
Escola d'Enginyeria

Departament d'Arquitectura de

Computadors i Sistemes Operatius

Fault Tolerance in Multicore Clusters.
Techniques to Balance Performance and

Dependability

Thesis submitted by Hugo Daniel
Meyer for the degree of Philosophiae
Doctor by the Universitat Aut�onoma de
Barcelona, under the supervision of Dr.
Dolores Isabel Rexachs del Rosario

Barcelona, July 2014

Hugo Daniel Meyer. PhD Thesis 2014.

Fault Tolerance in Multicore Clusters.
Techniques to Balance Performance and

Dependability

Thesis submitted by Hugo Daniel Meyer for the degree of Philosophiae Doctor by

the Universitat Aut�onoma de Barcelona, under the supervision of Dr. Dolores Isabel

Rexachs del Rosario, at the Computer Architecture and Operating Systems Department.

Barcelona, July 2014

Supervisor

Dr. Dolores Isabel Rexachs del Rosario

Hugo Daniel Meyer. PhD Thesis 2014.

Abstract

English

In High Performance Computing (HPC) the demand for more performance is satis�ed by

increasing the number of components. With the growing scale of HPC applications has

came an increase in the number of interruptions as a consequence of hardware failures.

The remarkable decrease of Mean Times Between Failures (MTBF) in current systems

encourages the research of suitable fault tolerance solutions which makes it possible to

guarantee the successful completion of parallel applications. Therefore, fault tolerance

mechanisms are a valuable feature to provide high availability in HPC clusters.

When running parallel applications on HPC clusters the prior objectives usually are:

almost linear speedup, e�cient resources utilization, scalability and successful completion.

Hence, parallel applications executions are now facing a multiobjective problem which

is focused on improving Performance while giving Fault Tolerance (FT) support; this

combination is de�ned as Performability.

A widely used strategy to provide FT support is rollback-recovery, which consists in

saving the application state periodically. In the presence of failures, applications resume

their executions from the most recent saved state. These FT protocols usually introduce

overheads during applications' executions.

Uncoordinated checkpoint allows processes to save their states independently. By

combining this protocol with message logging, problems such as the domino e�ect and

orphan messages are avoided. Message logging techniques are usually responsible for most

of the overhead during failure-free executions in uncoordinated solutions. Considering this

fact, in this thesis we focus on lowering the impact of message logging techniques taking

into account failure-free executions and recovery times.

A contribution of this thesis is a Hybrid Message Pessimistic Logging protocol (HMPL).

It focuses on combining the fast recovery feature of pessimistic receiver-based message

logging with the low overhead introduced by pessimistic sender-based message logging

during failure-free executions. The HMPL aims to reduce the overhead introduced by

iv

pessimistic receiver-based approaches by allowing applications to continue normally before

a received message is properly saved. In order to guarantee that no message is lost, a

pessimistic sender-based logging is used to temporarily save messages while the receiver

fully saves its received messages.

In this thesis we propose strategies to increase the performability of parallel applications.

One approach focuses on avoiding performance degradation when failure occurs by using

automatic spare node management to replace failed nodes. Taking into account that

the fault tolerance tasks are managed by an user-transparent middleware, we propose a

methodology that allows us to determine suitable con�gurations of these tasks in order

to lower overheads in failure-free executions. This methodology is based on analyzing

the message log impact and con�guring the parallel executions decreasing the introduced

disturbance.

Another contribution of this thesis is a methodology that allows to obtain the maximum

speedup under a de�ned e�ciency threshold, considering the impact of message logging

tasks for Single Program Multiple Data (SPMD) applications. Experiments have shown

that characterizing the message logging e�ects in computation and communication, allows

us to select a better number of processes or computational cores to be used in order to

improve resource utilization while increasing performability.

Keywords: Parallel applications, fault tolerance, uncoordinated checkpoint, message

logging, performance, availability.

v

Castellano

En Computaci�on de Altas Prestaciones (HPC), con el objetivo de aumentar las prestaciones

se ha ido incrementando el n�umero de recursos de c�omputo. Con el aumento del tama~no de

las aplicaciones ejecutadas en computadores de altas prestaciones, tambi�en ha aumentado

el n�umero de interrupciones como consecuencia de fallos de hardware. La disminuci�on

en el tiempo medio entre fallos (MTBF) en los sistemas de c�omputo actuales, fomenta

la propuesta de soluciones de tolerancia a fallos apropiadas que permitan la �nalizaci�on

correcta de aplicaciones paralelas afectadas por fallos de componentes f��sicos. Por lo

tanto, las t�ecnicas de tolerancia a fallos son cruciales para aumentar la disponibilidad en

computadores de altas prestaciones.

Cuando son ejecutadas aplicaciones paralelas en computadores de altas prestaciones, los

principales objetivos normalmente son: lograr una aceleraci�on (speedup) cercana a la lineal,

utilizaci�on e�ciente de recursos y �nalizaci�on correcta de las ejecuciones. Por lo tanto, los

sistemas paralelos se enfrentan a un problema multiobjetivo que consiste en incrementar

las prestaciones mientras se utilizan t�ecnicas de tolerancia a fallos; dicha combinaci�on en la

cual se consideran prestaciones y con�abilidad se denomina en la literatura Performability.

Las estrategias de tolerancia a fallos basadas en rollback-recovery han sido extensamente

utilizadas en computaci�on de altas prestaciones. Estas estrategias se basan en salvar el

estado de la aplicaci�on y cuando ocurren fallos las aplicaciones pueden volver atr�as y

re-ejecutar desde el �ultimo estado guardado (checkpoint). Estas estrategias introducen

una sobrecarga durante la ejecuci�on de las aplicaciones en aspectos que afectan a las

prestaciones, tales como una sobrecarga en el tiempo de c�omputo, uso de recursos, etc.

Las estrategias de checkpoint no coordinadas permiten a los procesos salvar sus estados

independientemente. Cuando estas estrategias se combinan con mecanismos de log de

mensajes, se evitan problemas como el efecto domin�o o la aparici�on de mensajes hu�erfanos.

Las t�ecnicas de log de mensajes son responsables de la mayor parte de la sobrecarga

introducida durante ejecuciones libre de fallos. En esta tesis nos hemos centrado en

disminuir el impacto de las t�ecnicas de log de mensajes considerando tanto el impacto en

las ejecuciones libres de fallos as�� como en el tiempo de recuperaci�on.

Una de las contribuciones de esta tesis es un mecanismo de log denominado Hybrid

Message Pessimistic Logging (HMPL). Este protocolo se enfoca en combinar las car-

acter��sticas de r�apida recuperaci�on de los mecanismos de log pesimistas basados en el

receptor con la baja sobrecarga que introducen los mecanismos de log basados en el emisor

en ejecuciones libres de fallos. Sin perder las ventajas de un sistema de log de mensajes

pesimista basado en el receptor, el HMPL permite a las aplicaciones paralelas continuar

vi

con su ejecuci�on inclusive cuando un mensaje no ha sido guardado totalmente en el log del

receptor, y de esta manera se reducen las sobrecargas en comparaci�on con los mecanismos

de log pesimistas basados en el receptor. Para poder garantizar que no se pierde ning�un

mensaje, un mecanismo de log pesimista basado en el emisor es utilizado para guardar

temporalmente mensajes, mientras los receptores se encargan de guardar totalmente el

mensaje recibido.

Adem�as proponemos otras estrategias que permiten incrementar la performability de

aplicaciones paralelas. Una estrategia consiste en evitar la degradaci�on que ocurre como

consecuencia de un fallo mediante la utilizaci�on autom�atica de nodos de repuesto (Spare

Nodes) para reemplazar nodos que han fallado. Teniendo en cuenta que las tareas de

tolerancia a fallos son gestionadas por un middleware transparente al usuario, hemos

propuesto una metodolog��a que permite determinar con�guraciones apropiadas de las

tareas de tolerancia a fallos para disminuir la sobrecarga en ejecuciones libres de fallos.

Esta metodolog��a se basa en analizar el impacto del mecanismo de log de mensajes utilizado

y con�gurar las ejecuciones paralelas disminuyendo la perturbaci�on introducida.

Adem�as, hemos desarrollado una metodolog��a para la ejecuci�on de aplicaciones pertenecientes

al paradigma Single Problem Multiple Data (SPMD). Dicha metodolog��a permite obtener

el m�aximo speedup teniendo en cuenta un umbral de e�ciencia computacional de�nida y

considerando el impacto de las tareas de un mecanismo de log de mensajes. Los resultados

experimentales han mostrado que mediante la caracterizaci�on del impacto del log de

mensajes en el c�omputo y en las comunicaciones, es posible seleccionar un n�umero de

procesos o cores de c�omputo que permitan hacer un uso e�ciente de los recursos mientras

se aumenta la performability.

Palabras Clave: Aplicaciones paralelas, tolerancia a fallos, checkpoint no coordinado,

log de mensajes, prestaciones, disponibilidad.

vii

Catal�a

La creixent demanda de capacitat de c�omput en la Computaci�o d'Altes Prestacions (HPC)

�es satisfeta incrementant la quantitat de recursos de c�omput. Amb l'augment del tamany

de les aplicacions executades en computadors d'altes prestacions, tamb�e ha augmentat

la quantitat d'interrupcions com a conseq•u�encia dels errors hardware. La disminuci�o del

temps promig entre errors (MTBF) en els sistemes de c�omput actuals, fomenta la recerca

de solucions de toler�ancia a errors adients que permetin la �nalitzaci�o correcta d'aplicacions

paral�leles afectades pels errors. Per tant, les t�ecniques de toler�ancia a errors s�on crucials

per augmentar la disponibilitat en computadors d'altes prestacions.

Quan executem aplicacions paral�leles en computadors d'altes prestacions, els principals

objectius normalment s�on: aconseguir una acceleraci�o (speedup) propera a la linial, l'�us

e�cient de recursos i la �nalitzaci�o correcta de les execucions. Per tant, els sistemes

paral�lels s'enfronten a un problema multiobjectiu que consisteix en incrementar les

prestacions mentre s'utilitzen t�ecniques de toler�ancia a errors; aquesta combinaci�o en la

que es consideren prestacions i con�abilitat s'anomena a la literatura Performability.

Les estrat�egies de toler�ancia a errors basades en rollback-recovery han estat �ampliament

utilitzades en la computaci�o d'altes prestacions. Aquestes estrat�egies de toler�ancia a errors

es fonamenten en salvar l'estat de l'aplicaci�o i, quan succeeixen errors, les aplicacions

poden tornar enrere i tornar a executar des de l'�ultim estat guardat (checkpoint). Aquestes

estrat�egies introdueixen una sobrec�arrega durant l'execuci�o de les aplicacions en aspectes

que afecten a les prestacions, tals com una sobrec�arrega en el temps de c�omput, en l'�us de

recursos, etc.

Les estrat�egies de checkpoint no coordinades permeten als processos salvar els seus

estats independentment. Quan aquestes estrat�egies es combinen amb mecanismes de

log de missatges, s'eviten problemes com l'efecte domin�o o l'aparici�o de missatges orfes.

Les t�ecniques de log de missatges s�on responsables de la major part de la sobrec�arrega

introdu•�da durant execucions lliures d'errors. En aquesta tesi ens hem centrat en disminuir

l'impacte de les t�ecniques de log de missatges considerant tant l'impacte en les execucions

lliures d'errors, aix~A com en el temps de recuperaci�o.

Una de les contribucions d'aquesta tesi �es un mecanisme de log anomenat Hybrid Mes-

sage Pessimistic Logging (HMPL). Aquest protocol s'enfoca a combinar les caracter��stiques

de r�apida recuperaci�o dels mecanismes pessimistes basats en el receptor, amb la baixa

sobrec�arrega que introdueixen els mecanismes de log basats en l'emissor en execucions

lliures d'errors. El HMPL permet a les aplicacions paral�leles continuar amb la seva

execuci�o incl�us quan un missatge no ha estat guardat totalment al log, i d'aquesta forma

viii

es redueixen les sobrec�arregues en comparaci�o amb els mecanismes de log pessimistes

basats en el receptor. Per poder garantir que no es perd cap missatge, un mecanisme de

log pessimista basat en l'emissor �es utilitzat per guardar temporalment missatges, mentre

que els receptors s'encarreguen de guardar totalment el missatge rebut.

Tamb�e proposem estrat�egies que permeten augmentar la performability d'aplicacions

paral�leles. Una estrat�egia consisteix en evitar la degradaci�o que succeeix com a con-

seq•u�encia d'un error mijan�cant l'�us autom�atic de nodes de recanvi (Spare Nodes) per a

reempla�car nodes que han fallat. Tenint en compte que les tasques de toler�ancia a errors

s�on gestionades per un middleware transparent a l'usuari, hem proposat una metodologia

que permet determinar con�guracions adients de les tasques de toler�ancia a errors per

disminuir la sobrec�arrega en execucions lliures d'errors. Aquesta metodologia es basa en

analitzar l'impacte del mecanisme de log de missatges utilitzat i con�gurar les execucions

paral�leles disminuint la perturbaci�o introdu•�da.

A m�es a m�es, hem desenvolupat una metodologia per l'execuci�o d'aplicacions per-

tanyents al paradigma Single Problem Multiple Data (SPMD). Aquesta metodologia permet

obtenir el m�axim speedup tenint en compte un llindar d'e�ci�encia computacional de�nida

i considerant l'impacte de les tasques d'un mecanisme de log de missatges. Experiments

inicials han mostrat que mitjan�cant la caracteritzaci�o de l'impacte del log de missat-

ges en el c�omput i les comunicacions, �es possible seleccionar un nombre de processos o

cores de c�omput que permetin fer un �us e�cient dels recursos mentre que s'augmenta la

performability.

Paraules Clau: Aplicacions paral�leles, toler�ancia a errors, checkpoint no coordinat, log

de missatges, prestacions, disponibilitat.

ix

Acknowledgements

By presenting this thesis, I am �nishing one of the best chapters of the history of my life.

Many people have shared with me this great journey, and I would like to thank all of them.

First of all, I would like to thank God for the guidance and for all the blessings that

I have received during all these years. The truth is that without God's support, this

couldn't have been possible.

I would also like to thank my wife Noem�� for her unconditional love and support.

Thank you Noe for all the patience that you have had with me and for all the sacri�ces

that you have made for me. Thank you also for always encouraging me and believing in

me. I would like to thank also my mother Suzi and my grandmother Mamina, because they

have been the ones that taught me to never surrender and �ght for my dreams. Thank

you mom for all your support, love and for making countless sacri�ces to give me a chance

to study a professional career.

I would like to thank my supervisors Dolores Rexachs and Emilio Luque for the

continuous support, patience, motivation, enthusiasm and immense collaboration. Their

guidance helped me during all the time that I have invested in researching and writing

this thesis. I could not have imagined having better advisors and mentors. Special thanks

also to Remo Suppi and to all professors in the CAOS department.

I would also like to thank my fellow labmates: Carlos Nu~nez, Abel Castellanos, Aprigio

Bezerra, Marcela Castro, Javier Martinez, Alvaro Wong, Javier Panadero, C�esar Acevedo,

Tharso Ferreira, Julio Garc��a, Eduardo Cabrera, Carlos Br�un, Sandra Mendez, Pilar

G�omez, Andr�es Cencerrado, Claudio Marqu�es, Arindam Choudhury, Joe Carrion, Cecilia

Jaramillo, Francisco Borges, C�esar Allande, Jo~ao Gramacho and all the others. I would

like to give special thanks to Ronal Muresano for his friendship and for the many hours

that he has spent working with me.

I must also acknowledge all the people in the Distributed and Parallel Systems Group

of the University of Innsbruck for their hospitality during my research stay in Austria,

specially to Thomas Fahringer, Juanjo Durillo, Malik Junaid, Vincenzo De Maio and

Simon Ostermann. I want to thank all the people that have in
uenced my undergraduate

x

studies at the Universidad Nacional de Asunci�on in Paraguay. Specially, I must thank

Benjam��n Bar�an, Oscar Parra and Mar��a Elena Garc��a for all their support.

Finally, I also want to thank all my friends here in Spain and in Paraguay for their

friendship and for making this journey more enjoyable.

xi

Contents

1 Introduction 1

1.1 Fault Tolerance in Parallel Computing . 1

1.2 Motivation . 6

1.3 Objectives . 8

1.4 Contributions . 9

1.4.1 A new Pessimistic Message Logging Technique 10

1.4.2 Increasing Performability of Applications 10

1.4.3 Case Study: Methodology to increase Performability of SPMD

Applications . 12

1.5 Thesis Outline . 12

2 Thesis Background 15

2.1 Parallel Applications in Multicore Clusters 15

2.1.1 Multicore Architecture . 16

2.1.2 Message Passing Interface . 17

2.1.3 Main Parallel Metrics . 19

2.2 Classic Fault Tolerance Mechanisms in HPC 22

2.2.1 Basic Concepts . 23

2.2.2 Coordinated Checkpoint . 26

2.2.3 Uncoordinated Checkpoint . 28

2.2.4 Message Logging . 29

2.3 RADIC Architecture . 32

2.3.1 Design Keys . 33

2.3.2 Components and Main Functions 34

2.3.3 RADIC Operation . 36

2.3.4 Implementation Details . 38

3 Related Work 43

3.1 Performance Improvement . 43

xii

3.2 Message Logging . 44

3.3 Fault Tolerance Solutions . 45

3.3.1 Hybrid Protocols . 45

3.3.2 Other Fault Tolerance Solutions . 46

4 Improving Current Pessimistic Message Logging Protocols 53

4.1 Message Logging Description . 54

4.1.1 Sender-Based Message Logging . 55

4.1.2 Receiver-Based Message Logging 59

4.2 Hybrid Message Pessimistic Logging . 61

4.2.1 Key Concepts . 61

4.2.2 Design . 62

4.2.3 Orphan Processes . 66

4.2.4 Implementation Details . 67

4.3 Experimental Validation . 68

4.4 Discussion . 69

5 Balancing Dependability and Performance in Parallel Applications 73

5.1 Parallel Applications in Multicore Environments 74

5.2 Message Logging Processes Mapping . 76

5.2.1 Message Logging Tasks . 77

5.2.2 Analyzing Parallel Applications . 77

5.2.3 Methodology to Determine Suitable Con�gurations 80

5.2.4 Methodology Validation . 83

5.3 Case Study: Increasing Performability of SPMD Applications 86

5.3.1 Characterization . 92

5.3.2 Distribution Model . 100

5.3.3 Mapping . 102

5.3.4 Scheduling . 105

5.3.5 Performability Framework . 107

5.3.6 Validation Example . 108

5.4 Discussion . 109

6 Experimental Results 111

6.1 Experimental Environment . 111

6.2 Operation of RADIC Fault Tolerant Architecture 113

6.2.1 Design and inclusion of Spare Nodes in RADIC 113

xiii

6.2.2 Experimental Validation . 114

6.3 Hybrid Message Pessimistic Logging . 118

6.3.1 Comparison of Logging Techniques in Failure-free Executions 119

6.3.2 Experimental Results in Faulty Executions 121

6.3.3 Limitations and Overhead Analysis 124

6.4 Determining suitable Fault Tolerance con�gurations 127

6.5 Increasing Performability of Parallel Applications 129

6.5.1 Applications . 129

6.5.2 Prediction Analysis . 131

6.5.3 Weak Scalability and Overhead Analysis 134

7 Conclusions 139

7.1 Final Conclusions . 139

7.2 Future Work and Open Lines . 141

7.3 List of Publications . 142

Bibliography 145

xiv

Hugo Daniel Meyer. PhD Thesis 2014.

xv

List of Figures

1.1 Sender-Based Message Logging. 4

1.2 Receiver-Based Message Logging. 5

1.3 Expected Message Logging Performance. 9

1.4 Hybrid Message Pessimistic Logging. 11

2.1 Dual Core Nodes. 17

2.2 Quad Core Multicore Cluster. 18

2.3 Rollback-Recovery Protocols. 23

2.4 Parallel application running with Coordinated Checkpoint support. 27

2.5 Parallel application running with Uncoordinated Checkpoint support . . . 28

2.6 Message Types in uncoordinated checkpoint protocols. 30

2.7 RADIC main components. 34

2.8 RADIC Scenarios: a) Fault free execution. b) Failure in Node 7. c)

Utilization of spare Node , transference of checkpoints, Heartbeat/watchdog

restoration and assignation of a new protector to processes of Node 8. d)

Restart of faulty processes in Spare Node. 35

2.9 Fault Tolerance Layers. 39

2.10 Dividing Protector Tasks. 42

4.1 Sender-Based Message Logging. 55

4.2 Receiver-Based Message Logging. 59

4.3 Hybrid Message Pessimistic Logging . 63

4.4 Hybrid Message Pessimistic Logging. Protection mechanism. 64

4.5 Hybrid Message Pessimistic Logging. Recovery of the receiver. 64

4.6 Orphan Processes in the Hybrid Message Pessimistic Logging. 67

4.7 Bandwidth utilization obtained with NetPipe Tool. 70

4.8 Overheads in message transmissions obtained with NetPipe Tool. 70

5.1 Parallel Executions Scenarios in a SPMD App. a)Communication Bound.

b) Computation and Communication overlapped. c) Computation Bound. . 75

xvi

5.2 Message Logging Impact Analysis in Parallel Applications. 76

5.3 Parallel application with RADIC fault tolerance processes. a)RADIC default

con�guration. b) Logger threads distributed among available cores c)

Protectors' processes with own computational resources. 78

5.4 Automatic Distribution of Fault Tolerance Tasks. 79

5.5 Homogenous Distribution of Fault Tolerance Tasks. 80

5.6 Saving Cores for Fault Tolerance Tasks. 81

5.7 Flowchart of the Methodology to Determine Suitable Fault Tolerance Tasks

Con�guration. 82

5.8 Characterization results and Overhead Analysis of Applications using Mes-

sage Logging. 84

5.9 SPMD application and communication e�ects on multicore clusters. 88

5.10 SPMD application executed applying the Supertile Concept. 89

5.11 Heat Transfer Application. E�ciency and Speedup improvement. 90

5.12 SPMD Application Behavior using Pessimistic Receiver-based Message

Logging . 91

5.13 SPMD Communication Pattern Example. 93

5.14 Hierarchical Communication levels of a multicore Cluster. 94

5.15 Network characterization of the Parallel System. 96

5.16 Computation and Communication characterization of the Heat Transfer

Application. 99

5.17 Logical Distribution of Supertiles among cores considering two nodes with

2 quad-core processors each. 102

5.18 A�nity of Application Processes and Fault Tolerance Processes 105

5.19 SPMD methodology summary. 106

5.20 Flowchart of the Performability Framework. 108

6.1 Failure Recovery in RADIC with and without Spare Nodes. 112

6.2 Failure Recovery in RADIC with and without Spare Nodes. 116

6.3 Comparison of overheads using the Hybrid Message Pessimistic Logging

and the Pessimistic RBML considering the NAS Parallel Benchmarks. . . . 120

6.4 Comparison between the Pessimistic Receiver-based Message Logging and

the Hybrid Message Pessimistic Logging in executions a�ected by 1 failure. 122

6.5 Breakdown of Recovery Times in executions a�ected by 1 failure. 123

6.6 Overhead Analysis of the CG benchmark. 125

6.7 Synthetic Application Operation. 126

6.8 Overhead Analysis with the Synthetic Application. 126

xvii

6.9 Comparison of overheads using the Hybrid Message Pessimistic Logging and

the Pessimistic RBML considering the NAS Parallel Benchmarks assuming

Uncoordinated Checkpoint. 129

6.10 Comparison of overheads using the Hybrid Message Pessimistic Logging and

the Pessimistic RBML considering the NAS Parallel Benchmarks assuming

Semicoordinated Checkpoint. 130

6.11 Computation and Communication characterization of the Heat Transfer

Application and the Laplace Solver for a tile. 131

6.12 Performance and Prediction Analysis using the Methodology to improve

Performability of SPMD Applications. 133

6.13 Weak Scalability Analysis of SPMD applications with Message Logging. . . 135

6.14 Overhead Analysis of SPMD applications with Message Logging. 136

xviii

Hugo Daniel Meyer. PhD Thesis 2014.

xix

List of Tables

2.1 Main tasks of RADIC components. 36

3.1 Fault tolerance in message passing parallel systems 47

5.1 Theoretical and Practical Data of Heat Transfer Application. 109

6.1 Process Mapping in an eight-node Cluster. 128

6.2 Theoretical and Practical Data of executed Applications 132

xx

Hugo Daniel Meyer. PhD Thesis 2014.

xxi

List of Equations

2.1 Availability Equation. 21

4.3 Protection Overheads of the Sender-Based Message Logging 58

4.4 Recovery Cost of the Sender-Based Message Logging 58

4.5 Protection Cost of the Receiver-Based Message Logging 60

4.6 Recovery Cost of the Sender-Based Message Logging 61

4.8 Protection Cost of the Hybrid Message Pessimistic Logging 65

4.9 Recovery Cost of the Hybrid Message Pessimistic Logging 66

5.1 Internal Computation Time for the SPMD Model 97

5.2 Edge Tile Computation Time without FT for the SPMD Model 97

5.3 Edge Computation for the SPMD Model 97

5.4 Edge Tile Communication Time for the SPMD Model 99

5.5 Communication-Computation Ratio for the SPMD Model 99

5.6 Ideal Number of Cores for an SPMD Application 100

5.10 Execution Time of a SPMD Application using Fault Tolerance 101

5.12 Ideal Overlapping between computation and communication 101

5.14 Ideal Supertile Size . 101

xxii

Hugo Daniel Meyer. PhD Thesis 2014.

xxiii

Chapter 1

Introduction

“Only as a warrior can one withstand the path of knowledge. A warrior

cannot complain or regret anything. His life is an endless challenge, and

challenges cannot possibly be good or bad. Challenges are simply challenges”

Carlos Castaneda

1.1 Fault Tolerance in Parallel Computing

In recent years, computer science has become one of the most valuable tools for modern

life. In this time, computer science has increasingly help the development of new essential

services and applications that bene�t di�erent knowledge areas such as health, chemistry,

engineering, mathematics, etc. As there is increasing interest in using computer systems

to solve problems faster and to obtain better quality solutions, there is also an increasing

and non-stop demand for computing power.

The increase in computing power demand is translated nowadays into application

parallelization approaches and High Performance Computing (HPC) systems to execute

these parallel applications. Currently, the HPC systems are being used to solve complex and

computationally intensive applications such as DNA sequencing, �re forecasting, molecular

dynamics simulations, weather forecasting, simulation of emergency situations, among

others. In order to take advantage of HPC clusters, applications are mostly parallelized

using a message passing communication paradigm such as MPI [35] which is a de facto

standard used to write parallel applications.

The use of HPC clusters is increasingly common in science. However, the massive

utilization of these parallel computers has made them grow in computation power by

concentrating more components in a single machine and by combining several machines

to work together. These HPC clusters are now composed of multicore machines because

1

this gives greater computing capacity [69]. However, with this increase in the number

of components, the miniaturization and high concentration, the number of failures that

a�ects these systems also increases [40] [79].

There are several sources of failures in HPC systems, among them we can mention

failures caused by Human Errors, Hardware, Network or Software faults. In [27] is

presented an analysis of 22 HPC systems where it can be clearly seen that failure rates in

these systems increase as the number of nodes and processors increases. From the data

collected it has been determined that the main reason for stoppages in these systems are

the hardware failures.

Therefore, fault tolerance mechanisms are a valuable feature to provide high availability

in HPC clusters. The need for reliable fault tolerant HPC systems has intensi�ed because

a hardware failure may result in a possible increase in execution time, lower throughput

and the cost of running parallel applications [27].

In spite of the current interest of researchers in fault tolerance techniques for parallel

applications, this is not a new concern. These techniques have been a topic of interest

for many years and it is even becoming more important because more performance

improvement in systems means less reliability.

Failures impact negatively on applications performance because of the time wasted in

restarting the application, repairing or replacing the failed components and re-executing

the applications. If these times tend to zero, there would not be a big impact in parallel

executions, but in order to achieve this fault tolerance strategies should be used. However,

the usage of fault tolerance mechanisms imply an impact on cost (more resources, longer

execution times, etc). Normally, in HPC replication is used to address transient failures,

but when considering permanent failures, rollback-recovery strategies are used.

Rollback-recovery consists in saving states of an application periodically, and in the

event of failure the application resumes its execution from the most recent saved state.

Currently, there are some well-know rollback-recovery protocols [29] [27] to handle

hardware failures in parallel environments which avoid the loss of computation work. Many

rollback-recovery protocols that protect parallel applications are based on checkpointing

and message logging or a combination of the two.

One of the most used and implemented rollback-recovery protocol for parallel systems

is the coordinated checkpoint. It consists in interrupting the whole parallel application

at some points to save a global snapshot of the application, guaranteeing that no non-

deterministic events are occurring (messages) in the meantime in order to obtain a

consistent state [29].

In the recent past, coordinated approaches were preferred when providing fault tolerance

2

support to parallel applications because of the low failure-free overhead that these strategies

introduce and their ease of deployment. However, coordinated checkpoint approaches

present three major disadvantages:

� When using fault tolerance support below the application level (application-

transparent fault tolerance), increasing the number of processes involved may

increase the time needed to coordinate all the processes. Normally, most protocols

require at least two global coordinations [29].

� In the event of failure, all processes of the parallel application must rollback to a

previous state, even the non-failed processes. Then, there may be a considerable

computational time loss.

� Checkpoint and restart su�er from high I/O overhead at the scale envisioned for

future systems, leading to poor overall e�ciency barely competing with replication

[32].

The current trend in HPC is to avoid fault tolerance solutions where collective operations

(such as the coordination) and centralized components are used because they could

compromise the scalability of applications. On the other hand, uncoordinated checkpoint

protocols allow each process to save its state independently without needing coordination.

Nevertheless, in order to avoid the domino e�ect [29] these protocols should be used in

combination with a message logging approach.

Uncoordinated approaches guarantee that scalability is not compromised since each

process may take actions on its own, avoiding the costly step of process coordination.

Also, only faulty processes must rollback to a previous state reducing the amount of lost

computation that has to be re-executed, and possibly permitting overlap between recovery

and regular application progress.

In order to avoid the rollback of non-failed processes, uncoordinated approaches should

be combined with event logging. Thus, in the event of failure restarted processes could use

the logged messages without forcing other non-failed processes to rollback and recreate

messages. Message Logging techniques allow faster recovery from failures, on the other

hand there is a higher overhead in failure free executions because each message has to

be saved in a stable storage. However, according to [52] message logging has a better

application makespan than coordinated checkpoint when the Mean Time Between Failures

(MTBF) is shorter than 9 hours. It is important to highlight that some message logging

schemes (optimistic message logging) may force non-failed processes to rollback because

3

Figure 1.1: Sender-Based Message Logging.

they allow applications to continue with their executions without guaranteeing that all

message events are properly saved.

There are two main message logging techniques that have been widely used and

implemented in message passing systems: Sender-based Message Logging and Receiver-

based Message Logging. Depending on the moment in which messages are saved to a

stable storage they can be: pessimistic or optimistic.

Pessimistic approaches guarantee that messages are saved into stable storage before they

can make an impact on processes not involved in the message transmission. On the other

hand, optimistic approaches consider that the failure is unlikely to occur while messages

are being logged, then in order to lower the overheads during failure-free executions, these

approaches allow the application to continue without blocking the processes involved in the

communication. When using optimistic approaches, there is a chance of creating orphan

messages [29] which can lead to forced rollbacks of non-failed processes.

Figure 1.1 shows the operation of a sender-based message logging. Before sending

messages, the communication managers of the senders save them into a stable storage.

In the event of a failure, receivers will request its logged messages to all senders and

the senders will deliver them. This approach normally introduces low overheads during

failure-free executions, but when failures occur failed processes rely on the information

distributed among all their senders. Then, senders should be able to re-send these messages

in the appropriate order so the failed processes could reach the same before-failure state.

Garbage collection in these protocols is complex, since after checkpointing each process

should notify its senders to erase old messages.

Figure 1.2 depicts the operation of a receiver-based message logging. In this case

when processes receive messages, they are forwarded to a stable storage. Considering

4

Figure 1.2: Receiver-Based Message Logging.

a distributed fault tolerant support, messages received in one node could be saved in

another node. In case of failure, failed processes consume their old messages which are not

distributed in several partial logs (as is the case of sender-based logging). This approach

normally introduces more overhead than sender-based approaches, but on the other hand

the recovery procedure is independent and faster. Garbage collection is not complex here

since after a checkpoint processes could be in charge of deleting their own log.

Considering the above-mentioned facts, there are two main challenges that need to be

addressed when deploying an uncoordinated checkpoint approach:

� Estimate execution time and checkpoint intervals: with coordinated protocols

there are very precise models to estimate application execution time and best

checkpoint intervals [23]. However, in [34] a model to estimate the most suitable

checkpoint interval for parallel applications using uncoordinated protocols has

been developed.

� Reduce the overhead of message logging techniques: uncoordinated approaches

usually rely on the usage of a message logging approach that should save every

outgoing message (sender-based logging) or incoming message (receiver-based

logging). This of course, may cause a considerable negative impact on parallel

execution times.

Considering that the problem of �nding the best checkpoint interval for an uncoordi-

nated checkpoint protocol has been addressed, we should focus on what happens between

two uncoordinated checkpoints: Message Logging. Reducing the impact of message logging

in parallel applications has become a very important matter since it is one of the major

sources of overhead [78].

5

1.2 Motivation

As we have mentioned, when we increase the applications performance by using more

components to execute more work or in a shorter time, reliability decreases because the

probability of being a�ected by a failure is higher.

A recent analysis conducted in [79] has proven that the 22 di�erent HPC systems

analyzed exhibit di�erent failure rates ranging from 20 to more than 1000 failures per

year on average. Their results indicate that failure rates do not grow signi�cantly faster

than linearly with system size. Thus, failures are becoming not uncommon events, but a

normal part of applications execution.

Considering the above-mentioned facts, we can assume that failure probability will

continue to increase with system size. Thus, it is crucial to recognize that many long-

running parallel applications may not �nish correctly as a consequence of a failure.

Taking this into consideration, it is extremely important to consider that for some

executions of applications, the use of fault tolerance will not be an option but a requirement

in order to guarantee a successful completion. This is why it is important to look into new

techniques that scale with parallel applications and that introduce less overhead while

giving protection to the application allowing fast recovery. Replication of tasks may not

be an option in HPC systems since only a top e�ciency of 50% may be achieved, and

these levels of e�ciency can be improved when using rollback-recovery.

In order to provide fault tolerance support for parallel applications two main approaches

are the more common. The �rst one is to write applications with fault tolerant support.

This seems like a good option because one can select the best techniques for a speci�c

program. However, there is a high cost software engineering and software development

associated with this solution. The second common approach is to provide fault tolerance

support beneath the application level, for example at the communication library level.

To include fault tolerance support at library levels comes with the advantage of

application-transparency, but on the other hand the overheads of these solutions tend to

be higher than the non-transparent solution.

Several studies have focused on providing MPI libraries with fault tolerance support.

There are some examples in MPICH [7] [8] and in Open MPI [59] [44]. Nevertheless, it

is important to investigate the development of techniques to provide dependability to

parallel applications while decreasing the impact in performance and e�ciency.

Given that having a centralized fault tolerant manager may compromise the scalability

of the solution, in this thesis we focus on designing and include improvements into a trans-

parent and distributed fault tolerant architecture called Redundant Array of Distributed

6

and Independent Controllers (RADIC) [25]. However, the policies and strategies that are

proposed in this thesis could also be integrated into the application layer and adapted to

the needs of each application. In order to give transparent fault tolerance support and for

testing purposes we have added them to RADIC.

Besides the problem of selecting the right layer to introduce fault tolerance support, it

is important to consider how the fault tolerance tasks interact with the parallel application.

If we consider that parallel applications are mapped into parallel environments in order to

scale correctly making an e�cient utilization of resources, any disturbance may render all

the mapping work useless.

When single-core clusters were the only option to execute parallel applications, there

were not many choices with regard to sharing resources. As there was only one compu-

tational core available, parallel applications share this resource (as well as the memory

and cache levels) with the fault tolerance tasks if there were not dedicated resources.

Considering that current clusters have more cores and memory levels, there is a need to

develop mapping policies that allow parallel applications to coexist with the fault tolerance

tasks in order to reduce the disturbance caused by these tasks. It is also important to

consider that the number of cores has been multiplied by 8, 16, 32, 64 and usually the

networks used in these clusters have not increase their speed to the same extent.

Several strategies have been developed to improve the performance of fault tolerance

solutions, such as: rollback-recovery protocols based on message-logging that focus in

lowering the overheads in failure-free executions and avoids the restart of non-failed

processes [21]; diskless checkpoint approaches [39]; semi-coordinated checkpoint approaches

[19] [13]. However, resource assignation and overhead management are two important

matters that should be studied.

Not only has multicore technology brought more computation capability to HPC

systems, it has also brought more challenges to resource assignation protocols. If fault

tolerance tasks are going to coexist with application processes, then it is important to

determine the best way or ways to map jobs taking into account performance, e�ciency

and dependability.

Considering that the MTBF is decreasing in current HPC clusters [27], uncoordinated

checkpoint approaches appear to be the best option since the recovery procedure in

coordinated approaches is more costly because it involves the rollback of all processes.

Since the problem of �nding the best checkpoint interval for uncoordinated fault

tolerance approaches was addressed in a previous work [34], this thesis focuses on describing

what happens between checkpoints: Message Logging. Since the major source of overhead

in fault tolerance for parallel applications is the message logging approach used [52], it

7

is extremely important to concentrate e�orts on lowering the impact of these techniques.

Therefore, it is very important to design policies or optimizations to current message

logging techniques in order to improve the performance metrics of fault tolerant executions.

Having turned our attention to message logging techniques, there are some questions

that arise related to performance improvement while using fault tolerance:

� Is there a way to hide the negative impact on e�ciency when using message

logging techniques in parallel applications?

� Can we manage the resources in order to reduce the impact of fault tolerance

techniques on the critical path of a fault tolerant execution?

� Are current message logging techniques good enough to satisfy current needs of

availability in combination with performance improvement?

The aim of this thesis is to answer these questions by providing fault-tolerance to

parallel executions in multicore clusters while reducing the negative impact on performance.

This is the motivation of this thesis.

1.3 Objectives

The main aim of this thesis is to propose fault tolerance policies capable of reducing

the negative impact in parallel applications while improving dependability, taking into

account the advent of bigger multicore systems. In order to accomplish this goal we focus

on message passing applications in HPC systems. We also consider the utilization of

transparent, scalable and con�gurable (according to systems' requirements and behavior)

fault tolerance support.

Factors in
uencing the computer cluster's performability, such as message log latency,

message log task distribution, performance degradation because of node losses are studied

and solutions are presented in order to improve performability in fault-free and post-

recovery situations.

In order to achieve these objectives we focus on evaluating applications' behavior as

well as classic fault tolerance mechanism in order to adapt them to better �t current

requirements. We will focus on providing answers to the questions presented previously.

We can enumerate our objectives as follows :

1. Reduce the impact of message logging techniques in parallel executions.

8

Figure 1.3: Expected Message Logging Performance.

� Propose a message logging protocol that is able to balance the trade-o�s

between low failure-free overheads and fast recovery. Reduce the overheads of

pessimistic receiver-based message logging without increasing the complexity

of the garbage collection mechanism and during recovery.

2. Integrate fault tolerance techniques e�ciently into parallel systems, considering

applications' behavior.

� Analyze applications' behavior and characterize the impact of fault tolerance

techniques, in order to map the processes into the parallel machine taking

into account performance and dependability.

� Characterize failure-free overheads in order to tune applications executions

taking into account a speci�c kind of application. Determine the parameters

that help us to �nd a suitable number of cores based on three main and

sometimes opposing criteria: availability, the desired e�ciency level of an

application and a maximum speedup.

1.4 Contributions

In order to comply with the objectives established in this thesis, a new Message Logging

protocol has been designed and implemented; a methodology based on characterization

in order to properly select the mapping of some fault tolerance tasks has been proposed;

9

and an analytical method that allows to properly balance the trade-o� between speedup

and e�ciency while using a message logging approach has been developed. In the next

subsections the contributions are described in detail.

1.4.1 A new Pessimistic Message Logging Technique

In order to reduce the impact of current pessimistic receiver-based message logging

approaches, we propose a new message logging protocol called Hybrid Message Pessimistic

Logging (HMPL). The HMPL focuses on combining the fast recovery feature of pessimistic

receiver-based message logging with the low protection overhead introduced by pessimistic

sender-based message logging.

In Figure 1.3 we can observe the expected behaviors of message logging techniques

in parallel applications. A total re-execution of the application could lead to almost

double the execution time. While a sender based approach performs better during failure

free-executions, receiver-based approaches penalize less in failure situations. However,

the objective of the HMPL is to perform better than receiver-based approaches during

failure-free executions but also avoid a high penalization in case of failure.

The HMPL reduces the overhead introduced by receiver-based approaches, reducing

the waiting time when saving messages by using a sender-based approach that guarantees

that no message is lost while allowing a parallel application to continue even before a

received message is properly saved.

Figure 1.4 shows the main operation mechanisms of the HMPL. As we can observe,

senders save messages in a temporary bu�er before sending them. These messages may

be used in certain failure scenarios to allow processes to fully recover. When processes

receive messages, they store these messages in a temporary bu�er and continue with the

normal execution without waiting for the messages to be fully saved in a stable storage at

another location.

The main bene�t of the HMPL is that it reduces the impact in the critical path of

applications by removing the blocking behavior of pessimistic approaches guaranteeing

that non-failed processes will not roll back.

Contributions of this work have been published in [63].

1.4.2 Increasing Performability of Applications

Automatic Management of Spare nodes into MPI

If we consider that processes a�ected by node failures should be restarted in another

location and there are no available nodes to execute these processes, the application can

10

Figure 1.4: Hybrid Message Pessimistic Logging.

lose throughput as a consequence of restarting failed processes in already used nodes.

We have proposed a transparent and automatic management of spare nodes in order to

avoid performance degradation of applications after the occurrence of node failures. When

using this mechanism there is a slight increase in the Mean Time to Recover (MTTR),

since the message log and checkpoint of the processes should be transferred to a spare

node. However, this mechanism avoids the loss of computational capacity.

This work has been included as part of the Redundant Array of distributed and

Independent Controllers (RADIC) in order to keep the initial process per node ratio,

maintaining the original performance in case of failures. Contributions of this work have

been published in [59].

Reducing Message Log Impact in Applications

In fault tolerant executions, there are fault tolerance tasks that are being executed while

the applications processes are carrying out their tasks. The resource consumption of the

fault tolerance tasks, in some cases, is not negligible.

Considering the advent of multicore machines, it is becoming important to propose

policies to make an e�cient use of the parallel environment considering the interaction

between application processes and fault tolerance tasks.

To endow our message logging protocols with
exibility, we have designed our mech-

anisms in order to allow the distribution of log tasks among the available resources

(computational cores) in a node. Our fault tolerance protocols are multithreaded, and

this allows us to distribute or concentrate the overheads in computations of our message

11

logging techniques depending on application behavior.

We focus on addressing the combination of process mapping and fault tolerance tasks

mapping on multicore environments. Our main goal is to determine the con�guration of a

pessimistic receiver-based message logging approach which generates the least disturbance

to the parallel application.

We propose characterizing the parallel application in combination with the message

logging approach in order to determine the most signi�cant aspects of the application

such as computation-communication ratio and then, according to the values obtained, we

suggest a con�guration that can minimize the added overhead for each speci�c scenario.

We show that in some situations it is better to save some resources for the fault tolerance

tasks in order to lower the disturbance in parallel executions.

Contributions of this work have been published in [61].

1.4.3 Case Study: Methodology to increase Performability of

SPMD Applications

Considering that many scienti�c applications are written using the SPMD (Single Program

Multiple Data) paradigm, we propose a novel method for SPMD applications which allows

us to obtain the maximum speedup under a de�ned e�ciency threshold taking into account

the impact of a fault tolerance strategy when executing on multicore clusters.

The main objective of this method is to determine the approximate number of compu-

tational cores and the ideal number of tiles, which permit us to obtain a suitable balance

between speedup, e�ciency and dependability.

This method is based on four phases: characterization, tile distribution, mapping and

scheduling. The idea of this method is to characterize the e�ects of the added overhead of

fault tolerance techniques, which seriously a�ect the MPI application performance. In this

sense, our method manages the overheads of message logging by overlapping them with

computation.

Contributions of this work have been published in [60] and [62].

1.5 Thesis Outline

Based on the objectives the remaining chapters of the thesis are structured as follows.

Chapter 2: Thesis Background.

This chapter introduces some basic concepts about fault tolerance and parallel

applications in multicore environments.

12

Chapter 3: Related Work.

This chapter presents the related work and explains some speci�c concepts about

message logging which is the main focus of this thesis.

Chapter 4: Improving Current Pessimistic Message Logging Protocols.

This chapter explains in detail the Hybrid Message Pessimistic Logging (HMPL)

approach designed for maintaining almost the same MTTR of processes com-

pared with receiver-based message logging approaches while reducing failure-free

overheads.

Chapter 5: Balancing Dependability and Performance in Parallel Applica-

tions.

In this chapter, we present the methodology to increase performability of parallel

applications running on multicore clusters as well as the methodology to select

the best mapping of fault tolerance tasks.

Chapter 6: Experimental Results.

This chapter describes the test scenarios and provides an explanation of the

experimental results of our proposals, the Hybrid Message Pessimistic Logging

(HMPL), the methodology to increase performability and the methodology to

select mapping of fault tolerance tasks.

Chapter 7: Conclusions.

This chapter draws the main conclusions of this thesis and presents suggestions

for further work and future lines of research.

The list of references completes the document of this thesis.

13

Hugo Daniel Meyer. PhD Thesis 2014.

14

Chapter 2

Thesis Background

In this chapter we present some basic concepts about parallel applications, systems and

fault tolerance in High Performance Computing needed to frame the thesis. First, we

introduce a general description of current parallel applications requirements in section

2.1. Then, in section 2.2 we present some concepts of fault tolerance, focusing specially in

uncoordinated approaches such as message logging. Section 2.3 describes the details of

the RADIC architecture which has been used as foundation of this thesis.

2.1 Parallel Applications in Multicore Clusters

The computation time of an application is directly related to the time spent in executing

a set of basic instructions and to the number of concurrent operations that the system

may execute.

In order to increase performance metrics, the usage of High Performance Computing

(HPC) systems has increased during the last years. The main strategy consists in the

usage of techniques to simultaneously process the information. In parallel computing, all

processors are either tightly coupled with centralized shared memory or loosely coupled

with distributed memory and the processes running collaborate to solve a computational

problem (page 7 in [46]). Parallel applications divide the workload among each available

process so the work can be done simultaneously in order to reduce the execution time.

The main bene�t of parallel processing is the reduction of the execution time of

applications. Nevertheless, the performance metrics such as scalability, speedup, e�ciency,

among others could be a�ected since in parallel environments processes compete for the

shared resources (network, shared memory, storage, etc.). In multicore HPC clusters, we

have several cores that use di�erent communication channels (network, main memory,

cache memory, etc.) with di�erent bandwidths and this should be considered when dividing

15

the workload among processes.

As parallel processes collaborate between each other to solve a computational problem,

usually partial results are splitted among several processes. Therefore, it is very important

that all parallel processes �nish their executions correctly in order to obtain full results.

However, with the increase in the number of components used, there is also an increase in

the node failure probability, since the mean time between failures (MTBF) in computer

clusters have become lower [13].

Consequently, we cannot avoid the fact that running an application without a fault

tolerance approach has a high probability of failing and stopping when using many

computational resources or when it has been executing for several hours. Now, two

con
icting objectives should be taken into account: improving Performance while giving

Fault Tolerance support. When protecting applications transparently with a fault tolerance

technique (using the available system resources), usually an extra overhead that seriously

a�ects the performance should be paid. In this sense, all initial tuning may be in vain

when fault tolerance support is given without taking into account the in
uence of the

overhead added on applications and even more tightly coupled applications are executed.

2.1.1 Multicore Architecture

The multicore architecture is composed by two or more computational resources (cores)

residing inside inside a processor [24]. The main advantage of this is that it allows to

improve the performance metrics of applications by allowing the execution of multiple

instructions in parallel [72].

However, when running parallel applications in multicore machines and wanting to

obtain good performance metrics, some features that should be taken into account, such as:

the number of cores per processor, data locality, shared memory management, hierarchical

communication levels, etc.

Several alternatives are available regarding multicore node design. There are variations

about the hierarchical memory de�nition and the way of accessing the memory. In Figure

2.1a is shown an example where the L2 cache level is individual to each core, and in Figure

2.1b is shown a design where the L2 cache is shared between two cores in a processor.

Other di�erences in multicore design are related to the memory access model: Uniform

Memory Access (UMA) [20] and Non-Uniform Memory Access (NUMA) [47] architecture.

In UMA systems, every core share uniform access to the main memory, thus the access

time is the same for each of them.

On the other hand, in NUMA architectures the memory is individual for each processor

that integrates the system, but processors have access to the memory spaces of other

16

(a) Non-shared L2 cache. (b) Shared L2 cache.

Figure 2.1: Dual Core Nodes.

processors with a higher access time. This architecture is usually used in systems with

high number of processors per node, where data contained in main memory should be

controlled [15].

Current HPC clusters are composed by multicore machines, since they allow to improve

the performance of applications and also reduce energy consumption.

As can be observed in Figure 2.2, a multicore cluster has an hierarchical communication

system that should be taken into account when running parallel applications. There

are intercore communications with shared cache (Core 1 and Core 2 of Processor 1 in

Node1), without shared cache (Core 1 and Core 3 of Processor 1 in Node1), interchip

communications (Core 1 of Processor 1 and Core 1 of Processor 2 in Node1) and �nally,

the slowest communication channel, which is internode (Any core from Node 1 with any

core of Node 2).

These di�erences in designs and communication channels cause that parallel applications

written using a message passing system (such as MPI [35]) vary in the behavior a�ected by

the di�erent latencies of the di�erent available routes to send a message from one process

to another.

2.1.2 Message Passing Interface

Parallel programming models are de�ned as an abstraction between the parallel hardware

and the memory. These models allow programmers to easily develop parallel programs

17

Figure 2.2: Quad Core Multicore Cluster.

that take advantage of the underlying architecture. There are two main models to write

parallel applications: the shared memory model and the message passing model. In the

shared memory model, processes can use the same memory sections, while in the message

passing model the information between processes is transferred using messages.

In this thesis, we focus on the message passing model and we describe here the Message

Passing Interface (MPI), which is the standard solution for programming in distributed

memory systems.

The message passing model is used to develop e�cient parallel programs executed in

a distributed memory system. This model allows to control the information exchange

between process of the parallel application. The main advantage of programs written using

message passing libraries is that they can be executed using shared memory or distributed

memory systems.

The de facto standard for the message passing model is the Message Passing Interface

(MPI). In each message exchange an agreement between sender and receiver is made.

Then, the sender process starts sending a message using the interface and the receiver

process receives the message with some extra information. Messages in this model could be

synchronous, asynchronous, blocking and non-blocking. There are also collective operations

that make use of the basic operations and some other more complex functions to distribute

and gather data.

The RADIC architecture and all the proposals made in this thesis have been included

inside a MPI library called Open MPI [36]. This has been done in order to provide

a transparent fault tolerant support to MPI applications that use this speci�c library.

18

Further details about the Open MPI implementation will be given in Section 2.3.

2.1.3 Main Parallel Metrics

There is a set of metrics that are taken into account when executing parallel applications

in multicore clusters. In some cases, there is also a trade-o� relationship between some

metrics (eg. speedup and dependability), and one cannot be improved without making

worse the other. We will describe in the next paragraphs the main metrics that are taken

into account in this thesis:

� Execution Time: This is the main metric that we try to improve when paral-

lelizing applications. In parallel executions, the execution time will be determined

by the slowest parallel process, thus the workloads and overheads (when using

fault tolerance) should be distributed homogeneously in order to avoid that the

execution time of a process or a set of them is larger than others. It is important

to highlight that fault tolerance tasks may a�ect negatively the execution time,

but bene�ting the dependability metric.

� Speedup: This metric is directly a�ected by the execution time. The speedup

determines how fast a multi-processor environment solves an application. A

simple approach to de�ning speedup is to let the same program run on a single

processor, and on a parallel machine with p processors. The problem with this

approach is that some parallel programs may be to large to �t on a single processor

[28]. In this thesis, to calculate the speedup of a parallel application we take

the best serial execution time and compare it against the parallel execution time

[84]. The best serial execution time is obtained by multiplying the number of

parallel process by the time that each process spend in computing its workload

without taking into account communication times (Gustafson's model). In the

ideal case we will obtain lineal speedup according to the number of processes

executing the parallel application. However, one of the reasons that lower the

speedup of parallel applications is the time spent in communications (overhead).

This is why it is important to lower the impact on communications when using

message logging techniques.

� Load Balance: This concept usually refers to the workload distribution among

parallel processes. In a homogenous parallel machine, when the workload is

equitably distributed among parallel processes we can say that the application

is well-balanced. However, if we consider the impact of communications and

19

memory we can talk about di�erent boundaries that could a�ect applications'

performance. Executions where the performance is determined by characteristics

of the processors are called Computation-bound. When the full capacity of the

processor is not used, we usually have two main types of executions. Execu-

tions where the performance is determined by the memory subsystem are called

Memory-bound, and when performance is determined by the communication times

executions are Communication-bound.

� Process Mapping: This refers to the distribution or allocation of processes in

a parallel machine. In order to make an e�cient use of the parallel machine, it

is very important to analyze the behavior of a parallel application searching for

a suitable process mapping. For example, in order to minimize the number of

network communications, processes with high communication volume could be

placed in the same node. It is very common to use a�nity in HPC in order to

attach processes (process a�nity) or threads (thread a�nity) to a core in order

to guarantee the re-usage of data or for load balancing issues. Processor a�nity

is a modi�cation of the native central queue scheduling algorithm [70]. In this

thesis we make use a�nity to guarantee an homogenous distribution of load and

to attach some fault tolerance tasks to speci�c cores.

� E�ciency: Good resource administration is a fundamental property that should

be considered when executing in parallel environments. For this reason, when

executing parallel applications we should focus on obtaining a balance between

speedup and the percentage of time used per resources. Waiting times generated by

communications or IO are translated into ine�ciencies. The CPU e�ciency index

is de�ned as the time that processors are executing computation. Communication

between processors is an important source of a loss of e�ciency. If the load is

balanced among the processors, they would always be performing useful work,

and only be idle because of latency in communication. In practice, however, a

processor may be idle because it is waiting for a message. Normally, e�ciently

values of parallel executions are between 60 and 90 percent [28]. In this thesis, we

calculate the e�ciency of a parallel execution by dividing serial execution time

by the parallel execution time and by the number of processes used.

� Scalability: The performance of parallel applications depend on the problem

size and the number of processes used to execute the application. The scalability

metric refers to the adaptation level of the application to the parallel system.

There are two main types of scalabilities: Weak and Strong. In weak scalability

20

it is analyzed how the execution time varies when the problem size and the

number for processing elements increase simultaneously, but the workload per

process remains constant. The main objective in weak scalability is to maintain

a constant execution time [71]. On the other hand, in strong scalability the

problem size remains constant and the number of processing elements is increased

(workload per process is reduced). In strong scalability the objective is to increase

the speedup proportionally to the increase in the number of processes [65]. In

scienti�c computing, scalability is a property of an algorithm and the way it is

parallelized on an architecture. Taking this into consideration we have designed

our fault tolerant architecture (RADIC) and our proposal to be scalable fault

tolerant solutions.

� Availability: It represents the percentage of time that a system operates during

its intended duty cycle. The availability value is a�ected according to the Mean

Time To Failure (MTTF) and the Mean Time To Recover (MTTR) as shown

in Equation 2.1. Taking into account that the MTTF usually depends on the

parallel system con�guration, in this thesis we focus on reducing the MTTR of

failed processes in order to improve the availability.

Availability = MTTF=(MTTF +MTTR) (2.1)

� Dependability: It is a term that cover many system attributes such as reliability,

availability, safety or security [30]. In this thesis we will focus on the availability

attribute which refers to the percentage of time that a system operates during its

intended duty cycle. The availability is improved by the use of fault tolerance

techniques that allow systems to continue executing tasks even when losing some

resources as consequence of failures.

� Performability: It is a composite measure of a systems performance and its

dependability [64] [67]. It is the probability that a system performance remains

above certain performance level during a speci�ed period of time.

Many of the metrics that are considered to evaluate parallel execution refer to perfor-

mance. However, as systems are growing in size and parallel applications are demanding

more resources, the failure probability increases. Consequently, we cannot concentrate

only in performance metrics but also in availability. In the next section we will cover the

21

classic fault tolerance techniques used in HPC for improving availability that will help to

frame this thesis.

2.2 Classic Fault Tolerance Mechanisms in HPC

Large parallel systems have vast computing potential. In these systems a machine can

stop participating in execution of a parallel application as a result of disconnection from

the network, shut down or power break. If any of these events occur we say that the

node has failed. The computing potential is hampered by the nodes' susceptibility to

failures. It is necessary to preserve the correctness of a parallel execution despite failures.

Therefore, fault tolerance is a valuable feature to provide high availability to computer

clusters composed by multicore nodes.

During the last years, the failure rate in current systems has increased.In [79] has been

conducted an analysis during nine years in Los Alamos Research Center. Between 40 %

and 80 % of the incidences, depending on the cluster size, where caused by node problems.

Message passing applications are growing in number of processes in order to accomplish

the requirements of more functionality, more data to handle and more performance. A

node failure can have a dramatic e�ect on message passing application performance. As

the quantity of faults in parallel applications has increased as consequence of failures,

parallel applications should make use of fault tolerance techniques in order to �nish their

executions correctly.

In recent years many research has focused on the development of more e�cient fault

tolerance tolerance techniques appropriate to the new HPC architectures. The most used

strategies are based on rollback-recovery, these strategies periodically use stable storage

(e.g. disk) to save the processes' states and maybe some additional useful data during

failure-free execution. A saved state of a process is called a checkpoint. Upon a failure,

restart a failed process from one of the saved checkpoints reduces the amount of lost

computation, when recovering, consistency between processes must be maintained. Figure

2.3 depicts the main rollback-recovery protocols available currently (we highlight in bold

the protocols that we use in this thesis and we include also our proposal).

Elnozahy [29] and Capello [18] warned that classical fault tolerance techniques such

as coordinated checkpoint, will not be convenient in view of the growing size of systems.

Elnozahy propose to save resources for the fault tolerance tasks and Capello indicates that

more research should be done to reduce time consumption of fault tolerance tasks and to

improve scalability of current solutions.

Several strategies have been developed to improve the performance of fault tolerance

22

Figure 2.3: Rollback-Recovery Protocols.

solutions. In [21] was proposed a rollback-recovery protocol based on message-logging that

focuses on lower the overheads in failure-free executions and avoids the restart of non-failed

processes. Regarding checkpoint strategies, many improvements have been designed, such

as: diskless checkpoint approaches [39], semi-coordinated checkpoint approaches [19] [13],

techniques to determine the best checkpoint interval in uncoordinated approaches [34],

among others.

Resource assignation and overhead management are two major aspects that should be

cover in fault tolerance. In this thesis we focus on these two aspects, speci�cally when

using message logging techniques.

2.2.1 Basic Concepts

We refer to a system as fault tolerant if it can mask the presence of faults in the system

and try to provide the required services (probably degraded) by using redundancy at some

level (hardware, software, temporal, information). Redundancy is the property of having

more of a resource than is minimally necessary to do the job at hand (Koren and Krishna

[50, Ch. 1]). When a failure a�ects a system, redundancy is exploited to mask or work

around these failures in order to maintain a desired level of functionality.

In order to explain in detail the classical fault tolerance techniques and their operations

we �rst de�ne some basic fault tolerance concepts [27] that will be used in this thesis.

23

� Fault: is related to the notion of defect, incorrect step, process or data de�nition

which causes a system or a component to perform in an unintended or unantici-

pated manner. Regarding their duration, faults can be permanent, when a faulty

component goes down and cannot continue with its function until it is repaired or

replaced; transient, when after a malfunctioning time the normal functionality of

the component is restored; or intermittent, when the component swings between

malfunctioning and normality. In this thesis we only focus on permanent faults

that a�ect system's nodes.

� Error: is the manifestation of faults. Error is a discrepancy between a computed,

observed or measured value or condition and the true, speci�ed or theoretically

correct value or condition. It is important to highlight that not all faults cause

errors. We detect errors when a node is not reachable because of communication

loss or inconsistent communication (when only some processes can reach the

node).

� Failure:is the inability of a system or a component of it to perform its required

functions or services. Fault tolerance techniques focus on avoiding that errors

caused by faults become failures. In this work the failure system model is the

next: when a process fails, the process loses its volatile state, stops its execution

and does not send any more messages. Such behavior is called fail-stop. Processes

have a stable storage device that survives failures and the fault tolerant system

can sustain multiple failures of non-related components. The protocol selected do

not tolerate failures during recovery in the components that are participating in

the recovery. Our protocol guarantees that if the previous conditions are ful�lled,

all processes will �nish their execution.

� Reliability: represents the ability of a system or component to function under

stated conditions for a speci�ed period of time. The Mean Time Between Failure

(MTBF) is the primary measure of a system's reliability.

� Recovery line: when an application is a�ected by a failure, the states of the

a�ected processes are lost. The recovery line should be determined when rollback-

recovery is being used, and it is the con�guration of the entire parallel application

after failed processes have been restarted from their checkpoints. As in parallel

applications messages could cross between processes, a recovery set is the union of

the saved states (including messages, events and processes' states) and a recovery

line [13].

24

� Fault Masking: fault masking techniques provide fault tolerance by ensuring

that services are available to clients despite failure of a components. These

techniques allow applications to continue their execution without knowing about

hardware failures.

� Stable Storage: rollback-recovery uses stable storage to save checkpoints, event

logs, and other recovery-related information despite failures. Stable storage in

rollback recovery is only an abstraction, often confused with the disk storage used

to implement it. There are di�erent implementation styles of stable storage: In

a system that tolerates only a single failure, stable storage may consist of the

volatile memory of another node. In a system that wishes to tolerate an arbitrary

number of transient failures, stable storage may consist of a local disk in each

host.

� Garbage Collection: as the application progresses and more recovery informa-

tion is collected, a subset of the stored recovery information may become useless.

Deletion of such useless recovery information is called garbage collection. A

common approach to garbage collection is to identify the recovery line and discard

all data relating to events that occurred before that line. For example, processes

that coordinate their checkpoints to form consistent states will always restart

from the most recent checkpoint of each process, and so all previous checkpoints

can be discarded. Garbage collection mechanisms in sender-based message logging

are complex and could be costly since a checkpointed process should notify all the

senders about its checkpoint so they can deleted old messages. In receiver-based

approaches this is not the case, since the message log is located in one place and

could be easily deleted.

� Transparency: general purpose fault tolerance approaches should be transparent

to applications. Ideally, it should not require source code or application modi-

�cations. In parallel applications the most used option to provide transparent

fault tolerance is the integration of techniques inside communication libraries

[44] [59]. It is desirable to have architectures that could make an automatic fault

management and that could carry out the protection, fault detection and recovery

stages automatically.

� General Purpose Fault Tolerance: fault tolerance solutions must have a wide

range of applications coverage. This reduces the software engineering and software

development costs.

25

� Portability: fault tolerance techniques are preferred when they are not tightly

coupled to one operating system version or to one speci�c application. A portable

fault tolerance framework is desirable so it can be used in di�erent systems.

Most of the current parallel applications are designed using MPI. The default behavior

in parallel MPI applications is that if a single process is a�ected by a fault, the MPI

environment notices this after some time and commands all remaining processes to also

stop their executions (fail-stop) [35].

However, several strategies have been proposed in order to endow parallel executions

with fault tolerance support. The most used strategy to do this is rollback-recovery, since

it looks as the current best approach [29].

This protocols have been developed and compared over the years according to the

overhead that they introduce during protection and recovery stages. During the protection

stage, checkpoint and message logging techniques are used to save processes' states and

non-determinant events (messages). In the presence of hardware failures, the processes use

the saved information to restart from a previous state and continue with their execution.

Following are detailed the main rollback-recovery protocols that were designed to

provide fault tolerance for parallel applications.

2.2.2 Coordinated Checkpoint

Checkpoint-based approaches should be able to save Consistent System States. A global

consistent state in a message-passing system is a collection of the individual states of

all participating processes and of the states of the communication channels as well [29].

In a global consistent state, all messages receptions re
ected by receivers should have a

corresponding message emission from senders [22].

In coordinated checkpoint protocols is easy to determine a recovery line since all

application processes save their states simultaneously [53]. In order to ensure that a

consistent global state is saved, all in-transit messages are deleted when coordinating the

processes.

Figure 2.4 depicts the coordinated checkpoint protocol behavior. Between moments

A-B, C-D and E-F there might be communication between processes (not depicted in the

�gure). Between moments B-C and F-G the network is silenced to take snapshots of the

parallel processes and produce a consistent global state. When the failure a�ects process

Pn at instant D, all processes must rollback to instant C and restart over. The numbers

in the �gure represent the processes timeline, after the failure the processes need to repeat

all computation made between instants C and D.

26

Figure 2.4: Parallel application running with Coordinated Checkpoint support.

The main drawbacks of coordinated checkpoint protocols are:

� When several processes are involved in a parallel execution, the coordination

phase could take too much time.

� If some processes are smaller in size than others, their checkpoint time will be

lower than the others but even if they �nish checkpointing �rst they will wait

for the others to �nish. It is important also to consider that as application sizes

increase, the global checkpoint size also increases and this could represent to the

storage system.

� Storage devices and network could become a bottleneck when all the processes

try to save their state at the same time.

� In case of a single process failure, all processes must rollback to a previous state

losing all the computation done since the last checkpoint.

Despite these drawbacks, several fault tolerance protocols in parallel computing have

implemented coordinated checkpoint mechanisms. In [44], Hursey describe in detail

the design and implementation of a coordinated checkpoint approach inside the Open

MPI library[36]. In this implementation, they propose to integrate the Berkeley Lab

CheckpointRestart tool[41] inside Open MPI in order to provide checkpoint and restart

support to parallel applications.

Ansel et al. in [2] describe the Distributed Multithreaded Checkpointing (DMTCP)

tool. This tool can be used to provide coordinated checkpointing and restart to parallel

and distributed applications.

27

Figure 2.5: Parallel application running with Uncoordinated Checkpoint support

2.2.3 Uncoordinated Checkpoint

In uncoordinated checkpoint protocols each parallel process can select the most convenient

moment to checkpoint its state, thus no coordination is needed.

In Figure 2.5 can be observed how the parallel processes take checkpoints without

needing coordination (B1 − C1, B2 − C2, Bn − Cn), therefore no global checkpoint is created.

In the default approach, each process takes its checkpoint independently and also keeps

previous checkpoints. When a fault occurs, only the failed process rolls back to the last

checkpoint (Dn − En). Non-failed processes can continue with their execution. In the

ideal case, Pn will roll back to Cn and other processes will not be bother. However, if

process Pn produces a message m1’ instead of m1 when re-executing, m1 will be an orphan

message, and if P2 did not send again m2, this will be a lost message. If P2 state depends

on a non-deterministic event (receipt of a message m1) that cannot be reproduced, it is

called an orphan process. Existence of orphan processes violates integrity of the execution

and therefore must be prevented.

To determine a recovery line in an uncoordinated protocol is not as easy as in co-

ordinated protocols. After a failure, non-failed processes may depend on the previous

state of failed processes, thus some processes can be forced to roll back. If no message

logging technique is used in combination with uncoordinated checkpoints, there is a high

probability of creating orphan messages and losing messages. An orphan message is created

when one process rolls back to a previous state before sending or receiving a message,

but its counterpart does not roll back with it. A lost message is one that was not saved

previously, thus the sender process should be forced to roll back (P2 will need to roll back

to C2, 1). This is the reason of storing more than one checkpoint version for each process.

So if a process rolls back and a orphan message is created, then the counterpart should

28

also roll back. Then, in order to avoid the domino e�ect [29], message logging techniques

are used to create consistent recovery sets.

The main advantages of using uncoordinated checkpoints are related to the reduction

in time when creating checkpoints and to the fact that, in ideal cases, only faulty processes

must rollback. As no coordination is needed between processes, the time needed to

perform a checkpoint tends to be smaller than in coordinated approaches. Then, no

collective operation is needed, also storage and network bottlenecks could be avoided since

checkpoints do not need to be saved simultaneously.

2.2.4 Message Logging

Message logging protocols are based on the assumption that process states can be re-

constructed replaying all messages in the correct order [10]. Non-deterministic events

(reception of messages, i/o operations, etc.) should be replayed in the same way they occur

before the failure. Message logging techniques consider parallel applications as a sequence

of deterministic events (computation) separated by non-deterministic events (messages)

[51].

According to [52], message logging is expected to be more appropriated than coordinated

checkpoint when the MTBF is greater than 9 hours. Furthermore, while coordinated

checkpoint stop progressing when the MTBF is shorter than 3 hours, message logging

techniques allow applications to continue progressing.

Before going any further, is very important to clarify some concepts that are used in

message logging protocols [13] [56]:

� In-transit Messages: Let us consider the recovery line composed by C1,2, C2,2

and C3,1 while using uncoordinated checkpoints in Figure 2.6. Messages m3 and

m4 are crossing the recovery line and they are considered in transit messages.

Supposing that P3 is a�ected by a failure, and it restarts from C3,1, messages m3

and m4 will not be available anymore since P2 an P1 have already sent them in

the past. In order to build a consistent recovery line, m3 and m4 should be saved

as well as the checkpoints.

� Lost Messages: Messages m3 and m4 from Figure 2.6 could become lost messages

during a re-execution since the send events are recorded but not the reception.

� Delayed Messages: These are messages that are sent by non-failed processes

to failed processes that will arrive after the failed processes restart and reach the

corresponding reception event. In Figure 2.6, m6 is a delayed message.

29

Figure 2.6: Message Types in uncoordinated checkpoint protocols.

• Duplicated Messages: These kind of messages are produced when a process

rolls back and re-send previously sent messages. Considering Figure 2.6, if P3

fails, it will roll back to C3, 1 and send again m5 to P2. As m5 was already received

by P2, this will be a duplicated message and it should be discarded.

• Orphan Messages: Considering the recovery line (Figure 2.6), message m5 is

crossing it from a possible future of P3 to the past of process P2. Message m5

depends on messages m3 and m4 (taking into account Lamport’ s happened-before

relationship [51]) and in a future re-execution the order of reception of these

messages could vary (in MPI could be caused by the usage of a wild-card such

as MPI ANY SOURCE). If this happens, instead of producing message m5, P2

could produce a different message (m5’) and P1 will become an orphan process

because is depending on a message that does not exist anymore.

Message logging techniques focus on providing a consistent recovery set from checkpoints

taken at independent moments during the execution and they should be able to deal with

the type of messages explained above.

Message logging is useful when the interactions with the outside world are frequent,

because it permits a process to repeat its execution and be consistent without having

to take expensive checkpoints before sending such messages [29]. Generally, log-based

recovery is not susceptible to the domino effect, therefore they are a good complement to

uncoordinated checkpoint techniques.

When using uncoordinated checkpoint protocols, message logging is used in order to

build a consistent recovery set, all in-transit messages should be saved to avoid sender

rollback, and non-deterministic events should be tracked to avoid the creation of orphan

messages. Also duplicated messages should be discarded.

30

The main advantage of using message logging is that only failed processes must roll

back, allowing other parallel processes to continue with their execution. While introducing

some overhead on each message exchange, message logging techniques can sustain a much

more adverse failure pattern, which is translated in better e�ciency on systems where

failures are frequent [52].

Message logging protocols can be classi�ed in the next three types according to their

way of operation:

� Pessimistic: In this kind of protocols the assumption is that the failure could

occur immediately after the occurrence of a non-deterministic event, thus no

process can depend on that event until it is correctly saved in stable storage.

Each event is saved in a synchronous manner, thus increasing the overheads

during failure-free execution but avoiding the generation of orphan messages.

Pessimistic protocols guarantee that only failed processes rollback rollback to

their last checkpoint, facilitate garbage collection and enable fast recovery.

� Optimistic: Each non-deterministic event is saved in an asynchronous way

assuming that the events will be saved correctly before the occurrence of a failure.

This kind of protocols reduce the overhead during failure-free executions, but

orphan processes can be created.

� Causal: These protocols avoid the synchronous behavior of pessimistic ap-

proaches, but additional copies of messages are generated to avoid orphan mes-

sages. These approaches try to combine the advantages of the previous, but they

maintain the drawbacks of optimistic protocols, since a more complex recovery

algorithm is needed.

The mentioned message log protocols can be receiver-based or sender-based depending

on where the message is saved. Receiver-based logging protocols normally doubles the

message delivery latency during failure-free executions because every received message

should be re-sent to a stable storage. Sender-based logging protocols introduce less

overhead during failure free-executions but during recovery, sender processes should replay

all messages exchanged with restarted processes. Garbage collection in sender-based

protocols is more complex since extra communications between senders and receivers is

needed to erase non-necessary messages. By contrast, for receiver-based message logging,

all necessary data to rebuild the state of a restarted process is available in its log repository,

therefore this protocol is the faster during recovery. Garbage collection in receiver-based

31

approaches is less complex since after each checkpoint, receivers can delete their message

logs.

Sender-based and receiver-based approaches are explained in detail in Section 4.1 since

they are used as backbone in our Hybrid Message Pessimistic Logging proposal.

2.3 RADIC Architecture

In this section we describe the Redundant Array of Distributed and Independent Controllers

(RADIC) [25] fault tolerance architecture. This architecture is explained in detail since it

will be used to carry out the experimental validation of our proposals.

Adding scalable fault tolerance support to parallel applications may result in high

software engineering and developing costs. An application transparent solution can highly

minimize the costs in developing and testing. It is desirable to have fault tolerance solutions

that handle all the necessary phases (Protection, Detection, Recovery and Recon�guration).

We describe in detail the RADIC architecture with all its characteristics, main components

and operation modes. We describe how RADIC carry out automatically all phases allowing

the con�guration of a set of parameters in order adapt fault tolerance tasks to speci�c

circumstances or necessities.

The RADIC architecture has been designed to cover 4 main functional phases, which

are:

� Protection: RADIC uses rollback-recovery protocols that do not harm scalability

of applications. An uncoordinated checkpoint approach in combination with a

pessimistic receiver-based message logging approach are the default protocols

of RADIC. The uncoordinated checkpoint guarantees that every process could

take independent checkpoints. By combining this with a pessimistic logging

strategy, we can ensure that in case of failure, only the a�ected processes must

not rollback to a previous checkpoint. The overheads added during this phase

depend on applications' behavior and they could be higher than optimistic

solutions. However, the protection decisions are taken in a decentralized manner

at node level with neighboring information, then the scalability of our solution is

not at risk.

� Detection: RADIC protects the parallel applications against node failures. These

failures are detected by lack of communication of failed nodes. In order to

guarantee a low failure detection latency RADIC uses a heartbeat/watchdog

mechanism between di�erent independent nodes to quickly �nd out about failures.

32

It is also possible to detect a failure by a faulty communication attempt. RADIC

should be integrated in a software layer (e.g. the MPI library, socket-level)

where it can observe and manage all message transmissions, so it can detect

communication failures.

� Recovery and Recon�guration: When a node failure occurs, RADIC starts the

recovery phase by relaunching faulty processes from their latest checkpoints

and after that, the processes consume the message log in order to reach the

pre-failure state. Taking into account that the failed nodes will be removed from

the application environment and processes will be restarted in a di�erent location,

the recon�guration phase should deal with these changes. RADIC by default does

not require extra components, but in order to avoid performance degradation

spare nodes could be used to automatically replace failed nodes. As our approach

does not rely on any central element, the recon�guration is made on demand by

using an algorithmic procedure to �nd the location of restarted processes when

there are a communication attempts that involve them. These procedures are

executed automatically, in order to reduce the MTTR to the sum of recovery

time and re-execution time.

� Fault Masking: With the purpose of allowing a parallel application to continue

its execution in presence of faults, we should avoid the error propagation to the

application level. Thus, our layers capture the faults caused by the failure avoiding

a fail-stop e�ect of the MPI application. Taking into account that processes

migrate as a failure consequences, all communications with these processes should

be redirected avoiding the application to notice about it.

2.3.1 Design Keys

Considering the main functional phases mentioned previously, the RADIC architecture

has been designed taking into account the next design keys:

� Transparency: RADIC's main functionalities are designed to provide FT to

parallel applications without modifying their source code. Its main features have

been integrated below the application layer.

� Flexibility: Many features in RADIC could be set by parametric con�guration to

allow adaptation to the application needs or to di�erent cluster con�gurations (E.g.

Checkpoint Interval, activation of Pipeline Message Logging [78], fault tolerance

33

Figure 2.7: RADIC main components.

task mapping, number of spare nodes, etc.). According to the application needs,

RADIC allows to define a protection degree (e.g. single node failure, multiple

concurrent dependent failures).

• Automatic: RADIC performs its tasks of protection, detection and recovery

automatically while the application is running, without needing any human

intervention.

• Scalability: RADIC works in a completely distributed way and does not use any

centralized component in order to avoid compromising applications’ scalability.

Moreover, all decisions taken during the execution are made in a decentral-

ized manner using local data or by asking neighbor nodes, avoiding collective

operations.

2.3.2 Components and Main Functions

RADIC provides fault tolerance support through two main components: Protectors and

Observers. These components are initialized when the parallel application environment

is created. On each node, one protector is running and each application process has one

observer attached to it.

Protectors and observers work together with the aim of building a distributed fault

tolerant controller and they have different functions to carry out. In the Figure 2.7 we

illustrated three independent nodes (X, Y and Z), four processes are running per node

and the main components of RADIC and how they interact with the application processes.

34

Figure 2.8: RADIC Scenarios: a) Fault free execution. b) Failure in Node 7. c) Utilization of
spare Node , transference of checkpoints, Heartbeat/watchdog restoration and assignation
of a new protector to processes of Node 8. d) Restart of faulty processes in Spare Node.

The main functions are explained below:

� Protectors: one protector is running on each node and their main function is to

detect node failures via a heartbeat/watchdog protocol (detection mechanism).

Protectors also store checkpoints and event logs (of protected processes) sent by

observers (protection mechanism). When a failure occurs, the protector restarts

the failed processes that it protects so they can re-execute from the last checkpoint.

Protectors also has to reestablish the heartbeat/watchdog protocol since it gets

broken due to node failures. Protectors collaborate with fault masking tasks,

since while a process is restarting all incoming communications should be delayed

and then the protector should provide the new location to processes that try

to reach the restarted process. Protectors' tasks need some computational and

storage resources in order to manage the message logging protocol and to make

checkpoints of processes.

� Observers: Each application process has one observer attached to it. Every

communication is intercepted by the observers, so they have absolutely control of

messages exchanged between peers. Observers are responsible of fault masking.

During protection, the observers performs event logging of received messages in a

pessimistic manner and periodically they take uncoordinated checkpoints of the

process to which it is attached as well. The checkpoint could be also triggered by

some events such as an end of a recovery or when the log-bu�er is full. Checkpoints

and logging data are sent and stored in their protectors located in another node.

35

Table 2.1: Main tasks of RADIC components.

Functional Phase Protector Observer

Protection - Receive and save messages and check-
points from protected processes.
-Update its RADICTable.

- Send every received mes-
sages to protectors.
- Make and send checkpoints
to protectors

Detection - Look for available processing unit to
restart.
- Monitor the correct operation of nodes
by using Heartbeat/Watchdog.
- Failure diagnosis (avoid false failures).

- Monitor communications
and con�rm failure with pro-
tector of failed process.

Fault Masking - Tell observers to wait in communica-
tions attempts.
- Communicate changes of RADICTable
due to node failures.

- Intercept faults and delay
pending communications un-
til recovery is �nished.

Recovery and Recon�guration - Transfer checkpoint and message log
to the available node, if necessary.
- Restart failed processes.
- Update its RADICTable with the new
data.
- Reestablish Heartbeat/Watchdog
mechanism.
- Redirect observers to the new location
of the process.

- Consume message log.
- Take checkpoint after com-
plete restart.
- Find and set a new protec-
tor.

During recovery, the observers are in charge of delivering the message log to

restarted processes until they reach the before-fault state. When processes �nish

their re-execution step, observers command a checkpoint. Observers also require

some CPU cycles to manage message transmissions and also consume network

bandwidth since received messages are forwarded to protectors.

It is important to mention that protectors and observers make use of a data structure

called the RADICTable. This table has one entry by application process and each row

contains: process id, URI (Uniform Resource Identi�er), URI of process' protector, the

Receive Sequence Number (RSN) and Send Sequence Number (SSN).

The RADICTable is distributed among all protectors in the parallel environment and

this table changes when failures occur, but it gets updated on demand by each protector

(avoiding collective operations). The update process is explained in detail later.

2.3.3 RADIC Operation

RADIC protects a system by using their own computation resources, storing data of

processes residing in a node (checkpoints and log of received messages) in a di�erent

node where failures are independent (Figure 2.8a). However, as RADIC does not require

dedicated resources it consumes memory (bu�ers), storage, CPU and network bandwidth

from the system when executing its fault tolerance tasks.

36

When failure occurs, the protector of failed processes restarts them inside its own

node. However, this may overload the node and bring down the performance. In [59]

we have proposed the inclusion and management of hot spare nodes inside the parallel

execution environment in order to maintain the computational capacity even in presence of

node failures, allowing us to maintain the initial con�guration, this is called the Resilient

Protection mode. In order to make use of the spare nodes, we have a data structure

called SpareTable containing the Spare Id, the Address of the spare and the status (free or

busy). The SpareTable is replicated among all protectors and its information is updated

on demand as well as the RADICTables.

RADIC operations using the Resilient Protection mode can be observed on Figure

2.8. All message exchanges are made through Observers. After receiving a message, an

Observer forwards it to a Protector residing in another node (Figure 2.8a). Protectors

store checkpoints and message log of the processes that they protect. A node failure

can be detected through a Heartbeat/Watchdog mechanism or by Observers that try

to communicate with a failed process (Figure 2.8b). Failures are masked by delaying

communications to faulty processes in order to avoid fail-stop behavior.

In order to maintain the computational capacity and the initial tuning of applications

in presence of failures, failed processes will be automatically restarted in spare nodes [59]

(Figure 2.8c). As can be observed in Figure 2.8d, after the recovery phase takes place, the

initial con�guration is maintained.

If we run out of spare nodes, failed processes are restarted in their protectors' node,

but performance may be impacted. This is called the Basic Protection mode, where

performance degradation may occur when failures are present.

When a node fails and processes get restarted, the observers consult the RADICTable in

order to �nd about the node where the process has been recovered by asking the process's

protector. The protectors update the RADICTable on demand when they identify that

processes have migrated because of failures.

The mechanism used to implement the dynamic redundancy at the resilient protection

mode is very e�ective at keeping the same computational capacity avoiding node overloads.

However, some stoppage may be necessary during preventive maintenance, e.g., replacing

some fault-imminent nodes with healthy ones or replacing nodes by upgrade reasons.

RADIC allows the insertion of new spare nodes in the parallel environment while the

application continues with its execution. The resilient protection mode also allows to

perform preventive maintenance without needing to stop the entire application. This

feature is based on the conjunction of a fault injector, and the mechanism described

previously. This feature can be used to receive the process running in the fault-imminent

37

node. With the failure injector, we can schedule the appropriate moment to inject a

fault in referred node (just after taking its checkpoint, avoiding processing the event

log). Hence, by using the spare mechanism previously described, the process running on

the fault-imminent node will migrate to the new spare node added. Such a procedure

allows the system administrator to replace cluster nodes without interrupt a running

application. Some fault-prediction systems may also be used in conjunction with our

solution, monitoring the node state, in order to trigger this mechanism when some values

are reached.

Table 2.1 depicts the main functions of each component during the main functional

phases. In case of failure, all communications with failed processes are delayed and then

redirected to the new location of the processes.

2.3.4 Implementation Details

The �rst prototype of RADIC was called RADICMPI [26] and it has been developed as

a small subset of the MPI standard. As a message passing library is very limited. As

this implementation does not have all the MPI primitives, it cannot execute many of the

scienti�c applications available.

RADICMPI does not consider collective operations and other complex functions that

many applications use. For that reason, instead of extending the prototype to comply the

MPI standard, we decided to integrate the RADIC architecture into a well-established

MPI implementation. It allows the correct execution of any MPI application using the

fault tolerance policies and mechanisms of RADIC. As shown in Figure 2.9, the fault

tolerance layers of RADIC have been included beneath the application level and the MPI

standard. This allows to provide transparent fault tolerance support without modifying

the source code of applications and MPI functions.

In the next paragraphs we will explain some important features of the integration of

RADIC into Open MPI.

Open MPI Architecture

A depth research about the inclusion of RADIC in Open MPI has been made in [33].

The implementation is named RADIC-OMPI and integrates the basic protection mode of

RADIC. This initial implementation does not include spare nodes management, however

the design and inclusion of Spare nodes into Open MPI is proposed in [59].

Open MPI architecture has been already described in [36]. For that reason, we will

focus only on the components relevant to the RADIC integration.

38

Figure 2.9: Fault Tolerance Layers.

The Open MPI frameworks are divided in three groups that are: Open MPI (OMPI)

which provides the API to write parallel applications; Open Run-Time Environment

(ORTE) which provides the execution environment for parallel applications; and Open

Portable Layer (OPAL) which provides an abstraction to some operating system functions.

To launch a given parallel application, an ORTE daemon is launched in every node

that takes part in the parallel application. These daemons communicate between them to

create the parallel runtime environment. Once this environment is created the application

processes are launched by these daemons. Every process exchange information about

communication channels during the Module Exchange (MODEX) operation which is an

all-to-all communication. The protector functionalities have been integrated into the

ORTE daemon because in Open MPI one daemon is always running in each node, which

fits the protector requirements.

OMPI provides a three-layer framework stack for MPI communication:

• Point-to-point Management Layer (PML) which allows wrapper stacking. The

observer, because of its behavior, has been implemented as a PML component;

this ensures the existence of one observer per application process.

• Byte Transfer Layer (BTL) that implements all the communication drivers.

• BTL Management Layer (BML) that acts as a container to the drivers imple-

mented by the BTL framework.

The Open MPI implementation provides a framework to schedule checkpoint/restart re-

quests. This framework is called Snapshot Coordinator (SnapC). The generated checkpoints

are transferred through the File Manager (FileM) framework. All these communications

to schedule and manage the transferring of the checkpoint files are made using the Out of

Band (OOB) framework.

39

RADIC inside Open MPI

To de�ne the initial heartbeat/watchdog fault detection protection scheme and protection

mapping a simple algorithm is used: each observer sets his protector as the next logical

node, and the last node sets the �rst one as its protector.

All protectors should �ll the RADICTable before launching the parallel application and

update it with new information when failures are detected. The update of the RADICTable

does not require any collective operation. Thus many protectors could have an outdated

version of the RADICTable. However, the RADICTable will be updated further on demand,

when observers try to contact restarted processes. All processes use the same initial data

and apply the same deterministic algorithm to update the RADICTable.

Regarding to the fault tolerances mechanism and their integration into Open MPI, the

following observations can be made:

� Uncoordinated checkpoints: each process performs its checkpoints through a

checkpoint thread using the BLCR checkpoint tool [41]. Checkpoints are triggered

by a timer (checkpoint interval) or by other events such as an speci�c message

reception event. Before a checkpoint is made, to ensure that there are no in-transit

messages, all communication channels are
ushed and remain unused until the

checkpointing operation �nishes. Checkpoints are made using a component called

single snapc, which is a modi�cation of the component provided by Open MPI

in order to make independent checkpoints. After a checkpoint is made, each

process transfers their checkpoint �les using the FileM framework and then the

communication within processes are allowed again.

� Message Log: since the observer is located in the PML framework (vproto-

col receiver), it ensures that all communications through it are logged and then

transferred to the correspondent protector. Messages are marked as received

by the remote process after the receiver and its protector con�rm the message

reception when using a pessimistic receiver-based log. When messages are sent

and received, the SSN and RSN are updated accordingly. Considering the multi-

core environment and for giving more
exibility when distributing the message

log tasks, we have implemented the logging managers of the protector as Logger

Threads. Figure 2.10 shows a distribution of protectors' tasks (without taking

into account checkpointing), the logger threads are launched with as a di�erent

MPI application. Each application process that belongs to the real application

gets connected to one logger thread (residing in its protector node) in order to

save its messages.

40

� Failure detection mechanism: failures are detected when communications fails;

this mechanism requires the modi�cation of lower layers to raise errors to the

PML framework where the faults are managed avoiding stops in the application

execution. A heartbeat/watchdog mechanism is also used, where the protectors

send heartbeats to the next logical node and the receiver protector resets the

watchdog timer after reception.

� Error management: the default behavior of the library is to �nalize when a failure

occurs (fail-stop). Hence RADIC needs to mask errors to continue the executions

and avoid fault propagation to the application level. When a protector �nds out

about a failure, the restarting operation is initiated. In order to manage the

failures we have added a new Error Manager (errmgr) that allows the application

to continue its executions if processes fail.

� Recovery: the recovery is composed of three phases. In the �rst one, a protector

restarts the failed process from its checkpoint with its attached observer. Then

the restored observer sets its new protector, re-executes the process while con-

suming the event logging data. When each reception operations goes through

the vprotocol receiver component during recovery, the messages are loaded from

the log bu�er. As messages are saved in a pessimistic manner, there are not

orphan messages and messages sent by the restarted processes are discarded by

receiver processes according the SSN value. Protectors involved in the fault also

reestablish the protection mechanism. We consider the recovery as an atomic

procedure.

� Reconfiguration: when the recovery ends, the communications have to be restored.

To achieve this goal the lower layers of Open MPI must be modi�ed to redirect

all the communications to the new address of the process. To avoid collective

operations this information is updated on demand or by a token mechanism.

The main problem when restarting a process in another node is that we need an ORTE

daemon running in that node to adopt the new process as a child. Moreover, all future

communications with the restarted process needs to be redirected to its new location. For

that reason, ORTE daemons are launched even in spare nodes, but no application process

is launched on it.

An additional problem that must be addressed is that a sender observers must not

consider as a failure the lack of communication with other processes when receiver processes

are doing a checkpoint or restarting. When a sender observer fail to communicate, it will

41

Figure 2.10: Dividing Protector Tasks.

consult the receiver's protector to �nd about the state of the receiver. The protector will

indicate that the process is checkpointing or restarting, and the communication will be

retried later.

The RADICTable and Sparetable were included inside the job information structure

(orte jmap t). When the parallel application starts, each protector (ORTE daemon)

populates its RADICTable and its Sparetable. The RADICTable and Sparetable are

updated (on demand) when a protector notices that a process has restarted in another

place. If the application runs out of spares, the basic protection mode of RADIC is used.

42

Chapter 3

Related Work

In this chapter we present the related work of this thesis. Taking into account that we

focus on performance improvement while using fault tolerance techniques, we have divided

this chapter in three main sections which are:

� Section 3.1 describes studies that focus on improving performance of applications

executed in multicore clusters.

� Section 3.2 covers studies and optimizations developed in the message logging

�eld.

� Section 3.3 describes solutions composed by a combination of fault tolerance

techniques and discuss their relationship with the RADIC architecture used in

this thesis.

3.1 Performance Improvement

Several studies regarding performance improvement of parallel applications running on

multicore clusters have been made. In [55], Liebrock presented a method that allows

programmers to execute applications in hybrid parallel systems with the aim of improving

adaptability, scalability and �delity. In order to reach its objective, this work proposes to

apply mapping techniques according to the parallel environment characteristics.

Other study that focuses on improving performance metrics was presented by Vikram

in [83]. In this work was presented a strategy to map tasks in recon�gurable parallel archi-

tectures. The aim is to obtain the maximum possible speedup, for a given recon�guration

time, bus speed, and computation speed.

43

The work presented in [57] focuses on e�ciently placing MPI processes according to a

policy for improving performance. Then, in [65] a method that attempts to enhance the

performance of SPMD applications by combining scalability and e�ciency was presented.

The goal of this method is to obtain a combination between the maximum speedup under

a de�ned threshold of CPU e�ciency. This work has been used as basis when we focus on

the case study of executing SPMD applications e�ciently with fault tolerance support.

In [45] was presented an algorithm for distributing processes of parallel applications

across processing resources paying attention to on-node hardware topologies and memory

locality. Regarding the combination between mapping of fault tolerance tasks, speci�cally

message logging tasks, and application process mapping, to date, no works have been

published to the best of our knowledge.

3.2 Message Logging

Several works have been developed to improve the performance and minimize the overhead

of message logging protocols. In [86] was presented a sender-based message logging

approach to avoid sympathetic rollback of non-failed processes. Sympathetic rollback

means that a process rolls back to re-send a message that has been lost because the receiver

has rolled back to a previous state. This paper does not address the problem of rolling

back because of orphan messages creations. They propose to detect messages that can

never cross a possible recovery line.

In [73] is presented an extensive analysis of message logging protocols and a comparison

of sender-based, receiver-based and causal protocols is performed. According to the

obtained results, they conclude that is not the best option to rely on other processes to

provide messages to restarted processes. Sender-based and causal protocols incur in high

recovery costs because of this. They also recommend that optimistic protocols should

focus on developing orphan-detection protocols, instead of only focusing on performance

metrics.

In [52] is compared a coordinated checkpoint protocol with a pessimistic sender-based

message logging implemented in MPICH-V [9]. The obtained results demonstrate that

message logging approaches can sustain a more adverse failure pattern than coordinated

checkpoints.

In [11] a comparison between a pessimistic and optimistic sender-based message logging

approaches is presented, and both seem to have a comparable performance. Nevertheless,

when using sender-based protocols and a failure occurs, processes that were not involved

in the failure may need to re-send messages to restarted processes.

44

In [12], they propose to reduce the failure-free overheads in pessimistic sender-based

approaches by removing useless memory copies and reducing the number of logged events.

Nevertheless, the latency and complexity in the recovery phase are increased because of

the usage of sender-based protocols.

In [78] was proposed a mechanism to reduce the overhead added using the pessimistic

receiver-based message logging of RADIC. The technique consists in dividing messages

into smaller pieces, so receptors can overlap receiving pieces with the message logging

mechanism. This technique and all the RADIC Architecture has been introduced into

Open MPI in order to support message passing applications.

However, it is important to highlight that the performance of a fault tolerance technique

will depend on the target system and application characteristics as well as the fault tolerance

parameters used. In [80] is proposed a method to automatically select a suitable checkpoint

and recovery protocol for a given distributed application running on a speci�c system.

3.3 Fault Tolerance Solutions

In this section, we �rst describe protocols that combine classic fault tolerance techniques

seeking to improve the performance of these approaches. Next, we describe other fault

tolerant solutions that have been developed during the last years.

3.3.1 Hybrid Protocols

Rollback-recovery protocols need to evolve as well as HPC systems also evolve. In recent

years, many works have focused on designing new protocols (or combination of old ones)

to improve availability while reducing overheads and recovery times.

Classical pessimistic message logging protocols propose to save messages in a syn-

chronous manner during failure-free execution, thus introducing high overheads in messages

that are transferred between processes inside the same multicore node. Depending on

where the messages should be logged (e.g. a di�erent node), the latency of an internode

message may be added to the latency of each intercore message.

Coordinated and centralized checkpoints avoid the overhead of message logging tech-

niques, but on the other hand the coordination overheads and checkpoint saving time may

increase considerably when the number of processes increases as well.

Works like [43], [56] and [76] focus on grouping the processes that communicate more

frequently in order to reduce the number of messages logged using a coordinated checkpoint

between these processes.

45

HOPE [56] is a hybrid protocol that combines Communication Induced Checkpoints

(CIC) [29] with a pessimistic logging protocol. This work considers Grid environments, and

the grouping of processes is done according to the network and communication pattern.

The CIC is not e�cient neither scalable between tightly coupled applications, since the

number of checkpoints could increase in an uncontrolled way.

In [37], Gao proposes to create coordinated groups and overlap the checkpoint operation

between each other. This work focuses on reducing storage bottlenecks by scheduling

checkpoints at di�erent times. They propose to avoid the usage of message logging by

using a coordination protocol. However, in case of failure all processes should rollback to

the last global checkpoint.

Other works such as [19] and [13] consider that the main unit of failure in a computer

cluster is a node. Therefore, they focus on developing techniques to provide a hybrid or

semi-coordinated checkpoint approaches, where a coordinated checkpoint is used inside

the node and messages between nodes are logged to stable storage.

Considering message logging approaches, in [73] besides the extensive analysis of

classic message logging protocols, they also describe hybrid message logging protocols

(Sender-based and Causal). They propose an orphan-free protocol that try to maintain

performance of sender-based protocols while approaching the performance of receiver-

based protocols. The sender in this case synchronously save messages and the receiver

asynchronously save them into stable storage. This proposal is similar to our Hybrid

Message Pessimistic Logging (HMPL) approach, however further details about the design

is missing. They do not cover the mechanisms to avoid orphan processes creation and

do not specify how and where the received messages are stored. On the other hand, our

proposal is based on a distributed stable storage where each process saves messages on a

di�erent node (distributed storage) and orphan processes are avoided by detecting source

of non-determinism while receiving messages.

3.3.2 Other Fault Tolerance Solutions

There is several ongoing research on fault tolerance architectures or complete fault tolerance

solutions in message-passing parallel systems. Most of them, like RADIC, are based on

rollback-recovery strategies, because they have proved to be the more suitable for the

majority of parallel applications.

In this section, we have selected well-known research projects from the literature and

we relate them with RADIC in characteristics that are useful to assess di�erent proposals.

These characteristics are summarize in Table 3.1 and explained as follows.

The Message Logging column speci�es the types of message logging support of the

46

Solution Message Fully Checkpoint Storage Trans- Automatic Warm

Logging Decen- parency Det. Spares

tralized -Recovery

RADIC Pessimistic
Receiver

Yes Uncoord. or Semi-
Coord.

Distributed Yes Yes Dynamic

OPEN-MPI No No Coordinated Central Yes No N/A

MPICH-V Several
Strategies

No Uncoord. or Co-
ord.

Central Yes No Pre-de�ned

FT-Pro No No Coordinated N/A Yes Yes Pre-de�ned

MPI/FT No No Coordinated Central No Yes Pre-de�ned

LAM/MPI No No Coordinated N/A Yes No N/A

FT-MPI No No N/A N/A No No Pre-de�ned

Star�sh No No Uncoord. or Co-
ord.

N/A Yes Yes N/A

Table 3.1: Fault tolerance in message passing parallel systems

solution. The Fully Decentralized feature means the components and functions used to

tolerate failures are distributed and the decisions are decentralized. Consequently, the

fault tolerance functional phases, including recovery, no central elements are used to take

global decisions neither collectives instructions are performed.

The Checkpoint column indicates which are the checkpoint mechanisms supported in

each case. One of the main problems of coordinated checkpoint is that when increasing the

number of processes involved in the coordination step, the necessary time to coordinate

the processes becomes important.

The column storage is used to show if the solution uses central or distributed storage

for saving redundant data such checkpoint or message log.

The transparency is achieved when no changes has to be done to the parallel application

code to use a fault tolerance solution.

The feature of Automatic failure detection and recovery allows the application to

continue its execution in case of failure without needing administrator intervention or pro-

gramming additional scripts for these tasks. This feature helps to increase the availability

of the system by decreasing the repairing time.

Finally, we have analyzed the presence of warm spare feature, considering as dynamic

when allows a dynamic insertion of spare node during execution and pre-defined when

an application starts with a predetermined number of spares being used as fault occurs.

RADIC enables the usage of spare nodes in case of failure but these mechanisms also may

be applied to perform preventive maintenance by making a hot swap of machines. Other

solutions use spare nodes as well or allow preventive activities.

The MPI 3 fault-tolerance working group try to provide fault-tolerance features to

47

the applications in order to support algorithm-based fault tolerance. They propose a

distributed consensus that may be used to collectively decide on a set of failed processes.

In [16] is described a scalable and distributed consensus algorithm that is used to support

new MPI fault-tolerance features proposed by the MPI 3 Forum's fault-tolerance working

group.

Open MPI has an infrastructure to support checkpoint/restart fault tolerance [44]

by providing a transparent interface that allows users to use fault tolerance techniques

when executing MPI parallel applications. Although it is intended to be extended to

other rollback-recovery protocols, this paper presents an implementation of coordinated

checkpoint/restart using a snapshot coordinator that makes centralized decisions. System

operators or programmers are responsible for application restarts.

MPICH-V [9] is a framework composed by a communication library based on MPICH

and a runtime environment. MPICH-V is a complex environment involving several entities:

Dispatcher, Channel Memories (CM), Checkpoint servers, and Computing/Communicating

nodes. Channel Memories are dedicated nodes providing a service of tunneling and

repository. MPICH-V1 [7] proposes a receiver-based protocol using CMs (dedicated nodes)

to store received messages. Checkpoints are done independently but saved in a checkpoint

server. The CMs and the checkpoint server can become a bottleneck when several processes

are used.

In [8], Bouteiller et al. presented MPICH-V2. They proposed to use a sender-based

message logging to reduce message latencies problems of MPICH-V1. However, the use

Event Loggers in dedicated nodes can produce bottlenecks problems, and the latency for

short messages is increased since before sending a message each process should wait for

a con�rmation of the last event saved in the event logger. The re-executions are slower

than in MPICH-V1 since a restarted process should �rst contact its event logger and then

asks for logged messages. MPICH-Vcausal [9] focuses on reducing the latency cost and

the penalties during re-execution by using a causal message logging. In [14] they proposed

a Chandy-Lamport based coordinated checkpoint which focuses on lowering the stress

during recovery in the storage servers by saving checkpoints in local nodes.

Comparing to RADIC, the main di�erence between MPICH-V framework and all its

features is that these approaches use centralized checkpoint servers to store the redundant

data, and also dedicated resources to store message determinants. During the recovery

process MPICH-V can use spare nodes, but a facility for dynamic spares insertion is not

mentioned.

FT-Pro [54] is a fault tolerance solution that is based on a combination of rollback-

recovery and failure prediction that allows to take some action at each decision point.

48

This approach aims to keep the system performance avoiding excessive checkpoints. Three

di�erent preventive actions are currently supported: Process migration, coordinated

checkpoint using central checkpoint storages or no action at all. Each preventive action is

selected dynamically in an adaptive way intending to reduce the overhead of fault tolerance.

FT-Pro only works with an static number of spare nodes and it demands a central stable

storage which di�ers from RADIC's approach.

MPI/FT [4], in opposite to RADIC approach, is a non-transparent solution to provide

fault tolerance for MPI applications. The strategy is based on middleware services speci�-

cally tailored to meet the requirements of the application model and the communication

topology. Two programming style are considered. Firstly, Master-Slave with a star com-

munication topology which only need checkpoint/restart for the master process. Secondly,

Regular-SPMD with all-to-all communications which is checkpointed and restarted in

coordinated way suitable for its synchronous behavior. The recover procedure is based

on an interaction of two elements, a central coordinator and self-checking-threads (SCTs)

that use spare nodes taken from a pool. As this solution does not allow dynamic insertion

of new spares, the application will fail after the exhaustion of this pool. When a failure is

detected, the application is warned so it is in charge of performing the recovery.

The LAM/MPI [77] implementation uses a component architecture called System

Services Interface (SSI) that allows the usage of a checkpoint library, such as BLCR, to

save the global state of an MPI application using a coordinated checkpoint approach. This

feature is not automatic, needing a back-end restart from the administrator. In case of

failure, all applications nodes stop and a restart command is needed. Unlike RADIC, this

procedure is neither automatic, nor transparent.

FT-MPI [31] has been developed in the frame of the HARNESS [5] metacomputing

framework. The goal of FT-MPI is to o�er to the end user a communication library

providing a MPI API, which bene�ts from the fault-tolerance in the HARNESS system.

FT-MPI presents the notion of two classes of participating processes within the recovery:

Leaders and Peons. The leader is responsible for synchronization, initiating the Recovery

Phase, building and disseminating the new state atomically. The peons just follow orders

from the leaders. If a peon dies during the recovery, the leaders will restart the recovery

algorithm. If the leader dies, the peons will enter an election controlled by a name service

using an atomic test and set primitive. A new leader will restart the recovery algorithm.

This process will continue either until the algorithm succeeds or until everyone dies. Such

a solution is not transparent to the programmer, needing some user code to deal with

faults and to start the recovery process.

Star�sh [1] provides failure detection and recovery at the runtime level for dynamic

49

and static MPI-2 programs. This architecture is based on daemons running on each

node which forms the Star�sh parallel environment. Star�sh provides system initiated

checkpointing, automatic restart and a user level API which can be optionally used at

application level to control checkpoint and recovery. Both coordinated and uncoordinated

checkpoints strategies may be applied by the user choice. For an uncoordinated checkpoint,

the environment sends to all surviving processes a noti�cation of the failure and the

application may take decision and corrective operations to continue execution. As there is

no event log, the recovery process using uncoordinated checkpoints may lead to domino

e�ect. Star�sh requires a central element called management module, which may a�ect its

scalability.

All of the solutions presented above di�ers in some way from RADIC features. The

Table 3.1 summarize these di�erences by comparing with the six features previously

explained.

In works like [74] and [75], portable and transparent checkpoint-based protocols are

presented. The CPPC framework, detailed in [74], focuses on providing an OS-independent

checkpoint solution for heterogeneous machines. The CPPC library provides routines for

variable level checkpointing and the CPPC compilers helps to achieve transparency by

adding fault tolerance instrumentation code during the compilation phase. Such ideas

could be adapted to be used inside the RADIC architecture in order to reduce checkpoint

sizes, thus bene�ting the checkpoint transference time and decreasing the storage size

used.

During the last years, great e�ort has been put in order to add fault tolerance manage-

ment to the MPI standard [42] but it is still an open issue. These kind of proposals are

intended to change the most used fail-stop behavior by adding MPI primitives in order to

give awareness of a failure to the application level. After learning about a node failure,

the application is able to start the recovery procedure using the available process state

knowledge.

Bland et al. [6] describes a set of extended MPI routines and de�nitions called user-level

failure mitigation (ULFM), that permits MPI applications to continue communicating

across failures. ULFM was proposed as an extension to introduce fault-tolerance constructs

into the MPI standard.

Hursey et al. [45] propose failure handling mechanisms naming run-through stabilization.

Many new constructs to be added to the MPI standard are introduced with the aim of

making a failure being recognized by the application and allowing to recover and continue

using the communicators.

Both proposals are not transparent to the application and do not provide a mechanism

50

for automatic detection and recovery. Consequently, the cost of developing and testing

for existing applications would be high. Nevertheless, they would open the possibility to

provide a transparent fault tolerance layer at application level that today is not possible

because in the current MPI standard the communications are entirely controlled by the

MPI libraries implementations. However, RADIC is conceived to work properly with new

versions of MPI libraries assuming that only one fault tolerance controller is activated

during the execution to avoid duplicated tasks.

Taking into account the current trend of executing computational intensive application

in cloud environments and the failure rate of these environments, fault tolerance would be

a necessary feature. In [38] is proposed a fault tolerant virtual cluster architecture that

focuses on restoring the application performance when one part of a distributed cluster is

lost. As a future work, we are planning to adapt RADIC fault tolerance policies to cloud

environments in order allow applications to comply with their deadlines when failures

isolate one part of the execution system.

51

Hugo Daniel Meyer. PhD Thesis 2014.

52

Chapter 4

Improving Current Pessimistic

Message Logging Protocols

In this chapter, we discuss in detail the most used message logging techniques to provide

fault tolerance support in uncoordinated approaches. We also present our proposed new

message logging approach, which focuses on combining the advantages of receiver and

sender based approaches, this new technique is called Hybrid Message Pessimistic Logging

(HMPL).

Uncoordinated fault tolerance protocols, such as message logging, seem to be the best

option for failure prone environments since coordinated protocols present a costly recovery

procedure which involves the rollback of all processes. Pessimistic log protocols ensure

that all messages received by a process are �rst logged by this process before it causally

in
uences the rest of the system.

In this chapter we describe in detail the pessimistic version of receiver-based message

logging (RBML) and also the pessimistic version of the sender-based message logging

(SBML). We focus on pessimistic versions because they ensure that in case of a failure

there is no need to rollback non-failed processes.

Taking into account that most of the overhead during failure-free executions is caused by

message logging approaches, the Hybrid Message Pessimistic Logging focuses on combining

the fast recovery feature of pessimistic RBML with the low protection overhead introduced

by pessimistic SBML.

The key concepts, design and main features of the HMPL are explained in this chapter.

The protection and recovery mechanisms are also discussed and validated by integrating

the HMPL inside the RADIC fault tolerant architecture.

The message logging techniques that will be explained here and in the rest of this thesis

consider the utilization of an MPI library. There is no problem to extend the concepts

53

presented here to other communication libraries or layers.

4.1 Message Logging Description

The main drawbacks of coordinated checkpoint approaches are the synchronization cost

before each checkpoint, the checkpoint cost and the restart cost after a fault, since all

processes should rollback. Message logging techniques do not su�er from these problems,

since processes checkpoint and restart independently. However, the log adds a signi�cant

penalty for all message transfers even if no failures occurs during the execution [14].

According to these di�erences, the best approach depends on the fault frequency, process

number, communication pattern, processes' synchronization, among others.

It is important to highlight that log-based protocols combine checkpointing with

message logging in order to enable a system to recover from the most recently checkpoint.

These protocols are based on the assumption that the computational state of a process

is fully determined by the sequence of received messages (Piecewise Deterministic) [29].

The su�cient condition to de�ne a consistent global state, from where a recovery can be

successful, is that a process must never depend on an unlogged non-deterministic event

from another process.

Message logging techniques allow applications to sustain a much more adverse failure

pattern than coordinated approaches, mainly due to a faster failure recovery [52]. When

using a message logging technique we can allow parallel processes to take checkpoints

independently and in case of failure non-failed process can continue with their executions

if they do not depend on one or more failed processes.

As message logging techniques could allow applications to restart faster, this will be

translated into better e�ciency on systems where failures are frequent. On the other hand,

there is an added overhead that could be considerable in some cases since every message

should be treated as potentially in-transit or orphan. As every outgoing or incoming

message should be saved (depending on the strategy), there is an extra time that is added

to each message transmission.

Pessimistic log protocols ensure that all messages received by a process are �rst logged

by this process before it causally in
uences the rest of the system, so they avoid the

creation of orphan processes. In this section, we focus on describing the most used and

implemented pessimistic message logging techniques, their main advantages and limitations.

We will present the details of the receiver-based logging approach and the sender-based

logging approach which are used as pillars of the HMPL.

The HMPL, which is presented in the next section, focuses on reducing the overheads

54

Figure 4.1: Sender-Based Message Logging.

in each message transmission caused by receiver-based approaches while maintaining

the fast-recovery feature of this approach. Thus, it tries to conceal the advantages of

sender-based and receiver-based message logging.

4.1.1 Sender-Based Message Logging

The SBML [48] is a solution that focuses on introducing low overhead during failure-free

executions. Non-deterministic events are logged in the volatile memory of the machine

from which the message is going to be sent. The main idea behind this message logging

technique is to avoid the introduction of high overheads in communications and delays in

computations by asynchronously write the messages to stable storage.

In Figure 4.1 we illustrate the operation of a pessimistic version of the SBML with

the main data structures that it requires. The logical times (tx) that can be observed at

the left of the figure are there only to indicate precedence of steps. We have splitted each

process tasks into Application tasks (APP) and fault tolerance (FT) tasks.

The main data structures and values used in the SBML are:

• Send Sequence Number (SSN): this value indicates the number of messages sent

by a process. This value is used for duplicate message suppression during the

recovery phase. When a process fails and recovers from a checkpoint, it will

55

re-send some messages to some receivers. If the receiver processes has the current

SSN value for that sender, they will be able to discard these duplicated messages.

� Receive Sequence Number (RSN): this value indicates the number of messages

received by a process. The RSN is incremented with each message reception and

then this value is appended to the ACK and send back to the sender.

� Message Log : this is where the sender saves each outgoing message. Along with

the payload of the message also the identi�cation of the destination process and

the SSN used for that message are saved. When the RSN of the message is

returned by the receiver, it is also added to the log.

� Table of SSN : this table is located in the receivers and it registers the highest

SSN value received for messages of each process. The information saved in this

table is used for duplicate message detection.

� Table of RSN : this table is located in the receivers and has one entry by each

received message. It is indexed by SSN and contains the RSN and a value that

indicates if the ACK of the of the message has been received by the sender.

When a process is checkpointed all these data structures are saved also, except the

Table of RSN, since all received messages now are part of the checkpoint. All messages

sent to an already checkpointed process should be deleted from the message log.

In Figure 4.1 we assume that the message M includes the headers with information

about sender, destination and also the payload of the message. When the message M is

about to be sent (from P1 to P2), P1 �rst save the message M and the SSN.

Once the message is saved into a bu�er of the sender, the message M and the SSN

are sent to P2. P2 saves the sender ID (P1) and the SSN in the Table of SSN, also it

increments its RSN. After this, P2 add this RSN to the Table of RSN and send and ACK

with the current RSN to P1. P1 receives and adds the RSN to the Message Log, then P1

sends an ACK that P2 receives and adds to the Table of RSN.

There is almost no delay in computations while the message logging is taking place

since P1 can continue its execution after saving the message and P2 after receiving it.

Nevertheless, between the reception of a message and the ACK with the RSN included,

the receiver process should not send messages [48].

It is possible that processes fail while some messages do not yet have their RSNs

recorded at the sender, these messages are called partially logged messages. If P2 fails and

return from a checkpoint it will broadcast requests for its logged messages and the fully

logged messages will be replayed in ascending RSN order, starting with the stored RSN+1.

56

Partially logged messages will be send in any order. As receiver processes cannot send

messages while a message is partially logged, no other processes than P2 can be a�ected

by the receipt of a message that is partially logged.

If we consider that P1 fails and retransmits M with the SSN equal to 5, P2 will discard

it according to the current SSN value, and if the ACK of this message was not received by

P1, P2 will send it.

However, if a process rolls back to a previous state, it will ask all the senders for its

logged messages. Thus, the senders would have to stop their executions and look for these

messages, unless a FT thread is in charge of managing the message log.

An approximation of the overheads of the protection stage in the a pessimistic SBML

approach is represented in Equation 4.1, Equation 4.2 and Equation 4.3, where:

� T Sender is the time spent by the sender when logging the message.

� Wait ACK is the time spent by the process waiting for an ACK.

� T Receiver represents the time spent by the receiver when receiving the message.

� ILog and ULog represents the cost of inserting and updating the message log

respectively.

� IDataStructs and UDataStructs represent the cost of inserting and updating the data

structs in the receiver process. IDataStructs includes the time spent in inserting a

new element in the Table of SSN and Table of RSN. UDataStructs represents the

time spent in updating the ACK cell in the Table of RSN.

The main objective of these equations is to describe analytically how each message log

task may in
uence the execution time. Equation 4.1 represents the total possible delay

that may be introduced in each message transmission. However, it is important to note

that the times ILog and ULog spent in the sender (T Sender) are in its critical path, thus

they are forcibly translated into overheads. Considering Equation 4.2, ILog delays the

transmission of each message, Wait ACK could be overlapped with computations and

ULog penalize the progression of the sender process.

Equation 4.3 represents the time that the receiver is blocked. During this time, the

receiver can proceed with its execution but it should not send messages to other processes

in order to avoid the creation of orphan processes, because messages are just partially

logged.

57

Prot SBML = T Sender + T Receiver (4.1)

T Sender = ILog +Wait ACK + ULog (4.2)

T Receiver = IDataStructs +Wait ACK + UDataStructs (4.3)

It is very di�cult to represent accurately the recovery cost of a message logging protocol

since it depends on the failure moment. In Equation 4.4 we represent the cost of the

recovery stage, taking into account that the receiver process has been a�ected by a failure.

T Restart is the time spent in reading the checkpoint from stable storage and restarting

the process from it. T Broadcast is the time spent in requesting logged messages to all

possible senders. N represents the total number of processes, X represents the number of

messages that a process has to send to the restarted process (could be 0 for some processes)

and T Message is the time spent in sending a message to the restarted process. T Rex

represents the time spent in re-executing the process till reaching the pre-fault state.

Recovery SBML = T Restart+ T Broadcast+
N∑
i=1

X∑
j=0

T Messagei + T Rex

where i excludes failed process

(4.4)

The main drawbacks of the SBML are: the complexity in dealing with garbage

collection because the message log is distributed among senders; and the disturbances that

are generated to senders when processes are being recovered.

When a process is checkpointed, it should communicate to the senders that messages

received before the checkpoint will not be needed anymore. This could be a costly operation

if there are many senders and a broadcast operation is used. However, some works like [9]

propose to piggyback this information when sending an ACK to a sender after a checkpoint.

In faulty scenarios, the failed processes should ask for its logged messages to all possible

senders. The senders should stop their execution, or use a separated thread, to serve the

logged messages to the failed processes, thus the recovery of failed process a�ects the

execution time of non-failed processes.

58

Figure 4.2: Receiver-Based Message Logging.

4.1.2 Receiver-Based Message Logging

In RMBL protocols, is the receiver the one in charge of logging each received message into

a stable storage. Thus, in the event of failure, processes are able to reach the same before

fault state by reproducing in order the non-deterministic events logged.

The RBML [29] is a solution that introduces more overhead during failure-free exe-

cutions because each received message should be retransmitted to a stable storage (eg.

memory buffer in another node.). This solution may introduce overheads in communi-

cations and also could introduce overhead in computations if there are not dedicated

resources to deal with message logging.

The main idea behind RBML is to allow failed processes to recover faster by avoiding

message requests to non-failed processes and also simplify the garbage collection, since

after a process checkpoint all its received messages can be erased from the log which is

saved only in one location. In the pessimistic version of this logging protocol, the receiver

processes should not send any messages to other processes while all the previous received

messages are not properly saved into stable storage. This is done like this in order to avoid

the creation of orphan processes in case of failure (Subsection 2.2.3).

In Figure 4.2 we illustrate the RBML operation in its pessimistic version. Here we

are considering that there are three processes involved, the sender P1, the receiver P2

and the logger of P2 which is L2. In a system were there are not dedicated resources,

application processes will compete for resources with the fault tolerance processes and the

59

logger processes. In Figure 4.2 we are showing in each process and node only the parts

involved. We are also assuming that the message M contains all the header information

about destination and source.

As can be observed in Figure 4.2, P1 sends a message M with its current SSN, P2

receives M, appends its RSN to it and sends it to a stable storage (L2) (SSN and RSN

values are saved together with each checkpoint). Message M is also delivered to the

application, it is important to highlight that operations between instants t4 and t5 can be

overlapped. Then, P2 waits for the con�rmation of L2 telling that message M is properly

saved in order to allow the application to send new messages. This avoids the impact of

partially logged messages in other processes besides the receiver, because if P2 sends and

con�rms the logging of a message M1 to another process P3 but fails without logging M,

then P3 will be an orphan process.

Let us suppose that P2 fails and restarts from a previous state. After restarting, P2

will transfer to its new local node the message log from L2 and consume it in order to

reach the pre-fault state. As the non-failed processes that have received a message from P2

have the SSN value of P2, they can easily discard messages that P2 sends during recovery.

The cost of the protection stage in the pessimistic RBML approach is represented in

Equation 4.5, where T Forward M is the time spent in forwarding the received message

to a stable storage, such as memory of other node. Then the receiver should wait for

the insertion of the message into the message log (ILog) and �nally wait for the ACK

(Wait ACK) that indicates that the message if properly saved. During these times, the

receiver should not send messages to other processes in order to avoid the creation of

orphan processes. In this case we consider that times spent in increasing values of SSN

and RSN are negligible, since there is no need to insert values in special data structs.

Prot RBML = T Forward M + ILog +Wait ACK (4.5)

In Equation 4.6 we represent the cost of the recovery stage taking into account that

the receiver process has been a�ected by a failure. T Restart is the time spent in copying

the checkpoint from stable storage and restarting the process from it. T Log represents

the time spent in transferring the message log saved in stable storage (memory of other

node, hard disk, etc.), and T Rex represents the time spent in re-executing the process

till reaching the pre-fault state, the re-execution is usually faster than normal execution

since the restarted process has all received messages locally.

60

Recovery RBML = T Restart+ T Log + +T Rex (4.6)

In order to erase old messages, after a process �nish its recovery could make a checkpoint

and delete all logged messages. This time could also be taken into account to calculate

the recovery time.

If we compare Equation 4.1 with Equation 4.5 we can observe that main di�erence

resides in the time that the RBML approach should spent in forwarding each received

message. In SBML if the receiver can proceed with computation while the message logging

phase is taking place, it would not perceive a high delay.

If we compare Equation 4.4 with Equation 4.6 we can observe that when using RBML,

the restarted process will be able to reply its messages independently, relaying only in the

messages saved in the log. On the other hand, when using SBML the restarted process

will need to consume a message log which is distributed among several senders, and this

leads to higher recovery times.

4.2 Hybrid Message Pessimistic Logging

In the previous section, we have brie
y described the two main message logging protocols

that are used in order to provide FT support to parallel applications. In this section, we

present the design and implementation of a Hybrid Message Pessimistic Logging (HMPL)

technique which combines the best features of the SBML and the RBML.

The Hybrid Message Pessimistic Logging aims to reduce the overhead introduced by

pessimistic receiver-based approaches by allowing applications to continue with its normal

execution while messages are being fully logged. In order to guarantee that no message is

lost, a pessimistic sender-based logging is used to temporarily save messages while the

receiver fully save its received messages.

4.2.1 Key Concepts

The HMPL could be presented as a combination of a pessimistic SBML and an optimistic

RBML. We have designed the HMPL to guarantee that no message is lost in presence of

failures in order to allow failed processes to reach the same before-failure state. In order

to design and develop the HMPL we have set these main objectives:

61

1. Availability: we focus on providing a strategy that could achieve a Mean Time

to Recover (MTTR) of processes similar to the obtained when using a RBML

approach. In order to achieve this, we focus on maintaining the fast recovery

feature of the RBML by allowing a process to restart and continue with its

execution without disturbing non-failed processes.

2. Overhead Reduction: the overheads in communication time during failure-free

executions introduced by a RBML technique could be very high [29]. Another

source of overhead comes from the blocking behavior of the pessimistic version of

SBML and RBML. We have focused on removing these blocking phases from the

critical path of a parallel application so we can reduce the overhead introduced.

4.2.2 Design

As we have mentioned, RBML approaches allow fast recovery of failed processes (low

MTTR) and SBML approaches introduce low overhead during failure free executions.

Taking into account these facts, we have designed the HMPL by combining both strategies.

The best way to maintain a low MTTR when using message log is to save messages when

receiving them, so the message log is not distributed among several processes. By saving

received messages, failed processes may restart from a previous state and then consume

this message log without broadcasting requests for past messages to non-failed processes.

The problem with receiver-based approaches is that each received message should be

forwarded to stable storage (eg. memory of other node) and this increases the message

transmission and management times.

On the other hand, SBML approaches introduce less overhead during failure free

executions since messages may be saved in a bu�er of the sender. If a process fails and

restarts, it has to ask for all necessary messages to the senders in order to reach the

pre-fault state, thus increasing the recovery time. Garbage collection is more complex

in SBML since a checkpointed process should notify the senders so they can erase old

messages that belong to the checkpointed process.

Figure 4.3 shows the basic operation of the HMPL when messages are sent from one

process to another (P1 to P2). We have introduced a new data structure which is a

temporary bu�er. This bu�er is used in the sender and also in the receiver to temporally

save messages in order to allow the receiver to communicate without waiting for the

message log protocol to �nish the full cycle. Thus, the HMPL removes the blocking

behavior of SBML and RBML while the logging is taking place, this means that receiver

processes can communicate with others while messages are just partially logged. The logger

62

Figure 4.3: Hybrid Message Pessimistic Logging

L2 stores the messages in an array in memory which is flushed to disk asynchronously

when a memory limit is exceeded or opportunistically. We consider that message M has

all the information about sender and receiver.

Figure 4.4 shows the flow diagram of the HMPL during the protection stage. It is

important to highlight that we assume the utilization of a transparent fault tolerant

middleware that intercepts and manages messages (FT column in the figure). Before

sending a message, FT of P1 inserts the message M with its SSN in its temporary buffer

(TB). When FT of P2 receives M (checks the SSN to discard already received messages) it

inserts M, the SSN and RSN in the TB and proceed with the normal execution. In the

meantime, the FT process of P2 will transmit the message and all the extra data to L2

which is located in another node, and once FT of P2 receives the confirmation that M has

been correctly saved, it will erase M from its TB (t6 in Figure 4.4) and inform FT of P1

so it can erase M also from its TB (t7).

Figure 4.5 illustrates the flow diagram of the recovery procedure of the receiver. FT of

P2 will receive the message log and checkpoint and will restart the application, connect

to its new logger and consume the message log saved by the Logger L2. After finishing

with this, FT of P2 will ask P1’ s FT if it has a message in its TB and consume it. Then,

the normal execution will continue, but when P2 has to receive the first message after

recovery from a sender, P2’ s FT will ask if there are not messages in sender’ s TB.

It is important to highlight that in most cases the receiver will be able to fully recover

using its message log, however when there are partially logged messages it will need to ask

63

Figure 4.4: Hybrid Message Pessimistic Logging. Protection mechanism.

Figure 4.5: Hybrid Message Pessimistic Logging. Recovery of the receiver.

64

for messages in the TBs of senders. The senders will almost not be a�ected by requests

since the receiver may access directly the TB of the senders through the fault tolerance

middleware and copy messages.

Taking into account the sender side of each process, when a process is restarted from a

previous checkpoint it may re-send some messages that the FT process will transparently

discard according to the current SSN that the receiver has for that sender. Furthermore,

the receiver can inform the sender of the current value of the SSN, so the sender will avoid

resending unnecessary messages.

Let us analyze the failure moments and what is the impact on each situation (we focus

on the failure of the receiver). In order to explain the failure moments, we will use the

logical times (tx)of Figure 4.3:

� t2-t4 : P1's FT has the message in its TB, so once P2 starts re-executing it will

consume all saved log in L2, and then ask P1 for message M.

� t4-t6 : P1's FT has the message in its TB, also L2 has saved M but do not send

the ACK to P2, so L2 will erase this message and P1 will re-send M to P2 during

re-execution.

� From t6 : M has been saved in L2 and con�rmed to P2's FT. P2 will consume

this message from the message log. In situations where M has not been erased

from P1's queue, after restarting P2 will continue with the logging procedure

where it stopped and will send the ACK to P1 so it will remove M from its TB.

The overhead of the protection stage in the HMPL is modeled in Equation 4.7, where

ITB is the cost of inserting each message in the TB of the sender or the receiver. Equation

4.8 shows the times that are not in the critical path of each message transmission (unlike the

RBML) when using HMPL, where T Forward M is the time spent when retransmitting

the message M to the Logger in another node, ILog is the time spent in introducing the

message in Log and Wait ACK is the time spent in waiting ACKs from other nodes. We

are not taking into account the times spent in increasing SSN and RSN values or checking

them, since these times could be negligible.

Prot HML = 2 � ITB + T Overlapped (4.7)

TOverlapped = T Message+ ILog + 2 �Wait ACK (4.8)

65

In Equation 4.9 we represent the cost of the recovery stage, where T Restart is the

time spent in copying the checkpoint from another node and restarting the process from

it, T Log represents the time spent in copying the message log from stable storage (e.g.

memory another node). M represents the number of neighbors (senders) that have a

message for the restarted process in their TB. T Message is the time spent in copying

messages from senders. T Rex represents the re-execution time and T ConnectLogger is

the handshake time between the restarted process and the Logger.

Recovery HML = T Restart+TLog+
M∑
i=1

T Messagei+T Rex+T ConnectLogger (4.9)

The main objective of these equations is to describe analytically the operation of the

HMPL.

4.2.3 Orphan Processes

As the HMPL combines a pessimistic SBML with an optimistic RBML there may be a

possibility of creating orphan processes. Here we explain how we avoid the creation of

orphan processes. In message logging, the order of reception is considered the unique

source of non-determinism. When using MPI to write parallel applications, the main

source of non-determinism is the usage of the wild card MPI ANY SOURCE to receive

a message. This tag allows the reception of messages from any possible sender, without

specifying a particular one.

Let us consider the situation in Figure 4.6, where message M1 is sent from P1, received

in P2 (R1) and logged in L2 (L M1). Assuming that reception R2 in P2 is done with a

wild card, then P2 receives M2 from P1. Suppose that having received the message M2,

P2 sends M3 to P4 (R3) and then fails without logging M2 in its logger.

P2 restarts from its checkpoint (C2,1) and reads M1 from its log (RL1) and then instead

of consuming M2 from the temporary bu�er of P1, consumes M2' from the temporary

bu�er of P3. Then, P2 saves M2' in its logger with operation L M2' and produces M3'

instead of M3 making P4 an orphan process.

In order to avoid the explained situation, when we detect that a wild card reception is

being used, we do not allow the receiver to continue till the message is fully logged. This

also allows us to avoid the generation of requests to all processes' temporary bu�ers when

restarting.

As di�erent senders have probably initiate the communication to a wild card reception

66

Figure 4.6: Orphan Processes in the Hybrid Message Pessimistic Logging.

(M2, M2’ and M2”), non-confirmed messages by the receiver will be erased from the TB

of the senders after the receiver process confirms the reception of a subsequent message.

4.2.4 Implementation Details

We have included the HMPL inside the RADIC-OMPI implementation (Section 2.3.4). The

HMPL has been included in the Vprotocol Framework of Open MPI since this framework

enables the implementation of new message logging protocols in the Open MPI library

[11]. The main components of our message logging implementation are described below,

as the HMPL is a combination of sender and receiver approaches we split the functionality

to explain it:

1. Sender Message Logging : Before sending a message the the payload of the message

is saved in a circular queue (temporary buffer) in memory. As this circular queue

will be continuously modified, there is no need to flush it to disk. Before sending

another message to the same receiver, the non-finished logging transmissions will

67

be checked in order to erase messages from the circular queue. Normally, the

circular queue will contain at most one message per receiver (neighbors). However,

in order to guarantee that the size does not grow uncontrollably, the circular

queue size is limited according to a percentage of the total memory available in

the node.

2. Receiver Message Logging : When a message is received, it is introduced inside

a circular queue and then the message is sent to the logger residing in another

node by using a non-blocking communication. When the logger informs that

this message has been saved it will remove it from its circular queue. Before

receiving a message the SSN is always checked in order to discard already received

messages.

3. Logger : We have added special threads (one per application process) that are

executed outside the communicator of the parallel application. Each logger

publishes its name so an application process can get connected to a logger

residing in a di�erent node when �nishing the MPI Init command . When a

message is received from a connected process, the logger will save this message

in its volatile memory until a de�ned level of memory is consumed, then it will

asynchronously start to
ush data to disk or it can also command a checkpoint

because a memory limit was exceeded.

4.3 Experimental Validation

To carry out the implementation and experimental validation of the proposed technique, we

selected the Open MPI library as an implementation of MPI standard, and we implemented

RADIC (described in section 2.3) and di�erent message log techniques inside the library.

The RADIC middleware is the one in charge of all message transactions that are made

through the MPI library. Then, all messages are intercepted and treated according to the

speci�cation of each described message logging technique. Details about the experimental

environment can be found in section 6.1.

In order to make the �rst experimental validation of our HMPL, we have used the

NetPipe tool [81]. We have compared the HMPL with a classic pessimistic receiver-based

message logging technique. We have executed the netpipe tool with using two processes in

di�erent machines, where one of the process acts as a sender and the other as a receiver.

When using the receiver-based logging, every time a message is received, it is �rst

forwarded to a logger thread residing in another node, and only after the message is fully

68

saved, the MPI receive call �nalizes. On the other hand, as the HMPL proposes the

utilization of temporary bu�ers, there is no need to wait for messages to be saved while

they are being transmitted to logger threads, thus after receiving each message it is copied

to a temporary bu�er and then the MPI receive call can �nalize.

Figure 4.7 and Figure 4.8 show the bandwidth utilization and the overheads respectively,

when using each of the message logging techniques described. We should notice here

that the benchmark executed without message logging achieves the 100% of bandwidth

utilization. We are showing results between 64 KB and 64 MB message sizes. As the

default eager limit of the MPI library is set to 64 KB, for messages smaller that this size

there is no di�erence between both message logging techniques. The eager limit is the

max payload size that is sent with MPI match information to the receiver as the �rst part

of the transfer. If the entire message �ts in the eager limit, no further transfers / no CTS

is needed. If the message is longer than the eager limit, the receive will eventually send

back a CTS and the sender will proceed to transfer the rest of the message.

In Figure 4.7 can be observed that the bandwidth utilization with the HMPL remains

near to 85% while with the receiver-based logging only reachs 50%. Figure 4.8 shows that

the overheads with the HMPL are near to 20% for each message transmission and with

the receiver-based logging is near to 100%, since for each sent message the application

should wait the double time for an answer.

It is important to highlight that these results are just taking into account two inde-

pendent processes running in two di�erent nodes, and one logger thread in other node.

Moreover, the system is not under full utilization and the network cards are not overloaded.

Also, the NetPipe tool just gives us an approximation of the logging overheads taking

into account the communication times but not the computation cost of logger threads.

Thus, the added overhead will depend also on applications behavior and usage level of the

system.

Experiments with more complex and full featured benchmarks are presented in section

6.3.

4.4 Discussion

Throughout this chapter, we have described the proposed Hybrid Message Pessimistic

Logging (HMPL). This is a novel message logging approach which combines the advantages

of two of the most classical message logging approaches: Sender-based Message Logging

and Receiver-based Message Logging. The HMPL focuses on providing a fault tolerant

solution with low MTTR by accelerating the recovery process of Sender-based approaches

69

Figure 4.7: Bandwidth utilization obtained with NetPipe Tool.

Figure 4.8: Overheads in message transmissions obtained with NetPipe Tool.

70

and at the same time reducing the impact of failure-free executions in comparison with

receiver-based approaches.

This work relies on the usage of data structures to save messages temporarily (in

senders and receivers) and allowing the application to continue its execution without

restricting message emissions while other messages are being saved in stable storage.

As has been described, sender-based message logging is the solution that introduces

less overhead during failure-free executions since messages are saved in the volatile memory

of senders avoiding the retransmissions of messages. However, sender-based logging is

considered as one of the more costly protocols during the recovery phase, since sender

processes should retransmit old messages in order. Also garbage collection is complex

since after each checkpoint, processes should notify their senders to erase old messages.

In receiver-based message logging, failure-free executions are slower since each received

message should be retransmitted to stable storage. However, this protocol provides faster

recovery since the message log is available only in one location and there is no need

for senders' collaboration. Garbage collection is easier in these protocols since after a

checkpoint a process can delete its logged messages.

To the best of our knowledge, there are not message logging protocols that combine

low failure-free overhead, fast recovery and low complexity in garbage collection.

71

Hugo Daniel Meyer. PhD Thesis 2014.

72

Chapter 5

Balancing Dependability and

Performance in Parallel Applications

In this chapter, we will analyze the impact of fault tolerance techniques in parallel

applications. As we have presented in previous chapters, many e�orts have been made in

order to design new fault tolerance techniques to lower the overheads in parallel executions.

Another important matter that should receive attention is application con�gurations.

Therefore, resource consumption and overhead management should be taken into account.

In subsection 2.3.3, we have described the inclusion of spare nodes in RADIC, and how

this bene�ts performance. We believe that the �rst step to guarantee the maintenance

of computation capacity after failures is by replacing failed nodes instead of overloading

nodes. By doing this process automatically, we can reduce the MTTR.

The usage of rollback-recovery based fault tolerance techniques in applications executed

on multicore clusters is still a challenge, because the overheads added depend on the

applications' behavior and resource utilization. Many fault tolerance mechanisms have

been developed in recent years, but analysis is lacking concerning how parallel applications

are a�ected when applying such mechanisms.

The �rst contribution explained in this section addresses the combination of process

mapping and fault tolerance task mapping in multicore environments. The main goal of

this contribution is to propose a methodology to analyze the mapping of fault tolerance

tasks and help to determine which one generates the least disturbance to the parallel

application by characterizing the application behavior and the impact of fault tolerance

tasks.

As a second contribution in this section, is presented a methodology that allows to

obtain the maximum speedup under a de�ned e�ciency threshold taking into account

the impact of a fault tolerance strategy when executing parallel applications in multicore

73

clusters. This is a study case and this methodology is designed for Single Program Multiple

Data (SPMD) applications.

5.1 Parallel Applications in Multicore Environments

Current parallel applications that are executed in High Performance Computing (HPC)

clusters try to take advantage of the parallelism in order to execute more work in a smaller

amount of time. Main objectives when running applications on parallel environments

are: maintaining speedup as close as possible to the ideal, maintaining scalability with an

e�cient utilization of the available resources allowing applications to �nish successfully. In

order to provide resiliency to parallel applications, rollback-recovery based fault tolerance

seems to be the best option. However, the usage of these techniques in multicore clusters

is still challenging, because the overheads depend on applications' behavior and resource

utilization.

HPC clusters are now composed of multicore machines because this gives greater

computing capacity [69]. However, they have heterogeneous communication levels to

perform the MPI communication (cache memory, main memory and local area network).

These paths present di�erent latencies and bandwidths, which have to be considered when

parallel applications with a high communication rate and synchronism, such as SPMD,

are executed in these clusters.

In Figure 5.1 we present three main possible scenarios when mapping applications

in multicore systems. It is important to highlight that in this �gure we are considering

one iteration of a SPMD application. In Figure 5.1, we decompose the Single Stream in

communication and computation operations. We are assuming that the send operation

has almost no e�ect in computations, and that the receive operation takes place while the

computation continues. The main scenarios are:

1. Communication bound: Applications in which the processes are waiting be-

cause the communications take more time than computations belong to this

scenario. Figure 5.1a shows how a communication bound application behaves. In

this �gure, we focus on showing how reception times (non-blocking send opera-

tions do not delay considerably the execution) can highly in
uence the execution

time of a parallel application.

2. Balanced Application: This scenario is the best regarding e�cient resource

utilization, because the computational elements are working while the commu-

nication takes place. However, this behavior is very di�cult to obtain because

74

Figure 5.1: Parallel Executions Scenarios in a SPMD App. a)Communication Bound. b)
Computation and Communication overlapped. c) Computation Bound.

a previous study of the application is needed in order to completely overlap

computations and communications (Figure 5.1b).

3. Computation Bound: When operators try to make a good use of the parallel

environment, they try to maintain the CPU effi ciency high. Then in order to

avoid the communication bound scenario it is recommended to give a bigger input

per process which usually leads to a computation bound scenario. Figure 5.1c

illustrates this scenario.

When characterizing a parallel application, it is also important to take into account the

number of processes that will be used, the number of nodes and the memory consumption

of each process. This analysis should be done in combination with the analysis of the

parallel environment in order to determine resource utilization. When fault tolerance

support is going to be used, it is important to consider it as part of the environment.

Mapping an application and tasks from a fault tolerant middleware into a multicore

platform requires communication, concurrences and synchronization controls of all com-

ponents involved. Figure 5.2 illustrates the possible effects of message logging during

application executions. If message logging tasks are not considered when configuring a

parallel execution, the application could make an ineffi cient use of resources. Then, when

considering message logging tasks impact we can decide to choose between sharing cores

with the application processes, or save cores for them. The election of the fault tolerant

75

Figure 5.2: Message Logging Impact Analysis in Parallel Applications.

configuration and mapping must be made taking into account the application and the

specific platform with its advantages and limitations.

5.2 Message Logging Processes Mapping

In this section, we address the combination of process mapping and fault tolerance task

mapping in multicore environments. The main goal is to determine the configuration of a

message logging approach which generates less disturbance to the parallel application. We

propose to characterize the parallel application in combination with the message logging

approach. This allows us to determine the most significant aspects of the application

such as computation-communication ratio and then, according to the values obtained, we

suggest a configuration that can minimize the added overhead for each specific scenario.

In order to find the most appropriate configuration of the message logging approach,

we should analyze how the parallel application and the logging approach coexist in the

parallel machine. There will be two parallel applications that will compete for resources,

thus it is critical to analyze the influence of fault tolerance in application behavior.

We propose to analyze parallel applications and obtain information that allows us to

configure properly the fault tolerance tasks, specifically we determine if the best option is

76

to share (compete for) resources with application processes or save resources for the fault

tolerance tasks in order to reduce the introduced disturbance.

5.2.1 Message Logging Tasks

Here we are going to describe and analyze the main tasks of message logging techniques.

For the analysis that we do in this section we consider a pessimistic receiver-based message

logging protocol, however other message logging approaches could use our methodology.

We will focus only in message logging tasks because they are responsible for most of the

overhead in failure-free executions when using uncoordinated checkpoint approaches.

Most of the impact of a pessimistic receiver-based message logging protocol concentrates

on communications and storage (memory or hard disks), but there is also an impact on

computations because fault tolerance tasks also need some CPU cycles in order to carry

on their work.

Considering the RADIC architecture, we will focus on the fault tolerance tasks carried

on by the Protector component. Protectors' main functions during the protection stage

are: establish a heartbeat/watchdog mechanism between nodes (low CPU consumption

operation, do not depend on application behavior), to receive and manage message logs

(CPU consumption depends on application) and checkpoints from observers (infrequent

operation).

All communications between processes when using RADIC go through Observers and

each received message is sent to a corresponding logger thread. In Figure 5.3a we show

the default layout of the RADIC architecture, where all the protectors' functionalities are

carried on by a single process that steal CPU cycles randomly from each available core.

However, some other options may �t better to a multicore environment. Let us

divide the protector's tasks in two: the heartbeat watchdog procedure (1 thread) and the

message logging procedure (1 thread for each protected process). Figure 5.3b shows an

homogeneously distribution of logger threads among cores and Figure 5.3c shows how we

can save resources for the protector tasks to avoid context switches between logger threads

and application processes.

5.2.2 Analyzing Parallel Applications

Regarding the con�guration and mapping of parallel application tasks and message logging

tasks into a multicore node, we consider that three di�erent strategies can be used:

� OS-based: in this case, the scheduler of the operating systems takes care of the

distribution of tasks among the available cores. This is a default strategy, but

77

Figure 5.3: Parallel application with RADIC fault tolerance processes. a)RADIC default
con�guration. b) Logger threads distributed among available cores c) Protectors' processes
with own computational resources.

when there might be competition between tasks, imbalance problems may appear.

� Homogenous distribution: in this case, we can manually distribute the tasks

among the available cores searching for a homogenous load distribution. This

strategy focuses on guaranteeing that all cores execute almost the same amount

of work.

� Own FT resources: this strategy consists on saving some cores in order to map

the message logging tasks there, avoiding the context switch between them and

applications' processes.

In order to reduce the impact of the pessimistic receiver-based logging protocol we

propose to analyze which of the three di�erent strategies �ts better to a particular

application behavior. It is important to consider that according to this message logging

protocol, every message should be logged in a di�erent computing node. Therefore, there

might be a considerable increase in the transmission time of each message when the

message logging protocol is activated. Thus, when executing a parallel application with

message logging the processes will be waiting a longer time for each message and the

computation will be a�ected by the logger threads.

In order to reduce the overheads of the message logging approach, we analyze how the

application will be a�ected when introducing this logging technique. In Figure 5.4 we can

observe two main scenarios that could appear when we have a single protector program

78

Figure 5.4: Automatic Distribution of Fault Tolerance Tasks.

(single logger) that receives messages from different processes. Depending on the application

behavior, we can have a computation bound scenario (left of the figure), a communication

bound scenario (rigth side of the figure), or in the best case a balanced scenario. In this

case, we consider that the OS scheduler is assigning the tasks as convenient, thus the

iteration time of processes may differ or we can have a low effi ciency value. In these two

scenarios, the message logging overheads cannot be hidden transparently to the application,

but when a distributed logger model is used in computation bound applications, we can

manage the mapping of the logger threads to distribute the overheads among processes.

Figure 5.5 shows a second option of message logging tasks mapping. In this case, we

opt to equally distributed the overhead of the logger threads among the available cores (we

consider that the HB/WD thread overhead is negligible so we let it to the OS scheduler).

In a computation bound scenario, an homogenous distribution of overhead may cause that

the computation time increases enlarging the iteration time.

Alternatively, as can be observed in Figure 5.6 we can choose to save some computational

cores in each node in order to avoid context switch between application processes and

logger threads. In this case, we can have smaller iteration time by avoiding the disturbance

in application processes.

Then, to determine a suitable configuration for message logging tasks is necessary to

extract the communication-computation relationship, the communication pattern and also

79

Figure 5.5: Homogenous Distribution of Fault Tolerance Tasks.

the original mapping of the application. It is important to obtain the mapping so we can

now if there are available resources inside nodes to use them for the message logging tasks.

5.2.3 Methodology to Determine Suitable Configurations

Considering that many parallel applications are executed with balanced per-core workload,

our default proposal is to distribute the overhead in computation produced by the logger

threads among application processes residing in a node, as has been observed in Figure

5.5.

However, as not all applications are configured with a balanced per-core workload we

propose a methodology to determine the most suitable configuration of message logging

tasks, this methodology is shown in Figure 5.7. We propose to characterize the application

in order to extract the communication-computation ratio and the communication pattern.

To carry out these characterization phase, we propose to use a few iterations of the

application or to extract application traces.

In order to extract application traces and to determine transparently the communication

pattern we propose to use the PAS2P (Parallel Application Signature for Performance

Prediction) tool [85]. This tool extracts the main phases of a parallel application by

collecting and analyzing computation and communication events. This tool also allows us

80

Figure 5.6: Saving Cores for Fault Tolerance Tasks.

to extract a signature that represents the application execution and we use this signature

in order to analyze the impact of the message logging tasks in the application by executing

this signature. The execution of the signature may represent around 5% of the total

execution time, depending on the application length.

Once the parallel application behavior is extracted, we can execute the signature or

application kernel in combination with the loggers threads, and analyze each configuration

described previously (OS-based, Homogenous Distribution, Own FT resources). If we

determine that the default proposal of sharing resources between message logging tasks and

application processes make the application behaves as showed in Figure 5.5, we propose

saving cores in each node in order to assign them to the logger threads, obtaining the

behavior showed in Figure 5.6.

As saving cores may make the initial mapping change if there were not available cores

for the logging tasks, we should also analyze if the new mapping does not affect negatively

the execution, resulting in a worse performance than the default option. If we can modify

the application parameters, in order to analyze the new mapping, we use a kernel of the

parallel application and execute a set of iterations to discover any increase in the execution

time. However, when we can only obtain traces of parallel applications, we analyze the

mapping changes with the PAS2P tool.

81

Figure 5.7: Flowchart of the Methodology to Determine Suitable Fault Tolerance Tasks
Configuration.

82

Another important aspect that we characterize is the per-process memory consumption.

This is signi�cant because it may be a good choice to save logged messages in memory

instead of hard disks, as this allows us to avoid bigger delays when storing messages. When

we put less processes per node, we can save more memory for the message log, thus there

is more time to overlap the
ush-to-disk operation with receptions of new messages to log.

Also, we can use longer checkpoint intervals if we consider an event-triggered checkpoint

mechanism where a full message log bu�er triggers a checkpoint.

When we choose to save cores for the logging mechanisms, we propose to save 10% of

the available cores in the node. Initial analysis have shown that the CPU consumption

of the logger threads are near 10%. However, we are aware that this depends on the

message sizes and frequency. As a future work we will focus on proposing a methodology

to determine CPU consumption of the logging operation in order to save a suitable number

of cores per node.

5.2.4 Methodology Validation

Here we validate the methodology presented previously. As testbed we use a Heat Transfer

application and a Laplace Solver application. Both follows a SPMD communication

pattern and both applications allow overlapping between the computation steps and the

communication steps and both are written using non-blocking communications. Details

about the experimental environment can be found in section 6.1.

The computation and communication times per iteration showed in bars in Figure

5.8 are obtained by executing a few iterations of the parallel applications observing all

processes and then selecting the slowest one for each number of processes. The total

execution times have been obtained using 10000 iterations.

In these experiments we have only considered the overlapped times (communication

and computations) because they represent the higher portion of both applications. We

have discarded the delays caused by desynchronization and the computation time spent in

computing the edges of each sub-matrix before sending it to the neighbors.

For both applications we have measured communication and computation times with

the following options:

1. Without using message logging (Comm-NoLog and Comp-NoLog).

2. With message logging using all available cores in each node and giving a�nity

to each logger thread in order to ensure an equally distributed overhead in

computation among all application processes (Comm-LogA�nity and Comp-

LogA�nity).

83

(a) Heat Transfer App - App. Size 1000 x 1000

Figure 5.8: Characterization results and Overhead Analysis of Applications using Message
Logging.

3. With message logging using all available cores in each node without giving affi nity

to each logger thread (Comm-LogOSBased and Comp-LogOSBased).

4. With message logging saving one core per node and assigning all logger threads

to the core not used by application processes (Comm-LogOwnResources and

Comp-LogOwnResources).

We have used a fill-up mapping for the executions without message logging and with

message logging using shared resources. For experiments where we assign own resources

for the message logging tasks we have use a fill-up mapping policy also for the application

processes, but saving the last core of each node for the message logging tasks.

With the purpose of measuring the communication and computation times of each

application, we have inserted a barrier (MPI Barrier) that allows us to properly measure

them. The tables of Figure 5.8a and Figure 5.8b show the overhead in percentage

introduced by each message logging approach with the barriers and also without them.

84

(b) Laplace Equation Solver - App. Size 1400 x 1400

Figure 5.8: Characterization results and Overhead Analysis of Applications using Message
Logging. (Cont.)

The executions without barriers are faster than the execution with barriers and we present

both overheads in order to prove that the measures taken are consistent when removing

them and executing the original versions.

In Figure 5.8a we can observe how the computation times when using the version with

own resources is lower. Even when the application becomes communication bound (56

processes) the logging version with own resources behaves better than the other versions.

We do not show results of the version with own resources with 64 processes because our

test environment has 64 cores, and we have to save 8 cores (1 per node) for the logger

threads.

The tables of Figure 5.8a reflect what we have observed when characterizing the

application, using message logging with own resources for the logger threads introduces

less overhead in almost all cases. With 16 cores without barriers, the version with own

resources does not appear to be the best one for a minimum margin, this may be due to the

85

change of mapping from 2 nodes to 3 nodes. At best, we have reduced 25% overhead when

comparing the own resources version with the version with shared resources and a�nity.

We can also observe that when increasing the number of processes without increasing the

problem size, the overhead added becomes bigger.

Figure 5.8b shows the execution of the Laplace Solver. As was in the previous

experiment, here we can observer how the computation times are lower when using the

version with own resources.

The tables of Figure 5.8b re
ect again what we have observed when characterizing the

application, using message logging with own resources for the logger threads introduces

less overhead in almost all cases (except with 16 cores without barriers).At best, we have

reduced 20% overhead when comparing the own resources version with the version with

shared resources and a�nity.

As we have observed, in both applications the computation time of the versions with

FT with own resources is lower than the versions with shared resources, but is not equal

to the version without message logging. This is because when logging is activated and a

process call MPI Irecv, this process should save the request, re-send the message to its

logger thread and free the request when the message was totally received, thus there is an

slight increase in computation.

More experiments that validate this methodology are presented in section 6.4.

5.3 Case Study: Increasing Performability of SPMD

Applications

In the previous section, we have stated that in order to make e�cient resource utilization

it is necessary to characterize the message logging impact in combination with the parallel

application and the environment. We have decided to analyze a speci�c parallel paradigm

and extend the previous analysis to develop a methodology to make e�cient executions of

applications while using message logging techniques.

In order to study the impact of message logging techniques we have selected the SPMD

paradigm. Processes in this parallel paradigm usually are tightly coupled and there are

a lot of message exchanges between them. Thus, this is a very challenging situation for

message logging schemes. In this section, we will describe the SPMD applications and

a methodology previously developed to characterize executions aiming to improve the

e�ciency of these applications. Next, we are going to present our methodology [60] to

execute SPMD applications, taking into account two con
icting objectives: improving

86

Performance while giving Dependability.

SPMD Applications

When writing parallel applications, it is very important to consider that these applications

should made an e�cient use of the parallel environment and also an almost linear speedup.

The SPMD paradigm consists in executing the same program in all MPI processes but

with a di�erent set of tiles [17]. Hence, for designing our methodology we consider SPMD

applications with high synchronicity through tile dependencies and high communication

volumes written using MPI for communications.

From now on, when we refer to SPMD applications we mean Stencil SPMD codes.

In this sense, the SPMD applications that we consider have to accomplish the following

characteristics:

� Static: which de�nes the communication pattern and this cannot vary during the

execution.

� Local Communication: that determines the neighboring communication and it is

maintained during all the execution. We are only considering applications with

point to point communications.

� Regular : the data volume exchanged in each iteration should be the same.

� N-dimensional : the applications should be composed by a set of tiles or blocks

distributed in one, two or three dimensions.

The parallel applications selected to develop the methodology that will be presented

later, are SPMD applications with high synchronicity through tile dependencies and high

communication volumes written using MPI for communications. These characteristics give

applications a certain level of determinism that allows the usage of a set of techniques

to improve performance metrics. We are not including process-level synchronism as BSP

(bulk-synchronous parallel) models de�ned in [82].

There are di�erent kinds of applications of diverse �elds that accomplish all the

characteristics explained above, and also applications kernels such as the NAS parallel

benchmark suite in the BT, MG, SP [3]. Stencil SPMD codes are usually found in

computer simulations, e.g computational
uid dynamics, heat transfer, Laplace models,

wave equations, Jacobi solver, etc.

We have presented the main characteristics of the SPMD applications that are part

of our analysis, now we focus on showing the main challenges when executing these

applications on multicore environments.

87

Figure 5.9: SPMD application and communication effects on multicore clusters.

Methodology for Efficient Execution of SPMD Applications

A methodology to write SPMD applications obtaining maximum speedup for a defined

level of effi ciency was presented in [65]. This methodology has been used as basis to create

the methodology described later in this section, which aims for effi cient executions with

fault tolerant support.

Most of MPI SPMD applications consists in executing the same program in all MPI

processes, but using a different set of tiles to compute and communicate. These tiles

need to exchange information with neighboring tiles during a set of iterations. For this

reason, when SPMD applications are mapped into multicore clusters, code writers must

consider the communication heterogeneity and how these can affect the performance

specially effi ciency and speedup. As shown in Figure 5.9, there are idle times generated

by communication links, (e.g. core 1 communicating from node 1 with core 5 of node 2

through the internode link).

The example illustrated in Figure 5.9 shows how an SPMD application may be executed

on a multicore cluster with different communication levels. In this case, tiles are computed

in a similar time due to the homogeneity inside the cores but the tiles communication

times can be totally different because they can be performed using different communication

paths (Intercore, Interchip, Internode). In some cases, the differences between each link for

a defined packet size can include an order of magnitude of up to one and a half in latency.

These variances are translated into ineffi ciency, which decreases performance metrics.

Taking into account the aforementioned problems, it is very important to manage the

communication imbalance of the multicore architecture because it can create dramatic

ineffi ciencies in the parallel region that will be repeated during all the applications’

88

Figure 5.10: SPMD application executed applying the Supertile Concept.

iterations and, as we have seen, even more when we apply fault tolerance support.

In this sense, when we execute a SPMD application without a proper politic it may

bring about performance degradation (specially in speedup and CPU e�ciency) and

imbalance problems [49]. In [65] has been presented a method to manage ine�ciencies

caused by communication latencies by knowing the characteristics of applications (e.g.

communication and computation ratio) and by applying the supertile de�nition [66]. A

supertile is a structure composed by internal and edge tiles with the aim of allowing us to

compute the edge tiles and then to overlap the edge communications with the internal

computation in SPMD applications.

The problem of �nding the optimal supertile size is formulated as an analytical problem,

in which the ratio between computation and communication of the tile has to be found

with the objective of determining the ideal size that maintains a close relationship between

speedup and e�ciency. An execution of an SPMD application tuned with the methodology

presented on [65] is shown in Figure 5.10.

This methodology is organized in four phases: characterization, tile distribution model,

mapping and scheduling. The main objective of this method is to �nd the maximum

speedup while the e�ciency is maintained over a de�ned threshold. Figure 5.11 shows how

this methodology is able to improve the e�ciency and speedup of parallel applications, in

this case a de�ned e�ciency of 85% is being considered. Now, rises the next question: How

is a�ected a tuned application when fault tolerance support is added and the application

has to share resources with a fault tolerant middleware?

Later in this section, we will show how we have improved this methodology in order to

consider also the e�ects of fault tolerance tasks and how we can hide the impact of these

89

Figure 5.11: Heat Transfer Application. E�ciency and Speedup improvement.

tasks in order to �nd the maximum speedup using an e�ciency threshold. We will also

explain in detail the characterization phase (and all the other phases) and how it has been

adapted in order to consider the message logging tasks impact.

Methodology to Increase Performability of SPMD Applications

Considering the previous explained methodology, we have focused on using the information

that can be extracted in order to adapt and con�gure applications executions using fault

tolerance support making an e�cient resource utilization.

The methodology recently presented allows us to balance two very important per-

formance metrics: Speedup and CPU e�ciency. However, it is currently important to

consider node failure probability since the mean time between failures in computer clusters

has become lower [13]. Then, we cannot avoid the fact that running an application without

a fault tolerance approach has a high probability of failing and stopping when using many

computational resources or when it has been executing for several hours.

Now we are going to describe in detail our methodology [60] to execute SPMD ap-

plications, taking into account two con
icting objectives: improving Performance while

giving Dependability. When protecting applications transparently with a fault tolerance

90

(a) SPMD application executed applying the Supertile concept.

(b) SPMD application with ideal overlap between computations and communications.

Figure 5.12: SPMD Application Behavior using Pessimistic Receiver-based Message
Logging

technique (using the available system resources) we should pay an extra overhead that

seriously affects the performance. In this sense, all initial tuning may be in vain when

we give fault tolerance support without considering the influence of the overhead added

on applications (Figure 5.12a). It is important to highlight that we have selected the

SPMD paradigm as case study because it represents one of the worst scenarios for message

logging techniques, since there are a lot of message transmissions and processes are tightly

coupled.

For this reason, the objective of our methodology is to achieve maximum speedup,

while considering a defined effi ciency threshold, but using a transparent fault tolerance

approach. Our methodology is based on the one presented in [65], and it allows us to

manage the overheads of a pessimistic logging technique. This is done using an overlapping

91

technique, where the overhead is overlapped with application computation obtaining a

considerable improvement in the Performability. Hence, the update of the model allows us

to �nd the ideal number of computation cores and ideal number of tiles which have to be

assigned for achieving our objective, taking into account the impact of the fault tolerance

(Figure 5.12b).

The main phases of our methodology are described in detail in the next subsections.

5.3.1 Characterization

The main objective of this phase is to evaluate the execution environment taking into

account computation and communication times, and also make an analysis of the SPMD

application that is going to be executed. The obtained data will be used in the next phase

(Distribution Model) to calculate the appropriate number of computational cores and the

supertile size.

The three main aspects that are considered during the characterization phase are:

application parameters, execution environment parameters and the desired performance

parameters. When obtaining these parameters, we should consider that we are going

to use a message logging approach that will introduce overhead in communications and

computations. Thus, when executing each characterization step we are using our modi�ed

MPI library that carry on the pessimistic receiver-based message logging of RADIC.

Application Parameters

Our methodology proposes to �rst discover the set of application parameters that could

explain the behavior of the SPMD application. We extract parameters that will be

representative when selecting the mapping of message logging tasks and application

processes.

First we need to extract the problem size and number of iterations from the application.

Then we have to measure the times spent in computing and transmitting a tile. These

times are going to be used to calculate the computation-communication ratio which is the

key to determine the ideal supertile size.

The next step is to �nd the communication pattern of the application. This pattern

will tell us how many neighbors communications are done during each iteration. In order

to determine the communication pattern we have used the PAS2P (Parallel Application

Signature for Performance Prediction) tool [85]. This tool extracts the main phases of a

parallel application by collecting and analyzing computation and communication events.

The information about the communication pattern is collected and used as input for

92

Figure 5.13: SPMD Communication Pattern Example.

the network characterization module. This module is part of the characterization tool,

and it will use this pattern to simulated the behavior of the MPI messages. In Figure 5.13,

we show the communication pattern for a Heat Transfer application with 4 neighbors. We

should highlight that we only obtain the application communication pattern and when

using message logging each communication will be a�ected since messages should be logged

in a di�erent node, but the communication pattern of the application will not change.

Now that we have determined the application parameters we can proceed with the

environment characterization, using the obtained parameters to evaluate the communication

and computation steps.

Execution Environment

If we want to achieve maximum speedup for a de�ned e�ciency threshold while using

a message logging technique, we should make a correct distribution of tiles among the

computational cores. If we want to avoid communication bound or computation bound

applications we should determine the number of tiles that allows us to fully overlap

communication with computations. However, it is very important to consider how the

message logging technique a�ects communications and computations in order to avoid the

situation showed on Figure 5.12a. Considering this, when characterizing the execution

environment we are running the fault tolerance mechanisms as part of this environment.

In order to evaluate the execution environment, we �rst analyze and characterize the

communication times according to the communication pattern obtained before. After this,

we evaluate the computation process so then we can obtain the communication-computation

ratio of tiles for a determined environment.

To characterize the hierarchical communication system of a multicore cluster, �rst

93

Figure 5.14: Hierarchical Communication levels of a multicore Cluster.

is needed some information about the processors architecture and cache levels. Figure

5.14 shows an example of multicore (2 QuadCores per socket) cluster with di�erent

communication levels. Communications between cores inside the same processor can

be made without using shared cache memory (A) or using it (A1); communication

between cores that belong to di�erent processors are made through main memory (B)

and communications between cores that belong to di�erent nodes are made through the

available local network.

Once we have determined the di�erent communication levels, the next step is to analyze

each of these levels by using a tool for obtaining the di�erent latencies. Several tools to

measure communication latency and bandwidth are available, such as NetPipe [81]. These

tools collect measures by using Ping Pong techniques. However, Ping Pong tests do not

represent the real communication pattern of SPMD applications, since they are designed

to communicated with di�erent number of neighbors. Thus, this causes an increase in

latency when the system is under full use.

In order to characterize the di�erent communication levels we have developed a

94

characterization tool that allows us to obtain latency times using the real communication

pattern of the SPMD application with di�erent number of processes. This tool was written

in MPI and its algorithm can be observed in Algorithm 5.1.

CommCharacterization (Proce s s e s n)
L o g i c P r o c e s s D i s t r i b u t i o n (n)
S e t P r o c e s s A f f i n i t y (getPID)
/�Def ine the communication topology o f
the a p p l i c a t i o n (1D, 2D, . . .) � /
Topology Creat ion (Dimension)
N e i g h b o r s l i s t = Determine ne ighbors ()

f o r message=8B to 16MB
f o r i t e r a t i o n =1 to Iterat ion Number

f o r each Neighbor in N e i g h b o r s l i s t
I send (message , . . . , Neighbor , . . . , r eque s t s end)
I r e cv (message , . . . , Neighbor , . . . r e q u e s t r e c v)
Col l ec t Times ()

end fo r each
end f o r

end f o r
Repor t generat ion ()

end CommCharacterization

Algorithm 5.1: Communication Characterization Tool.

Algorithm 5.1 starts by distributing the processes according to the topology of the

application (1D, 2D, etc) in order to have one process per core with its neighbors de�ned

from the beginning. In order to ensure that processes are not migrating from one core to

another, we use process a�nity. However, in case that there are available cores for fault

tolerance tasks, this a�nity also could be changed. Then we create the topology desired

according to communication pattern obtained previously with the PAS2P tool. Once the

neighbors are de�ned we start the iterative process where we send and receive messages of

di�erent sizes tofrom each neighbor and collect the times. We repeat for several iterations

the measurement procedure in order to obtain reliable times. This characterization tool

could be used with di�erent con�gurations: without message logging, with pessimistic

receiver-based message logging or with another fault tolerant strategy.

Once all the measures have been obtained, this information is processed in order to �lter

the communication time for each communication level (intercore, interchip, internode).

An example of how the communication times are a�ected by the logging operation can be

seen in Figure 5.15. The increase in the communication time is due to the retransmission

of every received message to another node, even intranode messages will become internode.

95

Figure 5.15: Network characterization of the Parallel System.

Once the communication times have been calculated, we should proceed to calculate

the computation times of the SPMD application. In order to do this, we instrument the

SPMD application for observing the computation function that should be executed for

each tile. In order to obtain the computation time of a tile, we assign a set of tiles to each

core and measure times averaging total time spent by the number of tiles executed.

Similarly, we should obtain the communication volume of tiles so we can calculate

the communication-computation ratio (λft(ρ, ω), where ρ indicates the communication

link used, and ω indicates direction e.g. up, right, left or down in a four communication

pattern).

In order to properly characterize the computation times while the message logging

technique is being used, we have combined the kernel that make the computation with

our Network Characterization Tool.

Algorithm 5.2 shows the operation of our characterization tool. We give a set of

tiles as input that is distributed among the number of processes that is being used. We

have one thread that is in charge of communications of tiles and the main thread that

computes the tiles, since the parallel applications that we consider here are written in

that way. The computation thread first blocks a semaphore and computes the supertile

edges. After computing the edges, the thread unblocks the semaphore and compute the

96

internal tiles. The communication thread blocks the semaphore when it is available and

sends the necessary tiles to neighbors using non-blocking MPI communications and when

the communication is �nished, unblocks the semaphore so in the next iteration the main

thread can compute the edges. By doing things in this way, we are able to determine how

the computation times are a�ected by the message logging technique, since the logger

threads also consume CPU cycles.

It is important note that when using non-blocking MPI receptions, messages are logged

e�ectively when the corresponding wait operation is executed. This is because just after

the wait we guarantee that the message has been fully received and it can be logged.

Now that we have calculated communication and computation times for tiles, we will

proceed to explain analytically the characterization stage.

As a supertile is a structure composed of internal and edge tiles (Figure 5.10), we can

divide the computational time of a tile in two: the internal tile (Cptint) and the edge

tile computation (Cpted). The internal tile is divided in the original computation of a

tile1 (Cpttile) plus a piece of the overhead added by the logger threads (FTCptint) in the

protection step of the FT approach.

Then, the internal computation is represented in Equation 5.1 (Figure 5.12b).

Cptint = Cpttile + FTCptint (5.1)

The edge tile computation without FT (Cpttile ed) needs to consider the time spent

in packing and unpacking the sent and received tiles, plus the time of computing them

(Equation 5.2). However, when calculating the edge tile computation time using FT

(Cpted), we should consider the overhead caused by the logger process (FTCpted), as it

can be detailed in Equation 5.3.

Cpttile ed = Pack Unpack + Cpttile (5.2)

Cpted = Cpttile ed + FTCpted (5.3)

The communication time is measured as the communication of a tile (Commtile(�; !)),

plus the overhead of the log operation (FTComm(�; !)), hence, the tile communication

applying FT is calculated with Eq 5.4 (Figure 5.15).

1The Cpttile is the original tile computation used on the method without fault tolerance approach [66]

97

CompCharacterization (Processes , T i l e s)
L o g i c P r o c e s s D i s t r i b u t i o n (Proce s s e s)
S e t P r o c e s s A f f i n i t y (getPID)
/�Def ine the communication topology o f
the a p p l i c a t i o n (1D, 2D, . . .) � /
S u p e r t i l e = T i l e s / Proce s s e s
Topology Creat ion (Dimension)
N e i g h b o r s l i s t = Determine ne ighbors ()
Block (Semaphore)
CreateThread (CommThread, N e i g h b o r s l i s t , S u p e r t i l e)
f o r i t e r a t i o n =1 Iterat ion Number

Block (Semaphore)
Compute edges (S u p e r t i l e . edge)
Unblock (Semaphore)
Compute internals (S u p e r t i l e . i n t e r n a l s)
Co l l ec t Times (Comp)

end f o r
Thread Join (CommThread)
Repor t generat ion ()

end CommCharacterization

Function CommThread(N e i g h b o r s l i s t , S u p e r t i l e)
f o r i t e r a t i o n =1 to Iterat ion Number

Block (Semaphore)
f o r each Neighbor in N e i g h b o r s l i s t

I send (S u p e r t i l e . edge , . . . , Neighbor , . . . , r eque s t s end)
I r e cv (S u p e r t i l e . edgeNew , . . . , Neighbor , . . . r e q u e s t r e c v)
Col l ec t Times (Comm)
S u p e r t i l e . edge=S u p e r t i l e . edgeNew

end fo r each
Unblock (Semaphore)

end f o r
end CommThread

Algorithm 5.2: Computation Characterization Tool.

98

Figure 5.16: Computation and Communication characterization of the Heat Transfer
Application.

CommT (ρ, ω) = Commtile(ρ, ω) + FTComm(ρ, ω) (5.4)

To calculate the communication-computation ratio, we only consider the internal

computational time (Cptint) as this is the only computational time which can be overlapped

with communications (Equation 5.5).

λft(ρ, ω) = CommT (ρ, ω)/Cptint (5.5)

As can be detailed in Figure 5.16, the overhead added in a message when we apply

the message logging technique has a considerable impact, which has to be considered for

the model precision. As the logger threads of the protectors also consume CPU cycles,

we cannot avoid that fact when characterizing the computation. Considering this, our

characterization tool is designed to extract the computation time of each tile and the

overhead added by the logger. As can be evidenced in Figure 5.16, there are two overheads

which have to be managed when overlapping (FTCptint, FTComm).

99

Performance Parameters

In order to make use of the model we need to de�ne an e�ciency threshold (effic) that

will be used to calculate the ideal supertile size. This e�ciency threshold is de�ned by

the user and it will be used in the analytical model to calculate the number of cores and

supertile size that achieves the maximum speedup considering the e�ciency level desired.

5.3.2 Distribution Model

This step of the methodology focuses on �nding the ideal size of the supertile that will

allow us to avoid communication bound or computation bound executions when using a

message logging approach. In the next paragraphs, we will explain the analytical process

of data distribution using the values obtained in the characterization phase.

By taking into account overheads of the message logging technique into SPMD appli-

cations, in both computations and communications, we obtain the next values for a tile:

Cpted, Cptint and CommT . Once we have characterized our environment and obtained

the size of the supertile and the communication-computation ratio (Equation 5.5), we can

obtain the optimal number of cores to be used in order to maintain the speedup under a

de�ned e�ciency threshold.

The analytical model for improving performability begins by determining the ideal

number of cores (Ncores) that allows us to �nd the maximum speedup under a de�ned

e�ciency, but managing the log e�ects of the fault tolerance technique (Eq.5.6). However,

this equation depends on the problem size (Mn), where n is the application dimension

(e.g 1,2,3, etc), and ideal supertile size (Kn).

Ncores = Mn=Kn (5.6)

Furthermore, to obtain the value of K, we have to start by Equation 5.7, which

represents the execution time of the SPMD application using the overlapping strategy.

We can �rst calculate the edge computation time EdCompi (Equation 5.8, where ST is

the supertile size), then we add the maximum value between internal tile computation

IntCompi (Equation 5.9) and edge tile communication EdCommi (Equation 5.10), ap-

plying the overlapping strategy. This process will be repeated for a set of iterations iter.

All these values depend on the log e�ects in computation and communication that have

been obtained in the characterization phase. It is important to consider that Equation 5.8,

Equation 5.9 and Equation 5.10 are in function of Cpted, Cptint and CommT and these

were calculated in the characterization phase while using the message logging approach.

100

Texi =
iter∑
i=1

(EdCompi +Max(IntCompi; Edcommi)) (5.7)

EdCompi = (ST � (K � 2)n) � Cpted (5.8)

IntCompi = (K � 2)n � Cptint (5.9)

EdCommi = Kn−1 �Max(CommT (�; !)) (5.10)

Hence, Equation 5.11 represents the ideal overlapping that allows us to obtain the

maximum speedup (considering the protection time), while the e�ciency effic is main-

tained over a de�ned threshold. Therefore, we start from an initial condition, where the

edge communication time with log operation is bigger than the internal computation time

divided by the e�ciency. This division represents the maximum ine�ciency allowed by the

model. However, Equation 5.11 has to consider the constraint de�ned in Equation 5.12

where Edcommi can be bigger than IntCompi over the de�ned e�ciency (Equation 5.11),

but the Edcommi has to be lower than the IntCompi without any e�ciency de�nition.

Kn−1 �Max(CommT (�; !)) � (K � 2)n � Cptint
effic

(5.11)

Kn−1 �Max(CommT (�; !)) � (K � 2)n � Cptint (5.12)

However, the edge communications are in function of the CommT . For this reason,

we need to equalize the equation in function of Cptint. This is achieved using Equation

5.5, where we can isolate the CommT in function of the Cptint multiplied by �ft(�; !).

Having both internal computation and edge communication in function of Cptint, the next

step is to replace this value in Equation 5.11 and we obtain the Equation 5.13.

K(n−1) �max(�ft(�; !) � Cptint) = ((K � 2)n=effic) � Cptint (5.13)

To �nd the value of K, we equal the Equation 5.13 to zero and we obtain a quadratic

equation in the case of using an SPMD application with 2 dimension (Eq.5.14). The

solution obtained has to be replaced in Eq 5.11 and Eq 5.12 with the aim of validating if

the K value accomplishes the constraint de�ned.

K2 � 4 �K � effic � �ft(�; !) �K + 4 = 0 (5.14)

101

(a) Secuencial Distribution.

(b) Block Group Distribution.

Figure 5.17: Logical Distribution of Supertiles among cores considering two nodes with 2
quad-core processors each.

The next step is to calculate the ideal number of cores (Equation 5.6), taking into

account the impact of the fault tolerance strategy used. Also, Equation 5.6 allows us to

determine the ideal ST size for a speci�c number of cores with the aim of checking how

our method scales considering weak scalability.

5.3.3 Mapping

The aim of this phase is to allocate each supertile into each core with the aim of minimizing

the communication e�ects. We have designed a strategy to locate MPI processes in the

cores where the supertiles are going to be executed. It is important to highlight that

only one supertile is going to be executed by core, but also a logger thread will share this

resource with it. Our mapping strategy focuses on minimizing the communications e�ects,

this is done by analyzing each communication and minimizing the communications by

slower channels.

Our process mapping technique should be able to select the more suitable core to each

process and this mapping should be the same that has been used during the characterization

phase where we obtained the times of each communication channel. This will avoid

variations between the times obtained in the characterization phase and the execution of

102

the application.

The mapping phase is divided in three key parts, which are: the logical distribution of

MPI process among cores; the a�nity process which attaches each process to one speci�c

core; and the tile division and assignation. We are going to explain each part in the next

paragraphs.

Logical Distribution of Processes

During the characterization phase, we have determined the slowest communication channels,

thus when we make the logical distribution of processes we focus on minimizing the number

of communications using the slowest channel.

Depending on the tile distribution and assignation, the supertiles may have a higher

number of communications through the slowest channel, and this will cause that the

communications made through this channel become even slower.

In Figure 5.17a we show an example of a sequential distribution of tiles among cores,

this means that we use a �ll-up policy to put the supertiles in processes in a consecutive

way and attaching each process to cores by using a�nity. This way of distributing

processes may cause a congestion in the slowest communication channel because we have

several communications that use this channel. In this distribution scheme we have more

communications that use the slowest channel comparing to a block grouping scheme.

In Figure 5.17a we are considering the utilization of 2 nodes and we have 16 communi-

cations through the slowest channel. If we increase the number of nodes, the processes that

are executed in nodes that are in the middle will double the number of communications

through the slowest channel, making the congestion even worst. Although, the sequen-

tial distribution does not a�ect the model, because if we characterize the network using

this distribution and then apply the methodology we will still be able to calculate the

communication-computation ratio, however there are other strategies that could minimize

the number of communication through the slowest channel reducing congestions.

Figure 5.17b illustrates how we can group the processes and distribute the supertiles

considering the physical architecture of the environment. We can observe that the number

of internal communications increases when using this distribution, but at the same time

the number of communications through the slowest channel is reduced. In this case we

reduce the number of external communications to 4.

This block distribution strategy will be more e�cient as we increase the number of

processes. Let us suppose that we want to increase the number of nodes to 32 quad core

machines, and that the size of the problem is M2.

Let us consider that we have the 32 quad core nodes distributed in a mesh of 16 x 16

103

cores (16 x 2 QuadCore nodes) to distribute the 256 processes. If we distribute the supertiles

using sequential distribution we will have the next: 16 � 2 communications between each

pair of nodes in the same horizontal nodes; (16�1)�32 vertical communications of internal

nodes because the �rst and the last 16 cores only communicate to one set of 16 cores. In

total we have 512 communications using the slowest communication channel.

However, if we use a block logic distribution strategy we will set the nodes in mesh

of 4 x 8 QuadCore nodes (16 x 16 cores) we will have the next: 12 � 8 communications

between horizontal node neighbors; (8 � 1) � 32 vertical communications between internal

nodes. In total we have 320 communications using the slowest channel. Then, if we use

the block logic distribution strategy we reduce the congestion in the slowest network.

In order to increase the speedup of the application, the ideal solution is to assign

the minor amount of tiles to each process. However, when we desire a fast and e�cient

execution, the number of tiles assigned to each process should maintain a close relation

between the slower communication and the internal computation time.

Once we have de�ned the logical distribution of processes, the next step is to apply

process a�nity. This is done with the information obtained in the logical distribution

process.

Process A�nity Model

The aim of the process a�nity procedure is to attach each application process to speci�c

physical resources (cores). This is done in order to avoid that processes migrate from one

core to another and obtain better performance metrics. By attaching processes to cores,

we can easily manage the communications between MPI processes and achieve a more

stable SPMD application execution since all communications are controlled by the logical

distribution of processes described before.

The a�nity procedure is divided in two: the �rst is the assignation of the supertiles

and processes to a speci�c node; and the second is the procedure of attaching each MPI

process to a speci�c core. We �rst obtain the PID of each MPI process and then we use

the sched.h library in order to associate each process to a core.

It is very important to consider that we also have one logger thread running per each

application process (running in a di�erent node to save its received messages). We also

apply process a�nity to each of these logger threads in order to equitably distribute the

computation overheads among each core or we can also give own resources to the fault

tolerance tasks.

Figure 5.18 shows how we assign each application process and fault tolerance process

to speci�c resources (cores). Each logger thread shares a core with one application process,

104

Figure 5.18: A�nity of Application Processes and Fault Tolerance Processes

then we can ensure that overheads are homogeneously distributed among the system.

Division and Distribution of tiles

Once we have de�ned the location of each MPI process, we now should proceed to assign

the supertiles to each process. The supertile size is de�ned according to the values obtained

in the distribution model phase. Also the coordinates assigned to each supertile allow us

to determine the neighbors according to communication pattern obtained.

When we divide the supertiles and distribute the processes, we take into account the

physical layout of the parallel architecture.

5.3.4 Scheduling

The last phase of the methodology de�nes the temporal execution planning of the supertiles.

This phase is divided in two main parts:

� Priority assignation: The edge tiles have the higher execution priority since

these tiles should be transmitted to neighbors. The edge tiles are saved into

bu�ers to execute them before the internal tiles. These bu�ers are updated in

each iteration. First, the thread in charge of the computation computes the edge

tiles and allow the communication thread to transfer these edge tiles while it

continues with the computation of internal, then the internal computation is

overlapped with the edge tiles communications.

105

Figure 5.19: SPMD methodology summary.

• Overlapping Strategy: Each iteration of the SPMD execution is delimited

by the slower communication, so even if some processes have a shorter commu-

nication time we should give enough tiles to each process to cover the longest

communication. As we are using message logging, we should use a supertile size

that allows us to cover the logging effects. We have created two threads to carry

out the execution. One thread is in charge of computing the internal tiles, while

the other communicates the edge tiles. This allows us to hide the message logging

overheads by giving more tiles to compute to a processor while edge tiles are

being sent and logged.

Figure 5.19 summarizes our methodology. Considering that we have a tuned SPMD

application were internal computation is overlapped with edge communications, when we

apply a message logging logging technique we introduce ineffi ciency to the execution. Once

we determine the appropriate supertile size considering the impact of the message logging

technique (using the explained characterization strategy) we can obtain the maximum

speedup with a defined effi ciency threshold. Usually, logging approaches are combined with

an uncoordinated checkpoint approach (such as the one used in RADIC). For calculating

our estimations, in this work we do not consider the added overhead that will be caused

by the checkpoints.

106

5.3.5 Performability Framework

Considering the methodology presented, we have designed a framework that allows us to

develop performability-aware SPMD applications. This framework allows us to automatize

the procedure described previously. In order to ease the analysis and due to the computation

homogeneity, we consider that the time spent in uncoordinated checkpoints will be added

to the execution time and it will depend exclusively on the application size and the number

of checkpoints.

In order to make use of the performability framework with fault tolerance support, the

MPI library used should be the one that has RADIC included [59]. Our framework considers

that the user code is written in the C language using MPI to carry out communications

between processes.

Figure 5.20 shows the
owchart of the performability framework (user inputs are

highlighted in green and Mn is the problem size). The user introduces the application

inputs, number of iterations (i), the communication code is introduced with medatada that

describes the behavior (e.g. number of neighbor communications) and the computation

code that details the code that each parallel process should carry out. The user should also

introduce the parallel environment, specifying number of cores that each node contains

and internode con�guration (cache levels, cores that share cache). Using the input, we

characterize the environment obtaining the communication and computation time with

and without considering the impact of message logging.

Once characterization is over, the distribution model and the analytical model are

applied, obtaining the ideal number of computational cores that can be used to obtain the

requested e�ciency (information about expected execution time with and without fault

tolerance support will be available to the users). After con�rming the execution with the

obtained number of cores(Ncores) and supertile size (ST) the user will have the source

code written.

When launching the execution, at �rst the mapping step takes place and all the work is

divided between the number of processes (one process per core). Each process is attached

to a core by using an a�nity procedure and then two threads are created per process:

Computing thread and Communication thread. The computing thread computes the

border and then computes the internal tiles. The Communication thread is in charge of

transmitting the border values to neighbors, this operation is overlapped with the internal

computation. When message logging is being used, the Border Comm. value includes

the time of transmitting and logging the edge tiles. The operations of both threads are

repeated for the number of iterations (i) of the problem. All RADIC operations are

user-transparent, the main di�erence between whether or not to use fault tolerance resides

107

Figure 5.20: Flowchart of the Performability Framework.

in the number of cores and Supertile size.

5.3.6 Validation Example

In order to validate our methodology, we have use a Heat Transfer which is a finite difference

application with four communications per iteration. Details about the experimental

environment can be found in section 6.1.

Table 5.1 summarizes the theoretical and practical data that allows us to solve Equation

5.14 in order to obtain the supertile size (ST) and the number of cores (Ncores) for a

defined effi ciency (Effic). For these executions, we have set a 75% level of desired

effi ciency. By using the data obtained during the characterization phase, the desired level

108

Table 5.1: Theoretical and Practical Data of Heat Transfer Application.

Application
Problem

Size
Desired
Effic(%)

Cptint CommT �ft ST Ncores
Obtained
Effic(%)

abs(Error)
(%)

Heat Transfer Tuned
1000x1000

75 2:2E−8 3:79E−6 172.09 133.03 56 76 1

Heat Transfer Tuned
With FT 1000x1000

75 2:71E−8 7:15E−6 263.96 201.95 24 80.4 5.4

of e�ciency and by solving Equation 5.14 we have obtained a suitable number of cores

to be used for each case (Column Ncores). Then we have evaluated our predictions by

executing the applications with the predicted number of cores obtaining errors that range

between 1% and 5.4%.

More experiments that validate this methodology are presented in section 6.5.

5.4 Discussion

In order to meet the performability objective when executing parallel applications on

computer clusters, we should consider how the fault tolerance tasks a�ect applications'

tuning. In this chapter we have considered a rollback-recovery approach where most of the

overhead is caused by a pessimistic logging protocol. We have presented a methodology

that focuses on analyzing possible con�gurations of message logging tasks in order to �nd

the most suitable according to application behavior. This is done by characterizing the

parallel application (or a small kernel of it) obtaining the computation and communication

times and the disturbance caused by the logging approaches.

As a case study, we have selected the SPMD paradigm and we have applied the previous

characterization methodology and proposed a methodology to tune SPMD applications

considering the impact of message logging tasks. This methodology allows to obtain a

maximum speedup while the e�ciency is maintained over a threshold. We have also

designed and implemented a framework that allows the usage of this methodology and

eases the development of performability-aware SPMD applications.

We can conclude that is becoming extremely important to consider the impact of

fault tolerance techniques in parallel executions, since these techniques can unbalance

application executions. Our proposal allows us to provide a new feature to applications

that have been tuned to be executed e�ciently, this feature is resiliency. Using our

methodology, users can determine analytically how well an application will run in terms of

speedup and e�ciency, without doing exhaustive executions in order to obtain the ideal

number of processes or computer cores to be used.

109

Hugo Daniel Meyer. PhD Thesis 2014.

110

Chapter 6

Experimental Results

In this chapter we present the experimental results of the main proposals presented in

this thesis. First, we detail the experimental environment in Section 6.1. The description

of the experimental environment includes the description of cluster used to evaluate our

proposals and the main MPI library used to implement our proposals. Benchmarks and

applications used are explained separately in each section.

Then, in section 6.2 we present the evaluation and analyze the results obtained when

using automatic spare nodes inside the RADIC architecture. Section 6.3 presents the

results obtained with the Hybrid Message Pessimistic Logging (HMPL) approach (detailed

in section 4.2), and how it bene�ts parallel executions by lowering the overheads. In section

6.4, we present the evaluation of our methodology to select the most suitable con�guration

alternative of message logging tasks. Then, section 6.5 presents the evaluation that has

been carried out with the methodology to increase performability of SPMD applications.

Finally, the discussion and conclusions of the experiments are presented.

6.1 Experimental Environment

The experiments have been made using a Dell PowerEdge M600 cluster with 8 nodes, each

node with 2 quad-core Intel R© Xeon R© E5430 running at 2.66 GHz. Moreover, each node

has 16 GB of main memory and a dual embedded Broadcom R© NetXtreme IITM 5708

Gigabit Ethernet is used to interconnect the nodes. All the experiments have been made

using only one network interface to process communications and fault tolerance tasks. The

operating system used was Red Hat 4.1.1-52.

In order to provide an application transparent FT support, we have included the

RADIC architecture and all the implementations made in this thesis inside an Open MPI

1.7. We have considered that in order to give support to MPI applications a good option

111

(a) Node 7 affected by a failure.

(b) Processes of Node 7 restarted in their protector node (Node 6) causing overload.

(c) Failed processes restarted in a Spare Node.

Figure 6.1: Failure Recovery in RADIC with and without Spare Nodes.

is to act as a middleware between the MPI application and the MPI library. This allows

us to execute any MPI application without modifying the source code. More details about

the implementation of RADIC inside Open MPI could be found in subsection 2.3.4.

112

6.2 Operation of RADIC Fault Tolerant Architecture

Fault tolerance mechanisms must try to reduce the added overhead during failure-free

executions and avoid system degradation in presence of failures. In subsection 2.3.3

we have discussed the operation modes of the RADIC architecture. RADIC allows the

successful completion of parallel applications even in presence of failures, without using

extra resources. However, it is important to avoid system degradation and reduce the

overhead when handling node failures. If failed nodes are replaced automatically by spare

nodes, parallel applications will not only end correctly but also will avoid performance

degradation due to loss of computational resources.

6.2.1 Design and inclusion of Spare Nodes in RADIC

The spare node management mechanism that we have included in RADIC is not restricted

to avoid performance lost, but also we propose a mechanism for automatically select spare

nodes and include them on the parallel environment domain without user intervention.

By doing the spare nodes management transparently and automatically, we are able to

minimize the MTTR.

Two main data structures are used in RADIC during recovery: the RADICTable and

the SpareTable. As we may recall, the RADICTable has one entry by application process

and each row contains: process id, URI (Uniform Resource Identi�er), URI of process'

protector, the Receive Sequence Number (RSN) and Send Sequence Number (SSN). The

SpareTable contains the spare Id, the address of the spare and the status (free or busy).

The RADICTable and SpareTable are replicated among all protectors.

When using RADIC without spare nodes, failed processes (Figure 6.1a) are restarted

in their protectors (Figure 6.1b) causing overload. If an observer tries to reach a relocated

failed process, it will take a look at its RADICTable to �nd the old protector of the failed

process (T6). Then, the observer will ask about that process. The old protector (T6) will

say that it is no longer protecting such a process, and will point who is the new protector

(T5 in Figure 6.1b).

When using spare nodes and a failure occurs, the protector of the faulty processes

consults its SpareTable, and if there is one available spare node (status �free) the protector

contacts the spare and asks if it can adopt the failed processes. In order to solve race

conditions, the consulted spare will answer protectors using a FIFO protocol. Protectors

will update their local SpareTable according to the answers of the spare nodes. If a

consulted spare node is free, the protector of the failed processes transfer the checkpoint

and message log to the spare node and failed processes are restarted (Figure 6.1c). This

113

spare node will change its status to busy. Spare nodes replies with busy when they do no

have enough resources to hold all failed processes.

Considering Figure 6.1c, if process 1 from Node 5 wants to reach process 9, observer

1 will ask T6 about process 9. T6 will point that process 9 is residing now in a spare

node. Then observer 1 will tell T5 to update its RADICTable and its SpareTable and

process 1 will �nally contact process 9. The process described above is distributed and

decentralized, and each process will do it only when it is strictly necessary, avoiding

collective communications. The protector TS has an initial copy of the RADICTable and

the SpareTable, and these tables will be updated on demand.

By using spare node support, the scalability of RADIC architecture is reinforced, since

degradation is avoided.

Taking into account the inclusion of RADIC inside the Open MPI library, the main

problem when restarting a process in another node is that we need an ORTE daemon

running in that node to adopt the new process as a child. Moreover, all future communi-

cations with restarted processes needs to be redirected to their new location. For that

reason, ORTE daemons are launched even in spare nodes, but no application process is

launched on it until it is required as a spare node.

An additional problem that must be addressed is that a sender observer must not con-

sider as a failure the lack of communication with other processes when the receiver process

is doing a checkpoint, is restarting or it has migrated to another node (recon�guration

phase). The sender observer will fail to communicate, and it will consult the receiver's

protector to �nd about the state of the receiver. The protector will indicate that the

process is checkpointing, restarting or has migrated, and the communication will be retried

later or to the new location.

The RADICTable and SpareTable were included inside the job information structure

(orte jmap t) of the Open MPI library. When the parallel application starts, each protector

(ORTE daemon) populates its RADICTable and its SpareTable. The RADICTable and

SpareTable are updated (on demand) when a protector notices that a process has restarted

in another place.

If the application runs out of spares, the default mechanism of RADIC is used (Figure

6.1b).

6.2.2 Experimental Validation

A fault tolerant architecture, generally introduces some kind of overhead in the system it

is protecting. These overheads are generally caused by redundancy in some of its forms.

The overheads introduced by RADIC are mostly caused by the uncoordinated checkpoints

114

and the pessimistic log mechanism.

These experimental results will show the impact of node failures and how the per-

formance of the system is degraded because of the loss of the computational capacity

if there are no spare nodes available. The experimental evaluation that has been done

focuses on showing the bene�ts of automatic failure detection and recovery by managing

transparently spare nodes in order to avoid the impact on the performance of applications

when resources are lost.

Applications

The applications that we have used in order to test our automatic spare nodes management

are the following:

� Matrix Multiplication: It is a MPI based benchmark. The matrix multiplication

application is modeled as a master/worker application, the master sends the data

to the workers only at the start, and collects the results when the application

�nalizes (static work distribution among processes). Each application process is

assigned to one core during failure-free executions. The matrix multiplication

implemented has few communications (only at the beginning and at the end).

� LU Benchmark. It is a MPI based benchmark which is part of the NAS Parallel

Benchmarks (NPB) [3].

� MPI SMG2000. This is a parallel semi-coarsening multigrid solver that uses a

complex communication pattern and performs a large number of non-nearest-

neighbor point-to-point communication operations. Application described in

detail in [68].

The checkpoint intervals that we use to make the experiments are only for test purposes.

If we want to de�ne valid checkpoint intervals we can use the model proposed in [34]. Each

value presented as result is a mean of three di�erent independent experiments.

Obtained Results

Our main objective here is to illustrate the application performance degradation avoidance

when failures occur in parallel computers. By using spare nodes automatically and

transparently to restart failed processes, we can decrease the MTTR of failed processes to

a minimum, while maintaining application performance as it was before failure.

As we mentioned before, it is crucial to deal with failures as fast as possible. If the

application loses a node and we use the Basic Protection mode of RADIC one of the nodes

115

(a) Master Worker Matrix Multiplication (32P:8Px4N;2SN). Observing Process 9 in node 2; after
restart with the basic protection mode in node 1. After restart with the resilient protection mode
process 9 goes to nodes 5 and 6 (Spare Nodes).

(b) NAS LU C Benchmark (8P:2Px4N;1SN). Observing Process 1 in node 1; after restart with
the basic protection mode in node 4. After restart with the resilient protection mode process 1
goes to node 5 (Spare Node).

Figure 6.2: Failure Recovery in RADIC with and without Spare Nodes.

may become overloaded. As a consequence of this, the whole application throughput could

decreases.

Replacing failed nodes with spares is not trivial, because it is necessary to include

116

(c) SMG2000 Application. Observing Process 1 in node 1; after restart with the basic protection
mode in node 4. After restart with the resilient protection mode process 1 goes to node 5 (Spare
Node).

Figure 6.2: Failure Recovery in RADIC with and without Spare Nodes. (cont.)

the spare node into the parallel environment world and then restart the failed process

or processes in it transparently and automatically. Therefore, application performance

is affected only by a short period. Following RADIC policies, when restarting a process

is not necessary to use a barrier so all non-failed processes know the new location of the

restarted process. This operation will be made on demand.

The experiments illustrate how performance (in terms of throughput) is affected after

a failure without using spare nodes, and the benefits of using them.

To obtain the operations per second of the Matrix Multiplication application we divided

the sub-matrix size that computes each process by the time spent into an internal iteration.

Figure 6.2a illustrates three executions of the Matrix Multiplication benchmark with

a matrix size of 3000 and with 50 iterations. For this experiment we have set a test

checkpoint interval of 30 secs and we executed the application with 32 processes in 4 nodes

with 8 processes per node and 2 spare nodes (32P:8Px4N;2SN). When using the basic

protection mode of RADIC (Recovery-BM) and the failure of the node 2 occurs at iteration

5, the application loses around 40% of its initial throughput. However, the application

running with the resilient protection mode (Recovery-RM), loses performance only for one

iteration due to the restart process and then the initial throughput is maintained. The

second failure only is injected in the iteration 21 in the node 5 (which is the spare that

117

replace node 2) of the application with resilient protection.

Figure 6.2b shows the execution of the LU class C benchmark with 8 processes

distributed among 4 nodes (8P:2Px4N;1SN). We have only set one checkpoint at 30 secs

(iteration 6) and a failure is injected at 75 secs (iteration 16). After the failure and using

Recovery-BM the application loses around 35% of throughput, and with Recovery-RM the

throughput is reduced in 25% and then is maintained as before the failure. In order to show

how throughput is lost, after restart we have used process a�nity in the Recovery-BM so

restarted process compete with the other application processes residing in the eight-core

node.

Finally, in Figure 6.2c we show the behavior of the solver 3 of the SMG2000 benchmark

using 8 processes distributed among 4 nodes (8P:2Px4N;1SN), with a size of 300 elements,

3 dimensions and one checkpoint at 100 secs. After the failure at iteration 25 using

Recovery-BM, the application loses around 15% of its initial throughput (due to core

sharing). However, after the failure at iteration 24 and the restart using Recovery-RM, the

application recovers its initial throughput. It is important to mention here that checkpoints

and restarts are quite expensive because checkpoints have a size of 2GB each.

As we are aware, the execution time of a faulty application will depend on the moment

in which the failure is injected and the checkpoint interval. That is why we focus on show

the degradation in terms of throughput when treating faults, and not in the execution

time in these experiments.

Considering the obtained results we can conclude that the usage of automatic spare

nodes reduce the MTTR of processes since no human intervention is needed. Also spare

nodes help to maintain throughput in applications, and of course to avoid system overload

and degradation.

6.3 Hybrid Message Pessimistic Logging

In section 4.2, we have described in detail the Hybrid Message Pessimistic Logging (HMPL)

and in this section we present the experimental results that show the bene�ts of this

message logging approach. We compare the HMPL with a pessimistic receiver-based

message logging in failure-free executions and when applications are a�ected by failures.

The main goal of the HMPL is to reduce the overhead added in parallel applications

during failure-free executions without increasing the time spent in the recovery phase.

In subsection 6.3.1 we are going to present the results obtained during failure-free

executions with the HMPL comparing it with the default pessimistic receiver-based message

logging (RBML) used in RADIC. Next, in subsection 6.3.2 we are going to compare the

118

recovery times using the RBML and the HMPL. Finally, in subsection 6.3.3 we analyze

the overheads obtained in executions with the HMPL and discuss its advantages and

limitations.

6.3.1 Comparison of Logging Techniques in Failure-free Execu-

tions

In these experiments we measure the impact of each message logging technique without

taking into account the impact of checkpoints. The main objective of these experiments is

to analyze the impact of two message logging techniques assuming the usage of two di�erent

checkpoint strategies: Uncoordinated Checkpoint and Semi-Coordinated Checkpoint [19].

When the strategy used is uncoordinated checkpoint, all message transmissions are logged

in a di�erent node. When using a semi-coordinated strategy, only message transmissions

that go from one node to another node are saved in a logger residing in another node.

The time required to take semi-coordinated checkpoints may be larger than uncoordinated

checkpoints since coordination between processes in the same node is needed, but this

impact is not analyzed here.

The presented experiments have been made using the RADIC architecture included

inside Open MPI. In these experiments, the logger threads share cores with application

processes, so there is also an impact in computations but that is homogeneously distributed

among processes by using CPU a�nity to attach each logger to a core.

As testbed we have used the LU, CG and BT benchmarks from the Nas Parallell

Benchmarks (NPB) suit with classes B and C [3]. Each result presented represents a mean

of 5 di�erent and independent executions.

In Figure 6.3, we summarize all the results obtained by comparing the Hybrid Message

Pessimistic Logging (HMPL) approach with a Pessimistic Receiver-based Message Logging

(RBML) approach. Below we explain each type of execution made:

� Recv: Executions made using the default pessimistic RBML mechanism of RADIC.

All messages are saved in a logger residing in another node, even messages

between processes residing in the same node. We are assuming the usage of a

fully uncoordinated checkpoint approach.

� Hybrid: In these executions we are using the Hybrid Message Pessimistic Log-

ging (HMPL) proposed in this thesis. We are assuming the usage of a fully

uncoordinated checkpoint approach.

119

(a) Overhead comparison using LU benchmark with classes B and C.

(b) Overhead comparison using CG benchmark with classes B and C.

(c) Overhead comparison using BT benchmark with classes B and C.

Figure 6.3: Comparison of overheads using the Hybrid Message Pessimistic Logging and
the Pessimistic RBML considering the NAS Parallel Benchmarks.

• Recv-SemiCoord: Executions made using the default pessimistic RBML mecha-

nism of RADIC. In this case we are assuming the usage of the Semi-coordinated

Checkpoint of RADIC Architecture [19].

• Hybrid-SemiCoord: Executions made using the HMPL proposed in this thesis

using the Semi-coordinated checkpoint approach of RADIC.

According to the results shown in Figure 6.3, we can observe that for these experiments,

the HMPL reduces overheads in all cases. In each column we can observe the overhead

120

introduced by each message logging technique used in comparison to the execution without

using message logging. For this set of experiments, we have used a fill-up strategy to map

processes in each node. Nevertheless, as RADIC requires at least 3 nodes to work properly,

experiments with 16 processes have been made with 3 nodes with 7 processes in the �rst

and second node and 2 processes in the third.

Figure 6.3a shows the overheads obtained when executing the LU benchmark. When

using the uncoordinated approach of RADIC we can observe an overhead reduction between

6% (Class B, 64 processes) and 21% (Class B, 16 processes). If we use the semi-coordinated

checkpoint option of RADIC we can observe an overhead reduction between 1% (Class C,

16 processes) and 10% (Class B, 64 processes).

Figure 6.3b shows the overheads obtained when executing the CG benchmark. When

using the uncoordinated approach of RADIC we can observe an overhead reduction of 8%

in the worst case scenario (Class C, 16 processes) and 27% (Class B, 64 processes) in the

best case. If we use the semi-coordinated checkpoint option of RADIC we can observe an

overhead reduction between 1% (Class C, 64 processes) and 34% (Class B, 32 processes).

Results obtained with the BT benchmark are presented in Figure 6.3c. With the

HMPL and the uncoordinated checkpoint approach of RADIC we can observe an overhead

reduction of 4% in the worst case scenario (Class C, 25 processes) and 20% (Class B, 36

processes) in the best case. If we use the semi-coordinated checkpoint option of RADIC

we can observe an overhead reduction between 1% (Class C, 36 processes) and 16% (Class

B, 36 processes).

The obtained results show that the HMPL is able to reduce overheads in parallel

applications during failure-free executions. However, in the next subsection we will

evaluate the recovery times of the HMPL and compare them with a pessimistic RBML.

6.3.2 Experimental Results in Faulty Executions

Here we analyze and compare the impact of the the Hybrid Message Pessimistic Logging

(HMPL) approach with a Pessimistic Receiver-based Message Logging (RBML). The main

objective of these experiments is to show that the HMPL is able to reduce overheads in

applications a�ected by failures. The Experiments presented here are executed using 3

nodes and 16 processes, the �rst two nodes with 7 processes and the third one with 2

processes. The uncoordinated checkpoint approach of RADIC is used.

In these experiments we consider that the applications are divided in events, where an

event represents the reception of one message in one process. Checkpoints are taken in

the same event in each pair of executions. Failures are also injected injected in the same

event, in order to properly compare each pair of executions. Failures are injected in the

121

Figure 6.4: Comparison between the Pessimistic Receiver-based Message Logging and the
Hybrid Message Pessimistic Logging in executions a�ected by 1 failure.

nodes with 2 processes in it. One spare node is used to restart failed processes.

In the executions made, the overheads in computations are homogeneously distributed

among processes by using CPU a�nity to attach each logger thread to a core.

In Figure 6.4 we summarize the results obtained by comparing the HMPL approach

with a Pessimistic RBML approach considering a single failure. This �gure summarizes

the overheads in faulty executions, using the LU and the CG benchmarks with classes B

and C. With the class B of the LU benchmark the HMPL introduces 20% less overhead

than the RBML and 9% less overhead with the class C. Considering the class B of the

CG benchmark the HMPL introduces 14% less overhead than the RBML, and 7% less

considering class C.

In Figure 6.5 is presented a breakdown of the times obtained when injecting a single

failure in the parallel executions. In order to extract these measures we have inserted

timers inside the RADIC architecture that allow us to determine time consumption of each

step of the executions. The message log sizes and checkpoint sizes are calculated when

they are transferred to the spare nodes. Each row of the Figure 6.5 is explained below:

� Pre-checkpoint Time: represents the time spent from the beginning of the appli-

cation till the checkpoint takes place.

� Time to failure after checkpoint : represents the time elapsed between the check-

122

Figure 6.5: Breakdown of Recovery Times in executions a�ected by 1 failure.

point and the failure injection.

� Checkpoint and Message Log to spare Time: is the time spent in transferring data

to the spare node.

� Checkpoint Restart Time: is the time spent in restarting the process from check-

point.

� Log Consumption Time: represents the time spent in reading messages from the

message log. When using the HMPL, it also includes the time spent in copying

messages from the temporary bu�er of senders.

� Time from restart to end : is the time elapsed between restart �nalization and

application ending.

The main di�erence between the pessimistic RBML and the HMPL can be observed in

the Log Consumption Time row, since when using the HMPL failed processes should ask

some messages to their senders and this causes an almost negligible overhead.

Recovery times of the BT benchmarks are not presented here because the current

RADIC implementation is not able to re-execute properly failed processes that belong to

123

communicators created with the MPI Comm split command. The inclusion of restarted

processes inside a created communicator will be address in the future.

In faulty executions the HMPL maintains almost the same complexity of the RBML

(garbage collection is simple) slightly increasing the time to consume the message log.

However, this has an almost negligible impact in the parallel execution, thus the time

spent in recovery of the RBML and the HMPL are almost the same. Therefore, the HMPL

seems to be a suitable replacement to pessimistic RBML, since it reduces the overhead in

failure-free executions with a negligible impact in recovery times.

6.3.3 Limitations and Overhead Analysis

According to what has been showed in the previous experiments, the HMPL performs

better than the pessimistic RBML. However, the overheads in some situations and for some

speci�c con�gurations could be high and may discourage the usage of message logging.

Here we are going to discuss the limitations of the HMPL and analyze possible causes

of overheads. Speci�cally, we will consider the CG benchmark (Figure 6.3b) which presents

high overheads in some scenarios. The aim of this discussion is to discover the bottlenecks

that avoid the HMPL to perform better and analyze the best case scenarios for this

message logging technique.

Figure 6.6 illustrates the execution of the CG benchmark class B and D. In these

executions we have put 2 processes per-node, using a total of 8 nodes in order to avoid

system overload, so the applications could be analyzed easily. As can be observed, overheads

in the class D are lower than in class B. The principal reason of this is that the execution

of class B in our execution environment (cluster) is communication-bound.

We have analyzed the execution of each of these benchmarks with the PAS2P tool

[85]. We �nd out that the communications represent 82% of the execution time of the

CG class B with 16 processes. Then, any disturbance introduced in the communications

will considerably a�ect the total execution time. Considering the CG class D with 16

processes, the communication time represents 36% of the application, therefore this is a

computation bound scenario.

The HMPL focuses on removing blocks from the critical path of the application.

However, extra internode messages will be created, and if these transmissions could not be

overlapped with computations there is no way to hide overheads. It is important to note

that in communication-bound applications, the overheads will be considerable since the

HMPL will not be able to overlap the logging step with computation.

In computation bound scenarios, message logging approaches will be able to hide

a percentage of the overheads in communications with the computations. Taking into

124

Figure 6.6: Overhead Analysis of the CG benchmark.

account that the HMPL focuses on removing blocks from the critical path of applications,

this gives a better chance to overlap the logging operation with computations.

The HMPL is able to considerably reduce the overheads when comparing it with the

RBML as have been seen in subsection 4.3. However, if we consider the computation

bound scenario of the CG class D in Figure 6.6 as an example, the HMPL is able to reduce

around 13% of overhead in comparison with the RBML. Then, it is important to analyze

the possible causes that prevent better results.

We have �rst analyzed the best scenarios for the HMPL, in order to �nd out what

is the maximum improvement that could be achieved. A synthetic application has been

developed in order to determine the maximum potential of the HMPL. In this synthetic

application we have a process that sends messages of di�erent sizes to a receiver, and after

the reception of each message the receiver do some computation. Figure 6.7a illustrates

the behavior of the synthetic application when using a pessimistic RBML technique, and

Figure 6.7b shows the execution of the synthetic application using the HMPL. If the

computation is enough to cover the transmission of the received message to its protector,

then the impact in the execution time should be very low.

Figure 6.8 illustrates the best case scenario for the HMPL, where it is able to reduce up

to fourteen times the added overhead of the RBML. In order to achieve such a reduction,

receiver processes should execute computation that allows a total overlap of the logging

operation.

Scienti�c parallel applications are normally composed by a set of phases that are

125

(a) Operation with the Receiver-Based Message Logging.

(b) Operation with the Hybrid Message Pessimistic Logging.

Figure 6.7: Synthetic Application Operation.

Figure 6.8: Overhead Analysis with the Synthetic Application.

repeated during application execution [85]. Some of these phases could be computation

bound and others communication bound. If we use the temporary bu�ers of the HMPL

to save messages during communication bound phases without retransmitting them to

the protectors, we can decrease overheads in these phases. Then, in computation bound

phases, messages in these temporary bu�ers could be sent to the loggers threads. This

method will allow to reduce impacts in communications, therefore reducing overheads.

In order to apply the above mentioned method, it will be necessary to �rst analyze

and determine application phases. If a tool such as PAS2P is used, we will be able to

126

determine the behavior (communication bound, computation bound, balanced) of each

phase and this information could be used by the underlying fault tolerance support to

determine the best moment to log messages in the logger threads.

Such a methodology is beyond the scope of this thesis, and thus left as an open line of

research.

6.4 Determining suitable Fault Tolerance con�gura-

tions

In section 5.2, we have discussed the in
uence in performance that message logging tasks

mapping causes. We have proposed to analyze the parallel applications that are going to

be executed in order to assign cores for fault tolerance tasks to decrease logging overheads

and to save memory. In this section, we present experimental evaluation that has been

carried out in order to show that by characterizing parallel applications we are able to

�nd a suitable fault tolerance task mapping.

Most of the overhead added by a receiver-based logging protocol a�ects communications.

In order to lower the impact of a message logging technique we can assign more work

per process which allows us to hide the overheads in communications, as it has been

discussed in section 5.3. However, if there are no available computational resources for the

fault tolerance tasks, the overheads in computations could also become considerable. The

main objective of this experimental validation is to prove that by characterizing a parallel

application, suitable con�gurations that reduce the impact of message logging techniques

can be found.

When executing a parallel application with fault tolerant support is desirable to store

checkpoints and message logs in main memory avoiding the �le system, thus allowing fault

tolerance mechanisms to execute faster. Also, if we consider an event triggered checkpoint

mechanism where checkpoints take place when a message-log-bu�er in memory is full and

we save memory by executing less application processes per node, we can use a bigger

message-log-bu�er, thus the checkpoint interval could be longer.

In this section, we focus on determining a suitable message logging task mapping,

taking into account the overhead introduced in parallel executions. In order to determine

the behavior of parallel applications, tools that characterize and extract traces of the

applications are a good option. Such tools could be used when the applications that are

going to be executed are complex to analyze manually. In order to select the most suitable

message logging task con�guration, we propose to use the PAS2P tool [85].

127

Table 6.1: Process Mapping in an eight-node Cluster.

Total OS-Based & Shared Mapping Own Resources Mapping

Processes (Per-node Processes) (Per-node Processes)

16 3 Nodes: 6 - 6 - 4 3 Nodes: 6 - 6 - 4

25 4 Nodes: 6 - 6 - 6 - 7 4 Nodes: 6 - 6 - 6 - 7

32 4 Nodes: 8 - 8 - 8 - 8 5 Nodes:6 - 6 - 6 - 7 - 7

36 5 Nodes: 7 - 7 - 7 - 7 - 8 6 Nodes: 6 - 6 - 6 - 6 - 6 - 6

49 7 Nodes: 7 - 7 - 7 - 7 - 7 - 7 - 7 7 Nodes: 7 - 7 - 7 - 7 - 7 - 7 - 7

64 8 Nodes: 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 na

First, we execute the parallel application using the PAS2P tool without fault tolerance

in order to extract the parallel signature of the application. Then, the parallel signature is

executed with at most three con�gurations of the message logging tasks. Executing the

parallel signature takes 5% of the total execution time in almost all cases. This allows us

to quickly determine which strategy introduces less overhead during failure-free executions.

Figure 6.9 and Figure 6.10 show the results obtained assuming an uncoordinated

checkpoint approach and a semi-coordinated checkpoint approach. We have used the

pessimistic RBML and the HMPL that has been proposed in this thesis as message logging

techniques. Results presented here represent means of 3 executions. Three di�erent

con�gurations has been tested:

� OS-Based: No a�nity is used to attach logger threads to computational cores.

Then, the OS scheduler has freedom to allocate each thread.

� Shared Resources: A�nity is used to attach each logger thread to a computation

core, sharing these resources with the application processes.

� Own Resources: A�nity is used to attach logger threads to a subset of cores

avoiding the competition for cores between application processes and logger

threads.

In order to distribute processes among the available cores, we have mapped the

application processes as shown in Table 6.1. As can be seen, there is not one solution that

works �ne for every con�guration. Then, it is crucial to �rst characterize properly the

application in order to determine how we should con�gure the parallel tasks in combination

with the message logging tasks. However, for these experiments the semi-coordinated

approach in combination with HMPL are always the right choice taking into account their

impact in overheads.

128

(a) Overhead comparison using LU benchmark with classes B and C.

(b) Overhead comparison using CG benchmark with classes B and C.

(c) Overhead comparison using BT benchmark with classes B and C.

Figure 6.9: Comparison of overheads using the Hybrid Message Pessimistic Logging and
the Pessimistic RBML considering the NAS Parallel Benchmarks assuming Uncoordinated
Checkpoint.

6.5 Increasing Performability of Parallel Applications

In section 5.3, we have explained in detail our methodology to make effi cient executions

of SPMD applications using the pessimistic receiver-based message logging (RBML)

implemented into RADIC architecture. In this section we show more experiments that

validate our analytical model.

6.5.1 Applications

The SPMD applications used to validate our methodology comply with the following

characteristics: regular, local and static. Our methodology could only be applied in

129

(a) Overhead comparison using LU benchmark with classes B and C.

(b) Overhead comparison using CG benchmark with classes B and C.

(c) Overhead comparison using BT benchmark with classes B and C.

Figure 6.10: Comparison of overheads using the Hybrid Message Pessimistic Logging and
the Pessimistic RBML considering the NAS Parallel Benchmarks assuming Semicoordinated
Checkpoint.

applications that comply with these characteristics. The applications are:

• Heat Transfer. It follows a Single Program Multiple Data (SPMD) communication

pattern, using MPI. This application allows overlapping between the computa-

tion steps and the communication steps and it is written using non-blocking

communications.

• Laplace Solver. It follows a Single Program Multiple Data (SPMD) commu-

nication pattern, using MPI. This application allows overlapping between the

computation steps and the communication steps and it is written using non-

blocking communications.

130

Figure 6.11: Computation and Communication characterization of the Heat Transfer
Application and the Laplace Solver for a tile.

In order to carry out the experiments, each application has been executed 5 times, and

the results presented here represent the mean of these independent executions.

6.5.2 Prediction Analysis

Firstly, we evaluate the prediction quality achieved with our methodology. The main

objective of the experimental validation presented here is to prove that we can determine

analytically a suitable number of cores to execute an application, obtaining a maximum

speedup taking into account an effi ciency threshold while using a message logging technique.

The first phase of our methodology is the Characterization Phase. Figure 6.11 illus-

trates the results obtained for each value necessary to apply our methodology, using two

applications with and without message logging. As can be observed, most of the impact

of the RBML is concentrated in communications.

131

Table 6.2: Theoretical and Practical Data of executed Applications

Application
Problem

Size
Desired
Effic(%)

Cptint CommT �ft ST Ncores
Obtained
Effic(%)

abs(Error)
(%)

Heat Transfer Tuned
1000x1000

75 2:2E−8 3:79E−6 172.09 133.03 56 76 1

Heat Transfer Tuned
With FT 1000x1000

75 2:71E−8 7:15E−6 263.96 201.95 24 80.4 5.4

Laplace Solver Tuned
1400x1400

85 1:72E−8 3:79E−6 220.12 191.07 54 83.57 1.43

Laplace Solver Tuned
With FT 1400x1400

85 2:2E−8 7:15E−6 325.15 280.36 24 88.94 3.94

Once the necessary data has been extracted in the characterization phase and the

desired e�ciency value has been selected, Equation 5.14 can be used to obtain the ideal

Supertile size (Kn) that allows us to overlap communication with computations. Then, by

applying Equation 5.6 the suitable number of nodes can be obtained.

Ncores = Mn=Kn (5.6)

K2 � 4 �K � effic � �ft(�; !) �K + 4 = 0 (5.14)

Table 6.2 reveals the data obtained in the characterization phase and the values

obtained by applying Equation 5.14 for the two tested applications. The Obtained Effic(%)

columns presents the real e�ciency values obtained when executing each application.

When solving the equations, the values Ncores would probably have decimal values, the

row Ncores shows rounded values. It is important to highlight that the mapping and

scheduling techniques used are detailed in subsection 5.3.3 and subsection 5.3.4.

In Figure 6.12a we show executions of the Heat Transfer Application, in this example

we have �xed the e�ciency threshold(Effic) value at 75%. Considering an execution of a

tuned application without using the message logging approach, our model tells us that the

highest speedup under the de�ned e�ciency is achieved using 56 computation cores. In

order to prove our prediction, we have executed the application using 56 cores obtaining a

1% e�ciency error. However, when using the logging protocol the whole scenario changes

because of the impact in communication and computation. Figure 6.12a shows us that

executing with 56 computation cores, using fault tolerance, will allow us to achieve about

50% e�ciency.

Nevertheless, in order maintain our execution near to the 75% threshold of e�ciency

using the FT approach, we recalculate the values using our model. In this case, it is

determined that application with fault tolerance support has to be executed with 24 cores

132

(a) Heat Transfer App - Size: 1000x1000.

(b) Laplace Equation Solver - Size: 1400x1400.

Figure 6.12: Performance and Prediction Analysis using the Methodology to improve
Performability of SPMD Applications.

in order to maintain the relationship between e�ciency and speedup. The maximum error

rate obtained was 5.4%.

Another example tested was the Laplace solver (Figure 6.12b). In this case we �x our

133

e�ciency threshold to 85%, and the ideal number of computation cores to be used without

the logging protocol is about 54. However, when the application is going to be executed

using the logging protocol, the maximum speedup under our threshold is achieved with 24

computation cores, and when using more cores the e�ciency starts to get considerably

worse. It is important to notice that we have considered 56 cores in order to maintain the

scale of the Figure 6.12b, but for that case the methodology recommends the usage of 54

cores (as shown in Table 6.2).

Figure 6.12a and Figure 6.12b reveal that when scaling up to 64 cores, the speedup of the

application with message logging starts to decrease. The message logging protocol would

scale side-by-side with applications, but when the application becomes communication

bound, the message logging technique would aggravate the situation.

6.5.3 Weak Scalability and Overhead Analysis

Here we show how the our methodology allows us to determine problem sizes (M) that will

scale properly according to the number of cores used (Ncores). An analysis of the overhead

introduced by the pessimistic RBML approach is also presented here. The objective of this

analysis is to prove that when the system is characterized and suitable balance between

computation and computation is achieved, the overhead of the message logging technique

used is predictable and remains almost constant.

By using the �ft values showed in Table 6.2 for experiments with message logging

and by applying Equation 5.14, it is possible to determine the Supertile size. Taking into

account the Heat Transfer Application, by applying Equation 5.6 we can determine that

24 cores will allow us to obtain near to 75% of e�ciency for a problem size of 1000x1000.

Then, by �xing Ncores to 24 (without decimal values) and by solving Equation 5.6 for

Kn we will obtain a Supertile dimension size of 204. If the same procedure is made with

the Laplace Solver with message logging for an e�ciency value of 85%, we will obtain a

Supertile dimension size of 285.

In Figure 6.13 we show how our methodology allows us to maintain the prediction quality

when scaling the size of the problem considering a selected e�ciency and maintaining the

Supertile size.

In Figure 6.13a the e�ciency is �xed to 75% and in Figure 6.13b is �xed to 85%. As

can be seen in both cases, the di�erence between the predicted e�ciency value and the

obtained e�ciency is near 5% for the worst case.

When using the pessimistic RBML, all messages transmissions times are increased

and also computational times are a�ected when processes compete for resources. This

was evidenced during the characterization step (Figure 6.11) and it is considered when

134

(a) Heat Transfer App - ST size: 2042

(b) Laplace Equation Solver - ST size: 2852

Figure 6.13: Weak Scalability Analysis of SPMD applications with Message Logging.

determining the Supertile size as was shown above.

Figure 6.14 shows a comparison in terms of speedup between tuned SPMD appli-

cations and tuned SPMD applications using the pessimistic RBML. When executing

both applications we properly scale the application workload maintaining the per-process

workload.

135

(a) Heat Transfer App - ST size: 2042

(b) Laplace Equation Solver - ST size: 2852

Figure 6.14: Overhead Analysis of SPMD applications with Message Logging.

In Figure 6.14a we show di�erent executions using the Heat Transfer application and

we see how when scaling the size of the problem maintaining the Supertile size the overhead

introduced remains around 50%. The predicted Speedup and e�ciency also have a very

small error when comparing them with the real measures.

136

Figure 6.14b shows the results obtained with the Laplace Equation solver. Again, when

scaling the application workload maintaining the relationship between communication and

computation the overhead introduced is maintained around 45%.

It is very important to consider that applications are paying these overheads in exchange

for protection against node failures.

Experiments have shown that characterizing the message logging e�ects in computation

and communication for SPMD applications, allows us to provide a better number of

processes or computational cores to be used in order to improve resource utilization while

increasing performability.

137

Hugo Daniel Meyer. PhD Thesis 2014.

138

Chapter 7

Conclusions

In the previous chapters, we have presented the conception, design, implementation and

evaluation of the main contributions of this thesis. The �rst of these contributions is

the Hybrid Message Pessimistic Logging (HMPL). This technique aims to reduce the

impact of pessimistic receiver-based message logging during failure-free executions without

harming the recovery phase of this protocol.

The second contribution focus on increasing the performability of parallel applications.

In order to achieve this, we have proposed and evaluate the advantages of automatic

management of spare nodes in HPC clusters to minimize the degradation of applications

when failures occur. We have also propose a methodology that allows us to evaluate

con�gurations of message logging tasks of the RADIC architecture, in order to select the

one that reduces the disturbance in failure-free executions.

Finally, as third contribution we have presented a methodology that allows to obtain

the maximum speedup for a de�ned level of e�ciency when executing SPMD applications

with a message logging protocol.

Throughout this thesis, we have discussed the objectives and methods, up to the testing

and validation of proposals. Having completed all the stages that comprise our research,

we are now able to present the �nal conclusions and further work of this thesis.

7.1 Final Conclusions

In this thesis, we have de�ned improvements to current message logging techniques

that bene�t the execution time of applications that run with a transparent and scalable

fault tolerant support. The policies proposed in this thesis aim to reduce the impact of

fault tolerant techniques and they have proved to be suitable solutions to improve the

performance and dependability of parallel applications.

139

Hybrid Message Logging Approach

One of the main objectives of this thesis was to reduce to negative impact of message

logging techniques in parallel executions. In order to comply with this objective, we have

proposed the Hybrid Message Pessimistic Logging. The HMPL is a novel pessimistic

message logging approach that combines the advantages of two of the most classical message

logging approach: Sender-based Message Logging and Receiver-based Message Logging.

The HMPL approach focuses on providing a fault tolerant solution with low MTTR of

processes by lowering the complexity of the recovery process of Sender-based approaches

and at the same time reducing the impact of failure-free executions in comparison with

receiver-based approaches.

This work relies on the usage of data structures to save messages temporarily (in

senders and receivers) and allowing the application to continue its execution without

restricting message emissions while other messages are being saved in stable storage.

Increasing Performability of Applications

The automatic management of spare nodes allows failed processes to restart faster and

avoid the penalties in throughput that could be caused when overloading nodes in a parallel

execution. The overloads in multicore clusters could not only a�ect computational times,

but also when several MPI processes compete for memory bandwidth or network access

this two could become a bottleneck. The automatic spare node management have been

integrated inside the RADIC architecture and the results prove that the computational

capacity after a failure is maintained and processes continue with the same throughput

level that they had before a failure.

Another main objective of this thesis was to integrate fault tolerance techniques

e�ciently into parallel systems, considering applications' behavior. Taking into account

this objective, we have proposed a methodology that consists on characterizing and

analyzing possible con�gurations of a message logging approach in order to �nd the most

suitable according to application behavior. This is done by characterizing the parallel

application (or a small kernel of it) obtaining the computation and communication times

and the disturbance caused by the logging approaches. Results obtained have proved that

by characterizing parallel applications in combination with the message logging tasks allows

us to determine con�gurations that decrease the overheads during failure-free executions.

140

Case Study: Methodology to increase Performability of SPMD

Applications

In order to meet the performability objective when executing parallel applications on

computer clusters, we should consider how the fault tolerance tasks a�ect applications'

tuning. Taking into account that the message logging tasks are responsible for most of the

overhead in uncoordinated approaches, we have proposed a methodology to characterize

the overhead that will be added, and then con�gure the parallel application in order for it

to be executed more e�ciently.

Our proposal allows us to provide a new feature to applications that have been tuned

to be executed e�ciently, this feature is resiliency. Using the proposed methodology, users

can determine how well an application will run in terms of speedup and e�ciency, without

doing exhaustive executions in order to obtain the ideal number of processes or computer

cores to be used.

Future works should try to extend our methodology to other parallel paradigms and

to a larger number of parallel applications. The analysis of how other fault tolerance

tasks (such as checkpoints) a�ect performance of parallel applications in order to propose

performability models is also pending.

7.2 Future Work and Open Lines

This thesis has covered several aspects of scalable fault tolerance techniques and perfor-

mance analysis. However, this research also gives rise to some open lines and future work,

which are:

� Extend the analysis of the Hybrid Message Pessimistic Logging to a more widely

set of parallel scienti�c applications.

� Extract application data that could be helpful to determine the best moments

to log messages during application executions. By using the Hybrid Message

Pessimistic Logging we can save messages in the temporary bu�ers during commu-

nication bound stages of applications and allow the logging operation to continue

during computation bound stages.

� Fully include the support for Semi-coordinated checkpoint inside RADIC-OMPI

and test our proposals in combination with this technique.

141

� Analyze the relationship between message sizes and logging overheads in com-

putations, in order to determine the number of cores that should be saved for

message logging tasks.

� Extend the methodology for e�cient execution of SPMD applications to other

parallel paradigms and to a larger number of parallel applications. The analysis

of how other fault tolerance approaches, such as checkpoints, a�ect performance

of parallel applications in order to propose performability models is also pending.

� Another open line that we will address is the inclusion of our fault tolerance

techniques in cloud environments. For this purpose, a research internship has

been made in the University of Innsbruck in order to improve our knowledge in

performance analysis and site con�gurations in cloud.

7.3 List of Publications

The work presented in this thesis has been published in the following papers.

1. H. Meyer, M. Castro, D. Rexachs and E. Luque. Propuestas para

integrar la arquitectura RADIC de forma transparente, In CACIC

2011 - XVII Congreso Argentino de Ciencias de la Computaci�on , pp.

347-356, La Plata, Argentina, October 2011. [58]

This paper presents two proposals to integrate the RADIC architecture in message

passing systems. First is discussed the integration of RADIC inside a speci�c

MPI library and the is presented an analysis of the integration at socket level.

2. H. Meyer, D. Rexachs and E. Luque. RADIC: A Fault Tolerant Mid-

dleware with Automatic Management of Spare Nodes, In PDPTA

2012 - The 2012 International Conference on Parallel and Distributed

Processing Techniques and Applications, pp. 17-23, Las Vegas, USA,

July 2012. [59]

This paper proposes the integration and automatic management of Spare nodes

inside the RADIC architecture. This proposal allows to reduce the degradation in

case of failure by automatically replace failed nodes maintaining the computational

capacity.

3. H. Meyer, R. Muresano, D. Rexachs and E. Luque. Tuning SPMD

Applications in order to increase Performability, In ISPA 2013 - The

142

11th IEEE International Symposium on Parallel and Distributed Pro-

cessing with Applications, pp. 1170-1178, Melbourne, Australia, July

2013. [60]

This paper proposes a methodology to make e�cient executions of SPMD ap-

plications in multicore clusters with fault tolerant support. This methodology

allows to obtain the maximum speedup for a de�ned level of e�ciency while a

message logging technique is being used.

4. H. Meyer, R. Muresano, D. Rexachs and E. Luque. A Framework

to write Performability-aware SPMD Applications, In PDPTA 2013

- The 2013 International Conference on Parallel and Distributed Pro-

cessing Techniques and Applications, pp. 350-356, Las Vegas, USA,

July 2013. [62]

This paper presents a framework that allows application programmers to write

SPMD applications that make an e�cient resource utilization with fault toler-

ance support. This work proposes to take into account the impact of a message

logging approach while developing applications in order to con�gure applications'

executions.

5. H. Meyer, D. Rexachs and E. Luque. Managing Receiver-based Mes-

sage Logging Overheads in Parallel Applications, In CACIC 2013 -

XVII Congreso Argentino de Ciencias de la Computaci�on , pp. 204-

213, Mar del Plata, Argentina, October 2013. [61]

This paper proposes a methodology that allows to properly select the con�guration

of message logging tasks in order to minimize their impact on parallel applications

during failure-free executions. This methodology relies on the characterization of

the impact of message logging tasks in communication and computation steps of

parallel applications in order to select the most appropriate con�guration taking

into account applications' behavior. This paper has been selected to be published

in the book of best papers of the CACIC 2013.

6. H. Meyer, D. Rexachs and E. Luque. Hybrid Message Logging. Com-

bining advantages of Sender-based and Receiver-based approaches, In

ICCS 2014 - International Conference on Computational Science 2014,

To Appear, Cairns, Australia, June 2014. [63]

This paper presents the Hybrid Message Pessimistic Logging which focus on

lowering the overheads of pessimistic receiver-based message logging techniques

while maintaining low recovery times. This work is based on the combination of

143

sender-based and receiver-based message logging in order to remove the blocking

behavior of pessimistic approaches by using temporary bu�ers in senders and

receivers to save messages.

144

Bibliography

[1] A. Agbaria and R. Friedman. Star�sh: fault-tolerant dynamic mpi programs

on clusters of workstations. In High Performance Distributed Computing, 1999.

Proceedings. The Eighth International Symposium on, pages 167{176, 1999.

doi:10.1109/HPDC.1999.805295.

[2] J. Ansel, K. Aryay, and G. Coopermany. Dmtcp: Transparent checkpointing for

cluster computations and the desktop. In Proceedings of the 2009 IEEE International

Symposium on Parallel&Distributed Processing, pages 1{12, Washington, DC, USA,

2009. IEEE Computer Society. ISBN 978-1-4244-3751-1. URL http://portal.acm.org/

citation.cfm?id=1586640.1587579.

[3] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, and L. Dagum. The

Nas Parallel Benchmarks. International Journal of High Performance Computing

Applications, 1994.

[4] R. Batchu, Y. Dandass, A. Skjellum, and M. Beddhu. Mpi/ft: A model-based approach

to low-overhead fault tolerant message-passing middleware. Cluster Computing, 7(4):

303{315, 10/01 2004.

[5] M. Beck, J. J. Dongarra, G. E. Fagg, G. A. Geist, P. Gray, J. Kohl, M. Migliardi,

K. Moore, T. Moore, P. Papadopoulous, S. L. Scott, and V. Sunderam. Harness: a

next generation distributed virtual machine. Future Generation Computer Systems,

15(5-6):571{582, 10 1999.

[6] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra. Post-failure recovery

of mpi communication capability: Design and rationale. International Journal of

High Performance Computing Applications, 27(3):244{254, August 01 2013.

[7] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Herault,

P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov. Mpich-v:

145

http://dx.doi.org/10.1109/HPDC.1999.805295
http://portal.acm.org/citation.cfm?id=1586640.1587579
http://portal.acm.org/citation.cfm?id=1586640.1587579

Toward a scalable fault tolerant mpi for volatile nodes. In Supercomputing, ACM/IEEE

2002 Conference, pages 29{38, 2002. doi:10.1109/SC.2002.10048.

[8] A. Bouteiller and T. H�erault. MPICH-V2: a fault tolerant MPI for volatile nodes

based on pessimistic sender based message logging. Supercomputing, 2003 ACM/IEEE

Conference, 2003.

[9] A. Bouteiller, T. H�erault, G. Krawezik, P. Lemarinier, and F. Cappello. MPICH-V

Project: A Multiprotocol Automatic Fault-Tolerant MPI. IJHPCA, 2006.

[10] A. Bouteiller, G. Bosilca, and J. Dongarra. Retrospect: Deterministic replay of mpi

applications for interactive distributed debugging. Recent Advances in Parallel Virtual

Machine and Message Passing Interface, 4757:297{306, 2007. doi:10.1007/978-3-540-

75416-9 41. URL http://dx.doi.org/10.1007/978-3-540-75416-9 41.

[11] A. Bouteiller, T. Ropars, G. Bosilca, C. Morin, and J. Dongarra. Reasons for a

Pessimistic or Optimistic Message Logging Protocol in MPI Uncoordinated Failure

Recovery. In IEEE International Conference on Cluster Computing (Cluster 2009),

pages 229{236, New Orleans, �Etats-Unis, 2009.

[12] A. Bouteiller, G. Bosilca, and J. Dongarra. Redesigning the message logging model

for high performance. Concurr. Comput. : Pract. Exper., pages 2196{2211, 2010.

[13] A. Bouteiller, T. Herault, G. Bosilca, and J. J. Dongarra. Correlated set coordination

in fault tolerant message logging protocols for many-core clusters. Concurrency

and Computation: Practice and Experience, 25(4):572{585, 2013. ISSN 1532-0634.

doi:10.1002/cpe.2859. URL http://dx.doi.org/10.1002/cpe.2859.

[14] B. Bouteiller, P. Lemarinier, K. Krawezik, and F. Capello. Coordinated checkpoint

versus message log for fault tolerant mpi. Cluster Computing, 2003. Proceedings. 2003

IEEE International Conference on, pages 242{250, Dec 2003.

[15] F. Broquedis, N. Furmento, B. Goglin, R. Namyst, and P.-A. Wacrenier. Dynamic

task and data placement over numa architectures: An openmp runtime perspective.

Proceedings of the 5th International Workshop on OpenMP: Evolving OpenMP in

an Age of Extreme Parallelism, pages 79{92, 2009. doi:10.1007/978-3-642-02303-3 7.

URL http://dx.doi.org/10.1007/978-3-642-02303-3 7.

[16] D. Buntinas. Scalable distributed consensus to support mpi fault tolerance. Proceedings

of the 18th European MPI Users’ Group Conference on Recent Advances in the Message

146

http://dx.doi.org/10.1109/SC.2002.10048
http://dx.doi.org/10.1007/978-3-540-75416-9_41
http://dx.doi.org/10.1007/978-3-540-75416-9_41
http://dx.doi.org/10.1007/978-3-540-75416-9_41
http://dx.doi.org/10.1002/cpe.2859
http://dx.doi.org/10.1002/cpe.2859
http://dx.doi.org/10.1007/978-3-642-02303-3_7
http://dx.doi.org/10.1007/978-3-642-02303-3_7

Passing Interface, pages 325{328, 2011. URL http://dl.acm.org/citation.cfm?id=

2042476.2042515.

[17] R. Buyya. High Performance Cluster Computing: Programming and Applications.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 1999. ISBN 0130137855.

[18] F. Cappello. Fault tolerance in petascale/ exascale systems: Current knowledge,

challenges and research opportunities. Int. J. High Perform. Comput. Appl., 23

(3):212{226, Aug. 2009. ISSN 1094-3420. doi:10.1177/1094342009106189. URL

http://dx.doi.org/10.1177/1094342009106189.

[19] M. Castro, D. Rexachs, and E. Luque. Adding semi-coordinated checkpoint to radic

in multicore clusters. In PDPTA 2013, pages 545{551, 2013.

[20] L. Chai, Q. Gao, and D. K. Panda. Understanding the impact of multi-core architecture

in cluster computing: A case study with intel dual-core system. Proceedings of the

Seventh IEEE International Symposium on Cluster Computing and the Grid, pages

471{478, 2007. doi:10.1109/CCGRID.2007.119. URL http://dx.doi.org/10.1109/

CCGRID.2007.119.

[21] S. Chakravorty and L. Kale. A fault tolerant protocol for massively parallel systems. In

Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th International,

pages 212{221, April 2004. doi:10.1109/IPDPS.2004.1303244.

[22] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of

distributed systems. ACM Trans. Comput. Syst., 3(1):63{75, Feb. 1985. ISSN 0734-

2071. doi:10.1145/214451.214456. URL http://doi.acm.org/10.1145/214451.214456.

[23] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart

dumps. Future Gener. Comput. Syst., 22(3):303{312, Feb. 2006. ISSN 0167-739X.

doi:10.1016/j.future.2004.11.016. URL http://dx.doi.org/10.1016/j.future.2004.11.

016.

[24] M. Domeika. Software Development for Embedded Multi-core Systems: A Practical

Guide Using Embedded Intel Architecture. Elsevier science and technology, 2008. ISBN

9786611371159. URL http://opac.inria.fr/record=b1130740.

[25] A. Duarte, D. Rexachs, and E. Luque. Increasing the cluster availability using radic.

In Cluster Computing, 2006 IEEE International Conference on, pages 1{8, Sept 2006.

doi:10.1109/CLUSTR.2006.311872.

147

http://dl.acm.org/citation.cfm?id=2042476.2042515
http://dl.acm.org/citation.cfm?id=2042476.2042515
http://dx.doi.org/10.1177/1094342009106189
http://dx.doi.org/10.1177/1094342009106189
http://dx.doi.org/10.1109/CCGRID.2007.119
http://dx.doi.org/10.1109/CCGRID.2007.119
http://dx.doi.org/10.1109/CCGRID.2007.119
http://dx.doi.org/10.1109/IPDPS.2004.1303244
http://dx.doi.org/10.1145/214451.214456
http://doi.acm.org/10.1145/214451.214456
http://dx.doi.org/10.1016/j.future.2004.11.016
http://dx.doi.org/10.1016/j.future.2004.11.016
http://dx.doi.org/10.1016/j.future.2004.11.016
http://opac.inria.fr/record=b1130740
http://dx.doi.org/10.1109/CLUSTR.2006.311872

[26] A. Duarte, D. Rexachs, and E. Luque. An intelligent management of fault tolerance

in cluster using radicmpi. In B. Mohr, J. Tr•a�, J. Worringen, and J. Dongarra,

editors, Recent Advances in Parallel Virtual Machine and Message Passing Interface,

volume 4192 of Lecture Notes in Computer Science, pages 150{157. Springer Berlin

Heidelberg, 2006. ISBN 978-3-540-39110-4. doi:10.1007/11846802 26. URL http:

//dx.doi.org/10.1007/11846802 26.

[27] I. Egwutuoha, D. Levy, B. Selic, and S. Chen. A survey of fault tolerance mech-

anisms and checkpoint/restart implementations for high performance computing

systems. The Journal of Supercomputing, 65(3):1302{1326, 2013. ISSN 0920-8542.

doi:10.1007/s11227-013-0884-0. URL http://dx.doi.org/10.1007/s11227-013-0884-0.

[28] V. Eijkhout. Introduction to High Performance Scientific Computing. lulu.com, 2011.

ISBN 978-1-257-99254-6.

[29] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-

recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375{408,

Sept. 2002. ISSN 0360-0300. doi:10.1145/568522.568525. URL http://doi.acm.org/10.

1145/568522.568525.

[30] I. Eusgeld and F. Freiling. Introduction to dependability metrics. In I. Eusgeld,

F. Freiling, and R. Reussner, editors, Dependability Metrics, volume 4909 of Lecture

Notes in Computer Science, pages 1{4. Springer Berlin Heidelberg, 2008. ISBN

978-3-540-68946-1. doi:10.1007/978-3-540-68947-8 1. URL http://dx.doi.org/10.1007/

978-3-540-68947-8 1.

[31] G. Fagg and J. Dongarra. Ft-mpi: Fault tolerant mpi, supporting dynamic applications

in a dynamic world. Recent Advances in Parallel Virtual Machine and Message Passing

Interface, 1908:346{353, 2000.

[32] K. Ferreira, J. Stearley, J. H. Laros, III, R. Old�eld, K. Pedretti, R. Brightwell,

R. Riesen, P. G. Bridges, and D. Arnold. Evaluating the viability of process replication

reliability for exascale systems. Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Analysis, pages 44:1{44:12, 2011.

doi:10.1145/2063384.2063443. URL http://doi.acm.org/10.1145/2063384.2063443.

[33] L. Fialho, G. Santos, A. Duarte, D. Rexachs, and E. Luque. Challenges and Issues

of the Integration of RADIC into Open MPI. European PVM/MPI Users’ Group

Meeting, pages 73{83, 2009.

148

http://dx.doi.org/10.1007/11846802_26
http://dx.doi.org/10.1007/11846802_26
http://dx.doi.org/10.1007/11846802_26
http://dx.doi.org/10.1007/s11227-013-0884-0
http://dx.doi.org/10.1007/s11227-013-0884-0
http://dx.doi.org/10.1145/568522.568525
http://doi.acm.org/10.1145/568522.568525
http://doi.acm.org/10.1145/568522.568525
http://dx.doi.org/10.1007/978-3-540-68947-8_1
http://dx.doi.org/10.1007/978-3-540-68947-8_1
http://dx.doi.org/10.1007/978-3-540-68947-8_1
http://dx.doi.org/10.1145/2063384.2063443
http://doi.acm.org/10.1145/2063384.2063443

[34] L. Fialho, D. Rexachs, and E. Luque. What is Missing in Current

Checkpoint Interval Models? 2012 IEEE 32nd International Confer-

ence on Distributed Computing Systems, 0:322{332, 2011. ISSN 1063-6927.

doi:http://doi.ieeecomputersociety.org/10.1109/ICDCS.2011.12.

[35] M. P. I. Forum. MPI: A Message-Passing Interface Standard Version 3.0, 09 2012.

Chapter author for Collective Communication, Process Topologies, and One Sided

Communications.

[36] E. Gabriel, G. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J. Squyres, V. Sahay,

P. Kambadur, B. Barrett, A. Lumsdaine, R. Castain, D. Daniel, R. Graham, and

T. Woodall. Open mpi: Goals, concept, and design of a next generation mpi

implementation. In D. Kranzlm•uller, P. Kacsuk, and J. Dongarra, editors, Re-

cent Advances in Parallel Virtual Machine and Message Passing Interface, volume

3241 of Lecture Notes in Computer Science, pages 97{104. Springer Berlin Hei-

delberg, 2004. ISBN 978-3-540-23163-9. doi:10.1007/978-3-540-30218-6 19. URL

http://dx.doi.org/10.1007/978-3-540-30218-6 19.

[37] Q. Gao, W. Huang, M. J. Koop, and D. K. Panda. Group-based coordinated

checkpointing for mpi: A case study on in�niband. In Parallel Processing, 2007.

ICPP 2007. International Conference on, pages 47{47, 2007. ISBN 0190-3918. ID: 1.

[38] A. G�omez, L. M. Carril, R. Valin, J. C. Mouri~no, and C. Cotelo. Fault-tolerant

virtual cluster experiments on federated sites using bon�re. Future Gener. Comput.

Syst., 34:17{25, May 2014. ISSN 0167-739X. doi:10.1016/j.future.2013.12.027. URL

http://dx.doi.org/10.1016/j.future.2013.12.027.

[39] L. A. B. Gomez, N. Maruyama, F. Cappello, and S. Matsuoka. Dis-

tributed diskless checkpoint for large scale systems. Cluster Comput-

ing and the Grid, IEEE International Symposium on, 0:63{72, 2010.

doi:http://doi.ieeecomputersociety.org/10.1109/CCGRID.2010.40.

[40] T. J. Hacker, F. Romero, and C. D. Carothers. An analysis of clustered failures on

large supercomputing systems. Journal of Parallel and Distributed Computing, 69(7):

652 { 665, 2009. ISSN 0743-7315. doi:http://dx.doi.org/10.1016/j.jpdc.2009.03.007.

URL http://www.sciencedirect.com/science/article/pii/S0743731509000446.

[41] P. H. Hargrove and J. C. Duell. Berkeley lab checkpoint/restart (blcr) for linux

clusters. Journal of Physics: Conference Series, 46(1):494, 2006. URL http://stacks.

iop.org/1742-6596/46/i=1/a=067.

149

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICDCS.2011.12
http://dx.doi.org/10.1007/978-3-540-30218-6_19
http://dx.doi.org/10.1007/978-3-540-30218-6_19
http://dx.doi.org/10.1016/j.future.2013.12.027
http://dx.doi.org/10.1016/j.future.2013.12.027
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/CCGRID.2010.40
http://dx.doi.org/http://dx.doi.org/10.1016/j.jpdc.2009.03.007
http://www.sciencedirect.com/science/article/pii/S0743731509000446
http://stacks.iop.org/1742-6596/46/i=1/a=067
http://stacks.iop.org/1742-6596/46/i=1/a=067

[42] R. Hempel. The mpi standard for message passing. 797:247{252, 1994.

[43] J. C. Y. Ho, C.-L. Wang, and F. C. M. Lau. Scalable group-based checkpoint/restart

for large-scale message-passing systems. In Parallel and Distributed Processing, 2008.

IPDPS 2008. IEEE International Symposium on, pages 1{12, 2008. ISBN 1530-2075.

[44] J. Hursey, J. Squyres, T. Mattox, and A. Lumsdaine. The design and implementation of

checkpoint/restart process fault tolerance for Open MPI. In Workshop on Dependable

Parallel, Distributed and Network-Centric Systems(DPDNS), in conjunction with

IPDPS, 2007.

[45] J. Hursey, R. Graham, G. Bronevetsky, D. Buntinas, H. Pritchard, and D. Solt. Run-

through stabilization: An mpi proposal for process fault tolerance. Recent Advances in

the Message Passing Interface, 6960:329{332, 2011. doi:10.1007/978-3-642-24449-0 40.

URL http://dx.doi.org/10.1007/978-3-642-24449-0 40.

[46] K. Hwang, J. Dongarra, and G. C. Fox. Distributed and Cloud Computing: From

Parallel Processing to the Internet of Things. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1st edition, 2011. ISBN 0123858801, 9780123858801.

[47] E. Jeannot and G. Mercier. Near-optimal placement of mpi processes on hierarchical

numa architectures. Proceedings of the 16th International Euro-Par Conference on

Parallel Processing: Part II, pages 199{210, 2010. URL http://dl.acm.org/citation.

cfm?id=1885276.1885299.

[48] D. B. Johnson and W. Zwaenepoel. Sender-based message logging. In Digest of

Papers: 17 Annual International Symposium on Fault-Tolerant Computing, pages

14{19, 1987.

[49] A. Kayi, T. El-Ghazawi, and G. B. Newby. Performance Issues in Emerging Homo-

geneous Multicore Architectures. Simulation Modeling Practice and Theory, 17(9):

1485{1499, 2009.

[50] I. Koren and C. M. Krishna. Fault-Tolerant Systems. Morgan Kaufmann Publishers

Inc, San Francisco, CA, USA, 2007. ISBN 0120885255, 9780080492681.

[51] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.

ACM, 21(7):558{565, July 1978. ISSN 0001-0782. doi:10.1145/359545.359563. URL

http://doi.acm.org/10.1145/359545.359563.

150

http://dx.doi.org/10.1007/978-3-642-24449-0_40
http://dx.doi.org/10.1007/978-3-642-24449-0_40
http://dl.acm.org/citation.cfm?id=1885276.1885299
http://dl.acm.org/citation.cfm?id=1885276.1885299
http://dx.doi.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563

[52] P. Lemarinier, A. Bouteiller, T. Herault, G. Krawezik, and F. Cappello. Improved

Message Logging Versus Improved Coordinated Checkpointing for Fault Tolerant

MPI. In Cluster Computing, 2004 IEEE International Conference on, volume 0, pages

115{124, Los Alamitos, CA, USA, 2004. IEEE Computer Society. ISBN 0-7803-8694-9.

doi:http://doi.ieeecomputersociety.org/10.1109/CLUSTR.2004.1392609.

[53] W.-J. Li and J.-J. Tsay. Checkpointing message-passing interface (mpi) parallel

programs. Fault-Tolerant Systems, 1997. Proceedings., Pacific Rim International

Symposium on, pages 147{152, Dec 1997. doi:10.1109/PRFTS.1997.640140.

[54] Y. Li and Z. Lan. Exploit failure prediction for adaptive fault-tolerance in cluster

computing. In Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE

International Symposium on, volume 1, pages 8 pp.{538, 2006. ID: 1.

[55] L. M. Liebrock and S. P. Goudy. Methodology for Modeling SPMD Hybrid Parallel

Computation. Concurr. Comput. : Pract. Exper., 20(8):1485{1499, June 2008. ISSN

1532-0626.

[56] Y. Luo and D. Manivannan. Hope: A hybrid optimistic checkpointing and selective

pessimistic message logging protocol for large scale distributed systems. Future

Generation Computer Systems, 28(8):1217{1235, 10 2012.

[57] G. Mercier and J. Clet-Ortega. Towards an E�cient Process Placement Policy for MPI

Applications in Multicore Environments. Recent Advances in Parallel Virtual Machine

and Message Passing Interface, 5759:104{115, 2009. doi:10.1007/978-3-642-03770-2 17.

[58] H. Meyer, M. C. Le�on, D. Rexachs, and E. Luque. Propuestas para integrar la

arquitectura radic de forma transparente. XVII Congreso Argentino de Ciencias de

la Computación, Argentina, pages 347{356, 2011.

[59] H. Meyer, D. Rexachs, and E. Luque. RADIC: A fault tolerant middleware with

automatic management of spare nodes. The 2012 International Conference on Parallel

and Distributed Processing Techniques and Applications, July 16-19, Las Vegas, USA,

pages 17{23, 2012.

[60] H. Meyer, R. Muresano, D. Rexachs, and E. Luque. Tuning spmd applications in

order to increase performability. The 11th IEEE International Symposium on Parallel

and Distributed Processing with Applications, Melbourne, Australia, pages 1170{1178,

2013.

151

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/CLUSTR.2004.1392609
http://dx.doi.org/10.1109/PRFTS.1997.640140
http://dx.doi.org/10.1007/978-3-642-03770-2_17

[61] H. Meyer, D. Rexachs, and E. Luque. Managing receiver-based message logging over-

heads in parallel applications. XIX Congreso Argentino de Ciencias de la Computación.

Mar del Plata, Argentina, pages 204{213, 2013.

[62] H. Meyer, R. M. D. Rexachs, and E. Luque. A framework to write performability-aware

spmd applications. The 2013 International Conference on Parallel and Distributed

Processing Techniques and Applications, Las Vegas, USA, pages 350{356, 2013.

[63] H. Meyer, D. Rexachs, and E. Luque. Hybrid Message Logging. Combining advan-

tages of Sender-based and Receiver-based approaches. International Conference on

Computational Science 2014. Cairns, Australia, To appear, 2014.

[64] J. Meyer. On Evaluating the Performability of Degradable Computing Systems.

Computers, IEEE Transactions on, C-29(8):720 {731, aug. 1980. ISSN 0018-9340.

doi:10.1109/TC.1980.1675654.

[65] R. Muresano, D. Rexachs, and E. Luque. Methodology for E�cient Execution of

SPMD Applications on Multicore Environments. 10th IEEE/ACM International

Conf. on Cluster, Cloud and Grid Computing, CCGrid 2010,Melbourne, Australia,

pages 185{195, 2010.

[66] R. Muresano, D. Rexachs, and E. Luque. Combining Scalability and E�ciency for

SPMD Applications on Multicore Clusters. The 2011 International Conf. on Parallel

and Distributed Processing Techniques and Application. PDPTA’11, Las Vegas, USA,

pages 43{49, 2011.

[67] K. Nagaraja, G. M. C. Gama, R. Bianchini, R. P. Martin, W. M. Jr., and T. D. Nguyen.

Quantifying the performability of cluster-based services. IEEE Trans. Parallel Distrib.

Syst., 16(5):456{467, 2005.

[68] K. Ngiamsoongnirn, E. Juntasaro, V. Juntasaro, and P. Uthayopas. A parallel

semi-coarsening multigrid algorithm for solving the reynolds-averaged navier-stokes

equations. In High Performance Computing and Grid in Asia Pacific Region,

2004. Proceedings. Seventh International Conference on, pages 258{266, July 2004.

doi:10.1109/HPCASIA.2004.1324043.

[69] I. Nielsen and C. L. Janssen. Multicore Challenges and Bene�ts for High Performance

Scienti�c Computing. Sci. Program., pages 277{285, 2008.

152

http://dx.doi.org/10.1109/TC.1980.1675654
http://dx.doi.org/10.1109/HPCASIA.2004.1324043

[70] I. Nita, A. Rapan, V. Lazarescu, and T. Seceleanu. E�cient threads mapping on

multicore architecture. 8th International Conference on Communications (COMM),

pages 53{56, June 2010.

[71] M. Panshenskov and A. Vakhitov. Adaptive scheduling of parallel computations for

spmd tasks. Proceedings of the 2007 International Conference on Computational

Science and Its Applications - Volume Part II, pages 38{50, 2007. URL http://dl.

acm.org/citation.cfm?id=1802954.1802959.

[72] L. Pinto, L. Tomazella, and M. A. R. Dantas. An experimental study on how to

build e�cient multi-core clusters for high performance computing. Computational

Science and Engineering, 2008. CSE ’08. 11th IEEE International Conference on,

pages 33{40, July 2008. doi:10.1109/CSE.2008.63.

[73] S. Rao, L. Alvisi, and H. Vin. The cost of recovery in message logging protocols.

Reliable Distributed Systems, 1998. Proceedings. Seventeenth IEEE Symposium on,

pages 10{18, Oct 1998. ISSN 1060-9857. doi:10.1109/RELDIS.1998.740469.

[74] G. Rodr��guez, M. J. Mart��n, P. Gonz�alez, J. Touri~no, and R. Doallo. Cppc: a

compiler-assisted tool for portable checkpointing of message-passing applications.

Concurrency and Computation: Practice and Experience, 22(6):749{766, 2010. ISSN

1532-0634. doi:10.1002/cpe.1541. URL http://dx.doi.org/10.1002/cpe.1541.

[75] G. Rodr��guez, M. J. Mart��n, P. Gonz�alez, J. Touri~no, and R. Doallo. Compiler-assisted

checkpointing of parallel codes: The cetus and llvm experience. International Journal

of Parallel Programming, 41(6):782{805, 2013. ISSN 0885-7458. doi:10.1007/s10766-

012-0231-8. URL http://dx.doi.org/10.1007/s10766-012-0231-8.

[76] T. Ropars, A. Guermouche, B. U�car, E. Meneses, L. V. Kal�e, and F. Cappello. On

the use of cluster-based partial message logging to improve fault tolerance for mpi

hpc applications. In Proceedings of the 17th International Conference on Parallel

Processing - Volume Part I, Euro-Par'11, pages 567{578, Berlin, Heidelberg, 2011.

Springer-Verlag. ISBN 978-3-642-23399-9.

[77] S. Sankaran, J. M. Squyres, B. Barrett, V. Sahay, A. Lumsdaine, J. Duell, P. Har-

grove, and E. Roman. The lam/mpi checkpoint/restart framework: System-initiated

checkpointing. International Journal of High Performance Computing Applications,

19(4):479{493, November 01 2005.

153

http://dl.acm.org/citation.cfm?id=1802954.1802959
http://dl.acm.org/citation.cfm?id=1802954.1802959
http://dx.doi.org/10.1109/CSE.2008.63
http://dx.doi.org/10.1109/RELDIS.1998.740469
http://dx.doi.org/10.1002/cpe.1541
http://dx.doi.org/10.1002/cpe.1541
http://dx.doi.org/10.1007/s10766-012-0231-8
http://dx.doi.org/10.1007/s10766-012-0231-8
http://dx.doi.org/10.1007/s10766-012-0231-8

[78] G. Santos, L. Fialho, D. Rexachs, and E. Luque. Increasing the availability pro-

vided by RADIC with low overhead. In CLUSTER, pages 1{8. IEEE, 2009. ISBN

978-1-4244-5012-1. URL http://dblp.uni-trier.de/db/conf/cluster/cluster2009.html#

SantosFRL09.

[79] B. Schroeder and G. Gibson. A large-scale study of failures in high-performance

computing systems. Dependable and Secure Computing, IEEE Transactions on, 7(4):

337{350, 2010. ISSN 1545-5971. doi:10.1109/TDSC.2009.4.

[80] H. Sekhar Paul, A. Gupta, and A. Sharma. Finding a suitable checkpoint and recovery

protocol for a distributed application. In J. Parallel Distrib. Comput., pages 732{749,

Orlando, FL, USA, May 2006. Academic Press, Inc. doi:10.1016/j.jpdc.2005.12.008.

URL http://dx.doi.org/10.1016/j.jpdc.2005.12.008.

[81] Q. O. Snell, A. R. Mikler, and J. L. Gustafson. NetPIPE: A Network Protocol Inde-

pendent Performance Evaluator. In IASTED International Conference on Intelligent

Information Management and Systems, 1996.

[82] L. G. Valiant. A bridging model for multi-core computing. Proceedings of the 16th

Annual European Symposium on Algorithms, pages 13{28, 2008. doi:10.1007/978-3-

540-87744-8 2. URL http://dx.doi.org/10.1007/978-3-540-87744-8 2.

[83] K. N. Vikram and V. Vasudevan. Mapping Data-parallel Tasks onto Partially Re-

con�gurable Hybrid Processor Architectures. IEEE Trans. Very Large Scale Integr.

Syst., 14(9):1010{1023, 2006.

[84] J. B. Weissman. Prophet: automated scheduling of spmd programs in workstation

networks. Concurrency - Practice and Experience, 11(6):301{321, 1999.

[85] A. Wong, D. Rexachs, and E. Luque. Pas2p tool, parallel application signature for

performance prediction. PARA (1), pages 293{302, 2010.

[86] J. Xu, R. Netzer, and M. Mackey. Sender-based message logging for reduc-

ing rollback propagation. Parallel and Distributed Processing, 1995. Proceed-

ings. Seventh IEEE Symposium on, pages 602{609, Oct 1995. ISSN 1063-6374.

doi:10.1109/SPDP.1995.530738.

154

http://dblp.uni-trier.de/db/conf/cluster/cluster2009.html#SantosFRL09
http://dblp.uni-trier.de/db/conf/cluster/cluster2009.html#SantosFRL09
http://dx.doi.org/10.1109/TDSC.2009.4
http://dx.doi.org/10.1016/j.jpdc.2005.12.008
http://dx.doi.org/10.1016/j.jpdc.2005.12.008
http://dx.doi.org/10.1007/978-3-540-87744-8_2
http://dx.doi.org/10.1007/978-3-540-87744-8_2
http://dx.doi.org/10.1007/978-3-540-87744-8_2
http://dx.doi.org/10.1109/SPDP.1995.530738

Hugo Daniel Meyer. PhD Thesis 2014.

	Introduction
	Fault Tolerance in Parallel Computing
	Motivation
	Objectives
	Contributions
	A new Pessimistic Message Logging Technique
	Increasing Performability of Applications
	Case Study: Methodology to increase Performability of SPMD Applications

	Thesis Outline

	Thesis Background
	Parallel Applications in Multicore Clusters
	Multicore Architecture
	Message Passing Interface
	Main Parallel Metrics

	Classic Fault Tolerance Mechanisms in HPC
	Basic Concepts
	Coordinated Checkpoint
	Message Logging

	RADIC Architecture
	Design Keys
	RADIC Operation
	Implementation Details

	Related Work
	Performance Improvement
	Message Logging
	Fault Tolerance Solutions
	Hybrid Protocols
	Other Fault Tolerance Solutions

	Improving Current Pessimistic Message Logging Protocols
	Message Logging Description
	Hybrid Message Pessimistic Logging
	Key Concepts
	Design
	Orphan Processes

	Experimental Validation
	Discussion

	Balancing Dependability and Performance in Parallel Applications
	Parallel Applications in Multicore Environments
	Message Logging Processes Mapping
	Message Logging Tasks
	Analyzing Parallel Applications
	Methodology Validation

	Case Study: Increasing Performability of SPMD Applications
	Characterization
	Distribution Model
	Mapping
	Scheduling
	Performability Framework

	Discussion

	Experimental Results
	Experimental Environment
	Operation of RADIC Fault Tolerant Architecture
	Design and inclusion of Spare Nodes in RADIC
	Experimental Validation

	Hybrid Message Pessimistic Logging
	Comparison of Logging Techniques in Failure-free Executions
	Experimental Results in Faulty Executions
	Limitations and Overhead Analysis

	Determining suitable Fault Tolerance configurations
	Increasing Performability of Parallel Applications
	Weak Scalability and Overhead Analysis

	Conclusions
	Final Conclusions
	Future Work and Open Lines
	List of Publications

	Bibliography

