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SUMMARY 

Mycotoxins, toxic compounds produced by filamentous fungi in food and feed, are the 

chemical contaminants from biological origin that involve the highest risk in the food chain 

due to their widespread presence and the varied harmful effects on human beings and 

animals. Although enormous progress has been achieved in mycotoxin risk management, 

there are still major challenges in this regard, some of which have been considered in this 

Thesis. 

 

In the case of pistachio the major concern is related to the presence of AFs, as the performed 

analysis in eight lots of raw and toasted pistachios showed a predominant presence of AFB1. 

Suitability of the existing EU sampling plan (EC, 178/2010) and a simplified alternative were 

assessed. Variability was associated to all steps of the sampling process, particularly in the 

subfractioning where an increase in the number of the analyzed subfractions could be an 

alternative for reducing uncertainty. The alternative plan proposed resulted unappropriated 

as compared to the official one. Analytical results correction with measurement uncertainty 

(EC, 401/2006) increased the probability of rejection of most contaminated lots. The impact 

of sampling uncertainty on analytical results was demonstrated to be huge, thus new 

management tools are required to improve this point. 

 

According to the initial and final values proposed by European legal limits (EC, 165/2010) 

for unprocessed and processed pistachio (either selection or selection plus toasting or just 

toasting), a decrease in 33% of the initial AFs concentration in the raw pistachio is expected. 

Industrial pistachio toasting (pre-toasting ≈135 ºC + toasting ≈165 ºC, during total time of 

20 min) suggested that about a 75% of reduction may be achieved by the single toasting 

process, thus, under the hypothesis of raw pistachio compliance with maximum level, the 

toasted pistachio should be safe. 

 

The impact of climate change has been identified as an emerging issue for food and feed 

safety. Focussing on ochratoxin A, fungal infection of grapes occurs in the field and therefore 

the climate conditions affect the fungal presence and consequently the mycotoxin 

contamination. In this Thesis the infection of berries by black aspergilli species in vineyards 

from two agroclimatic Spanish regions was significantly higher in the hotter and drought 

region in both sampled years. Although no clear trend could be identified about black 

aspergilli distribution, A. tubingensis seems to be the most widespread species in the Spanish 
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vineyards. Regarding to environmental growth boundaries A. tubingensis and A. niger were 

able to grow at higher temperatures (>45 ºC versus 40-42 ºC), and lower aW (0.83 aW versus 

0.87 aW) than A. carbonarius, except at 10 ºC where A. carbonarius grew at lower aW than the 

other two species (0.95 aW versus 0.98 aW). Different ecophysiological profiles due to origin 

of the isolates were observed in A. carbonarius, showing than those from driest regions were 

more xerophilic, and therefore some adaptation to the environment was shown.  

 

A. carbonarius was the main ochratoxigenic species either for the number of producing isolates 

or the amount produced. Additionally, contaminated musts were detected when more than 

20% of the berries were infected by A. carbonarius. Mycotoxicological consequences in grapes 

and derivates resulting from a hypothetical warming climate could be a decrease in OTA risk 

due to the decreasing presence of A. carbonarius and an increase in FB2 risk due to the 

promotion of the biseriate A. niger. 

 

Aspergillus species showed different tolerance to UV radiation, hence an increase of it may 

modify the prevailing species present in field, and as a consequence the potential inoculum 

in the field may change, possibly favoring in the future an even higher predominance of black 

aspergilli that at present. 

 

Although antifungal effectiveness showed differences among active ingredients in general 

they reduced the fungal growth although not always in a significant way, with the exception 

of thiophanate methyl which even stimulated it. The potential effect of changing climate 

conditions was different for different active ingredients and therefore a transition in the 

active ingredients may be required in the future as a result of changing climatic condition. 

OTA risk was not controlled by the only use of antifungals since in some cases, while they 

limiting fungal growth, induced a stress situation which triggered OTA production. Besides 

under predicted conditions, none of the antifungals was effective in preventing OTA 

production by any of the strains tested in both grapes and wheat. Equisetum arvense extract 

was applied as a natural alternative in grapes and wheat; it showed similar or enhanced effects 

than chemical antifungals in wheat, but lower doses stimulated mycotoxin production in 

grapes and its efficiency was strongly dose-dependent.  
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RESUMEN 

Las micotoxinas, compuestos tóxicos producidos por mohos filamentos en alimentos y 

piensos, son los contaminantes químicos de origen biológico que suponen el mayor riesgo 

en la cadena alimentaria debido a su amplia presencia y a los múltiples efectos perjudiciales 

que producen en los seres humanos y en los animales. Aunque se han logrado enormes 

avances en la gestión del riesgo por micotoxinas, todavía existen retos importantes a este 

respecto, algunos de los cuales han sido considerados en esta Tesis.  

 

En el caso del pistacho, la principal preocupación está relacionada con la presencia de 

aflatoxinas (AFs), ya que análisis realizados a ocho lotes de pistachos crudos y tostados han 

mostrado una presencia mayoritaria de aflatoxina B1 (AFB1). Se ha evaluado, la idoneidad de 

los planes de muestreo oficiales existentes en la UE (EC, 178/2010); así como una alternativa 

simplificada. Se encontró variabilidad asociada a todos los pasos del muestreo, 

particularmente en el submuestreo donde un aumento en el número de submuestras 

analizadas podría ser una alternativa para reducir la incertidumbre. El plan de muestreo 

alternativo propuesto resultó inapropiado comparado con el oficial. La corrección de los 

resultados analíticos mediante la medida de la incertidumbre (EC, 401/2006) incrementó la 

probabilidad de rechazo de la mayoría de los lotes contaminados. El impacto de la 

incertidumbre muestral sobre los resultados analíticos fue amplio, por lo que se requieren 

nuevas herramientas de gestión para mejorar este aspecto. 

 

Conforme a los valores iniciales y finales propuestos por los límites legales europeos (EC, 

165/2010) para pistachos crudos y procesados (selección, o selección y tostado, o solamente 

tostado), se espera una reducción de la concentración inicial de AFs del 33% en pistachos 

crudos. El tostado industrial de los pistachos (pre-tostado ≈135 ºC + tostado ≈165 ºC, 

durante un tiempo total de 20 min) sugiere que se podría alcanzar un 75 % de reducción 

solamente con el proceso de tostado, es decir, bajo la hipótesis de que los pistachos crudos 

cumplan con los máximos niveles permitidos, los pistachos tostados deberían ser seguros. 

 

El impacto del cambio climático ha sido identificado como una nueva cuestión para la 

seguridad alimentaria tanto en alimentos como en piensos. Centrándonos en la ochratoxina 

A (OTA), la infección fúngica en las uvas ocurre en el campo y por lo tanto las condiciones 

climáticas afectan a su presencia y, consecuentemente, a la contaminación por micotoxinas. 

En esta Tesis la infección en uvas por especies de aspergilos negros en viñedos de dos 
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regiones agroclimáticas españolas fue significativamente superior en la región más cálida y 

seca en ambos años muestreados. Aunque no se identificó una tendencia clara en la 

distribución de aspergilos negros, Aspergillus tubingensis parece ser la especie más prevalente 

en los viñedos españoles. Respecto a las condiciones ambientales limitantes para el 

crecimiento de A. tubingensis y A. niger, estos mohos fueron capaces de crecer a temperaturas 

más altas (>45 ºC versus 40-42 ºC), y bajas aW (0,83 aW versus 0,87 aW) que A. carbonarius, excepto 

a 10 ºC donde A. carbonarius creció a un valor de aW inferior que las otras dos especies (0,95 

aW versus 0,98 aW). Se observaron diferentes perfiles ecofisiológicos debido al origen del 

aislamiento en A. carbonarius, siendo los aislados de la región más cálida, y por lo tanto puede 

darse una posible adaptación al medio ambiente.  

 

A. carbonarius fue la especie más ocratoxigénica tanto por el número de aislados productores 

como por la cantidad de toxina producida. Además, los mostos contaminados procedían de 

uvas con más de un 20% de infección de A. carbonarius. Consecuencias micotoxicológicas en 

uvas y derivados resultantes de un hipotético calentamiento del clima podrían ser una 

reducción del riesgo por OTA debido a la reducción de la presencia de A. carbonarius, y un 

incremento del riesgo de fumonisina B2 (FB2) debido al aumento de otros biseriados como 

A. niger. 

 

Las especies de Aspergillus enseyadas mostraron diferente tolerancia a la radiación UV, por lo 

que un incremento de ésta podría afectar a la actual presencia de estas especies en campo y, 

consecuentemente, el potencial inóculo en campo podría cambiar, posiblemente 

favoreciendo en el futuro la presencia de aspergilos negros incluso más que en el presente. 

 

Aunque la eficacia antifúngica de las materias activas fue diferente, en general todas redujeron 

el crecimiento fúngico, aunque no siempre lo hicieron de forma significativa, con la 

excepción del metil tiofanato que incluso lo estimuló. El potencial efecto del cambio de las 

condiciones climáticas fue diferente según las distintas materias activas consideradas y, por 

lo tanto, podría ser necesaria un cambio en las materias activas a emplear como resultados 

de los cambios climáticos. En la mayoría de los casos el riesgo de la presencia de OTA no 

fue controlado mediante el uso de fungicidas, ya que limitaron el crecimiento fúngico 

también indujeron a condiciones de estrés que incrementaron la producción de OTA. 

Ademas, bajo las condiciones predichas, ninguno de los fungicidas fue efectivo en la 

prevención de la producción de OTA en ninguna de las cepas ensayadas tanto en uvas como 
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en trigo. El extracto de Equisetum arvense se aplicó como una alternativa natural en uvas y 

trigo; obteniendo similares o mejores resultados que los obtenidos con antifungicos quimicos 

en trigo, sin embargo, bajas dosis estimularon la producción de micotoxinas en uvas por lo 

que su eficiencia fue claramente dosis-dependiente. 
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RESUM 

Les micotoxines són compostos tòxics produïts per fongs filamentosos en aliments i pinsos, 

i són els contaminants químics d'origen biològic que suposen el major risc a la cadena 

alimentària a causa de la seva àmplia presència i als múltiples efectes perjudicials que 

produeixen en els éssers humans i en els animals. Encara que s’han fet avanços en la gestió 

del risc de micotoxines, encara hi ha reptes importants, alguns dels quals han estat considerats 

en aquesta tesi. 

 

En el cas del festucs la principal preocupació està relacionada amb la presència de AFs, ja 

que les anàlisis realitzades en vuit lots de festucs crus i torrats van mostrar presència 

majoritària d’AFB1. Es va avaluar la idoneïtat dels plans de mostreig oficials existents a la UE 

(EC, 178/2010) i també una alternativa simplificada. La variabilitat va ser associada a tots els 

passos del mostreig, particularment en el submostreig on un augment en el nombre de 

submostres analitzades podria ser una alternativa per reduir la incertesa. El pla alternatiu 

proposat resultà inadequat comparat amb l'oficial. La correcció dels resultats analítics 

mitjançant la mesura de la incertesa (EC, 401/2006) incrementà la probabilitat de rebuig de 

la majoria dels lots contaminats. L'impacte de la incertesa del mostreig sobre els resultats 

analítics va ser gran, per la qual cosa es requereixen noves eines de gestió per millorar aquest 

aspecte. 

 

D'acord amb els valors inicials i finals proposats pels límits legals europeus (EC, 165/2010) 

per festucs crus i processats (selecció o selecció i torrat o només torrat), s'espera una reducció 

de la concentració inicial d’AFs del 33% en festucs crus. El torrat industrial de festucs (pre-

torrat ≈ 135 º C + torrat ≈ 165 º C, durant un temps total de 20 min) va suggerir que es 

podria arribar a un 75% de reducció només amb el procés de torrat, és a dir, sota la hipòtesi 

que els festucs crus compleixin amb els màxims nivells permesos, els festucs torrats haurien 

de ser segurs. 

 

L'impacte del canvi climàtic ha estat identificat com un nou condicionant per a la seguretat 

alimentària tant en aliments com en pinsos. Centrant-nos en la ocratoxina A, la infecció 

fúngica en el raïm es dona al camp i per tant les condicions climàtiques afecten la seva 

presència i conseqüentment a la contaminació per micotoxines. En aquesta Tesi la infecció 

en raïm per espècies d’aspergils negres en dues regions agroclimàtiques espanyoles va ser 

significativament superior a la regió més càlida i seca en els dos anys mostrejats. Encara que 
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no es va identificar una tendència clara en la distribució dels aspergils negres, A. tubingensis 

sembla ser l'espècie més prevalent en les vinyes espanyoles. Respecte a les condicions 

ambientals limitants per al creixement de A. tubingensis i A. niger, aquests van ser capaços de 

créixer a temperatures més altes (> 45 º C versus 40-42 º C), i baixes aW (0,83 aW versus 0,87 

aW) que A. carbonarius, excepte a 10 º C on A. carbonarius va créixer a aW inferior a les altres 

dues espècies (0,95 aW versus 0,98 aW). En A. carbonarius es van observar diferents perfils 

ecofisiològics a causa de l'origen d'aïllament, on els aïllats de la regió més càlida van ser més 

xeròfils, i per tant es pot hipotetitzar una possible adaptació al medi ambient. 

 

A. carbonarius va ser l'espècie més ocratoxigènica tant pel nombre d'aïllats productors com 

per la quantitat de toxina produïda. A més, els mostos contaminats procedien de raïm amb 

més d'un 20% d'infecció per A carbonarius. Les conseqüències micotoxicològiques resultants 

d'un hipotètic escalfament del clima en raïm i derivats podrien ser una reducció del risc 

d'OTA a causa de la reducció de la presència d'A carbonarius, i un possible increment del risc 

de FB2 a causa de l’increment d'altres biseriats com A. niger.   

 

Les espècies testades d'Aspergillus van mostrar diferent tolerància a la radiació UV, per tant 

un increment d'aquesta podria afectar l'actual distribució d'aquestes espècies en camp, i 

conseqüentment el potencial inòcul en camp podria canviar, possiblement afavorint en el 

futur la presència d’aspergils negres fins i tot més que en el present. 

 

Encara que l'eficàcia antifúngica de les matèries actives va ser diferent, en general totes van 

reduir el creixement fúngic encara que no sempre ho van fer de manera significativa, amb 

l'excepció del metil tiofanat que fins i tot el va estimular. El potencial efecte del canvi de les 

condicions climàtiques va ser diferent en les diferents matèries actives i per tant podria ser 

necessari un canvi en les matèries actives utilitzades. El risc de la presència d'OTA no va ser 

controlat mitjançant l'ús de fungicides en la majoria dels casos. En limitar el creixement 

fúngic es poden induir condicions d’estrès que poden desencadenar la producció d'OTA. A 

més, sota les condicions predites, cap dels fungicides va ser efectiu en la prevenció de la 

producció d'OTA en cap de les soques testades tant en raïm com a blat. L'extracte d'E arvense 

es va aplicar com una alternativa natural, obtenint similars o millors resultats que els obtinguts 

amb antifúngics químics en blat. No obstant, les dosis baixes van estimular la producció de 

micotoxines en raïm pel que la seva eficiència va ser clarament dosi-depenent. 
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1. What are Mycotoxins 
 

Mycotoxins-from the Greek mykes, mukos “fungus” and toxikon “poison” are a large and 

growing family of secondary metabolites and hence natural products produced by fungi, in 

particular by moulds (Bräse et al., 2013). The most frequent mycotoxins found in foods and 

feeds are: aflatoxins (AFB1, AFB2, AFG1, AFG2 and AFM1), citrinin (CIT), cyclopiazonic 

acid (CA), fumonisins (FB1, FB2 and FB3), ochratoxin (OTA, OTB and OTC), patulin, 

trichothecenes (mainly nivalenol (NIV), deoxynivalenol (DON), T-2 toxin (T2) and HT-2 

toxin (T2)) and zearalenone (ZEA) (van der Gaag et al., 2003). 

 

Among food contaminants, mycotoxins have great consequences in terms of both human 

and animal health as well as economics. According to the annual report of the Rapid Alert 

System for Food and Feed (RASFF), in 2012 mycotoxins were the main hazard in border 

rejection notifications in the European Union (EU) (Table 1). The number of alert and 

information for attention notifications was also outstanding. Besides, they cause enormous 

economic losses annually to the grain trade and the marketing of foods and feeds (Windels, 

2000). 

 

Table 1 2012 Notifications by hazard category in the EU. 

Hazard category 
 

Alert 
Border 

rejection 
Information 
for attention 

Information for 
follow-up 

Allergens 64 3 17 1 

Biocontaminants 6 9 26 2 

Food additives and 
flavourings 

10 59 23 47 

Foreign bodies 24 61 26 47 

GMO/novel food 2 52 14 22 

Heavy metals 57 108 79 24 

Industrial contaminants 16 9 18 14 

Mycotoxins 38 425 53 9 

Parasitic infestation 4 13 13 25 

Pathogenic 
microorganisms 

162 159 168 103 

Pesticides residues 19 320 90 18 

Residues of veterinary 
medicinal products 

12 18 16 14 

           Rapid Alert System for Food and Feed (RASFF) Annual Report, 2012.  
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2. Which fungi produce mycotoxins? 
 

These secondary metabolites are compounds biosynthesized and excreted through a set of 

metabolic pathways, but are not essential for growth or survival of the organism (Betina, 

1989). Nowadays, the number of fungal toxic metabolites is unknown, the number of 

mycotoxins to be discovered being probably high. However, the number of mycotoxins 

which are often found in foods do not reach 30 different mycotoxins (Santos, 2011). Most 

of the known mycotoxins are produced by species of the fungal genera Aspergillus, Penicillium, 

Fusarium and Alternaria (Table 2). A certain mycotoxin can be produced by different species, 

and a certain strain can produce different mycotoxins.  

 

Table 2 Main mycotoxins producer by Aspergillus, Penicillium, Fusarium and Altenaria species. 
Genus Mycotoxin Producer 

Aspergillus Aflatoxins section Ochraceorosei, Nidulantes and 
Flavi 

Cyclopiazonic acid section Flavi 

Fumonisins section Nigri 

Ochratoxins section Circumdati, Nigri 

Patulin section Fumigati 

Penicillium Cyclopiazonic acid P.commune 

Ochratoxins P. nordicum, P. verrucosum 

Patulin P.expansum, P. griseofulvum 

Fusarium Beuavericin F. sporotrichioides, F. poae, F. 
langsethiae, F. avenaceum, section 
Liseola 

Deoxynivalenol F. graminearum, F. culmorun 

Enniatins F. avenaceum, F. tricinctum 

Fusaproliferin F. poae, F. langsethiae, F. 
sporotrichiodes,F. proliferatum, F. 
subglutinans  

Moniliformin F. avenaceum, F. tricinctum, section 
Liseola 

Nivalenol F. graminearum, F. culmorun 

Trichothecenes (T2, HT-2) F. sporotrichiodies, F. poae, F. equiseti 

 
Zearalenona F. graminearum, F. culmorum, F. 

cerealis, F. equiseti, F. crookwellense, F. 
semitectum 

Alternaria Alternariol A. alternate 

Alternariol monomethyl ether A. alternata, A. solani 

Tenuazonic acid A. alternate 

Altertoxins A. tenuissima 

Altenuene A. alternate 
                   (Ramos, 2011) 
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3. Which commodities are often contaminated by mycotoxins? 
 

Foods associated with fungal spoilage are characterized by a relatively low water activity (aW) 

or a low pH value, where filamentous fungi may dominate on the colonization over bacteria 

and yeasts. Therefore the main food groups contaminated by fungus are cereals and their 

derivatives, nuts and fruits (CAST, 2003). According to the last report of the RASFF, nuts, 

nut products and seeds, fruits and vegetables, herbs and spices, cereals/bakery products, and 

foodstuffs, were the most affected categories (Table 3). 

 

Table 3 Mycotoxin notifications by products in the EU during 2012. 

Product category AFs DON FBs OTA ZEA 

Cereals and bakery products 17 4 4 6 3 

Feed 79     

Fruits and vegetables 137   19 1 

Herbs and spices 33   4  

Nuts, nut products and seeds 204     

Other 14   3  

Total 484 4 4 32 4 
Rapid Alert System for Food and Feed (RASFF) Annual Report, 2012.  

 

4. Which health effects can cause their ingestion?  
 

Exposure of humans to mycotoxins occurs mainly by the ingestion of contaminated 

foodstuffs from vegetal or animal origin. Contamination in the last case takes place when 

animals are fed with contaminated feed. An alternative way of exposure is the inhalation of 

contaminated dusts or skin contact. The diseases caused by mycotoxins in humans or animals 

are called “mycotoxicoses”. While most animal mycotoxicoses have been experimentally 

confirmed, human mycotoxicoses are less well understood and not as clearly defined (Smith, 

1985). The toxicity of a certain mycotoxin in an organism can be classified according to the 

exposure dose in acute or chronic. Acute toxicity refers to the ability of the compound to 

cause adverse effects within a short time of exposure, especially at high doses. Chronic 

toxicity stands for the effects of a prolonged exposure to small quantities of toxin (CAST, 

2003). For certain chemicals, such as some mycotoxins, marine toxins, pesticides and 

veterinary drugs, mainly chronic health but also acute health effects need to be considered. 

 

International agencies have studied the problem of mycotoxins in food in order to obtain 

guidelines regarding the limits of contamination in food and the tolerable intake of the toxins. 
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The International Agency for Research on Cancer (IARC) (IARC, 1998, 1993) has 

investigated the carcinogenic potential of most of these toxins (Table 4).  

 

Table 4 Evaluation of carcinogenicity of some mycotoxins by IARC (1993 and 1998). 

Mycotoxin 
Degree or evidence 

of carcinogenicity 

Overall evaluation 

of carcinogenicity 

to humans  Human Animal 

AFs, naturally occurring mixtures of S S group 1 

AFB1 S S group 1 

AFB2  L  

AFG1  S  

AFG2  I  

AFM1 I S group 2B 

OTA I S group 2B 

Toxins derived from F. gramineanun,  F. 

culmorum and F. crookwellense: 
I  group 3 

Zearalenone  L  

Deoxynivalenol  I  

Nivalenol  I  

Fusarenone X    

Toxins derived from F. moniliforme: I S group 2B 

Fumonisins, naturally occurring mixtures of  I   

Fumonisin B1  S group 2B 

Fumonisin B2  I  

Fusarin C  L  

Toxins derived from F. sporotrichiodes: Ia  group 3 

T-2 toxin  L  
Degrees of evidence: S = sufficient; L = limited; I = inadequate; N = negative. 

Evaluation of carcinogenicity: Group 1: Carcinogenic to humans, Group 2A: Probably carcinogenic to humans, Group 2B: Possibly 

carcinogenic to humans, Group 3: Not classifiable as to its carcinogenicity to humans, Group 4: Probably not carcinogenic to humans. 
a No data available. 

 

5. Which factors affect fungal growth and mycotoxin production? 
 

Fungal growth and mycotoxin production are determined both by interaction of the fungal 

individual (strain variability, age…), as well as the intrinsic characteristics of the substrate 

colonized (aW, hydrogen ion concentration (pH), nutritional composition, antifungal 

compounds…) and the environment in which it is growing (temperature (T), relative 

humidity (R.H.), light, gas composition, solar radiation...). 

 

Genetic differences among species may contribute to the mycotoxin production, as some 

species may lack of functional genes needed for the production of certain mycotoxins 
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(Nicholson et al., 2003). In fact, it is possible to find producer and non-producer strains 

within the same species (Cabañes et al., 2013). Similarly, it is very common that different 

strains produce dissimilar amount of the same mycotoxin. For example, strains in a species 

isolated from different substrates or in different seasons may differ in their toxigenicity 

(Dobson et al., 2006).   

 

The most important factors influencing fungal growth and mycotoxin production, and 

therefore the most studied, are T and aW. Regarding T, the range usually reported for fungal 

growth is broad, 10-35 ºC, with a few species capable of growing below or above this range 

(Pitt and Hocking, 2009). Moulds are able to grow at aW from 0.85 to 1 (Dantigny et al., 

2002). In addition, spores of Aspergillus and Penicillium are able to survive at lower aW for 

several years (Carlile and Watkinson, 1996). Besides, Aspergillus can also produce survival 

structures as sclerotia (McGee et al., 1996). It is worthy to mention that the presence of 

sclerotia per se does not seem to be related to AFs production, but the correlation between 

presence of small sclerotia (<400 µm) in A. flavus appears correlated with high AFs 

production (Cotty, 1989). 

 

In general, T and aW requirements for mycotoxin production are stricter than for fungal 

development and, interestingly, the optimum T for mycotoxin production is below the 

optimum for growth in some cases.  

 

Other important intrinsic factor which can affect the growth and mycotoxin production is 

chemical composition and the pH of subtract. Most moulds tolerate a range pH from 4 to 9 

but grow and sporulate maximally near neutrality (Cole, 1981). The impact of pH on the 

production of AFs, FBs, and trichothecenes appears simple: acidic conditions are conducive 

and alkaline conditions are repressive (Woloshuk and Shim, 2013). Not only the source of 

carbon and nitrogen but also the amount of them, even the presence of metals as zinc affect 

mycotoxin production (Buchanan and Stahl, 1984; Medina et al., 2008; Woloshuk and Shim, 

2013).  

 

As it has been already emphasized, the production of mycotoxins is influenced by the 

physiochemical environment in which the fungus is growing. Considering the effect caused 

by the atmosphere gases, although mycotoxigenic fungi have been considered to be aerobes, 

they could grow under facultatively anaerobic conditions (Taniwaki et al., 2009). Mycotoxin 
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formation can be controlled by enriching atmospheres with CO2 or by decreasing O2, while 

fungal growth may not be affected (Taniwaki et al., 2009). Light is a very important signal 

for fungi: it influences many different physiological responses such as pigmentation, sexual 

development, asexual conidiation, the circadian clock and secondary metabolism (Bayram et 

al., 2010). Particularly, white light reduced mycotoxin production respect to darkness 

(Crespo-Sempere et al., 2013). 

 

Similar to light, the effect of ultraviolet (UV) radiation in fungal spores germination, growth 

and sporulation, showed that the effect is dependent of time, UV wavelength, and fungal 

species (Aylor and Sanogo, 1997; Cary and Ehrlich, 2006; Fourtouni et al., 1998; Moody et 

al., 1999; Nicot et al., 1996; Osman et al., 1988; Rotem et al., 1985). Concerning mycotoxins, 

it has been suggested that AFs production could be a strategy of fungi to prevent from UV 

damage (Cary and Ehrlich, 2006). Nevertheless, no scientific information exists about it.   

 

The relevant biotic factor is the presence of other organisms, either by competition or by 

collaboration. Fungi have a variety of requirements for growth and reproduction. Though 

organic energy is of overriding importance to fungi, space, water, other nutrients and oxygen 

are also important. To survive through time, a fungus must reduce the effect of potential 

competitors or utilize effective competitive mechanisms. Different ways of competition have 

been described: i) rapid growth, sporulation or stress recovery; ii) production of inhibitors 

against other species; iii) metabolization of inhibitors; and, iv) the colonization of a special 

niche (Dighton et al., 2005).  

 

Biotic relation can also benefit one of the organisms involved. In this sense, it has been 

widely reported that insect presence could promote fungal infection and consequently the 

mycotoxin contamination. Insects can enhance the fungal infection process by carrying 

inoculum and causing damage in food and feed permitting the fungal entry (Dowd, 2003). 

 

6. When do the mycotoxins occur? Their presence in the food chain  
 

Mycotoxins are mainly present in raw materials. From the food safety point of view, only 

mycotoxins (as chemical hazards) are important, while moulds may cause spoilage but have 

no safety implications. However, presence of mycotoxin producer fungi in foods and feeds 

may indicate a risk of mycotoxins. Moreover, mycotoxins are resistant chemical compounds 

that can be present in processed food products even when the fungus is not present in the 
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commodity anymore. Additionally, wrong practices could cause subsequently fungal 

recontamination and therefore, mycotoxin risk is present along all the food chain. But the 

important matter is, how to avoid the mycotoxins presence in the raw materials. 

 

In general, mycotoxigenic moulds are not aggressive pathogens, with an exception to 

Fusarium (Musa et al., 2007), but some species can invade and colonize plant tissues 

synthesizing mycotoxins during cultivation, harvesting, drying, transport and storage 

(Wagacha and Muthomi, 2008).  

 

Regarding to fungi growing on the processed product, they may differ considerably from 

those occurring on the raw materials, due to changes in the composition of the substrate and 

the requirements of the producing fungi (Magan and Olsen, 2004). 

 

7. How mycotoxins can be controlled in raw materials? 

 

The ideal goal for controlling mycotoxins is to eliminate them from the food chain; however, 

on a practical level this is not possible. Regardless the specific fungi or the infection moment, 

the best way to reduce the mycotoxin content in food is preventing the development of 

mycotoxigenic fungi. Control of mycotoxin production includes pre and post harvests 

strategies, based on both preventative and curative measures. Food safety management 

approaches integrating agricultural management and postharvest control are potentially more 

economically rewarding than a simply regulation setting tolerance limits (Leslie et al., 2008).  

 

The Codex Alimentarius (CAC) has set recommendations for prevention and reduction of 

mycotoxins in cereals, nuts, fresh fruits and other raw materials. These recommendations, 

also extensible to other crops, consist in good agricultural practices (GAP), followed by the 

implementation of good manufacturing practices (GMP) during the handling, storage (GSP) 

and processing (EC, 2003, 2006a; CAC, 2003). Emphasis should be placed on the fact that 

seeding, pre-harvest and postharvest strategies for a particular crop will depend on the 

climatic conditions of that particular year, taking into account the local crops, and traditional 

production conditions for that particular country or region (Kabak et al., 2006). 
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PRE-HARVEST 

 

Environmental conditions as high R.H., rainfall and T favor fungal proliferation resulting in 

contamination in field (Bellí et al., 2006; Leong et al., 2004). It is obvious that the weather is 

a not controllable factor, nevertheless from field studies it is possible to determine the 

pathogen risk level in the crop associated to the climatic conditions (Battilani et al., 2006; 

Lindblad et al., 2012; van Asselt et al., 2012; Xu et al., 2013). Mechanistic predictive models 

can be used in the development of Decision Support Systems (DSS) to determine the level 

of risk for the accumulation of mycotoxins in fruits and grains. These models can be 

generated using methods based on information of fungal life (ecophysiology requirements) 

and meteorological data such as T, R.H., and precipitation rate. One of the most widespread 

applications of such models are advising farmers in the decision on fungal treatments or 

harvest time (Rossi et al., 2007). The DSS models are of great interest in all stages of 

production, thus farmers can benefit from the system at an earlier stage (for optimization of 

crop protection), traders (for purchase optimization) and/or processors (reorientation of 

product flows with different quality requirements). In addition to the implementation of a 

system for current cereal grain supply chains, this system can be used to evaluate future 

scenarios, for example, considering future climate scenarios (Fels-Klerx and Booij, 2010). 

With regard to mycotoxins, predictive models currently exist in different parts of the world. 

In Canada, DONcast provides advice to farmers on the application of fungicides to minimize 

the presence of DON from Fusarium spp. based on agronomic practices, the variety of wheat 

and other factors like the meteorological data (Schaafsma and Hooker, 2007). This 

application has been calibrated for use in other countries such as Uruguay and France 

(Schaafsma and Hooker, 2007; Schaafsma et al., 2006). 

 

Regarding agronomical practices, soil preparation, crop rotation, choice of resistant varieties, 

avoiding plant stress (irrigation) and pest control (chemical pesticides and biological agents) 

are some of the main recommendations from the international agencies.  

 

Crop residues are considered the major source of inoculum. Therefore, minimise it by 

plowing under or by destroying or removing residues that may have served as substrates for 

the growth of mycotoxin-producing fungi is desirable (CAC, 2003). However, the effect is 

not totally contrasted as it affects in different ways fungi and mycotoxin production and it is 
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strongly related to the species (Dill-Macky and Jones, 2000; Leplat et al., 2013; Parikka et al., 

2008; Suproniené et al., 2012).  

 

The effect of crop succession on the mycophaties is extremely variable. The main factor is if 

the alternating crops are hosts, not-hosts or alternative-host of a single pathogen, as it gives 

a chance of survival to previous diseases. For instance, attacks are less frequent and less 

intense in wheat following soybean, because soybean leaves little tailings (Broydé and Doré, 

2013).  

 

Understanding the life cycle of mycopathogens serves to determine the susceptible periods 

of infestation and allows the producers to select the most suitable varieties, and adjusting the 

seeding date to avoid the favorable conditions for infestation at the end of cycle (moisture 

at flowering for Fusarium, heat and drought for Aspergillus), and periods of susceptibility to 

insects in maize (Abbas et al., 2009; Blandino et al., 2009). Also, the selection of mycotoxin-

resistant varieties has met diferent degrees of success for the diseases (Boutigny et al., 2008; 

Broydé and Doré, 2013). The development of transgenic cereals, through the genetic 

manipulation of defence-signalling pathways, can be an alternative strategy for reducing 

Fusarium head (ear) blight (Terzi et al., 2014). Moreover the reduction of the seeding doses 

also has been effective in control of Fusarium (Abbas et al., 2009; Blandino et al., 2009). For 

Aspergillus, various approaches have been suggested for genetic control of AFs contamination 

including the development and use of crops with resistance to insects and the resistance to 

plant stress (especially for tolerance to drought and high T) (Guo et al., 2008).  

 

Weeds can be a source of inoculum, and therefore applying herbicides could reduce the risk 

of disease break-outs, as many fungal species including ochratoxigenic species were observed 

in weed of vineyards from Argentine (Ponsone et al., 2007). However, some glyphosate-base 

herbicides can stimulate F. avenaceum and F. graminearum growth, which leads to an increase 

in wheat stem-base and ear infection (Fernandez et al., 2009). So an accurate selection of the 

active principles is mandatory in order to prevent risks. However, the use of fungicides is the 

only efficient, cost-effective and often successful way to prevent mould growth (Munimbazi 

and Bullerman, 1997). In fact, the CAC includes the application of fungicides in GAP to 

reduce contamination in cereals (CAC,-2003). The effectiveness of diferent active principles 

against fungi and mycotoxin presence are reported in bibliography (Curto et al., 2004; 

Edwards and Godley, 2010; Haidukowski et al., 2005; Ioos et al., 2005; Ramirez et al., 2004; 
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Tjamos et al., 2004). Nevertheless, fungicides must be applied with care since some of them 

and under certain conditions, may even stimulate the production of mycotoxins (Simpson et 

al., 2001). Regarding pests, there is also a clear correlation between them and mycotoxin 

levels (Cozzi et al., 2006; Ostry et al., 2010). The reason is that insects act as wounding agents 

or as vectors spreading the fungus from origin of inoculum to plants, so targeting insects as 

a means for indirectly controlling mycotoxins is adviced (Dowd, 2003). Finally, there are a 

variety of bacteria, yeasts and moulds that can restrict fungal growth and also are able to 

degrade or remove mycotoxins from foods, these microorganisms may be used as biocontrol 

agents against mycotoxigenic fungi (Medeiros et al., 2012). Currently, non-aflatoxigenic A. 

flavus (A. flavus AF36 strain) and Afla-guard (A. flavus NRRL21882 strain) are commercialized 

and applied in corn, cotton and peanuts. 

 

HARVEST 

 

During harvest it is important to control, among other things, whether the crops ripened on 

time, avoiding the crop remaining in the field longer than necessary. To reduce or prevent 

production of mycotoxins, drying should take place soon after harvest and as rapidly as 

feasible. It is important to avoid damage before and during drying, and during storage 

(Chulze, 2010). 

 

POST-HARVEST 

 

Control of storage/transport conditions (T, aW, gaseous atmosphere...) to avoid fungal 

development and mycotoxin production is critical. Safe conditions could be determined 

through the development of predictive models specific of fungi-mycotoxin/foodstuffs. They 

can be used in the implementation of Hazard Analysis and Critical Control Point (HACCP) 

plans (Marín et al., 2008). 

 

For contaminated batches different physical, chemical, and biological detoxification methods 

have been proposed. Nevertheless, detoxification is less effective and sometimes restricted 

because of concerns of safety, possible losses in nutritional quality of the treated 

commodities and cost implications (Yang et al., 2014). Besides, chemical decontamination 

and mycotoxin dilution by mixing batches of product are specifically banned by European 

Commission (EC, 2006b). 



Mycotoxins overview 

13 
 

REFERENCES 
 

Abbas, H.K., Wilkinson, J.R., Zablotowicz, R.M., Accinelli, C., Abel, C.A., Bruns, H.A., 
Weaver, M.A., 2009. Ecology of Aspergillus flavus, regulation of aflatoxin production, 
and management strategies to reduce aflatoxin contamination of corn. Toxin Rev. 
28, 142–153. 

Aylor, D.E., Sanogo, S., 1997. Germinability of Venturia inaequalis conidia exposed to 
sunlight. Phytopathology 87, 628–633. 

Battilani, P., Barbano, C., Marin, S., Sanchis, V., Kozakiewicz, Z., Magan, N., 2006. Mapping 
of Aspergillus section Nigri in Southern Europe and Israel based on geostatistical 
analysis. Int. J. Food Microbiol. 111, S72–S82. 

Bayram, Ö., Braus, G.H., Fischer, R., Rodriguez-Romero, J., 2010. Spotlight on Aspergillus 
nidulans photosensory systems. Fungal Genet. Biol. 47, 900–908. 

Bellí, N., Bau, M., Marín, S., Abarca, M.L., Ramos, A.J., Bragulat, M.R., 2006. Mycobiota and 
ochratoxin A producing fungi from Spanish wine grapes. Int. J. Food Microbiol. 111, 
S40–S45. 

Betina, V., 1989. Mycotoxins: Chemical, biological and environmental aspects. Bioact. Mol. 
9, 114–150. 

Blandino, M., Reyneri, A., Vanara, F., Tamietti, G., Pietri, A., 2009. Influence of agricultural 
practices on Fusarium infection, fumonisin and deoxynivalenol contamination of 
maize kernels. World Mycotoxin J. 2, 409–418. 

Boutigny, A.-L., Richard-Forget, F., Barreau, C., 2008. Natural mechanisms for cereal 
resistance to the accumulation of Fusarium trichothecenes. Eur. J. Plant Pathol. 121, 
411–423.  

Bräse, S., Gläser, F., Kramer, C., Lindner, S., Linsenmeier, A.M., Masters, K.-S., Meister, 
A.C., Ruff, B.M., Zhong, S., 2013. The Chemistry of Mycotoxins, Progress in the 
Chemistry of Organic Natural Products. Springer. 

Broydé, H., Doré, T., 2013. Effects of cropping systems on food and feed contamination by 
Fusarium and Aspergillus mycotoxins. Cah. Agric. 22, 182–194.  

Buchanan, R.L., Stahl, H.G., 1984. Ability of various carbon sources to induce and support 
aflatoxin synthesis by Aspergillus parasiticus. J. Food Saf. 6, 271–279. 

Cabañes, F.J., Bragulat, M.R., Castellá, G., 2013. Characterization of nonochratoxigenic 
strains of Aspergillus carbonarius from grapes. Food Microbiol. 36, 135–141. 

CAC, 2003. Code of practice for the prevention and reduction of mycotoxin contamination 
in cereals, including annexes on ochratoxin a, zearalenone, fumonisins and 
tricothecenes. 

Carlile, M.., Watkinson, S., 1996. The fungi. Academ ic Press, Harcourt Brace and Com p 
any Publishers, London, UK. 



Mycotoxins overview 

14 
 

Cary, J.W., Ehrlich, K.C., 2006. Aflatoxigenicity in Aspergillus: Molecular genetics, 
phylogenetic relationships and evolutionary implications. Mycopathologia 162, 167–
177. 

CAST, 2003. Mycotoxins: Risks in plant, animal and human systems. Task force report; Nº. 
139. ISSN 0194-4088. 

Chulze, S.N., 2010. Strategies to reduce mycotoxin levels in maize during storage: a review. 
Food Addit. Contam. Part A 27, 651–657.  

Cole, G.T., 1981. Biology of Conidial Fungi. Academic Press, 1981.ISBN: 9780323138994 

Cotty, P.J., 1989. Virulence and cultural characteristics of two Aspergillus flavus strains 
pathogenic on cotton. Phytopathology 79, 808.  

Cozzi, G., Pascale, M., Perrone, G., Visconti, A., Logrieco, A., 2006. Effect of Lobesia 
botrana damages on black aspergilli rot and ochratoxin A content in grapes. Int. J. 
Food Microbiol. 111, S88–S92. 

Crespo-Sempere, A., Marín, S., Sanchis, V., Ramos, A.J., 2013. VeA and LaeA transcriptional 
factors regulate ochratoxin A biosynthesis in Aspergillus carbonarius. Int. J. Food 
Microbiol. 166, 479–486. 

Curto, R.L., Pellicanò, T., Vilasi, F., Munafò, P., Dugo, G., 2004. Ochratoxin A occurrence 
in experimental wines in relationship with different pesticide treatments on grapes. 
Food Chem. 84, 71–75. 

Dantigny, P., Soares Mansur, C., Sautour, M., Tchobanov, I., Bensoussan, M., 2002. 
Relationship between spore germination kinetics and lag time during growth of 
Mucor racemosus. Lett. Appl. Microbiol. 35, 395–398. 

Dighton, J., White, J.F., Oudemans, P., 2005. The Fungal community: its organization and 
role in the ecosystem. Taylor & Francis, Boca Raton, FL. 

Dill-Macky, R., Jones, R.K., 2000. The effect of previous crop residues and tillage on Fusarium 
head blight of wheat. Plant Dis. 84, 71–76. 

Dobson, A.D.W., Ortoneda, M., O`Challagan, J., 2006. Advances in ochratoxin A 
biosynthesis. Book of Abstracts, International Conference of "Advances on 
genomics, biodiversity and rapid systems for detection of toxigenic fungi and 
mycotoxins" September 26-29, 2006. Monopoli (Bari), Italy 39 

Dowd, P.F., 2003. Insect management to facilitate preharvest mycotoxin management. J. 
Toxicol. - Toxin Rev. 22, 327–350. 

Edwards, S.G., Godley, N.P., 2010. Reduction of Fusarium head blight and deoxynivalenol 
in wheat with early fungicide applications of prothioconazole. Food Addit. Contam. 
- Part Chem. Anal. Control Expo. Risk Assess. 27, 629–635. 

EC, 2003. European Commission, Commission regulation (EC) Nº 2866/2003 of 11 August 
2003 on the prevention and reduction of patulin contamination in apple juice and 
apple juice ingredients in other beverages. Official Journal of the European Union, 
L 203(2003), 54-59.  



Mycotoxins overview 

15 
 

EC, 2006a European Commission Nº 583/2006 of 17 August 2006 on the revention and 
reduction of Fusarium toxins in cereals and cereal products. Official Journal of the 
European Union, L 234(2006), 35-40. 

EC, 2006b. European Commission Nº 1881/2006 of 19 December 2006 setting maximum 
levels for certain contaminants in foodstuffs. Official Journal of the European Union, 
L 364(2006), 5-24. 

Fels-Klerx, H.J.V.D., Booij, C.J.H., 2010. Perspectives for geographically oriented 
management of Fusarium mycotoxins in the cereal supply Chain. J. Food Prot. 73, 
1153–1159. 

Fernandez, M.R., Zentner, R.P., Basnyat, P., Gehl, D., Selles, F., Huber, D., 2009. 
Glyphosate associations with cereal diseases caused by Fusarium spp. in the Canadian 
Prairies. Eur. J. Agron. 31, 133–143. 

Fourtouni, A., Manetas, Y., Christias, C., 1998. Effects of UV-B radiation on growth, 
pigmentation, and spore production in the phytopathogenic fungus Alternaria solani. 
Can. J. Bot. 76, 2093–2099. 

Guo, B., Chen, Z.-Y., Lee, R.D., Scully, B.T., 2008. Drought Stress and Preharvest Aflatoxin 
Contamination in Agricultural Commodity: Genetics, Genomics and Proteomics. J. 
Integr. Plant Biol. 50, 1281–1291.  

Haidukowski, M., Pascale, M., Perrone, G., Pancaldi, D., Campagna, C., Visconti, A., 2005. 
Effect of fungicides on the development of Fusarium head blight, yield and 
deoxynivalenol accumulation in wheat inoculated under field conditions with 
Fusarium graminearum and Fusarium culmorum. J. Sci. Food Agric. 85, 191–198. 

IARC, 1993. Monographs on the evaluation of carcinogenic risks to humans: some naturally 
occurring substances, food items and constituents, heterocyclic aromatic amines and 
mycotoxins. 

IARC, 1998. Monographs on the evaluation of carcinogenic risks to humans: some 
traditional herbal medicines, some mycotoxins, naphthalene and styrene. 

Ioos, R., Belhadj, A., Menez, M., Faure, A., 2005. The effects of fungicides on Fusarium spp. 
and Microdochium nivale and their associated trichothecene mycotoxins in French 
naturally-infected cereal grains. Crop Prot. 24, 894–902. 

Kabak, B., Dobson, A.D.W., Var, I., 2006. Strategies to prevent mycotoxin contamination 
of food and animal feed: A review. Crit. Rev. Food Sci. Nutr. 46, 593–619. 

Leong, S.-L., Hocking, A.D., Pitt, J.I., 2004. Occurrence of fruit rot fungi (Aspergillus section 
Nigri) on some drying varieties of irrigated grapes. Aust. J. Grape Wine Res. 10, 83–
88. 

Leplat, J., Friberg, H., Abid, M., Steinberg, C., 2013. Survival of Fusarium graminearum, the 
causal agent of Fusarium head blight. A review. Agron. Sustain. Dev. 33, 97–111. 
doi:10.1007/s13593-012-0098-5 

Leslie, J.F., Bandyopadhyay, R., Visconti, A., 2008. Mycotoxins: detection methods, 
management, Public Health and Agricultural Trade. CABI. 



Mycotoxins overview 

16 
 

Lindblad, M., Börjesson, T., Hietaniemi, V., Elen, O., 2012. Statistical analysis of agronomical 
factors and weather conditions influencing deoxynivalenol levels in oats in 
Scandinavia. Food Addit. Contam. - Part Chem. Anal. Control Expo. Risk Assess. 
29, 1566–1571. 

Magan, N., Olsen, M., 2004. Mycotoxins in Food: Detection and Control. Edited by M 
Magan and M Olsen Woodhead. 

Marín, S., Hodžić, I., Ramos, A.J., Sanchis, V., 2008. Predicting the growth/no-growth 
boundary and ochratoxin A production by Aspergillus carbonarius in pistachio nuts. 
Food Microbiol. 25, 683–689. 

McGee, D.C., Olanya, O.M., Hoyos, G.M., Tiffany, L.H., 1996. Populations of Aspergillus 
flavus in the Iowa cornfield ecosystem in years not favorable for aflatoxin 
contamination of corn grain. Plant Dis. 80, 742–746. 

Medina, Á., Mateo, E.M., Valle-Algarra, F.M., Mateo, F., Mateo, R., Jiménez, M., 2008. 
Influence of nitrogen and carbon sources on the production of ochratoxin A by 
ochratoxigenic strains of Aspergillus spp. isolated from grapes. Int. J. Food Microbiol. 
122, 93–99. 

Moody, S.A., Newsham, K.K., Ayres, P.G., Paul, N.D., 1999. Variation in the responses of 
litter and phylloplane fungi to UV-B radiation (290-315 nm). Mycol. Res. 103, 1469–
1477. 

Munimbazi, C., Bullerman, L.B., 1997. Inhibition of aflatoxin production of Aspergillus 
parasiticus NRRL 2999 by Bacillus pumilus. Mycopathologia 140, 163–169. 

Musa, T., Hecker, A., Vogelgsang, S., Forrer, H.R., 2007. Forecasting of Fusarium head blight 
and deoxynivalenol content in winter wheat with FusaProg. EPPO Bull. 37, 283–
289.  

Nicholson, P., Chandler, E., Draeger, R.C., Gosman, N.E., Simpson, D.R., Thomsett, M., 
Wilson, A.H., 2003. Molecular tools to study epidemiology and toxicology of 
Fusarium head blight of cereals. Eur. J. Plant Pathol. 109, 691–703. 

Nicot, P.C., Mermier, M., Vaissière, B.E., Lagier, J., 1996. Differential spore production by 
Botrytis cinerea on agar medium and plant tissue under near-ultraviolet light-absorbing 
polyethylene film. Plant Dis. 80, 555–558. 

Osman, M., Mohamed, Y.A., el-Sayed, M.A., Abo-Zeid, A., 1988. Effect of UV-irradiation 
on some aspects of metabolic activities in Aspergillus flavus and Penicillium notatum. 
Microbios 56, 79–87. 

Ostry, V., Ovesna, J., Skarkova, J., Pouchova, V., Ruprich, J., 2010. A review on comparative 
data concerning Fusarium mycotoxins in Bt maize and non-Bt isogenic maize. 
Mycotoxin Res. 26, 141–145.  

Parikka, P., Hietaniemi, V., Rämö, S., Jalli, H., Vihervirta, T., 2008. The effect of reduce 
tillage on mycotoxin contents of oat and barley grain. NJF Semin. 418 New Insights 
Sustain. Cultiv. Methods Agric. 4. 



Mycotoxins overview 

17 
 

Pitt, J.I., Hocking, A.D., 2009. Fungi and Food Spoilage. 3nd Edtion. London; New York: 
Blackie Academic & Professional.  

Ponsone, M.L., Combina, M., Dalcero, A., Chulze, S., 2007. Ochratoxin A and 
ochratoxigenic Aspergillus species in Argentinean wine grapes cultivated under 
organic and non-organic systems. Int. J. Food Microbiol. 114, 131–135. 

Ramirez, M.L., Chulze, S., Magan, N., 2004. Impact of environmental factors and fungicides 
on growth and deoxinivalenol production by Fusarium graminearum isolates from 
Argentinian wheat. Crop Prot. 23, 117–125. 

Ramos, A.J., 2011. Micotoxinas y micotoxicosis, España, AMV Ediciones.  

RASFF, 2012. Rapid Alert System for Food and Feed 
http://ec.europa.eu/food/food/rapidalert/index_en.htm. 

Rossi, V., Giosuè, S., Terzi, V., Scudellari, D., 2007. A decision support system for Fusarium 
head blight on small grain cereals. EPPO Bull. 37, 359–367. 

Rotem, J., Wooding, B., Aylor, D.E., 1985. The role of solar radiation, especially ultraviolet, 
in the mortality of fungal spores. Phytopathology 75, 510–514. 

Terzi, V., Tumino, G., Stanca, A.M., Morcia, C., 2014. Reducing the incidence of cereal head 
infection and mycotoxins in small grain cereal species. J. Cereal Sci. 59, 284–293. 

Schaafsma, A.W., Hooker, D.C., 2007. Climatic models to predict occurrence of Fusarium 
toxins in wheat and maize. Int. J. Food Microbiol. 119, 116–125. 

Schaafsma, A.W., Hooker, D.C., Pineiro, M., Díaz de Ackermann, M., Pereyra, S. Castaño, 
J.P. (2006). Pre-harvest forecasting of deoxynivalenol for regulatory action in wheat 
grain in Uruguay using readily available weather inputs Njapau (Ed.) et al., 
Mycotoxins and Phycotoxins: Advances in Determination, Toxicology and Exposure 
Management, Wageningen Academic Publishers of the Netherlands (2006), pp. 227–
238 

Simpson, D.R., Weston, G.E., Turner, J.A., Jennings, P., Nicholson, P., 2001. Differential 
control of head blight pathogens of wheat by fungicides and consequences for 
mycotoxin contamination of grain. Eur. J. Plant Pathol. 107, 421–431. 

Smith, J.E., 1985. Mycotoxin hazards in the production of fungal products and byproducts. 
Pract of Biotech, Spec Prod and Serv Act..  

Suproniené, S., Mankevičienė, A., Kadžienė, G., Kačergius, A., Feiza, V., Feizienė, D., 
Semaškienė, R., Dabkevičius, Z., Tamošiūnas, K., 2012. The impact of tillage and 
fertilization on Fusarium infection and mycotoxin production in wheat grains. Ž 
EmdirbystėAgriculture 99, 265–272. 

Taniwaki, M.H., Hocking, A.D., Pitt, J.I., Fleet, G.H., 2009. Growth and mycotoxin 
production by food spoilage fungi under high carbon dioxide and low oxygen 
atmospheres. Int. J. Food Microbiol. 132, 100–108. 
doi:10.1016/j.ijfoodmicro.2009.04.005 



Mycotoxins overview 

18 
 

Santos, 2011. Fungi and mycotoxins in Capsicum powder: occurrence, ecophisiology and 
control. Doctoral Thesis University of Lleida. 

Tjamos, S.E., Antoniou, P.P., Kazantzidou, A., Antonopoulos, D.F., Papageorgiou, I., 
Tjamos, E.C., 2004. Aspergillus niger and Aspergillus carbonarius in Corinth raisin and 
wine-producing vineyards in Greece: Population composition, Ochratoxin A 
production and chemical control. J. Phytopathol. 152, 250–255. 

Van Asselt, E.D., Booij, C.J.H., van der Fels-Klerx, H.J., 2012. Modelling mycotoxin 
formation by Fusarium graminearum in maize in The Netherlands. Food Addit. 
Contam. - Part Chem. Anal. Control Expo. Risk Assess. 29, 1572–1580. 

Van der Gaag, B., Spath, S., Dietrich, H., Stigter, E., Boonzaaijer, G., van Osenbruggen, T., 
Koopal, K., 2003. Biosensors and multiple mycotoxin analysis. Food Control 14, 
251–254.  

Wagacha, J.M., Muthomi, J.W., 2008. Mycotoxin problem in Africa: Current status, 
implications to food safety and health and possible management strategies. Int. J. 
Food Microbiol. 124, 1–12. 

Windels, C.E., 2000. Economic and social impacts of Fusarium head blight: Changing farms 
and rural communities in the Northern Great Plains. Phytopathology 90, 17–21. 

Woloshuk, C.P., Shim, W.-B., 2013. Aflatoxins, fumonisins, and trichothecenes: a 
convergence of knowledge. FEMS Microbiol. Rev. 37, 94–109. doi:10.1111/1574-
6976.12009 

Xu, X., Madden, L.V., Edwards, S.G., Doohan, F.M., Moretti, A., Hornok, L., Nicholson, 
P., Ritieni, A., 2013. Developing logistic models to relate the accumulation of DON 
associated with Fusarium head blight to climatic conditions in Europe. Eur. J. Plant 
Pathol. 137, 689–706. doi:10.1007/s10658-013-0280-x 

Yang, J., Li, J., Jiang, Y., Duan, X., Qu, H., Yang, B., Chen, F., Sivakumar, D., 2014. Natural 
occurrence, analysis, and prevention of mycotoxins in fruits and their processed 
products. Crit. Rev. Food Sci. Nutr. 54, 64–83. doi:10.1080/10408398.2011.569860 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. OBJECTIVES and  

 WORK PLAN 
 



 

 

PAGINA EN BLANCO 



Objectives 

21 
 

GENERAL OBJETIVE 

 

This Thesis work is included in the main research line “Tools for the management of the 

Food Safety applied to mycotoxin risks” of the Applied Mycology Unit of the Food 

Technology Departament of the University of Lleida, and was supported by national and 

international projects: 

 

- The MYCORED European project KBBE-2007-2-5-05: “New integrated strategies 

for reducing mycotoxins in the world in food and feed chains”. 

 

- The BASELINE European project KBBE-222738: “Selection and improving of fit-

for-purpose sampling procedures for specific foods and risks”. 

 

- The Spanish project AGL-2010-22182-C04-04: “Climate change and new food 

habits: new scenarios challenging Food Safety Objectives for mycotoxin risk in 

Spain”.  

 

The general objective of this Thesis is to ensure the usefulness of the present methods of 

fungal control for an effective management, as well as to assess the possible Food Safety 

implications derived from climate change. 

 

Specific objetives were also proposed: 

 

 To identify the Performance Objectives (PO) for pistachio concerning the mycotoxin 

presence as chemical hazard of biological origin.  

 

 To evaluate the suitability of existing sampling plans for the screening of pistachio 

lots for aflatoxins.  

 

 To isolate and identify the mycobiota presence in grapes in two agroclimatic regions 

from Spain (Catalonia and Andalucia) for the evaluation of the mycotoxigenic fungi 

biodiversity in grapes and musts contamination. 
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 To compare the ecophysiological traits (in terms of temperature and water activity 

requirements) of A. tubingensis, A. niger and A. carbonarius isolated from berries from 

Catalonia and Andalucia. 

 

 To evaluate the impact of ultraviolet radiation (UV) on the fungal development with 

a special attention to black aspergilli. 

 

 To evaluate the climate change impact over the efficiency of natural and chemical 

antifungals applied for the control of the mycotoxigenic fungus on grapes and wheat. 

 



Work plan 
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WORK PLAN 

In order to achieve the mentioned objectives, the following work plan was proposed: 

 

Bibliographic revision 

Research work: 

Food Safety 
Management in 

mycotoxins issue 

PART I:                       
SELECTION OF 

RAW MATERIALS 

SAMPLING PLANS 

Alternative sampling plans for raw and roasted pistachio (Study I) 

EFFECT OF PROCESSING 

Effect of industrial roasting of pistachio (Study I) 

SETTING PO IN INDUSTRIAL PISTACHIO PROCESSING  

Pistachio processing (Study I) 

   

PART II:                                          
CLIMATE 
CHANGE 

FUNGAL PRESENCE AND ADAPTATION 

Isolation and identification of mycotoxigenic species from two agroclimatic 
regions (Study II) 

Ecophysiological profile of black aspergilli isolates from two agroclimatic regions 
(Study III) 

UV resistance of Aspergillus species (Study IV and study V) 

ANTIFUNGALS EFFECTIVENESS 

Effectiveness of natural and chemical antifungals on Aspergillus species in grapes 
and wheat (Study VI and study VII) 

Preparation of the Thesis Document 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. INTRODUCTION 
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1. Aflatoxins and ochratoxin A 
 

1.1. Aflatoxins 

 

AFs were first discovered and characterized in the early 1960s after more than 100000 turkey poults 

died due to an apparent poisoning from mould contaminated peanut meal in England (Goldblatt, 

1969). Nowadays, these mycotoxins are considered the most common naturally formed 

carcinogens (CAST, 2003).  

 

Their chemical structure of AFs consists in a difuranocoumarin derivate produced by a poliketide 

pathway, and are classified in two groups (Figure 1 and Table 5).  

 

Figure 1 Structure of naturally occurring main AFs. 
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Table 5 Melting point and UV absorption of AFs. 

Ɛ: molar extinction coefficient        (Cole et al., 2003; IARC, 2002a) 

 

Difurocoumarocyclopentenone series: polycyclic aromatic compounds containing a cyclopenten-

2-one ring fused to the coumarin moiety of the difurocoumarin skeleton (AFB1, AFB2, AFB2A, 

AFM1, AFM2, AFM2A and aflatoxicol); and difurocoumarolactone series: polycyclic aromatic 

compounds containing a delta-valerolactone ring fused to the coumarin moiety of the 

difurocoumarin skeleton (AFG1, AFG2, AFG2A, AFB3). When mammals consume AFs-

contaminated feeds, they metabolically biotransform AFB into a hydroxylated form called AFM. 

The physicochemical properties (description, solubility, stability, reactivity) of AFs have been 

described in published bibliography (Cole et al., 2003; IARC, 2002). 

 

 Description: AFs are highly fluorescent substances in UV, emitting blue (AFB1 and AFB2) 

or green (AFG1) and green-blue (AFG2) fluorescence, from which the designations B and 

G were derived, or blue-violet fluorescence (AFM1). 

 

Difurocoumarocyclopentenone series 

Common 

name 
Abbreviation 

Melting point (ºC) crystal 

from 

UV absorption (ethanol) 

λmax(nm) Ɛ(L/mol cm) 

Aflatoxin B1 AFB1 268-269 Chloroform 

223 25600 

265 13400 

362 21800 

Aflatoxin B2 AFB2 286-289 chloroform-pentane 
265 11700 

Aflatoxin M1 AFM1 299 Methanol 
265 11600 

357 1900 

Aflatoxin M2 AFM2 293 methanol-chloroform 

221 20000 

264 10900 

357 21000 

Difurocoumarolactone series 

Aflatoxin G1 AFG1 244-246 chloroform-methane 

243 11500 

257 9900 

264 10000 

362 16100 

Aflatoxin G2 AFG2 237-240 ethyl acetate 
265 9700 

363 21000 
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 Solubility: soluble in water, insoluble in non-polar solvents, freely soluble in moderately 

polar organic solvents (e.g., chloroform and methanol and especially in dimethyl sulfoxide). 

 

 Stability: unstable to UV light in the presence of oxygen, to extreme pH (<3, >10) and to 

oxidizing agents.  

 

 Reactivity: a solution prepared in chloroform or benzene is stable for years if kept cold and 

in the dark. The lactone ring makes them susceptible to alkaline hydrolysis. If alkaline 

treatment is mild, acidification will reverse the reaction to reform the original AF. In acid, 

AFB1 and AFG1 are converted to AFB2a and AFG2a by acid catalytic addition of water 

across the double bond of the furan ring. Oxidizing reagents react and the molecules lose 

their fluorescence properties.  

 

1.1.1. Producing fungi and their requirements for growth and AFs production  

 

Production of AFs has been reported from members of different groups of Aspergilli, as section 

Ochraceorosei, Nidulantes and Flavi (Frisvad et al., 2005; Varga et al., 2009). Nonetheless, the most 

important AF producers are members of Aspergillus section Flavi (Varga et al., 2009). Several species 

belonging to this section are important mycotoxin producers including AFs, CPA, OTA and kojic 

acid (KA) (Varga et al., 2011). Numerous authors have tested the AFs production capacity of 

numerous species belonging to this section (Table 6). Nevertheless, from a public health point of 

view A. flavus and A. parasiticus are the most significant. Considering their mycotoxigenic profile, it 

is usually accepted that not all A. flavus isolates produce AFs, and those that do usually produce 

only B-type AFs (and CPA), whereas almost all A. parasiticus isolates produce both B and G-type 

AFs, but not CPA (Giorni et al., 2007; Klich, 2007; Pildain et al., 2008; Rodrigues et al., 2009; 

Vaamonde et al., 2003). Furthermore, aflatoxigenic strains do not produce toxin in all substrates 

and can even lose their toxigenic potential (Wei and Jong, 1986). Similar incidence of both species 

has been reported in nuts (peanuts and almonds) and wheat (Rodrigues et al., 2009; Vaamonde et 

al., 2003), whereas A. flavus was clearly more dominant (93%) than A. parasiticus (7%) in maize 

(Giorni et al., 2007). With regard to T and aW, a summary of the conditions that yield the highest 

AFs production for each species is presented in Table 7. A. parasiticus seems to be able to produce 

AFs under higher T than A. flavus nevertheless strains were tested in different culture medium. 
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Table 6 Species of Aspergillus section Flavi tested for AFs production. 

Isolates 
Aflatoxin production 

References 
B1 B2 G1 G2 

A. arachidicola + + + + 
(Gonçalves et al., 2012; Pildain et al., 

2008) 

A. avenaceus - - - - (Pildain et al., 2008) 

A. bombycis + + + + 
(Frisvad et al., 2005; Peterson et al., 

2002; Pildain et al., 2008) 

A. caelatus - - - - (Pildain et al., 2008) 

A. coremiiformis - - - - (Varga et al., 2011) 

A. flavus +/- + - - 

(Frisvad et al., 2005; Gonçalves et al., 

2012; Pildain et al., 2008; Varga et al., 

2009; Yazdani et al., 2011) 

A. leporis - - - - (Pildain et al., 2008) 

A. minislerotigenes + + + + 
(Gonçalves et al., 2012; Pildain et al., 

2008) 

A. nomius + + + + 
(Peterson et al., 2002; Pildain et al., 

2008) 

A. novoparasiticus + + + + (Gonçalves et al., 2012) 

A. oryzae - - - - (Yazdani et al., 2011) 

A. parasiticus + + + + 
(Araguás et al., 2005; Frisvad et al., 2005; 

Pildain et al., 2008) 

A. parasiticus var. globosus + + + - (Gonçalves et al., 2012) 

A. parvisclerotigenus + + +/- + (Frisvad et al., 2005; Pildain et al., 2008) 

A. pseudocaelatus + + + + (Varga et al., 2011) 

A. pseudonomius + - - - (Pildain et al., 2008; Varga et al., 2011) 

A. pseudotamarii + + - - (Frisvad et al., 2005; Ito et al., 2001) 

A. sojae - - - - 
(Gonçalves et al., 2012; Varga et al., 

2011) 

A. tamari - - - - 
(Goto et al., 1996; Pildain et al., 2008; 

Yazdani et al., 2011) 

A. terricola var. americans - - - - (Gonçalves et al., 2012) 

A. togoensis + - - - (Rank et al., 2011) 

A. toxicarius + - + + (Gonçalves et al., 2012) 

+, production; -, no production 
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Table 7 Summary of the conditions for AFs production by different fungi. 

 A. flavusa A. parasiticusb 

Minimum T 15 ºC 15 ºC 

Maximum T 37 ºC 40 ºC 

Optimal T 30 ºC 37 ºC 

Minimum aw 0.86 <0.90 

Optimal aw 0.96 0.93-0.99 

Minimum time 7 days  

Optimal time 21 days  
a, medium based maize; b, YES (Astoreca et al., 2014; Schmidt-Heydt et al., 2010) 

 

1.1.2. Occurrence in foodstuffs 

 

AFs have been found in a variety of agricultural commodities as cereals and their derivates as flour, 

breakfast cereals or beer (Aydin et al., 2008; Burdaspal and Legarda, 2013, 2013; Hassan and 

Kassaify, 2014; Rahmani et al., 2011; Roscoe et al., 2008). They are also frequently detected in nuts 

or nut products as peanut butter (Ezekiel et al., 2012; Jahanmard et al., 2014; Milhome et al., 2014; 

Yentür et al., 2006), cocoa and derivates (Turcotte et al., 2013), spices (Hammami et al., 2014), 

dried figs (Heperkan et al., 2012) and oil (Finoli et al., 2005). Since cereals are the base of feeds, 

AFs or their metabolites have been detected in meat (Aziz and Youssef, 1991), milk and dairy 

products (Gul and Dervisoglu, 2014; Hassan and Kassaify, 2014).  

 

European Commission has established maximum levels for AFB1 and AFs 

(AFB1+AFB2+AFG1+AFG2) in cereal products, nuts and dried fruit previous to sorting or other 

physical treatment, and lower values for direct consumption likewise contamination in spices (EC, 

2010a, 2012). Furthermore AFM1 contamination in milk, and AFB1 and AFM1 in infant and dietary 

foods for special medical purpose are also regulated (EC, 2010a). Besides AFB1 maximum level is 

also legislated in feed (EU, 2003). 

 
1.2. Ochratoxin A 

 

OTA was discovered as a metabolite of A. ochraceus from corn meal intentionally inoculated with 

this fungus in South Africa, in 1965 (Van Der Merwe et al., 1965). OTA was described as one of 

the first fungal metabolites which was toxic to animals, which, with the AFs, launched the 

distinctive and individualised science of mycotoxicology in the 1960s (Zinedine et al., 2010). 
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Its chemical structure consists of a dihydroisocoumarin moiety coupled to L-β-phenylalanine by a 

peptide bond (Figure 2 and Table 8). The group comprises OTA, its dechloro analogue OTB, its 

ethyl ester ochratoxin C, and the hydroxylated forms. OTα and OTβ are products of the hydrolysis 

of the peptide bound of OTA and OTB, respectively, and lack the phenylalanine moiety. OTA is 

the most important ochratoxin due to its incidence and toxicity.  

 

 

Figure 2 Structure of naturally occurring main ochratoxins. 

 

The physiochemical properties (description, solubility, stability, reactivity) of  OTA has been 

described in published bibliography (Deshpande, 2002; IARC, 1993; Valenta, 1998). 

 

 Description: intense fluorescence in UV light, emitting green and blue fluorescence in acid 

and alkaline solutions, respectively. 

 

 Solubility: it is soluble in polar organic solvents, slightly soluble in water and soluble in 

diluted aqueous bicarbonate solutions. 

 

 Stability: the UV absorption spectrum varies with pH and solvent polarity. OTA is unstable 

to air and light, though ethanol solutions are stable for longer than one year if kept 

refrigerated and in the dark. 
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 Reactivity: partially degraded under cooking conditions. Solutions of OTA are completely 

degraded by treatment with an excess of sodium hypochlorite solution. Thermal stability 

of OTA varies according to the matrix where it is present, and it seems to be stable in some 

food matrices up to 180º C (Raters and Matissek, 2008).  

 

Table 8 Melting point and UV absorption of ochratoxins. 

Common 

name 
Abbreviation 

Melting point (ºC) 

crystal from 

UV absorption (ethanol) 

λmax(nm) Ɛ(L/mol cm) 

Ochratoxin A OTA 169 Benzene 333 6640 

Ochratoxin B OTB 221 °C  318 6900 

Ochratoxin C OTC not availible  335 6200 
Ɛ: molar extinction coefficient   

 

1.2.1. Producing fungi and their requirements for growth and OTA production 

 

Accumulation of ochratoxins has been reported from members of Penicillia and different groups of 

Aspergilli. Additionally, Penicillium spp. incidence is associated with colder temperate climates, while 

Aspergillus spp. is most frequently isolated from warmer and tropical parts of the world.  

 

Several Penicillium spp. have been pointed as OTA producers. However, in a completed revision 

about extrolites produced by species in Penicillium subgenus Penicillium carried out by (Frisvad et al., 

2004b) the authors considered than P. verrucosum and P. nordicum were the main OTA producer 

species, as many strains had been incorrectly identified or unidentified as producers.  

 

Several sections within the Aspergilli group contain species capable to produce OTA. In this sense, 

the species belonging to section Flavi (Petromyces alliaceus, P. albertensis, and A. lanosus), section Wentii 

(A. sepultus and A. dimorphicus) section Candidi (A. taichungensis and A. campestris), section Circumdati 

(Table 9) and section Nigri have shown ability to produce OTA (Frisvad and Samson, 2000; 

Frisvad et al., 2004a; Medina et al., 2005; Zotti and Montemartini Corte, 2002).  

Focusing on section Circumdati at least ten species have been reported as potential OTA producers 

(Table 9), although the most important species in this regard appear to be A. ochraceus, A. 

westerdijkiae and A. steynii, because they are very common and most of the isolates in these species 

produce large amounts of OTA (Frisvad et al., 2004a).  
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Table 9 Species of Aspergillus section Circumdati tested for OTA production. 

Species OTA Reference 

A. auricomus - (Frisvad et al., 2004a) 

A. bridgeri - (Frisvad et al., 2004a) 

A. cretensis + (Frisvad et al., 2004a) 

A. elegans - (Frisvad et al., 2004a) 

A. flocculosus + (Frisvad et al., 2004a 

A. insulicola - (Frisvad et al., 2004a) 

A. melleus -* (Frisvad et al., 2004a) 

A. neobridgeri - (Frisvad et al., 2004a) 

A. ochraceus +/- (Frisvad et al., 2004a) 

A. ostianus -* (Frisvad et al., 2004a) 

A. perseii -* (Frisvad et al., 2004a) 

A. petrakii -* (Frisvad et al., 2004a) 

A. pseudoelegans + (Frisvad et al., 2004a) 

A. roseoglobulosus + (Frisvad et al., 2004a) 

A. sclerotiorum +/- (Frisvad et al., 2004a) 

A. steynii + (Frisvad et al., 2004a) 

A. sulphurous + (Frisvad et al., 2004a) 

A. westerdijkiae + (Frisvad et al., 2004a) 

      +, production; -, no production; *, produce trace amounts                                                 (Frisvad et al., 2004a). 

 

Additionally, over the last two decades intense efforts have been directed to discriminate the species 

within section Nigri and metabolites production included OTA (Table 10). 

 

As mentioned in the previous section, not all strains have the same capacity for OTA synthesis. 

Even the ochratoxigenic strains do not produce toxin in all substrates. With regard to T and aW, a 

summary of the conditions that yield the highest OTA production for some species is present in 

Table 11. 
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Table 10 Species of Aspergillus section Nigri tested for OTA production. 

Species OTA References 

A. acidus - (Frisvad et al., 2011; Mogensen et al., 2009) 

A. aculeatinus - 
(Frisvad et al., 2011; Noonim et al., 2008; 

Samson et al., 2007) 

A. aculeatus - 
(Frisvad et al., 2011; Samson et al., 2007, 

2004) 

A. awamori + (Perrone et al., 2011) 

A. brasiliensis - 
(Frisvad et al., 2011; Samson et al., 2007, 

2004; Varga et al., 2007) 

A. carbonarius +/- 

(Cabañes et al., 2013; de Vries et al., 2005; 

Frisvad et al., 2011; Samson et al., 2007, 

2004; Serra et al., 2006b) 

A. costaricaensis - 
(Frisvad et al., 2011; Samson et al., 2007; 

Varga et al., 2007) 

A. ellipticus - 
(Frisvad et al., 2011; Samson et al., 2007, 

2004) 

A. foetidus - 
(de Vries et al., 2005; Samson et al., 2007, 

2004; Varga et al., 2007) 

A. heteromorhpus - 
(Frisvad et al., 2011; Samson et al., 2007, 

2004) 

A. homomorphus - (Frisvad et al., 2011; Samson et al., 2007) 

A. ibericus - (Frisvad et al., 2011; Serra et al., 2006a) 

A. japonicus - 
(Frisvad et al., 2011; Samson et al., 2007, 

2004) 

A. lacticoffeatus + (Samson et al., 2007, 2004; Varga et al., 2007) 

A. niger +/- 

(de Vries et al., 2005; Frisvad et al., 2011; 

Perrone et al., 2011; Samson et al., 2007, 

2004; Varga et al., 2007) 

A. piperis - 
(Frisvad et al., 2011; Samson et al., 2007, 

2004; Varga et al., 2007) 

A. scleroticarbonarius - 
(Frisvad et al., 2011; Noonim et al., 2008; 

Samson et al., 2007) 

A. sclerotioniger + 
(Frisvad et al., 2011; Samson et al., 2007, 

2004; Serra et al., 2006a) 

A. tubingensis +/- 

(de Vries et al., 2005; Frisvad et al., 2011; 

Medina et al., 2005; Samson et al., 2007, 

2004; Varga et al., 2007) 

A. uvarum - 
(Frisvad et al., 2011; Perrone et al., 2007b; 

Samson et al., 2007) 

A. vadensis - 
(de Vries et al., 2005; Frisvad et al., 2011; 

Samson et al., 2007, 2004; Varga et al., 2007) 
       +, production; -, no production 



 

36 
 

Table 11 Summary of the conditions for OTA production by different fungi. 

 P. verrucosum A. ochraceus A. carbonarius A. niger 

Minimum T 4–10 °C 5–10 °C 5–15 °C 10–15 °C 

Maximum T 21–31°C 30–40 °C 30–45 °C 35–41 °C 

Optimal T 24–25 °C 20–35 °C 15–30  C 15–35 °C 

Minimum aw 0.80–0.83 0.87–0.90 0.85–0.94 0.90–0.95 

Optimal aw 0.95–0.99 0.95–0.99 0.95–0.99 0.95–0.99 

Minimum time 7 days 3 days 2–5 days 3–7 days 

Optimal time >14 days 9–21 days 10–15 days 5–30 days 
         (Amézqueta et al., 2012) 

 

1.2.2. Occurrence in foodstuffs 

 

OTA presence has been described in many commodities. It has been detected in cereals 

(Scudamore et al., 2003), grapes and derivates (Abrunhosa et al., 2001; Varga and Kozakiewicz, 

2006; Zimmerli and Dick, 1996), coffee (Taniwaki et al., 2003), cocoa and derivates (Bonvehí, 

2004), pork and poultry meat products (Beg et al., 2006; Matrella et al., 2006), milk (Boudra et al., 

2007), spices(Aziz et al., 1998), nuts (Bayman et al., 2002), liquorice (Ariño et al., 2007) and 

vegetable oil (Ferracane et al., 2007). OTA contamination in meat and animal products is caused 

by the consumption of contaminated feedstuff (Curtui et al., 2001; Sabatini et al., 2007). In 2002 

the European Food Safety Authority (EFSA) carried out a study for the assessment of OTA intake 

through the diet (Miraglia and Brera, 2002). It was estimated that at least 50% of OTA in the diet 

came from cereals, then, emphasized its importance in wine, as it is the second source of intake 

(13%). 

 

In order to prevent human toxicological damage legal restrictions are applied to mycotoxins in 

food. In OTA, the Lowest Observed Adverse Effect Level (LOAEL) was 8 µg/kg body weight 

(b.w.) per day for early markers of renal toxicity in pigs; applying a composite uncertainty factor of 

450 for the uncertainties due to the extrapolation of experimental data derived from animals to 

humans as well as for intra-species variability, a Tolerable Weekly Intake (TWI) of 120 ng/kg b.w 

was calculated (EFSA, 2006). The EC established maximum levels for OTA in cereals, dried vine 

fruits, coffee and wine in 2006. In the case of cereals, the legislation discriminated between 

unprocessed and intended for direct human consumption products. Subsequent studies found high 

OTA levels in spices and liquorice, considering appropriate to establish maximum limits of 
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contamination in these foods in 2010 (EC, 2006b, 2010b). Particularly, lower levels are set for baby 

and dietary foods.  

 

2. Management of mycotoxin presence in commodities 
 

Currently, risk management strategies applied to mycotoxins include, the establishment of science 

based regulatory limits likewise protocols development by the Internationally Agencies (CAC, 

FAO, European Commission…). Among these protocols, the HACCP system and pre-requisite 

programmes as well as GAP have clearly supplied a great improvement in the Food Safety 

Management.  

 

Recently, the food safety management approach for microbiological risks has been completed and 

developed through the inclusion of other metrics like the Food Safety Objective (FSO) (ICMSF, 

1998). The FSO specifies a goal which can be incorporated into the design of control 

measurements in the food chain corresponding with the maximum permissible level of a hazard in 

a food at the moment of consumption which leads to an Appropriate Level of Protection (ALOP). 

The acceptable level of risk is the level adopted following consideration of public health impact, 

technological feasibility, economic implications, and that which a society regards as reasonable in 

the context of and in comparison with other risks in everyday life (Schothorst, 1998). 

 

In this context, the agro-food industry would use FSOs as means to co-ordinate risk management 

in the production process throughout the farm-to fork production chain (de Swarte and Donker, 

2005). Maximum hazard levels at other steps along the food chain are called Performance 

Objectives (POs) (CAC, 2007). 

 

The concept of FSO has mostly been applied to understanding the effects of handling and 

processing on levels of bacterial pathogens in foods, but it is also applicable to the formation and 

removal of mycotoxins (Pitt et al., 2013). The FSO is calculated from Equation 1.  

Ho–∑R+∑I≤FSO Equation 1 

 

Increase in mycotoxin levels may occur before or after harvest, during drying, or during storage 

(∑I) while reduction in mycotoxin levels (∑R) takes place during processing (ICMSF, 2002). Initial 

mycotoxin level (Ho) for food industries could be designed as the time of sale from the farm to 
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distributors or processors. In the case of mycotoxins, FSO, Ho, R and I are expressed in µg/kg. 

Recently, Pitt et al. (2013) described the time course of mycotoxin formation and reduction in 

major crops, with reference to the FSO using a graphical method.  

 

Since this thesis has been focused on pistachio, wheat and grape, the occurrence and concentration 

of AFs and OTA, as well as the producing fungi and the infection moment in these substrates has 

been more extensively revised. Additionally, the effect of food processing (toasted pistachio, wheat 

flour and vinification) has been also considered, and proposed POs have been indicated in three 

suggested flow charts.  

 

2.1. Case study I: Nuts-pistachio  

 

Nuts present low aW and, due to their intrinsic characteristics, fungi are the major microbiological 

contaminants. Some of these molds are mycotoxigenic, thus high levels of mycotoxins have 

frequently been reported in nuts from the orchards and from the market (Bayman et al., 2002; 

Fernane et al., 2010a).  

 

AFs are often present in pistachio samples in the market (10-100%) while the incidence of OTA 

(2-3%) is generally low. The AFs contamination levels are widely variable with samples up to 2 

ppm (Table 12). In most of the cases AFB1 represented more than 90 % of the AFs.  

 

Although OTA producers have been isolated from pistachio (Fernane et al., 2010a, 2010b; Marín 

et al., 2008), lower frequency and concentration of this toxin have been detected ( 

 

 

 

Table 13).  

 

EU maximum limits for AFs in nuts have been recently modified ( 

Table 14) after EFSA reviewed the maximum limits and intake assessment for tree nuts concluding 

that there was no additional consumer concern at 4, 8, 10 or 15 µg/kg AFs (EFSA, 2007) in the 

context of exposure from all other sources and previous pertinent exposure assessments. Regarding 

to OTA, although its occurrence in nuts has been reported in several studies, its presence has 
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always been significantly lower than AFs, and indeed maximum levels have not been set by the EC 

in nuts. 

 

 

 

Table 12 Occurrence and concentration of AFB1 and AFs in pistachio. 

Incidence rate 
Contamination range (mean) 

Reference 
AFB1(μg/kg) AFs(μg/kg) 

17/46 (37%) – 0.5–289 (Abdulkadar et al., 2000) 

48/101 (48%) – 1.2–275 (Abdulkadar et al., 2000) 

7/21 (33%) 0.005–1900(-) 0.01–2200(100) (Thuvander et al., 2001) 

8/52 (15%) 0.6–93.3(22.1) 0.6–106.9(25) 
(Food Standards Agency, 

2002) 

12/24(50%) 0.57-98.5  (Burdaspal et al., 2005) 

3/6(50%)  0.2-81.6 (Abdulkadar et al., 2004) 

3699/10(36.7%) n.d.->500(5.9) n.d.->500(7.3) (Cheraghali et al., 2007) 

9/20(45%) 0.04-1430(158) 0.1-1450(163) (Juan et al., 2008) 

11/32 (34%) 0.12–0.29(0.17)  (Ariño et al., 2009) 

7/72 (10%) 0.5–36.8 – (Basaran and Ozcan, 2009) 

95/105 (95%) (185.9) (215.0) (Pour et al., 2010) 

2/31 (6%) – 0.4–0.7(0.5) (Fernane et al., 2010a)  

5/50 (10%) 2.2–1037.3(214) 
3.04–

1134.5(243.7) 
 

59/120 (49%) 0.1–4.1 0.07–7.72 (Set and Erkmen, 2010)  

2/32 (6%) 0.2–0.4(0.3) 0.3 
(Reinhold and Reinhardt, 

2011) 

1921/8203(23.4%) n.d.-369.1(2.18) n.d.-369.1(2.2) (Dini et al., 2013) 

9/9(100%) 1.9-411 3.3-422 (El tawila et al., 2013) 

18/53(34%)  1.0-110(16.6) (El tawila et al., 2013) 

22/151(15%) 0.26-368(31.2) 0.26-385(37.9) (Hepsag et al., 2014) 

15/112(13%)  n.d.->5 (Jahanmard et al., 2014) 
n.d.: no detected.       Modified from (Marín et al., 2008) 

 

 

 

 

Table 13 Occurrence and concentration of OTA in pistachio. 
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Incidence rate 
Contamination range (mean) 

(μg/Kg) 
Reference 

0/6  (Abdulkadar et al., 2004) 

1/32(3%) 170 (Fernane et al., 2010a)  

1/50(2%) 0.67 (Fernane et al., 2010a) 

2/70(2.9%) 0.134-0.321(0.228) (Coronel et al., 2012) 

 

Table 14 AFB1 and AFs EU legal limits in pistachio. 

 
AFB1 

(µg/kg) 

AFs 

(µg/kg) 

Pistachios to be subjected to sorting, or other physical 

treatment, before human consumption or use as an 

ingredient in foodstuffs 

12 15 

Pistachios intended for direct human consumption or use 

as an ingredient in foodstuffs 
8 10 

           (EC, 2010a). 

Regarding the dominant mycobiota several studies have reported that Aspergillus spp. causes decay 

in pistachio nuts in different parts of the world, such as USA (Doster and Michailides, 1994), Iran 

(Mojtahedi et al., 1979), and Turkey (Denizel et al., 1976). Regarding Aspergillus species similar 

percentages of infection were observed in pistachio samples bought in Algeria and Spain: A. flavus 

(22-30%), and Aspergillus section Nigri (30-40%). Similarly, A. niger and A. tubingensis were the 

dominating species on Iranian pistachio (Sedaghati et al., 2011) and only one A. carbonarius was 

isolated from pistachios of Spanish market (Marín et al., 2008). Nevertheless, a relevant percentage 

of producers in A. flavus (>50%) and Aspergillus section Nigri (>30%)isolated from Spain was 

reported (Fernane et al., 2010a, 2010b). Moreover, A. ochraceus and A. melleus OTA producers were 

isolated from Iranians pistachios (Sedaghati et al., 2012).  

 

The general trend in the time course of AFs development and reduction in pistachio is shown in 

(Figure 3). It is a qualitative approach, i.e. no weight is given to slopes of lines, so all have been 

drawn at the same angle. In practice, increases or decreases in mycotoxin levels in any commodity 

are strongly dependent on climate, storage and processing conditions. Any quantitative risk 

management framework for a particular situation would require the appropriate data to allow 

estimation of stochastic aspects at each stage (Pitt et al., 2013). 

 

In pistachios, Aspergillus infects and decays kernels, while nuts are still on tree (Bayman et al., 2003). 

A. flavus is a weak plant pathogen which seems to lack the ability to penetrate the shell of nuts thus 
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the entry into the edible kernel usually depends on breaks caused by abrasion or insects. Several 

studies have correlated high levels of AFs with hull cracked (“early split”) nuts, insect damaged and 

wounded nuts (Doster and Michailides, 1999, 1995; Georgiadou et al., 2012). Besides insects, water 

stress can lead to separation of hull exposing the pistachio to Aspergillus infestation, so high 

contamination was quantified in pistachios from non irrigated orchards and without plant 

protection in Greece (Georgiadou et al., 2012). Additionally, higher Aspergillus infection has been 

observed in mature stages near harvest. 

 

 

Figure 3 The time course of AFs formation and reduction in pistachio nuts, with reference to the FSO  
Modified from (Pitt et al., 2013). 

 

 

In 2001, Food and Agriculture Organization of the United Nations (FAO) published the “Manual 

of the application of the HACCP system in mycotoxin prevention and control”, considering two 

pistachio processing lines after harvest according to the different procedures applied in Asian 

producing countries. The fast dehulling process line involves fast dehulling (within 24 h after 

harvest) for preventing staining, floating segregation and quickly drying to 5-6% water content to 

prevent fungal development. This process is followed by the major producing countries (FAO, 

2001). Subsequent steps include sorting, roasting, packaging and storage/shipping ( 

Figure 4). It is recognized that sorting and physical segregation significantly reduces the AFs content 

of consignments of nuts. High AFs levels are found in very small and insect damaged nuts, 

becoming the sorting an important step to reduce mycotoxin contamination (Schatzki and Pan, 

1996). Physical cleaning, where mold-damaged kernels, seeds or nuts are removed from the intact 

commodity, may result in 40-80 % reduction AFs (Park, 2002). (Schatzki and Pan, 1996) related 

the AF reduction from pistachios previously partitioned by water flotation with the elimination of 

the stained nuts, which include the scalpers, the eye rejects, the hand pick out insects, the hand 
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pick out dye floaters, and the meat sinkers. Transport and storage steps are of particular risk 

regarding aflatoxigenic species growth and AFs accumulation.  

 

Drying is one of the important steps in pistachio processing. In this step kernel m.c. is decreased 

from 50 to less than 5% which will result in suitable condition for storage (Set and Erkmen, 2010).  

During storage steps a zero increase of mycotoxins is desirable, in order to achieve this goal m.c. 

and T should be controlled. The influence of m. c. and T on fungal growth and mycotoxins 

production of A. flavus and A. carbonarius in pistachio was deeply studied by (Marín et al., 2012, 

2008). Maximum fungal growth was between 30-35 ºC in both species, while optimum T for OTA 

production was lower (15-20 ºC) than for AFs production (25-35 ºC). The mycotoxin production 

in pistachio could be restricted under cool storage (<10  C) combined with an m.c. <20% (∼0.92 

aW) or at low m.c (10%); alternatively, pistachios could be kept at 15% (∼0.87 aW) and T >15  C 

should be avoided (Marín et al., 2012, 2008). AFs was not detected in pistachio samples stored at 

controlled conditions (5-7 ºC, 45-60% R.H.) (Georgiadou et al., 2012).  

 

Conflicting results have been published about the effect of the heat treatments on peanuts and 

pistachios (Ariño et al., 2009; Farah et al., 1983; Lee et al., 1969; Pluyer et al., 1987; Rustom, 1997; 

Waltking, 1971; Yazdanpanah et al., 2005). The percentage of reduction depends on T, time as well 

as the initial mycotoxin contamination. Temperatures between 200-400 ºC produce high mycotoxin 

reduction, but these T are higher from those actually used by the nuts industry (≅165 ºC). 

 

Mycotoxin formation after roasting is unlikely, unless further fungal contaminations occurs 

afterwards. Packaged pistachios at ambient T (22-28 ºC) showed an increase in m.c. with the 

increase in storage time (Shakerardekani and Karim, 2013). Then, fungal contamination could take 

place so final product (bulk/packaged) should be storage in appropriate conditions as it was 

described previously. The most suitable packaging materials for maintaining the quality and safety 

of pistachio nuts is PET (polyethylene terephthalate) films followed by LDPE/PA (nylon), PA/PP 

(polyamide/polypropylene) and PVC (polyvinyl chloride). The shelf-life of pistachio can be 

extended from 2 months in LDPE (low density polyethylene) to 5 months when PET is used as 

the packaging material (Shakerardekani and Karim, 2013). 
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Figure 4 Flow chart toasted pistachio. 
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2.2. Case study II: Cereals-Wheat  

 

Wheat is a cereal grain harvested from different species belonging to the Triticum genera, cultivated 

worldwide but originally from the Mediterranean and West Asia regions. The global production of 

this cereal reached the 670 millions of tonnes in 2012 (FAOSTAT, 2014). Aside from health risks, 

important economic and trade implications arise from fungal contamination as approximately 18% 

of wheat production is lost due to fungal invasion (Al-Hazmi and Gomaa, 2012).  

 

In wheat the main efforts in the control of mycotoxins in the field have been directed towards 

species of Fusarium. However ochratoxigenic and aflatoxigenic fungus have been isolated in both 

pre-harvest and freshly harvested wheat suggesting that grain may be contaminated by AFs and 

OTA prior to storage (Elmholt and Rasmussen, 2005; Joubrane et al., 2011; Riba et al., 2010, 2008). 

In fact, AFs and OTA contamination both in grain and processed products have been reported in 

many studies. Regarding to AFB1 and AFs, lower mycotoxin levels are detected in processed 

products, thus processing reduces the contamination (Table 15). Great incidence and mean 

contamination is observed in grain even overcoming the legal values.  

 

No much information exists about AFs in bread, it is known that mycotoxins are reduced during 

the fermentation, but some studies showed an increase due to their release from the matrix and 

become detectable. Some strains of lactic acid bacteria (LAB) and bifidobacteria have shown ability 

to reduce the initial concentration of AFs from contaminated wheat flour during baladi 

breadmaking process (Elsanhoty et al., 2013). AF contents decreased significantly during prebaking 

and when the fermented dough was baked at 220°C for 35 min, the maximum reduction was 57.4% 

(AFG1) at low toxin level and 55.7% (AFB2) at high toxin level. Total losses of AFs during bread 

making process were 69.3% (AFG1), 70.4% (AFB2) at low level and 67.1% (AFB1), 69.8% (AFG1) 

at high level. These results indicate that fermentation and baking are effective in reducing AFs 

levels. However, approximately half of the spiked toxins still remained in the bread and therefore 

complete decomposition of AFs seems improbable during bread making process (Gumus et al., 

2009). 
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Table 15 Occurrence and contamination of AFB1 and AFs in wheat and wheat derivatives. 

Commodity Type 
Incidence 

rate 

Range 

(mean) 

(μg/kg) 

Reference 

Grain AFs 0/4 - (Abdulkadar et al., 2004) 

Grain AFB1 4/51(8%) 1.1-3.4(2.2) (Ghali et al., 2008) 

Grain AFs 15/51(29%) 4-12.9(6.7) (Ghali et al., 2008) 

Grain AFB1 23/50(46%) 0-7(1.9) (Muthomi et al., 2008) 

Grain AFB1 11/17(65%) 0.13-37.42 (Riba et al., 2010) 

Grain AFB1 17/28(61%) 0.21-13.96 (Riba et al., 2010) 

Grain AFs 119/156(76%) n.d.-12.2 (Joubrane et al., 2011) 

Grain AFs 0/14 - (Ibáñez-Vea et al., 2011) 

Grain AFs 13/19(68%) 0.5-2.6 (Al-Wadai et al., 2013) 

Flour AFs 0/6 - (Abdulkadar et al., 2004 

Flour AFs 45/100 (45%) 0.05-14(0.79) (Aydin et al., 2008) 

Breakfast cereals AFB1 4/48(8%) <0.01-0.02 (Tam et al., 2006) 

Breakfast cereals AFB1 50% <0.01-1 (Roscoe et al., 2008) 

n.d. no detected 

On the other hand, the use of propionic acid as preservative appeared to be more effective on the 

destruction of aflatoxins B1 and G1 than potassium sorbate in bread making (Amra et al., 1996). 

 

Similarly to AFs, the OTA contamination seems to be reduced with milling, with the exception of 

the work by (Jørgensen and Jacobsen, 2002), who found higher contamination in flour than in 

grain (Table 16).  

 

Table 16 Occurrence of OTA in wheat. 

Commodity Incidence rate 

Contamination 

range (mean) 

(μg/kg) 

Reference 

Grain 32/201 (15.9%) 0.3–231 (Prickett et al., 2000) 

Graina 0/32(0%) n.d. (Czerwiecki et al., 2002a) 

Grainb 3/39 (7.7%) 0.48–1.20 (0.83) (Czerwiecki et al., 2002a) 

Graina 18/37 (48.6%) 0.60–1024 (267) (Czerwiecki et al., 2002b) 

Grainb 8/34 (23.5%) 0.8–1.60 (1.17) (Czerwiecki et al., 2002b) 

Graina 217/405 (53.6%) n.d.–32 (0.3) (Jørgensen and Jacobsen, 2002) 

Grainb 6/14 (42.9%) n.d.–1.6 (0.3) (Jørgensen and Jacobsen, 2002) 
a: conventional; b:ecological/organic            modified from (Duarte et al., 2010). 

 



 

46 
 

Table 16 (Continued). 

Commodity Incidence rate 

Contamination 

range (mean) 

(μg/kg) 

Reference 

Grain 32/201 (15.9%) 0.3–231 (Prickett et al., 2000) 

Graina 0/32(0%) n.d. (Czerwiecki et al., 2002a) 

Grainb 3/39 (7.7%) 0.48–1.20 (0.83) (Czerwiecki et al., 2002a) 

Graina 18/37 (48.6%) 0.60–1024 (267) (Czerwiecki et al., 2002b) 

Grainb 8/34 (23.5%) 0.8–1.60 (1.17) (Czerwiecki et al., 2002b) 

Graina 217/405 (53.6%) n.d.–32 (0.3) (Jørgensen and Jacobsen, 2002) 

Grainb 6/14 (42.9%) n.d.–1.6 (0.3) (Jørgensen and Jacobsen, 2002) 

Grain 6/70 (8.6%) n.d.–1.4 (Palermo et al., 2002) 

Grain 25/107 (23.4%) n.d.–66 (19.6) (Ayalew et al., 2006) 

Grain 40% n.d.–1.73 (0.42) (Zinedine et al., 2007) 

Grain  31/51(61) 0.7-24.3(2.9) (Ghali et al., 2008) 

Grain 42/110 (38%) n.d.–250 (55) (Zaied et al., 2009) 

Grain 29/50(58%) 1.4-21.2 (Kumar et al., 2012) 

Grain 9/26(35%) 3.88–11.3(6.39) (Alexa et al., 2013) 

Grain 24/26(35%) 2.67–25.70(5.71) (Alexa et al., 2013) 

Grain 30/50(60%) 2.6-12.1(8.2) (Venkata Reddy et al., 2013) 

Grain/bran 1/2(50%) n.d.-1(1.0) (Rodrigues and Naehrer, 2012) 

Grain/bran 11/45(24%) n.d.-43(29) (Rodrigues and Naehrer, 2012) 

Grain/bran 0/2(0) 0 (Rodrigues and Naehrer, 2012) 

Grain/bran 5/22(23%) n.d.-331(69) (Rodrigues and Naehrer, 2012) 

Grain/bran 1/13(8%) n.d.-1(1.0) (Rodrigues and Naehrer, 2012) 

Grain/bran 11/37(30%) n.d.-2.30(0.9) (Vidal et al., 2013) 

Flourb 108/156 (69.2%) n.d.–16 (0.3) (Jørgensen and Jacobsen, 2002) 

Floura 101/120 (84.2%) n.d.–19 (0.5) (Jørgensen and Jacobsen, 2002) 

Flour 12/12 (100%) (0.75) (Baydar et al., 2005) 

Flour 0/35 (0%) n.d. (Park et al., 2005) 

Flour 28/50 (56%) n.d.–0.48 (0.09) (Kumagai et al., 2008) 

Flour 21/30 (70%) n.d.–2.1 (Vega et al., 2009) 

Bread 252/252 (100%) 0.28 (Legarda and Burdaspal, 2001) 

Bread 48/100 (48%) 0.14–149 (13) (Zinedine et al., 2007) 

Bread 4/31 (12.9%) 0.02 (Juan et al., 2008) 

Bread 13/20 (65%) n.d.–0.43 (0.3) (Bento et al., 2009) 

Bread 24/30 (80%) n.d.–0.49 (0.2) (Bento et al., 2009) 

Bread 19/24 (79.2%) n.d.–0.41 (0.21) (Duarte et al., 2009) 

Bread 14/67 (19%) 0.04–10.81 (González-Osnaya et al., 2007) 
a: conventional; b:ecological/organic                        modified from (Duarte et al., 2010). 
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Table 16 (Continued). 

Commodity Incidence rate 

Contamination 

range (mean) 

(μg/kg) 

Reference 

Breakfast cereals 11/29 (38%) n.d.–0.64 (0.3) (Roscoe et al., 2008) 

Breakfast cereals 11/20(55%) 0.10–0.30(0.12) (Nguyen and Ryu, 2014) 

Breakfast cereals 2/3(67%) 0.24–1.50(0.87) (Nguyen and Ryu, 2014) 

Breakfast cereals 9/14(64%) n.d.-1.12(0.43) (Ibáñez-Vea et al., 2011) 

Baking wheat 8.30% 0.12-0.5(0.29) (Fazekas et al., 2002) 

Feed wheat 26.70% 0.3-62.8(12.2) (Fazekas et al., 2002) 
  n.d. no detected 

Although the incidence in grain of both toxins was similar OTA amount was higher than AFs, 

surpassing 200 µg/kg in several surveys. Additionally, amounts detected in bran, flour and bread 

often exceeded the EU legal limits. The OTA presence in cereal products could be due to the 

mycotoxin's thermostability (Czerwiecki et al., 2002a). Interestingly, the amount detected in wheat 

breakfast cereals never exceeded the EU legal limits, and therefore processing could be an 

appropriate step to reduce the mycotoxin contamination in cereal products. No clear trend in OTA 

content due to the agricultural practices: conventional or ecological, was observed in grain or flour 

(Czerwiecki et al., 2002a, 2002b; Jørgensen and Jacobsen, 2002). Furthermore, another important 

issue is the co-occurrence of AFs and OTA since it was observed in 19.6% of samples (Ghali et 

al., 2008). 

 

European Commission has set maximum levels for cereals, particularly in wheat maximum values 

are 2 and 4 µg/kg for AFB1 and AFs respectively (Table 17). Legal limit for AFB1 is reduced to 

0.1 µg/kg in the case of wheat destined to baby or dietary foods. About OTA contamination 

maximum values are of 5 and 3 for unprocessed and destined to direct consumption products, 

respectively (EC, 2006, 2010a)(European Commission, 2010, 2006). As in the case of AFs, lower 

values (0.1 µg/kg) are permitted in baby or dietary foods.  

 

Concerning mycotoxigenic fungi in wheat, Aspergillus section Flavi have been isolated from wheat 

seeds in different parts of the world. In addition, between 48-70% of isolates tested produced AFs 

(Al-Wadai et al., 2013; Joubrane et al., 2011; Riba et al., 2010). In the other hand, the presence of 

OTA contamination in cereals in Northwest Europe is mainly associated to the presence of P. 

verrucosum (Elmholt and Rasmussen, 2005). However pre-harvest mycobiota studies in Northern 

Africa pointed out than Aspergillus species might fit better than Penicillium species (Riba et al., 2008). 
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Regarding to Aspergillus isolates from pre-harvest wheat grain in Argelia and Lebanon, the 

occurrence of Circumdati section was lower than Nigri section but the isolates in the former section 

were higher OTA producers (Joubrane et al., 2011; Riba et al., 2008).  

 

Table 17 AFB1, AFs and OTA EU legal limits in wheat and derivatives. 

 Foodstuffs µg/kg 

AFB1/AFs 

Wheat and all products derived from wheat, including processed 

wheat products 
2/4 

Processed wheat-based foods and baby foods for infants and 

young children 
0.1/- 

Dietary foods for special medical purposes intended specifically 

for infants   
0.1/- 

OTA 

Unprocessed wheat 5 

All products derived from wheat including processed wheat 

products and wheat grains intended for direct human 

consumption 

3 

Processed wheat-based foods and baby foods for infants and 

young children 
0.5 

Dietary foods for special medical purposes intended specifically 

for infants 
0.5 

            EC (2006b, 2010a) 

Fungal infection starts in field, slow drying and/or raining during this stage could increase the 

mycotoxin presence, likewise inapropiate storage could be a critical step. Nevertheless, FSO could 

be successful through the mycotoxin reduction achieved during industrial processing. A qualitative 

approach in the general trend in the time course of mycotoxin levels progress in cereals is shown 

in Figure 5. 

 

 
Figure 5 The time course of ochratoxin A formation and reduction in small grain cereals in Europe, with reference to the FSO 

(Pitt et al., 2013). 
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The wheat production from field to milling fractions is showed in Figure 6. 

 

The external layers act as a coat protection from fungal invasion (Mohamed-Yasseen et al., 1994) 

consequently, it is easy to find fungal presence in the bran rather than in the endosperm or the 

germ (Barajas-Aceves et al., 2002; Brera et al., 2006; Hemery et al., 2007; Lancova et al., 2008). 

Hence, avoid mechanical damages to the grains keeping the coats unbroken prevent the fungal 

colonization inside the grain, which is recommended as a GAP (CAC, 2003).  

 

Since the complex mycobiota found in wheat, the influence of aW and T on fungal growth and 

mycotoxin production on wheat has been studied in several fungi. Respect to the main responsible 

for AFs and OTA in grain, the studies have targeted to the storage step and generally no fluctuating 

T has been tested (Cairns-Fuller et al., 2005; Ismail et al., 2012; Niles et al., 1985; Pardo et al., 2004).  

 

Nowadays, wheat harvest is done worldwide by using combine harvesters. This step settles the first 

moment where a minimization of the mycotoxin content could occur. The combine is a machine 

system based on different physical and mechanical operations in where grains are separated from 

the stem and screened to certain level, throwing out dust, debris and other foreign materials, which 

present higher levels of fungal contamination (Pascale et al., 2011; Visconti et al., 2004), but it is 

not efficient with kernels presenting low levels of contamination. 

 

This separation is achieved through a proper adjustment of the threshing drum and the wind 

stream, which drag out particles lighter than the kernels based on the different weight (Jouany, 

2007). Several studies have described that highly contaminated grains are lighter than healthy ones 

so they can be separated from the healthy ones by this wind stream (Pascale et al., 2011; Visconti 

et al., 2004). However a possible recontamination can occur as the process is not as slow as it would 

be needed to accomplish a total clean up and the grain compartment is not sealed so dust particles 

could get into causing recontamination.  

 

Once the wheat is harvested, grains are transported and stored into silos or other kind of 

warehouses. Wheat is harvested in the hotter months, so it is normally collected bellow the safety 

level settled at 14-15% of humidity (Magan and Aldred, 2007) and therefore drying at this moment 

is not necessary in most of the cases. In the cases where the humidity is higher than the 

recommended levels, the advice is to fast drying to avoid fungal development. Furthermore, since 
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the highest m.c. for trading in most markets is 15% fungal development can only occur before 

grains are dried to the safe m.c. These conditions can occur during: 1) ambient air drying 2) before 

drying due to harvest backlogs, 3) when surface grain absorbs moisture during the winter, or 4) 

during moisture translocation in un-cooled grain, owing to moisture in hot air rising from the bulk 

and then condensing on cold surface grain (Wontner-Smith et al., 2014). 

 

 

Figure 6 Flow chart for flour, brand and semolina production from raw wheat (own elaboration). 

 

 

An excess of m.c. could lead to fungal development. Ecophysiological studies have shown that the 

optimum T for A. flavus growth and AFs production on wheat grain is 35 ºC and 25-35 ºC, 

respectively connecting to 0.975 aW (Niles et al., 1985). Moreover, 15 ºC inhibited fungal growth 

and AFs production at 0.80 and 0.82 aW. Respect to ochratoxigenic fungi the optimum T for P. 

verrucosum growth and OTA production was 25 ºC at 0.95 and 0.98 aW, respectively (Cairns-Fuller 

et al., 2005). While 10 ºC and 0.85 aW limited OTA production, a reduction to 0.80 aW was needed 
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to inhibit fungal growth (Cairns-Fuller et al., 2005). The effect of T (5-40 ºC) in OTA production 

by A. ochraceus and A. sulphureus incubated in wheat, showed than 30 ºC was the most suitable T for 

mycotoxin production while at 5 ºC no OTA was detected (Ismail et al., 2012). Additionally, studies 

carried out in barley, also have established 30 ºC and the range 10-15 ºC as optimum and minima 

T for growth and OTA production of A. ochraceus (Pardo et al., 2004; Ramos et al., 1998). Optimum 

aW for fungal growth and OTA production were 0.95 and 0.99 aW whereas the minimum were 0.85 

and 0.9 aW, respectively (Pardo et al., 2004). Surprisingly, to our knowledge no ecophysiological 

studies of Aspergillus section Nigri inoculated on wheat exist. The mycotoxin production in grain 

could be restricted under cool storage (<10  C) combined with a low m.c. (∼0.80-0.82 aW) and T 

>15  C should be avoided. 

 

After storage, and prior to milling the grains are cleaned. This step is based mainly in three 

operations: cleaning, sorting and trimming. Grains are subject to diverse physical and mechanical 

processes by removing kernels with extensive mould growth, broken kernels, fine materials, and 

dust that represent the screenings in which most of the toxins are accumulated (Bullerman and 

Bianchini, 2007; Hazel and Patel, 2004; Kushiro, 2008). This operation is generally carried out by 

the use of gravity separators (Hazel and Patel, 2004). Previous studies have reported reductions 

between 26-69% of FBs in corn (Sydenham et al., 1994), 5.5 -19% of DON in wheat (Abbas et al., 

1985), 2-3% of OTA in barley (Scudamore et al., 2003) and 40-80% of AFs in seeds or nuts (Park, 

2002). It is also described that washing grains with water under pressure reduces significantly the 

mycotoxin content (Wilson et al., 2004) both for foods and feeds (Fandohan et al., 2005). 

Furthermore, the initial condition of the grain, and extent of the contamination will have an effect 

on cleaning efficiency (Cheli et al., 2013). Once the wheat grains are cleaned and selected, they can 

be stored again before processing, depending on the industry demands.  

 

Generally, the whole grain is milled to leave just the endosperm for white flour and obtaining 

different by-products as bran and grits or semolina. In this process mycotoxin is distributed in 

wheat milling fractions, minimizing the concentration in fractions used for human consumption, 

and concentrate it into fractions commonly used for animal feed (Cheli et al., 2013). The milling 

process usually starts with an operation called debraning, where the grains are dehulled and the 

external layers are separated. Thus, higher contamination levels where found in germen and bran 

than in flour (Saunders et al., 2001). In fact, reductions up to 34% of DON and ZEA have been 

reported when the outer layers where removed (Fandohan et al., 2005; House et al., 2003).  
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Usual processing stages for human consumption fractions are fermentation and thermal treatment 

(flour) or mixing and extrusion (semolina and bran) also decrease the mycotoxin contamination.  

 

2.3. Case study III: Fruit-winemaking grapes 

 

Wine is a beverage obtained from vine fruits (Vitis vinifera) through alcoholic fermentation. After 

cereals, wine is the second estimated source of OTA in the diet in Europe. Its consumption can 

represent up to 10% of the total OTA intake (E.C., 2002). 

 

Since Zimmerli and Dick, (1996) described OTA contamination in wine for the first time, its 

presence has been frequently reported in grapes (Abrunhosa et al., 2001), dried vine fruits (Varga 

and Kozakiewicz, 2006), vinemarking must (Table 18) and wines (Table 19, Table 20 and  

Table 21). Although OTA is detected in a high percentage of red wines, the levels rarely exceed 

the maximum level (2 µg/L) set by the EU Commission. OTA content in white and rose vines is 

lower than in red ones due to the different winemaking process.  

 

Regarding AFs only one study in Lebanon has reported contamination in musts (40%), but at levels 

lower than 0.46 μg/L (Khoury et al., 2008; Magnoli et al., 2003; Medina et al., 2005; Sage et al., 

2004; Serra et al., 2006b); moreover, no studies exist which reported them in wine. A recent study 

also has reported the incidence of FB2 in wine in a range from 1 to 25 µg/L (Mogensen et al., 

2010b). Currently, only legal limits for OTA are established in wine in the EU ( 

Table 22). 

 

Several potentially toxigenic fungal species have been isolated from vineyards prior to harvest. 

Aspergillus and Alternaria, followed by Penicillium, are the most frequently reported genera on grapes. 

Focusing in Aspergillus, the section Flavi is rarely present in vineyards, only in a study in Lebanon, 

they were 43% of the total aspergilli and more than 40% of them produced AFB1 (Khoury et al., 

2008; Magnoli et al., 2003; Medina et al., 2005; Sage et al., 2004; Serra et al., 2006b). Similarly, low 

incidence of section Circumdati is described in Spain (2.5-6.6%) and these fungi were never isolated 

from Portuguese and French vineyards (Bellí et al., 2004c; Sage et al., 2002; Serra et al., 2005). 

Therefore, Aspergillus section Nigri is the most important mycotoxigenic (ochratoxigenic) fungi 

present on grapes (5-83% infected vine fruits). The main black aspergilli species occurring on 

grapes are biseriates, in particular A. niger aggregate. In more recent years, several authors have 
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proposed the division of the A. niger aggregate in four morphologically identical species: A. niger, 

A. tubingensis, A. foetidus and A. brasiliensis (González-Salgado, 2010).  

 

Table 18 Occurrence and concentration of OTA in winemaking must. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There is a controversy regarding the percentage of OTA producing strains within A. carbonarius 

isolated from grapes, Somma et al., (2012) concluded that close to 100% were OTA producers, 

based in literature published before 2006. Nonetheless, studies based on A. carbonarius identified 

by molecular techniques showed percentages under 50% of producers (Martínez-Culebras and 

Ramón, 2007; Spadaro et al., 2012). Recently, an interesting study using morphological and 

genotypic methods has proved the existence of non ochratoxigenic A. carbonarius (Cabañes et al., 

2013).  

 

Furthermore, recent reports revealed production of FB2 and FB4 by A. niger and A. awamori strains 

in culture medium, grapes or dried grapes (Chiotta et al., 2011; Logrieco et al., 2009; Mogensen et 

al., 2010a; Varga et al., 2010). Between 28-85 % of A. niger isolates collected from grapes of different 

origins were able to produce FBs (0.003-293 mg/g) in medium and on grapes (Abrunhosa et al., 

2011; Chiotta et al., 2011; Logrieco et al., 2009; Mogensen et al., 2010a; Palumbo et al., 2011; Varga 

et al., 2010). 

Incidence rate 
Contamination range 

(mean) (μg/L) 
Reference 

8/9(89%) 0.01-6.5 (2.1) (Battilani et al., 2003) 

11/60(18%) 0.01-0.43(0.06) (Sage et al., 2004) 

6/24(25%) 0.09-0.81(0.26) (Bellí et al., 2004c) 

6/11(55%) 0.01-0.46(0.18) (Sage et al., 2002) 

0/40(0%)  (Bellí et al., 2005a) 

5/10(50%) 1.1-4.3(3.38) (Fredj et al., 2007) 

0/26(0%)  (Ponsone et al., 2007) 

3/4(75%) 0.01-0.16 (Serra et al., 2005) 

0/47(0%)  (Khoury et al., 2008) 

13/24(54%) 0.06-1.88(0.38) (Lasram et al., 2012) 

16/24(67%) 0.05-5.45(0.98) (Lasram et al., 2012) 

10/24(42%) 0.11-5.85(1.3) (Lasram et al., 2012) 

22/50(44%) 0.1-1.20(0.13) (Chiotta et al., 2009) 

    77/398(19%) (Díaz et al., 2009) 

62/204(30%) 0.003-2.0 (Lucchetta et al., 2010) 
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Table 19 Occurrence and concentration of OTA in red wine. 

Incidence rate 
Contamination range 

(mean) (μg/L) 
Reference 

40/89(45%) n.d.–7.0 (Majerus and Otteneder, 1996) 

62/79(78.5%) n.d.–0.39(0.039) (B. Zimmerli and Dick, 1996) 

11/21(57%) < 0.01–0.27(0.08) (Ospital et al., 1998) 

66/72(91.7%) <0.003–0.60(0.038) (Burdaspal and Legarda, 1999) 

02/5(100%) 0.004–0.45(0.225) (Burdaspal and Legarda, 1999) 

06/8(75%) <0.003–0.19(0.052) (Burdaspal and Legarda, 1999) 

37/38(97.4%) <0.01–7.63(1.24) (Visconti et al., 1999) 

56/64(88%) n.d.-5.3 (Majerus et al., 2000) 

29/31(96.7%) n.d.–3.80(0.94) (Tateo et al., 2000) 

19/23(86.9%) n.d.-1.34(0.385) (Cerutti et al., 2000) 

6/6(100%) 0.14-2.93(1.802) (Cerutti et al., 2000) 

8/36(22.2%) 0.01-0.1(0.041) (Larcher and Nicolini, 2001) 

31/31(100%) 0.01-3.4 (Markaki et al., 2001)  

82/96(85.4%) <0.001–3.18(0.419) (Pietri et al., 2001) 

13/28(46.4%) 0.056–0.316(0.147) (Cerain et al., 2002) 

90/601(15%) <0.02-1 (Hocking et al., 2003) 

71/104(68.3%) <0.05–2.69(0.34) (Stefanaki et al., 2003) 

96/580(16.6%) 0.051–0.200 (Soleas et al., 2001) 

09/14(64.3%) <0.02–2.51(0.68) (Soufleros et al., 2003) 

24/130(18.5%) 0.06–4.24(0.465) (Bellí et al., 2004a) 

21/61(34.4%) 0.06–0.53(0.281) (Blesa et al., 2004) 

08/9(40%) (0.028) (Rosa et al., 2004) 

07/22(31.2%) 0.03–0.07(0.039) (Rosa et al., 2004) 

05/36(13.9%) <0.01–0.39(0.024) (Ng et al., 2004) 

36/43(83.7%) 0.04–1.44(0.3) (Bacaloni et al., 2005) 

07/7(100%) 0.01–0.05(0.022) (Domijan and Peraica, 2005) 

35/35(100%) 0.04–1.92(0.728) (Anli et al., 2005) 

33/33(100%) 0.03–0.53(0.117) (Varga and Kozakiewicz, 2006) 

88/112(78.6%) <0.01–4.93(0.64) (Perrone et al., 2007a) 

44/51(86.3%) <0.01–0.82(0.11) (Var and Kabak, 2007) 

12/18(66.7%) <0.01–0.46 (Belajová and Rauová, 2007) 

535/773(69.2%) <0.01–7.50(0.34) (Brera et al., 2008) 

08/10(80%) <0.01–0.02(0.015) (Flajs et al., 2009) 
      n.d.: no detected                                                                   Modified from (Bellí et al., 2002; Remiro et al., 2013) 
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Table 20 Occurrence and concentration of OTA in white wine.  

Incidence rate 
Contamination range 

(mean) (μg/L) 
Reference 

1/6(17%) n.d.-0.73 (Majerus and Otteneder, 1996) 

14/41(34%) n.d.–1.2 (Majerus and Otteneder, 1996) 

0/3(0%) n.d.(0.116) (B. Zimmerli and Dick, 1996) 

8/24(33.3%) n.d.–0.18(0.011) (B. Zimmerli and Dick, 1996) 

1/6(16.6%) < 0.01–0.16(0.16) (Ospital et al., 1998) 

45/69(65.2%) n.d.-0.27(0.02) (Burdaspal and Legarda, 1999) 

2/2(100%) 0.10–0.97(0.535) (Visconti et al., 1999) 

2/7(28.6%) n.d.–0.06(0.045) (Visconti et al., 1999) 

9/18(50%) n.d.-0.48(0.264) (Cerutti et al., 2000) 

5/10(50%) n.d.-0.29(0.144) (Cerutti et al., 2000) 

21/27(78%) n.d.-1.3 (Majerus et al., 2000) 

14/58(24%) n.d.-1.4 (Majerus et al., 2000) 

1/6(17%) n.d.-0.73 (Majerus and Otteneder, 1996) 

14/41(34%) n.d.–1.2 (Majerus and Otteneder, 1996) 

0/3(0%) n.d.(0.116) (B. Zimmerli and Dick, 1996) 

8/24(33.3%) n.d.–0.18(0.011) (B. Zimmerli and Dick, 1996) 

1/6(16.6%) < 0.01–0.16(0.16) (Ospital et al., 1998) 

45/69(65.2%) n.d.-0.27(0.02) (Burdaspal and Legarda, 1999) 

2/2(100%) 0.10–0.97(0.535) (Visconti et al., 1999) 

2/7(28.6%) n.d.–0.06(0.045) (Visconti et al., 1999) 

9/18(50%) n.d.-0.48(0.264) (Cerutti et al., 2000) 

5/10(50%) n.d.-0.29(0.144) (Cerutti et al., 2000) 

21/27(78%) n.d.-1.3 (Majerus et al., 2000) 

14/58(24%) n.d.-1.4 (Majerus et al., 2000) 

7/7(100%) 0.03-0.54(0.072) (Filali et al., 2001) 

2/27(7.4%) 0.01-0.02(0.015) (Larcher and Nicolini, 2001) 

9/15(60%) < 0.01–3.86(0.736) (Pietri et al., 2001) 

14/362(3.9%) 0.051–0.100 (Soleas et al., 2001) 

41/257(16%) 0.05-0.5 (Hocking et al., 2003) 

7/13(53.8%) <0.02-0.87(0.27) (Soufleros et al., 2003) 

55/118(46.6%) 0.05-1.72(0.25) (Stefanaki et al., 2003) 

4/24(16.7%) 0.05-0.76(0.41) (Blesa et al., 2004) 

10/43(23.3%) <0.004-0.156 (Ng et al., 2004) 

2/15(13.3%) <0.021-0.0283(0.026) (Rosa et al., 2004) 

128/290(44.1%) <0.005-1.9(0.08) (Brera et al., 2008) 

125/204(63.1%) <0.0093-1.36(0.086) (Spadaro et al., 2010) 

1/7 (14%) 0.03 (Terra et al., 2013) 

23/26(88.5%) <n.d – 0.56(0.19) (Sarigiannis et al., 2014) 
 n.d.: no detected.                                                                                       Modified from (Bellí et al., 2002; Remiro et al., 2013). 
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Table 21 Occurrence and concentration of OTA in rose wine. 

Incidence rate 
Contamination range 

(mean) (μg/L) 
Reference 

6/14(43%) n.d.–2.4 (Majerus and Otteneder, 1996) 

14/15(93.3%) n.d.–0.12(0.025) (B. Zimmerli and Dick, 1996) 

1/2(50%) < 0.01–0.11(0.11) (Ospital et al., 1998) 

29/32(90.6%) n.d.-0.16(0.031) (Burdaspal and Legarda, 1999) 

11/11(100%) 0.46–4.72(1.185) (Visconti et al., 1999) 

2/2(100%) 0.41–0.64(0.525) (Visconti et al., 1999) 

0/1(0%) n.d. (Cerutti et al., 2000) 

1/2(50%) n.d.-1.35(1.348) (Cerutti et al., 2000) 

18/51(35%) n.d.-2.4 (Majerus et al., 2000) 

3/3(100%) 0.04-0.54(0.223) (Filali et al., 2001) 

0/1(0%) n.d. (Soufleros et al., 2003) 

8/21(38.1%) 0.11-0.46(0.3) (Blesa et al., 2004) 

69/75(92%) <0.005-4.07(0.5) (Brera et al., 2008) 

8/8(100%) 0,19–2.52(1.64) (Sarigiannis et al., 2014) 
n.d.: no detected.                                                                                          Modified from (Bellí et al., 2002; Remiro et al., 2013). 

 

Table 22 OTA EU legal restriction in grape and derivatives. 

Foodstuffs 
OTA  

(µg/kg) 

Dried vine fruit (Currants, raisins and sultanas) 10 

Grape juice, concentrated grape juice as reconstituted, grape nectar, grape must and 

concentrated grape must as reconstituted, intended for direct human consumption 
2 

Wine (including sparkling wine, excluding liqueur wine and wine with an alcoholic 

strength of not less than 15 % vol) and fruit wine 
2 

Aromatised wine, aromatised wine-based drinks and aromatised wine-product 

cocktails 
2 

                       EC (2006b). 

 

As previously mentioned, Aspergillus section Nigri is extensively isolated from vineyards. OTA 

presence in must has clarified that it is produced in field conditions. Hence, mycotoxin 

contamination in must and wine are mainly determined by climatic conditions and GAP applied 

along the crop cycle. Again the qualitative approach in the general trend in the time course of 

mycotoxin levels progress in grape is shown in Figure 7. Slow bunch transport and crushing, 

likewise onset of fermentation during transport could increase the mycotoxin contain. 

Nevertheless, initial contamination could be reduced during vinification process and FSO achieved. 
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Figure 7 The time course of ochratoxin A formation in grapes and reduction durin wine manufacture, with reference to the FSO 
(Pitt et al., 2013). 

 

Pre-harvest stage is determinant in wine contamination, and consequently, the relation between 

climatic conditions and fungal development and mycotoxins production has proven interest. The 

relationship between OTA contamination and the influence of aW and T in some fungi has been 

assayed on both synthetic nutrient medium of similar composition to the grape and on grapes 

(Astoreca et al., 2010; Bellí et al., 2007b, 2004b; Marín et al., 2006; Mitchell et al., 2004; Pardo et 

al., 2005). A. carbonarius inoculated on grapes produced the maximum OTA level under  high R.H. 

(100 % R.H.) and 30 ºC after 7 days (Bellí et al., 2007b; Pardo et al., 2005). Conversely, no 

significant differences in OTA production at different R.H. levels (80, 90 and 100% R.H.) were 

observed in A. ochraceus inoculated on grapes after 14 days (Bellí et al., 2007b; Pardo et al., 2005). 

Nonetheless, at 0.80 aW/20ºC OTA production was clearly reduced in A. carbonarius and totally 

inhibited in A. ochraceus (Bellí et al., 2007b; Pardo et al., 2005). Moreover, no fungal growth and 

OTA production was recorded at 10 ºC by A. ochraceus. Additionally, significant differences in OTA 

contamination was observed in damaged and undamaged grapes infected by A. carbonarius (Bellí et 

al., 2007b; Pardo et al., 2005).  

 

Possible red, white and rose winemaking processes are represented in  

Figure 8.  
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Figure 8 Flow chart of red, rose and white vinification (own elaboration).  
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Nowadays, bunches are collected manually or with grape harvesters, in the first case bunches are 

placed into plastic boxes, in both cases they are transported to the winery as fast as it is possible in 

order to prevent the degradation of the main compounds resulting in a decrease of the quality of 

musts (Li et al., 2013).  

 

Once in the winery, a manual selection eliminating bunches and berries with evident signs of fungal 

contamination could reduce up to 98% of OTA (Rousseau, 2004). After the manual selection, 

bunches are destemmed and crushed and certain amount of the OTA present in the grapes is 

released into the must (Grazioli et al., 2006). Then, the must follows different pathways depending 

on the type of wine ( 

Figure 8). Red and white wines usually have a maceration step, which increases the OTA content 

due to the contact between must and other grape components (Grazioli et al., 2006). 

 

OTA presence is higher in red wines where the whole berries are used in the fermentation in order 

to extract compounds like tannins and phenols, and lesser in white and rose wines where the must 

is fermented without seeds and skins (Brera et al., 2006). Several works described important 

reductions during the alcoholic and malolactic fermentation (Amézqueta et al., 2012; Bejaoul et al., 

2004; Caridi et al., 2006; Cecchini et al., 2006; Fernandes et al., 2007; Lasram et al., 2008; Leong et 

al., 2006; Meca et al., 2010; Ratola et al., 2005). Reductions up to 68% in naturally contaminated 

and 78% in OTA added musts (Caridi et al., 2006) and up to 82% in synthetic grape medium 

(Petruzzi et al., 2014) have been reported during alcoholic fermentation. In vitro studies have 

demonstrated reductions between 2 and ≥95% in malolactic fermentation (Fernandes et al., 2007; 

Fuchs et al., 2008; Grazioli et al., 2006; Lasram et al., 2008; Mateo et al., 2010; Piotrowska and 

Zakowska, 2005). Mycotoxin degradation is explained because yeast and lactic acid bacteria cause 

the hydrolysis of the amine bond into non-toxic products as L-β-phenylalanine and OTα or the 

hydrolysis of the lactone ring (Quintela et al., 2012b). Besides, yeast cells adsorb OTA, achieving 

reductions up to 89%, 85% and 75% in red, rose and white wine due to a major contact between 

must and pomace (Csutorás et al., 2013). 

 

Once fermentation has been carried out, wine is devatted and separated from the pomace and lees. 

It is reported that lees and pomace present higher amounts of OTA when compared to wine (Caridi 

et al., 2006; Cecchini et al., 2006; A. Fernandes et al., 2007), as only 4% of the OTA present in the 
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grapes remains in the wine, whereas 95% is retained in the pomace and 1% in the lees (Visconti et 

al., 2008).  

 

Pressing could be an important step in mycotoxin reduction, it has been reported that OTA 

concentration is approximately four times smaller when the pomace is pressed at ≈ 8 atm instead 

of ≈ 80 atm (Gambuti et al., 2005). Pressing is normally followed by a filtration process in order 

to eliminate small particles. When the filtration is made over ligthtly contaminated pomaces a 

reduction up to 50-65% is achieved (Moruno et al., 2005; Solfrizzo et al., 2010) similarly when it is 

made through a filter of 0.45 µm, while filtration over a 10 µm membrane did not show a significant 

decrease in OTA (Gambuti et al., 2005). Commercial fining agents also have reduction properties, 

as they are adsorbent materials with the capacity to tightly bind and immobilize mycotoxins 

(Quintela et al., 2012b). Potassium caseinate removed up to 82% of OTA in wine when used at 

high dosages (Covarelli et al., 2012). Activated carbon showed a certain activity (Castellari et al., 

2001; Quintela et al., 2012b; Varga and Kozakiewicz, 2006) but the efficiency depended on the type 

of activated carbon, toxin concentrations and incubation period varying from 13% to 98% of 

reduction (Gambuti et al., 2005; Olivares-Marín et al., 2009; Var et al., 2008; Visconti et al., 2008). 

However, active carbon is only authorized for white wines. Bentonite achieved up to total 

detoxification (Castellari et al., 2001; Gambuti et al., 2005; Kurtbay et al., 2008; Quintela et al., 

2012b; Salaha et al., 2007; Var et al., 2008; Visconti et al., 2008). Chitin reductions ranged from 15 

to 67% (Bornet and Teissedre, 2008; Quintela et al., 2012b). Chitosan achieved reductions from 3 

to 100% (Bornet and Teissedre, 2008; Kurtbay et al., 2008; Quintela et al., 2012b). Egg albumin 

from 8 to 48% (Castellari et al., 2001; Quintela et al., 2012b) and polivinilpolipirrolidone (PVPP) 

showed up to 40% of reduction (Castellari et al., 2001; Gambuti et al., 2005; Quintela et al., 2012b). 

However, that most of these agents also have a negative effect on the organoleptic qualities of the 

wines. 

 

Red wines usually have an ageing process in oak barrels, which also causes a decrease in OTA 

content (Ruíz Bejarano et al., 2010). Oak chips or powder may be used, achieving reductions up to 

75% (Savino et al., 2007). Also reductions of 17% were observed in bottled ageing after 12 months 

of storage (Grazioli et al., 2006), conversely other study demonstrated that OTA is stable in wine 

for at least one year (Cerain et al., 2002). 
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3. Challenges for food safety management 
 

3.1. Sampling plans 

 

Nowadays, food safety management is based on the analysis of raw materials by comparing them 

to the legal limits established by the authorities. The concentration of a lot is usually estimated by 

analysing a sample of the lot. Then, based on the measured sample concentration, the quality of 

the safety of the lot is determined. If the sample concentration does not accurately reflect the lot 

concentration, then the lot may be misclassified and there may be undesirable health consequences 

(Magan and Olsen, 2004).  

 

Chemical contaminant sampling plans would typically be applied in the control of incoming lots of 

raw material from suppliers and also in the verification of the compliance of limits for finished 

products. Appropriate sampling plans are essential to ensure that the analytically-derived mean 

concentration of a sample is representative of the true mean concentration of a lot. Sampling plans 

are particularly relevant in the area of mycotoxins where it is known that the contamination of a 

commodity can be heterogeneously distributed (Johansson et al., 2000; Schatzki, 1995). It is known 

that, as a general rule, the larger the individual particle or seed, the higher the sampling problem. 

Thus, there are foods in which mycotoxin contamination is usually distributed evenly, as liquid 

food powder or pasta, and meat products and eggs (Soriano del Castillo, 2007), but other 

commodities seem not to have the same trend, as for example peanuts, where Cucullu et al. (1966), 

showed that most individual nuts have undetectable AFs concentration, but occasionally a peanut 

may have an extremely high concentration. Several subsequent studies have also observed this 

tendency on aflatoxin distribution in other substrates as cottonseed, pistachios and corn (Cucullu 

et al., 1977; Johansson et al., 2000; Schatzki, 1995; Shotwell et al., 1974). Therefore, sampling and 

subsampling procedures should be designed according to the mode of transmission and 

distribution of mycotoxin.  

 

Among other methods, a multistage sampling and analysis process consists of three distinct phases: 

sampling, sample preparation and analysis. However, there is great variability in each of these stages 

as among the measures of statistical variability only the variance is additive. Thus, it is assumed that 

the overall variance (VT) associated with a mycotoxin test procedure is the sum of the sampling 

(VS), sample preparation (VSS), and analytical variances (VA), that is VT = VA + VS + VSS 
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(Whitaker et al., 2006). In this same study Whitaker et al., (2006) independently analyzed each 

source of variation: 

 

 VS was mainly due to the sample selection and the sample size so that sampling variance 

increases with an increase in concentration and decreases with an increase in sample size. 

 

 The VSS is affected by the mill type particle size distribution. If the average particle size 

decreases (number of particles per unit mass increases), then the subsampling variance for 

a given size subsample decreases. 

 

 VA is specific to each method of analysis. 

 

Some authors studied the distribution of the variability associated to each sampling step among 

diferent comodities regarding to AFs, DON and FBs (Cheli et al., 2009; Whitaker et al., 2009) 

observing that the sampling step is the major source of variability. In general, mycotoxins 

distribution among diferent commodities present high heterogeneity although it is probable that 

OTA and FBs are less heterogeneously distributed than AFs, and therefore sampling procedures 

could be less difficult (Miraglia et al., 2005). Concerning DON, lower variability associated with 

the sampling was observed, but these results may be related to differences in seed size as well as to 

a less heterogeneous distribution of this mycotoxin (Whitaker et al., 2000).  

 

A common practice to cope with the heterogeneous distribution of mycotoxins is through the 

formation of aggregated samples as the contaminated particles may not be distributed uniformly 

throughout the lot. Then, the sample should be an accumulation of many small portions taken 

from many different locations (Magan and Olsen, 2004). However, the information related to the 

spatial variability and distribution of the mycotoxin is lost (Casado et al., 2009). This information 

could be an important factor for designing of adequate sampling which leads to a more accurate 

decision in certain mycotoxins, as DON showed clear evidence of spatial structure while OTA did 

not (Casado et al., 2009; Macarthur et al., 2006). This difference may reflect the fact that DON is 

mainly produced in the field by a widespread organism, whereas OTA is typically produced in 

localized “hot spots” during storage. Once again, the mode of transmission and distribution of 

mycotoxin appears to be an essential factor. 
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Due to the variability among mycotoxin test results, two types of errors are associated with any 

mycotoxin-sampling plan: i) an underestimation could result in a risk for the buyer/consumer as a 

bad lot could be wrongly accepted and, ii) an overestimation means a risk for the seller/producer, 

as a good lot could be wrongly rejected (Miraglia et al., 2005). An Operating Characteristic (OC) 

curve is a decision tool which describes the probability of a lot acceptance as a function of its actual 

quality (CAC, 2004). The shape of the OC curve indicates the magnitudes of the buyers’ and sellers’ 

risks but is uniquely defined for a particular sampling plan, sample size, preparation, number of 

analysis and methodology. Since the slope of the OC curve has high economic and health relevance, 

it is crucial to increase the slope of the OC in order to reduce both risks when a sampling plan is 

developed (Cheli et al., 2008). Diverse OC curves have been drawn for several sampling plans for 

aflatoxins in shelled peanuts and almonds (Whitaker et al., 2010, 2007), OTA in green coffee 

(Vargas et al., 2005) and FBs in shelled corn (Whitaker et al., 2001). 

 

Ir order to grant the achievement of these objectives the EC established the sampling methods for 

the official control of AFs, AFB1, OTA and Fusarium toxins content in commodities by the 

regulation Nº 401/2006 (EC, 2006a). Four years later, the regulation Nº 178/2010 (EC, 2010c) 

modified the previous one for some foodstuffs like figs, peanuts, pistachios, Brazil nuts, apricot 

kernels, vegetal oils, coffee and liquorice and their derivates. Sample size has been reduced as the 

sampling plans required high economical and human efforts, as the mycotoxin quantification relies 

in destructive techniques.  

 

3.2. Other fungal metabolites: what else is there in the food and feed?  

 

Commonly, food contamination due to mycotoxins is low enough to ensure compliance with EU 

guidance values or maximum levels. However, co-contaminated samples with concentrations 

below guidance and maximum values might still exert adverse effects due to synergistic interactions 

of the mycotoxins (Schatzmayr and Streit, 2013). Additionally, the true mycotoxin contamination 

in food and feed could be underestimated due to masked, emerging mycotoxins or their co-

ocurrence which should be taken into account.  

 

Despite FBs, ZEA and tricothecenes are the most studied toxins produced by Fusarium, this genus 

is also producer of other bioactive compounds known as “emerging” mycotoxins as fusaproliferin 

(FUS), beauvericin (BEA), enniatins A, A1, B, B1 (ENNs) and moniliformin (MON) (Jestoi, 2008). 
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Regarding their presence in foods, high emerging mycotoxin contamination levels have been found 

in different commodities reaching values up to ppm (Mahnine et al., 2011; Ritieni et al., 1997; 

Serrano et al., 2012; Sifou et al., 2011; Uhlig et al., 2006).  

 

The existing (mainly in vitro) data on biological activity of FUS, BEA, ENNs, and MON clearly 

indicate the possible toxicity of these fungal metabolites. However, there is a clear lack in the in vivo 

toxicity data and especially studies on the chronic effects are needed in order to dilucidate their 

importance (Jestoi, 2008). 

 

In the other hand, masked mycotoxins are mycotoxins that are linked to other molecules such as a 

carbohydrates, amino acids or fatty acids (Coleman et al., 1997), comprising both extractable 

conjugated and bound (non-extractable) compounds (Berthiller et al., 2009). The former can be 

detected by appropriate analytical methods when their structure is known and analytical standards 

are available while the latter are not directly accessible and have to be liberated from the matrix 

prior to chemical analysis (Berthiller et al., 2009). These transformations are thought to take place 

during mold growth and mycotoxin formation in the field, with the plant upon which this is 

happening, effecting this conversion to reduce the toxicity of the mycotoxin and being 

subsequently stored in the cell vacuoles (Berthiller et al., 2013; Cole and Edwards, 2000; Cummins 

et al., 2011). The main concern about these transformations is that when the masked mycotoxin is 

consumed, usual passage through the mammalian and avian digestive tract may deconjugate the 

mycotoxin and therefore it will become toxic to the animal. (Berthiller et al., 2007). 

Finally, the frequent detection of co-occurrence of AFs, ZEA, DON, FBs and OTA with each 

other and/or other “emerging” mycotoxins raises concern regarding possible synergistic or additive 

interactions of co-contaminants. In this sense, a study on the co-occurrence of Fusarium toxins in 

conventional and organic grains and derived products showed a co-occurrence of two or more 

mycotoxins in more than 50% of samples, being the most frequent combination DON + ZEA. 

Indeed, the correlation between the concentrations of T-2 and HT-2, DON and ZEA, as well as 

T-2 and ZEN was confirmed statistically, while none of the samples contained DAS 

(diacetoxyscirpenol), although NlV, MAS (monoacetoxyscirpenol) and 3ADON (3-acetyl-DON) 

concentrations were close to the detection limits (Błajet-Kosicka et al., 2014). Other study based 

on animal feeds showed that beauvericin and enniatins always occurred together and were found 

in 94% of the samples. Other frequently detected metabolites included ZEA (91% positives), 
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DON-3-glucoside, (a masked mycotoxin, 86%), culmorin (86%), tentoxin (86%), 15-

hydroxyculmorin (77%), moniliformin (74%) and aurofusarin (71%) (Schatzmayr and Streit, 2013).  

 

To sum up, the natural co-ocurrence of mycotoxins may result in synergistic, additive, or 

antagonistic interactions, which may make them harder to classificate and therefore, more research 

on the effects of co-occurring mycotoxins and also on the toxicological implications of the 

occurrence of emerging and masked mycotoxins is needed (Schatzmayr and Streit, 2013). 

 

 

3.3. Climate change 

 

In 1988, the World Meteorological Organization (WMO) and the United Nations Environment 

Program (UNEP) jointly established the Intergovernmental Panel on Climate Change (IPCC). The 

IPCC consists of a set of committees of leading scientists from all around the world whose task is 

to periodically review and report on the state of understanding of the climate problem. The 4th 

Assessment Report of the IPCC (IPCC 4AR) estimates global warming from different special 

report on emissions scenarios (SRES). These SRES are based on calculated greenhouse gas 

(GHGs) concentration pathways and consequent changes in radiative forcing as calculated by 

results of the most advanced coupled General Circulation Models (GCMs) as compiled in the 

IPCC-NCAR depository of GCM simulations. Subsequently, the EC has analyzed the results of 

this report establishing the most vulnerable areas (EC, 2007). Predictions for climate change 

indicate an annual increase of the global temperature of 0.03 ºC/year. Particularly, for Sourthern 

and South-Eastern Europe (Portugal, Spain, Southern France, Italy, Slovenia, Greece, Malta, 

Cyprus, Bulgaria, and Southern Romania) it may ecuate to an increase in the order of 4–5 ºC. With 

regard to water availability, this will be less, with the risk of hydropower disruption, particularly in 

summer. This effect combined with the rise of temperature could induce (i) decreased agricultural 

yields (in the range of 10–30% in many regions of the South), (ii) drought, (iii) heat waves, (iv) soil 

and ecosystem degradation, and (v) eventually desertification. The increase of violent rainfall will 

increase erosion and loss of organic matter from soil (EC, 2007). 

 

In this new agricultural context, mycotoxin risk assessment should include a wider concept of risk 

evaluation, including emerging risks since new mycotoxins could arise for new fungus and plant 

associations making the occurrence of new mycotoxins or mycotoxins not yet considered as a new 
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potential human and animal health threat (Tirado et al., 2010). The impact of climate change has 

been identified as an emerging issue for food and feed safety (Miraglia et al., 2009), and its possible 

consequences on mycotoxins frequency in raw materials have been theorized by several researches 

(Magan et al., 2011; Miraglia et al., 2009; Paterson and Lima, 2011, 2010; Tirado et al., 2010; Wu et 

al., 2010).  

 

Climatic differences among years in the same vineyard area sampled caused significant differences 

in fungal infection and mycotoxin contamination (Bellí et al., 2006). Generally crops are colonized 

by several species and little changes in environmental conditions causes the dominance of some 

species over others, affecting mycotoxin risks.  

 

Bio-geographical differences in fungal profile infection have been observed in the world, clarifying 

that the climatic conditions are decisive in the colonization. In fact, it is largely accepted the 

relationship between mycotoxigenic species with certain latitudes. Nevertheless, warm European 

summers have seen the occurrence of the formely predominant species, F. culmorum, fall to be 

replaced by F. graminearum; both species producing ZEA and DON, but additionally F. graminearum 

produces nivalenol increasing the mycotoxin exposure (Miller, 2008). Moreover, in Italy F. 

verticillioides, the most diffuse maize pathogen, is favored by warm dry weather, while A. flavus tends 

to occur only in particularly hot summers, altering the maize contamination from FBs to AFs 

(Giorni et al., 2007). Besides, studies on AF-risk linked to climate change concluded that both 

cereal crops and mycotoxigenic fungi may move geographically as a result of changing conditions, 

thus some mycotoxigenic fungi may threaten those newly colonised areas (Battilani et al., 2012). 

Therefore, climate change increases the risk of migration of pathogens and therefore known fungal 

infections patterns could be affected and mycotoxin profile modified (Magan et al., 2011).  

 

Interestingly, not only competition between different species has been observed, but also adapation 

to fungal species at new climate conditions. For instance, A. flavus isolated from maize in north 

Italy showed slightly different ecological profiles in terms of both optimal and marginal conditions 

for growth compared to other regions of the world (Giorni et al., 2007). Wu et al. (2010) pointed 

out that new and more aggressive strains could prevail. 
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Limiting and optimum conditions for CPA and AFs production by A. flavus were similar in both 

toxins (Astoreca et al., 2014). However, different environmental conditions could selectively 

promote the production of different toxins produced by the same strain. 

 

In the same way as fungal invasion the agricultural practices are also climate-dependent and crops 

cultivation and yield vary from year to year depending on the weather; the agricultural sector is 

particularly exposed to climate change. It may directly influence host susceptibility through heat 

and/or drought stress. Periods of higher than average T and reduced annual rainfall increased rates 

of nut deformity and increased levels of AFs contamination (Tirado et al., 2010). Indirectly climate 

change may affect the seeding time of the crops, or change the geographical range of crops 

emerging new asociations host-pathogen, increasing mycotoxin contamination (Wu et al., 2010). 

 

Moreover, the WMO has also highlighted that human emissions of the CFCs and other chemicals 

have an important role in the atmosphere changes by damaging the stratospheric ozone layer that 

filters out harmful ultraviolet radiation (UV) (WMO, 2013). Therefore, climate change and UV 

radiation increase are two phenomenon not only with an antropogenic origin but also with a big 

influence on each other (Figure 9). 

 

 GHGs decreased temperatures in the stratosphere and accelerated circulation patterns, 

which tend to decrease total ozone in the tropics and increase total ozone at mid and 

high latitudes (WMO, 2010). Furthemore, changes in circulation induced by changes in 

ozone can also affect patterns of surface wind and rainfall (WMO, 2010).  

 

 The UV increment at ground-level rise the tropospheric ozone, a significant GHGs and 

a major constituent of smog (Fergusson, 2001). 

 

 The hydroxyl radical (OH), which is produced by the photochemical breakdown of 

ozone in the presence of water vapour, is an atmospheric scavenger that reacts with 

many pollutants and removes them from the atmosphere. The demands on the OH in 

a heavily polluted atmosphere may lead to a decline in OH concentrations and thus a 

reduction in the efficiency (Fergusson, 2001). 
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 The predicted decreases due to the climate change in mean cloudiness of the 

Mediterranean basin due to climate change may lead to increase in the UV radiation 

reaching Mediterranean ecosystems in the near future (WMO, 2010). 

 

 

Figure 9 Interactions between ozone depletion and climate change. The sense of the interaction is given by the direction of the 
arrow (UNEP, 2002). 

 

Increased UV-B radiation, interacting with other global change factors, may affect many of the 

important ecosystem processes and attributes, such as plant biomass production, plant 

consumption by herbivores including insects, disease incidence of plants and animals, changes in 

species abundance and composition, and mineral nutrient cycling, with importan implications for 

food security and food quality (WMO, 2010 UNEP 2002) (Figure 10). 
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Figure 10 Major interactions of elevated UV-B with other climate changefactors in terrestrial ecosystems. Lines indicate influence 
of climate change factors on different trophic levels (in rectangles) that affect processes (in ovals) (UNEP, 2002). 

 

Due to the lack of information about to effect to enhanced UV-B on fungi and bacteria the UNEP 

(2002) considering that the species composition and biodiversity of bacteria and fungi growing on 

plants can be changed by UVB and hence the biodiversity can be either increased or decreased. 

For pathogens, elevated UV-B can either increase or decrease the severity of disease development 

in plants. 

 

To sum up, climate change may affect the mycotoxins presence in raw materials, and therefore it 

is necessary to know the potential risk in order to limit and manage the mycotoxin contamination 

since only a limited reduction is possible through food industrial processing.  
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STUDY I 

 

Risk management towards Food Safety Objective achievement 

regarding to mycotoxins in pistachio: the sampling and 

measurement uncertainty issue 

 

García-Cela E., Ramos A.J., Sanchis V. and Marin S. 

Food Technology Department, Lleida University, XaRTA-UTPV, CRA, Rovira Roure 191, 

25198 Lleida, Spain 

 

ABSTRACT 

 

The emerging risk management metrics, FSO, PO and PC, were applied to the aflatoxins 

(AFs) and ochratoxin A (OTA) determination in 8 commercial lots of pistachio. In order to 

determine the sampling uncertainty, two sampling plans (EU official samping and company 

plan) in quadruplicate, and two analytical methods (ELISA and HPLC), were considered in 

parallel. The combination of EU official sampling plan and HPLC proved to be the most 

appropriate option. The major variability was associated with the subfraction selection and, 

therefore, increasing the number of the analyzed subfractions could be an alternative for 

reducing uncertainty. AFs were present in all lots, mainly AFB1 and AFB2, while OTA was 

never detected. The effect of toasting on AFs presence in pistachio (a performance criteria, 

PC) was evaluated in order to achieve a given PO, taking into account the FSO, i.e., the EC 

limits. Percentages of AFs reduction were 87.62%±11.89, 81.05%±15.51 and 86.74%±11.31 

for AFB1, AFB2 and total AFs, respectively. Given an initial AFB1 and AFs level ≤ 12 µg/kg 

and ≤ 15 µg/kg, respectively, the toasting would ensure the AFB1 and AFs legal limits 

compliance before human consumption (FSO). 
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1. INTRODUCTION 
 

The Food Safety Objective (FSO) for a hazard is the maximum frequency and/or 

concentration of the hazard in a food at the time of consumption, and is preceded by the 

Performance Objective (PO), which is the maximum frequency and/or concentration of the 

hazard in a food at a specified step in the food chain before the time of consumption 

(ICMSF, 2002), that still provides or contributes to the achievement of an FSO or 

Appropriate Level of Protection (ALOP), as applicable. In the case of chemical hazards such 

as mycotoxins, the limits set by a country for mycotoxins in foods can be logically considered 

also to have the status of an FSO.  

 

Nuts present low aW and, due to their intrinsic characteristics, fungi are the major 

microbiological contaminants. Some of these moulds are mycotoxigenic, thus high levels of 

mycotoxins have frequently been reported in nuts from the orchards and from the market 

(Bayman et al., 2002; Fernane et al., 2010a). In pistachios, the dominant mycobiota are 

Aspergillus section Nigri, Aspergillus flavus and Penicillium spp. (Denizel et al., 1976, Fernane et 

al., 2010b). Several studies have reported that Aspergillus spp. causes decay in pistachio nuts 

at different parts of the world, such as California (USA) (Doster & Michailides, 1994), Iran 

(Mojtahedi et al., 1979), and Turkey (Denizel et al., 1976). The most important mycotoxins 

found in pistachio are aflatoxins (AFs), including aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), 

aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2) and ochratoxin A (OTA). The International 

Agency for Research on Cancer (IARC) classified AFs in group 1, as human carcinogens, 

and OTA in group 2B, as a possible human carcinogen (IARC, 2002).  

 

On the regulatory side, legally binding, EU-wide maximum levels (MLs) for mycotoxins in 

food have been introduced by the European Commission and updated subsequently. 

Nowadays the Comission of the European Communities (EC) has established maximum 

levels of mycotoxins in nuts to be subjected to sorting, or other physical treatment. These 

established values should led processing companies to accept only those raw material batches 

which allow compliance with the final PO of the company in the final product. Regarding 

pistachio, toasting is the main way, together with physical separation, to reduce the levels of 

mycotoxins. Removal of highly contaminated pistachio nuts by sorting decreases AFs 

contamination by 2 to 4 times in processed pistachios compared to non-processed pistachios 

(Schatzki, 1996). However, conflicting results have been published about the effect of the 

heat treatment in AFs in pistachios (Ariño et al., 2009; Yazdanpanah et al, 2005). 
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In order to determine mycotoxin presence in foods, sampling and analysis are needed, despite 

a large variability and uncertainty is associated with these procedures. Mycotoxin 

determination is a multistage process and consists of three distinct phases: sampling, sample 

preparation and analysis. It is assumed that the total uncertainty associated with the AFs test 

procedure is the sum of the uncertainty associated with the three steps (Withaker et al., 2006). 

However most variability is due to sampling; in hazelnuts and almonds this step accounts for 

96.2 to 99.4% of the total variability, respectively (Ozay et al., 2006, Whitaker et al., 2006). 

Also the Codex Alimentarius (CAC) proposed formula for calculating variances associated 

with the AFs test procedure for hazelnuts, almonds and pistachio (CAC, 2008). 

 

Sampling and subsampling procedures should be designed according to the mycotoxin 

distribution. Mycotoxins are heterogeneously distributed, and the general rule is that the 

bigger individual particles or seeds the greater the sampling problems. Cucullu et al. (1966) 

reported that most individual peanuts have zero AFs concentration, but occasionally a peanut 

may have an extremely high concentration of AFs. Other studies also showed the 

heterogeneous distribution of AFs in other substrates such as cottonseed, pistachios and 

corn (Cucullu et al., 1977; Johanson et al, 2000; Schatzki, 1995; Shotwell et al., 1974). A 

common practice to reduce the heterogeneity of mycotoxins in commodities when sampling 

is through the formation of aggregate samples, thus, the sample should be an accumulation 

of many small portions taken from many different locations (Parker et al., 1982). However, 

as a result of this practice, the spatial information, variability and distribution of the 

mycotoxin is lost (Rivas et al., 2009). 

 

For these reasons, harmonisation process for mycotoxin establishing maximum limits and 

sampling plans are necessary to protect consumer health and facilitate international trading. 

The Codex Committee on Contaminants in Foods (CCCF) has established maximum levels 

of AFs and sampling plans, where two 10 kg laboratory samples are needed in the case of 

Ready to Eat (RTE) lots, both containing less than 10 µg/kg AFs. In the case of further 

processing products (DFP); a single 20 kg laboratory sample taken from a lot must result in 

less than 15 µg/kg AFs in order to be accepted (CAC, 2008).  

 

EU maximum limits for AFs in nuts have been recently changed (Commission Regulation 

1881/2006 amended by Regulation 165/2010) after European Food Safety Agency (EFSA) 
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reviewed the maximum limits and intake assessment for tree nuts concluding that there was 

no additional consumer concern at 4, 8, 10 or 15 µg/kg AFs (EFSA, 2007) in the context of 

exposure from all other sources and previous pertinent exposure assessments. Regarding to 

OTA, although its occurrence in nuts has been reported in several studies, even by the Rapid 

Alert System for Food and Feed (RASFF, 2011), its presence has always been significantly 

lower than AFs, and indeed maximum levels have not been set by the European Commission 

in nuts. Consequently, taking into account the developments by the CAC and considering 

the recently established European maximum levels for mycotoxins in pistachios, the 

sampling procedure for tree nuts in Regulation (EC) No 401/2006 was afterwards amended 

(EC No 178/2010), maintaining the number of incremental samples but decreasing the 

weight of the incremental sample to 10 kg for lots higher than 15 t and between 1 and 10 kg 

for lots equal or less than 15 t. Also the number of laboratory samples from an aggregate 

sample decreased in lots higher than 5 t. Finally, when it is not possible to carry out the 

sampling method described above because of unacceptable commercial consequences 

resulting from damage to the lot (because of packaging forms, means of transport, etc.), an 

alternative method of sampling could be applied provided that it is as representative as 

possible and is fully described and documented. 

 

However, while these plans aim to harmonize official sampling regimes, they have been 

criticized for the unrealistic need of workforce. In fact on the European cereal trading sector, 

73-77% of the companies prefer their own sampling method for their quality control 

programs instead of the official method (Siegel & Babuscio, 2011). Commission Regulation 

401/2006 allows the use of alternative sampling methods in cases of unacceptable 

commercial consequences or practical unfeasibility of the official method but only in case of 

quality control (Comission of the European Communities, 2006a).  

 

Another important consideration in risk management is the analytical method used. 

Although the uncertainty is not as high as in the sampling, sensitive and reliable methods are 

required for mycotoxin detection. Companies require simple, fast and cheap methods, and 

ELISA and HPLC are the most demanded respectively for internal and external analyses 

(Siegel & Babuscio, 2011). 

 

A recent review work García-Cela et al. (2012) highlighted the lack of existing information 

regarding performance criteria (PC) in pistachio processing as a key aspect in AFs risk 
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management. The aim of this study was to evaluate the PC or effect of toasting on mycotoxin 

in pistachio, in order to achieve a given PO. PC cannot be described if methods to assess 

sampling uncertainty are not in place, thus, in parallel, the impact of sampling and 

measurement uncertainty was also evaluated.  

 

2. MATERIALS AND METHODS 
 

2.1. Samples and sampling plans 

 

Eight lots (n=8) of pistachio, weighted more than 15 t each, were sampled using two different 

sampling plans before and after industrial toasting. Industrial toasting included two main 

steps: pre-toasting (≈135 ºC) and toasting (≈165 ºC) during a total time of 20 min. However, 

the temperatures could change in a range of 6 ºC depending on the initial characteristics of 

the product.  

 

Sampling plan A. Sampling of raw and toasted pistachio was made according to Commission 

Regulation (EC) No. 178/2010, and more specifically according to D.2. point, “method of 

sampling for groundnuts (peanuts), other oilseeds, apricot kernels and tree nuts”. Twenty kg 

aggregate samples were obtained from 100 elemental samples of 200 g of each sampled lot. 

The composite samples were mixed and divided into two equal sub-samples of 10 kg 

(subsample) before grinding. To that purpose a Romer Analytical Sampling Mill (RAS® Mill, 

Coring-System Diagnostix GmbH, Gernsheim, Germany) was used. The RAS® Mill was 

specifically developed for products that are difficult to grind due to their hardness together 

with a high moisture and/or high oil content, like pistachios. Samples were kept at 4 ºC until 

analysis. After grinding, six sub-fractions of 50 g were taken from each sub-sample. Sub-

fractions were stored at 4 ºC until analysis. Finally, two sub-fractions were analyzed in 

different days to account for the variability between days in duplicate (Figure 1a). The whole 

sampling plan was performed in quadruplicate. 

 

Sampling plan B. Sampling of raw and toasted pistachio was made in this case following the 

current sampling plan used for the quality control of a Spanish nut processing company. 

Aggregate samples of 5 kg were obtained by pooling 20 elemental samples of 250 g from 

each sampled lot. The aggregate samples were mixed and 250 g (sub-sample) were taken and 

ground. After grinding, 10 g of each sub-fraction were analyzed in duplicate (Figure 1b). 

This sampling plan also was performed in quadruplicate. 
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Figure 1a Design of the plan A from Official sample plan by quadruplicate. 

 

 

Figure 1b Design of the Plan B from Company sample plan by quadruplicate. 

 

2.2. Analytical methods 

 

For extraction and clean-up, an application note provided by R-Biopharm Rhône Ltd, 

Glasgow, UK, was used, slightly modified. Briefly, 10 g of ground pistachio were extracted 

using 40 mL of acetonitrile/water (60/40 v/v) by blending for 10 min; the extract was filtered 

through filter paper, and 2 ml of the filtrate were diluted with 18 mL of phosphate-buffered 

saline (PBS) pH=7.4. Then, the 20 mL diluted extract was purified by using an 

immunoaffinity chromatography column (Aflaochraprep®, R-Biopharm Rhône Ltd, 

Glasgow, UK) at a flow rate of 1-2 mL/min. Next, the column was washed with 20 mL of 
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PBS at 5 mL/min and dried by passing air through it. The AFs and OTA were eluted by 

gravity using 1 mL of HPLC grade methanol and applying backflushing three times to ensure 

the release of toxins into the solution. After that, 1 mL of Milli-Q water was passed through 

the column and collected in the same vial to give a total volume of 2 mL. The vials were 

sealed and kept under refrigeration (4 ºC) until quantification by HPLC. Simultaneous 

determination of AFs and OTA was done using HPLC (Waters, Milford, MA, USA), with a 

reverse-phase C18 silica gel column (Waters Spherisorb® 3 μm ODS2 4.6 × 150 mm, 

Milford, MA, USA) kept at 40 ºC, followed by fluorescence detection (Waters 2475 

fluorescence detector, Waters, Milford, MA, USA). A post column photochemical 

derivatisation system (LC Tech detector, UVC 254 nm, Germany) was used for AFs. 

 

The excitation and emission wavelengths were 360 and 455 nm (set from 0 to 17 min) for 

AFs and 335 and 460 nm (set from 17 to 20 min) for OTA. The injection volume was 100 

µL. The mobile phase was pumped at a flow rate of 0.8 mL/min under the following gradient 

program: methanol, acetonitrile and acetic acid solution (0.1%), which started (0-10 min) 

with 27% methanol, 14% acetonitrile and 59% acetic acid (0.1%), then changed to gradient 

elution with 50% methanol and 50% acetonitrile (10-20 min), and finished with 27% 

methanol, 14% acetonitrile and 59% acetic acid solution for column re-equilibration (21-25 

min). Under the conditions described retention time was 8.6, 9.9, 11.5, 13.5 and 18.3 min for 

AFG2, AFG1, AFB2, AFB1 and OTA, respectively.  

 

The limit of detection (LOD), based on a signal to noise ratio of 3:1, was 0.312 µg/kg for 

OTA, 0.039 µg/kg for AFB1 and AFG1, and 0.020 µg/kg for AFB2 and AFG2. Recovery 

rates for OTA were 84%, 78% and 90% for 0.5, 8 and 12 µg/kg spiked levels. Precision was 

estimated by the relative standard deviation (RDSr), which was in the range of 8.39-15.48%. 

Recovery rates for 0.5 and 2.0 µg/kg spiked levels were 122% and 71% for AFB1 and 94% 

and 82% for AFG1; and for 0.25 and 1.0 µg/kg were 120% and 73% for AFB2 and 81% and 

72% for AFG2. RDSr for those concentrations were 7.99 and 12.8% for AFB1, 12.04 and 

11.26% for AFG1, 22.20 and 3.01% for AFB2 and 17.5 and 11.42% for AFG2. 

 

Additionally, ELISA was used for analysis of samples of sampling plan B. Competitive 

enzyme immunoassay kits from R-Biopharm AG (Darmstadt, Germany) were used 

(RIDASCREEN® Aflatoxin Total nº R4701 and RIDASCREEN® Ochratoxin A 30/15 nº 

R1311). The instructions given by the manufacturer were strictly followed. The results of the 
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analyses were obtained spectrophotometrically at 450 nm using a SEAC SIRIO S (Florence, 

Italy) microtitre spectrophotometer. Mycotoxin concentration in the samples was calculated 

using Ridasoft Win version 1.38 program. The ELISA kit measurable concentrations are 

from 1.25 to 45 µg OTA/kg and from 1.75 to 141.75 µg AFs/kg. The LOD were calculated 

based on the limits of detection given by the kit and the dilution factor of the method, and 

they were 1.25 and 1.75 µg/kg for OTA and AFs, respectively. The recovery rates for OTA 

were 107.9%, 84.6% and 72.8% for 2, 5 and 10 µg/kg and the RSDr was in the range of 8.27 

to 18.87%. For AFs, recovery rates were 102.7%, 79.1% and 87.5% for 2, 5 and 20 µg/kg, 

with RSDr in the range of 0.55-7.19%.  

 

Performance of HPLC and ELISA methods was in accordance to performance criteria 

established by Commission Regulation (EC) No. 401/2006 (Comission of the European 

Communities, 2006a), so these methods can be defined as acceptable. 

 

Finally, the water activity (aW) and moisture content (%) of each composite sample from 

sampling plan A were determined. Water activity was measured with an AquaLab Series 3 

(Decagon Devices, Inc., WA, USA) and moisture content (%) (100 pistachio nuts) was 

calculated by sample weight difference before and after drying at 105 ºC overnight. A 

hundred whole nuts were taken at random separately from each composite, unshelled, and 

the percentage of edible part weight was determined. The calculated percentage of edible 

part was 55.36%, 57.09%, 56.14%, 56.23%, 56.64%, 55.94%, 55.53% and 56.26%, from lot 

1 to lot 8, respectively. 

  

In sections 3.1, 3.2, 3.3 and 3.4 AFs results are presented uncorrected by recovery and by % 

edible part. 

 

 

2.3. Measurement uncertainty calculation  

 

Measurement uncertainty was calculated according to the performance criteria for mycotoxin 

analysis (JCGM, 2008): 

 

𝑈 = 𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝑅𝑆𝐷𝑅

100
× 1.96 (1)                                           
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where U is the uncertainty associated with the analysis, RDSR was calculated as 1.5 times 

precision RSDr which is the relative standard deviation calculated from results generated 

under repeatability conditions (EC, 401/2006); Xcorrected is the mean value of the analyses 

corrected for the recovery rate and in the case of nuts also for percentage of shell; and 1.96 

is the coverage factor for a level of confidence of approximately 95%. Two different values 

of RSDr and recovery rates were used according to the validated method for lower and higher 

than 1 µg/kg mycotoxin values. 

 

2.4. Total uncertainty calculation  

 

Total variability associated with estimation of the accurate mycotoxin concentration of a lot 

of in-shell nuts consists of sampling, sample preparation, and analytical step. Based on 

theoretical considerations and a model reported by Ozay et al. (2006), and assuming that a) 

each in-shell pistachio consists of a shell and an individual pistachio kernel, b) no mycotoxin 

contamination is associated with the shell, c) all shelled kernels have about the same mass 

and physical characteristics, and d) mycotoxin concentration varies from kernel to kernel, 

the variability among mycotoxin test results taken from the same lot can be represented by 

Equation 2. 

 

Ĉ = µ + s + sss+ ssp+ a (2) 

 

where Ĉ denotes the estimated mycotoxin concentration in a lot by measuring the mycotoxin 

concentration in a sample of individual nuts; µ, the accurate mycotoxin concentration in the 

lot being tested; s, ss, and ssp are random deviations of sample concentration around the 

true lot concentration due to sampling, subsampling and subsample preparation for 

laboratory analysis, with the expected value equal to zero and variances σ2
Ĉ(s); σ

2
Ĉ(ss) and σ2

Ĉ(sp); 

and a, random deviations of analytical assay with the expected value zero and variance σ2
Ĉ(a). 

If independence among the random deviations in Equation 2 is assumed, the model for 

variance can be obtained by Equation 3. 

 

σ2
Ĉ(t) = σ

2
Ĉ(s) + σ2

Ĉ(ss) + σ2
Ĉ(sp)+ σ2

Ĉ(a) (3) 

 

where σ2
Ĉ(t) is the total variance associated with the measured mycotoxin concentration. The 

sampling variance, σ2
Ĉ(s), represents the variability among aggregate sample concentrations 

taken from the same lot of nuts. Subsample variance, σ2
Ĉ(ss), represents the variability among 
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replicate subsample concentrations taken from the same sample before grinding. Subfraction 

variance, σ2
Ĉ(sp), represents the variability among replicate subfraction concentrations taken 

from the same comminuted subsample in a suitable mill. The analytical variance, σ2
Ĉ(a), 

represents the variability among replicate analysis of a single subfraction.  

 

The variance components, ss+ss+sp
2 (sampling) and sa

2 (analytical), for the total variance .st
2 

(total) were estimated experimentally, through the nested design for each lot for both AFB1 

and AFs. Then sampling + subsample preparation and analytical variance components were 

plotted versus mycotoxin concentration and linear regressions in a full-log plot were 

calculated.  

 

st
2 = ss+ss+sp

2+sa
2 (4) 

 

ss+ss+sp
2 = a’Cb` and sa

2 = a Cb (5) 

 

where a, a’, b and b’ are constants determined by the regression analysis and C is the 

mycotoxin concentration. 

 

 

2.5. Statistical analyses 

 

Kruskal-Wallis one-way analysis of variance was used for comparison of results obtained by 

the two sampling plans, and by analytical methods in sampling plan B (p<0.05). A non-

parametric statistical hypothesis test, Wilcoxon signed-rank test, for paired samples was used 

to analyze the toasting effect in order to determinate if the process reduced or not the 

mycotoxins concentration (p<0.05). For statistical purposes undetected mycotoxin levels 

were considered as LOD divided by 2. Statistical tests were done with Statgraphics® Plus 

5.1 program (Manugistics, Inc., Maryland, USA). 

 

3. RESULTS 
 

3.1. Presence of mycotoxins in the analysed pistachio lots 

 

OTA was never detected in any of the lots tested while almost all the lots contained AFs. 

Regarding AFB1 and AFB2, they were present in all sampled lots (sampling plan A) of raw 
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pistachio and 5 lots of toasted pistachio (Table 1). Moreover, those lots more contaminated 

with AFB1 were also the most contaminated with AFB2, although AFB1 contamination was 

always higher than that of AFB2. AFG1 and AFG2 were only present in 2 lots of raw pistachio 

(plan A), their mean values being lower than 0.1 μg/kg for AFG2 in both lots, and lower than 

0.5 μg/kg for AFG1 in lot 5 and 0.1 μg/kg in lot 8. Figure 2 shows AFB1 and AFs mean 

values obtained per lot through HPLC, with undetected values replaced by LOD divided by 

2. 

 

Table 1 Individual aflatoxin contribution to the total contamination of the lot (%) in raw 

and toasted pistachio sample through plan A and raw pistachio sampled through plan B. 

 Plan A Plan B 

 Raw Toasted Raw 

  AFB1 AFB2 AFG1 AFG2 AFB1 AFB2 AFG1 AFG2 AFB1 AFB2 AFG1 AFG2 

L1 94.5 5.5 0 0 0 0 0 0 0 0 0 0 

L2 93.7 6.3 0 0 93.2 6.8 0 0 0 0 0 0 

L3 97.9 2.2 0 0 0 0 0 0 0 0 0 0 

L4 87 13 0 0 98.7 1.4 0 0 70.9 0 29.1 0 

L5 91 5.6 2 1.4 79.7 20.3 0 0 0 0 0 0 

L6 95.9 4.1 0 0 93.4 6.6 0 0 100 0 0 0 

L7 89.4 10.6 0 0 0 0 0 0 100 0 0 0 

L8 90.7 7.1 2.2 0 88.4 11.6 0 0 0 0 0 0 

 

 

3.2. Comparison between sampling plans 

 

Food companies often perform alternative mycotoxin sampling plans which reduce the 

number of samples and/or number of analysis by reducing the cost and time dedicated to 

the analysis, as a part of their quality control schemes. In order to compare the effectiveness 

of a simplified sampling plan, an alternative plan (sampling plan B) was conducted in parallel 

to official sampling plan (sampling plan A). However, the alternative proposed sampling plan 

resulted not appropriate as compared to the official one; it always led to significantly lower 

results (Kruskall-Wallis test, p<0.05) when comparing the AFB1 and AFs mean values of raw 

(p=0.0006) and toasted (p=0.0003) lots obtained from the two sampling plans (Figure. 2), 

due to the reduced probability of taking a contaminated portion in the sampling. 
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Figure 2 Mean values of AFB1 and AFs in raw and toasted pistachio lots obtained from sampling plan A and B. 

Undetected values were replaced by LOD/2. 

 

 

3.3. Comparison between analytical methods (HPLC and ELISA) in sample plan 

B  

 

ELISA is a common analytical method used by companies. This test was carried out in 

parallel to HPLC analyses in sampling plan B. OTA was never detected by any of the 

methods while higher number of positive samples and higher concentration of AFs were 

detected by ELISA. Positive samples were only detected in raw lots number 1 and 2 by 

ELISA ranging from 2.54 to 2.05 μg/kg, respectively; AFs were only detected in lot 6 in one 

analysis by HPLC (0.58 μg/kg). AFs were detected by both techniques in lots 4 and 7; the 

same number of positive analyses was recorded for lot 7, while two-fold positive analyses 

were observed by ELISA compared to HPLC for lot 4. Mean positive values in these two 

lots were 1.86 and 3.75, respectively by ELISA and 0.59 and 0.31 μg/kg by HPLC. Regarding 

toasted lots, AFs positive samples were only detected by ELISA, in lots 1, 4 and 7 in a range 
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from 3 to 3.5 μg/kg, therefore this method may lead to false positive results. Consequently, 

significant differences (Kruskall-Wallis test, p<0.05) were found when comparing AFs mean 

values of raw (p=0.0282) and toasted (p=0.0107) lots analysed by the two different methods.  

 

3.4. Effect of toasting on naturally contaminated pistachios with mycotoxins 

 

For raw lots, aW ranged from 0.31-0.44 corresponding to 2.19-3.54 % of moisture content 

(m.c.). In general after toasting the m.c. was reduced in a range or 17-70% except in the lots 

4, 5 and 6 which presented an increased m.c., probably due to fast packing after toasting. 

The m.c. in lots 4, 5 and 6 were 3.75, 4.07 and 4.6 corresponding to 0.50, 0.51 and 0.55 aW. 

These values are still below the minimum aW required for fungal growth (about 0.70 aW).  

 

In order to examine the effect of toasting on the degradation of mycotoxins, lots were 

analyzed after commercial toasting (Figure 2). In all lots, except for lot 5 (very low 

concentration in the raw lot), the concentration of AFB1, AFB2 and AFs was lower after 

toasting (sampling plan A). Mean percentages of AFs reduction were 87.62%±11.89, 

81.05%±15.51 and 86.74 %±11.31 for AFB1, AFB2 and AFs, respectively. Toasting effect 

was significant (Wilcoxon signed-rank test, p<0.05) when comparing mean values of raw and 

toasted lots obtained from sampling plan A. The p-values were 0.0209 for AFB1 and AFs 

and 0.0423 for AFB2. The percentage of reduction was not correlated with the initial AF 

contamination of raw pistachio lots. Conversely, the effect of toasting was not significant 

when comparing the lots before and after treatment in the plan B, probably as a consequence 

of the limitations of the sampling plan B, as suggested above. 

 

3.5. Analytical uncertainty  

 

Figures 3 and 4 show the mean AFB1 and AFs value for each composite. The error bars in 

these figures represent analytical uncertainty as requested in EC 401/2006 (Equation 1). 

Positive values were corrected by the recovery rate and the shell percentage, while undetected 

values were replaced by LOD divided by 2. The AFB1 and AFs legal limit (according to EC 

Regulation No. 165/2010) are 12 μg/kg and 15 μg/kg for raw pistachio and 8 μg/kg and 10 

μg/kg for toasted pistachio, respectively. Regarding AFB1 in raw pistachio, when comparing 

the mean corrected value of each composite in the same lots with the maximum limit the 

probability of rejecting the lot was 25% in lots 2, 6, 7 and 8 and 50 % in lot 1. However when 

the uncertainty measurement is also considered, the probability of rejecting the lots 2 and 7 
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was 50% and lots 1, 6 and 8, the most contaminated, was 100% (Figure. 3). Therefore 

considering the uncertainty measurement all the composites of these lots would be rejected. 

Comparing the mean corrected values of toasted pistachio versus the legal limit, lots 6 and 8 

would be rejected with 25% of probability. The corrected mean of the sum of all AFs of each 

composite was also compared to the legal limits (Figure. 4). In this case the probability of 

rejecting lots number 2, 6, 7 and 8 was 25%, and 50% in lot 1. Once again, the probability 

of rejecting the lots when considering the uncertainty measurement increased, leading to 

100% probability of rejection for lots 1, 6 and 8.  

 

3.6. PO and FSO applied to the mycotoxin hazard in pistachio 

 

During storage steps after processing and distribution, a zero increase of AFs should be 

possible with the application of appropriate environmental storage conditions. Therefore, 

aflatoxin-FSO value (EC maximum value) in pistachio could be equaled to the PO at the end 

of processing. To ensure such PO after toasting and taking into account the minimal toasting 

reduction of 75.76% and 76.41% for AFB1 and AFs concentration, respectively, the 

mycotoxin concentration in the lots before thermal treatment should be bellow 32.96 and 

41.66 μg/kg, respectively. The values exceed the limits established in the legislation for 

pistachios that will be subject to sorting or other physical treatment, before human 

consumption or use as an ingredient in foodstuffs, thus maximum established limits are in 

the safe side. This suggests that under the hypothesis of 75% of reduction (PC) achieved in 

the toasting, higher concentrations could be permitted in the raw material and still render a 

safe finished product (Figure 5). 
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Figure 3 Columns (light grey raw pistachio; dark column toasted pistachio) indicate the average of 8 analysis of each composite in where undetected values were replaced by LOD/2. Bars 
indicate the measurement uncertainty in each lot calculated by Equation (1). Horizontal solid-line indicates the maximum European AFB1 legal limit (12 μg/kg) for pistachios to be subject to 

sorting, or other physical treatment, before human consumption or use as an ingredient in foodstuffs (No. 165/2010). Horizontal dotted-line indicates the maximum European AFB1 legal limit 
(8 μg/kg) for pistachios intended for direct human consumption or use as an ingredient in foodstuffs (No. 165/2010). 
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Figure 4 Columns (light grey raw pistachio; dark column toasted pistachio) indicate the average of 8 analysis of each composite in where undetected values were replaced by LOD/2. Bars 
indicate the measurement uncertainty in each lot calculated by Equation (1). Horizontal solid-line indicates the maximum European AFs legal limit (15 μg/kg) for pistachios to be subject to 

sorting, or other physical treatment, before human consumption or use as an ingredient in foodstuffs (No. 165/2010). Horizontal dotted-line indicates the maximum European AFs legal limit 
(10 μg/kg) for pistachios intended for direct human consumption or use as an ingredient in foodstuffs (No. 165/2010).
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Ho: initial mycotoxin level; PO: Performance Objetive;  PC: Performance Criteria; PcC: Process Criterion; FSO, Food Safety 

Object. 

Figure 5 Aplication of risk mangement metrics, Ho, PO, PC, PcC and FSO in toasted pistachio, considering PC 
stored=0. 

 

3.7. Sampling uncertainty 

 

Sampling plans were performed by quadruplicate to account for sampling variability. For 

sampling plan A, the distribution of AFs concentration, from the 32 HPLC-analysis in each 

lot was very heterogeneous and the number of positive analyses in a lot was usually very low, 

although in some subfractions the contamination level was very high (above 300 μg/kg), 

mainly in AFB1 in raw lots (Table 2). Moreover, all lots of raw pistachio except number 5 

had at least one analysed subfraction higher than 10 μg/kg. However, the percentage of 

positive analytical results was not always correlated with the mean concentration of the lots. 

To explain the differences found within results from the same lot, variance components in 

the nested design were calculated for AFB1 and AFs in raw pistachio, as suggested in 

Equation 1 (Tables 3 and 4). Total variance increased with an increase in mycotoxin 

concentration. The analytical variance in raw lots represented 0.28-40% of total variability, 

although the higher values of analytical variance were linked with the lowest contaminated 

lots. However, the most important variability of the results was always due to the subsample 

preparation, that is the grinding and selection of the analytical subfraction (0.4-99%). 

Grinding the sample increases the homogeneity, but more subfractions would be probably 

required to reduce uncertainty. The sampling and analytical variances in Table 3 and 4 were 

plotted versus concentration in Figures 6 and 7. 



Study I 

117 
 

   AFB1 ng/g <LODa <0.5 <1 <2 <5 <10 <20 <50 <100 <200 <500 %Positive 
results 

Lowest 
levelb 

Meanb 
Highest 
levelb 

Meanc 

Aflatoxin 

AFB1 

Raw 

Pîstachio 

Lot 1 22 2 2 0 0 2 0 0 1 1 2 31.3 0.4 95.4 392.5 29.8 

Lot 2 23 4 0 1 1 0 0 3 0 0 0 28.1 0.2 3.4 30.9 2.8 

Lot 3 25 5 0 0 0 0 2 0 0 0 0 21.9 0.2 2.7 18.9 1.2 

Lot 4 21 6 3 0 0 1 1 0 0 0 0 34.4 0.2 1.0 11.3 0.8 

Lot 5 25 3 1 0 3 0 0 0 0 0 0 21.9 0.2 0.5 3.1 0.3 

Lot 6 15 15 0 0 0 0 0 0 0 0 2 53.1 0.2 18.5 313.9 19.0 

Lot 7 24 0 3 0 1 1 1 2 0 0 0 25.0 0.7 4.6 36.4 2.7 

Lot 8 19 4 1 1 4 0 1 0 0 0 2 40.6 0.0 29.9 388.9 22.2 

Toasted 

Pistachio 

Lot 1 32 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 

Lot 2 30 0 0 0 1 1 0 0 0 0 0 6.3 4.7 4.0 8.0 0.4 

Lot 3 32 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 

Lot 4 30 0 0 0 2 0 0 0 0 0 0 6.3 2.8 1.9 3.9 0.2 

Lot 5 31 0 0 0 0 0 0 1 0 0 0 3.1 21.3 21.3 21.3 0.7 

Lot 6 30 0 0 0 0 0 0 1 1 0 0 6.3 30.4 31.9 63.8 3.0 

Lot 7 32 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 

Lot 8 21 6 3 0 0 0 0 1 0 1 0 34.4 0.2 11.2 123.1 5.4 

a The symbol < in the heading indicates a range. Thus, <LOD. indicates 0 - <0.04 or 0 - <0.02 for AFB1 and AFB2 respectively, <0.5 is shorthand for 0.04-0.5 or 0.02-0.5 for AFB1 and AFB2 respectively, <1.0 for 

0.051-1.0, etc. b Lowest, mean and highest values are calculated from positives samples .  

Table 2 Incidence of positive results, by range, for AFB1 and AFB2 (µg/kg) in raw and toasted pistachio from sampling plan A. 
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   AFB1 ng/g <LODa <0.5 <1 <2 <5 <10 <20 <50 <100 <200 <500 
%Positive 
results 

Lowest 
levelb 

Meanb 
Highest 
levelb 

Meanc 

Aflatoxin 

AFB2 

Raw 

Pîstachio 

Lot 1 24 4 0 0 0 2 1 1 0 0 0 25.0 0.1 2.8 22.2 1.7 

Lot 2 27 2 0 2 1 0 0 0 0 0 0 15.6 0.1 0.5 2.5 0.2 

Lot 3 28 3 1 0 0 0 0 0 0 0 0 12.5 0.0 0.2 0.6 0.0 

Lot 4 28 1 1 2 0 0 0 0 0 0 0 12.5 0.1 0.4 1.7 0.1 

Lot 5 29 3 0 0 0 0 0 0 0 0 0 9.4 0.1 0.1 0.3 0.0 

Lot 6 26 4 0 0 0 0 2 0 0 0 0 18.8 0.0 2.5 15.0 0.8 

Lot 7 26 2 1 2 0 1 0 0 0 0 0 18.8 0.0 1.0 6.1 0.3 

Lot 8 23 7 0 0 0 0 0 2 0 0 0 28.1 0.2 3.4 30.5 1.7 

Toasted 

Pistachio 

Lot 1 32 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 

Lot 2 30 1 1 0 0 0 0 0 0 0 0 6.3 0.3 0.3 0.7 0.0 

Lot 3 32 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 

Lot 4 31 1 0 0 0 0 0 0 0 0 0 3.1 0.1 0.1 0.1 0.0 

Lot 5 31 0 0 0 0 1 0 0 0 0 0 3.1 5.4 5.4 5.4 0.2 

Lot 6 30 0 0 0 2 0 0 0 0 0 0 6.3 2.3 2.2 4.4 0.2 

Lot 7 32 0 0 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 

Lot 8 29 1 0 0 0 1 1 0 0 0 0 9.4 0.1 5.4 16.2 0.7 

a The symbol < in the heading indicates a range. Thus, <LOD. indicates 0 - <0.04 or 0 - <0.02 for AFB1 and AFB2 respectively, <0.5 is shorthand for 0.04-0.5 or 0.02-0.5 for AFB1 and AFB2 respectively, <1.0 for 

0.051-1.0, etc. b Lowest, mean and highest values are calculated from positives samples .  

Table 2. Continued 
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Table 3 Sampling, subsampling, subfractioning and analytical variances associated with 

estimating AFB1 by sampling plan A in a 20 kg raw shelled pistachio sample by using grind 

sample preparation, a 10 kg subsample, 10 g subfractions and HPLC analysis. 

 

Lot AFB1 
Raw 

Sample 
Variance 

Subsample 
Variance 

Subsample 
preparation 

Analytical 
Variance 

Total 
Variance 

Lot 1 76.0 0.0 (0.0) 469.1 (0.8) 59637.4 (98.7) 347.5 (0.6) 60454.0 

Lot 2 6.9 0.0 (0.0) 1.6 (0.4) 266.8 (60.0) 176.3 (39.7) 444.7 

Lot 3 2.9 0.0 (0.0) 0.0 (0.0) 119.8 (98.8) 1.4 (1.2) 121.2 

Lot 4 1.9 2.3 (5.2) 0.0 (0.0) 41.4 (93.1) 0.8 (1.7) 44.5 

Lot 5 0.8 0.0 (0.0) 0.0 (0.0) 3.6 (67.7) 1.7 (32.3) 5.3 

Lot 6 48.0 12.3 (0.0) 0.0 (0.0) 36311.7 (99.7) 100.4 (0.3) 36424.4 

Lot 7 6.7 0.0 (0.0) 31.7 (7.7) 237.9 (58.0) 140.3 (34.2) 409.8 

Lot 8 57.3 0.0 (0.0) 0.0 (0.0) 47633.4 (96.0) 1992.9 (4.0) 49626.3 

Numbers in parentheses show the percentage  

 

Table 4 Sampling, subsampling, subfractioning and analytical variances associated with 

estimating AFs by sampling plan A in a 20 kg raw shelled pistachio sample by using grind 

sample preparation, a 10 kg subsample, 10 g subfractions and HPLC analysis. 

 

Lot 
AFs 
Raw 

Sample 
Variance 

Subsample 
Variance 

Subsample 
preparation 

Analytical 
Variance 

Total 
Variance 

Lot 1 80.3 0.0 (0.0) 532.8 (0.8) 66361.9 (98.8) 306.0 (0.5) 67200.7 

Lot 2 7.4 0.0 (0.0) 1.8 (0.4) 310.9 (61.5) 193.1 (38.2) 505.8 

Lot 3 3.0 0.0 (0.0) 0.0 (0.0) 124.8 (99.2) 0.9 (0.8) 125.8 

Lot 4 2.3 3.4 (5.9) 0.0 (0.0) 53.9 (92.3) 1.1 (1.9) 58.4 

Lot 5 0.9 0.0 (0.0) 0.0 (0.0) 4.6 (71.7) 1.8 (28.3) 6.4 

Lot 6 50.0 16.6 (0.0) 0.0 (0.0) 39390.5 (99.6) 137.6 (0.4) 39544.7 

Lot 7 7.5 0.0 (0.0) 38.6 (7.3) 297.1 (56.4) 191.5 (36.3) 527.1 

Lot 8 63.0 0.0 (0.0) 0.0 (0.0) 55334.6 (96.0) 2306.8 (4.0) 57641.4 

Numbers in parentheses show the percentage  

 

The plots for each variance are approximately linear in a log-log plot and equations 4 and 5 

were calculated as s2
s+sp = 7.180C2.131 and sa

2 = 1.401C1.480 by AFB1 and s2
s+sp= 6.998C2.131 and 

sa
2 = 1.261C1.514 by AFs. Then the mean corrected value of each lot was introduced in the 

equation 4 obtaining the estimated variance. After that the square root of estimated variance 

was multiplied by 1.96 to obtain the uncertainty (95% confidence). Relevant differences were 
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observed when comparing the analytical uncertainty results obtained here with those in 

section 3.5, the uncertainty calculated from linear regression being always higher (3-9 times, 

depending on the concentration of the lot).  

 

Finally, the overall uncertainty was much higher than analytical uncertainty, if such 

uncertainty values are applied to the AFs results in this study, all lots, except lot 5, would 

surpasse the maximum levels as stated by the EC (Comission of the European Communities, 

2010a).  

 

 

Figure 6 Full-log plot of sampling variance versus AFB1 (black circles) and AFs (white circles) 
concentration. Linear regression AFB1 (continuous line) and AFs (dotted line). 

 

 

Figure 7 Full-log plot of analytical variance versus AFB1 (black circles) and AFs (white circles) 
concentration. Linear regression AFB1 (continuous line) and AFs (dotted line). 
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4. DISCUSSION 
 

In the present study the emerging risk management metrics were applied. FSO was 

considered equivalent to the maximum EC limits (Comission of the European Communities, 

2010a) and to the PO after processing. However, the determination and compliance with 

such levels is totally dependent on the validity of sampling and analytical procedures.  

 

Aflatoxin results per composite sample were corrected with the percentage of shell, recovery 

and measurement uncertainty as required by European Regulation (Comission of the 

European Communities, 2006a). The application of measurement uncertainty increased the 

probability of rejection of the most contaminated lots. Under these conditions, in our study 

the probability of rejecting 2 of the 3 most contaminated lots increased to 25% when the 

uncertainty measurement in the corrected value was considered and compared with the legal 

limits.  

 

Two analytical methods were tested in this study, ELISA showing always a higher number 

of positive samples. Griessler et al. (2010) quantified mycotoxins of several foods and feed 

commodities from Southern Europe by grinding and homogenizing each lot and then using 

HPLC and ELISA. Similar ranges of mycotoxin contamination were found, but no clear 

conclusion can be drawn from these data. Chun et al. (2007) analyzed AFs in nuts and 

derivative products consumed in South Korea by ELISA and HPLC; from their results it 

was concluded that ELISA was not suitable for quantification since the results were affected 

by the sample matrix and contamination was possibility overestimated at very low 

concentration. Similarly, our results showed higher detected concentration in samples 

analyzed by ELISA. 

 

The distribution of the mycotoxin concentrations in products is an important factor to be 

considered when regulatory sampling criteria are established. In principle, lot distributions 

can be obtained by measuring mycotoxins level nut by nut despite it is not practical due the 

rarity of infested nuts. Studies on peanut kernels indicate that the percentage of contaminated 

kernels in a contaminated lot at 20 µg/kg is 0.095%, which is less than one contaminated 

kernel per 1,000 kernels (Whitaker et al., 1972). Same trend was observed in pistachio, where 

an infestation rate of only 1 nut per 104-106 nuts is typical (Schatzki et al., 1995). However 

these few contaminated particles can have extremely high levels of mycotoxins. Cucullu et 
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al. (1966, 1977) reported AFs concentrations in excess of 1,000,000 µg/kg for individual 

peanut kernels and 5,000,000 µg/kg for individual cottonseed. Therefore AFs can be found 

only in a small percentage of the kernels in the lot and the concentration in a single kernel 

may be extremely high. According to our results, analytical values above 300 µg/kg were 

detected in several lots while more than 60% of the analyses were below of the limit of 

detection in lots L1, L6 and L8. The difficulty in making precise estimations of mycotoxin 

concentrations in a large bulk of material, i.e., a lot or a truck, has been amply demonstrated 

for many agricultural products (peanuts, corn, soybean, cottonseed, pistachio, wheat, figs), 

mainly for AFs but also for deoxynivalenol (DON) in wheat and fumonisins in maize (Hart 

& Schabenberger, 1998; Johansson et al 2000; Ozay et al., 2006; Schatzki 1995; Vargas et al., 

2004; Whitaker et al. 1974, 2000, 2003, 2006). Equations linking the sampling error of toxin 

estimation and the size of the aggregate sample have been derived for AFs, fumonisins, DON 

and OTA for several commodities (Whitaker et al. 1974; Johansson et al. 2000; Vargas et al., 

2004, Ozay et al., 2006). The equations are specific for the mycotoxin type and the type of 

product studied, but generally show that sampling variance increases with an increase in 

concentration, and decreases with an increase in sample size. The sampling variability pattern 

is similar for the four previously cited mycotoxins (Larsen et al., 2004; Miraglia et al., 2005; 

Whitaker et al., 2000). Regarding to product characteristics, the AFs sampling variability was 

smaller for powdered ginger than seeded commodities such as, corn or peanuts, because of 

the particle size or the number of particles per unit mass (Whitaker et al., 1974; Johansson 

2000). On the other hand, more aggregate samples for AFs analysis in groundnuts (20 kg) 

than for OTA or DON in cereals (10 kg) are required for the official control (98/53 EC 

amended by 2002/26 EC and 178/2010 EC).  

 

In the present study the sampling step was divided into sampling (make the aggregate 

samples), subsampling (mix the aggregate sample and divide into two equal laboratory 

samples of 10 kg before grinding) and subfractioning (taking 10 g after grinding). Low 

variability was associated with the sampling step, probably because the size and number of 

elemental samples was enough; in fact, the last European Regulation about methods of 

sampling and analysis for the official control of mycotoxins levels in foodstuffs reduced the 

size of the aggregate sample from 30 to 20 kg, but maintains the analysis number (Comission 

of the European Communities, 2010b). On the other hand, a high percentage of the 

variability was attributed to the subfractioning step (subsample preparation), suggesting that 

either a better grinding and mixing could be achieved or more/bigger subfractions should 

be selected to reduce the uncertainty. Similar values of sampling and analytical variance were 
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observed in sampling almonds and hazelnuts for AFB1 (Ozay et al., 2006, Whitaker et al., 

2006). However, in those studies lower values of sample preparation variance were 

calculated, probably due to the higher size of samples for analysis used (50 to 100 g) and 

smaller milling particle size.  

 

AFs have high decomposition temperatures, ranging from 237 to 306 ºC and AFB1 is quite 

stable to dry heating (Betina, 1989; Rustom et al., 1997). Although these temperatures are 

higher from those actually used by the nuts industry, it is usually accepted that the heat 

treatment decreases the concentration of AFs to some extent. Toasted reduction percentages 

of 87.62%, 81.04% and 87.72% for AFB1, AFB2 and AFs were calculated in this study. 

However, these results were obtained based on 7 lots, because lot 5 did not present any 

mycotoxin reduction due to its low initial contamination, and just one process criteria (PcC), 

therefore more results would be required for a complete description of the PC. Nevertheless, 

conflicting results have been published about the effect of the heat treatments on peanuts 

and pistachios (Ariño et al., 2009; Farah et al., 1983; Lee et al., 1969; Ozkarsli et al., 2003; 

Pluyer et al., 1987; Rustom et al., 1997; Yazdanpanah et al. 2005). In general the extent of 

the destruction achieved was very dependent on the initial level of contamination, heating 

temperature, time and humidity. In naturally contaminated peanuts heat treatment by oven 

toasting at 150 ºC for 30 min caused a 30-45% AFB1 reduction, while in artificially 

contaminated peanuts treated under the same conditions, the inactivation was around 48-

61% (Pluyer et al., 1987). Degradation of AFs in peanuts toasted at 150 ºC for 30 min 

increased with the addition of ionic salts in a range from 38%, 41.5% and 47.6% in unsalted 

peanuts, and salted with 20 g/kg and 50 g/kg respectively (Ozkarsli et al., 2003). In pistachio, 

the results regarding degradation of AFs due to toasting are also contradictory. Yazdanpanah 

et al. (2005) studied the effect of toasting for 30, 60 and 90 min at different temperatures (90, 

120 and 150 ºC). The milder treatment (90 ºC-30 min) reported slightest effect while the 

most extreme treatment resulted in a degradation of over 95% of AFB1 but the pistachio 

showed a burned appearance. The toasting process at 150 ºC for 30 min showed significant 

reduction of AFB1 and AFB2 without any noticeable change in taste of sample. Also the rate 

of reduction was plotted against the initial amount and linear correlation was not found. On 

the other hand, Ariño et al. (2009) studied the effect of toasting on AFs: four commercial 

batches of raw pistachios in-shell from Iran were salted (1% salt content) and toasted at 120 

ºC for 20 min in a toasting industry in Spain. This study did not show significant differences 

in relation with AFs reduction after toasting; however the level of contamination of the 

starting material was low, ranging from 0.12 to 0.18 µg/kg. Recently, García-Cela et al. (2012) 
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analyzed the effect of time and temperature in connection with the AFs degradation in nuts 

using published results, observing that with a thermal treatment of 135-165 ºC for 20 min a 

reduction of 15-35% in AFs could be achieved however in the present study higher reduction 

values were achieved in pistachio (57%). 

 

An important side effect of toasting is the reduction of the m.c. The initial m.c. of raw 

pistachio was lower than 4% although 3 toasted lots presented a m.c. over than the initial 

one. However in both cases the m.c. was lower than 5%. Storage temperature and m.c. are 

important factors on fungal growth and mycotoxins accumulation in pistachio. For OTA 

prevention, pistachio should be kept under 12.6% m.c. (Marin et al., 2010), and lower m.c. 

(10%) is required for AFs prevention (unpublished data) in a range of temperatures of 10 to 

42 ºC.  

 

Regarding to OTA, several studies have reported the incidence of black aspergilli in 

pistachios and other tree nuts (Bayman 2002, Doster and Michailides, 1994, Fernane et al., 

2010a,b). In fact, Fernane et al. (2010a,b) reported that more than 50% of black aspergilli 

isolates from Spanish and Argelian pistachios had OTA production capacity. Nevertheless, 

only one Spanish sample and another Argelian one contained 0.67 and 170 µg/kg OTA, 

respectively. However, OTA was never found in the 1,600 kg of sampled pistachio in the 

present work. 

 

5. CONCLUSION 
 

The absence of AFs in raw pistachio cannot be guaranteed, thus relying on industrial 

processes for a certain reduction is required. The food industry is responsible for setting up 

food safety management systems that deliver foodstuffs in compliance to the FSO. 

According to the initial and final values proposed by European legal limits, processing (either 

selection or selection plus toasting or just toasting) is expected to decrease in 33% the initial 

aflatoxin concentration in the raw pistachio. Our results suggest that about a 75% of 

reduction may be achieved by the single toasting process, thus under the hypothesis of raw 

pistachio compliance with maximum level, the toasted pistachio must be safe. The underlying 

problem is the uncertainty associated to the aflatoxin levels reported in the present work and 

any other existing works; the high uncertainties due to sampling and sample preparation 

procedures may lead to unrealistic results, and this is an issue that needs to be solved. In the 

present work the major variability was associated with the subfraction selection and therefore 
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increasing the number of the analyzed subfractions could be an alternative for reducing 

uncertainty. 
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ABSTRACT 

Fourteen vineyards from two different agro-climatic regions in Spain were sampled in two 

consecutive years in order to determinate the grape mycobiota and diversity indexes with the 

final aim to define the potential mycotoxigenic species from both regions and their 

relationship. The most common fungal Genera encountered were Aspergillus (30.0%), 

Alternaria (53.2%), Cladosporium (11.9%) and Penicillium (2.9%). Black aspergilli presence in 

the hotter region (South) was significantly higher (p<0.05) than in Northeast in both years. 

Among black aspergilli, A. tubingensis seemed to be the better adapted species to 

environmental conditions, while A. carbonarius was the main potentially ochratoxigenic specie 

in both regions and years, owing to the most relevant percentage of ochratoxigenic isolates. 

OTA positive musts were only detected from Southern vineyards, although contamination 

was always lower than 0.1 µg/L. Finally, none of black aspergilli tested produced FBs on 

CYA, while 63% of A. niger tested produced FB2 when inoculated on CYA20S, reaching the 

100% of isolates from South. 

Climate change scenarios in South Europe point to an increase of temperature and drought. 

This could promote particularly adapted species such as A. niger, decreasing OTA risk, but 

this could lead to an increase of FB2 presence.   

 

Accepted Journal of the Science of Food and Agriculture. 
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1. INTRODUCTION 
 

Aspergillus and Alternaria, followed by Penicillium, are the most frequently reported Genera on 

grapes. Aspergillus spp. are ubiquitous saprophytes present in soils around the world, 

particularly in tropical and subtropical regions (Pitt and Hocking, 2009). Many field surveys 

have been published dealing with epidemiology, ecology and distribution of aspergilli 

occurring on wine grapes worldwide (Table 1). Some species of Aspergillus are aflatoxins 

(AFs), ochratoxin A (OTA) and fumonisin B2 and B4 (FB2 and FB4) producers, thus their 

presence in vineyards could result in mycotoxin contamination of grapes and grape-products, 

such as wine. Aspergillus section Flavi is rarely present in vineyards, only in a study in Lebanon, 

they were 43% of the total aspergilli and more than 40% of them produced aflatoxin B1 

(AFB1), thereby more than 40% of musts contained this mycotoxin but at levels lower than 

0.46 μg/L (Khoury et al., 2008; Magnoli et al., 2003; Medina et al., 2005; Sage et al., 2004; 

Serra et al., 2006b); moreover, no studies exist which reported AFs in wine. Similarly, low 

incidence of section Circumdati is described in Spain (2.5-6.6%) and these fungi were never 

isolated from Portuguese and French vineyards, and therefore their contribution to OTA in 

grape is not relevant (Bellí et al., 2004c; Sage et al., 2002; Serra et al., 2005).  

 

Undoubtedly, Aspergillus section Nigri are the most important mycotoxigenic (ochratoxigenic) 

fungi present on grapes (5-83% infected berries, Table 1). The main black aspergilli species 

occurring on grapes are biseriates, in particular A. niger aggregate. In more recent years, 

several authors have proposed the division of the A. niger aggregate in four morphologically 

identical species: A. niger, A. tubingensis, A. foetidus and A. brasiliensis (González-Salgado, 2010). 

A. carbonarius showed the highest percentage of OTA producing strains in Europe and 

Tunisia (60-100%), conversely in Argentina only 5.9% were OTA positive (Table 1). 

Although uniseriates presence was rare in most reports, studies carried out in Argentina and 

Italy detected higher number of uniseriates than A. carbonarius isolates. Additionally, a high 

percentage of OTA-producing uniseriates was found in Argentina (45.2%). A. niger aggregate 

was always the most abundant group among Aspergillus (56-97%) although the percentage of 

OTA producing isolates was very variable (0-73%) (Table 1). Finally, recent reports revealed 

production of fumonisin B2 (FB2) and fumonisin B4 (FB4) by A. niger and A. awamori strains 

on culture medium, grapes or dried grapes (Chiotta et al., 2011; Logrieco et al., 2009; 

Mogensen et al., 2010a; Varga et al., 2010).  
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The highest levels of OTA in winemaking musts have been detected in Italy, Lebanon, and 

Tunisia (Table 2). In this sense, Battilani et al. (2006), observed that incidence of black 

aspergilli was significantly related to latitude and longitude, showing a positive West-East and 

North-South gradient. Recent studies have also evidenced the influence of geographic 

location and climate on the occurrence of ochratoxigenic moulds and OTA contamination 

of grape (Lasram et al., 2012b; Lucchetta et al., 2010; Serra et al., 2006b). In Spain, although 

wide surveys were carried out in the past (Table 1), no North-South trend was observed 

along the Mediterranean coast. Moreover, no recent works on fungal diversity on vineyards 

have been published. Specifically in Catalonia, the last field survey published was conducted 

9 years ago (Bellí et al., 2005). According to climatic change scenarios predicted for Spain, it 

is expected that temperature and drought will increase (EC, 2007). Thus, future climate 

conditions in Northern Spain could be those currently found in Southern Spain. 

 

Warm European summers have observed a decrease in the occurrence in wheat of the 

formerly predominant species, F. culmorum, which has been replaced by F. graminearum. Both 

species produce ZEA and DON, but additionally F. graminearum produces nivalenol 

increasing the mycotoxin exposure (Miller, 2008). Moreover, in Italy F. verticillioides, the most 

diffuse maize pathogen, is favored by warm dry weather, while A. flavus tends to occur only 

in particularly hot summers, altering the maize contamination from FBs to AFs (Giorni et al., 

2007). Besides studies on AF-risk linked to climate change concluded that both cereal crops 

and mycotoxigenic fungi may move geographically as a result of changing conditions, thus 

some mycotoxigenic fungi may threaten those newly colonised areas (Battilani et al., 2012). 

Therefore, climate change increases the risk of migration of pathogens and therefore known 

fungal infections patterns could be affected and mycotoxin profile modified.(Magan et al., 

2011)  

 

Considering that in both Northern and Southern Spain there are wide winemaking areas, the 

aims of this work were: a) determine the grape mycobiota and biodiversity indexes in these 

two agroclimatic regions of Spain; b) determine the Aspergillus section Nigri and Circumdati 

distribution in both regions; c) determine the potential mycotoxigenesis of Aspergillus section 

Nigri and Circumdati from both regions; d) determine the OTA contamination in musts from 

both regions; d) establish the relationship between mycobiota, OTA presence and the 

climatic conditions. 
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Table 1 Summary of several published reports (last decade) on Aspergillus section Nigri isolation and ochratoxin A production on berries. 

Sampling 

country 
Yeara N  

% of berries 

contaminated by 

A. section Nigri 

Section Nigri distribution (%) OTA producers (%) 

LOD 

(ng/g or 

ng/mL) 

Meane 

(ng/g or 

ng/mL) 

Rangee 

(ng/g or 

ng/mL) 

Italy1b 1999-2000 9 9.0-15 Uniseriate 18.5-23.8     

    Aggregate niger 56.2-60.6     

    A. carbonarius 25.3-15.6     

France2b 2000 60  Uniseriate 9.3     

    Aggregate niger 67.4     

    A. carbonarius 23.3 10/11(90.9%)  0.29 0.01-1.90 

Spain3c 2001 40 4.9 A. section Nigri 100 18/386(4.6%) 0.02 1420 0.02/2820 

Spain4 2001 7 20.7 Uniseriate 1 0/f    

    Aggregate niger 81.6 0/f    

    A. carbonarius 17.4 101/101(100%)   1920-195460d 

Argentina5 2001 50 14 A. niger var. niger 74 20/44(45%) 1 13 2.0-24.5 

    A. niger var. awamori 14 5/15(33%) 1 15 3.0-20.0 

    A. foetidus 12 1/4(25%) 1 2 2 

Portugal6 2001-2002-2003 11 31 A. ibericus 1.6     

    Aggregate niger 83.9     

    A. carbonarius 14.9     

Spain7d 2002-2003 40 10.5-17 Uniseriate 18-18 0/45(0%)-0/72(0%) 0.01   

    Aggregate niger 73-53 3/181(1.6%)-11/211(5.2%)    

    A.carbonarius 7-29.0 14/17(82.4)-90/118(76.3%)    

Greece8d 2002-2003 16 30.6-28.8 Aggregate niger 35 62/85(73%) 1  LOD ->25 

    A. carbonarius 65 39/50(78%) 1  LOD ->25 

References:1 Battilani et al., 2003; 2 Sage et al., 2004; 3 Belli et al., 2004b; 4 Bau et al., 2005; 5 Magnoli et al., 2003; 6 Serra et al., 2006; 7 Belli et al., 2005; 8 Tjamos et al., 2006; 9 Bejaoui et al., 2006; 10 

Ponsone et al., 2007; 11 Serra et al., 2005; 12 Lasram et al., 2012b; 13 Chiotta et al., 2009; 14 Díaz et al., 2009 and 15 Lucchetta et al., 2010.  
a when no sampling period was reported, the publication year was reported. Values were calculated from: b 2 samplings, c 4 samplings and d 3 sampling taken at different stages. 
e mean and range and maximum were calculated from positive samples. f number of isolates tested does not appear in the publication. 
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Table 1 (Continued) 

Sampling 

country 
Yeara N  

% of berries 

contaminated by 

A. section Nigri 

Section Nigri distribution (%) OTA producers (%) 

LOD 

(ng/g or 

ng/mL) 

Meane 

(ng/g 

or 

ng/mL) 

Rangee 

(ng/g or 

ng/mL) 

France9 2001-2002-2003 40  Uniseriate 8.6     

    Aggregate niger 54.7     

    A. carbonarius 36.7     

Argentina10 2003-2004 26  Uniseriate 33 28/62(45.2%) 1 3 3.0-6.0 

    Aggregate niger 48 37/132(28.0%) 1 13.18 1.3-50.0 

    A. carbonarius 19 0/7(0%) 1   

Portugal11 2005 4 17 Aggregate niger 97 0/33(0%)    

    A. carbonarius 3 1/1(100%)    

Tunisia12 2005-2006-2007 24 _ Uniseriate 2.3 0/29(0%) 0.02   

    Aggregate niger 76 29/931(3.2%) 0.02 1450 <100-5000 

    A. carbonarius 21.7 268/270(99.3%) 0.02 70 <100-1000 

Argentina13 2006-2007 50 32.5 Uniseriate 8 0/f(0%) 0.05   

    Aggregate niger 81 63/230(27.4%) 0.05 2.24 0.5-17.50 

    A. carbonarius 8 28/54(5.9%) 0.05 202 1.2-1285 

Chile14 2006-2007-2008 398  Aggregate niger 78     

    A. carbonarius 22     

Italy15 2003-2007 204 64.8-82.5 Uniseriate 31.4     

    Aggregate niger 60.8     

    A. carbonarius 7.8     
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Table 2 Summary of several published reports (last decade) on ochratoxin A 

contamination in winemaking musts.  

Sampling 

country 
Yeara N  

N 

positives

/ (%) 

LOD 

(µg/L) 

Mean of 

positives 

(µg/L) 

Range of 

positives 

(µg/L) 

References 

Italyb 1999 9 8 (89%) 0.01 2.1 0.01-6.5 
Battilani et 

al., 2003 

France 2000 60 11 (18%) 0.01 0.06 0.01-0.43 
Sage et al., 

2004 

Spain 2001 24 6 (25%) 0.07 0.26 0.09-0.81 
Belli et al., 

2004a 

France 2002 11 6 (55%)  0.18 0.01-0.46 
Sage et al., 

2002 

Spainc 2002 40 0 (0%) 0.05   
Belli et al., 

2005 

 2003 40 0 (0%) 0.05    

Tunisia 2003 10 5 (50%) 0.01 3.38 1.1-4.3 
Fredj et al., 

2007 

Argentinac 
2003-

2004 
26 0 (0%)    

Ponsone et 

al., 2007 

Portugald 2005 4 3 (75%) 0.004  0.01-0.16 
Serra et al., 

2005 

Lebanon 2005 47 0 (0%) 0.01   
Khoury et 

al., 2008 

Tunisia 2005 24 13 (54%) 0.05 0.38 0.06-1.88 
Lasram et 

al., 2012b 

 2006 24 16 (67%) 0.05 0.98 0.05-5.45  

 2007 24 10 (42%) 0.05 1.30 0.11-5.85  

Argentina 
2006-

2007 
50 22 (44%) 0.01 0.13 0.1-1.20d 

Chiotta et 

al., 2009 

Chile 

2006-

2007-

2008 

398 77 (19%) 0.4   
Díaz et al., 

2009 

Italy 
2003-

2007 
204 62 (30%)   0.003-2.0 

Lucchetta et 

al., 2010 
Legal limit EC (1881/2006) 2 µg/L  
a when no sampling period was reported, the publication year was reported. 

Values were calculated from: b 2 samples and 4 c samples taken at different stages. 
d µg/kg grape. 
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2. MATERIALS AND METHODS 
 

2.1. Field sampling and meteorological data 

 

Two different agro-climatic regions from Spain were sampled in two consecutive years (2011 

and 2012). Ten fields were located in the Northeast (41º 41’N 0º 28’ E) and four in the South 

(37º 35’ N 05º 04’ W), with 740 km of distance between regions (Fig. 1). Climate in these 

regions was defined as cold steppe (BSk) and temperate with dry or hot summer (Csa) 

respectively, according to Köppen Climate Classification of the Iberian Peninsula Climate 

Atlas (Figure 1).(AEMET, 2011).  

 

Phenological growth stages of the grape vine covers the period between dormancy and leaf 

fall. In Spain, this period starts in May or June with flowering and studded, followed by 

veraison in July and ripening in August or September, depending of the variety and latitude. 

All fields were sampled at harvest, between August and September. Sampling was carried out 

through a diagonal in each vineyard and 10 bunches were randomly collected from 10 vines 

(one bunch per vine) along the diagonal from each field as described by Battilani et al. (2006) 

Bunches were collected in paper bags and kept at 4 ºC until laboratory analysis.  

 

Different grape varieties were sampled in each region: 5 red varieties (Pinot, Cabernet 

Sauvignon, Tempranillo, Syrah and Merlot) and 2 white varieties (Chardonnay and Xarel•lo) 

in the Northeast, while in the South only 4 white varieties were present: Zalema, Chelva and 

Palomino in 2011, and Zalema, Chelva, Pedro Ximénez, and Montepila in 2012. 

 

Regarding the cropping system, vines in Northeast were grown on trellises with localised 

drip irrigation, while in the South the common system was goblet vines without irrigation. 

Both locations had systematic fungicide application programs based on common active 

ingredients (copper, sulphur, triadimenol), besides, metrafenone, myclobutanil and 

strobilurin were used in the Northeast and cyproconazole in the South until three weeks 

before harvest. Regarding pests, sexual confusion was used and occasionally chemical pest 

treatments were applied when necessary.  
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2.2. Meteorological data 

 

Meteorological data (from April to September) for each sample region were obtained from 

the weather network of Catalunya (Servei Meteorògic de Cataluyna) and Andalucía 

(Estaciones agroclimáticas de Andalucía).Regarding mean temperatures, both 2011 and 2012 

were above the values registered in the last 40 years, being extremely hot in the case of 2012, 

up to 10% higher than the mean values in both regions. In the same way the precipitation 

rate was under average in both regions and years, being among the driest years. 

 

Daily mean relative humidity (RH), maximum (Tmax), mean (Tmean) and minimal (Tmin) 

temperatures and rainfall from April to September were plotted every 10 days in order to 

describe the environmental conditions during the grape cycle and fungal infection (Figure 

2).  

 

Regarding Northeast sampling area, a gradual increase of Tmean from 16 ºC was observed 

since May. This trend continued until mid-August reaching mean values of 25-26 ºC, 

although lower Tmean were registered in early June in 2011. Regarding to daily Tmax, in the 

period between May to August 30 ºC were reached in a total of 45 and 61 days, of which 23 

and 27 days were in August, in 2011 and 2012, respectively. The maximum Tmax reached was 

37 ºC, in August. Mean RH from June to August, was higher (60.3% RH) in 2011 than in 

2012 (57.6 % RH) despite the accumulated rain in 2012 was 2.6 times higher (85.0 mm vs 

32.1 mm). However the main difference between both years was a strong summer storm on 

5th August 2012 in which 35.3 mm of rain were registered in 2 h. In the Southern region the 

Tmean in May also exceeded 18 ºC. The Tmean increased until mid-August reaching mean values 

of 27-29 ºC. Regarding maximum daily Tmax between May to August in 2011, 30 ºC were 

reached in 94 single days, 37 ºC in 26 days and in 3 days the Tmax was over 40 ºC. Year 2012 

had higher maximum temperatures than previous one, in where a total of 108 days attained 

30 ºC, and 48 and 14 days reached the Tmax of 37 and 40 ºC, in the same period of time than 

in year 2011.  In summary, a difference of 1-4 ºC in mean temperature was observed between 

both regions and inversely to temperature, the RH was lower in the South, as mean RH in 

June and August was of 52.7 and 44.9 respectively. Moreover scarce rainfall was recorded in 

both years (7.4 and 0 mm). Altogether, Southern sampling area was hotter and drier than 

Northeastern one. 
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Legend: ET (tundra), Dfc (cold with a dry season and fresh summer), Dfb (cold without dry season and temperate summer), Dsc 

(cold with dry and fresh summer), Dsb (cold with temperate and dry summer), Cfb (temperate with a dry season and temperate 

summer), Cfa (temperate with a dry season and hot summer), Csb (temperate with dry or temperate summer), Csa (temperate with 

dry or hot summer), BSk (clod steppe), BSh (hot steppe), BWk (cold desert), BWh (hot desert). 

Source: Iberian Climate Atlas. Air temperature and precipitation (1971-2000). Agencia Estatal de Meteorología Ministerio de 

Medio Ambiente y Medio Rural y Marino © Instituto de Meteorologia de Portugal © 

 

Figure 1 Location of vineyards sampled in Spain in 2011 and 2012 and meteorological station from which climatic data 
were obtained. 

 

 

 

 

 

 

.
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Figure 2 Meteorological data (temperature, relative humidity and rainfall) from April to September in both regions and years.  
Numbers in parentheses are accumulated rainfall in 10 days. Meteorological Station coordinates.
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2.3. Mycobiota determination  

 

Fifty berries were randomly chosen from each bunch and plated directly in groups of five in 

Petri dishes with Dichloran Rose Bengal Chloramphenicol medium (DRBC) under sterile 

conditions. Plates were incubated for 7 days at 25 ºC and colonies of developing fungi were 

examined and classified into Genera according to Pitt and Hocking, 2009. Then, samples of 

each Genera were inoculated separately using the appropriate media and identified to species 

level according to Pitt and Hocking, 2009; Fusarium species were inoculated in CLA and PDA 

and incubated under alternate dark/light cycles (12 h) at 25 ºC during 15 days, then, Fusarium 

species were identified (Leslie and Summerell, 2007). Concerning to Aspergillus section Nigri, 

microscopic observation and identification in uniseriate, biseriate and A. carbonarius isolates 

was conducted. Species that could not be identified by their cultural characteristics or by 

microscopy were identified using molecular biology techniques. All Aspergillus section Flavi, 

Circumdati and a representative sample of isolates from section Nigri were identified by PCR 

through specific primers of the most frequently reported species (A. flavus, A. parasiticus, A. 

ochraceus, A. westerdijkiae, A. steynii, A. carbonarius, A. tubingensis, and A. niger). In the case of 

Penicillium, isolates were incubated at 5, 25 and 37 ºC on CYA, and at 25 ºC on MEA, G25N 

and SCN, and then grouped by macroscopic morphological criteria. One isolate of each 

group was further identified by DNA sequencing.  

 

2.4. DNA extraction, amplification and identification of Aspergillus species 

 

DNA extraction were performed using the protocol described elsewhere (Querol et al., 

1992). DNA concentrations were determined using a NanoDrop® ND-1000 

spectrophotometer (Nanodrop Technologies, Wilmington, USA). All PCR assays were 

performed using an Eppendorf Mastercycler Gradient Thermocycler (Eppendorf, Hamburg, 

Germany). Amplification reactions were carried out in volumes of 25 μL containing 200 ng 

of template DNA, 1 μL of each primer (20 μM), 2.5 μL of 10× PCR buffer, 1 μL of MgCl2 

(50 mM), 0.2 μL of dNTPs (100 mM) and 0.15 μL of Taq DNA polymerase (5 U/μL) 

supplied by the manufacturer (Bio- tools, Madrid, Spain). 

 

After DNA extraction, genomic DNAs were tested for suitability for PCR amplification 

using primers 5.8S1/5.8S2 (Gil-Serna et al., 2009a). Specific PCR protocols previously 

described were used to detect OTA-producing Aspergillus species the A. carbonarius (Selma et 

al., 2008), A. niger and A. tubingensis (Perrone et al., 2007b; Susca et al., 2007), the most 
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important Aspergillus section Circumdati species (A. westerdijkiae, A. ochraceus and A. steynii) (Gil-

Serna et al., 2009b) as well as aflatoxin- producing Aspergillus species: A. flavus (González-

Salgado et al., 2008) and A. parasiticus (Sardiñas et al., 2010). PCR products were detected in 

2% agarose ethidium bromide gels in TAE 1× buffer (Tris-acetate 40 mM and EDTA 1.0 

mM). A 100 bp DNA ladder (MBI Fermentas, Vilnius, Lithuania) was used as molecular size 

marker.  

 

2.5. DNA extraction, amplification and identification of Penicillium species  

 

The DNA extraction protocol described by Cenis, (1992) was followed with minor 

modifications. Cultures were grown in 500 µL of malt extract broth (2% w/v malt extract, 

0.1% w/v peptone, 2% w/v glucose) for 2 days at 26 ºC. The mycelial extract was recovered 

after 10 min of centrifugation at 17500 x g and 300 µL of DNA extraction buffer (200 mM 

Tris-HCl, pH 8.5, 250 mM NaCl, 25 mM EDTA, 0.5% w/v SDS) was added. The mycelial 

suspension was lysed by vortexing with five 2.8 mm Precellys metal beads (Bertin 

Technologies, France) for 10 min. After centrifugation at 17500 x g for 10 min, 150 μL of 3 

M sodium acetate (pH 5.2) was added to the supernatant. The supernatant was stored at -20 

ºC for 10 min and then centrifuged (17500 x g, 10 min). The DNA-containing supernatant 

was transferred to a new tube and nucleic acids were precipitated by addition of 1 volume of 

isopropanol. After a 5-minute incubation time at room temperature, the DNA suspension 

was centrifuged (17500 x g, 10 min). The DNA pellet was washed with 70% ethanol to 

remove residual salts. Finally, the pellet was air-dried and the DNA was resuspended in 50 

µL of TE buffer (10 mM Tris-HCl pH 8, 1 mM EDTA).  

 

To identify Penicillium isolates, primer pairs BT2A/BT2B (Glass and Donaldson, 1995) and 

EF-1/EF-2 (O’Donnell et al., 1998) were used to obtain partial sequences of the beta-tubulin 

and elongation factor genes. Amplification reactions were carried out in volumes of 50 μL 

containing 50 ng of DNA, 50 mM KCl, 10 mM Tris–HCl, 250 μM (each) dNTP, 1 μM of 

each primer, 2 mM MgCl2 and and 0.5 U of DFS-Taq DNA Polymerase (BIORON, 

Germany). PCR assays were conducted in a GeneAmp® PCR System 2700 (Applied 

Biosystems, USA) under the following conditions: initial denaturation at 95 °C for 5 min, 

followed by 35 cycles of denaturation at 95 °C for 30 s, annealing at 60 ºC (BT2A/BT2B) or 

53 ºC (EF-1/EF-2) for 45 s, and extension at 72 °C for 60 s with a final extension of 10 min. 

PCR products were cleaned with the UltraClean PCR Clean-up DNA Purification kit 

(MoBio, USA). The PCR purified products were sequenced by the company Macrogen 
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Europe (Amsterdam, The Netherlands). Blast n-searches in GenBank permitted the 

identification of the level of identity with known sequences, and subsequently the species 

corresponding to the isolates. 

 

2.6. Biodiversity Indexes 

 

Biodiversity is defined by both species richness (the number of species present) and species 

evenness (how equally abundant the species are). Biodiversity indexes combine specific 

richness and evenness resulting in a single value. A given diversity index value can be 

obtained not only by a community with low richness and higher evenness but also from a 

community with high richness and lower evenness. Therefore, the value of evenness should 

be also considered together with the biodiversity index.  

 

For each vineyard, data of abundance and diversity of fungal species were integrated to 

calculate the specific richness (Margalef, 1958), diversity Shannon (Shannon and Weaver, 

1949) and evenness Shannon indexes (Pielou, 1969), and diversity and evenness (Simpson, 

1949) indexes. Minimal value for diversity is 1 for Simpson index and 0 for Shannon index. 

Therefore the Inverse Simpson index was used to obtain a direct comparison to biodiversity. 

 

Specific richness, DMg  

𝐷𝑀𝑔 =
S − 1

𝑙𝑛𝑝𝑖
 

Diversity Shannon index, H  

𝐻 = − ∑ 𝑝𝑖

𝑆

𝑖=1

𝑙𝑛𝑝𝑖 

Evenness Shannon index, J 

𝐽 =
H

Hmax
=

H

𝑙𝑛S
 

Inverse Simpson index, D  

𝐷 =
1

∑ (𝑝𝑖)2𝑆
𝑖=1

 

Evenness Simpson index, E  

E =
D

Dmax
=

D

S
 



Research Work-Part II 

146 
 

𝐷 =
1

∑ (𝑝𝑖)2𝑆
𝑖=1

 

 

Where pi is the proportion of abundance of the species and S is the number of species. 

 

2.7. Mycotoxins detection and quantification 

 

2.7.1. General description of the equipment 

 

Mycotoxins were detected and quantified separately by using a HPLC system (Waters 2695, 

separations module, Waters, Milford, USA) and a C18 column (5 μm Waters Spherisorb, 

4.6×250mm ODS2). For fluorescence detection a Waters 2475 module (Waters, Milford, 

USA) was used. Mycotoxins were quantified on the basis of the HPLC fluorimetric response 

compared with a range of mycotoxin standards and the detection limit was established based 

on a signal-to-noise ratio of 3:1. The analysis was performed under isocratic conditions at a 

flow rate of 1 mL/min. Quantification was achieved with a software integrator (Empower, 

Milford, MA, USA).  

 

2.7.2. OTA and fumonisin B1 and B2 production by Aspergillus section Nigri 

 

Production by Aspergillus section Nigri: OTA production of 168 isolates of Aspergillus section 

Nigri (113 in 2011 and 55 in 2012) incubated for  7 days at 25 ºC onto Czapek Yeast Extract 

agar (CYA) was tested. Moreover, FBs production was tested on 55 black aspergilli isolates 

taken at random from 2011 and 2012 on CYA and, among them, 19 A. niger were tested on 

CYA20S (20% sucrose) under the same incubation conditions as for OTA production. After 

incubation, 3 agar plugs (5mm) were removed from the middle to the outer side of the colony 

and placed in a vial. Mycotoxins were extracted by adding 1 mL of methanol into the vials, 

which were shaken for 5 s and allowed to rest. After 60 min, the vials were shaken again and 

the extract filtered (OlimPeak filters by Teknokroma PVDF Filter, 0.45 μm, 13 mm D, Sant 

Cugat del Vallés, Barcelona, Spain) into another vial. Subsequently, the extract was 

evaporated under a stream of nitrogen and stored at 4 ºC until HPLC analysis (Waters, 

Mildford, Ma, S.A.). Prior to HPLC injection, dried extracts were dissolved in 1 mL of 

methanol: water (50:50), and FBs were manually derivatized with OPA (Sydenham et al., 

1996). OTA and FBs were detected by fluorescence at the following wavelengths: λexc 

330nm; λem 460 nm and λexc 335 nm; λem 440 nm, respectively. For OTA, the mobile phase 
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used was acetonitrile: water: acetic acid (57:41:2) and the detection limit was 0.01 µg/kg. For 

FBs, the mobile phase used was methanol: 0.1 M sodium dihydrogen phosphate (77:23), 

solution adjusted to pH 3.35 with orthophosphoric acid. The detection limit was 3 ng/g agar 

for FB1 and 1.5 ng/g agar for FB2.  

 

2.7.3. OTA in musts  

 

After the study on mycobiota, the ten bunches collected from each vineyard were crushed 

and the resulting musts (n = 14 musts each year) were analysed for OTA using the method 

of the Office International de la Vigne et du Vin (Bezzo, G., Maggiorotto, G.& Testa, 2000). 

Berries were weighed and crushed with a hand blender machine, and then the must obtained 

was macerated for two hours, and centrifuged (Hettich Zentrifugen EBA 12, Germany) at 

3900 g for 10 min and filtered (Whatman No. 1) under vacuum. Must pH was modified up 

to 7.4 with NaOH (4 M) and was filtered again (Whatman No. 1). Undiluted must was 

cleaned-up by means of immunoaffinity columns (Ochraprep, R-Biopharm Rhône LTD, 

Glasgow, Scotland) at a flow rate of 2-3 mL/min. Columns were afterwards washed with 20 

mL of distilled water and let to dry. Desorption was carried out with 3 mL of methanol/acetic 

acid (98/2) solution, slowly passed through the column; during desorption backflushing was 

applied twice. The eluate was then evaporated to dryness at 40 ºC under a stream of nitrogen 

and redissolved in 2 mL of mobile phase (48% acetonitrile and 52% sodium acetate /acetic 

acid (19/1)). A 100 µL aliquot of each final sample was injected into the HPLC system (as 

previously described, but at λexc 333 nm; λem 443 nm) with a detection limit of 0.01 µg 

OTA/L of must. 

 

2.8. Statistical analyses  

 

All statistical analyses were performed with Statgraphics® Centurion XVI (USA, 2010). The 

distribution of variables was tested for normality using the Kolmogorov-Smirnov test. Mann-

Whitney (Wilcoxon) W-test was used to evaluate whether significant differences existed 

between biodiversity indexes and between Aspergillus section Nigri incidence on vineyards 

from the different regions. The statistical analysis performed were considered significant 

when p<0.05. 
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3. RESULTS AND DISCUSSION 
 

Different grape varieties were sampled in Nothern and Southern regions, thus no 

conclusions can be drawn regarding varieties susceptibility to fungal infection. As a general 

rule, Zalema and Chelva varieties, both grown in the South, presented higher Aspergillus 

infection, while Pinot showed the lowest. Similarly, Medina et al. (2005) found that Pinnot 

and Chardonnay were low Aspergillus infected varieties. Although most of the studies detailed 

the varieties sampled, comparison between studies is difficult because the varieties rarely 

coincided.   

 

Besides varieties, agronomical practices are confounding factors. Similar agronomical 

practices, including chemical treatments were described by vine growers, with an exception 

to cropping system and irrigation: vertical trellises were present in the North, while goblet 

system was used in the South. Higher contamination by A. carbonarius and OTA accumulation 

was observed in vertical trellises and goblet formation than in cordon and horizontal trellises 

systems.(Cozzi et al., 2007) No irrigation was applied in the South region thus reinforcing the 

drought in this region; this could induce plant stress and enable fungal infection (Chen et al., 

2004). 

 

3.1. Mycobiota determination  

 

The incidence of the different fungal Genera in the analysed berries is shown in table 3. The 

most common mycobiota isolated in both years were: Alternaria, Aspergillus, Cladosporium and 

Penicillium. Colonies belonging to Aureobasidium, Botrytis, Eurotium, Epicoccum, Fusarium, Mucor 

and Trichoderma were occasionally observed in the samples. However, Alternaria and 

Aspergillus together represented 80% of isolates present in both regions although great 

variability was found between vineyards (Table 3). Aspergillus, Alternaria, Cladosporium, 

Penicillium and Mucor were the dominant Genera isolated from grapes also in surveys in 

France, Spain, Portugal and Tunisia (Bellí et al., 2005; Fredj et al., 2007; Medina et al., 2005; 

Sage et al., 2002; Serra et al., 2006b, 2005). Alternaria colonized 68-97% of sampled berries. 

A high infection by Alternaria was also reported in Spain (70%) and Argentina (80%), 

nevertheless only 36% of Portuguese grapevines were contaminated by this genus (Bellí et 

al., 2005a; Magnoli et al., 2003; Serra et al., 2005).  
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Large differences were found in the number of berries colonized by Aspergillus between years 

and regions (20-71%) (Table 3). These values are higher than those previously reported in 

Spain and Portugal (Bellí et al., 2005a; Serra et al., 2006b). The most common species isolated 

within this genus, in decreasing order, were those in section Nigri, Flavi and Circumdati (96, 2 

and 2% in the Northeast area and 95, 3 and 1% in the South area). Other species isolated in 

this genus were A. candidus, A. fumigatus, A. terreus, A. ustus and A. wentii, which have been 

previously reported in vineyards (Bau et al., 2005; Magnoli et al., 2003; Sage et al., 2004, 2002; 

Serra et al., 2006b).  

 

Regarding Aspergillus section Flavi, over 92% of the isolates were A. flavus while the rest were 

A. parasiticus. Interestingly, all isolates from the South belonged to A. flavus, in both seasons. 

A. flavus has been isolated in Argentina, Lebanon, Spain, Portugal and A. parasiticus in 

Portugal, but both species have never been reported together in the same survey (Bau et al., 

2005; Khoury et al., 2008; Magnoli et al., 2003; Serra et al., 2006b, 2005). In relation to 

Aspergillus section Circumdati, most of the isolates were A. ochraceus in 2011 and A. westerdijikiae 

in 2012. However, in agreement with previous studies, low incidence of Aspergillus section 

Circumdati was observed (Battilani et al., 2003a; Bellí et al., 2004a; Sage et al., 2002; Serra et 

al., 2005).   
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Table 3 Mycobiota, percentage of infected berries, number of colonies, and frequency of distribution of fungi isolated from berries. 

.  
% of infected berries No of colonies % of each genera 

Northeasta Southb Northeasta Southb Northeasta Southb 

Year 2011 

Aspergillus 20.1 ± 16.92 64.1 ± 21.2 100.7 ± 84.6 320.4 ± 106.2 13.5 ± 10.7 34.9 ± 10.1 

Alternaria 96.9 ± 4.41 80.9 ± 10.5 484.7 ± 22.1 404.3 ± 52.7 66.6 ± 10.3 45.2 ± 8.6 

Aureobasidium 0.2 ± 0.5 0.1 ± 0.2 0.9 ± 2.5 0.5 ± 1 0.1 ± 0.4 0.1 ± 0.1 

Botrytis 0 ± 0 1.7 ± 3.3 0 ± 0 8.3 ± 16.5 0 ± 0 1.1 ± 2.2 

Cladosporium 25.5 ± 19.39 26 ± 9.6 127.7 ± 96.9 130 ± 47.8 16.3 ± 10.3 14.2 ± 4.4 

Epicoccum 0.3 ± 0.41 0 ± 0 1.3 ± 2.1 0 ± 0 0.2 ± 0.2 0 ± 0 

Eurotium 0 ± 0 0.2 ± 0.3 0 ± 0 0.8 ± 1.5 0 ± 0 0.1 ± 0.1 

Fusarium 0.4 ± 0.32 0.4 ± 0.5 1.8 ± 1.6 1.8 ± 2.4 0.3 ± 0.2 0.2 ± 0.3 

Hypopichia 0.1 ± 0.17 0 ± 0 0.5 ± 0.8 0 ± 0 0.1 ± 0.1 0 ± 0 

Mucorales 0.1 ± 0.27 0.6 ± 1.1 0.7 ± 1.3 3 ± 5.4 0.1 ± 0.2 0.3 ± 0.5 

Penicillium 4.6 ± 9.22 7.3 ± 6.8 23.1 ± 46.1 36.3 ± 34.2 2.6 ± 4.4 3.9 ± 3.5 

Thichoderma 0.4 ± 1.13 0.2 ± 0.3 2.3 ± 5.9 1 ± 1.4 0.3 ± 0.9 0.1 ± 0.1 

Year 2012 

Aspergillus 40.1 ± 14.6 71.3 ± 7.6 200.6 ± 73 356.3 ± 38.2 25.7 ± 10.4 45.7 ± 2.9 

Alternaria 89.7 ± 16.2 68.4 ± 8.9 448.3 ± 81.1 341.8 ± 44.5 56.9 ± 9.9 43.9 ± 5.1 

Aureobasidium 0 ± 0 0.2 ± 0.4 0 ± 0 1.3 ± 2.3 0 ± 0 0.1 ± 0.3 

Botrytis 0.4 ± 0.8 0.1 ± 0.1 2 ± 4 0.3 ± 0.5 0.2 ± 0.4 0 ± 0.1 

Cladosporium 21.1 ± 9.9 6.5 ± 6.1 105.3 ± 49.6 32.7 ± 30.3 12.9 ± 4.6 4.1 ± 3.8 

Epicoccum 1.1 ± 1 0.7 ± 0.4 5.7 ± 5.1 3.5 ± 2.2 0.7 ± 0.6 0.4 ± 0.2 

Eurotium 0 ± 0.1 0.6 ± 0.6 0.1 ± 0.3 2.8 ± 3 0 ± 0 0.3 ± 0.3 

Fusarium 0.5 ± 0.7 1.2 ± 0.7 2.4 ± 3.7 5.8 ± 3.3 0.3 ± 0.5 0.7 ± 0.4 

Neosartorya 0 ± 0.1 0 ± 0 0.3 ± 0.5 0 ± 0 0 ± 0.1 0 ± 0 

Mucorales 2.2 ± 1.4 0.8 ± 0.6 11.2 ± 7.1 3.9 ± 3.1 1.4 ± 0.9 0.5 ± 0.4 

Penicillium 2.1 ± 1.2 5.8 ± 1.5 10.4 ± 6.2 28.9 ± 7.3 1.4 ± 0.9 3.7 ± 1.1 

Thichoderma 0.6 ± 0.7 0.5 ± 0.5 3.1 ± 3.3 2.3 ± 2.6 0.4 ± 0.4 0.3 ± 0.4 
               aMean of 10 vineyards; bMean of 4 vineyards; Mean of each region ± deviations between vineyards. Each vineyard 500 berries were sampled.
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Aspergillus section Nigri was the main section of Aspergillus isolated in all vineyards and years 

sampled. While in Argentina and Lebanon this section represented 60-64% of total aspergilli, 

this percentage always was higher than 90% in Europe (Bau et al., 2005; Khoury et al., 2008; 

Magnoli et al., 2003; Serra et al., 2005). In our study, the percentage of infected grapes by 

Aspergillus section Nigri in the South was similar in both years (63-67%) and it almost doubled 

those in the Northern fields (19-38%), where the highest rate occurred in 2012 probably due 

to a hailstorm one week before harvest. Black aspergilli presence was significantly higher in 

the South both years (p<0.05, Table 4). Within black aspergilla species, A. carbonarius 

accounted for 14.2%-44%, while A. tubingensis and A. niger toghether accounted for the 

largest group (Table 5). Previous surveys in Spain showed 17-29% A. carbonarius (Table 1). 

Similarly, the present results show that A. tubingensis may be better adapted to Spanish 

environmental conditions, as it was the dominant species in all vineyards sampled (Table 5). 

However A. carbonarius was the main potentially ochratoxigenic species in both regions and 

years, with the highest percentage of ochratoxigenic isolates observed. Overall, the incidence 

of both A. tubingensis and A. niger was higher in the South, while the presence of A. carbonarius 

depended on the year tested. 

 

Table 4 Mann-Whitney (Wilconxon) W-test for % of black aspergilli to total isolates and 

for colonised berries on regions sampled (Northeast and South)  

Year 
% black aspergilli 

isolates 

% infected berries by 
black aspergilli 

isolates 

2011 NE (11.9) S (35.0) NE (16.9) S (69.5) 

W 37 39 

p-value 0.02 0.01 

2012 NE (24.2) S (43.0) NE (39.5) S (62.2) 

W 36 40 

p-value 0.03 0.01 
W-test to compare the medians of the two samples. 

NE. Northeasth; S. South. 

Numbers between parenthesis are median values.  

 

Considering other genus, Eurotium was rarely isolated from the South (<1%), as previously 

reported in Portugal and Argentina (Magnoli et al., 2003; Serra et al., 2006b). The number of 

Penicillium isolates was higher in the South than in the North in both years. Due to the 

difficulty in Penicillium identification, molecular techniques were used. In 2011 the identified 

species in this genus were P. angulare, P. aurantiogriseum, P. crustosum, P. erythromellis, P. expansum, 

P. glabrum, P. nothofagi, P. oxalicum, P. purpurogenum, P. ramulosum, P. simile, P. vasconiae, P. westlingii 
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and Talaromyces trachyspermus; while in 2012 P. brevicompactum, P. citrinum, P. glabrum, P. 

griseofulvum, P. mariae-crucis, P. minioluteum P. olsonii, P. oxalicum, P. pinophilum, P. purpurogenum, 

P. sizovae, and Talaromyces sp. were identified. Largeincidence and diversity in the Penicillium 

genus was also observed in previous works. Ochratoxigenic Penicillium species were never 

found in Spanish, French or Portuguese vineyards (Bau et al., 2005; Sage et al., 2004, 2002; 

Serra et al., 2006b, 2005). Additionally, P. expansum was found in this study and in French 

vineyards (Sage et al., 2004, 2002). Nevertheless, no potential patulin problems have been 

detected in the past due to the low percentage of producer strains isolated from grape 

(Bragulat et al., 2008).  

 

Table 5 Ochratoxin A production by Aspergillus Section Nigri in both regions and years 

sampled. 

 

% 

Infected 

berries 

Species 

distribution 

% OTA-

positive 

OTA 

rangea 

OTA 

meana  

 Year 2011 

Northeast 

A. carbonarius 3.1 16.3(15/92) 73.3 (11/15) 180-9364 1561 

A. niger 3.7 19.6(18/92) 25.0 (4/16) 8-119 38 

A. tubingensis 12.0 64.1(59/92) 1.8 (1/57) 11 12 

South 

A. carbonarius 27.8 44 (11/25) 100 (11/11) 14-6345 1713 

A. niger 5.1 8 (2/25) 50 (1/2) 32 32 

A. tubingensis 30.3 48 (12/25) 0 (0/12) - - 

  Year 2012 

Northeast 

A. carbonarius 13.6 35.3 (12/34) 83.3 (10/12) 4-18696 2568 

A. niger 3.4 8.8 (3/34) 0 (0/3) - - 

A. tubingensis 21.5 55.9 (19/34) 16.7 (3/19) 5-475 159 

South 

A. carbonarius 9.3 14.2 (3/21) 66.7 (2/3) 55-470 263 

A. niger 28.0 42.9 (9/21) 0 (0/9) - - 

A. tubingensis 28.0 42.9 (9/21) 0 (0/9) - - 
LOD 0.01 ng/g. CYA medium; a, (ng/g agar) 

 

Limited incidence of Fusarium genus was reported in both regions, the number of infected 

berries being slightly higher in the South in 2012. The species identified in this genus were F. 

anthophilum, F. armeniacum, F. graminearum, F. oxysporum, F. proliferatum, F. semitectum, F. solani, 

F. subglutinans and F. verticilloides in 2011 and F. equiseti, F. graminearum, F. poae, F. solani, F. 

subglutinans and F. verticilloides in 2012. Although Fusarium was isolated in other vineyards in 

different parts of the world, its presence was always limited and only described at species 

level in a French study (Bellí et al., 2005a; Fredj et al., 2007; Magnoli et al., 2003; Sage et al., 
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2004, 2002; Serra et al., 2006b, 2005). As in our study, different species were identified were 

identified also in French surveys, including F. moniliforme and F. oxysporum in 2002 and F. 

culmorum and F. lateritium in 2004. 

 

Despite the different agronomical cultural practices between both regions could affect the 

mycobiota contamination, in particular irrigation, only the statistical effects of environmental 

conditions were considered. 

 

3.2. Biodiversity Indexes 

 

Shannon and Inverse Simpson indexes have been used to describe fungal diversity in 

vineyards (Bellí et al., 2006; Valero et al., 2005). Bellí et al., (2006) and Valero et al., (2005), 

observed that fungal diversity increased from flowering to harvest in all vineyards sampled, 

in a range from 1.6 to 3.7 and 1.4 to 1.8 for Inverse Simpson and Shannon indexes, 

respectively. In both works, observed an increase of Shannon index from June to August, 

but it decreased at harvest (Figure 3). 

 

Figure 3. Diversity of the species found in the vineyards sampled in 2011 and 2012. 
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While no differences in richness were found between years in Northeast, an increment of 

richness was observed in 2012 (when hotter conditions occurred) in the South region with 

regards to data obtained in 2011. The surveyed area in the Northeast was smaller than the 

area in the South and this could increase the probability of finding fewer differences. 

Diversity indexes and evenness were always higher in the South, indicating a homogeneous 

distribution of the species in the ecosystem. In fact, significant differences were found 

between regions in 2011. However, the evenness was always far from 1, indicating the 

dominance of some species over others. The lowest diversity in the North was attributed to 

the predominance of Alternaria and Cladosporium, while the coexistence of black aspergilli, 

plus Alternaria and Penicillium resulted in a higher evenness and consequently diversity in the 

South ecosystem. As a result, higher diversity in this case is indicative of a higher OTA risk, 

assuming that the baseline mycobiota in grape is mainly composed by Alternaria and 

Cladosporium. 

 

Most existing studies did not find any differences in the overall fungal contamination or 

diversity among the different regions sampled (Bellí et al., 2006; Fredj et al., 2007; Lasram et 

al., 2012b; Serra et al., 2006b), which may be due to the short distance between vineyards. At 

a bigger scale, Battilani et al., (2006) applied a geostatistical analysis to the incidence of A. 

section Nigri and particularly A. carbonarius presence in grapes in South Europe and Israel. 

Spatial variability of black aspergilli was significantly related to latitude and longitude, 

showing a positive West-East and North-South gradient. 

 

3.3. Mycotoxin production capacity of isolates and OTA presence in musts 

 

OTA production capacity of all the isolates of Aspergillus section Circumdati and a 

representative sample of Aspergillus section Nigri was determined in vitro in both years. No 

isolate from A. section Circumdati produced OTA in 2011, while 4 producers were found in 

2012 (one A. ochraceus and one A. westerdijikiae isolated from Northeast and two A. 

westerdijikiae isolated from South). The A. ochraceus isolate produced 0.35 µg/g agar while the 

A. westerdijikiae isolates were higher producers (5.02 to 11.12 µg/g agar). Few works have 

tested OTA production by isolates of A. section Circumdati from grapes, probably due to the 

minor incidence observed (Bau et al., 2005; Bellí et al., 2004a). Interestingly, high producers 

were found in this section, as A. melleus and A. ochraceus produced OTA at levels of 7.82 and 

73.81 µg/g agar, respectively (Bau et al., 2005). Regarding A. section Nigri, a high percentage 

of A. carbonarius isolates were OTA positive in both regions (66.7-100%) and showed also a 
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wide concentration range (0.01-18.70 µg/g agar) (Table 5). These values are similar to those 

observed in Europe, where A. carbonarius isolates able to produce 87.5 and 195.5 µg/g agar 

were found in France and Spain respectively (Bau et al., 2005; Sage et al., 2002). Furthermore, 

OTA producers were found among A. tubingensis (0-17%) and A. niger (0-50%) even though 

fewer isolates were tested (171). All ochratoxigenic A. tubingensis (4) were isolated from 

Northeast and no A. niger producers were isolated in 2012. Similar percentages of OTA 

producing A. tubingensis and A. niger isolates have been reported: 0-25% and 0-40%, 

respectively (Bau et al., 2005; Perrone et al., 2006a). A recent vine survey in the Alpine region 

of Northern Italy (Trentino) showed 1 out of 66 A. niger OTA producing isolates and none 

A. tubingensis (0/57) producer; however most A. niger isolates (87%) produced fumonisins 

(Storari et al., 2012). CYA was used as preferred medium to test OTA production within the 

isolates, as the first choice in most previously existing works (Belli, 2006; Chiotta et al., 2009; 

Magnoli et al., 2003; Ponsone et al., 2007; Serra et al., 2005). The culture medium used could 

affect both the number of mycotoxigenic isolates detected and mycotoxin amount produced. 

For example, OTA production were tested in parallel on CYA and GJ50 (Grape Juice) all 

black aspergilli isolates being OTA-positive in both media, however, lower levels of OTA 

and FBs were detected on GJ50.(Abrunhosa et al., 2011; Serra et al., 2005). 

 

In our case, FB1 and FB2 production was analyzed in some Aspergillus section Nigri isolates 

from both years in which OTA production was tested. In the present survey no Aspergillus 

section Nigri tested produced FB1 and FB2 when grown on CYA, while 53% of A. niger 

isolates tested produced FB2 when inoculated on CYA20S. Interestingly, 100% (9/9) of A. 

niger isolates tested from South in both years produced FB2, while 1 isolate out of 10 from 

the Northeast region produced FB2. Mean FB2 production in the South isolates was 0.02 

µg/mL, as well as the Northeast isolate. Similarly, 85 % of A. niger isolates from grape 

produced FB2 and FB4 in levels between 0.223-17.45 µg/mL and 0.069-6.955 µg/mL 

respectively using CYA20S (Chiotta et al., 2011). Moreover, Varga et al. (2010) detected FBs 

on CYA20S inoculated with A. niger in a range from 0.017 to 19 μg/g. CYA was previously 

used to check FBs production by Abrunhosa et al. (2011), although CYA20S is the most 

common medium used for this purpose (Abrunhosa et al., 2011; Chiotta et al., 2011; Varga 

et al., 2010). 

 

Besides OTA and fumonisin producers, a wide range of potential mycotoxin producers have 

been isolated from vineyards and the presence of patulin, citrinin, AFs and Alternaria toxins 
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in must, wine and in dried wine fruits has been described in a recent review by (Somma et 

al., 2012). Authors concluded that, despite these toxins occur in grapes and wine, their low 

frequency does not appear to represent a human risk.  

 

Although 10.7% of the analyzed musts contained OTA, the contamination was always below 

0.1 µg/L. In 2011, OTA was detected in 3 out of 4 samples in the South, the most 

contaminated must containing 0.094 µg/L, with mean concentration for positive samples of 

0.05 µg/L. In this region, that year, the highest A. carbonarius infection (27.8%) occurred, 

together with the higher rate of ochratoxigenic isolates (100%), which explains OTA 

contamination in the resulting musts. 15% of the musts surveyed in Spain in 2001 contained 

OTA in a concentration ranging from 0.091 to 0.813 µg/L, but OTA was never detected in 

musts of the vineyards sampled in Spain in 2002 and 2003 (Bellí et al., 2005a, 2004a). As in 

our case, Battilani et al. (2003) found a high percentage of positive samples (88%) in Italy 

but as in our case, they did not observe significant correlation between the number of 

samples colonized by black aspergilli and the OTA content in berries, although the 

correlation was significant when only samples colonized by OTA producing fungi were 

considered. In the same way, Sage et al. (2002) have pointed to a possible correlation between 

the presence of ochratoxin-producing strains on grapes and the presence of OTA. Although 

OTA risk is linked to the presence of ochratoxigenic fungi, previous studies have isolated 

ochratoxigenic strains while the OTA levels detected in grape and wine samples were low or 

undetectable (Belli et al., 2005; Chiotta et al., 2013). OTA production in berries may be 

different to that on medium (CYA), this could be attributed to the nutrient availability, 

commodity structure as well as environmental conditions. FBs contamination was not 

analyzed in the musts as the levels found in wine are of low concern (between 1 and 25 µg/L) 

(Mogensen et al., 2010b).  

 

The initial pH of musts was between 2.9-3.9 and 3.1-4.1 in 2011 and 2012, respectively, 

probably due to the prominent temperatures registered in 2012 (Figure. 2). The pH of OTA 

contaminated musts was never lower than 3.5, but no correlation between the presence of 

Aspergillus section Nigri and pH of the musts was found. Several authors pointed to pH 4 as 

the most suitable pH for A. carbonarius growth and a decrease of OTA production in medium 

with low pH (2-2.5) (Esteban et al., 2005; Lasram et al., 2012a; Spadaro et al., 2010b) 

Conversely, Kapetanakou et al., (2009) did not find any specific effect of OTA production 

due to the medium pH (3.9-6.8). 



Study II 

157 
 

3.4. Relation between meteorological data and Aspergillus section Nigri 

infection 

 

In the Northeast, high temperatures were registered, especially during August, but never 

higher than 37 ºC. (Valero et al., 2005) reported growth of Aspergillus section Nigri up to 30-

40 ºC, therefore these temperatures were suitable for colonization. The Southern region was 

hotter and drier than Northeast, and in both regions 2012 was hotter than 2011. In 

Northeast, the great storm which occurred in 2012 damaged the grapes favoring fungal 

infection; in fact, in this year the black aspergilli incidence was twice higher than the previous 

year (Table 5). Similarly, in Australia overall infection levels in 1998 were poor, but rain prior 

to harvest in 1999 and 2000 caused significant berry splitting, which allowed invasion of 

black aspergilli (Leong et al., 2004).  

 

On the other hand, temperature and rainfall values recorded in August were used to calculate 

the thermo-wetness values proposed by Battilani et al., (2006). In this month, degree day (ºC) 

was 765.7 and 783.8 in the Northeast and 844.8 and 866.9 in the South, in 2011 and 2012, 

respectively. Rain accumulation (mm) was 0.5 in 2011 and 36.3 in 2012 in the Northeast, and 

no rainfall was recorder in the South (Figure. 2). From these values, high risk of black 

aspergilli where predicted according to Battilani’s approach in both regions. Moreover, 

irrigation was applied in the Northeast and not in the South, thus Southern vines would be 

facing much drought conditions, resulting in a higher infection by black aspergilli. Positive 

correlation between temperature and black aspergilli incidence on grapes was confirmed in 

many studies (Bellí et al., 2005a, 2004a; Leong et al., 2004). However no positive correlation 

between RH and black aspergilli infection was found in other studies (Bellí et al., 2006, 2005). 

Irrigation was applied in the Northeast and not in the South, thus Southern vines would be 

facing much drought conditions, resulting in a higher infection by black aspergilli. In 

particular, the reduction of drought stress by irrigation reduced the AFs contamination in 

maize and drought tolerant maize cultivars results in significantly less AFs contamination in 

the field under drought conditions (Chen et al., 2004).  

 

Optimal and maximum growth temperatures for A. niger were 35–37 °C and 45–47 °C while 

A. carbonarius showed optimum growth between 25–30 °C with an upper limit between 37–

42 °C (Leong et al., 2004). In addition, strains isolated from South Spain belonging to the 

Aspergillus niger aggregate grew at 40 ºC/0.87 aw whereas only one A. carbonarius strain tested 

grew at 0.97 aw at this temperature (García-Cela et al., 2013). In 2012 summer in the South 
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was extremely hot and dry, resulting in lower levels of A. carbonarius compared to other 

biseriates, probably due to the better adaptation to hotter conditions of A. niger and A. 

tubingensis. Similar results were observed in Tunisia, where A. carbonarius was rarely isolated 

from the Regueb vineyards, region characterized by higher temperatures than Raf-Raf, where 

a large number of A. carbonarius was isolated (Lasram et al., 2012b).  

 

Considering published studies in the same Northeast sampling area over the years 2001, 2002 

and 2003 the percentage of infected berries by black aspergilli were 10, 6 and 19%, 

respectively. Therefore, minimal infection of berries took place in the most temperate and 

wetter year, 2002, when August Tmean was 21.3 ºC. Years 2001, 2003 and 2011 with similar 

Tmean in the month of August (24.5-25.5 ºC) resulted in a 10-20% of infected berries.  

 

In conclusion, the coexistence of fungal species in vineyards, the intimate nature of 

competition among them and the combination of environmental conditions could affect the 

balance of species infecting grapes. Nevertheless, an increase in the presence of A. section 

Nigri may not imply greater presence of OTA in musts since this is primarily related to the 

presence of A. carbonarius. Climate change scenarios point to an increase of temperature and 

drought; while in not extreme climate conditions (like Northeast area in our study) this could 

lead to increasing black aspergilli populations, including A. carbonarius, under extreme 

conditions (like in the South in our study) this could promote the prevalence of particularly 

adapted species such as A. niger, decreasing OTA risk. FB2 production by A. niger might 

represent an additional risk in hotter areas. As the presence of FBs in grapes has been only 

recently reported, ecophysiological profile of FBs production by A. niger is unknown, and 

therefore it is not possible to relate it to environmental factors. Future researches should be 

conducted to determine not only the distribution of FBs producing black aspergilli, but also 

to determine the environmental conditions that could stimulate production. 
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ABSTRACT 

 

The aim of this study was to evaluate the diversity of black aspergilli isolated from berries 

from different agroclimatic regions of Spain. Growth characterization (in terms of 

temperature and water activity requirements) of A. carbonarius, A. tubingensis and A. niger was 

carried out on synthetic grape medium. A. tubingensis and A. niger showed higher maximum 

temperatures for growth (>45 ºC versus 40-42 ºC), and lower minimum aW requeriments 

(0.83 aW versus 0.87 aW) than A. carbonarius. No differences in growth boundaries due to their 

geographical origin were found within Aspergillus niger aggregate isolates. Conversely, A. 

carbonarius isolates from the hotter and drier region grew and produced OTA at lower aW than 

other isolates. However, little genetic diversity in A. carbonarius was observed for the 

microsatellites tested and the same sequence of β-tubulin gene was observed; therefore 

intraspecific variability did not correlate with the geographycal origin or the isolates neither 

with they ability to produce OTA. Climatic change prediction appoints to drier and hotter 

climatic scenarios where A. tubingensis and A. niger could be even more prevalent over A. 

carbonarius, since they are better adapted to extreme high temperature and drier conditions. 
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1. INTRODUCTION 
 

Fungi classified within Aspergillus section Nigri (the black aspergilli) are ubiquitous 

saprophytes present in soils around the world, particularly in tropical and subtropical regions 

(Pitt and Hocking, 1997). Several field surveys have been published dealing with 

epidemiology, ecology and distribution of black aspergilli occurring on grapes worldwide 

(Bellí et al., 2004b, 2004c; Khoury et al., 2008; Lasram et al., 2012b; Leong et al., 2004; 

Magnoli et al., 2003; Rosa et al., 2002; Sage et al., 2002; Serra et al., 2005). These studies have 

clarified that the main ochratoxigenic black Aspergillus species occurring on grapes are the 

biseriate Aspergillus carbonarius and the so-called Aspergillus niger aggregate. In general, the 

reported percentages of ochratoxin A (OTA) producing strains in A. carbonarius are higher 

than those reported for members of the Aspergillus niger aggregate (Battilani et al., 2006; Bau et 

al., 2005; Guzev et al., 2006; Medina et al., 2005). By contrast, there is a higher incidence of 

species belonging to the Aspergillus niger aggregate, mainly A. niger and A. tubingensis, although 

other species have also been reported (Perrone et al., 2008, 2007b). In general, A. niger 

aggregate species predominate, followed by A. carbonarius and uniseriate species (Battilani et 

al., 2006). Species distribution resulting from several publications in 2006-2012 are: A. 

tubingensis (15.2-95.7%), A. niger (4.3-84.4%), and A. carbonarius (7.6-46.9%). Several studies 

have described separately the different species in the Aspergillus niger aggregate found in grapes, 

however, no general pattern can be derived from the existing reports (Table 1). A recent 

study has settled that A. tubingensis is the main species belonging to Aspergillus niger aggregate 

followed by A. awamori, and A. niger in dried vine fruits (Susca et al., 2013).  

 

There is a controversy regarding the percentage of OTA producing strains within A. 

carbonarius isolated from grapes, Somma et al. (2012) concluded that close to 100% were OTA 

producers, based in literature published before 2006. Nonetheless, studies based on A. 

carbonarius identified by molecular techniques showed percentages under a 50% of producers 

(Martínez-Culebras and Ramón, 2007; Spadaro et al., 2012). Recently, an interesting study 

using morphology and genotypic methods have showed the existence of non ochratoxigenic 

A. carbonarius (Cabañes et al., 2013). In any case, all studies suggest that A. carbonarius is the 

main responsible for the OTA presence in wine since A. carbonarius showed higher OTA 

mean production than other species and a higher percentage of OTA producing strains 

compared to A. tubingensis (4.2 to 64.3%) and A. niger (3.1 to 40.6%) (Table1). Although 

Aspergillus niger aggregate may represent lower OTA risk in grapes than A. carbonarius, recent 

reports have confirmed the ability to produce FB2 and FB4 by A. niger and A. awamori strains 
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isolated from grape (Chiotta et al., 2011; Logrieco et al., 2009; Mogensen et al., 2010a; Varga 

et al., 2010). The impact of some environmental factors on growth and OTA production of 

Aspergillus niger aggregate strains from grape have been published (Bellí et al., 2004b, 2004b; 

Esteban et al., 2006, 2004; Selouane et al., 2009). However, few works have focused on A. 

niger and none in A. tubingensis. Therefore, it is important to know how the different 

environmental factors affect the presence and ability to compete of these species.  

 

On the other hand, OTA contamination in wines from Europe is generally higher than 

contamination in wines from other wine-growing areas around the world as Chile or South 

Africa (Italian Health Superior Institute, 2002, Shephard et al., 2003; Vega et al., 2012). 

Additionally, a gradual increase of OTA contamination has been observed in Europe from 

North to South, with southern Europe presenting higher concentration of the toxin in its 

wines (Brera et al., 2008; Otteneder and Majerus, 2000). These results are in agreement with 

those published by the Italian Health Superior Institute (2002), which stated that the 

incidence and OTA levels are higher in Southern countries (72.3% and 0.64 μg/kg 

respectively) compared to those in Northern regions (50.3% and 0.18 μg/kg respectively). 

This could indicate that meteorological conditions can contribute to explain spatial 

distribution of black aspergilli (Battilani et al., 2006). In this sense, Blesa et al. (2006) 

considered that OTA contamination in grape, and consequently in wine, varies depending 

directly on the climatic conditions and indirectly on the latitude and the year of production.  

Recently, several studies have showed that the effect of specific geographic location and 

climate of the vineyards on the occurrence of ochratoxigenic moulds and OTA 

contamination of grape was significant (Lasram et al., 2012b; Serra et al., 2006b). This 

difference may also be attributed to a possible genetic diversity among strains from different 

regions. The genetic variability and the phylogenetic characterization of Aspergillus section 

Nigri isolated from vineyards have been assessed by using DNA fingerprints generated by 

PCR (Abed, 2008; Bau et al., 2006; Chiotta et al., 2011; Esteban et al., 2008, 2006; Martínez-

Culebras and Ramón, 2007; Martínez-Culebras et al., 2009; Oliveri et al., 2008; Perrone et al., 

2006b; Spadaro et al., 2012; Susca et al., 2013). Different molecular marker techniques such 

as restriction fragment length polymorphisms (RFLPs), randomly amplified polymorphic 

DNA (RAPDs), amplified fragment length polymorphisms (AFLPs), minisatellites or 

variable number tandem repeats (VNTRs) and microsatellites or simple sequence repeats 

(SSRs) were used in the aforementioned studies. However, most 
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Table 1 Distribution and OTA production capacity of A. carbonarius, A. tubingensis and A. niger isolates from berries. 

 

Origin Year 

 

Total 
isolates 

identified 

Species distribution 

 A. carbonarius A. niger A. tubingensis 

 
% 

isolates 

%  Range 
OTA 

(µg/g) 

Mean 
OTA 

(µg/g) 

% 
isolates 

%  Range 
OTA 

(µg/g) 

Mean 
OTA 

(µg/g) 

% 
isolates 

%  Range 
OTA 

(µg/g) 

Mean 
OTA 

(µg/g) 
  OTA 

producers 
OTA 

producers 
OTA 

producers 

Italy1 
2000-01 AFLP 58 39.7 95.6 0.01-7.5 0.6 25.9 20 

0.250-
0.360 0.307 34.4  25 

0.002-
0.13 0.033 

France2 2001-02 RFLP 23     4.3 0   95.7  0   

Greece2 2001-02 RFLP 34     52.9 11.8 0.200-1 0.5 47.1  0   

Israel2 2001-02 RFLP 30     10.0 0   90.0  0   

Italy2 2001-02 RFLP 32     59.4 3.1  5.5 40.6  0   

Portugal2 2001-02 RFLP 32     84.4 40.6 0.200-10.5 4 15.6  0   

Spain2 2001-02 RFLP 22     27.3 9.1 0.100-10.5 0.5 72.7  0   

Spain3 2001 RFLP 92     47.8 6   52.2  0   

Spain4 2004 RFLP 209 21.5 44.4   15.8 0   62.6 4,2   

Tunisia5 07/06/2005 RFLP 21     38.1    61.9     

Italy6 
2006 RFLP 172 18.6 34.4 0.3-3.0  65.1 0   16.3 21.4 

0.050-
0.08  

 2007 RFLP 160 46.9 46.7   25.6 0   27.5 11.4   

Argentine7 
2008-09 AFLP 192 7.6 100 

0.002-
0.515 0.168 77.2 4.2 

0.002-
0.295 0.1 15.2  64.3  

0.002-
0.034 0.017 

Data were obtained from the following references: (1) Perrone et al., 2006, (2) Bau et al., 2006, (3) Accensi et al., 2001, (4) Martinez-Culebras and Ramón, 2007,  

(5) Lasram et al., 2012b, (6) Spadaro et al., 2012, (7) Chiotta et al., 2011. 

Ochratoxin A was determined in Czapek (1), YES (2, 3, 4 and 6) and CYA (5 and 7). 
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of them focused on genetic identification of black aspergilli species. In this sense, RFLPs, 

AFLPs, minisatelilles and microsatellites have shown to be efficient to distinguish among 

main black aspergilli species (Esteban et al., 2008; Martínez-Culebras and Ramón, 2007; 

Martínez-Culebras et al., 2009; Perrone et al., 2006b). In addition, multilocus sequence typing 

(MLST) based on four loci of nuclear DNA markers (calmodulin, β-tubulin, elongation 

factor 1-α and second largest subunit of RNA polymerase II) have been recently reported as 

practical tools for typing Aspergillus section Nigri (Susca et al., 2013). In this study, 62 

haplotypes (H) from 18 species were identified when 230 isolates of black aspergilli isolated 

from five different countries were sequenced by MLST. 105 A. carbonarius from Italy 

evaluated by AFLP showed high genetic similarity (Perrone et al., 2006a); nevertheless, using 

the same methodology, strains from Southern Europe were clustered in nine subgroups 

which seemed to be correlated to their geographical origin (Perrone et al., 2006b). 

 

In this study, an ecophysiological characterization (in terms of temperature and water activity 

requirements) of A. tubingensis, A. niger and A. carbonarius isolated from berries from 

Northeast and Southern Spain was carried out. Moreover, the genetic diversity of A. 

carbonarius was studied with four SSRs markers. In addition, partial sequences of the β-tubulin 

gene of A. carbonarius isolates from both regions were compared. 

 

 

2. MATERIALS AND METHODS  
 

2.1. Fungal isolates, origin and molecular identification  

 

Isolates from two different Spanish wine-growing regions were used in this study (Table 2). 

The vineyards were located in Lleida and Sevilla, which are located in the Northeast and 

South of Spain, respectively. The climate in the vineyards sampled in the Northeast is defined 

as cold steppe (BSk) while in the South it is temperate with dry or hot summer (Csa) 

according to Köppen Climate Classification of the Iberian Peninsula Climate Atlas (Iberian 

Climate Atlas).  

 

Black aspergilli isolates used were always from berries. The identification of isolates from 

Northeast and South was done by molecular characterization. Specific PCR assays were 

carried out using primers AcKS10R (5’-CCCTGATCCTCGTATGATAGCG-3’) and  
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Table 2 Aspergillus section Nigri strains included in this study. 

Strain Isolates Origin OTA production Reference 

70-UdLTA a A. carbonarius Northeast + Present study 

93-UdLTA a A. carbonarius Northeast - Present study 

98-UdLTA a A. carbonarius Northeast + Present study 

100-UdLTA a A. carbonarius Northeast - Present study 

103-UdLTA a A. carbonarius Northeast - Present study 

104-UdLTA a A. carbonarius Northeast + Present study 

113-UdLTA a A. carbonarius Northeast - Present study 

114-UdLTA a A. carbonarius Northeast + Present study 

118-UdLTA a A. carbonarius Northeast + Present study 

148-UdLTA a A. carbonarius Northeast + Present study 

207-UdLTA a A. carbonarius Northeast + Present study 

287-UdLTA a A. carbonarius Northeast + Present study 

318-UdLTA a A. carbonarius Northeast + Present study 

339-UdLTA a A. carbonarius Northeast + Present study 

343-UdLTA a A. carbonarius Northeast + Present study 

36br4 b A. carbonarius Northeast - Belli et al., 2004a 

93cr4b A. carbonarius Northeast - Belli et al., 2004a 

W120 b A. carbonarius Northeast + Belli et al.; 2005 

W128 b A. carbonarius Northeast + Belli et al., 2005 

23N b A. carbonarius Northeast + Marn et al., 2006 

234N b A. carbonarius Northeast + Marín et al., 2006 

A-941 b A. carbonarius Northeast + Esteban et al., 2006 

253-UdLTA ab A. carbonarius South + Present study 

262-UdLTA ab A. carbonarius South + Present study 

265-UdLTA ab A. carbonarius South + Present study 

272-UdLTA ab A. carbonarius South + Present study 

273-UdLTA b A. carbonarius South + Present study 

275-UdLTA a A. carbonarius South + Present study 

282-UdLTA ab A. carbonarius South + Present study 

288-UdLTA ab A. carbonarius South + Present study 

300-UdLTA a A. carbonarius South + Present study 

304-UdLTA a A. carbonarius South + Present study 

309-UdLTA a A. carbonarius South + Present study 

311-UdLTA ab A. carbonarius South + Present study 

3.122-UdLTA b A. carbonarius South + Valero et al., 2005,06,07,08 
a Strains used in the study of genetic diversity.  
b Strains used in the ecophysiological study.  



Study III 

171 
 

Table 2 (Continued). 

Strain Isolates Origin OTA production Reference 

73-UdLTA b A. tubingensis Northeast + Present study 

74-UdLTA b A. tubingensis Northeast - Present study 

79-UdLTA b A. tubingensis Northeast - Present study 

108-UdLTA b A. tubingensis Northeast - Present study 

338-UdLTA b A. tubingensis Northeast - Present study 

252-UdLTA b A. tubingensis South - Present study 

274-UdLTA b A. tubingensis South - Present study 

276-UdLTA b A. tubingensis South - Present study 

296-UdLTA b A. tubingensis South - Present study 

298-UdLTA b A. tubingensis South - Present study 

84-UdLTA b A. niger Northeast + Present study 

162-UdLTA b A. niger Northeast + Present study 

190-UdLTA b A. niger Northeast - Present study 

204-UdLTA b A. niger Northeast - Present study 

321-UdLTA b A. niger Northeast - Present study 

193-UdLTA b A. niger South - Present study 

202-UdLTA b A. niger South - Present study 

203-UdLTA b A. niger South - Present study 

218-UdLTA b A. niger South - Present study 

302-UdLTA b A. niger South + Present study 

 

 

AcKS10L (5’-CCGGCCTTAGATTTCTCTCACC-3’) for A. carbonarius (Selma et al., 2008), 

NIG1 (5’-GATTTCGACAGCATTT(CT/TC)CAGAA-3’) and NIG2 (5’-

AAAGTCAATCACAATCCAGCCC-3’) for A. niger and TUB1 (5’-

TCGACAGCTATTTCCCCCTT-3’) and TUB2 (5’-TAGCATGTCATATCACGGGCAT-

3’) for A. tubingensis (Perrone et al., 2007b; Susca et al., 2007). A recent publication by Perrone 

et al. (2011) has emphasized that A. niger contains the cryptic phylogenetic species A. awamori; 

based on this and the fact that the primer NIG1-NIG2 has not been tested before in A. 

awamori, our A.niger isolates could be misidentified A. awomari isolates.  

 

Morover, the ability of the isolates to produce OTA on CYA was confirmed following the 

method by Bragulat et al. (2001) with some modifications. In brief, three agar plugs (5 mm) 

were removed from the middle to the outer side of the colony and placed in a vial. 

Mycotoxins were extracted by adding 1 mL of methanol into the vials, which were shaken 
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for 5 s and allowed to rest. After 60 min, the vials were shaken again and the extracts filtered 

(OlimPeak filters by Teknokroma PVDF Filter, 0.45 μm, 13 mm D, Sant Cugat del Vallés, 

Barcelona, Spain) into another vial. Subsequently, the extracts was evaporated under a stream 

of nitrogen and stored at 4 ºC until HPLC analysis (Waters, Mildford, Ma, S.A.). Prior to 

HPLC injection, dried extracts were dissolved in 1 mL of methanol: water (50:50). A HPLC 

system (Waters 2695, separations module, Waters, Milford, USA) equipped with a 

fluorescence detector Waters 2475 module (Waters, Milford, USA) (λexc 330 nm; λem 460 

nm), precolumn Waters Spherisorb 5 µm, ODS2, 4.6x10 mm and a C18 silica gel column 

(Waters Spherisorb 5 μm, ODS2, 4.6 x250 mm, Millford, MA, USA) kept at 40 ºC were used. 

Mobile phase (acetonitrile:water:acetic acid, 57:41:2) was pumped at 1 mL/min under 

isocratic conditions. Quantification was always achieved with a software integrator 

(Empower, Milford, MA, USA). Mycotoxins were quantified on the basis of the HPLC 

fluorimetric response compared with a range of mycotoxin standards. OTA retention time 

was 7 min and the detection limit was 0.01 ng OTA/g of SNM, based on a signal-to-noise 

ratio of 3:1.  

 

2.2. Ecophysiological study 

 

2.2.1. Data generation 

 

Evaluation of the behaviour of A. carbonarius isolates from Northeast Spain was made by 

using previously published growth and OTA production data of A. carbonarius isolated from 

grapes of this region (Bellí et al., 2004b; Esteban et al., 2006; Marín et al., 2006; Valero et al., 

2008, 2007b, 2006, 2005). However, not enough published data existed from South Spain, 

thus data were generated for eight A. carbonarius isolates from Southern Spain (Table 3). 

Additionally, as data on A. tubingensis and A. niger are scarce, newly generated data for both 

species (five strains isolated per region and species) were used. Tested conditions are shown 

in Table 3.  

 

For generation of new data, the culture medium used was a synthetic nutrient medium (SNM) 

similar to grape composition between veraison and ripeness (Delfini, 1982). Water activity 

of the medium was modified to the required values by the addition of glycerol (g glycerol/L 

=629.72+1813.44 aW–2426.08 aW
2), as made before in the published results on A. carbonarius. 

The medium was autoclaved and poured into sterile petri dishes of 5 cm of diameter. Water 
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activity of each medium was checked with an AquaLab Series 3 (Decagon Devices, Inc., WA, 

USA) with an accuracy ±0.003. 

 

Table 3 Black aspergilli and tested conditions used in probabilistic models. 

Strain Origin Isolates 

Tested conditions 

R 
aW T (ºC) 

t 
(days) 

A. carbonarius 
  

Northeast 
Spain 

36br4 (1) 
0.90, 0.93, 0.95, 

0.98, 0.995 
10, 20, 30, 

37 
60 

Bellí et 
al. 

(2004) W120, 93cr4 
(2) 

0.90, 0.93, 0.95, 
0.98, 0.995 

25 

W120, W128 
(2) 

0.90, 0.93, 0.95, 
0.99 

15, 20, 30, 
35, 37 

30 
Bellí et 

al. 
(2005) 

23N, 234N (2) 0.96 
7, 15, 20, 
25, 30, 35 

10 
Marín et 

al., 
(2006) 

A-941(1) 
0.86, 0.88, 0.90, 
0.94, 0.98, 0.99 

15, 30 30 
Esteban 

et al. 
(2006) 

South 
Spain 

3.122-UdLTA 
(1) 

0.87, 0.92, 0.97 20, 30, 40 18 
Valero 
et al. 

(2005) 

3.122-UdLTA 
(1) 

0.92, 0.97 20, 30 18 
Valero 
et al. 

(2006) 

3.122-UdLTA 
(1) 

0.87, 0.92, 0.97 20, 30, 40 18 
Valero 
et al. 

(2007) 

3.122-UdLTA 
(1) 

0.97 25 21 
Valero 
et al. 

(2008) 

253, 262, 265, 
272, 273, 282, 

288, 311-
UdLTA (8) 

0.84, 0.86, 0.88, 
0.90, 0.92, 0.98 

10, 15, 20, 
25, 30, 37, 

40 
65 

Present 
study 

A. tubingensis 
  

Northeast 
Spain 

73, 74, 79, 108, 
338-UdLTA 

(5) 

0.84, 0.86, 0.88, 
0.90, 0.92, 0.98, 

0.99 

10, 15, 20, 
25, 30, 37, 
40, 42, 44 

65 
Present 
study 

South 
Spain 

252, 274, 276, 
296, 298-

UdLTA (5) 

0.84, 0.86, 0.88, 
0.90, 0.92, 0.98, 

0.99 

10, 15, 20, 
25, 30, 37, 
40, 42, 44 

65 
Present 
study 

A. niger 
  

Northeast 
Spain 

84, 162, 190, 
204, 321-

UdLTA (5) 

0.82, 0.84, 0.87, 
0.90, 0.92, 0.98  

10, 15, 20, 
25, 30, 37, 
40, 42, 44 

65 
Present 
study 

South 
Spain 

193, 202, 203, 
218, 302-

UdLTA(5) 

0.82, 0.84, 0.87, 
0.90, 0.92, 0.98  

10, 15, 20, 
25, 30, 37, 
40, 42, 44 

65 
Present 
study 

Experiments were performed in Synthetic Nutrient Medium, except those from Esteban et al. (2006) in Czapek. 

Total tested strains are shown in brackets. R: reference. 
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The isolates were sub-cultured on SNM plates and incubated at 25 ºC for 7 days to obtain 

heavily sporulating cultures. Following incubation, a sterile inoculation loop was used to 

remove the conidia which were suspended in Tween 80 (0.005%). After homogenizing, the 

suspensions were adjusted using a Thoma counting chamber to a final concentration of 

1×104 spores/mL in Tween 80 (0.005%). Finally, 5 μL of the suspensions were centrally 

inoculated in SNM Petri dishes. Petri dishes with the same aW were enclosed in sealed 

containers along with beakers containing water glycerol solution of the same aW as the plates 

and incubated as detailed in Table 3. 

 

The beakers were renewed periodically in order to maintain constant aW (Dallyn, 1978). For 

each condition 5 replicates per isolate were carried out.  

 

Plates were kept for a maximum of 65 days; within this period plates were regularly checked 

for growth occurrence. OTA production by A. carbonarius under all incubation conditions 

was determined once colony diameter reached 40 mm or on day 65 in the case of smaller 

diameter colonies. OTA production was not assayed for A. tubingensis and A. niger strains as 

they were mostly non-producers. OTA production was tested following the protocol detailed 

in section 2.1.  

 

2.2.2. Modelling data 

 

In order to present the pattern of behaviour for each species and origin, all strains within a 

species from each location were pooled and logistic regression was used to calculate the 

probabilities of growth as a function of temperature and water activity. For this purpose, 

both growth and OTA production data were converted into probabilities of growth by 

assigning the value of 1 in the case where visible fungal growth was evident (or OTA 

detected), and 0 in the case of absence of growth (or undetectable OTA) during the overall 

period of the experiment. The resulting data were fitted to a logistic regression model as 

described previously (Garcia et al., 2011):  

 

𝑙𝑜𝑔𝑖𝑡 (𝑝) = 𝐼𝑛 [
𝑝

1 − 𝑝
] = 𝑏0 + 𝑏1𝑎𝑊 + 𝑏2𝑇 + 𝑏11𝑎𝑊

2 + 𝑏22𝑇2 + 𝑏12𝑎𝑊𝑇 

 

Where p is the probability of growth (or toxin production), T is temperature in ºC, and bi 

are the coefficients to be estimated. The equation was fitted by using Statgraphics® Plus 
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version 5.1 (Manugistics, Inc, Maryland, USA) linear logistic regression procedure. The 

automatic variable selection option with a backward stepwise factor selection method was 

used to choose the significant effects (p< 0.05). The predicted growth/no growth interfaces 

for p=0.1, 0.5, and 0.9 by the three species, and predicted OTA production/no OTA 

production boundary for p=0.1, 0.5, and 0.9 by A. carbonarius was calculated using 

Microsoft Excel Solver. 

 

2.3. Genetic diversity study within A. carbonarius isolates 

 

2.3.1. DNA extraction 

 

Cultures were grown for 2 days at 27 ºC on 500 µL of Czapek’s yeast medium. Mycelium 

was recovered after 10 min of centrifugation at 17500 x g and 300 µL of extraction buffer 

(200 mM Tris-HCl, pH 8.5, 250 mM NaCl, 25 mM EDTA, 0.5% SDS) was added. The 

mycelium suspension was vortexed with five 2.8 mm stainless steel beads (Precellys, Bertin 

Technologies) during 10 minutes. After centrifugation at 17500 × g for 10 min, 150 μL of 3 

M sodium acetate (pH 5.2) were added to the supernatant. The supernatant was incubated at 

-20 ºC for 10 more minutes and centrifuged (17500 x g, 10 min). The DNA-containing 

supernatant was transferred to a new tube and nucleic acids were precipitated by adding 1 

volume of isopropyl alcohol. After 5 minutes of incubation at room temperature the DNA 

suspension was centrifuged (17500 x g, 10 min). The DNA pellet was washed with 70% 

ethanol to remove residual salts. Finally, the pellet was air-dried and the DNA was 

resuspended in 50 µL of TE buffer (10 mM Tris-HCl pH 8, 1 mM EDTA).  

 

2.3.2. Ap-PCR amplification and analysis 

 

To study the genetic diversity of 15 A. carbonarius isolates from  Northeast and 11 from 

South, the following primers derived from 4 SSRs (ap-PCR), were used: 

GACGACGACGACGAC (GAC)5, GACAGACAGACAGACA (GACA)4, 

AGGAGGAGGAGGAGG (AGG)5 and AGGTCGCGGGTTCGAATCC (T3B) (Bahkali 

et al., 2012; Martínez-Culebras et al., 2009). DNA amplification was performed in a total 

volume of 25 µL containing 25 ng of DNA, 50 mM KCl, 10 mM Tris–HCl, 200 μM (each) 

dNTP, 0.6 μM of primer, 2.5 mM MgCl2 and 1 U of DNA polymerase (DFS-Taq DNA 

polymerase, BIORON, Germany). The reaction mixture was incubated in a thermalcycler 

(Applied Biosystem GeneAmp 2700) starting with 3 min of denaturation at 95 °C followed 
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by 40 cycles consisting of 30 s at 95 ºC, 60 s at 60 ºC for (GAC)5, 52 ºC for (AGG)5 or 48 

ºC for (GACA)4 and T3B, and 2 min at 72 ºC. The ap-PCR products were separated on 

1.5% agarose gels with TAE buffer. After electrophoresis, gels were stained with ethidium 

bromide (0.5 mg/ml), and the DNA bands visualized under UV light (Figure. 1). Sizes were 

estimated by comparison with a DNA standard length (100 bp DNA ladder, Invitrogen).  

 

 

Figure 1 DNA fingerprinting profiles amplified from (GAC)5, (AGG)5, (GACA)4 and T3B.  
M is the 100bp DNA ladder. 

 

2.3.3. DNA sequencing 

 

Pairs BT2A/BT2B (Glass and Donaldson, 1995) were used to obtain partial sequences of 

the β-tubulin gene of four A. carbonarius randomly selected from Northeast ones and four 

from South. Amplification reactions were carried out in volumes of 50 μL containing 50 ng 

of DNA, 50 mM KCl, 10 mM Tris–HCl, 250 μM (each) dNTP, 1 μM of each primer, 2 mM 

MgCl2 and 0.5 U of DFS-Taq DNA Polymerase (BIORON, Germany). PCR assays were 

conducted in a GeneAmp® PCR System 2700 (Applied Biosystems, USA) under the 

following conditions: initial denaturation at 95 °C for 5 min, followed by 35 cycles of 

denaturation at 95 °C for 30 s, annealing at 60 ºC (BT2A/BT2B), and extension at 72 °C for 

60 s with a final extension of 10 min. PCR products were cleaned with the UltraClean PCR 

Clean-up DNA Purification kit (MoBio, USA). The PCR purified products were sequenced 

by the company Macrogen Europe (Amsterdam, The Netherlands). Finally, sequences were 

compared using the MEGA 5 software package (Sohpal et al., 2010). 
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3. RESULTS 
 

3.1. Ecophysiological study 

 

3.1.1. A. carbonarius 

 

Growth response of A. carbonarius isolates from South Spain for each of the 5 fold repeated 

experiments were always similar. Although some strains grew earlier, at the end, all of them 

were able to grow under the same conditions (data no shown). Similarly, data of A. carbonarius 

isolates from Northeast Spain used from published results, showed little intraspecific 

variability in their response to temperature and aW conditions (Bellí et al., 2004a).  

 

A full second-order logistic regression model including all the linear, quadratic and 

interaction terms was generated for both fungal growth and OTA production (Table 4). 

Backward stepwise selection did not eliminate any of the linear or quadratic terms of the 

logistic model for growth, as all of them were statistically significant (p<0.05), thus the 

models consisted of 6 terms. Conversely, backward stepwise selection eliminated some linear 

and quadratic terms in the OTA model as some were not statistically significant (p>0.05).  

 

As shown in Figure 2, strains from the South had optimal growth around 30 ºC, about 3 ºC 

higher than those from the Northeast, and also a higher minimum temperature for growth, 

suggesting a better adaptation to warmer temperatures, although maximum temperatures 

were similar. In addition, A. carbonarius isolates from Northeast grew at 10 ºC over 0.95 aw, 

while A. carbonarius isolates from South never grew at this temperature. Regarding water 

activity, the strains from the Northeast showed p>0.5 of growth between 23-33 ºC at 0.87 

aW, while those from the South grew between 20-37 ºC, a much wider interval. While 

Northeast strains did not grow at all at 0.85 aW, those from the South reached a p>0.4, 

suggesting a better adaptation to dry conditions of these later strains.  

 

At a given temperature, higher aW was required for OTA production than for growth (Figure 

2). Minimum temperature for OTA production was also higher for Southern strains, while 

optimum temperatures were similar (22-23 ºC). While at 0.89 aW Northeast strains did not 

reach 0.05 probability of OTA production, Southern strains reached 0.7, and they were also 

able to produce OTA at 0.85 aW. Finally, Northeast strains may grow and produce OTA at 

lower temperatures. 
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Table 4. Estimated parameters from logistic regression models and maximum adjusted r2 

for growth and ocrhatoxin A production. 

    Region Northeast South 

Growth 
model 

Intercept 

A. carbonarius -4620.87±3606.93 -3406.56±351.67 

A. tubingensis -1222.16±137.99 -1446.22±181.36 

A. niger -1924.47±414.85 -1913.13±350.73 

aW 

A. carbonarius 9114.18±7485.05 6629.23±729.63 

A. tubingensis 2442.26±274.39 2927.1±373.18 

A. niger 3806.45±840.15 3787.07±709.93 

T 

A. carbonarius 20.95±12.35 20.53±2.52 

A. tubingensis 5.21±0.78 5.24±0.66 

A. niger 10.1±1.97 9.93±1.68 

aW
2 

A. carbonarius -4539.78±3916.74 -3301.91±390.51 

A. tubingensis -1257.81±140.46 -1530.58±198.38 

A. niger -1923.5±434.59 -1916.7±367.06 

T2 

A. carbonarius -13.61±9.23 -0.18±0.02 

A. tubingensis -0.08±0.01 -0.09±0.01 

A. niger -0.1±0.02 -0.1±0.02 

aW*t 

A. carbonarius -0.16±0.09 -11.58±1.98 

A. tubingensis -0.96±0.38  

A. niger -4.63±10.21 -4.36±0.87 

r2 

A. carbonarius 85.27 94.05 

A. tubingensis 77.52 81.85 

A. niger 84.34 83.85 

OTA 
model 

Intercept 

A. carbonarius 

-19.16±7.32 -48.3±5.39 

T -2.04±0.81  

aW
2 4.07±1.09  

T2 -0.04±0.01 -0.09±0.01 

aW*t  4.83±0.55 

r2 58.14 56.05 
 Only significant parameters have been included in the table. Estimated value±standard error. 

 T: temperature 

 

The predicted growth and OTA interface at probabilities of 0.1, 0.5 and 0.9 is shown in 

Figure 3. It is clearly shown that the interface is much wider in the case of OTA production 

than in the case of growth. As data from the different strains were pooled for the analysis, 

this suggests a wider intraspecific variability for OTA production conditions compared to 

that for growth.  
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Figure 2 Effect of temperature and water activity on the predicted probability of growth and OTA production after 65 
days of incubation of Aspergillus carbonarius strains isolated from Northeast (N) and South (S) Spain in synthetic 

nutrient medium (SNM). 
 

 

Figure 3 Fungal growth and ochratoxin A (OTA) production boundaries of Aspergillus carbonarius isolates from Northeast 
(N) and South (S) Spain in synthetic nutrient medium (SNM). Solid line indicates p=0.9; dotted line indicates p=0.5; 

dashed line indicates p=0.1.  
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3.1.2. A. tubingensis  

 

Estimated coefficients and r2 of logistic regression of binary growth data for A. tubingensis are 

shown in Table 4. As observed in Figure 4, strains from Northeast and South showed 

similar optimal, maximum and minimum temperatures for growth. Moreover, similar 

probabilities of growth were reached for a given aW level. One isolate from Northeast grew 

at 10 ºC while none from South did; in addition, one isolate from South grew at 44 ºC, but 

these differences occurred in a single isolate and were not observed in the joint plots. High 

probability of growth at 0.85 aW in the range 20-37 ºC was observed for isolates from both 

regions.  

 

 

 
Figure 4 Effect of temperature and water activity on the predicted probability of growth and OTA production after 65 
days of incubation of Aspergillus tubingensis and Aspergillus niger strains isolated from Northeast (N) and South (S) Spain in 

synthetic nutrient medium (SNM). 

 

 

3.1.3. A. niger  

 

Estimated coefficients and r2 of logistic regression of binary growth data for A.niger are 

shown in table 4. As for A. tubingensis, strains from the two regions showed similar optimal, 

maximum and minimum temperatures for growth (Figure 2). Furthermore, similar 
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probabilities were obtained for a given aW level. Isolates from both regions showed high 

probability of growth at 0.83 aW in the range 25-30 ºC and at 0.85 aW in the range 20-37 ºC, 

while differences among isolates were found at 0.86 aW and 0.88 aW and 42 ºC.  

 

3.1.4. Comparison among species 

 

Interestingly, A. tubingensis and A. niger showed higher maximum temperature for growth 

(>45 ºC versus 40-42 ºC), and lower minimum aW requirements (0.83 aW versus 0.87 aW) than 

A. carbonarius, suggesting that these species may not need a further adaptation to stress 

conditions produced by high temperatures, as regardless of their origin they requirements 

are less strict than those of A. carbonarius strains from the South. A. carbonarius and A. 

tubingensis isolates from Northeast and all A. niger grew at 10 ºC, however A. carbonarius did 

so at lower aw than the others (0.95 aW versus 0.98 aW). It is worthy to mention that A. niger 

showed the widest growth range in terms of temperature and aw requirements of the black 

aspergilli tested (Figure 5). However, differences between A. niger and A. tubingensis were 

found only at extreme temperatures. Therefore strains of the three species isolated from 

Northeast could coexist in a range of 15 to 35 ºC and aW higher than 0.88 aW and higher than 

0.86 aW for the Southern strains. No differences in growth boundaries were observed 

between producer and non-producer isolates (data not shown).  

 

 

 

Figue 5 Growth/no growth boundaries (p=0.5) of black aspergilli isolates from North East (N) and South (S) Spain in 
synthetic nutrient medium. Solid line indicates A. carbonarius; dotted line indicates A. tubingensis; dashed line A. niger. 
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3.2. Genetic diversity study within A. carbonarius isolates  

 

The genetic diversity of 26 A. carbonarius isolates from grapes from two regions of Spain, 

which were previously identified at species level by species specific PCR primers and tested 

for OTA production, was examined by PCR using the primers (GAC)5, (AGG)5, (GACA)4 

and T3B. Low level of polymorphism was observed for the markers tested within the A. 

carbonarius isolates analyzed. A single banding pattern was observed when the DNA was 

amplified with the primers (AGG)5 and (GACA)4 (Figure 1). However, two different banding 

patterns were observed when the DNA was amplified with the primers (GAC)5 and T3B. 

Two different banding patterns were observed in isolates from Northeast and South when 

they were amplified with (AGG)5. In addition, two different banding patterns were observed 

in the isolates from Northeast when they were analyzed with the primer T3B. The β-tubulin 

gene showed exactly the same sequence. No correlation between the amplified sequences 

and geographic origin or capacity of OTA production was found. 

 

4. DISCUSSION  
 

Ecophysiological characterization of A. carbonarius, A. tubingensis and A. niger was carried out 

with probability models in two different regions. Probability models can provide useful 

information and assess fungal responses under boundary conditions of growth and toxin 

production (Tassou et al., 2009). In the present work, probability was not modeled as a 

function of time. Higher probabilities of growth and OTA production by A. carbonarius were 

predicted for 1 month compared to those after 1 week, but the probability data observed 

after 1 month were almost equal to those observed after 3 months (Marín et al., 2008; Tassou 

et al., 2009).  

 

Growth of black aspergilli isolates from grapes of different parts of the world has been 

studied previously (Bellí et al., 2004b; Belli ́ et al., 2005; Esteban et al., 2006, 2004; Lasram et 

al., 2010; Leong et al., 2006; Mitchell et al., 2004; Romero et al., 2007; Selouane et al., 2009). 

Optimal growth conditions reported in those studies were similar for A. carbonarius isolates 

but in the case of Aspergillus niger aggregate isolates results were more divergent. These 

differences may be due not only to the different geographic areas of isolation, but also to the 

differences among the species belonging to the aggregate group. Therefore, growth 

differences observed under optimal conditions may not be relevant. Moreover, few studies 

have focused on suboptimal or extreme conditions.  
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In Spain, the Southern region is hotter than Northeast one, and it is common to exceed 40 

ºC in summer. In this season, the mean temperature difference between regions fluctuates 

from 1 to 4 ºC. In addition, relative humidity is lower in the South and the rainfall is scarce.  

Our results showed differences in A. carbonarius maximum and minimal temperature and aW 

conditions for fungal growth for isolates from Northeast and South Spain. Strains from 

Northeast were better adapted to colder temperatures while strains from South could grow 

under drier conditions. Similarly, when Greek isolates were incubated under a wider range 

of conditions (10-40 ºC and 0.85-0.96 aW) differences in growth probability at 0.85 aW among 

isolates were observed (p = 0.8-1.0) (Tassou et al., 2009). Also isolates from Argentina grew 

at 0.85 aW at 25 and 30 ºC (Romero et al., 2007), whereas the probability of growth at this aW 

by Spanish isolates was lower than 0.5. In relation to growth rate, A. carbonarius isolated from 

Tunisian hot and dry regions grew significantly faster than isolates from wetter regions 

(Lasram et al., 2012b). However, no significant differences were found among A. carbonarius 

isolates from different European regions (Belli ́ et al., 2005). This suggests that under 

conditions suitable for growth, most strains do not show differences in their growth rates, 

while they may differ in their ability to either grow or not under marginal growth conditions. 

 

OTA production by A. carbonarius has been particularly studied since A. carbonarius is the 

most ochratoxigenic black aspergilli (Table 1). Optimum published temperatures for OTA 

production were about 22-23 ºC, and ochratoxigenic isolates can produce OTA in the range 

of 15 ºC to 35 ºC (Esteban et al., 2004; Leong et al., 2006; Mitchell et al., 2004; Selouane et 

al., 2009). Aforementioned works suggested 0.95-0.99 aW as optimal for OTA production. 

Similarly, in our case, production probability at 0.95 aW was over 0.8 in the range of 15-30 

ºC. In addition, OTA accumulation of A. carbonarius isolated from vineyards of Europe was 

favoured by high aW levels, while no OTA was detected at 0.90 aW (Belli ́ et al., 2005). A. 

carbonarius strains from Greece produced OTA at lower aW than ours, even comparing with 

isolates from South (Tassou et al., 2009). Considering p=0.5, A. carbonarius strains from 

Greece were able to produce OTA at 0.88 aW after 25 days while A. carbonarius from Spain 

required 0.93 and 0.89 aW for Northeast and South strains, respectively. OTA production has 

been rarely studied under extreme temperature and humidity conditions. Although low aW 

levels seem to limit OTA production, low temperatures may not. This is very interesting 

since high OTA production has been observed at low temperature and high aW (15 ºC/0.965 

aW) in Australia (Leong et al., 2006). In fact, nocturnal temperatures between 15-20 ºC are 

common during June and July in Spain, leading to a risk of OTA accumulation on grapes. 
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Environmental conditions required for growth of A. tubingensis and A. niger have also been 

considered in this study because species in the Aspergillus niger aggregate are more frequently 

isolated from vine than A. carbonarius (Somma et al., 2012). Published ecophysiological 

studies showed that Aspergillus niger aggregate is more tolerant than A. carbonarius to lower aW 

(Bellí et al., 2004b; Leong et al., 2006; Valero et al., 2007b). In this sense, strains isolated from 

South Spain belonging to the Aspergillus niger aggregate grew at 40 ºC/0.87 aW whereas only one 

of two A. carbonarius strains tested grew at 0.97 aW at this temperature (Valero et al., 2007b). 

To our knowledge, only one work has studied the behaviour of A. niger and A. tubingensis but 

the data of both species were showed combined (Selouane et al., 2009). In our study, A. 

tubingensis and A. niger grew in a wide range of aW and temperature, and minimal aW for both 

species occurred at higher temperatures (25-35 ºC). Furthermore, few differences were found 

due to the geographical origin of the isolates. Nevertheless, A. niger grew at lower 

temperatures than A. tubingensis, and in a narrower aW frame at 44 ºC. In addition, Aspergillus 

niger aggregate species have been shown to grow faster than A. carbonarius at temperatures 

higher than 25 ºC, when they were isolated from Spain and Australia, while no differences 

were found between species isolated from Morocco at this temperature (Bellí et al., 2004a; 

Leong et al., 2006; Selouane et al., 2009; Valero et al., 2005, 2007b). In addition, differences 

in optimal growth conditions were observed for Aspergillus niger aggregate species from 

Morocco which grew faster at 0.95 aW /25 ºC while isolates from Europe and Australia did 

so at 0.98 aW /30-37 ºC (Bellí et al., 2004b; Esteban et al., 2004; Leong et al., 2006; Selouane 

et al., 2009). Although the percentage of OTA producing strains in Aspergillus niger aggregate is 

not clear, optimal conditions for production have been reported to be equal or higher than 

0.95 aW (Bellí et al., 2004b; Esteban et al., 2004; Leong et al., 2006; Selouane et al., 2009). The 

adaptation of the species in the Aspegillus niger aggregate to a wider range of environmental 

conditions and their higher growth rates may determine their prevalence in the vineyards. 

 

Water activity of ripening grapes is 0.95-0.98 aW (Tassou et al., 2009), and temperature in 

Spanish vineyards may range from 17-18 ºC to 33-38 ºC in August. These conditions would 

be suitable for black aspergilli growth and therefore for OTA production. However, hotter 

and drier climate could promote the presence of Aspergillus niger aggregate. Interestingly, 

Aspergillus niger aggregate OTA-positive isolates showed higher colonization percentages than 

A. carbonarius when inoculated in healthy grapes (Valero et al., 2007b). Nevertheless, the 

balance of these species in vineyards is far from being elucidated since interaction between 

black aspergilli and other fungi present on grapes as Alternaria alternata, Cladosporium herbarum 
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and Eurotium amstelodami, showed that growth of A. niger was more inhibited by the interacting 

species than A. carbonarius (Valero et al., 2007b). Interestingly, when dried grapes were co-

inoculated with Aspergillus niger aggregate OTA-negative and A. carbonarius OTA-positive, OTA 

production was reduced (Valero et al., 2007a). 

 

To sum up, different aW and temperature requirements may determine the geographical 

distribution of the species in the black aspergilli section, in terms of better adaptation and 

fungal interaction. Regarding the ecological profiles of black aspergilli, relevant differences 

due to geographic location and climate on the occurrence of ochratoxigenic moulds and 

OTA contamination of grape have been observed in Mediterranean countries (Battilani et 

al., 2006). In general, black aspergilli infection was higher in the hotter regions than in colder 

regions (Lasram et al., 2012a; Serra et al., 2006b). Moreover, A. carbonarius was more 

abundant reaching a 43% of mean infection, in three sampled years, in the most humid region 

studied in Tunisia (60-70% RH) (Lasram et al., 2012b). Similarly, in Spain the percentage of 

A. carbonarius decreased when RH decreased (unpublished data). However, this trend was 

not observed in Portugal (Serra et al., 2006). Unfortunately, few data about A. tubingensis and 

A. niger distribution in vineyards exist and it is therefore difficult to derive the relation with 

environmental conditions. However, several works pointed to A. tubingensis as the most 

prevalent black aspergilli species in vineyards (Chiotta et al., 2011; Susca et al., 2013). 

 

This study is also focused on the evaluation of the genetic diversity of A. carbonarius from 

different origin of Spain. In previous studies, AFLP and RFLP primers have been used 

efficiently to discriminate among A. carbonarius, A. tubingensis, A. niger and A. japonicus (Bau 

et al., 2006, Culebras et al., 2007; Perrone et al., 2006). In addition, SSR markers have also 

discriminated between A. tubingensis and A. niger (Esteban et al., 2008). Similarly, (GAC)5 

and (GACA)4 were effective in discriminating A. carbonarius from other black aspergilli 

species isolated from grapes (Martinez-Culebras et al., 2009). Moreover, T3B and (AGG)5 

amplified two polymorphic bands in Fusarium graminearum and F. culmorum (Bahkali et al., 

2012). In the present study, although differences among the strains were observed in their 

response to aW and temperature depending on their geographical origin, little genetic diversity 

at species level was observed for the microsatellites tested. Additionally, no differences in the 

sequence of the β-tubulin gene were observed. Therefore, intraspecific variability did not 

correlate with the isolate origin or ability of the strain to produce OTA (different A. 

carbonarius strains were used for both studies). Similarly, sequences of rRNA, calmodulin, 
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β-tubulin genes and ITS products obtained using the endonucleases HhaI, HinfI and RsaI in 

Italian strains of A. carbonarius were identical (Perrone et al., 2006a; Spadaro et al., 2012). 

 

These results are in accordance with other studies conducted previously. Dachoupakan et al. 

(2009) found that clustering linked to RAPDs among A. carbonarius strains was not associated 

with the zone and harvest year, grape variety or chemical treatment, while OTA production 

of strains on culture medium seemed to better correlate with morphological characters as 

colour of colony, conidia density, wrinkle colony, reverse colony, umbilical colony, and aerial 

mycelium than with genotypic profiles. Similarly, no correlation was observed between the 

clusters and OTA production level or origin when black aspergilli clusters were analysed with 

AFLP (Oliveri et al., 2008). In addition, geographic differences in the haplotypes within the 

species were not detected when isolates from five countries (Chile, Iran, USA, China, South 

Africa) were included in the MLST analysis (Susca et al., 2013).  

 

Nowadays, A. carbonarius is the main mycotoxigenic fungus found in vineyards, in terms of 

OTA positive strains and mycotoxin production levels, especially in the Mediterranean basin. 

Studies point to A. tubingensis as the most frequent black aspergilli species isolated in 

vineyards. Thus, fungal competition may mainly involve A. tubingensis and A. carbonarius. 

Climatic change prediction appoint to drier and hotter climatic scenarios where A. tubingensis 

could be even more prevalent over A. carbonarius since it is better adapted to extreme hot 

temperature and drier conditions. Such situation might result in a decrease in the OTA levels 

encountered in wine in the long term. 
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ABSTRACT 

 

The impact of climate change has been identified as an emerging issue for food and feed 

safety. Moreover, the United Nations Environment Programme has noted the lack of 

information regarding the enhanced effect of UV-B on fungi and bacteria. In this study the 

effect of ultraviolet radiation (UV) on conidia of six mycotoxigenic Aspergillus species (A. 

carbonarius, A. tubingensis, A. flavus, A. parasiticus, A. westerdijkiae and A. ochraceus) was assessed. 

Conidia were incubated for 15 days under light/dark cycles and temperatures between 20 to 

30 ºC per day. Additionally, six hours of exposure to UV-A or UV-B radiation per day were 

included in the light exposure. UV doses used were 1.7 ± 0.2 mW/cm2 of UV-A (peak 365 

nm) and 0.10 ± 0.2 mW/cm2 of UV-B (peak 312 nm), slightly higher than present UV 

sunlight mean values. The intrinsic decrease of viability of conidia along time was accentuated 

when they were UV irradiated. UV-B radiation was more harmful than UV-A. Conidial 

resistance to UV light was more marked in Aspergillus section Nigri, followed by Flavi and 

Circumdati and hence the pigmentation of the conidia could be related to UV sensitivity. 

Interestingly, different resistance was observed within species belonging to sections Flavi and 

Nigri. As conclusion, a possible increase in UV radiation related with climatic change could 

lead to a reduction in the inoculum present in the field and even it could exert a selective 

selection on fungal species.  
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1. INTRODUCTION 
 

Aspergillus can contaminate agricultural products at different stages including pre-harvest, 

harvest, storage, processing and handling. Aspergillus species have been isolated in field 

surveys from several commodities such as corn, rice, wheat, Brazil nuts, peanuts, pistachios, 

figs, grapes, onions, pepper, coffee and cocoa (Baquião et al., 2012; Copetti et al., 2011; Da 

Silveira Campos et al., 2009; Denizel et al., 1976; Freire et al., 2000; Giorni et al., 2007; 

Heperkan et al., 1994; Makun et al., 2011; Özer et al., 2009; Riba et al., 2008; Sweany et al., 

2011; Zorzete et al., 2011). Fungal infection of crops can result in food secondary rots, with 

the possible accumulation of mycotoxins (Perrone et al., 2007). Moreover, climatic 

conditions directly affect the fungal infection and the subsequent mycotoxin contamination 

in foods and raw materials. 

 

Recently, the Intergovernmental Panel on Climate Change (IPCC) has published the last 

report (AR5), in which it was concluded that the climate warming is ‘unequivocal’, and that 

it is likely that anthropomorphic greenhouse gas emissions contribute to current warming 

trends (IPCC, 2013). The impact of climate change has been identified as an emerging issue 

for food and feed safety (Miraglia et al., 2009), and its possible consequences on mycotoxins 

frequency in crops have been theorized by several researches (Magan et al., 2011; Miraglia et 

al., 2009; Paterson and Lima, 2011, 2010; Tirado et al., 2010; Wu et al., 2010). Moreover, the 

World Meteorological Organization (WMO) has also highlighted that human emissions of 

the chlorofluorocarbons (CFCs) and other chemicals have an important role in the 

atmosphere changes by damaging the stratospheric ozone layer that filters out harmful 

ultraviolet radiation (UV) (WMO, 2013). Increased UV-B radiation, interacting with other 

global change factors, may affect many of the important ecosystems, with important 

implications for food security and food quality (UNEP, 2002; WMO, 2010).  

 

Although the information about the effect of UV-B on fungi and bacteria is scarce, studies 

on microfungal communities in soils of extreme habitats, as desert (very high solar radiation, 

drought, and extreme temperatures), suggest the dominance of dark-coloured microfungi 

with large multicelled conidia (Grishkan et al., 2007, 2003). Particularly, species of the genus 

Aspergillus (mainly A. fumigatus) and teleomorphic ascomycetes accounted for the 

thermotolerant mycobiota obtained at a temperature of 37 ºC (Grishkan et al., 2007). The 

main airborne fungal species identified after exposure to solar radiation were predominantly: 
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Aspergillus niger, Alternaria alternate, Cladosporium cladosporoides and Arthrinium phaerosporum 

(Ulevičius et al., 2004). 

 

The impact of UV radiation in fungal spore germination, growth and sporulation depends 

on time exposure, UV wavelength and fungal species (Aylor and Sanogo, 1997; Fourtouni et 

al., 1998; Moody et al., 1999; Nicot et al., 1996; Osman et al., 1988; Rotem, et al., 1985).  

 

The main goal of our investigation was to evaluate the survival and adaptation to UV 

radiation of conidia from six species belonging to Aspergillus Genus. Also the effect of isolate 

origin and pigmentation of conidia on resistance to UV light was assessed.  

 

2. MATERIALS AND METHODS 
 

2.1. Isolates and inoculation 

 

All isolates used in this study were isolated from vineyards located in the Northeast and 

South Spain during the 2011 and 2012 vintages (Table 1).  

 

Table 1 Aspergillus Spanish isolates included in this study. 

Reference Section  Specie Isolated from Year 

AC14-UdLTA Circumdati A. westerdjikiae South 2012 

AC18-UdLTA Circumdati A. westerdjikiae South 2012 

AC7-UdLTA Circumdati A. ochraceus Northeast 2012 

AC16-UdLTA Circumdati A. ochraceus South 2012 

AF51-UdLTA Flavi A. flavus South 2012 

AF34-UdLTA Flavi A. flavus Northeast 2012 

AF41-UdLTA Flavi A. parasiticus Northeast 2012 

AF16-UdLTA Flavi A. parasiticus Northeast 2012 

311-UdLTA Nigri A. carbonarius South 2011 

287-UdLTA Nigri A. carbonarius Northeast 2011 

276-UdLTA Nigri A. tubingensis South 2011 

68-UdLTA Nigri A. tubingensis Northeast 2011 

 

Isolates were grown in different culture media: those from section Nigri in synthetic nutrient 

medium of grape, section Flavi in pistachio based medium, and section Circumdati in wheat 

based medium, for seven days at 25 ºC in the dark to enable significant sporulation. After 

this, spores were removed from Petri dishes and suspended in 80 mL of sterile water 

containing 0.05% (w/v) Tween-80® to reach a final concentration of 105 conidia/mL. 
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Aliquots (5 mL) of conidial suspensions were filtered under vacuum onto individual sterile 

filter membranes (pore size 0.45 μm, 25 mm diameter, cellulose acetate filter) (Sartorius 

Biolab Products Göttingen Germany). A total of twelve membranes for each isolate were 

used (3 replicated x 2 membranes per replicate x 2 irradiated/control). Membranes were 

enclosed in pairs in 5 cm diameter plastic Petri dishes and dried at 37 °C in microbiology 

incubators overnight (Leong et al., 2006). Spores deposited onto filter membranes were 

exposed to radiation and temperature cycles for 15 days as described latter. 

 

2.2. Incubating conditions  

 

Photoperiod and temperatures were chosen concurring with grape ripening in Spain 

(August). Photoperiod values were obtained from the National Spanish Geographic Institute 

(IGN), while temperatures were obtained from the State Meteorology Agency (AEMET). 

With the aim to simulate dawn and dusk and the consequent gradient of temperature between 

night and day, the incubators were set up in a temperature gradient mode based on 

temperature increasing period (dawn) and a temperature decreasing period (dusk) linked by 

two constant periods simulating day and night temperatures (Figure. 1).  

 

Figure. 1 Daily incubation conditions of Aspergillus conidia on filter membranes for 15 days. UV-A irradiation: 1.7±0.2 
mW/cm2; UV-B irradiation: 0.1±0.2 mW/cm2.  

 

UV irradiated and non-irradiated Petri dishes were incubated in parallel under the same 

conditions in two cooled incubators (Memmert ICP-600, United Kingdom). Daylight was 

simulated with four cold white fluorescent lights (standard illuminant D65, 6,500 K) located 

in the incubators. UV irradiation was generated with a Vilber Lourmat lamp VL-215.LM 
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(Germany). The lamp includes two fluorescent tubes of 15 W each one and a filter that 

minimizes light interferences. UV-A extends from 320 to 400 nm with an energy peak at 365 

nm and UV-B runs from 280 to 370 nm with an energy peak at 312 nm (Figure. 2).  

Figure. 2 Ultraviolet emission spectra for the UV lamps. 

 

Irradiated treatments were located at 8 and 32 cm of distance from the UV-A and UV-B 

lamps, resulting in an irradiation of 1.7±0.2 mW/cm2 and 0.10±0.2 mW/cm2 for UV-A and 

UV-B, respectively. The irradiation was measured with a portable UV light meter (UVA-

UVB PCE-UV34, PCE Iberica S.L, Spain). Values of radiant energy were chosen taking into 

account annual values from the South of Spain, which has a high number of annual hours of 

sun. UV irradiation was measured for 11 daily hours (from 7:00 to 18:00 hours) for five years. 

(Ortega et al., 2001). The maximum and minimum UV irradiation values were measured in 

July and in December, respectively. Moreover, the lower UV irradiation values were recorded 

between 17 to 18 h while the higher values were between 12  to 14 h GMT (GMT: Greenwich 

Mean Time). Annual values for UV-A ranged from 0.06 mW/cm2 to 2.49 mW/cm2 with a 

mean value of 1.17 mW/cm2, while for UV-B they were from <0.001 mW/cm2 to 0.23 

mW/cm2 with a mean value of 0.09 mW/cm2. Considering the doses and the exposure time, 

the daily accumulated UV-A and UV-B radiation in the experiments was of 0.367 MJ/m2 

and 0.022 MJ/m2, respectively. Ortega et al. (2001) reported a mean annual daily accumulated 

UV-A of 0.464 MJ/cm2, and focusing on grape harvest month (August) the value was 0.632 

MJ/cm2. The UV-B mean daily accumulated annual value was 0.035 MJ/cm2 while in August 

was 0.050 MJ/cm2. As consequence, direct UV doses used in the study were slightly higher 

than the global (direct + diffuse) UV mean values recorded in South Spain, but daily 

accumulated irradiation was lower due to the lesser number of hours of exposure. 
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Each five days (5th, 10th and 15th day) conidia were dislodged from two control and two 

irradiated membranes into 100 mL sterile peptone (0.1% w/v) solution using a stomacher. 

Subsequently, a seriate dilution was carried out and 100 µL of each dilution were plated onto 

Dichloran Rose Bengal Chloramphenicol agar (DRBC). DRBC plates were incubated at 25 

ºC in darkness for two days in the case of Aspergillus sections Nigri and Flavi, and three days 

for Aspergillus section Circumdati. Afterwards the colonies were counted. The number of 

viable conidia (N) was calculated through the sum of colonies counted (C) in two consecutive 

dilutions considering the number of plates counted at first (n1) and second dilution (n2), 

taking into account the volume dispensed to each plate and the dilution from which first 

count was obtained (d) (Eq. 1). Only Petri dishes with 15-150 colonies forming units (CFUs) 

were considered and limit of detection of the whole procedure was 104 ufc.  

 

dnnV
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 (Eq. 1) 

 

Logarithmic reductions were calculated for each time (Eq. 2) as the difference between 

logarithmic of colonies in non-irradiated filters (CFUC) and log of colonies in irradiated filters 

(CFUI). 

 

Logarithmic reduction = Log (CFUC) - Log (CFUI) (Eq. 2) 

 

2.3. Statistical analysis 

 

As an equal number of conidia was irradiated for all isolates across the experiment (5·106 

conidia in each membrane), analysis of variance (ANOVA) was applied directly to log CFU 

data in order to establish the significance of the geographical origin of the isolates, Aspergillus 

section, irradiation treatment and time on conidial counts. Subsequently, significant effects 

were analyzed by the Tukey´s honestly significant different test (HSD). Significance was 

defined as p<0.05.  

 

3. RESULTS AND DISCUSSION  
 

The effect of UV-A and UV-B radiation was tested separately on conidial survival of different 

Aspergillus spp. Both types of radiation (UV-A and UV-B) caused significant effect on 
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conidial survival compared to non-irradiated conidia, with a significant effect of the 

interaction between irradiation treatment and Aspergillus section conidia and time of exposure 

(p<0.001) (Table 2).  

 

Table 2 The significance of the geographical origin, Aspergillus section, time, irradiation and 

their interactions on conidia survival. 

 

 

 

 

 

 

 

 

 

 

 

 

 
**, p-value 0.001; *, p-value 0.05; ns, not significant.  

 

As irradiance values measured in the Northeast region are usually lower than in the Southern 

region, the possible isolate adaptation as a consequence of their geographical origin was 

assessed. However, in general isolates from the South were more sensitive to UV radiation. 

Nevertheless, previous works had shown slightly different ecological profiles of temperature 

and aW in terms of both optimal and marginal conditions for growth of Aspergillus due to the 

origin of isolation (García-Cela et al., 2014; Giorni et al., 2007). 

 

In general, a decrease in viability of conidia was observed along the time for all isolates tested 

(Figure 3). Aspergillus section Circumdati showed the greatest loss of conidial viability both in 

UV irradiated and in control treatments; moreover, earlier (5 days) significant differences in 

viability due to UV radiation were observed in this section. Aspergillus sections Nigri and Flavi 

showed reduced viability after 10-15 days, although the relative decrease in viability after 15 

days was less than 2 log cycles for all sections. Some authors suggested that conidia 

pigmentation could represent an important protection against UV radiation (Duguay and 

Klironomos, 2000; Grishkan et al., 2007; Moody et al., 1999; Osman et al., 1989; Rotem and 

Aust, 1991; Ulevičius et al., 2004; Valero et al., 2007). Three differently coloured conidia of 

Aspergillus were tested in our experiment; yellow, green and black, belonging to sections 

Source DF 
Sum of Squares F Ratio 

UV-A UV-B UV-A UV-B 

Origin 1 0.66 45.61 2.64 ns 1.14 ns 

Section 2 48.43 30.37 96.93 ** 174.52 ** 

Time 3 40.45 20.93 53.98 ** 77.46 ** 

Irradiation 1 22.73 0.65 90.99 ** 160.13 ** 

Origin x Section 2 5.99 0.18 11.99 ** 2.49 ns 

Origin x Time 3 1.92 0.02 2.56 ns  0.47 ns 

Origin x Irradiation 1 0.15 22.63 0.61 ns 0.12 ns 

Section x Time 6 20.29 6.05 13.54 ** 28.86 ** 

Section x Irradiation 2 6.05 10.36 12.12 ** 23.16 ** 

Time x Irradiation 3 7.75 45.61 10.34 ** 26.42 ** 
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Circumdati, Flavi and Nigri, respectively. Undoubtedly, conidia belonging to section Circumdati, 

with the lightest pigmentation, showed greater loss of viability, in both irradiated and non-

irradiated treatments. Nevertheless, at the 5th day, when no significant differences compared 

to the first day were observed in the controls, only significant differences due to irradiation 

were noticeable in section Circumdati under UV-A and section Circumdati and Flavi under UV-

B. The photo-protective potential under UV-C radiation of fungal pigments of three A. niger 

isolates possessing the same genetic background, but differing in their degree of 

pigmentation have been studied recently by Esbelin et al. (2013). The authors reported that 

spores of A. niger with a fawn and a white pigmentation were more sensitive to continuous 

UV-C radiation than the wild-type A. niger isolate with dark pigmentation. Dominance of 

dark-coloured microfungi is characteristic for almost all mycologically studied desert soils 

(Halwagy et al., 1982; Mulder and El-Hendawy, 1999; Ranzoni, 1968). Therefore, dark 

coloured spores could confer more protection against UV-B radiation.  

 

Furthermore, data were analyzed separately for each Aspergillus section in order to establish 

significant differences among species (Table 3). Within the section Flavi, A. parasiticus was 

significantly more affected than A. flavus, similarly within the section Nigri, A. tubingensis was 

more affected than A. carbonarius but only when they were irradiated under UV-B, and no 

significant differences were observed within the section Circumdati (Figure 4). Therefore, 

differences in conidial survival can not be only attributed to the pigmentation, and other 

physical characteristics should be taken account. The projected surface area-to-volume ratio 

(SAV) of spores or wall thickness have also been emphasized as responsible for conidial 

survival to radiation (Moody et al., 1999; Rotem and Aust, 1991; Valero et al., 2007). In fact, 

the projected SAV of spores is an important factor on UV sensitivity, as the lower sensitivity 

of spores was related to lower SAV values (Moody et al., 1999). The spores of Aspergillus 

species tested are spherical, and therefore lower SAV corresponds to bigger radius. Simões 

et al. (2013) described the structural diversity of spores of black aspergilli. Interestingly, A. 

carbonarius showed the higher diameters (7.658 µm) among all the section Nigri, compared to 

other species like A. tubingensis (3.972 µm) or A. niger (3.340 µm). This could be the cause of 

the significant differences between these species when irradiated with UV-B. Similarly, A. 

carbonarius was significantly more resistant than A. niger when it was irradiated during short 

time under UV-C (Valero et al., 2007). The authors also suggested that the resistance of A. 

carbonarius was due to the thicker conidia wall.  
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Table 3 Effect of specie, time, irradiation and their interactions on conidia survival within 

each Aspergillus section. 

 

 
Source Df 

Sum of Squares F-Ratio 

 UV-A UV-B UV-A UV-B 

Aspergillus section Nigri 

Species 1 0.01 0.09 0.12 ns 1.42 ns 

Time 3 1.34 0.66 5.52 * 3.29 * 

Irradiation 1 0.70 1.30 8.63 * 19.47 ** 

Species x time 3 0.01 0.09 0.05 ns 0.46 ns 

Species x Irradiation 1 0.00 0.50 0.02 ns 7.45 * 

Time x Irradiation 3 0.96 1.06 3.94 * 5.3 * 

Aspergillus section Flavi 

Species 1 1.67 0.60 5.99 * 11.39 * 

Time 3 11.01 3.02 13.17 ** 18.97 ** 

Irradiation 1 9.09 4.69 32.59 ** 88.32 ** 

Species x time 3 3.17 0.41 3.79 * 2.6 ns 

Species x Irradiation 1 0.46 0.23 1.67 ns 4.35 * 

Time x Irradiation 3 7.09 1.57 8.47 ** 9.84 ** 

Aspergillus section 
Circumdati 

Species 1 0.39 0.04 1.51 ns 0.32 ns 

Time 3 51.03 51.28 65.47 ** 124.21 ** 

Irradiation 1 19.42 21.33 74.76 ** 155.02 ** 

Species x time 3 0.91 0.22 1.17 ns 0.54 ns 

Species x Irradiation 1 0.39 0.03 1.51 ns 0.23 ns 

Time x Irradiation 3 11.15 15.22 14.31 ** 36.86 ** 

**, p-value 0.001; *, p-value 0.05; ns, not significant. 
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Figure. 3. Mean survival of UV-exposed Aspergillus conidia along time. Error bars denote standard deviation of eight 25 

mm diameter filter membranes. Letters indicate homogeneous groups within the same treatment (Tukey HSD, p<0.05).  

 

On the other hand, light is a very important signal for fungi: it influences many different 

physiological responses such as pigmentation, sexual development, asexual conidiation, the 

circadian clock and secondary metabolism (Bayram et al., 2010). For this reason the 

experimental design consisted of alternating periods of dark and white light with UV 

radiation exposure included in the light periods, while this approach was not used in previous 

experiments where only UV light was tested (Fourtouni et al., 1998; Moody et al., 1999).  
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Figure. 4. Percentage of reduction of viability of Aspergillus conidia on filter membranes along time. Mean results of four 
25 mm diameter filter membranes were used for percentage calculation.  

 

Focusing on UV-A, we found a relevant mortality of conidia due to the exposure to 1.7 

mW/cm2 (1836 kJ/m2) around the 5th day on section Circumdati and the 10th day on Aspergillus 

sections Flavi and Nigri (3672 kJ/m2). Double time of exposure (12 h/day) but lower 

irradiance 0.60-1.250 mW/cm2 (43.2-540 kJ/m2·day) during one day did not cause any 

significant difference on germination percentage of sporangia of Bremia lactucae compared to 
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dark incubation (Wu et al., 2000). Shorter exposure times (3 h/day) but under higher 

irradiance doses (3.056-5.556 mW/cm2) for 16 days (330-600 kJ/m2·day) caused different 

effects on germination depending on the species tested (Moody et al., 1999): it was enhanced 

in Penicillium purpurogenum, but reduced in Cladosporium cladosporoides.  

 

Under UV-B radiation (0.1 mW/cm2 for 6 h/day, 21.6 kJ/m2day), a significant reduction was 

also observed on conidia viability around the 5th day on Aspergillus sections Circumdati and Flavi 

and 10th day on Nigri. As for UV-A radiation, irradiation for 16 days at <0.001-0.019 

mW/cm2 for 3 h/day (0-2.1 kJ/m2·day) led to divergent effects depending on the species 

(Moody et al., 1999). Exposure of B. lactucae to doses of 0.150 and 0.700 mW/cm2 in a range 

from 2 to 12 hours (10.8-302.4 kJ/m2·day) (Wu et al., 2000) resulted in highly reduced 

germination (71-100%) compared to white light and darkness. 

 

The effect of UV-A and UV-B was not compared as both radiations were applied at different 

levels of intensity; however, as comparable levels of survival were observed and UV-B was 

applied at a lower dose, it is clear that UV-B produces more deleterious effects due to its 

shorter wavelength. 

 

Field studies with sunlight exposure have shown greater conidia mortality than laboratory 

works (Rotem et al., 1985) for Alternaria solani (20%), Uromyces phaseoli (40%), Peronospora 

tabacina (93%) and Venturia inequalis (95%) (Aylor and Sanogo, 1997; Ben-Yephet and 

Shtienberg, 1994; Leong et al., 2006; Rotem et al., 1985). Exposure to direct sunlight showed 

a higher reduction on the viability of A. carbonarius conidia supported on filter membranes 

after aprox. one week than in our case, although a small part of this decrease (aprox. 15 %) 

was attributable to the wind which could have blown some spores form the filter membranes 

(Leong et al., 2006). Similarly, no disease was observed in carnation inoculated with Fusarium 

wilt grown under direct solar radiation, whereas severe disease was observed in plants under 

85% shade cover (Ben-Yephet and Shtienberg, 1994). The effect of solar irradiance in the 

field cannot be assessed independently of other physical variables, especially temperature 

(Aylor and Sanogo, 1997) or protection by the infected host tissue (Rotem et al., 1985). For 

instance, spores on bunches could be somewhat shielded from sunlight, depending on the 

bunch and canopy architecture (Leong et al., 2006). 
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In conclusion, an increase in UV radiation may unbalance the surviving spore species present 

in vineyards, and as a consequence the potential inoculum in the field may change, possibly 

favoring in the future an even higher predominance of black aspergilli that at present. 

Moreover, the overall spore inoculum present in the field may decrease. Additionally, spore 

survival does not guarantee efficient germinative tube emergence and hyphal extension under 

UV exposure. Thus, germination and mycelium resistance should be evaluated, since the fact 

that spores can survive does not imply that the resulting hyphae have the same advantages 

(Duguay and Klironomos, 2000).  
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ABSTRACT 

 

The effects of two exposure times per day (6 and 16 hours) of UV-A or UV-B radiation, 

combined with dark and dark plus light incubation periods during 7-21 days on fungal growth 

and mycotoxins production of Aspergillus species were studied. A. carbonarius and A. 

parasiticus were inoculated on grape and pistachio media under diurnal and nocturnal 

temperatures choosing light photoperiod according to harvest conditions of these crops in 

Spain. Ultraviolet irradiation had a significant effect on A. carbonarius and A. parasiticus colony 

size (diameter, biomass dry weight and colony density) and mycotoxin accumulation, 

although intraspecies differences were observed. Inhibition of A. carbonarius fungal growth 

decreased when exposure time was reduced from 16 h to 6 h, but this was not always true 

for ochratoxin A (OTA) production. OTA reduction was higher under UV-A than UV-B 

radiation and the reduction increased along time conversely to the aflatoxins (AFs). Aflatoxin 

B1 (AFB1) was the main toxin produced by A. parasiticus except in the UV-B light irradiated 

colonies which showed a higher percentage of AFG than AFB. Morphological changes were 

observed in colonies grown under UV-B light. 
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1. INTRODUCTION 
 

The last report from the World Meteorological Organization (WMO) highlighted that human 

emissions of chlorofluorocarbons (CFCs) and other chemicals have an important role in the 

atmosphere changes by damaging the stratospheric ozone layer that filters out harmful 

ultraviolet radiation (UV) (WMO, 2013). The ozone depletion has a strong link with climate 

change, as the physics and chemistry of the Earth’s atmosphere largely determine our climate, 

inasmuch changes in ozone can induce changes in climate, and vice versa (McKenzie et al., 

2011). For example, changes in atmospheric circulation resulting from climate change can 

induce regional differences in ozone, leading to increase in UV radiation in some regions and 

reduction in others (Hegglin and Shepherd, 2009). The United Nations Environment 

Programme reported that the average of total ozone values for 2006–2009 of about 3.5% 

and 2.5% below than the 1964-1980 averages, for 90°S-90°N and 60°S-60°N, respectively 

(UNEP, 2010). Ground-based UV reconstructions and satellite UV retrievals, supported in 

the later years by direct ground-based UV measurements, show that erythemal 

(“sunburning”) irradiance over midlatitudes has increased since the late 1970s, which is 

correlated with the observed decrease in column ozone (UNEP, 2010). Solar UV radiation 

transmitted through the earth’s atmosphere has three primary streams of incoming radiant 

flux depending on their wavelength range: (i) UV-C (100–280 nm) is the higher energetic 

portion of the UV spectrum, which does not reach the ground surface as it is completely 

absorbed by the ozone layer and other atmospheric constituents; (ii) UV-B (280–315 nm) 

still reaches ground level but it is strongly absorbed by stratospheric ozone; (iii) UV-A (315–

380 nm) is only slightly absorbed by ozone layer making up most of the UV irradiance at the 

ground level (CIE, 1987).  

 

Certain groups of filamentous fungi can produce harmful secondary metabolites called 

mycotoxins. The major groups of mycotoxins, derived from polyketide metabolism, are 

present in a wide range of foodstuffs: aflatoxins (AFs), fumonisins (FBs), ochratoxin A 

(OTA) and zearalenone (Gallo et al., 2013). Although the ecological role of mycotoxins is 

far from being elucidated, several studies indicate the mycotoxin biosynthesis is induced 

under certain stress conditions (Schmidt-Heydt et al., 2008). Moreover, Cary and Ehrlich 

(2006) suggested that AFs production could be a strategy of fungi to prevent from UV 

damage. Also, citrinin has been considered as a light protectant, since citrinin producing 

colonies grew better under red and blue light than non-producing colonies (Schmidt-Heydt 
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et al., 2011). However, the effect of UV radiation in mycotoxin biosynthesis is unknown, and 

to our knowledge there are no publications on this topic. 

 

Some previous works have studied the effect of UV radiation on fungal spore germination, 

growth and sporulation, showing that the effect is dependent of time and wavelenght of UV 

exposure (Table 1) (Fourtouni et al., 1998; Moody et al., 1999; Osman et al., 1989; Wu, 

Subbarao et al., 2000). Fungal spores of Aspergillus flavus and Penicillum notatum are much more 

resistant to the lethal effects of UV than the vegetative mycelium (Osman et al., 1989). UV-

A irradiation stimulated fungal growth of several species while in others species it had no 

influence on radial growth or dry mass (Fourtouni et al, 1998; Moody et al., 1999; Osman et 

al., 1989). The UV-B irradiation not only reduced not only reduced the germination and 

sporulation in most of the fungi tested but also reduced de colony diameter (Fourtouni et al., 

1998; Moody et al., 1999). This contrast between the responses of fungi to these two different 

parts of the UV region can be explained the fact that shorter wavelength radiations are more 

deleterious to biologicals systmes as they carry more energy per photon than longer 

wavelengths (Moody et al., 1999).  

 

The aim of this study was to assess the effect of UV-A and UV-B radiation on fungal growth 

and mycotoxin (OTA/AFs) production of two Aspergillus species commonly isolated in 

foodstuffs: the OTA producer Aspergillus carbonarius which is isolated mainly in vineyards 

around the world and the AFs producer Aspergillus parasiticus which is frequently isolated 

from tree nuts, as pistachio (Denizel et al., 1976; Jamali et al., 2012). For that purpose three 

experiments were carried out focusing on i) evaluation of the effect of cycles of UV 

radiation/darkness on A. carbonarius; ii) the effect of cycling UV radiation/ white 

light/darkness on A. carbonarius; iii) the effect of cycles of UV radiation/white light/darkness 

on A. parasiticus. Experiments ii) and iii) were launched trying to simulate field temperature 

and photoperiod conditions. 
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Table 1 Previously published studies regarding the effects of UV-A and UV-B radiation in fungi in laboratory condition 

Microorganism 
Wavelength (nm) Irradiance 

(mW/cm2) 
Exposure time per day 

Irradiance 
(KJ/m2·day) 

Days of 
exposure 

T (ºC) 
Culture 
médium 

R 
Range Peak 

Aspergillus flavus  
 366 0.04 20-40-60-  120-240 min 0.5-5.8 1 24-25 Czapek 1 

Penicillium notatum 

Aspergillus fumigatus 

315-400   3.056-5.556 
3 h 

330-600 
16 20 PDA 2 

Cladosporium cladosporioides 

Leptosphaeria coniothyrium  

Marasmius androsaceus 

Mucor hiemalis  

Penicillium hordei 

Penicillium janczewskii  

Penicillium purpurogenum 

Penicillium spinulosum 

Trichoderma viride 292-350  <0.001-0.019 0-2.1 

Ulocladium consortiale 

Verticillium state  

Alternaria alternate 

Botytis cinerea 

Cochliobolus sativus 

Epicoccum nigrum 

Khuskia oryzae 

Ulocladium botytis  

Alternaria solani 315-360 366 0.051-0.167 12 h 21.9-72.3 7 25 PDA enriched 
with glucose 

3 
  290-315 313 <0.001-0.194  12 h 0.3-83.6 7 25 

Bremia lactucae 200-400 340-350 0.600-1.250  2-4-8-12 h 43.2-540 1  
Lettuce leaves 4 

  280-315 305-310 0.150-0.700  2-4-8-12 h 10.8-302.4 1   

PDA Potato Dextrose Agar  
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2. MATERIALS AND METHODS 
 

2.1. Microorganisms, growth medium and inoculation  

 

This work was carried out on three A. carbonarius (311, 318, 287-UdLTA) isolates isolated 

from grapes and one A. parasiticus (3.18-UdLTA) from the culture collection of the Food 

Department of Lleida University. Different culture media were used for each species 

simulating commodities from which these species are commonly isolated: Synthetic nutrient 

medium of grape (SNM) and pistachio based medium (PBM), respectively. Composition of 

SNM is similar to grape composition between veraison and ripeness (Delfini, 1982). For 

PBM preparation, 30 g of pistachio were ground and boiled in 1L of distilled water during 

30 min. Subsequently, the extract was filtered with a gauze made up to one litre with water. 

Additionally, 15f of agar were added. After that, the medium was autoclaved for 15 min at 

121 ºC. For each experiment, the isolates were sub-cultured on SNM or PBM plates and 

incubated at 25 ºC for 7 days to obtain heavily sporulating cultures. Following incubation, a 

sterile inoculation loop was used to remove the conidia, suspending them in Tween 80 

(0.005%). After homogenizing, the suspensions were adjusted using a Thoma counting 

chamber to a final concentration of 105 conidia/mL in Tween 80 (0.005%) and 5 µL of 

suspension were inoculated in the middle of the Petri dishes. 

 

2.2. Experimental design and incubation conditions 

 

Two different combinations of UV radiation time exposure (16 and 6 h) were assessed on 

A. carbonarius. Additionally the shortest period was also studied on A. parasiticus. Firstly, in 

order to determine the effect of UV radiation on three A. carbonarius isolates (287-UdLTA, 

311-UdLTA, 318-UdLTA), inoculated Petri dishes were incubated at 25 ºC for 21 days. 

Control Petri dishes were incubated under darkness while irradiated Petri dishes were 

incubated under a photoperiod of 16 h of UV radiation (UV-A or UV-B) and 8 h of darkness. 

Fungal diameter of six Petri dishes of each isolate was measured every 7 days and then three 

of them were used for biomass weight determination and the other three for OTA 

production analysis. Additionally, second experiment was carried out with the same three A. 

carbonarius isolate but incubated for seven days under the photoperiod and temperature 

conditions described in Figure 1A. At the end of the incubation period colony diameters 

were measured and A. carbonarius colonies from three Petri dishes of each isolate were divided 

in two equal parts for quantification of biomass weight and OTA production. In a third 
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experiment, A. parasiticus (3.18-UdLTA) was incubated for 7 days under the photoperiod and 

temperature conditions described in the Figure. 1B, plus full dark incubation as a control. 

Colony diameters were measured in two Petri dishes on days 3, 5 and 7. Subsequently, 

colonies were divided in two equal parts, one for fungal biomass and one for AFs 

determination. Photoperiod and temperatures were chosen concurring with grape (August) 

and pistachio (September) ripening in Spain. Photoperiod values were obtained from the 

National Spanish Geographic Institute (IGN), while temperatures were obtained from the 

Station Meteorology Spanish Agency (AEMET). With the aim to simulate dawn and dusk 

and the consequent gradient of temperature between night and day, the incubators were set 

in a temperature gradient mode based on temperature increasing period (dawn) and a 

temperature decreasing period (dusk) linked by two constant periods simulating day and 

night temperatures (Figure 1A-B).  

 

 

Figure 1 Incubation conditions for (A) A. carbonarius on SNM (synthetic nutrient grape) and (B) A. parasiticus on PBM 
(pistachio based medium). UV-A irradiation 1.7±0.2 mW/cm2 and UV-B irradiation 0.1±0.2 mW/cm2.  

 

 

Irradiated and non-irradiated Petri dishes were incubated in parallel under the same 

conditions of time and temperature in two incubators (Memmert ICP-600, United 

Kingdom). Diurnal illumination was simulated with four cold white fluorescent lights 

(standard illuminant D65, 6,500 K) located in the incubators. UV irradiation was generated 

with a Vilber Lourmat lamp VL-215.LM (Germany). The lamp includes two fluorescent 

tubes of 15 W each one and a filter that minimizes light interferences. UV-A extends from 

320 to 400 nm with an energy peak at 365 nm and UV-B runs from 280 to 370 nm with an 

energy peak at 312 nm (Figure. 2). Irradiated Petri dishes were located at 8 and 32 cm of 

distance from the UV-A and UV-B lamps, resulting in an irradiation of 1.7±0.2 mW/cm2 

and 0.1±0.2 mW/cm2 for UV-A and UV-B, respectively. The irradiation was measured with 

a portable UV light meter (UVA-UVB PCE-UV34, PCE Iberica S.L, Spain).  
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Figure 2 Ultraviolet emission spectra for the UV lamps. 

 

Values of radiant energy were chosen taking into account annual values from the South of 

Spain, which has a high number of annual hours of sun. UV was measured for 11 daily hours 

(from 7:00 to 18:00 hours) for five years (Ortega, Martín, & Camacho, 2001). Monthly 

measures of maximum, mean and minimal UV-A and UV-B global (direct and diffused) 

radiation in hourly intervals (1991-1995) in South Spain and experimental irradiation used in 

this study are showed in Figure 3. The maximum and minimum UV irradiation were 

measured in July and in December, respectively. Moreover, the lower UV irradiation values 

were recorded between 17 to 18 h while the higher values were between 12 to14 h GMT 

(GMT: Greenwich Mean Time). Annual values for UV-A ranged from 0.06 mW/cm2 to 

2.49 mW/cm2 with a mean value of 1.17 mW/cm2, while for UV-B they were from <0.001 

mW/cm2 to 0.23 mW/cm2 with a mean value of 0.09 mW/cm2. Considering the doses and 

the exposure time, the daily accumulated UV-A and UV-B radiation in the experiments was 

of 0.367 MJ/m2 and 0.022 MJ/m2 respectively. Whereas the mean daily accumulated annual 

UV-A radiation was 0.464 MJ/cm2, and focusing on harvest months values were 0.632 

MJ/cm2 in August and 0.539 MJ/cm2 in September. The UV-B mean daily accumulated 

annual values were 0.035 MJ/cm2 and 0.050 MJ/cm2 in August and 0.045 MJ/cm2 in 

September. In conclusion, direct UV doses used in the study were slightly higher than the 

global (direct + diffuse) UV mean values recorded in South Spain, but daily accumulated 

irradiation was lower due to the less number of hours of exposure. 
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Figure 3 Monthly measures of maximum, mean and minimal UV-A and UV-B global (direct and diffused) radiation in 
hourly intervals (1991-1995) in Seville and experimental irradiation used in this study. 

 

 

2.3. Growth assessment: colony diameter and fungal biomass   

 

Fungal growth was determined by measuring two perpendicular diameters for each colony. 

Mycelium dry weight was measured as mentioned in Taniwaki et al. (2006) on culture 

medium. Briefly, colonies were cut from the medium, transferred to a beaker containing 

distilled water (100 mL approximately), and heated in a streamer for 30 min for agar melting. 

The intact mycelium was collected and transferred to a dried, weighed filter paper and dried 

at 80 ºC for 18 h. Then the filter paper plus de colony were weighed and the dry weight of 

biomass was calculated by difference. 

 

 

2.4. Mycotoxin extraction and quantification  

 

Agar plugs (5 mm) were removed from the middle to the outer part of the colony and placed 

in a vial. Mycotoxins were extracted by adding 1 mL of methanol into the vials, shaken for 5 

s and allowed to rest. After 60 min, the vials were shaken again and the extract filtered 
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(OlimPeak filters by Teknokroma PVDF Filter, 0.45 μm, 13 mm D, Sant Cugat del Vallés, 

Barcelona, Spain) into another vial. Subsequently, the extract was evaporated under a stream 

of nitrogen and stored at 4 ºC until HPLC analysis (Waters, Mildford, Ma, S.A.). Prior to 

HPLC injection, dried extracts were dissolved in 1 mL of methanol: water (50:50). A HPLC 

system (Waters 2695, separations module, Waters, Milford, USA) equipped with a 

fluorescence detector Waters 2475 module (Waters, Milford, USA), precolumn Waters 

Spherisorb 5 µm, ODS2, 4.6x10 mm and a C18 silica gel column (Waters Spherisorb 5 μm, 

ODS2, 4.6 x250 mm, Millford, MA, USA) kept at 40 ºC were used. For AFs a post column 

photochemical derivatization system (LC Tech detector, UVC 254 nm, Germany) was used. 

Mobile phases were acetonitrile: water: acetic acid (57:41:2) for OTA and water: methanol: 

acetonitrile (70:17:17) for AFs, and were pumped at 1 mL/min under isocratic conditions. 

Mycotoxins were quantified on the basis of the HPLC fluorimetric response (OTA: λexc 330 

nm; λem 460 nm; AFs: λexc 365 nm; λem 455 nm) compared with a range of mycotoxin 

standards. Detection limits of 0.01 ng/g for OTA, of 0.02 ng/g for aflatoxins B2 and G2, and 

of 0.04 ng/g for aflatoxins B1 and G1, were established based on a signal-to-noise ratio of 

3:1. Quantification was achieved with a software integrator (Empower, Milford, MA, USA).  

 

2.5. Statistical analysis  

 

Results were analyzed by one-way ANOVA followed by the Tukey´s honestly significant 

different test (HSD), using Statgraphics® Centurion XVI (USA). The level of significance 

was defined as p<0.05. 

 

3. RESULTS 
 

3.1. Effect of UV-A and UV-B radiation/darkness on A. carbonarius (exp.1)  

 

In this experiment, three A. carbonarius isolates were incubated at 25 ºC for 21 days under 

darkness or under 16 h of UV radiation/8 h darkness. Under UV-A radiation/darkness 

cycles, colony diameters, biomass dry weight and OTA production were reduced compared 

to dark treatment both on day 14 and 21 (p<0.05) (Figure 4, Table 2). Colony density was 

calculated dividing biomass dry weight by colony area for each time period. Density values 

ranged from 0.04 to 0.09 mg/mm2 in the control treatment and from 0.03 to 0.16 mg/mm2 

in irradiated colonies with the exception of the isolate 318-UdLTA which reached 0.61 

mg/mm2 under UV-A radiation. Control colonies were less dense than the irradiated ones 
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on day 14, but this difference was reduced after 21 days. Significant differences were found 

among strains in colony diameter and OTA production but not in biomass dry weight. 

Besides, OTA concentration decreased with the time. The mean percentages of reduction 

for colony diameter, biomass dry weight and OTA production were 78.9%, 75.5% and 89.1% 

when isolates were cultivated under UV-A radiation for 14 days and 38.4%, 59.3% and 96.9% 

when the incubation period was 21 days. The isolate 287-UdLTA was less affected by the 

UV-A radiation than the other two isolates of A. carbonarius tested, in terms of colony 

diameter and biomass dry weight. Besides, OTA production by this isolate after 14 days was 

significantly higher than the others.  

 

Table 2 F values of main effects and their interaction in colony diameters, fungal dry 

weight biomass, OTA accumulation and density of three A. carbonarius (287, 311 and 318-

UdLTA) incubated on SNM (synthetic nutrient medium) for 14 and 21 days. 

Raditation Effects 
Colony 

diameter 
(mm) 

Biomass 
dry 

weight 
(mg) 

OTA 
(ng/g) 

Colony 
density 

(mg/mm2) 

UV-A Strain 5.28 * 0.03 ns 21.8 ** 1.18 ns 

Time 10 * 0.04 ns 13.7 ** 4.17 ns 

Treatment 84 ** 37.8 ** 46.3 ** 4.31 * 

Strain x Time 0.79 ns 1.41 ns 12.6 ** 1.36 ns 

Strain x Treatment 5.28 * 2.67 ns 18.5 ** 1.14 ns 

Time x Treatment 10 * 2.59 ns 15.5 ** 3.87 ns 

Strain x Time x Treatment 0.79 ns 2 ns 14.1 ** 1.23 ns 

UV-B Strain 1.03 ns 1.29 ns 1.5 ns 2.25 ns 

Time 2.3 ns 1.4 ns 0.81 ns 2.32 ns 

Treatment 26.1 ** 5.57 ** 5.77 ** 2.14 ns 

Strain x Time 0.51 ns 0.55 ns 0.3 ns 2.39 ns 

Strain x Treatment 1.03 ns 0.32 ns 0.83 ns 2.26 ns 

Time x Treatment 2.3 ns 0.33 ns 0.91 ns 2.1 ns 

Strain x Time x Treatment 0.51 ns 0.07 ns 0.17 ns 2.36 ns 

**, p-value 0.001; *, p-value 0.05; ns, not significant. 

 

 



Study V 

221 
 

 

 
Figure 4 Colony diameters, biomass dry weight and OTA (ochratoxin A) production of A. carbonarius (287-UdLTA, 311-

UdLTA and 318-UdLTA) on SNM (synthetic nutrient medium) at 25 ºC. Control Petri dishes were incubated under 
darkness while irradiated Petri dishes were incubated under photoperiod of 16 h of UV-A radiation (1.7±0.2 mW/cm2) 

and 8 h of darkness. Different letters mean significant differences according to Tukey (HSD) test. 

 

Regarding UV-B light, colony diameters, biomass dry weight and OTA production were 

reduced, compared to the control treatment (darkness incubation) while incubation time and 

isolate differences had no significant impact (p<0.05) (Figure. 5, Table 2). Colony density 

values ranged from 0.03 to 0.05 mg/mm2 in non-irradiated and 0.01-0.09 mg/mm2 in 

irradiated colonies except for the isolate 318-UdLTA under UV-B light which was 

significantly denser than the other isolates (1.84 mg/mm2). The mean percentages of 
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reduction caused by UV-B radiation were 37.7%, 52.3% and 70.5%; and 20.4%, 55.7% and 

82.1% for colony diameter, biomass dry weight and OTA production, respectively at 14 and 

21 days.  

 

Figure 5 Colony diameters, biomass dries weight and OTA (ochratoxin A) production of A. carbonarius (287-UdLTA, 
311-UdLTA and 318-UdLTA) in SNM (synthetic nutrient medium) at 25 ºC. Control Petri dishes were incubated under 
darkness while irradiated Petri dishes were incubated under photoperiod of 16 h of UV-B radiation (0.1±0.2 mW/cm2) 

and 8 h of darkness. Different letters mean significant differences according to Tukey (HSD) test. 

 

Bigger colonies and higher mycotoxin production were observed after incubation under UV-

B radiation than under UV-A radiation. Contrary to UV-A radiation the isolate 311-UdLTA 

was the less affected. Therefore, the isolate sensitivity would depend on UV wavelength. UV-
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B irradiation caused milder inhibitory effects than UV-A irradiation, however, it affected the 

colony morphology. Sporulation was only observed in the center of the colonies, in fact, this 

part was harder and more compact than in non-irradiated colonies. Besides, under the 

microscope, neither conidia nor conidiophores were observed in the surrounding growing 

colony area. 

 

3.2. Effect of UV radiation/light and dark cycles on A. carbonarius (exp. 2) 

 

Three A. carbonarius isolates were incubated for 7 days under the photoperiod and 

temperature cycles described in Figure. 1. Irradiation had a significant effect on diameter, 

biomass dry weight and OTA accumulation, but intraspecies differences affected colony size 

and OTA production (Table 3). Significant differences on density were only observed under 

UV-B irradiation, where density mean value in control Petri dishes was of 0.10 mg/mm2 

against mean value of 0.02 mg/mm2 on irradiated ones. Percentages of reduction were 

35.3%, 53.3% and 97.0% for UV-A, and 16.8%, 77.16% and 81.9% for UV-B in terms of 

colony diameter, biomass dry weight and OTA production, respectively (Figure. 6). UV-B 

radiation affected the colony morphology as observed in experiment 1. Sporulation was 

observed only in the center of colonies, which was harder and more compacted than the rest 

of the colony.  

 

Comparing with the previous experiment, colony diameter and fungal biomass dry weight of 

A. carbonarius UV irradiated for 16 h and incubated at 25 ºC, did not exceed 10 mm and 40 

mg under UV-B radiation (data not shown), respectively, after 7 days. Hence, a decrease in 

the UV time exposure reduced also the deleterious effects on A. carbonarius. Moreover, 

when comparing the controls of both experiments, that is, incubation under full darkness 

(exp. 1) and darkness and light cycles (exp. 2), higher values of fungal growth and OTA 

production were reached when white light was included. However it should be taken into 

account that, different temperature regimes were applied and therefore these differences 

could not only be attributed to light conditions but also to temperature or the combination 

of both variables. 
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Figure. 6 Colony diameters, biomass dry weight and OTA (ochratoxin A) production by A. carbonarius (287-UdLTA 311-UdLTA 

and 318-UdLTA) on SNM (synthetic nutrient medium) after seven days under incubated conditions presented in Figure. 1. 

Irradiation doses are 1.7±0.2 mW/cm2 and 0.10±0.2 mW/cm2 for UV-A and UV-B. Different letters mean significant differences 

according to Tukey (HSD) test. 
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Table 3 F values of main effects and their interactions in colony diameters, fungal biomass, 

OTA accumulation, and density of three A. carbonarius (287, 311 and 318-UdLTA) 

incubated on SNM (synthetic nutrient medium) for 14 and 21 days. 

 

Raditation Effects 
Colony 

diameter 
(mm) 

Biomass 
dry weight 

(mg) 

OTA 
(ng/g) 

Colony 
density 

(mg/mm2) 

UV-A Strain 19.59 ** 2.16 ns 34.16 ** 12.88 ** 

Treatment 326.64 ** 64 ** 73.08 ** 1.61 ns 

Strain x Treatment 3.13 ns 0.32 ns 33.88 ** 1.01 ns 

UV-B Strain 29.93 ** 1.85 ns 14.41 ** 5.43 * 

Treatment 67.93 ** 27.77 ** 31.64 ** 31.53 ** 

Strain x Treatment 3.82 ns 1.28 ns 7.27 ** 4.53 ** 
**, p-value 0.001; *, p-value 0.05; ns, not significant. 

 

3.3. Effect of UV radiation/light and dark cycles on A. parasiticus (exp. 3) 

 

One A. parasiticus isolate (3.18-UdLTA) was incubated on PBM for 7 days under the 

temperature cycles described in Figure. 1, plus full dark incubation as an additional control. 

UV-A irradiation had a significant effect on colony diameter compared to full darkness. In 

the case of AFs production significant differences were found between irradiated and non-

irradiated treatments (Table 4, Figure. 7). In addition, biomass dry weight differences were 

also significant from day 5 in the case of UV-B. Nevertheless, no significant differences were 

observed in colony density due to the UV radiation, with mean values of 0.05 mg/mm2. The 

present experiment included the comparison between full dark period and light/dark without 

UV light; the results showed no differences between these two treatments, this fact suggests 

that the differences shown can be fully attributed to UV-light and not to white light.  

 

Comparing both wavelengths, higher percentages of reduction were observed in colonies 

irradiated with UV-B than UV-A radiation compared to non-irradiated ones (Figure. 7). 

Moreover, under UV-A light, percentages of reduction of colony diameter (from 21.43 to 

5.41 %) and biomass dry weight (from 36.51 to 9.60 %) decreased along the time. Conversely, 

under UV-B radiation percentages of reduction of colony diameter (from 48.48 to 73.68 %) 

and biomass dry weight (from 26.98 to 96.02 %) increased with time. These results could 

indicate some adaptation to UV-A, whilst UV-B radiation would practically stop fungal 

metabolism. 

 



Research Work-Part II 

226 
 

Table 4 F values of main effects and their interactions in colony diameters, fungal biomass 

dry weight, AFs accumulation and density of A. parasiticus (3.18-UdLTA) incubated on 

PBM (pistachio based medium) for seven days. 

**, p-value 0.001; *, p-value 0.05; ns, not significant. 

 

Interestingly, high significant differences due to the UV radiation were found for AFs 

production (Figure. 7). Kinetics of AFs production without UV-light showed the maximum 

production in the 5-7th day, while under UV-A AFs concentration did not change with time 

and under UV-B the maximum AFs level was recorded in the 7th day. AFB1, AFB2, AFG1 

and AFG2 contribution to total AFs was quite constant except under UV-B (Figure. 8). In 

general, AFB2 and AFG2 were produced in lower amount while AFB1 always presented values 

over 65% of the total AFs production. However, under UV-B light a higher percentage of 

AFG than AFB was recorded.  

 

As observed, for A. carbonarius, mycelium morphology changed under different light 

conditions. Six hours of UV-B radiation practically inhibited the aerial mycelium, and conidia 

were not observed after seven days. Colonies under UV-A radiation showed a dense centre, 

high development of aerial mycelium on the periphery of colony and tiny areas without 

visible growth inside the colony. Colonies incubated under cycles of light/darkness were 

more heavily sporulated and appeared more coloured than those grown under darkness or 

UV-A light/darkness.  

 

Radiatation Effects 
Colony 

diameter 
(mm) 

Biomass 
dry weight 

(mg) 

OTA 
(ng/g) 

Colony 
density 

(mg/mm2) 

UV-A Strain 337.73 ** 56.42 ** 21.81 ** 0.21 ns 

Treatment 10.43 * 0 ns 27.92 ** 1 ns 

Strain x Treatment 0.82 ns 0.51 ns 10.96 ** 0.34 ns 

UV-B Strain 52.14 ** 39.43 ** 36.62 ** 0.08 ns 

Treatment 105.9 ** 41.22 ** 72.66 ** 0.03 ns 

Strain x Treatment 12.79 ** 13.09 ** 8.53 ** 0.42 ns 
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Figure. 7 Colony diameters, biomass dry weight and aflatoxins production of A. parasiticus (3.18-UdLTA) on PBM 
(pistachio based medium) under full dark (24 h), dark (12 h) and white light (12 h) and incubated conditions presented in  
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Figure 8 Aflatoxins (AFB1, AFB2, AFG1 and AFG2) distribution produced by A. parasiticus 3.18-UdLTA on PBM 
(pistachio based medium) after three and seven days under full dark (24 h), dark (12 h) and white light (12 h) and 

incubated conditions presented in Figure. 1.  

 

 

4. DISCUSSION  
 

The biological consequences of ozone depletion, mediated through an increase in UV-B 

radiation, have been cause for concern for many years. However, there is not much 

information about the ecological response to the hypothetically increasing solar UV radiation 

in fungi and specifically in mycotoxigenic fungi. Spain is not only the European country that 

receives the greater amount of radiation but also the country that shows the greatest contrast 

and radiative gradients and complexity in the distribution of the radiative energy (AEMET, 

2012). Values used in this study concerned to mean values of UV-A and UV-B global (direct 

and diffused) radiation measured in Seville, since this city has one of the greatest intensity of 

radiation and number of hours of exposure values. In this work, the effect of UV-A (365 

nm) and UV-B (312 nm) radiation on fungal growth and mycotoxin production of A. 

carbonarius and A. parasiticus, which are frequently isolated from crops, has been studied. 

Crop simulation media were chosen since irradiation has been shown to have different 

effects depending on the microbial growth media due to the potentially protective nutrient 

presence (Osman et al., 1989).  

 

The UV-A radiation (315-380 nm) is only slightly absorbed by the ozone layer, it reaching 

most of ground level (CIE, 1987). In fact, UV-A radiation is an important environmental 

factor for sporulation in many fungi (Elad, 1997; Fourtouni et al., 1998; Osman et al., 1989; 

Nicot et al., 1996). Irradiance at 0.04 mW/cm2 (366 nm) decreased the germination but 
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increased colony radial growth rate of Penicillium notatum after up to 20 min of exposure, while 

longer periods of irradiation reduced colony development (Osman et al., 1989). By contrast, 

12 h exposure (0.051 to 0.167 mW/cm2) for seven days had no influence on radial growth 

or dry mass weight in Alternaria solani despite spore production increased significantly 

(Fourtouni et al., 1998). Similarly, 3 h photoperiod ranging from 3.056-5.556 mW/cm2 at a 

wavelength of 315-400 nm caused a significant enhancement of germination of Penicillium 

purpurogenum spores while significantly reduced germination of conidia of Cladosporium 

cladosporoides (Moody et al., 1999). Sporangia exposed to irradiance of 1.25 mW/cm2 of UV-

A (340-350 nm) for 8 h showed reduced germination compared to the sporangia that 

remained in the dark (Wu et al., 2000). In the present work, we have observed for Aspergillus 

a significant reduction on mycelium and mycotoxins when irradiated for 6 h at 1.7 mW/cm2. 

Sixteen hours of exposure at the same irradiation reduced significantly the OTA 

contamination detected along the time. 

 

Although UV-B radiation is for less than 1% of the total energy of the electromagnetic 

spectrum, it is a highly active component of the solar radiation that can porduce chemical 

modifications in DNA changing its molecular structure by the formation of dimers (Rastogi 

et al., 2010). Therefore, this radiation may directly damage the exposed tissues of plant 

pathogens, including spores during dispersal (Rotem et al., 1985; Wu et al., 2000). As for UV-

A, different impact of UV-B on fungi are found in the literature. Exposure to 0.019 mW/cm2 

(292-350 nm) consistently reduced spore germination and mycelial extension rates in 

Aspergillus fumigatus, Penicillium hordei, P. janczewskii, P. spinulosum and P. purpurogenum, while 

inhibitory effects were lower in Mucor hiemalis, C. cladosporioides, Leptosphaeria coniothyrium, 

Nectria inventa, Trichoderma viride, Ulocladium consortiale and Marasmius androsaceus (Moody et al., 

1999). Bremia lactucae was exposed to two elevated irradiation doses, 0.150 and 0.700 

mW/cm2, in a range from 2 to 12 hours (Wu et al., 2000). Both irradiations reduced 

significantly the percentage of germination of the incubated isolates under white light (0.4 

mW/cm2) or under complete darkness. Moreover, after 8 h of exposure to the highest 

irradiation the germination was practically inhibited. We observed than 0.1 mW/cm2 reduced 

all fungal parameters studied on Aspergillus. Additionally, an increase on the UV-B radiation 

exposure time on A. carbonarius, increased the deleterious effects. Although different media 

and temperature regimes were used, A. carbonarius showed higher resistance to UV-B 

irradiation than A. parasiticus. 
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Different tolerances to the deleterious effect of solar UV radiation on fungi have been 

reported before. Rotem et al. (1985) found that mortality due to solar UV radiation increased 

from A. solani to Ulocladium phaseoli to Peronospora tabacina. Osman et al. (1989) suggested that 

differences in sensitivity may be attributed to spore colour. These authors pointed out that 

the resistance of pigmented conidia to the lethal effects of UV irradiation may be due to the 

action of pigments as quenchers to singlet oxygen produced by photosensitive compounds 

in fungal cells. Furthermore, Grishkan et al., (2003) found a significant correlation between 

areas receiving high solar irradiation and the incidence of melanin-containing fungal species 

among soil microfungi isolated in Israel.  

 

It is worthy to mention that mycelium morphology changed due to UV-B exposure, as the 

colonies produced pigmented compact mycelium in the center of the colony and submerged 

mycelium at the periphery. This tendency was also observed in A. solani by Fourtouni et al. 

(1998), where the authors suggested that the fungi employs mainly a morphological (i.e., 

increased density) rather than chemical (i.e., UV-B absorbing compounds) protective strategy 

against UV-B radiation damage. Therefore, the submerged growth could be a fungal strategy 

against radiation since minimal doses of UV-B penetrate into the medium (Fourtouni et al., 

1998). 

 

To sum up, UV radiation is an interesting abiotic natural factor which could affect not only 

survival and growth of fungi but also secondary metabolites production. In this study, A. 

carbonarius showed a great UV resistance even during prolonged periods of direct UV 

exposure of 12 h (exp 1). This provides a logical explanation for the high numbers of A. 

carbonarius on grapes subjected to prolonged sun exposure in countries with high UV 

irradiance as Spain, Italy or Greece (Battilani et al.,2006; Tjamos et al., 2006).  

 

On the other hand, it is widely accepted that stress conditions could promote the mycotoxin 

production. However, from our results UV radiation always reduced OTA and AFs 

contamination compared to non-irradiated colonies probably as a result of a decreased 

growth. Nonetheless, the possible degradation to other compounds was not evaluated, as it 

occurs on maize, where a natural transformation from trans-zearalenone (ZEN) to cis-ZEN 

after 24 h of UV-A irradiation (3.2 mW/cm2) can occur (Brezina et al., 2013). Similarly, 

incubation of A. carbonarius under two simulated climatic conditions characterized by 

alternating temperature cycles (10/25 ºC and 15/35 ºC) with photoperiod (14/10 h 
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lightness/darkness), and two moisture levels (40 and 25%) for 21 days, showed that the 

extreme conditions tested caused a significant OTA reduction contamination (García-Cela 

et al., 2012). Therefore, Aspergillus presence on crops under future climate conditions 

proposed by Southern Europe (EC, 2007), could not be compromised; even the mycotoxin 

risk in vivo derived from predicted climatic conditions characterized by high temperatures, 

drier conditions and increased UV could be reduced. It must be noted that in these in vitro 

studies, plant stress is not taken into account, and this stress situation could led to an 

increased fungal colonisation. Nevertheless, fungal presence per se represents an important 

risk, because favourable conditions for toxin production can occur in the following 

postharvest stages.   
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ABSTRACT 

 

The presence of ochratoxin A (OTA) in grape and its derivates has been reported mainly in 

the Mediterranean area. Consequently, great efforts are being made to prevent the growth of 

Aspergillus on grapes. However the European Commisision suggests that climate change may 

results in increase temperatures and longer drought period in Southern Europe. Therefore, 

the aim of this study was to investigate how ochratoxin fungal growth and the efficiency of 

fungicides used at present may be affected by environmental conditions predicted with 

climate change. The effectiveness of grape field antifungals (Switch®, Flint Max® and 

Equisetum arvense extract) under two alternating temperature, photoperiod and relative 

humidity (R.H.) scenarios (current: 20/30 ºC, 16 h light/8 h darkness, 80% R.H.; predicted: 

25/37 ºC, 16 h light/8 h darkness, 75% R.H.) on the growth and OTA production of two 

Aspergillus carbonarius isolates and one Aspergillus ochraceus isolate on grapes was investigated. 

Predicted conditions reduced A. carbonarius and limited A. ochraceus growth. Antifungals 

reduced the fungal infection (by 40 to 84%), although no correlation between climate 

conditions and effectiveness of the antifungals was found. However, Switch® always showed 

the greatest reduction and E. arvense (0.02%) the least. Higher temperatures affected OTA 

production by the isolates in different ways. In general, Switch and Flint Max® reduced OTA 

production while E. arvense stimulated it.  

 

Publication: Journal of the Science of Food and Agriculture (2012) 92,1455-1461. 
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1. INTRODUCTION 
 

Mycotoxins, naturally occurring substances produced by toxigenic fungi that commonly 

grow on a number of crops, cause adverse health effects when consumed by human and 

animals (Tirado et al., 2010). Ochratoxins were first identified in 1965 and have been 

suggested as a factor involved in Balkan endemic nephropathy (Krogh 1977, Smith and 

Moss, 1985). Naturally occurring ochratoxins are ochratoxin A (OTA), the most prevalent 

and relevant fungal toxin of this group, as well as ochratoxin B and ochratoxin C exist, with 

are less important and pose a lower risk to human and animal health. The International 

Agency for Research on Cancer (IARC) has classified OTA as a possible human carcinogen 

in group 2B based on the evidence from diverse studies (IARC, 2002). Filamentous fungi 

belonging to the genus Penicillium, mainly Penicillium verrucosum, and Aspergillus sections 

Circumdati and Nigri are recognized as source of OTA. In the Circumdati section, Aspergillus 

westerdijkiae and Aspergillus steynii have recently acquired more relevance owing to their higher 

OTA production than Aspergillus ochraceus (Gil-Serna et al., 2010). A. steynii has been revealed 

as the main cause of OTA contamination (Abarca et al., 2004). 

 

Regarding mycotoxigenic moulds on grapes, several studies had pointed to black aspergilli, 

particularly A. carbonarius, as been mainly responsible of the presence of OTA in grapes 

(Battilani et al., 2004; Cabañes et al., 2002) and, to a lesser extent, Aspergillus section Circundati 

(Battilani et al., 2003a; Belli et al., 2006). Various researches have reported the presence of 

OTA in grapes (Abrunhosa et al., 2001), dried vine fruits (Varga and Kozakiewicz, 2006), 

grape juice (Burdaspal and Legarda, 1999; Zimmerli andand Dick, 1996) and wines (Cerutti 

et al., 2000; Filali et al., 2001; Visconti et al., 1999).  

 

Prevention of the growth of mycotoxin-producing fungi is the most effective strategy for 

controlling the presence of mycotoxins in foods; in many cases the use of fungicides is the 

only efficient, cost-effected and often successful way to prevent mould growth (Munimbazi 

et al., 1997). Various fungicides have been tested in the field and laboratory against A. 

carbonarius on grapes (Belli et al., 2006b; Lo Curto et al., 2004; Tjamos et al., 2004). However, 

legal restrictions on the maximum residue limits (MRL), and consumer demands for healthier 

products are necessitating the use of safer and more environmentally friendly antifungals. 

Therefore it is important to seek alternatives such as plant extracts as new sources of 

antimicrobial or antimycotoxigenic compounds (Mitscher et al., 1987). Extracts of several 

plants have been tested against Aspergillus species (Rasooli and Owlia, 2005; Rasooli et al., 
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2006) including those of Equisetum spp. (commonly know as field horsetail) (Milanovic et al., 

2007; Radulovic et al., 2006). 

 

Belli et al. (2006a) identified the ochratoxigenic microbiota of grapes from vineyards located 

in three Spanish winemaking regions during three consecutive growing seasons (2001-2003) 

and found thath most of the ochratoxigenic fungi belonged to Aspergillus section Nigri. A. 

ochraceus was present in 0.16% of samples on average, with no differences among years, 

regions and dates of sampling. Previous ecophysiological studies simulating field conditions 

on growth and mycotoxin production revealed that A. carbonarius growth and OTA 

production were determined by environmental factors such as temperature, water availability 

and photoperiod (Belli et al., 2006c; Oueslati et al., 2010). These studies were carried out on 

a synthetic nutrient medium (SNM) simulating grape composition. Moreover, Belli et al. 

(2005) demonstrated that the incidence of black aspergilli increased in years with very hot 

summers, while humidiy was less relevant. 

 

According to climatic change scenarios predicted for Spain, it is expected that temperature 

and drought will increase (European Commission, 2007). The efficiency of fungicides used 

at present might be affected by environmental conditions predicted with climate change. The 

aim of this study was to test the impact of changing climatic conditions in Spain on 

ochratoxigenic mould development on grapes and on the effectiveness of syntethic and 

natural antifungals.  

 

2. MATERIALS AND METHODS 
 

2.1. Fungal isolates and preparation of spore suspensions 

 

Two A. carbonarius strains (3.83 and 3.168) and one A. ochraceus strain (3.66) held in the culture 

collection of the Food Technology Department, Lleida University, Spain, were used in this 

study. All three isolates were isolated from naturally infected Spanish grapes and were 

previously found to be OTA producers. Spore suspensions of each isolate (103 spores/ml) 

were prepared, from colonies previously grown on synthetic nutrient medium (SNM) 

(Delfini et al., 1982) for seven days at 25ºC, in distilled water containing 0.005% Tween 80.  
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2.2. Antifungals preparation 

 

One natural and two commercial fungicides (Switch ® and Flint Max ®) were used. The 

natural antifungal was obtained from E. arvense collected in Alpicat, Lleida (Spain), washed 

with water and dried at 40 ºC for two days until a constant weight was achieved. The dry 

plant material was macerated in 70% etanol (99.6% purity) in a ratio of 5:95 (v/v) at 25ºC 

under agitation and darkness for 2 days. Then the extract was filtered under vacuum and the 

plant material was removed, leaving a dark green hidroalcoholic extract. The ethanol was 

evaporated in a rotary evaporator. The extract was cold stored until use, when it was mixed 

with distilled water to a final concentration of 2%. The commercial fungicides were applied 

in the dosages recommended by the manufacturers, namely 1 g/L for Switch ® (Syngenta 

Agro S.A. Madrid, Spain) and 0.025 g/L for Flint Max® (Bayer CropScience S.L., Valencia, 

Spain). Switch ® is a preformulated mixture containing cypronidil (37.5%) and fludioxonil 

(25%). Cypronidil is an anilinopyrimidine fungicide with some systemic properties that is 

taken up into the cuticle and waxy layers of leaves and fruits. Fludioxonil is a phenylpyrrole 

fungicide that remains on the leaf and fruit surfaces to provide contact activity. Switch is 

registered in Spain against Botrytis and Sclerotinia in several crops and against Botrytis spp. and 

Aspergillus spp. in grapes. Flint Max is a mesostemic fungicide containing tebuconazole (50%) 

and trifloxistrobin (25%). Although it is still in process of registration in Spain, other 

countries such France, Croatia and Slovenia have already approved it for the control of 

vineyard diseases like Uncinula necator, Guignardia bidwellii, and Pseudopeziza tracheiphila, but not 

Aspergillus spp. Tebuconazole affects sterol biosynthesis in membranes while trifloxistrobin 

is a respiration inhibitor for foliar application.  

 

2.3. Berry decontamination, inoculation, fumigation and incubation 

 

Red table grape berries (var. Red Globe) without physical damage were used in this study. 

The berries were separated from the bunches by cutting the stem with scissors at 

approximately 0.5 cm from each grape. They were surface-sterilized by dipping them first in 

NaClO solution (0.01% Cl) for 2 min and then in sterile distilled water for 2 min. Excess 

water was removed by placing the berries on a laminar flow bench for 10 min. For each 

treatment, 20 berries were arranged on top of a grate (to prevent contact between the berries) 

and then placed in a plastic box containing 300 ml of glycerol-water solution to assure the 

R.H. of the treatment (Dallyn, 1978). The water activity of glycerol-water solutions was 

checked through three readings on an AquaLab Series 3 meter (Decagon Devices, Inc., WA, 
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USA) with an accuracy of ±0.003. Grates and plastic boxes were previously disinfected with 

ethanol (70%) and placed under ultraviolet light on a laminar flow bench for 15 min.  

 

Grape berries were sprayed with either the desired antifungal or sterile distilled water (control 

treatment). Each spray dose was equivalent to 5 ml. Then all grapes were wounded to 

facilitate fungal infection, and immediately afterwards a 103 spores/ml suspension was 

sprayed for each plastic box. The filled containers were hermetically sealed and subjected to 

a photoperiod of 16 h light/8 h dark. To simulate light conditions, white light was used 

(Mazda, 23W Eureka3 Electronic bulbs; 230-240 V; 50-60 Hz; 1500 lumen; 175 mA). The 

heat emitted by the bulb did not increase the temperature proposed for incubation.  

 

Berries were incubated at different combinations of temperature and R.H. for seven days, 

simulating a climatic change scenario in Northern Spain. Temperatures of 30 and 20 ºC for 

light and dark periods were chosen as current climatic conditions in August in Northern 

Spain. Temperatures of 37 and 25 ºC for light and dark periods respectively were chosen as 

predicted climatic conditions that might be expected to occur in the future, based on the 

current conditions in Southern Spain (INM, Instituto Nacional de Meteorología). Moreover, 

a 5% R.H. decrease was simulated by incubating the first treatment at 80% R.H. and the 

second at 75% R.H. Each treatment was carried out in triplicate (Table 1). 

 

Table 1 Environmental conditions of the different treatments 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment 
Environmental Conditions 

R.H. Temperature Hours 

Control 
Switch ® 
Flint Max ® 
Equisetum arvense 

75 
37ºC 16 h light 

25ºC 8 h dark 

Control 
Switch ® 
Flint Max ® 
Equisetum arvense 

80 

30ºC 16 h light 

20ºC 8 h dark 
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2.4. Percentage of infection 

 

At the end of incubation, berries were observed, visible fungal growth was assessed and 

infection percentage was calculated. Fungal infection with each fungicide treatment was 

compared with that of the control under the same environmental conditions. 

 

2.5. OTA extraction and HPLC quantification 

 

After 7 days of incubation the OTA extraction method developed by Bezzo et al. (2000) with 

HPLC was applied with slight modification. Each batch of 20 berries was weighed and then 

crushed with a hand blender (Opticlick Pro, Moulinex, France). The must obtained was 

macerated for 2 h. Samples were stored in sealed centrifuge tubes until their extraction. The 

must was centrifuged (Hettich Zentrifugen EBA 12, Germany) at 3900g for 10 min and 

filtered (Whatman no 1) under vacuum. The pH was adjusted to 7.4 with NaOH (4 M) and 

the must was filtered again (Whatman no. 1). Initial pH values of filtered musts were 3.47-

4.16. Undiluited must (75-100 mL) was cleaned-up by means of immunoaffinity columns 

(Ochraprep, R-Biopharm Rhône LTD, Glasgow, Scotland) at a flow rate of 2-3 ml/min. The 

columns were subsequently washed with 20 ml of distilled water and left to dry. Desorption 

was carried out by slowly passing 3 mL of methanol/acetic acid (98:2 v/v) solution through 

the column; during desorption, backflushing was applied twice. The eluate was then 

evaporated to dryness at 40 ºC under a stream of nitrogen and redissolved in 2 mL of mobile 

phase (48% acetonitrile and 52% sodium acetate /acetic acid (19/1)). A 25µl aliquot of each 

final sample was injected into the HPLC system, wich was equipped with a fluorescence 

detector (Waters 474) (λexc 333 nm; λem 443 nm) and a C18 column (Waters Spherisorb 5 µm, 

ODS2, 4.6x250 mm, Milford, Massachusetts, USA). The analysis was performed under 

isocratic conditions at a flow rate of 1 mL/min. The detection limit was 0.75 ng OTA/ml, 

based on a signal to noise ratio of 3:1. OTA was quantified by external standard method. 

OTA standard was purchased from Sigma-Aldrich (Steinheim, Germany), acetonitrile from 

Merck (Darmstadt, Germany) and sodium acetate and acetic acid from Prolabo (Briare, 

France). The retention time of OTA under the conditions described was approximately 12 

min. 
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2.6. Statistical analysis 

 

Data on fungal infection percentage and and OTA production were subjected to analysis of 

variance using JMP® 8.0.1 (SAS Institute Inc, Cary, NC, USA). Significance of the effects 

was evaluated and Student`s test was applied to the different factors.  

 

3. RESULTS  
 

3.1. Effectiveness of antifungals against grape infection 

 

After 7 days of incubation, fungal infection percentage was recorded. Skin is a natural 

protection against fungal entry, so fungal infection was observed mainly around the wounds 

made on berries. In most of samples, fungal colonisation was lower than 50% of the berries 

surface. Both environmental conditions (temperature and R.H.) and antifungal treatments 

significantly affected (p<0.001) fungal infection for all isolates (Figure.1).  

 

For berries inoculated with A. ochraceus 3.66, a 5% decrease in R.H. plus a increase in 

temperatures led to a significant decrease in berry infection, regardless of the antifungal 

treatment; hence, under current conditions, 42% infection was observed in the control, while 

no infection was observed under the predicted conditions. Reduction of the infection 

percentage for each treatment was determined by comparison with the control infection. All 

antifungals reduced the infection significantly under current conditions (p<0.05, 40 to 84% 

reduction). The most effective was Switch ®, while the least effective was E. arvense extract. 

Low variation was found among repeated experiments (SD between 0 and 2). 

 

As A. ochraceus 3.66 infection by A. carbonarius took place around the wounds made on 

berroes, although A. carbonarius 3.83 also showed fungal infection around the pedicel. Fungal 

colonisation was lower than 50% of the grapes surface. A. carbonarius 3.83 led to higher 

infection levels under all test conditions. In general, a 5% decrease in R.H. and a shift to 

higher temperatures led to a significant decrease in the infection on berries. Under current 

conditions, fungal infections observed in the controls were 53 and 27%, while under 

predicted conditions they were 48 and 8%, for isolates 3.83 and 3.168, respectively. On the 

other hand the use of Switch ® significantly reduced the percentage of infection for both 

isolates and both conditions (% inhibition between 60-100%) while E. arvense and Flint Max 

® had no effect on A. carbonarius 3.83 grown under current conditions. No significant effect 



Research Work-Part II 

242 
 

of these two antifungals was observed for A. carbonarius 3.168, while for A. carbonarius 3.83 

all antifungals led to significant inhibition of infection under predicted adverse conditions, 

in the order Switch ® (82.75%) > Flint Max ® (62.75%) > E. arvense. (34.48%). The synthetic 

fungicides applied at the recommended doses showed higher infection reduction than E. 

arvense extract at 2%. Moreover, the E. arvense results showed higher variation among 

replicates (SD between 2 and 4.5). 

 

 

 
Figure 1 Effects of antifungal treatments and environmental conditions on infected berries(%) by ochratoxigenic species.     

alternating temperature 20/30ºC, 80% R.H.;     alternating temperature 25/37ºC, 75% R.H. Different letters over bars 
indicate significant differences among values for each isolate (Student´t test, with a level of significance of 0.05).  
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3.2. Effectiveness of antifungals against OTA production 

 

For A. ochraceus 3.66, OTA production was only analyzed under current condition, because 

no growth (NG) was observed under predicted conditions. No significant differences 

(p<0.05) in OTA production due to antifungals were observed. Although Flint Max ® and 

Switch ® reduced OTA production (by 45% and 94% respectively), the effect was not 

significant owing to the high variation among replicates, while E. arvense significantly 

timulated OTA production from 0.164 ppb to 0.555 ppb (Figure 2).  

 

In relation to A. carbonarius, under current conditions, isolate 3.83 was a higher OTA 

producer than isolate 3.168 (3.398 and 0.702 ppb respectively); however, under predicted 

conditions isolate 3.168 produced more OTA than isolate 3.83 (1.258 and 0.047 ppb, 

respectively). In general, low OTA levels were recorded under predicted climatic conditions. 

Therefore, in the case of isolate 3.83, the most favorable climatic conditions for OTA 

production were the same as those for fungal growth; by contrast, for isolate 3.168, growth 

was favoured under current conditions, while no significant diference was observed in OTA 

production. Regarding antifungals, only Flint Max ® and Switch ® reduced OTA production 

(by 78 and 89% respectively) by A. carbonarius 3.83 under current climatic conditions, while 

for the remaining isolates and conditions no significant effects of antifungals were observed. 

On the other hand, application of E. arvense extract enhanced OTA production of isolate 

3.168 under current conditions but had no effect in the remaining cases.  

 

4. DISCUSSION  
 

Since Zimmerli, andand Dick, (1996) described OTA contamination in wine for the first 

time, its presence has been frequently reported and has led the EU to set a maximum level 

of 2 ppb for grapes derivatives such as wine, sparkling wine, aromatized wine and grape juice 

(European Commission 2006). The origin of OTA in these products is field fungal-

contaminated grapes, so it is important to avoid fungal infection on berries and consequently 

reduce the probability of OTA production. Some studies have suggested that the month 

preceding ripening is crucial for OTA contamination (Battilani et al., 2006a,b), as the sugar 

content increases and the berry texture softens (MAPA 1998). 
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Figure 2 Effects of antifungal treatments and environmental conditions on OTA produced (ng/kg) by ochratoxigenic 
species.     alternating temperature 20/30ºC, 80% R.H.;     alternating temperature 25/37ºC, 75% R.H. Different letters 

over bars indicate significant differences among values for each isolate (Student´t test, with a level of significance of 0.05). 

 

 

Climate change is generating growing insecurity about the future temperature and rainfall 

regimes. The most vulnerable areas in Europe are southern Europe and the entire 
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Mediterranean basin, owing to the combined effect of high temperature increases and 

reduced precipitation in areas already having to cope with water scarcity (European 

Commission, 2007). Temperature and R.H. are suggested to be the main factors determining 

fungal infection; besides, different geographic areas have been distinguished in the 

Mediterranean basin as a function of these factors (Battilani et al., 2003b). The European 

Commission suggests that, in southern Europe, changes may equate to temperature increase 

of 4-5 ºC coupled with longer drought periods (European Commission, 2007). In this study, 

climatic conditions were chosen in order to simulate actual mean day and night temperatures 

and R.H in the month preceding harvest in northern Spain; additionally, an experimental 

condition was considered including a temperature increase of 5-7 ºC and R.H decrease of 

5%. Decreased H.R. is not synonymous with drought conditions, because drought would 

also imply a stress condition in the plant, which may affect fungal growth positively and OTA 

production positively or negatively, as has been shown for cereals and aflatoxins and Fusarium 

toxins; this point was not assessed in our laboratory trial. Our work shows that increased 

temperature regimes reduced or even prevented fungal growth compared with moderate 

conditions. Battilani et al. (2006b) studied the risk associated with various combinations of 

temperature and precipitation and observed a high risk of OTA accumulation in grapes 

during August in northern hemisphere with temperatures between 5-35 ºC and rainfall of 

20-25 mm. Also, a positive correlation was found between the number of black aspergilli 

isolated from grapes and the temperature in the field: the most contaminated grapes were 

those isolated in the warmest year and from the warmest regions (Battilani et al., 2003b, 

2006a). Moreover, a sampling was carried out from 2001 to 2003 in Spain, showing a higher 

presence of black aspergilli in 2003 than in the two previous years. The authors related the 

increased presence of Aspergillus to extreme temperatures, as 2003 was very hot year in Spain 

(Belli et al., 2005a). However, the high presence of Aspergillus inocula in the field may not 

have a direct correlation with the ability of such spores to germinate and grow on the grapes. 

A. ochraceus has a reduced presence in Spanish vineyards (Belli et al., 2006a), and our study 

suggests that it might be further precluded as a result of changing climate conditions.  

 

All isolates showed higher infection under current climate conditions in all treatments. Both 

on SNM and on berries, growth was maximum at around 30 ºC at high R.H. (Belli et al., 

2007; Pardo et al., 2005b), although A. ochraceus grew faster between 25-35 ºC while A. 

carbonarius did so between 30-37 ºC (Belli et al., 2004b; Pardo et al., 2005a). Fungal infection 

by three isolates of A. ochraceus on healthy berries did not show differences among isolates; 
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the maximum visible growth was observed at levels of 90-100% R.H, while at 80% R.H. the 

percentage of berries with visible fungal growth was significantly lower than 90-100% (40-

80% versus nearly 100%) (Pardo et al., 2005b). Similar experiments on damaged grapes with 

four isolates of A. carbonarius showed higher fungal infection at 90-100% R.H (80-100%) 

than at 80% R.H. (50%) (Belli et al., 2007). Those studies showed higher percentages of 

infection, but in both cases the lower R.H. tested was 80% and temperature and light cycles 

were not used.  

 

In the present experiment higher amounts of OTA were produced by one A. carbonarius 

isolate, which also gave the highest percentage of infected berries. The diferent isolates 

showed diferent responses to environmental conditions. Thus A. ochraceous 3.66 and A. 

carbonarius 3.83 produced higher amount of OTA under non-adverse conditions, while for 

A.carbonarius 3.168 there was no diference. Pardo et al. (2005b) quantified OTA accumulated 

in 14 days by three isolates of A. ochraceus isolated from grapes, and found levels ranging from 

9.27 ng/g at 100% R.H. and 30ºC to near the limit of detection at 80% R.H. On the other 

hand, Belli et al. (2007) quantified OTA on berries inoculated with four A. carbonarius isolates 

and found a range of concentration between 0.06 and 15.60 g/L of must, with maximum 

values being obtained 100% R.H. More OTA was found in undamaged berries at 30 ºC than 

at 20º C, contrary to previous works on synthetic medium, where temperatures of 15-20ºC 

were reported as optimal for A. carbonarius OTA production (Belli et al., 2007; Mitchell et al., 

2004). 

 

A. carbonarius 3.83 was more adapted to grow under predicted conditions than A. carbonarius 

3.168; however, OTA production was sharply reduced in these conditions, while A. 

carbonarius 3.168 was unaffected. Recent studies suggest that secondary metabolites may play 

a role in competitive interactions between xerophilic fungi in extreme dry conditions (Leong 

et al., 2010). 

 

In a climatic change scenario, fungal metabolism could be affected by other factors such as 

increased CO2 concentration and ultraviolet radiation (UV). Magan et al. (2010) suggested 

that slightly increased CO2 concentrations and interactions with temperature and water 

availability may stimulate the growth of some mycotoxigenic species, especially under water 

stress. Recentlystudies found that up to 50% CO2 had only a slight impact on OTA 

production by A. carbonarius over a range of aW conditions, with aW being a more important 
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factor than CO2 (Pateraki et al., 2007). Valero et al. (2007) observed that Alternaria alternata 

and A. carbonarius in SNM were more resistant than other fungi isolated from grapes when 

they were irradiated with UVC light. Therefore studies considering the maximum number of 

factors (aW, t, UV light, C02...) simultaneously are required to understand the implications of 

climate change on fungal metabolism and its consequences on food safety.  

 

The potential impact of climate change on the effectiveness of fungicide treatments was also 

assessed. Chemical fungicides were used at the doses recommended by the manufacturers 

for the control of target moulds. Although neither of the commercial fungicides used here 

were recommended for Aspergillus, Switch ® showed high efficiency under both 

environmental conditions tested, significantly inhibiting growth and reducing OTA 

production in certain cases. Other works have shown the efficiency of this fungicide in SMN 

and grapes against A. carbonarius (Belli et al., 2006b); moreover its efficacy has been 

demonstrated in field treatments (Tjamos et al., 2004; Valero et al., 2007). In addition, a slight 

improvement in the control exerted by this fungicide was observed under predicted 

environmental conditions. In relation to active compounds, penconazole (100 g/kg), 

cypronidil (375 g/kg) plus fluodioxonil (250 g/kg) and mancoceb (800 g/kg) completely 

inhibited A. carbonarius on SNM but on grapes a mixture of cypronidil (375 g/kg) and 

fluodioxonil (250 g/kg) seemed, together with penconazole (100 g/kg) and azoxystrobin 

(250 g/kg), the best fungicides to control A. carbonarius grow and OTA production (Belli et 

al., 2006). Other studies also described the suitability of penconazole: a reduction of around 

90% was found in the level of OTA in wines made from grapes treated with this fungicide 

(Lo Curto et al., 2004). Tjamos et al. (2004) observed higher efectiveness of fludioxonil than 

of fludioxonil plus cypronidil, pointing out fludioxonil as being responsible for the 

effectiveness; besides, they recommended late fungicide applications owing to their greater 

efficiency than early applications.  

 

On the other hand, Flint Max ® was less effective, as found in other studies (Belli et al., 

2006b), although its effectiveness was in some cases enhanced by predicted environmental 

conditions. 

 

The general public perceives risks related to pesticides as posing a greater hazard than 

mycotoxins (Williams and Hammitt, 2001). Thus the use of plant extracts could be an 

alternative to chemicals for fungal prevention, because they are biodegradable, do not leave 



Research Work-Part II 

248 
 

residues, do not pollute the environment and, above all, are obtained naturally. Nonetheless, 

E. arvense at 2%, although previous studies had reported its antifungal properties 

(Milovanović et al., 2007 Radulovic ́ et al., 2006), was not been effective in controlling 

ochratoxigenic fungal growth and OTA production in grapes. Probably the dosage tested in 

our experiment was not high enough for mould control. A recent study has proven the 

effectiveness of E. arvense extracts (3%) against different strains of Aspergillus, including A. 

carbonarius, A. westerdijkae, on maize agar medium. (Garcia el al., 2011). The results were dose-

dependent, since high levels reduced growth byt low levels could stimulate it under some 

conditions. Growth rate of these species where 93-100 % inhibited at 3% agar medium. At 

2% agar medium the growth rate of A. carbonarius was not reduced, although growth rate was 

delayed, while for A. westerdijkae a 37-100 % of reduction in growth rate was observed. 

Finally, the extract at 1% agar medium stimulated growth of all Aspergillus strains tested. 

Regarding OTA production, extract at 3% inhibited growth and therefore OTA production; 

however, at lower concentration, stimulation of OTA production occurred under some 

conditions (Garcia et al., 2011). In our case, spraying of E. arvense extract (2%), although 

slightly reduced fungal growth, stimulated OTA production.  

 

As conclusion, the climatic scenario affected growth and OTA production of different 

strains. Conditions simulating a climatic change scenario involving higher temperatures and 

lower RH led to a reduced infection and consequent OTA accumulation, although previous 

studies have shown that such conditions could favour a higher presence of ochratoxigenic 

inocula in vineyards. A. ochraceus was more sensitive to predicted climatic conditions than A. 

carbonarius, therefore A. carbonarius could be more adaptable to the climate scenarios 

predicted. Magan et al. (2011) suggested that a climate change towards hot temperatures and 

drought could increase the risk of migration of pathogens, which might occur as a result of 

a shift in response to warmer, drought-like climatic conditions. On the other hand, the effect 

of fungicides depends mainly on the active ingredient, the results being only weakly related 

to changing environmental conditions.  
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ABSTRACT  

 

Ochratoxin A (OTA) has been found in pre-harvest and freshly harvested wheat. Spanish 

climatic conditions point to Aspergillus species as the probable responsible for this OTA 

presence. In this study the effectiveness of 5 non-specific chemical wheat field antifungals 

(25.9% tebuconazole + 60.0% N,N-capramide dimethyl; 12.70% tebuconazole + 12.7% 

prothioconazole + 59.5%N,N- amide dimethyldecane; 12.5% epoxiconazole; 12.5% 

tetraconazole; and 70% thiophanate methyl) and an extract from Equisetum arvense was 

investigated in vitro on wheat by recording growth (colony size and DNA concentration) and 

OTA production of two ochratoxigenic isolates of Aspergillus carbonarius and three of A. 

steynii, simulating current and extreme climatic conditions. Inoculated wheat was incubated 

under two alternating temperature cycles (35/15 ºC and 25/10 ºC) with photoperiod (14/10 

h lightness/darkness), and two moisture levels (40 and 25%). The Aspergillus species tested 

seemed to be able to persist in the future coming conditions, in particular, A. steynii, a high 

OTA producer. Azoles were effective in controlling the growth of A. carbonarius and A. 

steynii, and this effectiveness may not be compromised by the increase in temperature and 



 

 
 

decrease of humidity. However, azoles are not useful for the prevention of OTA 

accumulation, which could be only reduced in A. carbonarius under non-extreme conditions. 

Although some adjustment will probably be required, further studies should be conducted 

in the field, since the antifungals used in this study are applied at flowering and not directly 

on the grain. Moreover, timing of antifungal application may need to be optimized. Finally, 

Equisetum extract showed promising results as an antifungal, however further work to adjust 

the applied concentrations is required, 
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1. INTRODUCTION 
 

Due to the global importance of cereals in the diet and, in certain climatic conditions, their 

susceptibility to invasion by molds, mycotoxin production is a concern that can from crops 

to the final products (Molinié et al., 2005). Consumption of food contaminated by 

mycotoxins has been associated with several cases of human poisoning or mycotoxicoses, 

sometimes resulting in death (Molina and Giannuzzi, 1999).  

 

In wheat the main efforts in the control of mycotoxins in the field have been directed towards 

species of Fusarium. However, presence of ochratoxin A (OTA) in wheat and wheat products 

in several parts of the world makes necessary to focus also to ochratoxigenic fungi (Duarte 

et al., 2010).  

 

In northwest Europe OTA presence in cereals is mainly associated to the presence of 

Penicillium verrucosum, but warmer countries Aspergillus spp. may be the most likely responsible. 

In Algeria more Aspergillus (55%) than Penicillium (6%) species were isolated from freshly 

harvested wheat grain, both increasing during storage (Riba et al., 2008). However, in 

Lebanon more Penicillium (50%) than Aspergillus (31%) species were isolated preharvest, 

although only 57% of Penicillium spp. compared with 80% of A. ochraceus produced OTA, at 

maximum concentrations of 53 and 65 µg/kg, respectively, with no A. niger aggregate isolates 

producing OTA (Joubrane et al., 2011). In Spain, Cabañes et al. (2008) observed high 

occurrence of Aspergillus and Penicillium spicies in retail wheat flours from supermarket, but 

only 17 isolates of P. verrucosum were OTA producers. By contrast, Mateo et al. (2011) pointed 

to Aspergillus species as the main fungi responsible for the presence of OTA inbarley grain 

from Spain, since A. steynii, A. ochraceus and A. carbonarius were detected in most of the 

samples contaminaeted with OTA. Soldevilla et al. (2005) found that 37-55% and 45-76% of 

samples from Spain soft wheat and Spring barley contained A. fumigatus and A. niger var. niger, 

respectively. Likewise, Riba et al. (2008) and González-Salgado (2009) found A. carbonarius 

in fresh wheat. Most strains A. carbonarius are OTA producers. 

 

The presence of black aspegilli in pre-harvest grain samples in Spain and Algerian studies 

indicates an adaptation of such species to warmer weather. Magan et al. (2011) suggested that 

a climate change towards hot temperatures and drought could increase the risk of migration 

of pathogens as a result of a shift to warmer, drought like conditions. For example, Fusarium 

verticillioides, the most widespread maize pathogen, is favored by warm dry weather, while A. 
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flavus tends to occur only in a particularly hot summer. Under warmer conditions a clear 

modification of mycotoxin association on maize was observed: more fumonisins and 

aflatoxins, less DON and zearalenone. Additionally, recent studies of strains of A. flavus 

isolated from maize in North Italy showed slightly different ecological profiles in terms of 

both optimal and marginal growth conditions compared to other regions of the world 

(Giorni et al., 2007).  

 

Prevention o f growth and mycotoxin-producing fungi is the most effective strategy for 

controlling the presence of mycotoxins in crops. The Codex Alimentarius (CAC) includes the 

application of fungicides in Good Agricultural Practices to reduce contamination in cereals 

(CAC/RCP 51-2003). However care should be taken since continuous and indiscriminate 

use of these compounds could lead to toxic effects for consumers and to the development 

of resistant microorganisms (López-Malo et al., 2000). The EU has set the maximum residue 

level (MRL) on wheat at 0.1 µg/kg for prothioconazole and tetraconazole, 0.2 µg/kg for 

epoxiconazole and tebuconazole, and 0.05 mg/kg for thiophanate methyl (European Union 

Pesticides database 2010; EU Nº 559/2011). Legal restrictions on MRL and consumer 

demand for healthier products requires the use of safer and more environmentally friendly 

antifungals. Plant extracts have been tested against Aspergillus species (Rasooli and Owlia, 

2005; Rasooli et al., 2006) including those of Equisetum spp., commonly known as field 

horsetail (Garcia et al., 2011, 2012; García-Cela et al., 2011; Milovanović et al 2007, Radulovic 

et al., 2006).  

 

It is important to evaluate the effectiveness of agricultural practices, including application of 

field fungicides under different climate scenarios. For this reason, the aim of the present 

study was to test in vitro the impact of extreme fluctuating environmental conditions in 

development of ochratoxigenic molds on wheat and effectiveness of synthetic and natural 

antifungals. 

 

2. MATERIALS AND METHODS 
 

2.1. Fungal isolates  

 

One strain of A. carbonarius (3.265 UdLTA) and 3 strains of A. steynii (3.263 UdLTA, 3.264 

UdLTA and 3.266 UdLTA) isolated from Spanish barley, and one A. carbonarius (3.83 

UdLTA) isolated from Spanish grapes were subcultured on Yeast Extract Agar (CYA) plates 
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and incubated at 25 ºC for 7 days to enable significant sporulation. Following incubation, a 

sterile inoculation loop was used to remove the conidia from CYA plates and they were 

suspended in Tween 80 (0.005%). After homogenizing the suspensions were adjusted using 

a Thoma counting chamber to final concentrations of 1×106 spores/mL in Tween 80 

(0.005%) and in water modified with glycerol to provide 0.98 aW. Previously, the OTA-

producing capacity of the isolates was assessed using the method of Bragulat et al. (2001). 

 

2.2. Wheat preparation 

 

Fourteen 1-L bottles were filled with 400 g of wheat and autoclaved at 121 ºC for 20 min. 

Due to the low initial water content, no softening was observed in the grains due to 

autoclaving. From the 14 bottles, seven were adjusted to 40% (aW =0.99) and seven to 25% 

(aW =0.98) moisture content level (m.c.). Moisture content was adjusted by aseptically adding 

amounts of sterile distilled water to wheat. The bottles were cooled down to 4 ºC for 48 

hours with periodic hand-shaking during this time. The amount of water necessary to reach 

the different m.c. levels was determined by using to relation between wheat m.c. and water 

initially determined subtracting the volume of antifungal to be added.  

 

2.3. Antifungals preparation  

 

One plant extract (Equisetum arvense) and five non-specific wheat commercial antifungals for 

Aspergillus (Folicur ®, Prosaro ®, Lovit ®, Domark evo ®, and Enovit®) were used at the 

doses described in Table 1. Doses of liquid antifungals were calculated from 

recommendations by manufacturers (L/ha) divided between average field efficiency per ha 

in unirrigated land in Spain (2128 kg/ha) as an approximation. Then, antifungals were mixed 

with distilled water until final volumes of 1.5 ml to facilitate the dispersion in the wheat grain. 

The antifungal powder was mixed in a rate of 0.075% w/v. The plant extract was obtained 

from the aerial parts of E. arvense (collected in fields from Lleida, Spain, 2010-2011), washed 

with water and dried at 40 ºC. Dried vegetal material (25 g) was macerated in 500 mL of 70% 

ethanol (99.6% purity) at 25 ºC during 7 days. The extract was then filtered under vacuum 

and the plant material was removed, leaving a dark green hydroalcoholic extract. The ethanol 

and part of water were then evaporated by rota-evaporation at 40 ºC to obtain a 19% (w/v) 

concentration of plant extract which was stored at 4 ºC until use. The plant extract and 

antifungals were aseptically incorporated into the wheat bottles and shaked vigorously. Then 

20 g of wheat were incorporated into the Petri dishes. Final aW values of seeds were checked 



Study VII 

256 
 

with and AguaLab Series 3 (Decagon Devices, Inc., WA, USA) with an accuracy of ±0.003, 

before, during and at the end of the experiment.  

 

Table 1 Antifungal dose and active ingredients 

 

Supplier Antifungal Active ingredient Presentation Doses 

Bayer 

CropScience S.L. 

(F1) Folicur 25® 

Ew 

25.9 %Tebuconazole 

60.0%N,N-capramida 

dimethyl 

Liquid 0.47A 

Bayer 

CropScience S.L. 

(F2), Prosaro® 12.70%Tebuconazole 

12.7%Prothioconazole 

59.5%N,N-

amidedimetildecano 

Liquid 0.47A 

Basf Española 

S.L. 

(F3) Lovit® 12.5%Epoxiconazole Liquid 0.38B 

Sipcam Inagra 

S.A. 

(F4) Domark 

Evo® 

12.5%Tetraconazole Liquid 0.35C 

Sipcam Inagra 

S.A. 

(F5) Enovit 

Metil® 

70%Thiophanate methyl Powder 0.375D 

 (F6) E. arvense Table 2 Liquid 15.6E 

Doses (ml antifungal/100g wheat) A: From recommended doses of 1L/ha; B: From recommended doses of 0.8L/ha; C: From 

recommended doses of 0.75L/ha; D: From 0.075% of powder antifungal solution; E: From 19% acuose plant extract of E. arvense. 

 

2.4. Phenolic compounds analysis in E. arvense extract (HPLC-DAD-ESI/MS) 

 

A lyophilized E. arvense extract was analysed using a Hewlett-Packard 1100 chromatograph 

(Agilent Technologies) with a quaternary pump and a diode array detector (DAD) coupled 

to an HP Chem Station (rev. A.05.04) data-processing station. A Waters Spherisorb S3 ODS-

2 C8, 3 μm (4.6 mm × 150 mm) column thermostated at 35 °C was used. The solvents used 

were: (A) 0.1% formic acid in water, (B) acetonitrile. The elution gradient established was 

isocratic 15% B over 5 min, 15-20% B over 5 min, 20-25% B over 10 min, 25-35% B over 

10 min, 35-50% B over 10 min, and re-equilibration of the column, using a flow rate of 0.5 

mL/min. Double online detection was carried out in the DAD using 280 nm and 370 nm as 

preferred wavelengths and in a mass spectrometer (MS) connected to the HPLC system via 

the DAD cell outlet. 
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MS detection was performed in an API 3200 Qtrap (Applied Biosystems, Darmstadt, 

Germany) equipped with an ESI source and a triple quadrupole-ion trap mass analyzer that 

was controlled by the Analyst 5.1 software. Zero grade air served as the nebulizer gas (30 psi) 

and turbo gas for solvent drying (400 ºC, 40 psi). Nitrogen served as the curtain (20 psi) and 

collision gas (medium). The quadrupols were set at unit resolution. The ion spray voltage 

was set at -4500V in the negative mode. The MS detector was programmed to perform a 

series of two consecutive modes: enhanced MS (EMS) and enhanced product ion (EPI) 

analysis. EMS was employed to show full scan spectra, to give an overview of all the ions in 

sample. Settings used were: declustering potential (DP) -450 V, entrance potential (EP) -6 V, 

collision energy (CE) -10V. Spectra were recorded in negative ion mode between m/z 100 

and 1000. EPI mode was further performed in order to obtain the fragmentation pattern of 

the parent ion(s) of the previous experiment using the following parameters: DP -50 V, EP 

-6 V, CE -25V, and collision energy spread (CES) 0 V.  

 

2.5. Preparation of inocula and incubation 

 

Petri dishes with 20 g of grain wheat were inoculated centrally with 5 µl of each spore 

suspension of 106 spores/mL. Plates with the same aW were enclosed in sealed containers 

along with beakers containing water glycerol solutions of the same aW as the plates in order 

to maintain the aW. Petri dishes were incubated at different combinations of temperature and 

R.H. for 21 days simulating a possible extreme climatic change scenario. A simulated 

photoperiod of fourteen sunlight hours and ten hours of darkness per day was applied. To 

simulate light conditions, white light was used (Mazda 23 WEureka3 Electronic bulbs, 230–

240 V, 50–60 Hz, 1500 lumen, 175 mA). The heat emitted by the bulbs did not increase the 

temperature proposed for incubation. Mean temperatures of 25 and 10 ºC for day and night, 

respectively, were chosen as current climatic conditions in May (“present” conditions), 

antifungal pre-harvest application time in Northern Spain. Mean temperatures of 35 and 15 

ºC for day and night respectively were chosen as extreme predicted climatic conditions which 

could occur in the expected future (“extreme” conditions), based in the current conditions 

in Southern Spain (INM, Instituto Nacional de Meteorología, Spain). Also, 40% m.c. was 

used for the first treatment simulating the m.c. of the crop at flowering (Gooding et al., 

2003), and 25% m.c. was used for the second treatment simulating a decrease caused by 

drought in a climate change scenario. Each treatment was carried out by triplicate. 

 

 



Study VII 

258 
 

2.6. Growth determination  

 

Mycelial extension rates were measured over time. Two perpendicular diameters of the 

growing colonies were measured daily until 21 days or when the colony reached the edge of 

the Petri dish (85 mm). The slope of the line obtained by linear regression of colony radius 

against time was used to determine growth rates (mm/day).  

 

2.7. Quantification of fungal DNA 

 

DNeasy Plant Mini Kit (Qiagen, Valencia, Spain) was used according to manufacturer’s 

instructions to obtain genomic DNA from inoculated wheat samples. After 21 days of 

incubation, the 20 g of inoculated wheat was finely milled with a grinder. 100 mg of each 

wheat sample in all conditions were used to carry out DNA extraction. DNA concentrations 

were determined using a NanoDrop® ND-1000 spectrophotometer (Nanodrop 

Technologies, Wilmington, USA). 

 

Since inoculation was performed in sterile wheat grains, quantification of fungal DNA in all 

samples analyzed was performed using the primer set 5.8S1/5.8S2 which amplifies a 

fragment of 90 bp of the 5.8S region of the ribosomal DNA of all Aspergillus species. The 

real-time PCR protocol used was described previously in our group (Gil-Serna et al., 2009) 

but including some modifications. Real-time PCR assays were performed and monitored in 

an ABI PRISM 7900HT system (Applied Biosystems, Madrid, Spain) in the Genomic Unit 

of the Complutense University of Madrid, Spain. The reaction mixture composition in a final 

volume of 10 µl was: 5 µl SYBR® Green PCR Master Mix (Applied Biosystems, Madrid, 

Spain), 0.6 µl forward primer 5 µM, 0.6 µl reverse primer 5 µM, 2.5 µl DNA template in 

suitable concentration (30 ng/µl) and 1.3 µl molecular biology water (MO-BIO, Carlsbad, 

USA). qPCR assays were carried out using a standard program: 95 ºC for 10 min, 40 cycles 

at 95 ºC for 15 s and 60 ºC for 1 min. All reactions were carried out by duplicate in MicroAmp 

384-well plates (Applied Biosystems, Madrid, Spain). 

 

This is the first time this protocol was used to quantify genomic DNA of A. carbonarius and 

A. steynii; therefore, the efficiency of the method was evaluated using ten-fold serial dilutions 

of DNA from A. steynii 3.264 UdLTA and A .carbonarius 3.83 (from 50 to 5x10-3 ng/µl) as 

template in the reactions to create the standard curve. CT values were plotted against the 

logarithm of starting quantity of template for each dilution. Then, amplification efficiency 
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was calculated from the slope of the standard curve (Kubista et al, 2006). The standard curve 

generated using DNA from A. steynii was CT = -3.31log[DNA] + 20.22 and the amplification 

efficiency was 100%. In the case of A. carbonarius the standard curve was CT = -3.30log[DNA] 

+ 18.96 and the amplification efficiency calculated was 101%.  

 

CT values obtained after evaluating DNA extracted from inoculated wheat samples were 

interpolated in their corresponding standard curve to calculate the relative amount of DNA 

present in them. 

 

2.8. Ochratoxin A determination  

 

Extraction: After 21 days of incubation, fungal growth was registered for the last time and 

the wheat samples were stored at -17 ºC until analyzed. Prior to OTA extraction, samples 

were finely milled with a grinder (Braun Aroma Gourmet, KSM2, Kronberg Germany). 

Next, 10 g of ground wheat were weighed in an amber flask and 40 mL of 60% 

acetonitrile/water solution were added. The mixture was blended for 10 min by means of a 

magnetic stirrer. The extract was filtered by gravity (Whatman No 1 filter).  

 

Clean-up by immunoaffinity chromatography columns (IAC): 2 mL of the filtrate were mixed 

with 22 mL of PBS (phosphate buffered saline, solution containing 0.2 g KCl, 0.2 g KH2PO4, 

1.16 g Na2HPO4, 8 g NaCl and 900 mL H2O, pH = 7.4). The diluted extract was loaded onto 

the IAC column (Ochraprep, R-Biopharm, Rhône LTD) and allowed to pass through it by 

gravity. After washing the column with 20 mL PBS and drying it with air, OTA was eluted 

with 1.5 mL desorption solution (methanol: acetic acid, 98:2) in an amber vial. Backflushing 

was done three times. Finally, 1.5 mL Milli-Q water was passed to obtain a total volume of 

3 mL. 

 

Chromatographic analysis: High performance liquid chromatography (HPLC) was 

performed on the cleaned-up extract on a Waters 2695 Separations Volume (Alliance) 

coupled to a Waters 2475 Multi λ fluorescence detector. Waters Spherisorb ODS2 C18 

column (5 μm, 4.6 × 150 mm) equipped with a Waters Spherisorb ODS2 guard column (5 

μm, 4.6 × 10 mm) (Waters, Ireland) was used. Mobile phase consisted of acetonitrile:Milli-

Q water:acetic acid (51:47:2). Flow-rate was 1 mL/min. Injection volume was 100 μL. 

Excitation and emission wavelengths were 333 nm and 443 nm, respectively. Temperature 

of column and guard column was maintained at 40 °C. Retention time for OTA was 5.8 min. 
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The integration software used was Empower 2 (2006 Waters Corporation, Database Version 

6.10.00.00). 

 

Quantification: OTA quantification was based on the external standard calibration method. 

The limit of detection (LOD) of the analysis was 0.5 g/kg based on a signal to noise ratio 

of 3:1. 

 

2.9. Statistical analysis 

 

Analysis of variance of growth rates and diameter of the colony after 7, 14 and 21 days, , 

DNA concentration and OTA production was used in order to assess significant differences 

(p<0.05) due to climatic conditions and assayed antifungals. Post-hoc analyses were 

performed using the Tukey-honestly significant differences (Tukey-HSD) test. To test the 

possible correlation between the production of OTA and the growth responses (diameters, 

growth rate and DNA), the Spearman correlation coefficient was calculated. For statistical 

purposes undetectable OTA levels were considered LOD value. Statgraphics ® Plus 5.1 

(Manugistics, Inc., Maryland, USA) was employed. 

 

3. RESULTS 
 

3.1. Phenolic compounds in E. arvense extract 

 

Phenolic compounds in the E. arvense extract belonged to families of hydroxycinnamic 

(phenylpropanoids) and methoxycinnamic acids and flavonls (Table 2). The main phenolic 

compounds were kaempferols belonging to flavonols. 

 

3.2. Impact of changing climatic conditions in fungal growth and OTA 

production  

 

The analysis of variance revealed that all factors (strains, environmental conditions and 

antifungal treatment) and their two and three-way interactions had a significant effect on 

growth responses (p<0.05), while for OTA production, the environmental conditions only 

had a significant effect linked to antifungal treatment. 
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Under the conditions tested, A. carbonarius isolates grew faster than A. steynii reaching greater 

colony diameters after 7, 14 and 21 days; in fact A. carbonarius isolates colonized the whole 

9-cm Petri dish before 14 days in “extreme” conditions and before 21 days under “present” 

conditions (Table 3). Growth rates in A. carbonarius were higher in ‘extreme’ conditions (7 

mm/day vs 5 mm/day), while few differences were found in A. steynii due to the assayed 

climatic conditions (2–3 mm/day). 

 

Table 2 Retention time, maximum wavelength in the visible region (max), mass spectral 

data and identification of plant phenolic compounds in E. arvense extract. 

 

Peak 
Rt 

(min) 
max 
(nm) 

Molecular 
ion 

[M-H]- 
(m/z) 

MS2 
(m/z) 

Tentative identification µg/mg 

1 7.0 354 787 625, 463, 301 
Quercetin 3-O-rutinoside-7-

O-rhamnoside1 
0.77 ± 0.01 

2 7.7 344 771 609, 447, 285 
Kaempferol-3-O-rutinoside-

7-O-glucoside2 
10.84 ± 0.21 

3 8.9 358 787 625, 463, 301 Quercetin trihexoside1 0.14 ± 0.01 

4 9.2 328 355 193 Ferulic hexoside acid3 0.14 

5 12.5 330 179 135 Caffeic acid4 1.82  ± 0.09 

6 15.1 372 423 261 Equisetumpyrone - 

7 15.7 352 625 463,301 Quercetin 3-O-sophoroside1 0.85 ± 0.01 

8 16.7 328 309 193,178,149,135 Ferulic acid derivative3 0.26 ± 0.04 

9 17.9 348 609 447, 285 Kaempferol dihexoside2 7.48 ± 0.12 

10 18.5 328 193 178, 149, 135 trans-Ferulic acid3 1.19 ± 0.03 

11 20.5 356 463 301 Quercetin 3-O-glucoside5 0.46 ± 0.02 

12 21.8 354 505 463,301 Quercetin acetyl hexoside5 0.55 ± 0.01 

13 22.6 352 447 285 Kaempferol 3-O-glucoside6 0.15 ± 0.01 

*mean ± standard deviation (n=2). 
1 Están expresados como mg quercetina 3-O-rutinósido/mg planta. 
2 Están expresados como mg kaempferol 3-O-rutinósido/mg planta. 
3 Están expresados como mg ácido ferúlico/mg planta. 
4 Están expresados como mg ácido cafeico/mg planta. 
5 Están expresados como mg quercetina 3-O-glucósido/mg planta. 
6 Están expresados como mg kaempferol 3-O-glucósido/mg planta 

 

Under “present” conditions, A. carbonarius (3.265 UdLTA) grew initially faster (p<0.05) than 

A. carbonarius (3.83 UdLTA), but no significant differences were found in their growth after 
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14 and 21 days, nor in their growth rate (Table 3). In A. steynii no significant differences were 

found among isolates regarding growth kinetics. By contrast, under “extreme” conditions, at 

7 days, colony diameter of A. carbonarius (3.83 UdLTA) was significantly higher than A. 

carbonarius (3.265 UdLTA); however as in the “present” condition this difference disappeared 

later (Table 3). In A. steynii, although all isolates grew at the same rate, 3.266 UdLTA isolate 

reached a larger size after 21 days. DNA concentration paralleled colony size results; 

correlation analysis showed a significant positive correlation with diameter at 7, 14 and 21 

days, as well as with growth rate. The effect caused by climatic conditions on OTA 

production was only significant when considered along with the other factors, strain and 

antifungal treatment. In general, the A. steynii isolates were higher OTA producers than A. 

carbonarius under both conditions tested (Table 3). Although ‘present’ conditions were more 

favorable for OTA production in A. carbonarius, no significant differences were observed in 

A. steynii, although the observed means were higher under ‘extreme’ conditions. 

 

3.3. Effectiveness of antifungals against fungal growth in wheat 

 

Significant differences (p<0.001) were found among antifungal treatments; their interactions 

with environmental conditions and strains tested were also significant. 

 

3.3.1. Aspergillus carbonarius 

 

After 7 days, fungal growth in the untreated controls was clearly visible, and had already 

reached the limit of the Petri dish after 21 days (Table 4). Under “present” conditions 

antifungals coded F1, F2, F3, F4 and F6 significantly inhibited fungal growth, although the 

effect could not be observed after 21 days, when the controls reached the limit of the Petri 

dish. Under “present” conditions, the percentage of reduction in growth rate showed similar 

values in F1, F2, F3 and F4 (19-41%) although higher variability in the effect was observed 

under “predicted” conditions (5-73%), due mainly to the increased effectively of F1 and F2, 

and the decreased activity of F4. Fungicide F5 either had no effect or stimulated the growth 

(Figure 1). Finally, F6 was the most efficient under all conditions (92-94% growth rate 

reduction under “present” conditions, 75-91% under “extreme” conditions).  
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Table 3 Significance of the effects of enviromental conditions in colony diameter (mm) at 7, 14 and 21 days, growth rate (mm/day) and OTA 

(µg/g) production of Aspergillus spp. in untreated trials. Different capital letters mean significant differences between strains within a given 

condition. Different lower case letters mean significant differences for a given strain among conditions (Tukey test, p<0.05). 

 

 PRESENT CONDITIONS 

  7 days 14 days 21 days GROWTH RATE OTA PRODUCTION 

3.830 UdLTA 33.33 ± 1.50 Ab 71.17 ± 1.20 Ab 85.00 ± 0.00 Aa 5.15 ± 0.04 Ab 356.58 ± 85.25 Ba 

3.265 UdLTA 39.67 ± 0.80 Ba 69.83 ± 1.20 Ab 85.00 ± 0.00 Aa 4.82 ± 0.24 Ab 241.14 ± 52.75 Ba 

3.266 UdLTA 10.83 ± 1.60 Cb 35.50 ± 2.80 Ba 56.50 ± 3.90 Ba 3.07 ± 0.38 Ba 778.19 ± 124.97 Aa 

3.263 UdLTA 10.83 ± 1.30 Cb 31.67 ± 4.60 Ba 48.17 ± 7.30 Ba 2.67 ± 0.21 Ba 391.61 ± 70.91 Ba 

3.264 UdLTA 12.75 ± 2.30 Cb 36.00 ± 8.50 Ba 49.75 ± 3.20 Ba 2.71 ± 0.93 Ba 466.60 ± 149.60 Ba 

  PREDICTED CONDITIONS  

  7 days 14 days 21 days GROWTH RATE OTA PRODUCTION 

3.830 UdLTA 52.25 ± 3.90 Aa 85.00 ± 1.70 Aa 85.00 ± 0.00 Aa 7.04 ± 0.45 Aa 27.00 ± 17.27 Cb 

3.265 UdLTA  39.67 ± 1.80 Ba 85.00 ± 0.00 Aa 85.00 ± 0.00 Aa 7.19 ± 0.05 Aa 55.32 ± 9.00 Cb 

3.266 UdLTA 16.75 ± 2.20 Ca 38.00 ± 3.00 Ba 56.50 ± 2.10 Ba 2.83 ± 0.10 Ba 1004.99 ± 70.07 Aa 

3.263 UdLTA 19.75 ± 3.20 Ca 38.25 ± 4.30 Ba 51.50 ± 3.00 BCa 2.68 ± 0.44 Ba 518.06 ± 72.95 Ba 

3.264 UdLTA 19.00 ± 1.70 Ca 37.33 ± 1.30 Ba 48.50 ± 2.30 Ca 2.30 ± 0.15 Ba 265.56 ± 228.82 BCa 
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In general, under both climatic conditions treated wheat samples, except those treated with 

F5, showed lower DNA concentration than the untreated wheat. However these reductions 

were not significant. As with colony size, F6 always reported the lowest values of DNA 

concentration. On the other hand the DNA level in F5 treated wheat was significantly higher 

than in the untreated control except in A. carbonarius 3.265 under “present” conditions. 

 

3.3.2. Aspergillus steynii 

 

Due to the slow growth rate of the isolates the colonies never reached the edge of the Petri 

plates. As a consequence, few differences were observed among antifungals after 7 days of 

incubation. Under ‘present’ conditions, after 14–21 days the most effective antifungals were 

F3, F4 and F6 showing a diameter reduction after 21 days of 27–62%, although the 

effectiveness of the antifungal varied among isolates; for A. steynii (3.266 UdLTA) the most 

effective was F3 (50%), while for the others it was F6 (Table 4). Regarding growth rate, F3 

and F6 achieved the higher reduction in a range of 51 to 59% and 44 to 76%, respectively.  

 

None of the antifungals reduced significantly DNA concentration under “present” 

conditions. Under “extreme” conditions F2, F3 and F6 reduced the DNA concentration in 

all A. steynii inoculated samples but the reduction was only significant in 3.263 UdLTA (81-

94%) and 3.266 UdLTA (68-93%) (Figure. 3). Once again, higher DNA concentration was 

observed in F5 treated samples under both climatic conditions. 

 

3.4. Effectiveness of antifungals against OTA production 

 

Antifungal treatments had a significant impact on OTA production, as well as their 

interactions with strains and conditions tested (p<0.05).  

 

3.4.1. Aspergillus carbonarius 

 

Under ‘present’ conditions, all antifungals significantly reduced OTA production in A. 

carbonarius in a range from 56 to 98.28% and 73 to 99% in A. carbonarius 3.83 UdLTA and A. 

carbonarius 3.265 UdLTA, respectively. However, F6 and F2 were the most effective in both 

isolates. 
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Table 4 Signficance of the effects of enviromental conditions in mean diameter (mm) at 7, 

14 and 21 days. Level not connected by same capital letters are significantly different in the 

same conditions and same lowercase letters are significantly different between conditions 

(Tukey test, p<0.05). 

  PRESENT CONDITIONS PREDICTED CONDITIONS 

    7 days 14 days 21 days 7 days 14 days 21 days 

A. 
carbonarius 

3.830 
UdLTA 

C 33.33 B 71.17 A 85.00 A 52.25 A 85.00 A 85.00 A 

F1 23.33 CD 50.33 B 74.00 A 17.00 C 32.50 C 40.00 C 

F2 20.00 D 43.50 B 74.17 A 14.67 C 34.33 C 42.33 C 

F3 27.33 BC 50.17 B 78.67 A 30.75 B 60.25 B 72.25 B 

F4 25.50 CD 54.00 B 76.83 A 36.67 B 77.00 A 85.00 A 

F5 41.00 A 73.83 A 85.00 A 35.75 B 80.75 A 85.00 A 

F6 7.00 E 10.50 C 11.00 B 0.00 D 10.17 D 13.00 D 

A. 
carbonarius 

3.265 
UdLTA 

C 39.67 A 69.83 B 85.00 A 39.67 A 85.00 A 85.00 A 

F1 25.83 B 50.17 CD 68.33 BC 11.50 D 32.17 CD 43.17 BC 

F2 24.83 B 43.50 D 62.83 C 21.00 C 42.00 BC 57.00 B 

F3 24.67 B 50.50 CD 71.50 BC 27.75 B 63.50 AB 81.50 A 

F4 25.83 B 55.33 C 74.33 B 31.00 B 79.00 A 85.00 A 

F5 46.25 A 83.75 A 85.00 A 24.83 BC 71.50 A 85.00 A 

F6 9.00 C 10.33 E 10.67 D 0.00 E 15.33 D 21.67 C 

A. steynii 
3.266 

UdLTA 

C 10.83 BC 35.50 B 56.50 B 16.75 AB 38.00 AB 56.50 A 

F1 8.33 C 23.50 C 38.33 C 11.00 BC 24.50 BC 31.25 B 

F2 14.17 B 36.67 B 57.33 B 7.17 C 13.83 C 15.16 C 

F3 7.75 C 18.50 C 28.00  D 8.25 BC 23.75 BC 33.00 B 

F4 9.00 BC 21.50 C 41.00 C 20.67 A 42.50 AB 56.00 A 

F5 28.50 A 56.33 A 74.17 A 15.50 ABC 45.50 AB 64.00 A 

F6 12.67 BC 24.83 C 35.33 CD 5.00 C 27.50 ABC 39.25 B 

A. steynii 
3.263 

UdLTA 

C 10.83 B 31.67 B 48.17 B 19.75 A 38.25 A 51.50 A 

F1 6.17 C 22.67 BC 36.17 BC 14.00 ABC 23.00 BC 28.00 C 

F2 10.50 BC 26.50 BC 41.50 BC 7.25 BC 13.25 C 15.00 D 

F3 7.00 BC 18.50 C 26.00 CD 5.33 C 13.67 C 21.33 CD 

F4 8.33 BC 20.33 C 30.83 CD 17.33 AB 32.50 AB 42.83 B 

F5 27.00 A 49.33 A 65.00 A 13.75 ABC 38.50 A 51.50 A 

F6 11.33 B 15.00 C 18.83 D 6.00 BC 13.00 C 17.50 D 

A. steynii 
3.264 

UdLTA 

C 12.75 B 36.00 B 49.75 AB 19.00 A 37.33 A 48.50 A 

F1 7.25 CD 19.25 CD 32.75 BC 8.00 B 16.50 B 23.33 B 

F2 12.00 BC 30.00 BC 46.50 AB 5.33 B 9.67 B 13.17 B 

F3 4.67 D 13.83 D 20.67 C 6.75 B 15.50 B 19.25 B 

F4 9.17 BC 21.67 CD 31.83 BC 16.00 A 37.00 A 55.67 A 

F5 28.17 A 48.33 A 71.00 A 9.00 B 35.00 A 52.50 A 

F6 8.50 BCD 13.00 D 20.67 C 0.00 C 12.67 B 19.83 B 

C, control, F1, Folicur 25® Ew, F2, Prosaro® , F3, Lovit®, F4, Domark Evo®, F5, Enovit Metil®, F6, E. arvense. 



Study VII 

266 
 

 

Figure 1 Effect of antifungal treatments (C: Control, F1: Folicur 25® Ew,F2: Prosaro®, F3: Lovit®,F4: Domark Evo®, 
F5: Enovit Metil® and F6: E. arvense) on growth rate (mm/day) of Aspergillus species on wheat under different climatic 

conditions: black bars, ‘present’ conditions (temperature cycle of 10/25°C, 40% RH) and gray bars, ‘extreme’ conditions 
(temperature cycle of 15/35°C, 25% RH). Different letters over bars indicate significant differences among values for 

each isolate (Tukey t test at p < 0.05). 
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Figure 2. Effect of antifungal treatments (C: Control, F1: Folicur 25® Ew,F2: Prosaro®, F3: Lovit®, F4: Domark 
Evo®, F5: Enovit Metil® and F6: E. arvense) on OTA production (μg/g) on wheat by Aspergillus species under different 

climatic conditions: ‘present’ conditions (temperature cycle of 10/25 °C, 40% RH) and ‘extreme’ conditions (temperature 
cycle of 15/35 °C, 25% RH). Different letters over bars indicate significant differences among values for each isolate 

(Tukey t test at p<0.05). 
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Figure 3. Effect of antifungal treatments (C: Control, F1: Folicur 25® Ew,F2: Prosaro®, F3: Lovit®, F4: Domark 
Evo®, F5: Enovit Metil® and F6: E. arvense) on DNA concentration (ng/μL) on wheat by Aspergillus species at 21 days 
under different climatic conditions: black bars, ‘present’ conditions (temperature cycle of 10/25 °C, 40% RH) and gray 

bars, ‘extreme’ conditions (temperature cycle of 15/35 °C, 25% RH). Different letters over bars indicate significant 
differences among values for each isolate (Tukey t test at p<0.05). 

 

 

Under ‘extreme’ conditions, no significant reduction in OTA production due to antifungals 

was observed. F5 stimulated OTA production in A. carbonarius 3.83 UdLTA by more than 

700%. 
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3.4.2. Aspergillus steynii 

 

No significant effect on OTA production by A. steynii could be attributed to antifungal 

application, neither in ‘present’ or ‘extreme’ conditions, with the exception of fungicide F2 

for A. steynii 3.264 UdLTA under ‘present’ conditions. In fact, although no significant 

differences could be observed due to the high variability of OTA results, fungicide F2 

reduced OTA production in A. steynii 3.263 UdLTA in 99% and under ‘present’ conditions. 

On the other hand, reductions of 90–93%, 93–98%, and 94–97% by F1, F2 and F6 were 

observed for these same strains under ‘extreme’ conditions. Finally, A. steynii 3.266 UdLTA, 

which was the highest producer, seemed to be unaffected by antifungal application in its 

OTA production. 

 

Finally, a positive correlation was observed between growth and OTA production after 21 

days in the controls for ‘present’ conditions and a negative correlation was observed under  

‘extreme’ conditions, suggesting that stress conditions triggered OTA production. The 

differentiated impacts of antifungals against growth compared to OTA production led to an 

absence of correlation between both variables in the treated experiments. 

 

4. DISCUSSION  
 

Recent studies found ochratoxigenic fungi in pre-harvest and freshly harvested wheat 

suggesting that grain may be contaminated prior to storage (Čonková et al., 2006; Elmholt 

and Rasmussen, 2005; Joubrane et al., 2011; Riba et al., 2008). Although Spain has a certain 

climatic diversity, it is considered as a temperate-warm country. However, climate predictions 

for a medium-term future point to warmer conditions similar to those in Northern Africa. 

According to mycobiota studies in wheat pre-harvest in Northern Africa, Aspergillus species 

might fit better than Penicillium species to such environmental conditions (Riba et al., 2008). 

In pre-harvest wheat in Argelia and Lebanon, the occurrence of Circumdati section was lower 

than Nigri section but the isolates in the former section were higher OTA producers 

(Joubrane et al., 2011; Riba et al., 2008).  

 

In our work the behavior of A. steynii and A. carbonarius in two different simulated climatic 

conditions was tested. Cycling temperatures were chosen in order to simulate actual mean 

day and night temperatures in May, when antifungal pre-harvest application takes place in 

Northern Spain; additionally, an experimental condition was considered including a 
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temperature increase of 5-10 ºC and a decrease of 15% of the moisture content of wheat. A. 

steynii belongs to Aspergillus section Circumdati, characterized by the golden brown colored 

conidia, and has only been reported in coffee, grape, paprika and barley grain, probably due 

to its recent description (Gil-Serna et al., 2011; Leong et al., 2007; Sardiñas et al., 2011). Other 

OTA producing species in this section are A. ochraceus, A. elegant and A. westerdijkiae. 

However, Gil-Serna et al. (2011) considered A. steynii a major risk for OTA contamination 

due to its high OTA production. In fact in our study A. steynii isolates showed high OTA 

production under both conditions. Abdel-Hadi and Magan (2009) work is probably the only 

existing study on the ecophysiology of A. steynii. Our results suggest that in a predictable 

scenario characterized by temperature increase and humidity decrease, A. steynii could be 

considered an important OTA-producer; growth rate of A. steynii 3.264 was reduced while 

the OTA production was not affected by any of the antifungal treatments. These results also 

suggest that for an appropriate evaluation of antifungal agents it is necessary to take into 

account both effects on growth and mycotoxin production and that several strains per 

species should be considered. 

 

In the present study, A. carbonarius isolates, despite their different origin, had similar 

behaviour. A. carbonarius is the main OTA producer in the Nigri section followed by species 

belonging to A. niger aggregate (Abarca et al., 2004). Most of the ecophysiology studies on 

A. carbonarius have been carried out on grapes, where optimal temperature of growth is 

between 25-35ºC and 0.95-0.99 aW (Astoreca et al., 2010). However lower temperatures 15-

20ºC and 15-30ºC were reported as optimal for growth on MEA by A. carbonarius and A. 

niger, respectively (Amézqueta et al., 2012). Temperature is an important factor affecting 

growth and toxin production by fungus. Effect of temperature cycling on rice of F. 

graminearum only showed significant differences during the second 2-week of incubation but 

not during the third 2-week of incubation period. However incubation at 15ºC followed by 

incubation at 25ºC for 2 weeks resulted in significantly higher production of deoxinivalenol 

and zearalenone (Ryu and Bullerman, 1999). Daylight temperatures of 35 ºC lead to a faster 

growth rate, while daylight temperatures of 25 ºC are associated with higher A. carbonarius 

OTA production in grapes (Belli et al., 2006). In the same line, the present study concludes 

that warmer future conditions may trigger A. carbonarius growth and infection, while OTA 

production may be reduced, compared to milder “present” conditions.  

 



Research Work-Part II 
 

271 
 

In our work DNA fungal concentration was considered, together with colony diameters, as 

other growth measurement showing a positive correlation between both measurements. 

However OTA production after 21 days only showed correlation with growth when no 

antifungal were not added. This correlation was also observed when A. carbonarius grew in 

synthetic medium agar, however disappeared when it grew paired with others species or alone 

in modified atmosphere (Valero et al., 2006a; 2006b; 2008). Therefore the effect in fungal 

growth and mycotoxin production under stress conditions may be different. 

 

The qPCR assay is a sensitive and quantitative detection assay which could be useful in 

epidemiological studies and to assess mycotoxin contamination in wheat seeds. Nevertheless 

no correlation was found between OTA production and this parameter. Positive significant 

correlations can be found between A. carbonarius or A. ochraceus DNA content and OTA 

concentration, when they are quantified in natural, uninoculated samples of grapes (Atoui et 

al., 2007; Mulé et al., 2006) or green coffee (Schmidt et al., 2004). In the case of barley high 

correlation between F. graminearum DNA level and DON content in barley in North America 

was found, whereas the correlation was not evident in barley from Finland with naturally low 

DON and F. graminearum DNA levels (Sarlin et al., 2006).  

 

Other authors also have set correlations between growth rates and lag phases estimated either 

through colony size measurement or ergosterol content (Marin et al., 2006, 2009). In this 

way different growth measurements should be correlated. Growth is regulated by primary 

metabolism whereas OTA is a fungal product from secondary metabolism thus, faster fungal 

growth may not necessarily result in greater OTA synthesis. 

 

The potential impact of climate change in the effectiveness of non specific Aspergillus 

antifungals was also assessed. Chemical antifungals were used at the doses recommended by 

the manufacturers for the control of the target moulds and the main active ingredients used 

in this study were azoles and thiophanate methyl. Thiophanate acts on tubulin metafase 

mitosis causing cell death. Azoles are sterol demethylase inhibitors that interfere with the 

biosynthetic pathway of ergosterol, an essential component of the fungal cell membrane. 

There is scarce information on the effectiveness of azoles in Aspergillus spp. growth and OTA 

production. Concerning growth control, the azoles (Folicur®, F1; Prosaro ®, F2; Lovit®, 

F3 and Domark Evo ®, F4) were more effective than thiophanate methyl (F5) that generally 

did not affect fungal growth or even stimulated it. Respect to the azoles, epoxiconazole 
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(Lovit®, F3) and tetraconazole (Domark Evo ®, F4) were effective against both 

ochratoxigenic species, although their effectiveness may be compromised under extreme 

conditions. By contrast, tebuconazole (Folicur®, F1 and Prosaro ®, F2) increased their 

effectiveness under warmer and drier conditions. Thus a transition in the active ingredients 

may be required in the future as a result of changing climatic conditions. All antifungals 

reduced OTA production for A. carbonarius under “present” conditions, tebuconazol being 

the most effective. However under “extreme” conditions, none of the antifungals was 

effective in preventing OTA production by any of the strains tested. This means that in some 

cases, antifungals, while limiting fungal growth, induced a stress situation which triggered 

OTA production. Previous in vitro studies showed that azoles (fluquinconazole, 

tebuconazole, thiabendazole) reduced the growth and DON production in F. graminearum 

when applied at high concentration, but sub-lethal levels enhanced mycotoxin production 

(Matthies et al., 1999). 

 

Finally, in this study the effectiveness of a plant extract was also tested as an alternative to 

application of chemicals. Plant extracts contain various antioxidant compounds such as 

polyphenols, phenols, flavonoids, etc. which could be the bioactive basis of their 

antimicrobial properties (Ebana and Madunagu, 1993). Quercetine and kaempferol were the 

main phenolic compounds in our E. extract. Similarly, several studies have confirmed the 

presence of phenolic acids, flavonoids and terpenes in E arvense extracts (Milovanović et al., 

2007; Mimica-Dukic et al. 2008; Radulovic et al.; 2006, Sandhu et al.; 2010). In general E. 

arvense (F6) showed similar or enhanced effect than chemical antifungals, although higher 

doses of it were applied. The highest effectiveness was against A. carbonarius growth and 

OTA production under “present” conditions. By contrast, while growth of A. steynii was 

controlled, OTA production was not so. A slight reduction of fungal growth and stimulation 

of OTA production by A. ochraceus and A. carbonarius was observed on grapes treated with a 

hydroalcoholic E. arvense extract at 2% (García-Cela et al., 2012). E. arvense extract showed 

dose dependent results against some Aspergillus species on maize agar medium; high levels 

reduced the growth but low levels could stimulate it in some conditions (Garcia et al., 2011). 

Besides of the doses, environmental conditions like temperature and aW have been proven 

determinant in the effectiveness of antifungals. E. arvense (3%) was effective at 0.95 aW against 

A. flavus and F. graminearum in maize; but not clear results were observed at lower aW (Garcia 

et al., 2012).  
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Growth of mycotoxigenic fungi and mycotoxins production are largely dependent on 

climatic factors. Fusarium, Aspergillus and Penicilium species differ in their climatic distribution 

as a result of their different optimum conditions for growth, persistence and mycotoxin 

production. The Aspergillus species tested here seem to be able to persist in the future coming 

conditions, in particular, A. steynii, a high OTA producer. Azoles (F1, F2 and F3) were 

effective in controlling growth of A. carbonarius and A. steynii, and this effectiveness may not 

be compromised by the increase in temperature and decrease of humidity. However, they are 

not useful for the prevention of OTA accumulation, which could be only reduced in A. 

carbonarius under non-extreme conditions. Although some adjustment will probably be 

required, further studies should be conducted in the field, since the antifungals used in this 

study are applied at flowering and not directly on the grain. Moreover, antifungal application 

timing may need to be optimized. Finally, Equisetum extract showed promising results as 

antifungal, however further work to adjust the applied concentrations is required. 

 

ACKNOWLEDGEMENTS 
 

The authors are grateful to the Spanish Government (AGL2010- 22182-C04-01), the EU 

(Mycored KBBE-2007-2-5-05 project), the Comissionat per a Universitats i Recerca, del 

Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya (AGAUR) 

and the European Social Fund for financial support. The authors also are grateful for the 

support by a research grant for young scientist awarded by the Institute DANONE. We also 

thank Bayer CropScience, S.L, Sipcam Inagra S.A and Basf Española, S.L. for supplying of 

the antifungals. Authors are also grateful to Dr. Rivas-Gonzalo (Grupo de Investigación en 

Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Spain) for the analysis of E. 

arvense extract.  

 

REFERENCES 
 

Abarca, M.L., Accensi, F., Cano, J., Cabañes, F.J., 2004. Taxonomy and significance of black 
aspergilli. Antonie van Leeuwenhoek, International Journal of General and Molecular 
Microbiology 86, 33-49.  

Abdel-Hadi, A., Magan, N., 2009. Influence of physiological factors on growth, sporulation 
and ochratoxin A/B production of the new Aspergillus ochraceus grouping. World 
Mycotoxin Journal 2, 429-434.  



Study VII 

274 
 

Astoreca, A., Barberis, C., Magnoli, C., Dalcero, A., 2010. Aspergillus carbonarius growth and 
ochratoxin A production on irradiated dried grapes under different water activity and 
temperature conditions. World Mycotoxin Journal 3, 175-182.  

Astoreca, A., Barberis, C., Magnoli, C., Dalcero, A.,2010. Aspergillus carbonarius growth and 
ochratoxin A production on irradiated dried grapes under different water activity and 
temperature conditions. World Mycotoxin Journal 3, 175-182. 

Atoui, A., Mathieu, F., Lebrihi, A.,2007. Targeting a polyketide synthase gene for Aspergillus 
carbonarius quantification and ochratoxin A assessment in grapes using real-time 
PCR. International journal of food microbiology 115, 313-318.  

Battilani, P., Barbano, C., Marin, S., Sanchis, V., Kozakiewicz, Z., Magan, N., 2006. Mapping 
of Aspergillus section Nigri in Southern Europe and Israel based on geostatistical 
analysis. International Journal of Food Microbiology 111, S72-S82.  

Bellí N., Ramos A.J., Coronas I., Sanchís V., Marín S., 2005 Aspergillus carbonarius growth and 
ochratoxin A production on a synthetic grape medium in relation to environmental 
factors. Journal Applied Microbiology. 98, 839–844. 

Bellí, N., Marín, S., Coronas, I., Sanchis, V., Ramos, A.J.,2007. Skin damage, high 
temperature and relative humidity as detrimental factors for Aspergillus carbonarius 
infection and ochratoxin A production in grapes. Food Control 18, 1343-1349. 

Bellí, N., Mitchell, D., Marín, S., Alegre, I., Ramos, A.J., Magan, N., Sanchis, V., 2005. 
Ochratoxin A-producing fungi in Spanish wine grapes and their relationship with 
meteorological conditions. European Journal of Plant Pathology 113, 233-239.  

Bellí, N., Pardo, E., Marín, S., Farré, G., Ramos, A.J., Sanchis, V., 2004. Occurrence of 
ochratoxin A and toxigenic potential of fungal isolates from Spanish grapes. Journal 
of the Science of Food and Agriculture 84, 541-546.  

Belli ́, N., Ramos, A.J., Sanchis, V., Mari ́n, S., 2006. Effect of photoperiod and day-night 
temperatures simulating field conditions on growth and ochratoxin A production of 
Aspergillus carbonarius strains isolated from grapes. Food Microbiology 23, 622-627.  

Bragulat, M.R., Abarca, M.L., Cabañes, F.J., 2001. An easy screening method for fungi 
producing ochratoxin A in pure culture. International Journal of Jood Food 
Microbiology 71, 139-144.  

Cabañas, R., Bragulat, M.R., Abarca, M.L., Castellá, G., Cabañes, F.J., 2008. Occurrence of 
Penicillium verrucosum in retail wheat flours from the Spanish market. Food 
Microbiology 25, 642-647.  

Cabañes, F.J., Accensi, F., Bragulat, M.R., Abarca, M.L., Castellá, G., Minguez, S., Pons, A., 
2002. What is the source of ochratoxin A in wine? International Journal of Food 
Microbiology 79, 213-215.  

CAC (Codex Alimentarius Commission), 2003. Code of Practice for the Prevention and 
Reduction of Mycotoxin Contamination in Cereals, including Annexes on 
Ochratoxin A, Zearalenone, Fumonisins and Tricothecenes CAC/RCP 51. 



Research Work-Part II 
 

275 
 

Comission of the European Communities, 2006a. Commission Regulation (EC) No. 
576/2006 of 17 August 2006 on the presence of deoxynivalenol, zearalenone, 
ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. 
Official Journal of the European L229, 7-9. 

Comission of the European Communities, 2006b. Commission Regulation (EC) No. 
1881/2006 of 19 December 2006 setting maximum levels for certain contaminants 
in foodstuffs. Official Journal of the European Union L364, 5-24. 

Comission of the European Communities, 2007. Green Paper from the Commission to the 
Council, the European Parliament, the European Economic and Social Committee 
of the Regions, Adapting to Climate Change in Europe-Options for EU Action.  SEC 
849, COM 354 Final. European Commission, Brussels. 

Comission of the European Communities, 2011. Commission Regulation (EC) No. 
559/2011 of 7 June 2011  amending Annexes II and III to Regulation (EC) No 
396/2005 of the European Parliament and of the Council as regards maximum 
residue levels for captan, carbendazim, cyromazine, ethephon, fenamiphos, 
thiophanate-methyl, triasulfuron and triticonazole in or on certain products. Official 
Journal of the European Union L152: 1-21.  

Čonková, E., A. Laciaková, I. Štyriak, L. Czerwiecki, and G. Wilczyńska (2006). Fungal 
contamination and the levels of mycotoxins (DON and OTA) in cereal samples from 
Poland and East Slovakia. Czech Journal of Food Sciences, 24(1), 33-40. 

Duarte, S.C., Pena, A., Lino, C.M., 2010. A review on ochratoxin A occurrence and effects 
of processing of cereal and cereal derived food products. Food Microbiology 27, 187-
198.  

Ebana, R.U.B., V.E. Madunagu, 1993. Antimicrobial effect of Strophanthus hispidus and 
Secamone afzelii on some pathogenic bacteria and their drug resistant strains 
Nigerian Journal of Botany, 6, pp. 27-31. 

Edwards, S.G., Godley, N.P., 2010. Reduction of Fusarium head blight and deoxynivalenol 
in wheat with early fungicide applications of prothioconazole. Food Additives and 
Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment 
27, 629-635.  

Elmholt, S., Rasmussen, P.H., 2005. Penicillium verrucosum occurrence and ochratoxinA 
contents in organically cultivated grain with special reference to ancient wheat types 
and drying practice. Mycopathologia 159, 421e432 

European Union Pesticides database [Internet]. 2010.  Brussels (Belgium): Directorate 
General for Health and Consumers; [cited 2010 Sept 5]. Available from: http://  
ec.europa.eu/sanco_pesticides/public/index.cfm/  

Fernane, F., Sanchis, V., Marín, S., Ramos, A.J., 2010. First ron mould and mycotoxin 
contamination of pistachios sampled in Algeria. Mycopathologia 170, 423-429.  

JECFA (Joint FAO/WHO Expert Committee on Food Additives), 2008. Safety 
Evaluationof Certain Mycotoxins in Food. WHO Food Additives Series 59. 
RetrievedNovember 18, 2009 from 
http://whqlibdoc.who.int/publications/2008/9789241660594_eng.pdf. 



Study VII 

276 
 

Garcia, D., Garcia-Cela, E., Ramos, A.J., Sanchis, V., Marín, S., 2011. Mould growth and 
mycotoxin production as affected by Equisetum arvense and Stevia rebaudiana extracts. 
Food Control 22, 1378-1384.  

Garcia, D., Ramos, A.J., Sanchis, V., Marín, S., 2012. Effect of Equisetum arvense and Stevia 
rebaudiana extracts on growth and mycotoxin production by Aspergillus flavus and 
Fusarium verticillioides in maize seeds as affected by water activity. International Journal 
of Food Microbiology 153, 21–27. 

García-Cela, E., Ramos, A.J., Sanchis, V., Marin, S., 2012. Ochratoxigenic moulds and 
effectiveness of grape field antifungals in a climatic change scenario. Journal of the 
Science of Food and Agriculture 92, 1455-1461. 

Gil-Serna, J., González-Salgado, A., González-Jaén, M.T., Vázquez, C., Patiño, B., 2009. ITS-
based detection and quantification of Aspergillus ochraceus and Aspergillus westerdijkiae in 
grapes and green coffee beans by real-time quantitative PCR. International Journal 
of Food Microbiology 131, 162-167. 

Gil-Serna, J., Vázquez, C., Sardiñas, N., González-Jaén, M.T., Patiño, B., 2011. Revision of 
ochratoxin A production capacity by the main species of Aspergillus section Circumdati. 
Aspergillus steynii revealed as the main risk of OTA contamination. Food Control 22, 
343-345.  

Giorni, P., Magan, N., Pietri, A., Bertuzzi, T., Battilani, P., 2007. Studies on Aspergillus section 
Flavi isolated from maize in northern Italy. International Journal of Food 
Microbiology 113, 330-338.  

Gooding, M.J., Ellis, R.H., Shewry, P.R., Schofield, J.D., 2003. Effects of restricted water 
availability and increased temperature on the grain filling, drying and quality of winter 
wheat. Journal of Cereal Science 37, 295-309.  

Haidukowski, M., Pascale, M., Perrone, G., Pancaldi, D., Campagna, C., Visconti, A., 2005. 
Effect of fungicides on the development of Fusarium head blight, yield and 
deoxynivalenol accumulation in wheat inoculated under field conditions with 
Fusarium graminearum and Fusarium culmorum. Journal of the Science of Food and 
Agriculture 85, 191-198.  

Hajjaji, A., El Otmani, M., Bouya, D., Bouseta, A., Mathieu, F., Collin, S., Lebrihi, A., 2006. 
Occurrence of mycotoxins (ochratoxin A, deoxynivalenol) and toxigenic fungi in 
Moroccan wheat grains: Impact of ecological factors on the growth and ochratoxin 
A production. Molecular Nutrition and Food Research 50, 494-499.  

IARC (International Agency for Research on Cancer), Monograph on the Evaluation of 
Carcinogenic Risk of Chemicals to Humans: Some Traditionally Herbal Medicines, 
Some Mycotoxins, Naphthalene and Styrene. IARC Press, Lyon (2002). 

Ioos, R., Belhadj, A., Menez, M., Faure, A., 2005. The effects of fungicides on Fusarium spp. 
and Microdochium nivale and their associated trichothecene mycotoxins in French 
naturally-infected cereal grains. Crop Protection 24, 894-902.  

Joubrane, K., El Khoury, A., Lteif, R., Rizk, T., Kallassy, M., Hilan, C., Maroun, R., 2011. 
Occurrence of aflatoxin B1 and ochratoxin A in Lebanese cultivated wheat. 
Mycotoxin Research 27, 249-257.  



Research Work-Part II 
 

277 
 

Kubista, M., Andrade, J.M., Bengtsoon, M., Forootan, A., Jonák, J., Lind, K., Sindelka, R., 
Sjöback, R., Sjögreen, B., Strömbom, L., Stahlberg, A., Zoric, N., 2006. The real-time 
polymerase chain reaction. Molecular Aspects of Medicine 27, 95-125. 

Leblanc, J.., Tard, A., Volatier, J.., Verger, P., 2005. Estimated dietary exposure to principal 
food mycotoxins from The First French Total Diet Study. Food Additives and 
Contaminants 22, 652-672.  

Leong, S.L., Hien, L.T., An, T.V., Trang, N.T., Hocking, A.D., Scott, E.S., 2007. Ochratoxin 
A-producing Aspergilli in Vietnamese green coffee beans. Letters in Applied 
Microbiology 45, 301-306.  

López-Malo, A., Alzamora, S.M., Guerrero, S., 2000. Natural antimicrobials from plants. 
(Eds.), Minimally Processed Fruit and Vegetables. Fundamental Aspect and 
Application, AP, Aspen Publishers, Gaithersburg, pp. 237-264. 

Magan, N., Medina, A., Aldred, D., 2011. Possible climate-change effects on mycotoxin 
contamination of food crops pre- and postharvest. Plant Pathology 60, 150-163.  

Magnoli, C., Astoreca, A., Ponsone, M.L., Fernández-Juri, M.G., Barberis, C., Dalcero, A.M., 
2007a. Ochratoxin A and Aspergillus section Nigri in peanut seeds at different months 
of storage in Córdoba, Argentina. International Journal of Food Microbiology 119, 
213-218.  

Magnoli, C.E., Astoreca, A.L., Chiacchiera, S.M., Dalcero, A.M., 2007b. Occurrence of 
ochratoxin A and ochratoxigenic mycoflora in corn and corn based foods and feeds 
in some South American countries. Mycopathologia 163, 249-260.  

Mateo, E.M., Gil-Serna, J., Patiño, B., Jiménez, M., 2011. Aflatoxins and ochratoxin A in 
stored barley grain in Spain and impact of PCR-based strategies to assess the 
occurrence of aflatoxigenic and ochratoxigenic Aspergillus spp. International Journal 
of Food Microbiology 149, 118-126.  

Matthies, A., Buchenauer, H., 2000. Effect of tebuconazole (Folicur®) and prochloraz 
(Sportak®) treatments on Fusarium head scab development, yield and 
deoxynivalenol (DON) content in grains of wheat following artificial inoculation with 
Fusarium culmorum. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz 107, 33-
52.  

Matthies, A., Walker, F., Buchenauer, H., 1999. Interference of selected fungicides, plant 
growth retardants as well as piperonyl butoxide and 1-aminobenzotriazole in 
trichothecene production of Fusarium graminearum (strain 4528) in vitro. Zeitschrift 
fur Pflanzenkrankheiten und Pflanzenschutz 106, 198-212.  

Milovanović, V., Radulović, N., Todorović, Z., Stanković, M., Stojanović, G., 2007. 
Antioxidant, antimicrobial and genotoxicity screening of hydro-alcoholic extracts of 
five Serbian Equisetum species. Plant Foods for Human Nutrition 62, 113-119.  

Mimica-Dukic, N., Simin, N., Cvejic, J., Jovin, E., Orcic, D., Bozin, B., 2008. Phenolic 
compounds in field horsetail (Equisetum arvense L.) as natural antioxidants. 
Molecules 13, 1455-1464.  



Study VII 

278 
 

Miraglia, M., Brera, C., 2002. Assessment of Dietary Intake of Ochratoxin A by the 
Population of EU Member States. Reports on Tasks for Scientific Cooperation. 
Reports of experts participating in Task 3.2.7. Directorate-General Health and 
Consumer Protection, Rome, Italy.  

Molina, M., Giannuzzi, L., 1999. Combined effect of temperature and propionic acid 
concentration on the growth of Aspergillus parasiticus. Food Research International 32, 
677-682.  

Molinié, A., Faucet, V., Castegnaro, M., Pfohl-Leszkowicz, A., 2005. Analysis of some 
breakfast cereals on the French market for their contents of ochratoxin A, citrinin 
and fumonisin B1: Development of a method for simultaneous extraction of 
ochratoxin A and citrinin. Food Chemistry 92, 391-400.  

Mounjouenpou, P., Gueule, D., Fontana-Tachon, A., Guyot, B., Tondje, P.R., Guiraud, J., 
2008. Filamentous fungi producing ochratoxin A during cocoa processing in 
Cameroon. International Journal of Food Microbiology 121, 234-241.  

Mulè, G., Susca, A., Logrieco, A., Stea, G., Visconti, A.,2006. Development of a quantitative 
real-time PCR assay for the detection of Aspergillus carbonarius in grapes. International 
Journal of Food Microbiology 111, S28-S34.  

Munimbazi, C., Saxena, J., Tsai, W.-.J., Bullerman, L.B., 1997. Inhibition of production of 
cyclopiazonic acid and ochratoxin A by the fungicide iprodione. Journal of Food 
Protection 60, 849-852.  

Muñoz, K., Vega, M., Rios, G., Geisen, R., Degen, G.H., 2011. Mycotoxin production by 
different ochratoxigenic Aspergillus and Penicillium species on coffee- and wheat-based 
media. Mycotoxin Research 27, 239-247.  

Radulović, N., Stojanović, G., Palić, R., 2006. Composition and antimicrobial activity of 
Equisetum arvense L. essential oil. Phytotherapy Research 20, 85-88.  

Ramirez, M.L., Chulze, S., Magan, N., 2004. Impact of environmental factors and fungicides 
on growth and deoxinivalenol production by Fusarium graminearum isolates from 
Argentinian wheat. Crop Protection 23, 117-125.  

Rasooli, I., Owlia, P., 2005. Chemoprevention by thyme oils of Aspergillus parasiticus growth 
and aflatoxin production. Phytochemistry 66, 2851-2856.  

Rasooli, I., Rezaei, M.B., Allameh, A., 2006. Growth inhibition and morphological alterations 
of Aspergillus niger by essential oils from Thymus eriocalyx and Thymus x-porlock. 
Food Control 17, 359-364.  

Reyneri, A., 2006. The role of climatic condition on micotoxin production in cereal. 
Veterinary Research Communications 30, 87-92.  

Riba, A., Mokrane, S., Mathieu, F., Lebrihi, A., Sabaou, N., 2008. Mycoflora and ochratoxin 
A producing strains of Aspergillus in Algerian wheat. International Journal of Food 
Microbiology 122, 85-92.  



Research Work-Part II 
 

279 
 

Sandhu, N.S., Kaur, S., Chopra, D., 2010. Equisetum arvense: Pharmacology and 
phytochemistry - a review. Asian Journal of Pharmaceutical and Clinical Research 3, 
146-150.  

Sardiñas, N., Gil-Serna, J., Santos, L., Ramos, A.J., González-Jaén, M.T., Patiño, B., Vázquez, 
C., 2011. Detection of potentially mycotoxigenic Aspergillus species in Capsicum 
powder by a highly sensitive PCR-based detection method. Food Control 22, 1363-
1366.  

Sarlin, T., Yli-Mattila, T., Jestoi, M., Rizzo, A., Paavanen-Huhtala, S., Haikara, A.,2006. Real-
time PCR for quantification of toxigenic Fusarium species in barley and malt. 
European Journal of Plant Pathology 114, 371-380.  

Schmidt, H., Taniwaki, M.H., Vogel, R.F., Niessen, L.,2004. Utilization of AFLP markers for 
PCR-based identification of Aspergillus carbonarius and indication of its presence in 
green coffee samples. Journal of applied microbiology 97, 899-909.  

Taniwaki, M.H., Pitt, J.I., Teixeira, A.A., Iamanaka, B.T., 2003. The source of ochratoxin A 
in Brazilian coffee and its formation in relation to processing methods. International 
Journal of Food Microbiology 82, 173-179.  

Valero, A., Marín, S., Ramos, A.J., Sanchis, V.,2005. Ochratoxin A-producing species in 
grapes and sun-dried grapes and their relation to ecophysiological factors. Letters in 
Applied Microbiology 41, 196-201. 

Zaied, C., Abid, S., Zorgui, L., Bouaziz, C., Chouchane, S., Jomaa, M., Bacha, H., 2009. 
Natural occurrence of ochratoxin A in Tunisian cereals. Food Control 20, 218-222.  

Zinedine, A., Brera, C., Faid, M., Benlemlih, M., Miraglia, M., 2007. Ochratoxin A and 
Fusarium toxins in cereals from Morocco. Cahiers Agricultures 16, 11-15. 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. GENERAL 

DISCUSSION 
 

 



 

 

PAGINA BLANCO 



General discussion 

283 
 

GENERAL DISCUSSION 

 

Traditionally, fungi have been used as food (edible mushroom), in fermented foods (cheese, 

beer), to cure diseases (penicillin) and even in religious ceremonies. However, at the beginning 

of the 1960s with the discovery of AFs the attitude towards the presence of filamentous 

moulds started to change (Goldblatt, 1969). Since then, the knowledge of major mycotoxin 

producing genera, the most susceptible foods, the most suitable production conditions, as 

well as toxicological implications, has expanded considerably in order to protect human 

health. Nevertheless, although enormous progress has been achieved in mycotoxin risk 

management, there are still major challenges in this regard, some of which have been 

considered in this Thesis. Firstly, an already existing challenge in mycotoxin management, 

which is the need to properly quantify and apply sampling uncertainty. Secondly, the 

potential impact of some simulated conditions linked to hypothetical climate change in the 

mycotoxin issue. 

 

For a better understanding of the General Discussion Section, this part of the Thesis has 

been divided into two subsections that address the two areas of interest as it was done in the 

Research Work section. 

  

1. SELECTION OF RAW MATERIALS 
 

In the first part of this Thesis, emerging microbiological risk management metrics were 

applied to AFs in pistachio nuts. For selection of incoming raw materials, the maximum UE 

regulatory limit for nuts to be subjected to further physical treatment must be used as food 

safety management tool. In this case, the toasting was, after sorting, the most important step 

in the processing and its effect on mycotoxin contamination was analized. However, 

compliance with such regulatory levels is totally dependent on the validity of sampling and 

analytical procedures.  

 

1.1. Samplings plans: effectiveness, uncertainty and alternatives 

 

The distribution of the mycotoxin concentration in products is an important factor to be 

considered when regulatory sampling criteria are established. Mycotoxins are 

heterogeneously distributed, and then, specific sampling and subsampling procedures should 

be designed for each kind of mycotoxin and food. Probably, the design of accurate sampling 
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plans that provide reliable results is one of the most important challenges in mycotoxin 

management. For this reason, International Agencies work in the harmonization process of 

sampling plans in order to protect consumer health and to facilitate the international trading. 

However, these plans have been criticized for the unrealistic need of workforce. In particular, 

the EC allows the use of alternative sampling methods in cases of unacceptable commercial 

consequences or practical unfeasibility of the official method but only in case of quality 

control (EC, 2006a). 

 

In pistachio, as in other nuts, the mycotoxins contamination rate is low, where only 1 nut 

per 104-106 nuts is common (Schatzki, 1995), although great mycotoxin contamination could 

be detected in a single contaminated pistachio. In this Thesis the EU official sampling plan 

(EC, 2010b) was applied in quadruplicate in different pistachio lots in order to determine the 

sampling uncertainty. Interestingly, low variability was associated with the initial sampling 

step, probably because the size and number of elemental samples was enough; in fact, the 

last European Regulation about methods of sampling and analysis for the official control of 

mycotoxins levels in foodstuffs reduced the size of the aggregate sample from 30 to 20 kg, 

but maintained the analysis number (EC, 2010b). 

 

Nevertheless, the underlying problem is the uncertainty associated to the AFs levels reported 

in the present work and any other existing works; the high uncertainties due to sampling and 

sample preparation procedures may lead to unrealistic results, and this is an issue that needs 

to be solved. A recent work, have drew the OC curves for various sampling plans involving 

one, two or three 10 kg samples (Figure 1) (Wesolek et al., 2014). The EU sampling plan 

consisting of testing two samples of 10 kg gave a consumer risk with a probability of 

acceptance at 5% for a lot mean concentration of 75.34 μg/kg and a producer risk with a 

probability of acceptance at 95% for a lot mean concentration of 1.62 μg/kg (Wesolek et al., 

2014).  

 

On the other hand, a high percentage of variability was attributed to the subfractioning step 

(subsample preparation), suggesting that either a better grinding and mixing could be 

achieved or more/bigger subfractions should be selected to reduce the uncertainty. Similar 

values of sampling and analytical variance were observed sampling almonds and hazelnuts 

for AFB1 (Ozay et al., 2006; Whitaker et al., 2006). However, in those studies lower values of 
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sample preparation variance were calculated, probably due to the higher size of samples for 

analysis used (50 to 100 g) and the lower milling particle size.  

 

 

Figure 1 OC curves for various sampling plans involving one, two or three 10 kg samples. 

 

Nowadays, only measurement uncertainty is to be used for correction of analytical results 

according to EC 401/2006 (EC, 2006a). The application of measurement uncertainty 

increased the probability of rejection (EC, 2006b) of the most contaminated lots. In our 

study the probability of rejecting 2 of the 3 most contaminated lots increased to 25% when 

analytical results were corrected for measurement uncertainty and compared to the legal 

limits. If given the existing sampling plan, the calculated sampling uncertainty was applied 

for correction of analytical results, this would lead to rejection of a high percentage of lots, 

unless sampling plans and procedures are revised in depth. 

 

Food companies often perform alternative mycotoxin sampling plans which reduce the 

number of samples and/or number of analysis, reducing the cost and time devoted to the 

analysis, as a part of their quality control schemes. In order to assess the effectiveness of 

alternative plans, a simplified sampling plan was also applied to the same lots. However, it 

resulted obviously less suitable than the official one, due to the reduced probability of taking 

a contaminated portion in the sampling. 

 

1.2 Analytical procedures 
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Most mycotoxins are toxic at very low concentrations and require sensitive and reliable 

methods for their detection. There are many methods used, of which many are lab-based but 

there is no single technique that stands out above the others (Turner et al., 2009). In addition, 

it is impossible to use one single method for analysis of all mycotoxins due to the variety of 

chemical structures (Yazdanpanah, 2011). Therefore, development of multi-mycotoxin 

methods in a single matrix are needed since mycotoxin co-ocurrence could produce unknow 

toxicological effects. Food is not necessarily safe, just because of the ruling out of the 

presence of well-known mycotoxins, as they might still be there in conjugated form, 

including masked or bound mycotoxins (Yazdanpanah, 2011). To sum up, the demand for 

fast, simultaneous and accurate determination of multiple mycotoxins as well as other 

hazards, along with the heterogeneity of food matrices, creates extreme challenges for routine 

analysis. 

 

ELISA (enzyme-linked immunosorbent assay) is a common usually single-toxin analytical 

method used by food and feed companies. Therefore, it was considered interesting to analyze 

in parallel to HPLC the pistachio samples from the alternative simplified plan proposed in 

the study I. OTA was never detected by any of the methods while higher number of positive 

samples and higher concentration of AFs were detected by ELISA, confirming that this 

analytical procedure may lead to false positive results. Griessler et al. (2010) quantified 

mycotoxins in several food and feed commodities from Southern Europe using HPLC and 

ELISA. Similar ranges of mycotoxin contamination were found, but no clear conclusion 

could be drawn from their data. Chun et al. (2007) analyzed AFs in nuts and derivative 

products consumed in South Korea by ELISA and HPLC; from their results it was 

concluded that ELISA was not suitable for quantification since the results were affected by 

the sample matrix and contamination was possibly overestimated at very low concentration.  

 

1.3. Toasting as process criteria (PcC) 

 

Finally, even if the huge uncertainty linked to sampling is not solved, there is a need for food 

operators to know the potential of their processing steps (PcC) to either increase or reduce 

the levels of mycotoxins initially present in their raw materials, once accepted for processing 

according to raw materials control plans. In any case, the final product should not reach the 

maximum level which guarantees a safe food. In our case, the FSO was considered equivalent 

to the regulatory maximum EC limits (EC, 2010a) and to the PO after processing, assuming 

that further AFs production does not occur after toasting and packaging. It must be noted 
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that our results came from means obtained through application of the EC sampling plan by 

quadruplicate independently, and therefore they are expected to be reliable. 

 

In a proactive approach to mycotoxin control each industry should determine the effect 

derived from its technological process and therefore accept only those lots of raw materials 

in which the initial level of contamination can be reduced to safe levels through processing. 

The effect of industrial toasting (pre-toasting ≈135 ºC + toasting ≈165 ºC, during total time 

of 20 min) on mycotoxin contamination in pistachio was assessed. Raw lots revealed AFs 

presence and OTA absence in all lots sampled. AFB1 was detected in a range of 0.32- 392.5 

µg/kg and was the major aflatoxin (70-100%). 

 

Temperatures achieved during toasting eliminate the fungi and reduce the m.c. generating a 

biologically safe product. Nevertheless, mycotoxins tend to be stable compounds that are 

difficult to remove once formed; in particular they survive to many of the processing stages 

involved in food manufacture. Particularly, the AFs decomposition have been described in a 

range from 237 to 306 ºC (Betina, 1989; Rustom, 1997). Although these T are higher from 

those actually used by the nuts industry, it is usually accepted that the heat treatment 

decreases the concentration of AFs to some extent. Conflicting results have been published 

about the effect of the heat treatments on peanuts and pistachios (Ariño et al., 2009; Farah 

et al., 1983; Lee et al., 1969; Ozkarsli, 2003; Pluyer et al., 1987; Rustom, 1997; Yazdanpanah 

et al., 2005). In general, the extent of the reduction achieved was very dependent on the initial 

level of contamination, heating T, time and humidity. In pistachio, as in other nuts, the results 

regarding degradation of AFs due to toasting are also contradictory. Great reduction of initial 

AFs contamination was achieved after industrial toasting in analyzed lots reaching reductions 

of 87.62%, 81.04% and 87.72% for AFB1, AFB2 and AFs, respectively. Yazdanpanah et al. 

(2005) tested different T and time of toasting in pistachio, and a degradation of over 95% of 

AFB1 was achieved with 150 ºC/90 min but the pistachios showed a burnt appearance, while 

150 ºC/30 min showed significant reduction of AFB1 and AFB2 without any noticeable 

change in taste of sample. Interestingly, no linear correlation was found when the rate of 

reduction was plotted against the initial amount. Conversely, no significant reduction of the 

initial AFs contamination was observed at 120 ºC/20 min, although the contamination level 

of the starting material was low (0.12-0.18 µg/kg) (Ariño et al, 2009). 

The food industry is responsible for setting up food safety management systems that deliver 

foodstuffs in compliance to the FSO. According to the initial and final values proposed by 
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European legal limits, processing (either selection or selection plus toasting or just toasting) 

is expected to decrease in 33% the initial AF concentration in the raw pistachio. Our results 

suggest that about a 75% of reduction may be achieved by the single toasting process, thus 

under the hypothesis of raw pistachio compliance with the maximum level, the toasted 

pistachio should be safe. 

 

 

2. CLIMATE CHANGE:  
 

Filamentous fungi and their mycotoxins are often found as contaminants in agricultural 

products, before or after harvest as well as during transportation and storage. Different 

strategies to prevent mould and mycotoxin contamination have been developed and 

generally are divided into pre-harvest and post-harvest strategies. The most common 

approach in pre-harvest is soil preparation, crop rotation, use of resistant varieties, 

herbicides, insecticides and biological and chemical antifungals. However, the efficacy of 

these techniques is strongly influenced by environmental conditions in field. Nonetheless, 

weather conditions in field are very variable due to both natural changes and those caused 

by the anthropomorphic greenhouse gas emissions which contribute to current warming 

trends (EC, 2007).  

 

Understanding the potential impacts on agriculture of a warming climate has thus become 

increasingly important and it is of primary concern particularly to ensure the sustainability of 

agricultural systems as well as for policy-making purposes (Howden et al., 2007). In this new 

agricultural context, mycotoxin risk assessment should include a wider concept of risk 

evaluation, including emerging risks since new mycotoxins could arise for new fungus and 

plant associations making the occurrence of new mycotoxins, or mycotoxins not yet 

considered, a new potential human and animal health threat (Tirado et al., 2010). Probably 

the main questions are: how climate conditions could affect fungal infection and mycotoxin 

occurrence?, and consequently, are we prepared to manage the mycotoxin risk in this 

framework?. 

 

The first question is difficult to answer because there is not always correlation between 

mycotoxin contamination and fungal infection. In addtion, the optimum environmental 

conditions for growth may not match those for optimum toxin production. For example, 

ecological data on A. carbonarius have suggested that T levels which favour growth, and cause 
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high fungal incidence, are different from those which are optimum for OTA production 

(Bellí et al., 2005b; Mitchell et al., 2004).  

 

Regarding the second question, several authors highlighted the effect on the effectiveness of 

current GAP under the new climate scenarios (Magan et al., 2011; Miraglia et al., 2009). 

Focussing on antifungal compounds, loss of their effectiveness under different 

environmental conditions (T and aW) has been observed (Medina et al., 2007a, 2007b). 

Moreover, sublethal dosis could reduce fungal growth but at the same time increase 

mycotoxin production (Garcia et al., 2011). 

 

2.1. Increasing temperature and drought 

 

Regionalized climatic change scenarios developed by the National Meteorological Agency 

for the following three periods of time 2011-2040; 2041-2070 and 2071-2100, pointed out 

that the maximum daily temperature will increase between 1 and 2 ºC, between 3 and 5 ºC 

and between 5 and 8 ºC, respectively. Also the minimum daily temperature could be reduced 

by 2 ºC, resulting in greater daily temperature fluctuations (AEMET, 2009). 

 

The first stage of this work was focused in the effect of climate in fungal species distribution 

and strains adaptation in vineyards. Following this objective the distribution of the major 

fungal genera and the Aspergillus species with natural presence in the vineyards of two diferent 

agroclimatic regions from Spain (South and Northeast zones) spaced by more than 700 km 

were studied. In Spain, the Southern region is hotter than the Northeast, and it is common 

to exceed 40 °C in summer. In this season, the mean temperature difference between regions 

fluctuates from 1 to 4 °C. In addition, R.H. is lower in the South and the rainfall is scarce 

(Table 1). Therefore the actual conditions of the warmer zone (South) could resemble the 

future conditions of the Northeast zone. 

 

It has been concluded that Aspergillus section Nigri is the major responsible for mycotoxin 

risk in this crop (Bellí et al., 2005a; Fredj et al., 2007; Medina et al., 2005; Sage et al., 2002; 

Serra et al., 2006b, 2005). In our study, the percentage of infected grapes by Aspergillus section 

Nigri in the South was similar in both years (63-67%) and it almost doubled those in the 

Northeast fields (19-38%). The remarkable difference in the percentage of infection between 

years in the Northeast region was attributed to a hailstorm one week before harvest in which 
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35.3 mm of rain in only 2 h was recorded. Rainfall occuring on the days before harvest 

triggers skin splitting and black aspergilli infection (Leong et al., 2006).  

 

Table 1 Meteorological data from June to August obtained from weather stations near the 

sampling areas. 

  T min (ºC) T mean (ºC) T max (ºC) HR (%) 
Rain 
(mm) 

Infected 
berriesa 

N 
2011 16.3 ± 2.3 22.5 ± 2.6 29.3 ± 3.1 60.3 ± 4.6 32.1 19% 

2012 17.4 ± 1.7 23.8 ± 1.8 30.8 ± 2.2 57.6 ± 4.2 85 38% 

S 
2011 18.0 ± 1.7 26.0 ± 2.4 34.4 ± 3.2 52.8 ± 10.9 13.2 63% 

2012 17.2 ± 1.7 26.5 ± 1.6 36.0 ± 2.2 45.0 ± 8.2 0 65% 
Values obtained from: Servei Meteorògic de Cataluyna and Estaciones agroclimáticas de Andalucía. N: Northeast, S: South 

a, % infected berries by black aspergilli. 

 

Black aspergilli presence was significantly higher in the hotter region (South) in both years 

(p<0.05). A positive correlation between T and black aspergilli incidence on grapes has been 

confirmed in many studies (Bellí et al., 2005a, 2004a; Leong et al., 2004). Battilani et al. (2006) 

observed that black aspergilli presence was significantly related to latitude and longitude in 

maturing grapes, showing a positive West-East and North-South gradient. Interestingly, 

recent studies have also evidenced that the influence of specific geographic location and 

climate of the vineyards on the occurrence of ochratoxigenic moulds and OTA 

contamination of grape was significant (Lasram et al., 2012; Lucchetta et al., 2010; Serra et 

al., 2006b).  

 

Figure 2 indicates the percentage of infected berries by A. carbonarius, A. tubingensis and A. 

niger. Results show that A. tubingensis seems to be the black aspergilli species better adapted 

to Spanish environmental conditions, as it was the dominant species in all vineyards sampled, 

although no general pattern could be defined between years and regions. Extreme conditions 

promoted the A. niger presence since the higher infection was linked to the hotter summer 

(South, 2012), when 108, 48 and 14 days reached 30, 37 and 40 ºC repectively from May to 

June; moreover 40 ºC were reached in June, July and August. A recent study has also 

emphasized that A. tubingensis is the main species belonging to Aspergillus niger aggregate 

followed by A. awamori, and A. niger in dried vine fruits (Susca et al., 2013). Species 

distribution resulting from several publications in 2006-2012 are: A. tubingensis (15.2-95.7%), 

A. niger (4.3-84.4%), and A. carbonarius (7.6-46.9%) (Bau et al., 2006; Chiotta et al., 2009; 

Lasram et al., 2012; Martínez-Culebras and Ramón, 2007; Perrone et al., 2006; Spadaro et al., 

2012).  
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Figure 2 Percentage of berries infected by black aspergilli, percentage of producers and mean OTA (ng/g 
agar) produced by each species in CYA. 

 

A higher percentage of OTA producing isolates was found in A. carbonarius (66.7-100%) than 

in A. tubingensis (0-17%) and A. niger (0-50%) in both regions (Figure 1). Moreover, A. 

carbonarius produced higher amount of OTA than the other species. Percentages of infection 

and toxin production agree with other studies (Bau et al., 2005; Sage et al., 2002), confirming 

that the source of OTA in these products is A. carbonarius (and to a much less extent, A. 

tubingensis and A.niger). 

 

Despite the high infection observed, few musts contained OTA (<10.7%). This situation has 

been underlined in previous surveys in Spain in 2001 when only 15% of the sampled musts 

contained OTA (0.091 to 0.813 µg/ L), and OTA was not detected in musts of the vineyards 

sampled in Spain in 2002 and 2003 (Bellí et al., 2005a, 2004a). Positive musts (3 out of 4) 

were noticed in the South in 2011, in this region on that year T recorded were high but not 

extreme for A. carbonarius growth since only 3 days exceeded the 40 ºC from May to August. 

In this period, the higher A. carbonarius infection (27.8%) occurred together with the higher 

rate of ochratoxigenic isolates (100%), which explains the OTA contamination in the 

resulting musts. Battilani et al. (2003) did not observe significant correlation between the 

number of samples colonized by black aspergilli and the OTA content in berries, but the 

correlation was significant when only samples colonized by OTA producing fungi were 

considered. 
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Optimal environmental conditions for development of isolates of the same species are 

generally similar. However, it has been speculated that strains could show different 

ecophysiological profiles especially under marginal conditions of growth. In fact, A. flavus 

isolated from maize in north Italy showed slightly different ecological profiles in terms of 

both optimal and marginal conditions for growth compared to other regions of the world 

(Giorni et al., 2007). Our results showed differences only in A. carbonarius maximum and 

minimal T and aW conditions for fungal growth in isolates from Northeast and South Spain 

(Table 1). Strains from the Northeast were better adapted to colder T while strains from the 

South could grow under drier conditions. Moreover, strains for South were also able to 

produce OTA at lower aW. Probability of OTA production at 0.95 aW was over 0.8 in the 

range of 15-30 ºC for isolates from both regions. Contrary, few differences were found due 

to the geographical origin of the isolates in A. tubingensis and A. niger, although both species 

grew in a wide range of aW and T, and minimal aW occurred at higher T (25-35 ºC). 

Nevertheless, A. niger grew at lower temperatures than A. tubingensis, and in a narrower aW 

frame at 44 ºC.  

 

On the other hand, recent reports revealed production of FB2 and FB4 by A. niger and A. 

awamori strains on culture medium, grapes or dried grapes (Abrunhosa et al., 2011; Chiotta 

et al., 2011; Logrieco et al., 2009; Mogensen et al., 2010a; Palumbo et al., 2011; Varga et al., 

2010). A. niger isolates in this study only produced FB2 when they were inoculated on 

CYA20S; the higher frequency of FB2 producers was found in the South region but, isolates 

from both regions produced FB2 in low amounts so little contamination in wine might be 

expected. In fact, the levels of FB2 found in wine are of low concern (between 1 and 25 

μg/L) (Mogensen et al., 2010b).  

 

Climate change scenarios point to an increase of T and drought; while in non extreme climate 

conditions (like Northeast area in our study) this could lead to increasing black aspergilli 

populations, including A. carbonarius, under extreme conditions (like in the South in our 

study) this could promote the prevalence of particularly adapted species such as A. niger. As 

the presence of FBs in grapes has been only recently reported, ecophysiological profiles of 

FBs production by A. niger are unknown, and therefore it is not possible to relate them to 

environmental factors. However, mycotoxicological consequences derived this prediction in 

hotter areas could be a decreasing OTA risk and increasing FB2 risk in grapes and derivates  
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On the other hand, the effect of increasing T and decreasing humidity was also evaluated in 

situ on grapes and on wheat. Laboratory trials were carried out trying to simulate the current 

environmental field conditions close to harvest date for grapes (August) and flowering date 

for wheat (May) in the Northeast Spain. Additionally, hypothetical extreme conditions 

(higher T and reduced R.H.) were also tested (Table 2).  

 

Table 2 Environmental conditions tested 

   T (ºC) 
Photoperiod  

(h, light/darkness) 

Grapes 
Current RH (%)80 30/20 16/8 

Extreme RH (%)75 37/25 16/8 

Wheat 
Current m.c. (%)40 25/10 14/10 

Extreme m.c. (%)25 35/15 14/10 
           Current: environmental conditions similar to current 

           Extreme: possible predicted conditions 

 

In grapes, infection and OTA production under current conditions was higher than under 

extreme conditions, where only A. carbonarius produced OTA while A. ochraceus was not able 

to grow. Decrease of R.H. also caused a minor reduction of grape infection and OTA 

production (Bellí et al., 2007b; Pardo et al., 2005), however in both cases the R.H. tested 

were superior than in our case and T and light cycles were not used. On the other hand, more 

OTA was found in undamaged grapes at 30 ºC than at 20 ºC (Bellí et al., 2007b), contrary to 

a prior work on synthetic medium, where 15-20 ºC was reported as the optimum T for A. 

carbonarius OTA production (Mitchell et al., 2004). Regarding the effect of photoperiod in 

OTA production, (Belli ́ et al., 2006b) observed that it could affect fungal growth, but they 

did not find a direct effect on OTA production. However, (Oueslati et al., 2010) observed 

that OTA production was affected by the alternating T and that the highest OTA amount 

was produced when incubated at 11 and 13 hours of light and darkness, respectively.  

 

In wheat, A. steynii and A. carbonarius grew and produced OTA levels after 21 days of 

incubation. In general, and opposite to what happened with grapes, fungal growth was 

enhanced under extreme conditions, especially in section Circumdanti. These differences 

could be due to the commodity but also to the higher T tested in the grape study. Present 

conditions were more favorable for OTA production in wheat in A. carbonarius, and no 

significant differences were observed in A. steynii, although the observed means were higher 

under extreme conditions. Moreover, the A. steynii isolates tested were higher OTA 

producers than A. carbonarius ones under both conditions tested.  
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High T reduced OTA production by A. carbonarius in both commodities studied, and 

therefore and in agreement with observations in field, warming conditions could reduce  

OTA contamination, not only due to dominance by other black aspergilli better adapted to 

heat, but also because higher T are farther from the optimum conditions for OTA 

production by A. carbonarius. Moreover, A. ochraceus was totally inhibited under extreme 

conditions, and consequently no OTA contamination was found in must from inoculated 

grapes. Conversely, A. steynii was not affected under extreme conditions tested in wheat, 

nonetheless the T tested were lower in this commodity. It is worthy to mention that A. steynii 

produced high amount of OTA even under extreme conditions.  

 

2.2. Increasing solar ultraviolet radiation 

 

Changes in UV radiation in the future are estimated by model simulations that are based on 

the projected changes in ozone and clouds, which are the most important factors that are 

known to influence UV (UNEP, 2010). Although there is great uncertainty on future UV-B 

intensities, most of the studies consider that they are likely to remain significantly higher than 

pre-1980 values for the next few years at least (UNEP, 2010). The global mean irradiance 

values averaged for Europe in the period 1983-2005 showed much higher irradiances in the 

Mediterranean basis than the rest of the continent, being extremely higher under the parallel 

40 N. In particular, Spain is not only the European country that receives the greater amount 

of radiation but also the country that shows the greatest contrast and radiative gradients and 

complexity in the distribution of the radiative energy (AEMET, 2012). The international 

agencies considered that variations in UV-B radiation can have large effects on plant 

interactions with pests, with important implications for food security and food quality 

(WMO, 2010).  

 

For mycotoxins in particular, it has been suggested that AFs production could be a strategy 

of fungi to prevent from UV damage (Cary and Ehrlich, 2006). If this statement is correct a 

possible UV increase could promote the mycotoxin presence in crops. Therefore, the lack 

of information about this regard demands more studies about this topic. 

 

The effect of UV-A and UV-B radiation was tested separately both on conidial survival and 

in mycelium development of surviving spores for diferent Aspergillus spp. in two different 

environmental conditions. Conidia could survive and colonize soil and organic debris 

associated with plant residues and later start the infection cycle on new host plants (Battilani 
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et al., 2012). Life cycle could be divided into two major phases: the colonization of plant 

residues in soil and the infection of crop tissue. In the first study conidia were dislogged onto 

membranes, and no source of water or nutrients was available, in the second experiment 

conidia were deposited on culture medium, which can provide both nutrients and protection. 

Direct UV doses used in this study (1.7 mW/cm2 for UV-A and 0.1 mW/cm2 for UV-B) 

were slightly higher than the present global UV mean values recorded in South Spain. 

Additionally, fluctuating T and white light were included in the period of incubation in order 

to simulate field conditions. 

 

As a result of the first study, a decrease in viability of conidia was observed along time for all 

isolates tested. This phenomena was more marked when the isolates were subjected to cycles 

of UV radiation. Aspergillus section Circumdati showed the greatest loss of conidial viability 

both in UV irradiated and in control treatments. In 5 days significant differences in viability 

due to UV radiation were observed in this section, while reduced viability of Aspergillus 

sections Nigri and Flavi were observed after 10-15 days. Furthemore, interspecific differences 

were observed within the sections Nigri and Flavi. Reduction of spore germination due to 

UV radiation has been also observed in other fungal species (Moody et al., 1999; Wu et al., 

2000). 

 

Isolates tested were obtained from two vineyard areas of Spain. As the irradiance values 

measured in the Northeast region are usually lower than in the Southern region, the possible 

isolate adaptation as a consequence of their geographical origin was assessed. However, 

isolates isolated from the South were in general more sensitive to UV radiation, thus the 

hypothesis was not confirmed.  

 

The effect of UV-A and UV-B was not compared as both radiations were applied at different 

levels of intensity; however, as comparable levels of conidia survival were observed and UV-

B was applied at a lower dose, it is clear that UV-B produces more deleterious effects due to 

its shorter wavelength.  

 

Additionally, the UV radiation affected germination and mycelial growth of A. carbonarius 

and A. parasiticus on nutrient media. Concerning A. carbonarius, UV-A and UV-B radiation 

caused always significant reduction of colony size and OTA production, although higher 

reduction of both parameters were reached under UV-A. Remarkably, intraspecific 
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differences were more frequent under UV-A radiation, being observed only after short 

periods of incubation (7 days) under UV-B. A decrease in the UV exposure time reduced 

also the deleterious effects on A. carbonarius. UV-B radiation affected colony morphology, 

sporulation was observed only in the center of colonies, which was harder and more compact 

than the rest of the colony.  

 

Regarding A. parasiticus, UV (A and B) radiation had also significant effect on colony size and 

AFs production. Conversely to A. carbonarius higher reduction of these parameters was 

reached under UV-B. In fact, UV-B radiation practically stopped hyphal extension. Moreover 

morphological differences were observed under different light conditions. AFs were detected 

in UV-A radiated colonies in all tested times, representing AFB1 more than 60% of total AFs, 

while AFG2 never overcome a 10%. Contrary to UV-A, AFs were only detected after 7 days 

in colonies growing under UV-B, and in this case AFG1 was predominant and AFG2 attained 

a 20%.  

 

Duguay and Klironomos, (2000) suggested that despite spores can survive under certain 

conditions this does not imply that the resulting hyphae have the same advantages. From our 

results species with more resistant conidia to UV radiation also had more unaffected mycelia.  

 

In both studies Aspergillus section Nigri were more tolerant to UV radiation. Different 

tolerances to the deleterious effect of solar UV radiation on fungi have been reported before 

(Rotem et al., 1985). Some authors suggest that diferent UV tolerance levels could be due to 

the pigmentation or to the physical characteristics of conidia, as projected surface area-to-

volume of conidia or thicker wall conidia (Moody et al., 1999; Rotem and Aust, 1991; Valero 

et al., 2007a). 

 

Studies on microfungal communities in soils of extreme habitats, as desert (very high solar 

radiation, drought, and extreme T), showed dominance of dark-coloured microfungi with 

large multicelled conidia is characteristic (Grishkan et al., 2007, 2003). Particularly, species of 

the genus Aspergillus (mainly A. fumigatus) and telemorphic ascomycetes comprised a basic 

part of the thermotolerant mycobiota obtained at a temperature of 37 ºC (Grishkan et al., 

2007). 
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Aspergillus species showed different tolerance to UV radiation, hence an increase of it may 

modify the prevailing species present in field, and as a consequence the potential inoculum 

in the field may change, possibly favoring in the future an even higher predominance of black 

aspergilli that at present. However, the overall spore inoculum present in the field may 

decrease, as well as the potentially produced OTA and AFs, once conidial germination and 

mycelium growth has occurred. Mycotoxin degradation to other metabolites due to UV 

irradiation was not considered in this work. Finally, conidia survival and therefore the fungal 

presence per se represents an important risk, because favourable conditions for toxin 

production can occur in the following postharvest stages.  

 

2.3. Effect of environmental conditions on antifungal efficacy of preharvest 

fungicides  

 

Nowadays, the application of fungicides during pre-harvest is one of the most widely used 

agricultural practices. However, it is important to note that partial inhibition of fungal growth 

could enhance mycotoxin production as a response of the mould to stress (da Cruz Cabral 

et al., 2013). Furthermore, attention should be given to the influence of changing climate 

conditions on the use of pesticides according to GAP, as the current system may not be 

suitable in the future crop status (Magan et al., 2011; Miraglia et al., 2009). In fact, loss of 

effectiveness on antifungals tested on A. carbonarius and OTA production has been reported 

under different T and aW conditions (Medina et al., 2007a, 2007b).  

 

On the other hand, the indiscriminate and excessive use of fungicides in crops has been the 

major cause of the development of resistant pathogen populations, resulting in the use of 

higher concentrations of these antifungals and the consequent increase in toxic residues in 

food products. For example, acquired resistance by Penicillium italicum and P. digitatum to many 

synthetic fungicides currently used on citrus fruit has been demonstrated (Fogliata et al., 

2001). Additionally, some antifungals, especially at sublethal doses can stimulate the 

production of mycotoxins by a secondary activation of biosynthetic genes (Magan, 2006; 

Schmidt-Heydt et al., 2008).  

 

The general public perceives risks related to pesticides as posing a greater hazard than 

mycotoxins (Williams and Hammitt, 2001). Currently there is a “social pressure” for reducing 

the use of chemical additives in the food industry. Today's consumers are increasingly 

demanding food without preservatives or chemically synthesized antimicrobial substances. 
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At the same time, the EC set Maximum Residue Levels (MRLs) for pesticide residues in or 

on food or feed to ensure the lowest possible consumer exposure based on properties of the 

active ingredients and residue levels resulting from the GAP defined for the treated crops. 

 

At the same time several researches are investigating natural alternatives for controlling 

fungal growth and mycotoxin production. Focusing on Aspergillus species many plant extracts 

have been tested (Garcia et al., 2011; Milovanović et al., 2007; Rasooli and Owlia, 2005; 

Rasooli et al., 2006). 

 

In this Thesis different active ingredients dosed following manufacturer recommendations 

(Table 3) as well as a plant extract were tested in situ under different environmental 

conditions (current and extreme) in order to evaluate: i) their efficiency against Aspergilllus 

species development and OTA production and, ii) the potential impact of climate change in 

the effectiveness of antifungals evaluated (Table 2).  

 

Under current conditions and concerning to growth control, all active ingredients (cypronidil 

+ fluodioxonil, tebuconazol + trifloxistrobin, tebuconazole +prothioconazole, 

epoxiconazole and tetraconazole) were more effective than thiophanate methyl that generally 

did not affect fungal growth or even stimulated it. In the case of grapes the best results were 

obtained with Switch®. Several works have shown its effectiveness on ochratoxigenic spicies 

in SNM and in grapes (Belli ́ et al., 2006a), but also in field treatments (Tjamos et al., 2004; 

Valero et al., 2007b). In relation to the active compound, Tjamos et al., (2004) pointed out 

fludioxonil as responsible for the effectiveness. On the other hand, Flint Max ® was less 

effective, like in other studies (Belli et al., 2006a). 

 

In the same way as fungal growth, antifungals tested reduced the OTA production although 

it was not always significantly. Particularly, in A. carbonarius, tebuconazole was the most 

effective in wheat whereas no significant differences between tebuconazole + 

prothioconazole and cypronidil + fludioxonil where found in grapes. (Bellí et al., 2007a; Bellí 

et al., 2006a) found that cypronidil + fluodioxonil was the most effective in reducing OTA 

production by A. carbonarius. Other active ingredients commonly used in grapes, such as 

azoxystrobin, dinocap and pentaconazole, were also effective in reducing OTA accumulation 

(Curto et al., 2004). The growth rate of one A. steynii tested was reduced while, the OTA 

production was not affected by any of the antifungals suggesting that an appropriate 
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screening for antifungal agents requires to take into account both effects on growth and 

mycotoxin production.  

 

Table 3 Chemical antifungals, active ingredients and main mechanism of action 

 Supplier Brand Active ingredient Action mechanism 

Grape Syngenta Switch® 37.5% Cypronidil Interferes membrane processes 

damaging the plasmatic membrane 

25.0% Fluodioxonil Blocks the enzymatic action 

affecting the regulation of the 

synthesis of glycerol producing cell 

hypertrophy 

 Bayer 

CropScience 

S.L. 

Flint 

Max®  

50% Tebuconazole Affects sterol biosynthesis in 

membranes 

25% Trifloxistrobin Mitocondrial respiration inhibition  

Wheat Bayer 

CropScience 

S.L. 

Folicur 

25® Ew 

25.9% Tebuconazole Affects sterol biosynthesis in 

membranes 

 Bayer 

CropScience 

S.L. 

Prosaro® 12.70% 

Tebuconazole 

Affects sterol biosynthesis in 

membranes 

12.7% 

Prothioconazole 

Affects sterol biosynthesis in 

membranes 

 Basf 

Española 

S.L. 

Lovit® 12.5% 

Epoxiconazole 

Affects sterol biosynthesis in 

membranes 

 Sipcam 

Inagra S.A. 

Domark 

Evo® 

12.5%Tetraconazole Affects sterol biosynthesis in 

membranes 

 Sipcam 

Inagra S.A. 

Enovit 

Metil® 

70%Thiophanate 

methyl 

Acts on tubulin metaphase mitosis 

causing cell death 

 

To sum up, the active ingredients tested, under current conditions, seemed to reduce fungal 

growth but they were not efficient in the OTA production control of A. steynii.  

 

An interesting work about the efficacy of natamycin for control of growth and OTA 

production by A. carbonarius under different environmental conditions showed that the 

inhibition of mycelial growth was influenced by aW and T (Medina et al., 2007a). Moreover, 

a higher amount of the antifungal was required in the most suitable conditions for growth 

and production (Medina et al., 2007a). Therefore, the potential impact of climate change in 

the effectiveness of antifungals tested was also evaluated.  

 



General discussion 

300 
 

Respect to the azoles, epoxiconazole (Lovit ®) and tetraconazole (Domark Evo ®) were 

effective against both ochratoxigenic species under current conditions despite their 

effectiveness may be compromised under predicted conditions. By contrast, tebuconazole 

(Flint Max ®, Folicur ® and Prosaro ®) increased their effectiveness under warmer and drier 

conditions. Thus a transition in the active ingredients may be required in the future as a result 

of changing climatic conditions. Under predicted conditions, none of the antifungals was 

effective in preventing OTA production by any of the strains tested in both grapes and wheat. 

This means that in some cases, antifungals, while limiting fungal growth, induced a stress 

situation which triggered OTA production.  

 

On the other hand, consumer demands reduced use of chemicals in food products and 

therefore the use of safer and more environmentally friendly antifungals. The effectiveness 

of E. arvense extracts was tested as an alternative to chemical applications. Previous work 

pointed to the antioxidant compounds such as phenols as the bioactive basis of the 

antimicrobial propierties of plant extracts (Ebana and Madunagu, 1993). Analysis of phenolic 

compounds of the extract by HPLC/DAD/ESI/MS revealed quercitine and kaempferol as 

main phenolic compounds present in our extract. 

 

Under current conditions, E. arvense extract (3%) showed similar or better effects than 

chemical antifungals in wheat, although higher doses of it were applied. As for chemical 

antifungals, the extract was not useful against OTA production by A. steynii. Conversely, E. 

arvense (2%) caused a slight reduction of fungal growth but stimulated OTA production. 

These contradictory results could be explained by the different doses applied. On maize agar 

medium, high dosis of E. arvense reduced the growth of Aspergillus species, while low doses 

could stimulate it in some conditions (Garcia et al., 2011). From our studies the effectiveness 

of E. arvense extract seemed not to be affected by different environmental conditions. 

However, environmental conditions have been proven to be determinant in the effectiveness 

of E. arvense (3%) since it was effective at 0.95 aW against A. flavus and F. graminearum in maize; 

but not clear results were observed at lower aW (Garcia et al., 2012). 
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CONCLUSIONS 

The results presented in this Thesis work led to the following conclusions: 

 

1. SELECTION OF RAW MATERIALS (SAMPLING OF RAW 
PISTACHIO FOR TOASTING) 

 

Analysis of raw lots revealed OTA absence, while AFB1 was not only detected in a range of 

0.32- 392.5 µg/kg but also accounted for 70-100% of total AFs. Therefore AFB1 represented 

the main mycotoxicological risk in pistachio. 

 

High uncertainties due to initial sampling and sample preparation procedures may lead to 

unrealistic results, and this is an issue that needs to be solved. In the present work the major 

variability was associated with the subfractioning selection and therefore increasing the 

number of the analyzed subfractions could be an alternative for reducing uncertainty.  

 

Expensive and complex sampling plans are defined by the EC for nuts. A simplified 

alternative plan proposed resulted inappropriate as compared to the official one, due to the 

reduced probability of taking a contaminated portion in the sampling.  

 

Using the existing EU sampling plan, and applying the sampling uncertainty for correction 

of analytical results, a high percentage of lots could be rejected. Therefore sampling plans 

and procedures must be revised in depth. 

 

Industrial toasting of pistachio resulted in a higher percentage of reduction than that 

suggested by the existing European legal limits, and therefore under the hypothesis of raw 

pistachio compliance with maximum level, the toasted pistachio should be safe. 

 

2. IMPACT OF CLIMATE CHANGE IN ASPERGILLUS SPECIES 
 

Black aspergilli presence was significantly higher in the hottest region sampled, although 

species distribution in both regions did not show a clear trend, A. tubingensis seemed to be 

the most prevalent species in Spanish vineyards. 

 

A. niger and A. tubingensis are able to growth in a wider range of environmental conditions 

than A. carbonarius, mainly at lower aW and higher T, indicating that these species could be 
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adapted to the climate scenarios predicted for Southern Europe. However, A. carbonarius, 

showed a possible adaptation to hostile environmental conditions since isolates from South 

grew at lower aW. 

 

A. carbonarius was the main ochratoxigenic species either for the number of producing isolates 

or the amounts of toxin produced; in fact, contaminated must was linked to highly infected 

vineyard by A. carbonarius. Mycotoxicological consequences in grapes and derivates resulting 

from a hypothetical warming scenario may involve a decreased OTA risk due to the 

decreasing presence of A. carbonarius and an increasing of FB2 risk due to the promotion of 

A. niger. 

 

UV irradiation affected to the conidia viability. The overall spore inoculum present in the 

field may decrease, as well as the potentially produced OTA and AFs, once conidial 

germination and mycelium growth has occurred. Particularly, black aspergilli showed the 

highest resistence of UV irradiation within aspergilli tested. 

 

In general, antifungal tested reduced the fungal growth, although difference among them 

were found. Conversely, OTA risk was not controlled even some of them triggered its 

production. The antifungal effectiveness was affected by environmental conditons and 

therefore a transition in the active ingredients may be required in the future as a result of 

changing climate conditions.  
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CONCLUSIONES 

Los resultados presentes en esta Tesis han dado lugar a las siguientes conclusiones. 

 

1. SELECCIÓN DE MATERIAS PRIMAS (SELECCIÓN DE 
PISTACHO) 

 

En el caso del pistacho, el análisis de los lotes de materia prima reveló la ausencia de OTA, 

mientras que la AFB1 no solo fue detectada en un amplio intervalo de concentraciones (0,32- 

392,5 µg/kg), sino que también constituyó del 70 al 100% del total de AFs. Así pues, la AFB1 

representa el principal riesgo micotoxicológico en pistacho. 

 

En relación al muestreo, y debido a la incertidumbre inherente al mismo, el muestreo inicial 

y a la preparación de la muestra pueden proporcionar resultados poco fiables, y éste es un 

asunto que necesita ser resuelto. En el presente trabajo la mayor variabilidad de resultados 

fue asociada con la selección de la submuestra, y por lo tanto, el aumento del número de 

submuestras analizadas podría ser una alternativa para reducir la incertidumbre. 

 

Los planes de muestreo definidos por  la EC para frutos secos son complejos y costosos. No 

obstante, el plan alternativo propuesto en esta Tesis resultó ser inapropiado en comparación 

con el oficial, debido a la escasa probabilidad de obtener una muestra contaminada durante 

el muestreo. 

 

El plan de muestreo oficial obliga a corregir los resultados analíticos teniendo en cuenta la 

incertidumbre, lo que puede dar lugar a un elevado porcentaje de rechazo de los lotes, a 

menos que los planes de muestreo y los procedimientos sean revisados en profundidad. 

 

El tostado industrial del pistacho causó una reducción superior a la propuesta por los límites 

legales europeos y por lo tanto, bajo la hipótesis de que el pistacho crudo no supere los 

límites máximos admisibles, el pistacho tostado puede considerarse seguro. 
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2. IMPACTO DEL CAMBIO CLIMÁTICO EN ESPECIES DE 
ASPERGILLUS 

 

La presencia de aspergilos negros fue significativamente superior en la región más cálida 

muestreada y, aunque la distribución de especies en ambas regiones no mostró una tendencia 

clara, A. tubingensis parece ser la especie más prevalente en los viñedos españoles. 

 

A. niger y A. tubingensis pueden crecer en un rango más amplio de condiciones ambientales 

que A. carbonarius, principalmente a menor aW y mayor T, indicando que estas especies 

podrían estar mejor adaptadas a los escenarios climáticos predichos para el sur de Europa. 

Sin embargo, A. carbonarius, mostró una possible adaptación frente a condiciones ambientales 

desfavorables ya que los aislados del sur de España crecieron a bajas aW. 

 

A. carbonarius fue la principal especie ocratoxigénica tanto en el número de aislados 

productores de OTA como en las cantidades producidas; de hecho, los mostos contaminados 

con OTA provenían de viñedos con una elevada infección por A. carbonarius. De este estudio 

se derivan algunas consecuencias micotoxicológicas, como que el incremento de la 

temperatura ambiente puede conllevar una disminución del riesgo por OTA debido a una 

menr presencia de A. carbonarius y un incremento del riesgo por FB2 debido al aumento en la 

presencia de A. niger. 

 

La radiación UV afectó a la viabilidad de los conidios. El incremento en la irradiación podría 

afectar al inóculo global presente en el campo, que podría disminuir, como también a las 

especies potencialmente productoras de OTA y AFs, una vez que se haya producido la 

germinación de los conidios y el crecimiento del micelio. Particularmente, los aspergilos 

negros mostraron la mayor resistencia a la radicación UV dentro de las especies de Aspergillus 

estudiadas. 

 

En general, los fungicidas ensayados redujeron el crecimiento fúngico, aunque se observaron 

diferencias de efectividad entre ellos. Paradójicamente, no controlaron el riesgo por OTA, e 

incluso algunos de ellos estimularon su producción. La eficacia de los fungicidas se vio 

afectada por las condiciones ambientales y, por lo tanto, en el futuro podría ser necesario un 

cambio en las materias activas empleadas como consecuencia de los cambios en las 

condiciones climáticas. 
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CONCLUSIONS  

 

Els resultats presentats en aquest Tesi han donat lloc a les següents conclusions. 

 

1. SELECCIÓ DE LES MATÈRIES PRIMERES (SELECCIÓ DELS 
FESTUCS) 

 

En el cas dels festucs, la anàlisi dels lots de les matèries primeres va revelar l’absència d’OTA, 

mentre que la AFB1 no va només detectada en un interval ampli de concentracions (0,32- 

392,5 µg/kg), sinó que també va representar del 70 al 100% del total d’AFs. Així doncs, la 

AFB1 representa el principal risc micotoxicològic en els festucs. 

 

En relació al mostreig, i degut a la incertesa inherent al mateix, el mostreig inicial i la 

preparació de la mostra poden proporcionar resultats poc fiables, i aquest és un assumpte 

que necessita ser resolt. En aquest treball la major variabilitat de resultats va ser associada 

amb la selecció de la submostra i per tant, l’augment del nombre de submostres analitzades 

podria ser una alternativa per reduir la incertesa. 

 

Els plans de mostreig definits per la EC per fruits secs són complexos i costosos. El pla 

alternatiu proposat en aquesta Tesi va resultar ser inadequat en comparació amb l’oficial, 

degut a l’escassa probabilitat d’obtenir una mostra contaminada durant el mostreig. 

 

El pla de mostreig oficial obliga a corregir els resultats analítics tenint en compte la incertesa, 

el que pot donar lloc a un elevat percentatge de rebuig dels lots, a menys que els plans de 

mostreig i els procediments siguin revisats en profunditat. 

 

El torrat industrial dels festucs va causar una reducció superior a la proposada pels  límits 

legals europeus, i per tant, sota la hipòtesi de que els festucs crus no superin els límits màxims 

admissibles, els festucs torrats poden considerar-se segurs. 
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2. IMPACTE DEL CANVI CLIMÀTIC EN ESPÈCIES 
D’ASPERGILLUS 

 

La presència d’aspergils negres va ser significativament superior a la regió més càlida 

mostrejada i, encara que la distribució de les espècies en ambdues regions no va mostrar una 

tendència clara, A. tubingensis sembla ser l’espècie més prevalent a la vinya espanyola. 

 

A. niger i A. tubingensis poden créixer en un rang més ampli de condicions ambiental que A. 

carbonarius, principalment a una menor aw i una major T, indicant que aquestes espècies 

podrien estar millor adaptades als escenaris climàtics predits per al sud d’Europa. No obstant, 

A. carbonarius va mostrar una possible adaptació front a condicions ambientals desfavorables, 

ja que els aïllats del sud d’Espanya van créixer a aW baixes. 

 

A. carbonarius va ser la principal espècie ocratoxigènica tant en el nombre d’aïllats productors 

d’OTA com en les quantitats produïdes; de fet, els mosts contaminats d’OTA provenien de 

vinyes amb una elevada infecció per A. carbonarius. D’aquest estudi es deriven algunes 

conseqüències micotoxicològiques, com que l’increment de la temperatura ambient pot 

comportar una disminució del risc per OTA degut a una menor presència d’A. carbonarius i 

un increment del risc per FB2 degut a l’augment en la presència d’A. niger. 

 

La radiació UV va afectar la viabilitat dels conidis. L’increment en la irradiació podria afectar 

a l’inòcul global present en el camp, que podria disminuir , així com a les espècies 

potencialment productores d’OTA i AFs, un cop que s’hagi produït la germinació dels 

conidis i el creixement del miceli.  Particularment, els aspergils negres van mostrar una major 

resistència a la radiació UV entre les espècies d’Aspergillus estudiades. 

 

En general, els fungicides assajats van reduir el creixement fúngic, encara que es van observar 

diferències d’efectivitat entre ells. Paradoxalment, no van controlar el risc per OTA, i fins i 

tot alguns d’ells van estimular la seva producció. L’eficàcia dels fungicides es va veure 

afectada per les condicions ambientals i, per tant, en el futur podria ser necessari un canvi en 

les matèries actives utilitzades com a conseqüència dels canvis en les condicions climàtiques. 
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FUTURE RESEARCH 

In the case of pistachio there is a need to reduce sampling uncertainty, as inapproppriate 

decisions may be derived from analytical results, therefore future research should be 

conducted to minimize the uncertainty through improved sampling operations. 

 

Fumonisins risk has been identified in vineyards, and hence not only the presence and 

distribution of FBs producing black aspergilla FBs producers in this crop should be assessed, 

but also the environmental conditions that stimulate toxin production should be determined. 

 

More studies are needed in order to clarify the effect of UV light in mycotoxin production 

and degradation to other metabolites. Studies in vivo would take into account the possible 

plant stress and therefore a more realistic situation would be described. 

 

Several antifungals were efficient against fungal growth, nevertheless OTA production is 

poorly controlled. Moreover, A. steynii was a great OTA producer, but it was less affected by 

antifungal treatments and consequently, more studies about active ingredients and doses 

should be carried out in order to control it.  

 

E. arvense extracts could have some potentiality as natural antifungals, nevertheless more 

studies on dosing are required. 

 

FUTURAS INVESTIGACIONES 

En el caso de los pistachos existe la necesidad de reducir la variabilidad en el muestreo, ya 

que se pueden tomar decisiones erróneas derivadas de los resultados analíticos. Por lo tanto, 

futuras investigaciones deben dirigirse a identificar la incertidumbre de los planes de 

muestreo. 

 

El riesgo de fumonisinas ha sido identificado en viñedos, y por lo tanto no solo se debe 

determinar la presencia y distribución de las especies de aspergilos negros productoras de 

FBs en este cultivo, sino también las condiciones ambientales que podrían estimular su 

producción. 
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Se debería realizar un estudio más extenso para clarificar el efecto de la luz UV en la 

producción de micotoxinas y en la degradación de otros metabolitos. Además, deberían 

realizarse estudios in vivo teniendo en cuenta el posible estrés de la planta, a fin de describir 

situaciones más cercanas a la realidad. 

 

Aunque varios fungicidas fueron eficaces en el control del crecimiento fúngico, la producción 

de OTA fue escasamente controlada. Principalmente, A. steynii fue un gran productor de 

OTA, pero fue muy poco afectado por los tratamientos antifúngicos estudiados. En 

consecuencia, se debería realizar más estudios acerca de las materias primas con el objetivo 

de estableces medidas para el control de las principales especies ocratoxigénicas. 

 

Se ha observado que los extractos de E. arvense podrían tener un uso potencial como 

fungicidas naturales, sin embargo, más estudios serían necesarios en lo referente a su óptima 

dosificación. 

 

FUTURES INVESTIGACIONS 

En el cas dels festucs existeix la necessitat de reduir la variabilitat en el mostreig, ja que es 

poden prendre decisions errònies  derivades dels resultats analítics. Per tant, les futures 

investigacions han de dirigir-se a identificar la incertesa dels plans de mostreig. 

 

El risc de fumonisines ha estat identificat en la vinya, i per tant no només s’ha de determinar 

la presència i distribució de les espècies d’aspergils negres productores de FBs en quest cultiu, 

sinó també les condiciones ambientals que podrien estimular la seva producció. 

 

S’hauria de realitzar un estudi més extens per aclarir l’efecte de la llum UV en la producció 

de micotoxines i en la degradació d’altres metabòlits. A més, s’haurien de realitzar estudis in 

vivo tenint en compte el possible estrès de la planta, amb la finalitat de descriure situacions 

més properes a la realitat. 

 

Encara que varis fungicides van ser eficaços en el control del creixement fúngic, la producció 

d’OTA va ser escassament controlada. Principalment, A. steynii va ser un gran productor 

d’OTA, però va ser molt poc afectat pels tractaments antifúngics estudiats. En conseqüència, 

s’haurien de realitzar més estudis sobre les matèries primeres amb l’objectiu d’establir 

mesures pel control de les principals espècies ocratoxicogèniques. 



Future research 

 
 

 

S’ha observat que els extractes d’E. arvense podrien tenir un ús potencial com fungicides 

naturals; no obstant, serien necessàris més estudis per establir la seva dosificació òptima. 
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Lleida, Spain 

 

ABSTRACT  

 

This review focuses on risk management issues applied to mycotoxins and, in particular, the 

Codex Alimentarius recommendations for microbiological hazards are considered. 

Mycotoxins are chemical hazards from microbiological origin, thus some parallelisms can be 

found. Firtsly, a revision of main points regarding risk assessment is done. Then, the existing 

control measures for risk management of mycotoxins are reviewed and ALOP, FSO and PO 

concepts are introduced. Finally, an example of the application of these metrics is included: 

the processing of roasted pistachio is considered. The starting point was the maximum levels 

in Commission Regulation 1881/2006 for total aflatoxins. Having these values in mind, the 

process steps were individually considered and PCs determined when required. Moreover, 

according to these PCs, possible PcC and PdC were calculated, using previously published 

results. The present study demonstrates that the emerging risk management metrics, FSO, 

PO and PC, might be also applied to the mycotoxin hazard. The example here presented 

underlines the need for better and more structured information on the impact of the storage 

and processing steps on mycotoxins accumulation. Moreover, the problem of the impact of 

uncertainty in checking PO and FSO compliance was brought up. 
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List of abbreviations  

 

ADI, Acceptable Daily Intake; AFs, Aflatoxins; ALOP, Approppiate Level of Protection; 

aW, Water activity; CAC, Codex Alimentarius Commission; CM, Control Measure; DON, 

Deoxynivalenol; EC, European Commission; EU, European Union; FAO, Food and 

Agriculture Organization; FB, Fumonisins; FSO, Food Safety Objective; GAP, Good 

Agricultural Practice; GHP, Good Hygiene Practices; HACCP, Hazard Analysis and Critical 

Control Point; Ho, Initial level of the hazard; HPO, Hand Pick Out; HT2, HT-2 toxin; I, 

Increase of the hazard; IARC, International Agency for Research on Cancer; IPSM, 

Integrated Phytosanitary Management; JECFA, Joint FAO/WHO Expert Committee on 

Food Additive; m.c., Moisture content; NOAEL, No Observed Adverse Effect Level; 

OTA, Ochratoxin A; PAT, Patulin; PC, Performance Criteria; PcC, Process Criterion; PdC, 

Product Criterion; PMTDI, Provisional Maximum Tolerable Daily Intake; PO, 

Performance Objective; PTWI, Provisional Tolerable Weakly Intake; R, Reduction of the 

hazard; R.H., Relative Humidity; RASFF, Rapid Alert System for Food and Feed; SCF, 

Scientific Committee on Food; SPS, Sanitary and Phitosanitary Measures; T2, T-2 toxin; 

TDI, Tolerable Daily Intake; U, Measurement uncertainty; WTO, World Trade 

Organization; ZEA, Zearalenone. 

 

1. INTRODUCTION 
 

Food-borne risks to human health can arise from hazards that are biological, chemical or 

physical in nature. Food safety generally refers to the prevention of illnesses resulting from 

the consumption of contaminated food (Akkerman et al., 2010). 

 

A key discipline for further reducing food-borne illness and strengthening food safety 

systems is risk analysis. During the last several decades, risk assessment, risk management 

and risk communication have been formalized and incorporated into the specific discipline 

known as food safety risk analysis. This approach has now gained wide acceptance as the 

preferred way to assess possible links between hazards in the food chain and actual risks to 

human health, and takes into account a wide range of inputs to decision-making on 

appropriate control measures. When used to establish food standards and other food control 

measures, risk analysis fosters comprehensive scientific evaluation, wide stakeholder 

participation, transparency of process, consistent treatment of different hazards and 

systematic decision-making by risk managers. Application of harmonized risk analysis 
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principles and methodologies in different countries also facilitates trade in foods (FAO, 

2006). 

 

World Trade Organization (WTO) members are bound by the provisions of the Sanitary and 

Phitosanitary (SPS) Agreement, which places risk assessment within a coherent SPS system 

for developing and applying standards for food in international trade. The scope of the SPS 

Agreement covers risks to human life and health, and requires that WTO members: i) shall 

ensure that any measure is applied only to the extent necessary to protect human life and 

health; ii) shall base their measures on risk assessment, taking into account the techniques 

developed by the relevant international organizations; iii) may implement a measure that 

differs from international norms where a higher “appropriate level of health protection” is a 

legitimate goal; iv) shall apply the principles of equivalency where a different measure in an 

exporting country achieves their appropriate level of protection (ALOP) (FAO, 2006). 

 

Today in place systems like Hazard Analysis and Critical Control Point (HACCP) are 

developed to manage food safety, based on risk management principles and cover a range of 

biological, chemical and physical hazards. The basis idea behind a HACCP system is to 

provide a structured way to identify food safety risks and reduce or eliminate them 

(Akkerman et al., 2010). Recently the food safety management approach has been completed 

and developed through the inclusion of other metrics like the Food Safety Objective (FSO) 

(ICMSF, 1998). The FSO specifies a goal which can be incorporated into the design of 

control measurements in the food chain corresponding with the maximum permissible level 

of a hazard in a food at the moment of consumption which leads to an ALOP. Maximum 

hazard levels at other levels along the food chain are called Performance Objectives (POs) 

(CAC, 2007). The application of these food safety approaches to the mycotoxin hazard will 

be discussed in this review. 

 

2. MYCOTOXINS: CHEMICAL HAZARDS 
 

Mycotoxins are natural contaminants in raw materials, foods and feeds. Some mycotoxins 

can cause autoimmune illnesses, have allergenic properties and some of them are teratogenic, 

carcinogenic, or mutagenic (CAST, 2003).The conditions for mycotoxin production by fungi 

vary widely, but in general, it depends on nutrients availability, moisture level, pH, 

temperature, strain, and presence or absence of specific gases. Therefore, the presence of 

potentially toxigenic fungi does not imply the presence of mycotoxins. In addition, the 



Anexo I 

328 
 

finding of mycotoxins does not prove that a particular fungal species was or is present (Fung 

and Clark, 2004). 

 

Foods associated with fungal alterations are characterized by a low value of water activity 

(aW) or a low pH value, where fungi may be imposed on the colonization of bacteria and 

yeasts. Therefore the main food groups contaminated by fungus are cereals and their 

derivatives, nuts and fruits (CAST, 2003). On the other hand the major mycotoxin-producing 

fungal genera are Aspergillus, Penicillium, Fusarium and Alternaria. Nonetheless, although 

thousands of mycotoxins exist, the most important for public health are aflatoxins (AFs), 

ochratoxin A (OTA), patulin (PAT), fumonisins (FB), zearalenone (ZEA), and 

trichothecenes. 

 

2.1. Aflatoxins 

 

In relation with the effects produced in the human health, the most dangerous mycotoxins 

are the AFs. AFs were identified in the early 1960s, and are mainly produced by Aspergillus 

flavus and A. parasiticus. Crops usually affected are corn, cotton, peanuts, and certain tree nuts 

(CAST, 2003). Naturally occurring AFs are AFB1, AFB2, AFG1 and AFG2, being AFB1 the 

most abundant, toxic and carcinogenic (IARC, 2002b). AFM1 and AFM2 are respectively the 

hydroxilation products of AFB1 and AFB2 where M denotes milk or mammalian metabolites. 

They are found in milk and dairy products in different countries (Cano-Sancho et al., 2010; 

Prandini et al., 2009; Rahimi et al., 2010). International Agency for Research on Cancer 

(IARC) classified naturally-occurring AFs as human carcinogens based on the evidence from 

animal studies, epidemiological studies in exposed populations and mechanistic data. In 

experimental animals, liver is the predominant tumour site in rats, mice, hamsters, trout, 

salmon, ducks, tree shrews and monkeys. Tumours at other sites, e.g. kidney, have been 

observed but are much less common (Wild and Gong, 2009). Exposure to AFs is typically 

by ingestion of contaminated foodstuff. Dermal exposure results in slow and insignificant 

absorption (Riley et al., 1985).  

 

2.2. Ochratoxin A 

 

Ochratoxins were identified in 1965. Filamentous fungi belonging to the genera Penicillium, 

mainly Penicillium verrucosum, and Aspergillus sections Circumdati and Nigri are recognized as the 

source of OTA. In the Circumdati section Aspergillus westerdijkiae and Aspergillus steynii have 
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acquired more relevance than Aspergillus ochraceus, considered for a long time as the main 

source of OTA (Gil-Serna et al., 2011) and in the Nigri section, Aspergillus carbonarius is the 

main OTA producer followed by species belonging to the A. niger aggregate (Abarca et al., 

2004). The mainly contaminated crops are cereals, as well as coffee, wine grapes and dried 

grapes (Coronel et al., 2011; Hussein and Brasel, 2001; Manning and Wyatt, 1984). In the 

group of ocratoxins ocratoxin B and C also exist, however OTA is the most prevalent and 

relevant fungal toxin. IARC classified OTA as a possible human carcinogen on group 2B 

based on the evidence from diverse studies (IARC, 2002b). Often, a single mycotoxin can 

cause more than one type of toxic effect. The common organ affected by OTA toxicity in 

all mammalian species tested is the kidney, where lesions can be produced by both acute and 

chronic exposure (Harwig et al., 1983), although it affects liver, fat and muscle tissues too 

(Krogh et al., 1974). Much has been written regarding the possible role of OTA in etiology 

of these phenomena and detailed reviews on OTA toxicology have been published (Mantle, 

2002). 

 

2.3. Fumonisins 

 

FBs were identified in 1988. They are produced by different strains of Fusarium and to a 

lesser extent by Alternaria. Recently, A. niger has been reported as FB2 productor (Frisvad et 

al., 2007). They affect a wide range of foodstuffs specially maize (Fung and Clark, 2004). In 

total, 16 different types of fumonisins have been isolated and characterized, however, in 

naturally contaminated samples, FB1 accounts for 70% of fumonisin presence (Plattner et 

al., 1992). IARC classified FB1 as a possible human carcinogen in group 2B based on the 

evidence from diverse studies (IARC, 2002b). Several studies have described the toxic effects 

of fumonisins in animals like equineleukoencephalomalacia (ELEM), hepatotoxic syndrome 

in horses (Butler, 1902; Kellerman et al., 1972), and pulmonary edema in pigs (Kriek et al., 

1981). In humans, fumonisins have been associated with an increased risk of esophageal 

carcinoma in certain areas (Chu and Li, 1994).  

 

2.4. Patulin 

 

PAT was discovered in 1940s in UK, as a possible treatment against flu. Its production has 

been detected in genera like Byssochlamys, Aspergillus and Penicillium, however P. expansum is the 

main responsible of the accumulation of this toxin in food (Betina, 1989).The foodstuffs 

affected are mainly apples and pears, but also cereals, nuts and roots or rhizomes (Soriano 
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and Dragacci, 2007). Patulin is a common contaminant of apple juice, concentrated juice, 

puree, and unfermented cider (Cano-Sancho et al., 2009; Stoloff, 1975). (Viñas et al., 1993) 

observed that almost 50% of the apples from fruit cold stores with evidences of blue 

rotcontained patulin. Therefore, wounded apples maybe contain and patulin and this shoulbe 

taken into account when they are used for juices, concentrated juices or subproducts (Baert 

et al., 2006; Boonzaaijer et al., 2005; Gökmen and Acar, 1998). Despite it has been classified 

as Group 3 (IARC, 1999), the chronic toxicity caused by patulin includes neurotoxic, 

immunotoxic, genotoxic, teratogenic and possibly carnicogenic effects (Hopkins, 1993; 

Pfeiffer et al., 1998; Wichmann et al., 2002).Patulin is not found in either alcoholic fruit 

beverages or vinegars produced from fruit juices, thus it is reported to be destroyed by 

fermentation. However, patulin survives pasteurization processes that cause only moderate 

reductions in patulin levels (Harrison, 1989; IARC, 1986; McKinley and Carlton, 1991; 

WHO/IARC, 1990). 

 

2.5. Zearalenone 

 

ZEA is a non-steroidal estrogenic mycotoxin produced by several Fusarium species. It is 

found around the world in a wide number of cereal crops, ZEA producing species are the 

major causative fungi of head blight of wheat, barley, and maize (Kawashima and Valente 

Soares, 2006; Kuiper-Goodman et al., 1987; Tanaka et al., 1988) and their food products, 

such bread, pastry and bakery products (Aziz et al., 1997). IARC classified ZEA in group 3 

(IARC, 2002b). ZEA has been implicated in numerous incidents of mycotoxicosis in farm 

animals, especially in swine, causing infertility, abortion or other breeding problems (Kanora 

and Maes, 2009; López et al., 1988).Like other mycotoxins, it can be excreted from 

mammalians which were nourished with contamitated feed as alpha-zearalenol and beta-

zearalenol metabolites. It can also be present in the beer made with contaminated grains 

(Chen et al., 2000). 

 

2.6. Trichothecenes 

 

Trichothecenes are produced mainly by several species of Fusarium but also by Stachybotrys, 

Trichoderma, and Trichothecium. They are the largest group of mycotoxins, consisting of more 

than 150 chemically-related toxic compounds classified in four groups,HT-2 toxin (HT2), T-

2 toxin (T2) and deoxynivalenol (DON) being the most common. They are usual 

contaminants of cereals like wheat, barley, oats and maize.Thus, a wide range of cereal-based 
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foods have been confirmed to be contaminated by these toxins ratifying that food processing 

methods do not completely remove these mycotoxins from the matrix (Hazel and Patel, 

2004; JECFA, 2001). Trichothecenes are strong inhibitors of protein synthesis in mammalian 

cells causing a wide range of toxic effects in animal and humans such as feed refusal, 

vomiting, diarrhea, hemorrhage, anemia and immunosuppression (Hussein and Brasel, 

2001). Compared to some of the other mycotoxins such as AFs, the trichothecenes do not 

appear to require metabolic activation to exert their biological activity. Although DON is not 

as toxic as other trichothecenes such as T2 or HT2, this mycotoxin is one of the most 

common contaminants of cereals worldwide (Jelinek et al., 1989; Scott et al., 1989). 

 

3. RISK ASSESSMENT FOR CHEMICAL HAZARDS 
 

Chemical hazards in foods include food additives, environmental contaminants such as 

mercury and dioxins, natural toxicants in food, such as glycoalkaloids in potatoes and 

aflatoxins in peanuts, acrylamide, and residues of pesticides and veterinary drugs. As opposed 

to microbiological hazards, chemical hazards usually only enter foods in the raw food or 

ingredients, or through certain processing steps, and the level of hazard present in a food 

after the point of introduction often does not significantly change. Moreover, health risks 

may be acute but are generally chronic, and types of toxic effects are generally similar from 

person to person, but individual sensitivity may differ (FAO, 2006). In the particular case of 

mycotoxins, as chemical hazards from microbiological origin, they may increase in 

concentration through the processing steps, if conditions are conducive for fungal growth. 

 

3.1. Hazard characterization 

 

During hazard characterization, risk assessors describe the nature and extent of the adverse 

health effects known to be associated with the specific hazard. This includes consideration 

of mechanistic aspects (e.g. whether the mechanism of action of the chemical observed in 

often high-dose experimental studies is also relevant to human exposure at lower levels). If 

possible, a dose-response relationship is established between different levels of exposure to 

the hazard in food at the point of consumption and the likelihood of different adverse health 

effects. Adverse health effects are usually predicted for long-term exposure to chemicals. For 

certain chemicals, such as some mycotoxins, marine toxins, pesticides and veterinary drugs, 

both acute and chronic health effects need to be considered.  
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In cases where the toxic effect results from a mechanism that has a threshold, hazard 

characterization usually results in the establishment of a safe level of intake, an acceptable 

daily intake (ADI), or tolerable daily intake (TDI) for contaminants (FAO, 2006). Most 

mycotoxins are considered to act through a non-genotoxic mechanism. This allows the 

assumption of a practical biological threshold of effect, and consequently the derivation of a 

tolerable intake level via the determination of a no observed adverse effect level (NOAEL) 

for a surrogate biological endpoint and the application of factors to ensure the safety. 

Tolerable intake, which can be expressed in daily, weekly or monthly basis, is an estimate of 

the amount of a contaminant that can be ingested over a lifetime without appreciable risk.  

 

Estimation of the ADI or TDI (provisional tolerable weakly intake, PTWI) includes the 

application of default “uncertainty factors” to a no-effect-level or low-effect level observed 

in experimental or epidemiological studies, to account for uncertainties inherent in 

extrapolating from an animal model to humans and to account for inter-individual variability. 

Safe levels of intake for the more frequent non genotoxic mycotoxins occurring in food are 

shown in Table 1. 

 

Table 1 Safe levels of intake for the more frequent non genotoxic mycotoxins occurring in 

food. (Source of date: Opinion of the Scientific Committee on Food on Deoxynivalenol 

(1999), Patulin (2000a), Zearalenone (2000b), T-2 toxin and HT-2 toxin (2002), Nivalenol 

(2000c) and Fumonisin B1, B2 and B3 (2003) and Summary and Conclusions of the Sixty-

eight Meeting of the JEFCA (2007).  

 

Mycotoxin Safe level of intake References 

OTA PTWI=100 JECFA (2007) 

FBs TDI=2 SCF (2003) 

PAT PTDI=0.4 SCF (2000a) 

ZEA PTDI=0.2 SCF (2000b) 

DON TDI=0.4 SCF (1999) 

T2 PTDI=0.06 SCF (2002) 

HT2 PTDI=0.06 SCF (2002) 

NIVALENOL PTDI=0.7 SCF (2000c) 

 

Toxicological reference values used by different authorities for (genotoxic) carcinogenic 

chemicals vary. Some are based on a combination of epidemiological and animal data, some 

may be based on animal data alone, and different mathematical models may be used to 
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extrapolate risk estimates to low doses. These differences can lead to significant variability in 

cancer risk estimates for the same chemical (FAO, 2006). As regards AFs, the Scientific 

Committee on Food (SCF) expressed in its opinion of 23 September 1994 that AFs are 

genotoxic carcinogens (SCF, 1999)F, 1996).  

 

3.2. Exposure assessment 

 

Exposure assessment describes the exposure pathway or pathways for a chemical hazard and 

estimates total intake. For some chemicals, intake may be associated with a single food, while 

for others the residue may be present in multiple foods. Exposure assessment characterizes 

the amount of hazard that is consumed by various members of the exposed population(s). 

The analysis makes use of the levels of hazard in raw materials, in food ingredients added to 

the primary food and in the general food environment to track changes in levels throughout 

the food production chain. These data are combined with the food consumption patterns of 

the target consumer population to assess exposure to the hazard over a particular period of 

time in foods as actually consumed. For chemicals, exposure assessment often uses values at 

certain points on the continuum of exposure, such as the mean or the 97.5th percentile 

(FAO, 2006)  

 

3.3. Risk characterization 

 

The outcome of the exposure assessment is compared to the TDI in order to determine 

whether estimated exposures to the chemical in foods are within safe limits. 

 

Risk characterization for chronic exposure to chemical hazards does not typically include 

estimates of the likelihood and severity of adverse health effects associated with different 

levels of exposure. A “notional zero risk” approach is generally taken and where possible the 

goal is to limit exposure to levels judged unlikely to have any adverse effects at all.  

 

For example, considering exposure to OTA, it seems to be in most cases quite below the 

TDI (14 ng/kg bw/day). Nevertheless, some countries appear to be under a more relevant 

exposure especially if specific group of consumers are considered, as shown for UK 

population in the range of 1.5-4.5 years, which overpasses the TDI (JECFA, 2007). 
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Regarding PAT exposure reports seem to be quite below the provisional maximum tolerable 

daily intake (PMTDI) (0.4 μg/kg bw/day). Nevertheless, some countries seem to be suffering 

from a more relevant contamination, still under the PMTDI, especially in a worst case 

situations and if specific group of consumers especially small children are considered (SCF, 

2000).  

 

Exposure to Fusarium toxins studied was found to be considerably below the TDI values. 

Higher intakes and a transgression of the TDI values were observed for the group of infants 

and children. Intakes higher than the TDI were noted for the sum of T-2 and HT-2. For 

DON, the average intake level did not exceed 46.1% of the TDI of 1 μg/kg bw/day. 

However, for young children the intake might approach the TDI (SCF, 2002). 

 

Quantitative risk assessment methodologies have only rarely been applied for chemical 

hazards thought to pose no appreciable risk below certain very low levels of exposure, 

probably because the approach described above has generally been considered to provide an 

adequate margin of safety without a need to further characterize the risk (FAO, 2006). 

 

In contrast, quantitative risk assessment models have been applied by some governments as 

well as by international expert bodies (JECFA) for effects that are judged to have no 

threshold, i.e. for genotoxic carcinogens such as AFs. These models employ biologically-

appropriate mathematical extrapolations from observed animal cancer incidence data (usually 

derived from tests using high doses) to estimate the expected cancer incidence at the low 

levels typical of ordinary human exposure. If epidemiological cancer data are available, they 

also can be used in quantitative risk assessment models (FAO, 2006) Scientific knowledge 

allows the identification of a practical biological ‘threshold’ experimentally, or the 

identification of an exposure level that correlates to an acceptable level of risk, via dose–

response modelling and quantitative risk assessment. 

 

AFs exposure has been correlated to human liver cancer. Observations concerning the 

interaction between hepatitis B infection and AFs suggest two separate AFs potencies; one 

is apparent in populations in which chronic hepatitis infections are common, the other in 

populations in which chronic hepatitis infections are rare. Mean potency values for these two 

groups were chosen, of 0.3 and 0.01 cancers per year per 100000 population per ng AFs 

ingested per kg body weight per day, respectively (JECFA, 1999). 
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4. RISK MANAGEMENT 
 

All these toxicological evaluations are the basis for the existing maximum permitted levels of 

chemical hazards in food. Analysis of the derivation of maximum levels in food differentiates 

between the duties of the various risk management and risk assessment bodies. The latter 

evaluate the health effects and intake of a contaminant (including derivation of values for 

TDI). Risk managers, by setting maximum levels, consider the outcome of the risk 

assessment process, the concentration of a contaminant in food, socio-economic arguments, 

the technical feasibility of derived values and other issues. Because setting maximum levels 

by the Codex Alimentarius Commission (CAC) and European Union (EU) requires the 

agreement of independent nations, political debate is also an obvious part of the risk 

management process (Schneider et al., 2007). 

 

Within the EU, the maximum levels legally bind to all member states. By definition, the 

Codex Alimentarius values only represent recommendations, yet they have attained a 

prescriptive character due to their acceptance by the WTO as international hygienic 

standards.  

 

Food safety measures based on risk assessments are generally designed to reduce risks to a 

target level, and risk managers must determine the degree of health protection they are aiming 

to achieve. Through good communication with risk managers, risk assessors will likely have 

examined the relative impacts of different controls on reducing risks, providing the risk 

managers with objective data that supports decisions on the most appropriate controls. The 

overriding objective of risk management is to maximize risk reduction while ensuring that 

the measures employed are efficient and effective and not overly restrictive (FAO, 2006). 

Where chemicals are not intentionally used in food production settings, more specific risk 

management options often are evaluated (e.g. imposing conditions on harvesting, providing 

information to consumers so that they can voluntarily limit exposure).  

 

Exposure guidelines such as PTWIs can then provide a reference point for maximum safe 

intake, and risk management measures can be put in place that aim to prevent consumers 

from exceeding that safe upper limit of exposure. When other risk modelling approaches are 

used, such as linear modelling for carcinogenic effects, different risk management options 

may be identified and evaluated, such as banning or severely restricting the presence of the 

chemical.  
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4.1. The ALOP concept 

 

The concept of ALOP was introduced in the WTO Agreement on the application of the SPS 

Agreement in 1995 (WTO, 1995). An ALOP is defined in the SPS agreement as: ‘‘The level 

of protection deemed appropriate by the Member establishing a sanitary or phytosanitary 

measure to protect human, animal or plant life or health within its territory’’. The purpose 

of the SPS-Agreement was to increase the transparency of SPS-measures. It is the prerogative 

of individual Member states to determine what constitutes an ALOP that is appropriate for 

its population ((de Swarte and Donker, 2005). The acceptable level of risk is the level adopted 

following consideration of public health impact, technological feasibility, economic 

implications, and that which a society regards as reasonable in the context of and in 

comparison with other risks in everyday life (Schothorst, 1998)(van Schothorst, 1998). 

 

An ALOP can be expressed in a range of terms, for instance from broad public health goals 

to a quantitative expression of the probability of an adverse public health consequence or an 

incidence of disease (de Swarte and Donker, 2005) . This concept was initially defined for 

microbiological hazards. With mycotoxins, often there is no proof of causality between the 

hazard and an individual case of a food-borne disease because impacts of chemical hazards 

may be more chronic in nature. On the other hand the TDI concept is based on scientific 

considerations, which certainly can be taken into account in the ALOP/FSO approach. 

 

Two main approaches are applied to setting an ALOP in selecting risk management options 

in the mycotoxin case: 

 

 Notional zero risk approach. Hazards are kept at levels that equate to a pre-determined 

“negligible” or “notional zero” risk, based on a risk assessment indicating that such 

low exposure levels are reasonably certain not to cause harm. This is the approach 

applied to most mycotoxins. For the majority of mycotoxins no acute effects are 

observed thus the dose-response relationship can not be derived. This approach does 

not produce precise estimates of risk versus dose and cannot model the impact of 

various interventions in terms of risk reduction. It thus provides an ALOP that is 

pre-determined by public policy to be “notional zero risk” (FAO, 2006). 
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 “Threshold” approach. Risks must be kept below a specific numerical level as pre-

determined by public policy; this approach may be used for chemical hazards, 

particularly carcinogens. A level of risk that is judged acceptable can be defined by 

public policy, and risk management measures can then be chosen to keep risk below 

that “threshold,” sometimes referred to as a “virtually safe dose.” The FSO and 

ALOP are linked by the dose–response relationship which estimates the risk of illness 

given a specified consumption of a hazard.  

 

The threshold approach is applied to AFs. The 49th Joint FAO/WHO Expert Committee 

on Food Additive (JECFA) session held in 1999 took as example, an area with low AFs food 

contamination and with a population having a small prevalence of carriers of hepatitis B: 

AFs levels based on European monitoring of AFB1 in peanuts, maize and their products 

were used, and a population with 1% carriers of hepatitis B was assumed. From the potencies 

given earlier, this yielded an estimated average population potency of 0.013 cancers per year 

per 100000 population per ng AFs per kg body weight per day. Based on European 

monitoring, if all lots with contamination above 20 μg/kg are removed and it is assumed that 

these foods are ingested according to the “European diet”, the mean estimated intake of AFs 

is 19 ng per person per day. Assuming an adult human weight of 60 kg, the estimated 

population risk is 0.0041 cancers per year per 100000 people. If a 10 μg/kg hypothetical 

standard is applied, the average AFs intake is 18 ng per person per day, resulting in an 

estimated population risk of 0.0039 cancers per year per 100000 people. Thus, reducing the 

hypothetical standard from 20 μg/kg to 10 μg/kg yielded a drop in the estimated population 

risk of approximately two additional cancers per year per 109 people, well beyond the level 

of detection. The second example pertained to areas with higher contamination. For these 

purposes, Chinese data on AFB1 in peanuts, maize and their products were used and areas 

with a larger population fraction as carriers of hepatitis B (in this case, a population with 25% 

hepatitis B carriers was assumed). The estimated potency for this population is 0.083 cancers 

per year per 100000 people. Using 20 μg/kg and 10 μg/kg hypothetical standards and the 

“Far Eastern” diet, the average estimated intake was 125 ng AFs per person per day yielding 

an average population risk of 0.17 and 0.14 cancers per year per 100000 people, respectively. 

Thus, reducing the hypothetical standard for this population from 20 μg/kg to 10 μg/kg 

yielded a drop in the estimated population risk of 0.03 cancers per year per 100000 people. 

This is a greater decrease in risk, but still barely detectable (JECFA, 1999; Pitt, 2004). 
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The major improvements of the ALOP/FSO methodology relating to risk assessment are i) 

that current risk assessment focuses mainly on life sciences, while ALOP/FSO methodology 

must also take into account socio-economic and technological consequences of risk 

management; consequently, in the future, life sciences, social sciences and engineering need 

to co-operate more closely to develop integrated scenarios for assessing risk management 

options, and ii) in order to set meaningful ALOPs and consequent FSOs a better knowledge 

of the impact of a food safety hazard is needed. Epidemiological data can help gain more 

insight on the impact and to develop models on major sources of infection and public health 

impact of food-borne illnesses. Often, epidemiological data are not accumulated in a way 

that it is directly usable in risk assessment. There is clear room for improvement in that 

respect (de Swarte and Donker, 2005). 

 

4.2. The FSO concept, a food safety management metric 

 

The FSO is the maximum frequency and/or concentration of the hazard in a food at the 

time of consumption and is preceded by the PO, which is the maximum frequency and/or 

concentration of a hazard in a food at a specified step in the food chain before the time of 

consumption (ICMSF, 2002), that still provides or contributes to the achievement of an FSO 

or ALOP, as applicable. While Codex considers FSOs only for microbial hazards (the 

maximum frequency and/or concentration of a microbiological hazard in a food at the time 

of consumption that provides the appropriate level of protection) (C. A. C. CAC, 2003), in 

principle, the concept could apply to other types of hazards as well.  

 

In this context, the agro-food industry would use FSOs as means to co-ordinate risk 

management in the production process throughout the farm-to fork production chain (de 

Swarte and Donker, 2005).In the particular case of mycotoxins, both mycotoxigenic fungi 

(which is not a biological hazard per se) and mycotoxins, as chemical hazards, should be 

controlled. 

 

Once an FSO is set, the food industry is responsible for setting up management systems that 

deliver a level of food safety in compliance to the FSO. Performance criteria (PC) and other 

metrics on the operational level can be derived by food industry from FSOs by chain-

reversal, in effect articulating appropriate food safety standards for individual links in the 

chain. Such standards as well as particular control measures that government may choose to 
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mandate should be enforced and inspected by (private and public) certification and 

inspection systems (de Swarte and Donker, 2005). 

 

In the case of a chemical hazard such as mycotoxins, the limits set by a country for 

mycotoxins in foods can be logically considered also to have the status of a FSO.  

 

Full implementation of the FSO concept calls for a quantitative FSO so that PO and PC can 

be specified, and a HACCP plan developed. Ideally, all the approaches described above 

would converge on an appropriate FSO for a food. 

 

4.3. Meeting the FSO 

 

Good hygiene practices (GHP) and HACCP are the primary tools available to control 

chemical hazards in food operations. Thus, FSOs must be based on a realistic assessment of 

what can be achieved through GHP and HACCP. 

 

POs are linked to the FSO and, when proposed by governments, can be viewed as a kind of 

milestones that governments provide as guidance in order to help meet the FSO. For 

example, (European Commission, 2006) sets certain maximum limits for cereals and nuts 

which still have to undergo physical treatments before direct human consumption. However, 

POs can also be decided on by operational food safety managers as an integral part of the 

design of the production of a food in a supply chain. 

 

A PC, is the effect of one or more control measure(s) needed to meet or contribute to 

meeting a PO, while a Control Measure (CM) is any action and activity that can be used to 

prevent or eliminate a food safety hazard or to reduce it to an acceptable level (it can be 

products specifications, guidelines on microbial control, hygiene codes, maximum levels, 

specific information). There are many different types of CM, instigated by regulation or 

chosen by the industry, the proper functioning of which needs to be monitored and verified 

by the industry. 

 

A broad range of CM is used in the food continuum from primary production, processing 

and manufacturing, transport and distribution, storage and retail to preparation and 

consumption of the food. CM may include a variety of practices applied at various stages 
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(e.g., good agricultural and animal production practices, good hygiene practices during 

manufacture and processing, good consumer handling practices) (JECFA, 2006). 

 

CM in the food industry regarding mycotoxins may fall into these activities: 

 

 Ensuring control of initial levels of hazards (e.g. avoiding nuts and spices from 

certain origins, avoiding raw materials from primary producers not adhering to good 

agricultural practices, establishing requirement specifications with suppliers and 

requiring verifiable documentation e.g., letters of guarantee or certificates of analysis 

attesting  the status of microbiological, chemical and physical hazards in the incoming 

raw material, using sampling and analyses, as necessary, and using appropriate 

methods based on established criteria to reject unacceptable ingredients or products). 

 

 Preventing an unacceptable increase of hazards 

 

a) preventing contamination, for example adopting GHPs, that minimise mycotoxin 

contamination from transport, drying and storage facilities establishments or processing 

equipment and from the aqueous solutions in fruits and nuts, due to poor renovation. GHPs 

besides minimize product contamination through cross-contamination between raw and 

processed product; for the particular case of mycotoxins, it is also important to prevent from 

contamination by mycotoxigenic fungi, which may further develop and produce mycotoxin 

in subsequent process stages. 

 

b) preventing fungal growth during transportation, storage and processing, for example, cold 

storage of apples, adjusting aW in stored cereals, nuts, coffee or spices, adding preservatives 

in stored fruits and cereals, controlling temperature and moisture/ aW in dehydrating fruits, 

adjusting storage times, use of packaging techniques and materials to protect food from 

contamination, or implementing effective controls within the food processing environment 

(e.g., pest control). 

 

 Reducing or eliminating hazards 

 

a) selecting ingredients (e.g. applying electronic sorters to reject nuts that are likely to contain 

AFs, culling fruits for fruit juice production that are likely to contain patulin, rejecting rotten 
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grape bunches that are likely to contain OTA, cleaning of cereals will end in separation of 

mouldy grains which account for most of Fusarium toxins and AFs in a lot…). 

 

b) additionally some measures which are not implemented to control mycotoxins or that are 

intrinsic of the food process, may exert a certain control on mycotoxins: 

 

inactivating mycotoxins, to some extent, because mycotoxins are quite heat stable (e.g. heat 

treatments, like roasting, frying, baking, commercial sterilisation, fermentation processes). 

 

physical segregation of the most contaminated fractions of raw materials (e.g. milling of 

cereals, must extraction from grapes or malt, pressure-washing of apples, centrifugation, 

filtration…) 

 

POs, as milestones, are not intended to be enforced but should provide guidance to designing 

the correct operational control measures at the step in the chain that the POs govern. 

Complying with the hazard level tolerated at the moment of consumption (FSO) is a shared 

responsibility for all parties together and requires an appropriate design of the complete chain 

which is helped by specifying POs and PCs as food control guidance targets or food safety 

management measures at relevant points in the production chain (Gorris, 2005). 

In practice, FSOs are achieved through the establishment and implementation of 

performance and process criteria. In every step of the food chain it is necessary to know the 

effect of every treatment, PC, as well as the process parameters, Process Criterion (PcC) (t, 

T, pH, aW) which can be applied in any level neither in the final product, Product Criterion 

(PdC) (pH, aW, gaseous atmosphere). PdC assure that the hazard level never overtake safety 

levels before being cooked or consumed (Stringer, 2005). 

 

When PC are established, a consideration must be given to the initial level of a hazard and 

changes occurring during production, distribution, storage, preparation and use of a product. 

PC account for a number of hazard increases and reductions that can be expressed by the 

following equation: 

 

Ho–∑R+∑I≤FSO 
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where 

 

Ho=Initial level of the hazard 

∑R=Total (cumulative) reduction of the hazard 

∑I=Total (cumulative) increase of the hazard 

 

FSO, Ho, R and I are expressed in µg/kg for mycotoxins.  

  

Thus the PC indicate, the change in hazard level required at a specific step in order to reduce 

the hazard level at the start of the step (Ho) to a level at the end of the step that complies 

with the PO or the FSO when it is at the chain end. PCs in general will be decided on by 

food safety managers as key points in the design of the production of a food in a supply 

chain. PCs can be achieved by one or more CM and as such are a reflection of the concrete 

management measures that assure a product is safe and produced to the proper 

specifications. PCs can be about a required reduction of the hazard, avoiding increase (limit 

to 0) or assuring a minimal increase. 

 

It should be recognized that the parameters that may be used in the above equation are point 

estimates, whereas in practice, they will have a distribution of values associated with them. If 

data exist for the variance associated with the different parameters, then the underlying 

probability distributions may be established using an approach similar to that in risk 

assessment (Cole, 2004). 

 

4.3.1. AFs in pistachio nuts. A case study. 

 

Nuts present low aW, and due to their intrinsic characteristics, fungi are the major 

microbiological contaminants. Some of these moulds are mycotoxigenic, so high levels of 

mycotoxins have frequently been reported in nuts. One of the most consumed nuts in the 

world is pistachio. Presence of mycotoxigenic fungi in pistachio has been reported from the 

orchards and from the market (Bayman et al., 2003; Fernane et al., 2010a).Fungal infection 

mainly occurs during the nut developmental phase in the orchard and in post-harvest 

processing stages (Denizel et al., 1976; Fernane et al., 2010b). In the case of pistachios, the 

dominant mycobiota are Aspergillus section Nigri, A. flavus and Penicillium spp (Denizel et al., 

1976; Fernane et al., 2010b). 
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Several studies have reported that Aspergillus spp. causes decay in nuts in different parts of 

the world, such as California (USA) (M.A. Doster and Michailides, 1994)Iran ((Mojtahedi et 

al., 1979), and Turkey (Denizel et al., 1976). The most important mycotoxins found are the 

AFB1, B2, G1 and G2 and OTA. In the last ten years (2000-2010) the Rapid Alert System for 

Food and Feed (RASFF) notified 7191 alerts, border rejections and informations regarding 

mycotoxins, of which 79.60% were for nuts, nuts products and seeds, 37.13% being for 

pistachio. The most frequent mycotoxins were AFs (2667 notifications), followed by OTA 

(5 notifications), besides co-occurrence was reported in two cases (RASFF, 2011). 

 

In 2001, FAO published the Manual of the application of the HACCP system in mycotoxin 

prevention and control, considering two pistachio processing lines after harvest according to 

the different procedures applied in Asian producing countries. The fast dehulling process 

line involves fast dehulling (within 24 h after harvest) for preventing staining, floating 

segregation and quickly drying to 5-6% water content to prevent fungal development. The 

objective of this line is to reach a good-condition-for-storing product until it is further 

processed. This process is followed by the major producing countries. Other countries such 

Turkey or Syria, based on traditional practices, follow slow dehulling process lines, where 

pistachios are sun dryed and stored for months until they are dehulled, segregated by either 

flotation and drying or by air gravity separators. Subsequent steps are followed by both lines, 

including sorting, roasting, packaging and storage/shipping (Figure 1). Pistachios are sorted 

to remove closed-shell nuts which are sent to other industries for rehydration and mechanical 

or manual craking (Campbell et al., 2003). If required, hand sorting could complete other 

electronic processes for removing stained nuts and others with visible insect damage 

(Pearson and Schatzki, 1998); finally, very small and insect damaged nuts are sorted. It is 

known that high AFs levels are found in very small and insect damaged nuts, becoming this 

final process an important step to reduce mycotoxin contamination (Schatzki and Pan, 1996). 

 

CAC proposed a maximum level of 15 μg/kg AFs total in almonds, hazelnuts and pistachios 

intended for further processing and a level of 10 μg/kg AFs total in ‘ready-to-eat’ almonds, 

hazelnuts and pistachios (Codex Stan, 1995). The European Commission (EC) recently 

amended the Commission Regulation 1881/2006 through Regulation 165/2010, imposing a 

maximum AFs level in pistachios to be subjected to sorting, or other physical treatment, 

before human consumption or use as an ingredient in foodstuffs of 12 µg/kg (AFB1), 15 
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µg/kg (total AFs), of 8 µg/kg (AFB1) and 10 µg/kg (total AFs) for pistachio intended for 

direct human consumption or use as an ingredient in foodstuffs.  

 

 

 

Figure 1 Flow diagram of processing of pistachio.  
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The aim of the present section is to analyze how the PO, PC, PcC and PdC concepts can be 

applied in the case of a pistachio importing and processing company to guarantee FSO 

compliance regarding AFs. As most of the existing literature deals with AFB1, in some cases 

extrapolation to total AFs was done. Taking into account the ∑I and ∑R given by the 

processing steps, food managers must limit the levels of contaminants in the raw materials 

(Ho) in order to achieve the FSO. In the present case study the value of FSO for AFs is 10 

µg/kg. The company chosen for the example imports hulled pistachios after flotation 

separation and drying, and undergoes sorting and roasting as main steps (Figure 1). 

 

4.3.1.1  Initial level of AF contamination (Ho)  

 

In our case the maximum value of Ho is that set by European Commision EC Regulation 

for total AFs in pistachios to be subjected to sorting, or other physical treatment, 15 µg/kg. 

An established Ho value should led processing companies to accept only those raw material 

batches which allow compliance with the final PO of the company in the final product. 

Evidently the Ho established must be achievable from application of Good Agricultural 

Practice (GAP) and Integrated Phytosanitary Management (IPSM) which seek to reduce the 

mould spore count in the orchard and reduce the chances of insect attack (Boutrif and Canet, 

1998). These practices can assist in limiting mycotoxins formation, but do not guarantee their 

absence. Therefore if unrealistic low Ho values were required for assuring the FSO, 

processing steps might need to be redesigned in order to produce a safe product.  

 

4.3.1.2. Increase of AF during storage and processing (∑I) 

 

Increase of AFs concentration is linked to aflatoxigenic moulds present in pistachio. The 

only opportunities for this to happen are those in which conducive environmental conditions 

occur together with an extended period of time: initial storage of pistachio nuts and storage 

prior or after final packaging. Roasting is expected to kill fungi, thus, mycotoxin formation 

after roasting is unlikely, unless further fungal contamination occurs afterwards. 

 

During storage steps a zero increase of AFs is desirable (Table 2). Provided pistachios are 

adequately dried and maintained in the dried state during storage, mycotoxin producing fungi 

cannot grow. Environmental conditions like temperature, moisture and atmosphere must be 

controlled; also a regular fumigation can be adequate for pest control during storage. Storage 
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temperature is a main factor on AFs accumulation in pistachio, with a sharp increase at 25-

30ºC; maximum AFs levels were found at 20-30% moisture content (m.c.) in pistachios. For 

AFs prevention, pistachios should be kept under 10% m.c., alternatively they could be stored 

at a m.c.as high as 25% under cool conditions (<10ºC) (unpublished data). 

 

Moreover, FAO (2001) recommended to reach a m.c.of 5 to 6% after drying and optimum 

storage conditions of 10ºC or lower and 65 to 70% relative humidity (R.H.). Moreover for 

postprocessing storage R.H below 70% and temperature between 0-10ºC is recommended 

depending on expected storage duration. The lower the temperature the longer the storage 

life.  

 

4.3.1.3. Reduction in AFs levels during sorting and processing (∑R) 

 

As absence of mycotoxins in the raw material cannot be guaranteed, relying on inductial 

processes for a certain AFs reduction is required. 

 

a) Sorting  

 

It is recognised that sorting and physical segregation significantly reduce the AFs content of 

consignments of nuts. Mycotoxins are mainly linked to mouldy nuts, damaged by insects, 

small, deformed and discoloured ones. Removal of pistachio nuts with high the 

contamination by sorting caused a decrease in contamination of 2 to 4 times in processed 

pistachios compared to non-processed pistachios (Schatzki, 1995). Park, (2002) quantified 

physical cleaning, where mold-damaged kernels, seeds or nuts are removed from the intact 

commodity, may result in 40–80% reduction of AFs. (Schatzki and Pan, 1996) related the 

AFs reduction from pistachios previously partitioned by water flotation with the elimination 

of the stained nuts, which include the scalpers, the eye rejects, the hand pick out (HPO) 

insects, the HPO dye floaters, and the meat sinkers. Considering that the company imports 

dehulled pistachios after flotation separation and drying, the company sorts by size and only 

removes the meat and the scalpers. The elimination of this part implies a roughly drop of 26 

% on the AFs content and 2 % of the product (Table 2). 
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Table 2 Food safety metrics applied to total AFs in roasted pistachio production.  

 

Step PC PcC PdC PO (μg/kg) 

Receiving of 
pistachio 

– – – ≤15 (1881/2006) 

Storage 
Zero 

increase 

PC achievable 
by: 

– ≤15 
<10% mc any T 

<10 °C any mc 

T < 20 °C 
mc < 20% 

Sorting 26% 
Separation of 

meats and 
scalpers 

– ≤11.1 

Storage 
Zero 

increase 

PC achievable 
by: 

– ≤11.1 
<10% mc any T 

<10 °C any mc 

T < 20 °C 
mc < 20% 

Roasting 

About 
30% 

150 °C 20 min 

– 

≤7.77 

About 
40% 

150 °C 30 min ≤6.66 

About 
50% 

200 °C 20 min ≤5.55 

Storage 
Zero 

increase 

PC achievable 
by: 

– 

≤7.77 

<10% mc any T ≤6.66 

<10 °C any mc ≤5.55 

T < 20 °C 
mc < 20% 

 

Distribution 
Zero 

increase 
– 

PC achievable by: 
<10% mc any T 

≤7.77 

≤6.66 

≤5.55 

Consumer – – 
PC achievable by: 
<10% mc any T 

FSO ≤ 10 (10-U) 
(1881/2006) 

U = measurement uncertainty. 

 

b) Roasting  

 

AFs have high decomposition temperatures, ranging from 237 to 306ºC and AFB1 is quite 

stable to dry heating (Betina, 1989; Rustom, 1997). Although these temperatures are higher 
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from those actually used by the nuts industry, it is usually accepted that the heat treatment 

decreases the concentration of AFs to some extent. However conflicting results have been 

published about the effect of the heat treatments on peanuts and pistachios (Ariño et al., 

2009; Farah et al., 1983; Lee et al., 1969; Ozkarsli, 2003; Pluyer et al., 1987; Rustom, 1997; 

Waltking, 1971; Yazdanpanah et al., 2005). In general the extent of the destruction achieved 

was very dependent on the initial level of contamination, heating temperature and time. The 

effects of heat in naturally contaminated peanuts by oven roasting at 150ºC for 30 min caused 

a 30-45% reduction of AFB1, while in artificially contaminated peanuts treated under the 

same conditions, the inactivation was 48-61% (Pluyer et al., 1987). Degradation of aflatoxins 

in peanuts roasted at 150 º C for 30 min increased with the addition of ionic salts in a range 

from 38%, 41.5% and 47.6% in unsalted peanuts, and salted with 20 µg·kg-1 and 50 µg·kg-1 

respectively (Ozkarsli, 2003). In pistachio, the results regarding degradation of AFs due to 

roasting are also contradictory. (Yazdanpanah et al., 2005) studied the effect of roasting for 

30, 60 and 90 minutes at different temperatures (90, 120 and 150ºC). The milder treatment 

(90ºC-30min) reported slightest effect while the most extreme treatment resulted in the 

degradation of over 95% of AFB1 but the pistachio showed a burned appearance. The 

roasting process at 150ºC for 30 min showed significant reduction of AFB1 and AFB2 

without any noticeable change in taste of sample. Also the rate of reduction was plotted 

against the initial amount and linear correlation was not found. On the other hand, (Ariño et 

al., 2009) studied the effect of roasting on AFs: four commercial batches of raw pistachios 

in-shell from Iran were salted (1% salt content) and roasted at 120ºC for 20 min in a roasting 

industry in Spain. This study did not obtain significant differences in relation with AFs 

reduction after roasting. However the level of contamination of the starting material was low, 

ranging from 0.12 to 0.18 µg/kg. 

 

Analysing the existing results on the effect of time and temperature in connection with the 

degradation of AFs, it can be observed that high temperatures (200-400ºC) produce higher 

mycotoxin reduction (Figure 2). Moreover lower temperatures need longer exposition time 

than higher temperatures for obtaining the same reduction percentages. Thus the percentage 

of reduction depends on temperature, time as well as the initial mycotoxin contamination 

(Table 2). 
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Figure 2 Summary of the existing results regarding aflatoxin reduction due to roasting. Lines represent the temperature 
levels leading to a given reduction for a certain roasting time with Ho=10µg/kg. (Source of date: Ariño et al., 2009; Lee et 

al., 1969; Pluyer et al., 1987; Rustom et al., 1997 and Yazdanpanah et al., 2005).  

 

4.3.1.4. FSO, PO and uncertainty 

 

The FSO was taken from the maximum levels in EC Regulation 1881/2006 amending by 

105/2010 for total AFs (10 µg/kg). Taking into account the information in the previous 

subsections, the process steps were individually considered (Table 2) and PCs determined 

when required. Moreover, according to these PCs, possible PcC and PdC were calculated, 

using previously published results. This process can either be done forward, starting from 

the PO guideline in the raw material, or backward, starting from the FSO to be accomplished 

in the final product. 

 

The most common measure of uncertainty is variance. The variance of an estimated 

parameter statistical dispersion, indicates how far from the expected values are. Hence the 

results should be reported as “x ± 2u” or “x ± U”, where x is the result; and u is the standard 

measurement of uncertainty. The expanded measurement of uncertainty (2u = U) gives a 

confidence level of approximately 95%, assuming normality of the reported results 

(EURACHEM, 2000).  
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For the particular case of mycotoxins, the maximum level as set in the EC Regulation 

1881/2006 (FSO) must be over the final product PO to take U into account. EC Regulation 

(401/2006) states as criterion for acceptance of a lot or sublot that the laboratory sample 

conforms to the maximum limit, taking into account the correction for recovery and U. 

According to the performance criteria for AFs analysis (EC 401/2006, recommended 

RSDR=21% for a concentration of 10 µg/kg), calculated U would take a value of 4.224 

µg/kg. Thus in this case the PO for the final product should take a value of 10-4.224~5.776 

µg/kg. Thus, in this example, given the recommended value of U, either the PO at the 

reception of the pistachio should be lower than 15 µg/kg or the industrial process might 

need to be redesigned to comply with the maximum level. Considering the current 

bibliography plus the associated uncertainty, only a final FSO of 10 µg/kg could be reached 

if a reduction of 50% was achieved during roasting. 

 

An additional point which has not been addressed in this example is sampling uncertainty. 

According to (Ozay et al., 2007) sampling uncertaintity may account for 99.53% total 

uncertaintity, while U would just be 0.09%. At the moment, the EU project Selection and 

improving of fit-for-purpose sampling procedures for specific foods and risks is running with the aim of 

evaluating sampling uncertainty for a range of hazards and sampling plans, including AFs in 

pistachio nuts. The sampling plans for official control are stated by governments, while the 

food industry might use different sampling plans for their quality control systems.  

 

As a conclusion, for sampling and determination of AFs concentration there is a need to 

state the PO for the final product lower than the FSO, taking into account the uncertainty 

value, U (FSO-U=PO). In Australia, one peanut shelling company sorted peanuts until the 

mean AFs content of samples from any one lot did not exceed 3 μg/kg (PO): this provided 

95% confidence that any lot would meet the 15 μg/kg FSO (Pitt, 2004).-  

 

4.3.2. The need for predictive modelling to reach performance criteria 

 

When seeking for appropriate PC, PcC and PdC the authors found a lack of kinetic models 

from where to draw data for both AFs production in pistachio nuts as a function of storage 

conditions and AFs inactivation as a function of time, temperature, moisture… From this 

example it is clear that models are required to adequatelly adjust PcC, PdC and PC especially 

during the storage and thermal treatments. 
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Regarding mycotoxins, (Garcia et al., 2009) described two approaches in the mycotoxin 

production modelling. One modelling approach is preventing mould growth in all the steps 

of the production and processing of food and thus indirectly prevent mycotoxin production. 

The other modelling approach involves directly model mycotoxin production as a function 

of environmental factors in those steps of the process. However this alternative is associated 

with several disadvantages as high intraspecific variability in mycotoxin production plus a 

high variability in the mycotoxin production by a given strain in a given substrate. The 

application of predictive microbiology in risk management may serve to determine the 

conditions required to avoid the growth of fungi and therefore the production of mycotoxins 

in steps such as storage and processing.  

 

Likewise, predictive modelling can be also applied to quantify the mycotoxin reduction 

through certain processing steps. Ideally, decontamination steps, in addition to assuring an 

adequate wholesome food suply, should: inactivate, destroy or remove the mycotoxins; not 

produce or leave toxic residues in the food/feed; retain nutritive value and food/feed 

acceptability of the product; not alter significantly the properties of the product and destroy 

fungal spores (Kabak et al., 2006). Moreover, some processing steps may indirecty destroy 

mycotoxins. In general, factors that may influence the fate of mycotoxins during food 

processing include the presence of other constituents and enzymes, m.c. of the raw material, 

processing temperature, pH, pressure, and the mycotoxin concentration (Scott, 1991). All 

these variables should be explored and their impact on mycotoxins destruction be modeled. 

This would provide a valuable tool for PC, PcC and PdC calculation. 

 

5. CONCLUSIONS  
 

The present study demonstrates that the emerging risk management metrics, FSO, PO and 

PC, might be also applied to the mycotoxin hazard. The example here presented underlined 

the need for better and more structured information on the impact of the storage and 

processing steps on mycotoxins accumulation. Moreover, the problem of the impact of 

uncertainty in PO and FSO compliance was brought up. 
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Aflatoxins are secondary metabolites produced by several species of Aspergillus on important 

commodities like maize, cottonseed, peanuts and pistachio nuts. Aspergillus flavus is the main 

responsible for aflatoxins contamination in maize worldwide, almost the only one in Italy. 

Although several strategies have been applied worldwide to reduce pre-harvest aflatoxins 

contamination, biological control with atoxigenic strains of A. flavus is the most effective. 

Atoxigenic strains displace aflatoxin producers during crop development resulting in a 

relevant reduction in aflatoxins contamination in grains. The competitive efficiency of strains 

is crucial; therefore, native strains must be applied in order to guarantee the best results in 

term of reduction of aflatoxin contamination. In previous studies, 2 Italian atoxigenic strains 

were selected as candidate biocontrol agents based on in vitro studies. The aim of this research 

was to confirm their efficacy in field. A field trial was carried out during the 2012 maize 

growing season (March-September) in 8 fields located in 3 regions of north Italy: Emilia 

Romagna (ER; 1 field), Lombardia (LO; 2 fields) and Veneto (VN; 5 fields). 

 

Each field consisted of almost 2 ha managed according to the cropping system commonly 

followed by farmers; 1 ha was treated with the biocontrol agents, a mix of 2 strains belonging 

to 2 different VCG (IT019 and IT006) and 1 ha represented the untreated control. Sorghum 

was used as the atoxigenic strain carrier for field trials and it was distributed at V4-V6 maize 

growing stage using a fertiliser spreader. A randomized design with three replicates was used. 

At commercial ripening (UR 22-24%), 10 ears from each plot were randomly collected, de-

husked, shelled and the kernels dried at 45°C for 3 days prior to be milled. A total of 6 

http://www.sulky-burel.com/content2.aspx?catalogues-pieces-epandeurs
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samples (3 replicates for treated and 3 for the control) of maize flour from each field were 

obtained. A. flavus enumeration was carried out on the maize flour through the dilution 

technique onto a Modified Rose-Bengal Agar.  

 

Members of Aspergillus section Flavi were initially identified based on colony morphology and 

the number of colony-forming units (CFU) recorded. Ten discrete A. flavus colonies, from 2 

independent isolation procedure, were recovered from each sample, transferred on 5/2 agar, 

incubated for 5-7 days at 31°C and saved in sterile water vials. Single spore colonies were 

used to estimate the relative abundance of the biocontrol agents released using the vegetative 

compatibility analysis through the complementation between non-utilizing nitrate 

auxotrophs (nit mutants).  

 

Aflatoxins and fumonisins were analyzed in all the samples according to the method of 

Stroka et al. (1999) and Visconti et al. (2001), respectively. 

 

Data were subjected to the analysis of variance (ANOVA) using the software IMB SPSS 

Statistics 21 (IMB, Somers, NY, USA). Mean separations were performed on data using 

Tukey’s Honestly Significant difference test. Data on aflatoxin B1 and percentage of 

reduction compared to the untreated test were ln and arcsin transformed, respectively, prior 

to the analysis. Fields with aflatoxin B1 contamination lower than 1 g/kg in both thesis were 

not considered for the analyses. 

 

A. flavus population ranged between 6.69·104 and 6.98·106 CFU/g in the control and from 

6.72·105 to 1.52·107 CFU/g  in the treated thesis. On average, the population was higher in 

the thesis treated with the two Italian atoxigenic strains compared to the untreated thesis 

(P<0.001; 5.80·106vs 3.30·106). Statistical differences were also observed among fields and 

they were more relevant than those between treated and control areas of the same field where 

the visual observation never showed differences.  

 

Vegetative compatibility analysis was conducted on 60 isolates for each field, 30 from 

untreated and 30 from the treated field areas. The percentage of the IT019 was 25.2% and 

30.0%, respectively in the untreated and treated area, while it was 53.5% and 61.9% for 

IT006.   
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Regarding aflatoxin B1, in 4 fields the concentration was less than 1.0 µg/kg in both theses; 

these fields were excluded from statistical analysis. In the other fields, the average aflatoxin 

B1 concentration in the treated thesis (4.2 µg/kg) was statistically different from the value of 

the untreated fields (71.1 µg/kg); this result is confirmed considering single fields.  

No differences in fumonisin concentration were observed between the treated and control 

areas. 

 

These results confirm the ability of the selected atoxigenic strains of A. flavus to significantly 

reduce aflatoxin contamination in maize grain below the limit of 5 µg/kg. The VCG study 

showed that the recovery of IT006 is significantly higher compared to IT019, both in treated 

and control plots. The dispersal of atoxigenic strains in untreated areas is surely delayed 

respect to the planned distribution; due to this reason and because of the lower amount of 

atoxigenic strains, they cannot reduce aflatoxin contamination, or at least they exert a very 

light effect.  

 

Based on these field results, the selected strains, in particular IT006 can be confirmed as 

candidate biocontrol agent to mitigate aflatoxin contamination in maize in Italy, an emerging 

problem as confirmed in 2012 when very severe contamination was signaled. 

 

 

This summary briefly reports the activity where Esther Garcia Cela was involved during her 

period abroad spent in Piacenza, Università Cattolica del Sacro Cuore. In collaboration with 

PhD Antonio Mauro and with the supervision of Prof. Paola Battilani. A paper is in preparation 

and it will be submitted to a peer reviewed Journal. Because a related patent is pending, it was 

not possible to publish data before. 

 


