Martin Berglund

(9e] [9x] [an] [45]

Department of Computing Science
Umea 2014

Complexities of Order-Related
Formal Language Extensions

Martin Berglund

PHD THESIS, MAY 2014
DEPARTMENT OF COMPUTING SCIENCE
UMEA UNIVERSITY
SWEDEN

Department of Computing Science
Umea University
SE-901 87 Umed, Sweden

mbe @ cs.umu.se

Copyright (©) 2014 by authors

ISBN 978-91-7601-047-1
ISSN 0348-0542
UMINF 14.13

Cover photo by Tc Morgan (used under Creative Commons license BY-NC-SA 2.0).
Printed by Print & Media, Umea University, 2014.

Abstract

The work presented in this thesis discusses various formal language formalisms that
extend classical formalisms like regular expressions and context-free grammars with
additional abilities, most relating to order. This is done while focusing on the im-
pact these extensions have on the efficiency of parsing the languages generated. That
is, rather than taking a step up on the Chomsky hierarchy to the context-sensitive
languages, which makes parsing very difficult, a smaller step is taken, adding some
mechanisms which permit interesting spatial (in)dependencies to be modeled.

The most immediate example is shuffle formalisms, where existing language for-
malisms are extended by introducing operators which generate arbitrary interleavings
of argument languages. For example, introducing a shuffle operator to the regular ex-
pressions does not make it possible to recognize context-free languages like a"b", but
it does capture some non-context-free languages like the language of all strings con-
taining the same number of as, bs and cs. The impact these additions have on parsing
has many facets. Other than shuffle operators we also consider formalisms enforcing
repeating substrings, formalisms moving substrings around, and formalisms that re-
strict which substrings may be concatenated. The formalisms studied here all have a
number of properties in common.

1. They are closely related to existing regular and context-free formalisms. They
operate in a step-wise fashion, deriving strings by sequences of rule applications
of individually limited power.

2. Each step generates a constant number of symbols and does not modify parts
that have already been generated. That is, strings are built in an additive fashion
that does not explode in size (in contrast to e.g. Lindenmayer systems). All
languages here will have a semi-linear Parikh image.

3. They feature some interesting characteristic involving order or other spatial con-
straints. In the example of the shuffle multiple derivations are in a sense inter-
spersed in a way that each is unaware of.

4. All of the formalisms are intended to be limited enough to make an efficient
parsing algorithm at least for some cases a reasonable goal.

This thesis will give intuitive explanations of a number of formalisms fulfilling these
requirements, and will sketch some results relating to the parsing problem for them.
This should all be viewed as preparation for the more complete results and explana-
tions featured in the papers given in the appendices.

iii

iv

Sammanfattning

Denna avhandling diskuterar utokningar av klassiska formalismer inom formella sprak,
till exempel reguljdra uttryck och kontextfria grammatiker. Utdkningarna handlar pa
ett eller annat séitt om ordning, och ett sérskilt fokus ligger pa att géra utdkningarna
pa ett sétt som dels har intressanta spatiala/ordningsrelaterade effekter och som dels
bevarar den effektiva parsningen som dr mojlig for de ursprungliga klassiska forma-
lismerna. Detta star i kontrast till att ta det storre steget upp i Chomsky-hierarkin till
de kontextkénsliga spraken, vilket medfor ett svart parsningsproblem.

Ett omedelbart exempel pa en sddan utokning #r s.k. shuffle-formalismer. Des-
sa utokar existerande formalismer genom att introducera operatorer som godtyckligt
sammanflitar stringar fran argumentsprak. Om shuffle-operator introduceras till de
reguljédra uttrycken ger det inte formagan att kidnna igen t.ex. det kontextfria spraket
a"b", men det fangar istillet vissa sprak som inte dr kontextfria, till exempel spréket
som bestar av alla strangar som innehaller lika manga a:n, b:n och c:n. Sittet pa vil-
ket dessa utokningar paverkar parsningsproblemet 4r mangfacetterat. Utover dessa
shuffle-operatorer tas ocksa formalismer dér delstringar kan upprepas, formalismer
dér delstriangar flyttas runt, och formalismer som begrénsar hur delstréingar far konka-
teneras upp. Formalismerna som tas upp hér har dock vissa egenskaper gemensamma.

1. De dr nira besldktade med de klassiska reguljira och kontextfria formalismerna.
De arbetar stegvis, och konstruerar stringar genom successiva applikationer av
individuellt enkla regler.

2. Varje steg genererar ett konstant antal symboler och modifierar inte det som
redan genererats. Det vill sédga, stringar byggs additivt och lingden pa dem kan
inte explodera (i kontrast till t.ex. Lindenmayer-system). Alla sprak som tar upp
kommer att ha en semi-linjdr Parikh-avbildning.

3. De har nagon instressant spatial/ordningsrelaterad egenskap. Exempelvis sittet
pa vilket shuffle-operatorer sammanflitar annars oberoende deriveringar.

4. Alla formalismera &r tinkta att vara begriansade nog att det dr resonabelt att ha
effektiv parsning som mal.

Denna avhandling kommer att ge intuitiva forklaring av ett antal formalismer som
uppfyller ovanstaende krav, och kommer att skissa en blandning av resultat relaterade
till parsningsproblemet for dem. Detta bor ses som forberedande infor ldsning av de
mer djupgaende och komplexa resultaten och forklaringarna i de artiklar som finns
inkluderade som appendix.

vi

Preface

This thesis consists of an introduction which discusses some different language for-
malisms in the field of formal languages, touches upon some of their properties and
their relations to each other, and gives a short overview of relevant research. In the ap-
pendix the following six articles, relating to the subjects discussed in the introduction,
are included.

Paper [

Paper 11

Paper III

Paper IV

Paper V

Paper VI

Martin Berglund, Henrik Bjorklund, and Johanna Bjorklund. Shuffled lan-
guages — representation and recognition. Theoretical Computer Science,
489-490:1-20, 2013.

Martin Berglund, Henrik Bjorklund, and Frank Drewes. On the parameter-
ized complexity of Linear Context-Free Rewriting Systems. In Proceed-
ings of the 13th Meeting on the Mathematics of Language (MoL 13), pages
21-29, Sofia, Bulgaria, August 2013. Association for Computational Lin-
guistics.

Martin Berglund, Henrik Bjorklund, Frank Drewes, Brink van der Merwe,
and Bruce Watson. Cuts in regular expressions. In Marie-Pierre Béal and
Olivier Carton, editors, Proceeding of the 17th International Conference
on Developments in Language Theory (DLT 2013), pages 70-81, 2013.

Martin Berglund, Frank Drewes, and Brink van der Merwe. Analyzing
catatrophic backtracking behavior in practical regular expression match-
ing. Submitted to the /4th International Conference on Automata and
Formal Languages (AFL 2014), 2014.

Martin Berglund. Characterizing non-regularity. Technical Report UMINF
14.12, Computing Science, Umea University, http://www8.cs.umu.

se/research/uminf/, 2014. In collaboration with Henrik Bjorklund
and Frank Drewes.

Martin Berglund. Analyzing edit distance on trees: Tree swap distance
is intractable. In Jan Holub and Jan Zdarek, editors, Proceedings of the
Prague Stringology Conference 2011, pages 59-73. Prague Stringology
Club, Czech Technical University, 2011.

vii

viii

Acknowledgments

I must firstly thank my primary advisor, Frank Drewes, who made all this both pos-
sible, enjoyable and inspiring. In much the same vein I thank my co-advisor, Henrik
Bjorklund, who knows many things and throws a good dinner party, as well as my un-
official co-advisor Johanna Bjorklund, who organizes many things and makes people
have fun when they otherwise would not. I must also thank the rest of my university
colleagues, in the Natural and Formal Languages Group (thanks to Niklas, Petter and
Suna) and many others in many other places. A special thank you to all the support
and administrative staff at the department and university, who have helped me out
with countless things on countless occasions, a fact too easily forgotten. I also owe a
great debt to all my research collaborators outside of this university, including but not
limited to Brink van der Merwe and Bruce Watson. I thank those who have given me
useful research advice along the way, like Michael Minock and Stephen Hegner.

On the slightly less professional front I thank my family for their support, in par-
ticular in offering places and moments of calm when things were hectic. I thank my
friends who have helped both distract from and inspire my work as appropriate, thanks
to, among many others, Gustaf, Sandra, Josefin, Sigge, Marten, John, a Magnus or
two, some Tommy, perhaps a Johan and a Maria, and many many more.

I wish to dedicate this work to the memory of Holger Berglund and Bertil Larsson,
both of my grandfathers, who passed away during my studies leading up to this thesis.

Contents

1 Introduction

1.1
1.2

1.3
1.4

2.1
2.2
23
24
2.5
2.6
2.7
2.8

29

Formal Languages

An Example Representation

1.2.1 Our Grammar Sketch

1.2.2 Generating Regular Languages

1.2.3 Regular Expressions as an Alternative
Computational Problems in Formal Languages
Outline of Introduction

Shuffle-Like Behaviors in Languages

The Binary Shuffle Operator

Sketching Grammars Capturing Shuffle

The Shuffle Closure

Shuffle Operators and the Regular Languages

Shuffle Expressions and Concurrent Finite State Automata
Overview of Relevant Literature

CFSA and Context-Free Languages

Membership Problems

2.8.1 The Membership Problems for Shuffle Expressions
2.8.2 The Membership Problems for General CFSA
Contributions In the Area of Shuffle

2.9.1 Definitions and Notation

2.9.2 Concurrent Finite State Automata

2.9.3 Properties of CFSA

2.9.4 Membership Testing CFSA

2.9.5 The rest of Paper L.

2.9.6 Language Class Impact of Shuffle

3 Synchronized Substrings in Languages

3.1

32

Sketching a Synchronized Substrings Formalism

3.1.1 The Graphical Intuition

3.1.2 Revisiting the Mapped Copies of Example 1.1
3.1.3 Grammars for the Mapped Copy Languages

3.1.4 Parsing for the Mapped Copy Languages

The Broader World of Mildly Context-Sensitive Languages
3.2.1 The Mildly Context-Sensitive Category

O & 2 W B W WD

xi

33
34

3.5

3.2.2 The Mildly Context-Sensitive Classes

String-Generating Hyperedge Replacement Grammars

Deciding the Membership Problem

3.4.1 Deciding Non-Uniform Membership

3.4.2 Deciding Uniform Membership

3.4.3 On the Edge Between Non-Uniform and Uniform
Contributions in Fixed Parameter Analysis of Mildly Context-Sensitive
Languages

3.5.1 Preliminaries in Fixed Parameter Tractability

3.5.2 The Membership Problems of Paper II

4 Constraining Language Concatenation

4.1
42
4.3
4.4

4.5
4.6

4.7

The Binary Cut Operator

Reasoning About the Cut

Real-World Cut-Like Behavior

Regular Expressions With Cut Operators Remain Regular
4.4.1 Constructing Regular Grammars for Cut Expressions
4.4.2 Potential Exponential Blow-Up in the Construction
The Iterated Cut

Regular Expression Extensions, Impact and Reality

4.6.1 Lifting Operators to the Sets

4.6.2 An Aside: Regular Expression Matching In Common Software
4.6.3 Real-World Cut-Like Operators

4.6.4 Exploring Real-World Regular Expression Matchers
The Membership Problem for Cut Expressions

5 Block Movement Reordering

5.1
52
53

54

String Edit Distance

A Look at Error-Dilating a Language
Adding Reordering

5.3.1 Reordering Through Symbol Swaps
5.3.2 Derivation-Level Reordering

5.3.3 Tree Edit Distance

Analyzing the Reordering Error Measure

6 Summary and Loose Ends

6.1

6.2

Paper I

Paper 11

xii

Open Questions and Future Directions
6.1.1 Shuffle Questions

6.1.2 Synchronized Substrings Questions
6.1.3 Regular Expression Questions
6.1.4 Other Questions

Conclusion

27
28
29
29
31
32

32
32
33

35
35
36
36
37
37
38
40
41
41
42
4
43
44

47
47
47
49
49
49
50
50

53
53
53
54
54
55
55

63

103

Paper III
Paper IV
Paper V

Paper VI

115

129

149

161

Xiii

Xiv

CHAPTER 1
Introduction

This thesis studies extensions of some classical formal languages formalisms, notably
for the regular and context-free languages. The extensions center primarily around ad-
ditions of operations or mechanism that constrain or loosen order, with a special focus
on parsing in the presence of such ordering loosening or constraints. This statement
is, of course, quite vague. The extensions take such a form that they modify the way
in which a grammar or automaton generates a string. “Order” here refers to a spatial
view of this generation.

Very informally, imagine a person with finite memory (a natural assumption) who
is tasked to write down certain types of strings of symbols on paper. The ways in
which he or she is allowed to move around the paper will impact the types of strings
they can write. If they are required to start at the left (i.e., start with the first, leftmost,
symbol) and work their way through the string in a left-to-right fashion they can easily
write the string abcabcabc . . ., but the strings {ab,aabb,aaabbb, ...} (i.e. as followed
by an equal number of bs) require them to remember the number of as written if it is
done in a left-to-right fashion, which is arbitrarily much information to remember. If
the person is permitted to keep track of the middle of the string, adding symbols on
the right and left side simultaneously, they can easily write strings of the second type
by simply in each step writing one a and one b, never having to remember how many
steps have been made. The first variant, where the person has to work left-to-right
and cannot remember arbitrarily much is an informal description of finite automata, a
characterization of the very important class of regular languages. The case where the
person keeps track of the middle and writes on both the left and the right corresponds
to the class of linear context-free languages, another very classical concept. From this
perspective it is easy to imagine additional extensions of the formalisms, a notable
example is that the writer may remember multiple positions, and add symbols to them
interchangeably, which corresponds to a more complex language class.

Among the variety of formalisms one can imagine that modify the way in which
generation happens it is important to remain true to the spirit of classical mechanisms.
This tends to return to the idea that only finite memory is required when viewed from
the correct perspective. Consider for example the following trivial formalism.

Example 1.1 (Mappings of copy-languages) Given two mappings 0,0, from {a,b}
to arbitrary strings and a string w decide whether there exist some @y, ..., o, € {a,b}
such that 61 (ot)01 () - 02 (0t)0 (@) = w. o

Chapter 1

This particular example is simplified quite a bit, but there are popular formalisms ex-
hibiting this exact behavior, where some underlying “decision” is made in one deriva-
tion step, and the result gets reflected in multiple (but normally constant number of)
places in the output string. The mapping may make it difficult to actually recognize
the decision after the fact, but the problem is very related to parsing for some language
classes with similar spatial dependencies.

Not all formalisms are concerned with instilling this extra level of order on the
string, we also consider cases where separate “underlying decisions” may become in-
tertwined or otherwise not get spatially separated in the way we are used to. Consider
the following example of a fairly important real-world problem where difficulties arise
from insufficient order.

Example 1.2 (Parallel program verification) Let P be a computer program which
when run produces some output string. Assume we have a context-free grammar G
which is such that if a string w can be output by a correct run of P then w can be
derived in G. Then, whenever P produces output that is not accepted by G we know
that P is not functioning properly.

Now run n copies of the program P, in parallel, all producing output simultane-
ously into the same string w. In w the outputs of the different instances of P will be
arbitrarily interleaved. Now we wish to use G to determine whether this w is consistent
with n copies of P running correctly. o

The lack of order makes this problem difficult, to answer the question we need to
somehow track how single decisions in single instances of the program may have been
spread out across the resulting string. As these artifacts may be arbitrarily far apart
this problem becomes rather difficult, and the unfortunate reality is that the string w
may appear consistent despite a program failing to run in accordance with G, due to
some other part of the string masking the fault.

The cases in Example 1.1 and Example 1.2 are almost each others opposites, but
are connected in that they are both possible to describe by a spatial dependence in the
strings. A simple block-wise dependence in Example 1.1, and an entirely scattered
dependence in Example 1.2.

Earlier Work This work is deeply related to the preceding licentiate thesis [Ber12]
by the same author. While this thesis is intended to replace this earlier work it may for
some readers be of interest to refer back to [Ber12] for further examples and explana-
tions of many of the same concepts.

1.1 Formal Languages

Formal languages is a vast area of study, it covers both a lot of practical algorithmic
work with numerous application areas, as well as more theoretically founded mathe-
matical study. The original subject of study in formal languages are string languages.
These are concerned with sequences of symbols from a finite alphabet, which is usu-
ally denoted X. Going forward we will usually simply assume that X is the latin alpha-

Introduction

bet, £ ={a,b,c,...,z}, meaning that usual words like “cat” and “biscuit” are strings in
this formal sense. We let € denote the empty string. A language is a, potentially infi-
nite, set of strings. One trivial example is the empty set, &, the language that contains
no strings, and the set of all strings, which we denote £*. Other examples include fi-
nite languages like {cat} and {cat, biscuit}, infinite languages like the set of all strings
except “cat”, the language {ab,aabb,aaabbb,aaaabbbb, ...}, and, over the alphabet
{0,...,9}, the language {3,31,314,3141,31415,314159,...}.

The most immediate subject of study in formal languages is representing them.
Finite languages like @ and {cat,biscuit} are easy to describe by exhaustively enu-
merating the strings they contain. Some infinite languages are also trivial, the lan-
guage containing all strings except “cat” can be described by enumerating the strings
it does not contain. However, languages like {ab,aabb,aaabbb,aaaabbbb, ...} and
{3,31,314,3141,31415,...} are more complex. Certainly the “dots”-notation used
here to describe them is flawed, as the generalization intended is ambiguous at best.

This question of representation for languages is the core of formal language the-
ory, arbitrary languages can of course represent almost arbitrary computational prob-
lems, but the question of how the language can be finitely represented restricts matters.
Specifically what is studied is classes of languages defined by the type of descrip-
tional mechanism capable of capturing them. Most trivially, the finite languages is a
language class, defined by being describable through simply enumerating the strings.

While language classes are typically defined using the formalism that can describe
them it is important to remember that languages are abstract entities that exist in and
of themselves. In most formalisms a given language can be represented by many
different grammars or automata, and few of the usual formalisms have unique normal
forms that can be computed.

1.2 An Example Representation

To make the previous more concrete let us establish a representation for formal lan-
guage formalisms as rather visual grammars. We call these instances of formalisms
“erammars” here, but the sketches used here intentionally straddle the boundary of
what is traditionally called “grammars” and what is called “automata”.

1.2.1 Our Grammar Sketch

Essentially the grammars will consist of two parts; “memory”, or state, and rules.
States, or non-terminals, represent what the formalism is remembering about the string
it is generating. They are simply symbols attached to the intermediary output. The
grammars always start out in the state S, the initial non-terminal in an otherwise empty
string. The rules specify which state can generate what in the string. We write the rules
down as shown in Figure 1.3, where three rules are given which generate the language
{a,aba,ababa,abababa, ...} using two non-terminals. The left-hand side shows the
state which the rule applies to. The little dot below the S represents the position in the
string the S is keeping track of. On the right-hand side is shown what the formalism
generates, in the case of the first rule it outputs the symbol “a”, followed by a position

Chapter 1

(6) — (ao) (6) — (be) () — (3

Figure 1.3: A regular grammar generating the language {a,aba,ababa,abababa, ...}
using three rules. § is the initial non-terminal.

which is kept track of by the second non-terminal A. In effect S “remembers” that
the next symbol should be an “a”, and the second non-terminal A remembers that the
next symbol should be a “b” (and we then go back to S. The third rule allows the S
to generate a final “a” and ending the generation by producing no new non-terminal.
Since the first and third rule have the same left-hand side the abbreviation

() — (@) (a)

is sometimes used in place of writing both out in full. We write the generation of
strings in the way shown in Figure 1.4, where a derivation is performed using the
grammar from Figure 1.3 to generate the string “ababa”. Notice that, as usual, none

b= d = b= o

Figure 1.4: A derivation of the string “ababa” using the grammar Figure 1.3. The
derivation starts with the initial non-terminal S, applies the first rule, this produces the
non-terminal A, making the second rule the only possible one. This is then repeated,
and finally the third rule is used to get rid of the non-terminal S entirely. As there is no
more state left the derivation is finished, and the string “ababa” has been generated.
The dotted outline around non-terminals show which non-terminal is used in the next
rule application, but as there is only one to choose from in each step it is not very
informative here.

= (ababT) — (ababa)

of the intermediary strings are “generated”, all states must be gone before generation
is finished. The black bullets, or “positions” act as the points of the string tracked by
attached non-terminals. Their role will become slightly more complex later on.

1.2.2 Generating Regular Languages

A simple and important class of languages that we can generate with grammars of the
type we have sketched are the regular languages. Specifically the regular languages
are precisely the following.

Definition 1.5 (Regular Grammars) A grammar of the form sketched in Figure 1.3
is regular if

Introduction

e It is finite.

 Each right-hand side contains zero or one symbol from X and zero or one non-
terminal attached to the position (bullet).

* The position is to the right of the symbol if one exists.
Every regular language can be represented by a grammar of this form. o

A grammar G then generates exactly the strings one can produce by starting from §
attached to the initial position, and then repeatedly picking a rule, and replacing an
instance of the non-terminal on the left-hand side of the rule (this is then only possible
if that non-terminal exists in the string) by the new substring on the right-hand side of
the rule. If a point is reached where no non-terminal exists in the string the generated
string w is in the language, denoted w € £L(G). That is, £(G) is a set consisting of
exactly these strings.

1.2.3 Regular Expressions as an Alternative

A regular expression is another way of expressing a language, which is equivalent
to the description of a regular grammar in Definition 1.5, but which is often more
compact and convenient, as well as being very popular in practical use.

Definition 1.6 (Regular Expressions) A regular expression over the alphabet X is,
inductively, the following. For each ¢ € ¥ and regular expressions R and 7'

* £ is aregular expression with £(g) = {€}.
* « is aregular expression with £L(¢t) = {ot}.

* R-T is a regular expression with L(R-T) ={wv|we L(R),ve L(T)} (i.e. the
concatenation of the strings in the languages of the subexpressions). We often
write RT as an abbreviation.

* R|T is aregular expression, with L(R|T) = L(R)u L(T).

* R* is a regular expression, with L(R*) = {e}u{wv|we L(R),ve L(R*)} in-
ductively. That is, the concatenation of arbitrarily many strings from R. ©

1.3 Computational Problems in Formal Languages

With formalisms for representing formal languages in hand it is time to consider the
various questions that can be asked about them. An immediate example is the empti-
ness problem; given a grammar G, does it generate the language @? Computing the
answer to this problem is easy for context-free languages', but it is undecidable to
determine if a context-free language generates £, the language of all strings.

! We have not defined the context-free languages properly, but all regular languages are context-free, and
some context-free languages are not regular, so it can serve as an unspecific more powerful example.

Chapter 1

Many problems also deal with languages themselves, being somewhat independent
of representation. For example, given two context-free languages (i.e., two languages
that can be generated by some context-free grammar) L and L', is the language LU L’
also context-free? It, in fact, is, and given any context-free grammar for L and L' a
grammar for LUL’ can easily be constructed. The same does not hold for the language
LnL’, some context-free languages have an intersection that is not context-free. The
regular languages, however, as closed under intersection, so for all regular languages
L and L' the language LN L' is regular as well, a fact we will make use of later.

It is important to remember that while grammars may determine languages the
grammar is not necessarily always in the most convenient form. Given a regular
grammar G it is easy to determine if it generates ¥*, but it is hard to determine if
a context-free grammar generates X*. However, context-free grammars can generate
all the regular languages as well, but even if a context-free grammar generates a reg-
ular language it is s#ill hard to tell if it generates £* (in fact, as £ is regular this is a
part of the general problem).

The problem we are primarily concerned with in this work, however, is the mem-
bership problem. This is the problem of determining whether a string belongs to a
given language or not. There are at least three different variations of the membership
problem of interest here.

Definition 1.7 (The Uniform Membership Problem) Let G be a class of grammars
(e.g. context-free grammars) such that each G € G defines a formal language. The
uniform membership problem for G is “Given a string w and some G € G as input, is w
in the language generated by G?” o

This case is certainly of interest at times, but fairly often the details of the formalism
G are irrelevant to the practical problem. The most notable example is in instances
where the language is known in advance and can be coded into the most efficient
representation imaginable. A second type of membership problem accounts for this
case, by simply considering only the string part of the input.

Definition 1.8 (The Non-Uniform Membership Problem) Let L be any language.
Then the non-uniform membership problem for L is “Given a string w as input, is
win L?”? o

There is a third approach, called fixed-parameter analysis, which provides more nu-
ance in the complexity analysis of the membership problems. In this approach any
part of the problem may be designated the “parameter”, and is considered secondary
in complexity concerns. This is treated in Section 3.5.1.

The final, and perhaps most practically interesting case, is parsing. In parsing we
no longer expect to get just a “yes” or “no” as an answer to the question whether the
string belongs to the language, we expect a description of why the string belongs to the
language. For example, when asking whether the string “ababa” can be generated by
the grammar in Figure 1.3 the answer should not be “yes”, it should be some descrip-
tion of the generation procedure in Figure 1.4. In most practical cases any solution
to the membership problems in Definition 1.7 and 1.8 will construct some represen-
tation of this answer anyway (the case of Definition 1.8 becomes more complicated,

Introduction

however, as the internal representation of the language may be hard to practically de-
cipher). Thanks to this fact this thesis will primarily refer to and work on membership
problems, despite it being understood that parsing is the real goal.

1.4 Outline of Introduction

In the following chapters we will look at some formalisms that are of interest for this
thesis (and are studied in the papers included). We will start out using variations on
the informal notation demonstrated above (as in Figure 1.3), modifying it to illustrate
the general idea of how the formalisms differ. More formalized, and deeper, matters
are then considered for each.

For the most part each chapter starts out with a self-contained informal introduc-
tion, with a more formal treatment being undertaken at the end. This is intended to
cater to multiple types of readers. A casual reader may be most interested in reading
every chapter only up until the section marked by a star, ™, and then skipping to the
next. The non-starred portion of the introduction is self-contained. For a deeper treat-
ment the entirety of the introduction may be read, but, of course, in the end most of
the material is in the accompanying papers, and readers familiar with the area may be
best served only skimming the introduction in favor of proceeding to the papers.

Chapter 2 gives a light introduction to shuffle formalisms, which are related to
Example 1.2, extending regular expressions with an operator that interleaves strings.
This sets the scene for a short summary of the contents of Paper I, with some words
on Paper V in addition. Chapter 3 discusses synchronized substrings, similar to Ex-
ample 1.1, going into a summary of Paper II. Chapter 4 discusses some extensions of
regular expressions, primarily dealing with the cut operator, which provides a more
limited string concatenation, but also giving an overview of some of the details of real-
world matching engines. Papers III and IV are then discussed in brief in this context.
Chapter 5 discusses distance measures on languages for handling errors. This yields
a short discussion of grammar-instructed block movements, where substrings may be
moved around in the string depending on how they were generated by a grammar,
leading into Paper VI. Finally, Chapter 6 provides a short summary.

Chapter 1

CHAPTER 2
Shuffle-Like Behaviors in

Languages

Shuffle in the title of this chapter refers to shuffling a deck of cards, specifically to the
riffle shuffle, where the deck is separated into two halves, which are then interleaved.
This idea, transferred to formal languages, is intended to capture situations such as
the one illustrated in Example 1.2, where multiple mostly independent generations are
performed in an interleaved fashion.

2.1 The Binary Shuffle Operator

We specifically transfer the riffle shuffle to the case of strings in the following way.
Starting with the strings “ab” and “cd”, the shuffle of “ab” and “cd” is denoted ab ® cd,
and results in the language {abcd,acbd,cabd,acdb,cadb,cdab}, that is, all ways to
interleave “ab” with “cd” while not affecting the internal order of the strings. Let us
make this point slightly more formal with a definition.

Definition 2.1 (Shuffle Operator) Let w and v be two arbitrary strings. Then wo € =
eow = {w}. Recall that € denotes the empty string.

If both w and v are non-empty let w = aw’ and v = Bv’' (for strings w’ and v/, single
symbols o and). Then wov=a(w' ov)uf(wor'). o

This is then generalized to the shuffle of two languages in a straightforward way, for
two languages L and L we let the shuffle L® L’ be the language of shuffles of strings
in L with strings in L, or U{wow' |we L,w’ € L}.

Example 2.2 (The shuffle of two languages) Let £ ={ab,abab,ababab, ...} and L' =
{bc,bcbc,bebebce, . .. }. Then the shuffle £® £’ contains, for example, abbc (all of “ab”
which is in £ occurring before “bc” which is in £'), babc (same strings interleaved
differently), and abbabcbcabab. o

2.2 Sketching Grammars Capturing Shuffle

Without further ado we can fairly easily modify the graphical grammars we previously
introduced to generate shuffles of this kind. We for the moment stick to the regular

Chapter 2

10

languages, such as in Figure 1.3, and then extend the formalism to combine them.
There are a number of restrictions on the shape of the grammars in this formalism:

1. There may be at most one non-terminal position marker (black dot) on the right-
hand side of a rule.

2. The right-hand side of a rule may contain at most one generated symbol (from
Y), and the non-terminal position marker, if there is one, must be to the right of
the symbol.

These two requirements together in effect require the grammar to work from left to
right, generating one symbol at a time. We now, on the other hand, permit more
than one non-terminal to attach itself to the same “position” (we will also in the next
section outline how a non-terminal may be attached to another). In this way (with the
correct precise semantics) we arrive at shuffle formalisms of various kinds. Consider
for example the grammar in Figure 2.3. Effectively this grammar will generate the

() — (ae) () — (be) (b)
() — (be) (¢) — (co) (c) (&) — (o)

Figure 2.3: A grammar generating a language exhibiting a shuffling behavior.

shuffle L4 ® Lp, if we let L4 and Lp denote the language the grammar would generate
if we started with the non-terminal A and B respectively. The way the grammar works
is that it starts out (since there is only one rule for the initial state) by attaching two
states, A and B, to the same position. The intended semantics of this is that all non-
terminals attached to the same position can generate symbols simultaneously, while
the others are unaware. A derivation of the string “bacbbc” is shown in Figure 2.4.
The languages that these grammars express are closely related to the languages
generated by (or, rather, denoted by) regular expressions extended with the shuffle
operator. For example, the grammar in Figure 2.3 corresponds to the expression
(ab)* ® (bc)*. These expressions form a part of what is known as “shuffle expres-
sions”. This is not all there is to the grammars or to shuffle expressions. Consider
the grammar in Figure 2.5. This grammar is able to keep attaching arbitrarily many
additional instances of the non-terminal § to the initial position, each S can produce
one “a” to transition into the non-terminal B, which simply produces a “b” and disap-
pears. An example derivation is shown in Figure 2.6. The language generated by this
grammar is, obviously, ab©ab®ab ®--- (the language which is such that in every pre-
fix the number of “a”s is greater or equal to the number of “b”’s, and the entire string
has the same number of “a”’s and “b”’s). This language is not expressed by any regular

Shuffle-Like Behaviors in Languages

(bacbé) — (bacbbe) — (bacbbc)

Figure 2.4: A derivation of the string “bacbbc” in the grammar from Figure 2.3.
Notice that there are multiple ways this string could be derived, here the last “b”
“belongs” to the string “ab” generated by the A non-terminal, but the second to last
could be used instead.

(&) — (9 (as) () — (b)

Figure 2.5: A grammar that showcases the ability to shuffle arbitrarily many strings.

expression extended by the shuffle operator, but general shuffle expressions have an
additional operator for this purpose.

2.3 The Shuffle Closure

To complete the picture, shuffle expressions are regular expressions (regular expres-
sions are introduced in short in Definition 1.6, for a more complete introduction see
e.g. [HMUO3]) extended with the binary shuffle operator from Definition 2.1 and the
unary shuffle closure operator, denoted £® (for some expression or language £). The
shuffle closure captures exactly languages of the type illustrated in Figure 2.5, where

(aababT) — (aababb)

Figure 2.6: An example derivation using the grammar from Figure 2.5.

11

Chapter 2

12

arbitrarily many strings from a language are shuffled together. Recall that £(E) de-
notes the language generated/denoted by a grammar/expression E.

Definition 2.7 (Shuffle Closure) For a language £ the shuffle closure of £, denoted
£ is {e} u{we L® |we L}. For an expression E of course L(E®) = L(E)®. o

The language generated by the grammar in Figure 2.5 is then simply (ab)®.

The grammatical formalism we have so far sketched can represent simple shuffles,
but it is not yet complete. The shuffle expression (ab)®c causes trouble. If we start
out with the grammar in Figure 2.5 (and we more or less have to) we somehow have
to designate a non-terminal to generate the final ¢, but we have no way of ensuring
that all the other non-terminals finish generating first. As such further extensions to
the grammars are required. To leap straight to the illustrative example, see Figure 2.8.
Here the first rule generates two non-terminals, one A and one C, where the C is

(&) — (9) (¢) — (%) (as) (¢) — (b)

Figure 2.8: This grammar illustrates an extension which enables the combination of
shuffling with sequential behavior. Specifically this grammar generates the language
(ab)®c.

no longer connected to the position tracked, but is rather connected to the A. We
say that C depends on A. The semantics is that rules may only be applied to non-
terminals attached only to the position, all non-terminals that depend on another must
be left alone. If new non-terminals are created from the one on which C depends
then C will depend on all the new non-terminals. If all non-terminals on which C
depends are removed (i.e. they finish generating) then C gets attached to the position.
See the example run in Figure 2.9. Notice how the C is generated with the first rule
application, but then no rule can be applied to it until all the non-terminals it depends
on have disappeared, meaning, in this case, that it will generate the last symbol in the
string, since all the As (and subsequent Bs) much first finish.

2.4 Shuffle Operators and the Regular Languages

It may be interesting to note that a shuffle expression which uses only the binary shuffle
operator, ®, still denotes a regular language (i.e. any regular formalism, such as finite
automata or regular expressions, can represent the same language). That is, we do not
need to generate multiple non-terminals to construct a shuffle language of this kind.
This is fairly easy to see, recall the simple shuffle grammar in Figure 2.3, and then
consider a new grammar with non-terminals containing multiple symbols. Consider
specifically the two left-most rules in that figure, and then consider the new rules in

Shuffle-Like Behaviors in Languages

= (aababbT) — (aababbc)

Figure 2.9: Generation of the string “aababbc” using the grammar from Figure 2.8.

[a.B)] [@«.B) | (a.e)] (@B (B | [@.B)] | @8]

(&) — (a®) (be) (6) — (as) (as) (be)

Figure 2.10: Some example rules from a regular grammar for the shuffle grammar in
Figure 2.3.

Figure 2.10. That is, we create non-terminals which contain all the non-terminals of
a certain step of the generation for the original grammar. The first left-hand side,
with the nonterminal (A,B), corresponds to the situation created immediately after
the first rule applied in Figure 2.4, and the two possible right-hand sides correspond
to either applying a rule to the A or to the B. Similarly the second left-hand side
corresponds to when A’ and B are tracking the position, and either A’ is chosen to
disappear generating a, or just produce a and generate a new A, or B generates a b
turning into B’. Instead of the grammar in Figure 2.3 we get a grammar with the non-
terminals (S), (A,B), (A’,B), (A,B’), (A’,B’), (A), (A"), (B), (B’), quite a number,
but this grammar only has a single non-terminal tracking the point at any point of a
generation. This procedure demonstrates that only one non-terminal is necessary, so
the language generated is regular. However, a potentially exponential number of non-
terminals may be generated performing the construction, so this cannot be combined
with the efficient parsing for regular languages to produce an efficient uniform parsing
algorithm. This construction works for any expression with arbitrarily many binary
shuffle operators, as they still only give rise to a constant number of possible sets
of non-terminals attached to the tracked position, making this product construction
generate a finite regular grammar.

Applying the shuffle closure, however, does not necessarily preserve regularity.
Recall that the language {a"b" | n € N} is not regular, as reading it from left to right
arbitrarily much information (the number of as) must be remembered. Regular lan-

13

Chapter 2

14

guages are also closed under intersection, so if R; and R; are regular then so is R| NR».
Consider the language £(a*b*), which contains all strings consisting of some number
of as followed by some number of bs. This is clearly regular. However,

£((ab)®)n L(a*b*) = {a"b" |ne N}

since the language £((ab)®) only matches strings with equally many as and bs. As
such, since {a"b" | n € N} is not regular it follows that (ab)® cannot be regular either.
Notice that in terms of the sketched grammars above this corresponds to the case
where arbitrarily many non-terminals may be attached to the tracked position, which
would create an infinite grammar if the product construction above was attempted.

2.5 Shuffle Expressions and Concurrent Finite State Automata

The formalism that these sketched grammars are trying to imitate is Concurrent Fi-
nite State Automata, one of the main subjects of Paper I. These can represent all the
languages that can be represented by shuffle expressions, in the way the previous sec-
tions sketched. They can, however, represent even more languages using one special
trick: as was shown in the grammar in Figure 2.8 they are able to build “stacks” of
non-terminals, where only the bottom one can be used to apply rules. By building
these stacks arbitrarily high, by having rules that add more and more non-terminal on
top, they are able to represent arbitrarily amounts of state (i.e. arbitrarily much infor-
mation). In this way they are able to represent context-free languages, as well as the
shuffle of context-free languages.

However, when this particular trick is removed we reach one of the important
milestones. Understanding that the formalism is vaguely sketched so far (next chapter
formalizes things further), let us nevertheless call it CFSA and make the following
statement.

Theorem 2.11 (Fragment of Theorem 2 in Paper I) A language L is accepted by
some shuffle expression if and only if it is accepted by some CFSA for which there
exists a constant k such that no derivation in the CFSA has a stack of non-terminals
higher than k. o

As such, CFSA capture both the well-known class of shuffle languages (the languages
recognized by shuffle expressions), and permit additional language classes based on
(possibly fragments of) context-free languages. This opens up questions about mem-
bership problems.

2.6 Overview of Relevant Literature

These types of languages featuring shuffle, and many questions relating to them, have
been studied in depth and over quite some time. Arguably they started with a definition
by S. Ginsburg and E. Spanier in 1965 [GS65]. The shuffle expressions, and the shuffle
languages they generate have been the primary focus of this section so far. This is the

Shuffle-Like Behaviors in Languages

name given to regular expressions extended with the binary shuffle operator and unary
shuffle closure, a formalism introduced by Gischer [Gis81]. These were in turn based
on an 1978 article by Shaw [Sha78] on flow expressions, which were used to model
concurrency. The proof that the membership problem for shuffle expressions is NP-
complete in general is due to [Bar85, MS94], whereas the proof that the non-uniform
case is decidable in polynomial time is due to [JSO1].

Shuffle expressions are nowhere near the end of interesting aspects of the shuffle
however, even if we restrict ourselves to the focus on membership problems. A very
notable example is Warmuth and Hausslers 1984 paper [WH84]. This paper for ex-
ample demonstrates that the uniform membership problem for the iterated shuffle of a
single string is NP-complete. That is, given two strings, w and v, decide whether or not
wevoOVve--@v. A precursor to one of the results in Paper I is due to Ogden, Riddle
and Rounds, who in a 1978 paper [ORR78] showed that the non-uniform membership
problem for the shuffle of two deterministic context-free languages is NP-complete
(extended to linear deterministic context-free languages in Paper I).

Some additional examples of interesting literature on shuffle includes a deep study
on what is known as shuffle on trajectories [MRS98], where the way the shuffle may
happen is in itself controlled by a language, and axiomatization of shuffle [EB98]. For
a longer list of references, see the introduction of Paper I.

2.7 CFSA and Context-Free Languages

As noted in Section 2.5 part of the purpose of concurrent finite-state automata is
that they permit the modeling of context-free languages, for example the language
{d"b" | n € N} (i.e. the language where some number of as are followed by the same
number of bs), something that is not captured by shuffle expressions. A grammar for
this language is shown in Figure 2.12. A derivation in this grammar will simply gen-

(0) — (a8) = (e) () — (b)

Figure 2.12: A grammar in the CFSA style for the language {a"b" |n e N}.

erate some number of as while stacking up equally many A non-terminals, then when
the S is finally replaced by € the A non-terminals drop down and each successively
generates a b. In this way the (non-shuffle) language is generated. Effectively the
CFSA simulates a push-down automaton.

We can easily shuffle two context-free languages in this way, by simply taking
grammars of the style of Figure 2.12 and generating their initial non-terminal (now
suitably renamed) attached to the same position using a new initial non-terminal rule.
This type of language, mixing context-free languages and shuffle, are of some practi-

15

Chapter 2

16

cal interest, so Paper I studies this type of situation in some depth.

In fact, where shuffle expressions are regular expressions with the two shuffle
operators added, it is instructive to view general CFSA as context-free languages with
the addition of the binary shuffle operator. This part requires knowledge of context-
free grammars, see e.g. [HMUO3]. Consider the right-most rule in Figure 2.13, which
showecases all the features of CFSA. Then consider the context-free grammar which

() — (@) (&) — (B9

Figure 2.13: The three possible types of rules in our sketched variation of CFSA
where o, 3,y€ Xu{e}. The right-most exhibits all features, where the two first are
only differentiated in that some parts don’t exist.

produces strings over the alphabet Zu{®,), (} by rewriting the CFSA rules in the way
shown in Table 2.14. Constructing a context-free grammar in this way, starting from a

Table 2.14: Context-free rules for the CFSA rule in Figure 2.13.

First rule Al—-«a
Secondrule A, > f(B©:-0B,)
Third rule A3 - y(C,0--0C,)D

CFSA A, one gets a context-free language L containing shuffle expressions which are
such that £(A) = U{L(e) | e € L}. That is, when the result of evaluating all the shuffle
expressions in L are unioned together we arrive at the language generated by A.

This should serve to illustrate that all languages generated by CFSA can be viewed
as “disordered” context-free languages. The above procedure generates a charac-
terizing context-free language, which specifies which strings are to be shuffled to-
gether to produce strings in the original CFSA. As such, for example the language
{a"b"c" | n € N} cannot be generated by a CFSA, as it is not context-free, nor can one
arrive at it by relaxing the order of substrings in a context-free language.

2.8 Membership Problems

The membership problem for these shuffle formalisms should be divided into two
parts; the membership problem for shuffle expressions, which do not feature the
context-free abilities of full CFSA, and the one for full CFSA.

Shuffle-Like Behaviors in Languages

2.8.1 The Membership Problems for Shuffle Expressions

The membership problem for shuffle expressions is already a fairly complex question.
There is a sizable body of literature, and Paper I studies one fragment of the problem.

* The non-uniform membership problem is decidable in polynomial time [JSO1].
The algorithm relies on permitting each symbol read (or generated) to produce
some large number of potential states, which limits the complexity in terms of
the length of the string but explodes the complexity in terms of the size of the
expression.

* Unsurprisingly, in view of the above, the general uniform membership problem
is NP-complete [Bar85, MS94].

These two pieces paint a fairly clear picture; if we wish to check membership (or
parse) a string with respect to a shuffle expression it can be done reasonably efficiently
if the string is much larger than the shuffle expression. However, this does not reveal
the exact way in which the complexity depends on the expression. Notably, regular
expressions are (trivially) shuffle expressions, and for regular expressions the uniform
membership problem is not very difficult. Paper I explores how the structure of the
expression affects the complexity of the problem. See Section 2.9.

2.8.2 The Membership Problems for General CFSA

The membership problem for CFSA is NP-hard even in very restrictive cases, such as
where at most two non-terminals are ever attached to a position. It may therefore be
surprising that the problem is in NP. The overall construction hinges on limiting the
size of the trees of non-terminals generated by parsing a certain string, which relies
on a careful case-by-case analysis of symmetries in how non-terminals may be gener-
ated. This means that even if far more (seemingly) complex CFSA are considered the
problem does not become substantially harder. All of this is treated in Paper I, which
Section 2.9 now takes a deeper look into.

2.9 Contributions In the Area of Shuffle™

This section provides, as denoted by the star, a slightly more formal treatment of the
contributions to the area of shuffle that have been made in (the papers included in) this
work. We need some additional definitions to start with.

2.9.1 Definitions and Notation

Let N, denote N\ {0}. A free with labels from an alphabet ¥ is a function :N — X,
where N ¢ N is a set of nodes which are such that

* N is prefix-closed, i.e., for every ve N and i € N, vi e N implies that ve N, and

* N is closed under less-than, i.e., for all ve N¥ and i € Ny, v(i+ 1) € N implies
vieN.

17

Chapter 2

18

Let N(t) denote the set of nodes in the tree 7. The root of the tree is the node €, and vi
is the ith child of the node v. ¢/v denotes the tree with N(¢/v) = {w e N} |vwe N(t)}
and (¢/v)(w) =t(vw) for all we N(¢/v). The empty tree, denoted 7., is a special
case, since N(f¢) = & it cannot be a subtree of another tree. Given trees 71,...,#, and
a symbol a, we let a[r,...,t,] denote the tree ¢ with 7(€) = @ and ¢/i = 1; for all
i€{l,...,n}. The tree a[] may be abbreviated by o. Given an alphabet X, the set
of all trees of the form #:N — X is denoted by Tx. For trees 7,1 and v e N(¢) let 1,y
be the tree resulting from replacing the node at v by ' in t. That is, t,, =¢', and
tivopr =t (&)[t)1, ..., (¢]i=1),(¢]i) sy, (¢]i+1),...,t/n] for ive N(¢) and i € N,. For
tyesr, the subtree at v is deleted (e.g. a[t1,12,13 |2sr, = O[11,83]).

2.9.2 Concurrent Finite State Automata

With this we can make a formal definition of the concurrent finite state automata
already sketched. These automata are the subject at the heart of Paper I.

Definition 2.15 A concurrent finite state automaton is a tuple A = (Q,X,S,0) where
Q is a finite set of states, ¥ is the input alphabet, S € Q is the initial state, and ¢ :
O x (Xu{e}) x Ty are the rules.

A derivation in A is a sequence 11, ..., 1, € Tp such that #; = S[] and #, = . For each
i <n the step from 7 =; to t' = #; is such that there is some (g, a,¢") € § and v e N(z;)
such that /v = g[] and ' = t,,,;». Applying this rule reads the symbol @ (nothing if
o =¢). L(A) is the set of all strings that can be read this way.

We only permit four types of rules in 8. Deleting rules of the form (g,€,z¢) € 6.
Horizontal rules of the form (g, o,q’[]) € 8. Vertical rules of the forms (g, o, q'[p1]) €
6 and (q,0,4'[p1,p2]) € 6. Finally the closure rules, where (¢, ¢,q'[p1,...,p1]) €6
for every number of repetitions of p;s, greater or equal to zero. o

We treat the in practice infinite set of rules for the closure rules as a schema (i.e.
they count as a constant number of rules for the purposes of defining the size of the
automaton).

Using this definition it should be easy to see how the rules in Figure 2.13 can be
constructed. The graphical rules cheat by ignoring the possibility that & = €, while per-
mitting e.g. generating siblings without a root (effectively having rules (g, o, p1p2)),
but it is trivial to add an additional state that serves as root for the subtree with only a
deleting rule defined.

Notice that the rules overlap a bit, in that the closure schema is unnecessary if we
are allowed to replace (q,0,¢'[p1,--.,p1]) with (¢,a,4'[¢", p1]) where "' is a new
state with only two rules, (¢”,€,2¢) and (¢",€,4" [¢", p1]). However, the context-free
languages are precisely those that can be recognized by a CFSA where every (g, 0,t) €
0 has no node with more than one child in #, and we often wish to syntactically restrict
CFSA to not permit context-free languages, recreating the shuffle languages. We do
this as follows: a configuration is acyclic if for every v € N(¢) it holds that z(v) does
not occur in ¢/vi for any i, the shuffle languages are then precisely the CFSA where all
configurations are acyclic. The closure-free shuffle languages are those recognizable
by a CFSA with a finite (schema-free) J and all reachable configurations acyclic.

Shuffle-Like Behaviors in Languages

2.9.3 Properties of CFSA

Paper I proves a number of relevant properties about CFSA. Notably they are closed
under union, concatenation, Kleene closure, shuffle, and shuffle closure (i.e., if A and
A’ are CFSA then there exists a CFSA A" such that e.g. L(A”) = L(A) © L(A")),
but not under complementation or intersection (so there exists some A and A" such
that there exists no CFSA recognizing the language e.g. L(A)nL(A”)). Emptiness of
CFSA is decidable in polynomial time, and the CFSA generate only context-sensitive
languages.

2.9.4 Membership Testing CFSA

Membership in general CFSA. With this done we can consider uniform mem-
bership testing for general CFSA, one of the core results of Paper I. Since even a
severely restricted case of CFSA already have a NP-complete uniform membership
problem [Bar85, MS94], which serves as a lower bound, it is a pleasant surprise that
the general problem is in NP, as the restricted cases appear so relatively restrictive. A
non-deterministic polynomial time algorithm can simply guess which rules to apply
to accept a string, as long as the number of rules necessary (i.e. the sequence ?1,...,#,
in Definition 2.15) is polynomial in the length of the string. The only way this might
not happen is if a lot of €-rules are required. A simple polynomial rewriting procedure
on A solves this, based on statements such as “if rules from & can rewrite g] into ¢'[]
without reading a symbol, include (g,€,¢’[]) in 8. This ensures that if a derivation
of a string exists in A then a short one exists.

Membership in the shuffle of shuffle languages and context-free languages. The
CFSA model goes on to be used to prove a number of other membership problem
results. One interesting case is the shuffle of a shuffle language and a context-free
language, i.e., membership for the CFSA where every configuration tree (except the
first one and the last one where things are getting set up and dismantled) is of the
form g[r,t,] where f; is acyclic and N(t;) c 1* (that is, no node in #, has more than
one child). This proof is rather more involved, and relies on finding a number of
symmetries in the way the tree corresponding to the shuffle language (i.e. #; here) can
behave. Notably it relies on defining an equivalence relation on nodes in the tree, i.e.,
if we have 7(v) =#(v") what we do to v and V' is interchangeable. Most notably, if we
in two places apply a rule schema (g, a,q'[p1,...,p1]) there is no point in generating
p1 instances in both places, we might as well pick one of the places and generate all
the instances of p; necessary. In fact, in the procedure we can just remember “as
long as this node is still here we can assume we have any necessary number of p;
instances”. In this way the number of possibilities are limited in such a way that a
Cocke-Younger-Kasami-style table can be established for parsing. While polynomial
the degree of the polynomial is very substantial, an efficient algorithm is left as future
work.

The hardness of context-free shuffles. Another of the core results of Paper I is a
proof that there exist two deterministic linear context-free (DLCF) languages L and L’

19

Chapter 2

20

such that the membership problem for L® L’ is NP-complete. That is, the non-uniform
membership problem for the shuffle of two DLCF languages is NP-complete. The
proof relies on the following. We can construct a DLCF language L which consists of
strings of the following form:

[o][1]---[1][1]$ [0][1]---[1][1]$--$ [O][1]--[1][0]$[O][1]---[1][1]

Cy Cy Cé

o
where each bit-string is a polynomial-length Turing machine configuration, and C7 is
the (reversed) configuration the Turing machine reaches taking one step from Cy, and
similarly C} is one step from C, (and so on nested inwards). The rules of the Turing
machine are encoded in L. The language class is not powerful enough to relate C; and
(>, all it can do by itself is take a single step. We can however also construct a DLCF
language L’ which recognizes all strings

S[O][1]---[O][]S [A][H]---[1][1]$--$][] [1][1] S [1][0]---[1][0]

n ” i ”

which are such that Pl’ is Py reversed, and Pz’ is P, reversed, and so on inwards. At
the center there is one extra string of the form ([0]|[1])*, entirely arbitrary. Now
construct the string

[0]---[0]$[[01]]---[[01]]$S$---$$[[01]]---[[01]]
1

where [is filled with the initial Turing machine configuration we are interested in.
Then check if this string is in L® L'. What will happen is that L and L’ will have to
“share” every [[01]]---[[01]] substring (since neither can by itself produce e.g. [[),
each producing half the brackets and binary digits, forcing the other to produce its
complement. The initial I must be produced by L, as L requires a leading $, which
makes L produce the result of taking the first step of the Turing machine in the last
[[01]]---[[01]] section, which leaves the complement for L’ to produce in the last
section, which will make it produce the complement in the first [[01]]---[[01]] section,
forcing L to produce the same configuration in that first sectiont that it produced in the
last section. This makes it produce the result of taking another computation step in
the second-to-last [[01]]---[[01]] section, which L' then copies, and so on. In this way
the shuffle will cooperate to perform an arbitrary (non-deterministic) Turing machine
computation for polynomially many steps, making the membership problem NP-hard.
This is non-uniform as the Turing machine coded in L may be one of the universal
machines, which reads its program from the input /.

2.9.5 The rest of Paper I.

Paper I has a number of further results, including a fixed parameter analysis of parsing
shuffle expressions with the number of shuffle operators which is discussed in brief in
Section 3.5.1. In addition the paper discusses the uniform membership problem for

Shuffle-Like Behaviors in Languages

the shuffle of a context-free language and a regular language. That is, a context-free
grammar G, a finite automaton A and a string w are given as input, and the decision
problem is checking whether w € £(G) ® L(A)). An important point in this context is
that L(G) ® L(A) is a context-free language for all G and A. This can be shown by
a simple product construction. This, however, raises a question discussed in another

paper.

2.9.6 Language Class Impact of Shuffle

Paper V also considers shuffle, but here the question is of a more abstract nature.
The claim studied is, for two context-free languages LS X* and L' c T* (with X nT =
@) is Lo L' ¢ CF unless either L € Reg or L' € Reg? That is, if the shuffle of two
context-free languages is context-free must one of the languages be regular? The
author conjectures that this is indeed the case, but Paper V gives only a conditional
and partial proof.

21

Chapter 2

22

CHAPTER 3
Synchronized Substrings in

Languages

In this chapter we take a look at what can be described as formalisms with synchro-
nized substrings. A single sequence of derivation decisions which (may) have effects
in several places of a string. This is most easily illustrated by extending our running
sketched formalism to generate such languages.

3.1 Sketching a Synchronized Substrings Formalism
3.1.1 The Graphical Intuition

In this section the grammars introduced in Figure 1.3 will be extended in a different
way from the preceding shuffle chapter. In this new grammatical formalism there may
not be more than one non-terminal attached to a position (i.e. to a bullet), nor may we
have non-terminals depend on each other. That is, the “stacking” of non-terminals of
Figure 2.8 is no longer permitted.

The new grammatical formalism for this chapter instead generalize the regular
grammars in some new ways, which will pave the way to rules of the following form.

(¢) — (aaéeaaebebb)

* Positions (i.e. bullets) may now occur anywhere in the string, not just at the
end. There may be any number of positions on the right-hand side of rules.

* Each non-terminal may be attached to multiple positions. We say that the non-
terminal tracks, or controls, those positions. This in turn means that the left-
hand sides may also contain multiple positions (the number controlled by the
non-terminal being replaced).

We assume that each non-terminal always tracks the same number of positions (so if A
tracks 3 positions in one rule it will always track 3 positions). See Figure 3.1 for a first
example of a grammar of this new kind. An example derivation using this grammar is
shown in Figure 3.2.

23

Chapter 3

24

(6) — (o09) (¢,6,6) — (as,be,ce) (a,b,c)

b

Figure 3.1: An example of a grammar of the synchronized substring variety. The
initial non-terminal S, which tracks a single position, generates an instance of the
non-terminal A, which tracks three positions, inserted as a string at the position which
S was previously tracking (notice that this is not the same as attaching them all to
that position, they are ordered and distinct in the resulting string). A has two rules,
the first generates an a in the first position, a b in the second and a c in the third,
while generating a new A tracking the positions just after each of the newly generated
symbols. The last rule generates the same symbols but creates no new A.

= (aaébbecce) = (aaabbbccc)

Figure 3.2: A derivation of the string “aaabbbccc” using the grammar in Figure 3.1.
Notice that even though A tracks multiple positions there will never be commas in the
derivation like there is in the grammar, the positions will instead be interspersed with
real symbols in a contiguous string. Applying a rule places new substrings in some
positions, and these substrings may themselves contain positions.

Notice that this formalism features ordering in the positions that the non-terminals
track. Consider for example adding the following rule to the grammar in Figure 3.1.

W)
(0,8,8) — (4,0,9)

This then permits derivations like the one shown in Figure 3.3, and more generally it
permits deriving strings of the form “aacacbbbbbccaca”, containing the same number
of “a”’s, “b”’s and “c”’s, but the first and last section are the same sequence with “a”’s
replaced with “c”s and vice versa.

) = (— (asbece) — (aébece) —— (acbbca)

Figure 3.3: A derivation of the string “acbbca” using the grammar in Figure 3.1
extended with a rule which switches the first and third position tracked by the A.

Synchronized Substrings in Languages

3.1.2 Revisiting the Mapped Copies of Example 1.1

Example 1.1 illustrates a trivial case of synchronized substrings formalisms, where a
sequence of symbols is chosen, and two different symbol mappings create two dif-
ferent strings, which are concatenated to produce an output string. Let us recall it
here.

Example 3.4 (Mappings of copy-languages) Given two mappings o1, 0, from {a,b}
to arbitrary strings and a string w decide whether there exists some @, ..., 0, € {a,b}
such that 67 (ot)01 () - 02 (0t)0 () = w. IS

Let us look at how
1. we can model this type of language by a grammar, and,

2. parsing may be performed, in both the uniform and non-uniform case.

3.1.3 Grammars for the Mapped Copy Languages

Here we have two alphabets, the “internal” alphabet I = {a,b} as well as the usual X.
In addition we have two mappings from I to strings in X. Let w, = 61 (a), w, = 01(d),
vy = 02(a) and v, = 02(b). Then the grammar in Figure 3.5 generates the language of
the strings that the procedure in Example 1.1 yields.

8wl
() - () - (Wa Va (Wb 7vb) (878)

)

Figure 3.5: A synchronized substring-type grammar for the language that the proce-
dure sketched in Example 1.1 can produce. Notice that w,, v,, w;, and v;, are strings
derived from the mappings 67 and 0y, rather than symbols in their own right.

3.1.4 Parsing for the Mapped Copy Languages

Let us consider the uniform parsing problem for this class of grammars (i.e., those
that can be generated by some choice of 07 and o, in the above construction). We can
divide the parsing problem into two parts:

1. We need to find the position at which the concatenation happens. That is, let G
be the grammar constructed as in Figure 3.5 for some 67 and 03, then, to decide
if some w belongs to £(G) we need to tell if there is some way to divide w into
two, w = xy, such that o1 (v) = x and 6,(v) =y for some v € {a,b}*.

2. The second part is finding the actual v e {a,b}*.

Solving the second part effectively solves the first, in the sense that if we are given v
we will be able to tell where the concatenation happens by simply computing oy (v)
and o> (v).

25

Chapter 3

26

However, it might be easier to find v if the point of concatenation is found. We
are in fact primarily concerned about whether parsing can be done in polynomial time
or not, and if we can compute v in polynomial time given the point of concatenation
we can solve the whole problem in polynomial time, as there are only linearly many
positions at which the concatenation may occur. That is, we can simply for each
possible way of dividing w into xy try to compute a v for this x and y. This exhaustive
search at most makes the membership problem linearly more expensive.

The full algorithm for this toy example is in fact fairly simple. It will, however,
serve to illustrate the more general algorithms later, where the directed graph con-
struction will be replaced by something similar but more advanced.

Algorithm 3.6 (Parsing for Example 1.1)
1: function PARSECOPYMAP(string w € ¥, 07 : {a,b} > X*, 02 : {a,b} > L*)
2 let a0y, =w (i.e., each ¢ is a symbol in X).
3 let G be a digraph with nodes {(p,q) | p,q €{0,...,n}} and no edges.
4 for p,q,p’,q' €{0,...,n} do
5: if (o (a) = Olpy1- Oy and Gg(a) = (Xq+1"'05q/) or
6 (o1(b) = Op+1--- 0yt and 0, (b) = th+1-"06ql) then
7 add an edge from (p,q) to (p',q') to G
8
9

end if

end for
10: foric{0,...,n} do
11 if REACHABLE(G, (0,i), (i,n)) = True then
12: return True
13: end if
14: end for
15: return False

16: end function

REACHABLE is a function which takes a graph G and two nodes v and w and checks
if w can be reached from v following the edges. Notice that we abuse the subscripts in
the algorithm, so @ 1-+-0yy for p > p” will be an empty string.

To quickly outline the algorithm, in lines 4-9 the graph G is constructed in such a
way that a node (p’,q") is only reachable from (p,q) if the substrings o ---¢, can
be generated by o1(v) and o1+~ can be generated by 6, (v) for some common v.
Once this graph is constructed lines 10—14 simply test all ways to cut the initial string
into two pieces and checks on the graph if the resulting two strings can correspond to
a common original string mapped through o] and ;.

Notice that the graph will be polynomial in the size of the string to be parsed,
and computing reachability on a directed graph is very cheap. Also notice that this
algorithm as written is just a membership test, but making it parsing amounts to simply
outputting the path in G found when line 11 succeeds.

Synchronized Substrings in Languages

3.2 The Broader World of Mildly Context-Sensitive Languages

The above may seem like trivialities, but it appears to be at the core of the difficulty
in deciding membership for the general class of formalisms along these lines. The
formalism sketched here (exemplified by the grammar in Figure 3.5) is intended to
imitate a hyperedge replacement grammar (see e.g. [DHK97]) generating a string, but
that formalism is equivalent to a large class of other formalisms.

3.2.1 The Mildly Context-Sensitive Category

All the formalisms discussed in this chapter fall within the category “mildly context-
sensitive”, defined by Aravind Joshi in [Jos85]. A language class £ is defined by Joshi
to be mildly context-sensitive if and only if all the following hold.

1. Atleast one language in L features limited cross-serial dependencies.

2. All languages L in £ have a semi-linear set {|w| | w € L}. That is, the lengths
of strings in the language form a union of a finite number of linear sequences,
{s1+ik; |ieN}u---U{s, +ik, |ieN}.

In addition the following two requirements are implicit but clearly required in [Jos85]

3. All L€ C¥ are in L, that is, a mildly context-sensitive formalism must be able
to represent all context-free languages (recall Section 2.7).

4. The non-uniform membership problem for languages in £ is decidable in poly-
nomial time.

Requirement 1 needs some further explanation. It refers to a certain type of substring
synchronization that Joshi derives from the tree-adjoining grammar formalism that
he uses in that paper. The description is fairly involved, but one key detail is that
languages of the form a"b"¢" may be in such a class, but a"b"a"b"a"b"--- may not.
This statement may be transferred to the formalism we have sketched by noting that
for every such grammar there exists some constant k such that no non-terminal tracks
more than k positions, which makes it impossible to generate e.g.

a'b"---d"b".

—_——

k+ 1 copies

3.2.2 The Mildly Context-Sensitive Classes

There are at least two different classes of languages with published formalisms that fit
clearly into the mildly context-sensitive definition.

1. The first is the motivating class, into which tree-adjoining grammars [JLT75]
which Joshi used when first defining the category, fall. All the following for-
malisms are equivalent [JSW90] (that is, they define the same language class):
linear indexed grammars [Gaz88], combinatorial categorial grammars [Ste87]
and head grammars [Pol84].

27

Chapter 3

28

2. The second class still fulfills all the requirements outlined by Joshi, but is strictly
more powerful (i.e. every language that can be generated by e.g. a head grammar
can be generated by any of these formalisms). These formalisms include linear
context-free rewriting systems [Wei92]!, deterministic tree-walking transduc-
ers [Wei92], multicomponent tree-adjoining grammars [Jos85, Wei88], multiple
context-free grammars [SMFK91, G6t08], simple range concatenation gram-
mars [Bou98, Bou04, BNO1, VdIC02] and string-generating hyperedge replace-
ment grammars [Hab92, DHK97].

It is interesting to note that while the mildly context-sensitive definition requires a non-
uniform membership problem (i.e. the membership problem where the string, but not
the grammar/automaton, is included in the input, recall Definitions 1.7 and 1.8) that is
solvable in polynomial time, all the listed formalisms above have an NP-hard uniform
membership problem. The way that the grammars perform concatenation, notably
how many positions each non-terminal keeps track of (or, in Joshis terminology, the
extent of the cross-serial dependencies), play a big part in how difficult the uniform
membership problem becomes.

Going through all of these formalisms is not time well spent for an introductory
text like this, but in the next section we will make the connection between the sketched
formalism of Figure 3.1 and string-generating hyperedge replacement grammars.

3.3 String-Generating Hyperedge Replacement Grammars

The formalism sketched in Figures 3.1-3.5 is more or less a direct copy of hyperedge
replacement grammars tuned for string generation. This formalism constructs a di-
rected graph by having hyperedges (that is, edges that connect an arbitrary number
of nodes) labeled with non-terminal symbols, and having rules that replace these by
new subgraphs connected to the nodes the hyperedge was connected to. So, the rule
application (using a rule from Figure 3.1)

(asbecé) == (aaébbecce)

actually corresponds to rewriting the directed graph

a ‘ "’l b i

where the box labeled by A now represents a hyperedge which is connected to 6 nodes,
into this graph

! References are for the most part not to the original definitions, but rather to sources where they are
described and related to the broader class at hand.

Synchronized Substrings in Languages

a a f ‘.

by the hyperedge labeled A being replaced by attaching new nodes and edges to the
positions the original hyperedge was attached to, and attaching a new hyperedge (also
labeled A). To make this perfectly formal we also need to number the nodes, or oth-
erwise somehow distinguish between them, which we manage to avoid graphically in
the string case by just keeping track of things left-to-right.

Notice that while the non-uniform membership problem is polynomial for string-
generating hyperedge replacement grammars it very quickly becomes NP-hard when
the grammar are allowed to generate graphs even a little bit more complex than these
string-representing directed chains. In fact, if the grammar is allowed to make multiple
chains, that is, creating a graph consisting of the union of directed chains, by simply
having the hyperedge replacement rules leaving pieces unconnected, the non-uniform
membership problem becomes NP-complete [LW87].

In addition note that for a hyperedge replacement grammar to generate a string
it will necessarily have to keep track of both sides of each “gap” corresponding to a
position, as is sketched in the above figures. If it loses track of a node that is supposed
to be internal to the string it becomes impossible to later join it up to the other parts
generated, and the graph becomes a set of multiple chains.

We will next take a look at a general non-uniform parsing algorithm for string-
generating hyperedge replacement grammars (the informal flavor used here). This
construction is from 2001 by Bertsch and Nederhof [BNO1] (this is not the earliest or
most efficient parsing algorithm of this type, but a straightforward and clear one).

3.4 Deciding the Membership Problem

3.4.1 Deciding Non-Uniform Membership

Origins of the Algorithm The construction from [BNO1] is here modified a bit for
clarity and to fit into the approach we use. In its original form the algorithm takes
the grammar G (for which membership should be decided) and a string w, and from
these two constructs a new grammar G’, which is empty if and only if w ¢ £(G). In
this way it reduces the problem of deciding membership for one grammar to the prob-
lem of deciding emptiness for another. More specifically the grammar G is one of
the mildly context-sensitive formalisms (the algorithm is originally defined in terms
of Range Concatenation Grammars, but here we opt to continue with the equiva-
lent string-generating hyperedge replacement grammars) and the constructed gram-
mar G’ is a context-free grammar, for which emptiness testing (i.e. computing whether
L(G") = @) is very easy. However, as context-free grammars are a subset of the hy-
peredge replacement grammars (and emptiness testing is just as easy for hyperedge
replacement grammars) we will not differentiate between the formalisms.

29

Chapter 3

30

Deciding Emptiness Emptiness-checking a hyperedge replacement grammar is very
easy. Start by letting all non-terminals be unmarked. For each rule, if the left-hand is
unmarked but the right-hand side contains no unmarked non-terminals mark the non-
terminal on the left-hand side and start over the looping through the rules from the first
one. If we make it through all the rules without marking a non-terminal we are done,
and the language generated by the grammar is empty if and only if S is still unmarked.
This algorithm is clearly in O(n?) where n is the number of rules, as it is a loop that
is restarted at most n times (sooner or later all the non-terminals have been marked).

Reducing Membership to Emptiness It is time to solve the membership problem
for string-generating hyperedge replacement grammars. Let G be the grammar, and
a0y (o € X for each i) the string for which we wish to check whether oo, €
£(G). To decide this we will construct a new grammar G’ such that £(G') + @ if and
only if &+, € L(G) (specifically, L(G") = {€} otherwise). The construction of G’
should be reminiscent of the construction of the graph in Algorithm 3.6.

G’ will be constructed in such a way that if G contains a non-terminal A which con-
trols k positions (i.e. there are k positions on the left hand side of rules for A) then G’
contains one non-terminal A, ,....(pe.qr) TOT €ach pr,qi,...... ,Pr>qr €40,...,n},
such that p; <qi,..., pr < g The logic will be, if the non-terminal A, .y . (pr.ar)
can generate any strings, then the non-terminal A in the original grammar G is able to
generate the strings 0y, -y, , ..., Op, -0y, . The most direct rule to include in G’ then

becomes that if
A — (x a o Q
(?) (p1+1°" Qg5 Bpp+17” ‘Ik)

)

is arule in G then

A(Phql)v“'v(pkaqk)
(&) — (¢)

isarulein G’. Thatis; if A can generate the substrings Op, +1°+ 0y, through o, 410,
then A(p, 41)....(pr.qp) €20 generate the empty string (we could select any string as only
emptiness is of interest). Similarly, for example, if there is a rule in G of the form

(6,8) — (00,000)

then, for all p1,q1,p2,q2 € {0,n}, and ky,k;,k3 € {0,n}, such that p; < k; < ¢;, and
P2 < kp,k3 < g there is a rule

’A(le)-,(m,lh) ‘ ’B(Plvkl),(ky%) HC(klﬂl)v(P%kZ) HD(szfs) ‘

(®) — (e09).

Synchronized Substrings in Languages

That is, the p1,q1,p2,q2 decide the substrings checked by the left-hand side, and k;
is the position between p; and g; where the substring goes from being generated by
the B and the C, and similarly for k; and k3 with the two concatenation points in the
second substring. This generalizes to arbitrary rules in the obvious way, when non-
terminals and symbols are mixed one additionally needs to check that the symbols
generated correspond correctly to the symbols in o;---@,.

As such, if each of the B, C and D non-terminals can generate their respective
substrings then the right-hand side can generate the empty string, meaning that the A
can generate the whole. Finally, add the rule

(¢ —

to G, that is, the initial non-terminal goes to the non-terminal that checks if the non-
terminal S in G can generate the substring 0 1-:- 4, i.e., the whole string.

Following this procedure G’ will be able to generate the empty string if and only if
G can generate the string o+ @,. It should be clear that the size of G’ is on the order
of O(n) where c is polynomial in the size of the grammar G. Notably ¢ increases
with the number of positions tracked by non-terminals in G.

However, we were considering the non-uniform membership problem, and as such
we view G as a constant, which in turn means that ¢ is viewed as a constant. It
follows that O(n¢) is a polynomial, and, as established above, deciding emptiness is
polynomial, making for a membership algorithm that is polynomial.

3.4.2 Deciding Uniform Membership

Deciding the uniform membership problem for our sketched grammatical formalism
appears to be extremely hard, a proof that LCFRS parsing is PSPACE-hard is given
in [KNSK92]. This makes it extremely unlikely that an efficient algorithm exists. The
best known algorithms (see e.g. [SMFK91] and Paper II for more references) for the
problem are in O(mn/("*1)) where m is the size of the grammar, n the size of the
input string, and f and r are two very specific properties of the grammar, the fan-out
and the rank of the grammar respectively. Before we get further into the explanation
it is important to note that since f and r are values depending on the grammar the
algorithm is in O(n™) as well, that is, the length of the string raised to the size of the
grammar. However, it turns out that in practice the fan-out and rank tend to be small
compared to the size of the full grammar, so it is a useful distinction to separate them
out.

In short, the rank of a grammar is the maximum number of non-terminals occur-
ring on the right hand side of a rule. The fan-out is the maximum number of positions
a non-terminal tracks. So for example a grammar G containing the rule

s
() — (aées e abc,cec)

P e

31

Chapter 3

32

implies that it has rank at least 3, since the right-hand side has three non-terminals,
and fan-out at least 4, since A controls four positions. These are “at least” since other
rules may contain more non-terminals or more positions tracked.

3.4.3 On the Edge Between Non-Uniform and Uniform

So far we have seen that the problem is polynomial when the grammar is left out of the
input entirely, and an algorithm that is unquestionably exponential when the grammar
is included. However, this distinction, where some aspects of the grammar is separated
out to illustrate that it is not exponential in the “worst” way, is a bit blunt and imprecise
a way of viewing the complexity. For example, if the total number of rules were in
the exponent many practical grammars would have very problematic running times,
whereas if the number of symbols in the alphabet is the part in the exponent things
may not be nearly as problematic.

For a deeper look in this direction, we now give a slightly deeper summary of the
results in Paper II, with explanations of some of the supporting theory.

3.5 Contributions in Fixed Parameter Analysis of Mildly Context-
Sensitive Languages™

We take this opportunity to briefly explain fixed parameter complexity, as it is neces-
sary to appreciate the contents of Paper II, and may not be common knowledge. See
e.g. [FGO6] for a full introduction.

3.5.1 Preliminaries in Fixed Parameter Tractability

In classical complexity theory a problem may be viewed as a set of all positive in-
stances P € I, where [is the set of all possible instances. For example, we may have /
be all graphs and P be the set of all graphs which have a Hamiltonian path. A decision
procedure for the problem is then a program that computes a function a : I - {yes,no}
such that P = {p €I | a(p) = yes}. The running time of the program is then analyzed
as a function in |p|. For two problems P ¢ and P’ € I’ a polynomial time reduction
is a function r: I - I’, computable in polynomial time such that pe P < r(p) € P'. A
polynomial time reduction r from P to P’ implies that the fastest decision procedure
for P cannot be more than polynomially slower than the fastest for P’.

A parameterized problem is viewed as a set P € [x N, where / is again the set
of all problem instances and the integer is what is called the parameter. A decision
procedure for R again computes a function a : I x N - {yes,no}, but now the time
of deciding a(p,k) is described in both |p| and k. If a runs in time f(k)-|p|®™")
for any computable function f:N — N the problem is said to be fixed-parameter
tractable (FPT); that is, intuitively, for a small parameter the problem is basically
polynomial. The way the parameter is chosen has a large impact on how the analy-
sis behaves. Notably, taking any problem P C I and constructing the parameterized
problem {(p,|p|) | p € P} €I xN yields a fixed-parameter tractable problem for ev-
ery decidable P. A FPT reduction from PcIxN to P’ € I’ xN is a program which

Synchronized Substrings in Languages

computes a function r: (I xN) — (I’ xN) such that, (i) r(p,k) is computable in time
f(k)-|p|°™M for some computable function f; (ii) (p,k) € P < r(p,k) € P'; and; (iii)
there exists a computable function g such that for all (p’,k") = r(p,k) it holds that
k' <g(k).

The parameter is normally chosen as some minor aspect of the problem. A classic
case is the vertex cover problem for graphs, which is NP-complete in general, but if
one looks for small covers (i.e. does this graph of a million vertices have a cover of
size five?) it turns out that the problem is easy. Vertex cover is, in fact, a classic
problem in the class FPT. That is, the parameterized problem is P € G x N, where G
is the set of all graphs, such that (G,k) € P if and only if G has a cover of size k.
This problem is decidable in time O (k|G| + 1.3), which is excellent for small k. Not
all problems work out this well however, and there is a hierarchy of parameterized
complexity classes:

FPTCcW[1]cW[2]c--c W[SAT]c W[P]cXP, where FPT ¢XP,

each of which has some complete (characterizing) problem.

To make a quick revisit to Paper I and Chapter 2 note that there a proof is given
which shows that the uniform membership problem for shuffle expressions is W[1]-
hard when the parameter is the number of shuffle operators used in the expression.
One example of an instance is (((ab)* ®a*,abb),1), and deciding it involves check-
ing whether abb € £L((ab)* ®a*) (and checking that the expression has precisely one
shuffle operator, agreeing with the parameter). It is proven that this is W[1]-hard us-
ing a reduction from k-clique. k-clique is the set P € G x N where (G,k) € P if and
only if G has a clique of size k. k-clique is known to be W[1]-complete.

3.5.2 The Membership Problems of Paper I

The graphical formalism sketched in this chapter is again slightly unspecific on some
details, but is close enough to hyperedge replacement string grammars that we can
restate all the results in Paper II in terms of it, although care should be taken and the
paper read whenever vagueness makes any statement feel unclear.

Recall the definition of rank and fan-out from Section 3.4.2. Then Paper II con-
siders the following four parameterized membership problems, all having the set of
all instances I x N where I = {(G,w) | G a grammar,w € ¥*}. The grammars are of the
LCFRS type in Paper II, but considering the sketched hyperedge replacement gram-
mar case is illustrative enough. In each case the decision problem is to check whether
w € L(G), but the parameter k differs.

1. The problem where the fan-out is constant (i.e. fixed, not part of the problem)
and the rank is the parameter. That is, deciding P € I x N such that ((G,w),k) € P
if and only if w e L(G), G has rank at most k, and G has fan-out less than or equal
to a constant c.

2. The problem where the rank is constant (less than or equal to a constant ¢) and
the fan-out is the parameter.

33

Chapter 3

34

3. The problem where the parameter contains both the rank and the fan-out. That
is, the tuples in P < I x N are still ((G,w),k) but G has rank at most k and fan-out
at most k.2

4. The problem where the parameter contains the rank, the fan-out, and the length
of the derivation. That is, we again have ((G,w),k) € P if and only if w e L(G),
the derivation in w takes less than k steps, and both the rank and fan-out of G
are less than k.

The first problem is proven to be W[1]-hard already for ¢ = 2, again by a reduction
from the k-clique problem. There is currently nothing to suggest that this problem is
in W[1], and unfortunately W[1] is likely already rather hard.

The second problem is proven to be W[SAT]-hard already for rank 1, by reduction
from a type of satisfiability problem that is W[SAT]-complete. This is (most likely)
an even harder class than the previous parameterization, and mostly serves to illustrate
the need for a better choice of parameter. This also makes the third problem W[SAT]-
hard, since if fixing the rank to one gives W[SAT]-hardness it cannot help us to include
it in the parameter, as it then only goes up by a constant in infinitely many hard cases.

Finally, consider the fourth problem, where the rank, the fan-out, and the deriva-
tion length are all included in the parameter. As we keep adding more and more of
the problem to the parameter the complexity of the resulting parameterized problem
should hopefully fall (up until the (p,|p|) case discussed above), the limitation on
the derivation length limits the length of the strings possible, but still does nothing
to control the overall size of the grammar. However, the proof of W[1]-hardness for
the first problem type is here reapplied, as the reduction incidentally also constructs a
grammar where all derivations are short (in the overall size of the grammar). Luck-
ily it can be proven that this problem is in W[1]. This is proven by using a special
case of parsing short derivations in context-sensitive grammars, which is known to be
W[1]-complete, and applying this to our short LCFRS derivations through a careful
FPT reduction.

2 It may seem more logical to make k the sum or product of the rank and fan-out, but since all treatment
of the parameter is through arbitrary computable functions this is unnecessary, as for example squaring
the maximum of the rank and the fan-out is necessarily greater or equal to the product of the two.

CHAPTER 4
Constraining Language
Concatenation

In this chapter we consider another operator which in some ways operates in the oppo-
site way of the binary shuffle operator. The binary shuffle operator for two languages
L and L’ constructs a language L ® L’ which is a superset of the concatenation L-L'.
This superset is created by, in a sense, softening the requirement of the concatenation
point, and letting strings interleave into each other. Here we will introduce the cut
operator, which creates a subset of L-L’, which contains all of the concatenations for
which it is not in any way ambiguous where one string ends and the next starts. This
is quickly clarified once we leap into the definition.

We will in addition compare and contrast this type of operator with a number of
features and properties of real-world regular expression engines. This chapter, since
it deals with a somewhat singular practical regular expression feature, does not have
a *-marked section, and instead has a slightly more technical slant in various parts.
Familiarity with regular expressions is important for understanding the material here
presented.

4.1 The Binary Cut Operator

The cut operator is a kind of concatenation of languages. To state this definition we
need some additional notation. For any string a;---o, € £* (i.e., o € ¥ for each i)
let prefix(ot-+-04,) = {1,000, ..., 010, }, that is, all non-empty prefixes of a;---,.
Let P(S) denote the power-set of a set S. Then the definition of the cut is as follows.

Definition 4.1 (Binary Cut Operator) Let !: P(X*) x P(X*) - P(Z*) be a binary
operator such that

' ={uv|uer,ver w'¢rforallV eprefix(v)}
for any languages £, £/ € X%, o

Notice that this definition ensures that £ ! £/ € £- £/, that is, the cut is a subset of
the concatenation. The inclusion is not necessarily strict, for example if £ = {€} it
necessarily follows that £ ! £/ = £-£'.

35

Chapter 4

36

Let us look at a series of examples (partially borrowed from Paper 111, see Section 2
of that paper for further examples).

Example 4.2 (Empty Cuts) Let £ = {ab,abb,abbb, ...} and ' = {bc,bbc,bbbc,...}
(that is, £ = abb* and L' = bb*c). Then £ ! £’ is the empty language. Let us consider
one of the strings in the concatenation, abbc. This string cannot be in £ ! £, as,
looking at Definition 4.1, splitting it into u = ab and v = bc, while fulfilling u € £ and
ve £/, is not permitted as b e prefix(bc), and abb € L. Picking u = abb leaves v = c,
which is not in £/. o

A more interesting language generated by a cut is the following.

Example 4.3 (Very Unsymmetrical Cuts) Let £ = {a,b,aa,bb,aaa,bbb, ...} and let
' ={ac,bc}. Then L! L' = {abc,bac,aabc,bbac,aaabc,bbbac,...}. The reason is
simple; if the u (in the sense of Definition 4.1) is chosen to be some number of “a’s,
then v cannot be picked to be ab, since the a prefix will be consumed by £. Similarly,
if the string starts with a b it becomes impossible to pick v as bc.

This illustrates that while the cut £ ! £" produces a subset of £- £’ it does not
necessarily produce a language of the form L-L' for some LS £ and L' € £/. o

4.2 Reasoning About the Cut

As a short aside, let us consider how the cuts relate to the other formalisms presented
here. Where the shuffle operator effectively takes two strings, let us call them w and v,
and interleaves them in such a way that, reading the result left to right, we (in general)
have no idea which string each symbol belongs to. Perhaps v has not even started yet,
or perhaps all of it has already been seen. The cut, on the other hand, is such that it
only permits the concatenations where there is no ambiguity about where w ends. The
only way wv is in the language generated by the cut is if the point of concatenation
is decided entirely by the language w belongs to. That is, reading a string from a cut
language from left to right we know that we have finished reading the w part when it
is no longer possible for w to be longer. Then the remaining string must be the v part.

It is in this way the cut and the shuffle can be viewed as opposite directions from
the concatenation, where the shuffle permits more ways of combining w and v, and the
cut permits only a subset of all possible concatenations based on removing ambiguity
when reading from the left.

4.3 Real-World Cut-Like Behavior

In the case of the cuts the real-world motivation is rather immediate and, hopefully,
compelling. Regular expressions are a very popular tool for programmers, and regu-
lar languages of other forms also show up with great frequency. However, in mixing
non-deterministic constructions for testing language membership and the determinis-
tic flow control of the “main” program some very interesting effects can be achieved
(or, alternatively, unexpected problems may be created, as the case may be).

Constraining Language Concatenation

Consider the Python function shown below, which successively matches multiple
regular expressions to the same string.

Listing 4.4 (A Repeated Regular Expression Python Program)

match argument against successive regular expressions
def matchx(s):
match a prefix of s against aax|/bbx*
ml = re.match (" "aax*|bb*+", s)
if ml != None:
1if ok, match the remainder of s against ab/bc
m2 = re.match("ab|bc$", s[ml.end(0):])
if m2 != None:
1if both succeded report success
return "Matched"
otherwise failure
return "Did_not _match"

Basically, the code in Listing 4.4 is a function, which takes a string s as input, and then
matches a prefix of s to the regular expression aa™ |bb* (the language {a,b,aa,bb,aaa,
bbb, ...}), if that match is successful the remaining suffix, that is, whatever remains
after removing the prefix that the first regular expression matched, of s is matched
against the regular expression ab|bc (the language {ab,bc}). If that match is success-
ful success is reported.

The language “matched” by this program is exactly the language (aa*|bb™*) !
(ab|bc). Tt might be easy to think that is should match (aa* |bb*) - (ab|bc) (which
includes e.g. aab and bbc, which are not included in Example 4.3), but this is not the
case. The thinking is exactly the one discussed for the cuts, the deterministic behavior
of the outer program lets the first regular expression read as much as it wants, and
the default behavior or regular expressions in most software libraries is to make the
longest possible match. Once that has happened the suffix has been deterministically
selected, and the second regular expression must match whatever is left for the overall
match to work. In comparison, (aa™|bb*)- (ab|bc) features the non-deterministic be-
havior “intended” in regular expressions, the default behavior in most software pack-
ages will still be that the first part should match as much as possible, but if the overall
match fails it will backtrack and choose a smaller match (if possible) in deference to
the entire expression succeeding.

4.4 Regular Expressions With Cut Operators Remain Regular

4.41 Constructing Regular Grammars for Cut Expressions

Next we in short recap a result given in full in Paper III, showing that adding the cut
operator to regular languages (or, of course, regular expressions) creates regular lan-
guages. We will, with some further extensions later, call these expressions which add

37

Chapter 4

38

the cut to the normal set of regular expression operators cut expressions. The straight-
forward way to demonstrate that cuts preserve regularity is by employing a product
construction, a variation of which was already employed in Section 2.4 to demonstrate
the regularity of regular expressions extended with the binary shuffle operator.

Assume that we have some regular grammars (in the vein of Figure 1.3) Ry and
R», and that we wish to construct a regular grammar R for R; ! R,. Basically we will
for each non-terminal A; in R; and each non-terminal A, in R, construct the non-
terminals (A, 1), (1,A2) and (Aj,A;) in the new grammar. The extra symbol L is
intended to signify “absent” here, and the new grammar will start out in (S, 1) where
S is the initial non-terminal from R;. The full construction then carefully ensures that
whenever we have read a prefix of the input-string that R| could accept it starts R, on
ifs initial non-terminal (i.e., if we are in (A, B) and Ry can get rid of A without reading
any more we go to (A,S’), where S’ is the initial non-terminal for R;). That is, as
the string is read whenever R can accept the string it restarts R; in its initial state,
whenever R, can accept the grammar for R; ! Ry can accept.

The basic intuition behind this construction is that for every prefix that R; can
accept Definition 4.1 says two things:

e It is possible that R, may start matching at this point, if R; cannot go on to
match something longer.

* It is not allowed that we have already switched to matching in R,.

In effect the construction speculatively keeps track of both R; and R;, ensuring that
R, gets its longest possible prefix of the string read, while keeping track of what R,
has otherwise done.

The construction is hard to further simplify in a form that is more instructive than
the full version, so refer to Lemma 2 of Paper III for a deeper explanation.

4.4.2 Potential Exponential Blow-Up in the Construction

While the cut expressions generate only regular languages, proving no more powerful
than regular expressions, this does not mean that it is a pointless formalisms. There
are two additional considerations to make.

1. Does the formalism allow something important to be conveniently expressed?
2. Does it express some languages in a more compact way?

In the case of cut expressions both are true. Modeling the loss of non-determinism
illustrated in Listing 4.4 (and later in Listing 4.7) is interesting, and as we will demon-
strate next there are also some families of languages where the smallest regular expres-
sion is exponentially larger than the equivalent cut expression, even when restricting
ourselves to use only a single binary cut operator.

The core of this argument is simply that the cut can express a set difference of
sorts on languages.

Lemma 4.5 Let'=Xu {#}, we assume that # ¢ X. Then ((L#I™)|e) ! (Z*#) = (2*~
L)# for all languages L over X. o

Constraining Language Concatenation

A complete proof of this lemma is out of the scope of this introduction, but it is fairly
intuitive when one considers the cases. Assume that w € L, then, for the lemma to
hold, w# should not be in ((L#I™*)|€) | L*#. This is clearly the case, as the L#I™* will
consume it entirely, leaving nothing for the trailing X*# to match. This in fact holds
for any string v with w# as a prefix, as the I'* keeps consuming all symbols. In the
other direction, assume that w ¢ L. Then w# is not matched by L#I™*, meaning that the
€ part of the branch is chosen, and then X£*# matches it and the match succeeds.

To exploit Lemma 4.5 we can now construct a regular expression R over X such
that the shortest string R does not match is exponential in length (compared to the
length of R). We can then apply Lemma 4.5, taking L as £(R), to produce a cut
expression for which the shortest matching string is exponential in the length of the
expression. From this we can then draw the conclusion that the smallest regular gram-
mar (or finite automaton or regular expression) is at least exponentially larger than
the cut expression. Recall Definition 1.6 in preparation, and note that R* (for some
regular expression R and k € N) is not a regular expression operator, but is here used
as an abbreviation for

R-R--R.
—_—
k times
If regular expressions are extended with an actual R* operator the explosion in size
would be even greater.

We select L= {0, 1,$} as the alphabet, and let A= {0, 1}. For each n € N the regular
expression R, has five components, R, = A|B|C, | D, |E,, which are as follows. In the
end the language considered will be (X* \ L(R,))#, so the aspect to consider is e.g.
the language £* \ A and so on.

1. A=AZ*|$A*1A*$Z*. Note that all strings in £* \ A start with $ and contain no
1 until the next $.

2. B=X*A|Z*$A*0A*$. Note that all strings in =* \ B end with $ and contain no
zero between the last two $ symbols.

3. C, = T*SAHIA*$TF |Cn0---Cpn—1 Where G, ; = Y*AIT* for each i. Note that
all strings in £* \ C, have exactly n zeroes and ones between each pair of $
symbols.

4. Dy =Dy || Dpn-z, where D, ; = Z*$AOA*OA*SATIA*$Z* for each i. Note
that the strings in £* \ D, are such that every substring xy$ (with x,y € A",
which will be enforced by C,), is such that if the ith symbol in x is a zero, and
the ith symbol in y is a 1, then symbols i+ 1 through z in x must be ones.

5. Ey=Ey|-Epp- where E,; = Z*$A'01""I$ATIA*1A*$X* for each i. Note
that all strings in X* \ E,, are such that every substring xy$ (with x,y € A",
which will be enforced by C,,), is such that if the ith symbol in x is a 0, symbols
i+ 1 through » are ones, and the ith symbol in y is a 1, then the remainder of y
must be zeroes.

39

Chapter 4

40

Taking all these together we learn that each w e (£* \ L(R,)) are strings such that
w=$x1$x8:-$x,,$ where each x; is a string of n zeroes and ones (due to C,,), such that
x1=0---0(due to A), and x,, = 1---1 (due to B). At most one zero in x; can be turned into
a one in x;;1, and only if all the subsequent positions were ones in x; and are zeroes
in x;;. From this it directly follows that the shortest string in £* \ £(R,) will be the
sequence of all n-bit binary strings in order, for example

$000$001$010$011$100$101$110$1118$ € R3.

In addition a number of longer strings exist, which show up since a one in x; may turn
into a zero in x;;1. However, the only way to get from the initial zero sequence to the
final one sequence is to increment by one in the binary addition sense at least 2" times.

Notice, however, that the actual expression R, is on the order of n? symbols long,
where C,, D,, and E,, are the big part. Applying Lemma 4.5 constructs a cut expression
accepting (L* \ L(R,))#, which is still on the order of n> symbols long, but as argued
above the shortest string it accepts is exponential in 7.

Non-extended regular expressions, regular grammars (as sketched in figures here)
and finite automata are all such that the shortest string they accept is at most linear in
the size of the expression/grammar/automaton (if they accept any string at all). This
is easy to see, some efficient shortest path algorithm can be employed to find a path
through the expression/grammar/automaton. As such, cut expressions are exponen-
tially more succinct in some cases, and converting an arbitrary cut expression into one
of those listed formalisms may create an exponentially larger representation. This will
be rather key to understanding the complexity of solving the membership problem.

4.5 The lterated Cut

In a further parallel with Chapter 2 we also consider a unary iterated version of the
cut. Much like R° =ROR®--@Rwe let R* =R ! (R! (R!---(R!R)--)). However,
notice that while the shuffle operator is associative, the cut operator is not.

Example 4.6 Let us consider two expressions differing only in associativity ((ab)* !
a)!band (ab)* ! (a!b).

e For ((ab)* !'a) ! b clearly (ab)* ! a is the same as (ab)*a, since the (ab)*
part cannot cover the final a, so L((ab)* ! a) = {a,aba,ababa, ...}, and, hence,
L(((ab)* 'a) ' b) = {ab,abab,ababab,...}.

» However, if we instead consider (ab)* ! (a!b), we notice that a ! b is the same
as ab, so we have (ab)* ! ab which is clearly empty, as the (ab)* will consume
all repetitions of ab ensuring the second part never gets to match anything.

It follows that the cut operator is not associative. o

The iterated cut, in a sense similar to how the binary cut models the program in List-
ing 4.4, permits the modeling of loops of regular expression matching, like in the
below listing.

Constraining Language Concatenation

Listing 4.7 (A Looping Regular Expression Python Program)

match s against the regular expression R repeatedly
def matchy (R, s):
keep matching
while True:
match s to re once

m = re.match (R, s)
1f the match failed report failure
if m == None:

return "Did _not match"
otherwise, extract the remainder of the match
s = s[m.end(0) :]
if the whole string matched, report success
if len(s) ==

return "Matched"

This listing will give the same behavior as trying to match s to R**.

The iterated cut is hard to express directly in a regular expression with just the
addition of the binary cut operator. Notably it is not a matter of nesting cuts inside of
Kleene closures, like (R ! R)* or similar, as this will give too much non-deterministic
freedom in general. However, adding both the binary cut operator and the iterated
cut to regular expression still produces expressions that can only generate regular lan-
guages. The construction for this part is slightly trickier than for the case of the binary
cut operators, so it is best to refer to Paper III where complete and formal constructions
for both cases are given.

4.6 Regular Expression Extensions, Impact and Reality

4.6.1 Lifting Operators to the Sets

Recall Definition 1.6 where the basic operations in regular expressions are defined. It
is an important fact to note that each of those classical regular expression operators
are expressed string-wise. That is, an operator f takes n argument subexpressions
Ry,...,R,, and the language it generates is then

LF(R1y-r R2)) = {f(V1se e vn) | V1 € L(RY), vp € L(Ry))-

That is, the classic operators all operate “point-wise” on strings, and this is then lifted
to the level of sets (i.e. we can take the categorial view and consider a functor here) to
generate languages. However, the cut does not operate on this level. Instead Defini-
tion 4.1 operates on the level of the language. We can talk about L ! L' for languages,
but informed that w € L and v € L’ we cannot from this determine whether wv e L ! L',
This should be viewed as a flaw with the cuts, their introduction into expressions
does change the nature of the expression in a fundamental way. On the other hand,
the impact is comparatively small when contrasted to the cut-like operators that many

41

Chapter 4

42

regular expression software packages include. These have behavior that is even further
from the clean nature of the classical operators.

4.6.2 An Aside: Regular Expression Matching In Common Software

This way of phrasing how matching happens may appear unusual for anyone more fa-
miliar with the more classic regular expression constructions, where the semantics are
described in a composed way, i.e., L(R]|Ry) = L(R;) U L(R,), etc., or by construct-
ing finite automata for the expression (constructing the Glushkov automaton [Glu61]
and determinising it, or directly constructing a deterministic finite automaton using
e.g. derivatives [Brz64]). Most practical software packages, however, use a depth-
first backtracking search across some abstract syntax tree representation of the regular
expression. The reasons for this are two-fold.

1. The efficiency of this approach is in many cases great. Constructing the syntax
tree is efficient, and the representation is in general far more compact than the
automata approach. The actual search may in the worst case be a lot slower
(exponential in the length of the string), but the semantics are straightforward
enough that the task of structuring the expression in a way that gives efficient
matching in the most common cases can be left to the programmer.

2. It enables a multitude of additional regular expression features. Most immedi-
ately it makes it possible to deterministically talk about which part of the regular
expression matches which part of the string. That is, (a* |b*)(a|b)* matches
aaababa, but which part of the expression matches the aaa prefix? In the the-
oretical setting this is a nonsense question, all we state is that aaababa € L, the
how is entirely undefined. In regular expression software packages however the
initial three as will be matched by the first a*, and this information can be ex-
tracted with the API provided. Which parts of the expression will “prefer” to
match what can be controlled further with a variety of operators, and the pieces
of the string matched by a certain subexpression can even be recalled inside the
expression (permitting the language {ww | w € ¥} to be matched by recalling a
copy of the string already matched).

In short; the accepted approach has numerous implications for the functionality and
performance of regular expression matching in practice.

4.6.3 Real-World Cut-Like Operators

There are a variety of operators in practical regular expression packages which behave
somewhat similar to cuts. The first, and most common, are the possessive quantifiers.
Let us look specifically at the possessive variation of the Kleene star R* as defined in
Definition 1.6, denoted R**. Defining the language generated by R** leads to disap-
pointment however, L(R*") ={e}u{vw|ve L(R),we L(R*")} inductively. Unfortu-
nately this is precisely the same language as generated by £(R*), which is because the
possessive quantifier does not operate on the same level as classical regular operators,
or even the set-level behavior of the cut operators. Instead the semantics of the posses-
sive quantifiers are intertwined with the overall matching of the entire expression in a

Constraining Language Concatenation

way that is hard to formalize. Consider the examples in Table 4.8 which are produced
using the Java (1.6.0ul8) regular expression implementation. Notice how applying

Table 4.8: Some regular expressions using possessive quantifiers and the language
they accept in Java 1.6.0ul8.

Expression ‘ Language

(aa)**a {a,aaa,aaaaa,aaaaaaa, ...}
((aa)**a)* | {€,a,aaa,aaaaa,aa0aaaa,...}

((aa)*"a)*a {a}

the Kleene star to the expression in the first row does not (in the second row) generate
for example aa, despite a being in the language of the first row.

We will not attempt to deeply explain the semantics of this operator, but it operates
by manipulating the internal backtracking search. The outcome does not easily fit into
the compositional classic explanation of how regular expressions generate languages.
See Paper III for more examples of this type of operator.

As an addition, some regular expression engines feature an additional binary op-
erator, (*PRUNE), that compares fairly directly to the binary cut operator (in that it
is not attached to a Kleene star), but still has semantics that are hard to comprehend
form the compositional perspective. See Table 4.9 for some examples of expressions
and the languages recognized in Perl 5.16.2.

Table 4.9: Some regular expressions using the («PRUNE) operator and the language
they accept in Perl 5.16.2, similar to the examples in Table 4.8.

Expression ‘ Language
(aa)* (*PRUNE) a {a,aaa,aaaaa,aaaaaaa, ...}
((aa)* (xPRUNE) a)* @
((aa)™ (+xPRUNE) a)*a %]

4.6.4 Exploring Real-World Regular Expression Matchers

Paper IV explores the behavior of these practical software package matchers. They
effectively operate by constructing an automaton (or grammar) where rules are prior-
itized, whenever there are multiple rules that could be applied there is a preferred rule
that is tried first. If applying that rule does not lead to accepting the string the proce-
dure backtracks and tries the other options. The full discussion requires a deep tech-
nical look at the behavior of the software, and is best explored by reading Paper I'V.
Suffice it to say, beyond exploring the semantics to analyze additional operators, this
search procedure will additionally at times require exponential time. Consider for ex-

43

Chapter 4

44

ample the expression (a|a)*, trying to match the string a---ab. It will fail to match the
b, but in the process the matching procedure will pick whether the first or second a
should match each a in the string, and when the failure on b happens the backtracking
will attempt every other way of matching the as to the string. In fact, attempting this
match using Java on the authors (reasonably modern) machine the runtimes shown in
Table 4.10 are achieved. The main contribution in Paper IV is in statically analyzing

Table 4.10: The time in seconds it takes to match the string a---ab to the regular
expression (a|a)* in Java on the authors desktop PC, as it depends on the number of
as in the string. Notice the almost perfect power of two exponential growth.

Number of “a”sinw=a-ab | 23 | 24 | 25 | 26 | 27 || 30
Seconds to match w to (a|a)* | 1.04 | 2.00 | 3.66 | 7.22 | 1356 | - | 118.81

regular expressions for this type of exponential worst-case behavior (i.e., a* can never
take exponential time, since there is only one choice, but (a*)* can).

One additional point of interest in Paper IV is how the matcher picks which choice
to explore first. This is done by giving finite automata priorities, where one choice
is more prioritized than another. This leads to the definition of the prioritized non-
deterministic finite automata (pNFA) formalism in Paper IV. These are fairly straight-
forward, if we imagine the rule

(6) — (as) = (as)

we now say that the first possibility, which generates the non-terminal A, is prioritized.
That is, if A can generate the rest of the string we prefer to have it do so, and try
generating the rest with B only if A fails. This distinction makes no difference for the
language accepted, but it makes it unambiguous how the string is generated, which
ensures that the solution to a parsing problem instance is unequivocal.

4.7 The Membership Problem for Cut Expressions

Parts of the membership problem for cut expressions should already be clear; namely,
Section 4.4 and Section 4.5 together demonstrate that the cut expressions generate
only regular languages. The non-uniform membership problem for regular languages
is decidable in linear time, so we can decide the non-uniform membership problem
for cut expressions in linear time, since we can just rewrite the cut expression into a
regular grammar or similar (through the arguments in the aforementioned sections).
However, as Section 4.4.2 demonstrates, the regular grammar may be exponen-
tially large, so the equivalence to regular grammars gives us no more than an ex-
ponential algorithm for deciding the uniform membership problem. Luckily a very

Constraining Language Concatenation

direct table parsing algorithm can decide membership in cubic time. Let us sketch
very quickly how it is done.

Algorithm 4.11 (Parsing for Cut Expressions) Take as input a cut expression E and
a string a;---0y,. Let Sg denote the set of subexpressions of E (including E itself).
1: Construct the table 7 : Sg x {1,...,n+ 1} x{1,...,n+ 1} - {true,false}.
2: Set T(E,i,j) :=false for all E, i, j at the start
3: for S € Sg, working bottom-up through the sub-expressions do
if S=¢ then T(S,i,i) := true
else if Se X then T(S,i,i+1) := true for all i with @; =S
else if S = | | E; then
T(S,i,j):=trueforalli< js.t. T(E1,i,j)VvT(Ei,j)
else if S = E; - E, then
T(S,i,k):=trueforall i< j<ks.t. T(Ey,i,j)AT(Es,j,k)
10: else if S = E| then

11: T(S7i1,in) :=true forall n, i} <--- <y, s.t. T(Ehl'l,iz) /\---/\T(El,in_l,in)
12: else if S = F; ! E; then

13: T(S,i,k) for all i < j <k such that:

14: T(E),i,j) AT (Ea, j,k), and,

15: -T(E,i,j") forall j<j <k.

16: end if

17: end for

This algorithm is trivially cubic (quadratic in the length of the string), since every
table position is set true at most once. The case for the shuffle closure is not included,
but is a trivial addition.

After the threat of potentially exponentially large regular grammars the cubic time
(and space) of the above algorithm may be calming, but given the typical efficiency of
matching classical regular expressions cubic time is still not entirely pleasing. Better
algorithms remain an open question however, very notably Section 4.4.2 demonstrates
a case where applying a cut exponentially blows up the size of the smallest corre-
sponding regular grammar exponentially, but for the upper bound we only know that
it cannot be worse than non-elementary, which is not very satisfying. This in fact fol-
lows from the product-style construction discussed in Section 4.4.1, and is discussed
at greater length in Paper III.

45

Chapter 4

46

CHAPTER 5
Block Movement Reordering

This short chapter discusses matters of block reordering, which is once again a non-
obvious term, this time lifted form the field of edit distance, where operations that
modify multiple symbols in a contiguous substring at once are referred to as block
operations. Specifically the topic of interest is attempting to study the results of re-
ordering nodes in the parse tree for a string, which gives rise to a sort of hierarchical
block movement reordering in the underlying string language.

5.1 String Edit Distance

String edit distance is a long studied field. It is concerned with defining a distance
between strings using a sequence of operations (reminiscent of the rule-based deriva-
tions discussed in earlier chapters, but starting from another, possibly longer, string).
The distance measure is defined in terms of a set of operations, each of which makes
some small modification to a string, and then the distance between a string w € £*
and v € X* is the minimum number of operations (possibly weighted in some way) we
need to apply to modify w into v. The problem of finding this sequence is known as the
string correction problem. A classic set of operations for this is to have an operation
to delete a single symbol and one to insert a single symbol. Making the distance from
e.g. abc to cca four, since the initial ab must be removed (two removal operations)
and ca must be added at the end. A typical additions to the set of operations is to
add an operator to replace one symbol by another, this set of three operators is called
Levenshtein distance [Lev66]. The next typical addition, and most important for us
here, is the swap, which swaps the positions of two adjacent symbols, the resulting set
of operators is called Damerau-Levenshtein distance [Dam64].

5.2 A Look at Error-Dilating a Language

The direction of interest here starts out from the question of an error dilation of a
language. Consider Figure 5.1. That is, we choose a language class G (perhaps the
regular or context-free languages) and a string edit distance e, then for each language
L e G and each k € N we define L,_; to mean that w € L, if and only if there exists
some v € L such that w is k or less distance from v. Notably, as k approaches oo the

47

Chapter 5

48

EX—

Figure 5.1: A diagram of the dilation of a language through error measures.

language L, approaches L*.

Performing such a construction is fairly straightforward for most choices of for-
malisms. If we consider just the case of insert and delete with a regular grammar
G, and the constant k chosen, then we can for each non-terminal A construct k£ + 1
new non-terminals Ag,Ag_1,...,A9. The non-terminal A; has all the rules that A would
have, with 7 preserved, so for example the left rule turns into the right in the following

way.
() — (ae) () — (ae)

In addition for each & € X and non-terminal A; with i > 0 we add the following rule.
() — (as)
This allows one “insertion” to be used, we count down the number allowed and add
an arbitrary symbol.
Finally, for each existing rule that would add a symbol we simulate a deletion by

adding a rule that counts down i but “fails” to generate the symbol, as above with the
left original rule and the right new rule (though one for each 0 <i < k must be generated

of course).
() — (as) (&) — (9)

Finally, we let the starting non-terminal S go to Si (to signify that we start out with k&
operations available). Notice how, once the subscript gets to zero, only the “original”
rules are usable, each use of a insertion/deletion rule “costs” one from the subscript.

Block Movement Reordering

5.3 Adding Reordering

5.3.1 Reordering Through Symbol Swaps

Adding the simple symbol swap to the prior construction is only minimally more
complex. We can extend the tagging of the non-terminals to remember “we pretended
to swap o for a §”, meaning that we generated a B from a rule that should have
generated (, and this tagging of the non-terminal lets it only take rules which have
been modified such that they originally generated 3, but in this modified rule they
generate the missing & and the derivation continues on as normal.

5.3.2 Derivation-Level Reordering

We now get to the real aim of this section, the intent of this edit distance is to model
some sort of error or imprecision, however, in the context of a lot of languages simply
replacing symbols may not really reflect the nature of errors properly. Consider for
example in natural languages, where large grammatical restructurings may be only
“slightly” bad, since they still obey some basic rules. That is, “She chases a blue ball”
is correct English, whereas “A blue ball she chases” is slightly ungrammatical, but
still completely understandable, whereas “ball she chases a blue” is incomprehensible
despite involving less reordering.

We have so far dodged the issue of parse trees, but here they become rather core
to the question. Consider Figure 5.2. This illustrates (a possible interpretation of)

N
L,
1N
-7 R
T

blue ball

Figure 5.2: A parse tree for the sentence “She chases a blue ball”, the internal nodes
of the tree corresponds to the non-terminals which generated that part of the sentence,
the words in the leafs are the symbols of ¥ in this case.

the structure of the natural language sentence. It stands to reason that small modifi-
cations of this tree will have a closer relationship to the original sentence than small
modifications to the string which forms the sentence.

49

Chapter 5

50

5.3.3 Tree Edit Distance

Tree edit distance is a natural way to think about this, that is, we would like to create
an error dilation of a language, in the style of Figure 5.1 using tree operations on the
parse tree (which requires a specific instance of a grammar for the language to make
sense) to modify the final strings.

The problem of tree edit distance is fairly well explored in some limited settings,
see e.g. [Sel77, Tai79]. This work has for the most part however been constrained
to just allowing insert and delete operators, the swap, or similar subtree movement
operators, is a trickier matter [ZS89, Kle98, Bil05]. This is partially necessary, the
tree edit distance on unordered trees (i.e., we allow deletions and insertions of nodes,
but siblings in the tree have no order) is NP-complete [ZSS92]. We can simulate
the unordered case if swaps are permitted, by simply replacing each internal node by
a long chain of copies of the node. This way the swap remains cheap (it does not
care how many nodes it moves in swapping two siblings) while making insertions and
deletions expensive. If we add sufficiently many of these nodes the result will be that
all orders can be achieved cheaper than it is to perform a single insertion or deletion,
effectively making the problem behave like the unordered case.

5.4 Analyzing the Reordering Error Measure™

Paper VI considers the very limited case of only permitting tree swaps in the distance
measure, each swap having a cost of one. Let us consider the proper definition, re-
calling the definitions of trees from Section 2.9.1. First we define the swap distance
between permutations.

Definition 5.3 Let 7, c N" denote the set of permutations of length n, that is, p---py, €
m, if and only if {py,...,p,} ={1,...,n}. Then p;---p, € W, has a swap distance less
than or equal to k, denoted swap(p;---pn,k) if and only if

* k>0and p---p, =1--n,
* there exists some i such that swap(p1-+pi—1 pi+1 PiPi+2 - Pn,k—1). o
Then the tree variant is as follows.

Definition 5.4 For two trees ¢,t we say that ¢ and ¢ are within tree swap distance
k, denoted swap(t,t’,k), if and only if = a[t,...,t,] and ¢’ = [¢],...,t;] for some
a € X and n, and there exists some pi---p, € W, and Iy, ..., I, € N such that

o k>Yioli
o swap(p1--pu,lo), and
* swap(tj,tp,,1;) for all i.

The triple (¢,¢’,k) is a “yes” instance of the tree swap distance problem if and only
if swap(t,t' k). °

Block Movement Reordering

Unfortunately this problem is proven to be NP-hard in Paper VI (the problem is ob-
viously in NP, since the permutations for each level of the tree can be guessed and
then verified in polynomial time). Let us briefly outline the process. The reduction
starts with the extended string-to-string correction problem, which is an edit distance
with only delete and swap operations'. This problem is known to be NP-complete
(see e.g. [GJ90]). The reduction makes an intermediary stop in a problem that may be
interesting in itself.

Definition 5.5 Let M : NxN — N be an n by n matrix (i.e. a matrix with n rows
and columns, letting M(i,j) denote the value at the ith row and jth column), then
(M, k) is a “yes” instance of the swap assignment problem if and only if there exists a
permutation p;---p, € T, and [€ N such that

 swap(p1-+-pn,l)
© kx1+Y M(pi,i) ©

That is, the problem is to decide whether it is possible to swap rows positions in M in
such a way that the sum of the number of swaps used and the diagonal in the resulting
matrix is less than or equal to k. The reduction is such that e.g. position M (i, j) is
zero if symbol i of the first string in the original edit distance problem is the same as
symbol j in the second, combined with some trickery to enable deletions.

This matrix problem is then in turn reduced to the tree swap problem of Defini-
tion 5.4. This reduction is not overly difficult, the tree constructed will have height
3, the root has n immediate children corresponding to the rows, these have n children
corresponding to the column positions in that row, and finally these have a coding
of the number they should contain as children. Everything is distinctly coded so the
swaps can only be used to reorder the rows, and to make the binary representations
equal (which costs exactly the absolute difference between the numbers).

The fact that the tree swap distance is NP-complete is unfortunate, however, the
amount of distance permitted in the error-dilating of languages should be very con-
strained (e.g. a sentence with three or more errors will often be incomprehensible
already), so fixed parameter analysis and other more nuanced analysis would be of
great interest.

! This statement abuses the notion of a distance heavily, since it is asymmetric. It does however fall into
a similar class of problems.

51

Chapter 5

52

CHAPTER 6

Summary and Loose Ends

None of the matters here can be considered settled or treated with some deep finality.
This is a snapshot of ongoing research, here tied together with an overarching theme,
but it is both likely and desirable that everything here treated will be supplanted with
new greater results in the future. As such this concluding chapter attempts to look
forward, while and noting the missing pieces, as well as summarizing some of the
aspects of the attached papers that have not yet been brought up.

6.1 Open Questions and Future Directions
6.1.1 Shuffle Questions

There are two open questions from the preceding licentiate thesis [Ber12] that may be
interesting to recall.

1. Deciding the membership problem for the shuffle of palindromes:

{ww® | wis any string, w® is w reversed}.

2. Deciding the membership problem for the language of shuffle squares,

{wow|wis any string}.

Notice that as the languages we are concerned with are specified as part of the problem
these should be viewed as non-uniform membership problems.

The first remains a point of interest, Paper I demonstrates that the non-uniform
membership problem for two linear deterministic context-free languages is NP-hard
(see Chapter 2), and the shuffle of two palindromes seems like, in a spirit rather similar
to the ideas of Paper V, or possibly more illustratively the Chomsky-Schiitzenberger
theorem [CS63], the next step. That is, the palindromes are sort of the most primitive
representation of the basic power that differentiates the linear deterministic context-
free languages from the regular, in that both the intersection and homomorphism in
the Chomsky-Schiitzenberger decomposition of it do “nothing”. The author has no
speculation whether this problem should be expected to be in P or not.

The shuffle square, on the other hand, has seen some important developments
since [Ber12], and is proven NP-complete in a rather tricky reduction in [BS13].

53

Chapter 6

54

In addition, let us note that the problems as stated above deal with languages with
arbitrarily large alphabets (i.e., when it says that w is any string it may be over an
alphabet up to |w]| in size). The reduction in [BS13] works for a finite alphabet version
of the shuffle square as well, meaning that the language is NP-complete either way.
No results are known for the palindrome shuffle, so a possibility is that the problem is
NP-complete for arbitrarily large alphabets, but is in P for all alphabet sizes smaller
than some constant.

Beyond that, there are numerous additional problems that may be considered in
shuffle, especially as many aspects are of practical interest. Beyond simply improving
on many of the results in Paper I, and considering both more generalized and restricted
cases (shuffle on trajectories is a lively and interesting case), the problem the author
most wants to highlight is the one considered in Paper V. That is, proving that for
all context-free languages L € ¥* and L' c T (with 2T = @) the shuffle Lo L' is
context-free if and only if one of L and L' is regular.

6.1.2 Synchronized Substrings Questions

The synchronized substrings formalisms, such as linear context-free rewriting sys-
tems, are a prime example of where the details of parsing complexity are hugely im-
portant. The uniform membership algorithm appears inefficient from the classical
complexity theory perspective, but in practice the algorithms are considered reason-
ably efficient (recall Section 3.4.3). Paper II does find some potentially efficient cases,
but they are not necessarily entirely satisfactory, as the one truly efficient case iden-
tified is where the rank, fan-out and derivation length are included in the parameter
(i.e., if all three are small the parsing problem is efficient).

The most obvious case not yet studied is to take the opposite approach from the
classical non-uniform membership problem'; we let the length of the string be the
parameter and consider the grammar in full, or near full. To see the reasoning here
the intended application may need to be clarified. These formalisms are typically
used for natural language processing. In this case it is easy to see that the sizes of
the components are backwards from what is usually assumed, the strings are simply
natural language sentences, and, while they can be long, like this run-on sentence,
there are still very real practical limits on how many words there can be in one. A
reasonably complete grammar for English however is vast at the best of times, simply
enumerating exceptions will create tens of thousands of rules. As such the complexity
in the grammar is actually more important than the complexity in the string.

6.1.3 Regular Expression Questions

The two Papers III and IV both deal with very similar issues, in that they are motivated
by the order-dependencies that exist in practical regular expression semantics as an
effect of matching methodology employed. Their approaches are very different how-

! Notice however, here we talk about parameterized complexity, the intent is not to clumsily assume some
parts constant like in the non-uniform case. Parameterized complexity bounds still take the parts put in
the “parameter” into account, but differentiate between how large a role that part plays in the complexity.
See Section 3.5.1.

Summary and Loose Ends

ever, in that Paper III attempts to bring an approximation (attempting to make them
behave nicely within the classical framework) of these effects into a formal frame-
work, whereas Paper IV tries to analyze the actual state of being of these regular ex-
pression engines using formal techniques. The way forward here is not immediately
obvious, there are clear open questions that follow directly from Paper III (e.g. an up-
per bound on the automaton size), as well as some mechanical improvements already
considered. On the other hand Paper IV having a continuation is to a great extent a
question of impact, as the paper may very well inspire changes in regular expression
engines, which would make continued research chase a moving target. A possibility
which has both advantages and disadvantages.

As such there is a wealth of possible work in the area of regular expression se-
mantics, but beyond incremental open questions which are already listed in the papers
themselves this direction depends on the expected and actual impact of the research.

6.1.4 Other Questions

Paper V is obviously a work in progress published primarily for inclusion in this thesis.
The conjecture presented does, however, appear very promising and significant, far
beyond proving the open question for context-free shuffles discussed above. In the
other direction, Paper VI is the oldest paper included, and is concerned with a direction
that has not gotten a high level of attention from the author since. Continuing work
appears to be a matter of extending the discussion in Chapter 5 in a way that arrives at a
reasonably compelling language class, while having clearly motivated fixed parameter
complexity problem with a positive outcome.

6.2 Conclusion

As a final remark the author wishes to again thank all his collaborators and colleagues,
as well as everyone who worked on the many pieces of research leveraged as prelimi-
naries in this work. Finally, the author thanks the reader for the interest shown.

55

56

References

[Bar85]

[BBB13]

[BBD13a]

[BBD*13b]

[BDvdM14]

[Berll]

[Ber12]

[Ber14]

[Bil05]

G. Edward Barton. On the complexity of ID/LP parsing 1. Computa-
tional Linguistics, 11(4):205-218, 1985.

Martin Berglund, Henrik Bjorklund, and Johanna Bjorklund. Shuffled
languages — representation and recognition. Theoretical Computer Sci-
ence, 489-490:1-20, 2013.

Martin Berglund, Henrik Bjorklund, and Frank Drewes. On the param-
eterized complexity of Linear Context-Free Rewriting Systems. In Pro-
ceedings of the 13th Meeting on the Mathematics of Language (MoL
13), pages 21-29, Sofia, Bulgaria, August 2013. Association for Com-
putational Linguistics.

Martin Berglund, Henrik Bjorklund, Frank Drewes, Brink van der
Merwe, and Bruce Watson. Cuts in regular expressions. In Marie-Pierre
Béal and Olivier Carton, editors, Proceeding of the 17th International
Conference on Developments in Language Theory (DLT 2013), pages
70-81, 2013.

Martin Berglund, Frank Drewes, and Brink van der Merwe. Analyzing
catastrophic backtracking behavior in practical regular expression match-
ing. Submitted to the 14th International Conference on Automata and
Formal Languages (AFL 2014), 2014.

Martin Berglund. Analyzing edit distance on trees: Tree swap distance
is intractable. In Jan Holub and Jan Zaérek, editors, Proceedings of the
Prague Stringology Conference 2011, pages 59-73. Prague Stringology
Club, Czech Technical University, 2011.

Martin Berglund. Complexities of Parsing in the Presence of Reordering.
Licentiate thesis, Umea University, 2012.

Martin Berglund. Characterizing non-regularity. Technical Report
UMINF 14.12, Computing Science, Umea University, http: //www8 .
cs.umu.se/research/uminf/, 2014. In collaboration with Hen-
rik Bjorklund and Frank Drewes.

Philip Bille. A survey on tree edit distance and related problems. Theor.
Comput. Sci., 337(1-3):217-239, 2005.

57

References

58

[BNO1]

[Bou98]

[Bou04]

[Brz64]

[BS13]

[CS63]

[Dam64]

[DHK97]

[EBIS8]

[FGO6]

[Gaz88]

[Gis81]

[GJ90]

[Glu61]

[Got08]

Eberhard Bertsch and Mark-Jan Nederhof. On the complexity of some
extensions of rcg parsing. In IWPT, 2001.

Pierre Boullier. Proposal for a Natural Language Processing Syntactic
Backbone. Research Report RR-3342, INRIA, 1998.

Pierre Boullier. Range concatenation grammars, pages 269-289. Kluwer
Academic Publishers, Norwell, MA, USA, 2004.

Janusz Brzozowski. Derivatives of regular expressions. Journal of the
ACM (JACM), 11(4):481-494, 1964.

Sam Buss and Michael Soltys. Unshuffling a square is np-hard. Journal
of Computer and System Sciences, 2013.

Noam Chomsky and Marcel Paul Schiitzenberger. The Algebraic Theory
of Context-Free Languages. In P. Braffort and D. Hirshberg, editors,
Computer Programming and Formal Systems, Studies in Logic, pages
118-161. North-Holland Publishing, Amsterdam, 1963.

Fred J. Damerau. A technique for computer detection and correction of
spelling errors. Commun. ACM, 7(3):171-176, 1964.

Frank Drewes, Annegret Habel, and Hans-J6rg Kreowski. Hyperedge re-
placement graph grammars. In G. Rozenberg, editor, Handbook of Graph
Grammars and Computing by Graph Transformation. Vol. 1: Founda-
tions, chapter 2, pages 95—162. World Scientific, 1997.

Zoltan Esik and Michael Bertol. Nonfinite axiomatizability of the equa-
tional theory of shuffle. Acta Informatica, 35(6):505-539, 1998.

Jorg Flum and Martin Grohe. Parameterized Complexity Theory.
Springer-Verlag, 2006.

Gerald Gazdar. Applicability of indexed grammars to natural languages.
In Uwe Reyle and Christian Rohrer, editors, Natural Language Parsing
and Linguistic Theories. Reidel Dordrecht, 1988.

Jay L. Gischer. Shuffie languages, Petri nets, and context-sensitive gram-
mars. Communications of the ACM, 24(9):597-605, 1981.

Michael R. Garey and David S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New
York, NY, USA, 1990.

Victor Michailowitsch Glushkov. The abstract theory of automata. Rus-
sian Mathematical Surveys, 16(5):1-53, 1961.

Daniel Norbert Gétzmann. Multiple context-free grammars. Technical
report, Universitét des Saarlandes, 2008.

References

[GS65]

[Hab92]

[HMUO3]

[JLT75]

[Jos85]

[JSO1]

[JSW90]

[K1e98]

[KNSK92]

[Lev66]

[LW&7]

[MRS98]

[MS94]

[ORR78]

Seymour Ginsburg and Edwin H. Spanier. Mappings of languages by
two-tape devices. J. ACM, 12:423-434, July 1965.

Annegret Habel. Hyperedge Replacement: Grammars and Languages,
volume 643 of Lecture Notes in Computer Science. Springer, 1992.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation (2nd Ed.). Pearson Education In-
ternational, 2003.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. Tree adjunct
grammars. J. Comput. Syst. Sci., 10(1):136-163, 1975.

Aravind K. Joshi. Tree adjoining grammars: How much context-
sensitivity is required to provide reasonable structural description? Nat-
ural Language Processing — Theoretical, Computational and Psycho-
logical Perspective, 1985.

Joanna Jedrzejowicz and Andrzej Szepietowski. Shuffle languages are in
P. Theorical Computer Science, 250(1-2):31-53, 2001.

Aravind K. Joshi, K. Vijay Shanker, and David J. Weir. The convergence
of mildly context-sensitive grammar formalisms, 1990.

Philip N. Klein. Computing the edit-distance between unrooted ordered
trees. In In Proceedings of the 6th annual European Symposium on Al-
gorithms (ESA, pages 91-102. Springer-Verlag, 1998.

Y. Kaji, R. Nakanisi, H. Seki, and T. Kasami. The universal recogni-
tion problem for multiple context-free grammars and for linear context-
free rewriting systems. IEICE Transactions on Information and Systems,
E75-D(1):78-88, 1992.

Vladimir I Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady, 10(8):707-710, 1966.

Klaus-Jorn Lange and Emo Welzl. String grammars with disconnect-
ing or a basic root of the difficulty in graph grammar parsing. Discrete
Applied Mathematics, 16:17-30, 1987.

Alexandru Mateescu, Grzegorz Rozenberg, and Arto Salomaa. Shuf-
fle on trajectories: syntactic constraints. Theoretical Computer Science,
197(1-2):1-56, 1998.

Alain J. Mayer and Larry J. Stockmeyer. Word problems — this time with
interleaving. Information and Computation, 115:293-311, 1994.

William F. Ogden, William E. Riddle, and William C. Rounds. Com-
plexity of expressions allowing concurrency. In Proceedings of the 5th
ACM SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, POPL *78, pages 185-194, New York, NY, USA, 1978. ACM.

59

References

60

[Pol84]

[Sel77]

[Sha78]

[SMFK91]

[Ste87]

[Tai79]

[VdIC02]

[Wei88]

[Wei92]

[WHS84]

[ZS89]

[ZSS92]

Carl Pollard. Generalized phrase structure grammars, head grammars
and natural language. PhD thesis, Stanford University, 1984.

Stanley M. Selkow. The tree-to-tree editing problem. Inf. Process. Lett.,
6(6):184-186, 1977.

Alan C. Shaw. Software descriptions with flow expressions. IEEE Trans.
Softw. Eng., 4:242-254, May 1978.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami.
On multiple context-free grammars. Theor. Comput. Sci., 88(2):191-229,
October 1991.

Mark Steedman. Combinatory Grammars and Parasitic Gaps. Natural
Language and Linguistic Theory, 5:403—439, 1987.

Kuo-Chung Tai. The tree-to-tree correction problem. J. ACM, 26:422—
433, July 1979.

Eric Villemonte de la Clergerie. Parsing mildly context-sensitive lan-
guages with thread automata. In Proceedings of the 19th international
conference on Computational linguistics - Volume 1, COLING *02, pages
1-7, Stroudsburg, PA, USA, 2002. Association for Computational Lin-
guistics.

David J. Weir. Characterizing mildly context-sensitive grammar for-
malisms. Graduate School of Arts and Sciences, University of Penn-
sylvania, 1988.

David J. Weir. Linear context-free rewriting systems and deterministic
tree-walking transducers. In Proceedings of the 30th annual meeting
on Association for Computational Linguistics, ACL *92, pages 136-143,
Stroudsburg, PA, USA, 1992. Association for Computational Linguis-
tics.

Manfred K. Warmuth and David Haussler. On the complexity of iterated
shuffle. J. Comput. Syst. Sci., 28(3):345-358, 1984.

K. Zhang and D. Shasha. Simple fast algorithms for the editing distance
between trees and related problems. SIAM J. Comput., 18(6):1245-1262,
1989.

Kaizhong Zhang, Rick Statman, and Dennis Shasha. On the editing dis-
tance between unordered labeled trees. Information Processing Letters,
42(3):133 - 139, 1992.

QME,f

U Department of Computing Science ISBN 978-91-7601-047-1
; : Umea University, SE-901 87 Umea, Sweden ISSN 0348-0542
WWW.CS.Umu.se UMINF 14.13

‘e

