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ABSTRACT

The thesis falls into the field of bioengineering and more particularly into experimental
set up for chemical gas sensing. Perhaps more than any other sensory modality, chem-
ical sensing faces with major technical and conceptual challenges: low specificity, slow
response time, long term instability, power consumption, portability, coding capacity and
robustness.

There is an important trend of the last decade pushing artificial olfaction to mimic the
biological olfaction system of insects and mammalians. The designers of machine olfaction
devices take inspiration from the biological olfactory system, because animals effortlessly
accomplish some of the unsolved scenarios in machine olfaction. In a remarkable example
of an olfactory guided behavior, male moths navigate over large distances in order to
locate calling females by detecting pheromone signals both rapidly and robustly.

The biomimetic chemical sensing aims to identify the key blocks in the olfactory path-
ways at all levels from the olfactory receptors to the central nervous system, and simulate
to some extent the operation of these blocks, that would allow to approach the sensing per-
formance known in biological olfactory system of animals. New technical requirements
arise to the hardware and software equipment used in such machine olfaction experi-
ments.

This work explores the bioinspired approach to machine olfaction in depth on the tech-
nological side. At the hardware level, an embedded computer is assembled, being the
core part of the experimental set up. The embedded computer is interfaced with two
main biomimetic modules designed by the collaborators: a large-scale sensor array for
emulation of the population of the olfactory receptors, and a mobile robotic platform for
autonomous experiments for guiding olfactory behavior. At the software level, the soft-
ware development kit is designed to host the neuromorphic models of the collaborators
for processing the sensory inputs as in the olfactory pathway.

Virtualization of the set up was one of the key engineering solutions in its development.
Being a device, the set up is transformed to a virtual system for running data simula-
tions, where the software environment is essentially the same, and the real sensors are
replaced by the virtual sensors coming from especially designed data simulation tool.
The proposed abstraction of the set up results in an ecosystem containing both the virtual
array for data generation and the models of the olfactory system for data processing. This
ecosystem can be loaded from the developed system image on any personal computer.

The scientific results have been published in three journal articles, two book chapters
and conference proceedings. The main results on validation of the set up under the sce-
nario of robotic odor localization are reported in the book chapters. The series of three
journal articles covers the work on the data simulation tool for machine olfaction: the
novel model of drift, the models to simulate the sensor array data based on the reference
data set, and the parametrized simulated data and benchmarks proposed for the first time
in machine olfaction.

This thesis ends up with a solid foundation for the research in biomimetic simulations
and algorithms on machine olfaction. The results achieved in the thesis are expected to
give rise to new bioinspired applications in machine olfaction, which could have a signif-
icant impact in the biomedical engineering research area.

vii
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INTRODUCTION

1.1 MACHINE OLFACTION
1.1.1 Historical perspective

In 1991, Linda Buck and Richard Axel — 2004 Nobel laureates in Medicine and Physiology
— discovered the family of proteins (seven trans-membrane proteins) that mediate the
transduction of chemical information into electrical signals through olfactory receptor
neurons (ORN) [Buck and Axel 10]. Later in 1994, Vassar and colleagues discovered the
ordered projection (PR) of ORN onto the olfactory bulb based on the protein expressed by
each ORN (Figure 1.1) [Vassar et al. 93]. These and other recent findings in biology have
considerably improved our understanding of the olfactory system.

Back 1982, Krishna Persaud and George Dodd first introduced the use of arrays of
broadly-selective chemical sensors targeted to discriminate between a wide variety of
odors [Persaud and Dodd 69]. Sensors in the array conformed to the same rule of non-
specificity as ORN in the olfactory system, and the discrimination among odor mixtures
could be achieved without the use of highly specific receptors. The authors referred to the
proposed device as an electronic nose.

1.1.2  Biological olfaction

The olfactory system of vertebrates and insects share a common basic architecture. Their
olfactory pathway can be divided into three basic building blocks (Figure 1.1):

e olfactory epithelium;
¢ olfactory bulb (OB) in vertebrates and antennal lobe (AL) in insects;

¢ olfactory cortex (OC) in vertebrates and mushroom body (MB) in insects.

In the olfactory epithelium, the molecular properties of the odorants are transduced
into electrical signals through a collection of ORN, also referred as to olfactory sensory
neurons (OSN). For instance, mammals have tens of millions of ORN [Hildebrand and
Shepherd 37], which belong to as many as 1000 different types of receptors [Ma and
Shepherd 54].

One of the prevailing hypotheses about olfactory primary reception is that ORNs do
not respond to specific molecules, but rather to specific molecular features of an odorant
molecule, commonly referred to as odotopes [Shepherd 85, 86]. For example, the odotopes
can be carbon-chain length, the presence of benzene rings or different functional groups
such as esters or aldehydes.

Since most odorants in the environment consist of mixtures of volatile molecules and
each molecule can contain several odotopes, an odorant is then detected as a large combi-
nation of specific odotopes. For instance, roasted coffee has been estimated to contain on
the order of 600 volatile components.

ORNSs are placed in the first relay of the olfactory system inside the brain: the olfactory
bulb in vertebrates and antennal lobe in insects. ORNs project the signal in a very orderly
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Figure 1.1: The scheme of the circuitry of the olfactory bulb and its inputs. Figure source: [Khan
et al. 49].

fashion into spherical regions of neuropil known as glomeruli (GL) (Figure 1.1). Each
glomerulus receives axons from one type of ORN, and each ORN type projects into one
or a few glomeruli [Vassar et al. 93, Ressler et al. 76]. At the glomerular level, olfactory
information can be thought to be represented by an image of the molecular features of
the stimulus. Further two types of neurons can be found in the olfactory bulb: projection
neurons (mitral and tufted cells) and local interneurons (periglomerular and granule cells)
[Shepherd et al. 87].

In the olfactory cortex the holistic representation of an odor is formed and odors are
identified [Shepherd et al. 87]. Recurrent connections are pervasive, and the olfactory
system is no exception [Mountcastle 61]. There exist feedback connections from cortex to
granule cells, which are believed to modulate their inhibitory effect in the olfactory bulb.
The representation of odors by a particular glomeruli in the olfactory bulb is transformed
in the cortex into highly distributed and multiplexed odor maps [Zou Z and LB 111]. A
local population of cells respond to specific combinations of inputs from the glomeruli of
the olfactory bulb acting as coincidence detectors. Different odorants elicit distinct, sparse
and distributed but partially overlapping activity patterns in the piriform cortex.

1.1.3 Artificial olfaction

Machine olfaction device

A machine olfaction device is traditionally referred to as the electronic nose. This device is
commonly based on an array of broadly-tuned non-specific chemical sensors, that respond
to an environment in the presence of an odor and form a characteristic pattern, also
known as a smell fingerprint [Persaud and Dodd 69, Pearce et al. 64]. The device is typically
composed of the following parts:

GAS DELIVERY SYSTEM. The gas samples are delivered to the sensors via the delivery
system. The system might contain a mass flow controller, a selector of channels
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or sample, a sensor camera and a pump. This part of the device is optional, as
sensors can be used to measure in less-controlled conditions, for example, in an
open-sampling system.

SENSOR ARRAY. The interaction between gas molecules and a sensing material of the
sensors leads to the signal transduction from chemical-physical quantities to analyt-
ically useful signals (typically electrical signals).

INTERFACE ELECTRONICS. The implementation of electronic circuits depends on the
type and operational mode of the sensors. The electronics is mainly responsible for
digital-to-analog conversion with the best signal-to-noise ratio.

DATA PROCESSING UNIT. The algorithms of signal processing and pattern recognition
(pattern regression) are used to evaluate the acquired data and formalize the re-
sponse to a subject of the study, for example, classification of two distinct odors.

It is important to note that the link between human odor impressions and the electronic
nose output patterns exists only in particular and well-defined cases, as the technology is
still far from mimicking the biological olfactory system [Rock et al. 78].

1.2 CHEMOSENSORS

Chemical sensors or chemosensors combined in an array were proposed as a low-cost
and high-throughput alternative to analytical instruments in machine olfaction [Persaud
and Dodd 69], and such approach has been widely exploited over the last decades. The
principles to transduce the chemical information contained in the measured gases into an
analytical signal can be different: electrical, thermal, optical, mass-transportation and oth-
ers. The chemosensor technology includes metal oxide semiconductor (MOX), CP, chemo-
capacitors, metal oxide semiconductors field-effect transistors (MOSFET), quartz crystal
microbalance (QCM), surface acoustic wave (SAW), surface plasmon resonance (SPR), flu-
orescence and others [Pearce et al. 64].

Figure 1.2 shows a typical response of a CP sensor to a gas pulse at a certain concentra-
tion. The measured signal is the resistance of the sensor.

1.2.1  Conducting polymer sensors

Interactions between analyte and conducting polymers can be caused on different parts
of the sensor device: In the bulk, the number of carriers and bulk mobility are changed,
and the CP acts either as e-donor or e-acceptor. Between the electrodes, the height of the
Schottky barrier is modulated. On the surface, the conductivity on the surface is altered.
On the substrate, the surface conductivity of the oxide — a typical material of the substrate
—is changed with the degree of hydration. Hence, the possible phenomena involved in the
transduction mechanism in the CP sensor are electron/proton transfer, barrier reduction
between grains, swelling and adsorption [Janata and Josowicz 42].

The term sorption means an action produced by either absorption or adsorption pro-
cesses. Absorption is a chemical process in which one substance take in another substance
(its atoms, molecules or ions). For example, gases are absorbed by a solid. Adsorption is dif-
ferent from absorption in the sense that the molecules are taken up by the surface rather
than in the volume. For example, reagents are adsorbed to solid catalyst surface.

In 1992, Topart and Josowicz studied the interaction between methanol analyte and the
popyperrole conducting polymer by observing several physical quantities: change in mass,
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Figure 1.2: The characteristic response of a conducting polymer sensor to the odor pulse at a
certain concentration. Figure source: [Distante et al. 16].

work function and optical absorbance [Topart and Josowicz 91]. It was demonstrated that
the analyte sorption — adsorption and diffusion processes — was the driving force in the
polymer-analyte interaction. In addition, a Langmuir-type isotherm showed a good fit to
the experimental data.

When the transduction mechanism is mainly adsorption-based, the analytes are likely
not reactive with conducting polymers under normal conditions. The analyte molecules
are adsorbed by the polymers, that affects the properties of the sensing material and

makes these analyte molecules detectable. Benzene and toluene are representative ana-
lytes for this case.

Langmuir sorption isotherm

In 1916, Irving Langmuir empirically derived the Langmuir isotherm. The isotherm de-

scribes the adsorption process on a plane surface, which is assumed to form a unimolec-
ular layer.

The amount of the absorbed gas (adsorbate) is expressed by equation:

bp

q=4ds m/ (1.1)

where p is the gas pressure or concentration, b is the sorption affinity, and s is the
sorption capacity. In 1931, Markham and Benton conducted one of the first experiments
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on the adsorption of oxygen, carbon monoxide and carbon dioxide by silica. It was shown
that the Langmuir isotherm fits the experimental data well at low pressure.

The extended Langmuir isotherm (EL) is an extension of the Langmuir isotherm applied
to a mixture of N components, when the adsorbate molecules of the gases are assumed
to not interact among each other. The amount of the absorbed gas in the mixture is given
by equation:

qi = qs,iwzb;flb”,i =1,2,..,N, (1.2)
j=1 iPj
where the index i is used to encode the values for the i-th gas component in the mix-
ture. Consequently, the isotherm parameters q;; and b; for each gas i are independently
determined from the Langmuir isotherm of a single gas (Equation 1.1).

In the derivation of Equation 1.2, it is implicitly assumed that all gas components have
equal access to adsorption sites on the surface. This assumption is thermodynamically
inconsistent [Bai and Yang 4], and a number of modification in EL have been proposed
to account for molecular interactions in the adsorbate phase, uniform structure of the ab-
sorbent surface and other aspects. The generalized sorption model was introduced with
corrections due to adsorbate size, loss of symmetry or disassociation, clustering and adsor-
bant molecular interactions [Martinez and Basmadjian 60]. Another model was proposed
based on the multi-region extended Langmuir isotherm [Bai and Yang 4].

The Freundlich isotherm is another empirical equation that describes the adsorption
process. This isotherm is also extended to the problem of a mixture of N components in
the form of Langmuir-Freundlich equation:

1/myq

bip; ..

9i = Qs N T Wi =12N, (1:3)
I oy,

where n; is another constant for gas component i, in addition to other two component-
specific parameters qs; and b; found in Equation 1.2. Limitations of the Freundlich
isotherm are similar to those reported above for EL.

The Langmuir-type isotherms cannot avoid errors on estimation of multi-component
adsorption process, because such phenomena as adsorbate size or adsorbent heterogene-
ity are not taken into account [Sircar 88]. Despite the existence of some sophisticated
Langmuir-based models [Martinez and Basmadjian 60, Nitta et al. 63], the Langmuir
isotherm in its original form (Equation 1.2) remains to be the most widely used model in
gas separation discipline [Yang 103].

1.2.2  Models for conducting polymer sensors

Model by Gardner et al.

The model assumed the Langmuir adsorption isotherm for the sake of simplicity. The
diffusion equation was written for the geometry of a planar film, that allowed to use one
geometrical dimension in the model. Once two dimensionless distance and time variables
x and T were introduced, the equations were written in the dimensionless form. In particu-
lar, the function y(x, T) quantified the adsorption and desorption concentration of the gas
distributed from one site to another side of the film , and the function 6(x, T) quantified
site occupancy on the surface side of the film [Gardner et al. 24].
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A family of analytical solutions for the two adsorption and diffusion equations were de-
rived under different boundary conditions. Then the conductance of the film was derived
as a linear function of the site occupancy 0(x, T):

Ox,t = 00(1 _Se(X/T))/ (14)

where S is the gas sensitivity of the polymer, 0y is the conductivity in the absence of the
gas.

It was shown that analytical results correlated well with the experimental data. The
use of the model is limited when the polymer material is anisotropic or the homogeneity
assumption for the diffusion and the conductance models is not valid.

Model by Bissel et al.

In contrast to the previous model by Gardner et al., Bissel and colleages studied the steady-
state electrical resistance of the sensor (transient change in the resistance was not con-
sidered) and employed the theory of volatile organic chemical (VOC) partition between
gaseous and condensed phases [Bissell et al. 9]. It was stated that the kinetics of mass
transport of analyte vapors into the sensor film obeys the linear proportion law estab-
lished in the field of gas chromatography:.

The partition coefficient K is defined as the ratio between analyte concentration in the
stationary phase C; and analyte concentration in in the mobile gas phase Cg:

Cs _ RTp1/My

K =
Cq Y2p2

(1.5)
where R is the molar gas constant, T is the temperature defined in Kelvin, p; and M, are
the density and molecular weight of the polymer respectively, v, is the vapour activity
coefficient, and p; is the saturated vapour pressure of the solute vapour.

The change in the polymer resistance is proportional to the concentration of the dis-
solved analyte under certain conditions (mass uptake below 5%) for a homologous series
of compounds:

AR = dR/R = k;Cs, (1.6)

where k; is a transduction constant, describing how effectively the amount of the absorbed
analyte i is translated into the resistance signal.

The final equation of the model is derived from Equations 1.5 and 1.6 and has the
following form:

log(1/Cg4) = log(1/p2) +1og(ki/v2) + Const. (1.7)

Model by Lei et al.

Lei and colleages proposed a heuristic microscopic sensor model based on the Langmuir
isotherm for polypyrrole-based (PPy-based) sensors. The overall resistance of the film (R)
is represented as a parallel connection of several layers (n layers), and each layer consists
of several resistors (m resistors with resistance 1) in series.
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The sensor model states a liner relationship of the reciprocal of the resistance change
against the reciprocal of the gas concentration according to the following equation:

L n + n 1 (1.8)
ARy m(r;—ro)  m(r; —r9)Km Cg’ '

where ARq is the resistance difference after and before gas sorption; K, the adsorption
equilibrium constant; C4 concentration of the gas; r1 and Ty site resistance when the site
is occupied or empty respectively.

The model was shown to interpret well the behavior of PPy-based composite sensors
exposed to ethanol and methanol vapors.

1.3 ANALYSIS OF CHEMOSENSOR ARRAY DATA
1.3.1  Data processing chain
Once raw data from a sensor array are measured, stored and prepared for the data analy-

sis, the data processing unit of the machine olfaction device starts working, as described
above in Section 1.1.3. A single data sample can be represented in the matrix form.

X1,1 X1,2 .. X1,8
Xz/] XZ,Z Xz/s

Xnixs = (1.9)
XM,1 XM,2 .-+ XM,S

The number of columns is equal to the number of sensors S, and the number of rows
corresponds to the number of readings M extracted from a sensor. Readings of each
sensor commonly represent the transient signal acquired from the sensor, as shown on
the Figure 1.2. The value of M depends on the sampling frequency of the acquisition
system.

Hence, a complete data set of the N samples can be represented as a three-dimensional
array.

Anxsxm = Xy, Xz, .. XNH (1.10)

A common data processing chain for the machine olfaction device is shown on Fig-
ure 1.3. The raw measurements in the format of the A matrix from Equation 1.10 further
undergo a number of processing stages or blocks. Processing blocks Pre-processing and
Feature Extraction or Dimensionality Reduction are outlined in Sections 1.3.2 and 1.3.3, re-
spectively. Drift Compensation block (not shown on the Figure 1.3) is usually considered
as an advanced pre-processing block, and a special attention is given to it in Section 1.3.4.
The material about Classification or Pattern Recognition is covered elsewhere in the machine
learning literature [Trevor Hastie, Robert Tibshirani 92].

1.3.2 Pre-processing of raw data

The objective of the pre-processing stage is to compensate noise artifacts in data resulting
from various experimental circumstances, that influence the measurements and make
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Figure 1.3: The data processing chain in the machine olfaction device. Figure source: [Gutierrez-
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2].

them inconsistent [Gutierrez-Osuna and Nagle 34, Jurs et al. 43]. Pre-processing methods
depend on the sensor technology, but there are some common problems. An example of
such problems is the additive drift observed among samples measured under the same
conditions. Figure 1.4 shows a sequence of four sensor signals in response to four gas
pulses. The signal values at the start of the pulse are different for four samples, and the
observed additive noise has to be corrected on the pre-processing stage.
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Figure 1.4: An example of the additive drift in the sensor signal in response to a sequence of four

gas pulses. Figure source: [Bermak et al. 6].

One of the standard methods to compensate the sample-to-sample additive drift is
the baseline correction. The formula of the transformation applied to the matrix X from
Equation 1.9 is the following.

. o
For a given sensor j: x; ; =

Xij —
X1 Jj

X1,

, Vi=1,M.

(1.11)
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The intensity of the sensor signals can be equalized by the normalization transformation.

X1 s
. .. !/ 1) s
For a given sensor j: Xij = =M . Vi=1, M. (1.12)
2im1Xij
If the sensor signals show non-linear characteristics, the sensor linearization transforma-
tion can be used.

For a given sensor j: x{ ; = log(xi;), Vi=1,M. (1.13)

The auto-scaling transformation is commonly applied in the statistical analysis of data
in the matrix X from Equation 1.9.

NI

For a given sensor j: x{,j = HTHJ, Vi=1,M, (1.14)
j

where 1 is the mean of the readings of sensor j, and sdj is the standard deviation of the

readings of sensor j.

1.3.3 Dimensionality reduction

Once the raw data X is cleaned in the pre-processing stage, a proper data-processing
method on feature extraction or dimensionality reduction is commonly followed by the
pattern recognition stage. The natural reason to perform the feature extraction procedure
is due to the redundancy and cross-selectivity of the sensors in the array. This issue on
processing of the sensor array data can be viewed either as the collinearity problem in the
multivariate statistics or as the curse of dimensionality phenomena in the statistical pattern
recognition.

A mathematical representation of a dimensionality reduction operation can be expressed
as following.

f:x =y, wherexe RM,y e R? and P < M. (1.15)

The original vector x from the M-dimensional space is mapped to the new vector y
from another space of the lower dimension P. This operation is performed by the mapping
function f, that aims to compress the information contained in the original data with a
minimal loss of quality.

Several considerations in the design of dimensionality reduction methods are important.
Such methods applied to sensor array data (the matrix A in Equation 1.10) belong to two
categories:

* waveform compression of the transient signal independent among the sensors (data
vectors of the length M stored on third dimension of the matrix A);

e dimensionality reduction of data aggregated from all the sensors (data vectors from
the two dimensional S x M space on the second and the third dimensions of the
matrix A).

Two main validation criteria used in evaluation of the quality of the data compression
are based on:

e signal representation measures of the compression quality;

* signal classification measures of the discrimination power.
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Feature selection methods

The objective of a feature subset selection (FSS) method is to find the best subset of features
that maximizes the information content (filters) or the discrimination power (wrappers).
The wrappers hold a classifier inside a optimization loop and typically perform better
than filters. The advantage of the filters is lower computational cost.

The time needed to traverse all the features is exponential on the number of features.
Several search strategies are commonly applied to avoid the exhaustive search: exponen-
tial (branch-and-bound), sequential (sequential forward selection and sequential back-
ward selection) and randomized (simulate annealing and genetic algorithms).

The Fss approach is rarely used in machine olfaction. The methods were typically tested
on arrays with small number of sensors, and performance was optimized to resolve a par-
ticular pattern recognition problem. For example, a wrapper approach was tested on sen-
sor array data in [EkI6v et al. 18], and a comparative study of different FSS strategies was
conducted in [Gutierrez-Osuna 29]. The validation criterion in both works was defined
as the classification accuracy among odor classes. The second work showed that studied
methods had similar performance of 25-30% increase in the predictive accuracy and 50%
reduction in the size of the feature set.

Heuristic feature extraction

A variety of heuristic features can be defined for the sensor waveform or sensor transient.
The signal measured at the 60% level of the stabilized value at the rise time was studied
as a feature in [Vilanova 97]. A group of features were derived based on the first and the
second derivatives of the sensor signal [Roussel 81]. The proposed features were evaluated
according to three criterion: repeatability, discrimination and redundancy. A review on
heuristic features in chemosensor signals can be found in [Gibson 26].

The methods based on heuristic feature extraction were actively explored in the early
years of machine olfaction, in the 1990s. Now these methods are mostly depreciated
among the others, because the approach does not propose a general way to extract fea-
tures.

Waveform-based feature extraction

The method of waveform sub-sampling reduces the size of the feature set from M to m
by means of sub-sampling and anti-aliasing post-filtering of the signal. If F; denotes the
sampling frequency, the filter frequency is the following:

mFg

Fp=—8.
IV

(1.16)

The kernel based sub-sampling method is implemented in [Gutierrez-Osuna and Nagle
34]. The drawback of the sub-sampling method is that the application of the filters limits
the bandwidth of the extracted information substantially.

The method of waveform modeling is based on an interpolation of the transient data
points of the signal. Implementations of such models include multi-exponential decompo-
sition, Pade-Z approximation [Gutierrez-Osuna 33], METS decomposition [Samitier et al.
83], and Lorentzians analytical models [Carmel 11]. A general solution is not always pos-
sible, because the methods require a prior assumption about the shape of the waveform.

The method of spectral-based feature extraction employs the fast Fourier transform (FFT)
to transform the signal from the time domain to the frequency domain. Applications of
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the FFT method to sensor array data commonly included the FFT signal processing and a
classifier for validation of the results [Heilig and Ba 36, Fort et al. 21]. The sensor signals
are not constant in their FFT parameters over time, that limits the use of the FFT method.

The method based on wavelet decomposition defines time and frequency representation
of the signal by means of a family of base functions called wavelets. The wavelet decom-
position can be thought of as an alternative to the short time Fourier transform with finer
time resolution at low frequencies due to the concept of scale functions. An example of
the application of wavelet decomposition to sensor array data can be found in [Phaisangit-
tisagul 70]. The drawback of the wavelet decomposition approach arises when the length
of the transient is long that makes the computational time impractical.

Variance-based feature extraction

The variance-based methods are different from the previously described waveform-based
methods by the optimization criterion. The variance-based methods are focused on the
informational content of the data. Three linear methods widely used in application to
sensor array data will be briefly presented: principal component analysis (PCA), linear
discriminant analysis (LDA) and independent component analysis (ICA).

PCA is an unsupervised method that defines a linear projection x’ of data vector x (data
vector of a single sample) by estimating an orthogonal sub-space where the most of the
variance is captured.

x' =PTx. (1.17)

The vectors in the p columns of the matrix P are called principal components.
The correlation matrix in the new sub-space is diagonal, as the projection matrix is
orthogonal.

Ry = Elx'x’ "] = E[PTxx"P] = E[P"R,P] = A = diag(Ai), i=1,p, (1.18)

where the eigenvalues of the correlation matrix are denoted as A;.

The number of principal components p is selected such that the most of the variance
(information) in the data is captured and the error on estimation (compression) X of the
original data x is minimized. The error in terms of mean squared error (MSE) is defined
as following.

N
Elx—%ll= > A (1.19)

i=m+1

The use of the PCA model for feature extraction has a number of limitations. The analy-
sis is prone to outliers, the higher-order components could contain valuable information,
and the sources of captured variance are not related to the discrimination problem di-
rectly.

LDA is different from PCA in the sense that the LDA algorithm searches for directions of
the data variance that are efficient in discrimination of a given set of classes. Hence, LDA
is a supervised approach. The LDA projection can be represented as a linear combination
or a scalar dot product:

y= wix, (1.20)
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where w is the vector of weights of size M.

The LDA algorithm consists in a division of the samples y; into subsets, for example,
y: and y, for two-class problem. The algorithm finds the direction of w that achieves two
objectives: a higher separation between the two classes, and reduces the variance in each
class.

Similar to PCA, LDA can fail to produce a good septation among classes if the classifica-
tion problem is not linearly separable. The data set has to be balanced in the number of
samples per class, and the algorithm has to be controlled to avoid the over-fitting issue
of the LDA algorithm. The use of LDA in application to sensor array data can be found in
[Cerrato Oliveros 12].

Contrary to both PCA and LDA, ICA searches for mutually independent directions of
variance. The ICA problem is also known as blind source separation, where unknown
source signals are separated from their linear mixtures using.

One of the definitions of the blind source separation problem is Pearson ICA [Karvanen
and Koivunen 46].

X =AS, (1.21)

where columns in the matrix S = [s4,S,, -+, Sm] | are mutually independent random vari-

ables, the matrix A is an unknown invertible matrix of the size m x m, and m is the
number of the source signals.

Application of PCA and ICA to sensor array data was studied in [Kermit and Tomic 48].
The 1CA method was shown to have a better discrimination performance by counteracting
the sensor drift more efficiently than PCA. The authors stress the point that the results in
favor to ICA are valid for their particular data sets, and that can be changed in application
to another data set. The results based on ICA also depend on a particlular implementation
of the ICA algorithm.

1.3.4 Drift compensation

The drift phenomena observed in measured data can be defined as gradual changes in
measured quantity that is assumed to be constant over time [Artursson et al. 1]. This
definition is mostly related to the long-time measurements. The drift variance is often an
inevitable part of the data, and it is difficult to control in an experimental set up.

Drift in chemosensors

The drift noise in chemosensor arrays can be attributed into two categories. The drift is
referred to as sensor noise or short-time drift when the noise is observed locally in time
for the readings from a single sensor. The drift is referred to as common drift or long-term
drift when the noise is observed in the sensor array data (multivariate data) and the drift
affects the whole array for a long time.

The device instability is the the main source of the drift in a single sensor. The phe-
nomenon of reorganization of the sensing material leads to changes in the basic charac-
teristics of the sensor device like sensitivity or selectivity, and it is known as sensor aging.
Another phenomenon called as sensor poisoning occurs when the chemical reactions on
the sensing layer cause irreversible binding processes, that results in contamination of the
sensor. Warming up of the sensor and hysteresis effect cause local instability in the regime.

The drift common to all the sensors in array has also several sources. Sampling proto-
col and the order of exposition of gas samples lead to the memory effect. Environment
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conditions strongly influence the whole system of the machine olfaction device, and the
environmental factors include the ambient temperature, the humidity and other back-
ground effects. The system of odor delivery can induce the noise due to the inconstant flow
rate, the gas leakage and other unwanted effects.

Compensation approaches

The objective of a drift compensation method is to enlarge the life time of the sensor array
in the presence of drift. Methods on the drift compensation can be divided into three
categories:

1. improvements in the experimental set up;
2. signal processing methods;

3. pattern recognition methods.

A periodic re-calibration of the array is a common approach to counteract with the drift
in the experimental set up. The re-calibration has an additional cost for operation of the
device, and it is considered to be the last choice for the drift compensation. An alternative
approach is to use some reference sensors in array for tracking of the drift [S.-Y. Choi et al.
82].

The temperature modulation for organic coated gas sensors was shown to improve the
results on counteraction to the long-term drift [Roth et al. 80], while this improvement in
the set up serves for a more general task to increase the data dimensionality by enriching
the sensor signals.

Another approach was found in transient feature extraction from the sensor signals
[Wilson and DeWeerth 101]. It was shown that the transient signal can be converted to
binary patters by a thresholding algorithm, that resulted in the automatic compensation
of the additive part of drift.

Drift compensation methods of interest in this work belong to the group of signal pro-
cessing methods. These methods can be generally split into two groups: univariate and
multivariate.

Univariate methods

The baseline correction methods described in the Section 1.3.2 are regarded as univariate
methods on drift compensation.

An approach similar to the baseline correction method was proposed in [Fryder et al.
23]. The baseline level was measured by a calibrant gas which must be chemically stable
over time and representative among the samples related to the other gases.

Two short-term and long terms temporal models were trained for the sensor data mea-
sured for a reference gas [Haugen et al. 35]. The use of the two models in the periodic
calibration of the sensors showed good results on drift compensation (for industrial appli-
cations).

Multivariate methods

It is a common practice that the drift noise still exists in the sensor array data after appli-
cation of any univariate method of drift compensation. Compensation of the drift noise,
which in general is a multi-source non-linear event, is a hard task especially in the mea-
surement periods of weeks or months. The multivariate methods are indended to improve

13
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the results of the univariate methods by taking advantage of the data from all sensors in
array.

An example of multivariate drift shown on the PCA score plot is given on Figure 1.5.
There are eight gas classes of pure analytes and their mixtures. A non-linear drift direc-
tion is clearly observed on the left side of the Figure. The data corrected by the method
described in [Artursson et al. 1] are shown on the right side on the Figure.
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Figure 1.5: An example of the multivariate drift correction applied to sensor array data for 8 gas
classes. Figure source: [Artursson et al. 1].

The approach based on adaptive clustering addressed the drift problem in machine learn-
ing [Freund and Mansour 22]. The method relies on periodic classification of the samples
and requires all odor classes to be sampled relatively frequently. Otherwise, the learned
patterns are lost. Different adaptation methods were proposed in application to sensor
array data, for example, mean updating adapting clustering [Holmberg 38], adaptation
based on the Kohonen self-organizing maps [Davide et al. 15, Marco et al. 58, Distante
et al. 17].

The approach based on self-identification theory was tested by a dynamic model in [Holm-
berg et al. 39]. The sensors were supposed to co-vary over time showing some common
components in response. The coefficients of the model were computed periodically by a
recursive least-squares procedure. The method also requires an extensive and consecutive
collection of samples.

The method of calibration transfer builds a model of the drifting calibrant gas by partial-
least square regression [Tomic et al. 9o] and and neural network [Balaban et al. 5]

The approach based on orthogonal signal correction comes from the field of analytical
chemistry [Wold 102]. Given two matrices X of sensor array data (independent variables)
and a concentration matrix C (dependent variables), the method performs the subtraction
of the components in X, such that these components are orthogonal to C and explain the
maximum of variance observed in Y and

The method of component deflation was developed in [Gutierrez-Osuna 30]. Latent vari-
ables for the calibrant and sensor data were calculated to explain the drift variance and
co-vary. Canonical correlation analysis or partial-least squares were used for the estima-
tion of the latent variables.

The method based on component correction was proposed in [Artursson et al. 1]. The drift
multivariate direction or the subspace V is estimated by PCA on the data measured on the
reference gas. The next step is the bilinear transformation or component correction (CC)
computed on the data X.

X' =X—(XV)v'" (1.22)
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The CC method belongs to a group of orthogonal projection (OP) methods of multi-
variate statistics. These methods, targeted to reduce the data dimensionality, search for
dimensions of the subspace that describe maximum variance related or unrelated to the
information of interest. The subspace V given in Equation 1.22 is thought to contain the
drift-related information. The intention of the CC method is to make the posterior pre-
diction of the model independent on the influence of non-desired variations observed in
V and improves data and model interpretation. The estimation of V is a critical point
in the given approach, and it can be accomplished by various heuristics. A problematic
situation arises when this subspace in V contains also the discriminant information, and
an optimum tuning of the method has to be found.

The CC method has been one of the most popular OP methods in the field of machine
olfaction, and it can be regarded as a benchmark approach for multivariate drift correction
methods, as mentioned in [Marco and Gutierrez-Galvez 55].

1.3.5 Bioinspired signal processing

Bioinspired engineering systems for chemical sensing is an engaging line of research in
machine olfaction. These systems are targeted to mimick biological design and signal
processing principles known in living organisms. Mammalian and insect species are well
known to regularly perform complex behavioral scenarios based on odor recognition: ap-
petite stimulation, food evaluation, mate recognition, navigation, detection of threats and
others [Axel 2]. Models of the bioinspired signal processing are also referred to as neu-
romorphic models. The neuromorphic models are based on the knowledge accumulated in
computational neuroscience and have become an active subject of research in processing
data from chemosensor arrays [Raman et al. 74, Marco and Gutierrez-Galvez 55].

Very first works in the neuromorphic data processing were especially concerned about
1-of-m classification and sensitivity enhancement [Raman 72]. For example, the massive
convergence from ORN to GL was studied as an instance of hyperacuity in [Pearce et al. 65].
Exploiting a large array of optical micro-beads and modeling spike trains of individual
ORNs as Poisson processes, the authors showed that an enhancement in sensitivity of y/n
is possible, where n is the number of convergent ORNs.

Next series of works tackled the issues related to dimensionality reduction, gain con-
trol and intensity /quality coding. Most of this research activity was concentrated in the
PRISM laboratory at Texas A&M University leaded by R. Gutierrez-Osuna. Here only
some contributions of the group will be highlighted, while most of that research of the
group is covered in two dissertations [Raman 72] and [Gutierrez-Galvez 27].

In the following three articles, the authors proposed a set of neuromorphic models in-
spired by the role of the three stages of the olfactory pathway: ORNs and their convergence
to GL, periglomerular cells and granule cells. All the proposed models were validated on
experimental data from an array of temperature-modulated MOX sensors.

In the first article [Perera et al. 67], Perera and colleagues designed a feature extraction
algorithm based on the study of the convergence seen from the population of ORNs to the
glomerular layer. The features are grouped in a class-space constructed with information
that takes into account the relationship between mean and variance for each feature. The
algorithm is computationally efficient under the high-dimensionality of the feature space
and well suited for problems with small sample size, since the computation of covariance
matrices is not necessary.

In the second article [Raman and Gutierrez-Osuna 73], Raman and Gutierrez-Osuna de-
veloped a model based on the first stage of lateral inhibition in the olfactory bulb, which is
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mediated by periglomerular interneurons. A shunting lateral inhibitory network emulates
the role of periglomerular cells following after a self-organizing model of chemotopic con-
vergence proposed earlier [Gutierrez-Osuna 31]. The resulting model was able to remove
concentration effects from the multivariate response of an array of chemosensors.

In the third article [Gutierrez-Galvez and Gutierrez-Osuna 28], Gutierrez-Galvez and
Gutierrez-Osuna explored the excitatory-inhibitory circuitry of the mitral and glomerular
cells. The authors developed a new Hebbian/anti-Hebbian learning rule to increase the
separability of sensor-array patterns in a neurodynamics model of the olfactory system.
the Hebbian term in the proposed rule is used to build associations within odors and the
anti-Hebbian term is used to reduce correlated activity across odors.

The same group of authors studied the advantages of information coding in the first
stages of the olfactory pathway: distributed coding with ORNs and chemotopic conver-
gence onto GL untis [Raman et al. 75]. The proposed computational model consists of
two parts: a monotonic concentration-response model for mapping of the sensor inputs
into a distributed activation pattern, and a self-organizing model of chemotopic conver-
gence. The resulting chemotopic code was shown to improve the signal-to-noise ratio in
the sensor inputs while being consistent with results from neurobiology.

An overview of recent advances achieved in the neuromorphic signal processing can be
found in [Raman et al. 74]. The authors of this review first describe and discuss the biolog-
ical design of the olfactory system by covering such issues as the nature of the odor space,
the physical domain of space and time organized within the olfactory epithelium, the de-
sign of the olfactory sensory neurons, and the computing principles. Second, the authors
review recent progress in engineering approaches inspired by biological principles.

In addition to the current in silico algorithms described above, it is worth noting the
efforts undertaken towards fabrication of neuromorphic chips. Neuromorphic implemen-
tations of olfactory networks in silicon are relatively new in the field, and these imple-
mentations typically do not yet include the sophisticated algorithms available in computer
simulations [Principe et al. 71, Koickal et al. 50, Beyeler et al. 8, Imam et al. 41, Pearce et al.
66]. While a detailed description of the research related to the neuromorphic chips is out
of the scope of this manuscript, it would be interesting to give an example of use of neu-
romorphic networks to perform real-world computing tasks [Neftci et al. 62, Schmuker
et al. 84].

Figure 1.6 shows a classifier network designed in [Schmuker et al. 84] in application to
the famous iris data set [Fisher 20]. This network approximates the insect olfactory system
and consist of three stages: an input layer, a decorrelation layer and association layer, as
shown on the Figure 1.6 A. In the scheme of the network AN denotes association neu-
ron, LN denotes local inhibitory neuron, PN denotes projection neuron, and RN denotes
receptor neuron.

RN fire spikes at specified rates which are computed from the real-valued input data
using the so called virtual receptors (VRs). VRs play the role of the GL units known in
the olfactory pathway. VRs are placed in data space in a self-organized manner using the
algorithm in [Martinetz et al. 59]. The Figure 1.6 B shows the projection of the complete
iris dataset to the first two principal components (97.7% variance explained) and locations
of 10 VRs.

In the training phase, 80% of all data points were presented, and Gorodkin’s K-category
correlation coefficient Rx was used to measure classification performance. The AN popu-
lation activity rapidly converged to a representation, and the correct association was estab-
lished after only a few spikes. The system maintained this state throughout the duration
of the stimulus presentation. The neuromorphic classifier was compared to a naive Bayes
classifier in 50 repetitions of fivefold cross-validation. The naive Bayes classifier yields an
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Figure 1.6: An example of a neuromorphic network applied to a real-world classification problem.
Figure source: [Schmuker et al. 84].

average Rk of 0.89 (20% and 80% quantiles of 0.88 and 0.90) and slightly outperforms the
neuromorphic classifier with Rk = 0.87 (20% and 80% quantiles of 0.85 and 0.89). Based
on observations in the confusion class matrix, the authors claim that the neuromorphic
classifier network delivers especially reliable classification performance in cases where
samples from different classes overlap in feature space.

1.3.6  Data simulations and benchmarks

The design of the signal and data processing algorithms requires a validation stage and,
thus, some data relevant for the validation procedure. The use of simulated and/or bench-
mark data is a common practice in many fields, such as computer science, machine learn-
ing and statistics. The web site of The University of California at Irvine (UCI) Machine
Learning Repository is an example how the machine learning community provides edu-
cational resources and open-access benchmarking materials [Bache and Lichman 3]. This
repository contains over 29o data sets from different domains, including results from data
generators.

The research in the signal and data processing applied to sensor array data has received
much attention in the field of machine olfaction in the last three decades [Gutierrez-Osuna
32, Pearce et al. 64, Marco and Gutierrez-Galvez 55]. Data simulations and benchmarks
are not widely used in the domain of sensor array data processing, but several examples
of such kind of works are worth mentioning here.

The optimum design or configuration of a sensor array is a computationally expensive
problem with the need of a large sample size, and simulation-based approach could be
an efficient solution in this case. Geng and colleagues considered a problem of selection
of the best subset of p sensors for the discrimination task of q gases [Geng et al. 25]. The
authors combine a multi-objective tabu search algorithm and a multivariate calibration
model fed with the simulated data. The CP sensors explored in the work differ from each
other in the polymer material, and the sensor responses are simulated from the analytical
model described in [Lei et al. 51]. Two cases with linear and non-linear calibration models
are considered, and possible configurations of a sensor array is restricted by the condition
p = q. Thus, the resulting matrix A is quadratic of size p x p, and two measures of inde-
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pendence and semangularity are calculated from A and are further incorporated in sensor
selection criteria. The proposed optimization algorithm is compared with the exhaustive
search, and the algorithm efficiently approaches the best array configuration.

Fonollosa and colleagues developed a methodology to select the optimal operating tem-
perature of the MOX sensors in an array based on the multivariate response of the sensors.
The authors employed the mutual information (MI) measure, in order to quantify the
amount of information that the multivariate response can provide from a variable repre-
senting the quality of the measured gas. The optimization procedure is computationally
intensive, and the computation time increases exponentially when a new sensor is added
to the array. The sensor data are simulated from Clifford—Tuma model [Clifford and Tuma
13, 14], that allows to overcome the major difficulty of estimating the joint probability dis-
tribution of the events needed for entropy calculations. The measurements from four dif-
ferent MOX sensors (TGS-2620 and TGS-2600 by Figaro Inc., and SB-15-00 and SB-11-00 by
FIS Inc.) are fitted to the Clifford-Tuma model, and the model parameters are estimated
for ethanol, acetic acid, 2-butanone, and acetone in the range of o0.1-1000 ppm and for
95 operating temperatures. The authors conducted intensive data simulations generating
5000 data points per gas and considering all combinations of 94 possible temperatures.
The proposed methodology shows, for instance, that the classification ability of the sen-
sor array increases when passing from two-sensor to four-sensor arrays, but combinations
of the optimal temperatures are different for each case.

Another use case of the data simulations is related to the validation of methods on
noise compensation. Marco and colleagues studied the effect on the long-term drift on
the pattern recognition unit based on self-organizing maps (SOM) [Marco et al. 57]. The
authors induce a synthetic drift noise into the measured short-term data, which were
collected from an array of 6 MOX sensors in response to 4 pure analytes and 2 mixtures.
As the measured sensor signal is conductance G, the drift noise is injected into the data by
following the equation: G(t) = Go(1 + «t), where Gy is the sensor signal before the drift
injection, and « is a randomly selected value per sensor within the interval (—0.4,0.4). The
extreme values of « correspond to the four year’s drift according to the documentation
from the manufacture. The study shows a decay of the SOM robustness to the simulated
drift and propose the adaptation mechanism in SOMs for better counteraction to the drift.

The use of bioinspired synthetic data is a necessary step in particular neuromorphic sim-
ulations. The work presented above [Raman et al. 75] makes use of a model of population
coding with broadly tuned olfactory receptor neurons and chemotopic convergence onto
glomerular units. A particular receptor is modeled by a vector of log-affinities towards
the different analytes in chemical space, and another model of a monotonic concentration-
response curve is incorporated. Chemosensor array data are transformed onto firing rates
of the olfactory receptors by a nonlinear mapping defined by the proposed population
model of the receptors. The rationale behind the mapping is that the tested neuromorphic
models need to operate with a similar representation to that available in the olfactory
epithelium within ORNs (combinatorial and high-dimensional).

The practice of benchmarking of signal processing, pattern recognition or neuromor-
phic algorithms has been established relatively recently in the field of machine olfac-
tion, although Gutierrez-Osuna declared the need of a repository of benchmarks in 2002
[Gutierrez-Osuna 32]. The research group in The University of California San Diego
(UCSD) led by Ramon Huerta was the first in publishing the collected data sets. To date,
there are three data sets published by the group on the web site of The University of
California at Irvine (UCI) Machine Learning Repository [Bache and Lichman 3]:
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1. Gas Sensor Array Drift Dataset Data Set [Vergara et al. 95],
https:/ /archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset;

2. Gas Sensor Array Drift Dataset at Different Concentrations Data Set [Vergara et al.
95, Rodriguez-Lujan et al. 79],
http:/ /archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+Concentration:

3. Gas sensor arrays in open sampling settings Data Set [Vergara et al. 94],
http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings.

Alexander Vergara was the main creator of the three collected data sets, and the first
data set has already been used, for example, in [Wang et al. 100, Tang et al. 89, Liu et al.
52].

In conclusion, simulated data and public benchmarks can be viewed as a complemen-
tary block in the signal and data processing chain in machine olfaction, especially in the
case when an accurate and extensive validation of algorithms is required. In order to pro-
duce simulated data, the behavior of gas sensors in an array has to be described with
appropriate models, which take into account a particular chemical odor space of interest
and particular environmental conditions. The elaboration of a benchmark data set de-
pends on a scenario of interest, which has to be relevant for a given pattern recognition
problem.


https://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset
http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+Concentrations
http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings
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Goals of the study

This work deals with the development of a biomimetic set up, that will be able to mimic
to some extent the operation of the olfactory system on a particular list of scenarios. The
findings established during the development and experimental stages of the study are
further used to address open issues in the field of machine olfaction. More precisely, the
present work is designed to achieve the following goals:

1. To assemble a host embedded computer, that performs main functions of the set up:
(1) interface with chemical and navigation sensors, peripheral and other devices; (2)
reliable data acquisition from chemical sensor arrays; (3) embedded computations
including the neuromorphic data processing; (4) real-time visualization capabilities
on the display; and (5) development of the operating system. The design of the
embedded computer is targeted to fulfill two major requirements towards a novel
biomimetic architecture for chemical sensing:

* interface with a unique large-scale array of 2'° (65,536) sensing elements that
was designed (by collaborators) to mimic the high degree of redundancy in the
population of olfactory receptro neuors;

¢ design of a modular software environment able to to run a complete realis-
tic (simplified) model of olfactory system within odor localization behavioral
models in real time.

The software for the embedded computer is developed in three main blocks: (1)
design of a software development kit (SDK) to host the models; (2) integration of
neuromorphic, robotic and other models into a unified framework; and (3) devel-
opment of data simulation models to mimic a sensor array (the virtual array). Such
design allows a virtualization of the set up, that means creating an ecosystem con-
taining both the neuromorphic models for data processing and the virtual array for
data generation. This ecosystem can be loaded from a system image on any personal
computer.

2. To conduct bioinspired experiments on the assembled set up, that assumes the fol-
lowing steps: (1) design of scenarios appropriate to test the biomimetic artifacts of
the set up; (2) collection of the relevant data sets; (3) running demonstrations of the
set up; and (4) data analysis based on the standard pattern recognition methods
and/or bioinspired algorithms. As the experiments could run into bottleneck due
to the complexity of the design of the main sensor array of 65,536 sensing elements,
two alternatives to the array are explored: (a) a smaller array of commercially avail-
able metal oxide sensors and (b) synthetic experiments based on virtual arrays. The
collected experimental data sets are further used:

¢ to validate the performance on the novel models of the olfactory system under
synthetic and real-world conditions;

¢ to perform the same simulations by employing either of the three arrays of gas
Sensors;
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* to conduct the navigation experiments with the mobile robotic platform;
* to explore novel experimental conditions under a gas flow modulation.
3. To tackle open issues in the data analysis domain in machine olfaction with a special
emphasis on creating a data simulation tool. The particular tasks are:

* to develop a more realistic drift model based on the analysis of common vari-
ance among several groups;

¢ to develop simulation models able to provide plausible synthetic sensor array
data in application to algorithm testing;

* to generate synthetic benchmarks for machine olfaction scenarios of interest;

¢ to analyze the collected data under the gas flow modulation with a focus on
early detection scenario.

Workflow of the study

Figure 2.1 show the workflow of the thesis. The boxes represent the work packages that
needed to be accomplished in the course of the thesis, and the arrows show the depen-
dencies among the work packages.

— Robotic Set Up — Navigation Experiments — Navigation Data Sets

Set Up » Lab Experiments — Lab Data Sets

& Synthetic Experiments

R R

UNIMAN Data Set —— Data Models Software Tool Data Simulations
Signal Processing  <«— Drift Model Benchmarks

Figure 2.1: The scheme of the thesis workflow. The details are given in the main text of the
manuscript.

The workflow on the Figure 2.1 is divided into two upper and lower sides, that cor-
respond to two different research directions in the development of the set up. The work
packages on the upper side were related to the design of the embedded computer (Set Up
box on the Figure) — the core part of the set up —and its integration with the mobile robotic
platform produced by collaborators (Robotic Set Up). Synthetic experiments were used in
testing of the set up (Synthetic Experiments), while the navigation and laboratory experi-
ments were carried out once the set up had been assembled (Navigation Experiments and
Lab Experiments). Acquired data sets were the final results of the experiments (Navigation
Data Sets and Lab Data Sets).

The work packages on the lower side of the Figure 2.1 were needed to develop the
data simulation tool (Software Tool box on the Figure) — one of the key software compo-
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nents of the set up. Data simulation models, including the drift model, were developed
to create a virtual sensor array for data generation (Data Models and Drift Model). A ref-
erence data set provided by Prof. Krishna Persaud from The University of Manchester
(UNIMAN) was used to validate the models (UNIMAN Data Set). Validation of the drift
model also included the design of a chain of singal-processing and pattern recognition
methods, where the task was a drift compensation in the sensor array data (Signal Pro-
cessing). Parametrized data simulations and synthetic benchmarks were the final results
produced by the data simulation tool (Data Simulations and Benchmarks).
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RESULTS

3.1 SUMMARY OF THE RESULTS

The biomimetic set up proposed in the thesis has been developed to complete the pri-
mary task of conducting the bioinspired experiments of the project. The main engineering
challenge in the design of the set up was to fulfill the requirements for this kind of ex-
periments: acquire the large-scale sensory inputs, run an embedded neuromorphic signal
processing chain in real time, and resolve complex olfaction scenarios.

Virtualization of the experimental set up was one of the key engineering solutions in the
development. Being a device, the set up is transformed to a tool for running the synthetic
experiments, where the software environment is essentially the same, while the virtual
sensors from the data simulation tool replace the real sensors.

Data models designed to emulate the sensor array were able to realistically mimic the
behavior of the sensors, that in turn supports both large-scale neuromorphic synthetic
experiments and conventional pattern recognition simulations in machine olfaction. The
developed model of the drift — originally proposed for the signal-processing task on the
drift compensation — has also been successfully incorporated in the group of models for
simulation of sensor array data.

Two main engineering products have been resulted from the thesis. First, the autonomous
robotic set up featured with large-scale chemosensor array and the embedded data pro-
cessing units has been assembled and used to conduct bioinspired experiments and to
collect data sets. Second, the data simulation tool has been released to enable the use of
synthetic data in testing the experimental set up and/or data processing methods.

The scientific results have been achieved in both production and post-production stages
in the design of the two engineering products of the thesis. Results of the thesis are
grouped into five categories: journal articles, other publications (mainly book chapters),
collected data sets, demonstrations of the set up and released software. Results for each
category are visually represented on the scheme of the workflow of the thesis, as pre-
sented on Figure 3.1.

Main results of the thesis are presented further in the given copies of three journal
articles and one book chapter. The book chapter contains a description of hardware and
software of the assembled set up, that corresponds to the first goal of the thesis — assem-
bling of the set up. More technical results such as demonstrations, data sets and software
programs are related to the second goal of the thesis — conducting bioinspired experi-
ments, and these results are evenly distributed among the work packages of the thesis, as
shown on Figure 3.1. All the three published journal articles cover the results related to
the third goal of the thesis declared in Chapter 2 - the data analysis with emphasis on
creating the data simulation tool. The three copies of the journal articles are presented in
Sections 3.2, 3.4 and 3.5, and the copy of one book chapter is provided in Section 3.3.

3.1.1  Journal articles

Main results of the thesis have been reported in three journal articles, which enabled to
present the thesis as a collection of published articles.
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— Robotic Set Up — Navigation Experiments —» Navigation Data Sets &
Set Up ' » Lab Experiments ——> Lab Data Sets
S2
& Synthetic Experiments .
| a2 A
UNIMAN Data Set ——» Data Models Software Tool Data Simulations
Signal Processing <—>I Drift Model Benchmarks

S1

Figure 3.1: The scheme of the thesis workflow overlaid with the thesis results depicted as circles.
The results are grouped into five categories: publications (red circles with the letter P),
book chapters (green circles with the letter C), collected data sets (orange circles with
the letter S), demonstrations of the set up (blue circles with the letter D) and released
software programs (purple circles with the letter P). The details on each of the results
are given in the main text of the manuscript.

¢ Ziyatdinov et al. (2010) [109] (Section 3.2)
¢ Ziyatdinov et al. (2013b) [108] (Section 3.4)
¢ Ziyatdinov and Perera-Lluna (2014) [110] (Section 3.5)

The importance of the research conducted is demonstrated by the quality of the jour-
nals.

SENSORS AND ACTUATORS B: CHEMICAL is an interdisciplinary journal publishing orig-
inal peer-reviewed research articles in all aspects of research and development in
chemical sensors, actuators and microsystems. Many research works in the area of
data analysis applied to chemosensor array data are traditionally published in this
journal. It is indexed in Journal Citation Report (JCR) for 2012 with a current im-
pact factor 3.535 and classified in the 1st quartile of the areas Analytical Chemistry
(ranking: 11/75) and Instrument & Instrumentation (ranking 2/57). It is also in the
2nd quartile of the area Electrochemistry (ranking: 8/26).

PLOS ONE is an open access journal publishing original research articles from all dis-
ciplines within science and medicine. This journal allows for the discovery of the
connections between papers whether within or between disciplines. It is indexed
in Journal Citation Report (JCR) for 2012 with a current impact factor 3.730 and
classified in the 1st quartile of the area Multidisciplinary Sciences (ranking: 7/56).

A short summary for each article is presented below given in the chronological order.
The three copies of the manuscripts are presented next in Sections 3.2, 3.4 and 3.5.

[Ziyatdinov et al. 109], published in the journal Sensors and Actuators B: Chemical in
2010, proposes a novel method for correction of the drift noise observed in the long-
term chemosensor array data. The proposed method belongs to the class of multivariate
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correction methods, and, thus, is compared with one of the state of the art method of the
same class. The method presented in this article is based on common principal component
analysis, that allows to overcome the necessity of a reference gas.

[Ziyatdinov et al. 106], published in the journal Sensors and Actuators B: Chemical in
2013, introduces the data simulation software tool for synthetic experiments in machine
olfaction. This articles describes the reference data set and the data generation models
employed to create a virtual chemosensor array. The reported results demonstrate the
ability of the data simulation tool to reproduce the reference data set and further extend
these reference data in terms of the number of sensors, multicomponent gas mixtures and
the amount of noise in the virtual array.

[Ziyatdinov and Perera-Lluna 110], published in the journal PLoS One in 2014, describes
the simulation workflow that the user of the data generation tool is suggested to follow.
The results of this articles show examples of the processing of the simulated data as a
proof of concept of the parametrized chemosensor array data. These examples include
the benchmarking of classification algorithms, the evaluation of linear- and non-linear
regression algorithms, and the biologically inspired processing.

3.1.2  Other publications

The following list presents the conference proceedings related to the thesis.

¢ Ziyatdinov et al. (2009) [105]

Perera and Ziyatdinov (2011) [68]

Ziyatdinov et al. (2011a) [104]

Ziyatdinov et al. (2011b) [107]

¢ Ziyatdinov et al. (2013a) [106]

Two book chapters were published in the course of the thesis. Both chapters were a joint
work mostly between the UPC and the UPF partners in the Neurochem project. Contri-
butions presented in the chapters and related to the thesis mainly include two activities:
implementation of the robotic platform and conducting the navigation experiments. The
copy of one book chapter [Lopez et al. 53] is presented in Section 3.3.

* Lopez et al. (2011) [53] (Section 3.3)

e Vouloutsi et al. (2013) [98]

[Lopez et al. 53] is a chapter of the book On Biomimetics published in open access by
InTech in 2001. The book covers the research and construction of biomimetic systems,
and the chapter presents the moth-like approach to the chemical source localization prob-
lem tested on an indoor mobile robot in the framework of the Neurochem project. In-
Tech is a world’s largest multidisciplinary open access publisher of books covering the
fields of Science, Technology and Medicine. The book falls into the fields of Medicine,
Tissue Engineering and Regenerative Medicine http://www.intechopen.com/books/on-
biomimetics.

[Vouloutsi et al. 98] is a chapter of the book Neuromorphic Olfaction published by CRC
Press in 2012. The book reports the interdisciplinary biomimetic results in biology, hard-
ware, software and sensors’ technology achieved at the end of the Neurochem project.
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The chapter presents the latest advances in mobile olfaction robotics from a biomimetic
perspective. CRC Press is a premier publisher of scientific, technical and medical content,
including world-class references, handbooks and textbooks. The book belongs to the se-
ries of Frontiers in Neuroengineering Series.

3.1.3 Data sets

Three data sets have been collected in the course of the thesis. These three data sets are
shown as orange circles with the letter S on Figure 3.1: S1, S2 and S3. A short summary
for each data set is outlined below, and a more detailed description for each data set is
given in Appendix A.

S1 BENCHMARKS A virtual array of 1020 sensors was created by the data simulation
tool, in order to produce a collection of synthetic benchmark data sets. Each data
set corresponds to a specific machine olfaction scenario, defined at 5 difficulty lev-
els. The primary use of the generated data was testing the neuromorphic mod-
els designed in the scope of the NEUROChem project, while the real sensor de-
vices of the project were under development. These data can be valuable in other
projects in machine olfaction, where large-scale parametrized prototype data are
required. The data sets are now can be publicly accessed on the following link
http:/ /neurochem.sisbio.recerca.upc.edu?page_id=257.

S2 LABORATORY DATA SETS A custom experimental set up was designed in the labora-
tory conditions, in order to emulate a sniffing behavior (sampling odors actively)
known in the olfactory system of the mammals. The collected transient signals,
recorded from an array of 16 metal-oxide sensors under the gas flow modulation,
showed two low-frequency and high-frequency (modulated by the respiration cycle)
parts of the spectrum. The analysis of the data set is an on-going work of the thesis,
while the preliminary results have been reported as a conference proceeding [Ziyat-
dinov et al. 106]. As a data-sharing initiative for the machine olfaction community,
the data set is now publicly available on the web site of The University of California
at Irvine (UCI) Machine Learning Repository https:/ /archive.ics.uci.edu/ml/datasets/Gas+sensc
This public data set will allow to continue the joint research of biologically inspired
chemical systems.

S3 NAVIGATION DATA SETS The robotic set up in the navigation experiment explored
the chemical odor space of the wind tunnel with one or two odor sources. The
aim of the experiment was to reconstruct the odor map (segment the mixture of
odors spatially) by means of signals recorded from a sensor array. Two alternative
sensor arrays were involved in the experiment: an array of 16 metal-oxide sensors
and an array of 4096 conducting polymer sensors. The reference measurement of
the odor map was accomplished by an ion-mobility spectrometry (IMS) device, that
had a higher resolution to quantify the chemicals in comparison with either of two
arrays. Analysis of the collected data is thought to be done in the future, while some
preliminary multivariate analysis of these data has been accomplished (unpublished
results). A similar analysis based on independent component analysis (ICA) on a
similar data set (array of only three metal-oxide sensors) measured in the same
experimental conditions was published in the course of the thesis as a conference
proceeding [Ziyatdinov et al. 104].
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3.1.4 Demonstrations

Four demonstrations have been designed in the course of the thesis, in order to show a
wide range of functional abilities of the biomimetic set up under certain experimental
conditions. These demonstrations are shown on Figure 3.1 as blue circles with the letter
D : D1, D2, D3 and D4. A short description for each demonstration is presented below,
while a more detailed information is provided in Appendix B.

D1 IQR This demonstration shows how a complete olfactory system of the insect works
on the simulated data from 100 virtual sensors. Two main models of AL and MB dis-
play some of the olfactory system properties such as the classification of presented
two odors A and C.

D2 ROBOTIC PLATFORM This demonstration shows the mobile robotic platform of the
set up in action, moving around the wind tunnel. The robot demonstrated the func-
tionality of its multimodal sensing capabilities, such as compass, wind sensing, ultra-
sound, collision detection and vision. The chemosensors needed for the navigation
task were not integrated to the robot yet.

D3 LARGE-SCALE ARRAY This demonstration shows the capability of the set up to ac-
quire the large-scale input from the CP array of 4096 elements at 1 Hz acquisition
frequency. The sensor signals were displayed in the real time in the IQR simulator,
demonstrating a high level of diversity in the data.

D4 NAVIGATION This demonstration shows the robotic set up in resolving the navigation
scenario targeted to discriminate between two odor sources in the chemical space
of the wind tunnel. The mobile platform was updated in comparison to the D1
demonstration. The modules of the olfactory systems in IQR were also updated
with the final neuromorphic models designed in the Neurochem project. The robot
showed a particular behavior on attraction to one of the two odor sources with the
success rate of 70% and 90% for ammonia and ethanol vapours, respectively.

All the demonstrations in the format of an IQR system [Bernardet et al. 7] are available
on the Neurochem image (Appendix C).

3.1.5 Software

Three software products have been developed in the course of the thesis. These are shown
as purple circles with the letter P on Figure 3.1: P1, P2 and P3. The first software product
is the Neurochem image, and other software programs are two packages designed for the
R environment for statistical computing.

More information on the the Neurochem image is available in Appendix C and on the
web page of Neurochem project. The R packages are distributed in the official repository
for the R packages CRAN http:/ /cran.r-project.org/. A short description for each software
and the links to the web pages are given below.

P1 NEUROCHEM IMAGE http://neurochem.sisbio.recerca.upc.edu/?page_id=54 The im-
age is a custom Debian-based operating system image that includes software com-
ponents required to run the embedded set up. All the necessary components such
as drivers, software packages, and IQR models designed in scope of the Neurochem
projects are included in the image file neurochem.img of 563 MB size. The image can
be run either on the embedded set up or on any operating system emulator.
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P2 R PACKAGE CPCA http://cran.r-project.org/package=cpca The package aims to im-
plement statistical methods to perform the common principal component analysis.
The current version of the cpca package 0.1.2 contains the only stepwise method, and
this implementation was completed in the course of the thesis. Further development
of the cpca package and implementation of other methods will be a collaborative
project of authors of the package.

P3 R PACKAGE CHEMOSENSORS http://cran.r-project.org/package=chemosensors The pack-

age is an implementation of the data simulation tool released in the course of the
thesis. Two of the journal articles published in the course of the thesis [Ziyatdinov
et al. 108, Ziyatdinov and Perera-Lluna 110] are the primary references of this soft-
ware.

3.1.6  Collaborative results

Two groups of results were obtained in collaboration with other members of the research
group of the author. The first group of results is related to application of the drift correc-
tion method, which is proposed in the thesis, to data sets from other fields of science. An
example of such an application is the Liquid Chromatography coupled to Mass Spectrom-
etry (LC/MS) data in metabolomics:

e Fernandez-Albert et al. (2014) [19]

The second group of collaborative results tackles the problem of joint clustering, where
the data come from different views or representations. These data views are formalized
by similarity matrices among the observations. The framework of the spectral clustering
is extended such that several similarity matrices are diagonalized simultaneously. One of
the steps of the algorithm is joint diagonalization of the matrices that can be accomplished
by means of the common principal component analysis. Two works, the conference pro-
ceeding and the patent proposal, have been derived:

¢ Kanaan-Izquierdo et al. (2012) [44]

¢ Kanaan-Izquierdo et al. (2013) [45]


http://cran.r-project.org/package=cpca
http://cran.r-project.org/package=chemosensors

3.2 results 1. drift model - ziyatdinov et al., 2010

Ziyatdinov, A., Marco, S., Chaudry, A., Persaud, K., Caminal, P, & Perera, A. (2010). Drift
compensation of gas sensor array data by common principal component analysis. Sensors
and Actuators B: Chemical, 146(2), 460-465. d0i:10.1016/j.snb.2009.11.034 [109]

ATTENTION i

Pages 32 to 37 of the thesis are availables at the editor’s web
http://www.sciencedirect.com/science/article/pii/S0925400509008995
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3.3 RESULTS 2. HARDWARE AND SOFTWARE DESCRIPTION — LOPEZ ET AL., 2011

Lopez, L., Vouloutsi, V., Chimeno Escudero, A., Marcos, E., Bermudez i Badia, S., Math-
ews, Z., Verschure, P. EM.]., Ziyatdinov, A. & Perera i Lluna, A. (2011). Moth-Like Chemo-
Source Localization and Classification on an Indoor Autonomous Robot. In L. D. Pra-
matarova (Ed.), On Biomimetics. InTech. [53]
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Moth-Like Chemo-Source Localization and
Classification on an Indoor Autonomous Robot

Lucas L. Lépez et al.*
SPECS, Technology Department, Universitat Pompeu Fabra and ICREA
Spain

1. Introduction

Olfaction is a crucial sense for many living organisms. Many animals, especially insects, rely
heavily on the olfactory sense for encoding and processing different chemical cues in order
to perform several tasks such as foraging, predator avoidance, mate finding, communication
etc.(22). Yet, olfaction has not been as widely studied as vision or the auditory system in
insects. At the same time, robotic platforms capable of searching, locating and classifying odor
sources in wind turbulence and in the presence of complex odors have diverse applications
ranging from environmental monitoring (21), detection of explosives and other hazardous
substances (19), land mine detection (2) to human search and rescue operations. The main
challenge thereby is the stable and fast coding and decoding of odors and the localization of
the sources (17).

In our own recent work, we have proposed an insect-like mapless navigation mechanism
which integrates surge-and-cast chemo search, path integration, wind detection and visual
landmark navigation on an indoor mobile robot (28). Also, we have proposed a model based
on insect navigation that is capable of navigating in highly dynamic environments and our
model was compared directly to ant navigational data, with strikingly similar navigational
behaviors (26). The problem of ambiguous information, particularly in the navigational
context, is also addressed in our recent work (27). Beyond that, we have contributed
significantly to modeling insect navigation and designing robotic systems such as: a model
of the locust Lobula Giant Movement Detector (LGMD) tested on a high speed robot (29),
moth-like odor localization for robots (30), control of an unmanned aerial vehicle using a
neuronal model of a fly-locust brain (31; 32), moth-like optomotor anemotactic chemical
search for robots (33), and a blimp flight control using a biologically inspired flight control
system (34).

Despite these advances, several biological systems with relatively simple nervous systems
solve the odor localization and classification problem much more efficiently than their
artificial counterparts: bees use odor to localize nests, ants use pheromone trails to organize
foraging in swarms, lobsters use odor to locate food, the Escherichia bacteria use odors to
locate nutrients, male moths use olfaction to locate female mates etc. The odor localization

*Vasiliki Vouloutsi, Alex Escuredo Chimeno, Encarni Marcos, Sergi Bermidez i Badia, Zenon
Mathews, Paul EM.]. Verschure (SPECS, Technology Department, Universitat Pompeu Fabra and ICREA,
Barcelona), Andrey Ziyatdinov, Alexandre Perera i Lluna (Departament d’Enginyeria de Sistemes, Automatica
i Informatica Industrial, Universitat Politecnica de Catalunya and CIBER-BBN in Bioengineering, Biomedicine
and Nanomaterials, Barcelona)
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task can be divided into three general steps (9): 1) search and identification of the chemical
compounds of interest in the given environment, 2) tracking the odor until its source guided
by chemical and all other available sensory modalities, 3) and finally identifying the source
(either by vision or e.g. by olfaction using the odor concentration pattern that is acquired
in a specific restricted area). However, in real world applications, locating the source of a
chemical plume and classifying the chemical are difficult tasks due to the fact that the plume
dispersion dynamics vary heavily depending on the medium. The chemical volatiles in the
atmosphere are mainly transported by airflow and the interaction of the airflow with other
surfaces and sources of thermal gradients produce turbulence. This chemical dispersion
is best described by the Reynolds number. At low Reynolds values, there is a monotonic
decrease of the chemical concentration, however at medium and high values turbulence
dominates. Thus different search and classification strategies should be employed in these
different environments (9).

The rich availability of insect odor coding and localization studies have inspired several
biologically inspired robots that perform odor localization and classification: underwater
robots (6), ground robots (14) and even flying robots (2). Nevertheless, stable odor source
localization and classification using fully autonomous robots have not yet been demonstrated.
We here propose a moth based model of odor localization and classification and its
implementation on an embedded autonomous robot in a controlled indoor wind tunnel setup.
For odor coding and localization at high Reynolds values where turbulence prevails, we
use a model of odor source localization and odor classification mechanism suggested to be
employed by the male moth. Our embedded robot is controlled using a neural network model
of the moth olfactory pathway implemented using the large scale neuronal simulator IQR (4),
that runs on board the embedded robot. Our results show the first steps towards stable odor
localization and classification using a completely autonomous robot that is controlled by a
neuronal model of the moth olfactory system.

Fig. 1. Illustration of the cast and surge male moth behaviour and the female pheromone
plume.

2. Methods

Insects in general and moths in particular are able to locate a source of odor and distinguish it
from different other sources. Our model of olfaction is based on the male moth behavior and
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physiology. In this section we explain our olfactory model proposed for solving the problem
of odor localization and classification, the robot platform and the experimental set-up used to
assess its performance.

2.1 Cast & Surge

The male moth has been widely studied because of its unique ability to find mates by detecting
low pheromone concentrations over large spatial scales. When the female moth releases a
pheromone blend, this blend flows downwind creating a specific plume shape. When the male
moth detects the pheromone plume, it starts flying upwind, tracing the pheromone molecules
in the plume, a stereotypical behavior called surge. However, as the structure of the plume is
quite complex and unpredictable, the male moth looses track of the pheromone plume often
during the surge behavior. For this reason, the male moths have developed a behavior that
allows them to re-discover the pheromone plume again. This behavior is called cast and is a
zigzag movement orthogonal to the wind direction (17) (see Figure 1). The casting frequency
increases and the speed decreases when close to the source (10).
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Fig. 2. Scheme of the system implemented for the cast and surge behaviour. It consists of two
processes: collision detection and surge and cast. Dashed arrows indicate inhibitory influences.

Our model of odor localization is based on this cast and surge behavior of the male moth.
The architecture of the system consists of two process that run in parallel: collision detection
and surge and cast (see figure 2). The collision detection process has higher priority and inhibits
dashed arrow in figure 2) the surge and cast process. The surge and cast process performs the
localization of the odor source. When the chemical sensors detect an odor the robot performs
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a surge behaviour, and otherwise a cast is executed. The processes are implemented using
leaky Integrate and Fire (IF) and leaky Linear Threshold (LT) neurons (16; 20).

2.2 Classification

While being able to locate an odor source, the male moths are also able to distinguish among
similar stimuli and to classify different concentrations of the same chemical into the same
stimulus category. The olfactory pathway is composed of Olfactory Receptor Neurons (ORNs)
in the antenna, the Antennal Lobe (AL) and the Mushroom Body (MB) (7) (see Figure 3). ORNs
are distributed over the antenna and respond to different chemical stimulus present in the air.
ORNSs expressing similar receptors usually converge onto a single glomerulus in the AL. The
number of glomeruli is then closely related to the number of ORN classes. This convergence
of ORNs into the same glomeruli makes the AL capable of dealing with noisy conditions and
dynamic inputs (11).

Antenna

" | " N\

Mushroom Body

J

Fig. 3. Functional representation of a generic AL. ORNSs belonging to the same class converge
onto the same glomerulus. LNs interconnect PNs which is connected to higher brain areas
such as the MB.

Two different types of neurons receive input from ORNs: Projection Neurons (PNs) and Local
Neurons (LNs). PNs integrate the activity from the glomeruli and forward it to the MB, which
is known to be involved in the learning and memory of odors (24). LNs laterally interconnect
PNs and modify their activity by means of inhibition.

We use a modified implementation of the model proposed by (15). The original model
uses a group of Integrate-and-Fire neurons as Projection Neurons, which receive constant
excitation, interconnected with two groups of Local Neurons. These LNs are connected in
such a way that when a specific pattern is presented to the network, concrete PNs will fire
synchronously. When the pattern disappears from the input, the neurons get desynchronized.
These synchronization and desynchronization processes can be explained with two concepts:
a combination of transient resetting and the probability of failure of synapses between
the Local Neurons and the Projection Neurons. Transient Resetting has been theoretically
described by (13) as a way to enhance the spike timing precision on a group of neurons, caused
by a loss of initial conditions. In the presented model the current pulse coming from the LNs
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to the PNs allow the latter to turn from their state to their resting potential, which makes
the next spike to happen simultaneously. The presence of noise in the connection between
LNs and PNs has an essential role in the network equilibrium. LNs interconnect PNs in two
different ways: via fast (GABA type) and slow (GABAg type) inhibition. The failure of these
synapses has been set to 50%. The key concept is that when fast inhibition is not greatly
affected by the failure of a connection and is still able to produce the transient resetting, the
slow inhibition is much more sensitive and has the opposite effect, generating noise in the
inter-neuron spike timing.
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Fig. 4. Scheme of the system implemented for the odor classification. Red arrows indicate
excitatory connections and blue arrows indicate inhibitory connections.

This model proposed by(15) was designed to receive only binary input patterns. The model
needed to be adapted for real world conditions where the sensory input is analog. Based
on the modification proposed by (12), we use a group of neurons that process the input
from the sensors to extract a binary pattern that is later fed into the AL model. The
numeric parameters from the original model has been respected as much as possible in
order to obtain similar results. Fast GABA 5 inhibitions oscillate around 20Hz, while GABAg
frequency is around 8 Hz. The interconnection topology between PNs and LNs also respect the
original setup: if the PN responds to the odor stimuli, it has GABA 4 and GABAg inhibitory
interconnections, whereas if it does not respond to the odor stimuli, it has only GABAp
inhibitory interconnections. Figure 4 shows a scheme of the system.

2.3 The robot

2.3.1 Robotic platform

The autonomous robot used for the experiments is composed of two parts, a mobile platform
developed in SPECS at UPF and an embedded computer assembled at UPC, both designed in
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the scope of the Bio-ICT European project NEUROChem (Figure 5). The basic requirements
applied to the robot include full autonomy, demonstration capabilities and full-functioning
interface with chemical and other navigation sensors.

embedded linux

}

batteries chemsensor

\4 &4— aray

ultrasonic
4—gensors

¥—_compass, GPS,

accelerometer

Fig. 5. Image of the autonomous robotic platform.

The mobile platform is driven by motors acting on two caterpillar tracks on both sides, and
holds different sensory electronics for robot navigation such as ultra sonic distance sensors,
compass, GPS and accelerometer. The mobile base is interconnected with the embedded
platform either via Bluetooth or by the USB cable.

The embedded computer performs functions of a host platform targeted to high-performance
sensor data acquisition as presented on Figure 6. The use of the embedded technology for
the moth robot is motivated by several factors. The embedded computer runs a custom
GNU/Linux image to control the complete robotic system with the aid of the standard
desktop solutions. Moreover, the computational resources are needed for the real-time
acquisition, processing and visualization of the sensory data coming from the real world,
and especially for capturing the chemical stimuli. Moreover, the execution of the biomimetic
models of the antennal lobe and the mushroom body requires a solid software framework
hosted on the computer.

The success of the odor localization task highly depends on the instrumentation capabilities
of the robot for odor sensing, that is traditionally based on an array of broadly-selective gas
sensors (18). The robot design allows to host three types of the gas sensor arrays providing
specific hardware interfaces, scanning electronic boards and signal processing software.

The main large-scale array contains 64K polymeric sensors (16 modules of 64x64 sensing
elements each) and around 8 of sensor types (1). The critical parameter is the acquisition
speed of a sensor, which is determined by dynamics of the chemical reactions in sensor device
and limited by transient constants of the read-out electronic circuit (proportional to parasitic
capacitances). The preliminary experiments (1) showed the sampling rate of ~ 293 y; for a
sensor. Due to the modular structure of both the sensor array and the acquisition boards, the
acquisition speed for the complete number of sensors (64 K) expected to be close to 1.8 s. That
seems reasonable to perform the real-time robot experiments.

The preliminary results presented in this work are obtained with the second sensor array, as
the main polymeric array is still in the development phase. The current array is composed of
16 MOX sensors of 4 Figaro (Figaro Engineering Inc) types (TGS 2442, TGS 2612, TGS 2610 and
TGS 2600). The third array supported by the platform, referred as to virtual sensor array (25),
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Fig. 6. Architecture of the robotic platform.

represents a software abstraction of sensor signals used during testing the insect olfactory
models.

2.3.2 PC104-based embedded computer

The architecture of the embedded computer is based on the well-established PC104 standard
that was originally proposed as an extension of the IEEE-P996 standard (Standard for
Compact Embedded - PC Modules). PC104 systems are typically industrial rugged embedded
applications where reliable data acquisition is needed in an extreme environment.

The key features of the PC104 bus in comparison with the regular PC bus (IEEE P996) include:
compact form-factor (reduced from from 3.8 to 3.6 inches), the unique self-stacking bus, the
pin-and-socket connectors and lower power consumption.

Figure 7 shows the structure of the embedded computer and its PC104 component boards:
CPU board PCM-3372F-SOA1E (Advantech), data acquisition board PC104-DAS16]r/16
(Measurement Computing), Power Supply Unit HESC104 and Battery Pack BAT-NiMh45
(Tri-m Systems).

The main CPU board is a single-board computer (no division into the mother-board and other
daughter-boards, instead, the design is centered on a single board), of which the specification
characteristics make it close to a small laptop computer. The board has Intel Ultra-Low Voltage
fanless VIA Eden V4 1.0 GHz processor, 1GB RAM of DDR?2 standard at 533 MHz, and the
system chipset VIA CX700 with 64MB VRAM.

The I/O periphery consists of two serial ports, six USB 2.0, keyboard /mouse slots, audio and
8-bit GPIO ports, 10/100 Mbps Ethernet interface, and a slot for flash type I card.

The data acquisition unit is a 16-channel board with ADC 16 channels with 16 bit resolution.
Such configuration of the card allows that the data acquisition from the sensor array from 16
channels in parallel, that in turn speeds up the processing by a factor of 16. The maximum
acquisition rate of 100KHz is more than enough to read the signals from the sensor array, as
the maximum read-out speed on the sensor scanning electronics is not greater than 4KHz. The
input range in the unipolar mode is set to [0; 5]V and [0; 10]V, for polymeric and MOX sensor
array respectively. The DMA mode support is implemented to reduce the CPU overhead
during the data read-out.
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Fig. 7. The PC104-based embedded computer.

The power supply unit is a DC-DC converter with a wide range of input voltage from 6V to
40V DC and the output power if 60W. The UPS mode is supported with board configuration
stored in the EEProm memory.

The power consumption of the embedded computer in the complete configuration is typically
9W (maximum of 15.5W). The polymeric sensor array with 64K elements requires from 4W to
10W. Given the maximum power consumption 25.5W, the selected battery pack with capacity
500 mA per hour will guaranty an autonomous operation around 1.1 hour.

2.3.3 Software layer

The models for odor localization and classification have been implemented using IQR (see
figure 8), a multilevel neuronal simulation environment that provides a tool for graphically
designing large-scale real-time neuronal models (3). It is designed to visualize and analyze
data on-line and interfacing to external devices like robots are possible thanks to its modular
structure. IQR applications thus acquire data from the robot sensors, process them using the
above described models of odor source localization and classification and finally sends motor
commands to the robot in real-time.

2.4 Experimental set-up

The experimental scenario is a controlled indoor environment. The robot is tested in two
main tasks: (1) odor localization; (2) odor classification. The scenario uses a wind tunnel
that creates an odor plume where the robot can freely move. To track the trajectory of the
robot and compute its heading direction inside the wind tunnel we use an overhead tracking
camera. The chemical compounds used to test the odor classification are ethanol and acetone
diluted in distilled water. An ultrasonic source is used to disperse the chemical compounds
and generate a rapidly evaporating mist.

2.4.1 The wind tunnel

The conducted experiments took place in a wind tunnel which was located at the SPECS lab
in Barcelona, Spain. The wind tunnel is made of a wooden skeleton and is covered with
a transparent polyethylene sheet of low density. It consists of two main modules: the first
one is the main tunnel - a controlled space where the robot is placed and can freely move.
The second part is where the air-flow is generated, using four exhaust ventilators to create
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Fig. 8. The iqr simulation environment running the olfactory system of the insect. Space plot
shows the neuronal activity of a prototypical neuronal group.

negative pressure. The plume that is created moves across the whole wind tunnel from the
point of the odor source to the ventilators where the air is extracted out of the experiment
room. Each ventilator is a 4.4KW centrifugal fan and the flow velocity within the wind tunnel
is up to 1.0 m s™!. The wind tunnel has to be large enough for the robot, and therefore is 3
meters wide, 4 meters long and 54 centimeters high. For the odor localization experiment, the
starting point of the robot was set in front of the fans which is the outlet of the wind tunnel
and the odor source was placed in the upwind end of the wind tunnel (see figure 9).

As for the classification experiment we needed to have more stable conditions we placed the
robot in the mid spatial position inside the wind tunnel. The odor was spread through the
tunnel during five minutes before running the experiment. Additionally, the robot remained
in the initial position during the whole the experiment. These two restrictions kept the sensory
input as stable as possible. This task was tested with two different odors composed of ethanol
(20%) or acetone (20%).

2.4.2 Vision based tracking system (AnTS)

To track the robot’s trajectory, a monochrome camera is placed 3 meters above the testing
arena. An IR filter is added to the camera to allow the system to track the robot independently
of the light conditions. AnTS, a vision based tracking system is used to identify the three
points created by the robot’s IR LEDs. It computes the robot’s orientation and absolute
position inside the wind tunnel.

3. Results

Two main experiments were conducted to test the odor classification and the casting behavior
of the robot. The latter was performed to assess the odor localization strategy implemented
on the robot and the former to assess the robot’s ability to classify chemical compounds. Both
experiments were conducted in the wind tunnel.
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Fig. 9. Layout of the wind tunnel including the position of the camera of tracking system.
Red arrows show the wind flow direction from the odor source towards the end where four
fans extract the flow out of the tunnel.

3.0.3 Chemical plume in the wind tunnel

First we performed a guided tour of the robot through the wind tunnel to log the sensory
data together with the robot position in order to assess the general pattern of chemosensor
readings. Figure 10 shows the summed response of the chemosensors for the different robot
positions inside the wind tunnel with two chemical sources (Ethanol 1% and Acetone 1%),
showing the plume pattern inside the tunnel.
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Fig. 10. Chemo sensor readings sampled at different points (white dots) by the robot inside
the wind tunnel. The overall plume intensity is captured by the heat plot using the summed
input of all 16 chemical sensors.
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End Point

Start Point

Fig. 11. Robot position plot while casting. The robot is placed in the downwind end of the
wind tunnel, in front of the ventilators facing upwind with the chemosensors. The initial
point of the robot is marked in the green spot and the end point in red.

3.0.4 Chemosearch

We first discuss the casting behavior of the robot. The robot was placed in the downwind end
of the wind tunnel facing upwind. As mentioned above, the moth olfactory model performs
a surge when a chemical plume is detected by the sensors and a cast when the plume is lost.
In the first experiment we tested the casting model to investigate the explorative behavior
with no chemical compounds present. To calculate the robot’s trajectory, we performed an
offline analysis of the collected robot position data. Figure 11 shows the trajectory of the robot
while casting. Our results show a correct crosswind casting movement as no chemicals are
detected. However, the casting does not cover the wind tunnel breadth, the main reason being
the restricted maneuverability of the current robotic platform. Nevertheless, this preliminary
result is promising since the casting model works as expected, reproducing a crosswind cast.

3.0.5 Classification

The results in classification show a successful synchronization of the foreground neurons
corresponding to the pattern in both experiments. The Projection Neuron (PN) output is
fed to a synchrony detector group implemented in iqr. The plume testing experiments were
conducted for a variety of concentration ranges from 1% to 20%.

4. Conclusions and discussion

We have demonstrated the implementation of an autonomous embedded robot that performs
moth-like chemosearch and classification strategies. Our models are implemented using the
IOR large-scale neuronal simulator and runs on-board the embedded computer. The robot
is capable of performing autonomous casts inside the wind tunnel and of classifying two
different odors. Nevertheless, we observe that the maneuverability of the robot is restricted:
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Fig. 12. Raster-plot of the two experiments for the 16 input neurons. The neurons have been
grouped into foreground and background neurons of the corresponding patter. The first
period corresponds to the time the integrator needs to recognize the pattern (5 and 3 seconds
respectively). Once the pattern was input to the network (green line), it would make the
corresponding neurons to spike synchronously in about 1 second. The synchrony detector
effectively shows the pattern at the output when the specific neurons were synchronized
with respect to the background neurons.

the motors are too fast to perform controlled surge and cast. We currently are building a new
robotic platform that achieves lesser speed and has a lesser turning radius. The classification
results can be considered as a proof of concept for the possibility to classify odors with
the antennal Lobe model proposed in (15) and adapted in (12). However, the capability
of this model to actually distinguish mixtures of components with real sensor signals and
with dynamic input (i.e. a moving robot), or to act in the presence of a distractor in the
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environment are not yet clear. Further work is intended as extensions of this model with
Temporal Population Coding (TPC) strategies, which has been suggested and is consistent
with both vertebrate and invertebrate physiology (5; 8; 23).
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Abstract

In machine olfaction, the design of applications based on gas sensor arrays is highly dependent on the
robustness of the signal and data processing algorithms. While the practice of testing the algorithms on
public benchmarks is not common in the field, we propose software for performing data simulations in
the machine olfaction field by generating parameterized sensor array data. The software is implemented
as an R language package chemosensors which is open-access, platform-independent and self-contained.
We introduce the concept of a virtual sensor array which can be used as a data generation tool. In this
work, we describe the data simulation workflow which basically consists of scenario definition, virtual
array parameterization and the generation of sensor array data. We also give examples of the processing
of the simulated data as proof of concept for the parameterized sensor array data: the benchmarking of
classification algorithms, the evaluation of linear- and non-linear regression algorithms, and the biologi-
cally inspired processing of sensor array data. All the results presented were obtained under version 0.7.6
of the chemosensors package whose home page is chemosensors.r-forge.r-project.org.

Introduction

Data sharing plays an important role in the fields of computer science, statistics and machine learning.
In statistical genetics, The Human Genome Project made the full human genome publicly available on
the NCBI website in 2001 [1]. That has been one of the key factors in enabling impressive developments,
not only in fields related to biological science, but also in statistical genetics and bioinformatics. The web
site of The University of California at Irvine (UCI) Machine Learning Repository is an example of the
way the machine learning community sets data repository standards and provides educational resources
and open-access benchmarking material. This web site contains over 200 data sets from different theoret-
ical domains, including results from data generators. Simulated data is an option when data collection
is complicated by issues related to technological limitations, large problem size, privacy agreements or
the time required to gather the data. In statistical genetics, The Genetic Analysis Workshops approach
current analytical problems by making both real and simulated data sets available to investigators world-
wide. The use of simulated data is a widely accepted practice for evaluating the performance of computer
algorithms and can be found in many computer science publications.

The purpose of machine olfaction is to design systems able to recognize smells. An experimental
device typically consists of an array of gas sensors, acquisition electronics and a software unit for pattern
recognition. Such a device, also known as an electronic nose, was originally proposed by G. Dodd and
K. Persaud in 1982 [2]. The authors introduced a principle for discrimination among complex odourant
mixtures inspired by the way the olfactory system processes the signals from broadly tuned receptor cells.
In the work of the authors, it was shown that discrimination between odour classes can be performed by
means of an array composed of sensors with overlapping performance profiles, instead of highly specific
sensors. Signals recorded from the sensors form a special fingerprint in response to odours, however
data processing of such multivariate responses was always a crucial stumbling block in the design of the



electronic nose.

The practical application of instruments based on sensor arrays is very sensitive to the robustness
of the data processing methods involved [3]. In last three decades, substantial advances have been
made in signal and data processing of sensor array data [3-5], including in biomimetic or bio-inspired
approches [6, 7], although no public repository of data sets has yet been established. The need for
a repository of benchmarks has been already mentioned [5], but there are still few data sets publicly
available. The UCI Machine Learning Repository contains an archive of 13910 measurements from 16
chemical sensors aimed at tackling the problem of drift compensation in sensor array data [8]. As far as
we can ascertain, this is the unique example of an open data set in machine olfaction. We believe that
data generators for simulation experiments might be a step forward for the development and testing of
data processing algorithms, while the setting up of a data repository and the collection of data sets for
this repository would be a productive long-term activity for the machine olfaction community.

The need for data sets specifically designed for machine olfaction applications arises from the fact
that this field has a list of practical problems, which are not common to other machine learning domains.
Signals acquired from gas sensors are prone to drift due to the intrinsic instability of sensor devices
and environmental changes over the course of the experiment. Any transfer of the applications from
the original experimental conditions to a new set up also results in certain instrument re-calibration
problems. Scenarios important for testing the application include: sensor replacement and sensor failure
(for evaluation the robustness of the array), adaptation and habituation tasks (for design of event-based
pattern recognition algorithms), and a number of biologically inspired scenarios such as background
suppression (for running neural models to simulate the biological olfactory pathway). Parameterization
of the difficulty of each scenario is another important issue for the benchmarking of algorithms designed
to address the above problems. For further information on the topic, the reader is referred to the most
recent review of signal and data processing in machine olfaction [3] and to the thesis of B. Raman for the
introductory material relating to neuromorphic data processing in machine olfaction [9].

The development of the package chemosensors was initiated within the framework of the NEU-
ROChem project [10]. The testing of the neuromorphic computational models designed in the project
necessitated large scale sensor array data (a large number of sensors in the array) and support for multi-
component gas mixtures. Although neuromorphic simulations were the first application of the generator
tool, the simulated data can be used for a general-purpose experiments in machine olfaction. These
typically comprise three steps. In the first step, the practitioner considers an experimental scenario. The
scenario typically is defined by a list of analytes and their concentrations and the task type, for example,
classification or regression. In the second step, transient signals are acquired from the sensors in array.
Common practice is to pre-process the signals to compensate for noise and to extract the features relevant
for the discrimination task in the specific scenario. In the third step, data analysis relevant to the given
scenario is performed. The decisions made in the first step are the most crucial, in the sense that any
further improvement is now difficult, if any critical errors were made at the beginning. The chemosensors
package is mainly focussed on helping the design of a signal processing toolchain by providing the facilities
for data simulation. The challenge of this initial step is to find the best possible combination of analytes
and sensors which can discriminate between the analytes. Different types of sensors are evaluated by
looking at their key response characteristics for the analytes involved in the specific scenario. Typically,
the main characteristics of interest are the sensitivity to target analytes, the selectivity to target analytes
across the interferents, and the stability of the sensors.

Our chemosensors package allows one to parametrically design an array of virtual sensors and to
use it as a data generation tool. The simulation of a single sensor is based on a set of physico-chemical
models for conducting polymers, which were derived under simplified assumptions and were presented in
our earlier work [11], where models emulating different types of noise (including drift) in sensors also were
constructed. The software is written in the R language, is organized as a standard package, available
on the R-Forge repository and includes installation instructions and code documentation [12,13]. The



package presented is aimed at providing an open framework of data simulation to tackle the specific
issues in machine olfaction previously mentioned. We propose defining the difficulty level of scenarios as
the similarity between gas classes, this is independent of the sensor data or simulation models for data
generation.

The R language environment is a widely used framework for the distribution of data sets and software
for data generation. Published packages for data simulation include the fwsim package for functional
magnetic resonance imaging [14], the packages IBDsim and hapsim in statistical genetics [15,16] and
the simFrame package for building a general-purpose framework for statistical simulations [17].

Our manuscript is organized as follows. We begin with a description of the materials and methods
used to create the chemosensors package. Then we explain the parameterization of simulations, and show
examples for three machine olfaction tasks: the benchmarking of a classification algorithm, the evaluation
of linear and non-linear based regression algorithms and the modelling of the chemotopic convergence
of receptor neurons in the early olfactory pathway. Finally, we summarize our work in a Conclusions
section.

Materials and Methods

Reference data set

The software package includes the simulation models, which were trained with a reference data set as
described in [11]. The reference data used in that work (UNIMAN data set) was collected in The
University of Manchester (UNIMAN, UK). The long-term measurements of three analytes ammonia,
propanoic acid and n-butanol, at different concentration levels, were performed on an array composed
of 17 conducting polymer sensors. The measurement protocol implied that sensors were exposed to a
rectangular gas pulse of 329 s, and transient signals from the sensors were recorded at 1 Hz sampling
frequency. The periodic measurements lasted over 10 months and resulted in 3925 samples stored in the
raw data format. Hence, the UNIMAN data set can be represented as a three-dimensional data array of
size 3925 x 329 x 17.

The UNIMAN data set is unique, due to the methodology and precision on the gas delivery station
jointly with the long-term experiment. The applications on processing of these data are related to
scenarios of gas identification complicated by the noise observed in the sensor signals (mainly the long-
term drift noise). The detailed information about the UNIMAN data set and list of related applications
can be found in [11] and references therein.

Input protocol

Three different analytes can be used for data simulation, which correspond to the three analytes: ammo-
nia, propanoic acid, and n-butanol in the reference data set. For the sake of simplicity, we use the letters
A, B and C to refer to these. Table 1 reports the concentration range for each analyte with concentration
units expressed in volume fraction vol. %.

The input concentration is defined by a step function, and the lengths of both the exposition and the
cleaning phase are equal to 60 time units. This corresponds to the protocol given in the reference data
set.

The dynamic range of the virtual sensors is limited to the range from 0.01 to 0.1 vol.% for analytes
A and B and to 0.1 to 1 vol.% for analyte C. This corresponds to the range of analyte concentrations in
the reference data set given in Table 1.

A transient sensor signal, the output vector x(t), is generated in response to a mixture of analytes,
with input concentration matrix Cy(t). The columns of the matrix Cy(t) encode the concentration of
three analytes A, B and C. We use 7 to index the columns of Cy(t), where ¢ takes values 1, 2 and 3. The



response of an array of sensors can be expressed as a matrix X (¢) comprised of signals from the sensors
given in the columns. The number of rows, in both matrices Cy(t) and X (t), is equal to the number of
samples per unit time.

Function Cy(t) is defined to be a step function of length 60 time units and the amplitude of the step
is denoted by Cy. A time stamp, when the exposition phase ends and the cleaning phase starts, is known
as quasi stabilization time and the value of the signal at this point, here x, is known as the steady-state
value.

Simulation Models

In the chemosensors package we used the models designed for polymer based gas sensors and validated
these models on the seventeen sensors and three analytes at different concentrations from the UNIMAN
data set [11]. This group of models took a matrix of concentrations Cy(t) as input and produced a matrix
of sensor array data X (t) as output. Two models, sorption and calibration, emulated the time response of
the sensors in the array under noise-free conditions. Three models, concentration noise, sensor noise and
drift noise, injected noise to the generated data at different steps of the simulation flow. The response of
a single sensor to a mixture of analytes is controlled by the Langmuir isotherm being part of the sorption
model. The Langmuir isotherm implies a competitive sorption behaviour and results in a non-linear
response to a mixture of analytes. The maximum number of analytes in the mixture is three, as the
UNIMAN data set was measured only for three analytes.

The parametrization of the simulation models is summarized in Appendix S1, while the complete
description of the models is available in our previous work [11]. Appendix S2 also presents a quantitative
comparison between simulated and real data to give the reader the confidence in the data generated by
the chemosensors package.

Virtual sensor array

The simulation models described in Appendix S1 are implemented in the chemosensors package as S4
classes in R [12]. The main class of the package SensorArray represents a virtual sensor array and
inherits classes from the simulation models, which are SorptionModel, SensorModel, ConcNoiseModel,
SensorNoiseModel and DriftNoiseModelf. Table 2 shows the relationship between the simulation mod-
els and the classes in the first two columns. The parameters derived from the reference UNIMAN data are
stored in the data sets reported in the third column of Table 2. In addition, the data set UNIMANshort con-
tains the short-term reference UNIMAN sub-set of the first 200 samples. All the data sets are distributed
with the chemosensors package and can be loaded into the R environment by the data function.

In this Section, we describe the basic slots of the SensorArray class and report their relationship to
the parameters of the simulation models. Table 3 summarizes the information about the basic slots of
SensorArrayclass.

Virtual sensors can be thought as replicas of the 17 UNIMAN sensors. The data sets of the package
store parameters related to the simulation models computed for the UNIMAN sensors (See Table 2).
When a virtual sensor is initialized, it adopts one of the pre-computed 17 profiles. By means of such
model assembly, one can create a virtual sensor array by controlling only two slots of SensorArray class
in the basic configuration.

e The num slot represents the types of sensors in the array. It is an integer vector whose length is
equal to the number of sensors in the array. The elements of the vector num can take values from 1
to 17, corresponding to one of the seventeen sets of parameters derived from the UNIMAN sensors.
These parameters include K;, 5k, T1,i, and 72 ; as presented in Appendix S1.

e The nsensors slot stores the number of the sensors in the array.



For instance, a virtual array created with parameters num 1:2 and nsensors 2 has two sensors that
represent the first two sensors in the UNIMAN data set. That two UNIMAN sensors were different by
the polymer material the film of the sensors was composed from, and the sensors had different chemical
selectivity and sensitivity characteristics in response to the three examined analytes: ammonia, propanoic
acid, and n-butanol. The two virtual sensors possess the same relationships from the UNIMAN sensors,
which are expressed in the parameters of the simulation models, please see [11] for further details.

If one needs an advanced configuration of the array, other slots of SensorArray class are available.
Many slots are implemented as easy-to-use scaling factors.

e The alpha slot is a scaling factor for controlling the non-linearity of a sensor. If alpha is equal
to 1, then the scaling is omitted and the virtual sensors take the sorption affinities K; from the
UNIMANsorption data set according to their types (slot num). If alpha is not equal to 1, then the
magnitudes of the affinity coefficients K; are scaled up (alpha > 1) or scaled down (alpha < 1)
proportionally, so that the relative relationship along the seventeen sorption profiles is preserved.
Non-linearity in a sensor increases with an increase in alpha, this is a consequence of the fact that
sensors under the Langmuir relation in the sorption model tend to a non-linear behaviour when the
coefficients K; are large. The value of zero is not allowed, because then the sorption model given
in Equation (1) in Appendix S1 would be meaningless.

— Another role of the scaling operation by alpha is the regulation of a response to a mixture
of analytes. As the output of the sorption model is a weighted (or penalized) sum of the
inputs, more penalization is induced with greater magnitudes of K; and, thus, a greater value
of alpha. The default value of the slot (2.25) has been selected to favour a more balanced
penalization of sensors’ responses to different mixtures of the three analytes.

e The beta slot is a scaling factor for controlling the diversity across sensors in the array. If beta is
equal to 0, then the scaling is omitted and the sensitivity coefficients j; j in the calibration model of
virtual sensors are taken from the coefficients estimated for the UNIMAN sensors. If beta is greater
than 0, than the coefficients 53,  are derived from the uniform distributions with parameters stored
in UNIMANdistr data set. The value of beta defines the spread of the distributions. The diversity
across sensors increases with an increase in beta. The default value of beta (2) corresponds to a
moderate level of diversity.

Note that one can create a copy of the UNIMAN array of the seventeen sensors under the simulation
models by setting up alpha to 1 and beta to 0. Thus, the virtual array will replicate the same properties
of non-linearity and diversity as the UNIMAN array.

The magnitude of noise generated by the simulation models is mainly controlled by three scaling slots
csd, ssd and dsd, which correspond to concentration, sensor and drift noise models respectively. Values
of csd, ssd and dsd typically range from 0 to 1. A value 0 implies a noise-free mode, and the value of 1
has been selected to correspond to the level of noise observed in the reference UNIMAN data set. The
default values of the three slots are equal to 0.1, which supposes a moderate level of noise.

e The csd slot is a scaling factor for controlling the concentration noise. It scales the covariance
matrix Y. in the concentration noise model. The default value is 0.1.

e The ssd slot is a scaling factor for controlling the sensor noise. It scales all the covariance matrices
0;,% in the sensor noise model. The default value is 0.1.

e The dcsd slot is a scaling factor for controlling the drift noise. It scales the covariance matrix g
in the drift noise model. The default value is 0.1.



e The ndcomp slot encodes the number of drift components. Its value is equal to the number of
columns in the matrix P of the drift noise model. The default value is 1. This corresponds to the
one drift component which has been observed in the reference UNIMAN sensor array data [18].
The slot can possess the values 1, 2 or 3.

e The ndvar slot defines the structure of the drift noise and encodes the importance of drift compo-
nents. The slot is a vector which contains the diagonal elements of the covariance matrix ¥4 of the
drift noise model. The values of the elements in ndvar vector lie in the range [0,1]. The default
value is 0.86, given that the value of ndcomp slot is 1. The slot can be a vector of up to 3 elements,
as limited by the ndcomp slot. If three drift components are given, then the default values of ndvar
are 0.86 0.06 and 0.05.

Workflow

The workflow of data simulations in the chemosensors package consists of several steps. In the first
step, the practitioner defines analytes and concentration levels for a scenario and the sensors required to
build an appropriate array. The basic initialization parameters to build a virtual array include the sensor
types num and the number of sensors nsensors (along with others for more advance configurations). The
package contains a special class Scenario for the representation of analytes and concentrations. The plot
methods of the SensorArray class have been designed to perform the exploratory data analysis on the
sensor array data.

In the second step, the practitioner generates sensor array data by a single command. In particular, the
predict method of the SensorArray class takes as input a matrix of analyte concentrations and returns
as output a matrix of sensor array responses. Parallelized computation of sensor signals is supported,
this is necessary in the case of long-term scenario or a large number of sensor elements.

In the third step, the practitioner performs a data analysis on the sensor array data by means of any
convenient software tool. In general, the software for data analysis can be an external program, and both
matrices of concentrations and sensor signals can be easily exported in a format like csv by standard R
facilities, as no specific data format is assumed in the package.

The noise level in the array is a simulation parameter which can be updated on-the-fly in the sim-
ulation. We consider such flexibility in controlling noise to be a useful option, when the performance
of a specific sensor is evaluated under drift-free conditions or when the level of noise is a parameter in
benchmarking data analysis algorithms.

Installation

The source code of the chemosensors package is hosted on the R-Forge web page [13,19]. The package
is also available on the official CRAN repository of the R packages and can be installed by typing the
following command in R:

install.packages ("chemosensors")

That will install the latest stable version of the package and all its dependencies from the CRAN
repository. The distributed package is platform-independent and self-contained.

Results

The chemosensors package is organized around the S4 classes of simulation models (See Table 2), and
the implementation of the classes shares some common features.



e (lass constructors can be called in the standard form for S4 classes using the new function. For the
sake of simplicity, every class has a function, which serves as a wrapper for the class constructor
and has the same name as the class.

e The standard methods show, print and plot have been designed for all classes, this makes the
output more verbose.

e One uses @ to access slots of a S4 object. Special get and set methods have been implemented to
access most slots of the simulation models, and the methods have the same names as the slots.

The following code shows a quick-start example of a simulation, where one defines a custom matrix
of concentrations, creates a sensor array and generates the data. This is an example of the regression
scenario of one single gas A given at several concentration values.

conc <- matrix(0, nrow = 120 * 3, ncol = 3)
conc[61:120, 1] <- 0.01
conc[181:240, 1] <- 0.02
conc[301:360, 1] <- 0.05

sa <- SensorArray(num = 1:4, tunit = 60)

sdata <- predict(sa, conc)

The concentration matrix conc encodes three pulses of analyte A at different concentrations 0.01,
0.02 and 0.05 %. vol. The array sa is composed of four sensors of four different sensor types, and the
tunit parameter is set to 60 to enable the sensor dynamic model for pulses with step 60. Each gas pulses
consists of two parts of equal length 60, the gas exposition phase and the cleaning phase (the gap between
two consequent exposition phases). Figure 1 (a) depicts the change in analyte concentrations over time,
and Figure 1 (b) depicts the signals from the four sensors in response to the concentrations. One can
suppress the drift noise in the array by setting the dsd slot to zero and repeat the simulation, as shown
in the code below. Figure 1 (c) depicts the sensor signals under drift-free conditions.

dsd(sa) <- 0
sdata <- predict(sa, conc)

In this section, we present some examples of the use of the chemosensors package. Firstly, we introduce
some basic topics related to the use of the Scenario class, the configuration of a sensor array and
the generation of sensor array data. Secondly, we give examples of data analysis performed on the
simulated data produced by the package. In particular, we show examples of benchmarking a classification
algorithm, the evaluation of two regression algorithms and some biologically-inspired modelling.

To perform the classification and regression analyses we use the caret package developed by Max
Kuhn [20]. This package provides a unified workflow for the process of constructing a predictive model
with the support of automated tools for data pre-processing, resampling procedures, feature selection
and model tuning. We also use Self-Organizing Maps (SOM) as implemented in the kohonen package for
some biologically-inspired modelling [21].

Defining scenarios

The Scenario class has been introduced to serve as a more compact representation of a concentration
matrix. The labels of analytes and the length of pulses are the main parameters required to specify a
scenario. For instance, the conc matrix in the previous example can be alternatively constructed by
creating an object of the Scenario class and applying the getConc method to extract a concentration
matrix, as shown in the code below.



sc <- Scenario(c("A 0.01", "A 0.02", "A 0.05"), tunit = 60)
conc <- getConc(sc)

The Scenario class also encodes a training set and a validation set (or test set) at the time of
initialization. The parameters T and nT respectively encode gas labels and the number of samples per
label for the training set, and the parameters V and nV also obtain for the validation set. The training set
is followed by a validation set, as is typically accepted in machine olfaction experiments. Randomization
of the samples is controlled by the logical parameter randomize. One can re-create the previously created
sc scenario by specifying more parameters, as shown in the following code.

sc <- Scenario(name = "Regression", tunit = 60, concUnits = "perc",
T =c("A 0.01", "A 0.02", "A 0.05"), nT = 30,
V=c("A 0.01", "A 0.02", "A 0.05"), nV = 30,

randomize = TRUE)

sc

> Scenario ‘Regression‘ of 180 samples, tunit 60, randomize TRUE
> - gases A, B, C

> - Training Set: A 0.01 (30), A 0.02 (30), A 0.05 (30)

> - Validation Set: A 0.01 (30), A 0.02 (30), A 0.05 (30)

The show method prints the basic information about sc object. The plot method provides the same
information by depicting the unique gas labels in the training and validation sets. Figure 2 shows the
graphics produced by the plot method for the scenario object sc showed above.

plot(sc)

The resulting scenario sc represents a regression problem for analyte A given at three concentrations
0.01, 0.02 and 0.05. In both training and validation sets there are 30 samples per concentration. It may
sometimes be necessary to update a scenario once it is initialized. In the code given below, the add
method is used to supplement the training set with two more gas labels; this might improve the accuracy
of the model because of a more representative set of concentrations.

add(sc) <- list("A", 0.03, 30, "T")
add(sc) <- list("A", 0.04, 30, "T")

In practice, it might be necessary to retrieve extra data from the scenario in addition to the matrix of
concentrations. The sdata.frame method returns a data frame with additional columns which represent
gas labels, time units and set index (training or validation set). In the code given below, the sdata.frame
method is applied to the regression scenario created above, and samples indexed from 58 to 62 are printed.

cf <- sdata.frame(sc)

cf[68:62, ]

> index A B C glab 1lab tpoint time set
> 58 1 0.00 0 0 Air Air air 568 T
> 59 1 0.00 00 Air Air air 59 T
> 60 1 0.00 00 Air Air airout 60 T
> 61 10.01000 A A0.01 gasin 61 T
> 62 10.0100 A A0.01 gas 62 T



The resulting cf data frame contains both air and gas A labels in the 6th column lab, because every
label entry, for example A0.01, in either training or validation set encodes a gas pulse consisting of
two parts, the exposition phase of the length tunit and the cleaning phase of the same length tunit.
Note that the cf data frame has a special column tpoint for encoding events on changes between the
exposition and cleaning phases of the gas pulse. This variable takes values air, airin, airout, gas,
gasin and gasout, and is used for transient feature extraction from transient sensor signals.

e transient feature: All samples are used.

e steady-state (alias ss) feature: Samples with tpoint labels equal to gasout are extracted, this
corresponds to the time stamp when the exposition phase is finished and the cleaning phase is to
be started.

e step feature: The same samples as for steady-state feature are used, but the sensor data with
tpoint labels equal to airout are subtracted. This method of feature extraction also reduces the
drift noise.

For example, the concentration matrix depicted on Figure 1 (a) has three time stamps of gasout at
120, 240 and 360 time units, which correspond to the time of extraction of the steady-state signal.

Ten scenarios for machine olfaction proposed in the framework of the NEUROChem project [10] are
given File S1. The document contains the description of each scenario in terms of training and validation
sets, definition of scenario difficulty and the R code to create an object of Scenario class.

Configuring sensor array

From now on, we will use the default value 1 of the tunit parameter to create any virtual sensor
array. Such parametrization means the only steady-state feature in the sensor response, instead of, for
example, 120 transient features in the case of the tunit parameter equal to 60. This strategy seems to
be reasonable, as that allows us to significantly reduce the number of samples needed to be simulated
for testing pattern recognition models, while we will exploit one the most commonly used features from
the transient sensor response (steady-state). Hence, the input for the simulation models will be trivial
gas pulses each parametrized with tunit 1, that results in one sample of a gas in the exposition phase
and one sample of the air in the cleaning phase. The response to the air sample represents a baseline
level in the signal, which typically is subtracted from the response to the gas sample, being a standard
drift-correction method in the stage of the signal processing (that corresponds to the feature parameter
equal to step in the sdata.frame method).

There are several ways to configure a virtual sensor array in the chemosensors package. Basic selection
of sensor types is controlled by num parameter among other parameters. Information stored in the data
sets given in Table 2 characterize the UNIMAN sensors (or sensor prototypes) and can be used for the
selection of particular sensor types. The SensorArray class has a group of plot methods plotPolar,
plotPCA, plotBox and plotResponse for a visual representation of the relation between analytes and
sensors. Here, we show an example of a configuration of a sensor array targeted at discriminating between
a set of gas classes: pure analytes A and C at different concentrations and binary mixtures of them.

set.AC <- c("A 0.01", "A 0.05", "C O.1", "C 1", "A 0.01, C O0.1", "A 0.05, C 1")

The affinity coefficients K; in the sorption model are important sensor characteristics for the discrim-
ination task posed. The code given below shows how one creates an array composed of all the 17 sensor
types and gets the coefficients K; by the coefficients method.

sa <- SensorArray(num = 1:17)
coef <- coefficients(sa, "SorptionModel")
str(coef)
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The relative importance of the sorption coeflicients for analytes A and C is estimated by the following
code.

sort(coef["A", 1 / coef["C", 1)

> 2 3 1 5 6 16 9 8 4 15
> 0.3752 0.3809 0.3906 0.4085 0.6864 0.8087 0.8308 1.1584 1.2877 1.3308
> 10 11 12 13 7 14 17

> 1.3837 1.3980 1.7380 2.1962 2.3077 3.6603 6.3235

The same comparison can be performed by looking at pre-computed sorption coefficients for the
seventeen UNIMAN sensors and stored in the data set UNIMANsorption.

str (UNIMANsorption)

> List of 1

> $ gkc: num [1:17, 1:3, 1:4] 10.02 9.51 9.52 6.57 9.19 ...
> ..— attr(*, "dimnames")=List of 3

> .. ..$ : chr [1:17] m"qn non n3gn ngn

> ..$ : chr [1:3] "A" "B" "C"

> ..$ : chr [1:4] "Q" "K" "KCmin" "KCmax"

K <- UNIMANsorption$gkc[, , "K"]
sort (K[, "A"] / K[, "C"D)

> 2 3 1 5 6 16 9 8 4 15
> 0.4307 0.4526 0.4581 0.4820 0.7187 0.8278 0.8666 1.1213 1.2308 1.2881
> 10 11 12 7 13 14 17

> 1.2933 1.3123 1.6083 2.0277 2.0775 3.1035 5.0328

The order of sensors is slightly different, as sensors in a virtual array are not exact copies of the
UNIMAN sensors, but replicas derived from the UNIMAN parameters.

Now we create three different arrays composed of sensors which are different in affinities to analytes
A and C. All the arrays are configured to have 12 sensor elements and zero level of the drift noise.

sal <- SensorArray(num = 1:3, nsensors = 12, dsd = 0)
sa2 <- SensorArray(num c(13, 14, 17), nsensors = 12, dsd = 0)
sa3 <- SensorArray(num = c(1:3, 13, 14, 17), nsensors = 12, dsd = 0)

Arrays sal and sa2 include sensors having greater affinity to analyte C and A, respectively. The last
array sa3 is composed of sensor types present in both previous arrays.

Principal component analysis (PCA) is one the most widely used shrinkage methods to represent
sensor array data in a low-dimensional space [3,5]. Principal components, as data projections, are
mutually uncorrelated and ordered in variance. It is well known that the principal components of a data
set provide a sequence of best linear approximations to that data [22]. We use the PCA technique to
evaluate sensor arrays sal, sa2 and sa3 in response to a set of gas labels set.AC. In particular, we plot
the PCA scores of data projected onto the first two principal components.
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The chemosensors package contains a list of plot methods suitable for evaluating sensor arrays on
a set of analytes by means of exploratory graphics. The plot methods are applied to objects of the
SensorArray class, the input is either a concentration matrix or a set of gas labels, sensor array data are
generated on the fly, and feature selection from sensor transients is parameterized.

e plotPolar method (default): Sensor array data are computed for a given concentration matrix or
a set of gas labels and are plotted in polar coordinates, where sensor numbers are angles and sensor
signals are radii.

e plotPCA method: A principal component analysis (PCA) is computed on sensor array data, and
the graphics show a plot of scores on the first two principal components. The percentage of data
variance captured by components also is presented.

e plotBox method: Sensor array data are grouped according to gas labels and are shown as a box
plot.

e plotResponse method: Both input concentration matrix and output sensor array data, given for
a sensor array object, are plotted over time as lines.

All the plot methods share the same list of parameters.

e x: an object of the SensorArray class.

e conc: a matrix of analyte concentrations.

e sdata: a matrix of sensor data in response to a matrix of concentrations conc.

e set: a set of gas labels, which is a parameter alternative to conc (a further concentration matrix
is created via Scenario class).

e feature (default value transient): the name of a method for transient feature extraction from
sensor array data.

e air (default value FALSE): a boolean value as to whether air samples are to be included or not.

e gcol (default value FALSE): a boolean value as to whether colours for gas labels are to be computed
with the method gcol.

Now we apply the plotPCA method to three sensor arrays sal, sa2 and sa3 in response to the set of
gas labels set.AC.

plotPCA(sal, set = rep(set.AC, 10), air = FALSE)
plotPCA(sa2, set = rep(set.AC, 10), air = FALSE)
plotPCA(sa3, set = rep(set.AC, 10), air = FALSE)

We induce 10 repetitions for each gas label and exclude samples of the air in the PCA plot. The
default transient feature extraction transient is appropriate for the analysis, as the drift noise was set
to zero level when creating the arrays of sensors.

Figures 3, 4 and 5 show the distribution of PCA scores for the three arrays. In Figure 3 the scores of
two groups for binary mixtures A 0.01, C 0.1 and A 0.05, C 1 are closer to the scores of groups for
pure analyte C; this means that sensors of the sal array tend to have a greater affinity for analyte C.
On the contrary, Figure 4 shows that sensors of the sa2 array have greater affinity for analyte A. The
horizontal line PC2 = 0 can be used to visually pick up such kinds of observations. Figure 5 shows a
balanced distribution of classes in terms of affinities for analytes A and C. In addition, this plot shows
more diversity in the PCA scores for sa3 array; this can be noted by looking at the amount of variance
captured by the two principal components PC1 and PC2 (labels on x and y axis).
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Generating data

Data generation is performed when one has defined a matrix of analyte concentrations and a sensor array.
The predict method of SensorArray class takes as input the sa object of SensorArray class and the
conc concentration matrix and produces as output the sdata matrix of sensor signals. Typically, data
generation is accomplished by running a single command, as shown in the following code.

sdata <- predict(sa, conc)

To parallelize the computation, one passes the cores (alias nclusters) parameter to the predict
method. For example, two cores are specified in the code example given below.

sdata <- predict(sa, conc, cores = 2)

Another way to configure the computation on several cores is by using the options command, as
shown in the following code.

options(cores = 2)

The are several facilities available in the chemosensors package to process the data stored in the conc
and sdata matrices. The Scenario class automates the process of creation of concentration matrices.
In particular, the getConc method returns a concentration matrix encoded by an object of Scenario
class, and the sdata.method method allows the retrieval of such additional variables as set and tpoint
for separation into training and validation sets and for parameterization of transient feature extraction,
respectively. The same method sdata.frame applied to an object of the SensorArray class takes as input
four basic parameters: an sa object of the SensorArray class, the conc concentration matrix or a cf
data frame (obtained from an object of Scenario class by the sdata.frame method), the sdata matrix
of sensor signals and the feature parameter to define a method for feature extraction. The following
code shows an example of using the sdata.frame method to construct the df data frame, which contains
both concentration- and sensor-related information.

df <- sdata.frame(sa, conc = conc, sdata = sdata, feature = "step")

Benchmarking of a classification algorithm

In this Section, we present a procedure for benchmarking a particular classification algorithm to discrimi-
nate a set of gas classes. How one defines the difficulty of the scenarios used for testing is important. Since
the level of difficulty has to be independent of the sensor data or simulation models for data generation,
we propose determining the difficulty of a scenario by the similarity between analytes in mixture. Such
a definition is possible, as the simulation models in chemosensors package support mixtures of analytes.

We will use only two classes in the scenarios, constructed as mixtures of two analytes A and C.
The first three columns in Table 4 present three scenarios at different difficulty levels. We apply the
k-nearest neighbors (KNN) algorithm for classification. It is known that predictions of this method are
often accurate, but can be unstable [22]. Thus, we will perform a 10-fold cross-validation procedure (10
repetitions) for the selection of the best parameter k on the training stage with a sufficient number of
samples.

In the first step, we generate the gas labels and sensor array data with the chemosensors package.
We will construct an array based on 17 sensors from all sensor types, and the noise level of all three
types will be set to 1. The code below shows an example of producing a data frame df for a scenario of
difficulty 1. The size of both the training and validation (or test) set has been selected so that each gas
label is represented by 100 samples. This results in 10 samples per fold in the 10-fold cross-validation at
the time of the model training.
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set <- c("A 0.02", "C 0.5")

sc <- Scenario(T = set, nT = 100, V = set, nV = 100, randomize = TRUE)
conc <- getConc(sc)
cf <- sdata.frame(sc)

sa <- SensorArray(num = 1:17, csd = 1, ssd = 1, dsd = 1)
sdata <- predict(sa, conc = conc, cores = 2)
df <- sdata.frame(sa, cf = cf, sdata = sdata, feature = "step")

In the second step, we train a model based on the KNN algorithm with the caret package. For
model tuning, we will explore values 3, 5, 7 and 9 of the parameter k. PCA will be applied for pre-
processing of sensor array data; this is one of the common options for building predictive models in
machine olfaction [3]. Separation of the training and validation (testing) set will be controlled by the
variable 1ab in data frame df.

Xt <- as.matrix(subset(df, set == "T", select = snames(sa)))

Xv <- as.matrix(subset(df, set == "V", select = snames(sa)))

lab <- subset(df, set == "T", "lab", drop = TRUE)

lab <- gsub(",| ", "", 1lab)

Yt <- as.factor(lab)

lab <- subset(df, set == "V", "lab", drop = TRUE)

lab <- gsub(",| ", "", 1lab)

Yv <- as.factor(lab)

library(caret)

fit <- train(Xt, Yt, method = "knn", tuneGrid = data.frame(.k = ¢c(3, 5, 7, 9)),
trControl = trainControl(method = "cv", number = 10, repeats = 10),

preProcess = c("center", "scale", "pca"))

The results of the training are stored in the object fit, and new data can be obtained by the predict
method applied to this object. The final model with the best tuned parameters (stored in the finalModel
slot of object fit) will be used for the prediction.

Yp <- predict(fit, newdata = Xv)

Table 4 shows the results of a benchmarking of the KNN algorithm. The fourth column reports the
parameter k of the best tuned KNN model, and the last two columns contain the accuracy measure
for the training and validation set respectively. The accuracy was computed as the ratio of gas classes
correctly predicted by the model. We clearly observe that the model complexity, as expressed by greater
values of k, increases with the greater scenario difficulty. It is reasonable that the discrimination of gas
classes at higher levels of difficulty should require a more complex predictive model. The three models
fitted to the scenarios at different difficulty levels also show differences in performance: the first model is
able to classify 100% of the gas classes in both training and test sets, the second model shows quite good
performance, and the third model performs poorly, giving the accuracy of 0.74 on the test set.

Evaluation of regression algorithms

In this Section, we show an example of the regression scenario, which aims to quantify the concentration
of a single analyte based on the sensor signals. To simulate data for benchmarking with the chemosensors
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package, one needs to define the analyte concentrations for the Scenario class and to configure a virtual
sensor array for the SensorArray class. Further, one selects a method for the prediction model to perform
the regression analysis on the simulated data, where the regression model will use the sensor signals as
predictors and the concentrations as responses.

We consider two regression problems: one for analyte A at concentrations 0.01, 0.02, 0.05 and 0.1 vol.%
and another for analyte C at concentrations 0.1, 0.4, 1 and 2 vol.%. The concentration range has been
selected for each analyte in order to cover the dynamic range and to include the greatest concentration
value in the saturation region. The following code shows the definition of a set of gas labels for each
analyte.

conc.A <- ¢(0.01, 0.02, 0.05, 0.1)
set.A <- paste("A", conc.A)

conc.C <- ¢(0.1, 0.4, 1, 2)
set.C <- paste("C", conc.C)

We select the types of sensors by means of exploratory graphics available in the chemosensors package.
We will also shorten the list of candidate types to six: 1, 2, 3, 13, 14 and 17, as they seem to be good
candidates according to the characteristics of sorption affinity, as presented above. To evaluate these
types of sensors in response to analytes A and C in different concentrations, we will create a virtual array
composed of six sensors under drift-free conditions and apply the plotBox method, as shown in the code
given below.

sa <- SensorArray(num = c(1:3, 13:14, 17), dsd = 0)

plotBox(sa, set = rep(set.A, 10), feature = "step",
sensors = 1:6, sensor.names = "long", gcol = TRUE, scales = "free_y")

Figure 6 shows the box plots for the six types of sensors in response to four concentrations of analyte
A. The same graphics for analyte C and its set of labels set.C is presented on Figure 7. All the sensors
show a non-linear response to analytes A and C, as was expected due to the selection of the concentration
ranges. In particular, the response to the lowest concentration is quite distinct from the others, whereas
the responses to the two largest concentrations are quite close. One can also observe that the three
sensors of types 13, 14 and 17 are very noisy in response to analyte A, this corresponds to sensor noise,
as the drift noise has been suppressed in the sa array.

Since there is not an obvious choice of sensor type, we will try three different arrays composed of 24
sensor elements, as shown the following code.

c(1:3), nsensors = 24)
c(13:14, 17), nsensors = 24)
c(1:3, 13:14, 17), nsensors = 24)

sal <- SensorArray(num
sa2 <- SensorArray(num
sa3 <- SensorArray(num

In the first step, we simulate the data and store them in the df data frame, as shown in the following
example of code given for the sal array and a set of gas labels set.A. We encode the Scenario object
to make 100 repetitions of each gas label in both training and validation (test) set, this will allow us to
have enough data to build a prediction model with validation by the 10-fold cross-validation procedure
(10 repetitions).

sc <- Scenario(T = set.A, nT = 100, V = set.A, nV = 100, randomize = TRUE)
cf <- sdata.frame(sc)
conc <- getConc(sc)
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sdata <- predict(sal, conc, cores = 2)
df <- sdata.frame(sal, cf = cf, sdata = sdata)

In the second step, we train two regression models for each combination of sensor array and scenario.
We will try one linear method based on Partial Least Squares (PLS) and another non-linear method
based on Support Vector Regressor (SVR) with Gaussian radial basis function [22]. The following code
shows the training of the two models £it1 and fit2, corresponding to the PLS and the SVR methods,
respectively. The computation is given for the scenario for analyte A and the previously generated data
stored df data frame.

Xt <- subset(df, set == "T", select = snames(sa))
Xv <- subset(df, set == "V", select = snames(sa))
Yt <- subset(df, set == "T", select = "A", drop = TRUE)
Yv <- subset(df, set == "V", select = "A", drop = TRUE)
library(caret)
fitl <- train(Xt, Yt, method = "pls",
tunelength = 24, preProc = c("center", "scale"),
trControl = trainControl(method = "cv", number = 10, repeats = 10,
selectionFunction = "tolerance"))
fit2 <- train(Xt, Yt, method = "svmRadial",
tunelLength = 10, preProc = c("center", "scale"),
trControl = trainControl(method = "cv", number = 10, repeats = 10,

selectionFunction = "tolerance"))

To train both models, we pre-processed the sensor signals by performing centring and scaling opera-
tions and applied the 10-fold cross-validation procedure repeated 10 times. We also used the tolerance
rule from the caret package to select the most appropriate model in the model tuning. This rule allows
us to avoid overfitting of a regression model and suggests picking the simplest model which is within
some percentage tolerance of the best model. The root-mean-square error in prediction (RMSEP) was
used to evaluate the performance of the models and score them (the default error measure for regression
analysis in the train function of the caret package). The fit1l model based on the PLS method has a
single parameter ncomp which stands for the number of latent variables used in the regression. Tuning
of the model was set to explore all the possible values for the ncomp parameter from 1 to 24. The £it2
model based on the SVR method has two parameters, the C parameter associated with the cost function
and the parameter sigma of the kernel. By default, the train function of the caret package allows the
estimation of the value of sigma from the data passed for training the model. Thus, tuning of the model
was configured to explore 10 possible values of C parameter from 0.5 to 128, while the value of sigma
parameter was pre-calculated and fixed in the procedure of model tuning.

For prediction of concentrations for new data, one applies the predict method to the model, as shown
in the code below for the fit1 model and sensor signals stored for validation in Xv variable.

Yp <- predict(fitl, Xv)

The first results obtained for the initial experimental set up described above were confusing in terms
of comparison among the arrays and the methods, and the error in both training and prediction was
rather high and even comparable with the minimum concentration value of the analytes. The reason
for experimental failure was explained by the substantial amount of drift-related noise observed in the
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sensor signals. Poor performance of the predictive models was attributable to the absence of any drift
compensation procedure, this is a compulsory step in the most of the data processing methods in machine
olfaction [4]. Hence, we repeated the step of data generation for all three sensor arrays sal, sa2 and sa3
by setting the level of drift noise to zero. This strategy is reasonable, as the application of signal processing
methods for drift compensation is outside the scope of this study, whose objective is the comparison of
different arrays and regression methods on the quantification task for analyte concentrations.

Tables 5 and 6 summarize the results obtained from the drift-free experimental set up for analytes
A and C, respectively. Three arrays sal, sa2 and sa3 are numbered by indexes 1, 2 and 3, as given in
the first column. All the arrays are composed of 24 sensors and differ in the types of sensors, which are
listed in the second column. The regression method and the best set of parameters for it (as derived after
the model tuning) are given in the next two columns. The last two columns report the RMSEP for the
training and test sets.

The comparison between PLS and SVR methods in terms of RMSEP values clearly shows that the
non-linear models outperform the linear models for each of the arrays. The difference is more noticeable
for analyte C than for analyte A. That seems reasonable, as Figures 6 and 7 show that sensor signals in
response to analyte C exhibit more a non-linear structure than in response to analyte A (at the given
concentrations of the analytes). The best performance (in terms of RMSEP for the test set) for the task
of quantification of analyte A is exhibited by the sal array and the SVR model. The sa2 array, composed
of sensors from different types than sal, shows a significantly higher error in prediction; this is assumed
to be related to a higher level of the sensor noise in response to analyte A, as was depicted on Figure 6.
The performances (in terms of RMSEP for the test set) of the three arrays, for the task of quantification
of analyte C, are very similar for the SVR model, and it is difficult to select a preferred configuration of
array for this task.

Example of a large-scale simulation

In this Section, we show an application of the chemosensors package in performing biologically-inspired
data processing of sensor array data. In particular, we will be interested in the modelling of chemotopic
convergence of receptor neurons occurring in the early olfactory pathway. We will implement a simple
neuromorphic model based on the Self-Organizing Map (SOM) technique and will repeat the experiment
conducted in [23] by using data produced from a virtual sensor array.

Since neuromorphic models require a large number of sensors in the array and a sufficient level of
diversity across the sensors, we will create an array constructed of 1K elements parametrized with all 17
sensor types and a beta parameter of diversity set to 5 (the default value of beta is 2).

sa <- SensorArray(num = 1:17, nsensors = 1000, beta = 5)

Then we compute the matrix of affinity characteristics aff for each sensor and for each analyte by
the method given in [23]. Further, the aff matrix will be used to evaluate the SOM of size 10x10 by
means of the kohonen package, as given in the code below.

aff <- computeAffinity(sa, method = "inverse", norm = "norm")
library(kohonen)

map <- som(scale(aff),
grid = somgrid(xdim = 10, ydim = 10, topo = "rectangular"), rlen = 500)

In the next step, we use three types of gas labels: pure analyte A at concentration of 0.01, 0.02, 0.05
and 0.1 vol.%, pure analyte C at concentration of 0.1, 0.05, 1 and 2 vol.%, and four binary mixtures of
analytes A and C. We will suppress all the noise models by means of the nsd method and will run the
simulation of sensor signals on a machine with 8 cores to get results in a reasonable amount of time.
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set.A <- paste("A", c(0.01, 0.02, 0.05, 0.1))
set.C <- paste("C", c(0.1, 0.4, 1, 2))
set.AC <- paste(set.A, set.C, sep =", ")
set <- c(set.A, set.C, set.AC)

sc <- Scenario(set)
conc <- getConc(sc)

nsd(sa) <- 0

sdata <- predict(sa, conc, cores = 8)
df <- sdata.frame(sa, conc = conc, sdata = sdata, feature = "step")

The generated sensor array data are stored in the df data frame with 12 rows, this corresponds to
12 gas labels stored in the set variable. Further, we project signals from 1K sensors onto the 100 cells
of the SOM. Figure 8 show the heatmaps of the SOM, where the colours encode the magnitude of the
sensor signals in the SOM cells computed by averaging the signals assigned to the given cell. We observe
an increasing activity of the map, as expressed in the change from yellow to red, as the concentration
of analytes increases in the gas (direction from left to right). Another observation is related to the
distribution of sensors or sensor types across the map. The right part of the map is more active in
response to analyte A, and the left part of the map shows more activity in response to analyte C. The
heatmaps presented in the lowest raw of the figure correspond to the measurements of the binary mixtures,
and the SOM maps show activity of both left and right parts of the map.

Conclusions

The chemosensors package is a new R package for data simulation targeted at generating gas sensor
array data for signal and data processing in machine olfaction applications. The package contains a set
of simulation models organized as S4 classes, which are unified in the main class SensorArray. This
class allows the creation of a virtual sensor array, serves as a data generation tool, and offers a large list
of configuration parameters. The class Scenario makes it easier to define scenarios and then generate
data together with the virtual array. In summary, the chemosensors package provides a compact and
extensively configurable workflow for data generation, supports parallelization of large-scale computations
and offers many graphical facilities to explore sensor array data. In future, the proposed computational
framework for the simulation of sensor arrays can be extended to new reference data sets of different types
of sensors and /or of different combinations of analytes, that, in turn, will allow addressing new challenges
in machine olfaction, for instance, simulation of the sensor response for high-dimensional multicomponent
chemical input.

Acknowledgments

The authors would like to acknowledge the effort made by the anonymous reviewers of this manuscript
which have greatly contributed to the improvement of the quality of the work. The authors also wish to
thank Dr Oleg N. Osychenko and Mrs Marta Oliete for their assistance in revising the English of this
manuscript.



18

References

1.

10.

11.

12.

13.
14.

15.

16.

17.

18.

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) Initial sequencing and
analysis of the human genome. Nature 409: 860-921.

Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory
system using a model nose. Nature 299: 352-355.

Marco S, Gutiérrez-Galvez A (2012) Signal and Data Processing for Machine Olfaction and Chem-
ical Sensing : A Review. IEEE Sensors Journal 12: 3189-3214.

Pearce T, Schiffman S, Nagle H, Gardner J (2003) Handbook of Machine Olfaction - Electronic
Nose Technology. John Wiley & Sons.

Gutiérrez-Osuna R (2002) Pattern analysis for machine olfaction: a review. IEEE Sensors Journal
2: 189-202.

Di Natale C, Martinelli E, Paolesse R, D’Amico A, Filippini D, et al. (2008) An Experimental
Biomimetic Platform for Artificial Olfaction. PLoS ONE 3: e3139.

Berna AZ, Anderson AR, Trowell SC (2009) Bio-Benchmarking of Electronic Nose Sensors. PLoS
ONE 4: €6406.

Vergara A, Vembu S, Ayhan T, Ryan Ma, Homer ML, et al. (2012) Chemical gas sensor drift
compensation using classifier ensembles. Sensors and Actuators B: Chemical : 1-10.

Raman B (2005) Sensor-based machine olfaction with neuromorphic models of the olfactory system.
Ph.D. thesis, Texas A&M University.

Fonollosa J, Gutierrez-Galvez A, Lansner A, Martinez D, Rospars J, et al. (2011) Biologically
Inspired Computation for Chemical Sensing. Procedia Computer Science 7: 226-227.

Ziyatdinov A, Ferndndez Diaz E, Chaudry A, Marco S, Persaud K, et al. (2013) A software tool
for large-scale synthetic experiments based on polymeric sensor arrays. Sensors and Actuators B:
Chemical 177: 596-604.

R Core Team (2013). R: A Language and Environment for Statistical Computing. URL
http://www.r-project.org/.

Zeileis A (1999) Collaborative Software Development Using R-Forge : 9-14.

Eriksen MMA, Svante P (2012). fwsim:  Fisher-Wright Population Simulation. URL
http://cran.r-project.org/package=fwsim.

Vigeland MD (2012). IBDsim: Simulation of chromosomal regions shared by family members.
URL http://cran.r-project.org/package=IBDsim.

Montana G (2012). hapsim: Haplotype  Data  Simulation. URL
http://cran.r-project.org/package=hapsim.

Alfons A, Templ M, Filzmoser P (2010) An Object-Oriented Framework for Statistical Simulation:
The R Package simFrame 37.

Ziyatdinov A, Marco S, Chaudry A, Persaud K, Caminal P, et al. (2010) Drift compensation of gas
sensor array data by common principal component analysis. Sensors and Actuators B: Chemical
146: 460-465.



19

19. Ziyatdinov A (2012). Home page of chemosensors package. URL
http://chemosensors.r-forge.r-project.org/.

20. Kuhn M (2008) caret Package 28.

21. Wehrens R, Buydens LMC (2007) Self- and Super-organizing Maps in R : The kohonen. Journal
of Statistical Software 21.

22. Trevor Hastie, Robert Tibshirani JF (2009) The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, second edi edition. URL
http://www-stat.stanford.edu/ tibs/ElemStatLearn/.

23. Raman B, Gutiérrez-Gélvez A, Perera-Lluna A, Gutiérrez-Osuna R, (2004) Sensor-based machine
olfaction with a neurodynamics model of the olfactory bulb. 2004 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS) (IEEE Cat No04CH37566) : 319-324.

Supporting Information Legends

File S1

Ten scenarios for machine olfaction in the framework of the NEUROChem project [10].

Appendix S1

Parameterization of Simulation Models

Appendix S2

Quantitative Comparison with Chemical Sensor Data

Figure Legends
Tables

Table 1. Dynamic range of concentrations for three gases used in the chemosensors
package.

Gas Label | Analyte Concentration range, vol.%
A Ammonia 0.01 - 0.05

B Propanoic acid | 0.01 — 0.05

C n-Butanol 0.1-1

Dynamic range of concentrations for three gases A, B and C, which correspond to three analytes in the
reference UNIMAN data set: ammonia, propanoic acid and n-butanol, respectively.
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Figure 1. Matrices of analyte concentrations and sensor signals in a simulation with a
virtual array of four sensors. On the X axis of each panel, the index values correspond to the row
index in the two input concentration and output sensor data matrices of the data generator.
Consequently, the values in the columns of these matrices are plotted jointly on the Y axis, while the
legend on the right annotates the column names. Panel (a) shows three pulses of analyte A at three
different concentrations 0.01, 0.02 and 0.05 vol.%, while the concentration of the other two analytes B
and C are at zero level. Panel (b) shows transient signals of four sensors labelled as S1, S2, S3 and S4 in
response to the pulses from Panel (a) when all three noises in the sensor array are set up at the 0.1
level. Panel (c) shows sensor signals in response to the pulses under drift-free conditions, while the
other two concentration and sensor noises are remained at the 0.1 level. The signals allow for a visual
discrimination between the three pulses.

Table 2. Organization of simulation models in the chemosensors package.

Simulation Model Class Data set

Sorption Model SorptionModel UNIMANSsorption
Calibration Model (steady-state) | SensorModel UNIMANdistr
Calibration Model (transient) SensorDynamics UNIMANtransient
Concentration Noise Model ConcNoiseModel -

Sensor Noise Model SensorNoiseModel | UNIMANSsnoise
Drift Model DriftNoiseModel UNIMANdnoise

Simulation models, their classes and associated data sets of parameters computed for the seventeen
UNIMAN sensors.
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Figure 2. Plot showing the training and validation set, product of the plot method
applied to a regression scenario. The scenario is defined as a regression on analyte A with both
training and validation sets consisting of three pulses of concentrations of 0.01, 0.02 and 0.05 vol.%.
The plot method applied to a scenario object shows only the unique labels given at training and
validation sets. One can apply the show method to a scenario object to get more detailed information.

Table 3. Basic slots of SensorArray class in chemosensors package.

Slot Default Value | Range of values | Short Description

num 1:2 1,2 ... 17 type of sensors

nsensors 2 1,2, .. number of sensors

ngases 3 1,23 number of gases

gnames c("A’,’B’,’C’) | any strings names of gases

concUnits | ’perc’ supported string | concentration units

alpha 2.25 >0 sensor non-linearity

beta 2 >0 sensor diversity

csd 0.1 >0 concentration noise sd

ssd 0.1 >0 sensor noise sd

dsd 0.1 >0 drift noise sd

ndcomp 1 1,2,3 number of drift components
ndvar 0.86 [0, 1] importance of drift components
tunit 1 1, 2, length of a gas pulse

Description of basic slots of SensorArray class necessary to parameterize a virtual sensor array.
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array data gathered from the array consisting of 12 sensors of types 1, 2 and 3. The array

was exposed to six gas classes: pure analyte A at concentrations 0.01 and 0.05 (labels A 0.01 and A

0.05), pure analyte C at concentrations 0.1 and 1 (C 0.1 and C 1), and two binary mixtures of A and C
(A 0.01, C 0.1 and A 0.05, C 1). The concentrations were given at volume fraction units vol. %, and the

measurement of each gas class was repeated 10 times. The distribution of the scores shows that the

sensors in array have more affinity to analyte C that to analyte A. The plot is produced by the plotPCA
method applied to the sensor array.

Table 4. Classification performance on scenarios given at three different difficulty levels.

Difficulty | Class 1 Class 2 k | Acc. (train) | Acc. (test)
1 A 0.02 C0.5 3| 1.00 1.00
2 A0.01,C0.6 A 0.03,C0.4 5 10.99 0.94
3 A 0.015,C0.55 | A 0.025,C 045 | 7 | 0.86 0.74

The k-nearest neighbors algorithm was tested on three two-class classification scenarios at three
difficulty levels. The scenario difficulty was defined as the similarity between two gas classes. The
classification model was trained under 10-fold cross-validation procedure with 10 repetitions, and the
best value of the k parameter was estimated along possible values 3, 5, 7 and 9 for each classification

model. The accuracy in prediction of class labels was used to score the models. The model complexity,

expressed in value of parameters k, is observed to increase with greater scenario difficulty. The first
model provides a perfect performance with a 100% rate of classification, while the last model displays

poor accuracy with a classification rate of 0.74 on the test set.
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Figure 4. Scoreplot corresponding to the Principal Component Analysis of the sensor
array data gathered from the array consisting of 12 sensors of types 13, 14 and 17. The
array was exposed to six gas classes: pure analyte A at concentrations 0.01 and 0.05 (labels A 0.01 and
A 0.05), pure analyte C at concentrations 0.1 and 1 (C 0.1 and C 1), and two binary mixtures of A and
C (A 0.01, C 0.1 and A 0.05, C 1). The concentrations were given at volume fraction units vol. %, and
the measurement of each gas class was repeated 10 times. The distribution of the scores shows that the
sensors in the array have more affinity to analyte A than to analyte C. The plot is produced by the
plotPCA method applied to the sensor array.
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12 sensors, num: 1, 2, 3, 13, 14, 17

. &

g\o\ A0.01

@ 0+ A0.01, CO.1
N

5 A0.05

N A0.05, C1
O

o

. Co.1

C1

-4 -2 0
PC1 (53.28)%

Figure 5. Scoreplot corresponding to the Principal Component Analysis of the sensor
array data gathered from the array consisting of 12 sensors of types 1, 2, 3, 13, 14 and 17.
The array was exposed to six gas classes: pure analyte A at concentrations 0.01 and 0.05 (labels A 0.01
and A 0.05), pure analyte C at concentrations 0.1 and 1 (C 0.1 and C 1), and two binary mixtures of A
and C (A 0.01, C 0.1 and A 0.05, C 1). The concentrations were given at volume fraction units vol. %,
and the measurement of each gas class was repeated 10 times. The distribution of the scores shows that
the sensors in array are balanced in terms of affinity to analytes A and C. The plot is produced by the
plotPCA method applied to the sensor array.
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Figure 6. Boxplots for array of six sensors of types 1, 2, 3, 13, 14 and 17 show the
distribution of sensor signals in response to analyte A at concentrations 0.01, 0.02, 0.05
and 0.1 vol.%. The concentration values were selected to cover the dynamic range of analyte A and to
include the value in the saturation region. All the sensors show a non-linear response to analyte A at the
selected concentration range. The three sensors of types 13, 14 and 17 show rather noisy responses. The
plot is produced by the plotBoxplot method applied to the sensor array under drift-free conditions.

the
Table 5. Performance on prediction of concentration of gas A under drift-free conditions.
Array | Types of sensors | Method Parameters RMSEP (train) | RMSEP (test)
1 1,2,3 pls ncomp 9 0.0094 0.0208
1 1,2, 3 svmRadial | C 2, sigma 10.7 | 0.0029 0.0039
2 13, 14, 17 pls ncomp 2 0.0135 0.0133
2 13, 14, 17 svmRadial | C 2, sigma 91.2 | 0.0028 0.0105
3 1,2, 3,13, 14, 17 | pls ncomp 8 0.0086 0.0290
3 1,2, 3,13, 14, 17 | svmRadial | C 2, sigma 20.1 | 0.0028 0.0045

Two methods, linear PLS and non-linear SVR, were tested on the regression task of analyte A given at
concentration 0.01, 0.02, 0.05 and 0.1 vol.%. Three arrays composed of 24 sensors, different in the types
of sensor, were compared in terms of the root-mean-square error in prediction (RMSEP). For each
array, the non-linear models outperform the linear models. The first array and the SVR method yield
the best performance.
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Figure 7. Boxplots for array of six sensors of types 1, 2, 3, 13, 14 and 17 show the
distribution of sensor signals in response to analyte C at concentrations 0.1, 0.4, 1 and 2
vol.%. The concentration values were selected to cover the dynamic range of analyte C and to include

the value in the saturation region. All the sensors show a non-linear response to analyte C at the
selected concentration range. The plot is produced by the plotBoxplot method applied to the sensor

array under drift-free conditions.
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Table 6. Performance on prediction of concentration of gas C under drift-free conditions.

Array | Types of sensors | Method Parameters RMSEP (train) | RMSEP (test)
1 1,23 pls ncomp 2 0.3373 0.3384
1 1,2,3 svmRadial | C 0.5, sigma 237.7 | 0.0589 0.0837
2 13, 14, 17 pls ncomp 7 0.2573 1.1317
2 13, 14, 17 svmRadial | C 0.5, sigma 74.9 | 0.0593 0.0790
3 1,2,3,13, 14, 17 | pls ncomp 10 0.2365 2.8198
3 1,2, 3,13, 14, 17 | svmRadial | C 0.5, sigma 114.5 | 0.0593 0.0877

Two methods, linear PLS and non-linear SVR, were tested on the regression task of analyte C given at

concentration 0.1, 0.4, 1 and 2 vol.%. Three arrays composed of 24 sensors, different in the types of

sensor, were compared in terms of the root-mean-square error in prediction (RMSEP). For each array,
the non-linear models outperform the linear models. All three arrays show similar performance with the
SVR method, and it is hard to pick the best array.
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Figure 8. Heatmap of a self-organizing map (SOM) of size 7x7 showing the response to 12
different gases composed of analytes A and C. The map was constructed for the array of 1K
sensors based on the affinity coefficients computed per three analytes A, B and C for each sensor, as
proposed in [23]. The response of sensor array for each gas was projected onto the map, and the colour
on the heatmaps encode the magnitude of the signals in the SOM cells computed by averaging the
signals from sensors assigned to the given cell. The activity of the SOM increases as the concentration
of analytes increases (direction from left to right). The distribution of the SOM activity in response to
different gases show that the right part of the map contain sensors with more affinity to analyte A,
while the left part has sensor with more affinity to analyte C.
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The virtual sensors available in chemosensors package are derived from the seventeen UNIMAN
sensors based on the model parameters computed for the UNIMAN data set in [1]. In this section, we
briefly review the simulation models and their parameters, in order to demonstrate the mechanism of
creating virtual sensors.

The sorption model defined in Equation 1 establishes a relation between the environmental concen-
trations of analytes Cy; and the concentrations of analytes C; when adsorbed by the sensor device. This
relationship underlines the Langmuir isotherm for a multi-component gas mixture with two parameters
for each analyte ¢, sorption capacity @; and sorption affinity K; [2].

Qi K; Cy;
1+Y7, K; Co;’

The parameters of the sorption model can be used to control such characteristics of virtual sensors as
non-linearity and affinity to analytes in a mixture.

i=1,2 3 (1)

)

e The Non-linearity of a sensor depends on a relation between the numerator and the denominator
in the equation. Smaller values of the affinity coefficients K; make the denominator closer to
one, resulting in linear behaviour of the sensor. On the contrary, greater values of K; lead to
saturation mode, where the magnitude of the output concentrations does not depend on the input
concentrations.

e The Affinity property of a sensor to analyte 7 in a mixture is controlled by parameter K;, and is to
be estimated by comparison with the affinities for the other analytes.

A static calibration model was defined in Equations (2) and (3) in [1] and simulated the steady-
state signal x4 of a sensor in response to the concentrations C; derived from the sorption model. The
calibration model explicitly assumed that the response to a mixture of analytes is the sum of the individual
responses to analytes. The main parameters of the model were the sensitivity coefficients 3,  to analyte
1 on the concentration interval k. The calibration model defines such characteristics of a virtual sensor
as its sensitivity, selectivity and diversity.

e The Sensitivity coefficients 3; give a quantitative estimate of how sensitive a sensor is in response
to the analyte ¢ on the given concentration interval k.

e The Selectivity of a sensor across two analytes i and j can be evaluated by comparing the sensitivity
coefficients 3; and 3; along the analytes.

e The Diversity property of a group of sensors is related to the redundancy of the sensor sensitivity
coefficient 3, and is to be estimated by some multi-variate method.

A dynamic calibration model was defined in Equation (5) in [1] and described the dynamic part of
the calibration model. The model derived the temporal signal z(t) from the steady state value zs,. The
model had two time constants per analyte as parameters, 7 ; and 7o ; for the analyte i. The transient
model was rather simple, and we suggest relying on the steady state feature of the signal x,,, rather than
on transient features which could be extracted from the signal x(t).



In summary, the sorption and calibration models simulate the seventeen UNIMAN sensors by a set
of parameters K;, B, T1,; and T2 ; for each sensor. When one defines an array of virtual sensors in the
chemosensors package, the UNIMAN sensors are replicated by varying the parameters of the simulation
models. Parameters 3; i, 71,; and T2 ; are generated from univariate uniform distributions with control
for non-negative values and the level of spread. The parameters K; are estimated from the seventeen
UNIMAN profiles, this allows preservation of the intrinsic number of sensor types given in the reference
UNIMAN data set. Hence, one can imagine a virtual sensor as a replica of one of the seventeen UNIMAN
sensors with similar characteristics on their sensitivity and selectivity profiles, the dynamic ranges for
the three analytes and their signal-to-noise performance. The diversity of sensors come from two sources:
the relationship between sensors found the reference UNIMAN data set and the distribution of 3;
coefficients.

The second group of simulation models defined three types of noise to be injected into the sensor
signals. These types were characterised as additive, multiplicative and common noise, corresponding
respectively to the concentration, sensor and drift noise models. Data in all three noise models were gen-
erated by means of a multi-variate normal distribution of independent variables with diagonal covariance
Y-matrices and zero mean, as shown in Equations (6), (7) and (8) in [1].

The concentration noise model defined the noise term ACj to be added to the matrix of analyte
concentrations Cy. The data in the columns of the matrix ACy corresponded to the analytes A, B and
C, and were derived from the normal distribution with zero mean and diagonal covariance matrix ..
The diagonal form of the covariance matrix underlined the fact that the analytes do not interact with
each other.

The sensor noise model generated noise in the sensitivity coefficients f3; 5 from the calibration model.
A one-dimensional random walk based on the normal distribution with zero-mean and a single parameter,
the standard deviation o; i, was used for analyte ¢ on the concentration interval k.

The drift noise model defined the drift noise AXp to be injected into the matrix of sensor array data
X in a multi-variate manner which consisted of several steps. Firstly, a drift-related subspace P was
computed by means of Common Principal Component Analysis (CPCA) [3]. Secondly, the noise AXp
within this subspace P was generated via a random walk. A multi-dimensional random walk based on a
multi-variate normal distribution with zero mean and diagonal covariance matrix ¥4 was used. Thirdly,
the generated noise AXp was induced by means of the inverse component correction method [1].

The magnitude and the structure of the noise in the noise models are mainly controlled by the three
standard deviation parameters, along with some other parameters.
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We show the validity of the computational framework for the operation of a virtual sensor array by
performing a quantitative comparison between the predictions of the simulation models and reference
chemical sensor data. The reference data used in this study is the UNIMAN data set that contains
records from the array of 17 conducting polymer sensors in response to 8 gas classes (A 0.01, A 0.02, A
0.05, B 0.01, B 0.02, B 0.05, C 0.1 and C 1.0). The simulated data set is generated from a virtual array
of 17 sensors with the noise parameters csd, ssd and dsd set to 0.8 in response to the same gas classes.
One design goal of the software tool is the inclusion of sensor specificities in the models (such as sensor
drift). Therefore, the comparison between the two data sets has been conducted from two perspectives:
first, the validation of the physico-chemical models emulating the responses of the 17 UNIMAN sensors,
and, second, the evaluation of the deviations from the sensor responses due to the three types of noises
included in the software (concentration noise, sensor noise and drift noise).

The physico-chemical model of a single conducting polymer sensor was implemented in the sorption
model under the non-linear relation of the Langmuir isotherm. The so-called short-term UNIMAN data
set was used to estimate the two model parameters per analyte ¢ and per sensor, sorption capacity Q;
and sorption affinity K;, by means of fitting linear regression models (please check [1] for further details).
The goodness of the fit of the models was evaluated by means of R? statistics. For analyte C, these
statistics do not fall below than 0.973, whereas analytes A and B show a slightly worse performance, but
always above 0.779.

To show that the three noise models are able to reproduce variance observed in the long term responses
of the UNIMAN sensors, we replicated the first 1000 samples of the UNIMAN data set by means of an
array of 17 virtual sensors. The qualitative comparison between the two data sets can be performed
by means of principal component analysis, where one can observe that the simulated data matches the
variance structure of the real data in terms of the class-dependency and noise-related data features. An
example of this analysis was previously presented in [1], Section 3.1, Figure 5. For a quantitative analysis,
we computed mean and standard deviation statistics for each combination of sensor and gas class. Table 1
reports these statistics for all 17 sensors and for A 0.05 gas class, being the A analyte the one showing the
most dispersion. We report the relative difference defined as the absolute difference between UNIMAN
and simulated values divided by the UNIMAN value. By collecting the statistics on the relative errors for
all combinations of sensor and gas class (136 samples), we show that the relative differences in the means
are always below 14.5% (in absolute values) and have 25%, 50% and 75% quantiles equal to -0.0340,
-0.0125 and 0.0036, respectively. Similarly, the relative differences in the standard deviations are always
below 48.0% (in absolute values) and have 25%, 50% and 75% quantiles equal to -0.2697, 0.0001 and
0.2034, respectively. It is worth to note that the multivariate and multi-component model of drift noise
is the dominant component for the long term simulation, as it is for the actual chemical sensor behavior
in the UNIMAN data set.
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Table 1. Comparison between chemical sensor and simulated data sets (gas class A 0.05).

Sensor Mean (UNIMAN) Mean (Simulated) Diff. in Mean SD (UNIMAN) SD (Simulated) Diff. in SD

1 9.41 10.38 -0.10 0.59 0.53 0.10
2 9.04 8.83 0.02 0.52 0.35 0.33
3 8.92 9.36 -0.05 0.58 0.58 -0.01
4 6.25 6.68 -0.07 0.24 0.21 0.12
5 8.57 9.35 -0.09 0.59 0.48 0.18
6 7.61 8.39 -0.10 0.44 0.35 0.20
7 4.65 4.84 -0.04 0.17 0.21 -0.21
8 5.61 6.14 -0.09 0.27 0.34 -0.25
9 4.34 4.54 -0.05 0.25 0.23 0.09
10 4.73 4.94 -0.04 0.24 0.27 -0.11
11 11.27 12.42 -0.10 0.65 0.42 0.36
12 11.55 12.01 -0.04 0.54 0.43 0.19
13 8.04 8.62 -0.07 0.26 0.30 -0.15
14 7.02 7.7 -0.11 0.30 0.29 0.04
15 8.98 10.22 -0.14 0.36 0.45 -0.23
16 9.89 10.59 -0.07 0.43 0.43 -0.01
17 8.99 9.38 -0.04 0.33 0.52 -0.48

The chemical sensor UNIMAN data set (1000 samples, 17 sensors, 3 analytes and 8 gas classes) is
compared to its replica simulated with the chemosensors package. The comparison is performed by
means of mean and standard deviation statistics computed for each combination of sensor and gas class.
This table shows the statistics for A 0.05 gas class as this is the combination that shows the most
dispersion and higher discrepancy. The relative differences are computed as the absolute difference
between UNIMAN and simulated values divided by the UNIMAN value. The statistics on the relative
errors collected for all combinations of sensor and gas class (17*8 = 136 samples) show that (1) the
relative differences in the means are below 14.5% (in absolute values) and have 25%, 50% and 75%
quantiles equal to -0.0340, -0.0125 and 0.0036, respectively; and (2) the relative differences in standard
deviation are below 48.0% (in absolute values) and have 25%, 50% and 75% quantiles equal to -0.2697,
0.0001 and 0.2034, respectively. The negative sign of the relative difference in the means for almost all
sensors and A 0.05 gas class indicates the direction of drift effect which tend to increase the value of the
Sensor responses.
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About

This documents introduces a list of ten scenarios for machine olfaction, which were initialy thought in the framework of the NEUROChem
project. Each scenario is described in terms of training and validation sets and scenario difficulty.
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The R code to create an object of scenario class is given for all ten scenarios, except two scenarios Habituation and Event Detection. The
point is that Scenario class is not suitable for these two scenarios, because the given class is thought to be constructed only by means of gas
pulses, while the two scenarios require another time profile.

First of all, the user needs to load the package.

library(chemosensors)

An object of scenario class is initialized with scenario function, that has the following parameters:

tunit : the length of the pulse.

concunits : the concentration units.

randomize : whether the gas classes need to be randomized in order.

T and nT : gas classes for the training set and the number of repetitions for each class.
v and nv : gas classes for the training set and the number of repetitions for each class.

In addition to the initialization code, the results of print and plot methods for objects of scenario class are shown.

Scenarios

Classification

John has three vessels with three odours A, B, C. The system is trained with all three compounds separately. John approaches the vessel B to
the system. The machine identifies correctly odour B. The difficulty is the similarity between the odours to be identified.

sc.class <- Scenario(name = "Classification",
tunit = 60, concUnits = "norm", randomize = TRUE,
T = C("A", "B", "C”), nT = 30’ V = "B", nV = 30)



sc.class

## Scenario "Classification’ of 120 samples, tunit 60, randomize TRUE
## - gases A, B, C

## - Training Set: A (30), B (30), C (30)

## - Validation Set: B (30)

plot(sc.class)
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Quantification

John has five vessels with 100%, 50%, 10% and 1% dilution of A. The system is trained with 100%, 10% and 1% dilution of A. John
approaches the 50% A dilution vessel to the system. The machine correctly marks the level of A. The difficulty is the number of different
concentration examples available for training.

sc.quant <- Scenario(name = "Quantification",
tunit = 60, concUnits = "norm", randomize = TRUE,
T=c("A 0.01", "A 0.1", "A"), nT =30, V= "A 0.5", nV = 30)

sc.quant
## Scenario "Quantification’ of 120 samples, tunit 60, randomize TRUE
## - gases A, B, C

## - Training Set: A (30), A 0.01 (30), A 0.1 (30)
## - Validation Set: A 0.5 (30)

plot(sc.quant)
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Segmentation

John has three vessels with three odours A, B and C. The system is trained with all three compounds separately. John approaches vessel B to
the system. The machine identifies correctly odour B. John approaches A+B to the system. The machine identifies A and identifies B
sequentially. The difficulty is the similarity between the odours to be segmented.

sc.seg <- Scenario(name = "Segmentation",
tunit = 60, concUnits = "norm", randomize = TRUE,
T = c("A", "B", "C"), nT =30, V= ¢("B", "A 0.5, B 0.5"), nV = 30)

sc.seg
## Scenario “Segmentation” of 150 samples, tunit 60, randomize TRUE
## - gases A, B, C

## - Training Set: A (30), B (30), C (30)
## - Validation Set: A 0.5, B 0.5 (30), B (30)

plot(sc.seq)

Training Set Validation Set

: ‘ | | EA
0.20- nB
d EG

Concentration, n.u.

] ]
i} 200 400 &0 0 200 400 &00

Time, a.u.

Habituation



John has three vessels with three odours A, B, C. The system is trained with all three compounds separately. John approaches vessel A to the
system. The machine identifies vessel A. After a certain time the machine marks that no odour is present despite the vessel is still exposed to
the system. The difficulty is the concentration of odour A, as the higher the concentration the more difficult is to adapt to the odour.

sc.hab <- Scenario(name = "Habituation",
tunit = 60, concUnits = "norm", randomize = TRUE,
T = C("A", "B", "C"), nT = 30’ V = "A", nV = 30)

sc.hab
## Scenario "Habituation® of 120 samples, tunit 60, randomize TRUE
## - gases A, B, C

## - Training Set: A (30), B (30), C (30)
## - Validation Set: A (30)

plot(sc.hab)
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Event Detection

The system is not trained with any compound. No substance is exposed to the machine. The machine marks that no odour is present. John
approaches the vessel B to the system. The machine marks that one odour is present. John approaches the vessel A, in addition to already
present B vessel to the system. The machine marks that two odours are present. The difficulty is the magnitude of the second odour B added to
the first odour A. The first odour A will be fully delivered on a 100%.

Novelty Detection

John has two vessels with odours A and B respectively. The system is trained only with odour A. No substance is exposed to the machine.
The machine marks that no odour is present. John approaches the vessel A to the system. The machine marks that odour A is present. John
approaches the vessel B, in addition to already present A vessel to the system. The machine marks that a new odour is present. The difficulty is
the concentration of odour B, as the lower the concentration of odour B the more difficult the detection of the novel odour become.

Drift Compensation I

John has three vessels with three odours A, B and C. The system is trained with all three compounds separately. John approaches the vessel B
to the system. The machine identifies correctly odour B. A drift process is occurring in the sensor array. John approaches the vessel B to the
machine. The machine identifies correctly odour B. The difficulty is the distance in time between the validation set and the training set.

sc.driftl <- Scenario(name = "Drift Compensation I",
tunit = 60, concUnits = "norm", randomize = TRUE,



T = ¢("A", "B", "C"), nT = 30, V = "B", nV = 30)

sc.drift1l
## Scenario 'Drift Compensation I° of 120 samples, tunit 60, randomize TRUE
## - gases A, B, C

## - Training Set: A (30), B (30), C (30)
## - Validation Set: B (30)

plot(sc.driftl)
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Drift Compensation I1

John has five vessels with 100%, 50%, 10% and 1% dilution of A. The system is trained with 100%, 10% and 1% dilution of A. A drift
process is induced into the sensor array. John approaches the 50% A dilution vessel to the system. The machine correctly marks the level of A.
The difficulty is the distance in time between the validation set and the training set.

sc.drift2 <- Scenario(name = "Drift Compensation II",
tunit = 60, concUnits = "norm", randomize = TRUE,
T =c("A0.01", "A 0.1", "A"), nT =30, V = "A 0.5", nV = 30)

sc.drift2
## Scenario 'Drift Compensation II" of 120 samples, tunit 60, randomize TRUE
## - gases A, B, C

## - Training Set: A (30), A 0.01 (30), A 0.1 (30)
## - Validation Set: A 0.5 (30)

plot(sc.drift2)
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Sensor Replacement I

John has three vessels with three odours A, B and C. The system is trained with all three compounds separately. John approaches vessel B to
the system. The machine identifies correctly odour B. A certain proportion of specific sensors in the array are (virtually) damaged, so John
replaces them with new sensors of the same type. John approaches vessel B to the system. The machine identifies correctly odour B without
new training. The dificulty is the proprtion of sensors to be replaced.

sc.replacel <- Scenario(name = "Sensor Replacement I",
tunit = 60, concUnits = "norm", randomize = TRUE,
T = c(”A", "B", "C”), nT = 30, V = "B", nV = 30)

sc.replacel
## Scenario "Sensor Replacement I of 120 samples, tunit 60, randomize TRUE
## - gases A, B, C

## - Training Set: A (30), B (30), C (30)
## - Validation Set: B (30)

plot(sc.replacel)
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John has three vessels with three odours A, B and C. The system is trained with all three compounds separately. John approaches vessel B to
the system. The machine identifies correctly odour B. A certain proportion of sensors in the array are (virtually) damaged, so John replaces
them with new sensors. John approaches vessel B to the system. The machine identifies correctly odour B without new training. The dificulty
is the proprtion of sensors to be replaced.

sc.replace2 <- Scenario(name = "Sensor Replacement II",
tunit = 60, concUnits = "norm", randomize = TRUE,
T = c("A", "B", "C"), nT =30, V= "B", nV = 30)

sc.replace2
## Scenario “Sensor Replacement II° of 120 samples, tunit 60, randomize TRUE
## - gases A, B, C

## - Training Set: A (30), B (30), C (30)
## - Validation Set: B (30)

plot(sc.replace2)
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Session Information

sessionInfo()

## R version 3.0.1 (2013-05-16)
## Platform: x86_64-pc-linux-gnu (64-bit)

H#Hit

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=C LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

H#Hit

## attached base packages:

## [1] grid stats graphics grDevices utils datasets methods
## [8] base

##



#i#
##
##
##
##
##
#i#
##
##
#i#t
#i#t
#i#
#i#
##
##

other attached packages:

[1]
[4]
[7]
[1e]

chemosensors_0.7.8 pls_2.3-0
ggplot2_0.9.3.1.99 reshape2_1.2.2

ascii_2.1

devtools_1.4.1.99

xtable 1.7-1

loaded via a namespace (and not attached):

[1]
[4]
[7]
[1e]
[13]
[16]
[19]
[22]

codetools_0.2-8
digest_0.6.3
gtable 0.1.2
LearnBayes_2.12
munsell 0.4
quadprog_1.5-5
scales_0.2.3
whisker_0.3-2

colorspace_1.2-2
evaluate_0.4.4
httr_0.2
MASS_7.3-27
parallel 3.0.1
RColorBrewer_1.0-5
stringr_0.6.2

gridExtra_0.9.1
plyr_1.8
knitr_1.3.3

dichromat_2.0-0
formatR_0.8
labeling 0.2
memoise_0.1
proto_0.3-10
RCurl 1.95-4.1
tools_3.0.1



DISCUSSION

4.1 DISCUSSION OF THE RESULTS

In this work, the developed set up was used to mimick biological olfactory system and
to address its different aspects in a bioinspired way. The engineering part of the work
was centered on the assembly of the embedded computer and its integration with main
biomimetic artifacts (developed by the collaborators): the large scale array of 65,536 con-
ducting polymer sensors and the neuromorphic models implemented in the IQR frame-
work. Validation of the biomimetic approach was accomplished through a broad variety
of experiments, demonstrations and simulations. The main bioinspired experiment on
odor localization and classification, including a complete description of the robotic set up,
was reported in the book chapter [Lopez et al. 53].

Simulations with synthetic data proposed in this work represent a research line com-
plementary to experiments based on the real sensor arrays. The data simulation workflow
consists of a scenario definition, virtual array parametrization, generation of sensor array
data, and data processing with exactly the same neuromorphic models as used in the
robotic set up. Three journal articles covered the main results on this research [Ziyatdinov
et al. 109, 106, Ziyatdinov and Perera-Lluna 110].

The following paragraphs expose the main findings of this work and provide the dis-
cussion of the achieved results.

On the navigation experiments with embedded neuromorphic processing

Undoubtedly, the main experimental validation of the set up are the results obtained
in the scenario of autonomous robotic odor source classification and localization [Lépez
et al. 53]. The demonstrated approach belongs to the group of strategies, which draw
inspiration from biological organisms, in particular silkworm moths. Several biological
organisms with relatively simple nervous systems (bees, ants, lobsters, male moths and
others) are known to efficiently resolve the task on odor localization despite the number
of difficulties of the real world, such as turbulent chemical plumes, obstacles or interfering
odors.

The study performed in this work differs from other numerous studies (emulating the
general behavior patterns of odor-seeking insects) in the use of neural simulations in
guiding olfactory behavior [Rhodes and Anderson 77]. The localization capabilities of the
developed robot were examined in the presence of two odors, whereas most of the current
studies are limited to only one odor source. The implemented model of the AL allowed for
odor-specific transient representation under the continuous excitation by the odor stimuli.

Robots implemented for odor source localization are remarkable examples of bioin-
spired solutions to cope with the challenges in chemical sensing [Huerta and Nowotny
40]. Practical difficulties arise from the part of the chemical sensors, for example, the tur-
bulent nature of the odor information carrier, the long term instabilities like drift, lack of
sensitivity, and slow response times of sensors required by mobile robots. The achieved
classification results can be viewed as a proof of concept of odor classification with the
AL model for the odor localization task. Further work is needed to explore different tur-
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bulence conditions and more complex configurations of the odor mixture with a larger
number of trials.

It is worth noting that the array of 16 metal-oxide sensors was used in the experiment,
since the large-scale array of conducting polymer sensors had not been fully tested on the
robotic set up due to the lack of the resources. The special navigation data set collected
for the two arrays — 16 metal-oxide sensors and 4096 conducting polymer sensors — is the
first step towards future experiments with large-scale arrays with a possibility to exploit
the high-dimensional and redundant chemosensor input data in application to the odor
localization.

On the data simulations in machine olfaction

The series of three works, resulted in the final release of the data simulation tool, represent
the main findings: the model of drift [Ziyatdinov et al. 109], the simplified sensor models
estimated on the reference data set [Ziyatdinov et al. 108], and the basic parametrized
examples of data simulation and data processing in machine olfaction [Ziyatdinov and
Perera-Lluna 110].

The developed drift model extends the model based on a reference gas proposed by Ar-
tursson and colleagues [Artursson et al. 1]. The model is based on the common principal
component analysis, which finds the drift variation in data jointly for several gas classes
without a need for a reference gas. It is important to note that the proposed model can be
applied to data collected from sensors based on other technologies, taking into account
that a correspondent long-term and reliable reference data set is required.

The concept of parametrized simulated sensor array data was proposed for the first
time in machine olfaction [Ziyatdinov and Perera-Lluna 110]. Three different use cases
were highlighted in that work, and the user of the data simulation tool can define many
more scenarios, which are basically limited by the basic properties of the reference data
set (up to three analytes in mixtures and 17 different prototype sensor profiles).

On the laboratory experiments with simulation of the sniffing behavior

The experiments with modulation of the gas flow is still an on-going work, which at-
tempts to emulate the sniffing behaviour in the olfactory system [Ziyatdinov et al. 106].
Sniffing, sampling odors actively, has been studied recently in neuroscience, and it has
been suggested that the respiration frequency is an important parameter of the olfactory
system. Animals can actively control different parameters of the respiration cycle such as
frequency, amplitude and duration. For example, respiratory rates of rodents and other
small mammals are in the range of 1—4 Hz when rest awake in a safety environment. This
frequency increases rapidly (in only one respiration cycle) to 12 Hz when animals per-
form odor source localization, novel odorants exploration, or odor discrimination tasks
[Verhagen et al. 96, Kay et al. 47]. In spite of many known examples related to the sniffing
behavior, the computational advantages of high frequency sampling have not been yet
elucidated [Wachowiak 99].

The proposed experimental set up features a mechanical ventilator to modulate the
flow in the gas delivery system. The spectra of the modulated sensor signals contains two
components: the low-frequency part, which demostrate a conventional response curve
of a sensor in response to a gas pulse, and the high-frequency part, which have a clear
principal harmonic at the frequency 0.08 Hz (the respiration frequency).

Samples of two pure analytes were collected in the first data set, and the explored
question was whether any discrimination information in the modulated response exists.



4.1 DISCUSSION OF THE RESULTS

Comparison between low-frequency and high-frequency components of the modulated
response have been performed in the conference proceeding work [Ziyatdinov et al. 106],
and the analyte-specific patterns in the high-frequency part of the signals have been qual-
itatively demonstrated. It was observed that the high-frequency features were likely to
appear earlier in the course of the measurement.

A relatively broad combination of samples of binary mixtures and pure analytes were
collected in the second data set. A quantitative analysis of these data will be accomplished
in the future, in order to confirm the previously hinted early-detection performance of the
high-frequency features. The future results are expected to motivate further investigation
of the sensor system under different gas flow conditions, and to be valuable for system
integration with the state-of-the-art of neuromorphic systems [Neftci et al. 62, Schmuker
et al. 84].
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CONCLUSIONS

1. The embedded computer has been assembled to conduct bioinspired experiments
with a unique set of features: three types of chemical sensor arrays, the mobile
platform with multimodal sensing capabilities; embedded computations in real time
including the neuromorphic data processing; and the software development kit for
virtualization of the set up.

2. The fully autonomous robotic set up has demonstrated stable performance on the
odor localization and classification scenario in the controlled indoor wind tunnel
environment. This robotic implementation is different from others in the implemen-
tation of embedded computations of the neural network model of the moth olfactory
pathway.

3. The bioinspired experiments with gas flow modulation have shown an advantage
of the modulated signals in terms of early availability of informative features. That
is particularly beneficial in terms of the early detection scenario.

4. The novel multivariate model of drift estimates the long-term drift noise as a com-
mon variance among several classes. In the trivial case when the number of gas
classes is one, the proposed model is exactly the same as the state-of-the-art model
based on a reference gas. In general case when the number of components is greater
than one, the model exploits the information from all classes and does not require a
selection step of a reference class.

5. A set of simulation models have been designed to reproduce the reference long-term
data set of 17 conducting polymer sensors. The proposed models developed under
simplified assumptions are able to reproduce the reference data set. Virtual arrays
are capable to generate sensor array data, which extend the reference data in terms
of the number of sensors, up to three components in gas mixtures, and the structure
and amount of the noise in data.

6. The developed data simulation tool has been introduced for the first time and fills
the gap in conducting the synthetic experiments in machine olfaction. The tool is
intended to be an alternative data source in the data analysis domain, since acquisi-
tion of a large, reliable and representative set of measurements is practically costly
and time-consuming, especially when one is interested in biomimetic experiments
at large scale, both in the number of sensors and the number of chemicals.

7. Ten scenarios for machine olfaction — classification, quantification, segmentation,
habituation, event detection, novelty detection, drift compensation, and sensor re-
placement — have been designed and formalized in the framework of the data sim-
ulation tool. For three of these scenarios — classification, segmentation, and sen-
sor replacement — synthetic benchmark data sets at different difficulty levels have
been generated. The benchmarks are available to the community on the web page
http:/ /neurochem.sisbio.recerca.upc.edu/?page_id=257.

8. The full data set acquired under the gas flow modulation has been made avail-
able on the public repository with an objective to continue the joint effort in re-
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search of biologically inspired systems. The data set is available on the web page
https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+flow+modulation.
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DATA SETS

Three data sets presented in the thesis are a part of a collection of data sets measured
in the Neurochem project. Measurement of these three data sets are results of joint work
mainly distributed between four partners of the Neurochem project:

¢ Polytechnic University of Catalonia (UPC), Barcelona, Spain;
¢ Pompeu Fabra University (UPF), Barcelona, Spain;
¢ University of Barcelona (UB), Barcelona, Spain;

¢ Consiglio Nazionale delle Ricerche (CNR) at Institute for Microelectronics and Mi-
crosystems, Rome, Italy.

¢ The University of Manchester (UNIMAN), Manchester, United Kingdom

Table A.1 shows the contribution of each partner in collecting the data sets. UPC led the
work on the three data sets, and the contributions assigned to UPC are mostly matched
with the contributions derived in the thesis.

Contribution UPC UPF UB CNR+UNIMAN
Assembling embedded computer S2, 53

Assembling robotic infrastructure S3

Design of sensor array S1 52 S3

Data acquisition electronics S2,S3 S2,S3 S3

Data acquisition software S1,52, S3

Conducting experiments S1S2,S3  S3 S2,S3

Table A.1: Contributions by the UPC, UPF, UB and CNR partners of the Neurochem project in
collecting the data sets S1, S2 and S3. The data sets are shown on the Figure 3.1 as
orange circles with the letter S.

A1 S1 BENCHMARKS

Synthetic benchmarks were an alternative to the real measurements at the middle stage of
the Neurochem project, in order to run simulations of the olfactory system. The realization
of the synthetic experiments required a model of an array of gas sensors. That model
needed to capture the main features shown by polymer sensors (the reference data set
was measured with an array of conducting polymer sensors) and be simple enough so
that it could be included in the system software. The model was implemented in the data
simulation tool (the R package chemosensors) designed in the course of the thesis.

The benchmark data were generated on May 28, 2011. The main web page with the
summary and the links is on http://neurochem.sisbio.recerca.upc.edu/?page_id=257.

The distributed data include the raw data in the two formats of RData and csv and the
documentation files in PDF format.
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Scenario Letter Date Difficulty  Classes (T) Classes (V)
Classification S1 28 March 2011 1 A, C A, C
2 A17C83, A17C83,
A83C17y A83C17y
3 A33C67, A33C67,
A67C33 A67C33
4 A40C6o, A40C6o,
A60C40 A60C40
5 A45Cs55, A45Cs55,
A55C45 A55C45
Segmentation S1 28 March 2011 1 A, C As0C50
2 A45C55
3 A60C40
4 A67C33
5 A83C1y
Sensor Damage Sl 28 March 2011 1 (6.25%) A33C67, A33C67,
A67C33 A67C33
2 (12.5%)
3 (18.75%)
4 (25%)

5 (31.25%)

Table A.2: Description of three benchmark data sets produced in the course of the thesis. The sen-
sor array consisted of 1020 virtual sensors in the framework of the data simulation tool
under version 0.4.3. The number of samples per class for either training and validation
sets was 30.

The benchmarks were generated under the version 0.4.3 of the data generation tool (the
R package chemosensors). The main features of the simulation models were implemented
in the given early version of the tool:

* 17 types of sensors based on the profiles of the 17 CP sensors from the reference data
set;

the steady-state sensor model consisted of two parts:
— the linear model based on partial least squares (PLS) regression;

— the non-linear model based on the EL;

the transient sensor model based on the auto-regressive (AR) filter of the 2nd order;

the three noise models
— the drift model (additive noise, multi-component);
— the sensor aging model (multiplicative noise);
— the concentration noise model (gas camera).

Three scenarios were included in the final release of the benchmarks: classification, seg-
mentation and sensor damage. Table A.2 contains the basic summary for these scenarios.



A.2 s2 LABORATORY DATA SETS

The complete list of 10 scenarios designed in the scope of the Neurochem project is avail-
able in the Supporting Information, File S1 [Ziyatdinov and Perera-Lluna 110], which copy
is presented in Section 3.4.

The scenarios are parametrized by difficulty levels (from 1 to 5). For most of the sce-
narios the difficulty is defined in terms of a similarity among gas classes or components
in gas mixtures, for example, classification and segmentation in the Table A.2. The class
labels consist of two parts: the gas letter A, B or C and the concentration value in percents
of the maximum concentration value, at which the simulated sensors are in the saturation
regime and their response does not change at higher concentrations. The difficulty of sen-
sor damage scenario is defined by the proportion of damaged sensors in the array that
were simulated to not respond in the validation set.

A.2 S2 LABORATORY DATA SETS

The data sets were measured on the static set up in the laboratory, and the robotic equip-
ment was not used. The array consisted of 16 metal-oxide sensors of 5 different TGS
models by Figaro Inc. under one of two constant heating voltages (3.3 V and 5.5 V). The
sensors were selected heuristically so that the sensor transients were able to follow the
flow dynamics. A custom printed circuit board was designed to read out signals from the
sensors. The sensors were placed in a 70 ml chamber connected to a mechanical ventilator.
The odor delivery system was combined with an external mechanical ventilator to sim-
ulate the biological respiration cycle. The purpose of the experiment was to emulate the
sniffing behavior, sampling odors actively, in the olfactory system. More information on
the experiments can be found in the conference proceeding [Ziyatdinov et al. 106].

Data set Letter Date N samples N classes Classes (repetitions)

pulmons  S2 21 Apr 2011 33 5 ace-1 (10), eth-1 (10),
ace-o.2-eth-1 (3), ace-0.5-
eth-1 (3), ace-1-eth-1 (3),
air (4)

pulmon6 52 17-20 May 2011 58 12 ace-0.1 (6), ace-0.3 (6),
ace-1 (3), eth-o.1 (6), eth-
0.3 (4), eth-1 (5), ace-
o.1-eth-o.1 (4), ace-o.1-
eth-0.3 (5), ace-0.3-eth-
0.1 (5), ace-o.1-eth-1 (3),
ace-1-eth-0.1 (3), air (8)

Table A.3: Description of two laboratory data sets acquired in the course of the thesis. The sen-
sor array consisted of 16 metal-oxide sensors, and the gas flow was modulated by the
artificial lung apparatus.

Two data sets, referred to as pulmon5 and pulmon6, have been collected. The first data
set pulmon5 mainly contains samples of two pure analytes (dilutions), acetone at 1% vol.
and ethanol at 1% vol., that allows to conduct a data exploratory analysis for searching
data patterns that are analyte-specific in the two-class problem. The second data set pul-
mon6 is targeted to a more complex discrimination task than a separation of two gas
classes. The measured classes, 12 in total, form a relatively broad combination of ace-
tone and ethanol analytes in binary mixtures. Each analyte takes three concentrations
values 0.1% vol., 0.3% vol. and 1% vol. that marks the change of at most one order of the
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magnitude. Table A.3 presents the summary of the two collected data sets pulmon5 and
pulmon6.

A.3 S3 NAVIGATION DATA SETS

The navigation experiment was conducted in the wind tunnel space under controlled
conditions. One or two sources of vapourized analyte dilutions were placed on one side
of the tunnel, while several mechanical ventilators were placed on the other side of the
tunnel, in order to produce the air flow. The robotic set up explored the chemical space by
following a trajectory of 15 spot points evenly distributed in the tunnel space. The robotic
set up was stopped for 60 s at each spot point to perform the measurements from the
sensor array. More information on the experimental set up is available in [Lépez et al. 53],
which copy is presented in Section 3.5.

Two sensor arrays were used in the set up in turns: the array of 16 metal-oxide sensors
and the array of 4096 conducting polymer sensors. In addition to the two arrays, the ion-
mobility spectrometry (IMS) device performed the measurements simultaneously with
each array. The IMS has a higher resolution to quantify the chemicals, and, thus, IMS
data served as a reference to capture the chemical odor map. The description of the data
acquired from three devices is given in Table A 4.

Device  Letter Date N samples N classes Classes (repetitions)

16 MOX S3 11-13 Jul 2011 11 8 ace-0.01 (1), ace-0.1 (1), eth-
0.03 (1), eth-o.1 (1), eth-
1 (1), ace-o.01-eth-0.01 (2),
ace-o.1-eth-0.1 (2), ace-o.1-
eth-o0.1 (2)

4096 CP  S3 13 Jul 2011 6 5 ace-0.01 (1), eth-o.o1 (1),
eth-0.03 (1) ace-o.o1-eth-
0.01 (2), ace-o.1-eth-0.1 (1)

IMS S3 11-13 Jul 2011 15 9 ace-0.01 (1), ace-0.1 (4), eth-
0.01 (1), eth-0.03 (1), eth-
0.1 (1), eth-1 (1), ace-0.01-
eth-o0.01 (2), ace-o.1-eth-o0.1
(2), ace-o.1-eth-1 (2)

Table A.4: Description of the navigation data sets acquired in the thesis.



DEMONSTRATIONS

Four demonstrations have been released in the course of the thesis. The demonstrations
are shown on Figure 3.1 as blue circles with the letter D: D1, D2, D3 and D4.

The demonstrations represent the results on the development of the biomimetic set up
at the middle and final stages of the Neurochem project. The first two demonstrations D1
and D2 were completed at the middle stage of the Neurochem project, when real sensor
devices were under development and the only array available was an array of virtual
sensors. Demonstrations D1 and D2 were presented on the second review meeting of the
project in Brussels, on February 2010. The last two demonstrations D3 and D4 reported
the ultimate results achieved at the final stage of the Neurochem project. Demonstrations
D3 and D4 were presented on the final review meeting of the project in Barcelona, on June
2011.

The demonstrations are results of the joint work mainly distributed between UPC and
UPF partners of the Neurochem project. Table B.1 shows the contribution of each partner
in development of the demonstrations. The contributions assigned to UPC are mostly
matched with the contributions derived in the thesis.

Contribution UPC UPF
Assembling embedded computer D2, D3, D4

Assembling robotic infrastructure D2, D4
Chemosensor IQR modules D1, D3, D4

Robotic IQR modules D2, D4
Neuromorphic IQR modules D1, D4
Conducting experiments D1, D2, D3 D1,D2, D4

Table B.1: Contributions by the UPC and UPF partners of the Neurochem project in development
of the demonstrations D1, D2, D3 and DA4.

B.1 D1 IQR

This demonstration presents the preliminary models of the insect olfactory system imple-
mented in the framework of the IQR neuronal simulator [Bernardet et al. 7]. Two main
system models of the Antennal Lobe (AL) and Mushroom Body (MB) have been adapted
to process dynamic and analog input data from simulated chemical sensors, displaying
some of the system properties such as the classification of presented chemical stimulus.
Both the models and the IQR software are included in the Neurochem OS image described
in Appendix C.

Chemical sensors have been simulated at the early development stage of the data sim-
ulation tool of the thesis, when the tool was a list of R scripts, rather than an R package.
The chemical sensor simulator takes as input an arbitrary number of chemical stimuli and
their concentrations at every time step of the simulation. Then it returns the simulated
response of a user-defined number of sensor elements. In the simulation of the demon-
stration D1, the actual computation of the responses of the sensors is carried out offline

117



118

DEMONSTRATIONS

(the sensor responses are pre-computed), and, thus, it does not induce any computational
limitations for the rest of the integrated system.

The AL module takes as input sensory information of up to one hundred simulated
sensors and returns the spiking activity generated by each one of its simulated Projection
Neurons (PNs) and the Local Field Potential (LFP) of the whole population of PNs. It
was shown that the information provided by the implemented AL model is sufficient to
decode the PNs that show a phase locked activity with the LFP, which in turn encodes
the stimulus properties and represents the information needed by the Mushroom Body
(MB) module.

The MB module provides the interface between IQR and the simplified MB model
(the complete model of the Neurochem project). It essentially takes the binary synchrony
pattern provided by the AL module as input and associates it to the closest of a set of
pre-trained patterns.

e
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Figure B.1: The screenshot of the desktop when the demonstration D1 was executed on the set up.

Figure B.1 (the bottom panel) shows the IQR system of the integrated insect olfactory
pathway. The chemosensor simulator module of 100 sensors generates simulated transient
signals in response to two gases A and C (no mixtures) (Time Plot on the upper panel).
Then the signals go through an initial process of normalization in order to adapt them
to the amplitudes used by the AL model. The AL processes a high dimensional input to
encode the concentration and amplitude of the stimuli by means of the AL's PN action
potentials. Once the synchronous PNs with the LFP are identified, an averaging process
uses the information of several LFP oscillations to improve the signal-to-noise ratio (Space
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Plot on the upper panel). Finally, it is the task of the MB to find the closest matching of
the AL responses to its training set.

The results of the demonstration can be assessed by opening Space Plot of the MB
module, where three class-specific patterns (no gas, gas A or gas C) can be observed.

B.2 D2 ROBOTIC PLATFORM

This demonstration shows the assembled robotic set up of the Neurochem project in
action. The robot consists of two parts: the embedded computer developed by UPC and
the robotic platform developed by UPE. The full description of the robotic platform is
given in [L6pez et al. 53].

The robot explored the space in the wind tunnel by receiving the commands from
the joystick device via bluetooth. The IQR simulator was the top-level environment for
processing the data coming from various sensors, running the behavioral models and
controlling the hardware devices including the motor. Figure B.2 shows the screenshot of
the desktop when the demonstration D2 was executed on the set up.
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Figure B.2: The screenshot of the desktop when the demonstration D2 was executed on the set up.

The video of the demonstration is available on http:/ /neurochem.sisbio.recerca.upc.edu/?p=19.
The video was created by the SPECS laboratory, UPFE, Barcelona, on November 2009.

B.3 D3 LARGE-SCALE ARRAY

This demonstration was designed to show the real-time acquisition from the large-scale
CP array of 4096 sensors. The design of the sensors was performed by UNIMAN and
CNR partners in the Neurochem project, and its detailed description is available in the
internal documentation of the project. The D3 demonstration shows the results of the
work performed by UPC partner of the project related to the thesis. In particular, these
results include the data acquisition on the side of the embedded computer (interfaced
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Figure B.3: The screenshot of the Space Plot window in the IQR simulator when the demonstration
D3 was executed on the set up. The heatmap shows the raw readout in volts from the
CP array of 4096 sensors.
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Figure B.4: The response to a gas pulse of the ethanol analyte at a certain concentration shown for
4096 sensors in the CP array.

with the scanning boards of the array produced by CNR partner) and integration of the
input sensor array data on the top-level in IQR environment.

Figure B.3 shows the heatmap of the acquired large-scale data visualized in the real
time by the IQR simulator on the Space Plot window. The measured signal is the voltage
on the sensors in the range from o to 3.3 V. The data acquisition frame rate is 1 Hz,
and it has been required to conduct the neuromorphic simulations in the real time. In
this demonstration only one out of 16 boards with the sensor array is connected to the
embedded computer, but this acquisition rate is possible for the whole modular sensor
array, since the acquisition board of the embedded computer is able to acquire data from
16 channels in parallel.

One of the unique features of the large-scale array is its diversity. The total number of
31 polymer materials were used.The resistance of the sensors ranges from less than 1KQ
to several MQ. A large group of sensors have very the high resistances (more than 1MQ),
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as shown on Figure B.3. Figure B.4 shows the response to a gas pulse of a small subset
from 4096 sensors of the CP array.

B.4 D4 NAVIGATION

The robotic platform was re-designed after the D2 demonstration due to mechanical issues
and a excessive robot speed. The robotic platform is equipped with multimodal sensing

capabilities (olfaction, compass, wind sensing, ultrasound, collision detection and vision).

The robot is able to navigate autonomously in the wind tunnel to find an odor source and
classify it. Figure B.5 shows the new version of the robot.

windvane

‘ embedded

machine

accelerometer

wireless
color camer

ultrasound
collision sensors

Figure B.5: The final robot with the new mobile platform used in the demonstration D4. Figure
source: [Marco et al. 56].

The robot is driven by the model of the moth cast-and-surge strategy. The AL model
previously developed for the demonstration D1 combined with temporal population cod-
ing is used to classify the odors. The visual landmarks are combined with the chemical
cues and movement vector to learn landmark-to-landmark trajectories. The robot oper-
ates in the wind tunnel containing multiple odor sources. Thereby, the robot starts at the
down-wind end of the tunnel and search for odor cues in the upwind direction. Simul-
taneously, it will run the odor classification model and also the multimodal-landmark
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learning mechanism. Based on the classified odor source, the robot is able to initiate a
particular behavior, for example, attraction or aversion.



NEUROCHEM IMAGE

The Neurochem software of the set up includes the drivers of the hardware components,
the Neurochem library to interface the electronics for acquisition of the sensor signals,
the IQR neuronal simulator, the neuromorphic IQR modules, the IQR modules for con-
trol of the robot, and the data simulation tool. The Neurochem software was especially
designed for the Debian Linux operating system. Hence, the design of a custom Debian-
based operating system image (the Neurochem Image) was a natural step in the software
development.

The motivation to use the Neurochem Image is to automate the process to set-up, to
configure and to release the operating system within the Neurochem software. The usage
of the image is oriented towards the end-users of the software, who are free from routine
on resolving technical issues related to compatibility of the Neurochem software and the
operating system. The users are supposed to run the system via the Neurochem Image
neurochem.img and get started to use the software right away.

Debian is a free operating system based on the Linux kernel and distributed with a
broad variety of software packages. The Neurochem Image is a medium that stores a
custom Debian operating system especially designed for the Neurochem project.

The main characteristics of the Neurochem Image:

¢ The original image format is IMG, that is an archive format for digital storage, trans-
mission and replication of different storage media. The file name of the image is
neurochem.img.

* The file size is 563 MB and fits to a typical size of CD.

¢ Supported media for the image are CDs/DVDs, Hard drives, USB drives and Flash
drives.

The main characteristics of the operating system Debian used in the image:

¢ The distribution is Debian GNU/Linux 5.0.1.
¢ The Kernel Linux is 2.6.26-2-686 (1686).

¢ The C Library is GNU C Library version 2.7 (stable).

One of the main work directions in the thesis was the virtualization of the set up,
and the Neurochem Image is the final product of this work. Let us imagine that the
user is running any operating system Windows/Macintosh/Linux on his/her PC. If this
computer supports the emulator program such as Virtual Box, the user will be able to
access the Neurochem software by loading the image as an independent virtual operating
system.

An example of the user session with the Neurochem image may be the following.

1. The user runs the program Virtual Box and pushes the button ”Start” to initiate the
virtual system.
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2. The user should check if the Neurochem image neurochem.vdi is specified as a pri-
mary hard drive for the virtual system.

3. In a new window, the user sees the boot menu and is asked to select the option Start
Debian Live in the menu (Figure C.1).

4. The virtual system is booting, and the user will be automatically login with the
username neurochem. Now the user sees the Desktop of the virtual system.

5. The user runs the IQR simulator by executing a special command on the Unix
shell: iqr -r -f data/modelRM1/AcgDevice.iqr -¢ data/modelRM1/readings.conf (Fig-
ure C.2). Another option to run the IQR simulator might be executing any of the
Desktop shortcut prepared in the Neurochem image (one of these shortcuts con-
tains the IQR command given before).

6. The results of the execution of the command given on the previous step will be the
main window of the IQR simulator with the system that simulates a virtual array
of 17 sensors (specified in the second parameter of the command -f). In addition,
the user will observe Space Plot for all sensors and Time Plot for 3 selected sensors
(specified in the third parameter of the command -c) (Figure C.3).

{33 Applications Places system @ D@ G AE OV BEWr e H @ & & b FriDec 18, 19:33

=] VirtualBox OSE
fle Machine Help

! 2 Ay Details | @ Snapshots Description
{:j ) % N @ £ o £

New | Settings Delete = Show Discard = General

Name

. Base Memory
Video Memory
Boot Order

ACPI

Machine Devices

_——
&,
3 3 .

@< @ vinualsox 0sE

| I quickstart-3-virtualBo... | ¢ virtual Embedded co... |

wirtual Embedded Computer
Debian

256 MB

8MB

Floppy. CD/DVD-ROM, Hard Disk
Enabled

Help

Start Debian Live
Start Debian Live Failsafe
Start Debian Live 686

Start Debian Live 686 Failsafe
Hemory test

Help

O G

Figure C.1: The boot menu for the Neurochem Image of the virtual system via the Virtual Box
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