [5].

Due to all these simplifications only a qualitative agreement with experimental

observations could be expected, but surprisingly, the LK model describes to a great

extent the dynamics of a semiconductor laser under a wide range of conditions: LFFs,

coherence collapse, or coexistence of LFFs and continuous emission.
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Figure 2.13: Time series simulated numerically with the LK model. The fast dynam-
ics, of the order of picoseconds is shown in the blue trace, while the filtered signal,
to account for the limited bandwidth of the experimental instruments, is depicted
in red. The LFF dropouts can be observed in the filtered trace. The data are a
courtesy of Carlos A. Quintero.

The LK model predicts the fast dynamics mentioned above, of the order of pi-

coseconds, in the LFF regime. This can be observed in Fig. 2.13, where the fast
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dynamics is plotted in blue and the filtered time series, the envelope of the fast

dynamics that depicts the irregular dropouts, is plotted in red. Therefore, in order

to take into account the bandwidth limitations of the experimental equipment, the

time series obtained from the model simulations have to be filtered out.

Figure 2.14 is equivalent to Fig. 2.11 but obtained from numerical simulations

of the LK model. Panels (a,b) show two typical time traces in the LFF regime,

corresponding to two values of the pump parameter (µ = 0.98 and µ = 1.02, where

µ = 1 corresponds to the laser solitary threshold). Panels (c,d) are the corresponding

histograms of the inter-dropout intervals, ∆T . (e) plots the mean ∆T vs. the pump

current, and (f) depicts the normalized standard deviation, σ/〈∆T 〉, vs. the pump

current. By comparing Fig. 2.14 with Fig. 2.11, a good qualitative agreement

experiments-simulations can be observed in the statistics of the intervals between

dropouts. The dependence with the pump current of 〈∆T 〉 and σ/〈∆T 〉 is equivalent

for the experiments and the numerical simulations [33, 70]. Also the histograms are

in a good qualitative agreement [30, 84].

Even though, for low pump current in the numerical histogram (Fig. 2.14(c))

there is a sharp peak at low ∆T values, that is not seen in the experimental his-

togram (Fig. 2.11(c)). The reason of this peak is the presence of intermittent bursts

of regular spikes (see Fig. 2.14(g)). This regular dynamics has been observed ex-

perimentally in the literature and has been referred to as regular pulse packages

[64, 85, 86]. This phenomena can be avoided by the criterion to detect the dropouts

(explained in detail in Section 4.2).

It has been a long debate whether the origin of the LFFs is stochastic or deter-

ministic. A first explanation, due to Henry and Kazarinov [87], argued that they

were caused by spontaneous emission fluctuations. They described the system in

a potential well, that leaves it due to noise, then producing the LFFs. Another

explanation [24, 88] suggested a deterministic origin for the LFFs. Sano [22] made

an analysis of the trajectory in phase space, and found that the LFFs are caused

by collisions of the trajectory with unstable fixed points. Further experimental and

numerical analysis [23, 31] have shown that both processes, stochastic and deter-

ministic, are required to explain the intensity dropouts in the LFF regime. Indeed,

the dropouts, in deterministic simulations, are interpreted as a transient dynamics
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Figure 2.14: Numerically computed time traces of the laser intensity. (a) µ =
0.98, and (b) µ = 1.02. (c,d) Corresponding histograms of the IDIs. (e) Mean
inter-dropout interval (〈∆T 〉) vs. pump current. (f) Normalized standard deviation
(σ/〈∆T 〉) vs. pump current. (g) Detail of the regular pulse packages in the simulated
time-series for µ = 0.98. this figured is taken from the supplementary information
of A. Aragoneses et al., Sci. Rep. 4, 4696, 2014. The simulations were performed
by Sandro Perrone.
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towards stable fixed points in phase space, and escapes from the fixed points are

triggered by noise [34, 35]. Chapter 4 of this Thesis is devoted to statistically dis-

tinguish dropouts triggered by stochastic fluctuations and dropouts which display

signatures of determinism.





Chapter 3

Symbolic time-series analysis

One of the pleasures of looking at the world through mathematical eyes is that you

can see certain patterns that would otherwise be hidden.

Steven H. Strogatz

3.1 Introduction

As already mentioned in Chapter 1 and Chapter 2, a great variety of complex systems

can be found in nature, whose different dynamics range from complete regularity to

full stochasticity. Between these extremes, many levels of complex behavior can be

manifested.

When studying a dynamical system, it can happen that, due to the intrinsic

characteristics of the system, or due to the limitations of the experimental detection

equipment, the information can only be recorded in the form of sequences of events,

i.e., sequences of spikes, earthquakes, tweets, peaks of solar magnetic activity, etc.

When analyzing a time series obtained from an experiment or from a numerical

simulation, from a natural or a man-made system, it is not straightforward to de-

termine which method of analysis extracts all the information that is contained in

the time series. Different analysis methods have been developed through the years,

specially devoted to quantify the complexity of the dynamics [14, 89–93].

47
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One relevant information when analyzing complex time series is whether they

have been produced by a stochastic process, by a deterministic one, or by a com-

bination of both. One way of distinguishing if the dynamics is deterministic or

stochastic is by estimating the Lyapunov exponent, or the Kolmogorov-Sinai en-

tropy [90, 94, 95]. These measures give information about how chaotic or stochastic

a system is.

The correlation dimension also provides relevant information as a pure stochastic

system has an infinite fractal dimension, while a deterministic system has a finite

fractal dimension, as introduced by Grassberger and Procaccia [96].

Entropy is a relevant concept in dynamical systems, as it can be interpreted as

the disorder, or lack of information in a system. Shannon [97] defined entropy as the

measure of the uncertainty associated to the physical process, P , as

S[P ] = −
N
∑

i=1

pi ln(pi), (3.1)

where the probabilities {pi}, such that
∑N

i=1 pi = 1, characterize the process P . For

a completely known process, which is predictable with certainty, Shannon’s entropy

is minimum, S[P ] = 0, while for a uniform distribution, where the knowledge about

the system is minimum and all outcomes are equally probable, Shannon’s entropy is

maximum, S[P ] = ln(N), with N being the number of possible outcomes.

Another way to quantify the stochasticity and determinism in time series is by

considering coarse grained dynamical entropies, based on the fact that infinite preci-

sion is a never reachable limit [98], and considering a nontrivial dependence between

precision and predictability.

The auto-correlation function is another well-known function, commonly used to

infer correlations and nontrivial structures in the data [89]. It can be used to explore

correlations at different time scales in the time trace, as it compares the trace with

itself after a delay τ , and allows to find repeating patterns in the complex signal. The

auto-correlation function is related to the power spectral density, through the fast

Fourier transform (Wiener-Khinchin theorem), which is another well-kown time se-

ries analysis method in the frequency domain. It allows to idensity the characteristic

frequencies in the dynamics.
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3.2 Symbolic analysis

Another way of analyzing and extracting information from time series is by trans-

forming the acquired data into series of symbols. This method can retain the relevant

temporal information of the system, and can result in a faster and more efficient nu-

merical computation [99]. Transforming a time series into a series of symbols is

referred to as symbolic analysis. It consists in defining certain symbols or patterns,

from the original time series, which will be then analyzed.

Most approaches for defining symbols rely on partitioning the range of the original

observations into a finite number of cells or patterns. This discretization process can

be based on the Poincaré section [100], that follows a stroboscopic sampling of the

multidimensional trajectory of the system in phase-space, giving as result a discrete-

time mapping, having reduced the dimensionality of the problem. Poincaré section

can then be subdivided into cells and assign to all points in each cell the same symbol.

The transformation into a symbolic series can be based on a thresholding criteria,

by transforming into a sequence of ’ones’ and ’zeros’ those values that are higher or

lower, respectively, than a specific threshold [101, 102]. To inspect different time

scales this binary symbolic sequence can also be transformed into a sequence of

more than two symbols by collecting groups of consecutive symbols.

The temporal structure present in the system can be revealed by computing

the relative frequencies of appeareance of each symbol in the sequence, and the

presence of forbidden or missing patterns can also reveal relevant information about

the dynamics of the system.

Of course, the conventional methods of time series analysis, such as auto-correlation,

entropy or Lyapunov exponent calculations can be applied to the symbolic series to

gain insight into the dynamics.

In 2002, Bandt and Pompe [103] proposed a new method for analizing time series,

referred to as ordinal analysis. They define symbolic ordinal patterns by comparing

neighbouring values of the time trace, and then compute the probability of each

pattern.
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3.3 Ordinal symbolic analysis

The method proposed by Bandt & Pompe is as follows:

Given a time series of length N , X = {x1, x2, x3, ..., xN}, it is divided in N−D+1

vectors of dimension D:

{x1, ..., xD}, {x2, ..., xD+1}, ..., {xN−D, ..., xN−1}, {xN−D+1, ..., xN},

where D is the embedding dimension. Then each element of a vector is replaced

by a number from 0 to D-1, according to the relative value of the element in the

ordered vector (0 corresponding to the shortest, and D-1 to the longest value in each

vector). In this way, each vector has associated an ordinal pattern (also referred to

as word) composed of D symbols. The number of ordinal patterns for an ambedding

dimension D is D!. For example:

• For D = 2 there are two possible ordinal patterns (OPs): xi < xi+1 gives word

’01’ and xi+1 < xi gives word ’10’.

• For D = 3 there are six possible OPs: xi < xi+1 < xi+2 gives ’012’, xi+2 <

xi+1 < xi gives ’210’, etc.

Figure 3.1 depicts schematically the ordinal patterns formed for D = 2, and

D = 3. Also three of the 24 OPs for D = 4 are shown.

D = 3 D = 4

01

D = 2

10
012
120

021
201

102
210

0123

0132

0213

...

Figure 3.1: Schematic representations of the ordinal patterns (OPs) of dimension
D = 2 (’01’, and ’10’), D = 3 (’012’, ’021’, ’102’, ’120’, ’201’, and ’210’), and three
examples of OPs of dimension D = 4 (’0123’, ’0132’, and ’0213’).
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Then, by computing the probabilities of occurrence of the different words, the

more frequent and the more unfrequent patterns can be found and one can gain

also informatino about the existence of forbidden, or missing patterns [104, 105].

To perform a statistically significant analysis, the number of data points in the

time series should be N ≫ D!. Otherwise, it can not be distinguished whether the

computed probabilities are due to the dynamics of the system of to lack of data.

Then, the permutation entropy is defined as the entropy of the probabilities of

the D! different patterns, normalized to its maximum value, Smax = lnD! [103]:

S =

−

D!
∑

j=1

pj ln pj

Smax

,

Compared with other symbolic methods, the ordinal transformation has the ad-

vantage that the symbolic sequence keeps the information about the correlations

present in the time-series and the memory in the system, but it has the drawback

that the information about the actual value of each element is lost.

This analysis method can be used to explore the dependence of the probabili-

ties of the ordinal patterns with different parameters of the system, whether from a

model or from an experimental setup. As an example, the ordinal dynamics, with

words of D = 3, of two well-kown dynamical systems is analized: the logistic and

tent maps. Their iterative equations are given by

Logistic map: xn+1 = rxn(1− xn)

Tent map: xn+1 =







µxn if xn < 1/2

µ(1− xn) if xn > 1/2

Given an initial condition, these two iterative models provide sequences of values

which are deterministic time series, neglecting numerical noise. By comparing three

consecutive values of the sequences, they can be transformed into sequences of D = 3

OPs. Then, the model parameter can be varied (r for the logistic map, and µ for

the tent map), and the dependence of the probabilities with respect to the model
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parameter can be analyzed. Figure 3.2 shows the probabilities of the OPs for the

logistic map (a) and the tent map (b), as the corresponding model parameter is

varied.
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Figure 3.2: The probabilities of the ordinal patterns for D = 3 are plotted versus
the model parameter for (a) the logistic map varying r, (b) the tent map varying µ.

In both maps, the ordinal pattern ’210’ is always a forbidden pattern. This

indicates that three consecutively decreasing values can not be found in the time

series. Also, for low parameter values, the ordinal pattern ’012’ is forbidden (three

consecutively increasing values). Therefore, for low paramenter values, there is an

oscillatory behavior such that only words which contain alternatively increasing and

decreasing values are possible. As the model parameter values increase, changes in

the dynamics are reflected in different probabilities of the words.

3.4 Applications of ordinal analysis

This ordinal pattern analysis has demonstrated its usefulness in several fields since it

was proposed in 2002, from neuroscience, to stock markets, or climatology [106, 107].

Amigó and co-workers [104, 108] used it to distinguish deterministic chaos from

stochasticity in time series with observational white noise. They analized the forbid-

den patterns, and their dependence with the time series length, studying the decay
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rate of missing patterns. Carpi et al. [109] applied the ordinal patterns analysis to

study Brownian motion and different types of noise. They studied the decay rate of

the missing patterns with the time series length, and with the embedding dimension

D. They found that missing ordinal patterns are more persistent in time series with

higher correlation structures.

One issue of importance in a complex time series is determining the intrinsic time

scale of the dynamics. Zunino et al. [110] applied the Bandt-Pompe methodology to

a Mackey-Glass oscillator and found that the permutation entropy is minimum when

the delay, r, used to construct the OPs (x1, x1+τ , x1+2τ,...) coincides with the delay

of the system. This method has been shown to be robust to noise contamination or

to considering systems with several time delays.

The probabilities of the different ordinal patterns can also be used to search for

correlations among different time series. To do so, a two-dimensional array of ordinal

patterns with D!×D! OPs can be constructed [111, 112].

Ordinal analysis has demonstrated to be useful also for the study of time series

from neuroscience. For example, in epileptic seizures, it has been applied to identify

and characterize the epileptic activity, in order to find evidence for the prediction

of ocurrence of seizures. Veisi et al. [113] showed that ordinal patterns analysis

allows distinguishing between normal and epileptic EEG. Cao et al. [114] found in

some patients that, after a seizure, the brain first becomes more regular, then its

irregularity increases and finally it moves to the normal state. Li et al. [115] used

permutation entropy to detect the pre-seizure state in a group of rats in EEG, five

seconds in advance. Another work [116] suggests that forbidden patterns may be

used as a predictor of absence of epileptic seizures.

Ordinal analysis has also been applied in cognitive neuroscience, for example

to achieve better signal-to-noise ratio in language processing experiments, with a

significant reduction in the number of trials required to identify the task [117].

In cardiac diseases, ordinal analysis has also demonstrated its potential. These

diseases are associated with changes in the patterns of beat-to-beat intervals. Permu-

tation entropy has improved the diagnostic and classification under different condi-

tions (congestive heart failure, myocardial infarction, or fetal heart state) [118–120].

Because of the interaction of the heart with other physiological mechanisms, failure
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in one of them can lead to failure in the heart, or vice versa. This analysis method

has shown to be useful in distinguishing the directionality of the driving [121].

The hability of ordinal analysis to discriminate between different types of time

series has also found applicability in econophysics. Real time series from the stock

market have been analyzed [122] and it has been found that they present a much

higher number of forbidden patterns than stochastic time series. Ordinal analysis has

also been used to identify periods where noise prevailed and periods with a more de-

terministic behavior of the makets. For example, Zunino et al. [123, 124] performed

statistics of ordinal patterns to show that markets from developed countries have a

lower number of forbidden patterns, and a higher permutation entropy, indicating

that they are less predictable.

The ordinal patterns methodology has also been used to gain insight into the

solar activity. In 2012, Suyal et al. [125] analyzed the solar wind of a specific solar

cycle and found a hysteresis behavior with a fluctuating increase of the permuta-

tion entropy towards the peak activity, and a smooth decrease as the solar activity

diminishes.

In climatology, the ordinal patterns time series analysis is also reporting its use-

fulness. By analyzing different intervals during the Holocene period, Saco et al.[126]

found intervals of low permutation entropy, and an increase in the forbidden patterns,

suggesting a higher predictability of the El Niño Southern Oscillation (ENSO), as

well as periods of increasing and decreasing entropy of 2,000 years. Deza et al. [127]

used the ordinal patterns with different embedding dimensions to explore climate

networks, and found correlations between geographically distant regions at specific

time scales. They found a clear relation between the spacing in the ordinal patterns

and the connectivity in the equatorial Pacific area.

3.5 Ordinal analysis of the LFF regime

The LFF regime was described in detail in Chapter 2, and it is one of the aims of this

Thesis to improve our understanding of this dynamics. With this purpose, ordinal

analysis is used to analyze the time series of the output intensity of the laser in the

LFF regime.
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A thresholding method for detecting the dropout times is defined (see details in

Section 4.2). Once the dropouts are detected, the intensity time series is transformed

into a sequence of times when the dropouts occur, {t1 < t2 < t3 < ... < tN}. Then,

ordinal analysis is applied to the sequences of inter-dropout intervals (∆Ti = ti+1−ti),

also referred to as IDIs. This results in sequences of OPs, whose probabilities are

then computed for the different experimental measurements, or model parameters.
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Figure 3.3: Typical experimental time series of a semiconductor laser with optical
feedback in the LFF regime. The red dots indicate the detection of the dropouts,
and several words are indicated as examples. Two words are depicted for D = 2;
they correspond to two sets of two intervals each, which have different lengths, but
they correspond to the same word (’01’). For D = 3 the word ’012’ is shown; for
D = 4, the word ’2031’ is shown.

Figure 3.3 shows a typical time trace of the laser intensity in the LFF regime.

As examples, some words for D = 2, D = 3, and D = 4 are depicted. The detection

of the dropouts is indicated with red dots. It has to be noticed that, as the absolute

magnitude of the time interval between dropouts is not taken into account, two

different sets of intervals can give rise to the same word. This is shown in Fig. 3.3

with the two words of D = 2 (’01’), and the two words of D = 3 (’012’) depicted.

When forming words, once the first one is constructed, there are two options

for the consecutive ones: they can be considered by overlapping values, i.e., {∆T1,

∆T2, ∆T3}, {∆T2, ∆T3, ∆T4}, ...; or non-overlapping values, i.e., {∆T1, ∆T2, ∆T3},
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{∆T4,∆T5,∆T6}, ... In the experimental time traces, the probabilities computed in

one way or in the other give equivalent results, something that is expected, as the

acquisition of the experimental data performed by the oscilloscope could have began

at t1, at t2, or at t3, etc. In order to have longer statistics, each sequence of dropouts

is transformed into D sequences of words, by considering respectively t1, t2, ..., tN

as the first dropout for each sequence. Then the probabilities obtained with each

sequence of words are averaged. This is equivalent to consider overlapping OPs.

This transformation of the time series allows to compute the probabilities of the

different words as the experimental or numerical parameters are varied, for example,

the pump current in a laser with optical feedback, or the modulation amplitude, in

the case of a laser with external periodic forcing.

The Bandt & Pompe method has already shown to succesfully characterize the

dynamics of semiconductor lasers with feedback. In 2010, Tiana-Alsina et al. [128]

used ordinal analysis to characterize the LFF dynamics. They computed the entropy

and the statistical complexity measure introduced by Mart́ın et al. [129] via ordinal

patterns. They found a trasition in the dynamics, as the pump current is increased,

characterized by a reduction of the permutation entropy accompained by an increase

of the statistical complexity, which is robust to the size of the data sets and the

dimension of the ordinal patterns. In a follow-up study, Rubido et al. [130] applied

the ordinal analysis to characterize the dynamics of the LFF regime for a wide range

of pump current values. They found that for low pump currents the dropouts have

no correlations, as all the words were equally probable; but for higher pump currents,

correlations between consecutive dropouts appear. Their results were consistent with

the previous study [128], and demonstrated that ordinal pattern analysis is also a

powerful tool for model validation.

Soriano et al. [131] and Zunino et al. [132] also estimated the permutation

entropy, together with the permutation statistical complexity, of a semiconductor

laser with feedback in the chaotic regime. By analyzing these quantifiers as a function

of the embedding dimension, they identified the relaxation oscillation period and the

feedback time delay.

Xiang et al. [133] used the permutation entropy to study the unpredictability of

the chaotic dynamics of a laser diode with polarization-preserved and polarization-
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rotated feedback. They performed model simulations [134] to study the depen-

dence of the permutation entropy with the pump current, for the X-polarization,

Y-polarization modes and the total output of the laser. They found that the effect

of both types of feedback is different, i.e., while for polarization-preserved feedback

the permutation entropy of the X-mode and the Y-mode are quantitatively different

for low pump currents, they are equal for the polarization-rotated feedback.

More recently, Toomey and Kane [135] estimated the permutation entropy of a

laser diode with optical feedback for different feedback strengths and pump currents,

showing the different degrees of complexity in a two-dimensional parameter space

(optical feedback and pump current). They showed that the degree of complexity is

sensitive to the delay used to compute the ordinal patterns.

The following Chapters 4, 5 and 6 of this Thesis present the results of analyzing

experimental LFF time series using the Bandt & Pompe ordinal analysis method,

and novel results about serial correlations among dropouts, and about the underlying

structure of the LFF dynamics are presented.





Part II: Results

Credo che nella discussione di problemi naturali dobbiamo cominciare non con le

Scritture, ma con gli esperimenti e dimostrazioni.

Galileo Galilei
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Chapter 4

Distinguishing signatures of

determinism and stochasticity in

the LFF dynamics

...when you have eliminated all which is impossible, then whatever remains,

however improbable, must be the truth.

Sherlock Homes (The Blanched Soldier)

4.1 Introduction

Deterministic nonlinearities and noise are present in many natural systems (neuronal

networks, Brownian motion, climate, economics) and the distinction of the relative

influence of each contribution is a long-standing challenge [10–16, 136–138]. This

can be particularly difficult in complex systems and in systems with time delayed

interactions, since high-dimensional chaos can be in practice indistinguishable from

stochastic dynamics.

As described in the Introduction, a semiconductor laser with optical feedback is a

well-known example of this situation: the interplay of deterministic nonlinear light-

matter interactions, spontaneous emission noise and time-delayed feedback, results

in a complex dynamical behavior [8]. In particular, as described in Chapter 2, this
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nontrivial interplay is responsible for the LFF dynamics, which occurs close to the

lasing threshold, and for moderate feedback strengths.

In this chapter, the symbolic ordinal analysis introduced by Bandt and Pompe

[103], and explaind in Chapter 3, is used to study the LFF dynamics, with the goal of

distinguishing signatures of determinism and stochasticity in the time series of inter-

dropout intervals. It is shown how this analysis allows to statistically determine

which of the dropout events are compatible with a stochastic process and which

have a more deterministic nature. This distinction is relevant in many different

dynamical systems, as noise is present in most of them, and high dimensional chaos

is very dificult to distinguish from noise.

By experimentally varying the laser drive current, it is covered the range of pump

currents where the laser displays spiking dropouts: from low pump currents, where

the intensity is low and the dropouts are too small to be distinguished from small

fluctuations, to high pump currents, where the dropouts become very frequent and

they can not be distinguished from one to another as individual events.

The inter-dropout interval (IDI or ∆T ) sequence is transformed into a symbolic

sequence of ordinal patterns (OPs), or words. Then, a threshold is chosen, ∆Tth, to

classify IDIs into two types: those shorter than ∆Tth are referred to as short intervals

(SIs) and those longer than ∆Tth, as long intervals (LIs). In this way the laser spiking

activity is separated in periods of fast dropout events that alternate with periods of

no events. The motivation for this classification is that some dropouts can be noise-

induced while others can be due to a deterministic underlying dynamics [32, 34, 35].

Thus, some IDIs correspond to waiting intervals in a resting state until noise triggers

a dropout, while others correspond to time intervals between dropouts that are more

likely to have a deterministic origin.

The probabilities of the words formed by consecutive SIs and by consecutive LIs

are computed, and it is found that there is a range of pump currents where they are

significantly different; the LI probabilities are consistent with stochastic dropouts

while the SI probabilities have a more deterministic distribution. Since the type

of dynamics analyzed here occurs in various natural complex systems under the

influence of noise, the method proposed here can be a powerful tool of time-series

analysis of spiking systems, at an event-level description of the dynamics.
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The results presented in this chapter have been sumarized in [139].

4.2 Experimental setup

The experiments are performed with a 675 nm AlGaInP semiconductor laser (Hitachi

Laser Diode HL6724MG) with optical feedback from a diffraction grating (see Fig.

7.1). The external cavity length is 45 cm and, thus, the feedback delay time is 3

ns. To detect the laser output power a beam-splitter is used, that sends 50% of the

light to a 2 GHz photodetector, and then to a 2.5 GHz oscilloscope (Agilent Infiniium

9000). The laser temperature and pump current are controlled to an accuracy of 0.01

C and 0.01 mA respectively (with a ITC502 Thorlabs laser diode controller). The

measurements are obtained at T=18C. At this temperature, the threshold current of

the solitary laser is 27.6 mA, which is reduced to 25.7 mA under optical feedback (the

feedback strength being such that the threshold reduction is 7%). In the experiments

the pump current is varied in steps of 0.20 mA, from 26.20 mA to 28.00 mA.

LD 

PD

BS GRAT

OSC

Figure 4.1: Experimental setup of a semiconductor laser with external optical feed-
back from a difraction grating. LD stands for laser, BS for beamsplitter, GRAT for
grating, PD for photodetector ans OSC for oscilloscope.

In order to perform a robust statistical analysis, one time series of 32 million

points for each pump current is recorded, with a sampling time of 0.5 ns. As the

frequency of dropouts rises with the pump current, less statistics are available for

low pump currents than for high pump currents. However, the time series recorded

(45,000 dropouts for low pump currents, and more than 220,000 for high pump

currents) provide a much longer statistics than previously reported [8, 30, 130].
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4.3 Detection of the dropout times

The laser intensity detected is filtered out by the photodetector’s and the oscillo-

scope’s bandwidth (2 GHz and 2.5 GHz, respectively). This enables to study the

LFF dynamics but not the underlying fast picosecond dynamics [24]. The shape

and depth of the dropouts is not the same for all pump currents. For low pumps

the dropouts are less frequent, their depth distribution is wide (some dropouts are

deeper while other dropouts are shallower) and the time trace is quite noisy, which

makes the dropout detection not straightforward. Figure 4.2 (a) shows as example,

the time series of the laser for a low value of the pump current (I = 26.4 mA). For

increasing pump current the dropouts become more frequent and more similar in

depth. Figure 4.2(b) shows the time trace for a higher value of the pump current

(I = 27.2 mA).
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Figure 4.2: Time series of the intensity of the laser for (a) 26.4 mA and (b) 27.2 mA.
The red dots indicate the dropout detection and the solid black lines the low and
high detection thresholds.

The method used to detect when a dropout takes place is the following: first,

each time series is normalized to have zero mean value and standard deviation equal

to one. Next, the dropout times were determined by using a double thresholding

method: when the intensity decreases below a certain value (Ilow in Fig. 4.2), a spike

is recorded. Then, it is required that the intensity grows above a high threshold,

which is set to zero (Ihigh in Fig. 4.2), before another dropout can occur. This

avoids detecting spurious dropouts, specially during the intensity recovery (the drop
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is sharp but the recovery is gradual and noisy). Alternatively, one could use a

refractory time after each dropout, during which the intensity is recovering and no

dropouts are detected. In Fig. 4.2 the detections are indicated with red dots, and

the two thresholds with solid black lines. For consistency, the detection thresholds

all the time series are set at the same values (see {Section 5.3 for a discussion of the

effect of the threshold).

4.4 Results

4.4.1 Ordinal analysis of the IDIs

In this section, the symbolic method introduced by Bandt and Pompe [103], and ex-

plained in Chapter 3, is applied to the sequences of IDIs recorded in the experiments.

For each pump current, the IDI sequence, {∆Ti}, is transformed into a sequence of

words of length D, by considering the relative length of D consecutive IDIs. Figure

4.2(a) shows, as examples, one word of dimension D = 2 (’01’, ∆Ti < ∆Ti+1) and one

word of dimension D = 3 (’102’, ∆Ti+1 < ∆Ti < ∆Ti+2). As explained in Chapter 3,

this symbolic transformation neglects the information contained in the duration of

the IDIs, but keeps the information about the correlations in the dropout sequence

and the short-time memory in the system.

By counting the number of times a word appears in the symbolic sequence, the

probabilities of the various words are computed (pi with i = 1 . . .D!). The results

are displayed in Fig. 4.3, that shows the probabilities, for each pump current, of the

two words for the case of D = 2 (Fig. 4.3(a)), the six words for the case of D = 3

(Fig. 4.3(b)), and the twenty-four words for the case D = 4. The error bars represent

the confidence interval computed with a binomial test, corresponding to a confidence

level of 95%, and the gray region represents the probability values consistent with

the null hypothesis (N.H.) that there are no correlations in the sequence of dropouts

and thus, the words are equally probable. Probability values in the gray region,

p ± 3σp, are consistent with the N.H., where p = 1/D! and σp =
√

(p(1− p)/N),

with N being the number of OPs in the sequence.

It can be observed in figures 4.3(a), 4.3(b) and 4.3(c) that, except at low pump

currents, the most probable words are ’10’ for D = 2, ’210’ for D = 3, and ’3210’ for
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Figure 4.3: Probabilities of words formed with (a)D = 2, with (b) D = 3 consecutive
IDIs, and with (c) D = 4 consecutive IDIs. The gray region indicates probabilities
consistent with the null hypothesis that there are no correlations in the IDI sequence.
Except for the lowest values of the pump current, the most probable word is the one
formed by consecutive decreasing IDIs. In (c), the words formed by four consecutively
increasing (’0123’) and four consecutive decreasing (’3210’) IDIs are highlighted in
blue and red, respectively.
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D = 4, respectively. These words correspond to two, three and four consecutively

decreasing IDIs respectively. For D = 4 (Fig. 4.3(c)) the word ’3210’ is highlighted

in red. Notice that, at low pump currents, the analysis for D = 2 (Fig. 4.3(a)) gives

probabilities that are consistent with a stochastic behavior (they are within the N.H.

region); however, the analysis for D = 3 Fig. 4.3(b)) actually reveals a significant

degree of determinism, since there are several words with probabilities outside the

N.H. gray region for all pump currents. Also signals of determinism are present for

D = 4. This shows correlations for this low pump current values, that can not be

detected with D = 2.

4.4.2 Classifying the IDIs as long and short intervals

To further analyze the underlying structure of the experimental sequence of dropouts

a threshold is selected, ∆Tth, close to the most probable IDI value, ∆T ∗. Section

4.4.3 discusses the criterium used for selecting the threshold and classify the IDIs

into two types: those shorter than ∆Tth, as SIs (short intervals), and those longer

than ∆Tth, as LIs (long intervals). Figure 4.4 shows the histograms of ∆T for two

pump currents and the threshold to classify into SIs and LIs is depicted as a red

line (∆Tth = 0.9∆T ∗). As examples, Fig. 4.4(a) shows two IDIs classified as SI and

LI. By counting the number of times a word appears in the sequence of consecutive

LIs or consecutive SIs, new probabilities of words are now computed, formed by

consecutive LIs (referred to as LI words) and by consecutive SIs (SI words).

Because the words are now formed with consecutive LIs or SIs, there are shorter

sequences of words, as compared to those in the full sequence of IDIs; however, the

data sets are long enough to still allow calculating the LIs and SIs probabilities with

good statistics.

One of the criteria used for choosing the threshold is to obtain enough LI and

SI words to allow for a robust statistical analysis. For example, for ∆Tth = 0.9∆T ∗

and D = 2, the number of words of SI is about 6,000-7,000 for low and high current

respectively, and the number of words of LI is about 9,000-68,000. For D = 3 the

number of words is smaller, formed by about 1,900-1,300 SI words, and about 3,800-

35,000 LI words. The probabilities of the LI words and of the SI words are displayed

in Fig. 4.5 for D = 2 and D = 3 words. In both cases, the LI probabilities are
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Figure 4.4: (a) Experimental time series of the laser intensity displaying several
dropouts. The pump current is 26.4 mA. Also as examples, two IDIs are classified
either as SIs or as LIs (see Section 4.4 for details). (b,c) Histogramd of the IDIs
for a pump current of 26.4 mA and 27.8 mA, respectively. The red lines indicate
a threshold corresponding to ∆Tth = 0.90∆T ∗ to classify the IDIs into SIs and
LIs. By doing this, the distribution corresponding to the LIs is close to a decaying
exponential, compatible with a stochastic process.



Chapter 4. Distinguishing signatures of determinism and stochasticity in the LFF
dynamics 69

displayed in the left column, and SIs in the right column.

In these figures it is observed that the OPs formed by consecutive LIs appear

equally probable for all pump currents, as it is expected in a random process like

noise-induced escapes. On the other hand, the probabilities of the OPs formed by

consecutive SIs keep the deterministic signature of the IDI sequence, except at low

pump currents, while the random signatures of the LIs have been removed.

It should be noticed that at low pump currents, both LIs and SIs are consistent

with the null hypothesis, for D = 2 and for D = 3 (Fig. 4.5). By fine-tuning it

could not be found a threshold that allowed to separate the IDIs into two sets with

significantly different statistical properties. While for D = 2 this could be expected

(as also for D = 2 the IDIs seem stochastic, and lie in the gray region), for D = 3

this is rather unexpected as the probabilities of the words formed by consecutive

IDIs are all not consistent with the N.H., as can be seen in Fig. 4.3(b).

Moreover, the IDI distribution, shown in Fig. ??(b), has a nontrivial structure

at low IDI values and an exponential decay at large IDIs, suggesting the existence

of two IDI categories. The fact that when separating the IDIs in LIs and SIs we

obtain two sets consistent with the N.H. means that, by separating, the correlations

existing in the IDI sequence are removed. This effect can be understood in terms

of the numerical results in Refs. [34, 35], where it was shown that the average

duration of the transient dynamics decreases with increasing current values. Thus,

at low pump currents long intervals between consecutive dropouts might occur during

the transient dynamics, and these “long SIs” have time-scales comparable to noise

induced escapes. Therefore, in the low pump current region the method can not

distinguish two different IDI categories, in spite of the fact that the distribution of

IDIs displays a bimodal structure.

To further demonstrate that the LIs and SIs have indeed different statistical prop-

erties (and thus are likely to correspond to dropouts triggered by different mecha-

nisms), the histograms of the time intervals composed by the sum of consecutive

SIs,
∑

∆Ti,SI , and by the sum of consecutive LIs,
∑

∆Ti,LI , are computed. These

are shown in figure 4.6. The histogram of the sum of consecutive LIs displays an

exponential decay, as can be expected for a variable that is the sum of independent

random variables, each with an exponentially decaying distribution. On the contrary,
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Figure 4.5: (a,c,e) Probabilities of D = 2 words formed by consecutive LIs. (b,d,f).
Probabilities of D = 2 words formed by consecutive SIs. The probabilities are com-
puted for three threshold values, (a,b) 0.85∆T ∗; (c,d) 0.90∆T ∗; and (e,f) 0.95∆T ∗.
∆T ∗ is the most probable IDI value. Figures 4.4(a) and 4.4(b) depict, with a vertical
red line, the threshold corresponding to 0.95∆T ∗. (g,i) Probabilities of D = 3 words
formed by consecutive LIs. (h,j) Probabilities of D = 3 words formed by consecutive
SIs. The probabilities are calculated using the threshold 0.90∆T ∗ (g,h) and 0.95∆T ∗

(i,j).
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the histogram of the sum of consecutive SIs displays a nontrivial structure.
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Figure 4.6: Histogram of the sum of consecutive LIs,
∑

Ti,LI (a,c), and of the sum of
consecutive SIs,

∑

∆Ti,SI , (b,d). The laser pump current is 26.8 mA (a,b) and 27.8
mA (c,d). Threshold is 0.95∆T ∗.

In the interpretation of the SIs as time-intervals between deterministic dropouts,

the sum of consecutive SIs represents the duration of the transient dynamics, before

returning to the resting state. Thus, this distribution of transient times can be traced

back to a deterministic attractor that rules the dynamics, and can be compared

with recent simulations by Zamora-Munt et al. [35]. The good agreement with the

simulated statistics of transient times enforces the interpretation of the dropouts

observed experimentally as a dynamics sustained by intrinsic laser noise.

4.4.3 Influence of the classification threshold

As the choice of the threshold is rather arbitrary, it can be expected that there

will be short LIs that are wrongly classified as SIs, and long SIs that are wrongly

classified as LIs. However, Fig. 4.5 shows that the differences between the LI and SI

probabilities are significant (except at low pump currents) and that they are robust

to threshold variations. It can be observed that the lower threshold reveals more

deterministic SIs (with probabilities far from the uniform distribution) but has the

drawback of a larger degree of uncertainty (i.e., the error bars and the N.H. region

are wider due to a low number of OPs in the SI sequence). On the other hand, for
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the larger threshold one can observe that the degree of SI determinism decreases,

while the robustness of the analysis increases (i.e., the error bars and the width of

the N.H. region of the SI probabilities decrease due to a larger number of OPs in the

sequence). As the variation of the threshold leaves rather unaffected the number of

LI OPs, it has almost no effect on the LI probabilities.

In Fig. 4.5 the thresholds were selected in order to take into account the following

three goals: i) enough SI and LI words can be formed to compute their probabilities

with good statistics (i.e., having small error bars and narrow N.H. region), ii) the

LI OP distribution is close to the uniform distribution, and iii) the distribution of

the LIs is close to a decaying exponential. In the histograms in Fig. 4.4, it can

be observed that the distributions corresponding to the LIs are close to decaying

exponentials.

While in this analysis, the same threshold has been chosen for all data sets

(Tth = α∆T ∗, where α in the range 0.85-0.95 takes the same value for all pump

currents), the method could be optimized by fine-tuning the threshold such that it

is optimal for each data set, giving a sequence of LIs with the closest statistics to a

random sequence of events.

4.4.4 Permutation entropy

The different statistical properties of the IDIs, LIs and SIs are also captured by

the permutation entropy [103], i.e., the entropy of the probabilities of the OPs,

S = −
∑N

j=1 pj ln pj, normalized to its maximum value, Smax = lnD! (see {Chapter

3). This has been shown to be an appropriate measure of complexity for chaotic

time series in the presence of noise [14, 106, 135].

Figure 4.7 displays the permutation entropy computed for OPs formed by con-

secutive IDIs (top), LIs (middle) and SIs (bottom), for a threshold ∆Tth = 0.95∆T ∗.

Notice that the entropy of SI-words is smaller than that of IDIs and LIs, which is

consistent with a lower degree of randomness in the SI sequence, as compared to the

IDI and LI sequences.
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Figure 4.7: Permutation entropy of OPs formed by consecutive IDIs (a), LIs (b) and
SIs (c). Circles correspond to OPs of length D = 2, triangles D = 3, and squares to
D = 4. Threshold for classifying the IDIs as LIs or SIs is 0.95∆T ∗.
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4.4.5 Additional experimental measurements

In order to verify the robustness of the results, another set of measurements is

presented, acquired at a temperature of 20C. The analysis of the IDIs does not

reveal any significant difference with those acquired at 18C, neither in the OPs

formed by the IDI sequence and their dependence with the pump current, nor in the

OPs formed by consecutive LIs and SIs.
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Figure 4.8: Probabilities of words formed with (a) D = 2 and with (b) D = 3
consecutive IDIs. Experimental data acquired at 20C.

Figure 4.8 shows the OPs for D = 2, D = 3 and D = 4 formed with the IDIs,

for the 20C experimental data set. Figure 4.9 shows the OPs for D = 2 and D = 3

formed with consecutive LIs (left column and SIs (right column) for the different

thresholds already used in the 18C experimental set.
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Figure 4.9: (a,c,e) Probabilities of D = 2 words formed by consecutive LIs. (b,d,f)
Probabilities of D = 2 words formed by consecutive SIs. The probabilities are com-
puted for three threshold values, (a,b) 0.85∆T ∗; (c,d) 0.90∆T ∗; and (e,f) 0.95∆T ∗.
(g,i) Probabilities of D = 3 words formed by consecutive LIs. (h,j) Probabilities of
D = 3 words formed by consecutive SIs. The probabilities are calculated using the
threshold 0.90∆T ∗ (g,h) and 0.95∆T ∗ (i,j). Experimental data acquired at 20C.
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4.5 Summary

In this chapter, a novel method of analysis has been proposed, that allows to dis-

tinguish statistical signatures of determinism and stochasticity in the sequence of

dropouts of a semiconductor laser with optical feedback. The analysis reveals the

existence of an underlying structure in the IDI sequence. By choosing an appro-

priate threshold, the IDIs can be classified into two categories, SIs and LIs, with

significantly different deterministic components that suggest that different physical

mechanisms trigger the dropouts. These are consistent with interpreting the LIs as

waiting intervals in a resting state, and the SIs as intervals between dropouts oc-

curring during the return to the resting state. Thus, the method allows statistically

inferring which dropouts could be noise induced, and which ones could have a deter-

ministic origin, due to a stochastic trajectory that follows an underlying attractor in

its return to the resting state.

The threshold for classifying the IDIs as LIs or SIs is chosen taking into account

three criteria: i) the probability distribution of the LIs is exponentially decaying

(expected for noise-induced escapes), ii) the probabilities of the words formed by the

LIs are close to the uniform distribution (also expected for noise-induced escapes),

and iii) there are enough words formed by consecutive LIs and by consecutive SIs to

perform a robust statistical analysis. There is a range of threshold values that meet

these criteria and it is shown that the results are qualitatively robust to threshold

variations within this range.

The method is computationally simple to implement and the data requirements

can be easily adapted to small and large data sets by appropriately choosing the

length D of the ordinal patterns. For improved performance, instead of using a

general criterion across all data sets for selecting the threshold, ∆Tth could be fine

tuned to work optimally for each data set, giving the sequence of LIs with an statistics

closest to a random sequence of events.

The method proposed here can be a very powerful tool for the analysis of real-

world data, such as experimental recordings of neuronal inter-spike intervals, or data

generated by complex systems such as inter-event times of user activity in social

communities, where signatures of deterministic underlying dynamics can be obscured

by the presence of noise.



Chapter 5

Symbolic dynamics of a

semiconductor laser in the LFF

regime

Nothing is too wonderful to be true if it be consistent with the laws of nature.

Michael Faraday

5.1 Introduction

In the previous chapter, the capability of symbolic ordinal analysis to infer signatures

of determinism and stochasticity in the LFF dynamics was shown. It was demon-

strated that this analysis method can indicate which of the dropouts are statistically

compatible with a stochastic process, and which reveal fingerprints of an underlying

attractor.

In this chapter, ordinal analysis is used to unveil the hierarchical structure of

the probabilities of the ordinal patterns in the LFF dynamics. Correlations among

several consecutive dropouts are uncovered, not reported so far: it is shown that

the probabilities of the patterns display a well-defined, hierarchical and clustered

structure. The robustness of these findings are confirmed with different experimental

measurements.

77
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To test whether simulations of the stochastic Lang and Kobayashi model (LK

model) also displays similar dropout correlations, the same symbolic analysis is ap-

plied to numerical time series, and it is confirmed the validity of the LK model also

a this level of analysis. Most importantly, a minimal model, a modified circle map,

which exhibits the same hierarchical and clustered symbolic organization, is iden-

tified. Since the circle map describes many dynamical systems, including neurons

[48] and cardiac cells [140], the results presented in this chapter suggest that similar

correlations and hierarchies of patterns can be found in other systems.

The experiments and the simulations with the circle map presented in this chapter

were performed by the author, and the simulations of the Lang and Kobayashi model

were performed by Sandro Perrone.

The results presented in this chapter have been sumarized in [141].

5.2 Experimental setup

The experimental setup is the same as in Chapter 4 (see Fig. 7.1), i.e., a semi-

conductor laser in the optical domain (675 nm wavelength), with light propagating

in free space, is submitted to optical feedback from a diffraction grating. The laser

diode used in these experiments is an AlGaInP semiconductor laser (Sanyo DL-2038-

023). The external cavity length is 70 cm, giving a feedback delay time of 4.7 ns.

A beam-splitter sends 50% of the light to a 1 GHz oscilloscope (Agilent Infiniium

DSO9104A). The laser temperature and pump current are controlled to an accuracy

of 0.01 C and 0.01 mA respectively with a ITC502 Thorlabs laser diode combinator

controller. The operating temperature is 18C and the laser pump current is var-

ied in steps of 0.1 mA, from 26.3 mA to 27.3 mA. At 18C the threshold current of

the solitary laser is Ith = 27.8 mA, and the feedback-induced threshold reduction is

6.5%. Time series of 32 ms are recorded (3.2 × 107 data points), containing 70,000

to 300,000 dropout events, for low and high pump current respectively.
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5.3 Results

5.3.1 Experimental results

This section describes the experimental results, which on one hand they confirm the

experimental results presented in the previous chapter, but on the other hand, novel

findings about clusters in the word probabilities are presented.

For the time series analysis of the experiments, ordinal patterns forD = 3 consec-

utive intervals (four consecutive dropouts) are constructed. Figure 5.1 displays the

probabilities of the six possible words computed from the time-series recorded. The

symbolic analysis reveals that serial correlations among four consecutive dropouts

are present in the dropout sequence: in Fig. 5.1 one can observe that the probabil-

ities lie outside the gray region, and therefore, they are clearly not consistent with

the null hypothesis.

Moreover, in this figure one can recognize a hierarchy in the probability val-

ues, which presents a crossover at about 26.6 mA: for higher pump currents the

most probable word is ’210’ (corresponding to three consecutively decreasing inter-

dropout intervals), while for lower pump currents, the most probable word is ’012’

(corresponding to three consecutively increasing intervals).

Figure 5.1 also reveals a clustered organization of the probabilities: words ’021’

and ’102’, on the one hand, and words ’120’ and ’201’, on the other hand, occur

with similar probability. The probabilities of these two pairs of words present the

same evolution when the pump current is varied. The same crossover at 26.6 mA

is also found for these clusters. It is important to recall that this behavior can also

be seen in the experiments presented in Chapter 4 (Figs. 4.3(b) and 4.8(b)), where

a different laser (Hitachi Laser Diode HL6724MG) was used, lasing at 675 nm and

working at 18C, with a shorter external cavity (45 cm corresponding to 3 ns of time

delay), and a threshold reduction of 7% (see Fig. 5.3 (b,c)).

Figure 5.2 displays the results for words of length D = 2 (a), and D = 4 (c). One

can clearly observe that, also in these cases, the distribution of probability values

is not consistent with the N.H., as several probabilities are outside the N.H. region.

The same crossover is observed at about 26.6 mA for both embedding dimensions (2

and 4), just as it occurs for D = 3 (depicted in 5.2(b) for comparison). The words
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Figure 5.1: Probabilities of the six words vs. the laser pump current. A crossover in
the hierarchical organization of the words occurs at about 26.6 mA: at lower current
values the word ’012’ (blue) is the most probable one, while at higher currents values,
the word ’210’ (red) is the most probable one. Two clusters of words can be observed,
with similar probabilities: ’021’-’102’ (black-green) and ’120’-’201’ (magenta-cyan).

formed by consecutively increasing and consecutively decreasing intervals (’0123’ and

’2310’) are highlighted in Fig. 5.2(c) to appreciate that their behavior is equivalent

to the one found for D = 3 (’012’ and ’210’), and D = 2 (’01’ and ’10’). For

the sake of clarity, Fig. 5.2(d) displays the probabilities of words of length D = 4

computed from surrogate data (shuffled inter-dropout intervals time series), and it

can be confirmed that in this case the probabilities are all within the gray region, as

expected from a sequence of events that are not correlated.

For the sake of completeness, additional experiments were performed to compare

with, employing different lasers and feedback conditions, to verify that this hierar-

chical and clustered behavior is indeed a general feature. Figure 5.3(a) displays the

probabilities computed with the same laser as in Figs. 5.1 and 5.2, but with weaker

feedback strength, resulting in a threshold reduction of 4%. For a better comparison,

Figs. 5.3(b,c) display the probabilities computed with data analyzed in the previous

chapter for 18C (a) and 20C (b). Also the two clusters and the crossover (such that

the word ’210’ becomes the most probable one at high current) are seen in these data

sets.
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Figure 5.2: (a) Words probabilities for D = 2. The crossover in the probabilities
also appears around 26.6 mA. (c) Words probabilities for D = 4. Highlighted in red
is the word ’3210’, and in blue the word ’0123’. The behavior of these two words is
the same as the one of words ’210’, and ’012’ for D = 3 (b). The crossover is also
appreciated in this case. Panel (d) displays the probabilities for D = 4 computed
from the surrogated data (shuffled inter-dropout intervals time series).
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Figure 5.3: Words probabilities computed from data recorded using different ex-
perimental conditions. Panel (a) present the analysis of the data from the same
experimental conditions as in Fig. 5.1 but with a threshold reduction of 4%. Panels
(b) and (c) present the probabilities from the experiments presented in Chapter 4,
were a different laser was used (Hitachi Laser Diode HL6724MG) in a shorter exter-
nal cavity (45 cm) and a feedback leading to a threshold reduction of 7%. Panel (b)
corresponds to a working temperature of 18C and panel (c) to 20C.

5.3.2 Correlation analysis

To further corroborate the presence of correlations in the dropout sequence, the usual

autocorrelation coefficients are computed for the sequence of inter-dropout intervals,

{∆Ti}, as

Cn =
〈(∆Ti − 〈∆T 〉) (∆Ti−n − 〈∆T 〉)〉

σ2
, (5.1)

where n ∈ N is the order of the correlation (the delay considered to compute the

autocorrelation), σ is the standard deviation of the intervals (∆Ti), and 〈∆T 〉 is

the mean value of the sequence of intervals. The result is shown in Fig. 5.4, that

displays C1 (first-order autocorrelation) and C2 (second-order autocorrelation) vs.

the pump current for the experimental data. First-order correlations are clearly

identified, which are stronger at low pump currents, while second-order correlations

are significantly weaker.

From these results it can also be confirmed that the symbolic ordinal analysis

indeed provides additional information with respect to the usual correlation analy-
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Figure 5.4: First and second order correlation coefficient of the inter-dropout interval
sequence, C1 and C2 [Eq. 5.1], computed from the experimental data, as a function
of the laser pump current.

sis. In particular, it is noticed that C1 is positive for all current values; however,

in Fig. 5.2(a) it is seen that at high currents the word ’10’ is more probable (i.e.,

∆Ti > ∆Ti+1 is more probable than ∆Ti < ∆Ti+1), and at low currents, it is the

opposite situation (the word ’01’ is more probable, and thus, ∆Ti < ∆Ti+1 is more

probable than ∆Ti > ∆Ti+1). This is apparently contradictory; however, one should

keep in mind that the ordinal analysis takes into account the relative values of con-

secutive intervals, while the correlation coefficient, takes into account the magnitude

of consecutive ∆Ti− < ∆T > values. Moreover, Fig. 5.4 shows that C2 is very small,

suggesting negligible correlations; notwithstanding the probabilities of the words of

length D = 3 are clearly not consistent with the N.H.

5.3.3 Comparison with the LK model.

To further check the robustness of the observations, simulations of the LK model [83]

(introduced in Section 2.4) were performed. The model predicts a fast pulsing be-

havior, in the picosecond time-scale that, after being properly filtered out (to account

for the bandwidth of experimental measurements), gives a sequence of dropouts in

good agreement with the observations.

Within the framework of the LK model it has been shown that the dropouts

are often a transient dynamics, even when noise is included in the simulations, and
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the duration of the transient increases with the pump current parameter [34, 35]. In

order to compute long time series of inter-dropout intervals, when the trajectory finds

a stable fixed point, the simulation is re-started with new random initial conditions.

Simulations of 2 milliseconds are performed, obtaining time series containing between

12,000 and 48,000 events, for low and high pump currents, respectively.

Because the LK model is a simple model (it takes into account only one reflection

in the external cavity, it neglects multi-mode emission, spatial effects, and thermal

effects; in particular the shift of the emission wavelength with increasing current due

to Joule heating), only a qualitative agreement could be expected.
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Figure 5.5: Probabilities of the ordinal patterns computed from simulations of the
LK model. (a) The feedback strength is η = 10 ns−1, and α = 4. (b) The feedback
strength is 20 ns−1, and α = 4.5. The hierarchy in the word probabilities, the
clustering and the crossover are the same as in the experimental data, Fig. 5.1.

Figures 5.5(a) and 5.5(b) show the numerically calculated word probabilities vs.

the laser pump current parameter of the model, µ, for two sets of parameters. Typical

values of the parameters were used in the simulations: k = 300 ns−1, γ = 1 ns−1,

ǫ = 0.01, τ = 5 ns, and βsp = 10−4 ns−1. In Fig. 5.5(a), the feedback parameter is

η = 10 ns−1, and α = 4; in Fig. 5.5(b), η = 20 ns−1, and α = 4.5.

The simulations agree qualitatively well with the experimental findings: the same

hierarchical and clustered organization of patterns is observed, as well as the same

crossover. Figures 5.5(a) and 5.5(b) also point to the robustness of the results, as

the two clusters are present in simulations with different feedback strengths.
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5.4 Influence of the detection threshold

A sensitive issue in the dropout detection is the choice of the detection threshold. Due

to the fact that not all the dropouts are equally deep, and to the presence of noise in

the time trace, different thresholds could lead to different dropout detections. When

computing the word probabilities, the hierarchy might, in principle, be different for

each detection threshold.
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Figure 5.6: Probabilities of the words vs. the detection threshold is shown for
different pump current values both, for the experimental (a,c) and the simulations
(b,d) data. The hierarchy of the probabilities remains for most of the detection
thresholds.

That is why an analysis of the influence of the detection threshold in the proba-

bilities of the ordinal patterns is required. Figure 5.6 shows the probabilities of the

words vs. the detection threshold for two different pump current values of the exper-

imental data (a and c) and two different values of the pump parameter, µ, of the LK

model (b and d). The corresponding time traces are depicted in Fig.5.7. It can be

appreciated that, while the values of the probabilities vary with the threshold, the

hierarchy and the clusters (’021’-’102’ and ’120’-’201’) are robust and occur in a wide

range of threshold values. While for too low (or too deep) thresholds the probabili-
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ties vary significantly (as too many or too few dropouts are detected), the presence

of the two clusters is robust to threshold variations in a wide range of thresholds.
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Figure 5.7: Time series for two different pump currents of the experimental data
(a,c), and two different values of the pump parameter, µ, of the LK model (b,d).
Red dots indicate the dropout detection, indicated at a threshold of -2.

Most importantly, the variation of the probabilities with the threshold is qualita-

tively the same in the experimental and in the numerical data. The same hierarchy

and clusters are seen. This is remarkable because the model used for the simula-

tions is the simplest rate equation model, as mentioned before, and the filter used

to simulate the finite detection bandwidth is also a simple moving-average window.

While an optimal threshold could be defined for each pump current (that is in

the center of the plateau where the probabilities do not vary significantly with the

threshold), for the sake of simplicity, it is used a fixed threshold value, equal to -2,

for detecting the dropouts.

5.5 A minimal model: the modified circle map

A relevant question is whether the hierarchical and clustered organization of symbolic

patterns uncovered here also occurs in other natural systems. If this is the case, there
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should be a minimal model that also displays such organization of ordinal patterns.

Several iterative maps have been analyzed with the symbolic analysis, and it has been

found one surprisingly simple, a modified circle map, that reproduces the hierarchy

and clustered organization of the word probabilities.

The modified circle map was proposed by Neiman and Russell [48] to describe

serial correlations in electroreceptors of paddlefish. It describes the dynamics of a

forced oscillator. The map equation is given by:

φ(i+ 1) = φ(i) + ρ+
K

2π
[sin(2πφ(i)) + αc sin(4πφ(i))] + βcξ(i) (5.2)

The parameter ρ is proportional to the ratio between the period of the forcing

and the natural period of the oscillator, K is proportional to the forcing amplitude,

αc represents the strength of a second harmonic component, and βc represents the

strength of stochastic fluctuations (ξ being a Gaussian white noise). Considering that

the values φ(i) can represent the dropout times, the time series of phase increments,

∆φ(i) = φ(i + 1) − φ(i), are analyzed in analogy with the inter-dropout intervals,

∆Ti.
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Figure 5.8: Probabilities computed from the minimal model, Eq. 5.2. The parame-
ters are: ρ = 0.23, K = 0.04 and βc = 0.002. The hierarchy in the word probabilities,
the clustering and the crossover are the same as in the experimental data (Figs. 5.1,
5.3) and as in the LK numerical simulations (Fig. 5.5).

Figure 5.8 shows the probabilities obtained from the modified circle map vs. the

map parameter, αc. It is noted that the effect of varying αc corresponds, qualitatively,
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to varying the laser pump current: a similar behavior as in the experimantal data

(Figs. 5.1, 5.3) and the LK numerical simulations (Fig. 5.5) can be observed. There

is the same hierarchy in the probabilities, which undergoes the same crossover. The

existence of the two clusters is also remarkable, formed by the same words as in the

sequence of optical dropouts.

The symbolic behavior of the modified circle map demonstrates that it is an

adequate minimal model for representing qualitatively the symbolic dynamics un-

derlying the sequence of optical dropouts. Considering the high-dimensionality of the

laser dynamics (induced by the feedback delay time), it is unexpected and remark-

able that a simple iterative model with only one variable can mimic the extended

correlations present in the sequence of dropouts.
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Figure 5.9: Histograms of the intervals, ∆φ(i) = φ(i+ 1)− φ(i), form the modified
circle map, for three values of the map parameter. (a) αc = −0.1, (b) αc = 0.3, and
(c) αc = 0.5. Parameters as in Fig. wordscircle

However, the good agreement between the LFF dynamics and the modified circle

map model is restricted to the symbolic ordinal analysis, and it does not describe

the statistical distribution of event intervals. Figure 5.9 shows the histograms of the

intervals ∆φ(i) = φ(i + 1) − φ(i) for three values of the model parameter αc (-0.1,

0.3 and 0.5), and it is shown that these histograms are not equivalent to the ones

obtained from the IDIs, presented in Chapter 2 (Fig. 2.11).
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5.6 Transition probabilities

From the sequence of words, additional information can be extracted by computing

the transition probabilities (TPs) [130] from one word to the next. In Fig. 5.10, the

transitions ’01’→’10’ and ’01’→’01’ are depicted as examples.
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Figure 5.10: Time trace of the laser at I = 27.2 mA. Two transitions are depicted
as examples ′01 → 01′ and ′01 → 01′.

The TP analysis with D = 2 words can uncover correlations among five con-

secutive dropouts, and thus allows to extract information about the memory of the

system in a longer time scale. The TPs can be normalized in two different ways:

i) Normalized for each word i,

TPi→j =

∑N−1
t=1 n(s(t) = i, s(t + 1) = j)

∑N−1
t=1 (s(t) = i)

, (5.3)

where n is a count of the number of occurences, N is the length of the sym-

bolic sequence s(t), and t is the position of the OP in the sequence. In this case,
∑

j TPi→j = 1 ∀ i.

ii) Normalized for all transitions i → j,

TP ∗

i→j =

∑N−1
t=1 n(s(t) = i, s(t+ 1) = j)

N − 1
. (5.4)

In this case the sum of all possible TPs is one,
∑

i,j TP
∗

i→j = 1.

This analysis, which uncovers correlations among five consecutive dropouts, can

be performed with shorter time series (as only 4 TPs are computed) in comparison
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Figure 5.11: Transition probabilities for the experimental data (left column), the
LK numerical simulations (center column), and the circle map numerical simulations
(right column). The first row indicates the transition probabilities from word ’01’
to ’01’ and ’10’, such that TP(01→01) + TP(01→10) = 1. The second row indicates the
transition probabilities from word ’10’ to words ’01’, and ’10’, such that TP(10→01) +
TP(10→10) = 1. The third row considers all four transitions, such that TP(01→01) +
TP(01→10)+TP(10→01)+TP(10→10) = 1. Parameters are as in Fig. 5.5(b) (LK model),
and as in Fig. 5.8 (circle map).
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with the length of the data required to compute the 24 D = 4 words with robust

statistics. The transition probabilities are depicted in Fig. 5.11, where the left col-

umn corresponds to the experimental data, the center column to the LK numerical

simulations, and the right column to circle map numerical data. For the first nor-

malization of the TPs, the first-row shows the transitions from word ’01’ to words

’01’ and ’10’, while the second-row shows the transitions from word ’10’ to words

’01’ and ’10’. The third-row corresponds to the second normalization (TP∗).

The results in Fig. 5.11 confirm that, also at this time scale, there is a non-trivial

structure of the ordinal patterns, and the crossover from low to intermediate pump

currents (I ∼ 24.6 mA, µ ∼ 0.99, and αc = 0) is also present.

5.7 Delay embedding analysis.

Another well-known method to unveil the hidden structure in a timer series, which

allows reconstructing the attractor in phase space, is to compute a delay embedding

of the inter-dropout intervals [92]. This method compares the values of the time se-

quence at different times, considering a embedding dimensionm: {∆Ti,∆Ti+m,∆Ti+2m}.

To explore this method, several embedding dimensions are considered, and the

three-dimensional reconstruction of the attractor, for the experimental and for the

simulated data, are plotted in Fig. 5.12. The first row corresponds to a em-

bedding dimension m=1, (i.e., {∆Ti,∆Ti+1,∆Ti+2}), the second row to m=2 (i.e.,

{∆Ti,∆Ti+2,∆Ti+4}), and the third row to m=3 (i.e., {∆Ti,∆Ti+3,∆Ti+6}). This

embedding dimension analysis is depicted for the experimental data (left column for

I=26.4 mA), the LK model simulations (center column for µ = 0.985), and the circle

map (right column for αc = 0.2), where ∆φ(i) = φ(i)− φ(i− 1).

No well-defined attractor can be inferred by this technique, but rather an ap-

parently random cloud of data points. This reinforces the relevance of the symbolic

ordinal method used in this thesis, that it can unveil an underlying structure in the

sequence of inter-dropout intervals, which can not be revealed by the reconstruction

of the trajectory method. In the case of the circle map model (right column of 5.12)

a noisy but clear structure can be appreciated. Therefore, the suitability of the circle

map to describe the LFFs dynamics of a semiconductor laser with feedback is limited
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Figure 5.12: Three-dimensional delay embedding of the inter-dropout interval time
series for the experimental data (left column), for the numerical simulations with
the LK model (middle column), and for the minimal model (right column). For the
minimal model, ∆φ(i) = φ(i) − φ(i − 1), following equation 5.2. The embedding
dimensions plotted are m = 1 (top row), m = 2 (middle row), and m = 3 (bottom
row).



Chapter 5. Symbolic dynamics of a semiconductor laser in the LFF regime 93

0 2 4 6
0

0.2

0.4
α

c
 = −1

0 2 4 6
0

0.2

0.4
α

c
 = 5

0 2 4 6
0.15

0.16

0.17

0.18

0.19
I = 26.4 mA

0 2 4 6

0.16

0.18

0.2

µ = 9.80

0 2 4 6
0.15

0.16

0.17

0.18

0.19
I = 27.3 mA

P
ro

ba
bi

lit
y

0 2 4 6

0.16

0.18

0.2

µ =1.015

Embedding dimension

Figure 5.13: Probabilities of the words versus the delay embedding for two different
pump currents. Experimental data (left column), and numerical data from the LK
model(centre column), and numerical data from the circle map (right column).

to the symbolic dynamics of the sequence of dropouts, and the dimensionality of the

dynamics or the statistical distribution of inter-dropout interval values are not well

described by this minimal model.

To analyze the length of the serial correlations present in the sequence of inter-

dropout intervals, the words are now constructed using a delay m, i.e., the words are

formed as (∆Ti, Ti+m, ∆Ti+2m). The probabilities of the words defined in this way

are presented in Fig. 5.13, for the experimental data (left column), for the numerical

data from the LK model (middle column), and for the numerical data from the circle

map (right column). For the experimental data and the LK model simulations, the

probabilities are outside the gray region (consistent with the null hypothesis) only for

the lowest embedding dimension, revealing that the serial correlations only extend

to a few inter-dropout intervals.

Again, for the circle map the result do not agree with the experiments for this type

of analysis, confirming the limitations of the modified circle map to fully describe

the LFF dynamics.
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5.8 Summary

In this chapter, it has been demonstrated, in the experiments and in the LK model

simulations, the existence of serial correlations in the LFF dynamics. A hierarchical

organization of patterns in the symbolic dynamics has been found, that displays a

clustered structure, which has not been previously noticed, despite the great atten-

tion that the laser dropout dynamics has attracted. Simulations of the LK model

have been found to be in good qualitative agreement with the experimental obser-

vations. This good qualitative agreement experiment-simulations indicate that this

organization of symbolic patterns is a fingerprint of the topology of the attractor

underlying the LFF dynamics, and provides a validation of the LK model in un-

precedent long time-scale. Also a minimal model has been found, that describes the

hierarchical and clustered symbolic structure. However, this minimal model fails to

describe other features, such as the IDI distribution or linear correlations.

In the next chapter the suitability of the circle map model is verified, by analyzing

the symbolic dynamics of the LFFs under external periodic forcing.



Chapter 6

Symbolic dynamics of a

semiconductor laser with current

modulation in the LFF regime

You must feel the force around you!

Joda master (The empire strickes back)

6.1 Introduction

As discussed in the previous chapters, the LFF dynamics results from the interplay of

the nonlinear light-matter interactions with a time delayed perturbation and noise. A

natural extension of this dynamical system, which is of special relevance, is achieved

by introducing an external periodic forcing to the system. This physical system is

relevant in telecommunications, as information in encoded by direct modulation of

the laser pump current [60], and it is also of great interest because of the various

dynamical regimes that can arise [68, 69, 71].

In particular, the LFF dynamics has previously been studied in detail when the

laser current is periodically modulated [30, 31, 50, 142–144], not only because the

LFFs can be supressed via current modulation [49], but also from a complex systems

perspective, because the interplay of nonlinearity, noise, periodic forcing and delayed

95
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feedback leads to entrainment and synchronization [30, 31], providing a controllable

experimental setup for studying these phenomena. In addition, because the LFF

dynamics is excitable, the influence of external forcing has also attracted attention

from the point of view of improving our understanding of how excitable systems

respond to external signals to encode information [69, 143, 145–147].

In this chapter, the Bandt and Pompe symbolic ordinal analysis is used to study

the transition from the LFF dynamics of the un-modulated laser, where the pa-

rameters are such that the dropouts reveal only weak signatures of an underlying

deterministic attractor [139], to the modulated LFF dynamics, which consists of

more regular dropouts, with a periodicity that is related to the external forcing pe-

riod [30]. By increasing the modulation amplitude, it is found a gradual transition

from a mainly stochastic to a mainly deterministic behavior, and the transition char-

acteristic features are identified, which are fingerprints of the underlying topology of

the phase space of the system.

Clear changes are identified in the symbolic dynamics as the modulation ampli-

tude increases. Specifically, the analysis uncovers the presence of serial correlations

in the sequence of dropouts, and reveals how they are modified by the amplitude of

the external forcing.

It is shown that simulations of the LK model [83] are in good qualitative agree-

ment with the experimental observations. Furthermore, the modified circle map

model introduced in Chapter 5 is shown to describe succesfully also the symbolic

dynamics of the modulated laser, showing the robustmess of this minimal model to

describe the symbolic LFF dynamics.

The experiments presented in this chapter were performed by Taciano Sorrentino

and the author, and the numerical simulations of the Lang and Kobayashi model

were performed by Sandro Perrone. The numerical simulations of the circle map

were performed by the author.

The results presented in this Chapter have been sumarized in [148].
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6.2 Experimental setup

The experimental setup is shown in Fig. 6.1. To demonstrate the robustness and the

generality of the observations, the experiments were performed with two lasers under

different feedback conditions. One experiment was performed with a laser emitting

at 650 nm with free-space feedback provided by a mirror. The other experiment was

performed with a laser emitting at 1550 nm, with feedback provided by an optical

fiber.

(a) (b)

LD LDBS

PD PD

OSC
OSC

Mirror

Amplifier
Amplifier

WG WG

Optical
coupler

Polarization
controller

Figure 6.1: Experimental setup for (a) 650 nm laser (Hitachi HL6714G) and (b) 1550
nm laser (Mitsubishi ML925B45F). LD stands for laser diode, BS for beam-splitter,
PD for photodetector, WG for waveform generator, and OSC for oscilloscope.

For the 650 nm laser, the external cavity is 70 cm (giving a feedback time delay of

4.7 ns) and the feedback threshold reduction is 8%. A 50/50 beam-splitter sends light

to a photodetector (Thorlabs DET210) connected with a 1 GHz oscilloscope (Agilent

DSO 6104A). The solitary threshold is 38 mA and the current and temperature (17

C) are stabilized with an accuracy of 0.01 mA and 0.01 C, respectively, using a

controller (Thorlabs ITC501). Through a bias-tee in the laser head, a sinusoidal

RF component from a leveled waveform generator (HP Agilent 3325A) is combined

with a constant dc current of 39 mA. The modulation frequency is fmod = 17 MHz

and the modulation amplitude varies from 0 mV to 78 mV in steps of 7.8 mV (from

0% to 4% of the dc current in steps of 0.4%). For each modulation amplitude, five

measurements of 3.2 ms are recorded, that give a total number of dropouts equivalent
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to 16 ms. The time series contain between 74,000 and 207,000 dropouts, at low and

high modulation amplitude, respectively.

For the 1550 nm laser, the time delay is 25 ns and the feedback threshold reduction

is 10.7%. The solitary threshold is 11.20 mA, the dc value of the pump current is

12.50 mA, the modulation frequency is fmod = 2 MHz and the modulation amplitude

varies from 0 mV to 150 mV in steps of 10 mV (from 0% to 24% of the dc current

in steps of 1.6%). The time series contain between 8,000 and 19,000 dropouts, at

low and high modulation amplitude, respectively. While, for the 1550 nm laser, the

modulation frequency is about one order of magnitude smaller than for the 650 nm

laser, the relation with the characteristic time-scale of the LFF dynamics, given by

the average inter-dropout interval 〈∆T 〉 is about the same: for the 650 nm laser,

〈∆T 〉 = 365 ns and thus 〈∆T 〉 × fmod = 6.2. For the 1550 nm laser, 〈∆T 〉 = 2.55 µs

and 〈∆T 〉 × fmod = 5.1.

6.3 Results

6.3.1 Effect of current modulation on the IDI distribution.

Figure 6.2 displays the intensity time series, the probability distribution functions

(PDFs) of inter-dropout intervals, ∆Ti (IDIs), and the return maps, ∆Ti+1 vs ∆Ti,

for four modulation amplitudes for the 650 nm laser. Figure 6.3 is equivalent to Fig.

6.2 but for the 1550 nm laser. As it has been reported in the literature the dropouts

tend to occur at the same phase in the drive cycle with current modulation, and the

IDIs are multiples of the modulation period [25, 30, 31].

For increasing modulation amplitude, the IDIs become progressively smaller mul-

tiples of the modulation period and, for high enough modulation amplitude, the

power dropouts occur every modulation cycle [30]. Here, for the highest modulation

amplitude, the PDF presents a strong peak at two times the modulation period (see

Fig. 6.2(k) and 6.3(k)).

The return maps (third column of Fig. 6.2 and Fig. 6.3) display a clustered

structure, with “islands” that correspond to the well-defined peaks observed in the

PDFs, also in good agreement with previous reports [25, 30]. These plots of ∆Ti+1

vs ∆Ti are almost symmetric, suggesting that ∆Ti+1 < ∆Ti and ∆Ti+1 > ∆Ti
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Figure 6.2: For the 650 nm wavelength laser, left column: time traces of the laser
intensity; middle column: probability distribution functions (PDFs) of the inter-
dropout intervals, ∆Ti (IDIs); right column: return maps (∆Ti+1 vs. ∆Ti) in units
of the modulation period (Tmod). First row: no modulation; seconf row: modulation
amplitude of 23.4 mV (1.2% of the dc current); third row: 31.2 mV (1.6%); forth
row: 39.0 mV (2%). In panel (a) the words ’10’ (D = 2) and ’210’ (D = 3) are
depicted as examples; in panel (d) the transition for ’10→01’ is depicted as example
(see Section 6.3.3 for details).
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Figure 6.3: For the 1550 nm wavelength laser, left column: time traces of the laser
intensity; middle column: probability distribution functions (PDFs) of the inter-
dropout intervals, ∆Ti (IDIs); right column: return maps (∆Ti+1 vs. ∆Ti) in units
of the modulation period (Tmod). First row: no modulation; seconf row: modulation
amplitude of 40 mV (6.4% of the dc current; third row: 80 mV (12.8%); forth row:
120 mV (19.2%).

are equally probable; however, in the next section it will be demonstrated that the

modulation induces correlations in the ∆Ti sequence, induced by the modulation,

which can not be inferred from these plots.

6.3.2 Word probabilities

Following with the analysis performed in Chapters 4 and 5, here the sequences of

IDIs acquired from a modulated laser, are transformed into sequences of words of

dimension D = 2 and D = 3, and their probabilities are computed for the different
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modulation amplitudes.

Figure 6.4 shows the probabilities of words of D = 2 (a,b) and D = 3 (c,d), vs.

the modulation amplitude, for the 650 nm laser (a,c), and for the 1550 nm laser (b,d).

As in previous chapters, probability values outside the gray regions are not consistent

with a uniform distribution of word probabilities and reveal serial correlations in the

IDI sequence. It can be noticed that the gray region in (a) and (c) is narrower than

in (b) and (d). This is due to the fact that the number of dropouts recorded for

the 650 nm laser is much larger than for the 1550 nm laser (the corresponding delay

times being 4.7 ns and 25 ns respectively).
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Figure 6.4: Probabilities of the words of D = 2 (a,b) and D = 3 (c,d) versus
the modulation amplitude for the experiment with the 650 nm laser (a,c), and the
experiment with the 1550 nm laser (b,d).

It is observed that, for the case of D = 2, the dynamics is consistent with the

NH for small and for high modulation amplitudes. However, the analysis with D =

3 reveals that, for high modulation, the probabilities are outside the gray region,

revealing correlations among four consecutive IDIs, which are not detected with the
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D = 2 analysis. It can also be noted that there are two groups of words forD = 3, one

less probable (’012’, ’210’) and one more probable (’021’,’102’, ’120’, ’201’), resulting

for D = 2 in the same probabilities for ’01’ as for ’10’. With D = 3, the less probable

words are those which imply three consecutively increasing or decreasing IDIs. This

can be understood in the following terms: strong enough modulation forces a rhythm

in the LFF dynamics, and three consecutively increasing or decreasing intervals imply

a loss of synchrony with the external rhythm, and thus, are less likely to occur.

Also, in Fig. 6.4(c) and (d), it can be observed the same two clusters of words

already found in Chapter 5 for the laser without external forcing. These clusters of

D = 3 words can be seen for all values of the modulation amplitude, remaining even

under the strong external forcing.

6.3.3 Transition probabilities

In Section 5.6 the transition probabilities (TPs) from one word of D = 2 to the next

word were introduced (see Fig. 6.2(d) for an example of TP10→01). Figure 6.5 depicts

the four transition probabilities for both sets of experiments, vs. the modulation

amplitude. The left column corresponds to the 650 nm laser experiment, and the

right column to the 1550 nm laser experiment. For the first normalization of the

TPs, the first-row shows the transitions from word ’01’ to words ’01’ and ’10’ (such

that TP01→01 + TP01→10 = 1), and the second-row the transitions from word ’10’ to

words ’01’ and ’10’ (such that TP10→01+TP10→10 = 1). The third-row corresponds to

the normalization which considers all four transitions (such that
∑i,j=2

i,j=1 TP
∗

i→j = 1).

As can be seen in Fig. 6.5, at this time scale the dynamics is still consistent with

the NH for low modulation amplitudes but, as the modulation increases, a transition

takes places and the TPs display a deterministic-like behavior. This transitions occur

at the same values as in Fig. 6.4 (at about 1.8% modulation amplitude for the 650

nm case, and 16% for the 1550 nm case).

Figure 6.5 shows that, for high modulation amplitude, the most probable transi-

tions are the ones that go from one word to the same word (‘01 → 01’ and ‘10 → 10’).

The transition in the dynamics, and the qualitative agreement between both exper-

iments, are independent of the type of normalization used to compute the TPs.
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Figure 6.5: Transition probabilities for the 650 nm laser (a, c), and for the 1550
nm laser (b, d). The first row indicates the transition probabilities from word
’01’ to ’01’ and ’10’, such that TP(01→01)+TP(01→10) = 1. The second row in-
dicates the transition probabilities from word ’10’ to ’01’ and ’10’, such that
TP(10→01)+TP(10→10) = 1, while the third row consideres all four transitions, such
that TP∗

(01→01)+TP∗

(01→10)+TP∗

(10→01)+TP∗

(10→10) = 1.
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6.4 Comparison with the LK model and with the

modified circle map.

6.4.1 The LK model

For simulating the dynamics with current modulation, a time-dependent pump cur-

rent parameter has to be considered in the LK rate equation 2.4. In this case

µ = µ0 + a sin(2πfmodt), where a is the modulation amplitude, fmod is the modula-

tion frequency, and µ0 is the dc current. Simulations of 2 ms length were performed.

The intensity time-series were averaged over a moving window of 1 ns to simulate

the bandwidth of the experimental detection system. The averaged time series con-

tain between 12,000 and 30,000 dropouts for low and high modulation amplitude,

respectively.
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Figure 6.6: Words probabilities for D = 2 (a) and for D = 3 (b) for the simulations
with the LK model. (c) Transition probabilities from word ’01’ to ’01’ and ’10’, such
that TP(01→01)+TP(01→10) = 1. (d) Transition probabilities from word ’10’ to ’01’
and ’10’, such that TP(10→01)+TP(10→10) = 1. (e) Transition probabilities such that
TP∗

(01→01)+TP∗

(01→10)+TP∗

(10→01)+TP∗

(10→10) = 1.
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The best agreement with the experimental data was obtained for µ0 = 1.01,

fmod = 21 MHz, ǫ = 0.01, k = 300 ns−1, τ = 5 ns, γ = 1 ns−1, βsp = 10−4 ns−1,

η = 10 ns−1, and α = 4. For these parameters 〈∆T 〉 = 127 ns and 〈∆T 〉×fmod = 2.7.

Figure 6.6 shows the words probabilities for D = 2 (a) and D = 3 (b), and

the transition probabilities (c,d,e) computed with the LK numerical simulations.

It can be observed a transition in the behavior at around 5% of the modulation

amplitude, which is present in the OPs analysis forD = 3 and in all the TPs analysis.

This transition represents a change in the dynamics, from a stochastic-like behavior,

where the OPs and TPs lie in the gray region for low modulation amplitudes, to a

deterministic-like behavior for high modulation amplitudes.

Comparing Figs. 6.4, 6.5 and 6.6, a good qualitative agreement is found between

experiments and simulations. As discussed in Section 2.4, within the framework of

the LK model, the LFF dynamics is sustained by spontaneous emission noise, and

thus, one could expect only weak correlations in the sequence of dropouts. While

this is indeed the case for no modulation or very weak modulation amplitude, larger

modulation induces IDI correlations, which are adequately reproduced by the LK

model. For strong modulation the reason why some words and transitions are more

probable than the others is well understood (as due to the external rhythm imposed

by the modulation).

It is to be noted that, without modulation, while in the experimental data the

word probabilities are within the NH gray region, in the simulated data they are

not. This can be due to a number of model parameters that can be tuned in order

to obtain a better fit of the symbolic dynamics without modulation (e.g., the feed-

back strength, the linewidth enhancement factor, the dc value of the pump current,

etc.). Although this deserves further study, the effect of the modulation on the LFF

symbolic dynamics is consistent with the experimental observations.

6.4.2 The circle map model

The results presented in Chapter 5 demonstrated that the circle map considered by

Neiman and Russell [48], which included a second harmonic term, reproduces the

LFF symbolic dynamics at low and high pump currents. Here it is demonstrated

that this minimal model also reproduces the statistics of the symbolic dynamics of
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the LFFs with periodic external forcing.
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Figure 6.7: Influence of periodic forcing in the probabilities of the ordinal patterns
computed from the modified circle map, when varying the parameter K. (a) Prob-
abilities with constant noise strength. Here the hierarchical and clustered structure
of the probabilities is in good qualitative agreement with that in the experimental
data. The parameters are ρ = −0.23, αc = 0.2 and β = 0.002. (b), Probabilities
computed with the modified circle map considering an additional noise strength that
decreases with the modulation amplitude. For weak modulation the agreement with
the experimental probabilities is further improved.

To show the goodness of the model to describe the dependence of the probabilities

with the pump current, in the previous chapter the αc parameter was varied. The

behavior found was equivalent to modify the pump current in the experiments.

In the present situation, the current pumping the laser is a combination of a

constant dc current and a sinusoidal component. Now it is not the dc current, but

the modulation amplitude of the external forcing, that is varied. Therefore, it is the

effect of the K parameter of the circle map model, that corresponds to the forcing

strength, that is studied.

Figure 6.7(a) shows the words probabilities versus K. It can be observed that,

for high values of K, the probabilities cluster in two groups: the less probable ones,

with the words ’012’ and ’210’ formed by consecutively increasing and consecutively

decreasing intervals; and the more probable ones, where two clusters can be distin-

guished, ’021-102’ and ’120-201’. This behavior for high K values mimics the one

found previously in the experiments and in the simulations with the LK model (Figs.

6.4(c,d) and 6.6(b)).
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For the lowest values of theK parameter, all six words are equally probable, being

compatible this behavior with a stochastic dynamics, just as in the experiments. For

intermediate values of K, clear signatures of determinism appear, where the words

’210’ and ’012’ are the most probable ones. This intermediate behavior does not

reproduce the experimental results as well as the model does in the un-modulated

case. This could be due to the fact that, in the experiments, the current modulation

introduces an additional source of noise, which probably depends on the modulation

amplitude. In order to test this interpretation, an additional noise term is considered

in the map equation. To account for the good agreement at high K values, but

the lack of agreement at low and intermediate K values, the additional noise term

considered is inversely proportional to the K parameter (ξβc/K):

φ(i+ 1) = φ(i) + ρ+
K

2π
[sin(2πφ(i)) + αcsin(4πφ(i))] + βc(1 +

1

K
)ξ(i) (6.1)

Figure 6.7 (b) shows the new word probabilities with the circle map. This addi-

tional noise term mainly affects the word probabilities at low modulation amplitudes

(before the crossover), improving the agreement with the experimental probabilities

(Fig. 6.4).

Figure 6.8 depicts the transition probabilities, for the two normalization criteria,

computed with the circle map. The left column (a, c and e) corresponds to the

model with a Gaussian white noise term. As for the word probabilities, there is a

good agreement with the experiments for high modulation amplitudes, while not for

low modulation amplitudes. The right column (b, d and f) corresponds to the model

including the additional noise term, related to the modulation amplitude. There is

an improvement in the agreement with the experiments.
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Figure 6.8: Influence of periodic forcing in the transition probabilities computed from
the modified circle map, when varying the parameter K. (a,c,e) Transition probabil-
ities with a constant noise strength (βcξ). (b,d,f), transition probabilities computed
with the modified circle map considering the additional noise strength (βc(1+1/K)ξ).
The agreement with the experimental probabilities is further improved.

6.5 Summary

This chapter has presented an experimental and numerical study of the symbolic

dynamics of a semiconductor laser with optical feedback and current modulation in

the LFF regime. The ordinal symbolic analysis has allowed to identify clear changes

in the dynamics induced by the modulation. For weak modulation the sequence

of dropouts is found to be mainly stochastic, while for increasing modulation it

becomes more deterministic, with correlations among several consecutive dropouts.

Furthermore, the analysis of the transition probabilities has gone a step beyond in the

time scale, showing correlations among five consecutive dropout events. Surprisingly,

the clusters of words found in the previous chapter remain even in the presence of

the external forcing.
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The LK model, and the modified circle map model, have also been tested, and

a good qualitative agreement with the experimental observations has been found.

This reinforces the suitability of the LK model to describe the LFF dynamics.

In the case of the circle map it has been observed the convenience of considering

an additional noise term, related to the modulation, to improve the agreement with

the experiments.

Due to the suitability of the circle map to describe correlations in the spike

activity of sensory neurons of paddlefish [48], the optical setup could be used to

analyze the role of external forcing in the spike sequence, providing, for example,

new insight in the role of gamma oscillations in the brain, which have been shown

to serve to concentrate neuronal discharges to particular phases of the gamma cycle

[149].





Chapter 7

Subwavelength position sensing

using a semiconductor laser with

two external cavities

Misura ciò che è misurabile e rendi misurabile ciò che non è misurabile.

Galileo Galilei

7.1 Introduction

Previous chapters have drawn upon the nonlinear dynamics of a semiconductor laser

to unveil correlations and structured patterns in its behavior. This chapter presents

a novel experimental method that exploits the sensitivity of a semiconductor laser

to optical feedback, to perform subwavelength measurements by tracking induced

changes in the frequencies of the dynamics. It is demonstrated how to harness

quasi-periodic dynamics in a semiconductor laser with optical feedback from two

independent external cavities, for measuring subwavelength changes in each arm of

the cavity simultaneously.

The extreme sensitivity of semiconductor lasers with optical feedback has been

widely studied for applications to sensors [52]. For example, in a semiconductor laser

with one external cavity, displacements and vibrations of the external cavity can be

111



Chapter 7. Subwavelength position sensing using a semiconductor laser with two
external cavities 112

detected with subwavelength resolution, by tracking changes in the laser intensity,

leading to the development of laser-feedback interferometry, also referred as self-

mixing interferometry [6, 63, 150]. Also, the effect of the feedback in the relaxation

oscillations has been used as imaging technique [151]. These techniques lead to the

extraction of a single observable, restricting sensing or imaging to one dimension

(1D). As a consequence, to image or sense objects in two or three dimensions, such

laser-based systems require scanning and sequential 1D acquisitions.

In 2011, Cohen et al. [152] demonstrated a subwavelength 2D position sensor,

using a high-speed nonlinear feedback system, in a radio-frequency wave-chaotic cav-

ity. They showed that the position of an object, moving inside the 2D cavity, can be

tracked without requiring sequential scanning to deduce 2D information. By mea-

suring the frequency shifts induced in the quasi-periodic dynamics they associated a

linear map between the two frequency shifts and the object position.

This chapter raises the question of whether the method can be extrapolated to

the optical domain by using a laser diode. It is demonstrated that, by using quasi-

periodic (QP) dynamics induced by two independent optical feedbacks (a two-armed

cavity), independent fequency shifts can be obtained by independently displacing

both mirrors. A mapping between the frequency shifts with subwavelength trans-

lations of each arm is unveiled, leading to a detection scheme for 2D nanoscale

translations.

This Chapter presents the work performed in the laboratory of professor Daniel

J. Gauthier, at Duke University (North Carolina, USA) in collaboration with Seth

D. Cohen. These results have been sumarized in [153].

7.2 Experimental setup

Figure 7.1 displays the experimental setup. A single-mode semiconductor laser (LD,

Sumitomo SLT4416-DP) operating at a wavelength of 1550.8 nm is submitted to dual

optical feedback by means of two external cavities of lengths L1 and L2 respectively.

The delay times from each external cavity is τ1 = 55.5 ns, and τ2 = 55.6 ns, with

equal feedback strengths. The feedback reduction is of ∼ 1%. The pump current of

the laser is I = 23.6 mA, with a current threshold of I = 8.0 mA (thus, ≈ 3Ith).
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Figure 7.1: Schematic representation of the experimental setup. LD stands for
laser diode, PC for polarization controller, OC for optical fiber coupler (90/10),
OA for optical attenuator, BS for beamsplitter, M for mirror, PZT for piezoelectric
transducer, OI for optical isolator, PD for photodetector, and OSC for oscilloscope.

The feedback strength is controlled via an optical attenuator (OA) placed before the

beam splitter (see Fig. 7.1).

The laser is coupled to an optical fiber, and an optical coupler (OC) splits the

ligth into two paths, one going to the detector and the other to the feedback cavi-

ties. As the optical fiber can modify the polarization of light as it travels through

it, a polarization controller (PC) is used to ensure coherente feedback, i.e., the po-

larization of the return light is the same as the polarization of the emitted light.

Figure 7.2(a) shows the output intensity vs. pump current curve for the laser with

and without feedback (green and blue, respectively): the two slopes being parallel

ensures coherent feedback [5].

In order to vary the lengths of the two external cavities, light goes out of the

optical fiber and is sent through free space to two mirrors, via a 50/50 beam splitter

(BS). Both mirrors are placed on piezoelectric transducers (PZT, Burleigh PZO-015)

that translate the mirrors (M) and change the feedback delay time (τ1 and τ2).

In the detection path, to avoid reflections to the laser, an optical isolator (OI) is

used before the detection is performed, using an ac-coupled 12 GHz photodetector

(PD, New Focus 1544-B) and a 40 GS/s, 8 GHz analog bandwidth, high-speed digital

oscilloscope (OSC, Agilent DSO90804A).
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All the protocol, i.e., PZTs movements and data acquisition is computer con-

trolled.
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Figure 7.2: Output intensity of the solitary laser (blue), and of the laser with feed-
back (green). Both slopes are equal, indicating coherent feedback. The laser was a
Sumitomo SLT4416-DP operating at 1550.8 nm.

The positions of the mirrors were moved on a nanoscale (∆x << L1, and

∆y << L2), and the PZTs were calibrated in order to estimate their displacements

in function of the applied voltage. This calibration was performed via a Michelson

interferometer. By moving one of the PZTs, the intensity of the interference varies

and, knowing the wavelength of the signal (λ = 1550.8 nm), it can be inferred the re-

lation between the applied voltage and the displacement of the PZT. This calibration

process is repeated for PZT1 and PZT2. The conversions obtained are, respectively,

29.2± 0.1 nm/V for PZT1, and 45.8± 0.2 nm/V for PZT2.

This calibration does not include either the hysteresis or the nonlinear response

of the PZTs under applied voltages. To reduce the effects of the PZT nonlinearity

and hysteresis, they are biased at 50 V (out of a total range of 0-150 V), taking into

account the manufacturer’s specifications, and the scans are performed by at most

3 V about this value. Deviation from linearity is at most 0.3%.

The 2D scan is then performed by varying the two PZTs in steps of ∼ 10 nm,

performing an 81 points 2D grid, covering approximately 100 nm × 100 nm.
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7.3 Results

7.3.1 Quasi periodic dynamics

The dynamics that a semiconductor laser with optical feedback can manifest are

broad, and among them it is quasi-periodicity (QP). QP dynamics is characterized

by having two, or a few, incommensurate frequencies.

To achive this dynamical regime in the experimental setup, the feedback strength

has to be fine tuned. This occurs for low feedback strengths (∼ 1% of threshold

reduction [36, 39]). Figure 7.3 displays the experimental quasi-periodic dynamics

generated by the semiconductor laser with dual optical feedback. Panel (a) shows

the signal acquired by the oscilloscope. It is a fast oscillatory signal with a slow

modulation in its amplitude.
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Figure 7.3: (a) Time trace intensity of the laser, averaged 500 times. The dotted line
indicates the trigger (Vtrig) used to do the acquisition (see Section 7.3). (b) Power
spectral density of the signal in the quasi-periodic regime, showing six frequency
clusters. Two of them labelled as f1 = 2.13 GHz and f2 = 6.49 GHz. These two
clusters are used for subwavelength sensing. (c) Zoom on the structure of the second
labelled frequency cluster.

Panel (b) shows the power spectral density of the signal in the quasi-periodic

regime. It reveals multiple clusters of frequency peaks ranging from ∼ 1 GHz to ∼ 7

GHz (additional clusters above 8 GHz may be present but are not visible without

s faster measurement equipment). The highest frequency cluster concentrates the

largest amount of spectral power because it lies in the vicinity of the relaxation-

oscillation frequency (measured to be ∼ 6.5 GHz for pumping current of I = 23.6
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mA). The central frequencies of two of the clusters are labelled as f1 = 2.13 GHz and

f2 = 6.49 GHz. These frequencies are incommensurate, and approximately linearly

independent, for ∆x and ∆y in the range of the experiments. Due to this, they are

the frequencies used to perform subwavelength position sensing. Panel (c) shows a

zoom of the structure of the second labelled frequency cluster.

7.3.2 Detection of subwavelength displacements

If the frequencies of the QP dynamics are sensitive enough to nanometric variations

of the lengths of the two arms, then a study of the frequencies can allow for subwave-

length position sensing. Therefore, both mirrors are moved and their displacements

tracked by following the relative frequency shifts (∆f1 and ∆f2) due to subwave-

length translations of the mirrors (∆x,∆y << λ). These translations imply changes

in the time delays (∆τ1,2 = 2∆L1,2/c, where c is the speed of light in free space).

As mentioned before, the piezoelectric transducers are translated by steps of ∼ 10

nm, within an approximative 100 nm × 100 nm 2D grid. The QP frequencies are

tracked as the positions of the mirrors are changed. It is important that, over the

subwavelength region of interest, the dynamics remains quasi-periodic. Over sub-

stantially larger regions, the QP dynamics was observed to undergo abrupt frequency

jumps, thus limiting the range of applicability of the method. At each point of the

grid, the frequency shifts (∆f1,2) are measured.

The nanoscale modifications to the lengths of the cavities, induced by the PZTs,

lead to observed frequency shifts on the kHz scale. This is considerably smaller than

the actual frequencies (on the GHz scale). To discern such fine variations, a trigger

skew on the oscilloscope was used. This way the oscilloscope waits a certain time

between its initial triggering and the acquisition of the waveform (tskew = 5µs). By

using a large enough trigger skew, small frequency shifts (∆f) can be observed in

the oscilloscope as phase shifts, ∆ϕ = ∆f · tskew.

This experimental approach improves the resolution of the frequency shifts up to

the limit imposed by the jitter of the waveform. This effect of the jitter is reduced by

averaging 500 time series, in real time, for each point of the 2D grid. This method

is found to be a good compromise between jitter noise reduction and the inevitable

drift in the apparatus due to temperature fluctuations.
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In order to successfully average over the waveforms, the trigger height (Vtrig)

must also be tuned so that the oscilloscope triggers only on the maxima of the

largest amplitudes, corresponding to regions of the quasi-periodic signal for which

the incommensurate frequencies add constructively (see Fig. 7.3(a)). Other trigger-

ing values cause the averaged waveforms to collapse to zero, due to the non-periodic

nature of the quasi-periodic signal. To know the frequency resolution of the ex-

perimental protocol, a quasi-periodic waveform generated by a stable wave-function

generator (Agilent E8267D, with a frequency resolution of 10−3 Hz) is used, yielding

a 3 kHz frequency resolution.

Once the two mirrors are displaced to cover the 2D grid (∆x, ∆y), and the

waveforms are acquired, they are fitted by a least-squares regression to the following

four-frequency nonlinear function:

V (t) =
i=4
∑

i=1

Ai sin [2π(fi +∆fi)(t− tskew)] (7.1)

where Ai and ∆fi are parameters determined via the regression, and fi are directly

measured with the oscilloscope. In order to achieve high resolution in determining

the frequencies, one long waveform (5.25× 105 points) is acquired before performing

the 2D scan. A Fourier transform of this long waveform gives the four frequencies

required for the regression.

To perform the subwavelength position sensing, the QP frequency shifts are mon-

itored as a function of ∆x and ∆y.

Figure 7.4 shows the maps of ∆f1 (a), and ∆f2 (b) vs. ∆x and ∆y. The frequency

shifts are mapped onto two smooth manifolds. Both manifolds exhibit different

ranges of variation and levels of curvature, suggesting independent frequency shifts

as a function of the position displacements. This independent behavior indicates

that the functions are invertible. To demonstrate the independence and inversion, it

is proposed to fit the nonlinear map by:

∆f1(∆x,∆y) =
i=2
∑

i=1

(

ai∆xi + bi∆yi
)

+ A∆x∆y +B (7.2)

∆f2(∆x,∆y) =
i=2
∑

i=1

(

ci∆xi + di∆yi
)

+ C∆x∆y +D (7.3)
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Figure 7.4: Experimental manifold associated with the quasi-periodic frequency
shifts for ∆f1 (a), and ∆f2 (b), as a function of ∆x and ∆y. The 2D manifolds
are fitted with the quadratic functions 7.2 and 7.3.

The fit gives:

∆f1(∆x,∆y) = −17−0.07∆y+1.25∆x+0.0058∆x∆y−0.0041(∆y)2−0.0095(∆x)2

∆f2(∆x,∆y) = −68 + 1.2∆y + 1.9∆x+ 0.009∆x∆y − 0.013(∆y)2 − 0.014(∆x)2

where ∆fi are measured in kHz, and ∆x and ∆y are measured in nm. As equations

7.2 and 7.3 are numerically invertible, specific values of ∆x and ∆y can be related

to a given measure of the frequency shifts, ∆f1, and ∆f2, and vice versa. Thus,

two specific frequency shifts give a specific set of measures of displacements in both

arms, whereupon it can be used for position sensing.

Figure 7.5(a) shows the original grid and the predicted grid, by using the ex-

perimental protocol. The blue dots correspond to the 9 × 9 points where the QP

dynamics is acquired to calibrate the protocol. The green line is the corresponding

prediction of the fit.

Once the calibration is done, the protocol is tested by moving the two mirrors

following an s-shape trajectory of 32 points (see Fig. 7.5(b)). The two PZTs are

moved following the blue dots trajectory shown in the figure, and the green line is

the trajectory recovered from the experimental protocol. As a guide, the calibration

grid is depicted in black.
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Figure 7.5: (a) Calibration grid formed by 81 points (blue dots), and the correspond-
ing prediction of the experimental protocol (green line). (b) Arbitrary s-shaped tra-
jectory (blue dots) and its corresponding prediction of the experimental protocol
(green line)

To complete the measurements, i.e., the 81 calibration points followed by the 32

trajectory points, the experimental measures required almost 5 minutes. Just as in

the calibration grid, this reconstructed path does not lie exactly on the actual path

followed by the mirrors, although it preserves the S shape. This is expected, as the

calibration grid is already distorted and this affects the prediction power. Aside,

the protocol assumes a second order map, ∆f1,2 → ∆x,∆y, while a higher order fit

could improve the protocol.

The root-mean-square differences between the predicted and actual subwave-

length translations realized by PZTx and PZTy are 12.3 nm and 6.8 nm, respectively.

This gives an average resolution of 9.6 nm (∼ λ/160). The maximum errors between

the experimental map and the fit are ǫx,max = 27.5 nm (∼ λ/60), and ǫy,max = 22.7

nm (∼ λ/70). This sets a limit on the achievable resolution of the device. Of course,

other pairs of frequencies than f1 and f2 can be used to perform the position sensing,

but from the experimental data acquired, these are the ones that provide the best

2D resolution.

It is thought that the main sources of errors in the measurements are room

temperature fluctuations, which are not controlled. They induce erratic changes of

the path lengths of each arm in the cavity, thus affecting the frequencies fi with

parasitic frequency shifts. Due to this fluctuations, the manifolds displayed in Fig.
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7.4 can only be used once as calibration measurements to then infer an unknown

subwavelength trajectory on the 100 nm × 100 nm grid. Beyond the 5 minutes time

window, temperature fluctuations prevent from inferring subwavelength positions

from the original calibrations, and a new calibration has to be performed. Also, as

mentioned before, the approximation of the calibration grid as a second order surface

introduces errors in the resolution of the calibration and the predicted positions.

7.4 Summary

In this chapter, an experimental protocol for a 2D position sensor with a resolution

in the nanometer scale has been presented. The protocol uses a semiconductor laser

with dual feedback, in the quasi-periodic dynamics regime. The sensitivity of the

complex dynamics of semiconductor lasers to feedback has been exploited, to track

subwavelength displacements of the mirrors of the external cavities. This is the first

experimental study of a dual optical feedback for subwavelength multidimensional

position sensing based on frequency shifts in the quasi-periodic dynamics spectrum.

This work has been a proof of concept demonstration, extending to the optical

domain the work fo Cohen et al. [152], and applications to other systems can be

expected.



Chapter 8

Summary of results and future

work

Somewhere, something incredible is waiting to be known.

Carl Sagan

8.1 Summary of results

The main goal of the work presented in this Thesis has been to study the nonlinear

dynamics of semiconductor lasers, in order to improve our understanding of nonlinear

stochastic complex systems, and to exploit their dynamics for practical purposes.

The second part of the Thesis (Chapters 4 to 8) presents the results of the work.

Chapters 4, 5 and 6 have been devoted to the study of the LFF regime. In spite

of the fact that the LFF regime is well known due to the great deal of attention that

it has attracted over the last three decades, the work performed here has been able

to unveil new features of the LFF dynamics: a novel analysis method for identifying

signatures of determinism has been demonstrated; the presence of serial correla-

tions, previously unkown, has been uncovered; and a minimal model to describe the

statistics of the symbolic patterns has been found. This minimal model had been

previously used to describe correlations among neuronal spikes, therefore suggesting

121
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that semiconductor lasers in the LFF regime could be used for mimicking neuronal

activity.

In Chapter 4 a novel method of analysis has been introduced, which allows to

distinguish statistical signatures of stochasticity and determinism from the sequence

of dropouts in the LFF regime. The method, which uses ordinal symbolic analysis,

is based on the choice of a threshold to classify the IDIs into short intervals (SIs)

and long intervals (LIs), and suggests different mechanisms triggering the dropouts:

one (LIs) compatible with a stochastic process, like escapes from a fixed point due

to noise; and the other (SIs) with clear signs of determinism, that could be due to

a stochastic trajectory on an underlying attractor in its return to the resting state.

Therefore, the method allows statistically to infer which dropouts could be noise

induced, and which ones could have a deterministic origin.

Furthermore, in Chapter 5 ordinal symbolic analysis has shown that serial corre-

lations are present in the sequence of intensity dropouts in the LFF regime. These

correlations have a hierarchical and clustered organization of patterns which had not

been previously noticed.

In Chapter 6 the symbolic ordinal analysis has also enabled to identify clear

changes in the LFF dynamics induced by modulation of the laser pump current.

As the pump current is varied from un-modulated to high modulation amplitude, a

transition from a stochastic-like behavior to a deterministic-like has been identified.

In addition, the same clusters found in the un-modulated experiments have been

found in the modulated ones, despite the external forcing.

A minimal model (modified circle map) has also been found, that describes the

hierarachical and clustered symbolic structure seen in the experimental data.

Simulations of the LK model have been found to be in good qualitative agree-

ment with the experimental observations, representing a validation of the model in

unpredecent long time-scales.

In Chapter 7 a novel method for 2D subwavelength position sensing in the infrared

domain (λ = 1550 nm) was demonstrated. The method exploits the quasi-periodic

dynamics of a semiconductor laser with two external cavities to resolve two indepen-

dent displacements. By analyzing frequency shifts in the multifrequency spectrum

of the laser intensity, a resolution in the nanometer scale has been demonstrated
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(λ/160). In this way two independent displacements can be identified by only ac-

quiring the output intensity of the laser, without the need of a 2D scanning.

8.2 Perspectives for future work

This Thesis has improved our understanding of the nonlinear dynamics of semicon-

ductor lasers with optical feedback, and leaves open questions that can be a logical

continuation of the research presented here.

• It has been demonstrated the robustness of the words probabilities to variations

of the threshold to detect the dropouts. However, for high values of the detection

thresholds, close to the recovery of the dropout, where small intensity fluctuations

appear to be stochastic, also signatures of determinism have been detected, which

require more research in order to understand them properly.

• The method to distinguish signatures of determinism and stochasticity, which

is computationally simple and has proven to be robust to threshold variations, could

be used in a wide variety of real-world systems that present a spiking dynamics where

signatures of deterministic underlying dynamics can be obscured by the presence of

noise, such as neuronal inter-spike intervals, sequences of earthquakes, inter-event

times in social networks, or intervals between sharp changes in the luminosity of

variable stars.

• It would be interesting to consider the phenomenological model proposed by

Mindlin and coworkers [84], which gives a good description of the probability dis-

tribution function of the inter-dropout intervals. In the symbolic dynamics of this

model the most probable words are ’012’ and ’210’ [130], and it would be interesting

to explore the parameter space to search for the two clusters of words uncovered

here.

• In the analysis developed for the laser with external forcing, only the influence

of the modulation amplitud has been studied. It is of interest to analyze the influence

of varying the modulation frequency and the noise strength in the LFF dynamics and

in the dropout correlations, specially having in mind phenomena such as stochastic

or ghost resonance.

• All through this Thesis, the research has been focussed in the perturbations
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induced by external optical feedback on a semiconductor laser (with and without

pump current modulation). An interesting continuation of this research is to investi-

gate the effect on the symbolic dynamics induced by optical injection from a second

laser (uni-directional and bi-directional coupling). This could help to characterize

synchronization states. This investigation and the effect of the modulation frequency

in the symbolic dynamics is being carried out by Taciano Sorrentino and Carlos. A.

Quintero.

• The suitability of the circle map, to describe the symbolic dynamics of the

semiconductor laser under pump current modulation, revealed the need to include

an additional noise term related to the modulation amplitude for a better agreement

with the experiments. It would be interesting to analyze the LK model considering

this additional noise term.

• The circle map minimal model has shown its suitability to describe the symbolic

dynamics of the LFFs, but there is no explanation of why this is a good minimal

moedl. This is an important open question that requires further studies.

• As the circle map had been previously proposed as minimal model of electrore-

ceptors in paddlefish, these findings suggest that optical neurons, inspired in biolog-

ical ones, displaying similar temporal correlations in their firing patterns, could be

built using semiconductor lasers, thus providing a novel, inexpensive and control-

lable experimental set up for mimicking neuronal activity. In particular, it would

be interestnig to explore the similarities between the symbolic dynamics of optical

spikes and those from real neurons.

• The subwavelength position sensing protocol is a continuation of previous works

in the radio-frequency domain in a chaotic cavity [152], and were followed by other

experiments by Seth D. Cohen in an alectronic circuit [154]. Based on the results

it would be expected that this method could be extended to other systems, as cou-

pling the optical system to a wave-chaotic cavity [155], such that it interacts with a

contained subwavelength scatterer. This system could also be modified to monitor

chemical concentrations or nanoparticles in a solution [156, 157].

• From the theoretical point of view, there is still lack of an explanation for the

frequency shifts in the QP regime. It would be of interest to analyze in depth the

relation of the different independent frequencies with the nanometer displacements.
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In this direction, it would be very helpful to perfom simulations with the LK model

to identify the model parameters requiered for robust QP dynamics that allow to do

2D position sensing.
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