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Résumé

L’objectif de cette thèse est l’étude d’un schéma numérique pour l’approximation des solutions

d’équations différentielles doublement stochastiques rétrogrades (EDDSR). Durant les deux der-

nières décennies, plusieurs méthodes ont été proposées afin de permettre la résolution numérique

des équations différentielles stochastiques rétrogrades standards. Dans cette thèse, on propose

une extension de l’une de ces méthodes au cas doublement stochastique. Notre méthode numé-

rique nous permet d’attaquer une large gamme d’équations aux dérivées partielles stochastiques

(EDPS) nonlinéaires. Ceci est possible par le biais de leur représentation probabiliste en termes

d’EDDSRs. Dans la dernière partie, nous étudions une nouvelle méthode des particules dans le

cadre des études de protection en neutroniques.

Cette thèse contient quatre chapitres. Dans le second chapitre, on propose un schéma numérique

pour les EDDSRs. Nous étudions l’erreur de discrétisation en temps issue de notre schéma puis

nous donnons la vitesse de convergence associée. Ensuite, nous déduisons un schéma numérique

pour l’approximation des solutions faibles d’EDPS semilinéaires et nous donnons la vitesse de

convergence en temps pour ce dernier schéma. Nous finissons le chapitre par des tests numériques.

Dans le troisième chapitre, nous étendons notre méthode numérique aux équations différentielles

doublement stochastiques rétrogrades généralisées (EDDSRG). Nous étudions l’erreur de discréti-

sation en temps et donnons la vitesse de convergence associée. Ensuite, nous déduisons un schéma

numérique pour l’approximation des solution des EDPS quasilinéaires associés aux EDDSRG, en

donnant la vitesse de convergence en temps. Nous finissons ce chapitre par des tests numériques.

Dans le quatrième chapitre, on propose un schéma pour l’approximation par projections et simu-

lations de Monte-Carlo des solutions d’EDDSRs discrètes. Ces EDDSRs discrètes apparaissent

naturellement suite à la discrétisation temporelle des EDDSRs. On étudie l’erreur de régression

dans un cas particulier mais très instructif. Afin d’éviter le problème de grandes dimensions dû

au bruit auxilière, on procède à une analyse conditionnelle de l’erreur sachant les trajectoires

de ce bruit extérieur. On obtient des bornes supérieures presques sûres non asymptotiques mais

explicites de l’erreur de régression conditionnelle qui assurent la convergence de notre schéma.

Ces bornes nous permettent de choisir les paramètres pour atteindre une précision donnée.

Dans le dernier chapitre, on étudie un problème d’estimation de probabilités faibles dans le cadre

des études de protection en neutroniques. On adapte une méthode récente d’estimatiom de faibles

probabilités par un système de particules en interaction, se basant sur l’algorithme de Hastings-

Metropolis et qui est proposée initialement pour les variables aléatoires, au cas des chaînes de

Markov. La formulation en termes de chaînes de Markov est très naturelle dans le cadre des neu-

troniques. On montre la convergence de notre algorithme. Enfin, l’implémentation de la méthode

est donnée en détails dans le cas unidimensionnel ainsi que dans le cas bidimensionnel, avec des

résultats numériques.

Mots-clés : Equations différentielles doublement stochastiques rétrogrades, Equations aux dé-

rivées partielles stochastiques semilinéaires, Equations différentielles doublement stochastiques

rétrogrades généralisées, Equations aux dérivées partielles stochastiques quasilinéaires, Projec-

tions, Simulations de Monte-Carlo, régression, Système de particules en interaction, Algorithme

Hastings-Metropolis, Chaînes de Markov.



Abstract

The purpose of this thesis is to study a numerical method for backward doubly stochastic

differential equations (BDSDEs in short). In the last two decades, several methods were proposed

to approximate solutions of standard backward stochastic differential equations. In this thesis, we

propose an extension of one of these methods to the doubly stochastic framework. Our numerical

method allows us to tackle a large class of nonlinear stochastic partial differential equations

(SPDEs in short), thanks to their probabilistic interpretation. In the last part, we study a new

particle method in the context of shielding studies.

This thesis contains four chapters. In the second chapter, we propose a numerical scheme for

BDSDEs. We study the error arising from the time discretization of these BDSDEs and we

give the rate of convergence in time. Then, we deduce a numerical scheme to approximate the

weak solutions of the associated semilinear SPDEs and we give the rate of convergence in time.

Numerical tests are also given.

In the third chapter, we extend our numerical scheme to generalized backward doubly stochastic

differential equations (GBDSDEs in short). We study the time discretization error and we give

the rate of convergence in time. Then, we deduce a numerical scheme to approximate the solutions

of the associated quasilinear SPDEs, with a divergence term. We deduce the rate of convergence

and we give numerical tests.

In the fourth chapter, we propose an algorithm based on projections and Monte-Carlo simulations

to approximate solutions of discrete BDSDEs, arising from the time discretization of BDSDEs.

We study the regression error in a particular but very instructive case. In order to avoid the

curse of dimension induced by the auxilary noise, we proceed to a conditional analysis of the

error given this exterior noise. We obtain non asymptotic but explicit almost sure upper bounds

for the regression conditional error. This insures the convergence of our scheme and allows us to

choose parameters to achieve a given accuracy.

In the last chapter, we study a problem of small probability estimation in the context of shielding

studies in neutron transport. Thus, we adapt a recent interacting particle method for small

probability estimation, based on Hastings-Metropolis algorithm and given initially for random

variables, to the case of Markov chains, which is a natural formulation for neutron transport

problems. We show the convergence of our algorithm. Then, the practical implementation is

given in details in the one and two-dimensional cases, with numerical results.

Keywords : Backward Doubly Stochastic Differential Equations, Semilinear Stochastic PDEs,

Generalized Backward Doubly Stochastic Differential Equations, Quasilinear Stochastic PDEs,

Projections, Monte-Carlo simulations, regression, Interacting particle systems, Hastings-Metropolis

algorithm, Markov chains.
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Chapitre 1

Introduction

The aim of this thesis is to study a numerical method for backward doubly stochastic differential

equations (BDSDEs in short). In the same time, using the probabilistic interpretation of non linear

stochastic partial differential equations (SPDEs in short), we deduce a numerical probabilistic

method for the latter SPDEs, which numerical resolution was mainly done by analytic methods

in the literature.

In the second chapter, we extend the numerical method given by Zhang [70] and Bouchard and

Touzi [16] for standard backward stochastic differential equations (BSDEs in short) to the doubly

stochastic framework. We study the time discretization error of our numerical scheme and we

prove the convergence and the rate of convergence for this scheme under standard assumptions

on our model. Afterthat, we deduce a numerical probabilistic scheme for weak solutions of semi

linear SPDEs using their probabilistic interpretation in terms of BDSDEs given by Bally and

Matoussi [9]. Finally, we deduce the convergence and the rate of convergence for the deduced

numerical probabilistic method for the weak soltuions of SPDEs.

In the third chapter, we extend our numerical method for BDSDEs to generalized backward

stochastic differential equations (GBDSDEs in short). We prove the convergence in time and

the rate of convergence under stander assumptions. Then, we deduce a numerical probabilistic

scheme to approximate weak solutions of quasilinear SPDEs ( with a divergence term) using their

probabilistic interpretation in terms of GBDSDEs given by Matoussi and Stoica [54]. Finally, we

deduce the convergence in time and the rate of convergence for the latter scheme for the weak

solutions of quasilinear SPDEs.

In the fourth chapter, we propose an algorithm to approximate the conditional expectations

involved by our probabilistic scheme. This algorithm is based on a least-squares regression ap-

proach. In fact, we extend the algorithms studied for BSDEs by Gobet, Lemor and Warin [34]

and more recently by Gobet and Turkedjiev [35] to the case of BDSDEs. We proceed to a condi-

tionnal analysis of the regression error and give the rate of convergence in a particular but very

instrucive case of BDSDEs.

In the fifth chapter, we study an interacting particle method for small-probability estimation in

the context of neutronic shielding. This method is based on the Hastings-Metropolis algorithm

and was first presented by Guyader and al [36] in the case of random variables. We show how to

adapt the Hastings-Metropolis algorithm to the case of Markov chains and we prove a convergence

result for this algorithm in this case. Finally, we give the practical implementation of the resulting

method for small-probability estimation, for an academic one-dimensional problem, and for a two-

dimensional shielding study.We deduce, for these two cases, that the proposed interacting-particle

method beats a simple-Monte Carlo method, when the probability to estimate is small.

We begin by recalling some preliminaries on BSDEs. At first, such equations were introduced

in the linear case in 1973 by J.M. Bismut[11] in Stochastic Optimal Control theory. He studied

linear BSDEs in order to give a probabilistic interpretation of the Pontryagin maximum principle.

In 1990, Pardoux and Peng [61] proved the first result of Well-posedness for the more general

(non-linear) case. A non linear BSDE is defined as follows :

For a finite horizon time T and a given filtered probability space
⇣
Ω,FW , {FW

t }0 6 t 6 T ),P
⌘
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generated by an Rd-valued standard Brownian motion W , we call a BSDE the following equation :

Yt = ξ +

Z T

t
f(t, Yt, Zt)dt−

Z T

t
ZtdWt, 8t 2 [0, T ],P− a.s., (1.0.1)

where ξ is a given Rk-valued and FT -measurable random variable and f is a given Rk-valued

progressively-measurable function defined on [0, T ] ⇥ Ω ⇥ Rk ⇥ Rk⇥d. ξ is called the terminal

condition and the function f is called the generator to the BSDE.

Resolving the BSDE (1.0.1) remains to find a pair of progressively-measurable processes (Y, Z)

satisfying this equation and such that the process Y is continuous, E[sup0 6 t 6 |Yt|2] < 1 and

E[
R T
0 kZtk2] < 1. We note here that the role of the process Z is to guarantee the adaptability

of the process Y .

Pardoux and Peng [61] proved the existence and the uniqueness for the solution of such equation

when E
h
ξ +

R T
0 |f(t, 0, 0)|2dt

i
is finite.

As soon as this result was proved, these standard BSDEs were largely studied in the literature,

since they have many applications in Mathematical Finance, Stochastic Control, Game theory

etc . . . (see [31] for an overview of BSDEs and their application).

Another application of BSDEs is in PDEs theory. Indeed, in the particular case of Markovian

BSDEs, these equations are linked to PDEs. A BSDE is called Markovian when the random-

ness of the terminal condition and the generator is completely generated by a diffusion process

{(Xt,x
s )t 6 s 6 T , (t, x) 2 [0, T ]⇥Rd} which is the strong solution of the following standard SDE :

Xt,x
s = x+

Z T

s
b(Xt,x

r )dr +

Z T

s
σ(Xt,x

r )dWr, t 6 s 6 T, (1.0.2)

b and σ are two functions on Rd with values respectively in Rd and Rd⇥d, satisfying the standard

Lipschitz continuous and linear growth assumptions.

The BSDE has the following form :

Y t,x
s = Φ(Xt,x

T ) +

Z T

s
f(r,Xr, Y

t,x
r , Zt,x

r )dr −
Z T

s
Zt,x
r dWr, t 6 s 6 T, (1.0.3)

where Φ and f are two deterministic functions on Rd and [0, T ]⇥Rd⇥Rk ⇥Rk⇥d with values in

Rk.

Now let Us consider the following PDE :

dut(x) +
(
Lut(x) + f(t, x, ut(x),rutσ(t, x))

)
dt = 0, (1.0.4)

over the time interval [0, T ], with a given final condition uT = Φ and non-linear deterministic

coefficient f . L is the infinitesimal generator associated to the diffusion which solution is X given

by Lu(t, x) = 1
2

dX

i,j=1

((σ⇤(x)σ(x))i,j∂
2
i,ju(t, x) +

dX

i=1

bi(x)∂iu(t, x) .

If we assume that this PDE has a solution which is regular enough, we obtain by applying the

Itô formula that (u(s,Xt,x
s ),ru(s,Xt,x

s )σ(Xt,x
s ))t 6 s 6 T is a the solution of (1.0.3), which is a

generalization of the Feynman-Kac formula to a semilinear case. The latter relation allows the

numerical resolution of semilinear PDEs by probabilistic methods. This will be of special interest

in this thesis.
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1.1 Numerical scheme for semilinear SPDEs via BDSDEs

The aim of the second chapter is to investigate a numerical method for BDSDEs (a class of

BSDEs) and then to deduce a numerical probabilistic scheme for the associated semilinear SPDEs.

This chapter is based on the work [5].

1.1.1 Preliminaries on BDSDEs and Semilinear Stochastic PDEs

BDSDEs was introduced by Pardoux and Peng [63] in 1994 as a generalisation of the standard

BSDEs. They are called doubly stochastic because they involve, in addition to the stochastic for-

ward Itô integral w.r.t. the initial Brownian motion W , another stochastic Itô backward integral

w.r.t. another Brownian motion B which is independent from W . More precisely, let (Ω,F , P )

be a probability space and T > 0 be a fixed horizon time. Then, let {Wt, 0 6 t 6 T} and

{Bt, 0 6 t 6 T} be two mutually independent standard Brownian motions with values respecti-

vely in Rd and Rl, defined on (Ω,F , P ). We fix t 2 [0, T ]. For each s 2 [t, T ], we define the family

of σ −Algebras

F t
s := FW

t,s _ FB
s,T

where FW
t,s = σ{Wr −Wt, t 6 r 6 s}, and FB

s,T = σ{Br − Bs, s 6 r 6 T}. We take FW = FW
0,T ,

FB = FB
0,T and F = FW _ FB. When t = 0, we denote the σ−algebra F0

s by Fs for simplicity.

Without loss of generality, we assume that FW and FB are complete.

We stress that the collection (F t
s)t 6 s 6 T is neither increasing nor decreasing, and it does not

constitute a filtration.

The BDSDE of our interest, is defined by

Yt = ξ +

Z T

t
f(r, Yr, Zr)dr +

Z T

t
h(r, Yr, Zr)

 −−
dBr −

Z T

t
ZrdWr, 8t 2 [0, T ], (1.1.1)

where ξ is an Rk-valued and FT -measurable random variable, f and h are two given random

functions on [0, T ]⇥Rk⇥Rk⇥d with values respectively in Rk and Rl and such that for all (y, z) in

Rk⇥Rk⇥d, for all t in [0, T ], f(t, y, z) and h(t, y, z) are Ft-measurable. A solution to such BDSDE

is a pair of processes (Y, Z) such that for all t in [0, T ], Yt and Zt are Ft-measurable, (Y, Z) are

satisfying this equation and such that the process Y is continuous, E[sup0 6 t 6 T |Yt|2] <1 and

E[
R T
0 kZtk2] <1.

In 1994, Pardoux and Peng [63] proved the Well-posedness result of the last equation when

E
h
ξ +

Z T

0
|f(t, 0, 0)|2dt+

Z T

0
|h(t, 0, 0)|2dt

i
is finite.

In the Markovian case, analogously to BSDEs, the BDSDE (1.1.1) becomes : for a given (t, x)

in [0, T ]⇥ Rd,

Y t,x
s = Φ(Xt,x

T ) +

Z T

s
f(r,Xt,x

r , Y t,x
r , Zt,x

r )dr +

Z T

s
h(r,Xt,x

r , Y t,x
r , Zt,x

r )
 −−
dBr

−
Z T

s
Zt,x
r dWr, 8s 2 [t, T ], (1.1.2)

where (Xt,x
s )t 6 s 6 T is the process introduced in (1.0.4). Pardoux and Peng [63] introduced

Markovian BDSDEs to give a probabilistic interpretation to the classical solutions of the following

Semi-linear SPDE :

dut(x) +
(
Lut(x) +f(t, x, ut(x),rutσ(x))

)
dt+ h(t, x, ut(x),rutσ(x)) ·

 −
dBt = 0, (1.1.3)



4 Chapitre 1. Introduction

where L is the second order differential operator defined in (1.0.4). We note here that

{ut(x) = u(t, x), (t, x) in [0, T ] ⇥ Rd} is a random field such that for each (t, x) in [0, T ] ⇥ Rd,

u(t, x) is FB
t,T -measurable.

1.1.1.1 Notations and Assumptions

In order to introduce classical then weak Sobolev solutions of SPDEs, we need to introduce

some notations :

• Ck(Rp,Rq) and Ck
p (R

p,Rq) denote respectively the set of functions of class Ck from Rp to

Rq and the set of functions of class Ck from Rp to Rq, which, together with all their partial

derivatives of order less or equal to k, grow at most like a polynomial function of the variable x

at infinity.

• Ck
b (R

p,Rq) (respectively Ck
b ([0, T ]⇥ Rp,Rq)) denotes the set of functions of class Ck from Rp

(repectively from [0, T ] ⇥ Rp) to Rq whose partial derivatives of order less or equal to k are

bounded.

• C1
b (Rp,Rq) denotes the set of functions of class C1 from Rp to Rq whose partial derivatives

are bounded.

The assumptions we will use in this chapter are :

Assumption (H1) There exist a positive constant K such that

|b(x)− b(x0)|+ kσ(x)− σ(x0)k 6 K|x− x0|, 8x, x0 2 Rd.

Assumption (H2) There exist two constants K > 0 and 0 6 α < 1 such that

for any (t1, x1, y1, z1), (t2, x2, y2, z2) 2 [0, T ]⇥ Rd ⇥ Rk ⇥ Rk⇥d,

(i) |f(t1, x1, y1, z1)− f(t2, x2, y2, z2)| 6 K
(p
|t1 − t2|+ |x1 − x2|+ |y1 − y2|+ kz1 − z2k

)
,

(ii) kh(t1, x1, y1, z1)−h(t2, x2, y2, z2)k26K
(
|t1 − t2|+ |x1 − x2|2 + |y1 − y2|2

)
+ α2kz1 − z2k2,

(iii) |Φ(x1)− Φ(x2)| 6 K|x1 − x2|,
(iv) sup0 6 t 6 T (|f(t, 0, 0, 0)|+ ||h(t, 0, 0, 0)||) 6 K.

Assumption (H3)

(i) b 2 C2
b (R

d,Rd) and σ 2 C2
b (R

d,Rd⇥d)

(ii) Φ 2 C2
b (R

d,Rk), f 2 C2
b ([0, T ]⇥ Rd ⇥ Rk ⇥ Rd⇥k,Rk)

and h 2 C2
b ([0, T ]⇥ Rd ⇥ Rk ⇥ Rd⇥k,Rk⇥l).

1.1.1.2 Solutions of SPDEs and Probabilistic representations

First, we state the the Well-posedness result for the Markovian BDSDE (1.1.2) :

Theorem 1.1.1. Assume that (H1) and (H2) hold. Then there exist a unique solution (Y t,x
s , Zt,x

s )t 6 s 6 T

to the BDSDE (1.1.2) such that

E
h
supt 6 s 6 T |Y t,x

s |2 +
⇣Z T

t
kZt,x

s k2ds
⌘i

< +1. (1.1.4)

The following theorems given in [63] introduce the classical solution of the SPDE (1.1.3) and

give its probabilistic representation in terms of BDSDEs
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Theorem 1.1.2. Assume that (H1) and (H2) hold, that Φ 2 C2(Rd,Rk). Let {u(t, x), (t, x)
2[0,T] ⇥Rd} be a random field such that u(t, x) is FB

t,T -measurable for each (t, x), u 2 C0,2([0, T ]⇥
Rd,Rk) a.s. and u satisfies equation (1.1.3). Then u(t, x) = Y t,x

t , where

{(Y t,x
s , Zt,x

s )t 6 s 6 T , 0 6 t 6 T, x 2 Rd} is the unique solution of the BDSDE (1.1.2).

Conversely, we have

Theorem 1.1.3. Let {(Y t,x
s , Zt,x

s )t 6 s 6 T , 0 6 t 6 T, x 2 Rd} be the unique solution of the

BDSDE (1.1.2). Assume that (H2) holds, b 2 C2(Rd,Rd), σ 2 C3(Rd,Rd⇥d), Φ 2 C3
p(R

d,Rk)

and such that for each s 2 [0, T ], f(s, ., ., .) belongs to C3(Rd ⇥ Rk ⇥ Rd⇥k,Rk) and h(s, ., ., .)

belongs to C3(Rd ⇥ Rk ⇥ Rd⇥k,Rk⇥l). Then {u(t, x) := Y t,x
t , 0 6 t 6 T} is the unique classical

solution of the SPDE (1.1.3).

For weak solutions, Bally and Matoussi [9] showed that the previous representation of the

SPDE’s solution remains true under weaker assumptions, namely when the terminal condition Φ

is only meaurable in x and the coefficients f and g are only measurable in (t, x). They considered

weak sobolev solutions of SPDE (1.1.3) and their approach was based on flow technics. Their

result is crucial for us, since our numerical method for BDSDEs solves also SPDEs by using the

representation they proved in the case of weak solutions.

First, let us give the definition of the weak Sobolev solution of the SPDE (1.1.3). Since we

work on the whole space Rd, we introduce a weight function ρ which is positive, satisfyingR
Rd(1 + |x|2)ρ(x)dx < 1 and such that ρ and 1

ρ are locally integrable. For example, we can

take ρ(x) = e−
x2

2 or ρ(x) = e−|x|. As a consequence of (H3), we have

Z

Rd

|Φ(x)|2ρ(x)dx <1,
R T
0

R
Rd |f(t, x, 0, 0)|2ρ(x)dxdt <1 and

R T
0

R
Rd |h(t, x, 0, 0)|2ρ(x)dxdt <1.

We need also to introduce the following spaces :

· L2(Rd, ρ(x)dx) is the weighted Hilbert space and we employ the following notation for its scalar

product and its norm is : (u, v)ρ =
R
Rd u(x)v(x)ρ(x)dx and kukρ = (u, u)

1

2
ρ .

· H1
σ(R

d) is the associated weighted first order Dirichlet space and its norm is

kukH1
σ(Rd) = (kuk2ρ + kruσk2ρ)

1

2 .

· D := C1c ([0, T ]) ⌦ C2c (Rd) is the space of test functions where C1c ([0, T ]) denotes the space of

all real valued infinite differentiable functions with compact support in [0, T ] and C2c (Rd) the set

of C2-functions with compact support in Rd.

· HT is the space of predictable processes (ut)t > 0 with values in H1
σ(R

d) such that

kukT =
⇣
E
h
sup0 6 t 6 T kutk2ρ

i
+ E

h Z T

0
krutσk2ρdt

i⌘ 1

2
<1.

Definition 1.1.1. We say that u 2 HT is a weak solution of the equation (1.1.3) associated with

the terminal condition Φ and the coefficients (f, g), if the following relation holds almost surely,

for each ϕ 2 D
Z T

t
(u(s, .), ∂sϕ(s, .))ds+

Z T

t
E(u(s, .), ϕ(s, .))ds+ (u(t, .), ϕ(t, .))− (Φ(.), ϕ(T, .)) (1.1.5)

=

Z T

t
(f(s, ., u(s, .), (ruσ)(s, .)), ϕ(s, .))ds+

lX

i=1

Z T

t
(h(s, ., u(s, .), (ruσ)(s, .)), ϕ(s, .))

 −−
dBi

s,

where 8
>>><
>>>:

(., .) denotes the usual scalar product in L2(Rd, dx)

and

E(u, ϕ) = (Lu, ϕ) =
R
Rd((ruσ)(rϕσ) + ϕr((12σ⇤rσ + b)u))(x)dx is

the energy associated to the diffusion operator.
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From Bally and Matoussi [9], we have the following representation result :

Theorem 1.1.4. Assume Assumptions (H1)− (H3) hold, there exists a unique weak solution

u 2 HT of the SPDE (1.1.3). Moreover, u(t, x) = Y t,x
t and Zt,x

t = rutσ, dt⌦ dx⌦ dP a.e. where

(Y t,x
s , Zt,x

s )t 6 s 6 T is the solution of the BDSDE (2.1.2). Furthermore, we have for all s 2 [t, T ],

u(s,Xt,x
s ) = Y t,x

s and (ruσ)(s,Xt,x
s ) = Zt,x

s dt⌦ dx⌦ dP a.e.

1.1.2 Numerical methods : Different approaches

We recall that our aim is two folds : first we present a method for solving numerically the

BDSDE (1.1.2) and using the probabilistic representation of solutions of the SPDE (1.1.3), we

will also deduce a new probabilistic method for solving this last equation.

Let us begin by an overview for existing probabilistic methods for solving standard BSDEs.

1.1.2.1 Numerical methods for BSDEs

In the deterministic PDE’s case i.e. h ⌘ 0, the numerical approximation of standard BSDEs

has already been widely studied in the literature. We can cite for example Bally [8], Zhang [70],

Bouchard and Touzi [16], Gobet, Lemor and Warin[34], Bouchard and Elie [15] and Crisan and

Manolarakis [22]. Zhang [70] proposed a discrete-time numerical approximation, by step processes,

for a class of decoupled F-BSDEs with path-dependent terminal values. He proved an L2-type

regularity result for the control process Z under Lipschitz assumptions. This result allowed him

to derive a rate of convergence for his scheme of order the time step of the square of the L2-

error. A similar numerical scheme was proposed by Bouchard and Touzi [16] for decoupled F-

BSDEs. In order to approximate the conditional expectations arising from the time discretization,

they use the Malliavin approach and the Monte carlo method. Afterthat, Crisan, Manolarakis

and Touzi [20] proposed a betterment of this method on the Malliavin weights. A completely

explicit numerical scheme was proposed by Gobet, Lemor and Warin [34]. They also introduced

an algorithm based on the least-squares regression approach and using the Monte Carlo method

to compute the conditional expectations. Finally, another algorithm based on the curbature

method and the approach of Bouchard and Touzi [16] and Zhang [70] was introduced by Crisan

and Manolarakis [22]. These authors proposed also a second order discretization of BSDEs in

[21].

When h 6= 0 and it does not depend on the control variable z, Aman [3] suggested a numerical

scheme following the approach of Bouchard and Touzi [16]. Aboura [1] studied the same numerical

scheme but following Gobet et al. [33]. Both of the two authors obtained a convergence of order

the time discretization step of the square of the L2- error.

In the case when h 6= 0, the numerical resolution of BDSDEs offers a probabilistic approach to

resolve semilinear SPDEs which was mainly resolved by analytic methods in the literature.

1.1.2.2 Analytic methods for SPDEs

Analytic methods are based on time-space discretization of the SPDEs. Mainly, the discreti-

zation on space is done by three methods : the finite differences method, finite elements and

the spectral Galerkin method. The Euler finite-difference scheme was studied mainly by Gyongy

[39], Gyongi and Nualart [38], Gyongy and Krylov [37] and Gerencsér and Gyongy [32]. In [38],

Gyongi and Nualart proved the convergence of this scheme. Then, Gyongy [39] gave the rate

of convergence. After that, Gyongy and Krylov [37] gave a rate of convergence for a symme-

tric finite difference scheme for a class of linear SPDE driven by infinite dimensional brownian

motion. They also proved that this rate can be improved by Richardson acceleration method.
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Recently, Gerencsér and Gyongy [32] considered weak sobolev solutions for linear SPDEs, where

the smoothness of coefficients are dimension-invariant. Then, they used the Richardson method

to accelerate their rate of convergence. The finite element method was investigated by J.B. Walsh

in [69]. He proved the convergence of this scheme and obtained similar rate to those of the finite

difference scheme. The third method was mainly studied by Jentzen and Kloeden [44]. It is based

on the spectral Galerkin approximation, which consists on deriving Taylor expansions for the

solution of the SPDE and consequently adding more regularity assumptions on the coefficients

of the SPDE.

Other methods was also explored in order to resolve numerically SPDEs by an analytic ap-

proach. We can cite the spectral approach used by Lototsky, Mikulevicius and Rozovskii [51] to

approximate numerically the conditional law of the solution of the Zakai equation. The method

of Characteristics, which is based on the averaging characteristic formula, was used by Milstein

and Tretyakov [57] to solve a linear SPDE. They based their numerical scheme on Monte Carlo

technics. Finally, Crisan [19] studied a particle approximation for a class of nonlinear stochastic

partial differential equations.

1.1.3 Our main results and contributions

1.1.3.1 Numerical scheme and main results

In order to solve the F-BDSDE (1.1.2), we we introduce the following discretized version. Let

π : t0 = 0 < t1 < . . . < tN = T, (1.1.6)

be a partition of the time interval [0, T ]. For simplicity we take an equidistant partition of [0, T ]

i.e. ∆N = T
N and tn = n∆N , 0 6 n 6 N . Throughout the rest, we will use the notations

∆Wn = Wtn+1
−Wtn and ∆Bn = Btn+1

−Btn , for n = 1, . . . , N .

The forward component X will be approximated by the classical Euler scheme :
(

XN
t0 = Xt0 ,

XN
tn = XN

tn−1
+ b(XN

tn−1
)(tn − tn−1) + σ(XN

tn−1
)(Wtn −Wtn−1

), for n = 1, . . . , N.
(1.1.7)

It is known that as N goes to infinity, one has sup0 6 n 6 NE|Xtn −XN
tn |2 ! 0.

Then, the solution (Y, Z) of (1.1.2) is approximated by (Y N , ZN ) defined by :

Y N
tN

= Φ(XN
T ) and ZN

tN
= 0, (1.1.8)

and for n = N − 1, . . . , 0, we set

Y N
tn = Etn [Y

N
tn+1

+ h(tn+1,Θ
N
n+1)∆Bn] + ∆Nf(tn,Θ

N
n ), (1.1.9)

∆NZN
tn = Etn

"
Y N
tn+1

∆W ⇤
n + h(tn+1,Θ

N
n+1)∆Bn∆W ⇤

n

#
, (1.1.10)

where

ΘN
n := (XN

tn , Y
N
tn , Z

N
tn), 8n = 0, . . . , N.

⇤ denotes the transposition operator and Etn denotes the conditional expectation over the σ-

algebra F0
tn .

For all n = 0, . . . , N − 1, we define the pair of processes (Y N
t , ZN

t )tn 6 t<tn+1
as the solution of

the following BDSDE :

Y N
t =Y N

tn+1
+

Z tn+1

t
f(tn,Θ

N
n )ds+

Z tn+1

t
h(tn+1,Θ

N
n+1)
 −−
dBs −

Z tn+1

t
ZN
s dWs, tn 6 t < tn+1. (1.1.11)
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First, we show two results concerning the time discretization error on our scheme for resolving

BDSDEs. The first is an upper bound result :

Theorem 1.1.5. Assume that Assumptions (H1) and (H2) hold, define the error

ErrorN (Y, Z) := sup0 6 s 6 TE[|Ys − Y N
s |2] +

N−1X

n=0

E[

Z tn+1

tn

||Zs − ZN
tn ||2ds], (1.1.12)

where Y N and ZN are given by (1.1.11) and the process Z̄ is defined by

Z̄t =
1

∆N
Etn [

Z tn+1

tn

Zsds], 8t 2 [tn, tn+1), 8n 2 {0, . . . , N − 1} and Z̄N = 0 .

Then

ErrorN (Y, Z) 6 C∆N (1 + |x|2) + C
N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds

+ C
N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds. (1.1.13)

Then, we obtain the rate of convergence under more regularity by adding the Assumption (H3) :

Theorem 1.1.6. Under Assumptions (H1)-(H3), there exists a positive constant C (depending

only on T , K, α, |b(0)|, ||σ(0)||, |f(t, 0, 0, 0)| and ||h(t, 0, 0, 0)||) such that

ErrorN (Y, Z) 6 C∆N (1 + |x|2). (1.1.14)

In the second chapter, we show under Assumption (H3) a representation result for Z that we

use to prove the rate of convergence. However, the same rate of convergence is shown only under

(H1) and (H2), which are natural assumptions in BDSDE’s setting (see Remark 1.1.1).

Finally, we deduce the numerical scheme to resolve SPDE (1.1.3) by using the following lemma

which comes from the Markov property of Y N and ZN and the flow property of XN :

Lemma 1.1.1. Let x 2 Rd and tn 2 π. Define

uNtn(x) := Y N,tn,x
tn and vNtn(x) := ZN,tn,x

tn . (1.1.15)

Then uNtn (resp. vNtn) is FB
tn,T

-measurable and we have for all x 2 Rd and for all t, tn 2 π such

that t 6 tn :

uNtn(X
t,x
tn ) = Y N,t,x

tn (resp. vNtn(X
t,x
tn ) = ZN,t,x

tn ).

After that, thanks to a norm equivalence result which was already proved by Barles and Lesigne

[10] and Bally and Matoussi [9] when b 2 C1
b (R

d,Rd) and σ 2 C2
b (R

d,Rd⇥d), we deduce the rate of

convergence for the numerical scheme for the SPDE (1.1.3). We stress that here we do not assume

that σ satisfies the uniform ellipticity condition. We recall that u(t, x) = Y t,x
t and v(t, x) = Zt,x

t

dt⌦ dx⌦ dP a.e. We define the process (uNs , vNs ) as follows :

uNs (x) := Y N,s,x
s and vNs (x) := ZN,s,x

s , 8s 2 [tn, tn+1). (1.1.16)

Thus, we obtain

uNs (Xt,x
s ) = Y N,t,x

s and vNs (Xt,x
s ) = ZN,t,x

s , 8t 6 s, t, s 2 [tn, tn+1). (1.1.17)
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We define the error between the solution of the SPDE and the numerical scheme as follows :

ErrorN (u, v) := sup0 6 s 6 TE[

Z

Rd

|uNs (x)− u(s, x)|2ρ(x)dx]

+

N−1X

n=0

E[

Z

Rd

Z tn+1

tn

kvNs (x)− v(s, x)k2dsρ(x)dx], (1.1.18)

where ρ is the weight function defined in subsection 1.1.1.2.

The following theorem shows the convergence of the numerical scheme 1.1.15 of the solution of

the SPDE (1.1.3).

Theorem 1.1.7. Assume that (H1)-(H3) hold. Then, the error ErrorN (u, v) converges to 0

as N ! 1 and there exists a positive constant C (depending only on T , K, α, |b(0)|, ||σ(0)||,
|f(t, 0, 0, 0)| and ||h(t, 0, 0, 0)||) such that

ErrorN (u, v) 6 C∆N . (1.1.19)

Remark 1.1.1. The Assumptions needed to prove the rate of convergence (1.1.14) and conse-

quently (1.1.19) can be relaxed. Indeed, we can obtain this rate of convergence (1.1.14) only under

Assumptions (H1) and (H2). This can be done by using the L2-regularity for the process Z

proved in section (2.7).

1.1.3.2 Our Contributions

In our work, we extended the approach of Bouchard-Touzi-Zhang for standard BSDEs to the

case of BDSDEs. We wish to emphasize that this generalization is not obvious, especially when the

function h depends also on the control variable z, because of the strong impact of the backward

stochastic integral term on the numerical approximation scheme. It is known that in the associated

Stochastic PDE’s (2.1.1), the term h(u,ru) leads to a second order perturbation type which

explains the contraction condition assumed on h with respect to the variable z (see [63], [59]).

Our scheme is implicit in Y and explicit in Z. We prove the convergence of our numerical scheme

in time and we give the rate of convergence. The square of the L2- error has an upper bound of

order the discretization step in time. As a consequence, we obtain a numerical scheme for the

weak solution of the associated semi linear SPDE. We give also a rate of convergence result for the

later weak solution. Then, we propose a path-dependent algorithm based on iterative regression

functions which are approximated by projections on vector space of functions with coefficients

evaluated using Monte Carlo simulations. More precisely, we fix one path of the discretized

Brownian motion B and we approximate the conditional expectations arising in our numerical

scheme (1.1.9)-(1.1.10) by performing regressions using simulations of the forward process X. The

analysis of the regression error will be handeled in chapter 4. Finally, we present some numerical

tests.

Compared to the deterministic numerical method developed by Gyongy and Krylov [37], the

probabilistic approach could tackle the semilinear SPDEs which could be degenerate and needs

less regularity conditions on the coefficients than the finite difference scheme. However, the rate

of convergence obtained (as the classical Monte Carlo method) is clearly slower than the results

obtained by finite difference and finite element schemes, but of course more available in higher

dimension. Indeed, our method has all the the known advantages of Monte Carlo methods. These

latter methods are tractable especially when the dimension of the state process is very large unlike

the finite difference method. Furthermore, their parallel nature provides another advantage to

the probabilistic approach : each processor of a parallel computer can be assigned the task of

making a random trial and doing the calculus independently.
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1.2 Numerical computations for Quasilinear Stochastic PDE’s

In the third chapter, we are interested in the numerical resolution of quasilinear SPDEs by a

probabilistic method, using their probabilistic interpretation in terms of Generalized Backward

Doubly Stochastic Differential Equations (GBDSDEs for short). This chapter is based on the

work [7].

1.2.1 GBDSDEs and Quasilinear SPDEs

We are interested in the following SPDE on Rd and over the time interval [0, T ],

dut(x)+
⇥1
2
∆ut(x)+ft(x, ut(x),rut(x))+divgt(x, ut (x) ,rut (x))

⇤
dt+ht(x, ut(x),rut(x))·

 −
dBt = 0,

(1.2.1)

with a given final condition uT = Φ and where f, h and g are non-linear random functions.

When h is identically null, equation (1.2.1) becomes a Quasilinear PDE. This equation was studied

by Stoica [68]. More precisely, he studied the solution u : Rd :! R of the following equation

(∂t + L0)u+ f −
X

i,j

∂i(a
i,jgj) = 0, (1.2.2)

where f and g are given real-valued functions on [0, T ] ⇥ Rd, L0 is the elliptic divergence form

operator given by :

L0 :=
X

i,j

∂i(a
i,j
j ) +

X

i

bi∂i,

b(x) := (b1(x), . . . , bd(x)) is a vector field and for all i, j, ai,j are bounded measurable functions

on Rd satisfying the uniform ellipticity condition : for some positive constant λ,

λ−1|ξ|2 6
X

i,j

ai,j(x)ξiξj 6 λ|ξ|2, 8ξ, x 2 Rd.

Denoting by (Ω,F , (Ft)t, Xt, θt, P
x) the diffusion process generated by L0 in Rd, Stoica [68]

proved that the following relation holds (see Theorem 3.2 [68]), when f , g and the terminal

condition Φ are square integrable :

ut(Xt)− us(Xs) =
dX

i=1

Z t

s
∂iur(Xr)dM

i
r −

Z t

s
fr(Xr)dr −

1

2

Z t

s
gr ⇤ dXr, (1.2.3)

where M i is the martingale part of the component Xi of the process and the integral denoted

with ⇤ is a stochastic martingale expressed in terms of forward and backward martingales.

We denote that if L0 is symmetric under the probability measure Pm ( see section 3.2.2 for the

definition of Pm), the term
R t
s gr ⇤ dXr becomes :

Z t

s
gr ⇤ dXr =

dX

i=1

✓Z t

s
gi(r,Xr)dM

i
r +

Z t

s
gi(r,Xr)d

 −
M i

r

◆
.

Since the function g is assumed only measurable, the term
dX

i,j=1

∂i(a
i,jgj) in equation (1.2.2) is

a distribution. Hence, the stochastic integral
R t
s gr ⇤ dXr gives a probabilistic interpretation for

a distribution. In other words, the solution u is represented in (1.2.3) in terms of a stochastic

process, of the function f and the field.
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In the general case ( h and g are non-null functions), the SPDE (1.2.1) was given a probabilistic

interpretation by Matoussi and Stoica [54] in term of the following GBDSDE :

ut(Wt)−us(Ws) =
dX

i=1

Z t

s
∂iur(Wr)dW

i
r −
Z t

s
fr(Wr)dr−

1

2

Z t

s
gr ⇤ dWr +hfr(Wr)

 −
dBr. (1.2.4)

We will see in chapter 3, that the study of the SPDE (1.2.1) covers a more general case. Indeed,

if instead of 1
2∆ in (1.2.1) we had L :=

X

i,j

∂i(a
i,j
j ) where in addition a is symmetric, we show

by the mean of a change of variable that the case of the SPDE (1.2.1) with the operator L is

covered by our framework.

The aim of chapter 3 is to use the probabilistic interpretation (1.2.4) to give a probabilistic

numerical scheme in order to resolve numerically the associated quasilinear SPDE (1.2.1).

1.2.2 Our Contribution : Numerical resolution of Quasilinear SPDEs - Time

discretization error

We first present our numerical scheme to approximate solutions of (1.2.1).

1.2.2.1 Numerical scheme

We use the same notations of the numerical scheme presented in subsection 1.1.3.1. Let WN

denote the discrete time approximation of the Brownian motion W . The solution (Y, Z) of the

GBDSDE (1.2.4) will be approximated by (Y N , ZN ) defined in the following :

Y N
tN

= Φ(WN
T ) and ZN

tN
= 0, (1.2.5)

and for n = N − 1, . . . , 0, we set

Y N
tn = Etn [Y

N
tn+1

+∆Nf(tn,Θ
N
n ) +

1

2
g(tn+1,Θ

N
n+1)∆Wn]

+ Etn [h(tn+1,Θ
N
n+1)∆Bn], (1.2.6)

∆NZN
tn = Etn [Y

N
tn+1

∆W ⇤
n + h(tn+1,Θ

N
n+1)∆Bn∆W ⇤

n ]

+
1

2
Etn [

{
g(tn,Θ

N
n ) + g(tn+1,Θ

N
n+1)

 
∆Wn∆W ⇤

n ], (1.2.7)

where

ΘN
n := (WN

tn , Y
N
tn , Z

N
tn), 8n = 0, . . . , N.

⇤ denotes the transposition operator and Etn denotes the conditional expectation over the σ-

algebra F0
tn .

1.2.2.2 Contribution and main results

The probabilistic interpretation given below allows us to give a numerical probabilistic scheme

for the quasilinear SDPE (1.2.1) based on a time-discretization of the GBDSDE (1.2.4).

First, we extend the Ito Formula for GBDSDEs. Then we give an an upper bound for the time

discretization error. Afterthat, we extend the result concerning the Zhang L2-regularity of the

martingale integrand Z proved by Zhang [70] for standard BSDEs to our GBDSDE’s case. This

result is very important to derive the rate of convergence of our numerical scheme, which is of

order the time discretization step of the square of the L2- error. Finally, we give some numerical

experiments to test statically our scheme.
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1.3 An empirical regression method for BDSDEs

In the fourth chapter, which is based on the work [6], we present an algorithm to approximate

the solutions of the discrete BDSDE arising from the time discretization of BDSDEs in the two

previous chapters. Afterthat, we give a conditional analysis of the regression error involved by

our algorithm. Let Us start by recalling some preleminaries on the regression method.

1.3.1 Empirical regression method for BSDEs

We recall that the empirical least-squares approach was developed in the standard BSDE’s case

by Gobet, Lemor and Warin [34] and more recently by Gobet and Turkedjiev [35]. This approach

is based on iterative regression functions which are approximated by projections on vector space

of functions with coefficients evaluated using Monte Carlo simulations. The BDSDE’s of our

interest is of the following form

Y t,x
s = Φ(Xt,x

T ) +

Z T

s
f(r,Xt,x

r , Y t,x
r )dr +

Z T

s
h(r,Xt,x

r , Y t,x
r )
 −−
dBr −

Z T

s
Zt,x
r dWr. (1.3.1)

We study the case when the generators are independent from the variable z. For such BDSDE,

Aboura [1] proposed an algorithm based on the empirical least-squares regression approach,

following [33]. He considered the solution of the BDSDE at time ti as a measurable deterministic

function of
⇣
Xti , (Btk+1

−Bk)i 6 k 6 N

⌘
, where ti 2 π := {t0, . . . , tN} and π is a discrete time grid

of the time interval [0, T ]. His approach imply a high-dimensionality problem, since he is dealing

with a dimension of d + l ⇥ N , where d is the dimension of the state process X and l is the

dimension of the Brownian motion B.

1.3.2 Our contribution : Conditional approach for the empirical regression

method for BDSDEs

We follow a conditional approach given the trajectories of the auxiliary noise B. We give first

our numerical scheme.

1.3.2.1 Numerical scheme

We introduce the following notations :

· π is a discrete time grid of the time interval [0, T ] and ti 2 π := {t0, . . . , tN}.Then, ∆i := ti+1−ti.
· ∆Wi = Wti+1

−Wti and ∆Bi = Bti+1
−Bti , for i = 1, . . . , N − 1.

· We define the filtration Gt := FW
0,t _FB

0,T and we note by Eti [.] the conditional expectation over

Gti .
We study the Multi step Dynamic Programming equation involved by the time discretizatin of

the BDSDE (1.3.1) :

The forward component X will be approximated by the classical Euler scheme and the approxi-

mation is denoted by XN .

The solution Y of (1.3.1) is approximated by (Y N ) defined by the following Multi step-forward

Dynamic Programming (MDP for short) equation instead of the classical One step-forward Dy-

namic Programming (ODP for short) equation given in the previous chapters :

For i = N − 1, . . . , 0, we set

Y N
ti = Eti

h
Φ(XN

T ) +
N−1X

k=i

∆kf(Y
N
tk+1

) + h(Y N
tk+1

)∆Bk

i
. (1.3.2)
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1.3.2.2 Main result

The main result of chapter 4 is non asymptotic and explicit error estimates for our algorithm, gi-

ven in Theorem 4.4.1. These estimates are non asymptotic since the constants of the upper bound

for the error depend on the time discretization number N and the fixed path (∆Bk)0 6 k 6 N−1.

A direct consequence of the estimates in Theorem 4.4.1 is the following convergence result. We

denote for all i 2 {0, . . . , N − 1} by KY,i the finite dimensional approximation space and by Mi

the number of Monte Carlo simulations of the forward process X used at time ti to perform

the regression. We assume that Assumptions (H1-H2) hold and that Φ(0), f(0) and h(0) are

bounded. Then, for a fixed time discretization number N and a fixed path (∆Bk)0 6 k 6 N−1,

we obtain the convergence of our least-squares MDP algorithm by taking (Mk)0 6 k 6 N−1 and

(card(KY,k))0 6 k 6 N−1 large enough.

1.3.2.3 Our Contributions

First, we proceed to a conditional analysis of the error, given the trajectories of the Brownian

motion B. To achieve this goal, we use the tools for the regression error analysis which were

developed recently in [35] for standard BSDEs but in a very general context. Thus, we reduce

the dimension of the regression problem from d + l ⇥ N in [1] to d. In this sense, our approach

is better than the unconditional one.

Second, the MDP scheme studied leads to averaged local error terms, which is better than the

sum as in the ODP’s case. We obtain convergence results for fixed time discretization number N

and a fixed path (∆Bk)0 6 k 6 N−1.

1.4 Variance reduction for small probability estimation : a Hastings-

Metropolis algorithm on Markov chains

The fifth chapter is devoted to a work which has been done at CEMRACS 2013 (Centre d’été

Mathématiques de Recherche Avancée en Calcul Scientifique). The CEMRACS is a scientific event

of the SMAI (the french Society of Applied and Industrial Mathematics). The CEMRACS 2013

consisted of six weeks. In the first week, a summer school on numerical methods and algorithms

for high performance computing was proposed. The remaining five weeks were intensive long

research sessions on different research projects. These projects was proposed by an industrial or

an academic partner. This event took place at CIRM, Luminy, Marseille, from 22 July to 30

August 2013. It was devoted to “ Modelling and simulation of complex systems : stochastic and

deterministic approaches”. The project described in this chapter has the acronym REDVAR. Its

main motivation is variance reduction technics for the estimation of rare events in the context of

neutronic shielding. This work was concretized by a preprint [4] submitted to ESAIM Proceedings.

1.4.1 Monte Carlo method for rare events and Hastings-Metropolis algorithm

on random variables

In this last part, we study an interacting particle method for small probability estimation

developed in [36] and we adapt it to the context of neutronic shielding. Neutronics is the study

of neutron population in fissile media that can be modeled using the linear Boltzmann equation

called also the transport equation. The study of neutronics began in the 40’s, when nuclear energy

was starting to be used either for setting up nuclear devices like bombs or for civil purposes like
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the production of energy. Neutronics can be divided in two different sub-domains. The first sub-

domain aim at understanding the neutron population dynamics due to the branching process

that mimics fission reaction (see for instance [71] for a recent survey on branching process in

neutronics). The second sub-domain deals with the propagation of neutrons through media where

fission reactions do not occur, or can safely be neglected. In this case, the neutron transport can

be modeled by simple exponential flights [72] : between each collisions, neutrons travel along

straight path distributed exponentially.

For this last category, national nuclear authorities require shielding studies of nuclear systems

before giving their agreement for the design of nuclear systems like reactor core. The study of

such structure is complicated by 3-dimensional effects due to the geometry and by non-trivial

energetic spectrum that can hardly be modeled. The Monte-Carlo transport codes (like MCNP

[50], Geant4 [2], Tripoli-4 [29]) are often used for shielding studies since they require very few

hypotheses. However, these studies remain a big numerical challenge for Monte-Carlo codes.

Indeed, the shielding studies require to evaluate the proportion of neutrons that pass through

the shielding disposal and this proportion is by construction very small. Consequently, the Monte

Carlo code has to evaluate a small probability, which is the main motivation of this work.

Classical techniques for variance reduction in these small probability estimation problems often

rely on a zero-variance scheme [43, 42, 12] adapted to the Boltzmann equation allied with weight-

watching techniques [13]. The particular forms that this scheme takes when concretely developed

in various transport codes range from the use of weight windows [17, 42, 43, 50], like in MCNP,

to the use of the exponential transform [56, 55] like in Tripoli-4. Now, all these techniques have

proven to be limited since the requirements made by national nuclear authorities have been

progressively strengthen. As a consequence, new variance reduction techniques have been recently

proposed (see for instance [30] for the use of neural networks for evaluating the importance

function).

Recently in [36], the authors developed an interacting-particle method for small probability

estimation in the case of random variables. In our work, we apply this method to a neutronic

shielding’s Monte Carlo code. This application to shielding study with Monte Carlo codes is

not straightforward. In fact, a Monte Carlo code consists in sampling the trajectory of a neutron

which can, depending of the complexity of the physical modeling, be the realization of a branching

process, or of a stochastic process. Indeed, since a neutron travels along straight paths between

collisions, there is no loss of information in considering only the characteristic of the collisions

(dates, positions, energies, subparticle creations) as random.

In order to simplify the matter, the subparticle creation phenomena are not taken into account

in this work. Similarly, we do not take energy dependence into account. As a result, we consider

here the simplified but realistic case of monokinetic particle, that is a particle that has a constant

speed and that can not give birth to other subparticles. For this model of a monokinetic particle,

the set of the successive collision point positions constitute thus a Markov chain. Furthermore,

with probability one, the monokinetic particle is absorbed after a finite number of collisions. The

small probability we are interested in, in this work, is thus the probability that a Markov chain,

that is almost surely stationary, in finite time, "pass" through a shielding system and reach a

domain of interest before absorption.

The method proposed in [36] relies on the Hasting Metropolis algorithm [55, 41] for practical

application. This algorithm is clearly a textbook method when applied to probability distributions

on the Euclidean space. Nevertheless, we have discussed below that small probability estimation

problems in Monte Carlo codes are defined as involving Markov Chains instead of random vectors.

It is thus not straightforward to apply the method of [36] to these kind of problems. Let us begin

by recalling the interacting particle method and the Hastings-Metropolis algorithm as presented
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in [36]

1.4.2 Preliminaries on Interacting Particle Method and Hastings-Metropolis

algorithm for random variables

We present the interacting-particle method [36] and highlight its need of the Hastings-Metropolis

(HM) algorithm for practical application.

We consider a probability space (Ω,F , P ), and a measurable space (S,S, Q). We consider a

random variable X from (Ω,F , P ) to (S,S, Q). We assume that we are able to sample realizations

of X.

We consider an objective function Φ : S ! R, for which we only assume that Φ(X) has a conti-

nuous cumulative distribution function F . The interacting-particle method aims at estimating

the probability of the event Φ(X) > l, for a given level l 2 R. We denote this probability by p.

The method can be presented in two steps. First, we assume that an ideal, or a theoretical, me-

thod can be implemented exactly. In this case, the finite-sample distribution of the corresponding

estimator of the probability p is known exactly, so that exact finite-sample confidence intervals

are available. Furthermore, the limit, for large number of sampling from X, of the probability

estimation error, has attractive properties as shown in [36]. Nevertheless, this ideal method can

not be implemented exactly for a large range of practical problems. Thus, it is proposed in [36]

to approximate the ideal method by using a HM algorithm.

1.4.2.1 Theoretical version of the interacting-particle method

We assume that we are able to sample realizations of X, conditionally to the event Φ(X) > t,

for any t 2 R. This is a strong assumption and that is why the corresponding method that we

present is called the ideal method.

The ideal algorithm for estimating p is then parameterized by a number of particle N and is as

follows.

Algorithm 1.4.2.1

– Generate an iid sample (X1, .., XN ), from the distribution of X, and initialize m = 1, L1 =

min(Φ(X1), ..,Φ(XN )) and X1
1 = X1, ..., X

1
N = XN .

– While Lm 6 l do

– For i = 1, ..., N

– Set Xm+1
i = Xm

i if Φ(Xm
i ) > Lm, and else Xm+1

i = X⇤, where X⇤ follows the dis-

tribution of X conditionally to Φ(X) > Lm, and is independent of any other random

variables involved in the algorithm.

– Set m = m+ 1.

– Set Lm = min(Φ(Xm
1 ), ..,Φ(Xm

N )).

– The natural estimator of the probability p is p̂ipm = (1− 1
N )m−1.

For each finite N , the ideal estimator p̂ipm obtained from the algorithm 1.4.2.1 has an explicit

distribution that is detailed in [36]. Here, we just consider two properties of p̂ipm. First, the

estimator is unbiased : E(p̂ipm) = p. Second, asymptotic 95% confidence intervals, for N large,

are of the form

Ip̂ipm =

"
p̂ipmexp

 
−1.96

r
−logp̂ipm

N

!
, p̂ipmexp

 
1.96

r
−logp̂ipm

N

!#
. (1.4.1)
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1.4.2.2 Practical implementation of the interacting-particle method with the Hastings-

Metropolis algorithm

For practical implementation of the previous algorithm, the only problem we have to solve is

the conditional sampling, with the distribution of X, conditionally to Φ(X) > t, for any t 2 R.

An application of the HM algorithm is proposed in [36]. For this, the following is assumed

– The distribution of X has a probability distribution function (pdf) f with respect to (S,S, Q).

For any x 2 S we can compute f(x).

– We dispose of a transition kernel on (S,S, Q) with conditional pdf κ(x, y) (pdf of y conditio-

nally to x). We are able to sample from κ(x, .) for any x 2 S and we can compute κ(x, y) for

any x, y 2 S.

Let t 2 R and x 2 S so that Φ(x) > t. Then, the following algorithm enables to, starting from

x, sample approximately with the distribution of X, conditionally to Φ(X) > t. The algorithm

is parameterized by a number of iterations T 2 N⇤.

Algorithm 1.4.2.2.1

– Let X = x.

– For i = 1, ..., T

– Independently from any other random variable, generate X⇤ following the κ(X, .) distri-

bution.

– If Φ(X⇤) > t

– Let r = f(X⇤)κ(X⇤,X)
f(X)κ(X,X⇤) .

– With probability min(r, 1), let X = X⇤.
– Return X.

The random variable returned by algorithm 1.4.2.2.1 is denoted XT (x).

For consistency, we now give the actual interacting-particle method, involving algorithm 1.4.2.2.1.

This method is parameterized by the number of particles N and the number of HM iterations T .

Algorithm 1.4.2.2.2

– Generate an iid sample (X1, .., XN ) from the distribution of X and initialize m = 1, L1 =

min(Φ(X1), ..,Φ(XN )) and X1
1 = X1, ..., X

1
N = XN .

– While Lm 6 l do

– For i = 1, ..., N

– Set Xm+1
i = Xm

i if Φ(Xm
i ) > Lm, and else pick at random an integer J among the

integers 1 6 j 6 N so that Φ(Xm
j ) > Lm. Then, let Xm+1

i = XT (X
m
J ), with the

notation of algorithm 1.4.2.2.1.

– Set m = m+ 1.

– Set Lm = min(Φ(Xm
1 ), ..,Φ(Xm

N )).

– The estimate of the probability p is p̂ipm = (1− 1
N )m−1.

The estimator p̂ipm of algorithm 1.4.2.2.2 is the practical estimator that we studied in the

numerical results of section 5.5.

In [36], it is shown that, when the space S is a subset of Rd, under mild assumptions, the

distribution of the estimator of Algorithm converges, as T ! +1, to the distribution of the ideal

estimator of Algorithm 1.4.2.1. For this reason, we call the estimator of ideal Algorithm 1.4.2.1

the estimator corresponding to the case T = +1. We also call the confidence intervals (1.4.1)

the confidence intervals of the case T = +1.

Nevertheless, the space S we are interested in is a space of sequences that are killed after a

finite time. Thus, it is not straightforward that the convergence, as T ! +1, discussed above,
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hold in our case. Furthermore, even the notion of pdf on this space of sequences has to be defined.

This is the object of the section 5.3, that defines the notion of pdf, on a space of sequences that

are killed after a finite time, and that gives a convergence result for the HM algorithm.

1.4.3 Our contribution : Hastings-Metropolis algorithm on Markov chains for

rare events

The contribution of this work is two-fold. First it is shown how the Hasting Metropolis algorithm

can be extended to sampling of Markov chains that are stationary after finite time. This enables

to use the Hastings-Metropolis algorithm, which is necessary to implement the method [36] in

practice. A convergence result has also been shown for the Hastings-Metropolis algorithm in this

setting.

The second contribution of the paper is to give the actual probability density function equations,

for implementing the interacting-particle method in an academic one-dimensional problem, and a

simplified but realistic two-dimensional problem. In both cases, the method is shown to be valid.

Furthermore, the method outperforms a simple-Monte Carlo estimator, for estimating a small

probability.

Prospects are possible for both contributions. First, the proof of the convergence of the Hastings-

Metropolis could be extended under more general assumptions. Second, several possibilities for

practical improvement of the interacting-particle method are presented in section 5.5.3.





Chapitre 2

Numerical scheme for semilinear

SPDEs via BDSDEs

2.1 Introduction

Stochastic partial differential equations (SPDEs) combine the features of partial differential

equations and Itô equations. Such equations play important roles in many applied fields such as

the filtering of partially observable diffusion processes, genetic population and other areas. We

study the following stochastic partial differential equation (in short SPDE) for a system-valued

of predictable random field ut (x) = u (t, x) , satisfying the following equation :

dut(x) +
(
Lut(x) +f(t, x, ut(x),rutσ(x))

)
dt+ g(t, x, ut(x),rutσ(x)) ·

 −
dBt = 0, (2.1.1)

over the time interval [0, T ], with a given final condition uT = Φ and non-linear deterministic

coefficients f and g. Lu =
(
Lu1, · · · , Luk

)
is a second order differential operator and σ is the

diffusion coefficient. The differential term with
 −
dBt refers to the backward stochastic integral

with respect to a l-dimensional brownian motion on
(
Ω,F ,P, (Bt)t > 0

)
. We use the backward

stochastic integral in the SPDE because we will employ the framework of Backward Doubly

Stochastic Differential Equation (BDSDE) introduced first by Pardoux and Peng [63]. They gave

a probabilistic representation for the classical solution ut(x) of the SPDE (2.1.1) (written in the

integral form) in term of the following class of BDSDE’s :

Y t,x
s = Φ(Xt,x

T )+

Z T

s
f(r,Xt,x

r , Y t,x
r , Zt,x

r )dr+

Z T

s
g(r,Xt,x

r , Y t,x
r , Zt,x

r )
 −−
dBr−

Z T

s
Zt,x
r dWr, (2.1.2)

where (Xt,x
s )t 6 s 6 T is a diffusion process starting from x at time t driven by the finite dimen-

sional brownian motion (Wt)t > 0 and with infinitesimal generator L. More precisely, under some

regularity assumptions on the final condition Φ and coefficients f and g , they have proved that

ut(x) = Y t,x
t and rutσ(x) = Zt,x

t , 8(t, x) 2 [0, T ] ⇥ Rd. Then, Bally and Matoussi [9] (see also

[53] ) showed that the same representation remains true in the case when the final condition

(respectively the coefficients f and g) is only measurable in x (resp. are jointly measurable in

(t, x) and Lispchitz in u and ru). In this paper, weak Sobolev solution of the equation (2.1.1)

has been considered, and the approach was based on stochastic flow technics (see also [47, 48]).

Moreover their results were generalized in [53] in the case of a larger class of SPDE’s (2.1.1) driven

by a Kunita-Ito non-linear noise (see [47, 48, 49] for more details). In particular, the Kunita-Ito

non-linear noise covers a class of infinite dimensional space-time colored-white noise (see [37],

[66], [44]). Generally, the explicit resolution of semi-linear SPDEs is not possible, so it is then

necessary to resort to numerical methods.

The first approach used to solve numerically nonlinear SPDEs is analytic methods, based on

time-space discretization of the SPDEs. The discretization on space can be achieved either by

finite differences, or finite elements and spectral Galerkin methods. But most numerical works
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on SPDEs have concentrated on the Euler finite-difference scheme. Gyongi and Nualart [38] have

proved that these schemes converge, and Gyongy [39] determined the order of convergence. J.B.

Walsh [69] investigated schemes based on the finite elements methods. He studied the rate of

convergence of these schemes for parabolic SPDEs, including the Forward and Backward Euler

and the Crank-Nicholson schemes. He found substantially similar rate of convergence to those

found for finite difference schemes. The spectral Galerkin approximation was used by Jentzen

and Kloeden [44]. They based their method on Taylor expansions derived for the solution of the

SPDE, under some regularity conditions.

Lototsky, Mikulevicius and Rozovskii in 1997 [51] used the spectral approach for the numerical

estimation of the conditional distribution solution of a linear SPDE known as the Zakai equation.

Further developments on spectral methods can be found in Lototsky [52]. Milstein and Tretyakov

[57] solved a linear Stochastic Partial Differential Equation by using the method of characteris-

tics (the averaging over the characteristic formula). They proposed a numerical scheme based on

Monte Carlo technique. Layer methods for linear and semilinear SPDEs are constructed. Picard

[65] considered a filtering problem where the observation is a function of a diffusion corrupted by

an independent white noise. He estimated the error caused by a discretization of the time interval.

He obtained some approximations of the optimal filter which can be computed with Monte-Carlo

methods. Crisan [19] studied a particle approximation for a class of nonlinear stochastic partial

differential equations. Very interesting results have been obtained by Gyongy and Krylov [37]

where they considered a symmetric finite difference scheme for a class of linear SPDE driven by

infinite dimensional brownian motion. They have proved that the approximation error is pro-

portional to k2 where k is the discretization step in space and by the Richardson acceleration

method they have even got the error proportional to k4.

The other alternative for resolving numerically SPDEs is the probabilistic approach by using

Monte Carlo methods. These latter methods are tractable especially when the dimension of the

state process is very large unlike the finite difference method. Furthermore, their parallel nature

provides another advantage to the probabilistic approach : each processor of a parallel computer

can be assigned the task of making a random trial and doing the calculus independently. The

probabilistic approach requires weaker assumptions on the SPDE’s coefficients. In the determi-

nistic PDE’s case i.e. g ⌘ 0, the numerical approximation of the BSDE has already been studied

in the literature by Bally [8], Zhang [70], Bouchard and Touzi [16], Gobet, Lemor and Warin[34]

and Bouchard and Elie [15]. Zhang [70] proposed a discrete-time numerical approximation, by

step processes, for a class of decoupled FBSDEs with possible path-dependent terminal values.

He proved an L2-type regularity of the BSDE’s solution, the convergence of his scheme and he

derived its rate of convergence. Bouchard and Touzi [16] suggested a similar numerical scheme

for decoupled FBSDEs. The conditional expectations involved in their discretization scheme were

computed using the Malliavin approach and the Monte carlo method. Crisan, Manolarakis and

Touzi [20] proposed an improvement on the Malliavin weights. Gobet, Lemor and Warin in [34]

proposed an explicit numerical scheme. In the case when g 6= 0 and it does not depend on the

control variable z, Aman [3] proposed a numerical scheme following the idea used by Bouchard

and Touzi [16] and obtained a convergence of order h of the square of the L2- error (h is the

discretization step in time). Aboura [1] studied the same numerical scheme under the same kind

of hypothesis, but following Gobet et al. [33]. He obtained a convergence of order h in time and

used the regression Monte Carlo method to implement his scheme, following always [33].

In our work, we extend the approach of Bouchard-Touzi-Zhang in the general case when g de-

pends also on the control variable z. We wish to emphasize that this generalization is not obvious

because of the strong impact of the backward stochastic integral term on the numerical approxi-

mation scheme. It is known that in the associated Stochastic PDE’s (2.1.1), the term g(u,ru)
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leads to a second order perturbation type which explains the contraction condition assumed on

g with respect to the variable z (see [63], [59]). Our scheme is implicit in Y and explicit in Z. We

prove the convergence of our numerical scheme and we give the rate of convergence. The square

of the L2- error has an upper bound of order the discretization step in time. As a consequence,

we get a numerical scheme for the weak solution of the associated semi linear SPDE. We give also

a rate of convergence result for the later weak solution. Then, we propose a numerical scheme

based on iterative regression functions which are approximated by projections on vector space of

functions with coefficients evaluated using Monte Carlo simulations. Finally, we present some nu-

merical tests. Compared to the deterministic numerical method developed by Gyongy and Krylov

[37], the probabilistic approach could tackle the semilinear SPDE which could be degenerate and

needs less regularity conditions on the coefficients than the finite difference scheme. However, the

rate of convergence obtained (as the classical Monte Carlo method) is clearly slower than the

results obtained by finite difference and finite element schemes, but of course more available in

higher dimension.

This paper is organized as follows. In section 2 we introduce preliminaries and assumptions and

we describe the approximation scheme for the BDSDE. In section 3 we show an upper bound

result for the time discretization error. In section 4 we give a Malliavin regularity result for the

solution of our Forward-Backward Doubly SDE’s. Then, we show a L2-regularity result for the

Z-component of the solution of the BDSDE (2.1.2) which is crucial to obtain the rate of conver-

gence of our numerical scheme. Section 5 is devoted to the numerical scheme of the SPDE’s weak

solution. In section 6, we test statistically the convergence of this scheme by using a path de-

pendent algorithm based on the regression Monte Carlo Method. Finally, we give some technical

results in the Appendix

2.2 Preliminaries and notations

2.2.1 Forward Backward Doubly Stochastic Differential Equation

Let (Ω,F , P ) be a probability space and T > 0 be a fixed horizon time. Then, let {Wt, 0 6 t 6 T}
and {Bt, 0 6 t 6 T} be two mutually independent standard Brownian motions with values res-

pectively in Rd and Rl, defined on (Ω,F , P ). We fix t 2 [0, T ]. For each s 2 [t, T ], we define the

family of σ −Algebras

F t
s := FW

t,s _ FB
s,T

where FW
t,s = σ{Wr −Wt, t 6 r 6 s}, and FB

s,T = σ{Br − Bs, s 6 r 6 T}. We take FW = FW
0,T ,

FB = FB
0,T and F = FW _ FB. When t = 0, we denote the σ−algebra F0

s by Fs for simplicity.

Without loss of generality, we assume that FW and FB are complete.

We stress that the collection (F t
s)t 6 s 6 T is neither increasing nor decreasing, and it does not

constitute a filtration.

After that, we introduce the following spaces :

• Ck
b (R

p,Rq) (respectively C1
b (Rp,Rq)) denotes the set of functions of class Ck from Rp to Rq

whose partial derivatives of order less or equal to k are bounded (respectively the set of functions

of class C1 from Rp to Rq whose partial derivatives are bounded).

For any m 2 N, we introduce the following notations :

• H2
m([0, T ]) denotes the set of (classes of dP ⇥ dt a.e. equal) Rm-valued jointly measurable

processes {ψu;u 2 [0, T ]} satisfying :

(i) ||ψ||2H2
m([0,T ]) := E[

R T
0 |ψu|2du] <1,

(ii) ψu is Fu-measurable, for a.e. u 2 [0, T ].
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• S2m([0, T ]) denotes similary the set of Rm-valued continuous processes satisfying :

(i) ||ψ||2S2m([0,T ]) := E[sup0 6 u 6 T |ψu|2] <1,

(ii) ψu is Fu-measurable, for any u 2 [0, T ].

• S the set of random variables F of the form :

F = f̂(W (h1), . . . ,W (hm1
), B(k1), . . . , B(km2

))

with f̂ 2 C1
b (Rm1+m2 ,R), h1, . . . , hm1

2 L2([0, T ],Rd), k1, . . . , km2
2 L2([0, T ],Rl), where

W (hi) :=

Z T

0
hi(s)dWs, B(kj) :=

Z T

0
kj(s)

 −−
dBs.

For any random variable F 2 S, we define its Malliavin derivative (DsF )s with respect to the

brownian motion W by

DsF :=

m1X

i=1

rif̂

✓
W (h1), . . . ,W (hm1

);B(k1), . . . , B(km2
)

◆
hi(s),

where rif̂ is the derivative of f̂ with respect to its i-th argument.

We define a norm on S by :

kFk1,2 :=
{
E[F 2] + E

⇥ Z T

0
|DsF |2ds

⇤ 1

2 .

• D1,2 , S
k.k1,2 is then a Sobolev space.

• S2k([0, T ],D1,2) is the set of processes Y = (Yu, 0 6 u 6 T ) such that Y 2 S2k([0, T ]), Y
i
u 2 D1,2,

1 6 i 6 k, 0 6 u 6 T and

kY k1,2 := {E[

Z T

0
|Yu|2du] + E[

Z T

0

Z T

0
||DθYu||2dudθ]}

1

2 <1.

• M2
k⇥d([0, T ],D

1,2) is the set of processes Z = (Zu, 0 6 u 6 T ) such that Z 2 H2
k⇥d([0, T ]),

Zi,j
u 2 D1,2,1 6 i 6 k, 1 6 j 6 d, 0 6 u 6 T and

kZk1,2 := {E[

Z T

0
kZuk2du] + E[

Z T

0

Z T

0
||DθZu||2dudθ]}

1

2 <1.

• B2([0, T ],D1,2) := S2k([0, T ],D1,2)⇥M2
k⇥d([0, T ],D

1,2).

We define also for a given t 2 [0, T ] :

• L2([t, T ],D1,2) is the set of progressively measurable processes (vs)t 6 s 6 T such that :

(i) v(s, .) 2 D1,2, for a.e. s 2 [t, T ],

(ii) (s, w) −! Dv(s, w) 2 L2([t, T ]⇥ Ω),

(iii) E[
R T
t |vs|2ds] + E[

R T
t

R T
t |Duvs|2duds] <1.

• L2([t, T ],D1,2 ⇥ D1,2) := L2([t, T ],D1,2)⇥ L2([t, T ],D1,2).

For all (t, x) 2 [0, T ]⇥ Rd, let (Xt,x
s )s be the unique strong solution of the following stochastic

differential equation :

dXt,x
s = b(Xt,x

s )ds+ σ(Xt,x
s )dWs, s 2 [t, T ], Xt,x

s = x, 0 6 s 6 t, (2.2.1)

where b and σ are two functions on Rd with values respectively in Rd and Rd⇥d. We will omit

the dependance of the forward process X in the initial condition if it starts at time t = 0.

We consider the following BDSDE : For all t 6 s 6 T ,
(

dY t,x
s = −f(s,Xt,x

s , Y t,x
s , Zt,x

s )ds− g(s,Xt,x
s , Y t,x

s , Zt,x
s )
 −−
dBs + Zt,x

s dWs,

Y t,x
T = Φ(Xt,x

T ),
(2.2.2)
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where f and Φ are two functions respectively on [0, T ]⇥ Rd ⇥ Rk ⇥ Rk⇥d and Rd with values in

Rk and g is a function on [0, T ]⇥ Rd ⇥ Rk ⇥ Rk⇥d with values in Rk⇥l.

We note that the integral with respect to (Bs, t 6 s 6 T ) is a "backward Itô integral" (see

Kunita [49] and Nualart and Pardoux [59] for the definition) and the integral with respect to

(Ws, t 6 s 6 T ) is a standard forward Itô integral.

Finally, for each real matrix A, we denote by kAk its Frobenius norm defined by kAk = (
P

i,j a
2
i,j)

1/2.

For a vector x, |x| stands for its Euclidean norm defined by |x| = (
P

i |xi|2)1/2.
The following assumptions will be needed in our work :

Assumption (H1) There exist a positive constant K such that

|b(x)− b(x0)|+ kσ(x)− σ(x0)k 6 K|x− x0|, 8x, x0 2 Rd.

Assumption (H2) There exist two constants K > 0 and 0 6 α < 1 such that

for any (t1, x1, y1, z1), (t2, x2, y2, z2) 2 [0, T ]⇥ Rd ⇥ Rk ⇥ Rk⇥d,

(i) |f(t1, x1, y1, z1)− f(t2, x2, y2, z2)| 6 K
(p
|t1 − t2|+ |x1 − x2|+ |y1 − y2|+ kz1 − z2k

)
,

(ii) kg(t1, x1, y1, z1)−g(t2,x2,y2,z2)k2 6 K
(
|t1 − t2|+|x1 − x2|2 + |y1−y2|2

)
+α2kz1−z2k2,

(iii) |Φ(x1)− Φ(x2)| 6 K|x1 − x2|,
(iv) sup0 6 t 6 T (|f(t, 0, 0, 0)|+ ||g(t, 0, 0, 0)||) 6 K.

Assumption (H3)

(i) b 2 C2
b (R

d,Rd) and σ 2 C2
b (R

d,Rd⇥d)

(ii) Φ 2 C2
b (R

d,Rk), f 2 C2
b ([0, T ]⇥ Rd ⇥ Rk ⇥ Rd⇥k,Rk)

and g 2 C2
b ([0, T ]⇥ Rd ⇥ Rk ⇥ Rd⇥k,Rk⇥l).

Pardoux and Peng [63] proved that there exists a unique solution (Y, Z) 2 S2k([t, T ])⇥H2
k⇥d([t, T ])

to the BDSDE (2.2.2).

Remark 2.2.1. Pardoux and Peng [63] assumed the contraction condition 0 6 α < 1 to prove

the existence and the uniqueness results for the BDSDE’s solution.

From [31], [63] and [46], the standard estimates for the solution of the Forward-Backward

Doubly SDE (2.2.1)-(2.2.2) hold and we remind the following theorem :

Theorem 2.2.1. Under Assumptions (H1) and (H2), there exist, for any p > 2, two positive

constants C and Cp and an integer q such that :

E[supt 6 s 6 T |Xt,x
s |2] 6 C(1 + |x|2), (2.2.3)

E
h
supt 6 s 6 T |Y t,x

s |p +
⇣Z T

t
kZt,x

s k2ds
⌘p/2i

6 Cp(1 + |x|q), (2.2.4)

2.2.2 Numerical Scheme for decoupled Forward-BDSDE

In order to approximate the solution of the BDSDE (2.2.2), we introduce the following discre-

tized version. Let

π : t0 = 0 < t1 < . . . < tN = T, (2.2.5)
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be a partition of the time interval [0, T ]. For simplicity we take an equidistant partition of

[0, T ] i.e. h = T
N and tn = nh, 0 6 n 6 N . Throughout the rest, we will use the notations

∆Wn = Wtn+1
−Wtn and ∆Bn = Btn+1

−Btn , for n = 1, . . . , N .

The forward component X will be approximated by the classical Euler scheme :

(
XN

t0 = Xt0 ,

XN
tn = XN

tn−1
+ b(XN

tn−1
)(tn − tn−1) + σ(XN

tn−1
)(Wtn −Wtn−1

), for n = 1, . . . , N.
(2.2.6)

It is known that as N goes to infinity, one has sup0 6 n 6 NE|Xtn −XN
tn |2 ! 0.

Quite naturally, the solution (Y, Z) of (2.2.2) is approximated by (Y N , ZN ) defined by :

Y N
tN

= Φ(XN
T ) and ZN

tN
= 0, (2.2.7)

and for n = N − 1, . . . , 0, we set

Y N
tn = Etn [Y

N
tn+1

+ g(tn+1,Θ
N
n+1)∆Bn] + hf(tn,Θ

N
n ), (2.2.8)

hZN
tn = Etn

"
{Y N

tn+1
+ g(tn+1,Θ

N
n+1)∆Bn}∆W ⇤

n

#
, (2.2.9)

where

ΘN
n := (XN

tn , Y
N
tn , Z

N
tn), 8n = 0, . . . , N.

⇤ denotes the transposition operator and Etn denotes the conditional expectation over the σ-

algebra F0
tn .

For all n = 0, . . . , N − 1, we define the pair of processes (Y N
t , ZN

t )tn 6 t<tn+1
as the solution of

the following BDSDE :

Y N
t =Y N

tn+1
+

Z tn+1

t
f(tn,Θ

N
n )ds+

Z tn+1

t
g(tn+1,Θ

N
n+1)
 −−
dBs −

Z tn+1

t
ZN
s dWs, tn 6 t < tn+1. (2.2.10)

Remark 2.2.2. Equation (2.2.10) is the continuous approximation of the solution of BDSDE

(2.2.2). The sequences (Y N
tn )0 6 n 6 N given by (2.2.8) and (2.2.10) coincide. In Lemma 2.3.1 we

will give the relation between (ZN
tn)0 6 n 6 N−1 and (ZN

s )tn 6 s<tn+1
.

Remark 2.2.3. For the approximation of Y N
tn , (2.2.8) is well-defined, indeed Y N

tn (!) is a fixed

point of

'(x) = hf(tn, X
N
tn (!), x, Z

N
tn(!)) + Etn [Y

N
tn+1

+ g(tn+1, X
N
tn+1

, Y N
tn+1

, ZN
tn+1

)∆Bn](!),

which exists and is unique as soon as Kh < 1.

Remark 2.2.4. The superscript (t, x) indicates the dependence of the solution (X,Y, Z) on the

initial date (t, x). To alleviate notations, we omit the dependence on (t, x) of (Y t,x, Zt,x) and

(Y N,t,x, ZN,t,x) when the context is clear.

We note also that in the next computations, the constant C denotes a generic constant that may

change from line to line. It depends on K, T, ↵, |b(0)|, ||σ(0)||, |f(t, 0, 0, 0)| and ||g(t, 0, 0, 0)||.
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2.3 Upper bound for the discrete time approximation error

Fisrt, we define the process Z̄ by

8
<
:

Z̄t =
1
hEtn [

Z tn+1

tn

Zsds], 8t 2 [tn, tn+1), 8n 2 {0, . . . , N − 1},

Z̄tN = 0.

(2.3.1)

Then we give the following property of the continuous approximation ZN which shows that ZN
tn

is the best L2(Ftn)-estimate of (ZN
s )s.

Lemma 2.3.1. For all n = 0, . . . , N − 1, we have

ZN
tn =

1

h
Etn [

Z tn+1

tn

ZN
s ds]. (2.3.2)

Proof. From (2.2.10) we have

Z tn+1

tn

ZN
s dWs∆Wn = Y N

tn+1
∆Wn +

Z tn+1

tn

f(tn,Θ
N
n )ds∆Wn

+

Z tn+1

tn

g(tn+1,Θ
N
n+1)
 −−
dBs∆Wn − Y N

tn ∆Wn.

then

Etn [

Z tn+1

tn

ZN
s dWs∆Wn] = Etn [Y

N
tn+1

∆Wn] + IEtn [

Z tn+1

tn

f(tn,Θ
N
n )ds∆Wn]

+ Etn [

Z tn+1

tn

g(tn+1,Θ
N
n+1)
 −−
dBs∆Wn]− Etn [Y

N
tn ∆Wn]

= Etn [Y
N
tn+1

∆Wn] + hEtn [f(tn,Θ
N
n )∆Wn]

+ Etn [g(tn+1,Θ
N
n+1)∆Bn∆Wn]− Etn [Y

N
tn ∆Wn]

= Etn [Y
N
tn+1

∆Wn] + Etn [g(tn+1,Θ
N
n+1)∆Bn∆Wn]

= hZN
tn . (2.3.3)

Here we used the fact that Y N
tn and f(tn,Θ

N
n ) are Ftn-measurable and then we have

Etn [f(tn,Θ
N
n )∆Wn] = Etn [Y

N
tn ∆Wn] = 0.

Now by using the integration by parts formula we have

Etn [

Z tn+1

tn

ZN
s dWs∆Wn] = Etn [

Z tn+1

tn

Z s

tn

dWuZ
N
s dWs] + Etn [

Z tn+1

tn

Z s

tn

ZN
u dWudWs]

+ Etn [

Z tn+1

tn

ZN
s ds].

Then

Etn [

Z tn+1

tn

ZN
s dWs∆Wn] = Etn [

Z tn+1

tn

ZN
s ds]. (2.3.4)

Equations (2.3.3) and (2.3.4) give that

ZN
tn =

1

h
Etn [

Z tn+1

tn

ZN
s ds].
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tu

The next theorem states an upper bound result regarding the time discretization error.

Theorem 2.3.1. Assume that Assumptions (H1) and (H2) hold, define the error

ErrorN (Y, Z) := sup0 6 s 6 TE[|Ys − Y N
s |2] +

N−1X

n=0

E[

Z tn+1

tn

||Zs − ZN
tn ||2ds], (2.3.5)

where Y N and ZN are given by (2.2.10). Then

ErrorN (Y, Z) 6 Ch(1 + |x|2) + C

N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds

+ C
N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds. (2.3.6)

Proof. For all t 2 [tn, tn+1), n = 0, . . . , N − 1 we define the following quantities :
8
><
>:

✓t := (Xt, Yt, Zt) , δY
N
t := Yt − Y N

t , δZN
t := Zt − ZN

t ,

δft := f(t, ✓t)− f(tn,Θ
N
n ),

δgt := g(t, ✓t)− g(tn+1,Θ
N
n+1).

(2.3.7)

We have :

δY N
t = δY N

tn+1
+

Z tn+1

t
δfsds+

Z tn+1

t
δgs
 −−
dBs −

Z tn+1

t
δZN

s dWs, 8t 2 [tn, tn+1).

Using the Generalized Itô’s Lemma (see Lemma 1.3, [63]), we obtain

|δY N
t |2 +

Z tn+1

t
kδZN

s k2ds− |δY N
tn+1
|2 = 2

Z tn+1

t
(δY N

s , δfs)ds+ 2

Z tn+1

t
(δY N

s , δgs)
 −−
dBs

+

Z tn+1

t
kδgsk2ds−2

Z tn+1

t
(δY N

s , δZN
s )dWs, 8t2 [tn, tn+1).

Then taking the expectation, we have

An
t := E[|δY N

t |2] +
Z tn+1

t
E[kδZN

s k2]ds− E[|δY N
tn+1
|2] = 2

Z tn+1

t
E[(δY N

s , δfs)]ds

+

Z tn+1

t
E[kδgsk2]ds. (2.3.8)

From Assumption (H2)-(ii),

Z tn+1

t
E[kδgsk2]ds 6 Kh2 +K

Z tn+1

t
E[|Xs −XN

tn+1
|2]ds

+ K

Z tn+1

t
E[|Ys − Y N

tn+1
|2]ds+ ↵2E

⇥ Z tn+1

t
||Zs − ZN

tn+1
||2ds

⇤
. (2.3.9)

Using the Young’s inequality, for a positive constant ", we obtain for all n = 0, . . . , N − 2,

E
⇥ Z tn+1

t
||Zs − ZN

tn+1
||2ds

⇤
6 (1 +

1

"
)E
⇥ Z tn+1

t
||Zs − Z̄tn+1

||2ds
⇤

+ (1 + ")E
⇥ Z tn+1

t
||Z̄tn+1

− ZN
tn+1
||2ds

⇤
. (2.3.10)
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Let Us note that the last inequality is not needed for n = N − 1 , since ZN
tN

= 0 and then

E
⇥ Z tN

t
||Zs − ZN

tN
||2ds

⇤
= E

⇥ Z ttN

t
||Zs||2ds

⇤
, 8t 2 [tN−1, tN ).

For all n = 0, . . . , N − 2, we use Lemma 2.3.1, the definition of Z̄ and the Jensen’s inequality to

get

E
⇥
||Z̄tn+1

− ZN
tn+1
||2
⇤

= E
h
||1
h
Etn+1

⇥ Z tn+2

tn+1

δZN
r dr

⇤
||2
i
.

6
1

h2
E
h
Etn+1

⇥
||
Z tn+2

tn+1

δZN
r dr||2

⇤i
.

By using Cauchy Schwartz inequality, we obtain for all n = 0, . . . , N − 2

E
⇥
||Z̄tn+1

− ZN
tn+1
||2
⇤
6

1

h
E
h Z tn+2

tn+1

kδZN
r k2dr

i
. (2.3.11)

Plugging (2.3.11) in (2.3.10) then (2.3.10) in (2.3.9), we get for all n = 0, . . . , N − 2

Z tn+1

t
E[kδgsk2]ds 6 Kh2 +K

Z tn+1

t
E[|Xs −XN

tn+1
|2]ds+K

Z tn+1

t
E[|Ys − Y N

tn+1
|2]ds

+ (1 +
1

"
)↵2

Z tn+1

t
E[||Zs − Z̄tn+1

||2]ds+ (1 + ")↵2

Z tn+2

tn+1

E[kδZN
s k2]ds. (2.3.12)

The previous inequality becomes trivially for n = N − 1,

Z tN

t
E[kδgsk2]ds 6 Kh2 +K

Z tN

t
E[|Xs −XN

tN
|2]ds+K

Z tN

t
E[|Ys − Y N

tN
|2]ds

+ ↵2E
⇥ Z tN

tN−1

||Zs||2ds
⇤
, 8t 2 [tN−1, tN ). (2.3.13)

We mention that in the rest of the proof, we will omit to treat the case n = N − 1. This case

remains only to replace inequality (2.3.12) by inequality (2.3.13) in the following estimations,

which is simpler to handle.

We set ↵0 := (1+")↵2. We choose " such that ↵0 2 (0, 1). This is possible since ↵2 2 (0, 1). Then,

we use the inequality 2ab 6 1−α0

4K a2+ 4K
1−α0 b2 and equation (2.3.12) to obtain for all n = 0, . . . , N−2

An
t 6

4K

1− ↵0

Z tn+1

t
E[|δY N

s |2]ds+
1− ↵0

4K

Z tn+1

t
E[|δfs|2]ds+Kh2

+ K

Z tn+1

t
E[|Xs −XN

tn+1
|2]ds+K

Z tn+1

t
E[|Ys − Y N

tn+1
|2]ds

+ (1 +
1

"
)↵2

Z tn+1

t
E[||Zs − Z̄tn+1

||2]ds+ ↵0
Z tn+2

tn+1

E[kδZN
s k2]ds

Now using Assumption (H2)-(i) in the last inequality, we get

An
t 6

4K

1− ↵0

Z tn+1

t
E[|δY N

s |2]ds+
1− ↵0

4K
K
{
h2 +

Z tn+1

t
E[|Xs −XN

tn |2]ds

+

Z tn+1

t
E[|Ys − Y N

tn |2]ds+
Z tn+1

t
E[||Zs − ZN

tn ||2]ds
 

+ Kh2 +K

Z tn+1

t
E[|Xs −XN

tn+1
|2]ds+K

Z tn+1

t
E[|Ys − Y N

tn+1
|2]ds

+ (1 +
1

"
)↵2

Z tn+1

t
E[||Zs − Z̄tn+1

||2]ds+ ↵0
Z tn+2

tn+1

E[kδZN
s k2]ds.
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Then, by plugging Z̄tn in the last inequality

An
t 6

4K

1− ↵0

Z tn+1

t
E[|δY N

s |2]ds+
1− ↵0

4K
K
{
h2 +

Z tn+1

t
E[|Xs −XN

tn |2]ds

+

Z tn+1

t
E[|Ys − Y N

tn |2]ds+ 2

Z tn+1

t
E[||Zs − Z̄tn ||2]ds+ 2

Z tn+1

tn

E[||δZN
s ||2]ds

 

+ Kh2 +K

Z tn+1

t
E[|Xs −XN

tn+1
|2] +K

Z tn+1

t
E[|Ys − Y N

tn+1
|2]ds

+ (1 +
1

"
)↵2

Z tn+1

t
E[||Zs − Z̄tn+1

||2]ds+ ↵0
Z tn+2

tn+1

E[kδZN
s k2]ds.

It is well known from Kloeden and Platen [45] that for all s 2 [tn, tn+1) and for all n = 0, . . . , N−1

E[|Xs −XN
tn |2] 6 Ch and E[|Xs −XN

tn+1
|2] 6 Ch, (2.3.14)

where C is a positive constant independent of x and depending on K,T , |b(0)| and kσ(0)k.
On the other hand, it is easy to check that suptn 6 s 6 tn+1

(|Ys − Ytn+1
|2 + |Ys − Ytn |2) 6 Ch(1 + |x|2).

This implies that

E[|Ys − Y N
tn+1
|2] 6 C{E[|Ys − Ytn+1

|2] + E[|Ytn+1
− Y N

tn+1
|2]}

6 C{h(1 + |x|2) + E[|δY N
tn+1
|2]} (2.3.15)

and similarly we have

E[|Ys − Y N
tn |2] 6 C{h(1 + |x|2) + E[|δY N

tn |2]}, (2.3.16)

where C is a positive constant independent of x.

From (2.3.14), (2.3.15) and (2.3.16), we obtain

An
t 6 C

Z tn+1

t
E[|δY N

s |2]ds+ ChE[|δY N
tn+1
|2] + ChE[|δY N

tn |2] + Ch2(1 + |x|2)

+ C

Z tn+1

t
E[||Zs − Z̄tn ||2]ds+ (

1− ↵0

2
)

Z tn+1

tn

E[||δZN
s ||2]ds

+ (1 +
1

"
)↵2

Z tn+1

t
E[||Zs − Z̄tn+1

||2]ds+ ↵0
Z tn+2

tn+1

E[kδZN
s k2]ds. (2.3.17)

where C is a generic positive constant depending on ↵0 and independent of x.

From (2.3.8) and (2.3.17), we get

E[|δY N
t |2] 6 An

t + E[|δY N
tn+1
|2]

= E[|δY N
t |2] +

Z tn+1

t
E[kδZN

s k2]ds

6 C

Z tn+1

t
E[|δY N

s |2]ds+Bn, 8t 2 [tn, tn+1), (2.3.18)

where we set for all n = 0, . . . , N − 2 :

Bn := E[|δY N
tn+1
|2] + ChE[|δY N

tn+1
|2] + ChE[|δY N

tn |2] + Ch2(1 + |x|2)

+ C

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds+ (
1− ↵0

2
)

Z tn+1

tn

E[||δZN
s ||2]ds

+ (1 +
1

"
)↵2

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds+ ↵0

Z tn+2

tn+1

E[kδZN
s k2]ds. (2.3.19)
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Using Gronwall Lemma, we have

E[|δY N
t |2] 6 Bne

Ch, 8t 2 [tn, tn+1). (2.3.20)

From inequalities (2.3.20) and (2.3.18), we get for h small enough

E[|δY N
t |2] +

Z tn+1

t
E[kδZN

s k2]ds 6 (1 + CheCh)Bn

6 (1 + Ch)Bn, 8t 2 [tn, tn+1). (2.3.21)

By taking t = tn in the last inequality, we obtain

E[|δY N
tn |2] +

Z tn+1

tn

E[kδZN
s k2]ds 6 (1 + Ch)

n
E[|δY N

tn+1
|2] + ChE[|δY N

tn |2]

+ Ch2(1 + |x|2) + C

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds+ (
1− ↵0

2
)

Z tn+1

tn

E[||δZN
s ||2]ds

+ (1 +
1

"
)↵2

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds+ ↵0

Z tn+2

tn+1

E[kδZN
s k2]ds

o
.

Then

(1− Ch)E[|δY N
tn |2] + [1− (1 + Ch)

1− ↵0

2
]

Z tn+1

tn

E[kδZN
s k2]ds 6 (1 + Ch)

n
E[|δY N

tn+1
|2]

+ Ch2(1 + |x|2) + C

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds+ (1 +
1

"
)↵2

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds

+ ↵0
Z tn+2

tn+1

E[kδZN
s k2]ds

o
.

For h small enough, we get

E[|δY N
tn |2] +

1 + ↵0

2

Z tn+1

tn

E[kδZN
s k2]ds 6 (1 + Ch)

n
E[|δY N

tn+1
|2] + ↵0

Z tn+2

tn+1

E[kδZN
s k2]ds

+ Ch2(1 + |x|2) + C

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds+ (1 +
1

"
)↵2

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds

o
. (2.3.22)

Iterating the last inequality, we obtain for all n = 0, . . . , N − 1

E[|δY N
tn |2] +

1 + ↵0

2

Z tn+1

tn

E[kδZN
s k2]ds 6 (1 + Ch)N−1

n
E[|δY N

T |2] + Ch(1 + |x|2)

+ C
N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds+ C
N−2X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds

+ ↵2

Z tN

tN−1

E[||Zs||2]ds
o
.

Using the Assumption (H2)-(iii), we get

E[|δY N
tn |2] +

1 + ↵0

2

Z tn+1

tn

E[kδZN
s k2]ds 6 (1 + Ch)N−1

n
Ch(1 + |x|2)

+ C
N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds+ C
N−2X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds

+ ↵2

Z tN

tN−1

E[||Zs||2]ds
o
. (2.3.23)
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Now we sum up inequality (2.3.22) over n, we get

N−1X

n=0

E[|δY N
tn |2] +

1 + ↵0

2

Z T

0
E[kδZN

s k2]ds 6 (1 + Ch)
nN−1X

n=0

E[|δY N
tn+1
|2]

+
N−1X

n=0

Ch2(1 + |x|2) + C

N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds+ C

N−2X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds

+ ↵2E
⇥ Z tN

tN−1

||Zs||2ds
⇤o

+ (1 + Ch)↵0
N−2X

n=0

Z tn+2

tn+1

E[kδZN
s k2]ds.

Using that Nh = T and
N−2X

n=0

Z tn+2

tn+1

E[kδZN
s k2]ds =

Z T

t1

E[kδZN
s k2]ds, we get

N−1X

n=0

E[|δY N
tn |2] +

1 + ↵0

2

Z T

0
E[kδZN

s k2]ds 6 (1 + Ch)
nN−1X

n=0

E[|δY N
tn+1
|2]

+ Ch(1 + |x|2) + C
N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds+ C
N−2X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds

+ ↵2E
⇥ Z tN

tN−1

||Zs||2ds
⇤o

+ (1 + Ch)↵0
Z T

0
E[kδZN

s k2]ds.

Then

N−1X

n=0

E[|δY N
tn |2] +

h1 + ↵0

2
− (1 + Ch)↵0

i Z T

0
E[kδZN

s k2]ds 6 (1 + Ch)
nN−1X

n=0

E[|δY N
tn+1
|2]

+ Ch(1 + |x|2) + C
N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds+ C
N−2X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds

+ ↵2E
⇥ Z tN

tN−1

||Zs||2ds
⇤o

.

We obtain for h small enough

N−1X

n=0

E[|δY N
tn |2] +

1− ↵0

2

Z T

0
E[kδZN

s k2]ds 6 (1 + Ch)
nN−1X

n=0

E[|δY N
tn+1
|2]

+ Ch(1 + |x|2) + C

N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds+ C

N−2X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds

+ ↵2E
⇥ Z tN

tN−1

||Zs||2ds
⇤o

.

Hence, we get

1− ↵0

2

Z T

0
E[kδZN

s k2]ds 6 (1 + Ch)E[|δY N
T |2] + [(1 + Ch)− 1]

N−1X

n=1

E[|δY N
tn |2]

− E[|δY N
t0 |2] + Ch(1 + |x|2) + C

N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds

+ C
N−2X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds+ ↵2E

⇥ Z tN

tN−1

||Zs||2ds
⇤
.
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Using Assumption (H2)-(iii) on Φ, we get

1− ↵0

2

Z T

0
E[kδZN

s k2]ds 6 Ch(1 + |x|2) + Ch

N−1X

n=1

E[|δY N
tn |2]

+ C

N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds+ C

N−2X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds

+ ↵2E
⇥ Z tN

tN−1

||Zs||2ds
i
. (2.3.24)

Summing up (2.3.23) over n, we have

h
N−1X

n=0

E[|δY N
tn |2 6 Ch(1 + |x|2) + C

N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds

+ C
N−2X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds+ C

Z tN

tN−1

E[||Zs||2]ds.

Plugging the last inequality in (2.3.24), we obtain

1− ↵0

2

Z T

0
E[kδZN

s k2]ds 6 Ch(1 + |x|2) + C

N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds

+ C

N−2X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds+ CE

⇥ Z tN

tN−1

||Zs||2ds
⇤
. (2.3.25)

Now, turning Back to equation (2.3.21), we have for all n = 0, . . . , N − 2

E[|δY N
t |2] 6 (1 + Ch)Bn

6 (1 + Ch)
n
E[|δY N

tn+1
|2] + ↵0

Z tn+2

tn+1

E[kδZN
s k2]ds

+ ChE[|δY N
tn |2] + (

1− ↵0

2
)

Z tn+1

tn

E[||δZN
s ||2]ds

+ Ch2(1 + |x|2) + C

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds

+ (1 +
1

"
)↵2

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds

o
, 8t 2 [tn, tn+1).

Using inequality (2.3.23), we get

E[|δY N
t |2] 6 Ch(1 + |x|2) + C

N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds

+ C

N−2X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds+ CE

⇥ Z tN

tN−1

||Zs||2ds
⇤
.

By taking the supremum over t in the last inequality, we obtain

sup0 6 t 6 TE[|δY N
t |2] 6 Ch(1 + |x|2) + C

N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds

+ C
N−2X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds+ CE

⇥ Z tN

tN−1

||Zs||2ds
⇤
. (2.3.26)
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Equations (2.3.26) and (2.3.25) give together

sup0 6 t 6 TE[|δY N
t |2] +

Z T

0
E[kδZN

s k2]ds6Ch(1 + |x|2) + C

N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds

+ C

N−2X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds+ CE

⇥ Z tN

tN−1

||Zs||2ds
⇤
. (2.3.27)

Plugging Z̄tn , we deduce from Lemma 2.3.1 that

E[
N−1X

n=0

Z tn+1

tn

||Zs − ZN
tn ||2ds] 6 CE[

N−1X

n=0

Z tn+1

tn

||Zs − Z̄tn ||2ds]

+ CE[
N−1X

n=0

Z tn+1

tn

||δZN
s ||2ds].

Using the last inequality in (2.3.27), we get

sup0 6 t 6 TE[|δY N
t |2] + E[

N−1X

n=0

Z tn+1

tn

||Zs − ZN
tn ||2ds] 6 Ch(1 + |x|2)

+ C

N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds+C

N−2X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds+ CE

⇥ Z tN

tN−1

||Zs||2ds
⇤

which can be written, if we set Z̄tN := 0

sup0 6 t 6 TE[|δY N
t |2] + E[

N−1X

n=0

Z tn+1

tn

||Zs − ZN
tn ||2ds] 6 Ch(1 + |x|2)

+ C

N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn ||2]ds+ C

N−1X

n=0

Z tn+1

tn

E[||Zs − Z̄tn+1
||2]ds. (2.3.28)

tu

Remark 2.3.1. BDSDEs theory works well in the L2 framework on the full probability space

(Existence and uniqueness for the theorotical solution). Thus, since the time discretization error

is studied on the full space (under the expectation), the analysis works in an analogous way to

the BSDEs case. We need the Itô Lemma for BDSDEs and to use the contraction condition in

Assumption (H2). After that, we need to prove Zhang L2-regularity results for this kind of equa-

tions. However, for the regression error analysis, we need almost sure estimates for the solution.

We send the reader to chapter 4 for more details on this question.

2.4 Path regularity of the process Z

The purpose of this section is to prove L2-regularity of the Z component of the solution of the

BDSDE (2.1.2). Such result is crucial to obtain the rate of convergence of our numerical scheme.

For this end, we need to introduce the Malliavin derivatives of the solution. This will allow us to

provide representation and regularity results for Y and Z that will immediately imply the rate

of our scheme.

We recall that the tools on the Malliavin calculus in the context of BDSDEs were introduced in



2.4. Path regularity of the process Z 33

Pardoux and Peng [63]. Pardoux and Peng have skipped details of this part considering that it

is just a natural extension of the works on standard BSDEs (The reader can see [62, 31, 64] for

the BSDEs case). For the sake of completeness, we give some details which are crucial to obtain

regularity result of the process Z and we give some technical proofs in the Appendix.

2.4.1 Malliavin calculus on the Forward SDE’s

In this section, we recall some properties on the differentiability in the Malliavin sense of the

forward process (Xt,x
s ) . Under (H3(i)), Nualart [58] stated that Xt,x

s 2 D1,2 for any s 2 [t, T ]

and for l 6 k the derivative Dl
rX

t,x
s is given by :

(i) Dl
rX

t,x
s = 0, for s < r 6 T ,

(ii) For any t < r 6 T , a version of {Dl
rX

t,x
s , r 6 s 6 T} is the unique solution of the linear

SDE

Dl
rX

t,x
s = σl(Xt,x

r ) +

Z s

r
rb(Xt,x

u )Dl
rX

t,x
u du+

dX

i=1

Z s

r
rσi(Xt,x

u )Dl
rX

t,x
u dW i

u,

where (σi)i=1,...,k denotes the i-th column of the matrix σ.

Moreover, Dl
rX

t,x
s 2 D1,2 for all r, s 6 T . For all v 6 T and l0 6 k, we have

Dl0

vD
l
rX

t,x
s = 0 if s < v _ r,

and for all s > v _ r a version of Dl0
vD

l
rX

t,x
s is the unique solution of the SDE :

Dl0

vD
l
rX

t,x
s = rσl(Xt,x

r )Dl0

vX
t,x
r +

dX

i=1

rσi(Xt,x
v )Dl

rX
t,x
v 1{t 6 v 6 s}

+

Z s

r

h kX

j=1

r((rb)j(Xt,x
u ))Dl0

vX
t,x
u (Dl

rX
t,x
u )j +rb(Xt,x

u )Dl0

vD
l
rX

t,x
u

i
du

+
dX

i=1

Z s

r

h kX

j=1

r(rσi(Xt,x
u ))jDl0

vX
t,x
u (Dl

rX
t,x
u )j +rσi(Xt,x

u )Dl0

vD
l
rX

t,x
u

i
dW i

u,

where ((rb)j)j=1,...,k (resp.((rσi(Xt,x
u ))j)j=1,...,k) denotes the j-th column of the matrix (rb)

(resp. (rσi(Xt,x
u ))) and ((Dl

rX
t,x
u )j)j=1,...,k denotes the j-th component of the vector (Dl

rX
t,x
u ).

The following inequalities will be useful later. For the proofs, we refer to Nualart [58] for example.

From Lemma 2.7 in [58] applied to X and DsX, there exists a positive constant Cp, depending

on p, such that : for all 0 6 r 6 s 6 T , we have the following inequalities

E
h
sup0 6 u 6 T ||DsXu||p

i
6 Cp(1 + |x|p), (2.4.1)

E
h
sups_r 6 u 6 T ||DsXu −DrXu||p

i
6 Cp|s− r|(1 + |x|p), (2.4.2)

The same argument used for DrDsX shows that there exists Cp > 0 such that

E
h
sup0 6 u 6 T ||DrDsXu||p

i
6 Cp(1 + |x|2p). (2.4.3)

2.4.2 Malliavin calculus for the solution of BDSDE’s

Now, our aim is to study the differentiability in the Malliavin sense of the solution of the

BDSDE (2.2.2). We start with the following lemma which shows that a backward Itô integral is

differentiable in the Malliavin sense if and only if its integrand is so. We recall that Pardoux and

Peng [62] proved that the result holds for the classical Itô integral.
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Lemma 2.4.1. Let U 2 H2
1([t, T ]) and Ii(U) =

R T
t UrdW

i
r , i = 1, . . . , d. Then, for each ✓ 2 [0, T ]

we have Uθ 2 D1,2. if and only if Ii(U) 2 D1,2, i = 1, . . . , d and for all ✓ 2 [0, T ], we have

DθIi(U) =

Z T

θ
DθUrdW

i
r + Uθ, ✓ > t,

DθIi(U) =

Z T

t
DθUrdW

i
r , ✓ 6 t.

For backward Itô integral, and since the Malliavin derivative is with respect to the brownian

motion W, we have the following result :

Lemma 2.4.2. Let U 2 H2
1([t, T ]) and Ii(U) =

R T
t Ur

 −−
dBi

r, i = 1, . . . , l. Then for each ✓ 2 [0, T ]

we have Uθ 2 D1,2 if and only if Ii(U) 2 D1,2, i = 1, . . . , l and for all ✓ 2 [0, T ], we have

DθIi(U) =

Z T

θ
DθUr

 −−
dBi

r, ✓ > t,

DθIi(U) =

Z T

t
DθUr

 −−
dBi

r, ✓ 6 t.

For later use, we need to prove the a priori estimates for the solution of the BDSDE (see [31]

for similar estimates for a standard BSDE).

Proposition 2.4.1. Let (φ1, f1, g1) and (φ2, f2, g2) be two standard parameters of the BDSDE

(2.2.2) and (Y 1, Z1) and (Y 2, Z2) the associated solutions. Assume that Assumption (H2) holds.

For s 2 [t, T ], set δYs := Y 1
s − Y 2

s , δ2fs := f1(s,Xs, Y
2
s , Z

2
s )− f2(s,Xs, Y

2
s , Z

2
s )

and δ2gs := g1(s,Xs, Y
2
s , Z

2
s )− g2(s,Xs, Y

2
s , Z

2
s ). Then, we have

||δY ||2S2
d
([t,T ]) + ||δZ||2H2

d⇥k
([t,T ]) 6 CE[|δYT |2 +

Z T

t
|δ2fs|2ds+

Z T

t
kδ2gsk2ds], (2.4.4)

where C is a positive constant depending only on K, T and ↵.

Proof. Using the same argument as in the classical BSDE’s setting, one can prove this stability

result for BDSDEs (see El Karoui et al.[31] for the BSDE’s case).

tu
Now, we study the differentiability in the Malliavin sense of the solution of the BDSDE which is

technical. To our knowledge, it does not exist in the literature. We have to precise that Pardoux

and Peng [63] have skipped details considering that it was just an easy extension of the work on

standard BSDEs [62]. We show that the derivative is a solution of a linear BDSDE as Pardoux

and Peng [62] did for standard BSDEs, see also El Karoui Peng and Quenez ([31], Proposition

5.3)).

Proposition 2.4.2. Assume that (H1)-(H3) hold. For any t 2 [0, T ] and x 2 Rd,

let {(Ys, Zs), t 6 s 6 T} denotes the unique solution of the BDSDE :

Ys = Φ(Xt,x
T ) +

Z T

s
f(r,Xt,x

r , Yr, Zr)dr +

Z T

s
g(r,Xt,x

r , Yr, Zr)
 −−
dBr −

Z T

s
ZrdWr, t 6 s 6 T.

Then, (Y, Z) 2 B2([t, T ],D1,2) and {DθYs, DθZs; t 6 s, ✓ 6 T} is given by :

(i) DθYs = 0, DθZs = 0 for all t 6 s < ✓ 6 T
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(ii) for any fixed ✓ 2 [t, T ], ✓ 6 s 6 T and 1 6 i 6 d, a version of (Di
θYs, D

i
θZs) is the unique

solution of the BDSDE :

Di
θYs = rΦ(Xt,x

T )Di
θX

t,x
T +

Z T

s

⇣
rxf(r,X

t,x
r , Yr, Zr)D

i
θX

t,x
r

⌘
dr

+

Z T

s

⇣
ryf(r,X

t,x
r , Yr, Zr)D

i
θYr +

dX

j=1

rzjf(r,X
t,x
r , Yr, Zr)D

i
θZ

j
r

⌘
dr

+
lX

n=1

Z T

s

⇣
rxg

n(r,Xt,x
r , Yr, Zr)D

i
θX

t,x
r +ryg

n(r,Xt,x
r , Yr, Zr)D

i
θYr

⌘ −−
dBn

r

+

lX

n=1

Z T

s

dX

j=1

⇣
rzjg

n(r,Xt,x
r , Yr, Zr)D

i
θZ

j
r

⌘ −−
dBn

r −
Z T

s

dX

j=1

Di
θZ

j
rdW

j
r , (2.4.5)

where (zj)1 6 j 6 d denotes the j-th column of the matrix z, (gn)1 6 n 6 l denotes the n-th column

of the matrix g and B = (B1, . . . , Bl).

Proof. See Appendix.

tu
The second order differentiability in the Malliavin sense of the solution of the BDSDE will be

given in Appendix.

2.4.3 Representation results for BDSDEs

In this subsection, we will prove a representation result of (Z,DZ) which will be useful to prove

the rate of convergence of our numerical scheme.

Proposition 2.4.3. Assume that (H1)-(H3) hold. Then : For t 6 s 6 T , we have

DsYs = Zs, (2.4.6)

and

kZk2S2
k⇥d

([t,T ]) 6 C(1 + |x|2). (2.4.7)

For l1, l2 6 d, t 6 s 6 T , we have

Dl2
s D

l1
t Ys = Dl2

t Z
l1
s , (2.4.8)

and

kDl1
s Zk2S2

k⇥d
([t,T ]) 6 C(1 + |x|4). (2.4.9)

Proof. To simplify the notations, we restrict ourselves to the case k = d = 1.

1. Notice that for t 6 s

Ys = Yt −
Z s

t
f(r,Σr)dr −

Z s

t
g(r,Σr)

 −−
dBr +

Z s

t
ZrdWr,

where Σr := (Xt,x
r , Yr, Zr).

It follows from Lemma 2.4.1 and Lemma 2.4.2 that, for t < ✓ 6 s

DθYs = Zθ −
Z s

θ

⇣
rxf(r,Σr)DθXr +ryf(r,Σr)DθYr +rzf(r,Σr)DθZr

⌘
dr

−
Z s

θ

⇣
rxg(r,Σr)DθXr +ryg(r,Σr)DθYr +rzg(r,Σr)DθZr

⌘ −−
dBr +

Z s

θ
DθZrdWr.
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Then by taking ✓ = s, it follows that equality (2.4.6) holds. From (2.8.1), we deduce that (2.4.7)

holds.

2. Notice that for ✓ 6 t 6 s

DθYs = DθYt −
Z s

t

⇣
rxf(r,Σr)DθXr +ryf(r,Σr)DθYr +rzf(r,Σr)DθZr

⌘
dr

−
Z s

t

⇣
rxg(r,Σr)DθXr +ryg(r,Σr)DθYr +rzg(r,Σr)DθZr

⌘ −−
dBr +

Z s

t
DθZrdWr.

It follows from Lemma 2.4.1 and Lemma 2.4.2 that, for ✓ 6 t < v 6 s

DvDθYs = DθZv −
Z s

v
Dv(Σr)

⇤[Hf ](r,Σr)Dθ(Σr)dr −
Z s

v
rf(r,Σr)DvDθ(Σr)dr

−
Z s

v
Dv(Σr)

⇤[Hg](r,Σr)Dθ(Σr)
 −−
dBr −

Z s

v
rg(r,Σr)DvDθ(Σr)

 −−
dBr

+

Z s

v
DvDθZrdWr.

Then by taking v = s and t = ✓, it follows that equality (2.4.8) holds. We have from estimate

(2.2.4) and inequality (2.4.3), that for each v 6 T and ✓ 6 T

E[supt 6 s 6 T |DvDθYs|2] + E[

Z T

t
|DvDθZs|2ds] 6 C(1 + |x|4). (2.4.10)

and then by taking v = s and t = ✓ we deduce that (2.4.9) holds.

tu

2.4.4 Zhang L
2-regularity

In this subsection, we extend the result of Zhang [70] which concerns the L2-regularity of the

martingale integrand Z. Such result is crucial to derive the rate of convergence of our numerical

scheme. We start with the following proposition which gives an upper bound for

E
h
supr2[s,u]|Yr − Ys|2

i
and E

h
||Zu − Zs||2

i
, t 6 s 6 u 6 T.

Proposition 2.4.4. Assume that (H1)-(H3) hold. Then for t 6 s 6 u 6 T , we have

E
h
supr2[s,u]|Yr − Ys|2

i
6 C(1 + |x|2)|u− s|, (2.4.11)

E
h
||Zu − Zs||2

i
6 C(1 + |x|2)|u− s|. (2.4.12)

Proof. To simplify the notations, we restrict ourselves to the case k = d = l = 1.

(i) Plugging inequality (2.4.7) in the estimate (2.8.12), the result (2.4.11) holds.

(ii) From Proposition 2.4.3, we have

E
h
|Zu − Zs|2

i
6 CE[|DuYu −DsYu|2] + CE[|DsYu −DsYs|2]. (2.4.13)
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From the definition of the BDSDE (2.4.5), we have

DuYu −DsYu = rΦ(XT )(DuXT −DsXT ) +

Z T

u

⇣
rxf(r,Σr)(DuXr −DsXr)

⌘
dr

+

Z T

u

⇣
ryf(r,Σr)(DuYr −DsYr) +rzf(r,Σr)(DuZr −DtZr)

⌘
dr

+

Z T

u

⇣
rxg(r,Σr)(DuXr −DsXr) +ryg(r,Σr)(DuYr −DsYr)

⌘ −−
dBr

+

Z T

u

⇣
rzg(r,Σr)(DuZr −DsZr)

⌘ −−
dBr −

Z T

u
(DuZr −DsZr)dWr.

Applying the generalized Itô’s formula (see [63], Lemma 1.3), we obtain

|DuYT −DsYT |2 − |DuYu −DsYu|2 =

− 2

Z T

u
rxf(r,Σr)(DuXr −DsXr)(DuYr −DsYr)dr − 2

Z T

u
ryf(r,Σr)(DuYr −DsYr)

2dr

− 2

Z T

u
rzf(r,Σr)(DuZr −DuZr)(DuYr −DsYr)dr

− 2

Z T

u
rxg(r,Σr)(DuXr −DsXr)(DuYr −DsYr)

 −−
dBr

− 2

Z T

u
ryg(r,Σr)(DuYr −DsYr)

2 −−dBr

− 2

Z T

u
rzg(r,Σr)(DuZr −DsZr)(DuYr −DsYr)

 −−
dBr

+ 2

Z T

u
(DuZr −DsZr)(DuYr −DsYr)dWr

−
Z T

u

∣∣rxg(r,Σr)(DuXr −DsXr)+ryg(r,Σr)(DuYr −DsYr)+rzg(r,Σr)(DuZr −DsZr)
∣∣2dr

+

Z T

u
|DuZr −DsZr|2dr.

From inequalities (2.8.1) and (2.4.1), using the Burkholder-Davis-Gundy’s inequality and As-

sumption (H2), the stochastic integrals which appear in the last equation disappear when we

take the expectation. By Young inequality, we obtain, for "0 > 0

E[|DuYu −DsYu|2] + E[

Z T

u
|DuZr −DsZr|2]dr 6 E[|rΦ(XT )(DuXT −DsXT )|2]

+ 2E[

Z T

u
rxf(r,Σr)(DuXr −DsXr)(DuYr −DsYr)dr]

+ 2E[

Z T

u
ryf(r,Σr)(DuYr −DsYr)

2dr]

+ 2E[

Z T

u
rzf(r,Σr)(DuZr −DuZr)(DuYr −DsYr)dr]

+ C(1 +
1

"0
)E[

Z T

u
rxg(r,Σr)

2|DuXr −DsXr|2dr]

+ C(1 +
1

"0
)E[

Z T

u
ryg(r,Σr)

2|DuYr −DsYr|2dr]

+ (1 + "0)E[

Z T

u
rzg(r,Σr)

2|DuZr −DsZr|2dr].
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Hence by using Assumption (H2) and Young inequality, we have for ", "0 > 0 and C > 0,

E[|DuYu −DsYu|2] + E[

Z T

u
|DuZr −DsZr|2dr] 6 K2E[|DuXT −DsXT |2]

+ 2KE[

Z T

u
|DuXr −DsXr|2dr] + 4KE[

Z T

u
|DuYr −DsYr|2dr]

+ K"E[

Z T

u
|DuYr −DsYr|2dr] +

K

"
E[

Z T

u
|DuZr −DsZr|2dr]

+ CK2(1 +
1

"0
)E[

Z T

u
|DuXr −DsXr|2dr] + CK2(1 +

1

"0
)E[

Z T

u
|DuYr −DsYr|2dr]

+ (1 + "0)↵2E[

Z T

u
|DuZr −DsZr|2dr].

Then, we obtain

E[|DuYu −DsYu|2] + E[

Z T

u
|DuZr −DsZr|2dr] 6 K2E[|DuXT −DsXT |2]

+ K(2 +KC(1 +
1

"0
))E[

Z T

u
|DuXr −DsXr|2dr]

+ (K2C(1 +
1

"0
) + (4 + ")K)E[

Z T

u
|DuYr −DsYr|2dr]

+ ((1 + "0)↵2 +
K

"
)E[

Z T

u
|DuZr −DsZr|2dr].

For " large enough and "0 small enough, we have (1+ "0)↵2 + K
ε < 1. From inequality (2.4.2), we

deduce that

E[|DuYu −DsYu|2] 6 C
⇣
(1 + |x|2)|u− s|+ E[

Z T

u
|DuYr −DsYr|2dr]

⌘
,

where C is a positive constant. From Gronwall’s lemma we have

E[|DuYu −DsYu|2] 6 C(1 + |x|2)|u− s|. (2.4.14)

Since (DsYu)s 6 u 6 T satisfies the BDSDE (2.4.5), inequalities (2.8.12)-(2.4.7) hold for (DsYu, DsZu)s 6 u 6 T

and yield

E[|DsYu −DsYs|2] 6 C(1 + |x|2)|u− s|. (2.4.15)

Plugging (2.4.14) and (2.4.15) into (2.4.13), we obtain (2.4.12).

tu

The following theorem states the rate of convergence of our numerical scheme.

Theorem 2.4.1. Under Assumptions (H1)-(H3), there exists a positive constant C (depending

only on T , K, ↵, |b(0)|, ||σ(0)||, |f(t, 0, 0, 0)| and ||g(t, 0, 0, 0)||) such that

ErrorN (Y, Z) 6 Ch(1 + |x|2). (2.4.16)

Proof. From the definition (3.3.2), Z̄tn is the best approximation of (Zt)tn 6 t<tn+1
by Ftn-

measurable random variable in the following sense

E

 Z tn+1

tn

kZs − Z̄tnk2ds
]
= infZn2L2(Ω,Ftn )

E

 Z tn+1

tn

kZs − Znk2ds
]
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which implies

E[kZs − Z̄tnk2] 6 E[kZs − Ztnk2].

From Proposition 2.4.4, we have

E
h
||Zs − Ztn ||2

i
6 C(1 + |x|2)|s− tn| 6 Ch(1 + |x|2),

for all s 2 [tn, tn+1] and 0 6 n 6 N − 1 where C depends only on T , K, b(0), σ(0), f(t, 0, 0, 0)

and g(t, 0, 0, 0). Then

N−1X

n=0

E
h Z tn+1

tn

||Zs − Z̄tn ||2ds
i
6 Ch(1 + |x|2).

Similarly, from Proposition 2.4.4 we get

N−2X

n=0

E
h Z tn+1

tn

||Zs − Z̄tn+1
||2ds

i
6 Ch(1 + |x|2).

Finally, using the same argument again, we obtain

E
h Z tN

tN−1

||Zs||2ds
i
6 Ch(1 + |x|2).

Then, from Theorem 2.3.1

ErrorN (Y, Z) 6 Ch(1 + |x|2).

tu

Remark 2.4.1. One could define the error as follows

ÊrrorN (Y, Z) := sup0 6 s 6 TE[|Ys − Y N
s |2] +

N−1X

n=0

E[

Z tn+1

tn

||Zs − ZN
s ||2ds]. (2.4.17)

Then, we have

ÊrrorN (Y, Z) 6 Ch(1 + |x|2). (2.4.18)

2.5 Numerical scheme for the weak solution of the SPDE

Most numerical work on SPDEs has concentrated on the Euler finite-difference scheme (see

[38], [39] , [37]), on finite element method (see [69]) and also on spectral Galerkin methods (see

[44] and the references therein). Here, we follow a probabilistic method based on the Feynman-

Kac’s formula for the weak solution of the semilinear SPDE’s (2.1.1) based on BSDE’s approach

(see [9], [53]). We consider a weak Sobolev solution of such SPDE in the sense that u shall be

considered as a predictable process in some first order Sobolev space. Therefore, we shall improve

the convergence and the rate of convergence of the L2-norm error of such solution by using the

convergence results on BDSDEs proved in section 4 and an equivalence norm result given in

Barles and Lesigne [10] and Bally and Matoussi [9].
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2.5.1 Weak solution for SPDE

Since we work on the whole space Rd, we introduce a weight function ⇢ satisfying the fol-

lowing conditions : ⇢ is a positive locally integrable function , 1
ρ are locally integrable and

R
Rd(1 + |x|2)⇢(x)dx < 1. For example, we can take ⇢(x) = e−

x2

2 or ⇢(x) = e−|x|. As a conse-

quence of (H3), we have

Z

Rd

|Φ(x)|2⇢(x)dx <1,
R T
0

R
Rd |f(t, x, 0, 0)|2⇢(x)dxdt <1

and
R T
0

R
Rd |g(t, x, 0, 0)|2⇢(x)dxdt <1.

We denote by L2(Rd, ⇢(x)dx) the weighted Hilbert space and we employ the following notation

for its scalar product and its norm : (u, v)ρ =
R
Rd u(x)v(x)⇢(x)dx and kukρ = (u, u)

1

2
ρ . Then, we

define by H1
σ(R

d) the associated weighted first order Dirichlet space and its norm kukH1
σ(Rd) =

(kuk2ρ + kruσk2ρ)
1

2 . Finally, (., .) denotes the usual scalar product in L2(Rd, dx).

We define also D := C1c ([0, T ])⌦C2c (Rd) the space of test functions where C1c ([0, T ]) denotes the

space of all real valued infinite differentiable functions with compact support in [0, T ] and C2c (Rd)

the set of C2-functions with compact support in Rd.

We introduce HT the space of predictable processes (ut)t > 0 with values in H1
σ(R

d) such that

kukT =
⇣
E
h
sup0 6 t 6 T kutk2ρ

i
+ E

h Z T

0
krutσk2ρdt

i⌘ 1

2
<1.

We say that u 2 HT is a weak solution of the equation (2.1.1) associated with the terminal

condition Φ and the coefficients (f, g), if the following relation holds almost surely, for each

' 2 D
Z T

t
(u(s, .), @s'(s, .))ds+

Z T

t
E(u(s, .),'(s, .))ds+ (u(t, .),'(t, .))− (Φ(.),'(T, .)) (2.5.1)

=

Z T

t
(f(s, ., u(s, .), (ruσ)(s, .)),'(s, .))ds+

lX

i=1

Z T

t
(g(s, ., u(s, .), (ruσ)(s, .)),'(s, .))

 −−
dBi

s,

where E(u,') = (Lu,') =
R
Rd((ruσ)(r'σ)+'r((12σ⇤rσ+ b)u))(x)dx is the energy associated

to the diffusion operator.

From Bally and Matoussi [9], we have the following result :

Theorem 2.5.1. Assume Assumptions (H1)− (H3) hold, there exists a unique weak solution

u 2 HT of the SPDE (2.1.1). Moreover, u(t, x) = Y t,x
t and Zt,x

t = rutσ, dt⌦ dx⌦ dP a.e. where

(Y t,x
s , Zt,x

s )t 6 s 6 T is the solution of the BDSDE (2.1.2). Furthermore, we have for all s 2 [t, T ],

u(s,Xt,x
s ) = Y t,x

s and (ruσ)(s,Xt,x
s ) = Zt,x

s dt⌦ dx⌦ dP a.e.

2.5.2 Numerical Scheme for SPDE

Let Us first recall that (XN , Y N , ZN ) denotes the numerical Euler scheme of the FBDSDE’s

(2.1.2) given in (2.2.6)-(2.2.7)-(2.2.8)-(2.2.9). The numerical approximation of the SPDE (2.1.1)

will be presented in the following lemma :

Lemma 2.5.1. Let x 2 Rd and tn 2 ⇡. Define

uNtn(x) := Y N,tn,x
tn and vNtn(x) := ZN,tn,x

tn (2.5.2)

Then uNtn (resp. vNtn) is FB
tn,T

-measurable and we have for all x 2 Rd and t, tn 2 ⇡ such that t 6 tn

uNtn(X
t,x
tn ) = Y N,t,x

tn (resp. vNtn(X
t,x
tn ) = ZN,t,x

tn ).
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Proof. From the Markov property of Y N and ZN , the random variables uNtn and vNtn are FB
tn,T

measurable. From the definition of uNtn and vNtn , we have

uNtn(X
t,x
tn ) = Y

N,tn,X
t,x
tn

tn and vNtn(X
t,x
tn ) = Z

N,tn,X
t,x
tn

tn .

From (2.2.8), (2.2.9) and by taking (t, x) = (tn, X
t,x
tn ), we obtain :

Y
N,tn,X

t,x
tn

tn = Etn [Y
N,tn,X

t,x
tn

tn+1
] + hEtn [f(tn, X

N,tn,X
t,x
tn

tn , Y
N,tn,X

t,x
tn

tn , Z
N,tn,X

t,x
tn

tn )]

+ Etn [g(tn+1, X
N,tn,X

t,x
tn

tn+1
, Y

N,tn,X
t,x
tn

tn+1
, Z

N,tn,X
t,x
tn

tn+1
)∆Bn]

hZ
N,tn,X

t,x
tn

tn = Etn [Y
N,tn,X

t,x
tn

tn+1
∆W ⇤

n + g(tn+1, X
N,tn,X

t,x
tn

tn+1
, Y

N,tn,X
t,x
tn

tn+1
, Z

N,tn,X
t,x
tn

tn+1
)∆Bn∆W ⇤

n ].

From the flow property, we have X
N,tn,X

t,x
tn

tn = XN,t,x
tn , then we obtain

Y
N,tn,X

t,x
tn

tn = Etn [Y
N,tn,X

t,x
tn

tn+1
] + hEtn [f(tn, X

N,t,x
tn , Y

N,tn,X
t,x
tn

tn , Z
N,tn,X

t,x
tn

tn )],

+ Etn [g(tn+1, X
N,t,x
tn+1

, Y
N,tn,X

t,x
tn

tn+1
, Z

N,tn,X
t,x
tn

tn+1
)∆Bn]

hZ
N,tn,X

t,x
tn

tn = Etn [Y
N,tn,X

t,x
tn

tn+1
∆W ⇤

n + g(tn+1, X
N,t,x
tn+1

, Y
N,tn,X

t,x
tn

tn+1
, Z

N,tn,X
t,x
tn

tn+1
)∆Bn∆W ⇤

n ].

Then from the uniqueness of the solution of (2.2.8)-(2.2.9) we obtain the result.

tu

2.5.3 Rate of convergence for the weak solution of SPDEs

We give a norm equivalence result which was already proved by Barles and Lesigne [10] and

Bally and Matoussi [9] when b 2 C1
b (R

d,Rd) and σ 2 C2
b (R

d,Rd⇥d). We note that σ can be

degenerated and so we do not assume ellipticity condition.

Proposition 2.5.1. Under Assumptions (H1)− (H3), there exist two positive constants C1 and

C2 such that for every t 6 s 6 T and φ 2 L1(Rd ⇥ ΩB, ⇢(x)dx⌦ dPB), we have

C1

Z

Rd

E[|φ(x)|]⇢(x)dx 6

Z

Rd

E[|φ(Xt,x
s )|]⇢(x)dx 6 C2

Z

Rd

E[|φ(x)|]⇢(x)dx. (2.5.3)

Moreover, for every Ψ 2 L1(Rd ⇥ (0, T )⇥ ΩB, ⇢(x)dx⌦ dt⌦ dPB)

C1

Z

Rd

Z T

t
E[|Ψ(s, x)|]ds⇢(x)dx 6

Z

Rd

Z T

t
E[|Ψ(s,Xt,x

s )|]ds⇢(x)dx

6 C2

Z

Rd

Z T

t
E[|Ψ(x)|]ds⇢(x)dx. (2.5.4)

We recall that u(t, x) = Y t,x
t and v(t, x) = Zt,x

t dt⌦dx⌦dP a.e. We define the process (uNs , vNs )

as follows :

uNs (x) := Y N,s,x
s and vNs (x) := ZN,s,x

s , 8s 2 [tn, tn+1). (2.5.5)

Using (2.2.10) and following the proof of Lemma 2.5.1, we obtain

uNs (Xt,x
s ) = Y N,t,x

s and vNs (Xt,x
s ) = ZN,t,x

s , 8t 6 s, t, s 2 [tn, tn+1). (2.5.6)
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As in Gyongy and Krylov [37], we define the error between the solution of the SPDE and the

numerical scheme as follows :

ErrorN (u, v) := sup0 6 s 6 TE[

Z

Rd

|uNs (x)− u(s, x)|2⇢(x)dx]

+
N−1X

n=0

E[

Z

Rd

Z tn+1

tn

kvNs (x)− v(s, x)k2ds⇢(x)dx]. (2.5.7)

The following theorem shows the convergence of the numerical scheme (2.5.2) of the solution of

the SPDE (2.1.1).

Theorem 2.5.2. Assume that (H1)-(H3) hold. Then, the error ErrorN (u, v) converges to 0

as N ! 1 and there exists a positive constant C (depending only on T , K, ↵, |b(0)|, ||σ(0)||,
|f(t, 0, 0, 0)| and ||g(t, 0, 0, 0)||) such that

ErrorN (u, v) 6 Ch. (2.5.8)

Proof. We take t = t0. From the norm equivalence result (see inequality (2.5.3)),

for all s 2 [tn, tn+1) such that s > t, we have

E[

Z

Rd

|uNs (x)− u(s, x)|2⇢(x)dx] 6 CE[

Z

Rd

|uNs (Xt,x
s )− u(s,Xt,x

s )|2⇢(x)dx],

where C is positive generic constant. From equation (2.5.6), we get

E[

Z

Rd

|uNs (x)− u(s, x)|2⇢(x)dx] 6 C

Z

Rd

E[|Y N,t,x
s − Y t,x

s |2]⇢(x)dx.

Therefore Remark 2.4.1 implies that

sup0 6 s 6 TE[

Z

Rd

|uNs (x)− u(s, x)|2⇢(x)dx] 6 Ch

Z

Rd

(1 + |x|2)⇢(x)dx 6 Ch. (2.5.9)

From the norm equivalence result (see inequality (2.5.4)), we have

N−1X

n=0

E[

Z tn+1

tn

Z

Rd

||vNs (x)− v(s, x)||2⇢(x)dxds]

6 C

N−1X

n=0

E[

Z

Rd

Z tn+1

tn

||vNs (Xt,x
s )− v(s,Xt,x

s )||2⇢(x)dxds].

From equation (2.5.6), we get

N−1X

n=0

E[

Z

Rd

Z tn+1

tn

||vNs (Xt,x
s )− v(s,Xt,x

s )||2⇢(x)dxds]

=

N−1X

n=0

E[

Z

Rd

Z tn+1

tn

||ZN,t,x
s − Zt,x

s ||2⇢(x)dxds],

and so from Remark 2.4.1 we deduce that

N−1X

n=0

E[

Z tn+1

tn

Z

Rd

||vNs (x)− v(s, x)||2⇢(x)dxds] 6 Ch

Z

Rd

(1 + |x|2)⇢(x)dx 6 Ch. (2.5.10)

From inequalities (2.5.9) and (2.5.10), we deduce that (2.5.8) holds.
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Remark 2.5.1. Gyongy and Krylov [37] considered the following linear SPDE on [0, T ]⇥ Rd,
8
><
>:

du(t, x) = (L1u(t, x) + f(t, x))dt+

1X

i=1

(L2,iu(t, x) + g(t, x)i)dw
i
t

u(0, x) = u0 2 L2(Ω, P ),

where L1u(t, x) =
dX

q,l=1

a(t, x)lq
@2u(t, x)

@xl@xq
, L2,iu(t, x) =

dX

q=1

biq(t, x)
@u(t, x)

@xq
, 1 6 i 6 1 and

(b(t, x)i,q)
1
i=0 2 `2, (t, x) 2 [0, T ]⇥ Rd, 1 6 q 6 d. They approximate the SPDE by

duh(t, x) = (Lh1uh(t, x) + f(t, x))dt+
1X

i=1

(Lh2,iuh(t, x) + g(t, x)i)dw
i
t,

Lh1 , Lh2,i are the approximation of L1, L2,i by using finite difference scheme on the space grid Gh.

Their results revolve to prove the existence of the random process u(j)(t, x), j = 1, . . . , k for some

k > 0 s.t.

uh(t, x) = u(0)(t, x) +
kX

j=1

hj

j!
u(j)(t, x) +Rh(t, x),

where u(0) is the solution of the SPDE. They assumed that the SPDE is non degenerate and for

m > k + 1 + d
2 , the coefficients are m-times continuously differentiable in x. When they used a

symmetric finite difference scheme and d = 2, the L2-error is proportional to h2 where h is the

discretization step in space and by the Richardson acceleration, the error is proportional to h4.

Compared to their work, our scheme is more general. It converges in the non linear case. Our

convergence is of order
p
h where h is the discretization step in time. However, our scheme

is expected, as usual for Monte Carlo methods, to deal better than analytic methods with high

dimensional problems.

Remark 2.5.2. If we assume more regularity conditions on the coefficients and the final condition

as in Pardoux and Peng [63], namely, Φ 2 C3
b (R

d,Rk), f 2 C3
b ([0, T ]⇥Rd ⇥Rk ⇥Rd⇥k,Rk) and

g 2 C3
b ([0, T ]⇥Rd ⇥Rk ⇥Rd⇥k,Rk⇥l). If (Y t,x

s , Zt,x
s )t 6 s 6 T is the solution the BDSDE (2.1.2).

Then, ut(x) = Y t,x
t , 8(t, x) 2 [0, T ] ⇥ Rd is the unique classical solution of the SPDE (2.1.1) in

the integral sense (see [63]). Therefore, we can obtain a stronger result. In fact, the estimation

on the error (2.5.7) obtained in the previous theorem can be replaced by :

E[sup0 6 t 6 T |uNt (x)− u(t, x)|2] + E[

Z T

0
||vNt (x)− v(t, x)||2dt] 6 Ch.

This last equation gives an estimation which holds for all x 2 Rd and which is not only almost

sure anymore. For the Monte Carlo method, we estimate the solution for one point x at time t,

and by varying x and t we obtain the solution u(t, x) on the whole domain.

2.6 Implementation and numerical tests

In this part, we are interested in implementing our numerical scheme. Our aim is only to test

statically its convergence. Further analysis of the convergence of the used method and of the

error bounds will be accomplished in a future work.
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2.6.1 Notations and algorithm

We use a path-dependent algorithm, for every fixed path of the brownian motion B, we approxi-

mate by a regression method the solution of the associated PDE. Then, we replace the conditional

expectations which appear in (2.6.1) and (2.6.2) by L2(Ω,P) projections on the function basis

approximating L2(Ω,Ftn). We compute ZN
tn in an explicit manner and we use I Picard iterations

to compute Y N
tn in a implicit way. Actually, we proceed as in [34], except that in our case the

solutions Y N
tn and ZN

tn are measurable functions of (XN
tn , (∆Bi)n 6 i 6 N−1). So, each solution given

by our algorithm depends on the fixed path of B.

2.6.1.1 Numerical scheme

For each fixed path of B, the solution of (2.2.1)-(2.2.2) is approximated by (Y N , ZN ) defined

by the following algorithm, given in the multidimensional case.

For 0 6 n 6 N − 1 :

8j1 2 {1, . . . , k},

Y N
tn,j1 = Etn

h
Y N
tn+1,j1 + hfj1(X

N
tn , Y

N
tn , Z

N
tn) +

lX

j=1

gj1,j(X
N
tn+1

, Y N
tn+1

, ZN
tn+1

)∆Bn,j

i
, (2.6.1)

8j1 2 {1, . . . , k} and 8j2 2 {1, . . . , d}

hZN
tn,j1,j2 = Etn

h
Y N
tn+1,j1∆Wn,j2 +

lX

j=1

gj1,j(X
N
tn+1

, Y N
tn+1

, ZN
tn+1

)∆Bn,j∆Wn,j2

i
. (2.6.2)

We stress that at each discretization time, the solution of the algorithm depends on the fixed

path of the brownian motion B.

2.6.1.2 Vector spaces of functions

At every tn, we select k(d + 1) deterministic functions bases (pi,n(.))1 6 i 6 k(d+1) and we look

for approximations of Y N
tn and ZN

tn , which will be denoted respectively by yNn and zNn , in the vector

spaces spanned respectively by the basis (pj1,n(.))1 6 j1 6 k and the basis (pj1,j2,n(.))1 6 j1 6 k,1 6 j2 6 d.

Each basis pi,n(.) is considered as a vector of functions of dimension Li,n. In other words,

Pi,n(.) = {↵.pi,n(.),↵ 2 RLi,n}.
As an example, we cite the hypercube basis (HC) used in [34]. In this case, pi,n(.) does not depend

nor on i neither on n and its dimension is simply denoted by L. A domain D⇢Rd centered on

X0=x, that is D =
Qd

i=1(xi−a, xi+a], can be partitionned on small hypercubes of edge δ. Then,

D=
S

i1,...,id
Di1,...,id

where Di1,...,id =(xi − a+ i1δ, xi − a+ i1δ]⇥ . . .⇥ (xi − a+ idδ, xi − a+ idδ].

Finally we define pi,n(.) as the indicator functions of this set of hypercubes.

2.6.1.3 Monte Carlo simulations

To compute the projection coefficients ↵, we will use M independent Monte Carlo simulations

of Xtn
N and∆Wn which will be respectively denoted by XN,m

tn and ∆Wm
n ,m=1, . . . ,M .

2.6.1.4 Description of the algorithm

! Initialization : For n = N , take (yN,m,I
N ) = (Φ(XN,m

tN
)) and (zN,m

N ) = 0 .

! Iteration : For n = N − 1, . . . , 0 :
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• We approximate (2.6.2) by computing for all j1 2 {1, . . . , k} and j2 2 {1, . . . , d}

↵M
j1,j2,n = arginf

α

1

M

MX

m=1

∣∣∣yN,M,I
n+1,j1

(XN,m
tn+1

)
∆Wm

n,j2

h

+
lX

j=1

gj1,j

⇣
XN,m

tn+1
,yN,M,I

n+1 (XN,m
tn+1

), zN,M
n+1 (X

N,m
tn+1

)
⌘∆Bn,j∆W

m
n,j2

h
− ↵.pmj1,j2,n

∣∣∣
2
.

Then we set zN,M
n,j1,j2

(.) = (↵M
j1,j2,n

.pj1,j2,n(.)), j1 2 {1, . . . , k}, j2 2 {1, . . . , d}.
• We use I Picard iterations to obtain an approximation of Ytn in (2.6.1) :

· For i = 0 : 8j1 2 {1, . . . , k}, ↵M,0
j1,n

= 0.

· For i = 1, . . . , I : We approximate (2.6.1) by calculating ↵M,i
j1,n

, 8j1 2 {1, . . . , k}, as the minimizer

of :

1

M

MX

m=1

∣∣∣yN,M,I
n+1,j1

(XN,m
tn+1

)+ hfj1

⇣
XN,m

tn ,yN,M,i−1
n (XN,m

tn ),zN,M
n (XN,m

tn )
⌘

+
lX

j=1

gj1,j

⇣
XN,m

tn+1
,yN,M,I

n+1 (XN,m
tn+1

),zN,M
n+1 (X

N,m
tn+1

)
⌘
∆Bn,j −↵.pmj1,k

∣∣∣
2
.

Finally, we define yN,M,I
n (.) as :

yN,M,I
n,j1

(.) = (↵M,I
j1,n

.pj1,n(.)), 8j1 2 {1, . . . , k}.

2.6.2 One-dimensional case (Case when d = k = l = 1)

2.6.2.1 Function bases

We use the basis (HC) defined above. So we set :

d1 = min
n,m

Xm
tn , d2 = max

n,m
Xm

tn and L =
d2 − d1

δ

where δ is the edge of the hypercubes (Dj)1 6 j 6 L defined by Dj =
h
d+ (j − 1)δ, d+ jδ

⌘
, 8j.

We take at each time tn

1Dj
(XN,m

tn ) = 1[d+(j−1)δ,d+jδ)(X
N,m
tn ), j = 1, . . . , L

and

(pmi,n(.))=
ns M

card(Dj)
1Dj

(XN,m
tn ),16j6L

o
, i = 0, 1.

Card(Dj) denotes the number of simulations of XN
tn which are in our cube Dj .

This system is orthonormal with respect to the empirical scalar product defined by

<  1, 2 >n,M :=
1

M

MX

m=1

 1(X
N,m
tn ) 2(X

N,m
tn ).
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In this case, the solutions of our least squares problems are given by :

↵M
1,n =

1

M

MX

m=1

p1,n(X
N,m
tn )

n
y
N,M,I
n+1 (XN,m

tn+1
)
∆Wm

n

h

+ g
⇣
X

N,m
tn+1

, yN,M,I
n+1 (XN,m

tn+1
), zN,M,

n+1 (XN,m
tn+1

)
⌘∆Bm

n ∆Wm
n

h

o
,

↵
M,i
0,n =

1

M

MX

m=1

p0,n(X
N,m
tn )

n
yN,M,I
n+1 (XN,m

tn+1
) + hf

⇣
XN,m

tn , yN,M,i−1
n (XN,m

tn ), zN,M
n (XN,m

tn )
⌘

+ g
⇣
XN,m

tn+1
, yN,M,I

n+1 (XN,m
tn+1

), zN,M
n+1 (X

N,m
tn+1

)
⌘
∆Bm

n

o
.

Remark 2.6.1. We note that for each value of M , N and δ, we launch the algorithm 50 times

and we denote by (Y 0,x,N,M,I
0,m0 )1 6 m0 6 50 the set of collected values. Then we calculate the empirical

mean Y
0,x,N,M,I
0 and the empirical standard deviation σN,M,Idefined by :

Y
0,x,N,M,I
0 =

1

50

50X

m0=1

Y 0,x,N,M,I
0,m0 and σN,M,I=

vuut 1

49

50X

m0=1

|Y 0,x,N,M,I
0,m0 −Y 0,x,N,M,I

0 |2. (2.6.3)

We also note before starting the numerical examples that our algorithm converges after at most

three Picard iterations. Finally, we stress that (2.6.3) gives us an approximation of u(0, x) the

solution of the SPDE (2.1.1) at time t = 0.

2.6.2.2 Case when f and g are linear in y and independent of z

(
dXt = Xt(µdt+ σdWt),

Φ(x) = −x+K, f(y) = a0y, g(y) = b0y

and we set K = 115, r = 0.01, R = 0.06, X0 = 100, µ = 0.05, σ = 0.2, T = 0.25, d1 = 60,

d2 = 200, a0 and b0 are fixed constants.

Let Yexplicit be the solution of our BDSDE in this particular case. By the integration by parts

formula, we get

Y t,x
t,explicit = E[Φ(Xt,x

T )ea0(T−t)+b0(BT−Bt)− 1

2
b20(T−t)/FB

t,T ].

At t=0, we have

Y 0,x
0,explicit = E[Φ(X0,x

T )e(a0−
1

2
b20)T+b0BT /FB

0,T ]

= e(a0−
1

2
b20)T+b0BTE[Φ(X0,x

T )].

Then, we define Y
0,x,N,M,I
0 as the numerical approximation of the solution of the BDSDE in this

case (computed by our algorithm) and σN,M,I as its standard deviation. In the other hand, we

compute the solution Y 0,x
0,explicit in this linear case by using the explicit formula of the expectation

of Φ(X0,x
T ), as follows

Y 0,x
explicit = e(a0−

1

2
b20)T+b0BTE[Φ(X0,x

T )] = e(a0−
1

2
b20)T+b0BT (K − xeµT ).

For a0 = 0.5, b0 = 0.5 and δ = 1
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N=20, Y 0,x
explicit = 13.724

M Y
0,x,N,M,I
0 (σN,M,I)

|Y 0,x
explicit

−Y
0,x,N,M,I
0 |

Y 0,x
explicit

100 13.910(1.178) 0.013

1000 13.792(0.309) 0.004

5000 13.847(0.117) 0.008

For a0 = 0.5, b0 = 0.5 and δ = 0.5

N=30, Y 0,x
explicit = 14.115

M Y
0,x,N,M,I
0 (σN,M,I)

|Y 0,x
explicit

−Y
0,x,N,M,I
0 |

Y 0,x
explicit

100 14.246(1.045) 0.009

1000 14.195(0.337) 0.005

5000 14.236(0.129) 0.008

2.6.2.3 Comparison of numerical approximations of the solutions of the FBDSDE

and the FBSDE : the general case

Now we take

8
>><
>>:

Φ(x) = −x+K,

f(t, x, y, z) = −✓z − ry + (y − z
σ )

−(R− r),

g1(t, x, y, z) = 0.1z + 0.5y + log(x)

and we set ✓ = (µ − r)/σ, K = 115, X0 = 100, µ = 0.05, σ = 0.2, r = 0.01, R = 0.06, δ = 1,

N = 20, T = 0.25 and we fix d1 = 60 and d2 = 200 as in citeG05. The functions g1,g2 and g3
taken in the following are examples of the function g. They are sufficiently regular and Lipschitz

on [60, 200] ⇥ R ⇥ R and could be extended to regular Lipschitz functions on R3. In this case,

Assumptions (H1)-(H3) are satisfied.

We compare the numerical solution of our BDSDE (noted again Y
t,x,N,M,I
t ) and the BSDE’s one

(noted here by Y
0,x,N,M
t,BSDE ), without g and B.

When t is close to maturity

M Y
0,x,N,M
t19,BSDE(σ

N,M ) Y
0,x,N,M,I
t19 (σN,M,I)

128 13.748(0.879) 15.452(0.948)

512 13.827(0.384) 15.534(0.409)

2048 13.762(0.223) 15.464(0.240)

8192 13.781(0.091) 15.484(0.097)

32768 13.796(0.054) 15.501(0.058)

M Y
0,x,N,M
t15,BSDE(σ

N,M ) Y
0,x,N,M,I
t15 (σN,M,I)

128 14.168(0.905) 17.894(1.096)

512 14.113(0.388) 17.774(0.429)

2048 13.988(0.226) 17.607(0.270)

8192 13.985(0.093) 17.623(0.104)

32768 13.994(0.055) 17.627(0.064)

When t = 0



48 Chapitre 2. Numerical scheme for semilinear SPDEs via BDSDEs

M Y
0,x,N,M
0,BSDE(σ

N,M ) Y
0,x,N,M,I
0 (σN,M,I)

128 15.431(1.005) 13.571(1.146)

512 15.029(0.428) 13.173(0.500)

2048 14.763(0.243) 12.885(0.280)

8192 14.718(0.098) 12.825(0.106)

32768 14.715(0.060) 12.804(0.064)

For g2(y, z) = 0.1z + 0.5y

M Y
0,x,N,M,I
t19 (σN,M,I)

128 14.767(0.949)

512 14.850(0.410)

2048 14.781(0.240)

8192 14.801(0.097)

32768 14.818(0.058)

M Y
0,x,N,,M,I
t15 (σN,M,I)

128 16.267(1.093)

512 16.166(0.428)

2048 16.007(0.270)

8192 16.024(0.104)

32768 16.029(0.064)

When t = 0

M Y
0,x,N,M,I
0 (σN,M,I)

128 13.821(0.063)

512 14.555(1.132)

2048 14.176(0.495)

8192 13.899(0.277)

32768 13.842(0.105)

For g3(x, y) = logx+ 0.5y :

When t is close to maturity

M Y
0,x,N,M,I
t19 (σN,M,I)

128 15.452(0.948)

512 15.534(0.409)

2048 15.464(0.240)

8192 15.484(0.097)

32768 15.501(0.058)

M Y
0,x,N,M,I
t15 (σN,M,I)

128 18.253(1.068)

512 18.166(0.453)

2048 18.010(0.266)

8192 18.006(0.109)

32768 18.017(0.065)

When t = 0
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Figure 2.1 – The BDSDE’s solution with respect to the number of time discretization steps for

five different paths of B. The figure is obtained for M = 2000 and δ = 1.

M Y
0,x,N,M,I
0 (σN,M,I)

128 12.071(0.054)

512 12.075(0.088)

2048 12.122(0.218)

8192 12.384(0.381)

32768 12.791(0.903)

In the previous tables, we test our algorithm for different examples of the function g (g1 and

g2 are dependent in z, g3 is independent of z). We see the convergence of the BDSDE’s solution

when we increase the number of simulations M .

In figure 2.1, we study statically the main result of this paper. So, we fix all the parameters

(δ = 1, and M = 2000 ) and we draw the map of the BDSDE’s solution, for the function g1, with

respect to the number of time discretization steps N . The solution is computed for five different

paths of the brownian motion B. We can examine there the convergence of our scheme.

We see on Figure 2.2 the impact of the function g on the solution ; we variate N , M and δ as in

[34], by taking these quantities as follows : First we fix d1 = 40 and d2 = 180 (which means that

x 2 [d1, d2] = [40, 180] and in this case our assumptions (H1)-(H3) are satisfied). Let j 2 N, we

take ↵M = 3, β = 1, N = 2(
p
2)(j−1), M = 2(

p
2)αM (j−1) and δ = 50/(

p
2)(j−1)(β+1)/2. Then,

we draw the map of each solution at t = 0 with respect to j.

2.7 Zhang L
2-Regularity results under Lipschitz assumptions

In order to derive the rate of convergence for our numerical scheme, we proved in the subsection

2.4.4 the Zhang L2-Regularity for the martingale integrand Z under strong assumptions on the

parameters. Indeed, to use the Malliavin calculus tools, we assumed that the coefficients of the

BDSDE (2.2.2) are of class C2. The aim of this section is to prove the Zhang L2-regularity results
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Figure 2.2 – Comparison of the BSDE’s solution and the BDSDE’s one : The solution of the

BSDE is with circle markers, the solution of the BDSDE for g1(x, y, z) = 0.1z + 0.5y + log(x)

is with star markers and the one for g2(y, z) = 0.1z + 0.5y is with cross markers. Confidence

intervals are with dotted lines.

only under standard Lipschitz assumptions on the coefficients of the BDSDE (2.2.2). Thus, we will

be able to derive a rate of convergence for our numerical scheme only under Lipschitz assumptions.

We recall the assumptions :

Assumption (H1) There exist a positive constant K such that

|b(x)− b(x0)|+ kσ(x)− σ(x0)k 6 K|x− x0|, 8x, x0 2 Rd.

Assumption (H2) There exist two constants K > 0 and 0 6 ↵ < 1 such that

for any (t1, x1, y1, z1), (t2, x2, y2, z2) 2 [0, T ]⇥ Rd ⇥ Rk ⇥ Rk⇥d,

(i) |f(t1, x1, y1, z1)− f(t2, x2, y2, z2)| 6 K
(p
|t1 − t2|+ |x1 − x2|+ |y1 − y2|+ kz1 − z2k

)
,

(ii) kg(t1, x1, y1, z1)−g(t2,x2,y2,z2)k26K
(
|t1 − t2|+|x1−x2|2+|y1−y2|2

)
+↵2kz1−z2k2,

(iii) |Φ(x1)− Φ(x2)| 6 K|x1 − x2|,
(iv) sup0 6 t 6 T (|f(t, 0, 0, 0)|+ ||g(t, 0, 0, 0)||) 6 K.

We introduce the following assumption

Assumption (H2’) There exist two constants K > 0 and 0 6 ↵ < 1 such that

for any (t1, x1, y1, z1), (t2, x2, y2, z2) 2 [0, T ]⇥ Rd ⇥ Rk ⇥ Rk⇥d,

(i) |f(t1, x1, y1, z1)− f(t2, x2, y2, z2)| 6 K
(p
|t1 − t2|+ |x1 − x2|+ |y1 − y2|+ kz1 − z2k

)
,

(ii) kg(t1, x1, y1, z1)−g(t2,x2,y2,z2)k26K
(
|t1 − t2|+|x1−x2|2+|y1−y2|2

)
+↵2kz1−z2k2,

(iii) |Φ(x1)− Φ(x2)| 6 K|x1 − x2|,
(iv) f(t, 0, 0) 2 H2

k([0, T ]) and g(t, 0, 0) 2 H2
k⇥l([0, T ]).

The following lemma will be needed later in our estimations.
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Lemma 2.7.1. Assume that Assumptions (H1) and (H2’) hold and ⇠ 2 L2(FT ). Let Θ := (Xt,x, Y, Z)

denote the solution of the following F-BDSDE

Xt,x
s = x+

Z s

t
b(Xt,x

u )ds+

Z s

t
σ(Xt,x

u )dWu, s 2 [t, T ] (2.7.1)

Ys = ⇠ +

Z s

t
f(u, Yu, Zu)ds+

Z s

t
g(u, Yu, Zu)

 −−
dBu −

Z s

t
ZudWu. (2.7.2)

Then we have the following

(i)for all p > 2, there exists a constant Cp, depending on T,K,↵ and p such that

E
h
supt 6 s 6 T |Ys|p +

⇣Z T

t
kZsk2ds

⌘ p

2
i
6 CpE

n
|⇠|p +

Z T

t
|f(s, 0, 0)|pds+

Z T

t
|g(s, 0, 0)|pds

o

(2.7.3)

and

E
h
|Ys − Yt|p

i
6 CpE

n
|⇠|p + sup0 6 s 6 T |f(s, 0, 0)|p + sup0 6 s 6 T |g(s, 0, 0)|pds

o
|s− t|p−1

+ E
h⇣ Z s

t
kZuk2du

⌘ p

2
i
. (2.7.4)

(ii)Let Θε := (Xε,t,x, Y ε, Zε) denote the solution of the perturbed F-BDSDE (2.7.1) and (2.7.2)

with coefficients replaced by bε,σε, f ε and gε, initial condition replaced by xε and ⇠ε as a terminal

value. Assume that bε,σε, f ε and gε satisfy Assumptions (H1) and (H2’), that lim
ε−!0

xε = x and

that for fixed (x,y,z) in Rd ⇥ Rk ⇥ Rk⇥d,

lim
ε−!0

|bε(x)− b(x)|2 + |σε(x)− σ(x)|2 = 0,

lim
ε−!0

E
n
|⇠ε − ⇠|2 +

Z T

t
|gε(s, y, z)− g(s, y, z))|2ds+

Z T

t
|f ε(s, y, z)− f(s, y, z)|2ds

o
= 0.

Then we have

lim
ε−!0

E
n
supt 6 s 6 T |Xε,t,x

s −Xt,x
s |2 + supt 6 s 6 T |Y ε

s − Ys|2 +
Z T

t
|Zε

s − Zs|2ds
o
= 0. (2.7.5)

tu

The following lemma will be useful for the upper bound result on our time discretization error

and for proving the Zhang L2− regularity under Lipschitz assumptions.

Lemma 2.7.2. Assume that Assumptions (H1) and (H2) hold. Then for all p > 2, there exists

a constant Cp > 0 depending only on T,K,↵ and p such that

⇣
E[kZt,x

s kp]
⌘ 1

p
6 Cp(1 + |x|2) a.e. s 2 [t, T ]. (2.7.6)

In addition, there exist a positive constant C independent from h the time step of our uniform

time-grid such that

max
0 6 n 6 N−1

n
suptn 6 s 6 tn+1

E[|Y t,x
s − Y t,x

tn |2] + suptn 6 s 6 tn+1
E[|Y t,x

s − Y t,x
tn+1
|2]
o

6 Ch(1 + |x|2). (2.7.7)
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Proof. Fisrt, we consider the case when b,σ, f, g and Φ 2 C1
b and satisfying assumptions (H1)

and (H2). Let rΘt,x := (rXt,x,rY t,x,rZt,x) be the solution of the following equations

rXt,x
s = Id +

Z s

t
rxb(X

t,x
u )rXt,x

u du+

Z s

t
rxσ(X

t,x
u )rXt,x

u dWu (2.7.8)

and

rY t,x
s = rΦ(Xt,x

T )rXt,x
T +

Z T

s

⇣
rxf(r,X

t,x
r , Y t,x

r , Zt,x
r )rXt,x

r +ryf(r,X
t,x
r , Y t,x

r , Zt,x
r )rY t,x

r

+ rzf(r,X
t,x
r , Y t,x

r , Zt,x
r )rZt,x

r

⌘
dr +

Z T

s

⇣
rxg(r,X

t,x
r , Y t,x

r , Zt,x
r )rXt,x

r

+ ryg(r,X
t,x
r , Y t,x

r , Zt,x
r )rY t,x

r +rzg(r,X
t,x
r , Y t,x

r , Zt,x
r )rZt,x

r

⌘ −−
dBn

r −
Z T

s
rZt,x

r dWr. (2.7.9)

Since rXt,x is the solution of the SDE (2.7.8), [rXt,x]−1 is also the solution of an SDE and we

have the following estimation

E[sup0 6 t 6 T |[rXt,x
s ]−1|p] 6 Cp. (2.7.10)

On the other hand, rY t,x is the solution of the linear BDSDE (2.7.9). Using estimation (2.7.3),

we get

E[sup0 6 t 6 T |rY t,x
s |p] 6 Cp. (2.7.11)

Now, let Us recall the following representation result (see [63], Proposition 2.3),

Zt,x
s = rY t,x

s [rXt,x
s ]−1σ(Xt,x

u ), P − a.s. 8s 2 [t, T ]. (2.7.12)

Using the Hölder inequality, we get

kZt,x
s kp 6 krY t,x

s k3pk[rXt,x
s ]−1k3pkσ(Xt,x

u )k3p
6 Cp(1 + |x|2), 8s 2 [t, T ]. (2.7.13)

Now the aim is to generalize the previous estimation to Lipschitz coefficients case. So let b,σ,Φ, f

and g satisfying Assumptions (H1) and (H2) and let bk,σk,Φk, fk and gk smooth molifiers of

these functions. Denoting Zt,x,k the solution of the F-BDSDE associated to the regular coeffi-

cients, we deduce from (2.7.13) that kZk,t,x
s kp 6 Cp(1+ |x|2), 8s 2 [t, T ], where Cp is independent

from k. Using the stability result (2.7.5) , we get

lim
k−!+1

E
h Z T

t
|Zk,t,x

s − Zt,x
s |2ds

i
= 0. (2.7.14)

We deduce that for a.e. s 2 [t, T ], there exist a subsequence of (Zk,t,x)k such that lim
k−!+1

Zk,t,x
s = Zt,x

s

in probability. By the Fatou’s Lemma, we get kZt,x
s kp 6 Cp(1+ |x|2). Inserting the latter inequa-

lity in estimation (2.7.4), we get the estimation (2.7.7). tu
The following theorem states the main result of this section, which is the extension of the Zhang

L2-regularity to our case.

Theorem 2.7.1. Under Assumptions (H1) and (H2), we have the following estimation

N−1X

n=0

E
h Z tn+1

tn

n
kZs − Ztnk2 + kZs − Ztn+1

k2
o
ds
i
6 Ch(1 + |x|2) (2.7.15)
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Proof. Let ⇡0 : 0 = t0, . . . , tN = T denote our uniform partitipon of [0, T ] with time step h

and ⇡ : 0 = s0, . . . , sm = T any partition finer than ⇡. Without loss of generality, we assume

that sli = ti for i = 1, . . . , N . We will prove the theorem for ⇡0. Let Φπ, fπ, hπ and gπ 2 C1
b

smooth molifiers of Φ, f, h and g, such that all the derivatives are bounded by K. We denote by

Θπ = (W,Y π, Zπ) the solution of the following F-BDSDE :

Xπ
s = x+

Z s

t
bπ(Xπ

u )ds+

Z s

t
σπ(Xπ

u )dWu, s 2 [t, T ] (2.7.16)

Y π
s = Φ(Xπ

T ) +

Z s

t
fπ(u,Θπ)ds+

Z s

t
gπ(u,Θπ)

 −−
dBu −

Z s

t
Zπ
udWu. (2.7.17)

By the stability result (2.7.5), we have

lim
|π|−!0

E
n
supt 6 s 6 T |Xπ

s −Xs|2 + supt 6 s 6 T |Y π
s − Ys|2 +

Z T

t
|Zπ

s − Zs|2ds
o
= 0. (2.7.18)

By (2.7.18), there exists a subsequence denoted again by ⇡ such that lim
|π|−!0

E|Zπ
s − Zs|2 = 0 for

a.e. s 2 [t, T ]. Let Us note that, for s 2 [tn, tn+1), we have

E|Zs − Ztn |2 + E|Zs − Ztn+1
|2 6 CE

n
|Zs − Zπ

s |2 + |Zπ
s − Zπ

tn |2

+ |Zπ
s − Zπ

tn+1
|2
o
. (2.7.19)

By (2.7.18), proving the theorem remains to estimate E|Zπ
s − Zπ

tn |2 and E|Zπ
s − Zπ

tn+1
|2 for

s 2 [tn, tn+1).

To this end, we denote by (rπX,rπY ) the solution of the linear equations (2.7.8)− (2.7.9) with

coefficients replaced by Φπ, bπ,σπ, fπ and gπ.

Using the representaion result (2.7.12) for (Zπ), we have

Zπ
s − Zπ

s0 = rY π
s [rXπ

s ]
−1σπ(Xπ

s )−rY π
s0 [rXπ

s0 ]
−1σπ(Xπ

s0), s, s
0 2 [tn, tn+1). (2.7.20)

Then

|Zπ
s − Zπ

s0 |2 6 3|rY π
s −rY π

s0 |2|[rXπ
s ]

−1|2|σπ(Xπ
s )|2

+ 3|rY π
s0 |2|[rXπ

s ]
−1 − [rXπ

s0 ]
−1|2|σπ(Xπ

s )|2

+ 3|rY π
s0 |2|[rXπ

s0 ]
−1|2|σπ(Xπ

s )− σπ(Xπ
s0)|2. (2.7.21)

Thus, we get

|Zπ
s − Zπ

tn |2 6 C
n
|rY π

s −rY π
tn |2|[rXπ

s ]
−1|2|σπ(Xπ

s )|2

+ |rY π
tn |2|[rXπ

s ]
−1 − [rXπ

tn ]
−1|2|σπ(Xπ

s )|2

+ |rY π
tn |2|[rXπ

tn ]
−1|2|σπ(Xπ

s )− σπ(Xπ
tn)|2

o
. (2.7.22)

We conclude by using the Hölder’s inequality and the estimation (2.7.7) that

N−1X

n=0

E
h Z tn+1

tn

|Zπ
s − Zπ

tn |2ds
i
6 Ch(1 + |x|2),

here we used also the same kind of estimation as (2.7.4) but for [rXπ]−1 (instead of rY π
s ) as it

is a solution of an SDE.

By the same arguments used on E|Zπ
s − Zπ

tn+1
|2 (taking s0 = tn+1), we conclude that

N−1X

n=0

E
h Z tn+1

tn

|Zπ
s − Zπ

tn+1
|2ds

i
6 Ch(1 + |x|2).
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This gives
N−1X

n=0

E
h Z tn+1

tn

n
|Zπ

s − Zπ
tn |2 + |Zπ

s − Zπ
tn+1
|2
o
ds
i
6 Ch(1 + |x|2). (2.7.23)

Using (2.7.19), we obtain

N−1X

n=0

E
h Z tn+1

tn

n
|Zs−Ztn |2+ |Zs−Ztn+1

|2
o
ds
i
6 CE

h Z T

t
|Zs−Zπ

s |2ds
i
+Ch(1+ |x|2). (2.7.24)

Recalling (2.7.18) and letting |⇡| −! 0, we finally get

N−1X

n=0

E
h Z tn+1

tn

n
|Zs − Ztn |2 + |Zs − Ztn+1

|2
o
ds
i
6 Ch(1 + |x|2). (2.7.25)

tu
Now, we are able to derive the rate of convergence of our scheme under Lipschitz assumptions.

Corollary 2.7.1. Under Assumptions (H1) and (H2), we have

ErrorN (Y, Z) := sup0 6 s 6 TE[|Ys − Y N
s |2] +

N−1X

n=0

E[

Z tn+1

tn

||Zs − ZN
tn ||2ds]

6 Ch(1 + |x|2). (2.7.26)

Proof. First we recall that under (H1) and (H2), we have by (2.3.6)

ErrorN (Y, Z) 6 Ch(1 + |x|2) + C
N−1X

n=0

Z tn+1

tn

E[|Zs − Z̄tn |2]ds

+ C
N−1X

n=0

Z tn+1

tn

E[|Zs − Z̄tn+1
|2]ds. (2.7.27)

Then, as the conditional expectation minimizes the conditional mean square error, we have

Z tn+1

tn

E|Zs − Z̄tn |2ds 6

Z tn+1

tn

E|Zs − Ztn |2ds.

On the other hand, plugging Ztn+1
in the following, we get

Z tn+1

tn

E[|Zs − Z̄tn+1
|2]ds 6 C

Z tn+1

tn

E[|Zs − Ztn+1
|2]ds+ ChE[|Ztn+1

− Z̄tn+1
|2]

By the definition of Z̄tn+1
, Jensen’s inequality and Cauchy-Schwarz inequality, we have for all

n = 0, . . . , N − 2

hE[|Ztn+1
− Z̄tn+1

|2] =
1

h
E
n∣∣∣Etn+1

h Z tn+2

tn+1

{Ztn+1
− Zs}ds

i∣∣∣
2o

6
1

h
E
n∣∣∣
h Z tn+2

tn+1

{Ztn+1
− Zs}ds

i∣∣∣
2o

6 E

Z tn+2

tn+1

|Ztn+1
− Zs|2ds.
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Hence, the inequality (2.7.27) becomes

ErrorN (Y, Z) 6 Ch(1 + |x|2) + C
N−1X

n=0

Z tn+1

tn

E[|Zs − Ztn |2]ds

+ C
N−1X

n=0

Z tn+1

tn

E[|Zs − Ztn+1
|2]ds.

We conclude the rate of convergence by using Theorem 2.7.1.

2.8 Appendix

2.8.1 Proof of Proposition 2.4.2.

To simplify the notations, we restrict ourselves to the case k = d = l = 1. (DθY,DθZ) is well

defined and from inequalities (2.2.4) and (2.4.1), we deduce that for each ✓ 6 T

E[supt 6 s 6 T |DθYs|2] + E[

Z T

t
|DθZs|2ds] 6 C(1 + |x|2). (2.8.1)

We define recursively the sequence (Y m, Zm) as follows. First we set (Y 0, Z0) = (0, 0). Then,

given (Y m−1, Zm−1), we define (Y m, Zm) as the unique solution in S2k([t, T ])⇥H2
k⇥d([t, T ]) of

Y m
s = Φ(Xt,x

T ) +

Z T

s
f(r,Xt,x

r , Y m−1
r , Zm−1

r )dr +

Z T

s
g(r,Xt,x

r , Y m−1
r , Zm−1

r )
 −−
dBr −

Z T

s
Zm
r dWr.

We recursively show that (Y m, Zm) 2 B2([t, T ],D1,2). Suppose that (Y m, Zm) 2 B2([t, T ],D1,2)

and let us show that (Y m+1, Zm+1) 2 B2([t, T ],D1,2).

From the induction assumption, we have Φ(XT ) +
R T
s f(r,Σm

r )dr 2 D1,2.

We have g(r,Σm
r ) 2 D1,2 for all r 2 [t, T ]. From Lemma 2.4.2, we have

R T
t g(r,Σm

r )
 −−
dBr 2 D1,2.

then

Y m+1
s = E

⇥
Φ(Xt,x

T ) +

Z T

s
f(r,Σm

r )dr +

Z T

s
g(r,Σm

r )
 −−
dBr|FW

t,s _ FB
t,T

⇤
2 D1,2,

where Σm
r := (Xt,x

r , Y m
r , Zm

r ).

Hence
Z T

t
Zm+1
r dWr = Φ(Xt,x

T ) +

Z T

t
f(r,Σm

r )dr +

Z T

t
g(r,Σm

r )
 −−
dBr − Y m+1

t 2 D1,2.

It follows from Lemma 2.4.1 that Zm+1 2M2
k⇥d([t, T ],D

1,2) and we have DθY
m+1
s = DθZ

m+1
s =

0 for t 6 s 6 ✓ and for ✓ 6 s 6 T

DθY
m+1
s = rΦ(Xt,x

T )DθX
t,x
T (2.8.2)

+

Z T

s

⇣
rxf(r,Σ

m
r )DθXr +ryf(r,Σ

m
r )DθY

m
r +rzf(r,Σ

m
r )DθZ

m
r

⌘
dr

+

Z T

s

⇣
rxg(r,Σ

m
r )DθXr +ryg(r,Σ

m
r )DθY

m
r +rzg(r,Σ

m
r )DθZ

m
r

⌘ −−
dBr

−
Z T

s
DθZ

m+1
r dWr.

From inequality (2.2.4), we deduce that for each ✓ 6 T

E[supt 6 s 6 T |DθY
m+1
s |2] + E[

Z T

t
|DθZ

m+1
s |2ds] 6 C(1 + |x|2).
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It is known that inequality (2.2.4) holds for (Y m+1, Zm+1) and so we deduce that

kY m+1k1,2 + kZm+1k1,2 <1,

which shows that (Y m+1, Zm+1) 2 B2([t, T ],D1,2). Using the contraction mapping argument

as in El Karoui Peng and Quenez [31], we deduce that (Y m+1, Zm+1) converges to (Y, Z) in

S2([t, T ])⇥H2([t, T ]). We will show that (DθY
m, DθZ

m) converges to (Y θ, Zθ) in L2(Ω⇥ [t, T ]⇥
[t, T ], dP ⌦ dt⌦ dt), where Y θ

s = Zθ
s = 0 for all t 6 s 6 ✓ and (Y θ

s , Z
θ
s , ✓ 6 s 6 T ) is the solution

of the BDSDE.

Y θ
s = rΦ(Xt,x

T )DθX
t,x
T (2.8.3)

+

Z T

s

⇣
rxf(r,Σr)DθXr +ryf(r,Σr)Y

θ
r +rzf(r,Σr)Z

θ
r

⌘
dr

+

Z T

s

⇣
rxg(r,Σr)DθXr +ryg(r,Σr)Y

θ
r +rzg(r,Σr)Z

θ
r

⌘ −−
dBr

−
Z T

s
Zθ
rdWr.

From equations (2.8.2) and (2.8.3), we have

DθY
m+1
s − Y θ

s =

Z T

s

⇣
(rxf(r,Σ

m
r )−rxf(r,Σr))DθX

t,x
r

+ryf(r,Σ
m
r )DθY

m
r −ryf(r,Σr)Y

θ
r +rzf(r,Σ

m
r )DθZ

m
r −rzf(r,Σr)Z

θ
r

⌘
dr

+

Z T

s

⇣
(rxg(r,Σ

m
r )−rxg(r,Σr))DθX

t,x
r +ryg(r,Σ

m
r )DθY

m
r −ryg(r,Σr)Y

θ
r

⌘ −−
dBr

+

Z T

s

⇣
rzg(r,Σ

m
r )DθZ

m
r −rzg(r,Σr)Z

θ
r

⌘ −−
dBr

−
Z T

s
(DθZ

m+1
r − Zθ

r )dWr.

From Proposition 2.4.1, we have

E[supθ 6 s 6 T |DθY
m+1
s − Y θ

s |2] + E[

Z T

s
|DθZ

m+1
r − Zθ

r |2dr] (2.8.4)

6 CE
h Z T

s

∣∣∣(rxf(r,Σ
m
r )−rxf(r,Σr))DθX

t,x
r +ryf(r,Σ

m
r )Y θ

r −ryf(r,Σr)Y
θ
r

+rzf(r,Σ
m
r )Zθ

r −rzf(r,Σr)Z
θ
r

∣∣∣
2
dr
i

+CE
h Z T

s

∣∣∣(rxg(r,Σ
m
r )−rxg(r,Σr))DθXr +ryg(r,Σ

m
r )Y θ

r −ryg(r,Σr)Y
θ
r

+rzg(r,Σ
m
r )Zθ

r −rzg(r,Σr)Z
θ
r

∣∣∣
2
dr
i
.

Therefore, we obtain

E[

Z T

t

Z T

t
|DθY

m+1
s − Y θ

s |2dsd✓] + E[

Z T

t

Z T

t
|DθZ

m+1
s − Zθ

s |2dsd✓] (2.8.5)

6 CE[

Z T

t

Z T

t
|δmr,θ|2drd✓] + CE[

Z T

t

Z T

t
|⇢mr,θ|2drd✓],

where

δmr,θ = (rxf(r,Σ
m
r )−rxf(r,Σr))DθX

t,x
r +ryf(r,Σ

m
r )Y θ

r −ryf(r,Σr)Y
θ
r

+ rzf(r,Σ
m
r )Zθ

r −rzf(r,Σr)Z
θ
r , (2.8.6)
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and

⇢mr,θ = (rxg(r,Σ
m
r )−rxg(r,Σr))DθX

t,x
r +ryg(r,Σ

m
r )Y θ

r −ryg(r,Σr)Y
θ
r

+ rzg(r,Σ
m
r )Zθ

r −rzg(r,Σr)Z
θ
r . (2.8.7)

From the definition of (δmr,θ)t 6 r,θ 6 T , we have E[
R T
t

R T
t |δmr,θ|2drd✓] 6 C

R T
t (Am(✓, t, T )+Bm(✓, t, T ))d✓,

where

Am(✓, t, T ) = E
h Z T

t
|(rxf(r,Σ

m
r )−rxf(r,Σr))DθX

t,x
r |2dr

i

Bm(✓, t, T ) = E
h Z T

t

∣∣(ryf(r,Σr)−ryf(r,Σ
m
r ))Y θ

r

∣∣2dr
i

+ E
h Z T

t

∣∣(rzf(r,Σr)−rzf(r,Σ
m
r ))Zθ

r

∣∣2dr
i

Moreover, since rxf is bounded and continuous with respect to (x, y, z), it follows by the domi-

nated convergence theorem and inequality (2.2.3) that

lim
m!1

Z T

t
Am(✓, t, T )d✓ = 0. (2.8.8)

Furthermore, since ryf and rzf are bounded and continuous with respect to (x, y, z), it follows,

also, by the dominated convergence theorem and inequality (2.2.4) that

lim
m!1

Z T

t
Bm(✓, t, T )d✓ = 0. (2.8.9)

From the definition of (⇢mr,θ)s 6 r,θ 6 T , we have

E[

Z T

t

Z T

t
|⇢mr,θ|2drd✓] 6 C

Z T

t
(A0

m(✓, t, T ) +B0
m(✓, t, T ))d✓

with

A0
m(✓, t, T ) = E

h Z T

t
|(rxg(r,Σ

m
r )−rxg(r,Σr))DθX

t,x
r |2dr

i

B0
m(✓, t, T ) = E

h Z T

t

∣∣(ryg(r,Σr)−ryg(r,Σ
m
r ))Y θ

r

∣∣2dr
⇤

+ E
h Z T

t

∣∣(rzg(r,Σr)−rzg(r,Σ
m
r ))Zθ

r

∣∣2dr
i
.

Similarly as shown above, since ryg andrzg are bounded and continuous with respect to (x, y, z)

we can show that :

lim
m!1

Z T

t
A0

m(✓, t, T )d✓ = lim
m!1

Z T

t
B0

m(✓, t, T )d✓ = 0. (2.8.10)

Plugging (2.8.8), (2.8.9) and (2.8.10) into inequality (2.8.5), we deduce that

lim
m!1

E[

Z T

t

Z T

t
|DθY

m+1
s − Y θ

s |2dsd✓] + E[

Z T

t

Z T

t
|DθZ

m+1
s − Zθ

s |2dsd✓] = 0.

It follows that (Y m, Zm) converges to (Y, Z) in L2([t, T ],D1,2⇥D1,2) and a version of (DθY,DθZ)

is given by (Y θ, Zθ) which is the desired result. tu
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2.8.2 Second order Malliavin derivative of the solution of BDSDE’s

We apply know similar computation to get the second order Malliavin derivatives representation

of the solution of BDSDE ’s, so we will omit the proof.

Proposition 2.8.1. Assume that assumptions (H2) and (H3) hold. We fix t 2 [0, T ]. Then for

each t 6 ✓ 6 T , (DθY,DθZ) belongs to B2([t, T ],D1,2). For each t 6 v 6 T and 1 6 i, j 6 d,

Dj
vD

i
θYs = Dj

vD
i
θZ

n
s = 0, 1 6 n 6 d, if s < ✓ _ v,

and a version of (Dj
vDi

θYs, D
j
vDi

θZs)v_θ 6 s 6 T is the unique solution of the equation :

Dj
vD

i
θYs = T1(Φ) + T2(f) + T3(g) + T4(W ),

where

T1(Φ) =

kX

n1=1

r((rΦ)n1(Xt,x
T ))Dj

vX
t,x
T (Di

θX
t,x
T )n1 +rΦ(Xt,x

T )Dj
vD

i
θX

t,x
T ,

T2(f) =

Z T

s

kX

n1=1

⇣
rx((rxf)

n1(r,Xt,x
r , Yr, Zr))D

j
vX

t,x
r (Di

θX
t,x
r )n1

+ rxf(r,X
t,x
r , Yr, Zr)D

j
vD

i
θX

t,x
r

⌘
dr

+

Z T

s

⇣ kX

n1=1

ry((ryf)
n1(r,Xt,x

r , Yr, Zr))D
j
vYr(D

i
θYr)

n1

+ ryf(r,X
t,x
r , Yr, Zr)D

j
vD

i
θYr

⌘
dr

+

dX

n2=1

Z T

s

kX

n1=1

rzn2 ((rzn2f)n1(r,Xt,x
r , Yr, Zr))D

j
vZ

n2
r (Di

θZ
n2
r )n1dr

+
dX

n2=1

Z T

s
rzn2f(r,Xt,x

r , Yr, Zr)D
j
vD

i
θZ

n2
r dr,

T3(g) =
lX

n3=1

Z T

s

kX

n1=1

rx((rxg
n3)n1(r,Xt,x

r , Yr, Zr))D
j
vX

t,x
r (Di

θX
t,x
r )n1

 −−−
dBn3

r

+

lX

n3=1

Z T

s
rxg

n3(r,Xt,x
r , Yr, Zr)D

j
vD

i
θX

t,x
r

 −−−
dBn3

r

+

lX

n3=1

Z T

s

kX

n1=1

ry((ryg
n3)n1(r,Xt,x

r , Yr, Zr))D
j
vYr(D

i
θYr)

n1
 −−−
dBn3

r

+

lX

n3=1

Z T

s
ryg

n3(r,Xt,x
r , Yr, Zr)D

j
vD

i
θYr
 −−−
dBn3

r

+

lX

n3=1

dX

n2=1

Z T

s

kX

n1=1

rzn2 ((rzn2gn3)n1(r,Xt,x
r , Yr, Zr))D

j
vZ

n2
r (Di

θZ
n2
r )n1

 −−−
dBn3

r

+
lX

n3=1

dX

n2=1

Z T

s
rzn2gn3(r,Xt,x

r , Yr, Zr)D
j
vD

i
θZ

n2
r

 −−−
dBn3

r ,
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T4(W ) = −
dX

n2=1

Z T

s
Dj

vD
i
θZ

n2
r dWn2

r ,

(zj)1 6 j 6 d denotes the j-th column of the matrix z, (gn3)1 6 n3 6 l denotes the n3-th column of the

matrix g, B = (B1, . . . , Bl), (Di
θX

t,x
r )n1 is the n1-th component of the vector (Di

θX
t,x
r ), (Di

θYr)
n1

is the n1-th component of the vector (Di
θYr) and (Di

θZ
n2
r )n1 is the n1-th component of the vector

(Di
θZ

n2
r ).

2.8.3 Some estimates on the solution of the FBDSDE

Lemma 2.8.1. Let (b1,σ1) and (b2,σ2) be the standard parameters of the SDE (2.2.1) with initial

condition x1 (resp. x2). We assume that (H1) holds. Put δXs = X1
s −X2

s , δbs = (b1 − b2)(X1
s )

and δσs = (σ1 − σ2)(X1
s ).Then

||X1||S2
d
6 C(1 + |x|2).

For all s1, s2 2 [0, T ], we have

E
h
sups1 6 u 6 s2 |X1

u −X1
s1 |
i
6 C(1 + |x|2)|s2 − s1|,

and for all s1 6 s 6 s2, we have

||δX||S2
d
([s1,s2]) 6 C

⇣
|x1 − x2|2 + |s2 − s1|+ E

⇥ Z s2

s1

|δbs|2 + |δσs|2ds]
⌘
,

where C is a generic constant depending only on K, T , (b1(0),σ1(0)) and (b2(0),σ2(0)).

Lemma 2.8.2. Let (Xt,x, Y t,x, Zt,x) be the solution of the FBDSDE (2.2.1)-(2.2.2). We assume

that Assumptions (H1) and (H2) hold. Then, we have

||Y t,x||S2
d
+ ||Zt,x||H2

d⇥k
6 C(1 + |x|2), (2.8.11)

and for all s0, s 2 [t, T ], s0 6 s, we have

E
h
sups0 6 u 6 s|Y t,x

u − Y t,x
s0 |2

i
6 C

⇣
(1 + |x|2)|s− s0|+ ||Zt,x||M2

k⇥d
[s0,s]

⌘
. (2.8.12)

Proof. The technics used to prove these estimates are classical in the BSDE’s theory (see El

Karoui et al.[31]) so we omit it.

tu





Chapitre 3

Numerical computations for Quasilinear

Stochastic PDEs

3.1 Introduction

We consider the following stochastic PDE, in Rd,

dut(x) +
⇥ 1
2
∆ut(x) + ft(x, ut(x),rut(x)) + divgt (x, ut (x) ,rut (x))

⇤
dt

+ ht(x, ut(x),rut(x)) ·
 −
dBt = 0,

(3.1.1)

over the time interval [0, T ], with a given final condition uT = Φ and f, g =
(
g1, · · · , gd

)
, h =

(
h1, · · · , hd1

)

non-linear random functions. The differential term with
 −
dBt refers to the backward stochastic integral

with respect to a d1-dimensional Brownian motion on
(
Ω,F ,P, (Bt)t > 0

)
. We use the backward notation

because in the proof we will employ the doubly stochastic framework introduced by Pardoux and Peng

[63].

When h is identically null and g is not, we obtain a Quasilinear deterministic PDE. The latter equation

was studied by Stoica [68], who gave the probabilistic interpretation for such equation. In fact, Stoica

studied a more general case. He considered the equation 3.1.1, but with the elliptic divergence form

operator L0 instead of the operator 1
2∆. The equation he studied was of the form :

(@t + L0)u+ f −
X

i,j

@i(a
i,jgj) = 0, (3.1.2)

where f and g are given real-valued functions on [0, T ]⇥ Rd, L0 is the given by :

L0 :=
X

i,j

@i(a
i,j
j ) +

X

i

bi@i,

b(x) := (b1(x), . . . , bd(x)) is a vector field and for all i, j, ai,j are bounded measurable functions on Rd.

He proved that under uniform ellipticity assumption on the matrix a and if the coefficients f , g, h and Φ

are square integrable, the solution of (3.1.2) satisfy the following relation :

ut(Xt)− us(Xs) =
dX

i=1

Z t

s

@iur(Xr)dM
i
r −

Z t

s

fr(Xr)dr −
1

2

Z t

s

gr ⇤ dXr, (3.1.3)

where (Ω,F , (Ft)t, Xt, ✓t, P
x) is the diffusion process generated by L0 in Rd, M i is the martingale part

of the component Xi of the process and the integral denoted with ⇤ is a stochastic martingale expressed

in terms of forward and backward martingales.

When L0 is symmetric under the probability measure Pm (see subsection ?? for the rigorous definition

of Pm), we have :
Z t

s

gr ⇤ dXr =

dX

i=1

✓Z t

s

gi(r,Xr)dM
i
r +

Z t

s

gi(r,Xr)d
 −
M i

r

◆
.

Hence, Stoica generalized the BSDE’s method for semilinear PDEs to a quasilinear case, by giving the

interpretation of the term
X

i,j

@i(a
i,jgj) in terms of the stochastic integral ⇤.

When h and g are non-null functions, equation (3.1.1) is a quasilinear stochastic PDE and will be of special

interest in this chapter. The probabilistic interpretation for the SPDE (3.1.1) was given by Matoussi and
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Stoica [54]. They proved also by the mean of a useful change of variable that, when the matrix a is assumed

symmetric, the case when we have L :=
X

i,j

@i(a
i,j
j ) instead of the operator 1

2∆ in (3.1.1) is covered by

their framework.

Since we are mainly interested in the numerical resolution of SPDE (3.1.1) by a probabilistic method, let

Us give an overview of the probabilistic methods for PDEs in the literature. In the deterministic PDE’s

case when g ⌘ 0 and h ⌘ 0, the numerical approximation of the BSDE has already been studied in the

literature by Bally [8], Zhang [70], Bouchard and Touzi [16], Gobet, Lemor and Warin[34] and Bouchard

and Elie [15]. Zhang [70] proposed a discrete-time numerical approximation, by step processes, for a class

of decoupled FBSDEs with possible path-dependent terminal values. He proved an L2-type regularity of

the BSDE’s solution, the convergence of his scheme and he derived its rate of convergence. Bouchard and

Touzi [16] suggested a similar numerical scheme for decoupled FBSDEs. The conditional expectations

involved in their discretization scheme were computed by using the Malliavin approach and the Monte

carlo method. Crisan, Manolarakis and Touzi [20] proposed an improvement on the Malliavin weights.

Gobet, Lemor and Warin in [34] proposed an explicit numerical scheme. When g ⌘ 0, h 6= 0 and it does

not depend on the control variable z, Aman [3] proposed a numerical scheme following the idea used by

Bouchard and Touzi [16] and obtained a convergence of order the time discretization step of the square

of the L2- error. Aboura [1] studied the same numerical scheme under the same kind of hypothesis, but

following Gobet et al. [33]. He obtained a convergence of order the time discretization step and used the

regression Monte Carlo method to implement his scheme, following always [33].

In this work, we explore a probabilistic numerical method to approximate the solution of equation

(3.1.1), which have been studied in particular by Denis and Stoica [28], Denis-Matoussi-Stoica [25, 26, 27]

and Matoussi -Stoica [54].

3.2 Preliminaries and notations

3.2.1 Quasilinear SPDEs : Theorotical aspect

The basic Hilbert space of our framework is L
2
(
Rd
)

and we employ the usual notation for its scalar

product and its norm,

(u, v) =

Z

Rd

u (x) v (x) dx, kuk2 =

✓Z

Rd

u2 (x) dx

◆ 1
2

.

In general, we shall use the notation

(u, v) =

Z

Rd

u(x)v(x) dx,

where u, v are measurable functions defined in Rd and uv 2 L
1(Rd).

Our evolution problem will be considered over a fixed time interval [0, T ] and the norm for a function

L2
(
[0, T ]⇥ Rd

)
will be denoted by

kuk2,2 =

 Z T

0

Z

Rd

|u(t, x)|2dxdt
! 1

2

.

Another Hilbert space that we use is the first order Sobolev space H1
(
Rd
)
= H1

0

(
Rd
)
. Its natural

scalar product and norm are

(u, v)H1(Rd) = (u, v) + (ru,rv) , kukH1(Rd) =
⇣
kuk22 + kruk

2
2

⌘ 1
2

where we denote the gradient by ru(t, x) =
(
@1u(t, x), · · ·, @du(t, x)

)
.

Of special interest is the subspace eF ⇢ L
2
(
[0, T ];H1

(
Rd
))

consisting of all functions u(t, x) such that

t 7−! ut = u(t, ·) is continuous in L
2(Rd). The natural norm on eF is

kukT = sup0 6 t 6 T kutk2 +
 Z T

0

krutk2dt
! 1

2

.
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The Lebesgue measure in Rd will be denoted by m. The space of test functions which we employ in the

definition of weak solutions of the evolution equations (3.1.1) or (3.2.1) is DT = C1
(
[0, T ]

)
⌦ C1c

(
Rd
)
,

where C1
(
[0, T ]

)
denotes the space of real functions which can be extended as infinite differentiable

functions in the neighborhood of [0, T ] and C1c
(
Rd
)

is the space of infinite differentiable functions with

compact support in Rd. Finally, for all m in N, H2
m([0, T ]) will denote the set of (classes of dP ⇥ dt a.e.

equal) Rm-valued jointly measurable processes ( u)0 6 u 6 T such that || ||2
H2

m([0,T ]) := E[
R T

0
| u|2du] is

finite and  u is Fu-measurable, for a.e. u 2 [0, T ], while S2m([0, T ]) will denote the set of Rm-valued

continuous processes ( u)0 6 u 6 T such that || ||2
S2m([0,T ]) := E[sup0 6 u 6 T | u|2] is finite and such that

 u is Fu-measurable, for any u 2 [0, T ].

3.2.2 The probabilistic interpretation of the divergence term

The operator @t +
1
2∆, which represents the main linear part in the equation (3.1.1), is probabilistically

interpreted by the Bownian motion in Rd. We shall view the Brownian motion as a Markov process and

therefore we next introduce some detailed notation for it. The sample space is Ω0 = C
(
[0,1);Rd

)
, the

canonical process (Wt)t > 0 is defined by Wt(!) = !(t), for any ! 2 Ω0, t > 0 and the shift operator,

✓t : Ω0 −! Ω0, is defined by ✓t(!)(s) = !(t + s), for any s > 0 and t > 0. The canonical filtration

F0
t = σ (Ws; s 6 t) is completed by the standard procedure with respect to the probability measures

produced by the transition function

Pt(x, dy) = qt(x− y)dy, t > 0, x 2 Rd,

where qt(x) = (2⇡t)
− d

2 exp
(
−|x|2/2t

)
is the gaussian density. Thus we get a continuous Hunt process(

Ω0,Wt, ✓t,F ,F0
t ,P

x
)
. We shall also use the backward filtration of the future events F 0

t = σ (Ws; s > t)

for t > 0. P0 is the Wiener measure, which is supported by the set Ω0
0 = {! 2 Ω0, w(0) = 0}. We also set

Π0(!)(t) = !(t)−!(0), t > 0, which defines a map Π0 : Ω0 ! Ω0
0. Then Π = (W0,Π0) : Ω0 ! Rd⇥Ω0

0 is

a bijection. For each probability measure on Rd, the probability Pµ of the Brownian motion started with

the initial distribution µ is given by

Pµ = Π−1
(
µ⌦ P0

)
.

In particular, for the Lebesgue measure in Rd, which we denote by m = dx, we have

Pm = Π−1
(
dx⌦ P0

)
.

These relations are saying that W0 is independent of Π0. It is known that each component (W i
t )t > 0 of

the Brownian motion, i = 1, · · · , d, is a martingale under any of the measures Pµ. The next lemma shows

that
(
W i

t−r,F 0
t−r

)
, r 2 (0, t] is a backward local martingale under Pm (see [54] for the proof).

Lemma 3.2.1. Let 0 < s < t. If A 2 σ(Wt) is such that Em [|Wt|;A] <1, then one has Em [|Ws|;A] <

1. Moreover, for each B 2 F 0
t, and i = 1, · · · , d, one has

Em
⇥
W i

s ;A \B
⇤
= Em

⇥
W i

t ;A \B
⇤
.

Now let us assume that f and |g| belong to L
2
(
[0, T ]⇥ Rd

)
and u 2 eF is a solution of the following

deterministic equation :

@tu(t, x) +
1

2
∆u(t, x) + f(t, x) + divg(t, x) = 0. (3.2.1)

. Let us denote by

Z t

s

gr ⇤ dWr =

dX

i=1

✓Z t

s

gi(r,Wr)dW
i
r +

Z t

s

gi(r,Wr)d
 −
W i

r

◆
. (3.2.2)

Then one has the following representation (Theorem 3.2 in [68])

Theorem 3.2.1. The following relation holds Pm-a.s. for each 0 6 s 6 t 6 T ,

ut(Wt)− us(Ws) =
dX

i=1

Z t

s

@iur(Wr)dW
i
r −

Z t

s

fr(Wr)dr −
1

2

Z t

s

gr ⇤ dWr. (3.2.3)
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In [68] one uses the backward martingale
 −
Mµ,i defined under an arbitrary Pµ, with µ a probability

measure in Rd, in order to express the integral
R t

s
gr ⇤dWr. Though formally the definition looks different,

one easily sees that it is the same object. After that, we introduce the quasicontinuity notion, which will

be useful for us to obtain the continuity of the process ut(Wt) in Theorem 3.2.4 :

Definition 3.2.1. A function  : [0, T ]⇥Rd ! R is called quasicontinuous provided that for each " > 0,

there exists an open set, Dε ⇢ [0, T ]⇥ Rd, such that  is finite and continuous on Dc
ε and

Pm ({! 2 Ω0/9 t 2 [0, T ] s.t. (t,Wt (!)) 2 Dε}) < ".

We note that if a function  is quasicontinuous, then the process ( t (Wt))t2[0,T ] is continuous.

3.2.2.1 Hypotheses

Let B = (Bt)t > 0 be a standard d1-dimentional Brownian motion on a probability space
(
Ω,FB ,P

)
. So

Bt =
⇣
B1

t , · · · , Bd1
t

⌘
takes values in Rd1

. Over the time interval [0, T ] we define the backward filtration
(
FB

s,T

)
s2[0,T ]

where FB
s,T is the completion in FB of σ(Br −Bs; s 6 r 6 T ).

We denote by HT the space of H1(Rd)-valued predictable and FB
t,T -adapted processes (ut)0 6 t 6 T such

that the trajectories t! ut are in eF a.s. and

E kuk2T <1.

In the remainder of this paper we assume that the final condition Φ is a given function in L
2(Rd) and

the functions appearing in the equation (3.1.1)

f : [0, T ]⇥ Rd ⇥ R⇥ Rd ! R ,

g = (g1, ..., gd) : [0, T ]⇥ Rd ⇥ R⇥ Rd ! Rd

h = (h1, ..., hd1) : [0, T ]⇥ Rd ⇥ R⇥ Rd ! Rd1

are measurable functions . We set

f(·, ·, ·, 0, 0) := f0, g(·, ·, ·, 0, 0) := g0 = (g01 , ..., g
0
d) and h(·, ·, ·, 0, 0) := h0 = (h0

1, ..., h
0
d1).

and assume the following hypotheses :

Assumption (H) : There exist non-negative constants C, ↵, β such that

(i) |ft(x, y, z)− f(t, x, y0z0)| 6 C
(
|y − y0|+ |z − z0|

)

(ii)
⇣Pd1

j=1 |hj,t(, x, y, z)− hj(t, , x, y
0, z0)|2

⌘ 1
2

6 C |y − y0|+ β |z − z0|,

(iii)
⇣Pd

i=1 |gi,t(x, y, z)− gi(t, , x, y
0, z0)|2

⌘ 1
2

6 C |y − y0|+ ↵ |z − z0|.

(iv) the contraction property (as in [28]) : ↵+ β2

2 < 1
2 .

Assumption (HD2) ∥∥f0
∥∥2
2,2

+
∥∥g0
∥∥2
2,2

+
∥∥h0
∥∥2
2,2

<1.

Assumption (HD2’)

(i) |Φ(x)− Φ(x0)| 6 K|x− x0|,
(ii) sup0 6 t 6 T (|f(t, 0, 0, 0)|+ |h(t, 0, 0, 0)|+ |g(t, 0, 0, 0)|) 6 K.

(iii) the contraction property (as in [28]) : ↵+ β2

2 + α2

8 < 1
2 .
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We recall that a solution of the equation (3.1.1) with final condition uT = Φ, is a processus u 2 HT

such that for each test function ' 2 DT and any 8t 2 [0, T ], we have a.s.

Z T

t

⇥
(us, @s's) +

1

2
(rus,r's) +

(
gs,r's

) ⇤
ds−

(
Φ,'T

)
+
(
ut,'t

)

=

Z T

t

(fs,'s) ds+

Z T

t

(hs,'s) ·
 −
dBs.

(3.2.4)

By Theorem 8 in [28] we have existence and uniqueness of the solution. Moreover, the solution belongs to

HT . We denote by U(Φ, f, g, h) this solution. Let L =
P

ij @ia
ij@j be an elliptic operator in divergence

form, with the matrix a =
(
aij
)
: Rd ! Rd ⇥ Rd being symmetric, measurable and such that

λ |⇠|2 6
X

ij

aij (x) ⇠i⇠j 6 Λ |⇠|2 ,

for any x, ⇠ 2 Rd. If instead of the operator 1
2∆ in our equation (1) we had the operator L, then the

contraction condition (iv) of hypothesis (H) would be replaced by ↵+ β2

2 < λ (this ensures the contraction

condition as formulated in [8]). Then the time change t! 1
2Λ t

0 yields a one to one correspondence betwen

the solutions u of the equation

dut + [Lut + ft (ut,rut) + divgt (ut,rut)] dt+ ht (ut,rut) ·
 −
dBt = 0,

over [0, T ] and the solutions but = u 1
2Λ t satisfying the equation

dbut +


1

2
∆but + bft (but,rbut) + divbgt (but,rbut)

]
dt+ bht (but,rbut) ·

 −
d bBt = 0,

over the interval [0, 2ΛT ] , with the transformed coeficients

bf (t, x, y, z) =
1

2Λ
f

✓
1

2Λ
t, x, y, z

◆
,bh (t, x, y, z) = 1

(2Λ)
1
2

h

✓
1

2Λ
t, x, y, z

◆
,

bgi (t, x, y, z) =
1

2Λ

0
@gi

✓
1

2Λ
t, x, y, z

◆
+
X

j

aij (x) zj − Λzi

1
A , i = 1, ..., d,

and the transformed Brownian motion bBt = (2Λ)
1
2 B 1

2Λ t, t 2 [0, 2ΛT ] . This can be checked just by

direct calculations using the above definition of a solution. Moreover, if one writes L in the form Lu =

Λ∆u− div (γru) , where γ =
(
γij
)

is a matrix with the enties γij (x) = Λδij − aij (x) , i, j = 1, ..., d, then

one has

0 6 γ = ΛI − a 6 (Λ− λ) I,
in the sense of the order induced by the cone of non-negative definite matrices. This implies that one has

|γ (x) ⇠| 6 (Λ− λ) |⇠| ,

for any x, ⇠ 2 Rd. Then it easy to deduce that bgt (x, y, z) = 1
2Λ

⇣
g 1

2Λ t (x, y, z) + γ (x) z
⌘

fulfils condition

(iii) of assumption (H) with a constant b↵ = 1
2Λ (↵+ (Λ− λ)) . On the other hand one can see that bh

satisfies condition (ii) with bβ = 1

(2Λ)
1
2
β, so that the condition ↵ + β2

2 < λ, ensures b↵ +
bβ2

2 < 1
2 , which is

condition (iv) of our assumption (H). Therefore we conclude that our framework covers the case of an

equation that involves an elliptic operator like L, because the properties of the solution u are immediately

obtained from those of the solution bu. From now on, our aim will be the numerical approximation of

the solution of SPDE (3.1.1) using a Monte Carlo method. Let us stress that the probabilistic numerical

method described here allows us to approximate solutions of equation (3.1.1) by using M Monte Carlo

simulations of the brownian motion W , instead of using a classical Euler scheme to discretize the Laplacien

operator ∆. Then, we can benefit from advantages of the Monte Carlo method, which is more tractable

in high dimensions and practical for parallel computing.
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3.2.2.2 Itô formula and quasicontinuity property for the solution of the SPDE

In this part, we state some properties of the solution of equation of (3.1.1). These properties will be

useful for us to study the time discretization error (3.3.3). We start by recalling the following result from

[28] (stated for linear SPDE i.e. when f, g, h do not depend on u and ru) :

Theorem 3.2.2. Let u 2 HT be a solution of the equation

dut +
1

2
∆utdt+

(
ft + divgt

)
dt+ ht

 −
dBt = 0,

where f, g, h are predictable processes such that

Z T

0

⇥∥∥ft
∥∥2
2
+
∥∥gt
∥∥2
2
+
∥∥ht

∥∥2
2

⇤
dt <1 and kΦk22 <1.

Then, for any 0 6 s 6 t 6 T , one has the following stochastic representation, Pm-a.s.,

u (t,Wt)− u (s,Ws) =
X

i

tZ

s

@iu (r,Wr) dW
i
r −

tZ

s

fr (Wr) dr −
1

2

tZ

s

g ⇤ dW −
tZ

s

hr (Wr) ·
 −
dBr. (3.2.5)

Setting for all t in [0, T ], Yt := ut(Wt) and Zt := rut(Wt), the stochastic representation (3.2.5) can be

written

Yt = YT +

TZ

t

fr(Wr)dr +
1

2

TZ

t

gr(Wr) ⇤ dWr +

TZ

t

hr(Wr)
 −
dBr −

TZ

t

ZrdWr. (3.2.6)

We remark that FT and FB
0,T are independent under P ⌦ Pm and therefore in the above formula the

stochastic integrals with respect to dWt and
 −−
dW t act independently of FB

0,T and similarly the integral

with respect to
 −
dBt acts independently of FT .

In particular the process (ut(Wt))t2[0,T ] admits a continuous version. For this continuous version, we keep

the same notation used in (3.2.6) and we denote it by Y := (Yt)t2[0,T ] and Zt := rut(Wt).

As a consequence of Theorem 3.2.2, we have the following result :

Theorem 3.2.3. Under the hypothesis of the preceding theorem, we have the following results :

(i) One has the following stochastic representation for u2, P⌦ Pm-a.e., for any 0 6 t 6 T ,

u2
t (Wt)− Φ2

(
WT

)
= 2

Z T

t

⇥
usfs(Ws)−

1

2
|rus|2(Ws)− hrus, gsi(Ws) +

1

2
|hs|2(Ws)

⇤
ds

+

TZ

t

(
urgr

)
(Wr) ⇤ dWr − 2

X

i

TZ

t

(
ur@iur

)
(Wr) dW

i
r + 2

Z T

t

(
urhr

)
(Wr) ·

 −
dBr.

(3.2.7)

(ii) With the notation introduced in (3.2.6), one can write the relation (3.2.7) as

|Yt|2 +
Z T

t

|Zr|2dr = |YT |2 + 2

Z T

t

Yrfr(Wr)dr − 2

Z T

t

hZr, gr(Wr)i dr +
Z T

t

Yrgr(Wr) ⇤ dWr

− 2
X

i

TZ

t

YrZi,rdW
i
r + 2

Z T

t

Yrhr(Wr) ·
 −
dBr +

Z T

t

|hr|2(Wr)dr.

(3.2.8)

(iii) One has the estimate

Em E
h(
supt 6 s 6 T |Ys|2

)
+

Z T

t

|Zs|2 ds
i
6 c

n
kφk22 +

Z T

t

(kfsk22 + kgsk22 + khsk22 ) ds
o
, (3.2.9)

for each t 2 [0, T ].

We note that in the deterministic case, it was proven in [68] that the solution of a quasilinear equation

has a quasicontinuous version. Here we have the same property for the solution of an SPDE as stated in

Proposition 1, [54] :
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Theorem 3.2.4. Under the hypothesis of Theorem 3.2.2, there exists a function ū : [0, T ]⇥Ω⇥Rd −! R
which is a quasicontinuous version of u, in the sense that for each " > 0, there exits a predictable random

set Dε ⇢ [0, T ] ⇥ Ω ⇥ Rd such that P-a.s. the section Dε
ω is open and ū (·,!, ·) is continuous on its

complement (Dε
ω)

c
and

P⌦ Pm
(
(!,!0)

∣∣ 9t 2 [0, T ] s.t. (t,!,Wt(!
0)) 2 Dε

)
6 ".

In particular the process
(
ut(Wt)

)
t2[0,T ]

has continuous trajectories, P⌦ Pm-a.s.

3.2.3 Numerical Scheme for decoupled Forward-BDSDE

In order to approximate the solution of the SPDE (3.1.1), we introduce the following discretized version

of the assiciated BDSDE (3.2.5). Let ⇡ = {t0 = 0 < t1 < ... < tN = T} be an equidistant partition of

the time interval [0, T ] i.e. ∆N = T
N and tn = n∆N , 0 6 n 6 N . Throughout the rest, we will use the

notations ∆Wn = Wtn+1
−Wtn and ∆Bn = Btn+1

−Btn , for n = 1, ..., N .

Quite naturally, the solution (Y, Z) of (3.2.5) is approximated by (Y N , ZN ) defined by :

Y N
tN = Φ(WN

T ), ZN
tN = 0, (3.2.10)

and for 0 6 n 6 N − 1,

Y N
tn = Etn [Y

N
tn+1

] +∆NEtn [f(tn,Θ
N
n )] +

1

2
Etn [g(tn+1,Θ

N
n+1)∆Wn] (3.2.11)

+ Etn [h(tn+1,Θ
N
n+1)∆Bn],

∆NZN
tn = Etn

"
Y N
tn+1

∆W ⇤
n + h(tn+1,Θ

N
n+1)∆Bn∆W ⇤

n (3.2.12)

+
1

2

{
g(tn,Θ

N
n ) + g(tn+1,Θ

N
n+1)

 
∆Wn∆W ⇤

n

#
,

where

ΘN
n := (WN

tn , Y
N
tn , Z

N
tn), 8n = 0, . . . , N.

⇤ denotes the transposition operator and Etn denotes the conditional expectation over the σ-algebra

Ftn := F0
tn _ FB

tn,T
.

We define also for all n = 0, .., N − 1, (Y N , ZN )tn 6 s<tn+1 as the solution of the following BDSDE :

(
dY N

s = −f(tn, ✓Nn )ds− 1
2{g(tn,ΘN

n )dWs + g(tn+1,Θ
N
n+1)
 −−
dWs} − h(tn+1,Θ

N
n+1)
 −−
dBs + ZN

s dWs,

Y N
tn+1

is given by our numerical scheme.

(3.2.13)

This is the continuous approximation of the solution of the BDSDE (3.2.5). The superscript (t, x) indicates

the dependence of the solution (W,Y,Z) on the initial date (t, x). To alleviate notations, we omit the

dependence in (t, x) of (Y t,x, Zt,x) and (Y N,t,x, ZN,t,x) when the context is clear.

Notations : For a real matrix A, kAk is the Frobenius norm defined by kAk = (
P

i,j a
2
i,j)

1/2.

For a vector x, |x| stands for its Euclidean norme defined by |x| = (
P

i |xi|2)1/2.
In the next computations, the constant C denotes a generic constant that may change from line to line.

3.3 Time discretization error

In this section, we study the time discretization error of the Euler numerical scheme (3.2.11)-(3.2.12) of

our BDSDEs. First, We give in the following an upper bound for the time discretization error. Then we

give a regularity result which allows us to derive the rate of convergence for our numerical scheme.
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3.3.1 Upper bound for the time discretization error

First, we need the following Lemma, which is a generalization of the Itô formula for BDSDEs given in

[63] :

Lemma 3.3.1. Let ⇣ 2 S21([0, T ]), # 2 H2
1([0, T ]), γ 2 H2

d1
([0,T ]) and φ, and δ 2 H2

d([0,T ]) such that :

⇣t = ⇣0 +

Z t

0

#sds+

Z t

0

γs
 −−
dBs +

Z t

0

φsdWs +

Z t

0

 sdWs +

Z t

0

δs
 −−
dWs. (3.3.1)

Then

|⇣t|2 − |⇣0|2 = 2

Z t

0

(⇣s,#s)ds+ 2

Z t

0

(⇣s, γs
 −−
dBs) + 2

Z t

0

(⇣s,φsdWs)

+ 2

Z t

0

(⇣s, sdWs) + 2

Z t

0

(⇣s, δs
 −−
dWs) + 2

Z t

0

(φs, s)ds

+

Z t

0

|φs|2ds+
Z t

0

| s|2ds−
Z t

0

|γs|2ds−
Z t

0

|δs|2ds.

Proof. Following [63], we write

|⇣ti+1
− ⇣ti |2 = (⇣ti+1

− ⇣ti , ⇣ti+1
− ⇣ti)

= |⇣ti+1 |2 − |⇣ti |2 − 2(⇣ti+1 − ⇣ti , ⇣ti).

2(⇣ti+1
− ⇣ti , ⇣ti) = 2

Z ti+1

ti

(⇣ti ,#s)ds+ 2

Z ti+1

ti

(⇣ti , γs
 −−
dBs) + 2

Z ti+1

ti

(⇣ti ,φsdWs)

+ 2

Z ti+1

ti

(⇣ti , sdWs) + 2

Z ti+1

ti

(⇣ti , δs
 −−
dWs)

= 2

Z ti+1

ti

(⇣ti ,#s)ds+ 2

Z ti+1

ti

(⇣ti+1
, γs
 −−
dBs) + 2

Z ti+1

ti

(⇣ti ,φsdWs)

+ 2

Z ti+1

ti

(⇣ti , sdWs) + 2

Z ti+1

ti

(⇣ti+1 , δs
 −−
dWs)− 2

Z ti+1

ti

(⇣ti+1 − ⇣ti , γs
 −−
dBs)

− 2

Z ti+1

ti

(⇣ti+1
− ⇣ti , δs

 −−
dWs).

On the other hand

|⇣ti+1
− ⇣ti |2 = |

Z ti+1

ti

#sds|2 + |
Z ti+1

ti

γsdBs|2 + |
Z ti+1

ti

φsdWs|2

+ |
Z ti+1

ti

 sdWs|2 + |
Z ti+1

ti

δsdWs|2 + 2(

Z ti+1

ti

#sds,

Z ti+1

ti

γs
 −−
dBs)

+ 2(

Z ti+1

ti

#sds,

Z ti+1

ti

φsdWs) + 2(

Z ti+1

ti

#sds,

Z ti+1

ti

 sdWs)

+ 2(

Z ti+1

ti

#sds,

Z ti+1

ti

δs
 −−
dWs) + 2(

Z ti+1

ti

γs
 −−
dBs,

Z ti+1

ti

φsdWs)

+ 2(

Z ti+1

ti

γs
 −−
dBs,

Z ti+1

ti

 sdWs) + 2(

Z ti+1

ti

γs
 −−
dBs,

Z ti+1

ti

δs
 −−
dWs)

+ 2(

Z ti+1

ti

φsdWs,

Z ti+1

ti

 sdWs) + 2(

Z ti+1

ti

φsdWs,

Z ti+1

ti

δs
 −−
dWs)

+ 2(

Z ti+1

ti

 sdWs,

Z ti+1

ti

δs
 −−
dWs).
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Using that

−2
Z ti+1

ti

(⇣ti+1
− ⇣ti , γs

 −−
dBs) = −2(

Z ti+1

ti

#sds,

Z ti+1

ti

γs
 −−
dBs)− 2(

Z ti+1

ti

γs
 −−
dBs,

Z ti+1

ti

γs
 −−
dBs)

− 2(

Z ti+1

ti

φsdWs,

Z ti+1

ti

γs
 −−
dBs)− 2(

Z ti+1

ti

 sdWs,

Z ti+1

ti

γs
 −−
dBs)

− 2(

Z ti+1

ti

δs
 −−
dWs,

Z ti+1

ti

γs
 −−
dBs)

and

−2
Z ti+1

ti

(⇣ti+1 − ⇣ti , δs
 −−
dWs) = −2(

Z ti+1

ti

#sds,

Z ti+1

ti

δs
 −−
dWs)− 2(

Z ti+1

ti

γs
 −−
dBs,

Z ti+1

ti

δs
 −−
dWs)

− 2(

Z ti+1

ti

φsdWs,

Z ti+1i+1

ti

δs
 −−
dWs)− 2(

Z ti+1

ti

 sdWs,

Z ti+1

ti

δs
 −−
dWs)

− 2(

Z ti+1

ti

δs
 −−
dWs,

Z ti+1

ti

δs
 −−
dWs),

we get

|⇣ti+1
|2 − |⇣ti |2 = 2

Z ti+1

ti

(⇣ti ,#s)ds+ 2

Z ti+1

ti

(⇣ti+1
, γs
 −−
dBs) + 2

Z ti+1

ti

(⇣ti , sdWs)

+

Z ti+1

ti

(⇣ti , sdWs) + 2(

Z ti+1

ti

⇣ti+1 , δs
 −−
dWs)

+ |
Z ti+1

ti

#sds|2 + |
Z ti+1

ti

φsdWs|2 + |
Z ti+1

ti

 sdWs|2

+ 2(

Z ti+1

ti

φsdWs,

Z ti+1

ti

 sdWs) + 2(

Z ti+1

ti

#sds,

Z ti+1

ti

φsdWs)

+ 2(

Z ti+1

ti

#sds,

Z ti+1

ti

 sdWs)− 2(

Z ti+1

ti

δs
 −−
dWs,

Z ti+1

ti

γs
 −−
dBs)

− |
Z ti+1

ti

γsdBs|2 −
Z ti+1

ti

|δsdWs|2.

Finally, we can write

|⇣ti+1
|2 − |⇣ti |2 = 2

Z ti+1

ti

(⇣ti ,#s)ds+ 2(

Z ti+1

ti

⇣ti+1
, γs
 −−
dBs) + 2(

Z ti+1

ti

⇣ti , sdWs)

+ (

Z ti+1

ti

⇣ti , sdWs) + 2(

Z ti+1

ti

⇣ti+1
, δs
 −−
dWs)

+ |
Z ti+1

ti

φsdWs|2 + |
Z ti+1

ti

 sdWs|2

+ 2(

Z ti+1

ti

φsdWs,

Z ti+1

ti

 sdWs)− |
Z ti+1

ti

γsdBs|2 + |
Z ti+1

ti

δsdWs|2 + ⇢i,

where
PN−1

i=0 ⇢i −! 0 in probability, as supi|ti+1 − ti| −! 0. tu
The next theorem states an upper bound result regarding the time discretization error. First, let Us

define the process Z̄ by

8
<
:

Z̄t =
1
hEtn [

Z tn+1

tn

Zsds], 8t 2 [tn, tn+1), 8n 2 {0, . . . , N − 1},
Z̄tN = 0.

(3.3.2)
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Theorem 3.3.1. Assume that Assumptions (H) and (HD2’) hold, define the error

ErrorN (Y, Z) := sup0 6 t 6 TE
mE[|Yt − Y N

t |2] (3.3.3)

+ EmE[

N−1X

n=0

Z tn+1

tn

||Zs − ZN
tn ||2ds],

where Y N and ZN are given by (3.2.13). Then

ErrorN (Y, Z) 6 C∆N + C
N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds

+ C

N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn+1 ||2]ds}. (3.3.4)

Proof. We first define the following quantities :

✓s := (Xs, Ys, Zs), 8s 2 [tn, tn+1), 8n = 0, . . . , N − 1.

8s 2 [tn, tn+1), 8n = 0, . . . , N − 1 :
8
>>>>><
>>>>>:

δY N
t := Yt − Y N

t , δZN
t := Zt − ZN

t ,

δft := f(t, ✓t)− f(tn,Θ
N
n ),

δg1,t := g(t, ✓t)− g(tn,Θ
N
n ),

δg2,t := g(t, ✓t)− g(tn+1,Θ
N
n+1),

δht := h(t, ✓t)− h(tn+1,Θ
N
n+1).

(3.3.5)

From the definition of δY N , we have

δY N
s = −δfsdt− δhs

 −−
dBs −

1

2
δg1,sdWs −

1

2
δg2,s

 −−
dWs + δZN

s dWs, (3.3.6)

Using the generalized Ito Formula given in Lemma 3.3.1 , we have 8t 2 [tn, tn+1)

|δY N
t |2 − |δY N

tn+1
|2 = 2

Z tn+1

t

(δY N
s , δfs)ds+ 2

Z tn+1

t

(δY N
s , δhs

 −−
dBs) +

Z tn+1

t

(δY N
s , δg1,sdWs)

+

Z tn+1

t

(δY N
s , δg2,s

 −−
dWs)− 2

Z tn+1

t

(δY N
s , δZN

s dWs) +

Z tn+1

t

(δZN
s , δg1,s)ds

+

Z tn+1

t

|δhs|2ds+
1

4

Z tn+1

t

|δg2,s|2ds−
Z tn+1

t

|δZN
s |2ds−

1

4

Z tn+1

t

|δg1,s|2ds.

Then, tacking the expectation, we get

An
t := EmE|δY N

t |2 +
Z tn+1

t

EmE|δZN
s |2ds− EmE|δY N

tn+1
|2

= 2

Z tn+1

t

EmE(δY N
s , δfs)ds+

Z tn+1

t

EmE(δZN
s , δg1,s)ds+

Z tn+1

t

EmE|δhs|2ds

+
1

4

Z tn+1

t

EmE|δg2,s|2ds−
1

4

Z tn+1

t

EmE|δg1,s|2ds. (3.3.7)

After that, we have

2

Z tn+1

t

EmE(δZN
s , δg1,s)ds 6 2

Z tn+1

t

EmE(|δZN
s |, |δg1,s|)ds

6 2

Z tn+1

t

EmE(|δZN
s |, C|Ws −WN

tn |+ C|Ys − Y N
tn |+ ↵|Zs − ZN

tn |)ds

6 2C

Z tn+1

t

EmE(|δZN
s |, |Ws −WN

tn |)ds+ 2C

Z tn+1

t

EmE(|δZN
s |, |Ys − Y N

tn |)ds

+ 2↵

Z tn+1

tn

EmE(|δZN
s |, |Zs − Z̄tn |)ds+ 2↵

Z tn+1

tn

EmE(|δZN
s |, |Z̄tn − ZN

tn |)ds

6 (2↵+ C"(Z))

Z tn+1

tn

EmE|δZN
s |2ds+

C

"(Z)

Z tn+1

t

EmE|Ws −WN
tn |2ds+

C

"(Z)

Z tn+1

t

EmE|Ys − Y N
tn |2ds

+
↵

"(Z)

Z tn+1

tn

EmE|Zs − Z̄tn |2ds,
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where "(Z) is a positive constante which will be specified later.

Plugging Ytn , we get :

2

Z tn+1

t

EmE(δZN
s , δg1,s)ds 6

C

"(Z)

Z tn+1

t

EmE|Ws −WN
tn |2ds+

C

"(Z)

Z tn+1

t

EmE|Ys − Ytn |2ds

+
C

"(Z)
∆NEmE|δY N

tn |2 + (2↵+ C"(Z))

Z tn+1

tn

EmE|δZN
s |2ds+

C

"(Z)

Z tn+1

t

EmE|ZN
s − ZN

tn |2ds

(3.3.8)

From the assumption (H), we have

Z tn+1

t

EmE[|δhs|2]ds 6 C

Z tn+1

t

EmE[|Ws −WN
tn+1
|2]ds

+ C

Z tn+1

t

[|Ys − Y N
tn+1
|2]ds+ (1 + ")β2EmE

⇥ Z tn+1

t

|Zs − ZN
tn+1
|2ds

⇤
.

(3.3.9)

where " is a positive constant.

We plug Z̄tn+1
in the following and we use the Young’s inequality, with a positive constant "1 (to be

specified later),

EmE
⇥ Z tn+1

t

|Zs − ZN
tn+1
|2ds

⇤
6 (1 +

1

"1
)EmE

⇥ Z tn+1

t

|Zs − Z̄tn+1 |2ds
⇤

+ (1 + "1)E
mE
⇥ Z tn+1

tn

|Z̄tn+1
− ZN

tn+1
|2ds

⇤

Using the definition of Z̄tn+1
, we get

EmE
⇥ Z tn+1

t

|Zs − ZN
tn+1
|2ds

⇤
6 (1 +

1

"1
)EmE

⇥ Z tn+1

t

|Zs − Z̄tn+1
|2ds

⇤

+ (1 + "1)E
mE
⇥ Z tn+2

tn+1

|δZN
s |2ds

⇤
.

Now we plug the last inequality in (3.3.9) then insert Ytn+1 to get

Z tn+1

t

EmE[|δhs|2]ds 6 C

Z tn+1

t

EmE[|Ws −WN
tn+1
|2] + C

Z tn+1

t

EmE[|Ys − Ytn+1 |2]ds

+ C∆NEmE[|δY N
tn+1
|2] + (1 + ")(1 + "1)β

2EmE
⇥ Z tn+2

tn+1

|δZN
s |2ds

⇤

+ (1 + ")(1 +
1

"1
)β2

Z tn+1

t

EmE[|Zs − Z̄tn+1 |2]ds.

(3.3.10)

The same arguments give us
Z tn+1

t

EmE[|δg2,s|2]ds 6 C

Z tn+1

t

EmE[|Ws −WN
tn+1
|2]ds+ C

Z tn+1

t

EmE[|Ys − Ytn+1 |2]ds

+ C∆NEmE[|δY N
tn+1
|2] + (1 + "3)(1 + "4)↵

2EmE
⇥ Z tn+2

tn+1

|δZN
s |2ds

⇤

+ (1 + "3)(1 +
1

"4
)↵2

Z tn+1

t

EmE[|Zs − Z̄tn+1
|2]ds

(3.3.11)

and
Z tn+1

t

EmE[|δg1,s|2]ds 6 C 0
Z tn+1

t

EmE[|Ws −WN
tn |2]ds+ C 0

Z tn+1

t

EmE[|Ys − Ytn |2]ds

+ C 0∆NEmE[|δY N
tn |2] + (1 + "5)↵

2EmE
⇥ Z tn+1

tn

|δZN
s |2ds

⇤

+ (1 + "5)↵
2

Z tn+1

tn

EmE[|Zs − Z̄tn |2]ds.

(3.3.12)
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We remind that

EmE[|Ws −WN
tn |2] 6 C∆N and EmE[|Ws −WN

tn+1
|2] 6 C∆N (3.3.13)

and

EmE[|Ys − Y N
tn+1
|2] 6 C{EmE[|Ys − Ytn+1 |2] + EmE[|Ytn+1 − Y N

tn+1
|2]}

6 C{∆N + EmE[|δY N
tn+1
|2]},

(3.3.14)

where C is a positive constant.

Plugging inequalities (3.3.11), (3.3.10) and (3.3.8) in (3.3.7) then using estimations (3.3.13) and (3.3.14),

we obtain

An
t 6 2

Z tn+1

t

EmE(δY N
s , δfs)ds+

Z tn+1

t

EmE(δZN
s , δg1,s)ds+

Z tn+1

t

EmE|δhs|2ds

+
1

4

Z tn+1

t

EmE|δg2,s|2ds−
1

4

Z tn+1

t

EmE|δg1,s|2ds

6 2

Z tn+1

t

EmE(δY N
s , δfs)ds+ (↵+ C"(Z))

Z tn+1

tn

EmE|δZN
s |2ds+ C∆N (1 + |x|2)

+ C∆NEmE|δY N
tn |2 +

n
(1 + ")(1 + "1)β

2 + (1 + "3)(1 + "4)
↵2

4

o
E
⇥ Z tn+2

tn+1

|δZN
s |2ds

⇤

+ C

Z tn+1

tn

EmE[|Zs − Z̄tn |2]ds+ C

Z tn+1

t

EmE[|Zs − Z̄tn+1 |2]ds+ C∆NEmE|δY N
tn+1
|2

(3.3.15)

where C is a generic positive constant depending on "(Z) and independent from x.

We set Iεα := (↵ + C"(Z)) and Iεβ :=
n
(1 + ")(1 + "1)β

2 + (1 + "3)(1 + "4)
α2

4

o
. Since (2Iεα + Iεβ) 2]0, 1[,

we can use the inequality 2ab 6
1− (2Iεα + Iεβ)

4C
in the last estimation to get,

An
t 6

4C

1− (2Iεα + Iεβ)

Z tn+1

t

EmE|δY N
s |2ds+

1− (2Iεα + Iεβ)

4C

Z tn+1

t

EmE|δfs|2ds

+ Iεα

Z tn+1

tn

EmE|δZN
s |2ds+ C∆N (1 + |x|2) + C∆NEmE|δY N

tn+1
|2 + C∆NEmE|δY N

tn |2

+ IεβE
mE
⇥ Z tn+2

tn+1

|δZN
s |2ds

⇤
+ C

Z tn+1

tn

EmE[|Zs − Z̄tn |2]ds+ C

Z tn+1

t

EmE[|Zs − Z̄tn+1
|2]ds.

(3.3.16)

From the hypothesis (H), we have

Z tn+1

t

EmE[|δfs|2]ds 6 C

Z tn+1

t

EmE[|Ws −WN
tn |2]ds+ C

Z tn+1

t

EmE[|Ys − Y N
tn |2]ds

+ C

Z tn

t

EmE[|Zs − ZN
tn |2]ds

6 C

Z tn+1

t

EmE[|Ws −WN
tn |2]ds+ C

Z tn+1

t

EmE[|Ys − Ytn+1
|2]ds+ C∆NEmE[|δY N

tn+1
|2]

+ 2C

Z tn+1

tn

EmE[|Zs − Z̄tn |2]ds+ 2C

Z tn+1

t

EmE[|Z̄tn − ZN
tn |2]ds

6 C∆N + C∆NEmE[|δY N
tn |2] + 2C

Z tn+1

tn

EmE[|δZN
s |2]ds

+ 2C

Z tn+1

t

EmE[|Zs − Z̄tn |2]ds

(3.3.17)
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Plugging the last inequality in (3.3.16), we get

An
t 6 C

Z tn+1

t

EmE|δY N
s |2ds+

1− Iεβ
2

Z tn+1

tn

EmE|δZN
s |2ds

+ C∆N (1 + |x|2) + C∆NE
mE|δY N

tn+1
|2 + C∆NE

mE|δY N
tn |2 + IεβE

mE
⇥ Z tn+2

tn+1

|δZN
s |2ds

⇤

+ C

Z tn+1

tn

E[|Zs − Z̄tn |2]ds+ C

Z tn+1

t

EmE[|Zs − Z̄tn+1 |2]ds

(3.3.18)

From (3.3.7) and (3.3.18), we have

EmE[|δY N
t |2] 6 An

t + EmE[|δY N
tn+1
|2]

= EmE[|δY N
t |2] +

Z tn+1

t

EmE[kδZN
s k2]ds

6 C

Z tn+1

t

EmE[|δY N
s |2]ds+Bn, 8t 2 [tn, tn+1),

(3.3.19)

where we set for all n = 0, . . . , N − 2 :

Bn := EmE[|δY N
tn+1
|2] + C∆NEmE[|δY N

tn+1
|2] + C∆NEmE[|δY N

tn |2] + C∆2
N (1 + |x|2)

+ C

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds+
1− Iεβ

2

Z tn+1

tn

EmE[||δZN
s ||2]ds

+ C

Z tn+1

tn

EmE[||Zs − Z̄tn+1 ||2]ds+ Iεβ

Z tn+2

tn+1

EmE[kδZN
s k2]ds.

Using Gronwall Lemma, we have

EmE[|δY N
t |2] 6 Bne

C∆N , 8t 2 [tn, tn+1). (3.3.20)

From inequalities (3.3.20) and (3.3.19), we get for ∆N small enough

EmE[|δY N
t |2] +

Z tn+1

t

EmE[kδZN
s k2]ds 6 (1 + C∆NeC∆N )Bn

6 (1 + C∆N )Bn, 8t 2 [tn, tn+1).

(3.3.21)

By taking t = tn in the last inequality, we obtain

EmE[|δY N
tn |2] +

Z tn+1

tn

EmE[kδZN
s k2]ds 6 (1 + C∆N )

n
EmE[|δY N

tn+1
|2] + C∆NEmE[|δY N

tn |2]

+ C∆2
N + C

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds+
1− Iεβ

2

Z tn+1

tn

EmE[||δZN
s ||2]ds

+ C

Z tn+1

tn

EmE[||Zs − Z̄tn+1
||2]ds+ Iεβ

Z tn+2

tn+1

EmE[kδZN
s k2]ds

o
.

Then

(1− C∆N )EmE[|δY N
tn |2] + [1− (1 + C∆N )

1− Iεβ
2

]

Z tn+1

tn

EmE[kδZN
s k2]ds

6 (1 + C∆N )
n
EmE[|δY N

tn+1
|2] + C∆2

N + C

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds

+ C

Z tn+1

tn

EmE[||Zs − Z̄tn+1
||2]ds+ Iεβ

Z tn+2

tn+1

EmE[kδZN
s k2]ds

o
.

For ∆N small enough, we get

EmE[|δY N
tn |2] +

1 + Iεβ
2

Z tn+1

tn

EmE[kδZN
s k2]ds 6 (1 + C∆N )

n
EmE[|δY N

tn+1
|2]

+ Iεβ

Z tn+2

tn+1

EmE[kδZN
s k2]ds+ C∆2

N + C

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds

+ C

Z tn+1

tn

EmE[||Zs − Z̄tn+1
||2]ds

o
.

(3.3.22)
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Iterating the last inequality, we obtain for all n = 0, . . . , N − 1

EmE[|δY N
tn |2] +

1 + Iεβ
2

Z tn+1

tn

EmE[kδZN
s k2]ds 6 (1 + C∆N )N−1

n
EmE[|δY N

T |2] + C∆N

+ C

N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds+ C

N−2X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn+1 ||2]ds

+ (β2 +
↵2

4
)

Z tN

tN−1

EmE[||Zs||2]ds
o
.

Using the Lipschitz condition on Φ, we get

EmE[|δY N
tn |2] +

1 + Iεβ
2

Z tn+1

tn

EmE[kδZN
s k2]ds 6 (1 + C∆N )N−1

n
C∆N

+ C

N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds+ C

N−2X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn+1 ||2]ds

+ (β2 +
↵2

4
)

Z tN

tN−1

EmE[||Zs||2]ds
o
.

(3.3.23)

Now we sum up inequality (3.3.22) over n, we get

N−1X

n=0

EmE[|δY N
tn |2] +

1 + Iεβ
2

Z T

0

EmE[kδZN
s k2]ds 6 (1 + C∆N )

nN−1X

n=0

EmE[|δY N
tn+1
|2]

+

N−1X

n=0

C∆2
N + C

N−1X

n=0

Z tn+1

tn

EmE[kZs − Z̄tnk2]ds+ C

N−2X

n=0

Z tn+1

tn

EmE[kZs − Z̄tn+1
k2]ds

+ (β2 +
↵2

4
)EmE

⇥ Z tN

tN−1

||Zs||2ds
⇤o

+ (1 + C∆N )Iεβ

N−2X

n=0

Z tn+2

tn+1

EmE[kδZN
s k2]ds.

Using that N∆N = T and

N−2X

n=0

Z tn+2

tn+1

EmE[kδZN
s k2]ds =

Z T

t1

EmE[kδZN
s k2]ds, we get

N−1X

n=0

EmE[|δY N
tn |2] +

1 + Iεβ
2

Z T

0

EmE[kδZN
s k2]ds 6 (1 + C∆N )

nN−1X

n=0

EmE[|δY N
tn+1
|2]

+ C∆N + C
N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds+ C
N−2X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn+1
||2]ds

+ (β2 +
↵2

4
)EmE

⇥ Z tN

tN−1

||Zs||2ds
⇤o

+ (1 + C∆N )Iεβ

Z T

0

EmE[kδZN
s k2]ds.

Then

N−1X

n=0

EmE[|δY N
tn |2] +

h1 + Iεβ
2
− (1 + C∆N )Iεβ

i Z T

0

EmE[kδZN
s k2]ds

6 (1 + C∆N )
nN−1X

n=0

EmE[|δY N
tn+1
|2] + C∆N + C

N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds

+ C
N−2X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn+1
||2]ds+ (β2 +

↵2

4
)EmE

⇥ Z tN

tN−1

||Zs||2ds
⇤o

.
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We obtain for ∆N small enough

N−1X

n=0

EmE[|δY N
tn |2] +

1− Iεβ
2

Z T

0

EmE[kδZN
s k2]ds 6 (1 + C∆N )

nN−1X

n=0

EmE[|δY N
tn+1
|2]

+ C∆N + C

N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds+ C

N−2X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn+1
||2]ds

+ (β2 +
↵2

4
)EmE

⇥ Z tN

tN−1

||Zs||2ds
⇤o

.

Hence, we get

1− Iεβ
2

Z T

0

EmE[kδZN
s k2]ds 6 (1 + C∆N )EmE[|δY N

T |2] + [(1 + C∆N )− 1]
N−1X

n=1

EmE[|δY N
tn |2]

− EmE[|δY N
t0 |2] + C∆N + C

N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds

+ C

N−2X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn+1
||2]ds+ (β2 +

↵2

4
)EmE

⇥ Z tN

tN−1

||Zs||2ds
⇤
.

Using the lipschitz on Φ, we get

1− Iεβ
2

Z T

0

EmE[kδZN
s k2]ds 6 C∆N + C∆N

N−1X

n=1

EmE[|δY N
tn |2] + C

N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds

+ C

N−2X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn+1
||2]ds+ (β2 +

↵2

4
)EmE

⇥ Z tN

tN−1

||Zs||2ds
i
.

(3.3.24)

Summing up (3.3.23) over n, we have

∆N

N−1X

n=0

EmE[|δY N
tn |2 6 C∆N + C

N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds

+ C
N−2X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn+1
||2]ds+ C

Z tN

tN−1

EmE[||Zs||2]ds.

Plugging the last inequality in (3.3.24), we obtain

1− Iεβ
2

Z T

0

EmE[kδZN
s k2]ds 6 C∆N + C

N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds

+ C
N−2X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn+1
||2]ds+ CEmE

⇥ Z tN

tN−1

||Zs||2ds
⇤
.

(3.3.25)

Now, turning Back to equation (3.3.21), we have for all n = 0, . . . , N − 2

EmE[|δY N
t |2] 6 (1 + C∆N )Bn

6 (1 + C∆N )
n
EmE[|δY N

tn+1
|2] + Iεβ

Z tn+2

tn+1

EmE[kδZN
s k2]ds

+ C∆NEmE[|δY N
tn |2] + (

1− Iεβ
2

)

Z tn+1

tn

EmE[||δZN
s ||2]ds

+ C∆2
N + C

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds

+ C

Z tn+1

tn

EmE[||Zs − Z̄tn+1
||2]ds

o
, 8t 2 [tn, tn+1).
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Using inequality (3.3.23), we get

EmE[|δY N
t |2] 6 C∆N + C

N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds

+ C

N−2X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn+1
||2]ds+ CEmE

⇥ Z tN

tN−1

||Zs||2ds
⇤
.

Then by taking the supremum over t in the last inequality, we obtain

sup0 6 t 6 TE
mE[|δY N

t |2] 6 C∆N + C

N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds

+ C

N−2X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn+1
||2]ds+ CEmE

⇥ Z tN

tN−1

||Zs||2ds
⇤
.

(3.3.26)

Inequalities (3.3.26) and (3.3.25) give together

sup0 6 t 6 TE
mE[|δY N

t |2] +
Z T

0

EmE[kδZN
s k2]ds6C∆N + C

N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds

+ C

N−2X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn+1 ||2]ds+ CEmE
⇥ Z tN

tN−1

||Zs||2ds
⇤
.

(3.3.27)

Plugging Z̄tn , we deduce that

EmE[

N−1X

n=0

Z tn+1

tn

||Zs − ZN
tn ||2ds] 6 CEmE[

N−1X

n=0

Z tn+1

tn

||Zs − Z̄tn ||2ds]

+ CEmE[

N−1X

n=0

Z tn+1

tn

||δZN
s ||2ds].

(3.3.28)

Using the last inequality in (3.3.27), we get

sup0 6 t 6 TE
mE[|δY N

t |2] + EmE[

N−1X

n=0

Z tn+1

tn

||Zs − ZN
tn ||2ds] 6 C∆N

+ C

N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds+C

N−2X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn+1 ||2]ds+ CEmE
⇥ Z tN

tN−1

||Zs||2ds
⇤

which can be written, if we set Z̄tN := 0

sup0 6 t 6 TE
mE[|δY N

t |2] + EmE[

N−1X

n=0

Z tn+1

tn

||Zs − ZN
tn ||2ds] 6 C∆N

+ C

N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn ||2]ds+ C

N−1X

n=0

Z tn+1

tn

EmE[||Zs − Z̄tn+1
||2]ds.

(3.3.29)

tu

3.3.2 Zhang L
2-Regularity and rate of convergence

In this subsection, we extend to our framework the result concerning the Zhang L2-regularity of the

martingale integrand Z proved by Zhang [70] for standard FBSDEs. This result is very important to

derive the rate of convergence of our numerical scheme. So, we use the stochastic representation (3.2.5).

Thus, the solution of the SPDE (3.1.1) is given by the couple (Y, Z), solution of the following FBDSDE :

Yt − Ys =

tZ

s

ZrdWr −
tZ

s

fr (Wr) dr −
1

2

tZ

s

gr ⇤ dWr −
tZ

s

hr (Wr) ·
 −
dBr. (3.3.30)
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Hence, we will focus in the following on the FBDSDEs of the following form :

Yt = Φ(T ) +

TZ

t

fr (r,Wr, Yr, Zr) dr +
1

2

TZ

t

g(r,Wr, Yr, Zr)dWr +
1

2

TZ

t

g(r,Wr, Yr, Zr)
 −−
dWr

+

TZ

t

h (r,Wr, Yr, Zr) ·
 −
dBr −

TZ

t

ZrdWr.

(3.3.31)

We start by giving two important lemmas which are crucial to prove the main regularity result. The first

lemma is classical and concerns the L2-estimates and stability results for the FBDSDE’s solution. We

omit its proof which is based on standard computations for BSDEs.

Lemma 3.3.2. Assume that Assumptions (H) and (HD2’) hold. Let Θ := (W,Y,Z) denote the solution

of the FBDSDE (3.3.31) Then we have the following

(i)There exists a constant C2, depending on T,K,↵ and β such that

EmE
h
supt 6 s 6 T |Ys|2 +

Z T

t

kZsk2ds
i
6 C2E

mE
n
|Φ(WT )|2 +

Z T

t

|f(s, 0, 0)|2ds

+

Z T

t

|h(s, 0, 0, 0)|2ds+
Z T

t

|g(s, 0, 0, 0)|2ds
o (3.3.32)

and

EmE
h
|Ys − Yt|2

i
6 C2E

mE
n
|Φ(WT )|2 + sup0 6 r 6 T |f(r, 0, 0, 0)|2

+ sup0 6 r 6 T |h(r, 0, 0, 0)|2 + sup0 6 r 6 T |g(r, 0, 0, 0)|2ds
o
|s− t|

+ EmE
h Z s

t

kZuk2du
i
.

(3.3.33)

(ii)Let Θε := (W,Y ε, Zε) denote the solution of the perturbed FBDSDE (3.3.31) with coefficients replaced

by fε, gε and hε and Φε as a terminal value. Assume that fε, gε, hε and Φε satisfy Assumptions (H) and

(HD2
0) and that for fixed (x,y,z) in Rd ⇥ R⇥ Rd,

lim
ε−!0

EmE
n
|Φε(WT )− Φ(WT )|2 +

Z T

t

|hε(s, x, y, z)− h(s, x, y, z))|2ds

+

Z T

t

|gε(s, x, y, z)− g(s, x, y, z))|2ds+
Z T

t

|fε(s, x, y, z)− f(s, x, y, z)|2ds
o
= 0.

Then we have

lim
ε−!0

EmE
n
supt 6 s 6 T |Y ε

s − Ys|2 +
Z T

t

|Zε
s − Zs|2ds

o
= 0. (3.3.34)

The second Lemma gives estimates which are needed for the upper bound result (3.3.4) on our error

and for the Zhang L2−regularity result given in Theorem 3.3.2.

Lemma 3.3.3. Assume that Assumptions (H) and (HD2’) hold. Then, there exists a constant C2 > 0

depending only on T,K,↵ and β such that

⇣
EmE[kZt,0

s k2]
⌘ 1

2

6 C2 a.e.s 2 [t, T ]. (3.3.35)

In addition, there exist a positive constant C independent from ∆N the time step of our uniform time-grid

such that

max
0 6 n 6 N−1

n
suptn 6 s 6 tn+1

EmE[|Y t,0
s −Y t,0

tn |2]+suptn 6 s 6 tn+1
EmE[|Y t,0

s −Y t,0
tn+1
|2]
o
6 C∆N . (3.3.36)

Proof. See Appendix. tu
Now, we can state the main regularity result of this subsection
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Theorem 3.3.2. Under Assumptions (H) and (HD2
0), we have the following estimation

N−1X

n=0

EmE
h Z tn+1

tn

n
kZs − Ztnk2 + kZs − Ztn+1

k2
o
ds
i
6 C∆N . (3.3.37)

Proof. Let ⇡0 : 0 = t0, . . . , tN = T denote a uniform fixed partition of [0, T ] with time step ∆N and

⇡ : 0 = s0, . . . , sm = T any partition finer than ⇡0. We will prove the theorem for the fixed partition ⇡0.

Without loss of generality, we assume that sli = ti for i = 1, . . . , N . Let Φπ, fπ, hπ and gπ 2 C1
b smooth

molifiers of Φ, f, h and g, such that all the derivatives are bounded by K. We denote by Θπ = (W,Y π, Zπ)

the solution of the following FBDSDE :

Y π
s = Φ(Wπ

T ) +

Z T

s

fπ(u,Θπ)ds+

Z T

s

hπ(u,Θπ)
 −−
dBu

+
1

2

Z T

s

gπ(u,Θπ)dWu +
1

2

Z T

s

gπ(u,Θπ)
 −−
dWu −

Z T

s

Zπ
udWu.

(3.3.38)

By the stability result (3.3.34), we have

lim
|π|−!0

EmE
n
supt 6 s 6 T |Y π

s − Ys|2 +
Z T

t

|Zπ
s − Zs|2ds

o
= 0. (3.3.39)

By (3.3.39), there exists a subsequence denoted again by ⇡ such that lim
|π|−!0

EmE|Zπ
s − Zs|2 = 0 for a.e.

s 2 [t, T ]. Let Us note that, for s 2 [tn, tn+1), we have

EmE|Zs − Ztn |2 + EmE|Zs − Ztn+1 |2 6 CEmE
n
|Zs − Zπ

s |2 + |Zπ
s − Zπ

tn |2 + |Zπ
s − Zπ

tn+1
|2
o
. (3.3.40)

By (3.3.39), proving the theorem remains to estimate EmE|Zπ
s − Zπ

tn |2 and EmE|Zπ
s − Zπ

tn+1
|2 for s 2 [tn, tn+1).

To this end, we denote by (Id,rπY ) the solution of the linear equation (3.5.1) with coefficients replaced

by Φπ, fπ, hπ and gπ.

Using the representaion result (3.5.3) for (Zπ), we have

Zπ
s − Zπ

s0 = rY π
s −rY π

s0 , s, s
0 2 [tn, tn+1). (3.3.41)

We conclude by the estimation (3.3.36) that

N−1X

n=0

EmE
h Z tn+1

tn

|Zπ
s − Zπ

tn |2ds
i
6 C∆N .

By the same arguments used on EmE|Zπ
s − Zπ

tn+1
|2 (taking s0 = tn+1), we conclude that

N−1X

n=0

EmE
h Z tn+1

tn

|Zπ
s − Zπ

tn+1
|2ds

i
6 C∆N .

This gives
N−1X

n=0

EmE
h Z tn+1

tn

n
|Zπ

s − Zπ
tn |2 + |Zπ

s − Zπ
tn+1
|2
o
ds
i
6 C∆N . (3.3.42)

Using (3.3.40), we obtain

N−1X

n=0

EmE
h Z tn+1

tn

n
|Zs − Ztn |2 + |Zs − Ztn+1

|2
o
ds
i
6 CEmE

h Z T

t

|Zs − Zπ
s |2ds

i
+ C∆N . (3.3.43)

Recalling (3.3.39) and letting |⇡| −! 0, we finally get

N−1X

n=0

EmE
h Z tn+1

tn

n
|Zs − Ztn |2 + |Zs − Ztn+1

|2
o
ds
i
6 C∆N . (3.3.44)

tu
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Now, we are able to give the rate of convergence for our numerical scheme Under Assumptions (H)

and (HD2
0), we have

ErrorN (Y, Z) := sup0 6 s 6 TE
mE[|Ys − Y N

s |2] +
N−1X

n=0

EmE[

Z tn+1

tn

||Zs − ZN
tn ||2ds] 6 C∆N .

Proof. First we recall that under (H) and (HD2
0), we have by (3.3.4)

ErrorN (Y, Z) 6 C∆N + C

N−1X

n=0

Z tn+1

tn

EmE[|Zs − Z̄tn |2]ds

+ C
N−1X

n=0

Z tn+1

tn

EmE[|Zs − Z̄tn+1
|2]ds.

(3.3.45)

Then, as the conditional expectation minimizes the conditional mean square error, we have
Z tn+1

tn

EmE|Zs − Z̄tn |2ds 6

Z tn+1

tn

EmE|Zs − Ztn |2ds.

On the other hand, plugging Ztn+1
in the following, we get

Z tn+1

tn

EmE[|Zs − Z̄tn+1
|2]ds 6 C

Z tn+1

tn

EmE[|Zs − Ztn+1
|2]ds+ C∆NEmE[|Ztn+1

− Z̄tn+1
|2]ds

By the defintion of Z̄tn+1
, Jensen’s inequality and Cauchy-Schwarz inequality, we have for all n =

0, . . . , N − 2

∆NEmE[|Ztn+1
− Z̄tn+1

|2]ds = C
1

∆N
EmE

n∣∣∣Etn+1

h Z tn+2

tn+1

{Ztn+1
− Zs}ds

i∣∣∣
2o

6 C
1

∆N
EmE

n∣∣∣
h Z tn+2

tn+1

{Ztn+1 − Zs}ds
i∣∣∣

2o

6 CEmE

Z tn+2

tn+1

|Ztn+1
− Zs|2ds.

Hence, the inequality (3.3.45) becomes

ErrorN (Y, Z) 6 C∆N + C

N−1X

n=0

Z tn+1

tn

EmE[|Zs − Ztn |2]ds

+ C
N−1X

n=0

Z tn+1

tn

EmE[|Zs − Ztn+1
|2]ds.

We conclude the rate of convergence by using Theorem 3.3.2. tu

3.4 Implementation and numerical tests

In the following, we test statically the convergence of our method. In this part, we are interested in

implementing our numerical scheme. Our aim is only to test statically its convergence. Further analysis

of the convergence of the used method and of the error bounds will be accomplished in a future work.

3.4.1 Notations and algorithm

We use a path-dependent algorithm, for every fixed path of the brownian motion B, we approximate

by a regression method the solution of the associated PDE. Then, we replace the conditional expecta-

tions which appear in (3.4.1) and (3.4.2) by L2(Ω,P) projections on the function basis approximating

L2(Ω,Ftn). We compute ZN
tn and Y N

tn in a implicit way. Actually, we proceed as in [34], except that in

our case the solutions Y N
tn and ZN

tn are measurable functions of (WN
tn , (∆Bi)n 6 i 6 N−1). So, each solution

given by our algorithm depends on the fixed path of B.
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3.4.1.1 Numerical scheme

For each fixed path of B, the solution of (3.2.11)-(3.2.12) is approximated by (Y N , ZN ) defined by the

following algorithm, given in the multidimensional case.

For 0 6 n 6 N − 1 :

Y N
tn = Etn

h
Y N
tn+1

+∆Nf(WN
tn , Y

N
tn , Z

N
tn)+

d1X

j1=1

hj1(W
N
tn+1

, Y N
tn+1

, ZN
tn+1

)∆Bn,j1

i
(3.4.1)

+
1

2
Etn

h dX

j=1

gj(W
N
tn+1

, Y N
tn+1

, ZN
tn+1

)}∆Wn,j

i

and 8j 2 {1, . . . , d}

∆NZN
tn,j = Etn

h
Y N
tn+1

∆Wn,j+

lX

j1=1

gj1(W
N
tn+1

, Y N
tn+1

, ZN
tn+1

)∆Bn,j1∆Wn,j

i
(3.4.2)

+
1

2
Etn

hn
gj(W

N
tn , Y

N
tn , Z

N
tn) + gj(W

N
tn+1

, Y N
tn+1

, ZN
tn+1

)
o
(∆Wn,j)

2
i
.

We stress that at each discretization time, the solution of the algorithm depends on the fixed path of the

brownian motion B.

3.4.1.2 Vector spaces of functions

At every tn, we select k(d + 1) deterministic functions bases (pi,n(.))1 6 i 6 k(d+1) and we look for

approximations of Y N
tn and ZN

tn , which will be denoted respectively by yNn and zNn , in the vector spaces

spanned respectively by the basis (pj1,n(.))1 6 j1 6 k and the basis (pj1,j2,n(.))1 6 j1 6 k,1 6 j2 6 d. Each basis

pi,n(.) is considered as a vector of functions of dimension Li,n. In other words, Pi,n(.) = {↵.pi,n(.),↵ 2
RLi,n}.
As an example, we cite the hypercube basis (HC) used in [34]. In this case, pi,n(.) does not depend nor

on i neither on n and its dimension is simply denoted by L. A domain D⇢Rd centered on W0=0, that

is D =
Qd

i=1(−a,+a], can be partitionned on small hypercubes of edge δ. Then, D =
S

i1,...,id
Di1,...,id

where Di1,...,id =(−a+ i1δ,−a+ i1δ]⇥ . . .⇥ (−a+ idδ,−a+ idδ]. Finally we define pi,n(.) as the indicator

functions of this set of hypercubes.

3.4.1.3 Monte Carlo simulations

To compute the projection coefficients ↵, we will use M independent Monte Carlo simulations of Wtn
N

and∆Wn which will be respectively denoted by WN,m
tn and ∆Wm

n ,m=1, . . . ,M .

3.4.1.4 Description of the algorithm

We will perform I Picard iterations both on (3.4.2) and(3.4.1) :

! Initialization :

For n = N , take (yN,m,I
N ) = (Φ(WN,m

tN )) and (zN,m,I
N ) = 0 .

! Iterations : For n = N − 1, . . . , 0 :

• For i = 0, we set ↵M,0
0,n = 0 and ↵M,0

j,n = 0, for all j 2 {1, . . . , d}.
• For i = 1, . . . , I :

We approximate (3.4.2) by computing for all j 2 {1, . . . , d}

↵
M,i
j,n =arginf

α

1

M

MX

m=1

∣∣∣
n
yN,M,I
n+1 (WN,m

tn+1
) +

lX

j1=1

hj1

⇣
WN,m

tn+1
,yN,M,I

n+1 (WN,m
tn+1

), zN,M,I
n+1 (WN,m

tn+1
)
⌘
∆Bn,j1

o∆Wm
n,j

∆N

+
1

2

n
gj(W

N,m
tn ,yN,M,i−1

n (WN,m
tn ), zN,M,,i−1

n (WN,m
tn )) + gj(W

N,m
tn+1

,yN,M,I
n+1 (WN,m

tn+1
), zN,M,I

n+1 (WN,m
tn+1

))
o (∆Wn,j)

2

∆N

− ↵.pmj,n

∣∣∣
2

.
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Then, we approximate (3.4.1) by calculating ↵M,i
0,n as the minimizer of :

1

M

MX

m=1

∣∣∣yN,M,I
n+1 (WN,m

tn+1
)+ hf

⇣
W

N,m
tn ,yN,M,i−1

n (WN,m
tn ),zN,M,i

n (WN,m
tn )

⌘

+
1

2

d1X

j1=1

gj1

⇣
WN,m

tn+1
,yN,M,I

n+1 (WN,m
tn+1

),zN,M,I
n+1 (WN,m

tn+1
)
⌘
∆Bn,j1

+

dX

j=1

hj

⇣
WN,m

tn+1
,yN,M,I

n+1 (WN,m
tn+1

),zN,M,I
n+1 (WN,m

tn+1
)
⌘
∆Wn,j −↵.pmk

∣∣∣
2

.

Finally, we set yN,M,I
n (.) = (↵M,I

0,n .pn(.)) and zN,M,I
n,j (.) = (↵M,I

j,n .pj,n(.)). j 2 {1, . . . , d}.

3.4.2 One-dimensional case (Case when d = d
l
= 1)

3.4.2.1 Function bases

We use the basis (HC) defined above. So we set :

d1 = min
n,m

Wm
tn , d2 = max

n,m
Wm

tn and L =
d2 − d1

δ

where δ is the edge of the hypercubes (Dj)1 6 j 6 L defined by Dj =
h
d+ (j − 1)δ, d+ jδ

⌘
, 8j.

We take at each time tn

1Dj
(WN,m

tn ) = 1[d+(j−1)δ,d+jδ)(W
N,m
tn ), j = 1, . . . , L

and

(pmi,n(.))=
ns M

card(Dj)
1Dj

(WN,m
tn ),16j6L

o
, i = 0, 1.

Card(Dj) denotes the number of simulations of WN
tn which are in our cube Dj .

This system is orthonormal with respect to the empirical scalar product defined by

<  1, 2 >n,M :=
1

M

MX

m=1

 1(W
N,m
tn ) 2(W

N,m
tn ).

In this case, the solutions of our least squares problems are given by :

↵
M,i
1,n =

1

M

MX

m=1

p1,n(W
N,m
tn )

nh
yN,M,I
n+1 (WN,m

tn+1
)

+ ∆N

⇣
WN,m

tn+1
, yN,M,I

n+1 (WN,m
tn+1

), zN,M,
n+1 (WN,m

tn+1
)
⌘
∆Bn

i∆Wm
n

∆N

+
1

2

h
g
⇣
WN,m

tn , yN,M,i−1
n (WN,m

tn ), zN,M,i−1
n (WN,m

tn )
⌘

+ g
⇣
WN,m

tn+1
, yN,M,I

n+1 (WN,m
tn+1

), zN,M,I
n+1 (WN,m

tn+1
)
⌘i (∆Wm

n )2

∆N

o

↵
M,i
0,n =

1

M

MX

m=1

p0,n(W
N,m
tn )

n
yN,M,I
n+1 (WN,m

tn+1
)

+ ∆Nf
⇣
WN,m

tn , yN,M,i−1
n (WN,m

tn ), zN,M,i
n (WN,m

tn )
⌘

+ h
⇣
WN,m

tn+1
, yN,M,I

n+1 (WN,m
tn+1

), zN,M,I
n+1 (WN,m

tn+1
)
⌘
∆Bn

+
1

2
g
⇣
WN,m

tn+1
, yN,M,I

n+1 (WN,m
tn+1

), zN,M,I
n+1 (WN,m

tn+1
)
⌘
∆Bm

n

o
.
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We note that for each value of M , N and δ, we launch the algorithm 50 times and we denote by

(Y 0,0,N,M,I
0,m0 )1 6 m0 6 50 the set of collected values. Then we calculate the empirical mean Y

0,0,N,M,I

0 and

the empirical standard deviation σN,M,Idefined by :

Y
0,0,N,M,I

0 =
1

50

50X

m0=1

Y
0,0,N,M,I
0,m0 and σN,M,I =

vuut 1

49

50X

m0=1

|Y 0,0,N,M,I
0,m0 −Y 0,0,N,M,I

0 |2. (3.4.3)

3.4.2.2 Case when f , h and g are independant of y and z

Let Us denote in this case the solution of the linear equation (3.2.5) by Ylinear. Then, Ylinear admits a

representation in terms of a solution of a classical BDSDE. Indeed, we can define eYt := Yt,linear+
1
2

R t

0
gr ⇤

dWr, 8t 2 [0, T ]. Thus, (eYt, Zt)0 6 t 6 T is the solution of the following BDSDE :

(
eYt = eYT +

R T

t
fsds+

R T

t
hs
 −−
dBs − ZsdWs,

eYT = Φ(WT ) +
1
2

R T

0
gs ⇤ dWs.

(3.4.4)

The algorithm for resolving the latter equation is given by :

(
eY N
tN = Φ(WN

T ) + 1
2

PN−1
0 gtl∆Wl,

eY N
tn = Etn [

eY N
tn+1

+∆Nftn + htn+1∆Bn], 0 6 n 6 N − 1.
(3.4.5)

For each n, Y N
tn,linear

is given by Y N
tn,linear

= eY N
tn − 1

2

Pn−1
0 gtl∆Wl and finally we get Y N

0,linear = eY N
0 .

We note that in the linear case above, we resolve a BDSDE with linear coefficients (independent from Y

and Z). We can now implement numerically our algorithm by taking :

n
Φ(x) = 10

1+|x| , f(t, x, y, Z) = a0, , h(t, x, y, z) = β0, g(t, x, y, z) = ↵0t

and we set a0, β0 and ↵0 are fixed constants.

The following table gives the approximated solution Y
0,x,N,M

0,linear (σ
N,M ) of the previous BDSDE-Algorithm

for different values of M and N .

For a0 = 0.5, β0 = 0.5, ↵0 = 0.2 δ = 0.2

N=10 N=20 N=30

M=128 7.310(0.12) 7.491(0.13) 7.519(0.12)

M=512 7.292(0.06) 7.476(0.05) 7.498(0.05)

M=2048 7.283(0.02) 7.438(0.03) 7.504(0.07)

M=8192 7.282(0.01) 7.475(0.01) 7.504(0.01)

After that, we implement our algorithm in the general case ( the approximated solution is denoted

Y
0,x,N,M

0,div (σN,M )), but taking the same linear coefficients token above, and we compare the non linear

algorithm and the linear one in this case.

For a0 = 0.5, β0 = 0.5, ↵0 = 0.2 δ = 0.2

N=10 N=20 N=30

M=128 7.310(0.12) 7.491(0.13) 7.518(0.12)

M=512 7.292(0.06) 7.476(0.05) 7.498(0.05)

M=2048 7.283(0.02) 7.473(0.03) 7.504(0.02)

M=8192 7.282(0.01) 7.475(0.01) 7.504(0.01)

We note that the two algorithms give exactly the same results.
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3.4.2.3 Comparison of numerical approximations of the solutions of the FBDSDE

with divergence term, the FBDSDE and the FBSDE in the general case

Now we take

8
>>>><
>>>>:

Φ(x) = 10
1+|x| ,

f(t, x, y, z) = −✓z − ry + (y − z
σ )

−(R− r)

h(t, x, y, z) = −5x+ 0.5y + βz

g(t, x, y, z) = −2x+ 0.5y + ↵z

and we set ✓ = (µ− r)/σ, µ = 0, 05, σ = 0, 2, r = 0, 01, R = 0, 06 and T = 0, 25. Then we take β = 0.5,

↵ = 0.2 δ = 0.2

The approximated solution of the BDSDE with divergence term is denoted by Y
0,x,N,M,I

0,div , the one of the

BDSDE is denoted by Y
0,x,N,M,I

0,BDSDE and obtained by taking g = 0 and the one for the standard BSDE is

denoted by Y
0,x,N,M,I

0,BSDE and obtained by taking g = h = 0.

Algorithm with 20 Picard Iterations for Y and Z at the same time

For N = 10

M Y
0,x,N,M

0,BSDE(σ
N,M ) Y

0,x,N,M,I

0,BDSDE(σ
N,M,I) Y

0,x,N,M,I

0,div (σN,M,I)

128 6.965(0.31) 5.426(0.859) 3.967(0.903)

512 7.318(0.13) 5.259(0.39) 3.890(0.37)

2048 7.403(0.07) 5.165(0.16) 3.836(0.16)

8192 7.440(0.02) 5.142(0.08) 3.829(0.08)

For N = 20

M Y
0,x,N,M

0,BSDE(σ
N,M ) Y

0,x,N,M,I

0,BDSDE(σ
N,M,I) Y

0,x,N,M,I

0,div (σN,M,I)

128 6.31(0.56) 7.066(1.33) 5.697(1.32)

512 7.117(0.25) 6.929(0.59) 5.614(0.55)

2048 7.287(0.13) 6.820(0.29) 5.555(0.27)

8192 7.375(0.09) 6.785(0.12) 5.546(0.12)

For N = 30

M Y
0,x,N,M

0,BSDE(σ
N,M ) Y

0,x,N,M,I

0,BDSDE(σ
N,M,I) Y

0,x,N,M,I

0,div (σN,M,I)

128 6.208(0.78) 7.605(1.73) 6.540(1.81)

512 6.688(0.42) 7.281(0.73) 6.143(1.17)

2048 7.145(0.36) 7.141(0.35) 6.176(0.34)

8192 7.381(0.02) 7.055(0.19) 6.09(0.19)

Graphical comparison between BDSDEs with divergence term, the BDSDEs and standard

BSDEs

Here we take the same coefficients as in the previous paragraph for the Quasilinear BSDE, we take

g = 0 for the BDSDE and we take h = 0 for the standard BSDE. Then we variate N , M and δ, by taking

these quantities as follows : Let j 2 N, we take ↵M = 3.4, βδ = 1, N = 2(
p
2)(j−1), M = 2(

p
2)αM (j−1)

and δ = 1.2(
p
2)(j−1)(βδ+1)/2. Then, we draw the map of each solution at t = 0 with respect to j.
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Figure 3.1 – Comparison of the BSDE’s solution, the BDSDE’s one and the solution of the

BDSDE with divergence term : The solution of the BSDE is in red with circle markers, the

solution of the BDSDE is in green with star markers and the one for the BDSDE with divergence

term is in blue with square markers.

3.5 Appendix

3.5.1 Proof of Lemma 3.3.3

Fist, we consider the case when b,σ, f, g, h and Φ 2 C1
b and satisfying assumptions (H) and (HD2’).

Let rΘt,0 := (Id,rY t,0,rZt,0) be the solution of the following equation

rY t,0
s = rΦ(W t,0

T ) +

Z T

s

⇣
rxf(r,W

t,0
r , Y t,0

r , Zt,0
r )

+ryf(r,W
t,0
r , Y t,0

r , Zt,0
r )rY t,0

r +rzf(r,W
t,0
r , Y t,0

r , Zt,0
r )rZt,0

r

⌘
dr

+

Z T

s

⇣
rxh(r,W

t,0
r , Y t,x

r , Zt,x
r ) +ryh(r,W

t,0
r , Y t,0

r , Zt,0
r )rY t,0

r

+rzh(r,W
t,0
r , Y t,0

r , Zt,0
r )rZt,0

r

⌘ −−
dBr +

1

2

Z T

s

⇣
rxg(r,W

t,0
r , Y t,x

r , Zt,x
r )

+ryg(r,W
t,0
r , Y t,0

r , Zt,0
r )rY t,0

r +rzg(r,W
t,0
r , Y t,0

r , Zt,0
r )rZt,0

r

⌘
dWr

+
1

2

Z T

s

⇣
rxg(r,W

t,0
r , Y t,x

r , Zt,x
r ) +ryg(r,W

t,0
r , Y t,0

r , Zt,0
r )rY t,0

r

+rzg(r,W
t,0
r , Y t,0

r , Zt,0
r )rZt,0

r

⌘ −−
dWr −

Z T

s

rZt,0
r dWr.

(3.5.1)

Since rY t,0 is the solution of the linear FBDSDE (3.5.1). Using estimation (3.3.32), we get

EmE[sup0 6 t 6 T |rY t,0
s |2] 6 C2. (3.5.2)

Now, we use the following representation result

Zt,0
s = rY t,0

s , s 2 [t, T ], (3.5.3)

which gives

EmkZt,0
s k2 6 EmkrY t,0

s k2 6 C2. (3.5.4)
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Now the aim is to generalize the previous estimation to Lipschitz coefficients case. So let Φ, f, h and g

satisfying Assumptions (H) and (HD2
0) and let Φk, fk, hk and gk smooth molifiers of these functions.

Denoting Zt,0,k the solution of the F-BDSDE associated to the regular coefficients, we deduce from (3.5.4)

that EmkZk,t,0
s k2 6 C2. Using the stability result (3.3.34) , we get

lim
k−!+1

EmE
h Z T

t

|Zk,t,0
s − Zt,0

s |2
i
ds = 0. (3.5.5)

We deduce that for a.e. s 2 [t, T ], there exist a subsequence of (Zk,t,0)k such that lim
k−!+1

Zk,t,0
s = Zt,0

s in

probability. By the Fatou’s Lemma, we get EkZt,0
s k2 6 C2. Inserting the latter inequality in estimation

(3.3.33), we get the estimation (3.3.36).

tu





Chapitre 4

Empirical Regression method for

BDSDEs

4.1 Introduction

In this work, we analyse the regression error arising from an algorithm approximating the solution of

a discrete time BDSDE. We use the least-squares regression approach developed by Gobet, Lemor and

Warin [34] and more recently by Gobet and Turkedjiev [35]. The tools for the regression error analysis,

arising from discrete BSDE’s approximation, was developed recently in [35] in a very general context.

These tools will allow us to analyse the regression error in the doubly stochastic framework. The BDSDE

of our interest is of the following form

Y t,x
s = Φ(Xt,x

T ) +

Z T

s

f(r,Xt,x
r , Y t,x

r , Zt,x
r )dr +

Z T

s

h(r,Xt,x
r , Y t,x

r , Zt,x
r )
 −−
dBr −

Z T

s

Zt,x
r dWr, (4.1.1)

where (Xt,x
s )t 6 s 6 T is a diffusion process starting from x at time t driven by the finite dimensional

brownian motion (Wt)t > 0. The differential term with
 −
dBt refers to the backward stochastic integral with

respect to a l-dimensional brownian motion on
(
Ω,F ,P, (Bt)t > 0

)
.

First, let Us recall the principle of the least squares algorithm as presented in the work of Gobet, Lemor

and Warin [34]. The discrete BSDE arising from the time discretization of the standard BSDE, given by

(4.1.1) for h = 0, is the following One step forward Dynamic Programming (ODP for short) equation :

YtN = Φ(XtN ) and for all i 2 {N − 1, . . . , 0}

Yti = Eti [Yti+1 +∆if(ti, Xti , Yti+1 , Zti)],

∆iZti = Eti

h
Yti+1∆W ⇤

i

i
, (4.1.2)

where ti 2 ⇡ := {t0, . . . , tN} and ⇡ is a discrete time grid of the time interval [0, T ], ∆Wi := Wti+1
−Wti ,

Eti denotes the conditional expectation given Fti and ⇤ denotes the transposition operator.

Since (Xti)i is a Markov chain, there exist deterministic measurable functions yi(.) and zi(.), but unknown,

such that Yti = yi(Xti) and Zti = zi(Xti). The functions yi(.) and zi(.) are solutions of least squares

problems in L2(Ω,Fti) and can be approximated on a finite dimensional subspace. The approximations

are computed by empirical least-squares regression using Monte Carlo simulations of the process X.

Recently, Gobet and Turkedjiev [35] studied a discrete BSDE in the form of a Multi step forward Dynamic

Programming (MDP for short) equation given by

Yti = Eti [ΦtiN
+

N−1X

k=i

∆if(tk, Xtk , Ytk+1
, Ztk)],

∆iZti = Eti

h
{ΦtiN

+

N−1X

k=i

∆if(tk, Xtk , Ytk+1
, Ztk)}∆W ⇤

i

i
. (4.1.3)

Using the tower property of conditional expectations, we note that the ODP and the MDP coincide.

In their recent work [35], Gobet and Turkedjiev proved that the MDP leads to better error estimates.

Indeed, the quadratic error is the average of local error terms rather than the sum, as in the ODP’s case.

In this sense, the MDP gives better estimates.

For BDSDEs, the ODP scheme was studied by Aboura [1]. He proposed an algorithm based on the em-

pirical least-squares regression approach to resolve numerically BDSDEs, following [34]. He considered the
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solution of the BDSDE at time ti as a measurable deterministic function of
⇣
Xti , (Btk+1

−Btk)i 6 k 6 N

⌘
.

His approach imply a high-dimensionality problem, since he is dealing with a dimension of d+ l⇥N and

the parameter N goes to infinity. In our case, we study the MDP scheme for BDSDEs and we proceed to

a conditional analysis of the error, given the trajectories of the Brownian motion B. Thus, we reduce the

dimension of the regression from d+ l⇥N , to d. In this work, in order to simplify the computations, we

will treat the one dimensional case for the process Y and the Brownian motion B.

4.2 Preliminaries and notations

4.2.1 Forward Backward Doubly Stochastic Differential Equation

Let {Ws, 0 6 s 6 T} and {Bs, 0 6 s 6 T} be two mutually independent standard Brownian motion

processes, with values respectively in Rd and R where T > 0 is a fixed horizon time, on the probability

space (Ω,F , P ).

We shall work on the product space Ω := ΩW ⇥ ΩB , where ΩW is the set of continuous functions from

[0, T ] into Rd and ΩB is the set of continuous functions from [0, T ] into R.

We fix t 2 [0, T ]. For each s 2 [t, T ], we define

F t
s := FW

t,s _ FB
s,T

where FW
t,s = σ{Wr − Wt, t 6 r 6 s}, and FB

s,T = σ{Br − Bs, s 6 r 6 T}. We take FW = FW
0,T ,

FB = FB
0,T and F = FW _ FB .

We define the probability measures PW on (ΩW ,FW ) and PB on (ΩB ,FB). We then define the probability

measure P := PW ⌦ PB on (Ω,FW ⇥ FB). Without loss of generality, we assume that FW and FB are

complete.

Note that the collection {F t
s, s 2 [t, T ]} is neither increasing nor decreasing, and it does not constitute a

filtration.

For all (t, x) 2 [0, T ]⇥Rd, let (Xt,x
s )s be the unique strong solution of the following stochastic differential

equation :

dXt,x
s = b(Xt,x

s )ds+ σ(Xt,x
s )dWs, s 2 [t, T ], Xt,x

s = x, 0 6 s 6 t, (4.2.1)

where b and σ are two functions on Rd with values respectively in Rd and Rd⇥d. We will omit the

dependence of the forward process X in the initial condition if it starts at time t = 0.

We consider the following BDSDE : For all t 6 s 6 T ,

(
dY t,x

s = −f(Y t,x
s )ds− h(Y t,x

s )
 −−
dBs + Zt,x

s dWs,

Y t,x
T = Φ(Xt,x

T ),
(4.2.2)

where f and h are two R-valued functions on R and Φ is a an R-valued function on Rd.

The following assumptions will be needed in our work :

Assumption (H1) There exist a positive constant K such that

|b(x)− b(x0)|+ kσ(x)− σ(x0)k 6 K|x− x0|, 8x, x0 2 Rd.

Assumption (H2) There exist non-negative constants Cf , Ch, Cξ, Lf , Lh and Lξ such that

(i) 8y1, y2 2 Rk, |f(y1)− f(y2)| 6 Lf |y1 − y2|,
(ii) 8y1, y2 2 Rk, |h(y1)− h(y2)| 6 Lh|y1 − y2|,
(iii) |f(0)| and |h(0)| are bounded by Cf and Ch respectively,

(iv) The function Φ is a measurable function on Rd bounded by Cξ ,

(v) 8x1, x2 2 Rd, |Φ(x1)− Φ(x2)| 6 Lξ|x1 − x2|.
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4.2.2 Numerical Scheme for decoupled Forward-BDSDE

In order to approximate the solution of the F-BDSDE (4.2.1)-(4.2.2), we introduce the following discre-

tized version. Let

⇡ : t0 = 0 < t1 < . . . < tN = T, (4.2.3)

be a partition of the time interval [0, T ] with time step ∆i := ti+1 − ti, 0 6 i 6 N − 1. Throughout the

rest, we will use the notations ∆Wi = Wti+1
−Wti and ∆Bi = Bti+1

−Bti , for i = 1, . . . , i.

The forward component X will be approximated by the classical Euler scheme :
(

XN
t0 = Xt0 ,

XN
ti = XN

ti−1
+ b(XN

tn−1
)(ti − ti−1) + σ(XN

ti−1
)(Wti −Wti−1

), for i = 1, . . . , N.
(4.2.4)

It is known that as N goes to infinity, one has sup0 6 i 6 NE|Xti −XN
ti |2 ! 0.

The solution Y of (4.2.2) is approximated by (Y N ) defined by the following Multi step-forward Dy-

namic Programming (MDP) equation : For i = N − 1, . . . , 0, we set

Y N
ti = Eti

h
Φ(XN

T ) +

N−1X

k=i

∆kf(Y
N
tk+1

) + h(Y N
tk+1

)∆Bk

i
(4.2.5)

We define the σ-algebra Gt := FW
0,t _ FB

0,T and we note by Eti [.] the conditional expectation over Gti .

We note that in the case we are treating, when the drivers are independent from the variable z, we do

not have to approximate the control process Z, since we don’t need it to approximate Y .

4.3 A Priori estimates

In this section, we establish a priori estimates on discrete BDSDEs. These estimates will be needed later

for the regression analysis. The discrete BDSDEs that we will study in this section are of the following

form :

For j = 1, 2, we set Yj,N = ⇠j and for all i = N − 1, . . . , 0

Yj,i = Eti [Yj,i+1 +∆ifj,i(Yj,i+1) + hj,i+1(Yj,i+1)∆Bi], (4.3.1)

where for all i 2 {0, . . . , N − 1},

y 7! f1,i(y) and y 7! f2,i(y) are given real-valued and Gti ⌦ B(R)-measurable functions on R

and

y 7! h1,i+1(y) and y 7! h2,i+1(y) are given real-valued and Gti+1
⌦ B(R)-measurable functions on R.

We set δYi :=Y1,i−Yi,2, δY
h
i+1 :=δYi+1+{h1,i+1(Y1,i+1)−h2,i+1(Y2,i+1)}∆Bi, δfi :=f1,i(Y1,i)−f2,i(Y1,i) and

δhi+1 := h1,i+1(Y1,i)− h2,i+1(Y1,i). Then we state the following lemma, which gives a local estimate on

the solutions of two discrete BDSDEs :

Lemma 4.3.1. We assume that for j 2 {1, 2}, ⇠j belongs to L2(F0
T ) and that for i 2 {0, . . . , N − 1},

f1,i(Y1,i+1) and h1,i+1(Y1,i+1) belong to L2(F0
T ). In addition, we assume that f2,i and h2,i+1 are Lipschitz

continuous with finite non-negative Lipschitz constants Lf2,i and Lh2,i+1 . Finally, for each i 2 {0, . . . , N − 1},
we assume that γBi is a positive constant and that we can choose γi > 0 such that 4(∆i +

1
γi
)L2

f2,i
6 1.

Then, we have

|δYi|2 6
n
(1 + γi∆i)(1 + CY

∆Bi
|∆Bi|) +

∆i

2

o
Eti [|δYi+1|2] + 2(∆i +

1

γi
)∆iEti [|δfi|2]

+ 2(1 + γi∆i)(|∆Bi|+
1

γBi
)|∆Bi|Eti [|δhi+1|2], (4.3.2)

where

CY
∆Bi

:= γBi + 2(|∆Bi|+
1

γBi
)L2

h2,i+1
. (4.3.3)
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Proof. From (4.3.1), we have

δYi = Eti [δY
h
i+1 +∆i{f1,i(Y1,i+1)− f2,i(Y2,i+1)}].

Using the Young inequality with the positive constant γi, we get

|δYi|2 6 (1 + γi∆i)|Eti [δY
h
i+1]|2

+ (1 +
1

γi∆i
)|Eti [∆i{f1,i(Y1,i+1)− f2,i(Y2,i+1)}]|2.

Plugging f2(Y1,i+1) , we get

|δYi|2 6 (1 + γi∆i)|Eti [δY
h
i+1]|2 + 2(∆i +

1

γi
)∆iEti [|δfi|2]

+ 2(∆i +
1

γi
)∆iL

2
f2,iEti [|δYi+1|2]. (4.3.4)

On the other hand, we have

Lh2,i+1δY
h
i+1 := δYi+1 + {h1,i+1(Y1,i+1)− h2,i+1(Y2,i+1)}∆Bi.

Plugging h2(Y1,i+1) and using the Young inequality with γBi , we get

|δY h
i+1|2 6 (1 + γBi |∆Bi|)|δYi+1|2 + 2(|∆Bi|+

1

γBi
)L2

h2,i+1
|∆Bi||δYi+1|2

+ 2(|∆Bi|+
1

γBi
)|∆Bi||δhi+1|2. (4.3.5)

Inserting the estimation (4.3.5) in (4.3.4), we obtain

|δYi|2 6
n
(1 + γi∆i)[(1 + γBi |∆Bi|) + 2(|∆Bi|+

1

γBi
)L2

h2,i+1
|∆Bi|]

+ 2(∆i +
1

γi
)L2

f2,i∆i

o
Eti [|δYi+1|2] + 2(∆i +

1

γi
)∆iEti [|δfi|2]

+ 2(1 + γi∆i)(|∆Bi|+
1

γBi
)|∆Bi|Eti [|δhi+1|2

6
n
(1 + γi∆i)

⇣
1 + [γBi + 2(|∆Bi|+

1

γBi
)L2

h2,i+1
]|∆Bi|

⌘

+ 2(∆i +
1

γi
)L2

f2,i∆i

o
Eti [|δYi+1|2] + 2(∆i +

1

γi
)∆iEti [|δfi|2]

+ 2(1 + γi∆i)(|∆Bi|+
1

γBi
)|∆Bi|Eti [|δhi+1|2].

The assumption on γi insures that 2(∆i +
1
γi
)L2

f2,i
6 1

2 . Then, we get

|δYi|2 6
n
(1 + γi∆i)

⇣
1 + [γBi + 2(|∆Bi|+

1

γBi
)L2

h2,i+1
]|∆Bi|

⌘
+

∆i

2

o
Eti [|δYi+1|2]

+ 2(∆i +
1

γi
)∆iEti [|δfi|2] + 2(1 + γi∆i)(|∆Bi|+

1

γBi
)|∆Bi|Eti [|δhi+1|2].

tu
The following proposition gives a global stability result on the solutions of two discrete BDSDEs :

Proposition 4.3.1. We assume that for j 2 {1, 2}, ⇠j belongs to L2(F0
T ) and that for i 2 {0, . . . , N − 1},

f1,i(Y1,i+1) and h1,i+1(Y1,i+1) belong to L2(F0
T ). In addition, we assume that f2,i and h2,i+1 are Lipschitz

continuous with finite non-negative Lipschitz constants Lf2,i and Lh2,i+1
. Finally, for each i 2 {0, . . . , N − 1},
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we assume that γBi is a positive constant and that we can choose γi > 0 such that 4(∆i +
1
γi
)L2

f2,i
6 1.

Then, the following estimation holds a.s. for all i :

ΓiΓ
B
i |δYti |2 6 e

T
2

n
ΓNΓB

NEti [|δ⇠|2] +
N−1X

k=i

2(∆k +
1

γk
)∆kEti [|δfk|2]ΓkΓ

B
k

+

N−1X

k=i

2(1 + γk∆k)(|∆Bk|+
1

γBk
)|∆Bk|Eti [|δhk|2]ΓkΓ

B
k

o
, (4.3.6)

where we set for all k 2 {1, . . . , N} :

Γk := Πk−1
j=0 (1 + γj∆j),Γ0 := 1, (4.3.7)

ΓB
k := Πk−1

j=0 (1 + CY
∆Bj
|∆Bj |),ΓB

0 := 1 (4.3.8)

and CY
∆Bi

:= γBi + 2(|∆Bi|+
1

γBi
)L2

h2,i+1
. (4.3.9)

Proof. We set λi := {(1+γi−1∆i−1)(1+CY
∆Bi−1

∆j |∆Bi−1|)+ ∆i−1

2 }λi−1, for i 2 {1, . . . , N} and λ0 := 1.

We multiply the two sides of (4.3.2) by λi, we get

|δYi|2λi 6 Eti [|δYi+1|2]λi+1 + 2(∆i +
1

γi
)∆iEti [|δfi|2]λi

+ 2(1 + γi∆i)(|∆Bi|+
1

γBi
)|∆Bi|Eti [|δhi+1|2]λi.

Now, we sum up the previous inequallity from i to N − 1 after applying Eti [.], we obtain

|δYi|2λi 6 Eti [|δ⇠|2]λN +

N−1X

k=i

2(∆k +
1

γk
)∆kEti [|δfk|2]λk

+

N−1X

k=i

2(1 + γk∆k)(|∆Bk|+
1

γBk
)|∆Bk|Eti [|δhk|2]λk.

Using the inequality (1 + x+ h) 6 (1 + x)eh, 8x 2 R and h small enough, we obtain

ΓiΓ
B
i 6 λi = exp

n i−1X

k=0

ln{(1 + γk∆k)(1 + CY
∆Bk
|∆Bk|) +

∆k

2
}
o
6 e

T
2 ΓiΓ

B
i ,

The last inequality gives

|δYi|2ΓiΓ
B
i 6 e

T
2

n
ΓNΓB

NEti [|δ⇠|2] +
N−1X

k=i

2(∆k +
1

γk
)∆kEti [|δfk|2]ΓkΓ

B
k

+

N−1X

k=i

2(1 + γk∆k)(|∆Bk|+
1

γBk
)|∆Bk|Eti [|δhk|2]ΓkΓ

B
k

o
.

tu
As an application of the global a priori estimates given in Proposition (4.3.1), we give the following

result, which is an a.s. upper bound to the solution of the discrete BDSDE (4.2.5).

Proposition 4.3.2. Under Assumptions (H1) and (H2), the solution of the discrete BDSDE (4.3.1)

has an a.s. upper bound given in the following : For all i 2 {0, . . . , N},

|Y N
ti | 6 CB

y := exp
n
(
1

4
+ 4L2

f )T + L2
h

N−1X

j=0

|∆Bj |2
o
exp
n
(
1

2
+ L2

h)

N−1X

j=0

|∆Bj |
on

C2
ξ +

C2
fT

4L2
f

+ 2C2
h

N−1X

j=0

|∆Bj |
o 1

2

a.s. (4.3.10)
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Proof. In order to obtain the a.s. upper bound result, we apply Proposition (4.3.1) with two constants

γBi > 0 and γi > 0 such that 4(∆i +
1
γi
)L2

f2,i
6 1. In one hand, we set Y1,i := 0 , ⇠1 = 0, and h1,i(y) := 0.

On the other hand, we set Y2,i := Y N
ti , ⇠2 = ⇠, f2,i(y) := f(y) and h2,i+1(y) := h(y). This gives

|Y N
ti |2ΓiΓ

B
i 6 e

T
2

n
ΓNΓB

NEti [|⇠|2] +
N−1X

k=i

2(∆k +
1

γk
)∆kEti [|f(0)|2]ΓkΓ

B
k

+

N−1X

k=i

2(1 + γk∆k)(|∆Bk|+
1

γBk
)|∆Bk|Eti [|h(0)|2]ΓkΓ

B
k

o

= e
T
2

n
ΓNΓB

NEti [|⇠|2] + 2

N−1X

k=i

1

γk
∆kEti [|f(0)|2]Γk+1Γ

B
k

+ 2

N−1X

k=i

(|∆Bk|+
1

γBk
)|∆Bk|Eti [|h(0)|2]Γk+1Γ

B
k

o
.

Using Assumption (H2), we get

|Y N
ti |2ΓiΓ

B
i 6 e

T
2

n
ΓNΓB

NC2
ξ +

N−1X

k=i

1

γk
∆kC

2
fΓk+1Γ

B
k

+ 2

N−1X

k=i

(|∆Bk|+
1

γBk
)|∆Bk|C2

hΓk+1Γ
B
k

o
.

We take γBk := 1 and γk := 8L2
f , so that the condition 4(∆i +

1
γi
)L2

f 6 1 is satisfied for N enough large.

Indeed, we can choose N enough large to get 4∆iL
2
f 6 1

2 , which implies that, when we take γk := 8L2
f

for all k, we have

4(∆i +
1

γi
)L2

f 6
1

2
+

4L2
f

γi
= 1.

Then, the inequality (4.3.11) becomes

|Y N
ti |2ΓiΓ

B
i 6 e

T
2

n
ΓNΓB

NC2
ξ +

C2
f

4L2
f

N−1X

k=i

∆kΓk+1Γ
B
k

+ 2C2
h

N−1X

k=i

(|∆Bk|+ 1)|∆Bk|Γk+1Γ
B
k

o
.

Since |∆Bk|+ 1 6 C∆Bk
, we have ΓB

k 6 (|∆Bk|+ 1)ΓB
k 6 ΓB

k+1. Thus, the last inequality becomes

|Y N
ti |2ΓiΓ

B
i 6 e

T
2

n
ΓNΓB

NC2
ξ +

C2
f

4L2
f

N−1X

k=i

∆kΓk+1Γ
B
k+1

+ 2C2
h

N−1X

k=i

|∆Bk|Γk+1Γ
B
k+1

o
. (4.3.11)

Now, giving the a.s. upper bound for Y N
ti remains to give an a.s. upper bound for ΓkΓ

B
k for all k in

{0, . . . , N}. This can be easily done for our explicit choice γBk := 1 and γk := 8L2
f for all k in {0, . . . , N−1}.

Indeed, for all k in {0, . . . , N}, we have

Γk := Πk−1
j=0 (1 + 8L2

f∆j) 6 e
PN−1

j=0 8L2
f∆j = e8L

2
fT . (4.3.12)

In the same manner, we have also

ΓB
k := Πk−1

j=0 (1 + C∆Bj
|∆Bj |) 6 exp

nN−1X

j=0

C∆Bj
|∆Bj |

o

= exp
nN−1X

j=0

⇣
1 + 2(|∆Bi|+ 1)L2

h2,i+1

⌘
|∆Bj |

o

= exp
n
(1 + 2L2

h)

N−1X

j=0

|∆Bi|
o
exp
n
2L2

h

N−1X

j=0

|∆Bi|2
o
. (4.3.13)
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Plugging the estimations (4.3.12) and (4.3.13) in the inequality (4.3.11), we obtain the following a.s. upper

bound

|Y N
ti |2 6 exp

n
(
1

2
+ 8L2

f )T + 2L2
h

N−1X

j=0

|∆Bi|2
o
exp
n
(1 + 2L2

h)

N−1X

j=0

|∆Bi|
on

C2
ξ +

C2
fT

4L2
f

+ 2C2
h

N−1X

k=0

|∆Bk|
o
.

tu

4.4 Monte Carlo regression scheme

The purpose of this section is the approximation of conditional expectations involved in (4.2.5) using

linear least squares regressions.

4.4.1 Preliminaries

Let ∆B := {∆Bi, i = 0, . . . , N − 1} be the sequence of N random variables generated by the discretized

Brownian motion B. For the computations of the conditional expectations and in order to alleviate

notations, E∆B [.] will denote the conditional expectation given the sigma-algebra σ(∆B). Using the

Markov property of (XN ) with respect to the filtration (Gt)0 6 t 6 T , we deduce that there exists a sequence

of random real-valued functions (yi(∆B, .))0 6 i 6 N−1 such that, 8i = 0, . . . , N − 1, yi(∆B, .) is Gti -
measurable and satisfies a.s.

Y N
ti = yi(∆B,XN

ti ). (4.4.1)

In the following, we recall the definition of the Least-squares regression as stated in [35] :

Definition 4.4.1. Let l1, l2 > 1. We consider the two probability spaces (ΩB ,FB
0,T , PB) and (Rl1 ,B(Rl1), ⌫).

S is a FB
0,T⌦B(Rl1)-measurable Rl2-valued function such that S(w, .) 2 L2(B(Rl1)) for PB-a.e. w 2 ΩB and

K is the linear vector subspace of L2(B(Rl
1)) spanned by deterministic Rl2-valued functions {pk, k > 1}.

The least squares approximation of S in the space K with respect to ⌫ is a PB ⇥ ⌫-a.e. unique and

FB
0,T ⌦ B(Rl1)-measurable function S⇤ given by :

S⇤(w, .) = arginf
φ2K

Z
|φ(x)− S(w, x)|2⌫(dx). (4.4.2)

Then, we say that S⇤ solves OLS(S,K, ⌫).

In the same manner, let ⌫M (X ) := 1

M

MX

m=1

δX (m) be a discrete probability measure on (Rl1 ,B(Rl1)), where

δx is the Dirac measure on x and X 1, . . . ,XM : ΩB −! Rl1 are i.i.d. random variables. For an FB
0,T ⌦

B(Rl1)-measurable Rl2-valued function S such that |S(w,X (m)(w))| <1 for all m and PB − a.e.w 2 ΩB,

the least squares approximation of S in the space K with respect to ⌫M is the PB−a.e. unique, FB
0,T⌦B(Rl1)-

measurable function S⇤ given by

S⇤(w, .) = arginf
φ2K

1

M

MX

m=1

|φ(X (m))− S(w,X (m))|2. (4.4.3)

Due to (4.4.1), the MDP equation (4.2.5) is interpreted in terms of Definition (4.4.1) as follows :

For all i 2 {0, . . . , N − 1}, yi(∆B, .) is the measurable function given by :

yi(∆B, .) is the solution of OLS
⇣
Yi(∆B, .),Ki, ⌫i

⌘
, (4.4.4)

where ⌫i := P ◦ (Xi, . . . , XN )−1, Ki is any dense subset in the Rl2 -valued functions to (L2(B(Rl
2)), P ◦

(Xi)
−1) and 8x := (x0, . . . , xN ) 2 (Rd)N+1,

Yi(∆B, x) := Φ(xN ) +

N−1X

k=i

∆kf(yk+1(∆B, xk+1)) + h(yk+1(∆B, xk+1))∆Bk. (4.4.5)
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4.4.2 Algorithm Notations and algorithm

The solution yi(∆B, .) of (4.4.4) will be approximated in a finite dimensional functional linear space,

as defined in the following :

Definition 4.4.2. Finite dimensional approximation spaces

For each i in {0, . . . , N − 1}, the finite dimensional approximation space, denoted by KY,i, is given by :

KY,i := {pjKY,i
, j := 1, . . . , card(KY,i)} (4.4.6)

where for all j, pjKY,i
: Rd −! R satisfies the condition E[pjKY,i

|2] < +1.

The best approximation error of yi(∆B, .) on the linear space KY,i is given by

⌧
∆B,Y
1,i := E∆B

h
inf

φ2KY,i

∣∣∣yi(∆Bi, .)− φ
∣∣∣
2i

(4.4.7)

The approximation error (4.4.7) involves explicit computations using the law of Xi, . . . , XN . We avoid

that by regressing using the empirical measure, instead of the law. The empirical measure is defined in

the following :

Definition 4.4.3. Simulations and empirical measure

Let M∆B
i denote the number of Monte Carlo simulations used for the regression at time ti. This number

will be denoted by Mi to alleviate notations. At each discretization time ti, we sample Mi independent

copies of X, that we denote by Ci . i.e.

Ci := {X(i,m)
j , 0 6 j 6 N, 1 6 m 6 Mi}.

Ci is the cloud of Mi simulations used for computations at time ti, for all i 2 {1, . . . , N − 1}. In addition,

we assume that the clouds {Ci, 0, . . . , N − 1}) are sampled independently. The random variables described

below are supported by a probability space (Ω(M),F (M), P (M)) equipped with the empirical probability

measure associated to the cloud Ci :

⌫i,M :=
1

Mi

MiX

m=1

δ
(X

(i,m)
i ,...,X

(i,m)
N

)
. (4.4.8)

Then, the full probability space used to analyse the algorithm is (Ω̄, F̄ , P̄ ) = (Ω,G, P )⌦ (Ω(M),F (M), P (M)).

· We define the truncation operator [.]i by : [y]i = −CB
y _ y ^CB

y , where CB
y is the bound computed in

Proposition (4.3.2).

Definition 4.4.4. Least-Squares MDP (LSMDP) Algorithm

We define y
(M)
i (∆B, .), for all i, by the following algorithm :

y
(M)
N (.) = Φ(.) (4.4.9)

and for i = N − 1, . . . , 0, we set

 
(M)
i (∆B, .) as the solution of OLS

⇣
Y(M)
i (∆B, .),KY,i, ⌫i,M

⌘
(4.4.10)

where 8x 2 (Rd)N+1,

Y(M)
i (∆B, x) := Φ(xN ) +

N−1X

k=i

∆kf(y
(M)
k+1(∆B, xk+1))

+ h(y
(M)
k+1(∆B, xk+1))∆Bk. (4.4.11)

Afterthat, we set

y
(M)
i (∆B, .) :=

h
 
(M)
i (∆B, .)

i
i
. (4.4.12)
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4.4.3 Error on the regression scheme

In this part, we will give Non asymptotic estimates for our algorithm. We will need the following lemma

Lemma 4.4.1. We define ⌧∆B,Y
1,i,M := E∆B

h
inf

φ2KY,i

∣∣∣yi(∆Bi, .)− φ
∣∣∣
2

νi,M

i
. This is the squared approximation

error of yi in the linear space KY,i with respect to the empirical measure ⌫i,M . Then, we have :

For all i 2 {0, . . . , N − 1},
⌧
∆B,Y
1,i,M 6 ⌧

∆B,Y
1,i . (4.4.13)

We will make use of the following Proposition, based on the Proposition (4.5.1).

Proposition 4.4.1. For all i 2 {0, . . . , N − 1}, we have

E∆B

h∣∣∣yi(∆B, .)− y
(M)
i (∆B, .)

∣∣∣
2i

6 2E∆B

h∣∣∣yi(∆B, .)− y
(M)
i (∆B, .)

∣∣∣
2

νi,M

i

+ (CB
y )2

2028(card(KY,k+1) + 1)log(3Mk+1)

Mk+1
. (4.4.14)

Proof. For all i 2 {0, . . . , N − 1}, one can write

E∆B

h∣∣∣yi(∆B, .)− y
(M)
i (∆B, .)

∣∣∣
2i

6 2E∆B

h∣∣∣yi(∆B, .)− y
(M)
i (∆B, .)

∣∣∣
2

νi,M

i

+
⇣
E∆B

h∣∣∣yi(∆B, .)− y
(M)
i (∆B, .)

∣∣∣
2i
− 2E∆B

h∣∣∣yi(∆B, .)− y
(M)
i (∆B, .)

∣∣∣
2

νi,M

i⌘
+
.

Then, we apply the Proposition (4.5.1). tu
Now, we are able to give the estimates on our conditional error. We set

⌘
Y,B
i :=

r
E∆B

h
|yi(∆B, .)− y

(M)
i (∆B, .)|2νi,M

i
=
∥∥∥|yi(∆B, .)− y

(M)
i (∆B, .)|2νi,M

∥∥∥
L2(∆B)

as the the conditional error with respect to the empirical measure ⌫i,M .

The following theorem gives the conditional regression error of the algorithm (4.4.9)-(4.4.12) for ap-

proximating solutions of (4.2.5).

Theorem 4.4.1. We assume that Assumptions (H1-H2) hold. Then, we have

⌘
Y,B
i 6 δi + exp{LfT + Lh

N−1X

k=i

|∆Bk|}
nN−2X

k=i

(Lf∆k + Lh|∆Bk|)δk+1

o
, (4.4.15)

where for all k in {0, . . . , N − 1}

δk :=
⇣
⌧
∆B,Y
1,k,M

⌘ 1
2

+
⇣card(KY,k)

Mk

⌘ 1
2

σYk
(∆B)

+
p
1014CB

y

N−2X

j=k

(Lf∆j + Lh|∆Bj |)
s

(card(KY,j+1) + 1)log(3Mj+1)

Mj+1
,

and Ci :=
p
2(Lf∆i + Lh|∆Bi|). (4.4.16)

σYk
(∆B) := Cξ + T (LfC

B
y + Cf ) + (LhC

B
y + Ch)

N−1X

j=k

|∆Bj |

and (CB
y )2 := exp

n
(
1

2
+ 8L2

f )T + 2L2
h

N−1X

j=0

|∆Bj |2
o
exp
n
(1 + 2L2

h)

N−1X

j=0

|∆Bj |
on

C2
ξ +

C2
fT

4L2
f

+ 2C2
h

N−1X

j=0

|∆Bj |
o
. (4.4.17)
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This estimation can be written also

ηY,B
i 6

⇣

τ∆B,Y
1,i,M

⌘ 1
2
+

⇣ card(KY,i)

Mi

⌘ 1
2
σYi

(∆B) +
p
1014CB

y

N−2
X

k=i

(Lf∆i + Lh|∆Bi|)
⇣ (card(KY,k+1) + 1)log(3Mk+1)

Mk+1

⌘ 1
2

+
p
2exp{

p
2LfT +

p
2Lh

N−1
X

k=i

|∆Bk|}
N−2
X

k=i

(Lf∆k + Lh|∆Bk|)
n⇣

τ∆B,Y
1,k+1,M

⌘ 1
2
+

⇣ card(KY,k+1)

Mk+1

⌘ 1
2
σYk+1

(∆B)
o

+ (2028)
1
2 CB

y exp{
p
2(LfT+Lh

N−1
X

k=i

|∆Bk|)}{LfT+Lh

N−1
X

k=i

|∆Bk|}
N−2
X

k=i

(Lf∆k+Lh|∆Bk|)
⇣(card(KY,k+1)+ 1)log(3Mk+1)

Mk+1

⌘1
2
.

Remark 4.4.1. Theorem (4.4.1) gives non asymptotic error estimates for our algorithm, since the

constants of the upper bound for the error depend on the time discretization number N and the fixed

path (∆Bk)0 6 k 6 N−1.

Remark 4.4.2. For a fixed time discretization number N and a fixed path (∆Bk)0 6 k 6 N−1, we obtain

the convergence of our algorithm by taking (Mk)0 6 k 6 N−1 and (card(KY,k))0 6 k 6 N−1 enough large.

Remark 4.4.3. In the case of BDSDEs and unlike the standard BSDEs case , the we don’t have good

a.s. estimates for the process Y because of the backward martingale term. Obtaining such estimates is an

open question until now.

Now we will give the proof of Theorem (4.4.1), the main result of this section. We will introduce these

notations :

Notations for the proof of Theorem (4.4.1)

· First, we define the following σ − algebras :

G⇤i := σ
⇣
∆B, Ci+1, . . . , CN−1) and Gi,1:Mi := σ

⇣
G⇤i , X

(i,m):1 6 m 6 M
i

⌘
for all i = 0, . . . , N − 1.

·After that, we define also  i(∆B, .) as the solution of OLS
⇣
Yi(∆B, .),Ki, ⌫i,M

⌘
.

Proof. of Theorem 4.4.1

Since the truncation operator
h
.
i
i

is 1-Lipschitz,

⌘
Y,B
i =

∥∥∥
∣∣∣yi(∆B, .)− y

(M)
i (∆B, .)

∣∣∣
νi,M

∥∥∥
L2(∆B)

=
∥∥∥
∣∣∣
h
yi(∆B, .

i
i
−
h
 
(M)
i (∆B, .)

i
i

∣∣∣
νi,M

∥∥∥
L2(∆B)

Then, plugging EGi,1:M
i

h
 i(∆B, .)

i
and EGi,1:M

i

h
 
(M)
i (∆B, .)

i
and using the triangle inequality, we get

⌘
Y,B
i 6

∥∥∥
∣∣∣yi(∆B, .)− EGi,1:M

i

h
 i(∆B, .)

i∣∣∣
νi,M

i∣∣∣
L2(∆B)

+
∥∥∥
∣∣∣EGi,1:M

i

h
 i(∆B, .)−  (M)

i (∆B, .)
i∣∣∣

νi,M

∥∥∥
L2(∆B)

+
∥∥∥
∣∣∣EGi,1:M

i
[ 

(M)
i (∆B, .)]−  (M)

i (∆B, .)
∣∣∣
νi,M

∥∥∥
L2(∆B)

. (4.4.18)

We deal with each term in the previous inequality separately.

- Term
∥∥∥
∣∣∣yi(∆B, .)− EGi,1:M

i

h
 i(∆B, .)

i∣∣∣
νi,M

∥∥∥
L2(∆B)

in (4.4.18) :

We note that for all m in {1, . . . ,Mi}, EGi,1:M
i

h
Yi(∆B,X

(i,m)
i )

i
= yi(∆B,X

(i,m)
i ). It follows from Pro-

position (4.5.2)-(iii) that EGi,1:M
i

h
 i(∆B, .)

i
solves OLS

⇣
yi(∆Bi, .),KY,i, ⌫i,M

⌘
. Then, we have

∥∥∥
∣∣∣yi(∆B, .)− EGi,1:M

i

h
 i(∆B, .)

i∣∣∣
νi,M

∥∥∥
L2(∆B)

=
∥∥∥
∣∣∣yi(∆B, .)−OLS

⇣
yi(∆Bi, .),KY,i, ⌫i,M

⌘∣∣∣
νi,M

∥∥∥
L2(∆B)

=
q
⌧
∆B,Y
1,i,M (4.4.19)

where ⌧∆B,Y
1,i,M := E∆B

h
inf

φ2KY,i

∣∣∣yi(∆Bi, .)− φ
∣∣∣
2

νi,M

i
is the approximation error with respect to the empi-

rical norm.

- Term
∥∥∥
∣∣∣EGi,1:M

i
[ 

(M)
i (∆B, .)]−  (M)

i (∆B, .)
∣∣∣
νi,M

i∥∥∥
L2(∆B)

in (4.4.18) :

It can be controlled as follows :
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The terms Y(M)
i (∆B, .) are computed only using the clouds {Ck, k > i+1}. Thus, we obtain by Propo-

sition (4.5.2)-(iv)

E∆B

h∣∣∣ (M)
i (∆B, .)− EGi,1:M

i
[ 

(M)
i (∆B, .)]

∣∣∣
2

νi,M

i
6

card(KY,i)

Mi
σ2
Yi
(∆B), (4.4.20)

where σ2
Yi
(∆B) is a σ(∆B)-measurable random variable bounding the conditional variance

V ar(Y(M)
i (∆B,X

∣∣∣Xi = xi) uniformly in xi.

- Term
∥∥∥
∣∣∣EGi,1:M

i

h
 i(∆B, .)−  (M)

i (∆B, .)
i∣∣∣

νi,M

∥∥∥
L2(∆B)

in (4.4.18) :

We set EMY,i(∆B, x) := E
h
Yi(∆B,X)− Y(M)

i (∆B,X)|Xi = xi,G⇤i
i
. As Yi(∆B,X)− Y(M)

i (∆B,X) are

computed only with the clouds {Ck, k > i+ 1}, we have for all m

EGi,1:M
i

h
Yi(∆B,X(i,m))− Y(M)

i (∆B,X(i,m))
i

= EMY,i(∆B,X
(i,m)
i ).

Thus, by Proposition (4.5.2)-(i-iii), EGi,1:M
i

h
 i(∆B, .)−  (M)

i (∆B, .)
i

solves

OLS
⇣
EMY,i(∆B, .),KY,i, ⌫i,M

⌘
. Using Proposition (4.5.2)-(ii) in [35] (the property on Norm stability of the

OLS operator), we get

∥∥∥
∣∣∣EGi,1:M

i

h
 i(∆B, .)−  (M)

i (∆B, .)
i∣∣∣

νi,M

∥∥∥
L2(∆B)

6
∥∥∥
∣∣∣EMY,i(∆B, .)

∣∣∣
νi,M

∥∥∥
L2(∆B)

=
∥∥∥EMY,i(∆B,Xi)

∥∥∥
L2(∆B)

.

Using the triangle inequality, we get

∥∥∥EMY,i(∆B,Xi)
∥∥∥
L2(∆B)

6

N−2X

k=i

(Lf∆k + Lh|∆Bk|)
∥∥∥yk+1(∆B,Xk+1)− y

(M)
k+1(∆B,Xk+1)

∥∥∥
L2(∆B)

Hence, by plugging the last estimation and the estimations (4.4.19) and (4.4.20) in the inequality (4.4.18),

we have

⌘
Y,B
i 6

⇣
⌧
∆B,Y
1,i,M

⌘ 1
2

+
⇣card(KY,i)

Mi

⌘ 1
2

σYi
(∆B)

+

N−2X

k=i

(Lf∆k + Lh|∆Bk|)
∥∥∥yk+1(∆B,Xk+1)− y

(M)
k+1(∆B,Xk+1)

∥∥∥
L2(∆B)

. (4.4.21)

The Proposition (4.4.1) allows us to link the term
∥∥∥yk+1(∆B,Xk+1) − y

(M)
k+1(∆B,Xk+1)

∥∥∥
L2(∆B)

to the

term ⌘
Y,B
k+1 as follows :

∥∥∥yk+1(∆B,Xk+1)− y
(M)
k+1(∆B,Xk+1)

∥∥∥
L2(∆B)

6
p
2⌘Y,Bk+1 + CB

y

s
2028(card(KY,k+1) + 1)log(3Mk+1)

Mk+1
.

The inequality (4.4.21) becomes

⌘
Y,B
i 6 +

N−2X

k=i

p
2(Lf∆i + Lh|∆Bi|)⌘Y,Bk+1 +

⇣
⌧
∆B,Y
1,i,M

⌘ 1
2

+
⇣card(KY,i)

Mi

⌘ 1
2

σYi
(∆B)

+
p
1014CB

y

N−2X

k=i

(Lf∆i + Lh|∆Bi|)
s

(card(KY,k+1) + 1)log(3Mk+1)

Mk+1
.

Thus, one can write

⌘
Y,B
i 6 δi +

N−2X

k=i

Ck⌘
Y,B
k+1 (4.4.22)
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where we set for all i 2 {0, . . . , N − 1}

δi :=
⇣
⌧
∆B,Y
1,i,M

⌘ 1
2

+
⇣card(KY,i)

Mi

⌘ 1
2

σYi
(∆B)

+
p
1014CB

y

N−2X

k=i

(Lf∆i + Lh|∆Bi|)
s

(card(KY,k+1) + 1)log(3Mk+1)

Mk+1
, (4.4.23)

and Ci :=
p
2(Lf∆i + Lh|∆Bi|). (4.4.24)

We note that in the estimation (4.4.22), the error ⌘Y,Bi is bounded by a local error term δi and the sum

of the errors ⌘Y,Bk arising before the step i. So we have to iterate this inequality to obtain an estimation

on ⌘Y,Bi .

Writing the estimation (4.4.22) for the discrete time index i, we have

⌘
Y,B
i 6 δi +

N−1X

k=i

Ck⌘
Y,B
k+1,

= δi + Ci⌘
Y,B
i+1 + Ci+1⌘

Y,B
i+2 +

N−1X

k=i+3

Ck⌘
Y,B
k+1 (4.4.25)

First, we would like to bound the term Ci⌘
Y,B
i+1 in the right side of the previous inequality, then ⌘Y,Bi+2 and

so on, until ⌘Y,BN−1. For that, we write the inequality (4.4.22) for the discrete time i + 1 and we multiply

by Ci. This gives

Ci⌘
Y,B
i+1 6 Ciδi+1 + Ci

N−1X

k=i+1

Ck⌘
Y,B
k+1

= Ciδi+1 + CiCi+1⌘
Y,B
i+2 + Ci

N−1X

k=i+2

Ck⌘
Y,B
k+1

Plugging the last inequality in (4.4.25)

⌘
Y,B
i 6 δi + Ciδi+1 + (1 + Ci)Ci+1⌘

Y,B
i+2 + (1 + Ci)

N−1X

k=i+2

Ck⌘
Y,B
k+1. (4.4.26)

Now, we would like to bound the term (1 + Ci)Ci+1⌘
Y,B
i+2 in the previous estimation. So, we wright the

inequality (4.4.22) for the discrete time i+ 2 and multiply by (1 + Ci)Ci+1. This gives

(1 + Ci)Ci+1⌘
Y,B
i+2 6 (1 + Ci)Ci+1δi+2 + (1 + Ci)Ci+1

N−1X

k=i+2

Ck⌘
Y,B
k+1,

Plugging the last inequality in (4.4.26), we obtain

⌘
Y,B
i 6 δi + Ciδi+1 + (1 + Ci)Ci+1δi+2 + (1 + Ci)(1 + Ci+1)

N−1X

k=i+2

Ck⌘
Y,B
k+1. (4.4.27)

We see that the coefficient appearing in (4.4.27) for each error term ⌘
Y,B
k+1, for k > i, is ΓC

i,kCk where ΓC
i,k

is defined by

ΓC
i,k := Πk−1

j=i (1 + Cj), 8k 2 {i+ 1, . . . , N − 1}
and ΓC

i,i := 1.
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Thus, the error terms from i to N − 1 are bounded as follows :

⌘
Y,B
i 6 δi + ΓC

i,iCi⌘
Y,B
i+1 + ΓC

i,i+1Ci+1⌘
Y,B
i+2 +

N−1X

k=i+2

Ck⌘
Y,B
k+1

ΓC
i,iCi⌘

Y,B
i+1 6 ΓC

i,iCiδi+1 + ΓC
i,iCiCi+1⌘

Y,B
i+2 + ΓC

i,iCi

N−1X

k=i+2

Ck⌘
Y,B
k+1

ΓC
i,i+1Ci+1⌘

Y,B
i+2 6 ΓC

i,i+1Ci+1δi+2 +

N−1X

k=i+2

ΓC
i,i+1Ci+1Ck⌘

Y,B
k+1

.

.

.

ΓC
i,N−3CN−3⌘

Y,B
N−2 6 ΓC

i,N−3CN−3δN−2 + ΓC
i,N−3CN−3CN−2⌘

Y,B
N−1

ΓC
i,N−2CN−2⌘

Y,B
N−1 6 ΓC

i,N−2CN−2δN−1.

Summing up the last inequalities from i to N − 1, we obtain

⌘
Y,B
i 6 δi +

N−2X

k=i

ΓC
i,kCkδk+1. (4.4.28)

Now, we have to bound ΓC
i,k in the estimation (4.4.28). This is easily done as follows

ΓC
i,k 6 ΓC

i,N = ΠN−1
j=i (1 +

p
2Lf∆j +

p
2Lh|∆Bj |)

6 exp{
N−1X

k=i

(
p
2Lf∆k +

p
2Lh|∆Bk|)}

= exp{
p
2LfT +

p
2Lh

N−1X

k=i

|∆Bk|}.

Finally we obtain

ηY,B
i 6 δi +

p
2exp{

p
2LfT + 2Lh

N−1
X

k=i

|∆Bk|}
N−2
X

k=i

(Lf∆k + Lh|∆Bk|)δk+1

6
⇣

τ∆B,Y
1,i,M

⌘ 1
2
+

⇣ card(KY,i)

Mi

⌘ 1
2
σYi

(∆B) +
p
1014CB

y

N−2
X

k=i

(Lf∆i + Lh|∆Bi|)
⇣ (card(KY,k+1) + 1)log(3Mk+1)

Mk+1

⌘ 1
2

+
p
2exp{

p
2LfT +

p
2Lh

N−1
X

k=i

|∆Bk|}
N−2
X

k=i

(Lf∆k + Lh|∆Bk|)
n⇣

τ∆B,Y
1,k+1,M

⌘ 1
2
+

⇣ card(KY,k+1)

Mk+1

⌘ 1
2
σYk+1

(∆B)
o

+ (2028)
1
2 CB

y exp{
p
2(LfT+Lh

N−1
X

k=i

|∆Bk|)}{LfT+Lh

N−1
X

k=i

|∆Bk|}
N−2
X

k=i

(Lf∆k+Lh|∆Bk|)
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2
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tu

4.5 Appendix

From [35], we state an upper bound result, for a sample deviation, uniformly on the function spaces.

Proposition 4.5.1. For finite B > 0, let G := { (⌧Bφ(.))− #(.) : φ(.) 2 K}, where ⌧B := −B _ φ ^ B,

# : R! [0,+1) is Lipschitz continuous with  (0) = 0 and Lipschitz constant Lψ, # : Rd ! [−B,B], and

K is a finite K-dimensional vector space of functions. Then, for X (1), . . . ,X (M) i.i.d.random variables

distributed as X , we have

E∆B

h
supg2G

⇣Z

R

g(x)P ◦ X−1(dx)− 2

M

MX

m=1

g(X (M)
⌘
+

i
6

507(card(K) + 1)log(3M)

M
. (4.5.1)
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After that, we state a proposition, given always in [35] , which gives the properties of the least-squares

operator.

Proposition 4.5.2. Assume that K := span{pjK, j := 1, . . . , card(K)}. Let S⇤ solve OLS(S,K, ⌫) (repec-

tively OLS(S,K, ⌫M )), according to (4.4.2) (repectively (4.4.3)). The following properties are satisfied :

(i) linearity : the mapping S ! S⇤ is linear.

(ii) Norm stability property : kS⇤kL2(B(Rl1 ),µ) 6 kSkL2(B(Rl1 ),µ), where µ = ⌫ (respectively µ = ⌫M ).

(iii) conditional expectation solution : in the case of the discrete probability measure ⌫M , assume additio-

nally that the sub − σ−algebra Q is such that {pjK(X (m)),m := 1, . . . ,M} is Q−measurable, for every

j 2 {1, . . . , card(K)}. Setting SQ(X (m)) = E
h
S(X (m))

∣∣∣Q
i

for each m 2 {1, . . . ,M}, then E
h
S⇤
∣∣∣Q
i

solves

OLS(SQ,K, ⌫M ).

(iv) bounded conditional variance : in the case of the discrete probability measure ⌫M , suppose that S(w, x)

is G ⌦ B(Rl1)− measurable, for a sub − σ−algebra G, independent of σ(X (1), . . . ,X (M)), there exists a

Borel measurable function h : Rl1 ! ", for some Euclidean space ", such that the random variables

{pjK(X (m)),m =, . . . ,M, j = 1, . . . ,M} are H := σ(X (m),m = 1 . . . ,M)−measurable, and there exists a

finite constant σ2 > 0 that uniformly bounds the conditional variances

E
h
|S(X (m))− E[S(X (m))|G _H|]|2

∣∣∣G _H
i
6 σ2PB − a.s. and for all m 2 {0, . . . ,M}.

Then

E
h
kS⇤(.)− E[S⇤(.)|G _H]k2L2(B(Rl1 ),νM )

∣∣∣G _H
i
6 σ2 card(K)

M
.



Chapitre 5

Hastings-Metropolis algorithm on

Markov chains for small probability

estimation

5.1 Introduction

The study of neutronics began in the 40s, when nuclear energy was on the verge of being used both for

setting up nuclear devices like bombs and for civil purposes like the production of energy. Neutronics is

the study of neutron population in fissile media that can be modeled using the linear Boltzmann equation,

also known as the transport equation. More precisely, it can be subdivided in two different sub-domains.

On the one hand, criticality studies aim at understanding the neutron population dynamics due to the

branching process that mimics fission reaction (see for instance [71] for a recent survey on branching

processes in neutronics). On the other hand, when neutrons are propagated through media where fission

reactions do not occur, or can safely be neglected, their transport can be modeled by simple exponential

flights [72] : indeed, between each collisions, neutrons travel along straight path distributed exponentially.

Among this last category, shielding studies allow to size shielding structures so as to protect humans

from ionizing particles, and imply, by definition, the attenuation of initial neutron flux typically by several

decades. For instance, the vessel structure of a nuclear reactor core attenuates the thermal neutron flux

inside the code by a factor roughly equal to 1013. Many different national nuclear authorities require

shielding studies of nuclear systems before giving their agreement for the design of these systems. Examples

are reactor cores, but also devices for nuclear medicine (proton-therapy, gamma-therapy, etcâ). The study

of those nuclear systems is complicated by 3-dimensional effects due to the geometry and by non-trivial

energetic spectrum that can hardly be modeled.

Since Monte-Carlo transport codes (like MCNP [50], Geant4 [2], Tripoli-4 [29]) require very few hy-

potheses, they are often used for shielding studies. Nevertheless, those studies represent a long-standing

numerical challenge for Monte-Carlo codes in the sense that they schematically require to evaluate the

proportion of neutrons that "pass" through the shielding system. This proportion is, by construction,
very small. Hence a shielding study by Monte-Carlo code requires to evaluate a small probability, which
is the motivation of the present paper.

There is a fair amount of literature on classical techniques for reducing the variance in these small-
probability estimation problems for Monte-Carlo codes. Those techniques often rely on a zero-variance
scheme [43, 42, 12] adapted to the Boltzmann equation, allied with âweight-watchingâ techniques [13].
The particular forms that this scheme takes when concretely developed in various transport codes range
from the use of weight windows [17, 42, 43, 50], like in MCNP, to the use of the exponential transform
[14, 29] like in Tripoli-4. Nowadays, all those techniques have proven to be often limited in view of full-
filling the requirements made by national nuclear authorities for the precise measurements of radiation,
which standards are progressively strengthen. Thus, new variance reduction techniques have been recently
proposed in the literature (see for instance [30] for the use of neural networks for evaluating the importance
function).

This paper deals with the application of the recent interacting-particle method developed in [36], for
small probability estimation, to a neutronic shielding’s Monte Carlo code. The method proposed in [36]
have interesting theoretical properties and is particularly efficient in practical cases. Nevertheless, its
application to shielding studies with Monte-Carlo codes is not straightforward. Monte-Carlo codes consist
in sampling the trajectory of a neutron which can, depending on the complexity of the physical modeling,
be the realization of a discrete-time branching process or stochastic process. Indeed, since a neutron
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travels along straight paths between collisions, there is no loss of information in considering only the
characteristics of the collisions (dates, positions, energies, subparticle creations) as random.

In view of simplifying the matter, the subparticle-creation phenomena are not taken into account,
neither is the energy dependence. We consider here the simplified but realistic case of a monokinetic
particle (constant speed, no offsprings). Then a particle trajectory is just a set of successive collisions
and constitutes a Markov chain. Furthermore, with probability one, the particle is absorbed after a finite
number of collisions. The small probability we are interested in is the probability that a particle "pass"
through a shielding system and reach a domain of interest before absorption.

The method proposed in [36] relies on the Hastings-Metropolis algorithm [55, 41] for practical imple-
mentation. This algorithm is clearly a textbook method when applied to probability distributions on
the Euclidean space. Nevertheless, we have discussed below that small probability estimation problems
in neutronic codes involve Markov Chains instead of random vectors. Thus, it is not automatic to ap-
ply the method of [36] to these kind of problems. Our contribution is two-fold. First, we show how the
Hastings-Metropolis algorithm can be extended to the case of Markov chains that are absorbed after
finite time. Second, we apply the resulting method to an academic one-dimensional case and to a two-
dimensional case, representing a monokinetic-particle model in a simplified but realistic shielding system.
The smaller the probability to estimate is, the more the interacting-particle method clearly outperforms
a simple-Monte Carlo method.

The manuscript is organized as follows. In section 5.2 we give a reminder of the interacting-particle
method [36], and highlight the need of the Hastings-Metropolis algorithm. In section 5.3, we prove the
validity and the convergence of the Hastings-Metropolis algorithm applied to Markov Chains absorbed
after a finite time. Then in section 5.4, we present the one and two-dimensional cases. We give the actual
equations for the small probability estimation method. At last in section 5.5, we present numerical results
in the one and two-dimensional cases.

5.2 Reminder on the interacting-particle method for small pro-

bability estimation

We present the interacting-particle method [36] and highlight its need of the Hastings-Metropolis (HM)
algorithm for practical application.

We consider a probability space (Ω,F , P ), and a measurable space (S,S, Q). We consider a random
variable X from (Ω,F , P ) to (S,S, Q). We assume that we are able to sample realizations of X.

We consider an objective function Φ : S ! R, for which we only assume a continuous cumulative
distribution function F . The interacting-particle method aims at estimating the probability of the event
Φ(X) > l, for a given level l 2 R. We denote this probability p.

The method can be presented in two steps. First, we assume that an ideal, or a theoretical, method
can be implemented exactly. In this case, the finite-sample distribution of the corresponding estimator of
the probability p is known exactly, so that exact finite-sample confidence intervals are available. Further-
more, the limit, for large number of sampling from X, of the probability estimation error, has attractive
properties as shown in [36]. The ideal method is presented in section 5.2.1.

Nevertheless, this ideal method can not be implemented exactly for a large range of practical problems.
Thus, it is proposed in [36] to approximate the ideal method by using a HM algorithm. This is presented
in subsection 5.2.2.

5.2.1 The theoretical version of the interacting-particle method

In this section 5.2.1, we assume that we are able to sample realizations of X, conditionally to the event
Φ(X) > t, for any t 2 R. This is a strong assumption, which is why the corresponding method that we
present is called the ideal method.

The ideal algorithm for estimating p is then parameterized by a number of particle N and is as follows.
Algorithm 5.2.1

– Generate an iid sample (X1, .., XN ), from the distribution of X, and initialize m = 1, L1 = min(Φ(X1), ..,Φ(XN ))

and X1
1 = X1, ..., X

1
N = XN .
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– While Lm 6 l do
– For i = 1, ..., N

– Set Xm+1
i = Xm

i if Φ(Xm
i ) > Lm, and else Xm+1

i = X⇤, where X⇤ follows the distribution of X
conditionally to Φ(X) > Lm, and is independent of any other random variables involved in the
algorithm.

– Set m = m+ 1.
– Set Lm = min(Φ(Xm

1 ), ..,Φ(Xm
N )).

– The estimate of the probability p is p̂ipm = (1− 1
N )m−1.

For each finite N , the ideal estimator p̂ipm obtained from algorithm 5.2.1 has an explicit distribution
that is detailed in [36]. In this paper, we just consider two properties of p̂ipm. First, the estimator is
unbiased : E(p̂ipm) = p. Second, asymptotic 95% confidence intervals, for N large, are of the form

Ip̂ipm
=

"
p̂ipmexp

 
−1.96

r
−logp̂ipm

N

!
, p̂ipmexp

 
1.96

r
−logp̂ipm

N

!#
. (5.2.1)

Finally, we notice that the event p 2 Ip̂ipm
is asymptotically equivalent (for N large) to the event p̂ipm 2 Ip,

with IP as in (5.2.1), with p̂ipm replaced by p. We will use this property in section 5.5.

5.2.2 Practical implementation of the interacting-particle method with the

Hastings-Metropolis algorithm

For practical implementation of algorithm 5.2.1, the only problem we have to solve is the conditional
sampling, with the distribution of X, conditionally to Φ(X) > t, for any t 2 R.

An application of the HM algorithm is proposed in [36]. For this, the following is assumed
– The distribution of X has a probability distribution function (pdf) f with respect to (S,S, Q). For

any x 2 S we can compute f(x).
– We dispose of a transition kernel on (S,S, Q) with conditional pdf (x, y) (pdf of y conditionally to

x). We are able to sample from (x, .) for any x 2 S and we can compute (x, y) for any x, y 2 S.
Let t 2 R and x 2 S so that Φ(x) > t. Then, the following algorithm enables to, starting from x, sample

approximately with the distribution of X, conditionally to Φ(X) > t. The algorithm is parameterized by
a number of iterations T 2 N⇤.
Algorithm 5.2.2.1

– Let X = x.
– For i = 1, ..., T

– Independently from any other random variable, generate X⇤ following the (X, .) distribution.
– If Φ(X⇤) > t

– Let r = f(X⇤)κ(X⇤,X)
f(X)κ(X,X⇤) .

– With probability min(r, 1), let X = X⇤.
– Return X.
The random variable returned by algorithm 5.2.2.1 is denoted XT (x).
For consistency, we now give the actual interacting-particle method, involving algorithm 5.2.2.1. This

method is parameterized by the number of particles N and the number of HM iterations T .
Algorithm 5.2.2.2

– Generate an iid sample (X1, .., XN ) from the distribution of X and initialize m = 1,
L1 = min(Φ(X1), ..,Φ(XN )) and X1

1 = X1, ..., X
1
N = XN .

– While Lm 6 l do
– For i = 1, ..., N

– Set Xm+1
i = Xm

i if Φ(Xm
i ) > Lm, and else pick at random an integer J among the integers

1 6 j 6 N so that Φ(Xm
j ) > Lm. Then, let Xm+1

i = XT (X
m
J ), with the notation of algorithm

5.2.2.1.
– Set m = m+ 1.
– Set Lm = min(Φ(Xm

1 ), ..,Φ(Xm
N )).

– The estimate of the probability p is p̂ipm = (1− 1
N )m−1.

The estimator p̂ipm of algorithm 5.2.2.2 is the practical estimator that we will study in the numerical
results of section 5.5.
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In [36], it is shown that, when the space S is a subset of Rd, under mild assumptions, the distribution
of the estimator of algorithm 5.2.2.2 converges, as T ! +1, to the distribution of the ideal estimator
of algorithm 5.2.1. For this reason, we call the estimator of algorithm 5.2.1 the estimator corresponding
to the case T = +1. We also call the confidence intervals (5.2.1) the confidence intervals of the case
T = +1.

Nevertheless, the space S we are interested in is a space of sequences that are killed after a finite time.
Thus, it is not straightforward that the convergence, as T ! +1, discussed above, hold in our case.
Furthermore, even the notion of pdf on this space of sequences has to be defined.

This is the object of the next section 5.3, that defines the notion of pdf, on a space of sequences that are
killed after a finite time, and that gives a convergence result for the HM algorithm. The definition of the
pdf is also restated in section 5.4, so that sections 5.2 and 5.4 are self-sufficient for the implementation of
the small-probability estimation method in the one and two-dimensional cases.

5.3 An extension of Hastings-Metropolis algorithm to Markov

chain sampling

5.3.1 Introducing Markov Chains Killed Out of a Domain

The dynamic of the collisions is described by a Markov chain (Xn)n > 0 with values in Rd and a pro-
bability transition function q. The study of the detection probability for the collisions occurs only in a
restricted area. We decide to censor the model and redefine it to obtain accurate theoretical results.

Let D be an open bounded subset of Rd and @D be its C1 boundary. D constitutes the domain of
interest. We modify the transition function (Xn)n > 0 as follows

k(x, dy) = (q(x, y)1D(y) dy + p(x,DC)δ∆(dy))1D(x) + δ∆(dy)1∆(x)

where ∆ is a cemetery point and

p(x,DC) =

Z

DC

q(x, y) dy.

This representation describes the following dynamic :
– while (Xn)n > 0 is inside D, it behaves with a transition kernel that could push it outside D. We use

the already define q which reflects the collision dynamic.
– when (Xn)n > 0 hits DC , it is killed and send to the cemetery point ∆ where it stays. This way we

censor the neutrons and keep only the collisions inside D.
We call this model Markov Chain Killed Out of a Domain, MCKOD for short.

5.3.2 Formulation of the Hastings-Metropolis algorithm

For self-sufficiency of section 5.3, we start by giving a formulation of the Hastings-Metropolis Algorithm
[55, 41] for sampling a distribution γ that admits a density versus a measure Π. The main idea is to define a
Markov chain (Yn)n > 0 that converges in distribution to γ. To construct (Yn)n > 0, we use an instrumental
Markov chain (Zn)n > 0 and an acceptation-rejection function r. We denote by  the probability transition
function of (Zn)n > 0 and Γ the transition kernel of (Yn)n > 0. We assume that  and Γ admit a density
versus the same measure Π. Step by step, the algorithm is :

– Introduce a starting point x and use it to sample a transition y of (Zn)n > 0.
– Accept or reject this transition using r.
– If the sample is accepted redo the procedure with y , else redo with the starting point.

With enough repetitions of this procedure, the distribution of y is approximately γ. Following [41] and
[67], a formula of Γ is

Γ(u, dv) = (u, v)Π(dv) + r(u)δu(dv)

where

(u, v) =

(
(u, v)r(u, v), if x 6= y,

0, if x = y,
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and

r(u) = 1−
Z
p(u, v)Π(dv).

For the acceptation-rejection function, following [67], we choose

r(u, v) =

8
<
:
min

⇢
γ(v)(v, u)

γ(u)(u, v)
, 1

}
, if γ(u)(u, v) > 0

1, if γ(u)(u, v) = 0

.

This is the case presented in algorithm 5.2.2.1. It ensures the reversibility condition required in [67] to
prove that Π is invariant for Γ. In those books, a state space endowed with a countably generated σ-
algebra and a good topology is a basic condition for most of the definitions and results. A priori, our
MCKOD do not stick with that. In addition, we need to introduce a measure Π. Thus, section 5.3.3 is
devoted to solve these two points. In addition, according to [67], the kernel Γ is irreducible only if the
instrumental kernel  is irreducible. Then, section 5.3.4 defines a family of instrumental and prove their
irreducibility. Finally section 5.3.5 gives the proof using the results in [56], [60] and [67].

5.3.3 State space, distribution and density for MCKOD

Let (Ω,F , P ) be a probability space and q(x, y) a probability transition kernel on Rd ⇥ B(Rd) with
density w.r.t. the Lebesgue measure. Let D ⇢ Rd be an open bounded subset with C1 boundary @D. We
suppose that 0 62 D and is the cemetery point. We set D0 = D [ {0}. We introduce the space

c0 = {(un)n > 0 2 DN

0 : 9n0 2 N, 8n > n0, un = 0},

equipped with the distance

d1(u, v) = max
n > 0

d(un − vn)Rd

and denote by B(c0) the Borelian σ-algebra. We want to see the Markov chain (Xn)n > 0 as a random
variable :

X : (Ω,F , P ) 7! (c0,B(c0))
! 7! (Xn(!))n > 0.

A tricky point is the measurability with B(c0). But, we have the measurability with

F =

+1_

i=0

B(D0).

Thus, the following result give it :

Proposition 5.3.1. Let Fc0 be the restriction of F to the subspace c0. Then,

Fco = B(c0)

Proof. Let pn be the projection from c0 in D0 who associates un to u. This application is Lipschitz. In
fact, let u and v be in c0, we have d(un − vn) 6 d(u − v). Consequently, every projection is measurable
and Fco ⇢ B(c0).

Let show the inclusion B(c0) ⇢ Fc0 . We know that (c0, d1) is separable. We denote by S a dense subset.
B(c0) is generated by the ball of radius ⇢ 2 Q \D0 and center point u 2 S. Thus, it is enough to show
that the ball B(⇢, u) is in Fc0 . So, we write

B(⇢, u) =

+1\

n=0

{v 2 c0, d(un − vn) 6 ⇢}

and because each member of this intersection is in Fc0 , we have the desired result. tu
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Let Us define
An = {u 2 c0 : uk 2 D, 8k < n and uk = 0, 8k > n}.

The family (An)n > 0 is a partition of the space c0. We introduce the family of projections (⇡n)n > 0, with :

⇡n : An 7! Dn

u 7! (u1, · · · , un),

and the measure on c0

Π(dx) =

+1X

n=1

λn(⇡
−1
n (dx))1An

(x),

where λn is the Lebesgue measure on Dn. We have the following result :

Proposition 5.3.2. The distribution γ of a MCKOD (Xn)n > 0 starting from x is absolutely continuous

versus Π. The density is given by :

+1X

n=1

Z

DC

Z

DC

qnD(x, xn)q(xn, xn+1) dxndxn+1 1An
(x)

where

qnD(x, xn) = q(x, x1) · · · q(xn−1, xn) 1D(x1) · · · 1D(xn).

Proof. We fix n > 0 and we restrain Π to An. Suppose that A 2 B(c0) with Π(A) = 0, we have

γ(A \An) = P ((X1, · · · , Xn) 2 pn(A \An), Xn+1 2 DC)

= P ((X1, · · · , Xn) 2 pn(A \An))⇥ p(Xn, D
C)

=

Z

πn(A\An)

qnD(x, xn) dxn ⇥ p(Xn, D
C)

qn(x, y) is absolutely continuous versus λn and λn(A \An) = Π|An
(A) = 0. Using the classical formula :

P (X 2 A) =

+1X

n=0

P (X 2 (A \An)) = 0,

we conclude that P (X 2 A) = 0. For the density, the result comes from the expression

P (T = n+ 1) =

Z

πn(A\An)

qnD(x, xn) dxn ⇥ p(Xn, 0)

=

Z

DC

Z

DC

qnD(x, xn)q(xn, xn+1) dxndxn+1

=

Z

DC

Z

DC

Z
q(x, x1) · · · q(xn−1, xn) 1D(x1)

· · · 1D(xn) q(xn, xn+1) dx1 · · · dxn dxn+1,

where T is the first time X hits DC . Thus, the mass is one. tu

5.3.4 Some Π-irreducible instrumental kernels on c0

We introduce and study the Markov chain on c0 starting from w with kernel :

(u, dv) =

+1X

k=1

Θ(u,Ak)⌫k(u, dv)1Ak
(v)

where we suppose
– For each u 2 c0, the sum of the (Θ(u,Ak))k > 0 is one.
– (⌫k(u, dv))k > 1 is a family of probability transition kernels on Dn.

This statements insures that  is a probability transition kernel on c0. We describe the behavior of the
chain :
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– from a sequence u, we change the number of non-null points using the family (Θ(u,Ak))k > 0.
– for each non-null point, we change its position using a probability transition kernel from (⌫k(u, dv))k > 1.

This kind of Markov chains will serve as the so-called instrumental chains for the Hastings-Metropolis
algorithm. We give the following definition for the irreducibility of a chain :

Definition 5.3.1. Let G be a topological space, G a σ-algebra on G, m a probability measure and µ a

probability transition kernel. We say that A 2 G is attainable from x 2 G if :

µn(x,A) > 0 for some n > 1.

We say that the set B 2 G is m-communicating if :

8x 2 B, 8A 2 G such that A ⇢ B, m(A) > 0, A is attainable from x.

In addition, if G is m-communicating, the chain is m-irreducible

The γ-irreducibility of the instrumental kernel is required for the irreducibility of the Metropolis chain
and the convergence of the algorithm. Thus, the following results are crucial and permit us to have usable
kernels.

Proposition 5.3.3. If  is a probability transition kernel satisfying

– For every u 2 c0 and k > 0, Θ(u,Ak) > 0.

– for each k > 1, ⌫k(u, dv) is absolutely continuous w.r.t. the Lebesgue measure in Dn.

– for each k > 1, ⌫k(u, dv) is irreducible for the Lebesgue measure in Dn.

then

–  is absolutely continuous versus Π.

–  is Π-irreducible.

Proof. The absolute continuity is induced by the definition and the third hypothesis. The proof is totally
analog to 5.3.2. Thus, we only show the Π-irreducibility. Let A 2 B(c0) be a Π-positive subset and u 2 c0
a sequence. We want to prove that :

n(u,A) > 0, for some n > 1.

This result naturally holds if we show for all k > 0 and for all A ⇢ Ak that A is attainable from u 2 c0.
We fix k > 0 and choose A ⇢ Ak. From the definition of , we have

(u,A) =

Z

A

Θ(u,Ak)⌫k(u, dw) dw.

Thus, we only have to prove that Z

A

⌫k(u, dw) dw > 0.

The absolute continuity and the irreducibility of the (⌫k(u, dv))k > 0 induce that

for every k > 0 and λn-positive set A, ⌫mk (u,A) > 0 for m = 1.

Indeed, suppose the opposite, for each m > 1 we have

⌫mk (u,A) =

Z

A

Z

D

· · ·
Z

D

⌫k(u, v1) · · · ⌫k(u, vm) dv1 · · · dvm = 0

and we have a conflict with the irreducibility. Finally,
Z

A

⌫k(u, y)dy > 0

and the result is proved. tu

Corollary 5.3.1. With the same hypothesis as in 5.3.3,  is γ-irreducible.

Proof. A result of [60] says that : if a kernel  is Π-irreducible and there is a measure γ which is
absolutely continuous versus Π, then  is γ-irreducible. tu
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5.3.5 Convergence of the extended Hastings-Metropolis Algorithm

Before proving the convergence of the algorithm, we give an example of (Θ(u,Ak))k > 0 and (⌫k(u, dv))k > 1

for which the result hold. G denotes the geometric distribution adapted to N. For each u 2 c0, we choose
it for Θ(u,Ak) = P (G = k). Let g denote the density of the uniform distribution inside D. We take

⌫k(u, v) =

kY

i=1

g(v)

and one could see that it satisfies the hypothesis of the result below.

Proposition 5.3.4. If  is probability transition kernel satisfying satisfying the same hypothesis as in

5.3.3 and

– for every k > 0,

infu2c0Θ(u,Ak) > 0.

– for each k > 1,

infu2D⌫k(u, dv) > 0.

Then, the Hastings-Metropolis kernel Γ converge to γ.

Proof. In order to prove the convergence, we follow [67]. Consequently, we have to show that Γ is γ-
irreducible and γ{r(u) > 0} > 0. We start with the γ-irreducibility. Let A 2 B(c0) be a γ-positive subset
and u 2 c0 a sequence. We want

Γn(u,A) > 0, for some n > 1.

We use the same approach as in the proof of proposition 5.3.3. For fixed k > 0 and A ⇢ Ak, we study

(u,A) =

Z

A

(u,w)r(u,w)Π(dw).

Since the second term in the expression of Γ is positive, the γ-irreducibility of  is fairly enough. We recall
that

r(u, v) =

8
<
:
min

⇢
γ(w)(w, u)

γ(u)(u,w)
, 1

}
, if γ(u)(u,w) > 0

1, if γ(u)(u,w) = 0

.

If γ(u)Θ(u,Ak)⌫k(u,w) = 0 on A γ-almost-surely, then the proof is trivial with the γ-irreducibility of .
This is the same if

γ(w)(w, u)

γ(u)(u,w)
> 1

on A γ-almost-surely. Thus, we have to check that

(u,A) =

Z

A

(u,w) · γ(w)(w, u)
γ(u)(u,w)

Π(dw) > 0.

Suppose that u 2 Al, then

(u,A) =

Z

A

γAk
(w)Θ(w,Al)⌫l(w, u)

γ(u)
dw1 · · · dwk

=

Z

A

γAk
(w)Θ(w,Al)⌫l(w, u)

γAl
(u)

dw1 · · · dwk.

Because γAk
(u) is strictly positive on A γ-almost-surely, otherwise we are back to the previous case. With

the two lower-bound hypotheses, the problem is reduced to
Z

A

γAk
(w) dw1 · · · dwk > 0,

which is trivially true. For the aperiodicity, the probability to stay inside a Ak is positive. If we take A ⇢ Ak

such that γAk
(A), the probability to reach it is positive, since vk is γAk

-irreducible (see hypotheses in
5.3.3 and corollary 5.3.1). tu
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5.4 Practical implementation in dimension one and two

In section 5.4 we present the one and two-dimensional cases, for which the results of the interacting-
particle method of section 5.2 are presented in section 5.5.

The interacting-particle method 5.2.2.2 necessitates, as we have seen, to evaluate pdf on Markov-chain
trajectories with finite number of non-absorbed points. These pdf have been defined in section 5.3. They
are redefined in definition 5.4.1 and proposition 5.4.7 so that section 5.4 is self-sufficient.

The actual values of these pdf, for the one and two-dimensional cases, are also given in section 5.4.

5.4.1 Some general vocabulary and notation

Throughout section 5.4, we consider a monokinetic particle (a particle with constant speed and yielding
no subparticle birth) evolving in Rd, with d = 1, 2. This particle is created at the source point s 2 Rd,
that is the birth of the particle takes place at s.

The trajectory of the monokinetic particle is characterized by its collision points, which constitute a
Markov chain. The sequence of collision points is written (Xn)n2N⇤ . The birth of the particle takes place
at s, that is X0 = s. After its birth, the monokinetic particle travels along straight lines, with random
distances and directions, between its collision points, until it is absorbed. The absorption happens almost
surely after a finite number of collisions.

The distribution of the Markov chain of the birth and collision points (Xn)n2N is characterized by, first,
a function Pa(t) : Rd ! [0, 1], so that Pa(t) is the probability of absorption for a collision taking place at
t. Second, the distribution is characterized by the pdf q(t1, t2) : Rd⇥Rd ! R+, so that q(t1, .) : Rd ! R+

is a pdf.
The behavior of the monokinetic particle is then as follows. At a collision point Xn, for which the

monokinetic particle has not been absorbed yet, one and only one of the two following events can randomly
happen. First, the particle can be absorbed during the collision. In this case, we define this absorption
by the equality Xm = ∆ for any m > n. The point ∆ 2 Rd symbolizes that the monokinetic particle
has been absorbed. It is called the cemetery point, similarly to section 5.3. The choice of the cemetery
point ∆ is of course arbitrary, as long as it is distinguished from the source point, that is ∆ 6= s. If the
monokinetic particle is not absorbed during the collision, it is scattered. In this case, the position of the
next collision point Xn+1 has the q(Xn, .) pdf.

Thus, eventually, the sequence (Xn)n2N of collisions points of the monokinetic particle is a Markov chain
that has the property that, almost surely, there exists m 2 N so that Xn = ∆ for n > m. This is the type
of Markov Chains that are covered in section 5.3. We say that the monokinetic particle is active at time
n, or at Xn, or before collision n, if Xn 6= ∆.

Finally, when the Markov Chain of a monokinetic particle (Xi)i2N has been sampled, and is equal to
(xi)i2N we call the sequence (xi)i2N⇤ of its collision points a trajectory of the monokinetic-particle. (There
is no loss of information in that a trajectory does not store the deterministic source point x0 = s.)

Remark 5.4.1. Strictly speaking, it is possible that a collision n takes place at position ∆, that is Xn = ∆,

though the monokinetic particle has not been absorbed before Xn. Nevertheless, in this section 5.4, we only

consider transition kernels q(., .) that are absolutely continuous with respect to the Lebesgue measure. Thus,

almost-surely, the cemetery point ∆ identifies without ambiguity that the monokinetic-particle has been

absorbed.

5.4.2 Description of the one-dimensional case and expression of the probabi-

lity density functions

In this section 5.4.2, we consider an academic Monte-Carlo problem similar to the shielding studies, but
for which a monokinetic particle evolves in a one-dimensional space.

5.4.2.1 A one-dimensional random walk

We consider that the monokinetic particle evolves in R. As described in section 5.4.1, the birth of the
particle takes place at 0, that is X0 = s = 0. In the one-dimensional model we define, when the monokinetic
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particle has not been absorbed, the signed-distance traveled between two collisions is a Gaussian variable.
That is, if Xn 6= ∆, we have Xn+1 = Xn + "n+1, where the ("i)i2N⇤ are iid and follow a N (0,σ2

mk)

distribution.
Finally, at each collision point Xn, the probability of absorption is one if Xn 6 Linf or Xn > Lsup,

where Linf < 0 < Lsup. If a collision point is Linf < Xn < Lsup, the monokinetic particle is absorbed
with probability 0 6 Pa < 0, and is scattered with probability 1− Pa.

The event of interest is here that the monokinetic particle reaches the domain (−1, Linf ]. When using
the interacting-particle method of section 5.2, this event is traduced by the event Φ(x) > 0, with Φ(x) =

Linf − infi2N⇤;xi 6=∆xi. Notice that, almost-surely, the infimum is over a finite number of points.
The one-dimensional case presented here reproduces some key features of the shielding studies by Monte

Carlo code described in sections 5.1 and 5.4.1. Indeed, the monokinetic particle travels a random distance,
toward a random direction (positive or negative), between two collision points, and random absorption is
considered. The particle is absorbed after a number of collisions that is random and almost-surely finite.
By setting Pa sufficiently large, and Linf sufficiently away from 0, we will see that we can tackle problems
with arbitrary-small probabilities. Thus, in section 5.5, we will consider a probability small enough so
that the interacting-particle method of section 5.2 outperforms a simple-Monte Carlo method.

Finally, notice that an important feature of the two-dimensional case of section 5.4.3, that is not reprodu-
ced by the one-dimensional case, is the presence of different media, and the medium-crossing phenomena.

5.4.2.2 Expression of the probability density function of a trajectory

We now give the expression of the pdf (with respect to the setting of definition 5.4.1 and proposition
5.4.7) of a trajectory obtained from the one-dimensional model above. We let (xi)i2N⇤ be the sequence of
collision points (the trajectory) of a monokinetic particle. We let D = (Linf , Lsup). We denote φm,σ2(t)

the pdf at t of the one-dimensional Gaussian distribution with mean m and variance σ2.
Similarly to section 5.3, we define An = {(xi)i2N⇤ , xj 6= ∆, 81 6 j 6 n− 1, xk = ∆, 8k > n}, that is the

set of trajectories that are absorbed at collision point n− 1 (so that they are in the absorbed state from
collision point n and onward).

Proposition 5.4.1. The pdf, with respect to (c0,S,Π) of definition 5.4.1 and proposition 5.4.7, of a

trajectory (xn)n2N⇤ , sampled from the procedure of section 5.4.2.1, is f(x) =
P

n2N⇤ 1An+1(x)fn(x), with

fn(x) =

n−1Y

i=1

⇣
1xi2Dφxi−1,σ2

mk
(xi)(1− Pa)

⌘
φxn−1,σ2

mk
(xn) (1xn 62D + Pa1xn2D) ,

where x0 = 0 by convention.

Several comments can be made on proposition 5.4.1.
The pdf of proposition 5.4.1 has to be evaluated for each trajectory, either sampled from its initial

distribution, or from a perturbation method in the HM algorithm 5.2.2.1. The perturbation methods are
presented below in sections 5.4.2.3, 5.4.2.4, 5.4.2.5 and 5.4.2.6.

There is a mild difference between proposition 5.3.2 and proposition 5.4.1. In proposition 5.3.2, when
the monokinetic particle goes outside the domain of interest D, and consequently is absorbed, the collision
point in the exterior of D is not stored in the trajectory of the monokinetic particle. Indeed, the exact
value of this point is not needed to assess if the monokinetic has reached the domain (−1, Linf ]. However,
by not storing this point, the pdf of proposition 5.3.2 necessitates to know the probability that, starting
from a birth or scattering point in the domain D, the next collision point lies outside D. This probability
is not known explicitly in the framework of section 5.4.3, and a fortiori in shielding studies involving
more complex Monte Carlo codes. To avoid evaluating this probability numerically each time a pdf of a
trajectory is computed, we store the collision points outside the domain D. Notice that this, inevitably,
add some variance in the HM method, because we use a source of randomness (the exact collision point
at which the monokinetic particle leaves D) that does not impact the event of interest.

The evaluation of a pdf like that of proposition 5.4.1 is an intrusive operation on a Monte Carlo code.
Indeed, it necessitates to know all the random-quantity sampling that are done when this code samples
a monokinetic-particle trajectory. Thus, the Monte Carlo code is not used as a black box.
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Nevertheless, the computational cost of the pdf evaluation is of the same order as the computational
cost of a trajectory sampling, and the same kind of operations are involved. Namely, both tasks require
a loop which length is the number of collisions made by the monokinetic-particle before its absorption.
Furthermore, for each random quantity that is sampled for a trajectory sampling, the pdf evaluation
requires to compute the corresponding pdf. For example, in the case of proposition 5.4.1, when a trajectory
sampling requires to sample n Gaussian variables and n or n − 1 Bernoulli variables, the trajectory-pdf
evaluation requires to compute the corresponding Gaussian pdf and Bernoulli probabilities.

The discussion above holds similarly for the two-dimensional case of section 5.4.3.

5.4.2.3 Description of the trajectory perturbation method when Pa = 0

For clarity of exposition, we present first the perturbation method when Pa = 0. In this case, the
monokinetic particle is a random walk on R, that is absorbed once it goes outside D.

The perturbation method is parameterized by σ2
hm > 0. Let us consider an historical trajectory (xi)i2N⇤ ,

absorbed at collision n. Then, the set of birth and collision points of the perturbed monokinetic-particle
is an inhomogeneous Markov chain (Yi)i2N. This inhomogeneous Markov chain is so that Y0 = 0. Then, if
i 6 n−1, and if the perturbed monokinetic particle is still inD at collision point i, we have Yi+1 = Yi+"i+1,
where the ("i)1 6 i 6 n are independent and where "i follows a N (xi − xi−1,σ

2
hm) distribution.

Similarly to the initial sampling, the perturbed monokinetic particle is absorbed at the first collision
point outside D. If the collision point Yn of the perturbed monokinetic particle is in D (contrary to xn

for the initial trajectory), the sequel of the trajectory of the perturbed monokinetic particle is sampled
as the initial monokinetic particle would be sampled if its collision point n was Yn.

This conditional sampling method for perturbed trajectories is intrusive : it necessitates to change the
stochastic dynamic of the monokinetic particle. Nevertheless, the new dynamic is here chosen as to have
the same cost as the unconditional sampling, and to require the same type of computations. This is similar
to the discussion following proposition 5.4.1.

5.4.2.4 Expression of the probability density function of a perturbed trajectory

when Pa = 0

We now give the expression of the conditional pdf (with respect to the setting of proposition 5.3.2) of
a trajectory obtained from the one-dimensional perturbation method above.

Proposition 5.4.2. Let us consider an historical trajectory (xi)i2N⇤ , absorbed at collision n. The condi-

tional pdf, with respect to (c0,S,Π) of definition 5.4.1 and proposition 5.4.7, of a trajectory (yn)n2N⇤

sampled from the procedure of section 5.4.2.3, is (x, y) =
P

m2N⇤ 1Am+1
(y)fn,m(x, y) where, if m 6 n

fn,m(x, y) =

m−1Y

i=1

⇣
1yi2Dφyi−1+(xi−xi−1),σ2

hm
(yi)

⌘
1ym 62Dφym−1+(xm−xm−1),σ2

hm
(ym),

and if m > n,

fn,m(x, y) =

nY

i=1

⇣
1yi2Dφyi−1+(xi−xi−1),σ2

hm
(yi)

⌘

⇥
m−1Y

i=n+1

⇣
1yi2Dφyi−1,σ2

mk
(yi)

⌘

1ym 62Dφym−1,σ2
mk

(ym),

where y0 = 0 by convention.

Similarly to the discussion following 5.4.1, the computation of the conditional pdf of a perturbed tra-
jectory has the same computational cost as the sampling of this perturbed trajectory.



112
Chapitre 5. Hastings-Metropolis algorithm on Markov chains for

small probability estimation

5.4.2.5 Description of the trajectory perturbation method when Pa > 0

Let us now consider the general case where Pa > 0.

The perturbation method is parameterized by σ2
hm > 0 and 0 < Pc < 1. Let us consider an historical

trajectory (xi)i2N⇤ , absorbed at collision n.

As when Pa = 0, the set of birth and collision points of the perturbed monokinetic-particle is an
inhomogeneous Markov chain (Yi)i2N, so that Y0 = 0. As when Pa = 0, we modify the increments of
the initial trajectory, and, if the perturbed trajectory outsurvives the initial one, we generate the sequel
with the initial distribution. Specifically to this case Pa > 0, we perturb the absorption/non-absorption
sampling by changing the initial values with probability Pc.

More precisely, for i 6 n − 1, and if the perturbed monokinetic particle has not been absorbed before
collision point i, it is absorbed with probability max(Pc,1Yi 62D). If it is scattered instead, we have Yi+1 =

Yi + "i+1, where the ("i)1 6 i 6 n are independent and where "i follows a N (xi − xi−1,σ
2
hm) distribution.

If the perturbed monokinetic particle has not been absorbed before collision point n, then it is absorbed
if Yn 62 D. If Yn 2 D, the perturbed monokinetic particle is absorbed with probability p, where p = 1−Pc

if xn 2 D and p = Pa if xn 62 D.

As when Pa = 0, if the perturbed monokinetic particle has not been absorbed before collision point Yn,
the sequel of the trajectory of the perturbed monokinetic particle is sampled as the initial particle would
be sampled if its collision point n was Yn.

The idea is that, by selecting the difference between Pc and min(Pa, 1− Pa), the closeness between the
perturbed and initial trajectories can be specified, from the point of view of the absorption/non-absorption
events.

5.4.2.6 Expression of the probability density function of a perturbed trajectory

when Pa > 0

Proposition 5.4.3. Let us consider an historical trajectory (xi)i2N⇤ , absorbed at collision n. Let y0 =

x0 = 0 by convention. The conditional pdf, with respect to (c0,S,Π) of definition 5.4.1 and proposition

5.4.7, of a trajectory (yn)n2N⇤ sampled from the procedure of section 5.4.2.5, is (x, y) =
P

m2N⇤ 1Am+1
(y)fn,m(x, y)

where, if m 6 n− 1,

fn,m(x, y) =

m−1Y

i=1

⇣
1yi2Dφyi−1+(xi−xi−1),σ2

hm
(yi)(1− Pc)

⌘

φym−1+(xm−xm−1),σ2
hm

(ym) (1ym2DPc + 1ym 62D) ,

if m = n,

fn,m(x, y) =
n−1Y

i=1

⇣
1yi2Dφyi−1+(xi−xi−1),σ2

hm
(yi)(1− Pc)

⌘

φyn−1+(xn−xn−1),σ2
hm

(yn) (1yn 62D + 1yn2D1xn2D(1− Pc) + 1yn2D1xn 62DPa) ,

and if m > n+ 1,

fn,m(x, y) =

n−1Y

i=1

⇣
1yi2Dφyi−1+(xi−xi−1),σ2

hm
(yi)(1− Pc)

⌘

1yn2Dφyn−1+(xn−xn−1),σ2
hm

(yn) (1xn2DPc + 1xn 62D(1− Pa)) ,

m−1Y

i=n+1

⇣
1yi2Dφyi−1,σ2

mk
(yi)(1− Pa)

⌘

φym−1,σ2
mk

(ym) (1ym 62D + 1ym2DPa) .
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5.4.3 Description of the two-dimensional case and expression of the probabi-

lity density functions

5.4.3.1 Description of the neutron transport problem

The monokinetic particle evolves in R2, and its birth takes place at the source point s = (−ps,x, 0),
with ps,x > 0. The domain of interest is a box [−L

2 ,
L
2 ]

2 with ps,x < L
2 , in which there is an obstacle

sphere with center 0 and radius l, with l < L
2 . The obstacle sphere is the set

{
x 2 R2||x| 6 l

 
, with |x|

the Euclidean norm of x 2 R2.
The box is composed of two media. The obstacle sphere is composed of "poison" and the rest of the

box is composed of "water". The exterior of the box is also composed of "water". Nevertheless, if the
monokinetic-particle reaches this exterior, it is considered to have gone too far away, and subsequently is
is absorbed at the first collision point in the exterior of the box.

We consider a detector, in the box, that is a sphere with center (pdet,x, 0) and radius ld. The detector
is the set

{
x 2 R2||x− (pdet,x, 0)| 6 ld

 
. The detector is in the exterior of the obstacle sphere, that is

l < pdet,x − ld. The event of interest is that the monokinetic particle makes a collision in the detector,
before being absorbed. The cemetery point ∆ is, consequently, just chosen to be different from s and in
the exterior of the detector.

Let (xi)i2N⇤ be a trajectory of the monokinetic particle. When using the interacting-particle method of
section 5.2, the event of interest is traduced by the event Φ(x) > 0, with Φ(x) = ld − infi2N⇤;xi 6=∆|xi −
(pdet,x, 0)

t|.
We now discuss the probabilities of absorption. If a collision takes place outside the box, then we have

discussed that the monokinetic particle has left the domain of interest. With respect to the probability
of reaching the detector, this is equivalent to writing that the probability of absorption outside the box
is one. This is what we do in the sequel. Then, the probability of absorption in the box, but outside the
obstacle sphere, is written Pa,w and the probability of absorption in the obstacle sphere is written Pa,p,
with Pa,w 6 Pa,p.

Finally, let us discuss the distribution of the jumps between collision points. Following the neutron-
transport models, after a scattering, or birth, at Xn, of the monokinetic-particle, the direction toward
which the monokinetic particle travels has isotropic distribution. This direction is here denoted u, with
u an unit two-dimensional vector. Then, the sampling of the distance to the next collision point Xn+1

is as follows. First, the distance ⌧ is sampled from an exponential distribution with rate λw, if Xn is in
the medium "water", or λp > λw if Xn is in the medium "poison". Then, two case are possible. First, if
the sampled distance is so that the monokinetic particle stays in the same medium while it travels this
distance, then the next collision point is Xn+1 = Xn + ⌧u. Second, if between Xn and Xn + ⌧u, there
is a change of medium, then the monokinetic particle is virtually stopped at the first medium-change
point between Xn and Xn + ⌧u. At this point, the travel direction remains the same, but the remaining
distance to travel is resampled, from the exponential distribution with the rate corresponding to the new
medium. These resampling are iterated each time a sampled distance causes a medium-change. The new
collision point Xn+1 is the point reached by the first sampled distance that does not cause a medium
change. Notice that, in this precise setting with two media, the maximum number of distance sampling
between two collision points is three. This can happen in the case where the collision point Xn is in the
box but not in the obstacle sphere, where the sampled direction points toward the obstacle sphere, and
where toward this direction, the monokinetic particle enters and leaves the obstacle sphere.

The actual pdf, corresponding to the medium-change process described, of a collision point Xn+1,
conditionally to a collision point Xn, is given in proposition 5.4.4.

Notice that the setting described does constitute a model for a shielding system in neutron transport.
The source point corresponds to a neutron production area. This neutron production area is separated
from a sensible area, modeled by the detector. The shielding system is constituted first by the obstacle
sphere, which is placed between the source and the detector and has the largest probability of absorption
Pa,p. Second, the standard "water" medium also constitutes a milder protection, because it also has a
probability of absorption Pa,w.

We are interested in evaluating the number of monokinetic particles that reach the detector. Since the
number of monokinetic-particles produced at the source point is approximately known, the problem is to
evaluate the probability that a monokinetic-particle produced at the source reach the detector.
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5.4.3.2 Expression of the probability density function of a trajectory

We first set some notations for the two-dimensional problem presented in section 5.4.3.1. We write B as
the box [−L

2 ,
L
2 ]

2. We write Bext as the exterior of the box, Bext = R2\B. The obstacle sphere is denoted
S, with S =

{
x 2 R2||x| 6 l

 
.

We write |x| as the Euclidean norm of x 2 R2. We write [v, w] as the segment between two points
v, w 2 R2.

Consider two points v, w 2 R2 so that v is strictly in the interior of S (|v| < l) and w is strictly in the
exterior of S (|v| > l). Then cS(v, w) is defined as the unique point in the boundary of S that belongs to
[v, w].

Similarly, for v, w 2 R2\S and when [v, w] has a non-empty intersection with S, we denote by cS1
(v, w)

and cS2
(v, w) the two intersection points between [v, w] and the boundary of S. The indexes 1 and 2 are

so that |v − cS,1(v, w)| 6 |v − cS,2(v, w)|.
For v, w 2 R2\S, we let IS(v, w) be equal to 1 if [v, w] has a non-empty intersection with S, and 0

otherwise.
The computation of cs(v, w), IS(v, w), cS,1(v, w), and cS,2(v, w) are equally needed for a monokinetic-

particle simulation, and for the computation of the corresponding pdf of proposition 5.4.5. The four
quantities can be computed explicitly.

We now give the pdf of the collision point Xn+1, conditionally to a scattering or a birth point Xn.

Proposition 5.4.4. Consider a scattering, or birth, point xn 2 B. Then, the pdf of the collision point

Xn+1, conditionally to xn, is denoted q(xn, xn+1) and is given by, if xn 2 B\S

q(xn, xn+1) =
1

2⇡|xn − xn+1|
1xn+12R3\S(1− IS(xn, xn+1))λwe

−λw|xn−xn+1|

+
1

2⇡|xn − xn+1|
1xn+12R3\SIS(xn, xn+1)e

−λw|xn−cS1
(xn,xn+1)|

e−λp|cS1
(xn,xn+1)−cS2

(xn,xn+1)|λwe
−λw|cS2

(xn,xn+1)−xn+1|

+
1

2⇡|xn − xn+1|
1xn+12Se

−λw|xn−cS(xn,xn+1)|λpe
−λp|cS(xn,xn+1)−xn+1| (5.4.1)

and, if xn 2 S,

q(xn, xn+1) =
1

2⇡|xn − xn+1|
1xn+12Sλpe

−λp|xn−xn+1| (5.4.2)

+
1

2⇡|xn − xn+1|
1xn+12R3\Se

−λp|xn−cS(xn,xn+1)|λwe
−λw|cS(xn,xn+1)−xn+1|.

Proof. The proposition is obtained by using the properties of the exponential distribution, the definitions
of cs(xn, xn+1), IS(xn, xn+1), cS,1(xn, xn+1), and cS,2(xn, xn+1) and a two-dimensional polar change of
variables. The proof is straightforward but burdensome. tu

Using proposition 5.4.4 above, we now give the pdf of the monokinetic-particle trajectories obtained
from the sampling procedure of section 5.4.3.1.

Proposition 5.4.5. The pdf, with respect to (c0,S,Π) of definition 5.4.1 and proposition 5.4.7, of a

trajectory (xn)n2N⇤ , sampled from the procedure of section 5.4.3.1, is f(x) =
P

n2N⇤ 1An+1
(x)fn(x), with

fn(x) =
n−1Y

i=1

(
q(xi−1, xi)

⇥
1xi2B\S(1− Pa,w) + 1xi2S(1− Pa,p)

⇤)
q(xn−1, xn)

⇥
1xn 62B + 1xn2B\SPa,w + 1xn2SPa,p

⇤
,

where x0 = 0 by convention, and with q(xi−1, xi) and q(xn−1, xn) as in proposition 5.4.4.

5.4.3.3 Description of the trajectory perturbation method

The perturbation method is parameterized by σ2
hm > 0, 0 < Pc,w < 1 and 0 < Pc,p < 1.

Let us consider an historical trajectory (xi)i2N⇤ , absorbed at collision n.
As in section 5.4.2, the set of birth and collision points of the perturbed monokinetic-particle is an

inhomogeneous Markov chain (Yi)i2N, so that Y0 = 0. We modify independently the collision points of the
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initial trajectory, and, if the perturbed trajectory outsurvive the initial one, we generate the sequel with
the initial distribution. Similarly to section 5.4.2.5, we perturb the absorption/non-absorption sampling
by changing the initial values with probabilities Pc,w and Pc,p, if the initial and perturbed collision points
are both in B\S or both in S. If this is not the case, we sample the absorption/non-absorption for the
perturbed monokinetic-particle with the initial probabilities Pa,w and Pa,p.

More precisely, for i 6 n − 1, and if the perturbed monokinetic particle has not been absorbed before
collision point Yi, it is absorbed at collision point Yi with probability P (xi, Yi) with

P (xi, Yi) =

8
>>>>>>><
>>>>>>>:

1 if Yi 2 R2\B
Pa,w if Yi 2 B\S and xi 2 S

Pa,p if Yi 2 S and xi 2 B\S
Pc,w if Yi 2 B\S and xi 2 B\S
Pc,p if Yi 2 S and xi 2 S

. (5.4.3)

Similarly to the one-dimensional case, by taking Pa,w smaller than min(Pa,w, 1−Pa,w), and Pa,p smaller
than min(Pa,p, 1− Pa,p), we can modify rather mildly the initial trajectories.

If the perturbed monokinetic particle is not absorbed at collision point Yi, its next collision point is
Yi+1 = xi+1+"i+1, where the ("i)1 6 i 6 n are independent and where "i follows aN (0,σ2

hmI2) distribution,
where I2 is the 2⇥ 2 identity matrix. If the perturbed monokinetic particle has not been absorbed before
collision point Yn, then it is absorbed with probability P (xn, Yn) given by

P (xn, Yn) =

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

1 if Yn 2 R2\B
Pa,w if Yn 2 B\S and xn 2 S

Pa,w if Yn 2 B\S and xn 2 R2\B
Pa,p if Yn 2 S and xn 2 B\S
Pa,p if Yn 2 S and xn 2 R2\B
1− Pc,w if Yn 2 B\S and xn 2 B\S
1− Pc,p if Yn 2 S and xn 2 S

. (5.4.4)

As in section 5.4.2, if the perturbed monokinetic particle has not been absorbed before collision point
Yn, the sequel of the trajectory of the perturbed monokinetic particle is sampled as the initial particle
would be sampled if its collision point n was Yn.

5.4.3.4 Expression of the probability density function of a perturbed trajectory

Proposition 5.4.6. Let us consider an historical trajectory (xi)i2N⇤ , absorbed at collision n. Let y0 =

x0 = 0 by convention. The conditional pdf, with respect to (c0,S,Π) of definition 5.4.1 and proposition

5.4.7, of a trajectory (yn)n2N⇤ sampled from the procedure of section 5.4.3.3, is (x, y) =
P

m2N⇤ 1Am+1(y)fn,m(x, y)

where the fn,m are given by the following. If m 6 n− 1,

fn,m(x, y) =

m−1Y

i=1

⇣
φxi,σ2

hm
I2(yi) [1− P (xi, yi)]

⌘

φxm,σ2
hm

I2(ym)P (xm, ym),

with P (xi, yi) and P (xm, ym) as in (5.4.3). If m = n,

fn,m(x, y) =

n−1Y

i=1

⇣
φxi,σ2

hm
I2(yi) [1− P (xi, yi)]

⌘

φxn,σ2
hm

I2(yn)P (xn, yn),
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with P (xi, yi) as in (5.4.3) and P (xn, yn) as in (5.4.4). If m > n+ 1,

fn,m(x, y) =

n−1Y

i=1

⇣
φxi,σ2

hm
I2(yi) [1− P (xi, yi)]

⌘

φxn,σ2
hm

I2(yn) [1− P (xn, yn)]

m−1Y

i=n+1

(
q(yi−1, yi)

⇥
1yi2B\S(1− Pa,w) + 1yi2S(1− Pa,p)

⇤)

q(ym−1, ym)
⇥
1ym 62B + 1ym2B\SPa,w + 1ym2SPa,p

⇤
,

with P (xi, yi) as in (5.4.3), P (xn, yn) as in (5.4.4) and q(yi−1, yi) and q(ym−1, ym) as in proposition

5.4.4.

5.4.4 Proofs for section 5.4

For the proofs for section 5.4, we first define the space of the monokinetic-particle trajectories, and
the corresponding σ-algebra and measure, in definition 5.4.1 and proposition 5.4.7. These definitions are
similar to those given in section 5.3. They are stated here so that section 5.4 is self-sufficient.

Definition 5.4.1. Define

c0 = {(un)n > 1 2
(
Rd
)N⇤

: 9n0 2 N⇤, 8n > n0, un = 0}.

We define S as the smallest sigma-algebra on c0 containing the sets {x|x1 2 A1, ..., xn 2 An}, for n 2 N⇤

and Ai 2 B
(
Rd
)
, where B

(
Rd
)

is the Borel sigma-algebra on Rd.

Proposition 5.4.7. There exists a unique measure Π on (c0,S) that verifies the following relation, for

any En = {x|x 2 An+1, (x1, ..., xn) 2 A1 ⇥ ...⇥An}, with A1, ..., An 2 B
(
Rd
)

and n 2 N⇤.

Π(En) = λ(A1 ⇥ ...⇥An), (5.4.5)

with λ the Lebesgue measure.

Proof. The proof is carried out in the same way as in section 5.3. Alternatively, the Carathéodory
extension theorem can be used. tu

We now give the following general proposition 5.4.8, for the expression of pdf for inhomogeneous Markov
chains that are absorbed in finite-time.

Proposition 5.4.8. Consider a sequence of measurable applications an : Rd ! [0, 1], n 2 N, with a0 = 0.

Consider a sequence (qn)n2N⇤ of conditional pdf, that is to say 8n, yn−1, pn(yn−1, yn) is a pdf on Rd with

respect to yn.

Consider a probability space (Ω,F , P ). Consider a Markov Chain on (Ω,F , P ), (Yn)n2N, so that first

Y0 = yo a.s, when y0 in a non-zero constant of Rd. Second, Yn has the non-homogeneous transition kernel

defined by

k(yn−1, dyn) = 1yn−1=0δ0(dyn) + 1yn−1 6=0 {an(yn−1)δ0(dyn) + [1− an(yn−1)] qn(yn−1, yn)dyn} . (5.4.6)

Assume finally that, almost surely, the Markov Chain Yn reaches 0 after a finite time. Then, the application

! ! (Yi(!))i2N⇤ is a random variable on (c0,S,Π) (see definition 5.4.1 and proposition 5.4.7), with

probability density function, for y = (yi)i2N⇤ , f(y) =
P+1

n=1 1An+1
(y)fn(y), with

fn(y) =

nY

i=1

[(1− ai−1(yi−1))qi(yi−1, yi)] an(yn),

where s0 is the constant value of Y0 by convention.

Proof. Proposition 5.4.8 is proved in the same way as proposition 5.3.2. tu
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Let us now comment proposition 5.4.8.
Similarly to proposition 5.3.2, the value 0 corresponds to the cemetery point, symbolizing the absorption

of the Markov chain. Thus, the dynamic (5.4.6) is that, at each time n, if the Markov chain with value
Yn is absorbed, it stays absorbed. If it is not absorbed, then is is absorbed with probability an(Yn), thus
a probability both depending on position and time. This is consistent with the sampling of perturbed
trajectories in sections 5.4.2.5 and 5.4.3.3, where these probabilities of absorption depend on the initial
trajectories, and thus depend on time and position. If the Markov chain is not absorbed at Yn, then its
next value Yn+1 has, conditionally to Yn, the pdf qn+1(Yn, yn+1). This conditional distribution depends
on time, as is the case in the perturbation procedures of sections 5.4.2.3, 5.4.2.5 and 5.4.3.3.

Hence, proposition 5.4.8 can be applied to calculate the pdf of initial and perturbed trajectories in
propositions 5.4.1, 5.4.2, 5.4.3, 5.4.5 and 5.4.6.
Proof. [Proof of proposition 5.4.1] We apply proposition 5.4.8 with

a0(y0) = 0,

ai(yi) = 1yi2DPa + 1yi 62D

and
qi(yi−1, yi) = φyi−1,σ2

mk
(yi).

tu
Proof. [Proof of proposition 5.4.2] We denote x = (xi)i2N⇤ the initial trajectory, so that x 2 An+1, and
x0 = 0 by convention. We apply proposition 5.4.8 with

a0(y0) = 0,

ai(yi) = 1yi 62D,

for i > 1,
qi(yi−1, yi) = φyi−1+xi−xi−1,σ2

hm
(yi),

for 1 6 i 6 n and
qi(yi−1, yi) = φyi−1,σ2

mk
(yi),

for i > n+ 1. tu
Proof. [Proof of proposition 5.4.3] We denote x = (xi)i2N⇤ the initial trajectory, so that x 2 An+1, and
x0 = 0 by convention. We apply proposition 5.4.8 with

a0(y0) = 0,

ai(yi) = 1yi2DPc + 1yi 62D,

for 1 6 i 6 n− 1,
an(yn) = 1yi2D (1xi2D(1− Pc) + 1xi 62DPa) + 1yi 62D,

ai(yi) = 1yi2DPa + 1yi 62D,

for i > n+ 1,
qi(yi−1, yi) = φyi−1+xi−xi−1,σ2

hm
(yi),

for 1 6 i 6 n and
qi(yi−1, yi) = φyi−1,σ2

mk
(yi),

for i > n+ 1. tu
Proof. [Proof of proposition 5.4.5] We apply proposition 5.4.8 with

a0(y0) = 0,

ai(yi) = 1yi2SPa,p + 1yi2B\SPa,w + 1yi2R2\B

and
qi(yi−1, yi) = q(yi−1, yi),

with q(yi−1, yi) as in proposition 5.4.4. tu
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Proof. [Proof of proposition 5.4.6] We denote x = (xi)i2N⇤ the initial trajectory, so that x 2 An+1, and
x0 = 0 by convention. We apply proposition 5.4.8 with

a0(y0) = 0,

ai(yi) = P (xi, yi),

for 1 6 i 6 n− 1 and with P (xi, yi) as in (5.4.3),

an(yn) = P (xn, yn),

with P (xn, yn) as in (5.4.4),

ai(yi) = 1yi2SPa,p + 1yi2B\SPa,w + 1yi2R2\B ,

for i > n+ 1

qi(yi−1, yi) = φxi,σ2
hm

I2(yi),

for 1 6 i 6 n and
qi(yi−1, yi) = q(yi−1, yi),

for i > n+ 1 and with q(yi−1, yi) as in proposition 5.4.4. tu

5.5 Numerical results in dimension one and two

In this section 5.5, we present numerical results for the interacting-particle method of section 5.2, in the
one and two-dimensional cases of section 5.4. We follow a double objective. First we aim at investigating
to what extent the ideal results of the interacting-particle method hold (in term of bias and of theoretical
confidence intervals). Second, we want to confirm that, when the objective probability is small, the method
outperforms a simple-Monte Carlo method.

The simple-Monte Carlo method is parameterized by a number of Monte Carlo sample nmc. It consists
in generating nmc independent trajectories x1, ..., xnmc

and in estimating p by the empirical proportion
of these trajectories that verify the small-probability event. We denote by p̂mc the simple-Monte Carlo
estimator of p.

5.5.1 Numerical results in dimension one

5.5.1.1 Features of the interacting-particle method

We first present a simple one-dimensional setting, with no-absorption (Pa = 0). We set for the domain
Linf = −10, Lsup = 1, and for the variance of the increments σ2

mk = 1. As a result, the probability p to
estimate is not small. It is easily estimated to be p = 0.13 by the simple-Monte Carlo method.

For the perturbation method, we set σ2
hm = 0.12. This choice may not be optimal, but it is reasonable

and can be considered as typical for the implementation of the interacting-particle method in this one-
dimensional case.

The results we obtain for 100 independent estimations for the interacting-particle method are re-
grouped in figure 5.1. We have used N = 200 particles and T = 300 and T = 30 iterations in the
HM algorithm 5.2.2.1. Let us first interpret the results for T = 300 iterations. In this case, we ob-
serve that the estimator is empirically non-biased. Furthermore, we also plot the theoretical 95% confi-
dence intervals for the ideal estimator with T = +1, that are approximately (for N large) Ip =
pexp

✓
−1.96

r⇣
−logp
N

⌘◆
, pexp

✓
1.96

r⇣
−logp
N

⌘◆]
. We also recall from the discussion after (5.2.1) that

the events p̂ipm 2 Ip and p 2 Ip̂ipm
are approximately equivalent when N is large. Hence the coverage

probability of Ip for p̂ipm is approximately the probability that Ip̂ipm
contains p, which is the practical

quantity of interest. We see on figure 5.1 that Ip approximately matches the empirical distribution of the
estimator p̂ipm. The overall conclusion of this case T = 300 is that there is a good agreement between
theory and practice. This emphasizes the validity of using the interacting-particle method of algorithm
5.2.2.2, involving the HM algorithm, in a space that is not a subset of Rd.



5.5. Numerical results in dimension one and two 119

Figure 5.1 – One-dimensional case. Plot of 100 independently estimated probabilities with the

interacting-particle method 5.2.2.2, for number of particles N = 200, and number of iterations

in the HM algorithm 5.2.2.1 T = 300 (left) and T = 30 (right). We also plot the theoretical

95% confidence intervals (5.2.1) of the case T = +1. The true probability p = 0.13 is evaluated

quasi-exactly by a simple-Monte Carlo method. In both cases, the interacting-particle estimator

is empirically unbiased. For T = 300, the theoretical confidence interval, obtained in the case

T = +1 is adapted to the practical estimator. For T = 30 however, the estimator has more

variance that the ideal estimator T = +1 has.

In figure 5.1, we also consider the case T = 30. The estimator is still empirically unbiased. However, its
empirical variance is larger, so that the theoretical 95% confidence interval Ip is non negligibly too thin.
This can be interpreted, because when T is small, a new particle at a given conditional sampling step
of algorithm 5.2.2.2 is not independent of the N − 1 particles that have been kept. Thus, one can argue
that, at each step of algorithm 5.2.2.2, the overall set of N particles has more interdependence, so that
eventually the estimator has more variance. Nevertheless, on the other hand, an estimation with T = 30 is
10 times less time-consuming that an estimation with T = 300. We further discuss this trade-off problem
in section 5.5.3.

Finally, for this case of a probability that is not small, we have used simple Monte Carlo as a mean
to estimate it quasi-exactly. We have found that the interacting-particle method 5.2.2.2 requires more
computation time than the Monte Carlo method, for reaching the same accuracy. We do not elaborate
on this fact, since we especially expect the interacting-particle-method to be competitive for estimating
a small probability. This is the object of section 5.5.1.2. For this case of a probability that is not small,
we have just investigated the features of the interacting-particle method.

5.5.1.2 Comparison with simple Monte Carlo in a small-probability case

We now consider a case with possible absorption of the monokinetic particle. Thus we set Pa = 0.45.
We keep the same values σ2

mk = 1 and Lsup = 1 as in section 5.5.1.1, but we set Linf = −15. As a result
of these parameters for the monokinetic-particle transition kernel, the probability of interest is small.
In fact, we have not estimated it with negligible uncertainty. With a simple-Monte Carlo estimation of
sample size 109, the probability estimate is p̂vlmc = 6.6⇥10−8. We call this estimate the very large Monte
Carlo (VLMC) estimate. Given that the number of successes in this estimate is 66, which is not very
large, we are reluctant to use the Central Limit Theorem approximation for computing 95% confidence
intervals. Instead, we use the Clopper-Pearson interval [18], for which the actual coverage probability
is always larger than 95%. This 95% confidence interval is there equal to [5.1 ⇥ 10−8, 8.4 ⇥ 10−8]. This
uncertainty is small enough for the conclusions we will draw from this case. Finally, notice that this very
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large Monte Carlo estimate is not a benchmark for the interacting-particle method, because it is much
more time consuming.

For the interacting-particle method, we set N = 200 particles, and for the HM algorithm, we set T = 300

iterations. We use σ2
hm = 0.12 and Pc = 0.2 for the perturbation method. We still denote p̂ipm the obtained

estimator for p. We consider a third estimator, that we denote pmc and that consists in the simple-Monte
Carlo estimator with sample size 5⇥ 106. This sample size is appropriate to compare the efficiency of the
interacting-particle and Monte Carlo method, as we will show below.

The first criterion for comparing the two estimators p̂ipm and p̂mc is their computation time. We have
two possible ways to make this comparison. First, we can evaluate the complexities of the two methods.
The Monte Carlo method requires to perform 5⇥106 monokinetic-particle simulations. For each proposed
perturbation, the interacting-particle method requires to sample one perturbed trajectory, and to compute
its unconditional and conditional pdf. This has to be done approximately T ⇥ logp̂vlmc

log(1− 1
N

)
⇡ 106 times. Thus,

from this point of view, the costs of the two methods have the same orders of magnitude. We can not give
a more precise comparison, since the trajectories sampled by the two methods do not necessarily have the
same length in the mean sense. Furthermore, it is not obvious to compare the computational cost of an
initial sampling, with the costs of a conditional sampling and pdf computations.

Hence, we will just compare the computational costs of the two methods by considering their actual
computational times, for the implementation we have used. Averaged over all the estimations, the time for
the interacting-particle method is 58% of the time for the Monte Carlo method. Hence, we confirm that
the computational costs are of the same order of magnitude, the comparison being nevertheless beneficial
to the interacting-particle method.

We now compare the accuracy of the two methods for estimating the true probability p. On figure
5.2, we plot the results of 100 independent estimations for p̂ipm and 50 independent estimations for
p̂mc. It appears clearly that the interacting-particle method is more precise in this small probability
case. Especially, consider the empirical Root Mean Square Error criterion, for n independent estimates

p̂1, ..., p̂n, for any estimator p̂ of p : RMSE =
q

1
n

Pn
i=1(p− p̂i)2. Regardless of the value of p in the very

large Monte Carlo 95% confidence interval [5.1⇥ 10−8, 8.4⇥ 10−8], the RMSE is smaller for p̂ipm than for
p̂mc. If we assume p = p̂vlmc, then the RMSE is 10−7 for p̂mc and 2⇥ 10−8 for p̂ipm.

A comparison ratio for p̂ipm and p̂mc, taking into account both computational time and estimation

accuracy (in line with the efficiency in [40]), is the quality ratio defined by
p
TIMEmc⇥RMSEmcp
TIMEipm⇥RMSEipm

, where

the four notations TIMEmc, TIMEipm, RMSEmc and RMSEipm are self-explanatory. This ratio is 6.7
here. This is interpreted as : if the two estimation methods were set as to require the same computational
time, then the interacting-particle method would be 6.7 times as accurate (in term of RMSE) as the
Monte Carlo method.

Notice that, if we had done the comparison from the point of view of the relative estimation errors,
instead of the absolute errors, it would have been even more beneficial to the interacting-particle method.
Indeed, assuming again p = p̂vlmv = 6.6 ⇥ 10−8 for discussion, the interacting-particle method does a
maximum relative error of 250%. On the other hand, the Monte Carlo estimator takes only 3 different
values in figure 5.2. When it takes value 2

5⇥106 it does a relative error of 600%, when it takes value 1
5⇥106

it does a relative error of 300% and when it takes value 0 it does an infinite relative error. Alternatively,
we can also say that, in the majority of the cases, the Monte Carlo estimator does not see any realization
of the rare event, so that it can provide only an overly-conservative upper-bound for p.

5.5.2 Numerical results in dimension two

5.5.2.1 Features of the interacting-particle method

We now present the numerical results for the two-dimensional case. We set the absorption probability
in the background Pa,w = 0.2, the absorption probability in the obstacle sphere Pa,p = 0.5, the dimension
of the box [−L

2 ,−L
2 ] L = 10, the radius of the obstacle sphere l = 2, the radius of the detector ld = 0.5.

The positions of the detector and the source are given by pdet,x = ps,x = 3. We set the rate of collisions in
the water medium λw = 0.2 and in the poison medium λp = 2. As a result, the probability is p = 2⇥10−4

and is evaluated quasi-exactly by a Monte Carlo sampling, similarly to section 5.5.1.1.
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Figure 5.2 – One-dimensional case. Plot of 100 independently estimated probabilities with

the interacting-particle method 5.2.2.2 for N = 200 and T = 300 (left) and 50 independently

estimated probabilities with the Monte Carlo method with sample size 5 ⇥ 106 (right). We plot

a very large Monte Carlo estimate of the true probability p̂vlmc = 6.6 ⇥ 10−8, together with

the associated Clopper-Pearson 95% confidence intervals. For the interacting-particle method,

we also plot the theoretical 95% confidence intervals of the case T = +1, assuming the true

probability is the VLMC estimate. The uncertainty on the VLMC estimate of the true value p

of the probability is small enough for our conclusions to hold. These conclusions are that the

interacting-particle method outperforms the Monte Carlo method (with sample size 5 ⇥ 106),

both in term of computation time and of accuracy.
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Figure 5.3 – Two-dimensional-case. Plot of 50 independently estimated probabilities with the

interacting-particle method 5.2.2.2, for number of particles N = 200 and number of iterations in

the HM algorithm T = 300. We also plot the theoretical 95% confidence intervals (5.2.1) of the

case T = +1. The true probability p = 0.2⇥ 10−4 is evaluated quasi-exactly by a simple-Monte

Carlo method. The interacting-particle estimator is empirically unbiased and the 95% theoretical

confidence interval, obtained in the case T = +1, is adapted to the practical estimator.

This value is not very small, so that we do not compare the interacting-particle method with the Monte
Carlo method. We just aim at showing that the interacting-particle method is valid in this two-dimensional
setting. Indeed, this setting has many features that are representative of shielding studies with Monte
Carlo codes. Namely, the setting involves absorption, the presence of two media with different collision
rates and the presence of medium-border crossing phenomena.

For the HM perturbations of algorithm 5.2.2.1, we set the collision-point perturbation variance σ2
hm =

0.52, the probability of changing the absorption/non absorption in the obstacle sphere Pc,p = 0.1 and in
the rest of the box Pc,w = 0.05. As in section 5.5.1.1, these settings are reasonable, but are not tuned as
to yield an optimal performance of the interacting-particle method.

In figure 5.3, we present the results for 50 independent estimations with the interacting-particle method.
Empirically, the estimator is unbiased and the theoretical 95% confidence intervals are valid. This is the
same conclusion as in section 5.5.1.1, and is again a validation of the HM algorithm in the space of the
monokinetic-particle trajectories.

5.5.2.2 Comparison with simple Monte Carlo in a small-probability case

We now consider the case of a small probability. For this, we set the absorption probability in the
obstacle sphere Pa,p = 0.7 and in the rest of the box Pa,w = 0.5, the dimension of the box [−L

2 ,−L
2 ]

L = 10, the radius of the obstacle sphere l = 2.5, the radius of the detector ld = 0.5. The positions of the
detector and the source are given by pdet,x = ps,x = 3. We set the rate of collisions in the water medium
λw = 2 and in the poison medium λp = 3. In essence, the obstacle sphere is larger than in subsection
5.5.2.1, the absorption probabilities are larger, and the collision rates are larger, thus yielding all the more
frequent absorption.

The probability p is estimated by very large Monte Carlo with sample size 1.25⇥ 109. The estimate is
22

1.25⇥109 ⇡ 1.76⇥ 10−8. Similarly to section 5.5.1.2, the Clopper-Pearson 95% confidence interval for the
probability is [10−8, 2.5⇥ 10−8]. It is also small enough for validating the discussion that follows.

We compare the estimators p̂ipm, with N = 200 particles and T = 300 iterations in the HM algorithm,
and the estimator p̂mc with sample size 5⇥106. We have found that the computation time for the estimator
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Figure 5.4 – Two-dimensional-case. Plot of 50 independently estimated probabilities with the

interacting-particle method of algorithm 5.2.2.2 for N = 200 and T = 300 (left) and with the

simple-Monte Carlo method with sample size 5⇥ 106 (right). We plot a very large Monte Carlo

estimate of the true probability p̂vlmc = 1.76⇥10−8, together with the associated Clopper-Pearson

95% confidence intervals. For the interacting-particle method, we also plot the theoretical 95%

confidence intervals of the case T = +1, assuming the true probability is the VLMC estimate.

The uncertainty on the VLMC estimate of the true value p of the probability is small enough for

our conclusions to hold. These conclusions are that the interacting-particle method outperforms

the Monte Carlo method (with sample size 5 ⇥ 106), both in term of computation time and of

accuracy.

p̂ipm is, on average, 88% of that of the estimator p̂mc.
Now, concerning estimation accuracy, the results are presented in figure 5.4. The interacting-particle

method outperforms the simple-Monte Carlo method, to a greater extent that in figure 5.2. As a confir-
mation, the quality ratio

p
TIMEmc⇥RMSEmcp
TIMEipm⇥RMSEipm

is 10.5, against 6.7 in figure 5.2.

5.5.3 Discussion on the numerical results

We now discuss some conclusions on the numerical results of section 5.5. First, in two cases with a
probability that is not small (figures 5.1 and 5.3), the interacting-particle method is empirically unbiased.
The theoretical confidence intervals T = +1 are in agreement with the empirical distribution for finite
T , provided that T is large enough. For the two cases of small probabilities (figures 5.2 and 5.4), we do
not state conclusions on this question, in one sense or another, because we do not know the probability
with negligible uncertainty.

However, for figures 5.2 and 5.4, the uncertainty on the probability is small enough to compare the per-
formances of the simple-Monte Carlo and interacting-particle methods. The conclusion of this comparison
is strongly unilateral, and is that, for a small probability, the interacting-particle method is preferable
over a simple-Monte Carlo sampling.

We have not carried out numerical test for extremely small probabilities (say, under 10−10). The reason
for that is that we would not have an estimate of these probabilities similar to the very large Monte Carlo
estimate p̂vlmc. That it to say an estimate that comes with confidence intervals with guaranteed coverage
probability. Nevertheless, a simple-Monte Carlo method, with computational time similar to that of the
interacting-particle method, would most likely never see the rare event, and thus only provide an overly
conservative upper bound. Thus, the comparison would be even more in favor of the interacting-particle
method than for figures 5.2 and 5.4.

In figure 5.1, we have mentioned the trade-off problem between the number of particles N and the
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Figure 5.5 – Same setting as in figure 5.2 for the interacting-particle method. We consider one

estimation p̂ipm of the interacting-particle method. We plot the empirical acceptance rate, over

the T = 300 proposed perturbations, for each of the
logp̂ipm

log(1− 1

N )
HM samplings of algorithm 5.2.2.1.

The acceptance rate decreases considerably when one gets closer to the rare-event.

number of HM iterations T . The average complexity of the interacting-particle method is proportional
to the product NT . Naturally, increasing N improves the accuracy of the interacting-particle method.
Especially, the variance is proportional to N when N is large, in the ideal case T = +1. We have seen in
figure 5.2 that increasing T also reduces the variance, which is well interpreted. It is however quite difficult
to quantify the dependence between T and the variance of the estimator. We think that the question of
this trade-off between N and T would benefit from further investigation.

In our experiments, we have not optimized the choice of the perturbation method. This would naturally
bring a potential additional benefit for the interacting-particle method. Perhaps less natural is the prospect
of allowing the perturbation method to vary with the progression of the algorithm. For example, one could
use a perturbation method that propose perturbed trajectories that are closer to the initial ones, when
these trajectories are close to the rare event. The results we now present in figure 5.5 support this idea.
In figure 5.5, we plot the acceptance rate in the HM algorithm 5.2.2.1 (by acceptance we mean that both
the pdf ratio and the objective function conditions are fulfilled), as a function of the progression in the
interacting-particle method. This acceptance rate is decreasing, and is small when the interacting-particle
method is in the rare-event state. Notice that this was not the case in the experiments conducted in [36].

An other potential tuning of the interacting-particle method is the choice of the objective function Φ,
for which the event "the monokinetic particle makes a collision in the detector" is equivalent to the event
that Φ, evaluated on the trajectory of the monokinetic particle, exceeds a threshold. We have used as a
function Φ the (opposite of the) minimum, over the collision points of the trajectory, of the Euclidean
distance to the center of the detector. This choice could be improved. One natural possibility is to replace
the Euclidean distance by the optical distance. That is to say the distance traveled in each medium would
be weighted by the collision rate in the medium. For some neutron-transport problem, it is also possible
to use more specific objective functions, by finding approximations of the importance function, see e.g.
[30].

Conclusion

We have considered the adaptation of the interacting-particle method [36] to a small-probability estima-
tion problem, motivated by shielding studies in neutron transport. The adaptation is not straightforward,
because shielding studies involve working on probability distributions on a set of trajectories that are
killed after a finite time.

The contribution brought by the paper it two-fold. First, it has been shown that probability density
functions can be defined on this set. This enables to use the Hastings-Metropolis algorithm, which is
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necessary to implement the method [36] in practice. A convergence result has also been shown for the
Hastings-Metropolis algorithm in this setting.

The second contribution of the paper is to give the actual probability density function equations, for
implementing the interacting-particle method in an academic one-dimensional problem, and a simplified
but realistic two-dimensional problem. In both cases, the method is shown to be valid. Furthermore, the
method outperforms a simple-Monte Carlo estimator, for estimating a small probability.

Prospects are possible for both contributions. First, the proof of the convergence of the Hastings-
Metropolis could be extended under more general assumptions. Second, several possibilities for practical
improvement of the interacting-particle method are presented in section 5.5.3.
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Résumé 

L’objectif de cette thèse est l’étude d’un schéma numérique 

pour les équations différentielles doublement stochastiques 

rétrogrades (EDDSR). On propose une  méthode numérique 

qui  nous permet d’attaquer une large gamme d’équations aux 

dérivées partielles stochastiques (EDPS) non-linéaires. Ceci 

est possible par le biais de leur représentation probabiliste en 

termes d’EDDSRs. Dans la dernière partie, nous étudions une 

nouvelle méthode des particules dans le cadre des études de 

protection en neutroniques. 

 

Dans le chapitre 2, on propose un schéma numérique pour les  

EDDSRs. Nous étudions l’erreur de discrétisation en temps et 

nous donnons la vitesse de convergence associée. Ensuite, 

nous déduisons un schéma numérique pour les solutions 

faibles d’EDPS semilinéaires et nous déduisons la vitesse de 

convergence en temps.  

Dans le chapitre 3, nous étendons notre méthode aux 

équations différentielles doublement stochastiques rétrogrades 

généralisées (EDDSRG). Nous étudions l’erreur de 

discrétisation en temps et donnons la vitesse de convergence 

associée. Nous déduisons un schéma numérique pour les 

EDPS quasilinéaires associées aux EDDSRG, en donnant la 

vitesse de convergence. 

Dans le chapitre 4, on propose un schéma pour l’approxima-

tion par projections et simulations de Monte-Carlo des 

EDDSRs discrètes. On étudie l’erreur de régression dans un 

cas particulier mais très instructif. On procède à une analyse 

conditionnelle de l’erreur sachant les trajectoires de ce bruit 

extérieur. On obtient des bornes supérieures presque sûres 

non asymptotiques mais explicites de l’erreur de régression 

conditionnelle, qui assurent la convergence de notre schéma. 

Dans le chapitre 5, on étudie un problème d’estimation de 

probabilités faibles dans le cadre des études de protection en 

neutroniques. On adapte une méthode récente d’estimation de 

faibles probabilités par un système de particules en 

interaction, se basant sur l’algorithme de Hastings-Metropolis 

et qui est proposée initialement pour les variables aléatoires, 

au cas des chaînes de Markov. On montre la convergence de notre 

algorithme. L’implémentation de la méthode est donnée en détails 

dans le cas unidimensionnel ainsi que dans le cas bidimensionnel. 

 

Mots clés: Equations différentielles doublement 

stochastiques rétrogrades, Equations aux dérivées 
partielles stochastiques nonlinéaires, Projections, 
Simulations de Monte-Carlo, régression , Système de 
particules en intéraction , Algorithme de Hastings-

Metropolis, Chaînes dee Markov. 

Abstract 
The purpose of this thesis is to study a numerical method for 

backward doubly stochastic differential equations (BDSDEs 

in short). Our numerical method allows us to tackle a large 

class of nonlinear stochastic partial differential equations 

(SPDEs in short), thanks to their probabilistic interpretation in 

terms of BDSDEs. In the last part, we study a new particle 

method in the context of shielding studies. 

 

In chapter 2, we propose a numerical scheme for BDSDEs. 

We study the error arising from the time discretization and we 

give the associated rate of convergence. Then, we deduce a 

numerical scheme for the weak solutions of the associated 

semilinear SPDEs and we deduce the rate of convergence in 

time. 

In chapter 3, we extend our method to generalized backward 

doubly stochastic differential equations (GBDSDEs in short). 

We study the time discretization error and we give the 

associated rate of convergence. Then, we deduce a numerical 

scheme for the quasilinear SPDEs associated to the 

GBDSDEs and we deduce the rate of convergence. 

In chapter 4, we propose a scheme based on projections and 

Monte-Carlo simulations to approximate solutions of discrete 

BDSDEs. We study the regression error in a particular but 

very instructive case. We proceed to a conditional analysis of 

the error given the trajectories of the exterior noise. We obtain 

non asymptotic but explicit almost sure upper bounds for the 

regression conditional error.  

In chapter 5, we study a problem of small probability 

estimation in the context of shielding studies in neutron 

transport. We adapt a recent interacting particle method for 

small probabilities estimation, based on Hastings-Metropolis 
algorithm and given initially for random 

variables, to the case of Markov chains. We show the 

convergence of our algorithm. Then, the practical 

implementation is given in details in the one and two-

dimensional cases. 
Key Words: Backward Doubly Stochastic Differential 
Equations, Semilinear Stochastic PDEs,  Generalized 
Backward Doubly Stochastic Differential Equations, 
Quasilinear Stochastic PDEs, Projections, Monte-Carlo 
simulations, regression, Interacting particle systems, 
Hastings-Metropolis algorithm, Markov chains. 
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