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Introduction

In this thesis, we want to understand the long time behaviour, and more precisely if
slow or fast propagation hold, of solutions to reaction-diffusion problems with long
range integral diffusion. To describe the general idea, let us consider the equation

oz, t) + Au(x,t) = f(z,u(z,t)), ze€RLt>0, (0.0.1)

where A is an elliptic operator describing some diffusive process and f is a source
term. The simplest examples of functions f will be f(x,u) = f(u) = u — u?, or
f(x,u) = p(x)u — u?, with p a positive function periodic in each x; variable. These
examples will be taken as references throughout this introduction. Such reaction
terms are called nonlinearities of Fisher-KPP type, in reference to Fisher ([45]) and
Kolmogorov, Petrovskii and Piskunov (|61]), where these models are introduced for
the first time. We will come back to this later.

Set, to fix ideas, f(z,u) = u —u? in (0.0.1). Two terms are in competition in this
model, and intuitively :

u
— the reaction, given by the ordinary differential equation i u — u?, will make

u to grow to the stable state 1,

— the diffusion, given by the operator A, will spread the support of w.

In fact, it is well known, see [6] and [16], that, starting from any nonnegative and
compactly supported function, the solution to (0.0.1) with f(z,u) = u — u? tends to
the stable state 1 as t tends to infinity, on every compact set. Thus, a transition zone
appears between the unstable state 0 and the stable state 1 and we may expect it to
grow as time goes to infinity.

= Transition zone

Expected picture for f(z,u) =u —u? in (0.0.1).
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This raises the following question : What is the growth of the interface that sepa-
rates the area where u is close to 1 from the one where u is close to 0, as time goes to
infinity?

In this thesis, we wish to answer this question when the operator A has the features
of the fractional Laplacian, and to compare to what happens when A is the standard
Laplacian. We will see that the fractional operator has specific properties that lead to
an exponential in time propagation of the solution to (0.0.1). Our goal is to compute
this speed of propagation as precisely as possible in various examples. Rigorously,
this means that, if u is the solution to (0.0.1), starting from a nonnegative, compactly
supported and non identically equal to 0 initial condition, we look for a function R.(t)
going to infinity as t tends to infinity such that, for every direction given by a unit
vector e € R? and every constant ¢ € (0,1),

lngrinf $i£1pfe u(z,t) >0 and limsup sup  wu(z,t) =0. (0.0.2)
— 100 —PE, Tr=pe,
{0<p<Re(ct)} e {p>Re(pc—1t)}

We will adopt this slightly unusual definition to cover both standard and fractional
diffusions.

Reaction-diffusion equations of the form (0.0.1) arise in various fields like chemistry,
biology or ecology. In population dynamics, when we want to study spatial propagation
or spreading of biological species (muskrats in [81], wolves in [72] or sharks in [55] for
instance), the quantity u(x,t) in (0.0.1) stands for the density of the population at
position x and time t (see [81] for instance). The reaction term f corresponds to
the growth rate of the population and represents interactions between the individuals
and the medium. It depends on the density of the population and on the location
of the population through the space variable x. The diffusive operator A describes
the motion of the individuals. Let us mention that, especially in the modelling of
biological invasions, a description alternative to PDE is by integral models.

This introduction is organised as follows. We first present, in more detail, known
results on reaction-diffusion equations of Fisher-KPP type, in homogeneous and peri-
odic media. As we will see, the starting point is the question of making more precise
a certain expansion rate in the fractional homogeneous case, which will lead us unex-
pectedly far. Indeed, it will enable us to set up a new method to construct explicit
subsolutions and supersolutions to this type of equations, which will enable us to treat
the periodic case (a problem that was previously open) as well as monotone systems
involving fractional diffusion. A large part of the thesis is devoted to a new model
dealing with the influence of a line, with fractional diffusion, on Fisher-KPP propaga-
tion.
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A. Front propagation in Fisher-KPP type models : an
overview

A.1. Homogeneous media

The simplest and well studied model was first described by Fisher and Kolmogorov,
Petrovskii and Piskunov in [45, 61| and corresponds to the case when A = —A, and
f, of Fisher-KPP type, does not depend on . We refer to this as a homogeneous
medium. Such a function is supposed to be concave and to have two zeroes : an
unstable one at u = 0, and a stable one at, let us say, u = 1. The typical example is
flu) =u—u?

Equation (0.0.1) has a family of planar travelling fronts, that are solutions of the
form u(z,t) = U(x - e — ct), where e is a unit fixed vector representing the direction of
propagation and ¢ > 0 is the speed of the front. The function U satisfies

~U"—cU = f(U), U(-o00)=1, U(+0)=0.

In [61], it is proved that there is a threshold ¢* = 24/ f/(0) for the speed ¢, namely,
the constant c¢* is the smallest possible speed ¢ for a planar travelling front to exist. In
a more general setting, Aronson and Weinberger proved, in [6], that any non identically
equal to 0, nonnegative and compactly supported initial condition invades the unstable
state in the following sense :

for all c < ¢*, lim inf u(x,t) =1, and for all ¢ > ¢*, lim inf u(x,t) =0.
t—+o00 |z|<ct t—+00 |z|>ct
This means that, in this case, the position of the front depends linearly on time and
that we can take R.(t) = c*t+t 9 (t) in (0.0.2). A very general notion of propagation
—r+00

velocity was introduced in [13| to study propagation in general unbounded domains of
R?. In the case of globally front like initial data, decaying slower than any exponential,
Hamel and Roques proved in [51] that superlinear speeds of propagation arise.
Another way of understanding front propagation, due to Evans and Souganidis in
[44] for A = —A, is through a singular perturbation setting. Given that a linear in
time invasion is expected, it is natural to look at the solution at large scale in ¢ and

x, namely to set for ¢ > 0 :
(2,1) z 1
Uz, t) =u|—,- ).
: g e
The equation solved by u, is
1 2
Oue — eAue = —(ue — uz).
€

One easily sees, at least in a formal way, that u. converges to 0 or 1, according to
the value of u. — u?. The limiting transition zone is a surface evolving according to
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the eikonal equation v,, = 2, where v,, is the normal speed to the front. This approach
is also used in simple combustion models, see [8]. A general geometric approach is

described in [9].

The use of a local operator, such as the standard Laplacian, corresponds to indi-
viduals moving under a Brownian process. Numerous works, mainly in physics, have
shown that this approach is not correct anymore when considering species that have
jumps of non infinitesimal lengths (see |36, 55] for instance). This particular motion of
the individuals leads to integro-differential equations, with heavy or non exponentially
bounded tails, implying infinite speeds of propagation.

In this thesis, we focus on anomalous diffusion processes, given by stable Lévy
processes, whose infinitesimal generators are the fractional Laplacians. Let us mention
here that nonlinear equations with fractional diffusion are being intensively studied.
For the main definitions, we refer to [64].

Reaction-diffusion equations are not the only field where nonlocal diffusion is in-
volved, let us cite some important instances dealing with nonlocal operators :

— Nonlocal geometric front propagation : Caffarelli and Souganidis in [34] and
Imbert, Monneau and Rouy in [56],

— Nonlocal free boundary problems : Caffarelli, Roquejoffre and Sire in [32],

— Nonlocal minimal surfaces : Caffarelli, Roquejoffre and Savin in [31| and Davila,
del Pino and Wei in [39),

— Fully nonlinear elliptic and parabolic equations : Cabré and Sire in [27, 28|,
Cabré and Sola-Morales in [29], Caffarelli, Chan and Vasseur in [30], Caffarelli
and Silvestre in [33] and Frank and Lenzmann in [46],

— Hyperbolic equations : Alibaud, Droniou and Vovelle in [3|, Kiselev, Nazarov
and Shterenberg in [59],

— Quasi geostrophic equations : Caffarelli and Vasseur in [35], Kiselev, Nazarov
and Volberg in [60] and Constantin and Vicol in [37].

Let us now recall the definition of the fractional Laplacian. For any function h that
decays sufficiently fast, the fractional power of the Laplacian is defined for a € (0, 1)

by
(=A)*h(z) = cqa pv. (/R LCM@) :

< |z —yl
where p.v. stands for the Cauchy principal value, and
al(¢+a)

7205 0(1 — o)

Cdao =
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This constant is in fact adjusted so that this operator is a pseudo-differential op-
erator with symbol |¢|**. These definitions are consistent with the standard Laplace
operator when o = 1.

The main difference between the standard Laplacian and the fractional Laplacian
(besides locality versus nonlocality) is the fundamental solution, that is to say the
solution to 9yp, + (—A)*p, = 0 with Dirac mass at ¢ = 0. The function p, decays
in a Gaussian fashion for the first operator, whereas it has an algebraic decay for the

latter. Indeed, for the fractional Laplacian, there exists a constant B > 1 such that,
for (z,t) € R? x Ry
Bt Bt

R SPeln ) S pry e

(0.0.3)

This feature will be crucial when analysing the long time behaviour of the solu-
tion to (0.0.1). Indeed, considering the homogeneous medium (f(u) = u — u?, and
A = (=A)* in problem (0.0.1)), the propagation is exponential in time. Although
this fact was well noted in physics references (see [71| for instance), the first mathe-
matically rigorous result is due to Cabré and Roquejoffre in [25] and [26]. They prove
the existence of the exponent c, := d%a such that the solution to (0.0.1) starting
from, for instance, a nonnegative, piecewise continuous, compactly supported and non
indentically equal to O initial condition, satisfies

for all c < ¢*, lim inf w(z,t) =1, and for all ¢ > ¢*, lim inf w(x,t)=0.

t—+-00 |z|Lect t—+00 |z|>ect

For equations with smooth dispersal kernels, the long time behaviour is studied by
Garnier in [47].

These results are in complete contrast with the linear propagation in time obtained
in the case A = —A. We mention here that the transition between linear propagation
(v = 1) and exponential propagation (o € (0,1)) has been examined by Roquejofire
and the author of the thesis in [38].

A.2. Periodic media

The motivation we have in mind is ecological modelling or biological invasions, where
heterogeneities play an essential role. Indeed, habitats, like forests or plains, are often
fragmented by natural or artificial barriers, like rivers or roads. It raises the question
of the impact of such an heterogeneity on the spreading of species. For more details,
see [14] and its references. In this line, the particular model that we describe here is a
general heterogeneous periodic problem, first introduced by Shigesada, Kawasaki and
Teramoto in [78], extending the homogeneous case (0.0.7).

On the mathematical side, for i € [1,d], let ¢; be a given positive number. In the
following, let us say that a function g : R? — R is periodic in each z;-variable if

g(xy, s + lyy ooy g) = g(21, . 29),  forall ke [1,d].
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We denote by C; the period cell defined by
C@ = (O,gl) X oo X (O,gd)

Reaction-diffusion equations in periodic media, which means for us problem (0.0.1)
when f(z, s) is of Fisher-KPP type and C, periodic in the z variables, have a biological
interpretation, given in [14] for A = —A and in [16] for A = (—A)®. In this introduc-
tion, we only consider the typical example f(x,s) = u(z)s — s, where p is C; periodic.
Regions of space where p is positive represent favourable zones for the population,
whereas regions where p is negative prevent the species from developing. We focus on
the particular problem

(0.0.4)

Ou+ (=A)u = p(z)u—u? zeRLt>0,
uw(z,0) = wup(x), r € RY

where a € (0, 1] and the initial condition wg is nonnegative, piecewise continuous, non
identically equal to 0 and compactly supported.

In both cases @ = 1 and a € (0,1), it is well known that, under assumptions
explained below, the solution to (0.0.4) will tend, as t goes to infinity, to a stable
state (i.e. a steady solution wuy to (0.0.4) which is stable). In other words, any initial
population invades the unstable state, which corresponds to the unstable solution
u = 0. In population dynamics, this corresponds to the survival of the species. To
estimate at which speed the invasion takes place means to find the function R.(t)
defined in (0.0.2) (here the speed could depend on the direction e of propagation).

Mathematically speaking, the long time behaviour of the solution to (0.0.4) is
encoded in Ay, the principal periodic eigenvalue of the operator (—A)®—pu(x)I. Indeed,
if Ay > 0, then every solution to (0.0.4) starting from a bounded nonnegative initial
condition tends to 0 as ¢t goes to infinity. This case is not the interesting one since it
corresponds to the extinction of the population. If A\; < 0, then the solution to (0.0.4)
starting from a bounded nonnegative initial condition tends, as t goes to infinity, to
the unique bounded positive steady solution, denoted by u, (periodic by uniqueness),
on every compact set. The result is due to Berestycki, Hamel and Roques in [14] for
a = 1, and Berestycki, Roquejoffre and Rossi in [16] for « € (0,1). In this result, the
convergence only holds on every compact set and, therefore, it does not enable us to
understand the transition between the stable state u; and the unstable state 0. To
answer this question about the position of the invasion front, we distinguish o = 1
and a € (0,1).

The case a = 1 is well studied and the limiting interface is shown to satisfy the
Freidlin-Gértner propagation law. Indeed, from Freidlin and Gértner in [49], we may
take

) c*(€)
R.(t) =w*(e)t, w*(e)= min ,
( ) ( ) ( ) eeSi—1ee>0 € - e

where ¢*(¢’) is the minimal speed of plane waves in the direction €¢/. A plane wave
in a direction e € S?! of the space, is a solution to dyu — Au = u(z)u of the form
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e M@e=eh (1), where ¢ is periodic in each z-variable, A > 0 and ¢ > 0 to be chosen
so that such solutions exist. Their proof, using probabilistic tools, is quite efficient for
second order reaction-diffusion equation and is, by no means, limited to Fisher-KPP
type reaction terms. Proofs using PDE arguments or dynamical systems are given in
[11], [12], [43], [76], [83].

The case a € (0, 1) is the main issue of this thesis and we focus on it from now on.
In the sequel, we first describe the known results, which motivates the introduction of
a new method that will be subsequently discussed.

A.3. Asymptotic speed of propagation given by the fundamental
solution

We first focus on the homogeneous case, when p =1 in (0.0.4). Indeed, even in this
case no sharp asymptotic expression of R.(t) was known, except for the case d = 1

and o = 2, that was settled in [26]. Recall that, in the fractional homogeneous case,
to guarantee the limits in (0.0.2), the authors of |26] needed to take |z| < C’e"lt
(respectively |z| > Ce”") with oy < 575= < 05. This does not give a sharp asymptotic

expression of the speed of propagatlon R (t) defined in (0.0.2), in the sense that it
allows any subexponential perturbation of its expression.

A first guess to find R.(t) in the homogeneous case is to use the fact that the
Fisher-KPP nonlinearity is concave. In our case, this simply means that f(u) < w.
Thus, we can compare the solution to (0.0.4), with x4 = 1, to the solution to the
linearised problem at 0.

In the particular case @ = 1, this idea leads to a simple proof that the speed of
propagation is at most 2. Indeed, the heat kernel of (0.0.4), with a = 1, is well known
and, consequently, solving the linear equation d;u — Au = u, we have

|z —y|?
e 4 |z|2

(e, t) < e, ) = / )y < Cr o = (0.0.5)
This proves that for all w > 2,
lim sup u(x,t) = 0.

t—+o0 || >wt
Even in the case o = 1, this bound does not give the precise asymptotic expression
of the location the level sets. This is due to the presence of the factor ¢t=%> = ¢~/2.
Indeed, for « = 1, p = 1 and d = 1 in (0.0.4), one may choose, for any unit vector
ecR?: 5
R.(t) =2t — 5 log(t) + H(J)roo(l).

The original proof of this equality is due to Bramson in [22], using probabilistic
tools. The following extension to higher dimensions is proved by Gértner in [48] :

R(t)—Qt—dQﬁl st)+ O (1).

t—400
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In [50], another proof using PDE arguments is given.
If we look at what happens in the fractional case, using once again that f(u) < u
and using the decay of p, recalled in (0.0.3), we have :

Ctet
u(z,t) < —
t2atl 4+ |7

d+2a”

This implies
1 ¢
{x e RY | u(z,t) = 5} c {\xy < tTeT} (0.0.6)

Hence, one could first think that the position of the front behaves like tarea eﬁ,
which is not in contradiction with the exponential in time propagation proved in [26].
However, in the case a = 1, the solution goes slower than the solution to the linearised
problem at 0, so one could wonder if the factor tai% is essential in the asymptotic
expression of the speed of propagation. In [26], it is proved that, for any e € S9!,
R.(t) = 77 whenever d = 1 and o = % In fact, in this particular case, we have
an explicit expression of the heat kernel Py and the authors are able to construct
explicit subsolutions and supersolutions to (0.0.4), with ¢ = 1. Consequently, the
factor t@¥% = t3 is not present in this case and the solution goes also slower than the
solution to the linearised problem at 0. Is it the same for any dimension d > 1 and
any « € (0,1)7 This is the starting point of the thesis.

B. Presentation of the results

B.1. A new method to study the speed of propagation in reaction-
diffusion problems with fractional diffusion

To have an asymptotic expression of R, (t), defined in (0.0.2), up to O(1) error, it is
sufficient to construct explicit subsolutions and supersolutions, close enough to the
solution. The following argument, which is specific to fractional diffusion, seems to be
new.

Let us explain its principle on the homogeneous problem :

{ o+ (=A)u = u—u? zeRiLt>0, 0.0.7)

u(z,0) = wup(x), z€RY,

for a € (0,1) and uy compactly supported, non identically equal to 0.
As said before, the speed of propagation of the solution u to (0.0.7) is expected

to be smaller than {@2 ¢~ @2 for large times. Thus, the idea is to define a correctly
rescaled version of the solution u by

v(y,t) = u(yr(t),t), foryecRYandt >0,
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where r(t) is a positive function, chosen so that the function v remains bounded away
from the two steady solutions 0 and 1 on compact sets. From what has been presented
before, we already know that for all ¢ > ﬁ, r(t)e~" should tend to 0 as time ¢ goes
to infinity.

The function v solves, for y € R? and ¢t > 0,

T/<t) —2« « 2
0w — ——=y0,v + 1(t) “(—A)% = v — 0"
r(t)
Formally, we neglect the term r(#)72*(—A)%v, that should tend to 0 as time goes
to infinity since r(t) behaves as an exponential with positive exponent. We are led to
the following transport equation, for y € R? and t > 0 :

o) L -
0 — myﬁyv =7 — 7% (0.0.8)
where v should approximate v well. If vy denotes the initial condition of v, then we
have, for y € R and ¢ > 0 :

vo(yr(t))
vo(yr(t)) + (1 —o(yr(t)))e™"

It remains to choose vy. From its construction, vy is supposed to approximate .
If we make the naive choice vy = ug, where ug is compactly supported, the function
v will be compactly supported at any time, which is not our aim. Indeed, recall that
we want the approximation v to remain bounded away from the two steady solutions
0 and 1 on compact sets. Therefore, it seems natural to take into account that, as
proved in [26], for all t > 0, 2 — |&|™>* u(x,t) is uniformly bounded in z. Thus, we
specialise

o(y,t) =

1

d+2a’

vo(y) = W

which implies

(. 1) 1
u(y,t) = ~ :
1+ |y|d+2 r(t)d+2ae—t
Keeping in mind that v and v are expected to be bounded away from 0 and 1, the
term 7(¢)*2“c~" has to be constant in time. This leads to the choice

r(t) = eﬁ,

which is compatible with the assumption on r we have made above. Consequently, v
can be seen as the stationary solution vy, to (0.0.8) starting from vy.

From this formal analysis, going back to the main variable z, the idea is to consider
the following family of functions, modelled by v :

u(z,t)

. a
1+ b(t) ||
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and to adjust the constant a > 0, and the function b(t) asymptotically proportional
to r(t) = 7 | 50 that U serves as a subsolution or a supersolution to (0.0.7). Let
us notice that u is exactly equal to av.(b(t)z), where v, is the stationary solution to
(0.0.8) starting from y.

Once we have constructed an explicit subsolution u and supersolution @ to the
main problem (0.0.7), we need to find a time ¢, > 0 such that, for all z € R? we have

u(x,0) < u(z,ty) < ul(z,0).

Finally, the comparison principle leads to the fact that we may choose R, (t) = T
in (0.0.2) for the homogeneous problem (0.0.7). Consequently we will establish that

the coefficient £ 7% in (0.0.6), that appeared in the speed of propagation of the solution
to the linearised problem at 0, does not appear in the correct front position, for all
a € (0,1) and in all dimensions d > 1.

To summarise,

Step 1 : We prove - at least when it is not available - the existence and uniqueness
of the solution and a comparison principle for classical solutions.

Step 2 : By a formal analysis, we rescale the problem in the space variable, let us
say doing the change x = yr(t), where r(t) is the expected speed of propagation.
Then, we neglect the diffusive terms, that should tend to 0 as time goes to
infinity, to get a transport equation.

Step 3 : We estimate the solution at a positive time ¢;. This step not only gives us
an initial condition for the transport equation obtained in Step 2, but also makes
it possible to put the subsolution (respectively, supersolution) that we construct
under (respectively, above) the solution at time t.

Step 4 : The solution to the transport equation obtained in Step 2, completed with
an initial condition that decays like the solution at time ¢, (found in Step 3),
enables us to construct a family of subsolutions and supersolutions, depending
on a constant a > 0 and a function b(t) asymptotically proportional to the speed
of propagation.

Remark : If purely exponential in time propagation is expected, then the coeffi-
cient Tr(—(tt)) in the transport equation (0.0.8) is constant. In this case, the family of

candidates for being subsolutions or supersolutions to the problem under study,
can be modelled by the stationary solution v, to the rescaled transport equation
obtained in Step 2. Indeed, this family can be chosen of the form ave(b(t)z).
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B.2. Results

Periodic media

With this method at hand, we are in position to treat periodic media, which was
initially the main issue of the thesis.

Under assumptions on f, that we do not detail in this introduction, we prove
that the solution to (0.0.4) spreads exponentially fast in time as soon as the principal
eigenvalue \; of the operator (—A)® — u(x)I satisfies A\; < 0. In fact, we prove that

(0.0.2) holds with R.(t) = edhat, This proves that spreading does not depend on the
direction of propagation, and this is in contrast with the Freidlin-Géartner formula, for
the standard Laplacian. Moreover, the estimate that we obtain is much sharper than
that in [25], [26] for the homogeneous model.

We also prove the convergence to the steady state in sets that spread exponentially
fast in time. Finally, we carry out numerical simulations to investigate the dependence
of the speed of propagation on the initial condition. We show that a symmetrisation,
in the sense of Jones in [57], seems to occur, if the initial condition decays fast enough
at infinity.

Monotone systems

The work on the single equation (0.0.7), in homogeneous media, can be extended to
reaction-diffusion systems. Let us give here the main bibliographical references. The
first definitions of spreading speeds for cooperative systems in population ecology and
epidemic theory are due to Lui in [68, 69]. In a series of papers, Lewis, Li and Wein-
berger |65, 66, 67| studied spreading speeds and travelling waves for a particular class
of cooperative reaction-diffusion systems, with standard diffusion. Results on single
equations in the singular perturbation framework proved by Evans and Souganidis in
[44] have also been extended by Barles, Evans and Souganidis in [7]. The viscosity
solutions framework is studied in [23|, with a precise study of the Harnack inequality.
In these papers, the system under study is of the following form

atu,» — dlAuz = fz(u), T € Rd,t > 0,

where, for m € N*, u = (u;)7, is the unknown.

For all ¢ € [1,m], the constants d; are assumed to be positive as well as the
bounded, smooth and Lipschitz initial conditions, defined from R? to R,.. The essential
assumptions concern the reaction term F = (f;)",. This term is assumed to be
smooth, to have only two zeroes 0 and a € R™ in [0,a], and for all ¢ € [1,m],
each f; is nondecreasing in all its components, with the possible exception of the ith
one. The last assumption means that the system is cooperative. Under additional
hypotheses, which imply that the point 0 is unstable, the limiting behaviour of the
solution u = (u;)™, is understood.
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Our aim is to study similar systems, keeping the same assumptions on f, but
considering that at least one diffusive term is given by a fractional Laplacian. This
problem turns out to be a computational adaptation of what has been done for single
equations. More precisely, we focus on the large time behaviour of the solution u =
(u;)™,, for m € N*, to the fractional reaction-diffusion system :

) . Qigy . — . d
{ Oru; + (—A)*u, filu), xeR%T>0, (0.0.9)

ui(z,0) = wug(x), reRY

where
a; € (0,1] and «a:=minqo; < 1.
[1,m]
As general assumptions, we impose, for all i € [1,m], the initial condition wug; to
be nonnegative, non identically equal to 0, continuous and to satisfy

ui () = O(|z|"“T29)) as |z = +oo0.

We also assume that for all i € [[1,m], the function f; satisfies f;(0) = 0 and that
system (2.1.1) is cooperative, which means :

fi € CH(R™) and 0;f; >0, on R™, forje [1,m], j#i. (0.0.10)

We will make additional assumptions on the reaction term F' = (f;)™, that are
not general but enable us to apply the method on a class of monotone systems.

We follow Step 1 of the method defined in section B.1. and prove the existence
and uniqueness of the solution, using mild solutions as done in [26]. From this, we can
prove comparison principles for mild solutions and classical solutions. The last one
is obtained for a class of solutions whose decay at infinity is smaller that |x|_(d+2a),
with o = minep ;. There is here, by the way, a slightly nontrivial issue in the
computation of the fundamental solution. Steps 2 to 4 of the method described in
section B.1. are carried out with only computational charges. This gives that the
speed of propagation is exponential in time, with a precise exponent depending on the
smallest index o = min;epy,mp @; and of the principal eigenvalue of the matrix DF(0).

The influence of a line with fast diffusion on Fisher-KPP propagation

In the second part of the thesis, we want to apply the method, set up before, to treat
the long time behaviour of the solution to a new model, introduced by Berestycki,
Roquejoffre and Rossi in 18], where we include fractional diffusion.

This model deals with biological invasions directed by a heterogeneity. It is based
on the fact that fast diffusion on roads can have a driving effect on the spread of
epidemics (see [79] for instance). The model proposed deals with a single species in a
two-dimensional environment where reproduction and usual diffusion occur except on
a line of the plane, on which standard diffusion (with a different diffusion coefficient)
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takes place. More precisely, we consider the half plane R x R, which will be called,
for the sake of simplicity, "the field", and the line {(z,0),z € R}, "the road". Let v
be the density of the population in the field, and let u be the density on the road. To
take into account the exchanges of populations between the road and the field, one
considers that

— a proportion v(z,0,t) of individuals from the field joins the road,
— a proportion pu(z,t) of individuals on the road goes into the field.

It is assumed that usual diffusion and reproduction, modelled by a Fisher-KPP type
nonlinearity, only occur in the field. The diffusion coefficient in the field is represented
by d and on the road by D. The authors are especially concerned with fast diffusion
on the line, which means D much larger than d. The system is the following :

ov—dAv = f(v), reR,y>0,t>0,
O — DOy = —pu+vpy—, r€R,y=0,t>0, (0.0.11)
—OyUly—0 = MU —vp—, TERy=0,2>0,

for u > 0, completed with initial conditions v(-,+,0) = vy and u(-,0) = ug, assumed to
be nonnegative, continuous, bounded and compactly supported.

If the road is not present, recall that the invasion speed is the usual KPP velocity
cxpp = 24/df’(0). In (0.0.11), there is a unique positive stationary state, which does
not depend on x and y. Moreover, there is invasion of the population in the whole
environment. On the road, the asymptotic speed of propagation c, satisfies

The effect of the road on the speed of propagation in other directions than on the
line is elucidated in [19]. In this paper, the authors describe the asymptotic shape of
the level sets of the density in the field. An extension of the model, adding a transport
term and a source term on the road is studied in [17].

Our aim is to understand what happens to (0.0.11) when the fast diffusion on the
line is given by a fractional Laplacian. This new model, that couples two densities, is
more complex than periodic media and monotone systems, presented in the previous
sections. Our method applies, but also shows its limits.

We consider the system

ov—Av = f(v), re€R,y>0,t>0,
Ot + (=0)%u = —pu+vy— —ku, z€R,y=0,t>0, (0.0.12)
—OyVly—0 = HU — V}y—o, re€R,y=0,t>0,

for 4 > 0 and k > 0, completed with continuous, bounded and compactly supported
initial conditions. The reaction term f is still of Fisher-KPP type. We have allowed
here some mortality on the road, modelled by the coefficient k.
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For this problem, all the steps described in the method have to be carried out.
Step 1, that concerns the existence and uniqueness of the solution and a principle
comparison for classical solutions, is done using the theory of sectorial operators. This
framework is motivated by an integral expression of the solution, given by the Laplace
transform, as explained below. We will also prove the regularity of the solution to
(0.0.12). This choice of framework is not the only possible one, we could have used
the viscosity solution framework to recover existence, uniqueness and regularity of the
solutions to (0.0.12). See for instance Alibaud and Imbert [4]. Steps 2 to 4 of the
method, that lead to the construction of two explicit functions, below and above the
solution to (0.0.12) at any time, are used to study the propagation of the density u on
the road. Contrary to the case of periodic media, or monotone systems, we can not
explicitly solve the transport equation, that appears in Step 2 of the method, in the
whole half plane. We do not even know if a global solution exists.

To circumvent the difficulty, we find a subsolution to the same transport equation
but solved in a strip of large width instead of the half plane, and we prove that

for all v <",  lim inf wu(x,t) >0,

t—+00 |z|<et

/'(0)
1420

Concerning the construction of a supersolution, as usual, we use the solution to the
linearised problem at 0 of (0.0.12), and the explicit integral expression of its solution
given by the theory of sectorial operators. Quite a long computation of this integral
enables us to prove that

where v* =

forall v >~*,  lim inf w(x,t) =0.

t—=+00 |z|>ert

Thus, we get an asymptotic expression of the speed of propagation on the road. A
more precise determination of R,(t) is investigated by numerical simulations.

In the field, the speed of propagation, in a direction that makes on angle 6 € (0, 7]
with the road, is linear in time. In fact, we prove that

c
for all ¢ > —=2F

Sin(8)’ tEeroo Eggv(r cos(), rsin(f),t) = 0,

and
Ckpp

forall 0 < ¢ < lim inf wo(rcos(f),rsin(6),t) > 0.

sin(f)’  t—+oo 0<r<et
Finally, numerical simulations are carried out not only to illustrate known results
in both cases a = 1 and a € (0, 1), but also to investigate the expansion shape of the
level sets in the field. These simulations will reveal surprising qualitative properties
such as the monotonicity of the density v and the role of the term —pu + v},—o.
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C. Outline of the manuscript

We present here the work carried out from September 2011 to March 2014. Before
that, we had, as said before, clarified the transition when « tends to 1. We have
chosen not to include it in the manuscript, for the sake of homogeneity of the material
presented here.

This thesis is divided into two parts. In the first part, we apply the method, defined
above, to study the asymptotic location of the level sets of the solution to two different
reaction-diffusion problems with fractional diffusion. In these cases, the method leads
to an asymptotic expression of R.(t) defined in (0.0.2). Chapter 1 (in collaboration
with X. Cabré and J.-M. Roquejoffre) is devoted to the study of the propagation
in reaction-diffusion equations in periodic media. The results are published in [24].
Chapter 2 (in collaboration with M. Yangari) deals with monotone systems.

The second part of this thesis (in collaboration with H. Berestycki, J.-M. Roquejof-
fre and L. Rossi) is concerned with the influence of a line with fractional diffusion on
Fisher-KPP propagation. In Chapter 3, we prove general results such as the existence,
uniqueness, and regularity of the solution, as well as a principle comparison for this
problem. Chapter 4 concerns the long time behaviour of the solution on the line and
in the plane. Chapter 5 is devoted to numerical investigations concerning the influence
of a line with standard and fractional diffusion on Fisher-KPP propagation.






Notations

Here we gather the main notations that will be used throughout the thesis.
Sets, Vectors and matrices :

— For any m € N*, [1,m] denotes the interval of integers between 1 and m.
— For d € N*, S9! denotes the unit vectors of R%.

— The Euclidian norm of a vector o of C? is denoted by |z| and the induced
matrix norm of a matrix A € M,(C) is |AJ.

— The matrix commutator [-, -] is defined for A € M4(C) and B € M 4(C) by
(A, B] = AB — BA.

Complex numbers :

— The square root of a complex number A € C will be
VX = |2 €5,
where # = arg A € (—m, 7). With this notation Re(v/A) € C\ (=00, 0).
— For any angle § € R, the set R e @ R, e ™ denotes {ve?, v > 0} U
{ve=® v > 0}.

Functional spaces : Let Q be a smooth open set of R? with boundary 0.

— For any function h € C>(Q2), the trace operator and the normal trace
operator are respectively denoted by y0h = hjgpo and v1h = 0,hjsq, Where
0, is the derivative with respect to the outward unit normal to 0f).

— For Q = R? Cy(R?) denotes the set of continuous functions in R?, that tend
to 0 as |z| goes to infinity.

— C2°(£2) denotes the set of compactly supported functions of class C* on Q.

— Chz(Q % |0, T)), for I > 0 and T' > 0, denotes the set of functions that are
continuous in Q x [0, 7], together with all derivatives of the form 970], for

s+ 2r < [, and such that, for any couple (s,r) satisfying s + 2r = |1], the
function 020] is (I — [l])-Hoélder continuous with respect to space x and

(—l_QL”> -Holder continuous with respect to time t.
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Subsolutions ans supersolutions :

— For any elliptic operator L in a domain 0 C R?, and any function f defined
on 2 x [0,+00), a subsolution (respectively supersolution) to a parabolic
equation

Owu(z,t) — Lu(x,t) = f(x,t), x€Q,t>0,

is a solution, in the classical or weak sense, of this equation where the sign
= is replaced by < (respectively >).



Part 1

Periodic case and monotone systems :
Asymptotic location of level sets






Chapter 1

Propagation in periodic media

1.1 Introduction

In this chapter, we are interested in the time asymptotic location of the level sets of
solutions to the Cauchy problem

{ du+ (—A)u = f(z,u), zeR.t>0, (1.1.1)

u(,0) = uolz), zeRY
in periodic media. Such heterogeneous environments are characterised by positive

numbers £;, for i € [1,d]. In the following, saying that a function g : R? — R is
periodic in each z;-variable means that

g(x1, s + Ly ooy g) = g(21, ., 29),  forall ke [1,d].
We denote by C; the period cell :

Co=(0,6) x - x (0,6,). (1.1.2)

The nonlinearity f refers to as a Fisher-KPP type nonlinearity in periodic media.
We will assume that :

Hypothesis 1.1.1. The function f : R? x R — R is of class C®* (w > 0) in z,
locally in s, locally Lipschitz continuous with respect to s. Moreover, for all s € R,
x> f(x,s) is Co periodic, for all z € R4, f(x,0) = 0, s @ is decreasing, and
there exists M > 0 such that for all z € R and s > M : f(x,s) <0.

To prove the main results of this chapter, we need the following additional assump-
tion on f.

Hypothesis 1.1.2. Let M be defined in Hypothesis 1.1.1. There exist positive con-
stants cs, > 0, cs, > 0 such that for all s € [0, M]

65181+51 < asf(l’,O)S - f(I7 S) < 05281+527
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where 01 and 09 are positive constants that satisfy

> 1—|—a7
d—+ 2«

for j € {1,2}. (1.1.3)

We will see later that (1.1.3) seems to be a technical assumption. The case 6; > 0
for j € {1,2} is not treated in this thesis. The typical example first introduced in
[78], that satisfies all our hypotheses, is f(z,u) = u(u(x) — v(z)u), where p and v
are periodic functions with the same period. The case when v = 1 will be studied to
underline the idea of the proof on a simple model.

The long time behaviour of the solution to (1.1.1) is encoded in A, the principal

eigenvalue of the operator (—A)® — 9, f(x,0). In fact, the following result proves that
|A1]

Troa It also enables us to

propagation is exponential in time with exponent equal to
follow the level sets of small values.

Theorem 1.1.3. Assume that \y < 0. Letu be the solution to (1.1.1) with uy piecewise
continuous, nonnegative, ug % 0, and

up(x) = O(|lz| ")) as  |z| — +oo. (1.1.4)
Then, the following two facts are satisfied :

— For every A > 0, there exist cx > 0 and ty > 0 (all depending on A and ug) such
that, for allt >ty

[A1]

u(z,t) < X\, if |z| = crerrzt,

— There ezist ¢ > 0, C. > 0 and a time t. > 0 (all depending on € and ug) such
that, for allt > t.,

Mgl

u(z,t) >e, if |z| < Ceedt2a’,

The proof of this theorem follows the method described in the introduction of the
thesis. The following result proves the convergence of the solution to the steady state
uy on sets that expand exponentially fast in time.

Theorem 1.1.4. Assume A\ < 0. Letu, be the unique periodic positive steady solution
to (1.1.1) and u the solution to (1.1.1) with uy piecewise continuous, uy % 0, and
satisfying

0<uo<u, in RY and uo(x)=0(z| ")  as |z| = 400 (1.1.5)

Then, for any constant B > 1, there exist cg € (0,C.) and a time tz > t., where C;
(A1

and t. are given by Theorem 1.1.3, such that for all t >tz and for all |z| < cﬁemt

B uy (x) < ulz,t) < Buy ().
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As a consequence of Theorem 1.1.3 and 1.1.4, we have the following result that
gives a precise location of the level sets of values in (0, minw,) :

Theorem 1.1.5. Assume that \; < 0. Let u be such as in Theorem 1.1.5. We set
cx = min(cy, cg) > 0 and a time ) = max(ty,tg3) > 0, where ¢\ and ty (respectively
cg and tg) are given by Theorem 1.1.3 (respectively Theorem 1.1.). Then, for every
X € (0,minwuy), we have for all t > t,,

A1

{z €R? | u(z,t) = A} C {z € R? | crema’ < |z| < ¢ tedrza'}, (1.1.6)

Sections 1.2 to 1.5 of this chapter are devoted to apply the steps of the method
given in section B.1. of the introduction. Problem (1.1.1), completed with an initial
datum, is studied for example in [14] or [16], and the existence of the solution is well
known, as well as a comparison principle for classical solutions. Section 1.2 corresponds
to Step 2 of the method, that is a formal study leading to a family of candidates for
supersolutions and subsolutions to (1.1.1). The effect of the diffusive terms on this
family is studied in section 1.3. For the problem (1.1.1), an estimate of the solution
at any fixed time ¢ty > 0 is known, so there is nothing to do to prove Step 3. Section
1.4 concerns the choice of appropriate parameters to make v, given in (1.2.12), to be
a supersolution or a subsolution to (1.1.1). Section 1.5 concerns the proof of Theorem
1.1.3, which means Step 4 of the method. Section 1.6 proves Theorem 1.1.4. In section
1.7, numerical simulations are investigated on the homogeneous model associated to
(1.1.1). It suggests a universality in the behaviour of the level sets of the solution to
(1.1.1) for a particular class of initial conditions that decay strictly faster than the
fundamental solution.

Throughout this chapter, the maximum (respectively minimum) of a periodic func-
tion g on R? will be denoted by max g (respectively min g) instead of max g (respec-

tively min g).
R4

1.2 Formal analysis
For the sake of simplicity, we first choose the particular nonlinearity
f(.’ll',U) = ,u(x)u - u2>

where p is periodic in each x;-variable. This nonlinearity satisfies Hypotheses 1.1.1
and 1.1.2. The idea is to rescale formally equation (1.1.1) in the space variable in order
to separate the important terms from those which will be negligible at large times.
Two steps are needed.

Step 1. For z € R? and ¢t > 0, we define

v(x,t) = ¢y (x) tu(z, t). (1.2.1)
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To find the equation satisfied by v, we compute (—A)®wu in terms of v and ¢;. For
r € R and ¢t > 0, we have

¢1(7) — ¢1(T)

d+2a

(—A)u(z,t) = —Cyo PV (v(z,t) —v(T,t))dT

Rd |z — T

— T t)—v(x,t
+Cya PV W@—mv(x,t)dz+ ConPV [ on() 2180 ;’ffa ) iz
Rd |z — T R |z — 7|
Let us consider the operator K defined by
~ o1(+) — ¢ (T) - N
R0 = Coap? [ A5 0500) ~ iayan, (122)
rd |- —
where ¢ is any function in R¢ for which the right hand side is finite. Thus
(—A)*u = —Kv + v(—=A)*¢; + ¢ (—A)%v. (1.2.3)
The definition of ¢; and the fact that A\; < 0 gives for all z € R and ¢ > 0 :
$1 ()0 + o1 (2)(—A) % — Kv = [\| b1 ()v — b1 () >0, (1.2.4)
Step 2. For y € R% and t > 0, we define
w(y, 1) = v(yr(t),6), for r(t) = et (1.2.5)
In the sequel, K is the linear operator defined by
r(t)) — yr(t .
Koty) = CaapV [ PO o) — g, (120
R _

where ¢ is any function in R? for which the right hand side is finite. The equation
solved by w is obtained from (1.2.4) as follows :

— For y € R? and t > 0, we have :

| A1

Quw(y,t) = r'(t)y-Oyv(yr(t),t)+du(yr(t),t) = R

y- (9yw(y, t) + atv(:yr(t)? t)?

and :

(=A)*w(y, 1) = r(t)**(=A) v (yr(t), ).
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— Applying the definitions of K given in (1.2.6), and K in (1.2.2), respectively to
y — w(y,t) and y — v(yr(t),t) for any ¢ > 0, we have

Kw(y,t) = CyoPV ¢1(yr(t))_gbl(f)(v(yr(t),t)—v(f,t))r(t)_ddf

re |y — Tr(t)=1 3
= r(yCupy [ AU ), 1)~ ot 1)

= () Ku(yr(t),t).
Consequently, for y € R% and t > 0, w solves

Kuw
P1(yr(t))

If we formally neglect the term r(t)=2* [(—A)aw - (K 6) ] which should go to 0

. |)\1| =20 | ([ A\Y,
Oyw 7207 Oyw +r(t) (—A)*w

} = |Ai|w— @1 (yr(t))w?. (1.2.7)
as t — 400, we get the transport equation

A1
d-+ 2«

with an initial condition wy to be chosen later. Equation (1.2.8) has an explicit solu-
tion. In fact, for any fixed y € R?, we define

Y(t) = yr(t) 1)

Thus, using the definition of r given in (1.2.5), we have

V() = M @yr()ht) = ou(y) @ (yr(t) 1) = [ (1) — ¢a(y)d*(8),

and the function 1! solves for t > 0

@) == M @1 = [l da(y))
Since 1(0) = wy(y), we obtain

ow —

y -0, = | M| W — o1 (yr(t))w?, yeRLE>0, (1.2.8)

_ wo(y)
¢<t> - —1 —~ -1 —~ —|x |t.
Al d1(y)woly) + (1= [M] ™ da(y)wo(y))e~ M
Finally, equation (1.2.8) is solved as:

o Toyr(t)

A @ (yr(8)wo(yr (1)) + eI (1 — (A au(yr(t))wolyr(1)))
Taking into account (see for instance [26]) that, for all ¢ > 0, |z|"™* u(z,t) is
t), it

uniformly bounded from above and below (but of course not umformly in
natural to specialise

, 1t 1s
1

wo(y) = W-
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In this case, we have

1
ST ey (£) (1 — el el Jy R

w(y,t)

Keeping in mind that ¢, is bounded from above and below and that ¢ tends to +o0,
we revert to the function v(z,t) = w(ar(t)~!,t) and consider the following family of
functions, modelled by w :

v(z,t)

a
1+ b(t) ||

u(z,t) = ¢1(x)v(x,t). (1.2.9)

The idea will be to adjust a > 0 and b(t) asymptotically proportional to e~*1* so
that the function @ serves as a subsolution or a supersolution to (1.1.1).

We now turn to the case of a more general nonlinearity f that satisfies Hypotheses
1.1.1 and 1.1.2.

The principal eigenvalue A; of the operator (—A)* — 9, f(x,0)I is supposed to be
negative. We call ¢; the principal eigenfunction, associated to Ay, solution to

(—=A)*¢1(z) — Ouf(2,0)p1(x) = Mign(z), =zeR%
¢1 periodic, ¢, > 0, lo1]| = 1.

The existence, uniqueness and regularity of ¢ is given, for instance, in [16].

The formal analysis done for the particular nonlinearity f(z,u) = p(x)u — u® is
valid up to the transport equation (1.2.8). For a general nonlinearity f that satisfies
Hypotheses 1.1.1 and 1.1.2, this transport equation becomes, for y € R%, ¢t > 0 :

|
d+ 2«

flyr(t), ¢1(yr(t))w)
¢1(yr(t))
where w is an approximation of w(y,t) = &1 (yr(t)) tu(yr(t),t), defined by (1.2.1)

and (1.2.5). Under Hypothesis 1.1.2 on f, the candidates for a supersolution or a
subsolution to (1.2.10) solves

ow

— Ouf(yr(t),0)w, (1.2.10)

| A1
d -+ 2«

Oyw, — Y- 0yis = |\i| Wy — csy (yr(t)°wi™,  ye Rt >0, (1.2.11)
where w, will be a supersolution (respectively subsolution) to (1.2.10) for 6 = §;
(respectively 6 = d). Equation (1.2.11), completed with an initial condition w,(-,0)
to be chosen later, has, once again, an explicit solution. Noticing that, for any y € R,
the function (t) := w,(yr(t)~,t)~% solves for t > 0

W (1) = — Al 6 (¢(t) — csd(y)” M)
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we get for all y € R? and ¢t > 0

W (y,t) = A @ (yr(t),0)°
U st (yr(D))wa(yr(1), 0)° + eI (IA] = csa(yr()) Wi (yr(2), 0)°)

As in the case f(z,u) = p(x)u — u?, it is natural to specialise

_ 1
W, (y,0) = 1

Since ¢; is bounded and ¢ tends to 400, the family of functions associated to the
equation (1.2.11), depending on a constant a > 0 and a function b defined on R, is

a
(1+b(t) | )3

Uy(z,t) = , Us(z,t) = ¢1(x)vs (2, t). (1.2.12)

Note that this analysis is consistent with the case f(z,u) = p(x)u — u?, since for
d = 1, the function w, is equal to u defined in (1.2.9).

In the sequel, we prove that adjusting the constant a > 0 and the function b(t) €
(0, 1] asymptotically proportional to e~9MIt the function %, serves as a supersolution
(for § = d7) or a subsolution (for 6 = d5) to (1.1.1).

1.3 Effect of (—A)* on u,

The previous formal analysis consisted in neglecting the diffusive terms in (1.2.7). In
this section, we quantify the effect of the operators (—A)® on the function u,, given
in (1.2.12). From (1.2.3), it is sufficient to study the effect of (—A)® and K, defined
in (1.2.2), on the function v,, given in (1.2.12).

Let us define v, any constant that satisfies

0,2 if 0<a< i,
e 102 RS (1.3.1)
(20— 1,1] if 5<a<l.

Note that the constant v does not exist if & = 1, which confirms that our results
are not valid if the diffusion is represented by the standard Laplace operator (a = 1).

The following lemma, stated in [24| without proof and independently proved in [21]
for functions of class C2(R?), answers the question. It is quite simple, but we give its
details for completeness.

Lemma 1.3.1. Let K and v be defined respectively in (1.2.2) and (1.3.1). Let h be a
real positive function in CY*(RY), radially symmetric, decreasing in |x| and satisfying,
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for a constant 5 € (0,d + 2a], h(x) = O(|z| ") as |z| tends to +o00. If there exists a
constant n > 1+ a such that, uniformly in y € B1(0), we have

\h(z) — h(z +y) — Vh(x)ylly| " = O(z] ") as |z| = +oo, (1.3.2)
then there exists a constant D > 1 such that for all x € R? and all X € (0,1] :

A2 D
L+ (Afz])?

)\QQ—VD

[(=A)*(h(Ax))| < TE )P

and ’[N((h(/\x))‘ < (1.3.3)

Remark 1.3.2. The proof is valid for any constant v > 2o — 1. However, we want the
diffusive terms of (1.2.7) to be negligible, that is why we need to suppose v < 2a.

Remark 1.3.3. From the definitions of v, and u, in (1.2.12), it is easy to guess that
this lemma will be used with

1
(1 + |$|(d+2a)5)% :

B=d+2, A=bl)T=r and hz) = (1.3.4)
This function A is clearly positive, radially symmetric, bounded and has an admis-
sible decay at infinity. Its regularity depends on the value of (d + 2«)0.

— If (d+20)8 > 2, then h is C2(R%) and its second derivative decays like |z

for large values of |z|. Consequently, it satisfies all the assumptions of Lemma
1.3.1.

— If (d+20)§ < 2, the function & is C*(R?). Its derivative &’ behaves like |z|(*T2*)° !
for values of |z| in a neighbourhood of 0. Since ¢ satisfies (1.1.3), A" is C* close
to 0. Thus, h satisfies all the assumptions of Lemma 1.3.1.

Thus, with the notations of (1.3.4), we have v,(z,t) = ah(\x), and taking D larger
if necessary in Lemma 1.3.1, we get for z € R? and ¢t > 0

20—

(= AT, (x, 1) < Db(t) @555, (x, ) and ‘f(ﬂ*@,t)) < Db(t) @57, (2, 1), (1.3.5)

where v is defined in (1.3.1).

Since b(t) is expected to behave like e~ as t tends to +oo, from the definition
of v, we conclude that the term (—A)%u,(x,t) should be negligible as time goes to
+o00 and has the same decay as w, for large values of |z|.

S| A1t

Proof : We first prove the estimate that concerns (—A)* in (1.3.3). Since h €
CHo(RY) N L*®(R?), using section 3.1 of [80] for instance, we conclude that (—A)%h
exists and is bounded. We also know that this operator is 2a-homogeneous. Thus, we
only need to prove that for all z € R?

[N p—

< — (1.3.6)
1+ |zff
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Taking D large enough, it is sufficient to prove the result for large values of |z]|.
We define for x € R?

B h(z) — h(z +y) . o) = h(z) — h(z +y)
Ii(z) = Cya /y|<1 m dy and I(x) Cd,a/ dy

d+2a yl>1 |y|d+2a )

so that (—=A)*h = I + I,. It is usual (see [40] or [80] for example) to write I; as

L(z) = Cd,a/|<1 h(z) — h(z +y) + Vh(z) - ydy.

|y|d+2a

Assumption (1.3.2) gives the existence of a constant 7 > 1 + « such that for |z
large enough :

I (:c)|<C’/ lyl" dy < D (1.3.7)
1 N X 3 -J.
wi<t o7 |y T2 2|

where C' and D; are positive constants depending on « and d.
As for Iy, for |z| large enough, we have

h(x h(z +
‘12 ($)| < Cd,a / (—&—Za d + Cd «a / <xd+gg) dy
| |

izt [yl u>1 [yl
C h(z + y) h(z +y)
< +Cda/ e Z/+Cd,a/ —Ta Ay
Jzf? wlg Jy* i<tz |
For |y| < L, we have |z +y| > |z — |y| > \xl , and the assumptions on h lead to
x C
h <h (—) <=

for a positive constant C'. This implies

C 2d+2e 0, C 1 C
|Ir(x)| < + = / h(z)dz + / ~dy < ,
2|’ e Jga 2% Jicpy y|**? i

|| |z

where C'is a positive constant. Thus, there exists a constant Dy > 0 such that for all

x € R?
D,

I [ —
Bl <

With (1.3.7) and (1.3.8), we have the estimate (1.3.6) on (—A)®h, which proves
the first inequality of (1.3.3).

We now prove the second inequality of (1.3.3), that concerns the operator K. With
the change of variables 7 = AZ, with A > 0, in the expression (1.2.2) of K (h(\z)), we

have ~
P1(x) — 1 (A7)

ri Az — 3

(1.3.8)

K(h(Az)) = A\*Cya

(h(\x) — h(z))d7.
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Since ¢; € C1(RY) N L®(R%) and h € C'(RY) N L>=(RY), this integral converges in
R?. For z € RY, we have to estimate

D1 ()\_156) — 1 ()\_lf)

|l’ o §|d+2a

J(z) = N**Cyq

R4
at point Az. We define for x €¢ R and ¢t > 0

J(x) = xegy, [ @) = a0

(h(z) — h(z))dz,

Bi(x) |x . 5,(1-{-2&
1y P
d ) = oGy, [ PO DR D ) — naaz,
RA\ B () |z — 2|

so that J = J; + J, in R%.

— Estimate of J; : Since ¢; is bounded, the function |J5| is bounded from above
in a similar fashion as |I3]. Thus, there exists a constant Ds > 0 such that for
all z € R?

D
o) < —

< — 1.3.9
1+ |z’ (13.9)

— Estimate of J; : Since ¢ is C}(R?), we get for z € R4 and ¢t > 0 :
)\204—7 |$C _ ’f’?’

sup
~1d+2
— I| +ea z€(z,T)

IVh(2)| |z — T|dT < ON**77,

(1.3.10)
where C' > 0 is a constant and ~ is defined in (1.3.1). This inequality imposes
the condition v < 1.

1 (2)] < Cia /

Bi() |7

To get an upper bound that decays like |33|7ﬁ for large values of |x|, it is sufficient
to know the behaviour of J;(x) for large values of |z|. From (1.3.2) and the
behaviour of & at infinity, the function sup, ¢, 7 |Vh(z)| decays faster than || 7
for large values of |z|. Consequently, we have a more precise estimate than
(1.3.10), that is, for |z| large enough, and ¢t > 0 :

C’)\QO‘V/ 1 . ON\
Ji(z)| < — ——dr < ———, 1.3.11
A O NN T | ( )

where C' is a positive constant. This inequality imposes v > 2a — 1.

Finally, for any A € (0,1], using (1.3.9) and (1.3.11), we have the existence of a
constant D, > 0 such that for z € R® and t > 0 :
/\2a—’yD4
1+ |a)”

[/ (@)] <
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At the point Az, this inequality implies for z € R? and ¢ > 0

~ )\Qa—7D4
‘K(h()\x))‘ ST O

Taking D = max D; ends the proof. [ |
i€[1,4]

1.4 Construction of subsolutions and supersolutions

The following lemma makes explicit the choice of the constant a and the function b(t)
in the expression of u, in (1.2.12), in order to have supersolutions and subsolutions to
(1.1.1).

Lemma 1.4.1. Let ¢1 be the principal eigenfunction of the operator (—A)*—0, f(z,0)I,
d1, 02, cs,, Cs, be given by Hypothesis 1.1.2 and v be defined in (1.3.1). Taking D
larger if necessary in Lemma 1.5.1, we set

M := D ((min¢;)~" + 1) > min(1, |A]). (1.4.1)

For any positive constants a, @, B, B, we define for x € R and t > 0

e t) = ——— O it B(t) = (-2 |n | B H
(1+B(t) fo| 42

and

u(,t) = —— 200 with b(t) = (M | + B~ 5 i 1250

(L4 b(t) [ *2)5
The following two facts are true.

— For any constant B > 1, we set

d-+-204 ,1——429:17
ty = ————— In(2M |\ B (1.4.2)
(20— 7) [Ad]
so that fort > tg B -
Be b (1) < 1. (1.4.3)

Ifa > (251Mcg11)i(min¢1)_1, then w is a supersolution to (1.1.1) fort > tq.

d+2a 62

— IfB € (0,(]M] 27" M2 and g € (0, (max éy) (2710 |\ cs,)% ), then the
function b satisfies, for allt > 0,

d+2a 52

2 2a—v
0<b(t)<Be Mt <B<1 and b(0) > <§) B, (1.4.4)

and w is a subsolution to (1.1.1) fort > 0.
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Proof : We first construct a supersolution % of the form u, given by (1.2.12) with
d = 01. We have to find a and b(¢), that we denote by @ and b(t), such that

ap ()

u(x,t) = ¢1(x)04(x,t) = (1+5(1) |x|(d+2a)61)ﬁ

is a supersolution to (1.1.1).
We take D > |\;] in (1.3.5) and define M by (1.4.1). Given any constant B > 1,
let b be the solution to

B (t) + 6, Mb(t) @205 L 4 5, |\ | B(t) = 0,
| _2a—y \ TEasy0 (1.4.5)
b0) = (a4 B ) T

whose explicit solution is

_ d+2a
20—y

B0 = (M [+ BT

Let to be given by (1.4.2). For t > to, inequality (1.4.3) is obvious, and implies

2

— — 2a—
b(t)@rzas < b(t) @z Using A\; < 0, Hypothesis 1.1.2 on f and (1.3.5), we get
for x € R? and t > t,

O+ (—A)°T — f(2,7) = G100 + o1 (—A)°T, — Kb, — | M| T + 0 f(2,7) — f(a,7)

— d+2a _ —
S L1 ) N L0
51(1 + b(t) |x|(d+2a)51)ﬁ+
N apr <—51Ml_7(t)(di(127;;61 — & M|+ 661561¢i1> )

(L B(t) [a] @723

We use (1.4.5) and choose @ > (251Mcgll)ﬁ(min ¢1)~! to make the right hand side
to be greater than or equal to 0.
The construction of a subsolution of the form

agy(x)

Q(x>t> = (bl(x)v*(w?t) = (1 —|—l_)(t) ’x‘(d+2a)52)%7

is done in a similar fashion. Given any B € (O, (M—1271 |)\1|)§ﬁ‘§62) , we consider b
the solution to .
U (t) — 5 Mb(t) @ " 4+ 5y | M| b(t) = 0,
. 0y 224 (1.4.6)
b(0) = (M |~ + B )
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An explicit expression of b is

d+2a

b(t) = (M || + BT @i et mi5

d+2a 52

Since B € (O, (M=1271 |\ |) 2= ) and M > |\|, for all t > 0, we have (1.4.4).
As previously, with Hypothesis 1.1.2 on f, we have

Out (—A)*u = f(x,u) = GO + d1(=A)"T. = Kb, — [M|u+ 0, f(w,u) = f(w,u)

Q¢1 |I|d+2a , 2oy g
< —b' (1) + 02 Mb(t) 2% T — b5 [A1] b(t)
a1+ b(1) Ja] 1203 ( )
apy ey

+

a—y
1 0o Mb(t) @+20082 — §o | N | + 02 62> '
(]_ + l_)(t) |x|(d+2a)(52)g+l < 2 —( ) 2 | 1| Cs, ¢1

Finally, using (1.4.6) and taking a € (0,(maxg;) (2716, |/\1|c(;2)%), we get a
subsolution to (1.1.1) for ¢ > 0.
n

1.5 Proof of Theorem 1.1.3

The first point of Theorem 1.1.3 to be proved is the existence of a constant ¢, > 0 and
a time ¢, > 0 such that, for ¢ > t,

|
(r €RY| |z > credtat) {2 € RY | u(,t) < AL, (1.5.1)

From Lemma 1.4.1, we know that u is a supersolution to (1.1.1) as soon as t > t,
where ¢ is given by (1.4.2). To make it above u for such times, it remains to compare
these two solutions at time .

Let us fix B > 1. Due to the assumption (1.1.4) on ug, there exist constants 3 > 1
and Ag > 1, such that for |z| > Ag,

B

U(T) L ——=.
O( )\ |x|d+2a

We set )
a; = QQAgHO‘(min $1)7! |n‘qaj< up (). (1.5.2)
T|<Ag

In order to use the maximum principle, we have to verify that, given any constant
B > 1 and @ > max(2M 3(min ¢1)~!, a;), where a; is defined in (1.5.2), we have

Uo < ﬂ(', to)

Using (1.4.3), a simple computation gives
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B

— if |£U| 2 Aﬁ : ﬂ(l’,to) > d+2a

2 U()(fl'f),
|z

a; min
L i > max ug(x) = up(z).

— if || < Ag : u(x, ty) >
if 2] < Ag : u(z, to) 2 (1+Aéd+2a)61)ﬁ 7 Jzl<Ag

Finally, using the maximum principle and (1.4.3), we get for all z € R? and ¢ > 0

6¢1 (Q?)
(14 B(t + to) |a| @20y
a¢1($)

(1 + Be-dilulte=b1xlto | (#2091 )5

u(z,t) < w(z,t+1ty) =

<

For any A > 0, we set
S A"TB A dMlog max b1,
which proves (1.5.1) for )\ = t.

We now prove the second point of Theorem 1.1.3, that is the existence of constants
e>0,C.>0,t. >0 such that, for all t > ¢,

(M

u(z,t) >¢e, if |z| < Coedrzal, (1.5.3)

Let us define
e} a _2a
£, > max {(2—152 A1) es,) 2, (minw) =% (3M Ay | 1) } . (1.5.4)

We prove that u(-,t) is above u(-,t — t;), for all ¢ > t;. We first compare u(-,t)
and u(-,0). From Hypothesis 1.1.2 on f, for all z € R? and ¢ > t;, we have

f(2,u) < 0uf(z,0)u — cs,u' ™ < (max d, f(z,0) — cs,u’ u.
The standard maximum principle applied to (1.1.1) gives
u € |0, (c;,' max d, f(x, O))i :
Thus, from Hypothesis 1.1.2 once again, we have
fla,u) = 8, f (2, 0)u — cpu'™ > —cyu,

where S

¢, = max (O, cs,(c; max d, f(x, O))% —mind, f(z, 0)) .
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From the proof of Lemma 2.2 in [26] , we know that for |z| > 1

ctie

- (1.5.5)

U(l’,tl) = d+2a’

<4
te 4 |zl

where ¢ € (0,1) is a constant. For |z| < 1, we use Theorem 1.2 in [16] to have
u(x,t1) = 27 ' minu,. To get a subsolution, we choose

d+2a

—cuty 3 2(1—'\/52 _(d
Q = ie— and E f— (5) tl (2&"’1)52. (156)
217 max ¢,

Simple computations give :
_d
— for |z] < 1: u(z,0) <amax¢y =27 ct; e <27 minuy < u(z, ty),

1 a
— for |z| € (1,t27), we have |z|"* < tf‘*“ and using (1.5.5) :

_d ctie
@(xa 0) < amax ¢1 = 2710?&1 2 eicutl < d 11 < u<3§',t1),
tfj+ + |I|d+2a

= d+2a 41 .
— for |z| > t*, we have |z >t7* " and using (1.4.4) and (1.5.6) :

u(z,0) < < u(z, ty).

d+2a et
amax ¢ 2\ =7 gmax ¢ ctie” i
< = d+2a

2 ||

Q(O)% ‘x|d+2a = 3 B% |x|d+20¢
Thus, we have u(-,0) < u(-,t;) in R<.

From the choice of ¢; done in (1.5.4), the constants a and B imposed in (1.5.6)
satisfy the assumptions of Lemma 1.4.1. Consequently u, defined in the same lemma,
is a subsolution to (1.1.1) for ¢ > ¢;. By the maximum principle applied to (1.1.1), we
have for all z € R? and t > t;

u(z,t —t1) < u(z,t).
Finally, we define

amin ¢,

1
€¢=——— and Cg”" — e M pTa;

202
EST
and take x such that |z| < C.e@2a’. Using (1.4.4), we have for t > ¢, and z € R?

() > amin g, _aming (1.5.7)
; (1 +§€62|)\1|t10§d+2a)52)% 2% ) 0.

which proves (1.5.3) for t. = t;.
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1.6 Proof of Theorem 1.1.4

Let u; be the unique bounded positive steady solution to (1.1.1). For all 5 > 1, the
function fuy is a supersolution to (1.1.1). For any initial condition g that satisfies
the hypotheses of Theorem 1.1.4, the standard principle comparison applied to (1.1.1)
gives for all t > 0 and all z € R?

u(z,t) < Puy(z).

The important part of Theorem 1.1.4 is to prove that there exist a constant cg > 0
and a time tg > 0 such that

Al
)

for all £ > t5 and for all |z| < cgedtze By (z) < ulz,t). (1.6.1)

The proof, detailed later, is based on the fact that, for any constants ¢ > 0 and
¢ > 0, we can cover the ball of radius cedliiyat, centered at 0, by a finite number of
balls with radius M € (0, ced‘iiélwt) large enough, in a sense explained later. Then, on
each ball of radius M, we use the usual notations and known results recalled in what
follows.

For any A > 0, we consider the Cauchy problem

8tu]W + (_A)auM = f(ﬂf,U,M), HS BMat > Oa
up(z,t) = 0, r € R\ By, t >0, (1.6.2)
ud(x,0) = Mp,,(z), =e€R

The principal eigenvalue Ay of (—A)* =0, f(x,0)] in By is defined as the unique
real number such that there exists a function ¢, ; satisfying

(=A)*m1 = Ouf(z,0)ppma + A1dm1, € B, t >0,
¢M71(£L’,t) O, [BERd\BM,t>O,
o >0, | Parall,, = 1.

In the sequel, for any M > 0, up;+ denotes the unique positive bounded steady
solution to (1.6.2).

— Result 1 : From Theorem 5.1 in [16], if Ay < 0, then the solution uy to
(1.6.2) tends to up4+ as t goes to +00. In other words, for all 8; > 1, there
exists tyr 5, > 0, that depends on M and /3, such that, for all ¢ > ¢y, 5, and all
x € By,

B ung 4 (7) < upr(,t) < Bruar s (2). (1.6.3)
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— Result 2 : The function M — Ajs; is decreasing, and from Theorem 1.1 in [16],
we have
i s = <0

— Result 3 : Assume M > 0 is such that A\y;; < 0. The function M — w4 is
non decreasing and bounded from above by u,. By standard elliptic estimates
and by the uniqueness of u, we have

lim wup 4 (z) =us(x), on every compact sets.
M—+o00

Consequenlty, for all By > 1, there exists Mg, > 0 such that

for all M > Mg, and all x € By, up () = B uy (z). (1.6.4)

We can now prove (1.6.1). Let > 1 and E € (1,5). In the sequel, Mj is given

by (1.6.4), with £, = 3. Since A\; < 0, Result 2 gives the existence of a constant

M > m[[a:;l{]](fz, Mgp), where the constants (;, defined in (1.1.2), are linked to the period
S

cell of 9, f(z,0), such that
)\M,l < 0.

In what follows, the constants ¢ > 0, C. > 0 and t. > 0 are the one obtained

in the second point of Theorem 1.1.3. We set t; = max ( e d|i(2|0‘ In(MC. )) +1 and

C. = 2(C. — Me™ el )> 0, so that

A
HESTIrs ‘1‘751

Al ~
M < Csed+2a — C.eatza’ < CLedt2a

For 7,3, the time obtained in (1.6.3) with 8, = 837! > 1, we define t5 = t1+tar5,,

|
and cg = Cge_mtkfﬁl. Take t > t3. Theorem 1.1.3 gives
w(x,t —typ) >e, forall |z] <C. eaths (=t sy), (1.6.5)

We cover the ball of radius C. ed+2a (t=tar51) and centered at the origin by a finite

number N of balls By(z;) of radius M, centered at points z; € R%. Since M > Hﬁa)d(]] l;,
€1
d
taking N larger if necessary, we can consider that, for all j € [1, N], z; € H&-Z.
i=1
Since 9, f(z,0) is periodic in each z;-variable, the function v; defined in R? x R,
by
for aHjGHLN]L Uj('v'):u('_zj7'>
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is the solution to (1.1.1) with initial datum equal to ug(- — 2;) in RY. Using (1.6.5),
we can apply the maximum principle to (1.6.2), to get for all = € By,

Uj($7t) > UM($7tM,ﬂ1)a (166)

where uy is the solution to (1.6.2) with A = e.
From Result 1 and Result 3, we have for all x € By,

up(x,tp ) = gﬁ_luM,Jr@) > By (7). (1.6.7)
Thus, for all j € [1, N], all x € By, (1.6.6) and (1.6.7) lead to

vy(a,t) > By (@)

N
~  1ul
Since U By (zj) covers the ball of radius C.earsa=bas) centered at 0, we have
j=1
1 ~ M(t—t ) [A1] t
u(z,t) = uy(z), forall |z| < Coedr2aMA) = cgeatzal,

This is true for all ¢ > ¢, which ends the proof.

1.7 Numerical simulations in space dimension 2

The aim of this section is to get further information about the constant ¢, that appears
in Theorem 1.1.3, and more precisely to understand its dependence on the initial
condition ugy. Indeed, for any direction e € S9!, is there a universal function C(e) > 0,
such that, for all A € (0, minu. ), the family of functions z(t) defined by u(z,(t),t) =
A, satisfies, for large times,

)]~ Cle)eint ? (1.7.1)

t—+00

In other words, is there a universal shape of the level sets of the solution to problem
(1.1.1), may be depending on the decay at infinity of the initial condition?

We will see that the result is far from obvious, as will already be clear from the
study of the homogeneous model. We thank Professor H. Berestycki for raising this
question.

Let us therefore investigate the homogeneous model in R? :

(1.7.2)

Ou+ (=A)u = u—u? REt>0,
w(x,0) = wuy(z), = €R?

where ug is a piecewise continuous, nonnegative and non identically equal to 0 function,
and we carry out numerical computations. Our simulations tend to suggest that there
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220 0(x) tends to 0 as |z| tends to

is symmetrisation of the level sets as soon as |z
infinity.

Let us describe the numerical procedure. The solution to (1.7.2) will be denoted
by T'ug, where T* is the semi flow associated with (1.7.2). A natural approach to
estimate T"ug is based on the decomposition of the Cauchy problem (1.7.2) into simpler
subproblems that are explicitely solvable. The most popular and widely used is the
Strang splitting, explained below.

We split problem (1.7.2) into two evolution problems with explicit solutions and we
treat them individually using specialised numerical algorithms. The two subproblems

under consideration are the following.

— The first step of the splitting treats the diffusive part of (1.7.2), which is

—A)e — RQ
{ o + (—A)*w 0, >0, (17.3)

v(z,0) = wvo(x), = €R?

for any function vy € C»*(R?) N L°°(R?). The solution to (1.7.3) is denoted by
Xty and is explicitely given, for z € R? and ¢ > 0, by

Xtu(e,t) = F7 (¢ 1 F () (©)) (),

where F and F~! are respectively the Fourier transform and the inverse Fourier
transform in the space variable. The solution X ‘v is computed with Fast Fourier
Transform techniques.

— The nonlinear part of (1.7.2) appears in the second step of the splitting, and is
given by the ordinary differential equation :

ow = w—w? R2t>0, (17.4)
o 1.

z,0) = wy(z), z€R?

for any function wg : R? — R. The solution, denoted by Y'wy, has the explicit
expression

wo(7)
wo(z) + (1 —wo(x))et

This does not require any numerical approximation.

Yiwo(z,t) =

The two Strang approximation formulas are given in [82], for ¢t > 0, by
Stug = X2Y'X7uy,  Shug=Y2X'Y 2y, (1.7.5)

The study of the convergence of these approximations to T%ug is not the aim of this
work; general results are given for example in [52]. In our case, both approximations
Sy and S5 lead to the same results.
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The following numerical computations are done in the domain (—2000,2000) x
(—2000,2000). We investigate different initial conditions and distinguish the cases
a=1and a € (0,1), for which the fundamental solution p, has a completely different
decay at infinity. Indeed, recall that p, satisfies, for all z € R? and ¢ > 0 :

2
|

e 4t .
pa(xaél:f Art ’ " if a = 17
W < palz,t) < W, if o € (0,1).

First, we treat a spherical initial datum wug;, for which the level sets are also spher-
ical. This gives an indication of the validity of our numerical procedure. Then, we
consider four non symmetric initial conditions wy;, for i € [2,5], all with level set of
value 0,5 given by Figure 1.1, but with different decays at infinity :

— uge compactly supported,

— wuop3 decaying strictly faster than the heat kernel p,,
— wugq decaying exactly like the heat kernel p,,

— wuo3 decaying slower than the heat kernel p,,.

The explicit expression of ug;, for ¢ € [2,5], will be given later.

Figure 1.1: Shape of the level set of value 0,5 of the initial data.

Let us start with the following spherical initial condition :

uo (w1, 72) = e~ lmr o=,
for which the level sets are also spherical. The shape of the level sets of the solution
to (1.7.2), with ug; as initial datum, is given on Figure 1.2 for times smaller than 15.
Surprisingly enough, such times are large enough to have a correct approximation of
the speed of propagation.
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Figure 1.2: Level sets of value 0,5 of the solution u to (1.7.2), starting from wgy,
at successive times t = 0,2.5,5,...,30, for & = 1 on the left and at successive times
t=20,2.5,5,...,15, for a = 0,5 on the right.

For a = 1, in any directions, the distance between two successive level sets is con-
stant as time grows, whereas for a = %, this distance becomes larger with time, which
illustrates the infinite speed of propagation. More precisely, the level sets displayed
on Figure 1.2 give, let us say for n € [1,7], sequences p,, and t, = 2,5n, that satisfy,
for any 6 € [0, 27],

1

u(pn cos(@), ppsin(0),t,) = 3

The left side of Figure 1.2 gives, for n € [2,6], pnt1 — pn close to 5, which cor-
responds, according to our time scale, to the expected KPP velocity equal to 2. The

right side of this figure gives, for n € [3,6], 2 21 close to 2,3, which corresponds to

2’5 . . .
the expected value e2+2e for a = % This analysis enables us to take any time ¢t > 10
as stopping criterion, when considering non symmetric initial conditions.

From now on, we consider non symmetric initial conditions with level set of value
0,5 displayed on Figure 1.1. We begin with the following compactly supported initial
condition :

emas(mltle2D)? if (2 > 0 or 25 > 0) and |zy| + 22| < 20,

0, otherwise.

U02($17$2) = {

For o« = 1, the shape of the level sets corresponds to the one described by Jones in
[57], and reproved by Berestycki in Theorem 2.9 of [10], where the proof is flexible and
does not depend on the nonlinearity. This result shows an asymptotic symmetrisation
of the solution to (1.7.2). This means that, in the limit of ¢ — +o00, the level sets, once
rescaled to be at finite distance, have their normal at every point going through the



46 CHAPTER 1. PROPAGATION IN PERIODIC MEDIA

same fixed point. It is also known (see [77]) that the level sets may have perturbations
of order one, that survive for all times. This result is illustrated by Figure 1.3.

200

150

100

50

Figure 1.3: Level sets of value 0,5 of the solution u to (1.7.2), with a = 1, starting
from wugo, at successive times t = 0,2.5,5,...,17.5.

For o € (0, 1), the proof of Berestycki does not apply (at least right away), but the
result of symmetrisation, in the sense of Jones in [57], seems to be true, as illustrated
by Figure 1.4. Note that, as expected, the smaller « is, the greater the speed of
propagation is.

400 . 400
3001 1 300
2001 b 2001
100 1 100

100+ 4 100

200 B 200

-300 ! -300
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J L L L L y L L L L L L L L
500 -400 300 <200 -100 [ 100 200 300 400 500 500 -400 300 <200 -100 [ 100 200 300 400 500

Figure 1.4: Level sets of value 0,5 of the solution u to (1.7.2), starting from ugy, with
a = 0,5 on the left and a = 0,8 on the right, at successive times t = 0,2.5,5, ..., 12.5.

Before solving (1.7.2) with other non symmetric initial conditions, we want to
illustrate the method used to prove Theorem 1.1.3. Indeed, recall that, in the formal
analysis done in section 1.2 for a € (0, 1), we rescale the space variable and neglect the
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diffusive term. This reveals that, the diffusive term (—A)%u in (1.7.2) only plays a role
for small times, having a regularisation effect on the initial condition. Thus, after a
time ¢o > 0, the diffusion seems not to have an impact on the solution to (1.7.2). The
right side of Figure 1.5 compares the level sets of value 0, 5 of the solution u to (1.7.2),
starting from wugy, with those of the solution to the ordinary differential equation

ow=v—1% xR t>t, (1.7.6)

starting from wu(-,tg), with £ty = 8. The similarity between the level sets of these two
solutions is a good indication that the diffusive term seems not to act after a time
to > 0, time from which the ordinary differential equation (1.7.6) gives the behaviour
of the solution. The left side of Figure 1.5 compares the level sets of the same solutions,
but in the case o = 1. In this case, the level sets of the solution to (1.7.6), that starts
at u(-,8), are expected to grow like v/¢. This confirms that the method set up for
a € (0,1), does not apply to standard diffusion (o = 1), for which the term —Aw in
(1.7.2) acts at any time.

100 T T T T T T ——= 1000

8o- - 800+
600~
a0 [

200- [/

\
200-
400~ \

-600

80} 1 -800 -

L L L L L L i LT L L
-100 -80 -60 -40 -20 0 20 40 60 B0 -1000  -800 -600 -400 -200 0 200 400 600 80O

Figure 1.5: Level sets of value 0,5 of the solution u to (1.7.2), starting from wuos
(in black) and of the solution to (1.7.6) starting at u(-,8) (in red dotted lines), with
a = 1, at successive times t = 0,2.5,5,...,30 on the left and o = 0,5, at successive
times t = 0, 2.5, 5, ..., 15 on the right.

We now consider the initial datum wug3, that decays faster than the heat kernel p,, :

( 6—%(|x1|+|1‘2|)37 if z;1 > 0 or o > 0, .
. ifa=1,
0, otherwise,
uo3(1, T2) = a\ 1
1 4 Uzl lza]) ) if
(+ 25 , itz >0oraz >0, if € (0,1).
| 0, otherwise,
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Figure 1.6 shows that in both cases a =1 and a = %, we have symmetrisation of
the level sets.

100+

100+

Figure 1.6: Level sets of value 0,5 of the solution u to (1.7.2), starting from wg3, with
a =1 on the left and a = 0,5 on the right, at successive times ¢t = 0,2.5,5, ..., 15.

This reveals that, for any o € (0,1) and any initial conditions decaying faster than
the heat kernel p,, there might exist a universal function C'(e) > 0, depending on a
direction e € S9!, that satisfies (1.7.1), that is to say such that

Al

0]~ Cleer,

where u(x)(t),t) = A, for all A € (0, minu,).

The non symmetric initial datum w4, that we now consider, decays like the heat
kernel p,,.

— For a =1, ugy is defined by

_ L 2 .
e~ as(l+@2D” if 0 > 0 or 2o > 0,
ups (71, 72) =

0, otherwise.

It is well known (see [61] for instance) that the level sets of the solution u to
(1.7.2) move at the finite speed 2, at large times, which is readable on Figure
1.7.

— For av € (0,1), ugq4 is defined by

o\ —1
(HW) . ifar > 0o0r 23 >0,

0, otherwise.
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Figure 1.7: Level sets of value 0,5 of the solution u to (1.7.2) with o = 1, starting
from wugy, at successive times ¢t = 0 in red and ¢ = 2.5, 5, ..., 20 in black.

From Theorem 1.1.5, we know that the propagation is exponential in time with

1
an exponent equal to ;.
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Figure 1.8: Level sets of value 0,5 of the solution u to (1.7.2), starting from wug,, at
successive times t = 0,2.5,5, ..., 15, for a = 0,5 on the left and o = 0,8 on the right.

On Figure 1.8, we can see, in both cases a = 0,5 and o = 0, 8, an homogeneous
dilation of the level sets as soon as t is greater than 10. Indeed, the structure
of the initial datum seems to be preserved as time grows. This shows that
there exists no universal function C(e) > 0 that satisfies (1.7.1) for such initial
conditions.

Note that the spherical part obtained in both cases a« = 0,5 and a = 0, 8, in the
left lower quadrant, is due to the initial condition being equal to 0 in this part
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of the plane. For any time ¢ > 0, the solution w(-,¢) behaves in this quadrant

24+2«

like the symmetric function p,, that is to say, it decays like ]x\_( ) for large

values of |z|.

Finally, we consider :

-1
<1+w> . ifxy > 0002y >0,
U/()5(x17'r2) =

0, otherwise,

that decays slower than the fundamental solution p, in both cases @« = 1 and a € (0, 1).
The results are given on Figure 1.9.
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Figure 1.9: Level sets of value 0,5 of the solution u to (1.7.2), starting from wos, at
successive times t = 0,2.5,5,7.5, for &« = 1 on the left and o = 0,5 on the right.

For a = 1, from [51], we know that the level sets of the solution u to (1.7.2), starting
from wugs, move exponentially fast in time, with an exponent equal to i, at large times.
The left side of Figure 1.9 shows that the initial structure of ugs5 is preserved as time

grows. If x = (x1, z5) belongs to the quadrant where x; and x5 are both negative, then
2|2
ups(x) = 0, and consequently, at any time ¢ > 0, the solution u(-,¢) decays like e’%,

for large values of |x|. This explains the linear propagation in time in this quadrant
in the left side of Figure 1.9. On the contrary, if © = (x1,x3) is such that z; > 0 or
x9 > 0, then the speed of propagation is infinite as rigorously proved in [51].

For a = %, Theorem 1.1.5 does not apply with w5 as initial condition. However, it
is natural to think that the initial structure of ugs is preserved as time grows. Moreover,
we may expect the speed of propagation to be exponential in time with exponent equal
to ﬁ7 in the quadrant where x; < 0 and x5 < 0, and equal to 4—11 in the three other
quadrants. This intuition is illustrated by the right side of Figure 1.9. Indeed, the
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distance between two successive level sets is close to 2,8 in the bottom left quadrant,
that corresponds to an exponential propagation in time with exponent ﬁ, whereas
this distance is close to 3,5 in the other quadrants, that corresponds to an exponential
propagation in time with exponent i.






Chapter 2

Monotone systems

2.1 Introduction

In this chapter, we focus on the large time behaviour of the solution u = (u;),, for
m € N*, to the fractional reaction-diffusion system :

) A\, — . d
{ atu,—i—( A) U; fl(u>7 reR ’t>07 (2]_].)

ui(z,0) = wugi(x), zeR™L

We consider that at least one equation has a fractional diffusive term, that is to
say
forall i € [1,m], o €(0,1] and a:= [[mlri a; < 1.
1m
As general assumptions, for all ¢ € [1,m], we impose the initial condition wug; to
be nonnegative, non identically equal to 0, continuous and to satisfy

ui(x) = O(|z|"“T29))  as |z = +oo. (2.1.2)

We also assume that, for all 7 € [1,m], the function f; satisfies f;(0) = 0 and that
system (2.1.1) is cooperative, which means :

fi € CHR™) and 0,f; >0, on R™, forje [1,m],j#i. (2.1.3)

The aim of this chapter is to understand the time asymptotic location of the level
sets of the solution to (2.1.1), using the method described in the introduction of the
thesis. We prove that the speed of propagation is exponential in time, with a precise

exponent depending on the smallest index o = Iﬁlin]] a; and on the principal eigenvalue
€l,m

of the matrix DF(0) where F' = (f;)7,. This exponent does not depend on the
direction of propagation.

In what follows, and without loss of generality, we suppose that a;;1 < a; for all
i € [1,m — 1]. Before stating the main results, we need some additional hypotheses
on the nonlinearities f;, for all i« € [1,m].
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(H1) The principal eigenvalue \; of the matrix DF'(0) is positive,

(H2) There exists A > 1 such that, for all s = (s;)72; € R satisfying |s| > A, we have
fi(s) <0,

(H3) For all s = (s;)™, € R™ satisfying |s| <A, Df;(0)s — fi(s) = cs,5; T,
(H4) For all s = (s;)i2; € R satisfying |s| < A, Dfi(0)s — fi(s) < cs, |5 |1+
(H5) F = (f;)™, is globally Lipschitz on R™,

where the constants ¢5, and cs, are positive and independent of ¢ € [[1,m], and for all

je{l,2}
2

0; > )
77 d 4 20
This lower bound on d; and &5 is a technical assumption to make the supersolution

and subsolution to (2.1.1), we construct, to be regular enough.

Remark 2.1.1. From hypothesis (H2), we deduce that the positive vector M = A1,
where 1 is the vector of size m with all entries equal to 1, is a supersolution to (2.1.1),
if the initial condition wy = (ug;)™, is smaller than M.

Before going further on, let us state at least one example of nonlinearity F' satisfying
all the assumptions (2.1.3) and (H1) to (H5). Let A = (a;;){"—, be a matrix, with
negative non diagonal entries and with positive principal eigenvalue. For a constant
A > 1, for all i € [1,m] and all s € R™, we define

fi(s) = As — ¢i(s4),

where
silsil®, if s <A —1,
oi(si) = ¢ x(si), if A — 1< |s;| <A,
aii\si|, lf |$Z| /A,
with 6 > dJFLQa, and y a smooth function defined in R, chosen so that ¢; € C'(R),

which implies f; € C'(R™). These choices easily ensure (2.1.3), (H1) and (H5) since
DF(0) = A. Moreover, for all s € R such that |s| > A, we have

m
s) = E aijs; — aisi < 0,
j=1

from the choice of A, which proves that (H2) is satisfied. The assumptions (H3) and
(H4) are easily fulfilled taking §; = d, = 0 and

¢s, = min ( min X(5) 1> , Cs, = Iax < max & 1) .

3R, A-1<[3]<A ALH Aciggien (A — 1)1
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We are now in a position to state our main theorem. We consider the Banach
space Cp(R?), with the L>=(R?) norm and we set Dy(A;) the domain of the operator
A; = (=A)% in Cy(R?). In what follows, we assume that, for all i € [1,m], the
initial condition wg; is in Dy(A;). The following theorem proves that the solution u to
(2.1.1) move exponentially fast in time with an exponent equal to diéa, where \; is
the principal eigenvalue of DF'(0) and o = min;epy m) -

Theorem 2.1.2. Let d > 1 and assume that F = (f;)", satisfies (2.1.3), (H1),
(H2), (H3), (H4) and (H5). Let u be the solution to (2.1.1) with ug = (ug;)™, such
that for all i € [[1,m], ug; is nonnegative, non identically equal to 0, continuous and
satisfies (2.1.2). Then, there exists T > 0 large enough such that, for all i € [1,m],
the following two facts are satisfied :

a) For every p; > 0, there exists a constant ¢ > 0 such that,
ui(x,t) < i,  forall t =71 and |x| > cemHiat,
b) There exist constants ; > 0 and C > 0 such that,
wi(x,t) >¢e;,  forall t=7and |z] < Cebat,

This theorem only gives the location of the level sets of small values. The conver-
gence of the solution to (2.1.1) to the stationary state is proved in [85].

This chapter is dedicated to the proof of Theorem 2.1.2. First, in sections 2.2 and
2.3, we present some preliminaries in which we prove the existence and uniqueness of
mild solutions for cooperative systems. We also state a comparison principle for this
type of solutions. The results established by Cabré and Roquejoffre in [26] are easily
adaptable to our system (2.1.1), that is why we have chosen to adopt this framework.
We extend the principle comparison to classical solutions that have a particular decay
at infinity. In section 2.4, we prove that our solution has the correct decay. This prove
Step 1 of the method presented in the introduction of the thesis. A more original - and
involved - part is to set an algebraically lower bound for the solution to (2.1.1), which
is done in section 2.5 and corresponds to Step 3 of the method described in B.1.. The
proof of Theorem 2.1.2 relies on the construction of explicit classical supersolutions
and subsolutions, as set in Step 2 and Step 4 of the method. The computations are
inspired from the results of Chapter 1. This is done in section 2.6.

2.2 Mild solutions

In order to state the existence of a unique solution of the system (2.1.1), we consider
a Banach space of functions X and G : [0,+00) x X™ — X" G = (G;(u,t)), a
function that satisfies, for all ¢ € [1,m],

G, € CHX™ x [0, +00): X),

2.2.1
G;(+,t) is globally Lipschitz in X™ uniformly in ¢ > 0, ( )



56 CHAPTER 2. MONOTONE SYSTEMS

m
where X™ is the product space endowed with the norm ||u|| ym = Z ||wi]| , where |||
i=1

denotes the norm on X.
We are interested in the nonlinear problem

{ du+Lu = Gut), t>0,2€R (2.2.2)

u(z,0) = wup(x), z€RI

where L = diag((—A)*, ..., (=A)*), u = (u;)", and ug € X™.
As in [26], we define the map N, : C([0,T]; X)™ — C([0,T]; X)™ by

Ny (u)(t) := Tug —i—/o Ti—sG(u(s), s)ds,

where T, = diag(T}.1, ..., Tt.m), and, for all i € [1,m], T ,w = pq, (-, t) * w.
Adapting the computations given in section 2 of [26] to the product space X™, we
can prove that there exists u € C([0,7]; X)™ such that
u=lim (Ny,)"(u’),
1——+00
where u%(t) = Tyug. The limit u is the unique fixed point of N,,. In what follows, we
prove that w is the unique mild solution of (2.2.2).

Given any 0 < T' < T”, by uniqueness, the mild solution in (0,7”) must coincide in
(0,7T) with the mild solution defined in (0,7"). Thus, under assumption (2.2.1) on the
source term G, the mild solution to (2.2.2) extends uniquely to all ¢ € [0, +00), i.e., it
is global in time.

Let u = (u;)!™, be the unique mild solution of (2.2.2). We define

Hz(wat) = Gi(“l? oy Uj—1, Wy Uiy, -"7um7t)a

so that
H;, € CY(X x [0, 400); X),

2.2.3
H;(-,t) is globally Lipschitz in X uniformly in ¢ > 0. ( )
Consider the problem
atwi + (—A)O‘iwi = Hl(w“t), x € RZ’t > 0, (224)
wi(xz,0) = wug(z), x € R

Following the computations of section 2.3 in [26], we conclude that, for any T' > 0,
this problem has a unique mild solution in C'([0,T]; X), given by w; = w;. Thus, if
the initial datum belongs to the domain D(4;) in X of A; = (—A)%, we have further
regularity in ¢ of the mild solution u;, that we will denote by u;(t) in the sequel. Under
hypothesis (2.2.3), the mild solution w; of (2.2.4) satisfies
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and is a classical solution, i.e., a solution satisfying (2.2.4) pointwise for all ¢t € (0, 7).
Doing the same procedure for all i € [1,m] and for all T > 0, we conclude that
u = (u;)™, is a global in time classical solution to (2.2.2).

Remark 2.2.1. If w is the solution to system (2.2.2) with uy € X™, and G satisfies
(2.2.1), then for any a € R, u(t) = e®u(t) is the mild solution to (2.2.2) with uy € X™,
and G replaced by G defined on X™ x [0, +00) by G(1,t) = ati + ¢ G (e, t). This
fact is proved in the same way as in [26].

From now on, we consider the Banach space X = Cy(R?) and set, for all i € [1,m],
so that G; satisfies (2.2.1). Since f; € C'(R™) and f;(0) = 0, the map
u € Co(Rd)m — fz(u) S Co(Rd)

is continuously differentiable. Thus, by the previous considerations and (H5), there
is a unique mild solution u to (2.1.1), starting from wy € X™. If the initial datum
ug belongs to [, Do(A;), where Do(A;) is the domain of A; = (—A)% in Co(R?),
then the mild solution u satisfies (2.2.5) for all 7' > 0, and is a global in time classical
solution.

2.3 Comparison principles

2.3.1 Comparison principle for mild solutions

Before proving Theorem 2.1.2, we need to establish a comparison principle for mild
solutions in the Banach space X = Cy(R?).

Theorem 2.3.1. For every j € {1,2}, set F7 = (f))m, where, for all i € [1,m],
17 is CYR™), satisfies (2.1.3) and is globally Lipschitz. Let v/ = (ul)™, be the mild
solution to

o + Lw! = F7(u?),
with initial condition v/ (-,0) € X™. If, for all i € [1,m], f! < f? in R™ and
ul(-,0) < u?(-,0) in R?, then

ul(z,t) <ui(z,t)  forall (z,t) € R x [0, 400).
Proof : We set a = [[ Hll]ax{ }Lz’p(fij), where Lip(f/) denotes the Lipschitz constant
i€[1,m],je{1,2

of f7, and for i € [1,m], j € {1,2} and ¢ > 0, we define f? on R™ x [0, +-00) by

ﬁ(v, t) = av; + e“tfz-j(e_atv).
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For i € [1,m] and j € {1,2}, by the choice of a and since f? satisfy (2.1.3), the
function ff is nondecreasing in its first argument. Since f} < f? in R™, we have at
any time ¢ >0, f1(-,t) < f2(-,1).

For j € {1,2}, we define FV = (f7)™,, and consider the system

7

{ataww‘ = F(W,t) zeRLt>0, 25.1

w(,0) = ul, r € R%

From Remark 2.2.1, we know that @/(-,t) = e™u/(-,t) is the solution to (2.3.1),
where u’ is the mild solution defined in Theorem 2.3.1. Therefore, it is enough to
prove that ' < % on R? x (0, +00). Consider the mapping N7 for j = {1, 2}, defined
by

¢
N (w)(+,t) = Tyu +/ Ty F7(w(-, s), s)ds.
0
Taking u®7(-,t) = T,u, we know that

w = lim (N7)"(u®™).
n—-+00

Thus, by a standard induction argument, we only need to show that, for all n € N,
(N < (NH™"(u™)  on  R? x [0, +00). (2.3.2)

Since, for all i € [1,m] and j € {1,2}, u}(0,-) < u2(0,-), f/ is nondecreasing in its

first argument and f;l < :2, then inequality (2.3.2) is true. This ends the proof of the
theorem. -

Remark 2.3.2. If, for all i € [1,m], we suppose f! < fZ in R7, and 0 < ;(-,0) <

u2(+,0) in R we obtain the same result as in Theorem 2.3.1.

Remark 2.3.3. Since F'(0) = 0, Theorem 2.3.1 enables us to conclude that the solution
u = (u;)™, to (2.1.1), starting from a non negative initial condition in X", satisfies
ui(z,t) = 0 for all (z,t) € RY x [0, +00) and all i € [[1,m].

2.3.2 Comparison principle for classical solutions

Now, we state the following comparison principle for classical solutions, required by
Step 1 of the method given in the introduction of the thesis. This result will be
useful in the following sections to deal with subsolutions and supersolutions to (2.1.1).
Indeed, we have not devised a mild representation for subsolutions and supersolutions
to this system, consequently the comparison principle stated in Theorem 2.3.1 will
not, strictly speaking, be applicable.
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Theorem 2.3.4. Letu = (u;)™, andv = (v;)™, be functions in C*([0, +00); Co(R?))™N
HDO((—A)O”) such that, for all i € [1,m],
i=1

Owu; + (—A)Yu; < fi(u), and  Ow; + (—A)%v; = fi(v),

where f; satisfies (2.1.3). If for all i € [1,m] and x € R?, u;(x,0) < v;(x,0) and for
allt >0

wi(z,t) = O(|z| ")) and vi(z,t) = O(Jz| ") as |z| = +oo,  (2.3.3)

then
u(z,t) <v(z,t)  forall (o,t) € RExR,.

Remark 2.3.5. The assumptions on v and v done in (2.3.3) are not optimal and seem
to be restrictive, but are sufficient to prove our main result. In fact, in Lemma 2.4.2,
we prove that the solution to (2.1.1) has the decay at infinity required by (2.3.3) and
thus satisfies the hypotheses of Theorem 2.3.4.

Proof : For all i € [1,m], we define
W; ‘= U; — V;.

Then w; satisfies w;(z,0) < 0 and, in R? x R, we have
1
ws + (—A)%w; < filw) — filv) _/ Dfi(ou+ (1 - o)w)do - (u— o)
0

- [ Ditgdo-w, (2.3.4)

where (, = ou+(1—o)v. Let T > 0. By assumption, for all i € [1,m], the function w;
belongs to C1([0, +00); Co(RY)) and, consequently, there exist two positive constants
Cy(T) and Cy(T) such that, for all (z,t) € R x [0, T],

|wi(x,t)] < CL(T) and  |Qyw;(z,t)| < Co(T). (2.3.5)
By (2.3.3), for all ¢ € [0, 7], we also have
wi(z,t) = O(|lz| ) as |z| > +o0. (2.3.6)

Let w;” be the positive part of w;. Since, for all i € [1,m], w; € Do((—A)*), we
have

/ w (—A)%w;dx > 0.
Rd
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Thus, using (2.3.5) and (2.3.6), we can multiply each term of (2.3.4) by w;" and
integrate over R? to get

1
/w;"atwidx—i—/ w;r(—A)o‘iwidxg/ wj/ Dfi(¢,)do - wdz. (2.3.7)
R¢ R¢ 0

Rd

+

Since (w;")? and 9, [(w;")?] are continuous in R? x (0,7), and since w; satisfies

(2.3.3), we also have

% { /Rd(“’i+ )Qd‘”} = /R 0 [(w)?] da.

Moreover, since the system is cooperative (i.e. 9;f; > 0 on [0, M]), we have, for all
i€ 1,m]

d 1 v 1
L] < L focmisie $. [ fancsmin

j=Lii
m
< 0y / (w)*dz,
j=1 R

where C'is a constant that depends on m and T. Thus, for ¢ € [0, T], we have

d m m
7 [Z/ (w)?dz| < C’Z/ (w))*d.
j=1 7R j=1 /R?

Finally Gronwall’s inequality gives

2 ct 2
0< ;/Rd(wj) dr < e ;/Rd(wj(o,x)) dr =0,

which proves that, for all j € [1,m] and all (x,t) € R? x [0, 7],

wj(z,t) <O0.

2.4 Upper bound for the solution to (2.1.1)

In this section, we prove that the solution w to (2.1.1) fulfills the hypothesis (2.3.3) of
Theorem 2.3.4.
From (H5), we know that, for all i € [[1, m], the functions f; satisfy for all j € [1,m]

0;fi(s)| < Lip(fi), forall s € R™,
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where Lip(f;) is the Lipschitz constant of f;. Taking a = Ir[[laxﬂ Lip(f;), we have for
€l,m
all s = (s;)™, >0

/ Dfi(os)do - s <

8fl os)

az 5;. (2.4.1)

Let us consider v = (v;)™; the mild solution of the following system

SJ

(2.4.2)

ow+ILv = Bv, z€RYt>0,
v(-,0) = wuy, R4

where B = (bj;){%—; is a matrix with b;; = a for all 4,5 € [1,m]. By (2.4.1) and
Remark 2.3.2, we conclude that

u<v, in R?x][0,+00).

Since ug belongs to the domain [[", Do(A;), u and v are global in time classical
solutions. Taking Fourier transform in space in each term of system (2.4.2), we have

{ 0:3(v) = (A(€]) + B)F(v), €eRet>0,
g(v)<?0) = S<u0)> Rd?

where A([¢]) = diag(—|¢]?™, ..., —|£]?**™). Thus, we have
F(0)(t,€) = “IVTEF(uo) (€),
and for all z € R* and all t > 0 :
u(z,t) <oz, t) = F HeAIDBDY) Ly (). (2.4.3)

In what follows, we prove that for each time ¢ > 0, the solution u of (2.1.1) decays
as |z| "7 for large values of |z|, which proves that u satisfies (2.3.3). Due to (2.4.3)
and since uq satisfies (2.1.2), we only need to prove that the entries of ! (e(AU:D+B))
have the desired decay. To estimate from above these quantities, as done in [20] and
[75], we need to rotate the integration line of a small angle € > 0 in the expression of
T 1(eAID+B?)  The following lemma will be needed when doing this rotation.

Lemma 2.4.1. For all z € {z e C| |arg(z)| < ﬁ} and t > 0, we have :

1. the following estimate :

’e(A(z)JrB)t‘ < e(m2|B|f\z|2°‘1 cos(2cr arg(z)))t +€(m2|B|f|z|2acos(2a1 arg(z)))t, (2.4.4)
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2. the existence of a locally bounded function Cy : (0,400) — Ry such that
|[t<Z)| < Cg(t)(|2|2016_‘2|2a cos(2a arg(2))t + |Z|2a€_|z‘2a1 cos(2a1 arg(z))t>7 (245)

where .
I(2) ::/ U= AEFB) (o8B - A(2)]esAR) s, (2.4.6)
0

Proof : Let z be in {z € C | |arg(z)| < ;2-}. Consider, for j € [1,m], the system

a1

ow = (A(z)+ B)w, z€C,t>0,
w(z,0) = e z € C,

where e; is the jth vector of the canonical basis of RY. Thus, we have

w(z,t) = AEHBe (2.4.7)

Multiply the equation solved by w by the conjugate transpose w and take the real
part to get

1 m
50 wl* +)  cos(2a arg(2)) |2[** |w)* = Re(Bw.w) < m*|B||w|*.
=1

The choice of arg(z), Gronwall’s Lemma and equation (2.4.7) end the proof of the
first point of the lemma.
To prove (2.4.5), it is sufficient to notice that, for s € [0, ¢], we have

iarg(z) et 10207
esA(\z|e ) <e |z Cos(2a1arg(z))s_'_e |2|“1 cos(2a1 arg(z))s

)

and .
[P, A(|z] & *#@)]| < O(s)(2* + [2"),
where C': (0, +00) — Ry is a locally bounded function. Due to (2.4.4), we also have

’€(A<|z|eiarg<z>>+B>(t—s> < (m?1BI= |21 cos(2aq arg(2)))(t=s) 4 o (m?|B|~|z" cos(2a1 arg(2)))(t-5).

These three estimates end the proof of the lemma. [ |

We are now in position to prove that u, the solution to (2.1.1), satisfies the as-
sumption of our comparison principle for classical solutions.

Lemma 2.4.2. Let d > 1 and let uw = (u;)™, be the mild solution of system (2.1.1),
with initial condition ug satisfying (2.1.2) and reaction term F = (f;), satisfying
(2.1.3) and hypotheses (H1) to (H5). Then, for all i € [1,m], there exists a locally
bounded function Cy : (0,400) — Ry such that for all t > 0 and for large values of
|z|, we have

Ci(t)

u;(x,t _—
7‘( ) >\ ‘x’d+2a
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We split the proof of Lemma 2.4.2 into two cases. First, for the sake of simplicity,
we consider the one space dimension case to underline the idea of the proof. The
higher space dimension case is treated after and requires the use of the Bessel function
of first kind and the Whittaker function.

Proof for d = 1: In this proof, we denote by C' : (0,+00) — R, any locally
bounded function. As explained before, from (2.4.3), we only have to find an upper
bound to the entries of ' (eA(ID+B1)  First, we define for ¢ > 0 and z € C, the

function w by
w(z,t) = e!BetA®),

This function w solves the Cauchy problem

dw = (A(z) + B)w + [P, A(2)]e"®), 2 € Ct >0,
w(z,0) = Id, z€C,

where [e!B, A(2)] = e!BA(z) — A(2)e!®. By Duhamel’s formula, we get for all z € C
andt >0 :

t
615(A(z)—i—B) _ 6tBetA(z) . / 6(t—s)(A(z)—i—B) [€SB, A(Z)]eSA(z)dS. (248)
0
Thus, for all t > 0 and all z € R, we have
S—l(e(A(|.|)+B)t)(x) _ / ez‘mfe(A(|£\)+B)td€ _ / eixfetBetA(\Sl)dg _ / eix§]t(|£|)d€
R R R
= % diag(pa, (2,1), ..., Pa, (2, 1)) — / eI (1€))dE,  (2.4.9)

R

where, for i € [1,m], pa, is the heat kernel of the operator (—A)* in R, that satisfies
forr e Randt >0

(1) = == it o; = 1,
" B>_1t it Bt (2.4.10)
| 1+2a; S pai(x’ t) S 1 1+2a;’ if Q; € (O, 1)
t2 " + |z : 7 |z i

Since a = ‘rﬁin]] a; € (0,1), for large values of |z|, we clearly have
elm

| o
| diag(pa (2, 8), o puy (2, 8))| < lel% (2.4.11)

It remains to bound from above the following quantity :

/Remg[t(\f!)dﬁ _, /0+oo ol ()i — 2Re (/0+oo ei|m|TIt<7")d7”) .
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We use the following two facts. First, for all ¢ > 0, the function
z = e L (2)

is holomorphic on C\ {0}. Second, taking ¢ € (0, ﬁ), for 6 > 0 (respectively R > 0),
on the arc {£de? 0 € [0,¢]} (respectively {Re®, 0 € [0,¢]}), the entries of I; tends to
0 as ¢ tends to 0 (respectively R tends to +00), due to Lemma 2.4.1. Consequently, we
can rotate the integration line of a small angle 0 < e < min(n, 7-), and the quantity
we have to bound from above becomes

+oo . . . t ie . ie
/ ei|a:\7”el€[t(r€za)dr with [t(,,,eza) :/ e(t—s)(A(Te )+B) [GSB,A(TGZE))]GSA(TE ))dS
0 0
From Lemma 2.4.1, we get for large values of |z|

+oo ) +oo
/ ei|x\7"eIE It (reis)eiadr < C(t) (/ €7|:13\r sin(a)r2a1 671"2“ cos(2a1€)t
0 0

— a3 _p2aq
+e \x|rbln(e)r2ae r COS(?ala)th)

C(t) (/+OO efFSin(E)’T:’Qale_\-:\% cos(2a1€)t

~ |x|1+20¢
;;2[1
_l_e—Fsin(a) 7';2046*@ COS(2a15)tdF)
C(t)
|$|1+2a' (2412)

With (2.4.9), (2.4.11) and (2.4.12), we conclude that for large values of |z| and for

allt > 0
. o0
A(l-
‘3« 1(6( (I |)+B)t)($)| < W?

which concludes the proof. [ ]

Proof for d > 2: As previously, from (2.4.3), we only need to bound from above
the function F~!(eA(D+B)%) Tet ¢t > 0 and |z| > 1. Using the spherical coordinates
system in dimension d > 2 and the definition of the Bessel Function of first kind (see
[1] and [41]), we have

+o00 1
FHeAIDHBN () = C’d/ e(A(T’)+B)tcos(|1:|rs)rd’_l(l—32)%dsdr
0 -1
oF +

oo
_ | e (el ryrar,
0

] 27!

where Cy is a positive constant depending on d.
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The matrix e+ ig split into two pieces as done in (2.4.9), to get

Cq

§HEADT ) @) = 1 dinglpin (3,8) o ()=
x|?2

+oo
/ L) a_ (|2 r)rddr,
0 2

where I; has been defined in (2.4.6). Since for z € R? and ¢ > 0

Pai (@) = : if o = 1,
: (4mt)2
Bt Bt _
| d+20 < pai(x7 t) < 4 4 dr20; if o; € (O, 1)7
12 + |.T’ % $205 + |£IZ” ;

the first piece of the right hand side has the correct algebraic decay. It remains to
bound from above the second piece. In fact, using the Whittaker function (defined in
[41] for example), we have for all z € R? and all ¢ > 0 :

400 5 oo B )
[ h0 st = Lo ([ nemmwy il s ar)
0 0

2m—1

+o00
— e </ ]t(?"|x|_1)ed%”W07g_1(2ir ?Clgd?) :
0

As done in the one dimension case, taking 0 < & < min(m, 47;71) and since the
Whittaker function is bounded on the arc {2Riei9,0 € [—5,0]} for R large, we can
rotate the integration line a small angle —e. Thus, using (2.4.5), we have the result if

we prove that the following integral

+o0o
/ [Wo g (207e5) |75 (70 + 720)dF
0

is convergent. This integral is finite as proved by the following asymptotic expressions
for Wy a_, (given in [1]) :

(1N

Wo,gq(z) ~ e

|z|—>+o0
() o
2 27, ifd=2,
r(d-1>>

2

and

’1

—r(452) " In(z) +
W ~
04-1) M A ra—2) W ,
a1 < %5 if d > 3.
I'(5)
|

Remark 2.4.3. As a consequence of Lemma 2.4.2, we have the enough regularity to
apply Theorem 2.3.4 to the solution to (2.1.1). It is clear that 0 is a subsolution to
(2.1.1), and from Remark 2.1.1, M = Al is a supersolution to (2.1.1). For an initial
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vector ug = (u;)™, smaller than M (in the sense that all the functions wg; are smaller
than A), we can not directly apply Theorem 2.3.4 to prove that the solution u to
(2.1.1) is bounded from above by the constant vector M, since a constant vector is
not in Co(R?). However, we can adapt the proof of Theorem 2.3.4 to get this upper
bound on wu.

Indeed, let u denote the solution to (2.1.1) with non identically equal to 0 and
continuous initial condition wy = (ug;)7, satisfying for all ¢ € [1,m], ug(z) =
O(lz| ™), and 0 < ug; < M in R% and reaction term F = (f;)™, satisfying
(2.1.3) and hypotheses (H1) to (H5). From section 2.2, we know that u is a classical
solution to (2.1.1) and at any time t > 0, u(-,t) € Co(R).

Consider for x € R* and t > 0

w(z, 1) = (wi(z, )2, = e " (u(z,t) — M),

where [ > 0 is the maximum, taken over [1, m], of the Lipschitz constants of f;. Thus,
for all i € [1,m], w; solves on R¢ x (0, +00)

8twi —|— (—A)a"wi < l(|wz| — wz)

As in the proof of Theorem 2.3.4, we multiply this inequality by the positive part
w;" of w;, and integrate over R?. All the integrals converge since w;" is continuous and
compactly supported. Moreover, we have

[ ] = wure =0,
Rd

which leads to the same conclusion as in Theorem 2.3.4. Thus, starting from wuy, =
(uoi)™, smaller than M, we have

0 <u(z,t) <M, forall (z,t) € R x [0, +00).

2.5 Lower bound for the solution to (2.1.1)

The following is the last important result needed to prove Theorem 2.1.2. It corre-
sponds to Step 3 of the method described in section B.1. of the introduction. It sets an
algebraically decaying lower bound for the solutions to the cooperative system (2.1.1).

Recall that M = A1, where A is given in (H2). From Remark 2.4.3, we know that
if the initial condition is non negative and smaller than M, then the solution u remains
non negative and smaller than M at any time. Thus it is sufficient to work in the set
{s=(s;)), €eR™ | 0<s< M}.

Since for all i € [[1,m], f;(0) = 0, we have for all s = (s;)*; € R™ with 0 < s < M :

fi(s) = /01 Dfi(os)do - s = ilsj /01 9; fi(¢o)do,
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where (, = os € [0, M]. In the sequel, we use that for all i € [1,m] and j € [1,m],
0;fi + [0, M] — R is continuous and that the system is cooperative. Consequently, for
all i € [1,m] and j € [1,m], there exist constants 7,; > 0 such that for all o € [0,1] :

0ifi(Co)| < v and Vi S 8jfi(Ca)- (2.5.1)

Lemma 2.5.1. Let u = (u;), be the solution to (2.1.1), with non negative, non
identically equal to 0 and continuous initial condition ug satisfying (2.1.2) and with
reaction term F = (f;)™, satisfying (2.1.3), (H1), (H2) and (H5). Then, for all
i€ [l,m], z€R? andt > 1, we have :

c t ef'Ymmt
R \:c|d+2a7

(2.5.2)

where ¢ is a positive constant, Vmm 18 defined in (2.5.1) and o = Iﬁlinﬂ Q;.
i€ll,m

Proof : We split the proof into three steps.
— Step 1 : we prove (2.5.2) for i = m,

— Step 2 : foralli e [I,m—1],¢>1 and s € [0,t — 1], we find a lower bound of
Do, (-t — 8) % (s2a T+ [-|"72*) =1 that decays like 2| for large values of |z,

— Step 3 : foralli € [I,m—1],¢t > 1 and s € [0,t — 1], we prove that w;(-,1)
can be bounded fr(gm below by an expression that only depends on the integral
f(]tpai('7t - 8) * (3%"’1 + |'|d+2a>_1ds'

Step 1. By (2.5.1) and since u is a classical solution to (2.1.1), we have for all
re€RYand t >0

1
Oy, + (—A) " Uy, = frn(u) = / O fin (Co)dO Uy = —Yomm Uy, -
0
The standard maximum principle of reaction-diffusion equations gives, for all £ > 0,

U (2,1) = 77 (po (-, 1) % ugm ) (T). (2.5.3)

Since ug,, # 0 is continuous and nonnegative, there exists a constant R > 0 such

that
/ Uom (y)dy > 0.
Br(0)

As proved in Lemma 2.2 of [26], one easily sees that, there exists ¢ € (0,1) such
that for || > R and t > 0

t
Do+ 1) *x ugm () = c

> (2.5.4)
t2att 4 |z

d+2a”
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For || < R and t > 0, using the lower bound of p, for @« = min «o; € (0,1),

i€[1,m]
recalled in (2.4.10), we have
B tug, (y
palt ) ruonte) > [ ey,
B(0) t2a 4 |z —y|
ct
S TRE + |x|d+2a’ (2.5.5)

taking ¢ smaller if necessary. Inserting (2.5.4) and (2.5.5) in (2.5.3), we have for z € R?
andt >0
cte=Ymmt

taath 4 ||t

U (T,1) > (2.5.6)

Step 2. For t > 1 and s € [0,¢ — 1], we estimate from below the function p,, (-,t — s) %
Pal(-, ), where for z € R? and t > 0

Do, (T, 1) = , o =1,
(47t)%
and Bl
't
pai(ifat) > 4 _q > if o; € (0, 1)
tm‘f‘ + |$|d+2ai
Set, for z € R ¢t > 1 and s € [0,¢t — 1] :
t = t !
Q<'ru 7S> _paz‘('7 _S)*S%+1+Hd+2a(:€).

— When o; = 1, we have for all z € R4, ¢t > 1 and s € [0, — 1]

1 a5
q(z.t,s) > d/ S
(47 (t — 5))2 Jre s2at! 4 | — y|d+20
1
Z o : (2.5.7)
(4m(t — 5))2 (s2a T 4 |p|dt+2a)

— When o; € (0, 1), similarly to (2.5.7), we have for x € R% ¢t > 1 and s € [0, — 1]

> | 1
=
(= )3 [y (sEH o - )

q(z,t,s) dy
(t— s) 7

S%Jrl + ‘x’d-‘rQa' (258)
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Step 3. Using (2.5.1), we have for i € [1,m — 1], z € R and ¢t > 0

1 1
Opu; + (—A)aiui = fz(u) 2 / amfz’((a)daum +/ 3ifi(§a)d<7ui 2 YimUm — 03U,
0 0

where 0; > max(Vii, Ymm + 1). The maximum principle of reaction-diffusion equations
and Duhamel’s formula give for all (z,t) € R? x R, :

t
ui(z,t) > e—éitpai(.,t)*um(x)+%m€—5it/ Pas (1t = 8) % tpn (-, 8)e¥ds,
0
t—1
Z %me_ait/ Dy (-1t — 8) % U (-, 8)e%*ds.
0

Using (2.5.6) and inequalities (2.5.7), (2.5.8) obtained in Step 2, we get the exis-
tence of a positive constant c; such that for all z € R, ¢t > 1

-1
ui(z,t) > C%‘me_‘sit/ eI p (ot — 8) K (s34 |12 TN () P ds
0

cite ymmt
T (2.5.9)
Inequalities (2.5.6) and (2.5.9) prove the lemma, taking ¢ = min(cq, ¢). ]

2.6 Proof of Theorem 2.1.2

Inspired by the formal analysis done in section 1.2, we look for an explicit supersolution
(respectively subsolution) to (2.1.1) of the form

a

1
<1 + b(t) |x|5(d+20¢)) 5

v(x,t) = ¢1. (2.6.1)

In this expression, b is a time continuous function asymptotically proportional to
e Mt g = (¢1,)™, € R™ is the normalized principal eigenvector of DF(0) associated
to the principal eigenvalue \;, and § is equal to d; (respectively d2) defined in (H3)
(respectively (H4)). Since the system is cooperative, Perron-Frobenius Theorem gives
01 > 0.

The effect of the fractional Laplacian (—A)® on the function v defined by (2.6.1)
is given by Lemma 1.3.1 taking

1
f=d+2a€ (0,d+2a;], X\=0b(t) (d+§a>5, and  h(zx) = T
(1 + Ix!5(d+2a)) '
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Since §(d+2a) > 2, the function h is of class C?(R?) and satisfies all the assumptions
of Lemma 1.3.1. Consequently, taking D larger if necessary in Lemma 1.3.1, we have
for all i € [1,m], t > 0 and z € R?

204

| (—A)%v;(z,t) |< Db(t)5 @ 2a) v;(x, t). (2.6.2)

The end of this chapter is devoted to Step 4 of the method given in the introduction
of the thesis. A classical supersolution (respectively subsolution) to (2.1.1) of the form
(2.6.1), with appropriate choices of a, § and b(t), is constructed and used to prove
Lemma 2.6.1 (respectively Lemma 2.6.2). These two lemmas lead to the proof of
Theorem 2.1.2.

Lemma 2.6.1. Let d > 1 and u be the solution to (2.1.1) with non negative, non
identically equal to 0 and continuous initial condition ug satisfying (2.1.2) and F =
(fo)m, satisfying (2.1.3), (H1), (H2), (H3) and (H5). Then, for every p = (u;)™, > 0,
there exists a constant ¢, > 0 such that, for all t > 7, with 7 > 0 large enough

{x eR| |z| > cuediﬁt} C{z eR?| ulz,t) <p}.

Proof : The proof is in the same spirit as the one done in Chapter 1. For the sake of
completeness, we write it in the case of monotone systems. We consider the function
% of the form (2.6.1), on R? x R, with § = §; defined in (H3). The idea is to adjust
a > 0 and b(t) asymptotically proportional to e 1?1 so that the function u serves as
supersolution of (2.1.1). In the sequel, a is any positive constant satisfying

(D + )\1) o ( 1 )
a = max ,
Cs, ic[1,m] \ @1

where ¢5, is defined in (H3), and D > 0 is given by (2.6.2). For any constant B €
_ 91(d+2a)

(0,(1+ DX;") """z ), we consider the following ordinary differential equation

o o —d2a
V(1) + 6, Db(t) 5@z L 5\ b(E) = 0, b(0) = (—ml—l n B—«sl<3+za>> 7 (26.3)
whose solution is given by
2c 2a 7d+2a61
b(t) = (~DAT! + BT )
For all t > 0, we have b(t) > 0 and more precisely
Be ™" < b(t) < b(0) < 1. (2.6.4)

Defining
L(u;) = 0yu; + (=A)w; — fi(u),
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and using (2.6.2), we have for all i € [1,m]
L(w;) = 0w+ (—A)"u — Dfi(0)u+[Dfi(0)u — fi(w)]

. {0) + Dby gn(n) [ 442
o (14 b(t) 2H2)

ai;
+ 2 £+1
(1 + b(t) ‘x’51(d+2a)) 1

Before using the comparison principle given in Theorem 2.3.4 to compare u and ,
we need to take into account initial data. Since ug satisfies (2.1.2), there exists a time
to > 0 such that, for all ¢ € [1,m],

2

{_Db( >§l(d+2a) — A+ Cs, 01 a(h} > 0.

o < Ui(+ to)-
Thus, Theorem 2.3.4 gives for all t > 0, all z € R? and all i € [1,m] :
wi(z,t) <u(z, t+to). (2.6.5)
St

For any (u;)™, > 0, we define for ¢ € [1,m] the constants

L.
et — agbue”\lto (B3] and c= ig[[llar};i]] Ci.

Thus, if |z| > ceThat , then, using (2.6.4) for all ¢ > 0 and all ¢ € [1,m], we have

@¢1,¢

(14 b(t + to) || H+2))ar

< .

Lemma 2.6.2. Let d > 1 and u be the solution to (2.1.1) with non negative, non
identically equal to 0 and continuous initial condition ug satisfying (2.1.2) and with a
source term F = (f;), satisfying (2.1.3), (H1), (H2), (H4) and (H5). Then, for all
i € [1,m], there exist constants €; > 0, C., > 0 and t, > 0 large enough such that,

A
ui(z,t) > e, forall t>t and |z| < C.edrml,

Proof : As in the previous proof, we consider the function u of the form (2.6.1), on
R? x R, with § = d, defined in (H4). Since for any i € [1,m], u,(-,0) < up; may not
hold, we look for a time t; > 0 such that u;(-,0) < u;(t1,-). Without loss of generality,
we can assume that D is greater than A\, where D is given by (2.6.2). We choose
t; > max(1,2DA;") and set

d+2
[ e Ymmt1 o 02

2
a= +— and B = (—) : (2.6.6)
2 max_ ¢y, t{* t
€[1,m]
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where ¢ is defined in Lemma 2.5.1. Thus we have

min_ ¢r; Ar\ %
i€[1,m]

and B < (DA[Y) w0,

/N

2052

where ¢, is given by (H4). Similarly to the proof of Lemma 2.6.1, we define

d+2a
2 62

_ 2a 2a)q
b(t) = (DA + B et ,

and using (2.6.2) and (H4), we can state for all i € [[1,m]
Oy + (—A)%u, — fi(u) <0, in  R?x[0,400).
From Lemma 2.5.1, we have for all i € [1,m] and all x € R?

ctye Ymmt

d
g2y

ui(t17m> > d+2a‘

By (2.6.6), we deduce

1
Qt1€*7mmt1 (1 + b(O) ’$‘62(d+2a)> 5o

WV

§t1€*7mmt1 (1 4 b(())% ‘x’d+2a>

d
agbu (tfaﬂ i |x|d+2a> ‘

WV

Therefore, we get, for all ¢ € [1,m],
ui(-,t1) > up; in R
Theorem 2.3.4 gives for all t > t;
wi(-t) = w, (-t —t;), in RL (2.6.7)
Finally we set

_1 _ _1
& = 2 % a(bl,i and Cgf%[ =e€ )‘ltlB %2,

A
If t > t, and |z| < C.,e72", using (2.6.7), we have

a¢17z‘

ui(z,t) = w(w,t —t,) = > agbii _
(140t — ) Ja2520) = 2%
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Remark 2.6.3. Step 2 of the method described in the introduction of the thesis leads
to rescale problem 2.1.1 in the z-variable, defining the vector v = (v;)"; by

v(y,t) =u(yr(t),t), r(t) = ediﬁt, for y € R and t > 0.

Neglecting the diffusive term in the equation satisfied by v, we get the following
transport equation :

N A N N
A,0(y, t) — myﬁyv(y,t) = F((y,t)), yeRt>0. (2.6.8)

In our proof, we have chosen not to work with an explicit solution of (2.6.8), but
to look for subsolutions and supersolutions to (2.1.1) of the form (2.6.1), inspired by
Chapter 1. However, if 0., denotes a positive stationary solution to (2.6.8), then the

A
function ¥(t) = s (e~ 72a") satisfies

U(t) = f((t))-

Thus, if uy denotes the smallest positive constant solution to (2.1.1), then the
global orbit X connecting 0 and w4, i.e. a solution X = (X;)/, of

d
X, = fi(X), teR,

X(—o0) =0, X(+00) = uy,
whose existence is given in [54], could serve to construct subsolutions and supersolution

to (2.1.1). Indeed, the method given in the general introduction of the thesis consists
in looking for subsolution and supersolution v, of the form

d+ 2«

Uy(x,t) = aUx (b(t)x) = aX (— In (|| b@))) ;

where a > 0 is a constant and b(t) is asymptotically proportional to e*?. Recall that
¢1 denotes the eigenfunction associated with the principal eigenvalue \; of DF(0),
where F' = (f;)7,. We notice that the orbit X satisfies

X(t) ~ ceMiey,

t——o0

for a positive constant ¢. This means that, at any time ¢ > 0, the function v, decays
like |z|~""2 for large values of |z|.






Part 11

The influence of a line with fractional
diffusion on Fisher-KPP propagation






Chapter 3

Existence, uniqueness, comparison
principle

3.1 Introduction

This chapter gives general results and the framework of study on the problem, given
in the introduction of the thesis, that concerns the presence of a line on Fisher-KPP
equations.

We work in the Hilbert space X = {(v,u) € L*(R x Ry) x L*(R)} where the prob-
lem can be written as

ov—Av = f(v), reR,y>0,t>0,
Ou+ (—0p2)%u = —pu+yv—ku, € R y=0,t>0, (3.1.1)
MY = pU = YU, zeRay:O7t>07

with p > 0, &k > 0, 7 and v, the trace operator and the normal trace operator.
This system is completed with initial conditions v(-,-,0) = vy and u(+,0) = ug. The
source term f is supposed to be of Fisher-KPP type of class C*°(R). We will see
that this particular framework gives an explicit integral expression of the fundamental
solution, that we are able to estimate from above. Thus, we will prove the existence
and uniqueness of the solution to (3.1.1) in X and then the expected regularity for the
solution.
Problem (3.1.1) can also be written

W, + AW = F(W), wmmlvz<z>,F<Z>:(f?>, (3.1.2)

and A is defined by

Al v )= —Av
u )\ (=0u)®u+ pu— v+ ku )
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The domain of A is defined for & = max(a, 1/4) by
D(A) = {(v,u) € H*(R x R}) x H**(R) | yiv = pu — v} C X.

The global existence and uniqueness of solutions to the Cauchy problem (3.1.1) is
obtained in D(A), with the aid of the abstract theory of sectorial operators.

For o € (0, }L], this framework does not enable us to prove more regularity on the
solution : this case is not treated in this thesis. For a € (%, 1), the properties of A and
Sobolev embeddings lead to the regularity of the solution. We conclude this chapter
proving a comparison principle.

In the sequel, some proofs are classical, like the closedness of the operator, and
others are crucial, like the estimate of the resolvent; we give the details of all the
proofs. For the sake of clarity, we often omit the variables of integration.

3.2 General results

3.2.1 Trace theory

In this section, we recall some results, extracted from [58|, concerning trace theory
that will be used in the sequel.

Theorem 3.2.1. There exist two continuous linear maps Yo and vy, such that

[N

J H®R=Ry) — H:®) ] HARXR,) — H2(R)
o ho—s h(,0) 0T ho—s —8,h(-,0)

This means the existence of a constant Cy,. > 0 such that for all h € H*(R x R})
we have

okl gy < Cor Ihllinaeyy  and bl 3 ) < Cor bl o,

3.2.2 Sectorial operators

The theory of sectorial operators is developped for example in [53] and [74]. In this
section, we recall the main definitions and theorems that we will use in the sequel. In

the following, (X, ||-||) always denotes a Banach space and A an operator on X with
domain D(A).

Notation 3.2.2. For w € R and 0 € (0,7], we define S,p := {A € C| X\ #
w, larg(A —w)| < @} the open sector with vertex at w, symmetric about the positive
real axis with opening angle 20. For § =0, S, ¢ = (w, +00).
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Ezample of sector S, ¢

Definition 3.2.3. A closed operator A : D(A) C X — X is called sectorial, with
parameters w and 0, if there exist constants w € R, 0 € [0,7) and M > 0 such that

1. p(A) D) C\Swyg,

2. [RON Al gy < , forall A€ C\ S,g, A # w.

M
A —w
There exists a functional calculus for densely defined sectorial operators. This is
an extension of the classical Dunford-functional calculus for bounded operators. The
following theorem gives an integral representation of the semi group associated to the
operator A. We will use it to estimate a supersolution to (3.1.1).

Theorem 3.2.4. Let A be a densely defined operator in X. If A is a sectorial operator
with parameters w and 0 € (0, %), then A is the infinitesimal generator of an analytic
semigroup T'(t). Moreover

T(t) = i/re—”(A — )7 ta,

2w

where I" is any curve in C\ S, ¢ running from +ooe? to +o0ei? for 6 (0,%). The
integral converges for t > 0 in the uniform operator topology.

Y

—

& w,d a(4) *

FExample of contour T’
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We now give some results concerning the inhomogeneous initial value problem

Wy L Aut) = Flu(®)t), >0,

dt (3.2.1)
u(0) = wup,

where A is a sectorial operator in X and F’ satisfies the following assumption.

Hypothesis 3.2.5. F maps X x Ry into X, F(x,t) is locally Holder continuous in
t and locally Lipschitz in x on X x Ry. More precisely, if (z1,t1) € X x Ry, there
exists a neighbourhood V-C X x Ry of (z1,t1) such that for (x,t) € V and (y,s) € V,

0
1F(2,t) = F(y, s)|| < Lt = s[" + [lz = yl)),
for some constants L > 0,9 € (0, 1].

Definition 3.2.6. A solution of the Cauchy problem (3.2.1) on (0,T) is a continuous

Junction u: [0,T) — X such that u(0) = uo and on (0,T), we have u(t) € D(A), %(t)

exists, t — F(u(t),t) is locally Holder continuous, [ ||F(u(-,t),t)| dt < 400 for some
p > 0, and the differential equation (3.2.1) is satisfied.

The following theorem gives the local existence and uniqueness of solutions to
(3.2.1).

Theorem 3.2.7. Assume that A is a sectorial operator and F satisfies Hypothesis
3.2.5, then for any ug € X, there exists T = T'(ug) > 0 such that (3.2.1) has a unique
solution u on (0,T) with initial value u(0) = ug.

An integral expression of this solution is given by Duhamel’s formula :
t
u(t) = e g +/ e_A(t_S)F(u(s), s)ds. (3.2.2)
0

With more assumptions on F' (given by Theorem 3.2.8), solutions are global in
time.

Theorem 3.2.8. Assume A is a sectorial operator, ' satisfies Hypothesis 3.2.5, and,
for all (x,t) € X x Ry,
[1F(z, )| < K@)+ [|l=]),

for a continuous function K on R,. Then, for any ug € X, the unique solution u of
(3.2.1) starting from ug remains bounded in X uniformly in t > 0. Consequently

u € C((0,400), D(A)) N C*((0, +00), X).
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Remark 3.2.9. From Lemma 3.3.2 of [53], if u is a solution to (3.2.1), then wu(z,-)
is locally Holder continuous from R, to X, uniformly in X. The proof of this fact
uses the explicit expression of u given in (3.2.2) and the following estimates : if A is
sectorial in X and Re(co(A)) > a > 0, then for any constant v > 0, there exists C, > 0
such that

||A76*AtH < Ct7"e ™ fort >0,

and if v € (0,1), x € D(A") and ¢ > 0, there holds :
H(e’At —DNz|| <y 'C 7 | A7z

The last result concerning sectorial operators we will use, is the continuous depen-
dence of the solutions, given in Theorem 3.4.1 of [53] :

Theorem 3.2.10. Suppose A is a sectorial operator. Let {F,(z,t), n € N} be a
sequence of functions defined on X x Ry into X, each F,(x,t) locally Lipschitz in x,
locally Holder continuous in t, and such that
Fo(z,t) = lim F,(x,t),
n—-+00

uniformly for (x,t) in a neighbourhood of any point of X x R,. Let to > 0, and u,, be
the maximally defined solution of

du,,

%(t) + Au,(t) = Fy(un(t),t), t>t,

un(to) = Ungp,

which exists on (to,to + T). If |[tuno — w0l tends to 0 as n tends to +oo, then
Ty > limsup 1, and

n——+00

[un(t) = uo(B)]| —= 0,

n—-4o0o

uniformly on compact subintervals of [to,to + Tp).

3.3 Study of the operator A

From now on, we work in the Hilbert space X = {(v,u) € L*(R x R,) x L*(R)}. This
framework will be sufficient for our results. Recall that the operator A is defined, for
constants ;> 0 and k£ > 0, by

v —Av
! ( u ) - ( (—0pz)®u + pu — Yov + ku ) g (3.3.1)

and, for @ = max(«,1/4), its domain is

D(A) = {(v,u) € H*(R x R}) x H**(R) | yyv = pu — v} C X. (3.3.2)
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We first prove a lemma that studies zeroes of a function P; that depends on a
parameter k£ > 0. This parameter will be equal to k& when proving that the operator
A is sectorial, and equal to k + f’(0) when estimating from above the solution to the
linearised problem at 0 associated to (3.1.1). Then, we prove the closedness of A and
the density of its domain in X. This leads to the proof of the fact that A is a sectorial
operator in X, with angle 34 that we can take in (0, 7). Consequently, from Theorem
3.2.4, the semi group associated to A is analytic. At the end of this section, we study
the particular action of A on xz-independent couples, which will be needed in Chapter
4.

Let us make some comments on the regularity of v and v :

— The term (—d,,)%u makes it natural to look for u in H**(R). However, when
a € (0,1/4), we need more regularity than H?*(R) on u due to the boundary
condition ;v = pu — yov. For such values of a, since v € H*(R x R, ), Theorem
3.2.1 shows that the boundary condition imposes u € H"*(R).

— The function v is expected to belong to H2(R xR, ), which implies vov € H?(R).
By Sobolev embeddings, v is continuous on {(z,0),z € R}. However, in this
chapter, we keep the notation yyv to be consistent with the notation v,v. In
Chapter 4, to be consistent with the notations used in [19], we will denote by
vy—o the functions vyv.

3.3.1 Location of zeroes

To determine the spectrum of A or to compute the solution to the linearised problem
at 0 associated to (4.1.1), we will use the Fourier transform in the x variable of the
system. Both computations reveal the importance of studying the location of the
zeroes of the following function, defined for A € C, »r > 0 and k£ > 0 by :

P T) = (A 47+ u+ k)L +V=A+712) — p, (3.3.3)
for « € (0,1), u > 0 and k > 0. In this expression, keep in mind that

— A will be the integration variable that appears in the Laplace transform formula,
given by Theorem 3.2.4,

— r will be the absolute value of the Fourier variable,

— & will be equal to & when determining the spectrum of A, and k£ + f’(0) when
computing the solution to the linearised problem at 0,

— p is the exchange coefficient between the road and the field given by the model.
We also need to define by roi >0 the solution to

rio=r¥ 4. (3.3.4)
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This quantity will be of particular interest when computing the integral given by
the Laplace transform in Theorem 3.2.4.

Lemma 3.3.1. Let P and ry3 be defined respectively in (3.3.3) and (3.3.4). Then

— ifre€0,ryz) and A € C, then Py(A,1) # 0,

—ifr>ryzand A€ C\{N€R| A > 12 4+ kY, then Pi(\, 1) # 0.

Proof : Let r > 0 and A € C be such that P;(\,r) = 0. Taking the real and imaginary
part in this equality, we have

<—9?e()\) + 77 4+ E) (1+Re(z(\, 7)) +Sm(N)Sm (2(\,r)) — =0, (3.3.5)
—Sm(A) (1 4+ Re (z(A,7))) + (—?Re()\) F7% 4+ k) Sm(z(\, 7)) =0, (3.3.6)
where z(\, 1) = V= +12.
We first prove that —\ + 12 € R,.

— If =\ + 7% < 0 then (3.3.5) and (3.3.6) become
—A+r2a+u+%:u and (—A+r2“+u+%)m:0,

This imposes _
A=r*+k and \=r%

which is in contradiction with =\ + 72 < 0.

— If =X+ r? € C\ R, then Sm()\) and Sm (V=X +72) = Sm(z(\,r)) are of
opposite sign. Thus equality (3.3.5) leads to

<—§Re()\) + 2 %) > 0,

and equality (3.3.6) implies Sm(A) = 0. Consequently we have —\ + r? > 0.

We now prove that r > ry7 and A > r2 4 k. Since —\ + 12 > 0, equality (3.3.5)

becomes B
(—/\—i—r20‘+,u+k> <1+\/—)\—i—r2> = p.
This leads to

A >4k

Finally we have

r? )\27“2“—1-75,

WV

which is possible if and only if r > r 7. ]
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3.3.2 Closedness of A and density of its domain

Lemma 3.3.2. The operator A with domain D(A) is a closed linear operator.

Proof : For n € N, let (v, u,) € D(A) and (f, g) € X such that there exist

lim (vp,u,) = (v,u) inX, and lim A( n > = ( / ) in X.
n—+400 n—-4o0o Up, g

We have to prove that

(v,u) € D(A), and A(Z>—<£>

First we prove that (v,u) € H*(R x Ry) x H**(R), by proving that (v,), and
(un)n are Cauchy sequences respectively in H?(R x R, ) and H?**(R). Let us define for

n € N,
(fn>:_ (vn>
In Unp

For all m € N, p € N, the couple (v, — vy, u,, — u,) satisfies almost everywhere in
R xR, and in R :

— AV = vp) = fin — fp,
(=0a)® (i — up) + (1 + k) (um — Up) — Yo(Um — Up) = Gm — Gp (3.3.7)
Y1 (Vm — Up) = (U — up) — Y0 (Vm — Up)-

We multiply the first equation of (3.3.7) by v, — v, and integrate on R x R, to
get

| =A== ey = [ (= )0 vdeds. (338)

For all n € N, the function v, is in H*(R x R, ), we can apply the Green’s formula

/ Avm = 1)V — vp)dady = — |V (0~ 0) P2,
RXR+

N /R o(Um — 071 (Ve — vp)dz. (3.3.9)

We know that, for all n € N, (v, u,) is in D(A), that is why in (3.3.9) the function
Y1 (v, — vp) is replaced by fu(wm, — up) — Yo(vm — vp). Inserting (3.3.9) in (3.3.8) we get

2 2
IV (v — Up)HL2(R><R+) - U/R”)/me = Up) (tm — tp)d + |0 (vm — Up)Hm(R)

= /R . (fn — fp) (U — vp)dxdy. (3.3.10)
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This equality implies

2
IV (v — Up)”m(quh) < plvo(vm — Up)||L2(R) | (trm — up)||L2(R)
+ | frm — prL2(RxR+) [[om — Up”L?(Rqu) :
Since the right hand side tends to 0 as m and p tend to +oo, the sequence (Vu,),

converges in L?(R x R, ) to Vv, which proves that v € H'(R x R,). From (3.3.7), we
also have

1A (v — Up)Hm(RxRH = || fn — prL2(R><R+) :

The sequence (Av,),, converges in L?(R x R, ) to Av and consequently v € H?(R x
R,).

Then we prove that (u,), is a Cauchy sequence in H?¥(R), where & = max(1/1, a).
We treat separately the cases o € (0,1/4) and o € [V/a,1).

— If @ € [1/4,1), then & = o and we use the following alternative definition of the
space H?*(R) via the Fourier transform

@) = fue 2®) | [+ g R de < oo}

Thus, using the Fourier transform of the operator (—d,,)%, Parseval’s equality
and the second equality of (3.3.7), we have

it — ey = / (L4 6P [ (€) — By (6)] d
c / (14 1€1%) [ (€) — B,()[2 de
R

2 a 2
Cum — up||L2(R) + C[[(=02) " (um — UP)”L?(R)
C(|um — up||L2(R) + [I70(vm — Up>||L2(R) + [lgm — gp||L2(R))2-

N

NN

The right hand side tends to 0 as m and p tends to +o0o, which proves that

lim u, =u € H**(R).

n—-+00

— If a € (0,1/4), then & = /4. We use the continuity of the trace functions v, and
7, recalled in Theorem 3.2.1, and the third equality of (3.3.7) to get

170 (0m = vp)ll vy + 71 (0m = 0p)l 12

Cor(||vm — Up||H1(RxR+) + [lvm — U:D||H2(RX]R+))'

1% Hum - up||H1/2(]R) <
<
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Since (vy,), is a Cauchy sequence in H?(R x R, ), the right hand side tends to 0
as m and p tends to +oo, which proves

lim u, =u € H"*(R).

n—-4o0o

We now prove A(v,u)" = (f,g)" and the boundary condition for the limiting couple
(v,u). For n € N, the couple (v,, u,) satisfies, almost everywhere in the (x, y)-variable

_A'Un:fnv $€R,y>0,
(_axx>aun + Yy — 70U+kun =0gn, TE Ra Yy = 07
V1Up = Wy — YoUn, reRy=0.

Once we know that (v,u) € H*(R x R,) x H?**(R), we can easily pass to the limit
as n tends to +o00 in each equation of this system, which concludes the proof.
[ |

Lemma 3.3.3. The operator A with domain D(A) is densely defined in X .

Proof : Let (f,g) be in X. We prove the existence of a sequence (f,,g,) in D(A)
that converges to (f,¢g) in X as n tends to +o0o. From the density of C°(R x Ry)
(respectively C°(R)) in L*(R x R, ) (respectively L*(R)), we get the existence of a
sequence (f}, gl) in C*(R x R;) x C(R) such that

fl — finL*RxRy) and g, — gin L*R). (3.3.11)
n——+oo n—-+00
The sequence (f!, g}) does not solve the problem since it is not in D(A). A sequence
(fn, gn)n that also satisfies the boundary condition v, f, = g, — Yo fn is constructed
as follows : for all n € N, we take g, = g} € H**(R) and, for any sequence &, that
tends to 0 as n tends to +oo, we take, almost everywhere in the (z,y)-variable,

0 ifreR,y=0,
R 2 _(En*y)Q
fal@y) = Qye @ pga () + e 7 flz,y) ifzeR,ye(0,e,),
falz,y) ifzeRy>e,.

Thus, for all n € N, f, is in H?(R x R, ) and satisfies almost everywhere in R :
’VOfn =0 and 'VIfn = _ayfn('70) = —Ugn-
For any n € N, the couple (f,,¢g,) is in D(A). It remains to prove that

1o = Fllpeexr.) S 0.
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We have

1fn — f|’i2(RxR+) < 2 ||fn o fiHiQ(RXR_‘_) +2 anl o inQ(]Rx]R_‘_)

En 2 2
R JO

7(5n*y) 1 1
7 folmyy) = fulz,y)| dyds
+2 ”frlz - f“i?(RXRJr) :

2
ye_(any—y)2 Iugn(x) + e

The sequences €, g, and f converges as n tends to 400, we can apply the domi-
nated convergence theorem to get

I

With this limit and (3.3.11), we conclude that || f, — fll2pxr,) — 0.

n—-+00

(en-u)? 2

ye TP pga(z) +e 7 [i@,y) = [i(wy)| dyde — 0.

n—-+o0o

3.3.3 A is sectorial in X
Proposition 3.3.4. The operator A defined in (3.3.1) with domain D(A) given in

(3.3.2) is sectorial in X, with parameters w = 0 and B4 any angle in (0, 7).

Due to Lemma 3.3.2 and Lemma 3.3.3, A is closed in X and its domain is dense in
X. We now prove the existence of an angle 54 > 0 and a constant M > 0 such that
both points of Definition 3.2.3 are satisfied with w = 0 and 8 = 4. The proof reveals
that the spectrum of A is contained in R and consequently, it makes possible to choose
B4 equal to any value of (0,7). From Theorem 3.2.4, the semi group associated to
(3.1.1) is analytic on X and the Laplace transform is valid for problem (3.1.1).

1. The first point to be checked is p(A4) D C\ Spp,. It is equivalent to prove that
o(A) C Spp,- In fact, we prove that o(A) C Sy, for any angle 5 € (0, 7).

Let A be in 0(A). We have to study Ker(A—AI) and Im(A — AI). We first prove
that it is sufficient to study the first set to get the result. Indeed, if A* denotes
the adjoint operator of A in X, then a simple computation using Green’s formula
gives that

u

()02 )1()

for any < v ) € X, with viv = u — yv, we have ( Ho ) € D(A),
u
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Consequently, since A is closed in X (see Lemma 3.3.2), we have

Im(A — M) = Im(A — M) = Ker(A* — \I)* = Ker ((A — D) ( g (1) )) .

Thus, we only have to prove that if Ker(A — AI) # {0}, then A € S 3, for any
angle § € (0,7). In such a case, there exists (va,u4) in D(A), with (va,us) #

(0,0), such that
A<UA>:/\<UA>‘
(0 UA

In other words, (va,u,) satisfies the following system, almost everywhere in the
(z,y)-variable

—Avy = vy, re€Ry >0,
(—0pz)®ua + pug — Yova + kua = duyg, z€Ry=0,
Y1VA = A — YoUA reR,y=0.

Taking the Fourier transform in the z-variable, we get, almost everywhere in the
(x,y)-variable,

_ayy@\A = ()\ - |€‘2)6A7 6 € Ray > 07
WUa = (=A+ |6 + p+ k)ia, EE€Ry=0, (3.3.12)
Y104 + YoUa = plla, EeR,y=0.

Recall that we are looking for a solution v4 that is in H*(R x R, ). This imposes
A—lEf ¢ R-.

The first equation of (3.3.12) gives, for almost every £ € R and almost every
y =0,

Ba(&,y) = Da(€,0)e VEFAY, (3.3.13)

Once we have ¥4, the third equation of (3.3.12) implies for almost every £ € R

() e ——— Y (5} (3.3.14)

14+ 4/IE = A

Finally, for almost every £ € R the second equation of (3.3.12) leads to

APtk Ta©) =0 (3.3.15)

1+4/1€7 = A
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With the definition of P, given in (3.3.3), equality (3.3.15) can be written

P\ |€]) wa(§) =0, for almost every & € R. (3.3.16)

Let  be any positive constant in (0,7). If A € C\ Sy, then Lemma 3.3.1
implies for all £ € R, P.(\,[¢]) # 0. Thus, equation (3.3.16) gives us = 0 in
L?(R). Moreover, with (3.3.13) and (3.3.14), we conclude that (v4,u4) = (0,0)
in X, which is impossible since (v4,u4) is an eigenfunction for the operator A.
Consequently, A € Sy g, for any 5 € (0, 7).

2. The second point to be checked is the existence of a constant M > 0 such that,

for any 8 € (0, ), the following resolvent estimate holds :

M
1RO, Al gy < 5 forall A&\ S, A0

Let A € C\ Sy, with A # 0, and (g,h) € X. The quantity (Al — A)~!(g, h)!
exists and is denoted by (ga, ha) € D(A). With these notations, we have

(3.3.17)
Mg — (—=0p2)%ha — ptha + Y094 —kha = h.

We want to prove there exists M > 0 such that for all A € C\ Sy, A # 0,

{AQA + Aga =g

M
Al

We multiply the first equation of (3.3.17) by the conjugate g of g4 and integrate
on R x Ry to get

1(ga; ha)ll < =7 119, )L - (3.3.18)

Agagadxdy = / ggadxdy. (3.3.19)

RxR4

2
Malegen, + /

RXR+

Since g4 € H*(R x R, ), the Green’s formula yields

/ Agagadxdy = — HVgAHig(RX]h) + / Yogay1gade. (3.3.20)
RxR; R

We know that (ga,ha) is in D(A), consequently in (3.3.20) the function ;g4 is
replaced by pha — v0ga. Inserting (3.3.20) in (3.3.19) we get

)\”gA“iz’(RxRJr)_HVQAHi?(RxRJr)"‘M/’Yog_AhAdx—H’YogAHiQ(R) :/ ggadzdy.
R RxR,
(3.3.21)
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Then, we multiply the second equation of (3.3.17) by the conjugate hy of hy
and integrate on R to get

)\HhAHiQ(R)—/R(—am)ahAﬁAdx—(quk) HhAHig(R)—l—/R”yogAﬁAd:c—/RhEAdx.

(3.3.22)

Recall that the term / (—Opz)*hah adz is proportional to ||hal| g« Indeed, using

R
the Parseval identity, we have

/ (=) haTiade — / P ha© P dE = S hallye .
R R 2

Consequently there holds
1 — _
Miballzz) =5 Ihalle = (at-k) [allze ) + / Yogahadr = / hhadz. (3.3.23)
R R

Taking the real and imaginary parts in (3.3.21) and (3.3.23), we get the following
system

(

2 2 2 I
RO N0 )~ 90 s, — Il + ite ([ sugatace )
R
= Re (/ gg_Adxdy)
RxR
9100 41+ 10 ([ it ) =om ([ gy
R RxR,

1 _
RO Wil = 5 Il = Gt 1) e+ Re ([ sugafads

= Re (/ hEAdx)
R
Sm(\) HhA”i?(R) + Qm </ VogAEAdx> = Qm (/ hEAdx) :
\ R R
(3.3.24)

To get the estimate (3.3.18) for A € C\ Sy 3, A # 0, we define a; = max(2, 2v/24)
and ay > max(2u, 4,/j1,1) large enough so that

for all z > as, x> 8y/p(l+ /2tan(s)1x). (3.3.25)

We split C\ Sp s into four areas as follows :

e Area 1 corresponds to {)\ € C | Re(N) < —ayq,|Sm(N)] < —%%e()\)} :

a1

e Area 2 corresponds to {)\ eC| — % ISm(A)] < Re(A) <0, |Sm(N)] > 0,2} :
2
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e Area 3 correspondsto{A € C |0 < tanf Re(A) < [Sm(N)|, [Sm(A)| = a2},

Sm(A
e Area 4 corresponds to {)\ €eC| —a; <ReX < |\Z;n(ﬁ)| ,[Sm(M)| < CLQ} :
n
Sm(A
Sm()) M Area 1
= Area 2
Il Area 3
a2/ Area 4
B
0 Re(N)

Splitting of C \ Sy 5

e Area 1 : We have
[Sm(V)] + [Re(V)] < (1 + —) [Re()].
1

Thus, to prove (3.3.18), it is sufficient to prove the existence of a constant M; > 0
such that

Re() | (gl ey + Wall o) < 31 (ol ey + [Bllae)) - (3:3.26)
The first inequality in (3.3.24) gives

2
|[ReAl ||gA||L2(R><R+) SH ||709A||L2(R) ||hA||L2(R) + ||g||L2(R><R+) ||gA||L2(IR><R+) J
which leads to

|ReA|
2

1
2 2
||gA||L2(R><R+) S H ||’YOQA||L2(R) ||hA||L2(R) + m ||g||L2(R><R+) - (3:3.27)

We now have to estimate [|hal| o) and |09l o) - We use the third equation
of (3.3.24) to get

[ReA| [|Pall 2wy < Nll L2y + 11094l 2wy - (3.3.28)
Since $e(A) < 0 in this area, the first equation of (3.3.24) leads to

2
2 ||’YOQA||L2(R) < 2u|v0gall o ||hA||L2(R) + 29l .2 RxR;) ||gA||L2(R><R+)
(R) (
2 2 2 2
< ||V09A||L2(R) + ||hA||L2(R) + ||9A||L2(R><R+) + ||g||L2(R><R+) 3
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which proves
2 2 2 2
||709A||L2(R) SH ||hA||L2(]R) + ||gA||L2(R><R+) + ||g||L2(]R><R+) : (3.3.29)

Finally with (3.3.27), (3.3.28) and (3.3.29), we have for feA < —ay :

2
|ReA| 1 lv0gall 2wy 190 72r xRy
B ||gA||L2(R><R+) S W<||h||L2(R)+||709A||L2(R)>+W
2
max(p, 1) b 2#||709A”LZ(R)
< e sl + Illm) + e

max (s, 1) 2
< m("g"LQ(RXR+)+’|h’|L2 )

21 9 ) )
+—|m| (Ngalaqgcssy + 2 1002y + N9l o)) -
We conclude that

|%e)\| |ReA|”

||9A||L2 RxRy) X —2p ||gA||L2(R><R+)
2

< 2max(s,1) (1192, + 1Al age) ) - (3:3.30)
With (3.3.28) and (3.3.29), we also have
1 al HL2(R)
(1= ) gl < Boalleas + Ioliageeny + e (33:31)
Finally the estimate of [Re(A)[[|hall 2 is obtained with (3.3.28) and (3.3.31)

as follows

[Re|
2

i
il < Wiliage + (1 ) gl
< 1+ -2 ) n
S HQAHLQ(RXM)"‘Hg’|L2(RxR+)+ + T [Re| I HL?(R)

< (dmaxtu )+ 1 ) allen,y + Al

Thus setting M; := (4max(p,1) + 1 + pa;') > 0, from this inequality and
(3.3.30), we have for Rel < —ay :

ReAl (1912 g, + 1l ey ) < M (9 2,y + 1l 2gey ) -
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e Areas 2 and 3 : We will see that it is sufficient to prove the existence of a
constant My > 0 such that

SmO)] (19l g2y + 1l zzqey ) < Mo (gl zqune,) + 1l ey ) - (3:3:32)

With the second and fourth equalities of (3.3.24) and the fact that

Sm (/ vggAEAdx) = —Cm (/ 'yoﬁhAaM) ,
R R

ggadzdy + p /
R

we have

) (1l + ol ) = 9 ([ Hade).

xXR4

This implies
2
ISmN) [ |9allz2@xm,) < N9ll2@er,) 194l 2 @xry)
2
[Pl 2y Nhall 2y + 1 ST Aall72 g

2
190 72rxmy)  [Sm(N)] 2
2|$m()\)\ B ||gA||L2(R><R+)

2
+h ||h||L2(R) ”hAHL?(R) + 1 [Sm(A)| ||hA||L2(R) ;
and thus we have

2
2 HgHLQ(R R+)
SO a2 (Wllage) NPalloe

S 1Al aqe)) - (3.3.33)

To prove (3.3.18), we need to get an upper bound to ||hA”L2(R) proportional to
=~ With the fourth equation of (3.3.24) we have

[Sm(A)[”

SN[ 1hall 2@y < I2ll L2y + 109l 2wy - (3.3.34)

It remains to get an estimate of ||y0gal| L2(R)"

— In the area 2, where —2 [Sm(A)| < Re(A) < 0, the first equation of (3.3.24)
leads to

2
2 ||709A||L2(R) 2p ||709A||L2(R) ||hA||L2(R) +2 ||g||L2(R><R+) ||gA”L2(R><R+)

<
2 2 2 2
< vogallzay + 17 hallzamy + 19402 @xm.y + 191172 @xr, ) -
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which proves

H’VOQAHL?(R) SH ||hAHL2(R) + ||gA||L2(]R><R+) + ||9||L2(qu§+) : (3.3.35)

With (3.3.34) we obtain

(ISmN)| =) hall 2@y < Noll 2y + 194l 2 @nr, ) F 91 2@y - (3:3:36)
Then (3.3.33) with (3.3.36) gives for [Sm(A\)| > ay

|Sm(\)[?

2
5 19allz2 @) < IS0 (ISmO)] = 1) lgalz2 e, )

< Hg|’iQ(R><R+) + 2p HhHm(R) (ISm(A)| = p) HhAHL2(R)
4 (Al oy + 194l oy + 190 e

< C (19 2mm,) + 1)) + 81t l9al 3 2qane,
+ 2u (|7l 2wy 9all 2@ xr, )

< C (19 2qmm,) + 1l ) + 81119l 2,

2
42 |7l 2wy |Sm(N)]? lgals
’%m<)\)|2 4 L2(RxRy) »

where C' > 0 is a constant only depending on . This inequality and (3.3.36)
give the existence of a constant M > 0 depending only on p such that

19! (lgalpaqenies) + 1alla ) < Mo (19l aen) + 1002 -

Thus, equality (3.3.18) is proved, since in this area

Sm(N)| + [Re(N)] < (1 i —) Sm().

2

— In the area 3, where 0 < tanf Re(\) < |Sm())|, the first equation of
(3.3.24) leads to

2 2
||709A||L2(R) < [Re(N)] ||gAHL2(R><R+) + ’|709AHL2(R) HhA”LZ(R)

+ 190l r2xcry 1941 L2 xRy

2 1 2 1 2
< [ReMllgallze@em,) + 5 1109allz2@) + 544 1Pallz2m

1 2 1 2
+§ ||9A”L2(R><R+) + B ||9HL2(]R><]R+) )
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which proves the following estimate

2(Sm(N)|
70gallr2@) < ( S tanp + 1| ll9allpemur oyt 1Pall 2@y 9l 2 @xr ) -

The estimate (3.3.34), that was proved in areas 2 and 3, implies

(ISm(N)[ = ) [1hall o) < (\/Q(tan B)~HISm(A)| + 1) lgall L2 g
1Al ey + 190 2, - (3.3.37)

Thus (3.3.33), (3.3.37) and (3.3.25) give for |Sm(\)| > as

[Sm)F )
5 M9alle@ar,) < BSm(SmN)] = ) l9allz2 @ xz,)

2
S N9lle@m.y + 20 10l 2y ISM] = 1) hall 2 gy + 400 | (1P 2w

2
2[Sm(N)]
+ ||g||L2(R><R+) + tan 5 +1 HQAHLZ(RxIRq)

2
2 2 |Sm())] 2
<O <||9||L2(qu@+) + ||h||L2(R)) + 8 ( “tanf + 1| llgallzz@xr.)

2|Sm())
+2M< g 1 17l L2y 1194l 2R xr )

> 3mP
< O (19l ey + 1ellz2ey) + =g 94l E2acs

where C' > 0 is a constant only depending on p and 5. Consequently, this
inequality and (3.3.37) give the existence a constant M, > 0 depending
only on p and (8 such that

S (l9all 2 @xr) + 1hall 2@) < Malllgll o exe,) + 1Al L2 w)-
Thus, equality (3.3.18) is proved, since in this area
ISm(A)] + [Re(N)] < (1+tan ") [Sm(N)].

e Area 4 : In this compact zone, the result comes from the continuity of A —
R\ A).
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3.3.4 Particular case : z-independent solutions

To use the proof done in [17] to study the convergence to a stationary state, and to
prove Theorem 4.1.3, we will have to consider solutions starting from z-independent
initial conditions. In this section, the framework is a little different than in sections
3.3.2 and 3.3.3, but we can adapt the proofs to get similar results.

We consider the Banach space X; = {(v;,uy) € L*(Ry) x R}. For any couple
vy, uy) € Xy, the operator A defined in (3.3.1) becomes
b b

Al %) = O , (3.3.38)
Uy puy — Yoy + kuy

where 4 > 0, £ > 0 and with domain

Dy(A) = {(vg,wy) € H*(Ry) X R | y0; = puy — o0} C X (3.3.39)

The closedness of A and the density of D(A) are obtained easily, adapting the
proofs of Lemma 3.3.2 and Lemma 3.3.3. We can also use the proof of Proposition
3.3.4 to show that A, with its domain D;(A), is a sectorial operator in X; with the
same angle 34 € (0,%).

3.4 Problem (3.1.1) : existence, regularity, compari-
son principle

3.4.1 Existence and regularity of the solution to (3.1.1)
Recall that problem (3.1.1) can be written

QW + AW = F(W),  where W:(“), F(”):(f(o”)>, (3.4.1)

with a source term f of class C*°(R). The function F' satisfies the assumptions of
Theorem 3.2.7 and Theorem 3.2.8, which gives the existence and uniqueness of the
global solution (v,u) to (3.1.1) starting from (vg,up) € X. Thus we have

(v,u) € C((0, +00), H*(RxR ) x H**(R))NC*((0, +00), L2 (Rx R, ) x L*(R)), (3.4.2)

1

i»@). From now on, we consider o € (%7 1) and prove that

where & = max(
(v,u) € C*(R x Ry x R}) x C*(R x RY).

We will explain, in the following Result 1, why we do not consider the case
a € (0,3
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This regularity is obtained by induction, proving the existence of a constant § €
(0,1) such that for all "> 0, for any constant ¢ € (0,7) and for all n € N :

vECT (R x Ry X (600, T]) and  w € C™P" (R x (620, T)),  (3.4.3)
where ,
Eon = jzl 27]8 n:)oo <

We will use the following results :
Result 1 : The Sobolev embeddings given in [2| and [73| (for example) lead to :

— H?(RxR,) C CMR xR,), for all X € (0,1),
— fora € (1,1) : H*(R) C C**73(R).

In the particular case a € (0, 1], the density u belongs to H 2(R) and is not included
in a Holder space. With this framework, we can not have more regularity on u for
a e (0,3

Result 2 : Set tg > 0, T" > tyg, [ > 0, and consider two functions g € Cl’%(]R X
R, x [to, T]) and uy € C*-'2' (R x [to, T]). Let vy be the solution to

o — Avy = g, re€R,y>0,1>t,
—0yv1 +v1 = pu, ve€R,y=0,t>t,

starting from v1(-,-, ) € C*3(R x R,), and satisfying the following compatibility
conditions of order m; := 4] :

O™ (=301 + v1) (-, -, to) = i (-, to),  for all m € [0,m].
Then, from Theorem 5.3 in [63], we have
v € CH2ITY (R x R, x [to, T]).

With these two results, we can prove (3.4.3).

Let T'>0,e € (0,7) and ¢; = ZQ’je.
j=1
— Case n = 0 : This case gives a general fact concerning the Holder regularity
in space and time for the solution to (3.4.1), for any nonlinearities that satisfy
Hypothesis 3.2.5.

The regularity in space (i.e. in the z-variable) is obtained from (3.4.2) and from
Sobolev embeddings recalled in Result 1. The regularity in time (i.e. in the ¢-
variable) is given by Remark 3.2.9. Thus, we get the existence of § := 2« —% >0
such that

(v,u) € C%2 (R x Ry x (0,T]) x C*2(R x (0,T)).
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— Case n =1 : We have to prove that

1. for all z € R and y € R4, the functions v(z,y,-) and u(zx,-) are in
146

C2 ([e2, T)),

2. for all t € [gq,T], the couple (9,v(-, -, 1), pu(-,t)) exists and is in C°(R x
R+) X C(S(R)v

Where,f0r§:2oz—%>0.
Let us prove these two points :

1. If 12i5 € (0,1), i.e. a € (}1, %), the first point is true using Remark 3.2.9. If

1—42”5 € [1, %), ie. a€ (%, 1), we need to prove that, for all z € R and y € R,
Ow(z,y,-) and dyu(x,-) are 5;21 Holder continuous on ([e2,7")). In the sequel, we
will need Holder regularity for dyv(zx,y,-) and du(z,-) for all a € (0,1), that is

why we prove it in the case a € (0,1).

From (3.4.2), we only know that
(O, Ou) € C((0,T)), L*(R x R,) x L*(R)).

From Theorem 3.2.8 and Remark 3.2.9, it is sufficient to prove that (9;v, dyu) is
solution to
8tw + Aw = Fi (U),t) , t>e¢q, (344>

starting from (yv(-, -, €1), Qu(-,€1)) € L*(R x Ry) x L*(R), where F} is defined

on X x R, by
()

As is usual, we can not directly differentiate equation (3.4.1) with respect to
time, that is why we consider, for h > 0, the functions v, and u; defined on
R X R+ X R+ by

v(s, . t+h) —v(- 1)
h

u(,t+h) —u(-,t) |

Uh('7'7t) = h

and  up(-,t) ==

For any h > 0, (vp, uy) is in D(A) and satisfies

v v f(v("'vt+h))_f(v('a'vt))
at< h>+A< h>: h . t>0. (3.4.6)

Up Up, 0

8tu
h tends to 0. We know that, for all (z,y) € RxR,, v(x,y,-) is Holder continuous

0
The right hand side satisfies Hypothesis 3.2.5 and tends to F} (( tv > ,t) as
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in time, which implies that F} satisfies the assumptions of Theorem 3.2.8. Thus,
from Theorem 3.2.10, we can pass to the limit as h tends to 0 in (3.4.6) to get
that (Opv, Oyu) is the solution to (3.4.4), starting from (Jyv(-, -, €1), (-, €1)) €
L*(R x Ry) x L*(R). From Theorem 3.2.8 we conclude

(O, Ou) € C(e1,T), H*(R x Ry) x H**(R))NC((e1,T], L*(R x Ry) x L*(R)).

(3.4.7)
2. We now study, for all ¢t € [e5,T], the couple (0,v(,,t), D u(-,t)). We first
prove that, for all ¢ € (0,7, O,u(-,t) exists and

dyu(-,t) € L*(R).

,1), from (3.4.2), we clearly have this result.
For a € (4,3), from (3.4.2), we only have, for all ¢t € (0,7, (—0.)*u(-,t) €
L*(R). To get more regularity on u, we use that

1

(_am:) = (_amz> 2 70{(_&7@)0{'

Let us define vy = 5 — o € (0, ). From (3.4.2) and (3.4.7), we know that, for all
te [EQ,T] :

D=

u(-,t) € H**(R), Owu(-,t) € H**(R) and wo(-,-t) € H* (R x R,).
Thus, we have for all ¢ € [g,, T :
(—Oe)ul-,t) € LA(R), (~0y,)"0u(-,t) € LA(R) and w(-,0,t) € H2(R).
Applying the operator (—0,,)? to the equation
Opu(z,t) + (—0p)“u(x,t) = —(p + k)u(z, t) + v(z,0,t),
we have for all ¢ € [g9, T :

(—Ope)2u(,1) = (=0u0)"ul-,t)
= —(u+k)(=0uw) u(-,t) + (—0uz) 0(+,0,t) — (—0ys) Opus(-, 1).

This proves that for all ¢ € [e9, T

dyu(-,t) € L*(R).

It remains to prove that for all ¢ € [e5, T,

(Dpu(-, -, 1), 0pu(-, 1)) € CO(R x Ry) x C°(R).
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As done in the case n = 1, from Theorem 3.2.8 and Remark 3.2.9, it is sufficient to
prove that (9,v, d,u) is solution to (3.4.4), starting from (9,v(-, -, &2), pu(-,€2)) €
L*(R x R,) x L*(R), where F} is defined in (3.4.5).

Once again, we can not directly differentiate equation (3.4.1) with respect to z,

that is why we consider, for h > 0, the functions v, and u;, defined on RxR, xR
by :

on(z, ) = v(z+h,-, })L —v(z,-,)

and (2, ) u(z + h, })L — u(z, )

Passing to the limit as h tends to 0 in the problem solved by (vp, ), Theorem
3.2.10 gives that (0,v,d,u) is solution to (3.4.4) with (0,v(-,-,€2), dyu(-, &2)) as
initial datum. Theorem 3.2.8 gives also

(0pv, Opu) € C((e2, T], H* (R x Ry) x H**(R))NC'((e2, T], L*(R x Ry) x L*(R)).

Case n = 2 : we have to prove that

1. for all x € R and y € Ry, the functions v(z,y,-) and u(z,-) are in
C'*3([e2,T)),

2. for all t € [g9,T], the couple (9pev(+, -, 1), Oppu(-,1)) exists and is in C°(R x
R+) X Cé(]R)a
where § = 2a — 1 > 0.

1. The first point, that concerns the regularity in time has been proved in the
first point of case n = 1.

2. We prove the Holder continuity in space of the second derivatives of v and u
separately.

We first prove that the regularity of v is given by Result 2. Notice that v(-, -, €3)
satisfies

O(-, - e3) — Av(s, -, e3) = f(u(, -, e3)).

From (3.4.7), (3.4.2) and Result 1, dyv(-,-,e3) and f(v(-,-,e3)) are Holder con-
tinuous, which proves that

U('v '7€3> S CQJF(;(R X R+)

We also know that (v,u) € D(A) and, from the first point of the case n = 1,
(O, Oyu) € D(A), which prove the compatibility condition in Result 2. Thus,
we can apply this result with

w=u€C T (R x [63,T]), g=f)eC 5 (RxR, x [es,T)),
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and initial condition v(-, -, e3), to get that
v € CPOITE(R x R,y x [e3, T]).

The regularity of 0,,u is obtained as in the case n =1 :

— For all a € (4,1), we can prove that

(0pav(+, -, €4), Onpui(-,€4)) € L*(R x R, ) x L*(R),

— We notice that, using a limit on a suitable differential quotient and Theorem

3.2.10, we can get that (0,,v, dy,u) is the solution to

O + Aw = ( wy f'(v) —l—é@w)zf”(v) ) |

(3.4.8)

starting from (0,,v(+,+,€4), Oppti(-,€4)). We know that f is C*°(R) and

d,v(+,t) is bounded in L?(R x R ) uniformly in time, as solution to (3.4.4)
(see Theorem 3.2.8). From Theorem 3.2.8 and Remark 3.2.9 applied to
(v,u), we have that v(-,t) is bounded in X, uniformly in time and v(z, -) is
Hélder continuous, uniformly in L?(R x R, ). Consequently, the right hand
side of (3.4.8) satisfies the assumptions of Theorem 3.2.8. Thus we have
that (0,0, Ozpu) belongs to

C((ea, T), H*(R x Ry) x H**(R)) NC*((eq, T], L*(R x Ry) x L*(R)),
and a similar proof as the one done in the case n = 0 leads to
(Dnav, Oggt) € C¥2(R x Ry x (24, T]) x C¥3(R x (24, T)),

which ends the case n = 2.

Iterating, we get (3.4.3) for all n € N and all € > 0.

Once we know that the solution (v, u) to (3.1.1) is regular in space and time, we

can simplify the notations and the Cauchy problem under study becomes

ov—Av = f(v), reR,y>0,t>0,
Ot + (—0p2)%u = —pu+vy—o —ku, v €R,y=0,t>0,
—0yVpy=0 = [U — Vjy—0, reR,y=0,t>0,

with initial conditions v(-,-,0) = vy and u(-,0) = uy.
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Remark 3.4.1. In the particular case of z-independent solutions, Theorem 3.2.8 gives
that the z-independent solution (wvy,u;) to (3.1.1) with initial condition in X, =
L*(R,) x R satisfies

(Uh7uh) € C<<07 +OO)7 H2(R+) X R) n Cl((oa +OO)7 LQ(RJr) X R)
By Sobolev embeddings, we have (see [2] for example)
H*(Ry) C C2(Ry).

A similar proof as the one done to get the regularity of the solution to (3.1.1)
starting from a datum in X, gives that z-independent solution (vy, u;) satisfies

vy € C°(Ry x (0,400)) and wuy; € C*((0,400)).

3.4.2 Comparison principle

Before giving a comparison principle for classical solutions, we need the following in-
termediate lemma that we recall for the sake of completeness. It gives, by a simple
computation, the positivity of an integral that will appear in the proof of the compar-
ison principle.

Lemma 3.4.2. Let a € (0,1). For any function h satisfying (—A)*h € L*(R), and
h*t € L*(R), we have

WV
o

/R (— A h(z)h* (z)dz

Proof : For any function h that satisfies the assumptions of the lemma, let us define
the finite quantity [ = /(—A)‘%(x)lﬁ(x)dm. We have
R

I = // 1+2a h*( )dzdx
B2 |z — $|

Y CEIILGER h*(f))dmx

|.T _ j|1-i—20¢

A e e

For all (z,7) € R? :

0 if h(z)h(Z) > 0,
(h~(z) — h™(Z))(h*(x) — A (T)) = ¢ —hT(z)h~(x) if h(z) > 0 and h(T) < 0,
—h~(z)h*(z) if h(z) <0 and h(z) >0 .



3.4. PROBLEM (3.1.1) : EXISTENCE, REGULARITY, COMPARISON PRINCIPLE 103

This quantity is nonpositive, which concludes the proof.
[ |

The following theorem gives a comparison principle for classical solutions in H?(R x
Ry) x H**(R), for & = max({,1), to the Cauchy problem (3.1.1).

Theorem 3.4.3. Let (vi,uy), (va,uz) be two couples in C((0,+00), H* (R x R,) x
H**(R)) N C*((0,4+00), L*(R x Ry) x L*(R)), for & = max(},1), that satisfy, almost
everywhere in the (x,y)-variable :

;

atUl_A'UI g f(vl>7 $€R7y>07t>07
Our + (=0pe)®ur < —piur +yv1 — kuy, € R,y =0,t>0,
L MU < P — Yo, reR,y=0,¢t>0,
and
Oy — Ave = f(v9), reR,y>0,t>0,
Opug + (—0pp)®ug = —pug + Yovo — kug, x € Ry =0,t> 0,
\ YV = g — YoUs, reR,y=0,t>0.

If, for almost all (z,y) € R x R,
v1(z,y,0) < vaz,y,0)  and  wui(x,0) < ug(z,0),
then for all t > 0 and for almost all (z,y) € R x Ry, we have
vi(z,y,t) <wve(x,y,t)  and up(x,t) < ug(z,t).

Proof : Let | > 0 be a constant greater than the Lipschitz constant of f. We define
the couple (vs, u3) for almost every (x,y) € R x R, and for all ¢ > 0 by

(vs(x,y,t),us(x, b)) := (vi(x,y,1), uy (x,t))e™ — (vy(z, y,t),uQ(x,t))e_“. (3.4.9)

Since f is Lipschitz, this couple satisfies, almost everywhere in the (z,y)-variable :

atUB - AUS < e_ltf(vl) - e_ltf(v2> - lUg, T e R>y > Oat > 07
atu?) + (_axm)auB < —Hus3 + YoUs — kU3 - lu3> T € Ra Y= Out > 07 (3410>
71V3 < Huz — YoUs, UES IR7 Yy = Oat > 07

with initial conditions
v3(+,0) =vi(+,,0) —va(+,-,0)  and  ws(+,0) = uy(-,0) — uy(-,0).
Almost everywhere respectively in R x R, and R we have

v3(-,-,0) <0 and wug(-,0) <O0.
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Let us define v5 (respectively uj) the positive part of vs (respectively uz). We

prove that these functions are equal to 0 almost everywhere respectively on R x R
and on R for all t > 0. We multiply the first equation of (3.4.10) by v and integrate
over R x R, to get

// Oyvsvy dady — // Avzvd dedy < // (I|vs] — lvs)vf dedy = 0.
zeR,y>0 zeR,y>0 zeR,y>0

(3.4.11)
The first integral in (3.4.11) is treated as follows. Since v; and vy belong to
C((0,+00), H2(R x R,)) NC*((0, +0), L?(R x R, )), the function v; satisfies

vf € C([0,+o0), HA(R x R,)),

and its derivative satisfies, in the scalar distribution sense (see [42]),
+ _ JOws ae. on {vs >0},
0 a.e. on {vz < 0}.

Thus we have for all t > 0, v (-, t) € H 1(R x R, ). Consequently, differentiating
the scalar product (in L2 (R xR,)) < vg (-, -, t),v5 (-, -, t) > with respect to ¢, we obtain

d

% HU?’ K "t HL2(R><R+) =2< atvgr('v ',t),U;(', '7t) >,

which can also be written for all ¢t > 0

// Dyuzvy drdy = <// vy ‘ dxdy) (3.4.12)
zeR,y>0 2 dt z€R,y>0

Then, the second integral in (3.4.11) is treated with Green’s formula. Since the
function vy is in H*(R x R, ), we have

// Avzvg drdy = — // |Vv§r|2 dxdy +/ Y135 do.
zeR,y>0 zeR,y>0 z€R

Using the third equation of (3.4.10) and the fact that yovs > 0, we have

// Avzvf dzdy < // |Vv§f| dxdy + u/ uzYovy dz —/ ‘701)5“{ dz.
z€R,y>0 z€R,y>0

Inserting this last inequality and (3.4.12) in (3.4.11), we get

(// ‘ dxdy) // ‘var‘ dxdy + u/ ug yovg dw.  (3.4.13)
2 dt z€eR y>0 zeR,y>0
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Then we multiply the second equation of (3.4.10) by uj and integrate over R to
get

/@uguf{d:v—i-/(—A) usug de = —(u + k) /‘ué“’ da:+/u3 Yovsdz.  (3.4.14)
R R

As obtained in (3.4.12), for all t > 0, uj (-,t) € H'(R) and consequently we have

/8tu3u3 dr = 5@ </ |u§'| dx) )

Lemma 3.4.2 proves that the term / (—A)*uzui dz is nonnegative and thus

(3.4.14) becomes
i / ) /
—— ud |“dz | < | udyovs da. 3.4.15
o ([t ae) < [ o (3.4.15

The continuity of the trace operator recalled in Theorem 3.2.1 gives a constant
C4r > 0 such that

00 15y < C2 (I sy + 190 o) -

From this inequality and summing (3.4.13) and (3.4.15), we have

1d
2 dt (HUB HL2 + HU;H;(Rng) < (p+1) /Ru3 7oU3 3 dv — ||VU§_HL2(R><R+)

||70U§rHi2(R)

<G+ D) | G+ D oy + s 1

— HVU

|
3 IL2(RxRy)

2 +112
< max(1, G 1) ([ 7oy + 110 ) -
Since u3 (-,0) = 0 and v5 (+,-,0) = 0 almost everywhere, we have for all ¢ > 0,
u3 (-,t) = 0 and v3 (-, -, t) = 0 almost everywhere, which concludes the proof.
n

This comparison principle is stated here for classical solutions whose initial condi-
tion belongs to X. However, it is necessary for later purposes to have a similar result
for solutions starting from x-independent initial data.

As in section 3.3.4, we work in the Hilbert space X; = {(vy, uy) € L*(R;) x R}. The
following comparison principle deals with the comparison between a solution starting
from an initial condition in X and a solution with an initial datum in Xj.
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Theorem 3.4.4. Let (vi,u1) € C((0,+00), H*(RxR, ) x H**(R))NC'((0, +-00), L?(Rx
R;) x L*(R)) and (ve,us) € C((0,4+00), H*(R,) x R)NC((0, +00), L*(Ry) x R) such
that, almost everywhere in the (x,y)-variable :

O — Avy < f(v), reR,y>0,t>0,
Oug + (—0pp)®ur < —pug + your — kuy, € Ry =0,t>0,
v < pUp — Yo, reRy=0,t>0,
and
Oy — OyyVa = f(v2), y>0,t>0,
Uy’ = —pug + Yovg — kug, t >0, (3.4.16)
YiU2 = U — YoUa, t>0.

If for almost all y > 0
v2(y,0) >0 and uz(0) >0,
and for almost all (z,y) € R x Ry
vi(z,y,0) < va(y,0)  and  wuy(z,0) < uy(0),
then for all t > 0 and for almost all (z,y) € R x Ry, we have
vi(z,y,t) <wv(y,t)  and  wui(x,t) < uo(t).

A similar result is true if (v1,u) is a supersolution to (1.1.1) and (vq, uz) a subso-
lution to the z-independent problem (3.4.16) with nonpositive initial conditions.
Proof : This proof follows the one done to prove Theorem 3.4.3. We first notice that
for almost every y > 0 and for all t > 0 :

vo(y,t) >0 and wus(t) = 0.

These inequalities are true for ¢ = 0 by assumption, and obtained, similarly to the
proof of Theorem 3.4.3, multiplying the first (respectively second) equation of (3.4.16)
by vy (respectively u, ), integrating over R, and doing an integration by parts.

Let us define the couple (v, us), for almost every (x,y) € R x Ry and for all £ > 0,
by

(vs(, y, 1), us(x, 1)) = (vi(z,y, 1), ur(z,t))e™ — (vy(, 1), ua(t))e ™™, (3.4.17)

where [ is the Lipschitz constant of the source term f. Thus, using that, for all ¢ > 0,
(v1(, ), u1 (-, 1)) € H*(R x Ry) x H?*3(R) and (va(-,1),us(t)) € H2(R,) x R, we
conclude that the couple (v3, u3) has its positive part (v, ud) in H'(R x Ry ) x L*(R).
Consequently, the computations done in the proof of Theorem 3.4.3 are still valid and
conclude the proof.

[

The following two remarks are consequences of these comparison principles and
will be used in the sequel.
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Remark 3.4.5. A similar result as Theorem 3.4.4 is still valid if we consider two x
independent couples (v1,u;) and (vq, uz) both in

C((0, +00), HX(R.) x R) N CY((0, +00), L*(R,) x R).

Remark 3.4.6. We can adapt the result of Theorem 3.4.4, to prove that the solution
(v,u) to (4.1.1), starting from an initial condition (vg,ug) € X (or Xj) that satisfies
for almost every (z,y) € R x Ry

1

0<w(zr,y) <1 and 0 < u(x)<—,

o
remains bounded at any time, with the same bounds as (vg,up). More precisely,
by Theorem 3.4.4, the solution (v,u) is nonnegative. To prove that (1, i) is above
(v,u), we can not directly apply Theorem 3.4.4. However, the proof of Theorem 3.4.3
(respectively 3.4.4) only requires that (vs,us) defined in (3.4.9) (respectively (3.4.17))
satisfies

~ Avy e LR x RY), vf € H'(R x RY),
— (—=A)*u3 € L*(R), and uj € L*(R).

Thus, we have for all t > 0 and for almost every (z,y) € R x R,

0<v(z,y,t) <1 and 0 < u(z,t) < %

Remark 3.4.7. As said in the introduction, we want to understand what happens to the
smooth solution (v, u) to (4.1.1) with a nonnegative and compactly supported initial
condition (vg,up), when a € (1/4,1). Here we prove that it is sufficient to study the
behaviour of the solution (vy,u) starting from (0,ug) where ug is nonnegative and
compactly supported.

First we notice that vy(+,-, 1) and u;(+,1) are positive. In fact, from remark 3.4.6,
we already know that (v, u1) is nonnegative at any time. We also know that v; satisfies

Oy —Avy = f(v), z€Ry>0,t>0,
—OyU1jy=0 + V1= = 0, re€R,y=0,t>0.

The classical strong maximum principle gives vi(x,y,1) > 0 for all (x,y) € RxR,.
The same can be done for u;. Indeed, this function satisfies, for x> 0 and k > 0,

8tu1 + (—(’9m)au1 + (,U + k)u1 = 0,

and the classical strong maximum principle gives u;(z,1) > 0, for all z € R.
Thus, if vy and uy are compactly supported, there exists a constant a > 1 such
that for all (z,y) € R x Ry

vo(z,y) < avi(x,y,1) and  wo(x) < uy(x,1).
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Consequently, Theorem 3.4.3 added to the facts that vy > 0, f is concave and
(v(+, -, t),u(-t)) and (vi(+,-,t),u1(-,t)) are continuous in R x R, and R for ¢t > 0, we
have for all (z,y,t) € R x Ry x Ry

Ul(l‘7yat) <U(Iay7t) <avl(x7y7t+1) and ul(xvt) <U(l‘,t) <u1(x,t+1)

In Chapter 4, we will study the long time behaviour of the solution starting from
(0,up), where ug is nonnegative and compactly supported.



Chapter 4

Long time behaviour

4.1 Introduction

In this chapter, we take o € (%,1) to work with smooth solutions to the Cauchy

47
problem

ov—Av = f(v), reR,y>0,t>0,
Oyt + (—0p2)%u = —pu+vy—o —ku, v €R,y=0,t>0, (4.1.1)
—0yVpy=0 = [U — Vjy—, reR,y=0,t>0,

where u > 0, k > 0, completed with initial conditions v(-,-,0) = 0 and u(-,0) = ug.
The choice of such an initial datum is justified by remark 3.4.7. The function wug is

supposed to be nonnegative and compactly supported and the function f to be of
Fisher-KPP type and of class C*°(R), which means

f is concave, f(0)=f(1)=0 and f>0in (0,1).

The main results obtained concern the speed of propagation on the line {(z,0),z €
R}, called "the road", and in the half plane R x R, called "the field". Before giving
them, we recall that the limiting state can be characterised just as in [17] and [18§].
Indeed, we have the following theorem :

Theorem 4.1.1. Problem (4.1.1) admits a unique positive bounded stationary solution
(V, Us) that is x-independent. The solution (v,u) to (4.1.1), starting from (vo,up) a
nonnegative, compactly supported and not identically equal to (0,0) initial condition,
satisfies

(v(z,y, 1), u(z, 1)) — (Vi(y), Us),

t——+o0

locally uniformly in (z,y) € R x R,.
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Since the convergence occurs in every compact sets of R x R for v (respectively
R for u), the result does not allow to follow the invasion front. The following two
theorems give some information about the location of this front. They are in the same
spirit as in [26], where the authors study the front position in Fisher-KPP equation
with fractional diffusion. The first theorem focuses on the speed of propagation on the
road and proves that it is exponential in time.

Theorem 4.1.2. Let (v,u) be the solution to (4.1.1) with (vg,ug) as nonnegative,
non identically equal to 0, compactly supported initial condition and o € (i, 1). Set
S0
1+ 2a

. . Then we have

1. if v <7, lim inf w(x,t) >0,

t——+o0 |z‘<e"/t

2. if v > 7, lim sup u(z,t) =0.
t—4o00 m)eyt

The first point of Theorem 4.1.2 is proved following Steps 2 and 4 of the method
described in the introduction of this thesis, even though some points diverge from it.
Indeed, it seems difficult to construct a subsolution to the rescaled transport problem.
To circumvent this difficulty, we work in a strip instead of the half plane and let the
width go to infinity. This approach leads to a weak asymptotic expression of the speed
of propagation in the sense of Theorem 4.1.2. The explicit subsolution constructed is
of the form

v(r,y,t) = { ¢(Bxe™)sin (Fy+h) if0<y<L(1-12)

I ,t == B -t ,
0 ify>L(1-1) u(z,t) = cpd(Bre™ )

f'(0)
where 7y € (0, 1520
that L(1 — %) is the width of the strip, and B, h and ¢, are well chosen positive
constants.

The second point of Theorem 4.1.2 is proved computing the supersolution to (4.1.1)
obtained by linearising problem (4.1.1) at 0. The Laplace transform recalled in The-
orem 3.2.4 gives an explicit integral expression of this supersolution, which is turned
into an explicit asymptotic expression for large values of |z| and large values of ¢. The
proof also reveals that the propagation can not be purely exponential but at most like

3 10 4
t 2(1+20) g (14+20) 7

), ¢ decays like |§|7(1+2a) for large values of |¢|, L > 0 is such

The second theorem deals with the propagation in the field. We prove that the
speed of propagation, in any direction that makes an angle 6 € (0, | with the road,

2
is linear in time.

Theorem 4.1.3. Let (v,u) be the solution to (4.1.1) with (v, uo) (Z (0,0)) as non-
negative, compactly supported initial condition and o € (;11, 1). Set cxpp := 24/ f(0).
Then for all 0 € (0, 7), we have
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1. if ¢ > <E2E - lim supv(rcos(f),rsin(6),t) =0,

i ’
sin(0) 400 >t

2. if 0 <c< &EPE lim inf wv(rcos(f),rsin(0),t) > 0.

Ok t—+oo 0<r<ct

c
The speed of propagation is thus asymptotically equal to ———. When @ is close

sin(0)
to 0, this speed is infinite, which is consistent with Theorem 4.1.2. The idea of the

proof of Theorem 4.1.3 consists in considering that the infinite speed of propagation
on the road imposes the density v to be close to 1 on almost all the real line, and, in
any case, in much bigger sets than those of the form {(z,0), |z| < ¢t}, with ¢ > 0
constant. The invasion in the field is thus given by well known results on standard
reaction-diffusion equation of Fisher-KPP type with 1,—qy as initial condition (see for
example [5]).

This chapter is split into three sections and organised as follows. The first two are
devoted respectively to the construction of an explicit subsolution to (4.1.1) and to the
estimate of a supersolution to (4.1.1) : this proves Theorem 4.1.2. The third section
focuses on the proof of Theorem 4.1.3.

4.2 Construction of a subsolution

The construction of a subsolution (v, ) to (4.1.1) follows the method described in the
introduction of this thesis. As explained in the introduction, we are not able to follow
rigorously Step 2 of the method, i.e. to construct a subsolution to (4.1.1) in the half
plane. To bypass this difficulty, we work in a strip whose width tends to infinity, which
yields exponential speeds for all exponents less than, but not equal to, the optimal
one.

This section is split into three subsections. First, we construct an auxiliary sub-
solution to a one-dimensional problem that will be needed to define (v,u). Second,
we estimate the solution of (4.1.1) at time 2 in a strip of the form R x [0, Y] for any
constant Y > 0, which corresponds to Step 3 of the method. The last subsection is
devoted to the proof of the first point of Theorem 4.1.2, and follows Step 4 of the
method.

4.2.1 An auxiliary 1D subsolution

We will use the following lemma in the case 0 = 1 + 2« to construct a subsolution to
the nonlinear transport equations that appears when we follow Step 2 of the method.

Lemma 4.2.1. Let o be a positive constant and g a function of class C*(R) satisfying
g(0) = 0, ¢'(0) > 0. Then there exists a constant ¥ = ¢'(0)o~" such that for all
v € [0,7], the equation

—yz(z) = g(¥(z)), z€ER, (4.2.1)
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admits a subsolution ¢ of class C*(R), smaller than 1, with the prescribed decay |z|™°
for large values of |x|. More precisely, there exist constants > 0, Ay > 0, Ay > 0,
e >0 and a constant D > 0 depending on As, o and € such that

— for all |z| > As,

/ /6 /! D « D
—yxd'(x) — g(o(x)) < T —¢"(z) < e (=02) () < i
(4.2.2)

— for all |x| € (A1, As), the function x — —x¢'(x) is smaller than 0A;%, and
nondecreasing in |x|. Thus we have

—y2¢'(x) = 9(¢(7)) < —Prose(A2). (4.2.3)

— for all |x| < Ay, ¢(z) = ¢(Ar).

Proof : Let 6 € (0,1) and ¢, > 0 be such that g is nonnegative and increasing on
(0,9), and

for all s € (0,8) :  g(s) = ¢'(0)s — ¢,8°. (4.2.4)
For A € R, and z # 0, we define
ox(z) == || .
Let us define several constants :
=40, v€(0,7), e€(0,0), (4.2.5)
A > max ((76)_5, 57 077, 1> and A, = AY/e (1 + 2) 1/8. (4.2.6)

Then, a first attempt to construct a subsolution satisfying the conditions imposed
by the lemma, could be

Ve (2) — Avgye(x) if |z > Ay,
qbl(lﬁ = 1 A )
A_‘i" — F if |IL’| < Al.

This function of class C'(R) is positive and nonincreasing in |z|. If o > 1/2, the
function ¢, is not regular enough to get an estimate of its fractional laplacian. Conse-
quently, we modify it so that it is of class C*(R). This argument is, by the way, not so
far from that of Silvestre in [80] in the study of the regularity of solutions of integral
equations. We define

1/e 1/e
A3:A1/5<1+§) <1+ 8) > A,

and notice that ¢; is concave for A; < |z| < A3, and convex for |z| > As.
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Y
A1 A3 X

Graph of ¢,

We fix a constant As € (A, As) and consider
Vo () — Avgyc() if |z| > As,

¢(.Z') — X(ll‘D y if Al < |CL’| < AQ,
1 :

A_T_F:¢1<Al)>0 if ’.ﬁE‘ <A1,

where y is a nonnegative and nonincreasing in |z| function of class C*(R), concave on
(A;, Ay) and chosen so that the function ¢ is C*(R).
We also have for all z € R

1 A
0< <—— —— <A77 <A L. 4.2.7
¢<x) A(lj' Aclr—l—s 1 ( >

We first prove that ¢ is a subsolution to (4.2.1), treating separately the cases
|Zl§'| 2 Az, |ZL‘| € (Al,Ag) and |[L’| < Al.

— If|z| > Ay > AY= with the choice of A done in (4.2.6), we have ”ya—ch_"/E > 0.
We define a positive constant 3 in (0, Aye — c¢,A="= ). Using inequality (4.2.7)
and the assumption done on g in (4.2.4), we have |z|”° > A= > ¢,(Aye —
$)~! > 0. This implies

2 (@) — 66@) < F(0)6() — Arvevene(z) — g(6(2)
cg®(x)* — AYevye(z)
Cgv0'<x)2 - A7500+5 ($)

—BUgie(T). (4.2.8)

NN NN

The right hand side is smaller than 0 and this inequality proves the first estimate
in (4.2.2).
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— If |z] € (A4, As), from the definition of y, we have
—xd'(z) < gA°.

Then, due to the assumptions done on g in (4.2.4), the decay and the concavity
of x, the function x — —vyxx'(|z]|) — g(x(|z|)) is continuous and nondecreasing
in |z|, for |z| € (A1, Ay). Consequently

—yzd'(x) — g(d(x)) = —vyox'(|z]) — g(x(|=|))
< _7A2X/(A2> - g(X(AQ)) < _BUU-&—s(A?)’

as proved in (4.2.8). This inequality proves (4.2.3).

— If |z| < Ay, we have

—yz¢'(x) — g(6(x)) = —g(6(A1)) < 0.

Then, we prove the estimates (4.2.2) for |x| > As. The first one has been proved
in (4.2.8). The second estimate concerns ¢”. We define Dy = (0 +¢)(c + ¢ —1)A and
we have for all |z| > AY¢ > 1

—¢"(z) < (0 +¢) (o +e+ 1) A 20,1 () < D1vyic(T).

The last estimate in (4.2.2) concerns (—0,,)*@. The function ¢ is of class C*(R),
radially symmetric and nonincreasing in |x|. It fulfills the assumptions of Lemma 1.3.1,
which proves the existence of a constant Dy > 0 such that for all x € R

(=0r2)d(z) < Dagp().

Take D = max(D;, Dy) and the estimates in (4.2.2) are proved.

4.2.2 Bounding from below the solution at time 2

The following lemma corresponds to Step 2 of the method presented in the introduction
of this thesis.

Lemma 4.2.2. Let (p*,p*) be the solution to
op* — Ap' = 0, reRy>0,t>0,

Op" + (—0s)p" = —(u+k)p"+pj,_p, T€RYy=0,¢t>0, (4.2.9)
—OyPly—o = HP" — Dy reR,y=0,t>0,
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with ;1 > 0 and k > 0, completed with the initial data p*(-,-,0) = 0 and p“(-,0) = uy,
where ug is a nonnegative and non identically equal to 0 function. Then, for any
constant Y > 0, there ezists a constant a > 0 such that for all (z,y) € R x [0,Y]

a a

“(r,y,2) > —————— and “Wx,2) > —————. 4.2.10
p'(w,y )/1+|$’1+2a p*( )/1+‘x’1+2a ( )

Proof : For all t > 0, the lower bound for p* in (4.2.10) is easy to get. Indeed, Remark
3.4.6 ensures that, for all time ¢ > 0, the function p” is nonnegative on R x R,. Thus
the second equation of (4.2.9) gives for all x € R and all time ¢ > 0

atpu<x?t) + (_am?)apu(xvt) = _(M + k>pu(x7 t)’

Let us denote by p,, the fundamental solution to the fractional Laplacian in dimen-
sion one, that is to say the solution to

Opa(x,t) + (—0p)“palz,t) = 0, reRt>0,
Pal(z,0) = do(x), zeR
It is well known that the decay of p, is like |z|"*™* for large values of |z|. The
lower bound of p,, in R x [0, +00),
Bt
pa(x7t) > d+2a’

et 4 |z
leads to the existence of a constant a; > 0, depending on ug and «, such that for all
reRandallt>1

=20 o= (k)

4.2.11
1+ |z ( )

p(z,t) > e~ Rty *pa(x,t) = ay T

We claim the existence of a constant a > 0 such that for all zo € Rand ally € [0,Y]

a
p"(w0,y,2) 2 T 1t2ar
= 1+ Il’0|1+2
Let us define x, > 0 such that
1 1+2« 1
for all g satisfying |zo| > z, : + |20l > -, (4.2.12)

1+ (1 + |zo|) 12> = 2
Fix zo € R, and define

w(z,y,t) = (1+ |zo) *)p"(z,y,t) on R xR, x R,. (4.2.13)
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We have to prove that for all y € [0,Y]
U)(.TO, Y, 2) Z a.

The boundary condition satisfied by p¥ in (4.2.9) and the estimate of p* in (4.2.11)
give, forall x € R and ¢t > 1

—0yw(x,0,t) +w(z,0,t) = p(l+ |x0|1+2a)p“(x, t)
tl + |$0|1+2a

> alt_l/zae_(“+k) .
= 1+ |x|1+2a

Using the definition of z, in (4.2.12), we have for zy € R such that |z¢| > z,, for
all |z| € (|zo] — 1, |zo| + 1) and ¢ € (1,3) :

e e 1 |2
— Oyw(x,0,t) + w(z,0,t) > agt” e 1+ (Jao| +1)1H2e
> Uyt —(uth)
> a22, (4.2.14)
where ay > 0 is a constant.
Let x be defined as follows
1 if |z| < %,
x(@) = 67% ifl < x| €1,
0 if 1295\ > 1.

For any |zo| > z,, by the comparison principle, we have
w(z,y,t) > w(@ —x,y,t) forall (z,y,t) € R xRy x(1,3), (4.2.15)

where w, is the solution to

ow—Aw = 0, reRy>0t>1,
—Oyw(z,0,t) + w(x,0,t) = ax(z), zeRt>1, (4.2.16)
Wy (2, y,1) = 0, ze€R,y=0.

The existence and uniqueness of w is given by Theorem 5.3 of [63]. Its regularity
is inherited from the regularity of v, that is for all [ > 0

we CHEE (R x Ry x [L,3)).

Finally, the existence of a constant ag > 0, such that for all |z] € (—=1,1), y € [0,Y]
and t € (1,3), we have
w(x7 Y, t) > as,
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is given by the regularity of w, and the strong maximum principle applied to (4.2.16).
Using (4.2.13) and (4.2.15), we conclude that for all 2o € R and all y € [0, Y]

w(.f(](), Y, 2) = (1 + |m0|1+20¢>pv(x07 Y, 2) 2 w(07y7 2) > as. (4217)

Using (4.2.11) and (4.2.14), we have

p*(20,2) 2 HIZW (4.2.18)
Set a = min(as, as) so that, with (4.2.17) and (4.2.18), the lemma is proved. [
4.2.3 Proof of Theorem 4.1.2 - Part 1
We want to prove that
for all 0 < v < J10) , lim inf wu(x,t) > 0. (4.2.19)
1+ 2« t—+00 |z|<et

In what follows, we explicit Step 2 of the method, given in the introduction of the
thesis. On the road, the fractional diffusion makes us think the speed of propagation
to be exponential in time. Thus, we set r(¢) = ¢ in Step 2 of the method, where 7 is

/'(0)
14 2«
technically more involved. We break it into several steps.

a constant in (0, ) The analysis has the same flavour as that of Part I, but is

Step 1: Formal analysis

In this step, we rescale the x variable, defining the functions v(&,y,t) = v(e, y,t)
and u(&,t) = u(e’E,t) for £ € R, y > 0 and t > 0. We formally neglect the diffusive
terms to get the following transport system

00 — yE00 — D, v = [(0), E€R,y>0,t>0,
ot —yEdeu = —pu+v—ku, £€Ry=0,t>0, (4.2.20)
0,0 = pu-—u, EeERy=0,t>0.

By Step 4 of the method given in the introduction, we know that if (V(&,y),U(&))
is a stationary subsolution to (4.2.20), we can construct a subsolution (v, u) to the
initial problem (4.1.1) by

v(z,y,t) = V(xb(t),y) and w(z,t) = U(zb(t)),

where b is a function asymptotically proportional to »~. Thus, we look for a subsolu-
tion to
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0T = —pU+V —kU, €€R,y=0, (4.2.21)
-0,V = uU -V, EeRy=0.

Step 2: Construction of an explicit subsolution to the stationary system (4.2.21)
From now on, we diverge from the method set up in the introduction of this thesis.

We construct a subsolution (V(&,y),U(£)) to (4.2.21), not in all R x R, but in the
strip R x (0, L), for a constant L satisfying

/ ~1/2
L > max (2,7T <1f+(g)a - 7) ) : (4.2.22)

|—(1+2a)

We want the subsolution to have the algebraic decay |€ for large value of

€]. Since L > 7f'(0)~'/2, we apply Lemma 4.2.1 with

g(s) = f(s) — <%)23 and o =1+ 2a. (4.2.23)

Let us define

(€) sin <%y + h) i

0
V(& y) = { ,
0 if y

where

sin(h) sin(h)p(As) A3
2(Yo + p+ k)’ dyo

h e (0, arctan <%>) and ¢, = min ( ) . (4.2.25)

and ¢, Ay, Ay, 7 are given by Lemma 4.2.1. Note that with these choices,

(0= (/L7
14 2« '

7 =9(0)c

Let us prove that (V (&, y),U(§)) is a subsolution to (4.2.21). We treat separately
the three equations in (4.2.21).

9(s)

— It is a subsolution to the first equation of (4.2.21) : since s — is decreasing,

we have
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—for0<y<L(l—2)andéeR
—v§0eV(&,y) — 9y, V(§,y) — F(V(E,9))
= (10 + (F) 010 ) sin (Fo+ 1) - siEn)
= —7£¢/(£) sin (%y + h) —9 (¢(€) sin (%y + h))
< (—1€0/(&) — g(@(©) sin (Ty +h)

The function ¢ was constructed in Lemma 4.2.1 so that the right hand side
of the last inequality is smaller than or equal to 0.

—fory>L(1—2)and¢€eR
—E0:V (€, y) = 0, V(& y) — F(V(E,y) = 0.

— It is a subsolution to the second equation of (4.2.21). Indeed for £ € R, since
7 =¢'(0)c™", we have

—7€8'(§) < g(8(8)) < g'(0)9(§) =T (§).
Thus we get for all £ € R
—EU' (&) + (n+ R)U(E) =V (£,0) = —enyéd (&) + enlp + k)p(&) — d(€) sin(h)

(cn(Yo + p+ k) —sin(h))p(§).

<
< 0,

with the choice done for ¢, in (4.2.25).

~—

— It is a subsolution to the third equation of (4.2.21). Indeed for £ € R

N

—0,V(§,0) = () + V(§,0) = (—TF cos(h) — e +sin(h) ) (&) <0,

L

thanks to (4.2.25).

Step 3: Subsolution to the initial problem (4.1.1)

The subsolution (v,u) that we are going to construct comes from (V,U) and is
given by
v(z,y,t) =V (2b(t),y) and w(z,t)=U(xb(t)), (4.2.26)

where b(t) = Be 7" for a constant B > 0 small enough. More precisely, we have the
following lemma.
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Lemma 4.2.3. Let v € (0 ) B, D and ¢ be defined in Lemma 4.2.1 with the

choice of g and o done in (4.2. 2 For any constant L satisfying (4.2.22) and B > 0,
let us set
T
o(xb(t sin(—y—l—h) f0<y<L —%
ooyt = PO ‘ U= we ) = el
0 ify > L(1—-7)

where b(t) = Be™ ", h and ¢y, are defined in (4.2.25). Then there exists a constant
B > 0 such that the couple (v,u) is a subsolution to the initial problem (4.1.1).

The constant B > 0 satisfies
B <min )2, J0H0Ek [Bore(ds) < sin(h)g(A) ) (sin(h))?a |
D D IX"Nle "\ 2¢h |(—02a)0l| 2c, D

Proof : Let us define two operators £; and Ly by

Li(v) =0w—Av— f(v) and Lo(v,u) = O+ (—0w) u + (1 + k)u — youv.

Using the estimates (4.2.2) obtained in Lemma 4.2.1, we prove that (v,u) is a
subsolution to (4.1.1), treating separately the three equations of (4.1.1).

— In the field :
—if0<y<L(1—1%)and || > Asb(t)~" :
£1()(a.1.8) = [F(0) () — (e (ab1))] s (T + h)
+ <%>2 ¢(xb(t)) sin < y+h <gz5( ) sin <%y + h))
< [7b(t)zd/(wb(t)) — g(o(ab(t)))]sin (T y+h)
+ Db(t) vy - (wb(t))sin ( Ty +h)
< (=B + DB?)vy .. (xb(t)) sin (%y + h) <0
from the choice done for B in (4.2.27).
—if 0 <y < L(1— 1) and || € (A1b(t) ", Agb(t)™1), using (4.2.3), we have
£1)(.9.1) = (B (wh(B) — O (@b(1) — o(c(ab(t)] sim Ty + 1)
< (=Bupse( ) + B2 L) sin (Ty+ ) <o,
from the choice done for B in (4.2.27).
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—if0<y<L(l1-1%)and |z| < Ab(t)™" :
L)@,y 1) = —g(#(A)sin (Ty+h)) <o.

—ify>2L(1-2)andzeR:
El(y)(.’l',y,t) = 0.
— On the road :

— if |z] > Ab(t)™!, from the choice of 7 done in Lemma 4.2.1 and the fact
that g(s) < ¢'(0)s for s € [0, 1], we have

Lo(v, u)(z, 1) e/ ()29 (2b(t)) + cnb(t)** (—ar) O (2b(t))

+en(p + k)o(b(t)) — sin(h)p(zb(t))

cng(o(b(t))) + en(p + k + B**D — sin(h))p(xb(t))
[chﬁa +p+k+ B*D) — Sin(h)} o(xb(t))

0,

NN N

due to the choices of ¢, and B respectively in (4.2.25) and (4.2.27).
— if |z| € (A1b(t) ™1, Agb(t)™1) -

Lo(v,u)(z,t) = cpbl(t)xg (xb(t)) + cnb(t)* (—Ox)“d(xb(t))
+(en(p+ k) — sin(h))d(xb(t)).

We use two properties of the function ¢ defined in Lemma 4.2.1. First, the
quantity

1(=0k2)* Pl o = max |(=0u:)"d(2)] (4.2.28)

|z|<A2
is well defined since ¢ € C?(R) N L>=(R). Second, still from Lemma 4.2.1,
the function z — —x¢'(x) is smaller than 0 A;7 for such values of |z|.
With the choice done for ¢, in (4.2.25), we get
sin(h)

T(b(AQ) + ChB2a "(_axm)a¢‘|oo

¢(A2> + ChBZOl H(_am)a¢“oo < O’

Lo(v,u)(w,t) < yenoAy” —

_sin(h)
h 4

thanks to the choice of B in (4.2.27).
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—if |z| < Ab(t)7L, from Lemma 4.2.1, ¢'(xb(t)) = 0 and with (4.2.28) we
have

Lo(v, u)(z,1) cnb(t)** (= a)“d(wb(t)) + [en(p + k) — sin(h)](ab(t))

< e+ K) = sinl)] (D) + 15 | (~0ue) 0.
< B4 B (-0l
g 07

from the choices of ¢, and B done respectively in (4.2.25) and in (4.2.27).

— The condition on the boundary gives, for all x € R,

—0,v(z,0,t) — pu(x,t) + v(x,0,t) = (—% cos(h) — pcp + Sin(h)) o(xb(t))

< (-% n tan(h)) cos(h)é(xb(t)) < 0,

due to the choice of h done in (4.2.25).

Step 4 : Taking into account the initial condition

We now turn to Step 3 of the method given in the introduction of the thesis,
finding a time ¢y > 0 such that the couple (v, u) defined in (4.2.26) is smaller than the
solution (v, u) at time ty. We set ¢ty = 2 and define an intermediate couple (p, p*) that
is smaller than (v,u) and that decays like |z|~"*?* for large values of |z|. Since the
nonlinearity f is nonnegative, by the comparison principle stated in Theorem 3.4.3,
we know that (v, u) is greater than (p”, p*), the solution to

Op” — Ap® = 0, reRy>0,t>0,
8tp“ + (—axx)apu = —(u + k’)p“ —|—p‘vy:0, T € R7y =0,t >0,
—_ ypvly:[) = Mpu _ p\vy:07 T E R7y =0,t >0,

with p¥(+,+,0) = 0 and p“(-,0) = ug. Applying Lemma 4.2.2 with Y = L, we have the
existence of a constant a > 0 such that, for all z € R and all y € [0, L],

a

1+2a”

v(z,y,2) = p'(z,y,2) 2 ++2a, and  u(z,2) > p“(z,2) > W
+ |z

14|z

Since s — @ is decreasing, there exists a small constant g € (0, 1) such that the

couple (g9v,egu) is a subsolution to the initial problem (4.1.1). Taking e smaller if
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necessary, the decay and the continuity of ¢ imposed in Lemma 4.2.1 and the definition
of (v,u) in (4.2.26), give for all (z,y) € R x [0, L]

a a

U(ZL‘,y, 2) 2 T (112 > 502(37’?%2)7 and U(ZL‘,2) 2 T 172 2 EOQ(xv 2)
1+ ’x|1+2 1 + |x’1+2
By Theorem 3.4.3, for all t > 2 and all (z,y) € R x R, we get
v(x,y,t) = eov(z,y,t) and  wu(z,t) = equ(z,t). (4.2.29)

More precisely, since ¢ defined in Lemma 4.2.1 is even and nonincreasing in |z|, we
have for t > 2 and |z| < €

u(w,t) > eou(z,t) = gocnd(xb(t)) = eocnd(e?b(t)) = eocnp(B) > 0,

where b(t) and B are given respectively in (4.2.26) and (4.2.27). Consequently, we
have
lim inf w(z,t)>0.
=400 |z|<Let
This result is true for all v € (O, ﬁ%), which concludes the proof of the first part
of Theorem 4.1.2.

4.3 Construction of a supersolution

The nonlinearity of the initial problem (4.1.1) is a Fisher-KPP type nonlinearity, which
imposes f(v) < f'(0)v. It is usual to consider as supersolution the solution (v,%) to
the linear problem

ov—Av = f(0), re€R,y>0,t>0,
O+ (—042)°U = —pt+Tjy—o — ku, v €R,y=0,t>0,
—O0yUjy—0 = P — Vjy—o, reRy=0,t>0,

where ¢ > 0, k > 0 and completed with initial conditions (-, -,0) = 0 and @(-,0) = wuy.

The following theorem is the key point to prove the second part of Theorem 4.1.2
that concerns the propagation on the road. It gives an upper estimate to the density
u. In the sequel, the constant rq ks ) defined in (3.3.4) as the solution to

T(Q),k—s—f’(o) = Tg,ofwrf/(o) + k4 f(0), (4.3.1)

will be denoted by ry. It is crucial to notice that

ro >/ f'(0).
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/F1(0 .
Theorem 4.3.1. There ezxist c € (w, 1) and Cy > 0 such that for |z| > 1, we

To
have
o A
u(x,t) < _ ,U) ],
u(x, 1) 1 (‘x’H—Qa £3/2 +R(x ))
with
’ 2.2 / . ef’(O)t / 2
R(l’,t) < 6(f (0)—c rocos(2€))t+€f (O)te— || sin(e) + | |3 —|—6(f (0)—7“0)157
A

and € > 0 satisfies ¢*rg cos(2e) > f'(0).

This theorem emphasises that the dynamics of the level sets of u, for large values

t, is gi _.
of || and ¢, is given by ST
We define
(Uhﬂl) = e_f/(O)t(E7 ﬂ)a (432)
the solution to
v — Av; = 0, reRy>0,t>0,
Oy + (—0pe)T = —pliy + U1y — kU1 — f/(0)u1, € R,y =0,t>0,
_8y@1|y:0 - ,LLﬂl - El\y:O: YIS R7y = Oat > O)
(4.3.3)
with initial conditions 7;(+,-,0) = 0 and @;(+,0) = ug. This Cauchy problem can be
written
o ™) il ™) 2
"\ 0 ’
where

?1 = o __Ml I (4.3.4)
Uy (—=0ua) Uy + Py — V1o + Ky + f/(0)T

The operator A is similar to the operator A defined in (3.3.1) with the constant k
replaced by k + f/(0). Its domain is D(A) given by (3.3.2). The properties obtained
on A in sections 3.3.2 and 3.3.3 do not depend on k. Thus, A is a sectorial operator
on X with angle 53 that can be taken anywhere in (0, 7). From Theorem 3.2.4, the
solution to (4.3.3) is given for all (z,y) € R x R, by

< U;jxyt)t ) ) = % /F . (A- ) B < uo(()x) ) e M. (4.3.5)

The complete proof of Theorem 4.3.1 is given in section 4.3.2. It is computationally
difficult to obtain, but reveals some properties of the linear operator. The outline of
the proof is the following.
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1. We will compute (Av — M)t ( 0 > . This is an easy step that gives
Uo
(e pge )
P —1 0 )
A - / 2 . (4.3.6)
< > <u0> Fllew A+ * Ug
P(A, [€])

where P is the function Py ) defined in (3.3.3) by

POVJE]) = (<A + € + i+ b+ £(0)) (\/—A+ P + 1) L 4aT)

/ 2
The preliminary lemma 4.3.2 simplifies the expression F ! (f — %)

that appears in (4.3.6). The computation of this inverse Fourier transform re-
quires the knowledge of the location of the zeroes of P, which has already been
done in Lemma 3.3.1. Indeed we know that :

— if [€] < 7g, for any A € C, P(\,|{]) does not vanish,

— if |£] = 7o, P(A, |€]) may vanish for some real values of \.

2. An estimate of the integral on {|¢| < 7o} is inspired of [75] and given in Lemma
4.3.4.

3. The integral on {|¢| > o} can be bounded from above by e 76!, This is done in
Lemma 4.3.5. Going back to the supersolution

, VAP L
u(x,t) =l OV FT £ hl

P [€])

T),

and since 1o > 1/ f'(0), we understand that the integral on {|¢| > 7} tends to 0
as t tends to +oo0.

4.3.1 Preliminary result : estimate of an integral

Lemma 4.3.2. Let r¢ be defined in (4.3.1) and P be defined in (4.3.7). For r > 0,
t > 1 and a constant 3 € (0, 3), we set

1 V=AA+r24+1
Ity = — [ Yot TS
FO,B P(>\7T)

T

e Md\, (4.3.8)

where T3 = Rye® @ Rye . Then, for all ¢ € (0,1), the following two points are
satisfied.
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1. Forr € (0,crg) andt > 1 :

where

Pr*+uvr)=(—v—r"+r""+pu+k+ f(0) (ivv+1) —

2. There exists a universal constant Cy > 0 such that, for allr > cro and all t > 1

|]ﬂ(7"7 t)| < 046_(r2a+k+f/(0)—60)t <\/|r2 _ (r2a +k+ f’(()) _ 50)| + 1> ’ (4‘3‘9)

where g9 = 13%(1 — **) > 0.

Proof : 1. Let ¢ bein (0,1) and /1 in (0,3). Due to Lemma 3.3.1, for A € C and
r € (0,crg), P(A\,r) does not vanish. Consequently,

VAFri41 o,
A "¢
P(Ar)

is holomorphic in C. Let R > 0 be any constant satisfying

R , 1
(R%+1* —2r2Rcos(f1))"? sin(f) < E’

uniformly in 7 € (0, cry).

We consider the contour of integration C¥, oriented in the direct sense, defined by
Cit = TiU{Re”,0€ (=8, —p)} UTSY U{Re",0 € (51,5)},

where for all 7 € [0, cro], [(R,7) = (R2 +1* — 2r2R cos(51)) 2, f is such that sin(3) =

_l(lgi%r) sin(B1), and for all R > 0, ME={xeT. | N< R}. The expressions of (R, )

and [ are obtained by usual trigonometric identities.
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o S T R,r) Re(N)

Oriented contour CIt

Cauchy’s formula gives for all R > 0

v =\ 241 B/ _Roib 211 ;
iﬂ'[ﬂ(?’,t) / Le—/\td)\_i_/ Re® +1r2 + —RthR ;40
U(R,T) P()\7 ) 3 P(Re“’,r)
B /i 241 s ‘
- / Bl 41"+ 1 rett gy (4.3.10)
5 P(Re®r)

The last two terms in the right hand side of (4.3.10) tend to 0 as R goes to +oc.
Indeed

et Rei?idg < OV Re fieosOt

/iﬁl V=ReT 117 1 1
+3 P(R€i9> 7")

where C' > 0 is a universal constant. Moreover we have for all € (0, cry)

I(R,T) o +00.
—100

Thus, passing to the limit as R tends to 400 in (4.3.10), we have for all ¢ > 1 and
r € (0,cro)

\/— 1
(r 1) / A + r + oM,
i Jr,

A simple computation gives

400 . zé - ~
+ 1 i s —|— 1 —i Rt
Werztfﬁ(r, t) = _/ Z\/fe - —e /¢ ﬁt“ﬁdu—l—/ Z;/_G : —ve Pi=if g,
o  Pr?+veb r) o P(r2+ve b, )
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The expressions to be integrated are conjugate, which gives

2 —r2t +o0o ; iB/2 1 3. =
Ig(r,t) = — ‘ / %m( ivelT e el | du,
0

@ P(r? + veid r)

There exists a constant C' > 0 such that for all v > 0

. iB/2 S
%m< e e—”e’ﬂt@zﬂ>

P(r? +veb r)

< O(Wv+1)e V3",

Consequently, for r € (0, crg) and t > 1, we can pass to the limit as B tends to 0 ,
applying the dominated convergence theorem. We get

92 —r2t +00 ; 1
Iy(rt) = —= / Sm (Z\/_”—+) oty
0

T P(r2+uv,r)
2 —r2t +oo
— [1/6 / LQG_thV.
™ Jo  |[P(r*+uvr)l

2. We prove the second point of the lemma. Let ¢ be a constant in (0,1). From
Lemma 3.3.1 we know that, for r > ry, P(\,r) may vanish for certain real values of
A, that are greater than or equal to r** + k + f(0). Consequently, for all R > 0, the

function
PAT)
has no pole inside the contour C£ (oriented in the direct sense) defined by
chto= Tl U{Re” +v,v € (0,7 + k4 f(0) —eo)} U Fﬁa+k+f,(0)_50ﬁ
U{Re ™ +v,v € (0,7 +k+ f(0) — o)},
where Iy = {A € T 5 | |A| < R} and go = r3*(1 — ¢**) > 0.

A=

0 oo Re(A)

Oriented contour C¥
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We apply Cauchy’s formula and, as in the case r € (0,cry), the integrals on the
contours

{Re®® 4 v,v € (0,7 +k+f(0)—9)} and {Re P +v,ve (0,7 +k+f/(0)—g0)}

tend to 0 as R tends to +oo. To estimate the integral on FT2a+k+f,( ) .50 WE use
Lemma 3.3.1 that gives the location of the zeroes of P. Indeed, if A € FTQQMH,(O) 0.8
and r > cro, then P(A\,7) > ¢p > 0. Thus, we have for all v > 0, for all » > c¢ry and
for)\—rza—i-k—i-f( ) — €0 + vetif

‘\/—A+r2+1'

P (VI TE TR T PO e+ v +1).

This implies for all » > ¢rg and all £ > 1 :

l/ VAL T
r

|I/3(T7t)| < P()\,T’)

T

r20 4 k4 £7(0)—¢q,B

+o0
< c}le_( r2® ket f'(0)—eo)t \/|7‘2 (r2e+k+ f(0) —eo)| + 1) / eveos(Blt gy,
0

—l—c_le_( r2¢ 4 k+f'(0)— ao)t/ \/_e veos(B)t g,

< Cye R O=20)t(\ /1p2 — (120 4 |+ f1(0) — go)| + 1),

where () is positive universal constant.

4.3.2 Proof of Theorem 4.3.1

We follow the outline of the proof given at the beginning of the section.
-1

1. Computation of <,Zf . )\I) 0 s Jor AN€Tlog; -

Uo
For all A € I'g 3., we compute for (z,y) € R x Ry the quantity

vilz,y) \ _ (% - 0
< o ) = (A—)J) < (o) ) .

In other words, (v, uz) € D(A) satisfies, almost everywhere in the (x,y)-variable,

—Avg:)\vg, reRy>0,
(—0p)uz+puz—vi+hkuz+ f'(O)uz=Auz+uy, ze€R,y=0,
-0V = pug — vy reR y=0.
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Taking the Fourier transform in the z-variable, we have, almost everywhere in the
(&, y)-variable,

—0y Uz = (A |§|2)@\A7 EeR,y>0,
B (<A EP ok (0 =, €€ Ry =0, (43.11)
—0yuz + 03 = pug, EeR,y=0.

Since vy is in H*(R x Ry), A — €]> ¢ R*~ and the first equation of (4.3.11) gives,
for almost every £ € R and almost every y > 0 :
3(6,y) = w00g(€)e VI, (4.3.12)

Once we have Uz, the third equation of (4.3.11) implies for almost every £ € R

o0 H(€) = P a6, (4.3.13)
ol

Finally, for almost every £ € R, the second equation of (4.3.11) leads to

B P ke £0) | () = @ ). (4.3.14)
+ /I - a R

With the definition of P defined in (4.3.7), equality (4.3.14) becomes

—P()\’ <D uz(§) = up(§), for almost every £ € R. (4.3.15)
L+ 4/167 = A

From Lemma 3.3.1, if A € C\ Sg 4, then for almost every £ € R, P(A,[¢]) # 0
This fact and equations (4.3.12), (4.3.13), (4.3.15) imply

N R (5 ~ SO _Hﬁ) *tal)
<A— M) ( o) ) - \/WJF . . (4.3.16)

Flléw * ug(x)

P(A, [€])

We will see later that we only need to assume ug = dy. Thus, using (4.3.5) and
(4.3.16), we need to compute

/ / VA1 + Wﬁe—AtdgdA.
27/77' FOB

P €D
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It can also be written

+oo / )\ 2 1
/ + r )+ e~ M cos(xr)drd.
To,s;

We can notice that this function is even in the x variable that is why, from now on,
we consider x > 0. The following lemma proves we can switch the order of integration.

Lemma 4.3.3. For all z > 0, we have

+oo +oo
/ / ga(r)e " cos(zr)drd\ = / / M cos(ar)d\dr,
FO,ﬁg 0 FO ﬁ ~

V=A+1r2+1
PAr)

Proof : If 2a > 1, for any A in I'g 5., the function

V=A+r2+1
P(AT)

where, for N € Top. andr >0, gi(r) =

gy T —

—2«

defined on R, is integrable on R, since it is continuous and equivalent to r for

large values of r. Thus, we can apply Fubini’s theorem to conclude the proof.

If 0 < 2a < 1, we use an integration by parts before applying Fubini’s theorem.
We can not do it directly because the function r — /=X + 72 is not C'(R,) for all
A € T'og;. We need to change the contour of integration I'gs.. We set 6 > 0, n >0

and define the contour CQ’R, oriented in the direct sense, by
coR = Fgﬁ U{ne. 0 € (85,21 — B7)} U{Re®i +v,v € (—5,0)} U F}—%&ﬂg
U {Re i +v,v € (=5,0)},
where Fg:ﬁ ={NeTop, | n<|N <R} and g9 = 73%(1 — ¢**) > 0.

—5\77\ Re()\)

: R
Oriented contour C3’
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Using Lemma 3.3.1 and Cauchy’s formula (as done in the proof of Lemma 4.3.2),
we have

o0 +o00
/ / ga(r) cos(zr)e Mdrd\ = / / ga(r) cos(zr)e Mdrd\
e o PR, Jo

0 400 g~
- / / gy (r) cos(ar)e” e drdy
0

PR e 0,
+ / / Gneio (1) cos(ar)e™ " tneidrd,
0

A

where \, = Re®a + v,
A similar proof as the one done to pass to the limit in (4.3.10), proves that the
three last terms tend to 0 as R goes to +00 and 7 goes to 0. Consequently we have

400 +o0
/ / g (1) cos(zr)e Mdrd\ = / / gr(r) cos(zr)e Mdrd\.
FO’BE 0 F,(;’gg 0

For any Ain I'_s55., lim ¢\(r) = 0 and thus, an integration by part gives
Y A4 7“—>+oog

1

/Ooog,\(r)cos(xr)dr = —;/0 Oog;(r)sin(xr)dr, (4.3.17)

where

() —pur 2047“20‘*1(\/T—|—r2+ 1)
r) = — :

g)‘ V—=A+12 P(\1)? P(A,r)?

—2a—1

The function ¢} is continuous on R, and equivalent to r as r tends to +o0.
Consequently, it is integrable on R, and, by Fubini’s theorem, we have

“+oo —+o00o
/ / g\ (r) sin(zr)e Mdrd\ = / (/ g;(r)e_’\td)\> sin(zr)dr.
F76,B~ 0 0 F*5;/3~
A A

(4.3.18)
It is clear that for all » > 0 :

/ gh(ryeMd\ = / ga(r)e™MdX | .
F,(;’BA F,(;’BA
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Consequently, using (4.3.17), (4.3.18) and the following limit

lim ga(r)e Md\ =0,
r——+o00 F,(;”g

we can integrate by parts once again to get

+o0 1 +oo
/ / ga(r) cos(zr)e ™ Mdrd\ = — / / gh(r) sin(zr)eMdrd\
F_a’BA 0 x 0

F_(g”gg
/
1 +o0 Y ‘
= ——/ / ga(r)e d\ | sin(axr)dr
F—‘Sﬁg

T Jo
+oo

= / / ga(r)e ™ Md\ cos(zr)dr.
0 .

To conclude the proof, we use similar arguments, with Cauchy’s formula, to turn
the contour into Fo,ﬁg‘
[ |

With this Lemma 4.3.3 and the definition of I3 given in Lemma 4.3.2, the problem
is now to find an upper bound to the real part of

+oo )
/ Ig (1 t)e"™ dr.
0

Fix a constant ¢ such that

ce ( f,(o),1>, (4.3.19)

and, for x > 0 and t > 0, cut the integral into two pieces J(z,t) and K(z,t) as follows

cro ) “+00 )
J(x,t) = / I (r,t)e" dr and  K(z,t) = / Ig (r,t)e™ dr. (4.3.20)
0 cro
Thus, the function @ given in (4.3.2) can be written

a(z,t) = e O Re(J(z,t) + K(z,1)). (4.3.21)

We have to estimate J and K, which is done in the following two lemmas.

2. Estimate of the integral on {|¢| < cro} :
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Lemma 4.3.4. Let J be defined in (4.3.20). There exist 1 > 0 and a universal
constant Cy > 0 such that, fort > 1 and v > xq,

—c?r2 cos —\/x sin 1 1
|J(z,t)| < Cy (e §eos(2e)t | o~V (E)_i_;_'_W) ,

where ¢ is defined in (4.3.19) and € > 0 satisfies c*r3 cos(2¢) > f'(0).

Proof : From Lemma 4.3.2, we know that for r € (0, crg) and ¢ > 1,

Qlue—TQt /+oo NG
o |P(

@ 24,7

Ig (r,t) = se Vdy,

where
P(r*+uvr)=(—v—r*+r"+u+k+ f(0)(vVr+1) — p

We define, for (v,2) e R, x C:
Q,2) = (—v =22+ 22+ k+ f0)? +v(—v— 22+ 22+ u+k+ f(0)?% (4.3.22)

so that we have

Q(v,r) = |P(r* + v, 7‘)|2 for  (v,r) € Ry x [0, cro). (4.3.23)
Thus, J becomes
2 cro 4
J(x,t) = _M/ et i (r ) dr, (4.3.24)
T Jo

where

e \/; —vt
e "dv.
0 Q(Vv T)

To estimate J, we are inspired by the computations done by Polya in [75] and
Kolokoltsov in [62]: three steps are required. The first one consists in rotating the
integration line of a small angle ¢ > 0. Then, we prove we can only keep values of r
close to 0. Finally, we rotate the integration line up to 7.

Jr,t) =

Step 1 : The function ) is continuous on R, x C, holomorphic in its second ar-
gument and, from Lemma 3.3.1, does not vanish on R, x [0,cro]. Moreover, from
(4.3.22), we have, for z in any fixed compact

Qv z) ~ V7

v——+00
Consequently, there exists a small angle € > 0 such that

/'(0)

cos(2¢) > 20
0

(4.3.25)
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and
forall v > 0and z € {z € C| |2]| < crg,arg(z) € [0,¢]}: |Q(v,2)| = co. (4.3.26)
We want to rotate the integration line of ¢ in (4.3.24). For all ¢ > 1, the function
2 e Pl (2, 1)

is holomorphic on the same set as @, that is to say on {z € C | |z] < crg, arg(z) €
0,e]}if € [3,1), and on {z € C\ {0} | || < cro,arg(z) € [0,¢]} if a € (0,1]. In this
last case, we need to remove a neighbourhood of zero when rotating the integration
line.

Let 6 € (0,crp). On the small arc 5. = {5, 8 € [0,¢]}, we have for t > 1

/ ’efz%eixzjv(z’ Zf)‘ dz < C/ 6752 coS(29)t€fzésin(9)5d9’
s 0

yE

where C' > 0 is a universal constant. The right hand side tends to 0 as ¢ tends to 0.
Thus, Cauchy’s formula leads to

(1) = Q?M(Jl(x,t) e (4.3.27)

where

cro
_ <2,2ie . i€ ; ;
Ji(z,t) ::/ e T e j(se' ) et ds
0

and .
. 2,220, I . .
Jo(x,t) == croz/ e~ e M gireroeT i (ero et 1)edp.
0

The term .J, decays exponentially in time :

€
’JZ (LU, t)‘ < erg / 67027"(2) cos(29)tefxcr0 sin(0) ‘j(croeil?’ t) ‘ do
0

C 6—c2r8 cos(2e€)t7 (4.3.28)

S
where C' > 0 is a universal constant linked to c¢ defined in (4.3.26).
Step 2 : We now treat J;. We cut it into two pieces in order to keep values of s
close to 0. Let us define, for z > (crg) 2 and t > 1 :
x_l/z

JM(x,t) = / eI (g6t e ds (4.3.29)
0

and
ro 2p2ie¢ 4 i€ ; ;i
Ji(z,t) ::/ e e j(se' ) e ds,
x

,1/2
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so that
Ji(z,t) = I, t) + J] (z,t). (4.3.30)
For z > (crg) ™2 and t > 1, we have the estimate
cro

J (.t < C e—xssin(s)e—s
1 ) =

2= Y2

2 cos(25)td8

)

where C' > 0 is a universal constant linked to ¢ defined in (4.3.26). This implies that
Ji(z,t) decays exponentially in  and, taking C' larger if necessary, for z > (crg)? and
t>1:

|7 ()| < CemVEsine), (4.3.31)

Step 3 : We prove that JJ*(z,t) decays like 2~0+2%) for large values of z. We turn the
integration variable into 5§ = s to get, for x > (cry)? and ¢ > 1,

1/2

z 32 i€ g Tl dS
J{n(ﬂf,t) — / e—m—262 tezse ](82? 1 za t)
0

-
Keeping in mind that we want an estimate for large values of x, we cut J{" as
follows

1/2 — 1/2 N

m ’ iSete .~ _1 e ie ds £ _ %ewst iSeic ie
JiM(x,t) = e j(szT e t)e* — + (€= — 1) j(zr e t)e”
0 0

T

The second term in the right hand side satisfies

1/2

r 52 2ic T ie dS
/ (e—z—Qez t 1)67,56 j(S et t)
0

X

N

C [t
—3/ e i@ g3 (4.3.32)
= Jo

where C' > 0 is a universal constant. We have to estimate

1/2
r S HlE dS
ise 7,8 t bt
/0 e j(sz e, t)e —

for large values of z and ¢ > 1, where we recall the expression of j in R? :

+oo \/;
0 Q<V7 T)
The function @) is continuous on R, x C, is holomorphic in its second argument

and, from Lemma 3.3.1, for all v € R, Q(v,0) # 0. Moreover, from (4.3.22), we have,
for z in any fixed compact

e tdv.

gr,t) =

Qv,2) ~ V-

v—+00
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Consequenlty, there exists o € (0, 1) such that @) does not vanish in Ry x B,,(0).
Thus, for all t > 1 and all 27"/* < z, the function

z s ej(zaht)
is holomorphic on {z € C | |z| <z} if a € [3,1), and on {z € C\ {0} | |2| < 22}

if v € (0, 3].
Let 0 € (0,1). On the small arc y5 = {d¢, 6 € [¢, 2]}, we have for ¢ > 1

/ le”j(z27 ", t)| dz < 0/2 e~ 540,
Vs £

The right hand side tends to 0 as § tends to 0. For z > x52, we can rotate the
integration line up to § and Cauchy’s formula leads to

1/2

/ else j(SZL’ 625 t) _S — / e_sj(isx_l,t)@'—s + / 6zgvl/2e Gj(x1/26197 t)iewm.
0 0 B X

The second term in the right hand side satisfies

g . 1/2 0 1 . Lo d~
/ elx /e ](l’ /261971(:)%629
c .Z'

where C' > 0 is a universal constant. It remains to estimate jlm defined by

< CeVosinge), (4.3.33)

@'/? ds
O A e
0

X

where

“+oo
Le‘”tdu
o Qv isz™1)

Recall that we are interested in the real part of jlm A simple computation gives

jlisz ™ t) =

1Q(r, isz™1)|* Re (m) = [Q(,isz™")|” Sm (m)

2a Ao

= 2% sin(am)[(—v + s’z 2+ k+ f/(0) + p)(1 +v) — u] + g sin(2am)(1 + v).

The integral under study is

+oo
Re Jm (x, t / / ( ! T )\/Zeytdyﬁ.
(v,isx1) x
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With the dominated convergence theorem, we get

T—-+00

~ +o0
lim z'™*Re (J{”(x, t)> = 2/ e *s**sin(am)h(t)ds,
0

where h is defined by

[ (v R F0) ) (1) - p = g '(3/2)
h(t) = /o |Q(v, 0)|2 Vet t—+oo (k+ f/(0))3t%2

This implies that

s esmen (o darsin(am)T(20)0(3
tEmeEElwt/ T2 Re <J1 (x,t)) = asm((kai)f,((o?))g (/2) (4.3.34)

Finally with (4.3.30), (4.3.31), (4.3.32), (4.3.33) and (4.3.34), we have the existence
of a constant z; > max(z,?, cro, (cro)~2) such that, for all z > z; and all t > 1 :

|Ji(z,t)] < | (@, )] + [J](z, 1)
< ofcmma Ly LY

3 pl+20q3/2

where C' > 0 is a universal constant. This estimate added to (4.3.27) and (4.3.28) lead
to the existence of a constant Cy > 0 such that, for x > xy and t > 1,

[J(z,0)] < 2?IQL(IJl(xﬂf)\JrlJz(%‘,t)!)

—c2r2 cos(2¢e)t —/z sin(e) i 1
Cs (e 0 +e + 3 + —xHQQtB/Q) ;

N

which proves Lemma 4.3.4.
[ |

Lemma 4.3.5. Let K be defined in (4.3.20). There exist a universal constant C5 > 0
and a time ty > 0 such that, for all x > 0 and t > ty,

K (z,t) < Cye "8t

Proof : From Lemma 4.3.2, we know that for r > crg and ¢t > 1, there exists a universal
constant Cy > 0 such that for all 5 € (0, %)

[1a(r,6)] < Coem T OZ0 (2 — (20 4 4 F1(0) = £0)] + 1),

with g9 = 75%(1 — ¢**). Consequently, there exists t; > 0 such that for ¢ > ¢, :
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+o0o
|K(x,t)| < C e~ bt1'(0)— )t/ e_’ﬂmt(\/\?“2 — (r2@+k+ f(0) —e)| + 1)dr

T0

Ce—(02ar3a+k+f’(0)—so)t < 036—7‘315

N

I

where C' > 0 and C3 > 0 are universal constants. [ |

The expression of @ obtained in (4.3.21) added to Lemma 4.3.4 and Lemma 4.3.5
enable us to conclude that there exists a constant C > 0 such that for |z| > z; and
t >t

10yt f(0)t
a7 "(0)—c?r2 cos(2e ! —+/|z|sin(e € € 1(0)—r2
u(x,t) < Cy (e(f (0)=crgeos2e))t 4 oI (0}t o=/ Il sin(e) 4 e + o g 1+ O o)t) ,

In the more general case when wu( is any compactly supported initial datum, the
expressions (4.3.2), (4.3.5) and (4.3.16) give

o) A=A+ e+ 1
u(z,t) = ‘ F! | * up(x)e M.

—
2w §

ZONT)

It directly proves the existence of 7 > x; and 51 > 0 that only depends on wug
such that for |z| > 77 and ¢t > ¢, :

f(0)t f(0)t
0)—c3r 2 —4/ |z|sin € € "(0)—r2
@ﬂ<a(f” wmw+eﬁeWS©+uP+mw%%+W”°ﬂ,

which concludes the proof of Theorem 4.3.1.

Remark 4.3.6. If the diffusion on the road is given by the standard Laplacian, we
notice that inequality (4.3.31) is not sufficient to prove that the propagation is linear
in time. A different study has to be conducted.

4.3.3 Proof of Theorem 4.1.2 - Part 2

/
0
Theorem 4.3.1 gives that for all v > ~, = M :
14+ 2a
lim u(z,t) =0 uniformly in |z| > €.

t—+o0

. . S S ()}
This theorem also gives that the level sets move faster than ¢~ 20+2a) ¢132a" . In fact,
we have proved a more precise result concerning the location of the level sets : for all
€ (0,1/u), there exists a constant C\ > 0 such that for ¢ large enough

1o,
{$ eR | u(x,t) = )\} C {ZE ceR | |:13| Cit™ 2(1+2a)6(1+2a) }

Thus, the speed of propagation for this two dimensional model can not be "purely
exponential".
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4.4 Propagation in the field : proof of Theorem 4.1.3

The proof of Theorem 4.1.3 requires an intermediate lemma for propagation in strips.
It is given in [70] for Neumann boundary conditions and inhomogeneous advection.
Here we need Dirichlet conditions, so we provide a proof. In the sequel, we denote by
cxpp = 24/ f'(0) the spreading Velocity in the usual KPP equation (see [6]).

(0,1), let f satisfy

f€C([0,1]) concave, f<f, f(0 ) f( ) =0, and  f'(5) <0< f'(0) = f(0).

Consider v, the solution to

Osvy — Avy = [f(yy), lz| <Ay eR, s >0,
v (£4,y, ) 0, y€eR, s> 0, (4.4.1)
v1(z,9,0) ) 1|x|<A,ye[0,Z}-
Set citpp = 24/f(0) — . Forallc € (0,¢,.,) and all Ay € (0, A), we have
lim inf  vy(x,y,s) > 0.

s5-+00 [o] <Ay yl<es

Proof : We look for solutions of the form v,(z,y,s) = ®(x,y — cs), where @ is a
compactly supported subsolution to the elliptic problem

{ —A®—c),d = f(P), |z|<AyER, (4.4.2)

d(+A,y) = 0, y € R,

For any constant A > CI‘{/EP,

7r
Cepp = 21/ '(0) = qA2 S Cree

(cpp)®—c?
For ¢ € (0,c¢4,,.) and § € (0, ), we set

I o PN
>\A— 2+Z\/f(0) (5 4A2 4,

so that
2

4A%
Notice that with this choice for 0, we have f'(0) — 0 > 0. To get an explicit
expression of ® as a subsolution to (4.4.2), we consider

MEC\R and N, +cda+ f(0)—0=—=

{ A —cd,® = (f(0)-0)®, |z]<AyeR, (4.4.3)

d(+Ay) = 0, y € R.
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For any constant ce > 0, the function
®(z,y) = cpe MV sin(Sm(Aa)y) sin (%(aﬁ + A))

is a solution to (4.4.3) that satisfies

for (z,y) € (A, A) x (O, O(z,y) > 0.

T

%m()\A) ’

Since f is of class C'([0,1]), there exists 7 > 0 such that
for all s € (0,m), (f'(0) —d)s < f(s).

Taking ce € (0, min(n,d)), we have

®(x,y) < min(n,0) in (—AA) X (0, #)\A)) ,

which implies

—AD — 0, < f(®), if |z]<Aandye (0, %mg )> .
A

Let us consider w the solution to

dsw — Aw —cOyw = f(w), |z <A yeR,s>0, (4.4.4)
w(x£A,y,s) = 0, y€e R, s>0, o

with initial condition

wle0) = {‘1’ i (=4,4)x (0. 558

0  otherwise.

Applying the maximum principle in (—A, A) X <0, m), with Dirichlet condi-

tions, we have

for all s > 0 and (z,y) € (—A, A) X (O, m) , w(z,y,s) = P(z,y).

Then, since w(-,-,0) is a subsolution to (4.4.4), the function w is nondecreasing in
the s-variable. The function identically equal to 0 is a supersolution to (4.4.4), which
implies that w is bounded in (—A, A) x R x R,. Thus, there exists a limiting function
Woo(x,y) to which w(z,y,s) converges as s goes to +00. Using classical parabolic
estimates and Ascoli’s theorem, we get the uniform convergence on every compact
subset of (—A, A) x R, as well as for the derivatives d,w, ds;w and Aw. This leads to
— AW — Oy = f(Ws) 1n (—A, A) X R, (4.4.5)
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with Dirichlet boundary conditions. Since s — w(-,-, s) is nondecreasing and starts
from a function that is non identically equal to zero, we have w., # 0. More precisely,
the strong maximum principle applied to problem (4.4.5), with Dirichlet boundary
conditions, gives

forall ) € (0,4), we >0 in (—A;,A4) xR (4.4.6)
We go back to the function v,. There exists cg € (0, min(d,n)) such that
v, (-, 0) = w(-,-,0),
and, with the maximum principle to (4.4.4), we have for all s > 0
vi(e -+ s, s) = w(- - s), in (A, A) x R.
Passing to the limit as s tends to 400 and using 4.4.6, we get

for all A; € (0,A4), lim v,(x,y+cs,s) >0, uniformly in (z,y) € (=41, 41) x R.

S——+00

Proof of Theorem J.1.3 : Let (v,u) be the solution to (4.1.1) with (0,ug) as
initial condition, where uy is a compactly supported function. Let us define u =

max (/%, ||u0||oo> and v the solution to

ﬁtﬂ—_(?yy@ = f(_ﬂ),_ y>0,t>0, (4.47)
—O0yUly—0 = MU —Vjy—, t>0.

with the initial condition v(-,0) = 1j9,1). The couple (v,%) is a supersolution to (4.1.1),
with nonnegative initial condition, and Remark 3.4.6 gives that (v,u) is below (U, %)
at any time. Since f(s) < 0 for s > 1, the maximum principle applied to the system
(4.4.7), gives for all t > 0 :

7(0,t) < pa.

Thus, at every time, the solution @ to (4.4.7) is below the solution 7; to
001 — 0y U1 = f(11), yeR,t>0,
starting from v, (-,0) = v(+,0). Thus we have
for all (z,y) e Rx Ry, and allt >0, wv(z,y,t) <0(y,t) <T(y,t).
Finally, from Aronson and Weinberger in [5], we get :

f 11 i v =u.
or all ¢ > Crpp, tl}inoosgztvl(y’t) 0
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This ends the proof of the first point of Theorem 4.1.3.
The second point of Theorem 4.1.3 is just a matter of counting how many intervals

of length ct fit into [—e, ¢']. Set § € (0,%] and ¢ € (O, szlfe’;) We want to prove the

existence of a constant § > 0 and a time ¢, > 0 such that for ¢t > ¢, and |r| < ct :

v(rcos(d), |r|sin(d),t) = 9.

In fact we prove a stronger result that is the existence of a constant € > 0 such
that, for all ¢ > ¢, the following two points are satisfied :

— v(+,+,t) = ¢ in the strip [—e, €] x [0, ¢sin(0)t],

— tan(f) > cte™®" : this ensures that for all |r| < ¢t : (rcos(f),|r|sin(f)) €
[—et, e!] x [0, csin(f)¢]. This point is illustrated by the following picture.

Y

csin(0)t

__ et et X

More precisely, we prove the existence of constants € > 0 and [ > 0 such that, for
a finite number of intervals [; of length [ covering [—e!, '], we have

tan(f) > cte™®" and wv(-,-,t) =4 in [ x [0,csin(0)t]. (4.4.8)

From Lemma 4.4.1, we can choose [ > 0 and € > 0 such that

[
KPP < CKPP?

esin(f) < c (1 —¢) <c

where ¢, is the speed defined in Lemma 4.4.1. Let [; be an interval of length [
included in [—e®, e**]. From the same lemma, we get the existence of a constant § > 0
and a time s; > 0 such that the solution v, to (4.4.1), defined for A = £ (1 —2) and

A= %, satisfies

in(6
for s> s, |z| € [, and y € [0, clslf(g)s] i vy(my,s) =0 (4.4.9)

Let us define

S eto

1—¢’

to > max ( 5_1> such that > tan(6) . (4.4.10)

Ct()

For all ¢t > to, due to Lemma 4.2.3 and estimate (4.2.29), we know there exist
positive constants L, h, £g and ¢ such that for x € [, and y € [0, % (1 — ﬁ)] :

™
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U(I7y7 5t> 2 €0 Q(x7y7 5t> 2 é
We define

21(1‘; Y, O) = é ]lmell,ye[(),g]'

Let us fix q; € [—e™, e — [] and consider the following system

0sv — Av f(v), xe€l,y>0s>0,
v(a,y,s) = v(a+1ly,s)=0, y>0,s>0, (4.4.11)
v(x,0,s) = 4, x € l;,s>0,

U(‘7'70) = 21(';'70)7
where I; = [a;,a; + [] and, as in Lemma 4.4.1, f satisfies

f€C([0,1]) is concave, f < f, f(0)=f(8)=0and f'(0) <0< f(0)=f(0).

Let us call v; the solution to (4.4.11). The maximum principle applied to this
system gives

foralls >0: wv(-,-,s+¢et) >vy(-,-,5) in I xRy, (4.4.12)

We now consider the problem (4.4.11) in the whole strip [; xR. Due to the definition
of f and the comparison principle, the solution v, to

Osvy — Avy = i(QQ)a rel,yeR s>0,

y2<aluy75) = QQ(a’l =+ l7y7 8) = 07 y € R?‘S > 07 (4413>
22<.7'70> = yl('7'70)7

starting from v, (-, -,0), remains bounded by J at any time. In particular, v, is smaller
than 0 on the line {y = 0} and we have

for (x,y) € [ x Ry and t >0, wvy(x,y,t) < v (z,y,1t). (4.4.14)

Combining (4.4.12) and (4.4.14), it is sufficient to understand the behaviour of
v, to get the expected result on v. Using (4.4.9), we have for s > s, x € I; and
[ csin(6) }
€ [0,——=s]|:
1—¢
v(z,y,s+¢et) = vy(x,y,s) = 0.

Finally, taking s = (1 — &)t > (1 — €)tg > s;, we have

for t >t;, and (x,y) € I, x [0,csin(0)t], v(z,y,t) > 0.

This is true for all intervals I; C [—e®, e!], which concludes the proof. n



Chapter 5

Numerical simulations

5.1 Introduction

This chapter is devoted to numerical simulations concerning the model studied in
[18, 17, 19] (for a = 1) and in the two previous chapters (for D = 1) :

ov—Av = v—12 reR,y>0,t>0,
O+ D(—=042)%u = —u+vy—, €R,y=0,t>0, (5.1.1)
—OyUjy—0 = uU— V-, TERy=0,t>0,

for a constant D > 1, completed with initial conditions v(+,-,0) = 0 and ug(x) =
Ljzi<1y-

The goals are the following. We not only want to illustrate known results in
both cases @« = 1 and a € (0, 1), but also investigate qualitatives properties (like the
monotonicity of the density v and the role of the term —u + vj,—¢), and a precise
asymptotic expression of the location of the level sets in the fractional case.

It is organised as follows. Section 5.2 is devoted to the numerical procedure used
to solve problem (5.1.1). In section 5.3, in addition to illustrating the results proved
in [18], [17] and [19] in the case @ = 1 and D > 1, which is a good indication of the
validity of the algorithm set up, we study the signs of 9,v),—y and —u + vj,—. Section
5.4 concern an illustration of Theorems 4.1.2 and 4.1.3, that treat problem (5.1.1)
with @ € (0,1) and D = 1, and section 5.5 investigate a more precise expression of the
asymptotic location of the level sets.

5.2 Numerical procedure

The numerical computation of the solution to (5.1.1), described in this section, is valid
for any o € (0,1]. We treat separately the three equations of the system. We begin
with the description of the second equation of (5.1.1), that concerns the density u on
the road. Then, we turn to the first equation of (5.1.1) that gives the evolution of the
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density v in the field. Finally, the third equation of (5.1.1) is considered as a Robin
boundary condition of the first equation of (5.1.1).

— The second equation of (5.1.1) is treated as in section 1.7, dealing with Strang
splitting and Fourier transform in the x variable. This technique is valid for all
« € (0,1]. Let us recall the main steps. If 7" denotes the semi flow associated
with (5.1.1), a natural approach to estimate T"uy is to split the diffusive term and
the reaction term as follows. Let ¢y be any nonnegative constant and u;, : R — R
any function, non identically equal to 0, that decays faster than the fundamental

«

solution p, of the operator (—A)®.
1. The first step of the splitting treats the diffusive part of (5.1.1), which is

{ Ou+ D(—=0pz)*u = 0, R, ¢ > ty,

u(z,ty) = uy(z), zeR. (5:2.1)

The solution to (5.2.1), denoted by X'‘uy,, is explicitely given, for x € R
and t > ty, by

Xty (,8) = F* (& P60 Fu)(€)) (2),

where F and F~! are respectively the Fourier transform and the inverse
Fourier transform in the space variable.

Remark 5.2.1. The solution X" u,, is computed with Fast Fourier Transform
techniques that require a small step size of discretisation in the z-variable.

2. The reaction term of (5.1.1) appears in the second step of the splitting, and
is given by the ordinary differential equation :

{ Ou = —u+uvy—, R, >0,

u(z,to) = ug(x), rER. (5.2.2)

The solution, denoted by Y'u,,, has the explicit expression

t
Yiug, (z,t) = e~ )y, (2) +/ e~ Dy(x,0, 5)ds.
to
We use the explicit Euler method to solve (5.2.2) on [— X,na0, Xmaz) X [to, to+
T], for any X, > 0, and any 7' > 0. Given N € N* and J € N* large
enough, this method consists in constructing, for n € [0, N] and j € [0, J],
a sequence uj, which is supposed, as usual, to approximate u(z;,t,), with
dr = 2%, Tj = —Xpmag + jdz, dt = % and t, = ndt. The sequence uy is
defined by
u? = Ut (xj)a
and for all n € [0, N — 1] and all j € [0, J] :

U,;LJFI = u;L + dt eidt(u? +v ($]7 07 tn))
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As explained in section 1.7, the two Strang approximation formulas are, for ¢ > ¢

t—tg t—t
2

Sy, = X YN Ty, Sy, = Y R XY 2y, (5.2.3)

In our case, numerical results show that both approximations S; and Sy lead to
the same results.

Remark 5.2.2. We could have split the second equation of (5.1.1) considering
the following problems :

Ou+ D(—=0p2)*u = —u, R, t > to,
u(z,ty) = uy(x), reR,

and

Ou = vp—, R, t>0,
u(z,to) = uy(r), reR.

This leads to similar results to those obtained with the splitting (5.2.1) and
(5.2.2).

— The first equation of (5.1.1) is treated with a finite difference scheme. We keep
in mind that, as explained in Remark 5.2.1, a small step size of discretisation
in the xz-variable is needed in the numerical solvability of the second equation of
(5.1.1). Thus, for any X4 > 0, YViee > 0, T > 0, we solve the first equation of
(5.1.1) on [— X 4z Ximaz) X [0, Yinaz| X [to, to+ T, using the explicit Euler method
in the y-variable, and the backward Euler method in the z-variable. We impose
Neumann boundary conditions except on the road [—Xnaz, Ximaz] X {0}, where
the boundary condition is given by the third equation of (5.1.1).

Let us describe the method in more detail. Given N € N*, J € N* and K € N*
large enough, it consists in constructing, for n € [0,N], 7 € [0, J], and k €
[0, K, a sequence v}, supposed to approximate v(—Xmaz + jd, kdy, ndt), with
dr = 2%, dy = % and dt = % The sequence v is defined by the following
scheme :

1. Initial condition : for all j € [0, J] and k € [0, K] :
U;),k' - 0,

2. Euler scheme : for allmn € [O,N — 1], j€[l,J—1]and k€ [1,K —1] :

n+l _ n n+l n+1 n+1 n - n n
Uik T Uk Yk T 25 U U 200 H 0

dt dx? dy? = Yik = Yjk
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3. Neumann boundary conditions : foralln € [0, N—1],j € [1,J—1] and k €

[, K —1] :
Vo =Viks Uk =0l Uik =ikl
The boundary condition on [— X4z, Xmaz] X {0}, which corresponds to the

value of v;-farl, is given by the third equation of (5.1.1).

— The third equation of (5.1.1), that concerns exchanges between the field and
the road, is treated with a finite difference method. Using the same notations
as previously, we consider that for all j € [0,J] and all n € [0, N], u} is
an approximation of u(—X,,..; + jdr,ndt). Thus, the boundary condition on
[— Xonazs Xmaz) X {0} is given, for all n € [0, N — 1] and j € [0, J], by :

n+l _  n+l

_/Ujvl Uj:O _ U,T-H_l _ U’-’H—l
dy J J,0 >

which means

n+1 n+1
ot vy + dy uj

3o 1+dy

In the sequel, the stopping criterion is imposed by a time from which the expected
speed of propagation is reached, in both cases & = 1 and « € (0,1). The step sizes of
discretisation in the x-, y- and t- variables are chosen so that the Courant - Friedrichs
- Lewy (CFL) conditions are satisfied.

5.3 Standard diffusion on the road (o =1) : level sets
in the field

We first want to illustrate the theorems, recalled in the general introduction of the
thesis and proved in [18, 17, 19|, that concern the following Cauchy problem

ov—Av = v—12 reR,y>0,t>0,
O — DOyt = —u+wp—, z€R,y=0,1>0, (5.3.1)
—OyUjy—0 = U— V-, TERy=0,t>0,

for a constant D > 2, starting from the initial conditions v(-,-,0) = 0 and u(-,0) =
1{j<13- Such a diffusion coefficient on the road enhances global diffusion in the half
plane, and the propagation is driven by the diffusion on the line {(z,0),x € R}. The
different speeds of propagation, on the road and in the direction normal to the road,
solve algebraic equations, given in (5.3) of [18]. It is of particular interest to know
the speed of propagation in any direction of the field. In other words, we want to
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illustrate the shape of the level sets of the solution (v, u) to (5.3.1) in the field, which
is rigorously given in [19].

In our numerical computations, we fix D = 10, X,,,, = 200 and Y,,,,, = 100, which
means that we work in the domain [—200,200] x [0,100]. In this case, the results of
[18] gives a speed on the road close to 3,32, whereas the speed in the direction normal
to the road is cxpp = 2.

field'

PN

I |
-200 -150 -100 -50 o 50 100 150 200
‘road’

field'

‘road’

Figure 5.1: Results for « = 1 and D = 10 in (5.3.1): the shape of the level sets of
value 0,5 of v, solution to (5.3.1), at successives times ¢ = 10,15, ..., 35 (at the top),
and the density v at time ¢t = 35 (at the bottom).

Figure 5.1 gives the shape of the level sets of value 0,5 of v, solution to (5.3.1) at
successives times t = 10, 15, ..., 35, and the display of the density v in the field at time
t = 35. The level sets displayed on this figure are even and decreasing in |z| functions
gn : R — R, satisfying, for all z € R and for all n € [1,7],

1
u(xa 9n<x>7 tn) = 57

where ¢, = 5n, for n € [1,7].

Using the values given by Figure 5.1, we can check that the speed of propagation
in the direction normal to the road corresponds to the standard KPP velocity. Indeed,
for n € [1,6], the quantity g,11(0) — ¢,(0), corresponding to the expected speed of
propagation multiplied by the time elapsed between two successive level sets, is equal
to 2 x 5 = 10, which is the value we obtain when analysing Figure 5.1.

Let us now interpret Figure 5.1. It reveals that the level sets seem to be circular
in a sector whose axis is normal to the road. The shape of the level sets we obtained
corresponds to the set W proved in [19]|, where the authors explain that the road
enhances the asymptotic speed of propagation in every direction of the field, up to a
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critical angle. The shape of the level sets of v is almost similar to the one described in
Theorem 1.1 of [19]|. There is, however, a particular phenomenon in a neighbourhood
of the road. Indeed, for y € [0,Yp(¢)] where Yp is a function that may depend on
time and the diffusion coefficient D, 0,v seems to be positive. At first sight, this is
surprising, even though not incompatible with [19]. Indeed, the expansion set studied
in [19] is an asymptotic figure, up to o(t) perturbations. From the results proved in
[19], we should have Yp(t) = o(t), as t goes to +o0.

T
m\
~

20 \\
0
200 200 e00 s00

Figure 5.2: Level sets of value 0,5 of v at successive times t=10,20,30,40 and the
tangent line to the level set at y = 0 and at time ¢ = 40 for the different values of
D: D =10,D = 50,D = 100, D = 500 and D = 1000 (from left to right and up and
down). The z axis and y axis do not have the same scale.

Figure 5.2 shows the tangent lines to the level set of value 0,5 of v, at y = 0
and t = 40, for the different values of D : D = 10, D = 50, D = 100, D = 500 and
D = 1000. For the sake of readability, the = axis and y axis do not have the same
scale. The angle between the tangent and the normal to the road is equal to 68, 8°
for D = 10, 77,4° for D = 50, 83,1° for D = 100, 86,6° for D = 500 and 87,7°
for D = 1000. This reveals that the slope of the tangent lines to the level sets of
the density in the field, at points touching the road, seems to decrease as D tends to
infinity.
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Figure 5.3: Display of —u 4 vy—o for (v,u) solution to (5.3.1) with @ = 1 and D = 10,
at successives times t = 5,15, ..., 35, with a colour graduation from blue to red.

It turns out that this is related to the fact that there is no reaction on the road in
(5.3.1). In fact, the term —u+ vy~ may be thought of as a nonnegative reaction term
for the second equation, as shown by Figure 5.3. This is only a heuristic explanation
of the fact that propagation is actually driven by the road. Notice the analogy with a
positive reaction term, as, for instance, flame propagation theory (see [15, 84|). Also
note the dissymmetry of the level sets of —u+v},—o. Thus, the third equation of (5.3.1)
gives 0,v(z,0,t) > 0, for all z € R and ¢ > 0.

To confirm the hypothesis that —u + v,—o acts as a source term, we allow repro-
duction on the road and we take the same rate as in the field :

ov—Av = v—10? reR,y>0,t>0,
du+ D(=0)u = —u+vy—o+ (u—u?), zeRy=0,t>0, (5.3.2)
—OyUly—0 = U — V}y—o, reR,y=0,t>0.

We see, on Figure 5.4 that the exchange term is damped by that of the source term
added on the road.

Figure 5.4 shows that the shape of the level sets of v, solution to (5.3.2) is exactly
the one described in [19]. Figure 5.5 highlights the cone, around the normal to the
road, outside which the speed of propagation is enhanced by the road. This figure also
underlines the effect of a reaction term on the road, on the tangent lines to the level
set of v at y = 0 and t = 35.

The good quantitative agreement between the results of [18, 17, 19], and the nu-
merical simulations is an indication of the validity of the numerical procedure.
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Figure 5.4: Results for « = 1 and D = 10 in (5.3.2): the shape of the level sets of
value 0,5 of the density v, solution to (5.3.2), at successives times t = 10, 15, ...,35 (at
the top), and the density v at time ¢ = 35 (at the bottom).
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Figure 5.5: Level sets of value 0, 5, at successive times t = 10, 15, ..., 35, of the density
v solution to (5.3.1) at the top, and to (5.3.2) at the bottom. In red : the critical cone
in which the level sets are spherical, in blue : the tangent lines of the level set at y = 0
and at time t = 35.

5.4 Fractional diffusion on the road (a € (0,1)) : level
sets in the field

In this section, we focus on the following Cauchy problem

ov—Av = v—12, reRy>0,t>0,

Oru + (—0pe)*u —u+ vy, €R,y=0,t>0, (5.4.1)
—OyUjy—0 = U—Vpy—o, TERy=0,t>0,
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for v € (0,1), starting from the initial conditions v(-,-,0) = 0 and u(-,0) = L.<13 to
illustrate Theorems 4.1.2 and 4.1.3.

In our numerical computations, we fix @ = 0,5, X4 = 200 and Y, = 100, which
means that we work in the domain [—200,200] x [0,100]. From Theorem 4.1.2, the

speed of propagation is expected to be exponential in time, with an exponent equal to
1 1

14+2a = 2°

fisld

field"

Figure 5.6: Results for « = 0,5. Shape of the level sets of value 0,5 of the density v,
solution to (5.4.1), at successives times ¢ = 10, 15, ..., 35 (at the top), and display of v
at time t = 35 (at the bottom).

Figure 5.6 gives the shape of the level sets of value 0,5 of v, solution to (5.4.1), at
successives times ¢t = 5, 10, ..., 35. The level sets displayed on this figure are even and
decreasing in |z| functions g, : R — R, satisfying, for all x € R and for all n € [1, 7],

u(,gu(x), 1) = 5,
where t,, = bn, for n € [[1,7].

Using the values given by Figure 5.6, we can check that the speed of propagation
in the direction normal to the road corresponds to the standard KPP velocity. Indeed,
similarly to the case a = 1, for n € [1, 6], the quantity g,+1(0) — ¢,(0), corresponding
to the expected speed of propagation multiplied by the time elapsed between two
successive level sets, is equal to 2 x5 = 10, which is the value we obtain when analysing
Figure 5.6. Similarly, we can verify that the speed on the road is exponential in time
with exponent equal to 1+;2a Indeed, if, for any n € [[1,7], z, satifies g,(x,) = 0,

tpt1—tn
then, for n € [[1, 6], the quotient 2L is close to e 120 , as expected.

Tn
As in the case a = 1, it seems that, in a neighbourhood of the road, the quantity
Oyv is positive, as explained in section 5.3. Figure 5.6 also displays the density v in
the field at time ¢t = 35 (at the bottom). This figure illustrates the proof of Theorem

4.1.3, where we use the fact that the invasion in the field is given by known results on
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Fisher-KPP type equations, in the half plane {(z,y), x € R,y > 0}, with the initial
condition 1y,—gy. This figure reveals that, at time ¢ = 35, the level set seems not to
be a straight line in the compact [— X, 40, Ximaz) X [0, Yinaz)-

o L L L L L L )
100 80 &0 40 20 [a] -20 -40 -60 -80 -100

Figure 5.7: Level sets of value 0, 5 of the density v solution to (5.4.1), with a = 0,5, at
successive times ¢t = 10 and ¢ = 20, 40, 60, ..., 200 in black. The red straight lines make
it easy to see the decreasing difference between the value of the level set at points
(150,y) and (0,y), for values of y corresponding to the times ¢t = 20, ¢ = 100 and
t = 200.

To investigate this phenomenon, we solve the same problem (5.4.1), with a = 0, 5,
but stopping the procedure at time ¢ = 200 instead of ¢ = 35. Figure 5.7 shows the
result. We can see that, for any y > 0, the difference between the level set at point
(0,y) and the value of the level set at point (150,y) decreases in time. Thus, this
distance seems to be a small perturbation of order o(t), as t goes to infinity, in the
expression of the location of the level sets, which is consistent with Theorem 4.1.3. An
explicit expression of this perturbation is not given in this theorem, in which we focus
on propagation in sets of the form {|z| < ct,y € [0, Yiuae]} With ¢ < cxpp = 2, and
{lz| > ct,y € [0, Yinaz|} with ¢ > cxpp = 2.

5.5 Numerical determination of the asymptotic loca-
tion of the level sets, on the road, in the fractional
case

The problem under study in this section is the same as in section 5.4 :

ov—Av = v—12 reRy>0,t>0,
O+ (=0pp)®u = —u+vy—o, v€R y=0,t>0, (5.5.1)
—OyUjy—0 = U—Vpy—o, TERy=0,t>0,
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for o € (0, 1), starting from the initial conditions v(:,-,0) = 0 and u(-,0) = L. <13
From Theorem 4.1.2, we know that the propagation on the road is exponential in
time. However, this theorem does not give a sharp asymptotics of the location of the
level sets. The aim of this section is to investigate numerically a more precise result.
Our intuition is driven by the estimate of the solution to the linearised problem at 0
associated to (5.5.1), given in Theorem 4.3.1, and recalled here, in the case k = 0.

Theorem 5.5.1. Let o € (5,1), and ro > 1 be the solution to 1§ = r3* + 1. There

: (1
existc € | —,

1) and a constant Cy > 0 such that for |x| > 1, the solution u to (5.5.1)
To

satisfies

with
R(aj7t) < 6(1—c2r(2) cos(2¢))t +efe” || sin(e) -t 6(1_T%)t7

where € > 0 satisfies c*rg cos(2e) > 1.

Thus, the dynamics of the level sets of u is given, for large values of |x| and ¢,

et

V ||1+Tt3/2 This proves rigorously that the level sets can not move faster than
x

¢~ 70+2] ¢ 772 . This raises the following question : would, by any chance, the solution
to the linearised problem at 0 related to (5.5.1) give the correct asymptotic expression
of the location of the level sets?

To see this, we rescale problem (5.5.1) in the z-variable, defining the functions v
and u, on R x R, xR, by

0(Z,y,t) = v(et™™T,y,t) and w(T,t) = u(et"T, 1),

where | = ﬁ, and m > 0 is the constant that we want to investigate. The couple

(v, u) solves for T € R

IS

0 — (I = VT30 — e 22" 00 — D0 = U — 0, y>0,t>0,
o — (I — %)x@;u + em20ltgZom (9. = —U+ Vg, y=0,t>0, (55.2)
—8y5|y:0 = u- f77|y:0, Yy = 0, t>0.

Instead of solving (5.5.2) from t = 0, we choose to solve the initial problem (5.4. 1)
up to a time t > 0, and then to solve the rescaled problem (5.5.2) starting at t = .
This technique avoids restrictive CFL conditions, due to the coefficient 7, and ensures
the solution to be close to its stationary state in a non empty compact set. The time
t is numerically defined as the first time for which the density u, solution to (5.4.1),
reaches its stationary state 1.
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The numerical procedure used to solve (5.5.2) is the same as in section 5.2 : the
first and third equation of (5.5.2) are treated with a finite difference method, whereas
a Strang splitting method solves the second equation of (5.5.2). Let us describe this
splitting that have to include a transport term. Let ¢y be a positive constant and wy,
be any piecewise continuous function, # 0, decaying faster than |§|_(1+2a) at infinity.

1. The first step of the splitting includes the diffusive term of (5.5.2), which is

w(T,tg) = u(z), TR (5:5:3)

{ Ot + e~ 2eltg2am(_g Yo = () TER,t> 1o,
The solution to (5.5.3), denoted by X uy,, is explicitely given, for ¥ € R and
t > to, by

Xt (7,6) = F~! (5 eI i s (¢ )) (%),

where F and F~! are respectively the Fourier transform and the inverse Fourier
transform in the space variable. The solution X', is computed for small values
of (t — ty) using the following first order approximation

t
/ 6—2al582amd8 — (t o t0>6—2alt0t3am + O(t . to),
to

and using Fast Fourier Transform (FFT) techniques. Note that FFT solvers
require a small step size of discretisation in the z-variable.

2. The reaction and transport terms of (5.5.2) appear in the second step of the
splitting, which is given by the transport equation :

Oi(F, 1) — (I — ™)FOsU(T,t) = —u(F,t)+0(F,0,t), TER,t>0,
w(@,te) = Ty (3), FeR.
(5.5.4)

The solution, denoted by ?tuto, has the explicit expression

t
Y, (7,t) = e 07, (et 7) +/ e~y (7™M, 0, 5)ds.

to
We fix constants )Zmax > 0 and T > 0, and solve (5.5.4) in the bounded domain
[—)N(max, )?max] for t € [to, to+T]. The transport term is treated with a backward
difference method if * > 0, and a forward difference method if z < 0. More
precisely, given any large constants J € N* and N € N*, the numerical procedure
used to solve (5.5.4) consists in constructing, for j € [0, J] and n € [0, N], a
sequence u that is supposed to approximate u(7;,t,), with dv = 2%, dt = %,

T; = —Xyae + jdz and ¢, = ndt. The sequence uj is defined by
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— forall j € [0,J] : @) = @y, (),
— foralln e [0,N —1] and j € [1,J —1] :
~n+1 ~n dt m ~ [(~n ~n ~n ~ (1~ o
uytt = Uy + . [ — . Ti(uyy —uy) +di(—uj +v(75,0,t,)), if 7; >0,

and

- - dt myY - ,—, ~ o~ i~ o~
u;?+1 =)+ o (l — t_) zi(uy — i) +dt(—uj +v(7;,0,t,)), if 7; <O0.
for all n € [0, N], the boundary conditions u} and u'; have to be imposed. A
first guess would consist in Dirichlet or Neumann boundary conditions. To
check if one of these choices is relevant, we solve numerically the transport
equation

Ow(z,t) — cOpw(x,t) = w(w,t) —w(x, t)?, r € Rt >0, (5.5.5)

for a constant ¢ > 0, completed with an initial condition wq at time 0. The
explicit solution is

wo(xe)
wo(zet) + (1 — wo(zet))et’

w(z,t) = (5.5.6)

Three cases are possible regarding the long time behaviour of w :

— if wo(z) =0 <|xlfl> as |z| — 400, then
w(z,t) — 0, uniformly in z,
t——+o00

1

¢ =0 (wy(z)™!) as |z| — +oo, then

— if |z

w(z,t) — 1, uniformly in x,
t——+o00

— if the function x — wo(x) |x|% is bounded for large values of |z, then

1
c

z— w(x,t) |z is bounded as time ¢ goes to +o0, uniformly in x.

In our case, due to the Strang splitting, we know that the initial condition
considered in (5.5.4) comes from the solution to (5.5.3) at time t, + %,
where dt is the time scale of the splitting. Consequently, it behaves like
2|72 at infinity. Let us take

1

- 1_|_ ’x‘1+2a'

wo ()
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Figure 5.8: Problem (5.5.5) with ¢ = 2 at time ¢ = 5 : comparaison between the exact
solution and the numerical solutions with Dirichlet or Neumann boundary conditions.

With this choice and using the explicit expression (5.5.6) of the solution to
the transport equation (5.5.5), with ¢ = ﬁ, we know that, at any time,
1+2«

this solution decays like 2|~ at infinity.

Figure 5.8 shows that Dirichlet or Neumann boundary conditions are not
precise enough to study long time behaviour of such a transport equation.
Thus, natural boundary conditions are, for all n € [0, N|

i |x1|1+2a

1—W’&g and Uy =

A (5.5.7)
J-1

Figure 5.9 suggests that this choice is relevant.

Figure 5.9: Problem (5.5.5) with ¢ = 2 at time ¢ = 5 : comparaison between the exact
solution and the numerical solution imposing the boundary conditions given in (5.5.7).
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We refer to section 5.2 for a description of the numerical procedure used to solve
the first and third equation of (5.5.2). Note that, as explained when analysing the
behaviour of the solution to the transport equation (5.5.5), the boundary conditions

of v on {— Xmax} 0, Ymax] and {Xmax} [0, Ymax] have to be carefully imposed. We

use that this function should decay like |:1c| (1420) ot infinity. This result is not proved

in the thesis. However, since v has the same decay as v at infinity, the result proved in
section 4.2.2 is useful. Indeed, we have bounded from below a subsolution to (5.4.1)
at time 2. The result obtained in Lemma 4.2.2 is valid at any time ¢ > 0. An upper
bound of the function v could be computed using the linearised problem at 0 and the
same computations as the one in section 4.3, where we have proved that the function
u decays faster than |z|~""2*) at infinity.

_ Let us describe the numerical results obtained for a = 0,5, )?max = 2000 and
Yinaz = 500. Recall that we are investigating the rescaled problem (5.5.2) for v and u
defined on R x R, x R, by

0(Z,y,t) = v(et™™T,y,t) and w(T,t) = u(etT"T, L),

with [ = - +2 and m > 0 the constant that we want to study.
(6%

Figure 5.10: Evolution of the density u solution to (5.5.2), with a = 0,5, for m = 0
(on the left) and m = H%a (on the right), at successive times ¢ = 30,40, 50, ..., 200
with a colour graduation from blue to red.

The left side of Figure 5.10, that concerns m = 0, shows that the level sets move
faster than eﬁr%a which illustrates Theorem 5.5.1. The right side of Flgure .10, that
concerns m = 5= +2 , shows that the level sets move slower than ¢~ T e THEa Indeed, it
seems that, in this case, the rescaled density u tends to dy as t goes to infinity.
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Figure 5.11: Evolution of the density u solution to (5.5.2), with o = 0,5, for m =
m, at successive times t = 30,40, 50, ...,200 with a colour graduation from blue
to red.

Figure 5.11 concerns the particular choice m = m, suggested by the upper
bound of Theorem 5.5.1. On compact sets, the rescaled density u seems to converge
to a function that does not move in time. This investigation hints that the asymptotic

3
expression of the location of the level sets should by like ¢ 20+22) T,



Conclusion and Perspectives

In this thesis, we have set up a new method to study the long time behaviour of so-
lutions to reaction problems involving integral diffusion. The starting point was to
sharpen estimates of Cabré and Roquejoffre in [26]. This has enabled us to treat prob-
lems that would have been difficult to attack with the previously known arguments.

Part I of the thesis has been devoted to a rigorous analysis of the asymptotic
location of the level sets of the solution to two different problems.

In Chapter 1, we have applied our method on a Fisher-KPP model in periodic media
with fractional diffusion. We have been able to construct precise explicit subsolutions
and supersolutions. Thus, we have proved that the transition between the unstable
state and the stable one occurs exponentially fast in time, and we have obtained the
precise exponent that appears in this exponential speed of propagation. This has led to
the proof of the convergence of the solution to its stationary state on a set that expands
with an exponential in time speed. Numerical simulations have been carried out to
understand the dependence of the speed of propagation on the initial condition at lower
order in time. Although the different numerical results, done for the homogeneous
model in dimension two, have given a precise idea of what is happening, a mathematical
proof should be undertaken. Indeed, it seems that there is a symmetrisation of the
solution, in the sense of Jones in [57]. Proving this observation requires an estimate
of the gradient of the solution, which is not done in this thesis. This geometric result
of symmetrisation could also be studied in periodic media. Moreover, as suggested
by numerical investigations, it seems that the diffusive term of the reaction-diffusion
equation only plays a role for small times. It would be interesting to show it rigorously.
Finally, one could think of further perspectives. A first one consists in getting similar
results for integro-differential equations, and thus obtaining more precise asymptotics
as the ones proved in [47]. More general heterogeneous media might also be analysed,
media for which the notion of generalised eigenvalues is needed.

In Chapter 2, we have treated a cooperative reaction-diffusion system including
fractional diffusion. Once again, the method given in the introduction of the thesis
leads to the construction of explicit subsolutions and supersolutions to the system.
This enables us to prove that the solution spreads exponentially fast in time, and we
find the precise exponent of propagation depending, among others, on the smallest
order of the diffusive terms involved in the system. The transition between standard
reaction-diffusion systems and fractional reaction-diffusion systems remains to be in-
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vestigated.

Part II of the thesis deals with a two dimensional environment, where reproduction
of Fisher-KPP type and usual diffusion occur, except on a line of the plane, on which
fractional diffusion takes place. The plane is referred to as "the field" and the line
to "the road", as a reference to the biological situations we have in mind. Indeed,
it has long been known that fast diffusion on roads can have a driving effect on the
spread of epidemics. This new model shows the limits of the method described in the
introduction of the thesis.

In Chapter 3, we have described the framework, using Hilbert spaces and the
theory of sectorial operators. These choices have several advantages. The main one
is to allow the computation of the fundamental solution through a Laplace integral.
Also a comparison principle has been easily obtained. This framework is especially
relevant as it has led to the existence, uniqueness and regularity of the solutions, for
particular orders of the fractional diffusive term (a € (1/4,1)).

In Chapter 4, we have studied the long time behaviour of the solution, composed
of the densities on the road and in the field, to this two dimensional environment. We
have proved that the speed of propagation is exponential in time on the road, whereas
it depends linearly on time in the field. Contrary to the precise asymptotics obtained
in Part 1 of the thesis, for this model, we are not able to give a sharp location of
the level sets on the road and in the field, at least up to an O(1) error. This lack of
precision is due to the explicit subsolution, that we have constructed in a strip of large
width. It would be of interest to find a subsolution in the whole half plane. Moreover,
the study in the field could be improved, in order to get a more precise expansion
shape. A Bramson type shift may occur, which would be interesting to understand.

In Chapter 5, we have carried out numerical simulations, that have outlined quite
interesting perspectives. First, we have illustrated the theorems proved in [18, 17, 19|,
which has given an indication of the validity of the numerical procedure. The results
have shown a surprising phenomenon close to the road. Indeed, the tangent lines to
the level sets of the density in the field, at points touching the road, make an angle in
[0, 7) with the road. Moreover, this angle seems to decrease as the diffusion coefficient
tends to infinity. It looks as if this phenomenon comes from the exchange term, that
might play the role of a source term. It would be of interest to prove it rigorously.
Then, we have illustrated the results of Chapter 4. This has shown a more precise
shape of the expansion set in the field. Once again, this is something which needs to be
mathematically investigated. Finally, we have carried out the numerical determination
of the asymptotic location of the level sets on the road. Again to our surprise, our
results have shown that the upper bound of this location, given by the supersolution
that we have computed in Chapter 4, seems to give the precise expression of the speed
of propagation. To understand this, perhaps with probabilistic tools, is a fascinating
open problem.
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