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Ignasi y Guillem for those grotesque, hectic and freaky discussions that
surprisingly turned out to shape and inspire a substantial part of this work.
I also want to thank Dr. Joan for trivializing some of my thesis obstacles
and injecting humor into most of them. My special thanks go to my soul
mate, Carol, for really understanding my bizarre and aloof behavior dur-
ing certain periods of this thesis.

viii



Abstract
The lipid composition of cell membranes ultimately determines their bio-
physical properties, thereby affecting the dynamics and organization of
key transmembrane proteins like G protein-couple receptors (GPCRs).
The aim of this thesis is to make a step forward towards a better un-
derstanding of the nature and extent of the interplay between membrane
lipids and GPCRs. We have used molecular dynamics simulations to
study the complexity of biological membranes and the effect of the mem-
brane environment on the organization of GPCRs. Thus, we developed
a computational framework to comprehensively analyze the properties of
lipid bilayers and membrane–protein simulations. In addition, by com-
bining computer simulations and experiments in living cells we demon-
strate for the first time that membrane polyunsaturated lipids can mod-
ulate the organization of GPCRs. These findings could open new doors
to the treatment of several conditions like schizophrenia or Parkinson’s
disease, where GPCRs have been shown to play an vital role.
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Resum
La composició lipı́dica de les membranes cel·lulars determina, en última
instància, les seves propietats biofı́siques afectant, aixı́, les dinàmiques
i organització de proteı̈nes transmembrana essencials, com són els re-
ceptors acoblats a proteı̈nes G (GPCRs). L’objectiu d’aquesta tesi és fer
un pas endavant en la comprensió de la natura i l’abast de la interacció
entre lı́pids de membrana i GPCRs. Amb aquesta finalitat, hem emprat
simulacions de dinàmiques moleculars per tal d’estudiar la complexitat
de les membranes biològiques i el seu efecte sobre l’organització de les
GPCRs. Aixı́, hem desenvolupat un marc computacional per analitzar
amb profunditat les simulacions de bicapes lipı́diques i sistemes proteı̈na-
membrana. A més, combinant simulacions computacionals i experiments
amb cèl·lules vives, demostrem per primera vegada que els lı́pids de mem-
brana poliinsaturats poden modular l’organització de les GPCRs. Aquests
resultats podrien obrir noves portes en el tractament de condicions diver-
ses com l’esquizofrènia o la malaltia de Parkinson, on s’ha demostrat que
les GPCRs juguen un paper vital.
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Prologue

This thesis focus on the modulation of G protein-coupled receptors
(GPCRs) by membrane lipids, a topic of paramount importance that could
revolutionize the development of new drugs by bringing lipids into play.
Lipids have been traditionally considered to have a plain structural role in
cell membranes, yet, recent studies demonstrate that lipids can modulate
the function and dynamics of membrane proteins. Key transmembrane
proteins like GPCRs are involved in the most prevalent human diseases
including several neurological disorders or even cancer. However, the real
contribution of the membrane environment to the function and dynamics
of GPCRs is to date largely unknown.

In this scenario, molecular dynamics (MD) simulations of membrane–
protein systems have emerged as a extremely valuable technique to exam-
ine and support experimental findings. Despite biological membranes are
highly complex mixtures, in most of the current molecular simulations
of transmembrane proteins, this lipid heterogeneity is underrepresented.
Frequently, an important bottleneck of these simulations is the lack of
adequate tools to characterize membrane complexity.

In this thesis, we provide a computational framework to biophysically
characterize simple and complex lipid bilayers and membrane–protein
simulations. We made this framework available to the scientific commu-
nity through the development of a computational tool, MEMBPLUGING,
to automate the analysis of membrane properties in molecular simula-
tions. MEMBPLUGIN offers classical approaches to study the thickness,
order or fluidity of membranes but also novel algorithms like the charac-
terization of membrane leaflet interdigitation. We published this unified
framework in a leading journal in bioinformatics.

Additionally, we combined MD simulations and experiments in liv-
ing cells to provide novel results on the effect of membrane lipids on the
organization of GPCRs. In particular, we report for the first time the mod-
ulation of GPCR oligomerization by docosahexaenoic acid, an omega-3
polyunsaturated fatty acids of high relevance in several brain disorders.

All in all, in this thesis we make a step forward towards a better under-
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standing of the interplay between GPCRs and their highly complex lipid
environment.
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Chapter 1

INTRODUCTION

1.1 Biological background

1.1.1 G protein-coupled receptors (GPCRs)

The transmission of exogenous signals is the cornerstone of cell function-
ing in multicellular organisms, where membranes segregate the internal
composition of cells from the exterior environment. The real key to un-
derstanding cell communication lies in a correct interpretation of how
membrane receptors function. The paramount importance of this topic is
highlighted by G protein-coupled receptors (GPCRs), the largest family
of membrane receptors in the human genome [1]. Among many differ-
ent proteins, members of this family include receptors for a wide vari-
ety of ligands ranging from photons or ions to many neurotransmitters,
hormones or chemokines. These molecules are able to stimulate GPCRs
to propagate a signal that triggers different second-messenger cascades
which are involved in many physiological processes such as vision, taste,
odor cell sensing or neurotransmission [2]. Thus, GPCRs are involved
in a wide variety of human diseases where impairment in the activation
of these receptor occurs and, nowadays, they are therapeutic targets of
approximately 50 % of the currently launched drugs [3, 4].

In 1994, Kolakowski presented a comprehensive phylogenetic clas-
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sification of GPCRs known as the A–F classification system. While the
former nomenclature is still used by the International Union of Pharma-
cology, a decade later, Fredriksson and colleagues [5] showed that most
human GPCRs can be divided in five main families, namely Rhodopsin
(class A), Secretin (class B), Adhesion (class B), Glutamate (class C)
and Frizzled/Taste2 (class F), a nomenclature system known under the
acronym GRAFS. Among these 5 main classes, class A is by far the
largest family and includes important receptors like the archetypal GPCR
rhodopsin, olfactory receptors, chemokine, angiotensin, opioid, adrener-
gic, dopamine, histamine or adenosine receptors. However, despite their
high ligand idiosyncrasy, all GPCRs share one common structural fea-
ture: seven transmembrane (TM) α-helical segments joined by a set of
three extracellular and three intracellular loops [4] (Figure: 1.1).

Figure 1.1: Adenosine A2A receptor embedded in a lipid bilayer. In all GPCRs, seven
transmembrane segments alternatively span from the extracellular side to the cytoplasm
joined by protein loops. Helical segments are labeled with numbers and depicted in blue
cartoons whereas unstructured protein segments are in thin yellow cylinders. Grey van
der Waals spheres represent membrane lipids.

During the last two decades, new developments in protein X-ray crys-
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tallography have allowed a rapid and successful crystallization of sev-
eral new structures of GPCRs [6, 7]. The first atomic structure of a
GPCR, rhodopsin, was determined in 2001 by Palczewski et al. [8] and,
since then, crystallographic determinations have continued with the solu-
tion of several rhodopsin structures (Table: 1.1). This fruitful period has
produced a full structural coverage along multiple activated and inacti-
vated states of rhodopsin allowing a reconciliation between the evidence
found by biochemists and biophysicists. A breakthrough in the structural
study of GPCRs bound to ligands came in 2007, when the X-ray struc-
ture of the human β2-adrenergic receptor bound to an inverse agonist fi-
nally saw the light [9]. Two different techniques using antibodies or the
well-known T4-lisozyme constructs to stabilize the protein were used to
successfully crystallize the first new structures of this receptor [10, 11].
Some years later, a camelid antibody fragment was used to solve a new
agonist-bound crystal structure of the β2-adrenergic receptor in its active-
state [12]. Thus, 2007 was the beginning of the advent of new GPCR
crystal structures: today the structure of several class A (including adeno-
sine, chemokine, dopamine, muscarinic, opioid, neurotensin, or serotonin
receptors), class B, class C and class F GPCRs have been solved (Ta-
ble: 1.1).

Such good body of new GPCR structures have opened the door for
studying differences and similarities of the seven transmembrane regions
within class A GPCRs and hence shedding light on the ligand binding
network at their transmembrane region or even on their mode of activa-
tion. But undoubtedly, a discovery of paramount importance for the field
of GPCRs was the structure determination of the β2-receptor in complex
with the G protein [13]. This crystal structure confirmed that slight rear-
rangements of the GPCR architecture are behind the modulation of signal
transduction and set the grounds for future structural studies on the rela-
tionship of GPCRs with the intracellular protein machinery.

Recent studies have shown that the function of GPCRs can be modu-
lated by specific lipid-receptor interactions. Consequently, alterations in
physiological levels of membrane lipids can markedly affect the behav-
ior of key membrane receptors. Understanding the role of the membrane
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Receptor Class Number of structures

Adenosine A2A

A (Rhodopsin)

12
β2-adrenergic 15
β1-adrenergic 16
Chemokine CXCR1 1
Chemokine CXCR4 5
Chemokine CXCR5 1
Dopamine D3 1
Histamine H1 1
Muscarinic M2 4
Muscarinic M3 1
Neurotensin 5
Nociceptin/orphanin FQ 1
κ-opioid 1
δ-opioid 2
µ-opioid 1
Protease-activated R1 1
Purinoceptor P2Y12 3
Rhodopsin 28
Serotonin 5-HT1B 2
Serotonin 5-HT2B 2
Sphingosine 1P 2

Corticotropin releasing factor
B (Secretin)

1
Glucagon 1

Metabotropic glutamate R1 C (Glutamate) 1

Smoothened receptor F (Frizzled) 3

Table 1.1: GPCR crystal structures solved as of May 2014. To date, 24 GPCR types
has been experimentally solved, including 20 Class A, 2 class B, 1 class C and 1 class
F receptor. In this table, GPCRs with more than 10 crystal structures in the PDB have
been highlighted in red. Since rhodopsin was the first crystallized GPCR, up to 28 crystal
structures of this protein have already been deposited in the Proten Data Bank (PDB).
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environment on the dynamics and conformation of GPCRs has therefore
become a research priority in this field.

1.1.2 Biological membranes and lipid heterogeneity

Transmembrane proteins like GPCRs live permanently surrounded by mem-
brane lipids. These lipids have been traditionally considered as passive
solvents or just physical barriers that confine the whole repertoire of pro-
teins living therein. However, considering membrane lipids simply as
structural entities is a misconception of the true global mission of these
molecules. The development of new computational and experimental
techniques [14] have led to a deeper understanding of membrane lipids
and revitalized this field by better defining their role in the dynamics of
cell membranes. Today we are aware of the importance of membrane
lipids, their specific biological functions, and their involvement in key
cell membrane events such as virus budding [15], membrane trafficking
or cell signaling [16]. In addition, lipids are involved in wide-spread dis-
orders including neurodegenerative diseases[17] or even cancer [18].

The key physicochemical property that enables the constitution of bi-
ological membranes is the amphipatic nature of lipids. Such property is
conferred by the presence of one polar and one hydrophobic part within
the same lipid molecule (Figure: 1.2), which allows membrane bilayers
to assemble, to separate the whole cell from the interior milieu and to
compartmentalize internal cell organelles. The lipid composition of these
membranes significantly varies across cell compartments and is main-
tained by cells through an exquisite regulation of the lipid turnover. Two
main amphipatic lipid molecules, namely phospholipids and cholesterol,
make up the bulk of animal cell membranes. By changing the level of
these molecules, cells can modulate the structure of biological membranes
with an aim to maximize the function of specific membrane machinery.

In mammals, the level of membrane cholesterol is typically different
across cells and tissues. This sterol, synthesized in the endoplasmic retic-
ulum, is a vital element of biological membranes and largely found in the
plasma membrane [19]. In terms of the modulation of membrane bio-
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Figure 1.2: Amphipathic structure of cholesterol and phospholipids. Snapshot of
one cholesterol (left) near two phospholipids, SDPC (1-stearoyl-2-docosahexaenoyl-
sn-glyerco-3-phosphatidylcholine) (middle) and DSPC (1,2-distearoyl-sn-glycero-3-
phosphatidylcholine) (right). Both cholesterol and phospholipids are amphipathic
molecules, that is, they have both polar and hydrophobic regions. DSPC is an example
of a fully saturated phospholipid whereas SDPC contains one saturated and one polyun-
saturated unsaturated lipid tail. This snapshot was taken during a molecular dynamics
(MD) trajectory of a complex lipid mixture. Carbon atoms are depicted in cyan, phos-
phorous in ochre, nitrogen in blue and oxygen atoms in red. Hydrogen atoms are not
depicted for clarity.

physical properties, cholesterol is widely known to increase the conden-
sation and decrease the fluidity of membranes rich in this molecule [20].
The impact of this effect on the properties of other lipids [21] or, more
importantly, on the interaction [22, 23, 24, 25], stability [26], binding
properties [27, 28], activation [29], function [30, 31, 32, 33] or even
organization[34, 35] of membrane proteins like GPCRs is currently a mat-
ter of intense study.

Along with cholesterol levels, the amount and type of phospholipids is
an important determinant of the overall membrane biophysical properties.
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In general, cells modify two main structural features of phospholipids to
design, in the endoplasmic reticulum and Golgi apparatus, most of mam-
malian species by de novo biosynthesis [36, 37] (Figure: 1.3). On the
one hand, the type of head group defines five main species of phospho-
lipids, namely phosphatidic acid (PA), phosphatidylethanolamine (PE),
phosphatidylcholine (PC), phosphatidylserine (PS) and phosphoinositides
(PI) (Figure: 1.3). Each phospholipid species of this colorful assortment,
confer biological membranes with specific biophysical and physicochem-
ical properties [19, 38]. For instance, PE phospholipids partially impose a
higher curvature stress to the lipid bilayer when compared to membranes
rich in PC phospholipids, a property used for budding, fission and fusion
events [19, 39] in nature.

On the other hand, the nature of the hydrophobic part of phospho-
lipids (Figure: 1.2) is a key regulator of various structural properties of
cell membranes. One important property of these membranes modulated
by the architecture of lipid tails is membrane fluidity. The number of dou-
ble bonds or level of unsaturation was initially thought to provide rigidity
to cell membranes, however, recent studies have demonstrated the im-
pressive flexibility of highly unsaturated phospholipids [40]. In fact, sub-
tle changes in membrane levels of unsaturated lipids can severely alter
parameters like membrane thickness [41], fluidity [42, 43, 44], lateral
pressure [45], or the affinity with other membrane components [46].

In addition to the lipid idiosyncrasy of biological membranes, cells
can further stratify the levels of certain lipids across membrane leaflets
yielding an asymmetric distribution of lipid molecules within the mem-
brane itself. An elegant set of enzymes modulate the rate of lipid translo-
cation to keep an asymmetry between the plasma and the cytosolic leaflet,
hence, granting different biophysical properties to them. For instance,
flippases control the so-called flip-flop of membrane phospholipids at the
plasma membrane so that the cytosolic leaflet is enriched in PS and PE
phospholipids [47]. This lipid imbalance contributes to membrane bend-
ing, necessary in biological events where a certain curvature of the mem-
brane is needed (e.g. vesicle formation).

Besides lipid transversal heterogeneity, membranes can locally mod-
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Figure 1.3: Lipid heterogeneity across cell membranes. The lipid composition of
different membranes varies throughout the cell. Data in graphs are expressed as a per-
centage of the total phospholipid (PL) in mammals (blue) and yeast (light blue). Ma-
jor phospholipids in blue and lipids lipids involved in signaling and organelle recog-
nition in red. Abbreviations: Cer, ceramide; GalCer, galactosylceramide; GSLs, gly-
cosphingolipids; DAG, diacylglycerol; ISL, inositol sphingolipid; PA, phosphatidic
acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinosi-
tol; PS, phosphatidylserine; PG, phosphatidylglycerol; PI(3,5)P2 , phosphatidylinositol-
(3,5)- bisphosphate; PI(4,5)P2 , phosphatidylinositol-(4,5)-bisphosphate; PI(3,4,5)P3 ,
phosphatidylinositol-(3,4,5)-trisphosphate; PI4P, phosphatidylinositol-4-phosphate; R,
remaining lipids; S1P, sphingosine-1-phosphate; SM, sphingomyelin; Sph, sphingo-
sine; TG, triacylglycerol; CHO, cholesterol (mammals); ERG, ergosterol (yeast). Figure
adapted from Van Meer et al. [19].
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ify lipid composition by segregating specific lipid and protein species in a
lateral fashion to form structures called membrane microdomains [48].
These domains display , when compared to the rest of the membrane
they ‘float’ into, different levels of certain lipids including higher lev-
els of cholesterol. Two types of membrane microdomains, namely lipid
rafts [49, 50] and caveolae [51] represent the essence of lipid lateral het-
erogeneity and have a special biological relevance in the context of pro-
tein functioning and dynamics [52, 53]. The fact that membrane mi-
crodomains seem to display differences in lipid compositions between
healthy and diseased brains [54, 55, 56, 57] highlights the importance of
understanding lipid lateral heterogeneity and its impact on the activity of
transmembrane proteins like GPCRs.

1.1.3 The modulation of GPCRs by membrane lipids

Despite frequently overlooked, the lipid to protein ratio in native plasma
membranes is very high, namely around 50:1 [53, 58]. Characterizing the
effect of the membrane environment on protein dynamics is becoming
a crucial step for an adequate understanding of key transmembrane pro-
teins [59] like GPCRs. Membrane lipids are known to modulate certain
GPCRs directly via specific interactions [60] and indirectly by changing
the biophysical properties of the membrane [61]. The most evident exam-
ple of a specific lipid-GPCR modulation is given by the fact that certain
GPCRs can be activated by lipid-derived endogenous ligands [62, 63], as
demonstrated by the recent crystal of the sphingosine 1-phosphate recep-
tor [64]. However, the real contribution of specific and unspecific effect
of membrane lipids to the function and/or stability of certain GPCRs is to
date a widely unknown issue [29].

One typical component of biological membranes, cholesterol, has been
intensely studied in the past years in connection to its relationship with
GPCRs. A large body of experiments demonstrate that cholesterol modu-
lates the stability and function of several GPCRs including rhodopsin [65],
opioid [66, 67, 30], serotonin [68, 69], muscarinic [70] or cannabinoid [71]
receptors. However, it is still unknown whether cholesterol exerts such
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modulation by directly interacting with the receptor or rather indirectly
by changing the biophysical properties of the membrane environment [34,
24]. The presence of specific ‘annular’ and/or ‘nonannular’ cholesterol
binding sites is thought be involved in the functional modulation of var-
ious GPCRs [23]. In fact, the resolution of the β2- adrenergic receptor
crystal structure reported, for the first time, a specific cholesterol bind-
ing site in this GPCR [22] and the authors subsequently identified what
they termed ‘cholesterol consensus motif’ within class A GPCRs. De-
spite cholesterol is known to modulate the function of various GPCRs,
little is known about the mechanism behind this effect.

In addition, particular membrane phospholipids and fatty acids have
been shown to influence key aspects of GPCR biology including sig-
naling, receptor maturation or desensitization and membrane delivery.
One special type of lipid–GPCR interaction is the fatty acylation, a
post-translational modification undergone by most membrane proteins in-
cluding GPCRs [72]. The most common fatty acylation of GPCRs oc-
curs by the addition of palmitate, a saturated fatty acid of 16 carbons
(C16:0), frequently to conserved cysteine residues at the last transmem-
brane domain (helix 8) of the receptor [73, 74]. GPCR mono-, bis- and
even tris-palmitoylation has been described in several receptors such as
rhodopsin [75] or β2-adrenergic receptors [76] and, interestingly, in other
GPCRs such as the TPα-isoform of the human thromboxane A2 recep-
tor [77] or the gonadotropin-releasing hormone receptor type 1 [78], no
palmitoylation site exists. This particular lipid–protein interaction has
been suggested to modulate two relevant biological events of GPCRs,
namely the localization of GPCRs into lipid rafts [79, 80, 50] and the
dimerization of these receptors [81], although many aspects of both is-
sues still remain unknown.

One particular fatty acid draws, to a greater extent, the attention of sci-
entists due to the essential role it plays on biological membranes: the do-
cosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (PUFA)
of 22 carbons and 6 double bonds (22:6n3). The large amount of DHA
found in membranes of rod outer segments [82] and neuronal cells [83,
84] seems to provide these membranes with particular biophysical proper-
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ties [85] such as increased fluidity [86, 87]. Growing evidence that DHA-
rich phospholipids have a special affinity for GPCRs [88] has led scien-
tists to focus on the interaction between DHA and rhodopsin, an archety-
pal GPCR present in rod outer segments. Over the last few years, various
studies have demonstrated the preference of DHA to solvate rhodopsin [89,
60] and the impact of this interaction on the optimization of rhodopsin
function [90, 91]. In this context, in vitro experiments have correlated
the presence of DHA with with high conformational stability of the pro-
tein [92, 93] or the enhancement of the visual signaling pathway [94, 95].
Conversely, reduced rhodopsin activation is observed in response to DHA
deficiency [96].

While the aforementioned correlations between rhodopsin and DHA
somehow justify the high levels of DHA-rich lipids found in the retina [97],
little is known about the interaction between DHA and GPCRs in the
brain. In this line, certain studies [98, 99, 100] envisage a similar modu-
lation of other GPCRs by DHA in neuronal membranes, another special-
ized signaling platform. Moreover, several studies have found substan-
tially low levels of DHA in the brain of subjects suffering from differ-
ent brain disorders including schizophrenia [101, 102], major depressive
disorder [103], bipolar disorder [104], Alzheimer [56] and Parkinson’s
disease [55]. The special properties of this fatty acid along with its po-
tential effects against neurodegeneration [105, 106] have made DHA a
promising candidate against brain aging and certain neurodegenerative
disorders [107, 108, 109]. Therefore, in this thesis we have focused on
the relationship between DHA and GPCRs, in particular, on the modula-
tion of GPCR organization by this fatty acid.

1.1.4 GPCR dimerization

Recent evidence that GPCR dimers or higher-order oligomers function
as dimers or higher-order oligomers add an extra level of complexity
to the overall picture of lipid-protein interactions. While some studies
show that individual monomers of certain GPCRs are able to respond to
ligand binding and activate signaling pathways [110, 111], different ex-
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perimental methods have already proven the existence of GPCR-GPCR
complexes [112] in living cells. Since the first report of GPCR cross-
talk [113], several GPCRs have been reported to dimer- or oligomer-
ize [114, 115, 116, 117]. Moreover, GPCR-GPCR interactions display a
very different level of stability, thus, while some dimers have been shown
to form only transient complexes [118, 119], certain GPCR complexes
exhibit a strong and stable nature [120]. Even after the release of the first
crystal structure of a GPCR oligomer[121], the homomeric β1-adrenergic
receptors in their ligand-free state, the exact molecular mechanism, dy-
namics and biological relevance of the GPCR phenomenon is still unre-
solved.

GPCR dimerization can have an impact on receptor trafficking and
delivery process of these proteins to the cell membrane. The formation
of GPCR dimers can up- or down regulate the membrane level of other
GPCRs by enhancing their delivery to the cell surface or by regulating
their internalization (i.e. endocytosis) [122, 123]. Thus, the co-expression
of γ-aminobutyric acid (GABA) R1 and R2 receptors has shown to cause
a very important enhancement of GABA R1 receptors [123]. Likewise,
certain adrenoceptor subtypes form GPCR oligomers able to modulate
the delivery of the αD - adrenoceptor to the membrane [123]. This type
of modulation of receptor trafficking is inspiring the development of the
so-called pharmacological chaperones, which aim to change the surface
expression of specific GPCRs by targeting GPCR dimerization.

In addition, GPCR dimerization is known to impact a variety of cell
events by altering ligand binding and the signaling properties of these
receptors. Thus, the co-expression of two specific GPCRs can modu-
late ligand affinity and generate a pharmacological fingerprint attributable
to GPCR dimerization [124]. For example, the pharmacology of cer-
tain opioid receptors can be altered by targeting dimer complexes such
as µ- and δ-opioid heterodimers. In fact, targeting this specific dimer
with antagonists of the δ-opioid receptor has been shown to enhance the
binding of µ-opioid receptor agonists [125], an approach that has been
used to improve the properties of current opioid agonists such as mor-
phine. In addition to ligand binding, GPCR dimerization can alter the
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signaling properties of the receptors involved in the protein-protein com-
plex. For example, the selective co-expression of dopamine D1, D2, and
D3 receptors in specific areas of the brain differentially modulates the
signaling of these receptors via receptor dimerization. Thus, while D1

and D2 receptors stimulate and inhibit, respectively, the adenylate cyclase
pathway, D1–D2 heteromers can activate a different signaling pathway,
namely the phospholipase C pathway [126]. Similarly, the co-expression
of D1 and D3 receptors enhances the signaling properties of the D1 recep-
tor [127]. But one of the most relevant examples of GPCR dimerization is
the adenosine A2A - dopamine D2 heteromer [128], thought to be involved
in certain neuropsychiatric-related conditions including schizophrenia or
Parkinson’s disease [129]. Since various A2A antagonists have proved
able to change the affinity of D2 agonists in cells, this heteromer is the
target of different clinical studies for developing new Parkinson’s disease
treatments [130].

Therefore, the presence of two particular GPCRs in plasma mem-
branes is clearly able to yield different signals when compared to the
monomeric signal of each individual protomer. Whether this functional
crosstalk is based on a physical interaction (e.g. conformational changes
exerted by protein-protein interactions) is today still widely controversial
topic [131, 129]. Since defining the functional relevance of this interac-
tion is a challenging task, the International Union of Basic and Clinical
Pharmacology published in 2007 a series of advices for the definition of
GPCR complexes [132]. In order to be considered as GPCR heteromers,
such complexes need to meet at least two out of the three requirements
thereby specified. First, a physical association must be demonstrated by
reporting the presence of both subunits in the same cell and documented
in native tissue (e.g. coimmunoprecipitation). Second, the complex needs
to be linked to, at least, one functional property such as modulation of lig-
and binding or activation of a specific transduction cascade [132]. Third,
the absence of the heteromeric activity is demonstrated by using knockout
animals or RNAi technology.

All in all, we are aware of the relevant role played by membrane
lipids, GPCRs and GPCR oligomers. We also know that structural ele-
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ments of membranes can modulate the activity of GPCRs and that some
of them, like the omega-3 PUFAs, have shown to establish a very in-
tense relationship with these receptors. However, only a handful of stud-
ies [133, 134, 135, 136] have been devoted to answer this question: do
membrane lipids drive or modulate the organization of GPCRs? In this
thesis, we partly try to address this question by computational approaches,
in particular, all-atom and coarse-grained molecular dynamics (MD) sim-
ulations.

1.2 Molecular dynamics (MD) simulations
Modeling biological molecules by molecular dynamics (MD) simulations
have yielded deep insights into molecular mechanisms otherwise not ap-
proachable by experimental techniques [137, 138]. Classical MD sim-
ulations consists on iteratively solving the classical equations of motion
on a group of particles (atoms) interacting by a simple harmonic force.
In this simplified model, the potential energy of the system is a function
of the position of the atoms (coordinates) mathematically expressed by
means of a ‘force field’. The real experimental parameters behind each
force field are built on either quantum mechanics calculations or by fitting
different pieces of experimental data. The current principle of molecular
mechanics assumes that potentials are additive so that the effective energy
can be described as a sum of potentials of the intra- and intermolecular
interactions in the system. Despite several force fields of varying levels of
complexity exist, the definition of the potential energy in standard force
fields generally contains the following terms:

U =

Bonded︷ ︸︸ ︷∑
bonds

kb(r − r0)
2 +

∑
angles

ka(θ − θ0)
2 (1.1)

+

Bonded︷ ︸︸ ︷∑
dihedrals

kφ(1 + cos(nφ− φ0)) +
∑

impropers

kψ(ψ − ψ0)
2
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where the ‘bonded’ term describes the energy contribution to the potential
energy of intramolecular interactions (i.e. bond stretching, angle bending,
dihedral and improper torsions) and the ‘non-bonded’ term represents the
contribution from van der Waals and electrostatics forces.

Force fields of two levels of description are commonly used in the
molecular modeling of biological systems: all-atom, where each particle
represents one atom, and coarse-grained (CG), where groups of atoms are
mapped into beads to reduce the level of description hence speeding up
the calculations. Force fields widely extended in all-atom simulations are
CHARMM [139], [140], GROMOS [141] and OPLS [142]. Similarly,
the MARTINI force field [143] is one of the most widely used force fields
in CG simulations of biomolecules. These force fields can be used by a
vast number of MD engines developed to automate and maximize the nu-
merical solving of the equations of motion by sampling algorithms. Some
MD engines including GROMACS [144], NAMD [145], ACEMD [146]
or CHARMM [147] are popular in the field of biomolecular simulations.

One of the limitations of MD simulations has always been the com-
putational resources needed to reach long timescales or to simulate large
systems. Fortunately, many efforts have been made in recent years to
accelerate and parallelize MD simulations[148, 146] reaching timescales
previously beyond the computational capacity of computational scientists.
Thus, a significant part of the computational work performed during this
thesis has exploited the use of MD and high-throughput MD to model cell
membranes, GPCR monomers and GPCR oligomers.
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1.3 Modeling membranes and GPCRs

1.3.1 Simulating lipid bilayers

Experimental model membranes are useful tools to study lipid mixtures;
however, these models are not able to reproduce the high complexity of
native-like biological membranes in terms of their lipid composition. As
a result, these models normally contain either pure components or a mix-
ture of two to three components [38, 149]. Computer simulations have
emerged as a complementary tool to study biological membranes [150]
with the potential to model lipid mixtures of higher complexity [151,
152]. Simulation techniques such as Monte Carlo [153, 154] and MD [151]
have proven useful to analyze, at a molecular level, the biophysical prop-
erties of lipid bilayers. However, it is worth noting that MD simulations
also have important limitations due to the long timescales needed to ex-
plore all possible states. As stated by Tieleman [155]: ‘sampling is often
by far the greatest source of errors in MD simulations of lipids and typ-
ically much more limiting than relatively modest differences caused by
force field choice or choice of simulation algorithms’.

Pressure and temperature are frequently kept constant in MD simula-
tions by the so-called barostats [156, 157, 158, 159] and thermostats [160,
161], respectively. In membrane simulations, due to the presence of the
water-membrane interface and the importance of the fluctuations of the
area per lipid, pressure control offers more complications than temper-
ature control. The tensionless ensemble or NPT - constant number of
particles (N), pressure (P), and temperature (T) - is the method of choice
when simulating lipid bilayers [155]. Whereas constant pressure allows
an adequate study of structural parameters such as the thickness of the
bilayer or its condensation state, the choice of the temperature is also an
important factor in membrane simulations. For instance, the interplay be-
tween chain-melting transition temperatures (Tm) of lipids will determine
the phase behavior of the simulated mixture [162], hence, impacting how
long we need to simulate to reach a converged system.

The polar extracellular environment of cells is mimicked in MD sim-
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ulations by ions and water molecules. The amount of water confers a
specific level of hydration to lipid bilayers, a parameter frequently over-
looked when preparing lipid bilayers for simulation. However, water has
showed a particular role near hydrophobic surfaces like membrane inter-
faces [163, 164, 165]. Updates of common force fields are taking this fac-
tor into consideration towards a realistic modeling of phospholipids hy-
dration [166]. Different values of membrane hydration are available for
phospholipid bilayers, often from PD bilayers [167, 168], where a com-
mon experimental parameter to reflect hydration is the number of water
molecules per phospholipid. Some of these experiments [169, 170] esti-
mate that in biological membrane each phospholipid tend to be solvated
between approximately 20 and 32.5 water molecules. Therefore, 30 wa-
ter molecules per phospholipid is generally a good approximation for the
hydration level when simulating lipid bilayers.

Constructing lipid bilayers for MD simulations is nowadays straight-
forward thanks to software such as VMD (Visual Molecular Dynam-
ics) [171], a modeling/visualization package commonly used in molec-
ular dynamics simulations. VMD can be used to build lipid bilayers
through the ‘membrane builder’ plugin (http://ks.uiuc.edu/Research/vmd/
plugins/membrane/). This tool is yet limited to pure (one-component)
mixtures and the use of only a few lipid species of the CHARMM force
field repertoire. This limitation has been overcome by a web-based
graphical interface of CHARMM: the CHARMM-GUI membrane builder
(http://charmm-gui.org), currently one of the most popular and useful
tools to build lipid bilayers [172] and membrane-protein systems [173].
Based on the initial parameters specified by the user (e.g. membrane size
or water layer thickness), this tool generates the components of the sys-
tem such as lipids, bulk water, and ions to subsequently assemble them
yielding a set of hydrated structures of lipid bilayers ready for an ulterior
equilibration phase. Lipids from a structural library of membrane simula-
tions are placed randomly by either a replacement or an insertion method,
as indicated by the user. But one of the most interesting advantages of
this method is the remarkable number of different lipid species provided
(to date 100) which allows constructing highly heterogeneous lipid bilay-
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ers even in terms of their leaflet asymmetry. Noteworthy, the area per
lipid of each of these lipid types can be adjusted by the user or otherwise
suggested by the tool based on experimental values.

Despite building multicomponent mixtures is today an easier task for
computational scientists, it is important to remember that mixing is more
difficult in highly complex bilayers. In order to favor somehow this mix-
ing, some authors [174] employ, prior to the equilibration phase, classic
protocols like the ones based on ‘simulated annealing’ algorithms. In
these approaches, the system undergoes fast heating and cooling cycles
to ensure an adequate thermalization of the hydrocarbon tails of phospho-
lipids. This protocol can affect the structure of lipid molecules so it needs
to be thoroughly validated prior to its use in production runs. Neverthe-
less, techniques where high temperature is applied during short periods
of time can only help overcoming high energy barriers rather than signif-
icantly increase the average lateral diffusion of lipids, which is the real
key to an adequate mixing.

1.3.2 Analyzing simulations of lipid bilayers

Two main blocks of biophysical properties can be extracted from the
simulated trajectories of lipid bilayers: structural and dynamic proper-
ties [175, 176, 177, 46, 178]. While membrane thickness, area per lipid
and order parameters are frequently used to characterize membrane struc-
ture, dynamic properties are normally linked to the lateral diffusion of
lipids. Several MD studies [44, 179, 180] show how varying the level
of lipids like cholesterol can change the hydrophobic thickness of mem-
branes, a parameter particularly important in the study of membrane mi-
crodomains [181, 182]. The thickness of the bilayer is a structural pa-
rameter usually defined by the distance between the phosphate groups of
phoshpholipid (head groups) of each membrane leaflet. This value is also
known as ‘phosphate-to-phosphate’ or ‘peak-to-peak’ distance, the latter
in reference to the aspect of the so-called ‘electron density profiles’ used
to interpret thickness and other structural features of membranes (Fig-
ure: 1.4).
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Figure 1.4: Membrane thickness measured from MD simulations. Average elec-
tron density profiles calculated from the simulated trajectory of 5 membranes of
different lipid composition. Abbreviations: DLPC, 1,2-dilauroyl-phosphocholine
(diC12:0); DMPC, 1,2-dimyristoyl-phosphocholine (diC14:0); DPPC, 1,2-dipalmitoyl-
phosphocholine (diC16:0); DSPC, 1,2-distearoyl phosphocholine (diC18:0); POPC, 1-
palmitoyl-2-oleoyl phosphocholine (C16:0-C18:1); SOPC, 1-stearoyl-2- oleoyl phos-
phocholine (C18:0-C18:1). Figure reprinted with permission from Guixà-González et
al. [183]

These profiles give somehow an averaged cross-sectional view of the
electron density across the membrane so that the center of the bilayer is
located at 0 Å thickness and the maximum distance between peaks is typ-
ically around 15–25 Å from the center of the bilayer (Figure: 1.4). The
extent of the interaction between the hydrocarbon tails of the phospho-
lipids or ‘membrane interdigitation’ can be assessed by inspecting the
density of lipid tails near the center of the bilayer. For instance, longer
and more saturated tails tend to interdigitate more than shorter and un-
saturated ones, as shown in Figure: 1.4. Probably due to the controversy
around the biological significance of membrane interdigitation, this pa-
rameter is not frequently studied in the analysis of MD simulations of
lipid bilayers [44, 184, 185].
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The inner structure of a lipid bilayer is ultimately defined by the spa-
tial conformation that lipids adopt based on the biophysical properties of
the mixture. This characterization can be partly approached by measur-
ing the area per lipid occupied by individual lipid species during the sim-
ulation. Calculating the area per lipid is straightforward in simple lipid
mixtures (1 or 2 components):

A =
xy

n
(1.2)

where xy is the area of the simulation box and n the number of lipid
molecules. This calculation is, however, much more complicated for mul-
ticomponent membranes[181, 179] or membrane-protein systems [186].
One interesting approximation to calculate the area per lipid of highly
heterogeneous mixtures consists of projecting one representative atom of
each lipid molecule into a plane and then dividing the space occupied
by each individual lipid through a Voronoi tesselation algorithm. In the
Voronoi diagrams created by this approach, the area of each of the poly-
gons created corresponds to the area of each lipid molecule.

Apolygon =
〈1

2

N−1∑
i=0

(xi + yi+1 − yi + xi+1)
〉

(1.3)

where N is the number of vertices of the polygon and xi, yi the coor-
dinates of each of these vertices in the projected plane. Since groups of
lipids can be averaged separately, one can obtain the average area per lipid
of each one of the lipid species present in the membrane (Figure: 1.5).
Unfortunately, the area per lipid of multicomponent mixtures cannot be
measured experimentally and, therefore, the computational data obtained
following this method cannot be compared to experiments and should be
interpreted with caution.

Thicker membranes are normally more condensed and hence lipids
tend to display lower areas per lipid, however, these parameters do not
provide direct information on the fine structure of the hydrophobic region
(e.g. membrane fluidity). The order of lipid tails or chain structure is
is quantified in NMR experiments, among other measurements, by the
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Figure 1.5: Area per lipid of cholesterol and sphingomyelin in four lipid bilayers.
Probability distributions of the area per lipid of cholesterol (CHL1) and sphingomyelin
(SM18) averaged across 500 ns of a simulation of four lipid bilayers with varying de-
grees of saturation, from more to less unsaturated systems: C1 > C0 > PD0 > PD1.

deuterium order parameters (SCD) [187]. SCD uses the local orientation
of phospholipid C–H bonds to give a direct quantification of the disorder
of the membrane.

SCD =
∣∣∣〈3 cos2 θ − 1

2

〉∣∣∣ (1.4)

The computational approximation to this calculation is to compute θ,
which is the average angle formed between each C–H bond of lipid tails
and the normal of the bilayer. SCD results obtained by computational
methods are frequently in agreement with experimental values and can be
used to explore the impact of membrane composition or other factors on
the order of the membrane [188]. The well-known condensing effect of
cholesterol [20, 189, 190] can be monitored in computer simulations by
measuring its impact on membrane order [191, 192]. Similarly, highly
saturated environments yield higher SCD values, which indicates that the
hydrophobic core of the lipid bilayer has a lower fluidity (Figure: 1.6).

Membrane order directly affects the level of packing of lipid compo-
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Figure 1.6: Membrane fluidity between different lipid bilayers. Order parameters
(SCD) of the sn-1 chains of DOPC and SDPC compared between two multicompo-
nent membranes with varying levels of chain unsaturation, from more to less unsatu-
rated: Cdr > PDdr. The only double bond present in these analysis is clearly visible
by the significant decrease in order at carbon C10 of the sn-1 chain of DOPC (18:1).
Abbreviations: DOPC, 1,2-dioleyl-sn-glycero-3-phosphocholine; SDPC, 1-stearoyl-2-
docosahexaenoyl-sn-glycero-3-phosphocholine.

nents including cholesterol and, therefore, parameters like cholesterol tilt
angle can be analyzed to check the packing state of the bilayer [191]. As
shown in (Figure: 1.7), more saturated membranes reduce the fluctuations
of cholesterol tilt angle due to a higher packing within the hydrophobic
core of the membrane.

Data from thickness, area per lipid, order or tilting angles provide
an averaged structural view of the simulated system that is rather static.
Studying the distribution of molecules or particular atoms around a refer-
ence component can give more insights on the organization and dynamic
events occurring during the simulation. The so-called radial distribution
function (RDF), also known as pair correlation function, is an statistical
mechanics concept that can be used in the analysis of membrane simula-
tions to describe the density of certain lipids around another lipid compo-
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Figure 1.7: Cholesterol tilt angle distribution in different membrane environ-
ment. The tilt angle of cholesterol (θ) measured in binary mixtures (two compo-
nents) of one phospholipid (DPPC, DSPC, SM18, DOPC or SDPC) plus a fixed amount
of cholesterol. Abbreviations: DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine;
DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine; DOPC, 1,2-dioleyl-sn-glycero-3-
phosphocholine; SM18, sphingomyelin; SDPC, 1-stearoyl-2-docosahexaenoyl-sn-
glycero-3-phosphocholine.
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nent as a function of the distance [193]. Among many other applications,
this parameter is very useful to describe the spatial order of the mem-
brane by inspecting the coordination shell formed by certain membrane
lipids [194]. The radial distribution function describes the probability of
finding one particle at a certain distance of the other and can be defined
as

g(r) =
N(r)

4πr2ρδr
(1.5)

where g(r) is the RDF, N(r) is the number of atoms in the shell between
r and r + δr around the reference atoms, and ρ is the number density
expressed as the ratio of the number of atoms to the volume of the simu-
lation box [195]. This analysis yields information on the radial symmetry
of the system in just one dimension, namely distance. However, the inter-
action of certain lipids with the rest of the membrane environment does
not occur in a symmetric fashion. In fact, two different faces exist in the
sterol ring of cholesterol molecules, known as α-(or ‘smooth’) face and
β-(or ‘rough’) based on the absence or presence, respectively, of two off-
plane methyl groups. This subtle difference seems to be behind relevant
biological functions of cholesterol and drive the interaction pattern of this
molecule with other lipid components[196]. Therefore, in asymmetric
molecules like cholesterol, information on the angular symmetry of the
interaction between lipid molecules can lead to interesting insights. Some
authors have enriched the classical RDF approach by calculating bivari-
ate [195, 197] or trivariate [198] forms of the radial distribution function
where both the orientation and the position of cholesterol and lipid tails is
taken into account. Figure: 1.8 shows an unpublished example of bivari-
ate RDF calculations using two different membrane systems. This figure
shows how, after 100 ns, cholesterol-cholesterol interactions seem to be
more favored at cholesterol’s β-face in more saturated environments.

Finally, simulations of lipid bilayers can provide data on the dynamic
properties of the system and hence give a minimal mechanistic explana-
tion to static structural properties. Lipid lateral diffusion describes the
ability of lipid components to move across the membrane characteriz-
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Figure 1.8: Two-dimensional radial distribution plots of cholesterol. Average two-
dimensional density distributions of cholesterol molecules around cholesterol after 300
and 400 ns simulations of two multicomponent membranes: C1 (less saturated) and PD1
(more saturated). Reference cholesterol molecules are displayed aligned to the center
of the plot (shown by a lack of density in this area). Thus, the β-face of cholesterol
(rough face) extends towards the positive x axis whereas the α-face (smooth face) ex-
tends towards the negative x axis. Color gradient represent the density of cholesterol
around reference cholesterol molecules: from black (low density) to white (high den-
sity). Cholesterol densities below 60 are not plotted for clarity.
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ing, indirectly, the biophysical feature of simple and complex membranes.
As discussed above, membrane heterogeneity highly influences the order
and packing properties of biological membranes. As a result, estimating
the real lateral diffusion of membranes is a matter of intense study and,
particularly, in connection to phase separation processes and formation
of highly ordered raft-like mixtures [199, 200, 201, 202]. However, in
contrast to the structural features of membranes, there is a limited un-
derstanding of dynamic processes such as the simple lateral diffusion of
lipids [203] or the interplay between the diffusion of lipids and transmem-
brane proteins [204, 205]. Due to the tight dependence between lipid dif-
fusion and the time scale at which it is observed, dynamic properties of
lipid bilayers need to be assessed with real caution.

1.3.3 Simulating GPCR–membrane systems

The success on modeling GPCR–membrane systems significantly relies
on an adequate initial structure. Despite the number of GPCR crystal
structures and other transmembrane proteins resolved to date is far be-
hind that of soluble proteins, the recent resolution of several new struc-
tures (Table: 1.1) has opened the door for MD simulations to contribute to
the understanding of GPCR function and dynamics. The high number of
available crystal structures has increased the quality of the predicted ho-
mology models, where the choice of a template structure is essential. If no
crystal structure is available, homology models of the GPCR under study
can be built [206, 207] even through web-based automated servers [208].
Like any other protein, modeling a GPCR involves retrieving its protein
sequence, performing and refining a sequence alignment against GPCR
homologs and calculating a 3D structure using, for instance, protein struc-
ture modeling software such as MODELLER [209, 210]. Key manual
refinements to complement this modeling includes assigning constraints
for geometric optimization of the structure (e.g. highly conserved disul-
fide bridges), setting the right protonation states of titratable residues or
assuring a stereochemically relevant distribution of the backbone dihedral
angles (i.e. Ψ and Φ) in the protein structure.
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Different protocols have been proposed to easily embed the input
structure of a protein into an equilibrated lipid bilayer. One approach
is to simply remove a certain amount of lipids and solvent to create a hole
where the protein can be placed. This protocol, however, highly depends
on the geometry of the protein, alters lipid composition in case of com-
plex mixtures and requires more and longer equilibration steps to obtain
an adequate protein-lipid packing. A second popular approach is to make
room to the protein by ‘inflating’ the bilayer, inserting the protein and fi-
nally ‘deflating’ and minimizing the structure to avoid clashes [211]. In
addition, a simple and efficient tool of the GROMACS package called
‘g membed’ allows to embed proteins by optimally accommodating the
protein into the membrane [212]. Lastly, some interesting protocols
where lipids diffuse and surround proteins without altering any structure
are becoming widely used, mostly in CG simulations [213, 214]. In ad-
dition to manual approaches, as mentioned above, the CHARMM-GUI
membrane builder (http://charmm-gui.org) is one of the best current tools
to automate the process of constructing membrane–protein systems [173].

Several MD simulations have already studied biologically relevant as-
pects of GPCR biology and provided interesting insights on ligand bind-
ing [215, 216, 217], allosteric modulation [218] or GPCR activation [219,
220, 221]. GPCR activation has been traditionally described by con-
formational changes within the GPCR structure, mainly at the level of
the so-called ‘ionic lock’ but also by assessing more subtle differences
such as the concerted motions or formation/rupture of certain networks of
residues or ‘microswitches’. Partly thanks to larger multiprocessor clus-
ters and specialized high-throughput computer architectures, current MD
codes have tremendously increased their performance in MD simulations
of GPCRs [219, 221, 222]. However, not even state of the art simulations
of GPCRs are exempt of criticism due to the lack of adequate statisti-
cal sampling, the main bottleneck in this field [223, 224]. Thus, certain
computationally cheaper approaches like elastic network models [225]
are currently one interesting option to consider when trying to avoid the
convergence issue in GPCR simulations. On the other hand, address-
ing certain features of GPCR dynamics by GPCR–membrane simulations
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clearly requires either reduction in the complexity and/or size of the sys-
tems or the enhancement of classical MD methods. CG force fields and/or
biased MD techniques have recently been used to better explore the ener-
getic landscape of GPCRs simulated in membranes [226, 227, 228].

In addition, due to the importance of modeling the membrane en-
vironment and the influence of membrane biophysics on the function
of GPCRs, MD simulations have been recently used to characterize the
interplay between membrane deformation/remodeling and the activation
and/or organization of GPCRs [229, 230, 231, 134].

1.3.4 CG-MD simulations of GPCR dimers and oligomers

Modeling GPCR dimer- and/or oligomerization is nowadays a challeng-
ing task not only due to the large number of particles required but also to
the complexity and stochasticity of this reaction. In terms of timescales,
most CG approximations outperform any atomistic approach and, there-
fore, many of the current simulations that aim to model GPCR dimer-
and/or oligomerization dynamics use CG-MD. CG models enable the
simulation of big systems during long scales (µs to ms regimes), the par-
allelization of multiple systems for systematic approaches or simply an
inexpensive platform for generic studies [232]. MARTINI [143, 233] is a
widely used CG model amenable to the GROMACS suite that has proven
useful to model membrane–protein systems [234, 235], protein aggrega-
tion [236, 204, 237] and, in particular, the formation of GPCR dimers
and oligomers [238]. The MARTINI–GROMACS partnership offers a
flexible way to build, simulate and analyze large, long and complex sim-
ulations of GPCR complexes, which are able to freely diffuse across the
membrane and transiently or stably interact with other GPCRs (see Fig-
ure: 1.9).

Protein monomers are mapped into CG model either from a crystal
structure or from a homology model. One of the useful modeling tools
made available by the MARTINI team, namely the ‘martinize.py’ script
allows converting atomistic structures into CG models, generating MAR-
TINI protein input files and fine-tuning important modeling aspects like
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Figure 1.9: CG-MD simulation of GPCRs self-assembly using MARTINI force field.
18 GPCR monomers embedded into a multicomponent bilayer (upper) and simulated
during 10 µs (bottom). Protein monomers are depicted in white. Grey, yellow and red
spheres correspond to a van der Waals representation of polyunsaturated phospholipids,
monounsaturated phospholipids and cholesterol, respectively. Solvent particles are not
shown for clarity.
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secondary structure, disulfide bridges or positional restraints. In addition,
this tool allows setting up an elastic network to improve the stability of the
protein structure during the simulation. Periole et al. successfully tested
the MARTINI force field in combination with an elastic network model
by a simple approach the authors called ElNeDyn [239], where certain
backbone beads are connected to one another with springs within a prede-
fined distance. Thus, the rigidity and the extent of the network is defined
by two parameters, namely the force constant and the cutoff distance, re-
spectively. The ElNeDyn approach has proven useful to quantitatively
mimic protein atomistic models in terms of protein deformations, fluc-
tuations of residues and large-amplitude collective motions. An optimal
implementation of this model consists of setting up the features of the net-
work by using data on previous atomistic simulations of the same protein.
CG-MD simulations of GPCRs have already benefited from the use of the
ElNeDyn protocol to study GPCR dimers [240, 241] and oligomers [238].
Since the secondary structure is predefined and restrained by the elastic
network, the main drawback of these CG-MD protocols when applied to
receptor-receptor interactions lays on the inability of the model to account
for any change/transition/folding event in the secondary structure.

Periole et al. [242] first used MARTINI to show that GPCRs self-
aggregate in model membranes. In this study, the authors describe the ef-
fect of membrane local deformations on the oligomerization of rhodopsin.
Using a similar protocol, Mondal et al. [135] approached this issue by
studying the energetic cost associated to the protein–membrane hydropho-
bic mismatch during the oligomerization of adrenergic receptors. Re-
cently, Periole et al. [238] deeply analyzed the self-assembly process of
rhodopsin by an impressive set of simulations including 10 parallel sim-
ulations of 16 receptors simulated during 5 µs plus a bigger system com-
prised of 64 receptors simulated for 25 µs. In addition, they performed
umbrella sampling simulations to determine the most favored dimer in-
terface by calculating the potential of mean force for the most frequent
dimer poses found during the simulation. This combined approach, with
approximately 300 µs accumulated, was used to characterize the energetic
landscape of rhodopsin’s dimer interface and provided new biophysical
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insights into this complex.
Moreover, MARTINI and CG-MD simulations have been used in con-

junction with biased MD techniques to characterize the dimerization in-
terface of GPCR dimers. The combination of both techniques allows a
quantitative and qualitative study of the strength of association and the rel-
ative stability between different dimerization interfaces of certain GPCRs.
While Provasi et al. studied the lifetime of the δ-opioid receptor dimer by
estimating dimer association constants combining CG and umbrella sam-
pling simulations [240], Johnston et al. later characterized the interface
of this dimer by CG and metadynamics simulations [241]. In a second
study [243], Johnston et al. compared the relative stability of the β1-and
β2- adrenergic receptor homodimers by a similar approach combining
both atomistic, CG metadynamics and CG umbrella sampling simula-
tions. Similarly, these authors recently combined again CG and biased
MD techniques to compare the stability of the crystallographic interface
of µ-and κ-opioid receptor dimers [244] in a first attempt to rank order
viable crystal structures in terms of their energy of association.

To date, there is, however, a clear lack of data regarding the effect
of membrane lipids on the GPCR dimer- and/or oligomerization phe-
nomenon.
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Chapter 2

OBJECTIVES

2.1 Implementing a computational framework
to simulate and analyze highly complex mem-
branes by all-atom and coarse-grained molec-
ular dynamics (MD) simulations

To develop an implement an overall methodology to build, simulate and
analyze complex biological membranes in the context of lipid–lipid, lipid–
GPCR and GPCR–GPCR interactions. The focus of this objective will lie
on the analysis of local properties (e.g. thickness, fluidity, area per lipid,
etc.) of membranes and membrane–GPCR simulations.

2.2 Development of a tool that automates the
computation of local properties in mem-
branes and membrane–protein simulations

To develop an automated and user-friendly Graphical User Interface (GUI)
for the analysis of membrane and membrane–protein simulations in VMD.
This tool should offer a full set of computational analyses for a biophys-
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ical characterization of these systems by implementing the knowledge
built in Objective 2.1.

2.3 Assesing DHA-mediated effects on A2A –
dopamine D2 heteromerization by coarse-
grained MD simulations

To study the effect of long-chain omega-3 polyunsaturated fatty acids on
the oligomerization of GPCRs in the context of brain disease. As a case
study, we aim to shed light on the modulation of A2A – dopamine D2

heteromerization by DHA-lipids, since both players have a particular rel-
evance for major neuropsychiatric disorders.
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Chapter 3

PUBLICATIONS

3.1 Crosstalk within GPCR heteromers in schizophre-
nia and Parkinson’s disease: physical or just func-
tional?

Guixà-González R., Bruno A., Marti-Solano M. and Selent J. Curr. Med.
Chem., 19, 1119–1134 (2012).

Summary
As described in the Introduction section, functional interactions between
heteromeric complexes of GPCRs have been shown to modulate the phar-
macological and signaling landscape of these receptors. In certain GPCR
complexes (e.g. A2A – dopamine D2), GPCR crosstalk has a particular
relevance in neuropsychiatric conditions like schizophrenia and Parkin-
son’s disease. In this article we reviewed the state of the art of GPCR
crosstalk for the most relevant heteromers in the context of the former
diseases. Here we contrast the current knowledge on the functional as-
pects of GPCR crosstalk with the structural knowledge that potentially
supports a physical interaction between GPCRs. Noteworthy, we pro-
foundly reviewed the state of the art of the A2A – dopamine D2 complex,
the GPCR heteromer we have used in this thesis as a model to study the
interplay between membrane lipids and GPCRs.
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Guixà-González R., Bruno A., Marti-Solano M. and Selent J.
Crosstalk within GPCR heteromers in schizophrenia and Parkin-
son’s disease: physical or just functional?
Curr. Med. Chem., 19, 1119–1134 (2012).
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3.2 Molecular modeling and simulation of membrane lipid-
mediated effects on GPCRs

Guixà-González R., Sadiq SK. K., Dainese E., Pastor M., De Fabritiis G.
and Selent J. Curr. Med. Chem., 20, 22–38 (2013).

Summary
MD simulations, the main computational technique employed in this the-
sis, is a powerful molecular microscope to study biophysical events and
a valuable tool to support experimental techniques. To simulate lipid–
GPCR interactions one needs to deeply understand the advantages and
pitfalls of modeling lipid bilayers and GPCR–membrane systems. In this
paper we revised the current computational approaches to study specific
and nonspecific lipid–protein interactions in simple and complex biologi-
cal membranes. Additionally, we discuss the potential of MD simulations
to study the lipid-mediated oligomerization of GPCRs. This publication
was extremely helpful to build a solid knowledge base in membrane-
based MD simulations.
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Guixà-González R., Sadiq SK. K., Dainese E., Pastor M., De
Fabritiis G. and Selent J.
Molecular modeling and simulation of membrane lipid-mediated
effects on GPCRs
Curr. Med. Chem., 20, 22–38 (2013).
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3.3 Simulating G protein-coupled receptors in native-
like membranes: from monomers to oligomers

Guixà-González R., Ramı́rez-Anguita J. M., Kazcor A. A. and Selent
J. Methods Cell Biol., 117, 63–90 (2013).

Summary
MD simulations of GPCRs and, in particular, simulating GPCR oligomers
require a broad expertise building, simulating and analyzing these pro-
teins in their native-like environment. In this publication we cover the
modeling process of constructing the lipid bilayer, embedding GPCRs
and simulating the self-assembly of GPCR oligomers. In addition, we de-
scribe how to analyze these simulations and interpret interesting concepts
for membrane–GPCR simulations such as the quantification of membrane
remodeling and residual mismatch. With this publication, we managed to
put together the basis of the methodology used so far to develop the main
objectives of this thesis.
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Guixà-González R., Ramı́rez-Anguita J. M., Kazcor A. A. and
Selent J.
Simulating G protein-coupled receptors in native-like mem-
branes: from monomers to oligomers
Methods Cell Biol., 117, 63–90 (2013).
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3.4 MEMBPLUGIN: studying membrane complexity in
VMD

Guixà-González R., Rodriguez-Espigares I., Ramı́rez-Anguita J. M., Carrió-
Gaspar P., Martinez-Seara M., Giorgino T. and Selent J. Bioinformatics,
30, 1478–1480 (2014).

Summary
One milestone in this thesis was to develop a modeling tool devoted to
the analysis of membrane and membrane–protein simulations and to au-
tomatize the biophysical characterization of these systems. In this publi-
cation, we present MEMBPLUGIN, a plugin for VMD, one of the most
frequently used package in molecular modeling. We developed this tool
to offer a wide range of standard structural analyses like membrane thick-
ness, area per lipid or order parameters. Interestingly, MEMBPLUGIN
provides a quick and automated way to compute 2D thickness maps and
new algorithms for measuring membrane interdigitation. Thanks to this
publication we made our expertise available to the scientific community
and managed to build an user-friendly tool from a set of individual scripts
otherwise hardly usable.
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Guixà-González R., Rodriguez-Espigares I., Ramı́rez-Anguita
J. M., Carrió-Gaspar P., Martinez-Seara M., Giorgino T. and
Selent J.
MEMBPLUGIN: studying membrane complexity in VMD
Bioinformatics, 30, 1478–1480 (2014).

MEMBPLUGIN’s website.
Software, installation guide, tutorial and case study.
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3.4.1 Supplementary: MEMBPLUGIN validation
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MEMBPLUGIN: a case study using cholesterol-enriched
membranes

Ramon Guixà-González1, Ismael Rodriguez-Espigares1 , Juan Manuel
Ramı́rez-Anguita1, Pau Carrió1, Hector Martinez-Seara3, Toni Giorgino2

and Jana Selent1
1 Research Programme on Biomedical Informatics (GRIB), Barcelona, Spain; 2 Institute of

Biomedical Engineering, National Research Council (ISIB-CNR), Padua, Italy; 3 Department
of Physics, Tampere University of Technology, Tampere, Finland

M
EMBPLUGIN [1] is a versatile tool for the Visual Molecular
Dynamics (VMD) package [2] to analyze the results of complex
membrane simulations. The plugin can be used to characterize

a wide range of biophysical properties of biomembranes such as mem-
brane thickness, fluidity or condensation. In the present case study,
we illustrate some of the features of the plugin by analyzing the effect
of cholesterol enrichment on a series of lipid bilayers simulations.

Background
Cholesterol, a vital component of cells is know to regulate the biophysical
properties of biological membranes. The presence of this sterol in phospholipid
membranes has proven to increase membrane condensation [3, 4], ultimately
impacting on the overall structure of the bilayer. Thus, cholesterol content
can alter key biophysical properties of biological membranes such as thick-
ness, fluidity or area per lipid. Relevant membrane microdomains such as the
so-called lipid rafts [5] display a high amount of cholesterol when compared
to other regions of the membrane. The study of lipid rafts by experimental
means depends upon the development of complex technology due to the fluctu-
ating and heterogeneous nature of these nanoscale assemblies [6]. On the other
hand, molecular models can be used in an attempt to offer a molecular per-
spective (i.e. more detailed) of cholesterol-enriched membranes such as lipid
rafts. Despite of the known limitations of current computational techniques,
some studies using atomistic [7, 8] and coarse-grained [9] molecular dynamics
have already shed some light on the molecular aspects of cholesterol-enriched
domains. For this sample case study, we focused on the effect of cholesterol on
certain biophysical properties of standard model lipid bilayers.
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Methods
We simulated a set of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC)
bilayers containing different amounts of cholesterol. Specifically, we built 4
different POPC:CHO systems, namely 1:0, 5:1, 2:1 and 1:1 (see Table 1). All
membranes were built using the CHARMM-GUI membrane builder [10] (http:
//www.charmm-gui.org/input/membrane). Each output was re-hydrated us-
ing approximately 30 water molecules (TIP3 model) per lipid and neutral-
ized with 150 mM NaCl. In addition, those lipid tails incorrectly trapped
into the cholesterol ring were manually corrected. Subsequently, membranes
were run in the NPT ensemble at 1.01325 bar and 310 K for 30 ns, us-
ing the ACEMD simulation package [11]. The CHARMM36 [12] force field
was used in all simulations. We discarded the first 10 ns of each trajec-
tory and used MEMBPLUGIN [1] to analyze the area per lipid, lipid Scd

order parameters, leaflet interdigitation and membrane thickness on the last
20 ns of each system. Usage instructions of each subtool can be found at
https://sourceforge.net/p/membplugin/wiki/Home/. All figures were ren-
dered using the ggplot2 R package [13] out of MEMBPLUGIN’s output files.

POPC:CHOL
Component 1:0 5:1 2:1 1:1

POPC 106 120 104 86
CHOL 0 24 52 86
CHOL (%) (Aprox.) 0 ∼ 17 ∼ 33 50

Sodium 10 10 10 10
Chloride 10 10 10 10
Water 3793 4121 3954 3867

Table 1: Lipid, water and ion composition of POPC:CHOL mem-
branes. POPC and CHOL stands for 1-palmitoyl-2-oleyl-sn-glycero-
3-phosphocholine and cholesterol, respectively.
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Results

Area per lipid
To illustrate the condensing effect of cholesterol on a lipid bilayer, we first
measured the average area per lipid of each lipid bilayer using the area per
lipid tool of MEMBPLUGIN. This tool calculates both the total area per lipid
of the membrane and the area per lipid for each of the lipid species present at
the membrane, i.e. POPC or CHOL in our particular case.

Figure 1: Average area per lipid of each POPC:CHOL system during
the last 20 ns. The left plot display the total average area per lipid of the
system (i.e. POPC plus cholesterol) (x axis, Å2) over time (y axis, ns). Degraded
orange solid lines represent actual values whereas mean values are represented
by black solid lines. The average area per lipid of each lipid species during the
simulation (Å2, x axis) is represented by its probability density (arbitrary units,
y axis). Color codes as in figure legend.

Apart from the typical equilibration ramp showed within the first 0-5 ns,
our simulations do not show major fluctuations in the calculated area per lipid
during the last 20 ns of each trajectory. In any case, it is worth to note that
due to the short time scale used for this case study, we can not assume the
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area per lipid to be in equilibrium. In agreement with experimental [14] and
computational [12] estimates, the average area per lipid of POPC, as calculated
for system 1:0 (i.e. pure POPC membrane), is 69.26 ± 0.75 Å2 (see Figure 1).
As depicted in Figure 1 left, the addition of cholesterol drops the total area
per lipid of the system, in consonance with the known condensing effect of this
molecule [3]. Increasing the level of cholesterol from 0% (i.e. system 1:0) to
17% (i.e. system 5:1), 33% (i.e. system 2:1, the approximate cholesterol level
found in lipid rafts) and 50% (i.e. system 1:1) decrease the average area per
lipid of POPC down to 61.69 ± 0.89 Å2, 60.11 ± 0.81 Å2 and 57.56 ± 0.93 Å2,
respectively (see Figure 1 right). As shown in Figure 2, while the condensing
effect of cholesterol is most dramatic within 0-17% cholesterol, this effect is
less pronounced at higher molar cholesterol concentrations (i.e. 17%-50%).

Figure 2: Average area per lipid of individual lipid species during the
simulation. Solid lines show smoothed values of the area per lipid (Å2, y
axis) for CHOL (top) and POPC (bottom) over time (ns, x axis). Color codes
as in figure legend. Confidence intervals around smoothed means are shown as
degraded color ribbons.

Scd order parameters
With a view to show the effect of cholesterol on membrane fluidity, we also
inspected the chain structure of POPC in our simulations by using the Scd

tool of MEMBPLUGIN. This tool can compute the Scd parameters of each
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phospholipids present in the membrane under analysis. As described elsewhere
[15], highly ordered membranes display high Scd values and vice versa. Our
results (see Figure 3) display the highest order near the polar head of the
phospholipid (i.e. towards C2) whereas the end of phospholipid tails (i.e.
towards C18) are highly disorder, that is, a the typical Scd plot of a lipid bilayer.
In addition, the results we obtained for the pure POPC system (i.e. system 1:0)
(Figure 3, bottom line) are in agreement with previous experimental [16, 17]
and computational [12] studies of this phospholipid.

Figure 3: Average Scd order parameters of POPC tails. Colored lines rep-
resent the average Scd order parameters (x axis) of POPC sn-1 (left) and sn-2
(right) tails against POPC carbon index (y axis). Color codes as in figure legend.
Error bars stand for the standard error of the mean at each carbon.

In our simulations, increasing amounts of cholesterol yield higher Scd values
of POPC tails, that is, more ordered membranes. As shown in Figure 3,
this trend is clearly visible for both the unsaturated (Figure 3, left) and the
saturated (Figure 3, right) chain of POPC. Therefore, as expected, affecting
membrane fluidity is one of the underlying mechanisms behind cholesterol
condensing effect on POPC membranes.

Membrane thickness
However, are highly-condensed and highly-ordered membranes thicker that
more extended and fluid membranes? We address this question using the mem-
brane thickness tool of MEMBPLUGIN to compute the so-called phosphate-to-
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phosphate distance of our membrane set. This tool can compute the average
thickness of the lipid bilayer between phosphate atoms (or any user-defined
atom) and generate local deformations maps based on this analyis. The mem-
brane thickness we obtained for the pure POPC membrane (i.e. system 1:0)
goes along the experimental value of this type of lipid bilayers [18]. Likewise, as
previously described in experimental [19] and computational [4,20] studies, we
observe that membrane thickness increases with higher molar concentrations
of membrane cholesterol. As shown in Figure 4, the results from our simula-
tions confirm that membrane thickness increases by approximately 10%, 18%
and 26% in systems containing 17% (i.e. system 5:1), 33% (i.e. system 2:1)
and 50% (i.e. system 1:1) of cholesterol, respectively.

Figure 4: Evolution of the phosphate-to-phosphate distance during the
20 ns simulation. Colored lines represent the phosphate-to-phosphate dis-
tances for each system (Å2, y axis) over time (ns, x axis). Color codes as in figure
legend. The mean value of each plot is represented by a black line.

Specifically, we found an average membrane thickness of 37.73 ± 0.54 Å,
41.76 ± 0.48 Å, 43.31 ± 0.42 Å and 44.72 ± 0.64 Å, during the last 20 ns
simulation of system 1:0, 5:1, 2:1 and 1:1, respectively.
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Leaflet interdigitation
The concept on leaflet interdigitation remains controversial [21], partly due to
the lack of experimental tools able to approach this measurement. However,
this parameter can give valuable information on the coupling extent between
membrane leaflets. Thus, we used the lipid interdigitation tool of MEMB-
PLUGIN to study the impact of cholesterol level on the coupling between
membrane leaflets during the simulation. This tool offers three estimates of
this parameter, namely the fraction mass overlap between the two leaflets,
Iρ, the width of such region, wρ, and the fraction of contacts between atoms
of different leaflets, IC , (see https://sourceforge.net/p/membplugin/wiki/

Home/LipidInterdigitation/ for more details on this tool). Hereby, we com-
puted the value of Iρ, wρ and IC for each of the membranes comprising our
simulation set.

Figure 5: Leaflet interdigitation represented by IC, Iρ, wρ and parame-
ters. Left figure displays the evolution of the fraction of contacts between leaflets,
IC (0 ≤ IC ≤ 1), during the last 20 ns of the simulations. Likewise, the right
figure shows such the evolution for mass interdigitation, namely, Iρ (0 ≤ Iρ ≤ 1)
and wρ (nm). Actual values represented in colored lines, color codes as in figure
legend. The moving average value of each plot is represented by a black line.

As for previous calculations, the results show a correlation between mem-
brane cholesterol levels and leaflet interdigitation. In this case, higher choles-
terol levels generally seems to decrease the extent of interdigitation between
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membrane leaflets (See Figure 5). Thus, Figure 5, right, shows how molar
cholesterol concentrations of 17% (i.e. system 5:1), 33% (i.e. system 2:1) and
50% (i.e. system 1:1) gradually decrease both the mass overlap between the
two leaflets, Iρ and the width of such region, wρ. Interestingly, as shown in
Figure 5, left, the fraction of contacts between leaflets, IC , does not seem to
decrease at the same pace at high cholesterol concentrations (i.e. system 2:1
and system 1:1) when compared to lower ones. In fact, the most pronounced
effect of cholesterol addition on this parameter occurs, to a high extent, at the
lowest cholesterol level (i.e. 17%, system 5:1) (Figure 5 left).

Conclusions
We used MEMBPLUGIN to analyze the effect of cholesterol on the structure
of POPC bilayers. On the one hand, MEMBPLUGIN is able to yield repro-
ducible results in terms of area per lipid, Scd order parameters and membrane
thickness and to highlight the already-known condensing effect of cholesterol
on phospholipid bilayers. At the same time, the increased amount of leaflet
interdigitation showed a probable decrease in the extent of coupling between
membrane leaflets, a fact that goes along the increase of membrane thick-
ness. Although the aim of this case study was to highlight the versatility of
MEMBPLUGIN using a realistic case, a similar rationale could be followed to
analyze the impact of membrane composition on the biophysical properties of
more complex and heterogeneous bilayers such as membrane microdomains [7],
bacteria model membranes or specific subcellular compartments [22].

Data and citation
The trajectory data to reproduce the analysis of the present study can be
downloaded from MEMBPLUGIN’s web site. This case study is part of the
paper [1], which should be referenced when citing this tool or related results
such as the present case study.
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3.5 Membrane omega-3 fatty acids modulate the oligomer-
ization of G protein-coupled receptors

Guixà-González R., Javanainen M., Martinez-Seara H., Gomez-Soler M.,
Cordobilla B., Domingo J. C., Sanz F., Pastor M., Ciruela F. and Selent
J. Nature Commun. (Manuscript under first revision), (2014).

Summary
As we have mentioned in the Introduction section, although the modu-
lation of GPCRs by specific membrane lipids has already been reported,
there is a clear lack of studies covering the lipid-mediated oligomeriza-
tion of GPCRs. In addition, DHA and certain GPCR oligomers including
the A2A – dopamine D2 heteromer are linked to brain disease. Therefore,
the last milestone of this thesis was to shed light on the effect of DHA
on the oligomerization nature of the A2A – dopamine D2 heteromer. This
manuscript describes for the first time the modulation of GPCR oligomer-
ization by membrane omega-3 fatty acids. We predicted this modulation
by MD simulations and used living cells to validate experimentally our
computational studies. In this work we have generated new interesting
results on the interplay between membrane lipids by using the computa-
tional framework developed during this thesis.
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Membrane omega-3 fatty acids modulate the oligomerization of

G protein-coupled receptors

Ramon Guixà-González1, Matti Javanainen2, Hector Martinez-Seara2, Maricel Gómez-Soler3,
Begoña Cordobilla4, Joan Carles Domingo4, Ferran Sanz1, Manuel Pastor1,

Francisco Ciruela3 and Jana Selent1?

Abstract

Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA),
are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity,
thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These re-
ceptors, which also have special relevance for major neuropsychiatric disorders have recently been shown to form
dimers or higher order oligomers, and evidence suggests that DHA levels may affect GPCR function by modulating
oligomerization. We assessed the effect of DHA on formation of a particularly interesting oligomer for brain disease:
the adenosine A2A–dopamine D2 heteromer (A2A–D2). Using computational prediction and experimental validation,
we demonstrate that DHA-rich membranes show greater A2A–D2 oligomerization than DHA-poor membranes. This
work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerization, which may have
important implications for neuropsychiatric conditions like Schizophrenia or Parkinson’s disease.
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Several studies have found substantially lower levels of
docosahexaenoic acid (DHA) in the brains of individu-
als with mental1–4 or neurological disorders5,6. DHA is
an omega-3 polyunsaturated fatty acid (ω-3 PUFA) of 22
carbons and 6 double bonds (22:6n3) that has been shown
to be essential for the development7 and maintenance of
adequate brain function8,9. The high levels of DHA found
in specialized cell platforms such as retinal rod outer seg-
ments10,11 or neuronal cells12,13 seems to provide these
membranes with particular biophysical properties14 such
as increased fluidity. The unique biophysical properties of
DHA along with its potential neuroprotective effects8,15

have made DHA a promising candidate against certain
neurodegenerative disorders16–18.

In addition, recent studies have shown that the lipid
composition of cell membranes can modulate the func-
tion of key membrane proteins such as G protein-coupled
receptors (GPCRs)19,20. GPCRs are involved in a wide
range of diseases and are particularly important for sev-
eral major psychiatric disorders21. Therefore, under-
standing the role of the membrane environment on the dy-
namics and function of GPCRs has become a research pri-
ority in this field. For instance, a particular relationship
is known to exist between DHA and rhodopsin22, a widely
studied GPCR specific to retinal rod cell membranes.
The modulatory effect of DHA on rhodopsin was first
described by Mitchell et al.23 and has since been further
studied using experimental24–28 and computational29,30

methods. DHA is therefore known to influence the bi-
ology of rhodopsin and could potentially modulate other
GPCRs in other DHA-rich tissues such as the brain7.

However, an additional level of complexity adds to the
overall picture of DHA–GPCR modulation: GPCRs have
recently been found to function as dimers or higher or-
der oligomers, and despite initial controversy, the exis-
tence and relevance of GPCR oligomerization has gained
broad acceptance31. Interestingly, impaired crosstalk be-
tween specific GPCR heteromers seems to affect GPCR
signalling and results in defective neurotransmission and
brain dysfunction32–34. The study of GPCR oligomers
such as the adenosine A2A–dopamine D2 (A2A–D2) het-
eromer is therefore becoming highly relevant in neuropsy-
chiatry35. In fact, the A2A–D2 oligomer is now a promis-
ing target against certain neuropsychiatric disorders33.
The question that naturally arises is do membrane lipids
affect GPCR oligomerization? Given the apparent im-
portance of oligomerization for GPCR function, it seems
possible that this is the mechanism through which DHA
modulates GPCR biology, and subsequently neurological
disease processes.

Since current experimental evidence1–6 links altered
levels of DHA to brain dysfunction, in this study we com-
pared the effects of high and low levels of DHA on A2A–
D2 oligomerization. We performed molecular dynamics
(MD) simulations of the self-assembly process of A2A and
D2 receptors embedded in multicomponent model mem-
branes reaching an exceptionally long total simulation

time of 1.630 ms. We then compared the effect of high
and low levels of membrane DHA on protein aggregation
and studied the particular affinity between this lipid and
GPCRs. We validated our MD molecular dynamics sim-
ulations using bioluminescence resonance energy transfer
(BRET) experiments in living cells. Our combined results
from both the BRET analysis and the MD simulations
confirm for the first time that GPCR oligomerization can
be modulated by membrane ω-3 PUFAs. These results
provide a molecular link between membrane lipid com-
position and GPCR oligomerization, which could help in
the development of new treatments for major neurological
disorders.

Results
MD simulations show that ω-3 PUFA enhance
GPCR oligomerization. We performed extensive
coarse-grained (CG) MD of A2A and D2 receptors em-
bedded in two model membranes of different lipid com-
position. Such composition aimed to reflect the general
lipid profiles previously observed in post-mortem studies
of healthy and diseased individuals1–6, so we created a
‘healthy-like’ (rich in DHA) and a ‘diseased-like’ (low in
DHA) membrane. Briefly, the healthy-like and diseased-
like models model contained 21 % and 6 % of DHA-rich
phospholipids (i.e. SDPC, 1-stearoyl-2-docosahexaenoyl-
sn-glycero-3-phosphocholine), respectively; the diseased-
like model was compensated with a higher fraction of sat-
urated lipids (Table 1a). SDPC contains mixed chains
(C22:6 (DHA) and C18:0), so these SDPC levels trans-
late into a DHA content of 11 % and 3 % over total fatty
acids, respectively (see Table 1b). First, we simulated 3
replicates of each model system for 60 µs.

We quantified protein aggregation by analysing the
number of protein–protein contacts established during
the last 20 µs of the simulation. For this purpose, we
considered two receptors to be in direct contact if the
distance between the positions of their centre of mass
(COM) was < 4.2 nm. As shown in Table 2, analysis
of all simulations shows that protein aggregation is
significantly enhanced in healthy conditions. Specifically,
the mean number of protein–protein contacts is ≈ 20 %
higher in healthy-like membranes (high DHA) when
compared to diseased-like ones (low DHA). This finding
suggests that DHA plays an important role in the
oligomerization of A2A and D2 receptors.

DHA treatment enhances A2A–D2 oligomeriza-
tion in living cells. BRET experiments were carried
out in living cells to study the effect of membrane DHA on
the organization of A2A and D2 receptors. We first deter-
mined the fatty acid content of parental HEK-293T cells
grown under standard conditions. Under these basal con-
ditions, the cells showed a low relative content of DHA:
0.99 ± 0.03 % of total fatty acids (Fig. 1). To obtain a
cell culture with a higher level of DHA we supplemented
HEK-293T cells with increasing concentrations of DHA.
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Table 1 | Phospholipid and fatty acid composition
of healthy- and diseased-like model membranes
used in CG- and all-atom MD simulations.

a
PH Chains Healthy* Diseased*

DPPC diC16:0 21 33
DSPC diC18:0 7 15
DOPC diC18:1 15 11
SDPC C22:6/C18:0 21 6
SM C18:1/C16:0 36 36
TOTAL – 100 100

b

Fatty acid Healthy* Diseased*

C16:0 39 51
C18:0 43 41
C18:1 7 5
C22:6 11 3
TOTAL 100 100

Phospholipid (a) and fatty acid (b) levels used in each membrane
model. Values are reported as % phospholipid over total phospho-
lipids (a) and % fatty acid over total fatty acids (b). The over-
all composition of both models is inspired by brain lipid profiles
of healthy and diseased individuals1–6. In both tables, Healthy*
and Diseased* refer to healthy- (high DHA) and diseased-
like (low DHA) model membranes. In addition to phospho-
lipids, both membrane models contain cholesterol in a phospho-
lipids:cholesterol ratio of 1:3. Abbreviations signify phospholipid
(PH), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-
distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dioleyl-sn-
glycero-3-phosphocholine (DOPC), 1-stearoyl-2-docosahexaenoyl-
sn-glycero-3-phosphocholine (SDPC) and sphingomyelin (SM18).

Table 2 | Mean number of protein–protein con-
tacts established during long-scale CG-MD simu-
lations.

R1 R2 R3 AVE

Healthy* 1.41 1.48 1.53 1.47
Diseased* 1.27 1.18 1.12 1.19

Mean number of protein–protein contacts per protomer (i.e. the
number of protomers that each protomer is in contact with) dur-
ing the last 20 µs of 60 µs simulations. Healthy* and Diseased*
refer to healthy- (high DHA) and diseased-like (low DHA) model
membranes. R1, R2, and R3 stand for replicas 1, 2 and 3, re-
spectively. The last column (AVE) displays the mean number of
protein–protein contacts per protomer across all replicates.

Interestingly, we observed saturable dose-dependent in-
corporation of DHA into the membrane of HEK-293T
cells with a maximum dose achieved at 200 µM of DHA,
yielding a relative DHA content of 6.49 ± 0.32 % of to-
tal fatty acids (Fig. 1). While this content is still below
the level of DHA found in normal human brains4, cells
supplemented with the maximum dose of DHA still show
more than 6-fold higher DHA than cells grown in basal

conditions. Therefore, we established non-treated cells
and cells treated with 200 µM DHA as representatives of
DHA-low and DHA-rich models, respectively. Remark-
ably, we did not observe significant DHA-mediated cyto-
toxicity at any dose tested.

Thus, cell viability at 200 µM DHA was 89.5 ± 8.2 %
compared to untreated cells (p=0.3045, Student’s t test,
n=3). With regard to fatty acid profile, while levels of
saturated fatty acids remained constant, treatment with
DHA induced an increase of PUFA and ω-3 series along
with a progressive decrease in monounsaturated and ω-6
series, resulting in a five-fold decrease in the ω-6 / ω-3
ratio (Fig. 1).

Having demonstrated adequate incorporation of DHA
into HEK-293T cell membranes, we further investigated
its role in A2A–D2 oligomerization. BRET is a power-
ful technique for characterizing GPCR oligomers36 and,
in particular, for studying the comparative effect of cer-
tain modulators on GPCR oligomerization37–39. In our
experiments, a positive and saturable BRET signal for
the transfer of energy between A2A

Rluc and D2
YFP con-

structs was observed (Fig. 2a) in cells co-transfected with
a constant amount of A2A

Rluc and increasing concentra-
tions of D2

YFP. In addition, since the control receptor
pair, A2A

Rluc and CD4YFP, led to the typical quasi-linear
curve40,41, the specificity of the saturation (hyperbolic)
assay for the A2A

Rluc–D2
YFP pair could be established.

These results corroborate previous results indicating that
A2A and D2 receptors form constitutive heterodimers in
living cells40.

To assess the effect of DHA on the A2A–D2 heteromer
(i.e. BRET signal), we performed 4 independent BRET
titration experiments in the presence and absence of a
saturating concentration of DHA (200 µM). Interestingly,
preincubation with DHA for 48 h significantly increased
the maximum BRET signal (BRETmax) by 25 ± 8 %
(p < 0.05) in all the experiments performed with
A2A

Rluc–D2
YFP co-transfected cells (Fig. 2b). On the

other hand, the amount of D2
YFP needed to reach 50 % of

the maximal BRET signal (BRET50) was slightly lower
in the presence of DHA, although this effect was not sta-
tistically significant (Fig. 2c). Therefore, DHA treatment
affects both the propensity of A2A and D2 protomers to
interact and the oligomerization mode of this heteromer.

Overall, these results conclusively demonstrate that
DHA treatment increases A2A and D2 heteromerization.

Polyunsaturated lipids avidly surround GPCRs in
CG-MD and all-atom simulations. We used MD
simulations to further characterize the affinity between
DHA and GPCRs. As shown in the CG-MD simulations
(see Supplementary Movie 1), DHA-rich phospholipids
(i.e. SDPC) display a striking preference for interaction
with GPCRs. In fact, this video shows how a shell of
this lipid tends to surround GPCR monomers virtually
from the beginning of the simulation, and how, GPCR
oligomers are surrounded by SDPC molecules by the end
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Figure 1 | Effect of DHA treatment in the fatty acids content of HEK cells. HEK-293T cells were incubated
with increasing concentrations of DHA (22:6n-3) during 48 h. The effect of increasing doses of DHA in the fatty acid profile was measured
by gas chromatography. The specific dose-dependent DHA incorporation is shown (inset panel). The fatty acid content is expressed as
the relative molar ratio in percentage. Data shown are the mean ± SEM of three determinations. SFA, MUFA, PUFA, n-6 and n-3 labels
stand for saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, ω-6 PUFA and ω-3 PUFA, respectively)

Figure 2 | Effect of DHA on the A2A–D2 oligomerization state. BRET was measured in HEK-293T cells co-expressing
A2A

Rluc plus D2
YFP and preincubated during 24h in the absence (red) or presence of DHA (blue) (see Methods). 4 independent

experiments with DHA-treated and non-treated cells were performed. (a) shows the BRET saturation curve of one representative
experiment where each point measurement was performed in triplicate. Plotted on the x axis is the average fluorescence value of the
D2

YFP (acceptor), corrected for the background fluorescence, over the average luminescence value of A2A
Rluc (donor). Values were read

after 10 min of h-coelenterazine incubation. The corresponding average BRET ratios (x1000) in mBU (mBRET units), corrected for the
background BRET signal, are plotted on the y axis. Values expressed as mean (points) ± SEM (vertical and horizontal error bars; SMEs
bars smaller than the point size are not visible). (b) and (c) plots show, respectively, the BRETmax and BRET50 results of 4 independent
experiments in the absence (red) and presence (blue) of DHA. These results were compared by a paired t test demonstrating statistical
significant differences (i.e. p < 0.05). Significant differences are marked by the *, whereas NS stands for not significant
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of the simulation. To support these observations, we cal-
culated the radial distribution function of each lipid type
around the A2A (Fig. 3) and D2 (Supplementary Fig. 1)
receptors. This analysis confirms that during our CG-MD
simulations the first solvation shell around the protein is
primarily populated by DHA-rich phospholipids (SDPC).
This DHA shell cannot completely form when the level of
DHA-rich phospholipids is poor (i.e. in diseased-like sys-
tems).

a

b

High DHA

Low DHA

Figure 3 | Radial distribution function of lipids
around A2A receptors during CG-MD simula-
tions. Probability density (i.e. radial distribution function, g(r))
of lipids around the center of mass of A2A receptors embedded in
healthy- (high DHA, (a)) and diseased-like (high DHA (b)) model
membranes. y and x axes represent g(r) (arbitrary units) and dis-
tance (nm), respectively. Radial distribution functions for D2 re-
ceptors are shown in Supplementary Fig. 1

To validate the effect we see in our CG-MD simula-
tions, we complemented our simulations using all-atom
molecular dynamics of A2A embedded in a healthy-like
membrane system (Table 1). A final snapshot of the all-
atom simulation at 4 µs (Fig. 4, right) confirms that un-
saturated phospholipids, namely DOPC and SDPC, have
a strong preference for solvation of the protein. To quan-
titatively assess this effect, we calculated the mean num-
ber of contacts per atom between unsaturated tails and

the protein and compared this value with that for satu-
rated tails (see Supplementary Methods). The proportion
of lipid-protein contacts between unsaturated tails with
respect to saturated ones clearly grows during the sim-
ulation (Supplementary Fig. 2). Specifically, DHA tails
(i.e. sn-2 chain of SDPC) display the highest growth rate
(Supplementary Fig. 2b) and confirm the tendency of this
fatty acid to interact with the protein. In addition, the
contact ratio of SDPC over DOPC remains equilibrated
(i.e. around 1) until the end of the simulation, when,
proportionally more SDPC is in contact with the pro-
tein (Supplementary Fig. 2a and Table 3). These results
imply that, as we observe in Fig. 4, DHA gradually pop-
ulates the closest lipid shell around the GPCR during the
all-atom simulation.

In addition, as shown in our CG-MD simulations
(Supplementary Movie 1), an SDPC shell seems to act
as a lubricating film in many of the dimer and oligomer
formation events. It is tempting to suggest that the
high affinity between DHA and GPCRs explains the
enhancing effect on A2A–D2 oligomerization we observed
in living cells treated with this fatty acid.

Table 3 | Contact ratios established between un-
saturated lipid chains and the A2A receptor dur-
ing 4 µs of the all-atom simulation.

Ratio type 0–1 1–2 2–3 3–4

SDPC / SAT 1.82 2.91 3.56 5.35
SDPCsn-1 / SAT 1.64 2.46 2.70 3.48
SDPCsn-2 / SAT 2.01 3.37 4.43 7.21

DOPC / SAT 2.03 3.27 4.13 4.24
DOPCsn-1 / SAT 1.95 3.04 4.09 3.74
DOPCsn-2 / SAT 2.11 3.5 4.16 4.75

SDPC / DOPC 1.15 0.95 0.93 1.38

Ratios represent the relative proportion of mean lipid–protein con-
tacts per atom between two selections. For instance, the SDPCsn-1
/ SAT ratio corresponds to the average number of lipid–protein
contacts per atom established by SDPCsn-1 tails with respect
to those established by all saturated lipid tails in the membrane
(SAT). Each column represent a specific time range expressed in
units of µs.

DHA accelerates the kinetics of GPCR aggrega-
tion. While the results from our BRET experiments con-
firms that DHA levels can affect GPCR aggregation in
living cells (see above), we wanted to shed more light
on the general mechanism behind this effect. Thus, we
performed an in-depth characterization of the protein ag-
gregation behaviour observed during our CG-MD simu-
lations. The final snapshots of our CG-MD simulations
(Fig. 5a–f) show that protein oligomers tend to form ex-
tended rather than looped structures in both healthy- and
diseased-like environments. Within these oligomers, pro-
tomers establish mostly 1 (dimers) or 2 contacts (trimers)
and rarely 3 contacts (tetramers) with other protomers
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Figure 4 | All-atom simulation of the A2A recep-
tor embedded in a healthy-like model membrane
(DHA-high). Initial (top) and final (bottom) snapshots of the
simulation were taken at 0 and 4 µs, respectively. A2A helices are
depicted in blue cartoons whereas protein loops are in thin white
cylinders. Grey van der Waals spheres correspond to a representa-
tion of all membrane lipids except unsaturated phospholipids (i.e.
SDPC and DOPC molecules) depicted in yellow surface. Water
molecules and ions were omitted for clarity.

(Figs. 5a–f). Such array-like disposition has already been
described in previous CG-MD simulations of GPCRs42,43.
To confirm the behaviour of protein oligomers at longer
time-scales, we extended one of the simulations (Fig. 5a)
up to 260 µs. The final snapshot of this extended simu-
lation displays an extended-like final arrangement of the
protein oligomer (Supplementary Fig. 3d) where nearly all
protomers form at least one protein–protein contact. It is
worth noting that during these 60–260 µs, the number of
protein–protein contacts generally remained between one
and two contacts per protomer (Supplementary Fig. 3a–
d).

The evolution of protein aggregation significantly var-

ied between healthy- and diseased-like systems, as shown
by the number of protein–protein contacts over time de-
picted in Fig. 6. This figure shows that GPCR dimers
form significantly quicker in DHA-high (Fig. 6a, left)
when compared to DHA-low systems (Fig. 6a, right).
To provide more statistical support for this finding, we
performed 5 replicate simulations for of the two mem-
brane environments. Analysis of the first 16 µs (Fig. 6b,
right) of these simulations shows that protein aggrega-
tion is again reduced in all replicates of the diseased-like
model. More importantly, however, these replicate simu-
lations confirm that protein aggregates consolidate earlier
in the presence of healthy levels of DHA (Fig. 6b, left).
As shown in Table 4, the mean number of protein–protein
contacts per protomer during the first 0–4 µs is similar
in healthy- and diseased-like systems. In contrast, during
the 4–8 µs interval of the simulation, protomers embed-
ded in healthy-like model membranes were able to engage
in twice as many protein–protein contacts compared to
diseased-like membranes. Therefore, increasing levels of
membrane ω-3 PUFAs (i.e. DHA) seems to speed up
GPCR oligomerization by promoting a higher numbers
of protein–protein contacts in shorter times.

Table 4 | Mean number of protein–protein con-
tacts established during short replicates of CG-
MD simulations.

0–4 4–8 8–12 12–16 0–16

Healthy* 0.25 0.62 0.78 0.91 0.64
Diseased* 0.22 0.29 0.49 0.67 0.42

The mean number of protein–protein contacts per protomer in 5
replicates of short 16 µs simulations. Time frames (columns) are
expressed in µs. Healthy* and Diseased* refer to healthy- (high
DHA) and diseased-like (low DHA) model membranes. Starting
from the left, each column shows the mean number of protein–
protein contacts during sequential 4 µs intervals, and the last col-
umn displays the same value for the whole simulation (0–16 µs).

Finally, we performed further CG-MD simulations to
confirm whether the initial arrangement of protomers
could modulate the effect of DHA on protein aggregation.
We used new starting configurations of the proteins,
where protomers of each receptor type occupied one
half of the simulation box, and ran 3 replicates of
healthy- and diseased-like systems for 120 µs. This
analysis confirmed that the enhancing effect of DHA
on protein aggregation is not markedly affected by the
initial configuration of protomers (Supplementary Fig. 4).

DHA-rich membranes speed up protein and lipid
diffusion. To study the effect of DHA on protein dif-
fusion, we performed a new set of CG-MD simulations
based on single monomers (i.e. A2A or D2) and measured
protein diffusion (see details in Supplementary Methods).
As shown in (Supplementary Fig. 5), proteins display
higher mean squared displacements (MSDs) when diffus-
ing in the more fluid environment of a healthy-like (DHA-
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Figure 5 | Final snapshot of healthy- and diseased-like systems after 60 µs of CG-MD simulation. Left
and right columns display 3 replicates of healthy- (high DHA, left) and diseased-like (low DHA, right) systems. Each figure correspond
to one replica. A2A and D2 helices are depicted in red and blue cartoons, respectively, whereas protein loops are in thin white cylinders.
Protein monomers are surrounded by a white transparent surface. Grey spheres correspond to a van der Waals representation of all
membrane lipids except for SDPC molecules depicted in yellow surface. Water molecules, ions, and anti-freezing particles are not shown
for clarity.
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Figure 6 | Time-dependence of protein aggrega-
tion in CG-MD simulations. Long (a) and short (b) sim-
ulations (60 µs and 16 µs, respectively) of healthy-like (i.e. high
DHA, left) and diseased-like (low DHA, right) systems. Each cell
represents one replicate, as three long (a) and 5 short replicates (b)
were run for each system. Each number in the y axis represents one
GPCR protomer and time extends along the x axis.

rich) membrane than in diseased-like (DHA-low) mem-
branes. Specifically, A2A and D2 receptors simulated in
healthy-like membranes display an average diffusion co-
efficient ( ± error estimate; see Supplementary methods)
of 4.8 ± 1.3 × 10−9 cm2/s and 4.6 ± 1.0 × 10−9 cm2/s,
respectively. In contrast, when simulated in diseased-like
membranes, A2A and D2 receptors show a slower diffusion
of 1.8 ± 0.6 × 10−9 cm2/s and 2.2 ± 0.6 × 10−9 cm2/s,
respectively. Similarly, the calculated protein rotational
motion is slower in diseased-like membranes (Supplemen-
tary Fig. 6a), a trend particularly evident for the D2 re-
ceptor (Supplementary Fig. 6b).

In general, the simulation data suggest that higher
levels of DHA allow proteins to travel longer distances
and sample a higher number of potential dimerization
interfaces due to enhanced translational and rotational
diffusion, respectively. Likely as a result of a faster
diffusion, proteins aggregate more rapidly in healthy-like

model membranes (Fig. 6a–b, left), where we find that
nearly all monomeric structures (blue) disappear within
5–10 µs, making room for dimers (yellow), trimers
(orange) or even higher-order arrangements such as
tetramers (red) or pentamers (green). In contrast,
in diseased-like systems (Fig. 6a–b, right), most of the
monomeric structures need 15–20 µs to form higher-order
structures. Similarly, lipids generally move faster in
highly unsaturated environments (Supplementary Fig. 7).
It is worth noting that out of the six lipid species, SDPC
displays the lowest diffusion coefficient in both healthy-
and diseased-like systems (Table 5). Such low diffusion is
consistent with the fact that SDPC is the most common
lipid of the protein-solvating lipid shell (Figs. 3 and
Supplementary Fig. 1). Hence, a plausible explanation
for the low diffusion values shown by SDPC is that the
high number of DHA–protein interactions slows down
the diffusion of this lipid, in agreement with previous
work44.

Table 5 | Average diffusion coefficients of lipids
during long CG-MD simulations

Lipid Healthy* Diseased*

CHOL 3.43 ± 0.19 2.60 ± 0.19
SM 2.72 ± 0.17 2.52 ± 0.20
DPPC 2.87 ± 0.35 2.48 ± 0.15
DSPC 2.87 ± 0.15 2.36 ± 0.07
DOPC 2.90 ± 0.33 2.44 ± 0.09
SDPC 2.08 ± 0.16 1.34 ± 0.11

Diffusion coefficients of lipids in each model membrane. Healthy*
and Diseased* refer to healthy- (high DHA) and diseased-like (low
DHA) model membranes. Values are reported in 10−8 cm2/s ± the
error estimate. The calculation of error estimates is described in
the Supplementary Methods.

Discussion
Experimental evidence suggests that both GPCR
oligomerization and DHA play a relevant role in brain
functioning. In this study we report for the first time
a molecular link between membrane levels of DHA and
GPCR oligomerization, which could have important im-
plications for the treatment of major psychiatric disor-
ders. In addition, this work opens the door for studying
the effect ofω-3 PUFAs on other GPCR oligomers known
to be involved in neurological diseases.

We have used computational prediction methods
backed up by laboratory validation to assess the effect
of DHA levels on the formation of A2A–D2 heteromers.
Our CG-MD simulations predict that GPCR aggregation
is driven by membrane DHA levels. Specifically, low lev-
els of DHA significantly diminished the ability of A2A

and D2 receptors to engage in protein–protein contacts
during these simulations (Table 2). To validate these
findings we used BRET measurements in living cells to
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monitor the oligomerization mode of these receptors in
DHA-high and DHA-low membrane environments. The
results from these experiments provide a striking valida-
tion of our computational prediction, and showed that
enriching cell membranes with DHA enhances the inten-
sity of A2A–D2 oligomerization (Fig. 2).

In addition, the results from the CG-MD simulations
show that membrane DHA levels modulate the diffu-
sion of membrane components (Table 5 and Supplemen-
tary Fig. 6) and, ultimately, the rate of spontaneous
protein–protein interactions (Fig. 6). Thus, A2A and D2

receptors can travel longer distances and sample a higher
number of potential dimerization interfaces in DHA-rich
membranes. These results suggest that higher levels of
DHA accelerate protein aggregation and highlights the
role of kinetics in modulating GPCR oligomerization.
Intriguingly, this effect of DHA on GPCR oligomeriza-
tion could partly underlie the neuroprotective properties
of DHA supplementation reported previously in animal
studies8,17. In that case, restoring membrane DHA lev-
els in individuals with Schizophrenia or Parkinson’s dis-
ease could improve the impaired crosstalk of the A2A–D2

oligomer observed in these disorders33.
A question now arises about the molecular mechanism

through which DHA enhances the kinetics of GPCR ag-
gregation. In line with previous studies22,29, both our
CG- and all-atom MD simulations confirm the strong
tendency of DHA-rich phospholipids to solvate GPCRs
(Fig. 3 and Table 3). In fact, a ubiquitous shell of
DHA-rich lipids constantly surrounded the proteins dur-
ing our millisecond-scale CG-MD simulations (Supple-
mentary Movie 1). This distinctive solvation shell seems
to provide proteins with a complete DHA armour that
enhances GPCR aggregation kinetics by facilitating the
establishment and consolidation of proteinprotein inter-
actions in the membrane. It is tempting to speculate on
whether this DHA-dependent effect is a general mecha-
nism that cell membranes use to drive transmembrane
proteins like GPCRs into signalling platforms (e.g. lipid
microdomains), which is currently a matter of intense dis-
cussion45–47.

In conclusion, our results represent the first reported
evidence of a molecular link between membrane levels of
ω-3 polyunsaturated fatty acids and GPCR oligomeriza-
tion. They provide an important advance in understand-
ing the interplay between membrane lipids and key trans-
membrane proteins like GPCRs, a topic of current special
interest in biophysics. Most importantly, these findings
create new opportunities to explore the use of membrane
lipids as a therapeutic tool for major neuropsychiatric
conditions, specifically Schizophrenia or Parkinson’s dis-
ease, in which the A2A–D2 heteromer has been shown to
have particular importance.

Methods
CG-MD simulations. The MARTINI force field for lipids v2.048

and amino acids v2.149 and the GROMACS 4.5 simulation pack-

age50 were employed to build and perform all CG-MD simulations.
The exact lipid composition of each model is represented in Table 1
and Supplementary Table 1. The extension of MARTINI force
field to proteins49 was used to model A2A and D2 receptors. All
CG-MD simulations were carried out in the NPT ensemble at 37◦C
and at 1 bar. We report all CG-MD simulation using effective
times, a standard 4-fold speed-up conversion factor that accounts
for the loss of friction of the MARTINI CG-MD model and
employed in similar CG-MD48 studies using GPCRs42. Protein
self-assembly was first simulated for 60 µs using 3 healthy-like
and 3 diseased-like replicates. One of the former simulations,
namely healthy-like replicate 1 (see Fig. 5a), was simulated up
to 260 µs to observe potential changes on the protein oligomer
arrangement over long time-scales. A different initial arrangement
of protein monomers embedded in 3 healthy-like and 3 diseased-like
membrane models was used to validate the effect of DHA on
protein aggregation. These systems were simulated for 60 µs to
study protein aggregation and further extended up to 120 µs to
inspect the stability of protein oligomers over longer time-scales. In
addition, to validate the behaviour of protein aggregation in short
times, 10 extra systems (i.e. 5 healthy-like and 5 diseased-like) were
simulated for 16 µs. Lastly, to calculate the diffusion of protein
monomers, A2A and D2 receptors were individually simulated for
32 µs in both healthy- and diseased-like environments. Altogether,
an accumulated simulation time of approximately 1,630 ms was
used in this study. A detailed description of the construction of
the systems along with their simulation protocol can be found in
the Supplementary Methods.

Cell culture and transfection. Human embryonic kidney 293T
(HEK-293T) cells were grown at 37◦C in an atmosphere of 5 %
CO2 in Dulbecco’s modified Eagle’s medium (Sigma-Aldrich, St.
Louis, MO, U.S.A.) supplemented with 1 mM sodium pyruvate,
2 mM L-glutamine, 100 mg/mL streptomycin, 100 U/mL penicillin
and 5 % (v/v) fetal bovine serum. The cells were seeded into
six-well plates at 300,000 cells/well and transiently transfected with
the corresponding cDNA constructs using Transfectin (Bio-Rad,
Hercules, CA, U.S.A.) following manufacturer’s instructions.

DHA fatty acid supplementation and cell viability assay.
Triglyceride fish oil was kindly provided by Brudy Technology
(Barcelona, Spain). This oil contains more than 70 % of DHA in
total fatty acids and more than 90 % ω-3 fatty acid triglycerides.
Transfected cells were incubated with media containing different
amounts of DHA (namely 5, 10, 20, 30, 50, 100 and 200 µM) for
48 h. To determine the effect of DHA on cell viability we used
the CALcein-AcetoxyMethyl Ester, Diacetate, (CAL-AM), a cell-
permeable dye (EMD Millipore, MA, USA). In brief, HEK-293T
cells (1 × 104 cells/well) were cultured in a 96-well plate at 37◦C,
and exposed to varying concentrations of DHA for 48 h. Cells
treated with plain medium served as a negative control group,
whereas cells warmed at 65◦C for 1 min were used as a positive
control of cell death. After removing the supernatant of each
well and washing twice with PBS, a solution of 100 µl of 1.0 µM
calcein-AM diluted in warm (37◦C) PBS was added to cells. After
an incubation period of 30 min at 37◦C, fluorescence was measured
in a POLARstar Optima plate-reader (BMG LABTECH GmbH,
Ortenberg, Germany) at 485/535 nm.

Fatty acid analysis. The composition of fatty acids was
determined using the method by Lepage and Roy51. The total
lipids, containing 0.01 % butylhydroxytoluene as antioxidant, were
transesterified with acetyl chloride during 60 min at 100◦C. Gas
chromatography analysis was performed on a Shimadzu GCMS-
QP2010 Plus gas chromatograph-mass spectrometer (Shimadzu,
Kyoto, Japan). Fatty acid methyl ester peaks were identified by
their elution pattern and relative retention times with respect
to a reference mixture (GLC-744 Nu-Chek Prep. Inc., Elysian
MN, USA). The results were expressed in relative amounts (molar
percentage of total fatty acids).

BRET experiments. HEK-293T cells were transiently trans-
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fected with a constant amount (0.3 µg) of A2A
Rluc and increasing

amounts of plasmid encoding D2
YFP, namely from 0.25 to

3.7 µg. The cDNA encoding A2A
Rluc, D2

YFP and CD4YFP were
previously described in40,41. Both fluorescence and luminescence
signals from each sample were measured prior to experiments to
confirm equal expression of the Rluc construct while monitoring
the increase in YFP expression. Cells were then treated with DHA
200 µM for 48 h and rapidly washed twice with phosphate-buffered
saline, detached and re-suspended in the same buffer. Triplicate
samples of cell suspension (20 µg protein) were distributed
in black bottom 96-well black microplates or white bottomed
96-well white microplates (Fisher Scientific, Madrid, Spain) for
fluorescence or BRET experiments, respectively. For BRET
measurements, colenterazine-h substrate (NanoLight Technology,
Pinetop, Arizona, USA.) was added to a final concentration of
5 µM. BRET readings were performed at 1 and 10 min using the
POLARstar Optima plate reader (BMG Labtech, Durham, NC,
USA). This plate reader allows detection and sequential integration
of both luminescence (Rluc) and fluorescence (YFP) signals by
two filter settings: 440–500 nm and 510–560 nm windows to
detect 485 nm (Rluc, donor) and 530 nm (YFP, acceptor) signals,
respectively. The BRET ratio (i.e. the fluorescence signal over
the luminescence signal) was defined as described previously40 and
measured in 4 independent experiments where cells were treated
with DHA. The values of BRETMAX (i.e. the maximal signal
reached at saturation) and BRET50 (i.e. BRET ratio giving 50 %
of the BRETMAX) were also calculated as in40. The statistical
assessment of BRETMAX and BRET50 values across experiments
was performed using a paired t test comparing DHA-treated versus
non-treated cells.

All-atom simulations. The CHARMM3652, CHARMM36c53

and CHARMM2754 force fields were used to represent lipids,
cholesterol and proteins, respectively. An all-atom structure of
the adenosine A2A receptor was embedded into an equilibrated
healthy-like membrane patch (see Table 1). A equilibration phase
in the NPT ensemble at 37◦C and 1 bar was then carried out
to allow lipids to accommodate to the protein. Subsequently,
a production run of 4 µs in the NVT ensemble was performed.
All-atom simulations were performed using the ACEMD simula-
tion package55. A detailed description of the construction and
simulation protocols is provided in the Supplementary Methods.

Analysis of MD simulations. Procedures used in the analysis of
both CG- and all-atom MD simulations are shown in the Supple-
mentary Methods.
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Supplementary Methods

COARSE-GRAINED (CG) MOLECULAR DYNAMICS SIMULATIONS.

CG models of A2A and D2 receptors. While a crystal structure1 (PDB:3EML) was directly used as an all-atom
representation of the adenosine A2A receptor, a homology model of the D2 receptor was built based on the crystal
structure of the highly homologous dopamine D3 receptor (PDB:3PBL). The intracellular loop 3, not resolved in
any of the current GPCR crystal structures, was omitted in both cases and all titratable residues were left in
the dominant protonation state at pH 7.0. A structure and the corresponding topology compatible with Martini
force field v2.12 were created based on the former atomistic structure files. To preserve the tertiary structure of
proteins during the simulation, an elastic network was applied between beads as a structural scaffold following the
ElNeDyn approach3. Based on the fluctuations observed in Cα atoms during all-atom simulations of A2A and D2 re-
ceptors, force constants of 1000 kJ/mol and 250 kJ/mol were applied to the helical regions and the loops, respectively.

Construction of CG systems. Inspired by brain postmortem studies of healthy and diseased subjects4–9, we
built two multi-component lipid bilayers, namely ‘healthy-like’ and ‘diseased-like’ model membranes. To keep an
adequate balance between lipid components we followed key general tendencies observed in the former studies rather
than exact proportions. The aim was to create two native-like model membranes, one DHA-rich (healthy-like)
and one DHA-low (diseased-like), by modifying DHA levels while preserving adequate amounts of other relevant
membrane components (i.e. saturated lipids, monounsaturated lipids and cholesterol). In short, two lipid bilayers
were created by arranging 450 lipids (see Table 1 in the manuscript). All lipids were initially placed randomly. The
relative lipid composition of each bilayer is given in the manuscript (see Table 1). These bilayers were subsequently
solvated and 10 % of the water was replaced by the antifreeze particle of Martini force field. This was followed
by an equilibration phase. Thereafter, one A2A and one D2 receptors were embedded into the equilibrated lipid
bilayers without compromising the lipid composition and protein excess charge was neutralized with chloride beads.
Subsequently, larger systems were created based on these patches by replicating their contents independently 9 times
(3 × 3) in the membrane plane using the genconf utility of GROMACS10.The composition of these constructed
systems is detailed in Supplementary Table 1a. The systems were equilibrated with protein beads constrained. Eight
different starting structures were then constructed to be simulated as independent replicas for both compositions
(i.e. healthy- and diseased-like). The initial coordinates for these replicas were extracted at large time intervals of
2 to 8 µs from the simulation where protein beads were constrained. This enabled a proper mixing to the lipid
environment surrounding each protein. For each membrane type, three replicas were simulated for 60 µs while the
remaining 5 replicas were just simulated for 16 µs to validate the effect of DHA at shorter times. One healthy-like
simulations was extended up to 260 µs to observe the arrangement of protein oligomers at longer time-scales.
Likewise, a similar pair of the initial systems (i.e. 3 × healthy- and 3 × diseased-like) were subsequently built
following the same protocol but using a different initial arrangement of protein monomers. The exact composition of
these second set of simulations is detailed in Supplementary Table 1b. Finally, single protein diffusion was studied

1Research Programme on Biomedical Informatics (GRIB), Barcelona, Spain; 2 Department of Physics, Tampere University of Tech-
nology, Tampere, Finland; 3 Facultat de Medicina, IDIBELL, Universitat de Barcelona, Barcelona, Spain; 4 Facultat de Biologia ,
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by simulating monomeric A2A and D2 receptors embedded in the initially constructed small membrane patches of
both healthy- and diseased-like compositions. These systems were simulated for 32 µs.

Table 1 | Number of residues comprising both sets of CG simulations.

(a)
Healthy-like Diseased-like

DPPC 576 (14 %) 900 (22 %)
DSPC 198 (5 %) 396 (10 %)
DOPC 396 (10 %) 288 (7 %)
SDPC 576 (14 %) 162 (4 %)
SM 972 (24 %) 972 (24 %)
CHO 1332 (33 %) 1332 (33 %)

TOTAL LIPIDS 4050 (100 %) 4050 (100 %)

A2A 9 9
D2 9 9

W 44865 44028
WF 5004 4905
IONS (Cl−) 153 153

(b)
Healthy-like Disease-like

DPPC 512 (14 %) 832 (22 %)
DSPC 192 (5 %) 384 (10 %)
DOPC 352 (10 %) 288 (7 %)
SDPC 512 (14 %) 128 (3 %)
SM 864 (24 %) 960 (25 %)
CHO 1184 (33 %) 1280 (33 %)

TOTAL LIPIDS 3616 (100 %) 3872 (100 %)

A2A 8 8
D2 8 8

W 44488 48360
WF 4960 5384
IONS (Cl−) 136 136

Composition of (a) initial simulations (i.e. 2 × [3 × 60 µs + 5 × 16 µs]) and (b) validation systems (i.e. 2 × [6 × 120 µs]). In
brackets, lipid percentages over total number of lipids. Lipid composition in (a) and (b) yields a protein–to–lipid ratio of 1:151
and 1:162, respectively. Abbreviations stand for for 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-
3-phosphocholine (DSPC), 1,2-dioleyl-sn-glycero-3-phosphocholine (DOPC), 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine
(SDPC) and sphingomyelin (SM18), cholesterol (CHO), water beads (W) and Martini antifreeze particles (WF), respectively.

CG simulation protocol. All simulations were performed using the GROMACS 4.5 simulation package10 using
a time step of 10 fs in the NPT ensemble. The temperature was kept constant at 37◦C with the Berendsen
thermostat11 using a relaxation time constant of 1 ps. Membrane and solvent components were coupled separately.
The pressure was coupled semi-isotropically with the Berendsen barostat11 using a relaxation time constant of 5 ps
and a reference pressure of 1 bar. The shift approach was employed for non-bonded interactions. The electrostatic
interactions were shifted to zero between 0 and 1.2 nm whereas for Lennard-Jones interactions the shifting was
conducted between 0.9 and 1.2 nm. The neighbour list with a radius of 1.2 nm was updated every 10 steps. Periodic
boundary conditions were employed in all three dimensions.

Protein and lipid diffusion. The g msd tool of GROMACS package10 was used to perform all mean squared
displacement (MSD) calculations. Lipid lateral diffusion was studied in multi-protein systems once most of the
protein–protein contacts were established. Thus, the last 30 µs of the trajectories were employed for the analysis. All
lipid species were considered separately and the center of mass of the whole membrane was removed. Lipid diffusion
coefficients were extracted as the slope of a linear fit to the calculated MSD data, as defined in equation (1):

D = lim
τ→∞

MSD(τ)

4τ
= lim
τ→∞

〈[~r(t+ τ)− ~r(t+ 0)]
2〉t

4τ
, (1)

where t is the simulation time and τ is the lag time. The fits were performed to the MSD curve in the lag time
interval between 3 and 27 µs.
Protein lateral and rotational diffusion was studied in the single-protein systems described earlier. Protein lateral
diffusion coefficients were obtained from a linear fit of equation (1) to the lag time interval of 0.8–4 µs. In
the calculation of both protein and lipid diffusion coefficients, error estimates were reported as the difference
of the diffusion coefficients obtained from fits to two halves of the whole fit interval. Rotational diffusion of
proteins was also studied on single-protein simulations using the g rotacf tool of GROMACS10. The 2nd or-
der Legendre polynomial was employed and the obtained curves were fitted using an exponentially decaying function.

Radial Distribution Functions (RDFs). The RDFs of lipids around proteins were calculated using the g rdf

tool of GROMACS10. RDF values are reported as averages over the three 60 µs replicas for both compositions.
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ALL-ATOM MOLECULAR DYNAMICS SIMULATIONS.

Construction of all-atom systems. A healthy-like model membrane (see Table 1 in the manuscript) of approx-
imately 100 × 100 Å2 (in the membrane plane) was built using the CHARMM-GUI membrane builder12. Since
sphingomyelin is not a standard lipid of CHARMM force field, a VMD1.913 script was employed to mutate the per-
tinent fraction of DSPC molecules into 18-carbon sphingomyelin (SM). SM topology and additional parameters were
created by a generalization approach using the CGenFF force field14,15 version 2b6 using the CHARMM ParamChem
interface v0.9.1 (https://www.paramchem.org). No high penalty scores were obtained in the former process. There-
after, a VMD1.913 script was used to re-hydrate the membrane patch using approximately 30 water molecules (TIP3
model) per lipid and the system was neutralize with 150 mM NaCl. Subsequently, the membrane was equilibrated for
1 µs in the NPT ensemble. Next, the crystal structure of the adenosine A2A receptor1 (PDB:3EML) was manually
embedded into the equilibrated membrane patch using VMD1.913. This protein structure was prepared as described
earlier. The final combined membrane–protein system comprised a total of 112,357 atoms. Table 2 gives a detailed
composition of such system.

Table 2 | Number of residues comprising the atomistic simulation.

Component Num

DPPC 48 (15 %)
DSPC 18 (6 %)
DOPC 36 (11 %)
SDPC 44 (14 %)
SM 79 (24 %)
CHO 112 (34 %)

TOTAL LIPIDS 337 (100 %)

A2A 1

W 8155
Na− 75
Cl− 65

The number of residues of each component is shown. In brackets, lipid percentages over total number of lipids. The lipid com-
position yields a protein–to–lipid ratio of 1:337. Abbreviations stand for for 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC),
1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dioleyl-sn-glycero-3-phosphocholine (DOPC), 1-stearoyl-2-docosahexaenoyl-sn-
glycero-3-phosphocholine (SDPC) and sphingomyelin (SM18), cholesterol (CHO) and water (W), respectively.

An NPT equilibration phase was then carried out on so that lipids and water molecules could accommodate to the
protein. To this end, harmonic positional constraints were applied to the Cα atoms of the protein and the system
was simulated for 10 ns. Such constraints were gradually released from the receptor over 5 ns and the system was
further equilibrated for 100 ns. In the production run, we simulated the system for 4 µs in the NVT ensemble. The
ACEMD simulation package16 was used. NPT simulations were carried out at 37◦C and 1 bar using the Berendsen
barostat11 with a relaxation time of 400 fs and 2 fs integration time step. NVT simulations were run at 37◦C, using
the Langevin thermostat17 with a damping coefficient of 5 ps−1 and 4 fs integration time step. In all simulation
phases, van der Waals and short-range electrostatic interactions were cut off at 9 Å and the particle mesh Ewald
method18 was used to compute the long-range electrostatic interactions.

Analysis of lipid–protein contact ratios in all-atom MD simulations. We measured the ratio of lipid–
protein contact between two groups (e.g. two lipid species) by calculating the number of contacts per atom
of the first group divided by the number of contact per atom of the second group. Atoms were considered in
contact when located at < 4.2 Å of the COM of the protein. For this analysis only atoms in the lipid tails are
considered. To facilitate the interpretation of the results, each contact value was previously normalized by the
the total number of atoms belonging to that particular selection. For example, in the SDPC/SAT ratio, SDPC
is calculated as the number of atoms of any SDPC chain < 4.2 Å of protein’s COM divided by the total number
of SDPC chain atoms in the system. Likewise, SAT is calculated in the former ratio as the number of atoms
of any saturated chain < 4.2 Å of protein’s COM divided by the total number atoms of saturated chains in the system.
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FIGURE ART.

The built-in Tachyon ray tracer of VMD1.913 was used to render all snapshots from both CG and all-atom simulations.
The ggplot2 R package19 was used to generate plots on protein aggregation and lipid–protein contact ratios.
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Figure 1 | Radial distribution function of lipids around proteins during CG-MD simulations. Probability
density (i.e. radial distribution function, g(r)) of lipids around the center of mass of D2 receptors embedded in healthy- (high DHA, (a))
and diseased-like (low DHA, (b)) model membranes. y and x axes represent g(r) (arbitrary units) and distance (nm), respectively.
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a
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Figure 2 | Evolution of lipid–protein contacts during the all-atom simulation. The relative proportion of atomic
lipid–protein contacts (x axis) over time (y axis) is displayed (details on the calculation of these ratios are given in the Supplementary
Methods). Fig (a) shows the evolution of 3 different contact ratios during the simulation, namely DOPC chains versus all saturated
chains (i.e. DOPC / SAT), SDPC chains versus all saturated chains (i.e. SDPC /SAT) and DOPC chains versus SDPC chains (i.e.
DOPC / SDPC). Fig (b) display the contact ratio of each SDPC chain versus all saturated chains (i.e. sn-1 / SAT and sn-2 /SAT). In
all plots, SAT stands for all saturated chains. Coloured lines represent the smoothed average surrounded by the standard error.
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Figure 3 | Long-scale behaviour of protein oligomers. To study long-scale behaviour of protein oligomers, we extended
the simulation of one of healthy-like systems from 60 to 260 µs (see Methods). (a), (b), (c) and (d) display snapshot of the extended
simulation at 65, 130, 195 and 260 µs, respectively. A2A and D2 helices are depicted in red and blue cartoons, respectively, whereas
protein loops are in thin white cylinders. Protomers are surrounded by a white transparent surface. Grey spheres correspond to a
van der Waals representation of all membrane lipids except for SDPC molecules, depicted in yellow surface. Water molecules, ions and
anti-freezing particles were omitted for clarity.
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Figure 4 | Time-dependence of protein aggregation in CG-MD simulations starting from different
initial arrangements of protomers. Healthy-like (i.e. DHA-high, left) and diseased-like (DHA-low, right) systems where each
cell represents one replicate. Each number in the y axis represents one GPCR protomer and time extends along the x axis.
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Figure 5 | Mean squared displacement (MSD) of proteins. Data show the average MSD of proteins embedded in
healthy-like (black curve) and diseased-like (red curve) membrane environments.
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b
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Figure 6 | Rotational autocorrelation of protein motion over short (a) and long (b) times. Second order
Lagrange polynomial is employed as the rotational autocorrelation function, C(τ), and plotted in the y axis. Lag time τ , in µs, extends
along the x axis. Solid and dashed lines correspond to A2A and D2 whereas black and red stand for healthy- and diseased-like systems,
respectively.
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Figure 7 | Mean squared displacement (MSD) of lipids during CG-MD simulations. The mean squared
displacement for each lipid species in healthy- (high DHA, (a–c)) and diseased-like systems (low DHA, (d–e)). MSDs are plotted in the
y axis, in nm2, while lag time τ , in µs, extends along the x axis. Each cell represents one replicate
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Chapter 4

DISCUSSION

Molecular dynamics simulations (MD) have emerged as one of the most
useful computational approaches to complement experimental techniques
in the field of membrane and membrane–protein biophysics. However,
native-like membranes and membrane–protein systems require highly
complex analyses and simulation techniques to adequately characterize
their biophysical properties. Therefore, in this thesis, we first built and
developed a solid knowledge base of the MD protocols needed to model
complex protein–lipid environments (Publications 3.1, 3.2 and 3.3). Sec-
ondly we developed a tool devoted to the analysis of lipid bilayers and
membrane–protein simulations (Publication 3.4.1) and, lastly, we shed
light on the coupling between the membrane and G protein-coupled
receptors (GPCRs) by a mixed computational/experimental case study
highly relevant to brain disease (Publication 3.5.

A comprehensive analysis and biophysical characterization of mem-
brane simulations by computational approaches covers a wide set of struc-
tural parameters. These parameters are rather of different nature so that
frequently each measurement needs different methodologies, algorithms
and tools. To date, there is a lack of tools that have unified the analysis
of the structural properties of membranes and membrane–protein simula-
tions. Some studies have separately approached methods like the cal-
culation of membrane thickness maps [245, 246], area per lipid [247,
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248, 249] or membrane deformation profiles [231]. Recently, an inter-
esting collection of methods to calculate membrane local properties has
been developed [177] as an analysis tool of the simulation package GRO-
MACS [144]. This versatile software efficiently computes local mem-
brane thickness, area per lipid, curvature and deuterium order parameters
from molecular simulations.

None one of the former methodologies offers, however, a graphical
user interface for the automated analysis of membrane–protein simula-
tions in VMD [171], a popular open-source package for molecular mod-
eling and visualization. This thesis was partly devoted to the develop-
ment of MEMBPLUGIN [250] (Publication 3.4.1), a graphical user in-
terface plugin for VMD that unifies the calculation of chain order param-
eters, area per lipid, membrane thickness and deformation profiles, and
tilt angle. In addition to standard measurements, MEMBPLUGIN pro-
vides novel algorithms to measure lipid chain interdigitation, a parameter
that gives valuable information on the coupling extent between membrane
leaflets and is thought to be involved in membrane events of biological
relevance[184].

The first release of MEMBPLUGIN is hosted in Sourceforge: http:
//sourceforge.net/projects/membplugin/, and licensed under the General
Public License version 3.0 (GPLv3). Overall, MEMBPLUGIN offers an
unified computational framework for a comprehensive biophysical char-
acterization of membrane and membrane–protein simulations which is
multi-platform and freely available to the scientific community. In addi-
tion, we created a hands-on tutorial and a validation case study, where
we use MEMBPLUGIN to characterize the effect of gradually increas-
ing cholesterol content in a series of lipid bilayer simulations (Publica-
tion 3.4.1). Future efforts will be made to release new versions of this tool
that cover the analysis of more complex membranes such as non-planar
bilayers or new biophysical characterizations such as bivariate radial dis-
tribution functions.

The final aim of this thesis was to apply MD simulations to study the
interplay between membrane lipids and the organization of GPCRs. This
aim was partly inspired by the observation that levels of certain membrane
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polyunsaturated fatty acids (PUFAs) are reduced in the brains of individ-
uals with relevant neurological disorders like schizophrenia [101, 102,
103], Alzheimer [56], or Parkinson’s disease [55]. This deficiency could
affect the function of key membrane proteins like GPCRs, which are also
especially relevant for psychiatric conditions. The fact that GPCR dimers
and higher order oligomers regulate the function of these receptors raises
one intriguing question: do the reduced levels of certain membrane lipids
found in diseased brains affect GPCR oligomerization?

Recent studies [134, 135, 61] have demonstrated the influence of the
hydrophobic mismatch in the spatial organization of GPCRs. These ap-
proaches have focused on the contribution of the energy penalty associ-
ated to the inability of membranes to deform around GPCRs [133, 231]
and highlight the potential role of different lipid matrices on the aggre-
gation of GPCRs [251, 252]. Moreover, Goddard et al. have validated
experimental protocols using fluorescence energy transfer techniques in
liposomes to shed light on the contribution of various lipid types to the
oligomerization of neurotensin receptor 1 [136]. However, there is no
reported evidence of specific fatty acids like the docosahexeanoic acid
(DHA), which seem to have a special affinity for GPCRs, modulating the
aggregation of these receptors in the membrane.

Demonstrating a connection betweenω-PUFAs like DHA and GPCR
oligomerization could change treatment paradigms for neurological disor-
ders by creating an opportunity to explore the use of membrane lipids as a
therapeutic tool. As we review in [129], the adenosine A2A and dopamine
D2 receptors have shown to establish an antagonistic crosstalk in certain
parts of the brain. In fact, the the adenosine A2A-D2 heteromer [128]
seems to be specially relevant in schizophrenia and Parkinson’s disease
and the target of current clinical studies [130]. Therefore, the ultimate
effort of this thesis has been dedicated to study the influence of DHA-rich
and DHA-poor membranes on the organization of the adenosine A2A-D2

heteromer in the membrane.
We have used computational prediction methods backed up by lab-

oratory validation to show that DHA-rich membranes enhance A2A-D2

oligomerization (Publication 3.5). These results provide the first reported
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evidence of a molecular link between membrane levels of ω-PUFAs and
GPCR oligomerization. This represents an important advance in under-
standing the interplay between membrane lipids and key transmembrane
proteins like GPCRs, which is a current research priority in membrane
biophysics. Most importantly, these findings create new opportunities to
explore the use of membrane lipids as a therapeutic tool for major neu-
ropsychiatric conditions, specifically Schizophrenia or Parkinson’s dis-
ease, in which the A2A-D2 heteromer has been shown to have particular
importance. In addition, this work opens the door for similar studies on
other GPCR oligomers known to be involved in neurological diseases.

All in all, in this thesis we have advanced in the understanding of the
interplay between membrane lipid and GPCRs using MD simulations.
Nonetheless, MD simulations have inherent limitations and the results
from analyzing MD trajectories need to be interpreted with caution. As
we have discussed here, the lack of adequate statistical sampling is one of
the main drawback of most current MD simulations [223, 224] and, par-
ticularly, when studying biological events that evolve in long timescales.
We strongly believe that combined approaches of experiments and com-
puter simulations are not only needed to validate theoretical results but
should be established as a standard framework.
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Chapter 5

CONCLUSIONS

1. The biophysical characterization of highly complex membranes and
membrane–protein simulations requires a comprehensive study of
their biophysical properties. Therefore, we have developed and val-
idated an analytical framework to compute membrane local proper-
ties by using classical and novel algorithms.

2. Only a few computational tools have been developed to study the
complexity of biological membranes and membrane–protein simu-
lations through an automated application. To bridge this gap, we
have wrapped up our analytical framework in one open-source tool,
MEMBPLUGIN, which we have made available to the scientific
community as a plugin for VMD, one of the most popular software
for molecular visualization and modeling.

3. The role of membrane lipids on the dimerization of GPCRs re-
mains, to date, largely unknown. In this thesis, we have demon-
strated that different levels of membraneω-3 polyunsaturated fatty
acids modulate the oligomerization of adenosine A2A-dopamine D2

receptors, a relevant heteromer in major neuropsychiatric condi-
tions such as schizophrenia and Parkinson’s disease. Thus, we show
how combining molecular dynamics simulations and experiments is
a suitable tool to study membrane-dependent oligomerization of G
protein-coupled receptors.
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Carrió-Gaspar P., Martinez-Seara M., Giorgino T. and Selent J. MEM-
BPLUGIN: studying membrane complexity in VMD. Bioinformat-
ics, 30, 1478-1480 (2014).

8. Kazcor A. A., Marti-Solano M., Guixà-González R., and Selent
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[157] Nosé S. and Klein M. Constant pressure molecular dynamics for
molecular systems (1983).

[158] Martyna G.J., Tobias D.J., and Klein M.L. Constant pressure
molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189
(1994).

[159] Feller S.E., Zhang Y., Pastor R.W., and Brooks B.R. Constant pres-
sure molecular dynamics simulation: The Langevin piston method.
J. Chem. Phys. 103, 4613–4621 (1995).

[160] Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola a.,
and Haak J.R. Molecular dynamics with coupling to an external
bath. J. Chem. Phys. 81, 3684 (1984).

[161] Hünenberger P. Thermostat algorithms for molecular dynamics
simulations. Adv. Polym. Sci. 173, 105–149 (2005).

[162] Koynova R. and Caffrey M. Phases and phase transitions of
the phosphatidylcholines. Biochim. Biophys. Acta 1376, 91–145
(1998).

[163] Higgins M.J., Polcik M., Fukuma T., Sader J.E., Nakayama Y., and
Jarvis S.P. Structured water layers adjacent to biological mem-
branes. Biophys. J. 91, 2532–2542 (2006).

[164] Fukuma T., Higgins M.J., and Jarvis S.P. Direct imaging of in-
dividual intrinsic hydration layers on lipid bilayers at Angstrom
resolution. Biophys. J. 92, 3603–3609 (2007).

106



[165] Cheng J.X., Pautot S., Weitz D.a., and Xie X.S. Ordering of water
molecules between phospholipid bilayers visualized by coherent
anti-Stokes Raman scattering microscopy. P. Natl. Acad. Sci. USA
100, 9826–9830 (2003).

[166] Klauda J.B., Venable R.M., Freites J.A., O’Connor J.W., Tobias
D.J., Mondragon-Ramirez C., Vorobyov I., MacKerell A.D., and
Pastor R.W. Update of the CHARMM all-atom additive force field
for lipids: validation on six lipid types. J. Phys. Chem. B 114,
7830–7843 (2010).

[167] Tristram-Nagle S., Petrache H.I., and Nagle J.F. Structure and in-
teractions of fully hydrated dioleoylphosphatidylcholine bilayers.
Biophys. J. 75, 917–925 (1998).

[168] Nagle J.F. and Tristram-Nagle S. Structure of lipid bilayers.
Biochim. Biophys. Acta Biomembranes 1469, 159–195 (2000).

[169] Robinson D., Besley N., O’shea P., and Hirst J. Water order pro-
files on phospholipid/cholesterol membrane bilayer surfaces. J.
Comput. Chem. 32, 2613–2618 (2011).

[170] Steinbauer B., Mehnert T., and Beyer K. Hydration and Lateral
Organization in Phospholipid Bilayers Containing Sphingomyelin
: A 2 H-NMR Study. Biophys. J. 85, 1013–1024 (2003).

[171] Humphrey W., Dalke A., and Schulten K. VMD: visual molecular
dynamics. J. Mol. Graph. 14, 33–38 (1996).

[172] Jo S., Lim J.J.B., Klauda J.J.B., and Im W. CHARMM-GUI mem-
brane builder for mixed bilayers and its application to yeast mem-
branes. Biophys. J. 96, 50–58 (2009).

[173] Jo S., Kim T., and Im W. Automated builder and database of
protein/membrane complexes for molecular dynamics simulations.
PloS One 2, e880 (2007).

107



[174] Metcalf R. and Pandit S.a. Mixing properties of sphingomyelin
ceramide bilayers: a simulation study. J. Phys. Chem. B 116, 4500–
4509 (2012).

[175] Saiz L. and Klein M.L. Structural properties of a highly polyun-
saturated lipid bilayer from molecular dynamics simulations. Bio-
phys. J. 81, 204–216 (2001).

[176] Vattulainen I., Falck E., Patra M., Karttunen M., Hyvo M.T., and
Hyvönen M.T. Lessons of slicing membranes: interplay of pack-
ing, free area, and lateral diffusion in phospholipid/cholesterol bi-
layers. Biophys. J. 87, 1076–1091 (2004).

[177] Gapsys V., de Groot B.L., and Briones R. Computational analysis
of local membrane properties. J. Comput.-Aided Mol. Design 27,
845–858 (2013).

[178] Róg T., Martinez-Seara H., Munck N., Oresic M., Karttunen M.,
and Vattulainen I. Role of cardiolipins in the inner mitochondrial
membrane: insight gained through atom-scale simulations. J. Phys.
Chem. B 113, 3413–3422 (2009).

[179] Cheng M.H., Liu L.T., Saladino A.C., Xu Y., and Tang P. Molec-
ular dynamics simulations of ternary membrane mixture: phos-
phatidylcholine, phosphatidic acid, and cholesterol. J. Phys. Chem.
B 111, 14186–14192 (2007).

[180] Hall A., Róg T., Karttunen M., and Vattulainen I. Role of glycol-
ipids in lipid rafts: a view through atomistic molecular dynamics
simulations with galactosylceramide. J. Phys. Chem. B 114, 7797–
7807 (2010).

[181] Pandit S., Vasudevan S., Chiu S.W., Mashl R.J., Jakobsson E.,
and Scott H.L. Sphingomyelin-cholesterol domains in phospho-
lipid membranes: atomistic simulation. Biophys. J. 87, 1092–1100
(2004).

108



[182] Zidar J., Merzel F., Hodoscek M., Rebolj K., Sepcić K., Macek
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[199] Filippov A., Orädd G., and Lindblom G. Lipid lateral diffusion
in ordered and disordered phases in raft mixtures. Biophys. J. 86,
891–896 (2004).
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