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Abstract
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for Modelling and Regionalisation. (Desinformativa och osäkra data i global hydrologi.
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Water is essential for human well-being and healthy ecosystems, but population growth and
changes in climate and land-use are putting increased stress on water resources in many regions.
To ensure water security, knowledge about the spatiotemporal distribution of these resources is
of great importance. However, estimates of global water resources are constrained by limitations
in availability and quality of data. This thesis explores the quality of both observational and
modelled data, gives an overview of models used for large-scale hydrological modelling, and
explores the possibilities to deal with the scarcity of data by prediction of flow-duration curves.

The evaluation of the quality of observational data for large-scale hydrological modelling was
based on both hydrographic data, and model forcing and evaluation data for basins worldwide.
The results showed that a GIS polygon dataset outperformed all gridded hydrographic products
analysed in terms of representation of basin areas. Through a screening methodology based
on the long-term water-balance equation it was shown that as many as 8–43% of the basins
analysed displayed inconsistencies between forcing (precipitation and potential evaporation)
and evaluation (discharge) data depending on how datasets were combined. These data could
prove disinformative in hydrological model inference and analysis.

The quality of key hydrological variables from a numerical weather prediction model
was assessed by benchmarking against observational datasets and by analysis of the internal
land-surface water budgets of several different model setups. Long-term imbalances were
found between precipitation and evaporation on the global scale and between precipitation,
evaporation and runoff on both cell and basin scales. These imbalances were mainly attributed
to the data assimilation system in which soil moisture is used as a nudge factor to improve
weather forecasts.

Regionalisation, i.e. transfer of information from data-rich areas to data-sparse areas, is a
necessity in hydrology because of a lack of observed data in many areas. In this thesis, the
possibility to predict flow-duration curves in ungauged basins was explored by testing several
different methodologies including machine learning. The results were mixed, with some well
predicted curves, but many predicted curves exhibited large biases and several methods resulted
in unrealistic curves.
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Vatten är en förutsättning för människors och ekosystems hälsa, men befolkningsökning och 
förändringar av klimat och markanvändning förväntas öka trycket på vattenresurserna i många 
regioner i världen. För att kunna säkerställa en god tillgång till vatten krävs kunskap om hur 
dessa resurser varierar i tid och rum. Tillförlitligheten hos skattningar av globala vattenresur-
ser begränsas dock både av begränsad tillgänglighet av och kvalitet hos observerade data. 
Denna avhandling utforskar kvaliteten av såväl observations- som modellbaserade data, ger 
en överblick över modeller som används för storskalig hydrologisk modellering och utforskar 
möjligheterna att förutsäga varaktighetskurvor som ett sätt att hantera bristen på data i många 
områden. 

Utvärderingen av observationsbaserade datas kvalitet baserades på hydrografiska data och 
driv- och utvärderingsdata för storskaliga hydrologiska modeller. Resultaten visade att en 
uppsättning data över hydrografin baserad på GIS-polygoner representerade avrinningsområ-
desareorna bättre än alla de som byggde på rutor. En metod baserad på långtidsvattenbalansen 
identifierade att kombinationen av drivdata (nederbörd och potentiell avdunstning) och ut-
värderingsdata (vattenföring) var fysiskt orimlig för så många som 8–43 % av de analyserade 
avrinningsområdena beroende på hur olika datauppsättningar kombinerades. Sådana data kan 
vara desinformativa för slutsatser som dras av resultat från hydrologiska modeller och ana-
lyser.  

Kvaliteten hos hydrologiskt viktiga variabler från en numerisk väderprognosmodell utvär-
derades dels genom jämförelser med observationsdata och dels genom analys av landytans 
vattenbudget för ett flertal olika modellvarianter. Resultaten visade obalanser mellan långtids-
värden av nederbörd och avdunstning i global skala och mellan långtidsvärden av nederbörd, 
avdunstning och avrinning i både modellrute- och avrinningsområdesskala. Dessa obalanser 
skulle till stor del kunna förklaras av den data assimilering som görs, i vilken markvattenlag-
ret används som en justeringsfaktor för att förbättra väderprognoserna. 

Regionalisering, som innebär en överföring av information från områden med god tillgång 
på mätdata till områden med otillräcklig tillgång, är i många fall nödvändig för hydrologisk 
analys på grund av att mätdata saknas i många områden. I denna avhandling utforskades 
möjligheten att förutsäga varaktighetskurvor för avrinningsområden utan vattenföringsdata 
genom flera metoder inklusive maskininlärning. Resultaten var blandade med en del kurvor 
som förutsas väl, och andra kurvor som visade stora systematiska avvikelser. Flera metoder 
resulterade i orealistiska kurvor (ickemonotona eller med negativa värden).  
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“Let me begin, as all science begins, 
with the subject of data.“

(Kirchner, 2006)
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Introduction 

Water is essential for all known forms of life and for our socio-economical 
systems. The 2014 UN-water report on the status of freshwater resources 
states that 768 million people lack access to clean water and 2.5 billion lack 
access to adequate sanitation1 (WWAP, 2014). Global water resources are 
under continually increasing demand due to population increase and growing 
economies (Oki and Kanae, 2006; Alcamo et al., 2007; Gleick and 
Palaniappan, 2010). In addition, climate and land-use change is expected to 
put further strain on the finite water resources (Vörösmarty et al., 2000a; 
Jiménez Cisneros et al., 2014).  

Water security, which relates to sufficient quantity and quality of water 
not only for human needs, but also for ecosystems, is one of the most im-
portant challenges facing humanity today. It is closely interlinked to energy 
and food security and together they are of fundamental importance for the 
alleviation of poverty (WWAP, 2014). Due to the complex interactions be-
tween water, food and energy, there is a growing recognition that a nexus2 
approach is needed to tackle these challenges (Finley and Seiber, 2014). 
However, this requires knowledge about the spatio-temporal distribution of 
these resources.  

Considering their great importance, it is astonishing how poorly we un-
derstand global water resources. For instance, in a model intercomparison 
project where 11 global models were forced with the same climate data, 
Haddeland et al. (2011) reported a range of values from 42,000 up to 66,000 
km3 yr−1 for global runoff. Widén-Nilsson (2007) reported differences of 
around 30% in global runoff estimates in the literature and for individual 
continents of as much as 70%.  

Two key areas of concern in estimating global water resources are the 
limited availability, and limited quality, of observational data worldwide 
(Döll and Siebert, 2002; Fekete et al., 2004; Decharme and Douville, 2006; 
Güntner, 2008; Hunger and Döll, 2008; Widén-Nilsson et al., 2009; Peel et 
al., 2010). Early global water estimates were made by extrapolation of a 
limited set of discharge data (e.g. Baumgartner and Reichel, 1975; Korzun et 

                               
1 Clean water refers to water supplies that are protected from outside contamination, and 
adequate sanitation refers to sanitation facilities that hygienically separate human excreta 
from human contact. 
2 From latin nexus: “the act of binding together; bond”. 
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al., 1978; L’vovich, 1979; Shiklomanov, 1997), but modern estimates pre-
dominantly turn to modelling methods. 

Macro-scale hydrological modelling is a relatively young field with the 
first model being developed in the 1980’s (Vörösmarty et al., 1989). Hydro-
logical models can be used to meet the need of estimating water resources 
when observational data are missing, in time or space, and for predictions of 
future water resources. Large-scale hydrological modelling offers a way to 
estimate trans-boundary water resources, but is also fraught with high uncer-
tainties. These uncertainties stem from different parts of the modelling pro-
cess and have not been properly recognised in hydrological modelling in 
general (Beven, 2009) and large-scale modelling in particular (Haddeland et 
al., 2011). Accounting for uncertainties should be a natural part of any hy-
drological study and is a necessity for drawing robust conclusions. 

One of the main uncertainties in hydrological modelling is the lack of 
high-quality climate observations. Uncertainties in precipitation, the main 
driver of hydrological models, has been shown to have a significant impact 
on model results (Vörösmarty et al., 1989; Fekete et al., 2004; Biemans et 
al., 2009). However, precipitation products available on the global scale are 
often biased and quality varies over time and in space largely dependent on 
the monitoring networks and measurement techniques (Adler et al., 2011; 
Tapiador et al., 2012). 

Over recent decades, the skill and resolution of global atmospheric mod-
els have increased significantly (Simmons and Hollingsworth, 2002; Palmer 
et al., 2007; Rodwell et al., 2010; Wedi, 2014). The land-surface components 
of these models have traditionally been developed with a strong focus on the 
energy balance (Overgaard et al., 2006), but with higher resolutions and 
better descriptions of hydrological processes they have become more similar 
to hydrological models over the years (Balsamo et al., 2011). With model 
outputs of key hydrological variables, such as precipitation, evaporation and 
runoff, being readily available, the applications of these models have been 
extended to fields which hydrological models have traditionally been used 
for (e.g. Alfieri et al., 2013). However, these models are commonly evaluat-
ed from a meteorological perspective and their performance on hydrological-
ly relevant spatial and temporal scales need further investigation. 

Not only do we lack quality climate observations, but approximately 50% 
of the global land surface has been estimated to be ungauged, i.e. lacks dis-
charge data (Fekete et al., 2002). This implies that models can not be cali-
brated or evaluated in these basins and therefore knowledge gained from 
areas with measurements needs to be transferred to areas without measure-
ments, so called regionalisation. Prediction in ungauged basins is a core re-
search question in hydrology which manifested itself in the 10-year science 
plan of the International Association of Hydrological Sciences (IAHS), 
“Predictions in Ungauged Basins” (PUB; Sivapalan et al., 2003).  
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It is clear that estimation of global water resources is fraught with diffi-
culties due to data limitations. These limitations, in terms of quality, quantity 
and availability, together with our limited understanding of the data uncer-
tainties, make modelling over large spatial domains a challenging task. In 
addition, it is complex to parameterise hydrological processes that occur at 
time scales and spatial scales much finer than current model resolutions. All 
these issues contribute to the high uncertainties in global runoff estimates. 
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Aim of this thesis 
The main aim of this thesis is to explore the uncertainties in data available 
for global-scale hydrological studies in terms of consistency between da-
tasets and how these data, albeit their uncertainties, can be used to extend 
our knowledge from comparatively data-rich domains to data-poor domains. 
This can be broken down into the following specific research questions: 

I Given the high uncertainties in individual datasets for large-
scale hydrological studies, how consistent are these data? 

II Outputs from numerical global weather prediction models in-
clude key hydrological variables such as precipitation, evapo-
ration and runoff. How hydrologically representative are these 
and how useful are the data for hydrological applications? 

III To extend our knowledge from data-rich areas to data-sparse 
areas we need to transfer our knowledge between spatial units. 
How do methods used for regionalisation in local or regional 
studies perform on the global scale? 
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Large-scale hydrological modelling 

An understanding of the variable nature of water resources is necessary for 
appropriate management of resources and for resilience against future possi-
ble changes in these resources. The necessity of estimating water resources 
has led to the development of hydrological models, which can be used to 
assess water resources in regions and times with sparse or no data. These 
models are aimed at quantifying the different fluxes and storages in the hy-
drological system and can, e.g., serve as tools for resource management or 
flood warning systems, but are also important for educational and research 
purposes (paper I). Many hydrological models have been developed for 
catchment-scale studies for specific regions, but the recognition of the global 
and continental nature of water-related issues and the strong impact of land-
surface processes on climate, led to a call for large-scale hydrological mod-
els in the 1980’s (Eagleson, 1986; Shuttleworth, 1988). Today, there exists a 
large number of models that simulate runoff over large spatial domains, but 
they differ in terms of complexity and modelling aims (paper III). 

Land-surface models 
Land-surface models (LSMs) form the surface component in atmospheric 
models and have traditionally been developed within the meteorological 
community with a focus on the energy balance rather than the water balance 
(Overgaard et al., 2006). In the beginning, the models were very simple, 
such as the bucket model developed by Manabe (1969). A big advancement 
in the land-surface modelling came with the first physically-based LSM de-
veloped by Deardorff (1978) with methods to take into account soil tempera-
ture, soil moisture and vegetation as layers (Sellers et al., 1986; Pitman, 
2003). LSMs differ in complexity (Dirmeyer et al., 2006), operate at sub-
daily time steps to solve the energy balance, are typically run at coarser hori-
zontal resolutions than global hydrological models (GHMs), and include no 
routing (Sood and Smakhtin, 2014; paper III).  

Dynamic global vegetation models (DGVMs) can be described as an ex-
tension of LSMs and include additional processes such as the carbon cycle 
(e.g. Foley et al., 1996; McGuire et al., 2001). However, with the continuous 
development of LSMs the difference between these models has been de-
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creasing and many of the LSMs now include for example photosynthesis and 
respiration (Williams et al., 2009). 

One LSM that has been applied in global runoff assessments is the VIC 
Variable Infiltration Capacity model (VIC; Wood et al., 1992; Liang et al., 
1994). Nijssen et al. (2001) found discharge simulated with VIC to be 
somewhat lower for some continents compared to previous studies. Demaria 
et al. (2007) found that runoff simulations were sensitive to only three of ten 
parameters analysed in VIC, and concluded that the base flow formulation 
was over-parameterised and could be simplified. 

Another LSM that has been applied in global water-resources studies is 
the H08 model developed by Hanasaki et al. (2008a; 2008b). The model 
could be described as a hybrid between a LSM and a GHM as it solves the 
surface energy and water balances and includes modules such as surface 
hydrology, crop growth, river routing, reservoirs, environmental flow and 
anthropogenic withdrawals. The model has been applied globally, e.g., to 
identify water-stressed regions (Hanasaki et al., 2008b) and to assess virtual 
water transfers (Hanasaki et al., 2010; Dalin et al., 2012). 

The Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land 
(H-TESSEL; Balsamo et al., 2009), the LSM of the numerical weather pre-
diction model at the ECMWF, is another example of a LSM that is being 
used in applications, which have traditionally been done with hydrological 
models. Within the Global Flood Awareness System (GloFAS) it is forced 
with an ensemble of numerical weather predictions to issue flood warnings 
globally based on climatological thresholds (Alfieri et al., 2013).  

Global hydrological models 
The history of global hydrological models starts with the Water Balance 
Model and Water Transport Model (WBM) developed by Vörösmarty et al. 
(1989; 1998). Today there exists a number of global hydrological models, 
e.g., the Macro-scale Probability-Distributed-Moisture model (Macro-PDM; 
Arnell, 1999; 2003), Water - Global Analysis and Prognosis model (Water-
GAP; Döll et al., 2003; Kaspar, 2004) and Water And Snow balance MOD-
elling system - Macro-scale (WASMOD-M; Widén-Nilsson et al., 2007; 
2009). These models were developed within the hydrological community 
and typically differ from LSMs in their resolution (temporal and spatial) and 
the detail in which hydrological processes are described (Sood and 
Smakhtin, 2014; paper III).  

The snow schemes are typically simple degree-day methods, since the en-
ergy balance is not modelled. Potential evaporation is either part of the forc-
ing or calculated internally with, e.g., the Penman-Monteith (Monteith, 
1965) or the Priestley-Taylor (Priestley and Taylor, 1972) formulas.  
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Complexity varies between models (paper III): some include groundwa-
ter components (e.g. WBMplus; Wisser et al., 2010), some allow for sub-
grid variability in soil moisture (e.g. MacPDM) and some account for an-
thropogenic alterations to the systems such as reservoirs, irrigation and water 
withdrawals (e.g. WaterGAP).  

Commonly, the resolution of input data has determined the spatial resolu-
tion of these models and many of them operate at a 0.5°×0.5° latitude-
longitude grid (Sood and Smakhtin, 2014; paper III). However, higher reso-
lution models have been developed, e.g., a 5′ version of WaterGAP (paper 
III), and there is ongoing research on developing hyper-resolution (0.1–1 
km) GHMs (Bierkens et al., 2014).  

Model intercomparisons 
The different modelling traditions from which LSMs and GHMs have 
emerged mean that they share some common features within their groups, 
but developments over the years have to some extent closed the gap between 
them (Balsamo et al., 2011; paper IV).  

The Project for the Intercomparison of Land-surface Parameterization 
Schemes (PILPS) was initiated in 1992 with the aim of improving LSMs 
especially in respect to hydrological, energy and momentum flux exchange 
descriptions (Henderson-Sellers et al., 1993). In a study within the PILPS 
project, 16 LSMs were run with the same forcing data for the Red and Ar-
kansas River basins in the United States and model output compared. The 
study showed a large spread in the partitioning between evaporation and 
runoff, with runoff coefficients (i.e. quotient of runoff to precipitation) rang-
ing from 0.02 to 0.41, compared to an observed quotient of 0.15 (Wood et 
al., 1998). Other intercomparison studies of LSMs have also shown large 
differences in the partitioning between evaporation and runoff (e.g. Polcher 
et al., 1996; Dirmeyer et al., 2006), indicating that structural and parameter 
differences play an important role for model results. 

The Water Model Intercomparison Project (WaterMIP) was launched as a 
joint effort of the Water and Global CHange (WATCH) and the Global Soil 
Wetness Project (GSWP) to compare results from both LSMs and GHMs. In 
a study with six LSMs and five GHMs being run with the same forcing data, 
Haddeland et al. (2011) found that the models differed substantially in esti-
mates of global water fluxes. Global mean land evaporation ranged from 415 
to 586 mm yr-1 and runoff from 290 to 457 mm yr-1. The LSM group showed 
a larger spread in global runoff coefficients compared to the GHMs, but both 
the mean and median of the LSMs were lower than that for the GHMs. They 
also found that for most regions the degree-day method employed by the 
GHMs resulted in higher mean snow-water equivalents (i.e. more snow stor-
age) compared to the energy-balance approaches employed by the LSMs. 
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The authors conclude that, due to the complexity of the models, it is not fea-
sible to explain all the differences noted between them and that studies, such 
as climate-impact studies, should not be based on a single model. Another 
study within WaterMIP, predicting climate-change impacts using seven dif-
ferent models, found that the differences between the models were more 
important than the differences between the emission scenarios or between 
the global climate models used for forcing since they resulted in different 
directions of change (Voß et al., 2008). 

In all, there exist large differences between models, both between the 
LSMs and GHMs and within each group. These differences have an effect 
on model output, which manifests itself in the broad ranges of results using 
the same forcing data.  
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Uncertainties in hydrological modelling 

Models are simplifications of a complex reality: “All models are wrong, but 
some are useful” (Box, 1979). Modelling is, as a result, inherently uncertain. 
The nature of these uncertainties can be either aleatory, i.e., random and 
caused by natural variability, or epistemic, i.e. systematic and caused by lack 
of, or ignorance of, knowledge. In addition, these uncertainties can change 
characteristics over time, e.g. with changes in monitoring networks or meas-
urement techniques and when using models in different temporal or spatial 
domains. These uncertainties affect model performance and the inferences 
we can draw from model outcomes (paper I). Uncertainties in hydrological 
modelling stem mainly from four sources: input data, evaluation data, model 
structure and model parameters (e.g. Engeland et al., 2005; Refsgaard and 
Storm, 1996). 

Input data 
Precipitation 
Precipitation has been measured with gauges for centuries (Strangeways, 
2010), but one of the main features of precipitation is the large variability 
both in time and space which makes it difficult to capture the spatio-
temporal variability accurately with such point measurements (Michaelides 
et al., 2009). The quality of precipitation data is strongly dependent on the 
gauge density, and the density needed differs depending on the local climate 
and topography. In addition to quality problems caused by insufficient gauge 
coverage, the quality is also affected by measurement errors (Strangeways, 
2004; Tapiador et al., 2012). These errors include wind-induced undercatch, 
which can be especially pronounced in snow affected areas, and sublimation 
and evaporation from the gauge itself (Groisman and Legates, 1994). Errors 
for point measurements depend on the type of gauge used, but undercatch is 
typically 5–16% and can be much larger for snow measurements (McMillan 
et al., 2012). However, these errors are often overshadowed by interpola-
tion/extrapolation errors, when estimating areal precipitation (McMillan et 
al., 2012).  

Remote-sensing data, in terms of radar and satellite observations, provide 
a means to overcome some of the difficulties in capturing the spatio-
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temporal variability with gauge networks, but are affected by uncertainties 
stemming from limitations in both measurement techniques and algorithms 
(Michaelides et al., 2009). Several global precipitation datasets therefore 
merge remote-sensing data and ground-based observations to combine the 
relative merits of each type of product, e.g. the Global Precipitation Clima-
tology Project (GPCP) datasets (Adler et al., 2003).  

Precipitation is the most significant variable in water-balance calculations 
since it strongly determines the quality of the discharge predictions 
(Vörösmarty et al., 1989; 1998; Wisser et al., 2010). In a sensitivity study 
including six different precipitation datasets, Fekete et al. (2004) showed 
that uncertainties in precipitation data were transferred to the output with at 
least the same magnitude.  

Evaporation 
Despite its importance as a major driver of droughts (Seneviratne, 2012; 
Sheffield et al., 2012), current estimates of terrestrial evaporation are highly 
uncertain (Mueller et al., 2013). In hydrological modelling, actual evapora-
tion is often simulated using some functional relationship between actual 
evaporation and available moisture and potential evaporation, which can 
differ in complexity (Zhao et al., 2013; paper III).  

There exist a number of different formulas to estimate potential evapora-
tion with very different complexity and data demand. For instance, Widén-
Nilsson et al. (2007) used a simple function only requiring air temperature 
and relative humidity as input. Other methods, such as the Penman-Monteith 
combination formula (Monteith, 1965), may require a much larger number 
of input variables such as wind speed, temperature, radiation, albedo, humid-
ity and more. Uncertainties are introduced in potential evaporation estimates 
both by uncertainties of the variables that the estimates are calculated from, 
but also by the choice of formula with its inherent assumptions. Studies of 
the performance (in terms of resultant performance from forcing of a GHM 
or based on criteria relating to observed basin water budgets) of different 
formulas have shown that no formula consistently performs better than the 
others (Federer et al., 1996; Vörösmarty et al., 1998; Arnell, 1999; Lu et al., 
2005).  

The land-cover impact on potential evaporation can be substantial, but 
many formulas neglect the effect of vegetation. For instance many research-
ers use the Food and Agricultural Organization (FAO) reference-crop evapo-
transpiration as potential evaporation, although it is supposed to represent the 
maximum evaporation from a hypothetical reference crop with a height of 
0.12 m, an albedo of 0.23 and a surface resistance of 70 s/m (Allen et al., 
1994). In global hydrological modelling it is not uncommon to use formulas 
that do not take land cover into account (e.g. Döll et al., 2003; Widén-
Nilsson et al., 2007; 2009), or to consider effects only for irrigated crops 
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(e.g. Wisser et al. 2010), although some consider vegetation type explicitly 
(e.g. Gosling and Arnell, 2011).  

Other data 
Recent advances in remote-sensing technologies have contributed to a tre-
mendous increase in global-scale datasets available for large-scale model-
ling, including high-resolution hydrography datasets. However, the accuracy 
of these latter products depends on the topographic relief, with flat regions 
being more prone to errors (Lehner et al., 2008). In addition, for water-
balance studies the topographic delineation can cause problems where the 
groundwater divides do not follow the topography (Eli, 1998). 

Anthropogenic effects on the global water system are far reaching: dams 
alone are estimated to impact a majority of the world’s large river systems 
(Nilsson et al., 2005). Datasets on reservoirs and irrigation have been devel-
oped, but are connected to uncertainties, e.g. in storage volume estimates 
(Lehner et al., 2011) and due to inconsistent definitions of irrigated land 
between data sources (Siebert et al., 2010). In addition, reservoir/irrigation 
operation schemes are often not known (Hanasaki et al., 2006).  

Other sources of uncertainties in input data are for example static and 
coarse maps of vegetation and land use, but these likely have minor effects 
in comparison to the uncertainties in precipitation inputs.  

Evaluation data 
Discharge constitutes the most important variable for calibration and valida-
tion of hydrological models. It represents the aggregated response of the 
basin to precipitation input and reflects storage processes in the system. At 
the global level, the Global Runoff Data Centre (GRDC) in Koblenz, Ger-
many, serving as one of the most important archives of discharge data rec-
ords, likely holds the most complete compilation (Fekete and Vörösmarty, 
2002). Nonetheless, both metadata and discharge data themselves are affect-
ed by uncertainties and those are poorly documented (paper II).  

There exist many methods for discharge measurement, which are suitable 
for different conditions (e.g. flow rates and channel properties). Typically, 
stage is measured continuously and discharge is only measured occasionally 
to derive and update stage-discharge relationships. This introduces uncer-
tainties not only in the measurements themselves (stage and discharge), but 
also through the rating curve used to derive the discharge from the stage 
measurements. Errors in the stage measurements are usually neglible com-
pared to other factors affecting the discharge estimates (Baldassarre and 
Montanari, 2009). McMillan et al. (2012) provide typical relative error rang-
es of ±50–100% for low flows, and ±10–20% for medium to high flows 
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based on a review of studies dealing with observational errors of daily dis-
charge estimates. Such uncertainties affect model calibration and evaluation 
and should be taken into account when making inferences of model perfor-
mance.  

Other types of data have also been used for model calibration/evaluation, 
for instance groundwater data (e.g. Döll and Fiedler, 2008) and water storage 
data (e.g. Güntner, 2008) and new datasets developed from remote-sensing 
measurements like satellite altimetry show promise for extension of global 
discharge databases (Tourian et al., 2013). However, these data are also con-
nected to issues of uncertainties and temporal or spatial coverage.  

Model related uncertainties 
Both model structure (i.e. the parameterisations used to simplify the complex 
hydrological processes occurring in nature) and model parameters cause 
uncertainties in the predicted variables of interest. The complexity of models 
predicting runoff on global and continental scales differs greatly (Sood and 
Smakhtin, 2014; paper III) and as has been shown in model-intercomparison 
studies, these structural differences can have a major effect on the partition-
ing of precipitation between evaporation and runoff (e.g. Haddeland et al., 
2011).  

On the global scale, anthropogenic alterations of the water system have 
large effects on the hydrological regimes (Nilsson et al., 2005). These effects 
are of great importance to incorporate in any large-scale model, but limited 
data make parameterisations of these processes uncertain (Wisser et al., 
2010; Biemans et al., 2011). Overall, model specific uncertainties, e.g. due 
to simplifications of known processes or lack of knowledge of important 
processes, can have significant impacts on model output (e.g. Butts et al., 
2004; Müller Schmied et al., 2014).  

Uncertainty analysis 
Since uncertainties are inherent in any modelling exercise, these need to be 
appropriately accounted for and disseminated (paper I). However, when 
dealing with global data the knowledge of the uncertainties affecting differ-
ent datasets is often limited, both in terms of their nature and in terms of 
their magnitude. In addition, in many regions model evaluation is not possi-
ble due to lack of data, which introduces further complications in the uncer-
tainty assessment of global models.  

Uncertainty analysis has been largely missing in large-scale hydrological 
modelling (Haddeland et al., 2011; Sood and Smakhtin, 2014) and to some 
extent in much of the hydrological modelling (Beven, 2009). The aforemen-
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tioned limitations of data and especially of metadata could be one of the 
reasons for the lack of uncertainty estimates. There is also a popular belief 
that the general public and decision makers want, and need, simple answers 
(Frewer et al., 2003; paper I).  

Uncertainty analyses need to be carried out throughout the modelling 
chain, starting with scrutinisation of the input data. Beven et al. (2011) and 
Beven and Westerberg (2011) discuss the case when uncertainties in data 
actually render their combination disinformative. Disinformative data can 
result in biased or even wrong inferences from models. However, distin-
guishing informative data from disinformative ones is not straightforward. 
Beven et al. (2011) suggest that one way to detect disinformative input data 
is to analyse the consistency between data and classify physically incon-
sistent ones as disinformative. Such a screening should increase our possibil-
ity to be “right for the right reasons”, but also to decrease the risk of being 
“wrong for the wrong reasons” (paper I; II).   
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Regionalisation 

The ungauged basin  
Many basins in the world are ungauged, i.e. lack sufficient (in terms of quan-
tity or quality) observed data to make adequate hydrological analyses on the 
spatial and/or temporal scales of interest (Sivapalan et al., 2003). Fekete et 
al. (2002) report that approximately 50% of the continental landmass is un-
gauged. However, the ungauged proportion will depend on which time peri-
od is being considered and the observations might not be available at the 
scale of interest in a particular study (e.g. a sub-basin might lack observa-
tions although the basin outlet is gauged).  

The global discharge-monitoring network has declined substantially over 
the last three decades in terms of number of gauging stations (The Ad Hoc 
Group et al., 2001; Fekete and Vörösmarty, 2002; Shiklomanov et al., 2002). 
In addition, there are significant delays in the reporting of new data (Fekete 
and Vörösmarty, 2002).  

The scarcity of high-quality observed data in many regions of the world 
and the need for predictions of water resources in these areas therefore re-
quire some transfer of knowledge gained from data-rich basins to data-poor 
basins, so called regionalisation.  

Traditional regionalisation  
Regionalisation methods can be divided into two main groups: i) methods 
aimed at transferring model parameters calibrated in gauged basins to un-
gauged basins and ii) methods aimed at transferring signatures or indices of 
hydrological behaviour from gauged to ungauged basins. The former has a 
long-standing tradition in hydrology (e.g. Abdulla and Lettenmaier, 1997; 
Peel et al., 2000; Döll et al., 2003; Xu, 2003), but in more recent time there 
has been a shift towards the latter (Wagener and Montanari, 2011). Whether 
it is model parameters or hydrological indices/signatures that are being re-
gionalised, the fundamental basis for regionalisation is that predictions need 
to be made without direct calibration. Instead, regionalisation builds on the 
assumption that basins with similar climatic and physiographic characteris-
tics will have similar hydrological regimes. 
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The traditional regionalisation strategies of model parameters can be di-
vided into the following main groups: i) spatial proximity, ii) a priori pa-
rameter estimation, iii) regression, and iv) hydrological similarity methods. 

The simplest method for regionalisation is to assume that basins close to 
each other have similar parameter values/behaviour. Information is then 
simply transferred between basins in close spatial proximity (e.g. 
Vandewiele and Elias, 1995), i.e. the spatial proximity method (often re-
ferred to as the nearest neighbour method). However, basins can behave very 
differently although they are geographically close (Post et al., 1998; Beven, 
2000).  

A priori parameter estimates based on physical characteristics are com-
mon in global-scale hydrological studies as a way to avoid the need of cali-
bration in ungauged basins (Arnell, 2003). However, the a priori definition 
of model parameters is not straight forward, since many model parameters 
are effective parameters and subjected to commensurability issues between 
measured properties and model parameters (Beven, 2000).  

Regression methods include multivariate regression between calibrated 
model parameters from a pool of gauged basins and physical properties of 
the basins. These resulting regression models have then been used to derive 
parameter values for ungauged basins (e.g. Döll et al., 2003). Many of the 
studies using regression approaches have shown that the correlation between 
model parameters and basin characteristics can be low (e.g. Peel et al., 
2000), which may be related to problems with data quality, over-
parameterisation, and equifinality (Beven, 1993; 2006), but also to problems 
in identifying the important basins characteristics.  

The last method, hydrological similarity, encompasses a variety of ap-
proaches to estimate the hydrological similarity between basins and transfer 
entire parameter sets rather than individual parameters as is done in the pre-
vious method (e.g. McIntyre et al., 2005; Reichl et al., 2009). 

Regionalisation of hydrological indices 
One big drawback of the traditional regionalisation methods is that they are 
model specific. In addition, many models suffer from poorly identifiable 
parameters and this can render regionalisation virtually impossible (Kuczera 
and Mroczkowski, 1998). One of the main aims of the IAHS initiative PUB 
was to improve the understanding of how hydrological functioning depends 
on catchment characteristics (Sivapalan et al., 2003; Hrachowitz et al., 2013) 
and this coordinated effort by the scientific community contributed to the 
change of focus on model-dependent parameter-transfer studies to studies 
predicting the dynamic behaviour of basins. Knowledge of this expected 
behaviour can in itself be utilised to reduce predictive uncertainties in un-
gauged basins through indirect calibration (Wagener and Montanari, 2011). 
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The predicted behaviour in terms of signatures can be used to constrain 
model parameters in ungauged basins (Westerberg et al., 2014).  

Hydrological signatures have been regionalised in similar ways as model 
parameters. For example, Yadav et al. (2007) used regression models to es-
timate a number of signatures, including a base-flow index, high pulse count 
(a measure of the frequency of high flows) and slope of the flow-duration 
curve, in ungauged basins. Westerberg et al. (2011) showed that predicted 
uncertainty could be reduced in two hydrological models through calibration 
against flow-duration curves. In a later study, Westerberg et al. (2014) re-
gionalised flow-duration curves in Central America based on proximity in 
the basin characteristics space and used the regionalised curves to constrain 
the predictive uncertainties of a hydrological model.  

Global regionalisation studies are rare, but Beck et al. (2013) used neural 
networks to estimate two signatures (a base-flow index and a base-flow re-
cession constant) worldwide based on a large set (3,394) of catchments cov-
ering wide ranges of conditions in terms of climate, physiography and hy-
drology.  

Heterogeneity and regionalisation 
Basins can exhibit a pronounced heterogeneity in terms of hydrological be-
haviour. Even so, no generally accepted catchment classification exists in 
hydrology (Wagener et al., 2007; Hrachowitz et al., 2013). Nonetheless, 
several studies have shown that different types of catchment groupings can 
improve regionalisation results. Laaha and Blöschl (2006) compared four 
different grouping techniques for 325 basins in Austria and showed that 
grouping of catchments based on seasonality performed the best in terms of 
regression regionalisation of a low-flow index (95th percentile of daily 
flows). Sauquet and Catalogne (2011) found that grouping French catch-
ments based on a regression tree approach on catchment characteristics con-
siderably improved regression models for prediction of parameters describ-
ing flow-duration curves.  
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Data 

The analyses in this thesis were based on freely available global data from a 
variety of sources. Observational climate and hydrographic data used in pa-
per II are listed in Table 1 along with NWP model output and observational 
data for paper IV. Discharge data were retrieved from GRDC in June 2011 
for paper II and in June 2013 for paper IV and V. 

Table 1. Data used in paper II and IV. 

Dataset Temporal 
resolution Spatial resolution Reference 

Basin delineation
DRT N/A 0.5° (Wu et al., 2012) 
GIS polygons N/A ̴ 15ʺ (Lehner, 2012)
STN-30p N/A 0.5° (Vörösmarty et al., 2000b) 
DDM30 N/A 0.5° (Döll and Lehner, 2002) 

Observed precipitation
CRU TS 3.10.01 Monthly 0.5° (Harris et al., 2014)
GPCC v6 Monthly 0.5° (Becker et al., 2013)
GPCP v2.1 Monthly 2.5° (Adler et al., 2003)
WATCHCRU Daily 0.5° (Weedon et al., 2011) 
WATCHGPCC Daily 0.5° (Weedon et al., 2011) 

Potential evaporation
CRU TS 3.10.01 Monthly 0.5° (Harris et al., 2014)
WATCHPM Daily 0.5° (Weedon et al., 2011) 
WATCHPT Daily 0.5° (Weedon et al., 2011) 

Actual evaporation
LandFlux-EVAL 
synthesis Monthly 1° (Mueller et al., 2013) 

NWP model output1

ERA-40 Monthly T159 (  ̴1.125°) (Uppala et al., 2005)
ERA-Interim Monthly T255 (  ̴0.75°) (Dee et al., 2011)
ERA-CM Monthly T159 (  ̴1.125°) (Hersbach et al., 2013) 
OH1d Monthly T1279 ( ̴ 0.25°)
OL10d Monthly T639 ( ̴ 0.5°)
LandC Monthly T255 (  ̴0.75°) (Balsamo et al., 2013) 
LandU

 Monthly T255 (  ̴0.75°)  
1. Precipitation, actual evaporation and runoff were retrieved from each of the ECMWF mod-
el setups.  

In paper I, three gridded flow networks and a GIS-polygon dataset (Lehner, 
2012) were used for basin area definitions. The gridded products were 
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DDM30 (Döll and Lehner, 2002), STN-30p (Vörösmarty et al., 2000b) and 
an early version of the datasets developed by Wu et al. (2012) using the 
dominant-river-tracing technique (Wu et al., 2011), herein referred to as 
DRT. Gridded climate data (precipitation and potential evaporation) were 
retrieved from the Climate Research Unit (CRU; Harris et al., 2014), the 
Global Precipitation Climatology Centre (GPCC; Becker et al., 2013) and 
the WATCH project forcing data (Weedon et al., 2011). Both CRU and 
GPCC are gauge-based products, but the number of gauges in the GPCC 
product (~67,200) far exceeds that of the CRU product (~11,800) (Becker et 
al., 2013). The WATCH dataset contains two products, which were both 
derived from reanalysis data (ERA-40) but bias corrected using observed 
data (CRU and GPCC, respectively). Both products, from here on WATCH-
CRU and WATCHGPCC, were corrected for gauge undercatch using correction 
factors from Adam and Lettenmaier (2003). Potential evaporation data were 
retrieved from CRU (FAO reference-crop Penman-Monteith estimates) and 
WATCH (both FAO reference-crop Penman-Monteith estimates and Priest-
ley-Taylor estimates, from here on WATCHPM and WATCHPT, respective-
ly). 

In paper IV, precipitation data from the merged satellite and rain gauge 
monthly precipitation-analysis product, version 2.2, from the Global Precipi-
tation Climatology Project (GPCP; Adler et al., 2003) and the diagnostic 
evaporation-data product from the LandFlux-EVAL multi-data set synthesis 
(ELFE; Mueller et al., 2013) were used as observational data together with 
discharge. The model-output data consisted of precipitation, evaporation, 
and runoff retrieved from seven different setups of the ECMWF model sys-
tem.  

The basis for the ECMWF modelling system includes an atmospheric 
general circulation model, which is coupled to an ocean-wave model, a land-
surface model and a circulation model for the oceans (ECMWF, 2013). The 
analysis included data from the operational models, three reanalysis prod-
ucts, and two offline runs of the land-surface scheme H-TESSEL. 

The operational model outputs were taken from the high-resolution de-
terministic short-range forecast (24 hour from the analysis, OH1d herein) and 
the unperturbed member of the lower-resolution ensemble forecast with a 
longer lead time (10 days from the analysis, OL10d herein).  

The reanalysis data consisted of ERA-40 (Uppala et al., 2005), ERA-
Interim (Dee et al., 2011) and ERA-CM (Hersbach et al., 2013), which rep-
resents different reanalysis generations with ERA-40 being the oldest and 
ERA-CM the newest. ERA-CM consists of an ensemble of 10 members and 
does not include any assimilation of atmospheric variables as opposed to the 
former two, which are deterministic and use full data assimilation.  

The two offline runs were performed without data assimilation using raw 
ERA-Interim forcing in one of the runs and corrected precipitation forcing in 
the other (Balsamo et al., 2013). For the corrected run (herein LandC, with 
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uncorrected as LandU), monthly precipitation totals were scaled to match 
totals in a predecessor of the GPCP product herein (for details see Balsamo 
et al., 2010).  

In paper V, a range of climatic and physiographic basin descriptors, listed 
in Table 2, were used to evaluate similarity between basins and for regionali-
sation of parameters.  

Table 2. Basin descriptors used in paper V. 

No Descriptor Explanation Source 
 Climate CRU apart from SF (WATCH) 
1 AI Aridity index (P/ EP)
2 P Mean annual precipitation 
3 PSI ௌܲூ = ܲିଵ෍ฬ ௠ܲ − 1ܲ2ฬ  

  where Pm is mean monthly pre-
cipitation

 

4 EP Mean annual potential evapora-
tion

 

5 EP,SI As for PSI but for EP

6 SEAS Correlation between mean 
monthly P and EP

 

7 SF Fraction of precipitation falling 
as snow

 

8 T Mean air temperature
 Topography ISLSCP apart from A (GRDC) 
9 Emean Mean elevation
10 Erange Elevation range (max. elevation 

– min. elevation)
 

11 Slope Mean slope
12 A Basin area
 Land cover ISLSCP
13 Forest % forest cover
14 Shrub % shrub cover
15 Grass/crop % grass cover
16 Water % water bodies
 Soils ISRIC-WISE
17 Gravel % gravel
18 Sand % sand
19 Silt % silt
20 Clay % clay
 Gauge Location GRDC
21 Lat Latitude in degrees
22 Lon1 sin(Longitude in degrees + 180)
23 Lon2 cos(Longitude in degrees + 180)  

Climate characteristics were calculated from the CRU TS 3.10.01 dataset 
(Harris et al., 2014) for the 1960–1990 standard period and included: the 
aridity index (AI), mean annual precipitation (P), seasonality index for pre-
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cipitation (PSI), mean annual potential evaporation (EP), seasonality index for 
potential evaporation (EP,SI), correlation between mean monthly precipitation 
and potential evaporation (SEAS) and mean air temperature (T). Climatic 
mean monthly precipitation correction factors derived by Legates (1987) 
were used to account for systematic errors in the precipitation data. Since no 
distinction is made between solid and liquid precipitation in the CRU da-
taset, the WATCHCRU dataset was used to derive the fraction of precipitation 
falling as snow (SF).  

Topographic and land-cover data were retrieved from the International 
Satellite Land-Surface Climatology Project (ISLSCP) II data collection, 
specifically the HYDRO1k Elevation-derived Products (Verdin, 2011) and 
the University of Maryland Land Cover classifications (DeFries and Hansen, 
2010). Soil texture data (fractions of gravel, sand, silt and clay) were derived 
from the International Soil Reference and Information Centre - World Inven-
tory of Soil Emission Potentials (ISRIC-WISE) version 3 dataset (Batjes, 
2005). All three datasets on topography, land cover and soils were available 
at 0.5˚×0.5˚ latitude-longitude. 

In addition to the basin characteristics listed in Table 2, data on location 
and capacity of large dams and reservoirs were obtained from the Global 
Reservoir and Dam (GRanD) database version 1.1 (Lehner et al., 2011). 
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Methods 

Pre-processing of discharge and climate data 
Discharge data were screened for obvious errors, before any analyses were 
performed, and erroneous data, e.g. assignment of an incorrect missing data 
indicator (e.g. 9999 instead of the correct indicator -999) or apparent decimal 
errors (magnitude difference), were discarded. 

In paper II, climate data were missing for some cells that were defined as 
land in the basin delineations. These cells were assigned the average of the 
closest eight surrounding cells. If data were still missing, this was repeated 
in an iterative manner until all land areas were covered. For the calculation 
of basin precipitation and evaporation based on the GIS-polygon dataset, the 
intersections with the 0.5˚ climate data grid cells were used to determine the 
fraction of cell precipitation or evaporation that contributed to the basin 
(Figure 1). Sub-grid variability was not taken into account, i.e. precipitation 
and potential evaporation were assumed to be evenly distributed over each 
grid cell. 

 
Figure 1. Example of treatment of gridded climate data for the polygon basin delin-
eations. Basin outline based on DRT and GIS-polygon data for Berlin Mühlendamm 
UP discharge station on the Spree River (9,707 km2) overlaid on 0.5° climate data 
grid (left). Basin intersections with the climate grid cells labelled with the fraction of 
the intersecting grid area (right). For each climate grid cell, only the intersecting 
fraction contributes to the basin average: e.g. for the yellow polygon 73% of the 
precipitation falling in the climate grid cell is assumed to fall within the basin. The 
red triangle indicates the location of the discharge station according to the GRDC 
archive and the green triangle the location after corrections made in the generation 
of the GIS-polygon dataset. 
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In paper IV, the resolution of different data sources differed (Table 1) and 
they were therefore bilinearly interpolated to a common 0.5˚×0.5˚ latitude-
longitude grid to facilitate comparisons. Basin averages for climate data 
were calculated based on the basin polygon intersections with the climate 
data as in paper II, but with the difference that Thiessen polygons based only 
on the land cells of the ECMWF landmask were used instead of grid cells to 
calculate the overlap. This was done to avoid any issues with mismatches 
between land and sea definitions in the different datasets. 

Hydrography representation of basin area  
An accurate description of the spatial extent of basins is important for the 
results of hydrological analyses. The performance of three different gridded 
hydrographic datasets, at 0.5˚×0.5˚ latitude-longitude resolution, and one 
GIS polygon layer generated from 15″ hydrography, was evaluated in terms 
of representation the basin areas archived in the GRDC database. For this 
comparison, gauging stations need to be co-registered in the gridded net-
works, i.e. each gauging station must have been allocated to the most appro-
priate grid cell. For two of the gridded products, such co-registrations were 
already available with 663 GRDC stations for STN-30p (Fekete et al., 2002) 
and 1,235 GRDC stations for DDM30 (Hunger and Döll, 2008). A mixed 
automatic and manual registration procedure was performed for the third 
product. 

First, each station was assigned to the cell corresponding to the latitude 
and longitude given for the station in the GRDC archive. In the second step, 
the station was automatically reassigned to any of the eight surrounding cells 
if its flow-accumulation area better matched the basin area in the GRDC 
archive. Finally, all stations that still displayed a relative area error of 10% 
or more after the automatic reassignment were manually inspected and reas-
signed if appropriate. The relative area error, εA, was defined as: 

 ε୅ = A୅ୡୡ − AୋୖୈେmaxሺA୅ୡୡ, Aୋୖୈେሻ ∙ 100% (1) 

AAcc is the flow-accumulation area of the grid cell assigned to the station and 
AGRDC the archived basin area. The same measure has been used previously 
(Fekete et al., 1999; Döll and Lehner, 2002), but is referred to as “symmetric 
error” in those studies. Cell areas for the gridded products were calculated as 
quadrangles based on the World Geodetic System 1984 ellipsoid. 
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Evaluation of consistency between model forcing and 
evaluation data 
The method used to detect inconsistent data was similar to that of Beven et 
al. (2011), who identify disinformative data as those that violate the water 
balance. However, here the analysis was based on the long-term water bal-
ance rather than their event-based approach. In addition, the analysis also 
included transgressions of the potential-evaporation limit, similar to Peel et 
al. (2010). Since the long-term water balance was analysed, changes in basin 
storage could be ignored since these would only be significant for special 
cases such as melting glaciers. On the long term, the water-balance equation 
can be simplified to:  

 ܲ = ஺ܧ + ܴ (2) 

where P is precipitation, EA is actual evaporation, and R is runoff. Two fun-
damental assumptions formed the basis for the consistency check between 
the forcing data and the evaluation data: i) For natural basins, runoff should 
not exceed the precipitation input to the system, and ii) actual evaporation, 
inferred as the difference between precipitation and runoff, should not ex-
ceed the potential evaporation (EP).  

The datasets used in the analysis are all affected by uncertainties of dif-
ferent types and from different sources. However, due to limited metadata 
and knowledge, it was not possible to estimate their nature and magnitude 
either temporally or spatially. Therefore, a relative uncertainty of ± 10% was 
assumed for the observed discharge data, resulting in a low, a high, and a 
sharp (i.e. the original discharge values) estimate for each discharge record. 
The climate data were used as they were. 

The long-term quotient between runoff and precipitation, i.e. the runoff 
coefficient (RC), was calculated for each of the three discharge estimates for 
all basins with at least 10 years of data (the threshold was set after analysing 
the variation in RCs with regard to record length). The RCs were used to 
evaluate the first of the two criteria for the consistency between data, that 
runoff should not exceed precipitation input, i.e. the RC should not be higher 
than unity.  

No screening of anthropogenic influences, such as reservoirs or inter-
basin transfers, was performed before the consistency checks. For some ba-
sins affected by such influences, the water-balance equation according to Eq. 
2 should not be expected to be fulfilled, but these data would still be disin-
formative in any modelling unless anthropogenic effects are explicitly treat-
ed in the model.  
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Analysis of land-surface water budgets in an NWP 
scheme  
Similarly to the analysis of consistency between observational datasets in 
paper II, the long-term water budgets were the focus of the analysis of the 
NWP model output in paper IV.  

Firstly, global precipitation and land-surface evaporation were bench-
marked against observational data, GPCP and ELFE respectively. The balance 
between global precipitation and evaporation was analysed as a first measure 
of internal consistency or inconsistency of the models, since these are ex-
pected to be in approximate balance over a year or longer.  

Long-term runoff was benchmarked against observed runoff for 611 ba-
sins worldwide as an indication of the hydrological representativity of the 
land-surface schemes. Basins were selected based on size (≥10,000 km2) and 
available data for the common period (1995–2001) of the model outputs. 
Basins with implausible RCs (greater than unity) for the observational pre-
cipitation data were excluded from the analysis in line with paper II. 

Lastly, the internal consistency of the models was analysed based on the 
long-term water balance equation for all land cells and on the basin scale. 
Specifically, evaporation should not exceed precipitation over the long term 
and runoff should balance the difference between precipitation and evapora-
tion.  

Regionalisation of flow-duration curves 
For all basins with discharge records with at least 10 consecutive years of 
monthly average flows in the GRDC archive and basin areas of at least 5,000 
km2, an initial screening for inconsistent data was carried out allowing for a 
10% uncertainty in the long-term average discharge following paper II. Em-
pirical flow-duration curves were constructed based on observed data, for the 
records that passed the screening, by ranking each flow of the period of rec-
ord in descending order so that the highest flow received a rank, i, of 1 and 
the lowest one a rank of N (corresponding to the number of observations in 
the record). Each of these ranked flows, qi, was subsequently assigned with 
an exceedance probability, pi: 

௜݌  = ܲሺܳ > ௜ሻݍ = ݅ܰ + 1 (3) 

For purposes of evaluation, ten exceedance percentiles (5, 15, 25, 35, 45, 55, 
65, 75, 85 and 95%) were chosen for analysis of performance of fitted and 
regionalised FDCs. The 5% highest and lowest flows were excluded as these 
are likely the most uncertain (Westerberg et al., 2014). 
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The prediction methods of the regionalised FDCs comprised of two main 
approaches: direct estimation of regionalised FDCs (direct methods) and 
regionalisation of parameters of different approximations fitted to the empir-
ical FDCs. Both the empirical FDCs and log-transforms thereof were tested 
in the fitting procedure. The log-transformed FDCs were used to limit the 
effects of high flows in the fitting (observed values smaller than 0.001 m3 s-1 
were replaced with 0.001 m3 s-1 to avoid log-transforms of 0). 

All basin descriptors in Table 2 were standardised by subtracting the 
mean and dividing by the standard deviation for each descriptor prior to the 
use in the different regionalisation approaches. 

Direct methods  
The simplest method used to regionalise the FDCs was the spatial proximity 
(nearest neighbour, NN) approach, which was used as a baseline minimum 
information case. Two other proximity methods were also tested based on 
the similarity of basin descriptors in Table 2: proximity in the catchment 
descriptor space (P1) and proximity in the catchment descriptor space in-
cluding geographical proximity (P2). The regionalised FDCs were calculated 
following the method by Westerberg et al. (2014), which is shortly summa-
rised here.  

Proximity was calculated as the Euclidian distance in the de-
scriptor/geographical space. An initial correlation analysis between the basin 
descriptors in Table 2 and the ten exceedance percentiles led to the following 
descriptors being adopted for the similarity calculation: AI, P, PSI, Slope and 
Forest. Each FDC was standardised by dividing the raw data with the basin 
area, i.e. specific discharge was used, and a jack-knife approach, i.e. each 
basin in turn was considered ungauged, for the regionalisation. 

Either the one closest or the ten closest basins (in the geographical and/or 
descriptor space sense) were used as donor basins. In the case with one do-
nor, each basin was assigned the specific discharge FDC of the donor catch-
ment and this was subsequently multiplied by the basin area of the ungauged 
basin to obtain the regionalised FDC. For the case where 10 donors were 
used, the regionalised FDCs were calculated based on a fuzzy membership 
function weighted according to the proximity between the donor and the 
ungauged basin (see Westerberg et al., 2014 for details of the methodology). 
The fuzzy membership function requires that an uncertainty band be at-
tached to the observed FDCs for the calculations. In this thesis, due to lim-
ited knowledge of the real uncertainty in the discharge values from the 
GRDC archive, a generic rather conservative uncertainty was assumed for all 
FDCs: a relative uncertainty of ±20% for flows that were exceeded less than 
50% of the time, and a linearly increasing uncertainty from ±20% for the 
median flow to ± 75% for the lowest flow. For flows smaller than or equal to 
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1 m3 s-1 the uncertainty was assumed to be ± 0.75 m3 s-1 (with a lower limit of 
zero) since relative uncertainties do not work well for small numbers. 

The final direct estimation method builds on artificial neural networks 
(ANNs), which are computational models originally developed to mimic the 
data processing and learning by the brain (i.e. the neurons). Today ANNs are 
used for machine learning in a multitude of fields including hydrology. For 
instance, Beck et al. (2013) use them to estimate a base-flow index and re-
cession constant worldwide and Mazvimavi et al. (2005) use ANNs for FDC 
and parameter estimation.  

 
Figure 2. Schematic of a neural network. The input layer consists of input neurons 
I1,I2,I3,…In. In this thesis, n was 23 and each neuron corresponded to one of the 23 
basin descriptors listed in Table 2. The hidden layer consists of a number of hidden 
neurons, here exemplified with three neurons (indicated with dashed lines), which 
are connected to each of the input neurons through weights, which are indicated by 
the lines. The final layer is the output layer, which is connected to the hidden layer 
and here exemplified with one neuron. In this thesis, the output neurons correspond-
ed to either exceedance percentile flows or parameters of the FDC approximations. 

In this thesis, the neural network architecture used was a three layer feed 
forward network (Figure 2) with the Levenberg-Marquardt back propagation 
learning algorithm, which has shown high efficiency (Hagan and Menhaj, 
1994). The first layer, the input layer, consisted of 23 neurons corresponding 
to the 23 basin descriptors in Table 2. The second layer consisted of hidden 
neurons, which are necessary for the network to be capable of modelling 
nonlinear relationships, and the number of neurons in this layer was deter-
mined by trial and error. The final layer, the output layer, consisted of either 
one or ten neuron(s). In the case of using one neuron, each exceedance per-
centile flow was estimated in turn whereas in the ten neurons case all were 
estimated at the same time. Flows were log-transformed before training for 
normalisation purposes and back-transformed after training. 
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The networks were trained on a subsample of the data by adjustment of 
weights linking the input layer to the hidden layer and the hidden layer to the 
output layer so that the root-mean-square error between the output (predicted 
exceedance percentile flows) from the network and the targets (empirical 
exceedance percentile flows) was minimised. The data (basin descriptors and 
observed FDCs) were first split into two subsamples. The first subsample, 
containing 10% randomly selected basins, was completely excluded from the 
development phase of the networks (unseen data for the networks) to allow a 
proper evaluation of the networks. The remaining 90% of the data (devel-
opment data) were used as training, validation and test data for the networks. 
A ten-fold cross-validation procedure was performed meaning an ensemble 
of networks was trained on 80% of the development data in turn and the 
performance, in terms of R2-values for the test data (10% of the development 
data), was used to determine the number of hidden neurons needed. Early 
stopping was used to avoid overfitting, i.e. the training procedure was 
stopped when the error in the validation data (10% of the development data) 
started to increase. The median output of the ensemble of ten cross-
validation networks was used as the prediction of the exceedance percentile 
flow(s).  

FDC approximations 
In many regionalisation studies, the empirical FDCs are approximated by 
some type of parametric function and regression models are developed be-
tween the fitted parameters and catchment descriptors to allow for prediction 
of parameters and ultimately FDCs in ungauged basins. Many analytical 
functions and statistical distributions have been suggested as approximate 
models for FDCs (e.g. Mimikou and Kaemaki, 1985; Castellarin et al., 
2004).  

In this study, three analytical functions, four statistical distributions and 
empirical orthogonal functions (EOFs) were tested for their ability to repro-
duce the empirical FDCs. The analytical functions included the exponential 
model (Eq. 4), the power law model (Eq. 5) and the logarithm model (Eq. 6):  ෠ܳ௣ሺ݅ሻ = ܽሺ݅ሻ݁௕ሺ௜ሻ௣ ܽ ≥ 0, ܾ < 0 (4) ෠ܳ௣ሺ݅ሻ = ܽሺ݅ሻ݌௕ሺ௜ሻ ܽ ≥ 0, ܾ < 0 (5) ෠ܳ௣ሺ݅ሻ = ܽሺ݅ሻ + ܾሺ݅ሻ lnሺ݌ሻ ܽ ≥ 0, ܾ < 0 (6) ෠ܳ௣ሺ݅ሻ is the flow (in m3 s-1, either logged or in real data space) for basin i and 
exceedance percentile p, and a and b are parameters to be fitted according to 
the constraints given for each function. Parameters were estimated using 
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ordinary least squares on the 10 exceedance percentiles of the empirical 
FDCs. Initially 2nd and 3rd order polynomials were also considered, but were 
excluded as it was not feasible to define parameter constraints that guaran-
teed monotone and non-negative curves in the parameter regionalisation 
procedure.  

The statistical distributions included the two-parameter lognormal and 
gamma distributions (Eq. 7 and 8), which were fitted on the entire record of 
data using the method of maximum likelihood (referred to as LN2 and GA2 
herein). In addition, a mixed version of each (Eq. 9 and 10) was included for 
which the no flow threshold parameter, p0, was determined from the ob-
served data and the respective distribution was fitted on the non-zero data:  
 ෠ܳ௣ሺ݅ሻ = ଵሺ1ିܨ − ;݌ ,ሺ݅ሻߤ ߤ ሺ݅ሻሻߪ ∈ ߪ ܴ > 0 

(7) 

෠ܳ௣ሺ݅ሻ = ଵሺ1ିܩ − ;݌ ݇ሺ݅ሻ, ݇ ሺ݅ሻሻߠ > ߠ 0 > 0 
(8) 

෠ܳ௣ሺ݅ሻ = ቐ	ିܨଵ ൬1 − 1݌ − ଴ሺ݅ሻ݌ ; ,ሺ݅ሻߤ ሺ݅ሻ൰ߪ 		0 ൑ ݌ ൑ ଴ሺ݅ሻ0݌ 		 ݌ ≥ ଴ሺ݅ሻ݌  
ߤ ∈ ߪ ܴ > ଴݌ 0 ≥ 0 

(9) 

෠ܳ௣ሺ݅ሻ = ቐ	ିܩଵ ቆ1 − 1݌ − ଴ሺ௜ሻ݌ ; ݇ሺ݅ሻ, ሺ݅ሻቇߠ 		0 ൑ ݌ ൑ ଴ሺ݅ሻ0݌ ݌		 ≥ ଴ሺ݅ሻ݌  
݇ > ߠ 0 > ଴݌ 0 ≥ 0 

(10) 

F-1, μ and σ are the inverse cumulative distribution function, the mean and 
the standard deviation of the lognormal distribution, respectively. G-1, is the 
inverse cumulative distribution function, k is the shape parameter, and Ɵ is 
the scale parameter of the gamma distribution.  

Finally, empirical orthogonal functions (EOFs) were used as a way to re-
produce the FDCs. In the EOF analysis, the entire dataset of FDCs was de-
composed to a limited number of patterns which explained as much of the 
variance in the dataset as possible. Each pattern, called basis function, was 
found by calculating the eigenvectors of the covariance matrix of the dataset. 
EOFs have been used in hydrology previously, e.g. for estimation of runoff, 
rainfall and temperature at ungauged sites (Rao and Hsieh, 1991) and for 
extrapolation of runoff records (Hisdal and Tveito, 1993). Sauquet and Cata-
logne (2011) showed that EOFs reproduced 1,080 FDCs from catchments in 
France better than a number of commonly used analytical functions (of 
which several are tested in this study). As in Sauquet and Catalogne (2011), 
the EOF analysis in this thesis describes the FDC at site i as a linear combi-
nation of orthogonal basis functions: 
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 ෠ܳ௣ሺ݅ሻ = ሺ݅ሻߛ +෍ߙ௠ሺ݅ሻߚ௠ሺ݌ሻெ
௠  (11) 

M corresponds to the number of exceedance percentiles considered (i.e. 10 in 
this application), and αm is the mth weight associated to the mth basis function 
βm. γ is a parameter related to the magnitude of the FDC since the basis func-
tions are defined to have zero mean.  

Fitted parameters for all FDC approximations were regionalised using 
stepwise linear regression (SR) and ANNs. The ANN architecture and de-
velopment was the same as for the networks used to predict exceedance per-
centile flows but in this case the ANNs were trained on individual parame-
ters of the approximations. To reduce the skewness, the parameters to be 
predicted were Box-Cox transformed (Box and Cox, 1964) prior to the train-
ing of the networks and output was back-transformed after training.  

Two basin groupings were used to explore if grouping of basins prior to 
parameter estimation or EOF decomposition could improve prediction re-
sults. The first grouping represents a low-information case: basins were 
grouped only on the main Köppen-Geiger classes based on Peel et al. (2007), 
i.e. tropical, arid, temperate, cold and polar climates.  

The second grouping followed the method of Sauquet and Catalogne 
(2011), who group catchments based on the so called index of concavity 
(IC). In their study, IC was calculated as the quotient between the 10th per-
centile minus the 99th percentile and the 1st percentile minus the 99th percen-
tile, but since the highest and lowest 5% of the flows are excluded in this 
thesis, a modified IC for each basin i was calculated as: 

ሺ݅ሻܥܫ = ܳଵହሺ݅ሻ − ܳଽହሺ݅ሻܳହሺ݅ሻ − ܳଽହሺ݅ሻ  (12) 

IC ranges between 0 and 1 where a value close to zero represents catchments 
with low storage capacity and/or highly variable climate and values close to 
unity represent catchments for which the runoff response is dampened by 
large storage capacities (Sauquet and Catalogne, 2011). The grouping was 
performed using a regression-tree approach with IC as dependent variable 
and the basin descriptors in Table 2 as decision variables.  
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Results 

Hydrography representation of basin area  
At the time of collection of discharge data from the GRDC for paper II (June 
2011), there were 7,763 gauging stations in the archive. After exclusion of 
gauging stations with insufficient metadata (missing basin area or coordi-
nates), basin areas smaller than 5,000 km2 or insufficient discharge data (no 
daily data available), 2,177 stations remained that were co-registered in the 
DRT flow network. Of those, 558 stations were available as co-registered 
stations in the DDM30 and STN-30p datasets and allowed for comparisons 
of the performances of the three datasets (Figure 3).  

DDM30 displayed less scatter (standard deviation of the relative area er-
ror, εA, 8.9%) compared to DRT (14.6%) and STN-30p (14.3%). Apart from 
a few largely under- and overestimated station areas in DDM30 and STN-
30p, there was little consistency between the errors of the different datasets 
(Figure 3d–f). 

 
Figure 3. Histograms of relative area errors for the three gridded hydrographies: 
DDM30 (a), DRT (b) and STN-30p (c). Lower panel (d–f) shows comparisons of 
the relative area error for each basin in the different hydrographies.  
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Of the 2,177 stations co-registered in GRDC, 2,005 were available in the 
GIS polygon dataset too. The GIS dataset displayed small errors compared 
to the DRT dataset (though some stations showed marked differences com-
pared to the archived areas) and there was little consistency between the 
errors in the datasets (Figure 4a–b). Visual inspection showed that none of 
the four datasets analysed displayed any spatial pattern of the relative area 
errors. 

 
Figure 4. Histogram of relative area errors for the GIS polygon dataset (a) and com-
parison of the relative area error for each basin in the DRT and the GIS dataset (b).  

Evaluation of consistency between model forcing and 
evaluation data 
Based on the results from the analysis of basin-area representation, only the 
GIS dataset was used in the evaluation of the consistency between forcing 
and evaluation data to minimise effects of area errors. Long-term runoff 
coefficients could be determined for 1,561 of the basins available in the pol-
ygon dataset and the general distribution of RCs did not differ much between 
datasets (Figure 5). 

  
Figure 5. Histogram of low-estimate RCs for the four precipitation datasets.  

RCs violating the first consistency criteria, i.e. RCs higher than unity, were 
found for all precipitation datasets even when using the conservative low RC 
estimate. Implausible RCs were more common for CRU and WATCHCRU 
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than for the other two datasets. Basins with RCs higher than unity were 
mainly found in Alaska and north-western Canada.  

A simplified version of the Budyko (1974) curve was used to graphically 
analyse the second consistency test. Inferred actual evaporation (P-R) was 
plotted against potential evaporation for each basin and for all combinations 
of precipitation and potential evaporation datasets.  

 
Figure 6. Mean annual actual evaporation (estimated as P-R using CRU precipita-
tion data) versus potential evaporation from CRU, WATCH Penman-Monteith and 
WATCH Priestley-Taylor (left panel). Potential evaporation is plotted against actual 
evaporation estimated using the sharp runoff estimate, i.e. the y-value of each dot 
represents the sharp evaporation estimate. The colour coding is based on the high 
runoff estimate (RH, giving low estimate of EA) and low runoff estimate (RL, giving 
high estimate of EA) as indicated in the legend. The right panel shows the geograph-
ical distributions. 
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The uncertainty of the observed runoff was accounted for as a color-coding 
of each basin (example in Figure 6), where red corresponds to basins for 
which the inferred actual evaporation exceeds potential evaporation even for 
the high runoff estimate (i.e. for the conservative, low, estimate of actual 
evaporation). Orange corresponds to basins for which the inferred actual 
evaporation exceeds the potential evaporation for the high or for the high 
and sharp estimate of actual evaporation, but not for the low estimate. Basins 
were also colour coded for violations of the first consistency criteria: blue 
dots represent basins where the actual evaporation was negative (i.e. RC>1) 
even for the high (low) actual evaporation (runoff) estimate and green if this 
occurred only for the low estimates of actual evaporation.  

Analysis of the graphs showed that the frequency of basins with inferred 
actual evaporation estimates higher than potential evaporation was noticea-
bly higher for the two WATCH datasets compared to CRU (example shown 
for CRU precipitation in Figure 6 and Table 3). For all three potential evapo-
ration datasets, too high actual evaporation frequently appeared in the Ama-
zon basin, and for the WATCH datasets frequently on the east coast of North 
America, in Europe, equatorial Africa and South East Asia (Figure 6).  

Table 3. Percent of basins exhibiting potential data inconsistencies. A basin is only 
accounted for in the worst category that applies to it, e.g. if the lowest actual evapo-
ration estimate exceeds EP it is accounted for in column EAL>EP, but not EAH>EP. 
Precipitation Potential 

Evaporation 
No 

remark 
EAL>EP EAH>EP P-RL<0 P-RH<0 

CRU CRU 85.6 4.5 2.9 3.6 3.4 
CRU WATCHPM 71.7 12.2 9.1 3.6 3.4 
CRU WATCHPT 62.6 19.8 10.6 3.6 3.4 

Analysis of land-surface water budgets in an NWP 
scheme  
All model outputs displayed positive biases in precipitation compared to the 
observational benchmark GPCP (Figure 7). ERA-40 showed a strong bias 
that increased during the period whereas the strong biases noted in the opera-
tional models decreased during the period. For the operational models, the 
high precipitation rates led to high evaporation rates, but not in ERA-40 
(Figure 7d–f). The high uncertainties in current global land evaporation es-
timates are shown by the wide range of the estimates in the observation-
based ELFE dataset (Figure 7e). Although precipitation and evaporation were 
expected to be in approximate balance over the global domain, substantial 
differences were found for all models but ERA-CM (Figure 7g).  
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The long-term (1995–2001) averaging allowed travel times for flow to be 
neglected in the analysis of runoff and model estimates were benchmarked 
against observed discharge for 611 basins (Figure 8). 

 
Figure 8. Geographical coverage of the 611 basins in the study. 

Substantial differences in terms of relative errors between modelled and 
observed runoff were found for many basins (Figure 9). For all models, a 
majority of the basins displayed relative errors larger than ±20%: ERA-40 
83% of the basins, ERA-Interim 75%, ERA-CM ensemble members 61–
65%, OH1d 76%, OL10d 73%, LandC 62% and LandU 56%. 

 
Figure 9. Relative errors between simulated and observed runoff 1995–2001. Error 
calculations for ERA-CM were based on the median long-term runoff of the 10 
ensemble members. Light grey shading corresponds to ±20% error band. 
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In addition to the global water-budget imbalances (Figure 7), land-surface 
water-budget imbalances were found both on cell and basin scale when ana-
lysing individual models (example shown in Figure 10). For extensive areas, 
ERA-Interim exhibited long-term evaporation exceeding precipitation 
(Figure 10a) and similar patterns were found for the operational models and 
ERA-40. ERA-CM also displayed this issue but to a smaller extent.  

Runoff should equal the difference between precipitation and evaporation 
over long-term (assuming storage changes can be neglected, Eq. 2). Howev-
er, imbalances (i.e. EA>P and P-EA≠R) were seen for large areas in ERA-
Interim (Figure 10b) and translated to basin scale (Figure 10c).  

 
Figure 10. ERA-Interim water budgets 1995–2001. Precipitation minus evaporation 
(a), precipitation minus evaporation minus runoff (b), relative errors between simu-
lated precipitation minus evaporation and runoff (c). Red crosses in c indicate basins 
for which long-term evaporation exceeds precipitation. 

ERA-40 performed the worst in terms of percent of basins that exhibited 
long-term evaporation more than 10% higher than precipitation (Table 4). 
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For the model setups using full data assimilation (ERA-40, ERA-Interim and 
the operational models), 44–66% of all basins displayed an imbalance be-
tween runoff and the difference between precipitation and evaporation that 
exceeded 10% of the average precipitation. 

Table 4. Percent of basins with water budget issues. 

Dataset EA/P>1.1 |P-EA-R|/P>0.1 

ERA-40 16 66
ERA-Interim 10 50
ERA-CM 0–2 5–9
OH1d 12 55
OL10d 8 44
LandC 0 0
LandU 0 0 

Regionalisation of flow-duration curves 
The basins (n=2,102) included in paper V (Figure 11) showed a large spread 
in mean runoff values (0.1–5,500 mm year-1) and included 138 (6.6%) basins 
that were dry for 10% of the time or more. Basin areas varied between 5,000 
and 4,700,000 km2, with 21,000 km2 being the median area. The basins cov-
ered all main Köppen-Geiger climates following the classification by Peel et 
al. (2007). 

 
Figure 11. Gauging stations included in the study colour coded according to domi-
nant main Köppen-Geiger classes of the basins. Stations with black outlines belong 
to the randomly selected 10% of evaluation basins. 
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Direct methods  
Direct estimation of the FDCs using proximity measures (NN, Pv1 and Pv2), 
resulted in high relative errors for many basins and for all exceedance per-
centiles (Figure 12a). Pv1 and Pv2 only performed slightly better than NN. 
Using the 10 closest (in geographical and/or catchment descriptor space) 
basins as donors, compared to only the one closest, improved the results 
somewhat, but resulted in unrealistic non-monotone FDCs for some basins 
for all proximity measures. Estimation of the FDCs using ANNs (both with 
one and 10 output neurons) resulted in similar relative errors to the proximi-
ty methods (example in Figure 12b), but non-monotone FDCs were generat-
ed for all network architectures tested (i.e. one and 10 output neurons and 
different numbers of hidden neurons). 

 
Figure 12. Boxplots of relative errors between empirical and regionalised FDCs: a, 
estimated with proximity techniques, nearest neighbour (NN, top), proximity in the 
catchment descriptor space (Pv1, middle) and proximity in the catchment descriptor 
space including geographical proximity (Pv2, bottom) using 1 and 10 donors (left 
and right panel respectively), and b, estimated with ANNs with one output neuron. 
Red lines in the boxes indicate the median, the edges the 25th and 75th percentile, the 
whiskers extend to 1.5 times the interquartile range and circles indicate outliers.  

FDC approximations 
The EOF decomposition led to theoretically unsound (non-monotone) FDCs 
if more than the first basis function were included in the reconstruction of 
the FDCs. Therefore, only the first basis function was retained, which ex-
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plained 95% of the variance of the empirical FDCs and 78% of the log-
transformed empirical FDCs.  

In terms of relative errors between the empirical and fitted exceedance 
flows, the lognormal distribution and EOF performed the best (Figure 13). 
Given the parameter constraints for the exponential, power law and loga-
rithmic model (Eq. 4–6) they are bounded by 0, which resulted in a poor fit 
of the log-transformed data for basins with low flows. Relaxing the parame-
ter constraints, to encompass negative values in the log-transformed data, 
resulted in unrealistic (negative) flows in the fitted FDCs and/or unrealistic 
curves (non-monotone) in the regionalisation.  

Based on this initial analysis, EOF (based on log-transformed data), LN2 
and LN3 were considered the best candidates for regionalisation. 

 
Figure 13. Relative errors for the 10 exceedance percentiles: a, for different analyti-
cal approximations (left to right) of the empirical FDCs (top panel) and log-
transformed empirical FDCs (lower panel), and b, for different statistical approxi-
mations of empirical FDCs. Boxes are defined as in Figure 12. 

The location parameters (γ and μ) were better predicted than the shape pa-
rameters (α and σ) for all approximations and by both SR and ANN, but 
ANNs outperformed SR in parameter estimation in terms of R2-values and 
NRMSE for all parameters (example for LN3 in Table 5). This is likely be-
cause ANNs do not assume any specific functional relationship between the 
input and output whilst the SR technique assumes a linear relationship.  

However, this flexibility in ANNs mean they can easily be overfitted. The 
early stopping technique used in this thesis is one method to avoid overfit-
ting, but the generalisation capability of the networks should nonetheless be 
tested.  
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Table 5. R2-values and NRMSE for parameter estimates with SR and ANN. Numbers 
in brackets refer to the unseen data.  
Parameter R2  NRMSE 
 ANN SR  ANN SR 
LN3 μ 0.94 (0.94) 0.78 (0.82) 0.12 (0.13) 0.22 (0.21)
LN3 σ 0.74 (0.60) 0.41 (0.42) 0.27 (0.34) 0.41 (0.40)
LN3 p0 0.82 (0.79) 0. 39 (0.44)  1.75 (1.55) 3.08 (2.55) 

In Figure 14, the predicted and fitted parameters for the development data 
(i.e. basins used as training, testing or validation data in the ANN develop-
ment process) and the unseen data (i.e. the 10% completely excluded from 
the development) are shown separately for EOF. The performances for the 
two subsets was similar (as confirmed by small losses in R2-values and small 
increases of NRMSE in Table 5). 

Heteroscedasticity is seen for both parameters, but especially the shape 
parameter (α). The shape parameter for LN2 also shows strong heteroscedas-
ticity. Many of the basins with low α-values for EOF and high σ-values for 
LN2 are intermittent basins for which the fit of both approximations is gen-
erally poor. 

  
Figure 14. Predicted parameters versus fitted parameters for γ (left) and α (right) of 
EOF. Each black circle represents a basin that was used in the neural network devel-
opment (training, validation, testing) and, each red cross one of the basins that were 
excluded completely from the development phase (unseen data). 

The analysis of performance using the two groupings, based on main Kö-
ppen-Geiger climates and the regression tree on IC gave mixed results. Clus-
ter size differed for the five main climates (A: 233, B: 256, C: 296, D: 1258 
and E: 59) and for clusters based on IC (13 clusters with 105–218 basins in 
each).  

EOF decomposition of the individual groups of the two clustering meth-
ods did not result in any marked improvement. However, using the group-
ings improved the parameter estimates through SR for all parameters apart 
from the threshold parameter in LN3 when using clustering on the main cli-
mates. On the other hand, using ANNs to estimate parameters for individual 
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clusters performed worse than the ANNs trained on the entire dataset. Nev-
ertheless, the ANN estimates with no grouping applied still performed better 
than SR with grouping. Therefore, the parameters predicted by ANNs 
trained on the entire dataset were used. 

In terms of relative errors for the regionalised curves, all three approxima-
tions performed similarly with LN3 representing low flows somewhat better 
(Figure 15). The results were on par with the direct estimation techniques 
(Figure 12), but somewhat better for low flows, and with the advantage that 
all these curves were monotone.  

 
Figure 15. Relative errors of the 10 exceedance percentiles for the regionalised 
FDCs. Boxes are defined as in Figure 12, but outliers have been removed for better 
visibility.  

Geographically, large mean relative errors for high, intermediate and low 
flows were scattered throughout the global domain for both the fitted curves 
and the regionalised ones. The fit of LN3 was good with small relative errors 
for many basins, but was rather poor in some basins e.g. in eastern and cen-
tral Russia. The regionalised curves displayed very large relative errors for 
basins scattered throughout the world, with a tendency to perform poorly in 
arid regions, e.g. central U.S., and the eastern and central parts of Russia 
(which also had poor fits). 

Examples of the empirical FDCs shown in Figure 16 together with the fit-
ted and regionalised FDCs using LN3, highlight the very mixed performance 
of the method. In some basins, the fit between the empirical FDC and the 
fitted FDC was poor (e.g. Alsek River). Some basins exhibited large dis-
crepancies between the empirical FDC and the regionalised one, e.g. the 
Amazon and Murrumbidgee rivers. Some basins showed very good results 
on the other hand, e.g. the Danube, Huang He and Rhine River. 
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Figure 16. Examples of empirical, fitted and regionalised FDCs. Stations marked 
with an asterisk were part of the unseen data. Note different ordinate scales.  
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Discussion  

The focus of this thesis was to address challenges in large-scale hydrology 
introduced by disinformative and uncertain data. In paper II, the identifica-
tion of disinformative data in a number of datasets was carried out through a 
screening procedure aimed at detecting inconsistencies between datasets. 
This work was carried on in paper IV, in which the internal consistency of a 
number of model versions of a numerical weather prediction scheme was 
analysed. Both paper III and V deal with predictive tools to overcome the 
lack of measured data, in terms of a technical review of models for flood 
forecasting in paper III, and in terms of spatial extrapolation through region-
alisation in paper V. The importance of all these aspects of large-scale hy-
drology is to some extent summarised in the seven reasons for doing uncer-
tainty analysis pointed out in paper I.  

Representation of basin areas 
A correct delineation of the basin is an important starting point for water-
balance analyses. The results in paper II from the comparisons of basin areas 
in the hydrographic datasets with the areas reported in the GRDC archive 
showed that many basins exhibited large relative area errors. However, these 
discrepancies are likely not only a result of deficiencies in the hydrographic 
datasets, but also to varying quality of the metadata in the archive. Basin 
areas in the archive are reported by the data providers and contain no infor-
mation of their accuracy (U. Looser, head of GRDC, personal communica-
tion, October 2011). Comparison of archived basin areas at the time of re-
trieval from GRDC for paper II (June 2011) and the areas reported from the 
archive in the GIS polygon dataset showed that reported basin areas had 
changed by over 100% for a few stations. 

DDM30 outperformed the other two gridded products in terms of repre-
senting the archived basin areas, but due to extensive manual corrections 
(Döll and Lehner, 2002) it is difficult to use to derive high-resolution topo-
graphic basin information, e.g., for routing. The GIS polygon dataset outper-
formed the gridded dataset DRT in terms of representing basin areas: 94% of 
the basins displayed absolute relative area errors of 25% or less and 84% 
displayed errors less than 10%. Corresponding numbers for DRT were 80% 
and 45%, respectively. 
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Consistency between forcing and evaluation data 
Runoff coefficients higher than unity were encountered for all precipitation 
datasets in paper II, even when conservatively accounting for the uncertainty 
in runoff. Several other global studies have reported similar problems (e.g. 
Fekete et al., 2002; Widén-Nilsson et al., 2009; Peel et al., 2010), which can 
result from a number of issues, e.g., poor representation of spatial and tem-
poral patterns in precipitation, measurement errors, and in some basins inter-
basin transfers (Peel et al., 2010).  

It is theorised that wind-induced snow undercatch, which can have sub-
stantial effects on measurements in high-latitude areas (Adam and Let-
tenmaier, 2003), is one explanation to the fact that the majority of the basins 
exhibiting these implausible runoff coefficients were located in snow affect-
ed areas. The fact that the WATCH datasets had been corrected for solid 
undercatch, yet still exhibited this inconsistency, is indicative that the correc-
tions were not sufficient or that other errors (e.g. poor representation of oro-
graphic effects) are present. 

Transgressions of the potential-evaporation limit also occurred in all da-
tasets analysed. The issue was most pronounced for the WATCH datasets 
and can most likely not only be attributed to effects of irrigation or inter-
basin transfers not accounted for, but to a large part probably stems from 
inadequate potential evaporation estimates. All three datasets analysed ig-
nore vegetation differences and the results indicate the importance of con-
sidering land cover.  

When using the sharp discharge estimate, 8–43% of all basins exhibited 
data inconsistencies depending on how datasets were combined and the cor-
responding number when accounting conservatively for discharge uncertain-
ties was 6–35%. This indicates that a substantial amount of the data analysed 
in paper II can be disinformative for model evaluation (Beven and Wester-
berg, 2011; Beven et al., 2011; paper I). 

Land-surface water budgets in an NWP scheme 
Biases and imbalances in the global and land-surface water-budgets were 
found in the analysis of NWP-model output in paper IV. The precipitation 
rates exceeded the observed for all model outputs. For ERA-40, the strong 
bias has been attributed to issues in the humidity assimilation (Uppala et al., 
2005; Dee et al., 2011). The operational models (OH1d and OL10d) also 
showed strong biases, but decreasing with time, which is partly explained by 
an improved convection parameterisation (Bechtold et al. 2012). 

The analysis of the evaporation rates showed that the model output fell 
within the estimates of the diagnostic dataset, but the uncertainties in both 
observational and modelled data were high as indicated by a large spread in 
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the estimates. Globally, there was an imbalance in precipitation and evapora-
tion of the models (apart from ERA-CM). For ERA-40 and OH1d this was to 
a large extent due to a spurious exceedance of ocean precipitation over 
evaporation. Trenberth et al. (2011) have reported similar issues for other 
reanalysis datasets.  

For hydrologically more relevant scales it was found that runoff was bi-
ased for a majority of the basins even when allowing for a relatively large 
uncertainty (±20%) in the long-term mean runoff. In addition, the long-term 
water budgets did not balance (E>P and P-E≠R). These imbalances are un-
likely to be attributed to e.g. glacier melting not considered here, but are 
more likely an effect of the data assimilation. In the assimilation, soil mois-
ture and snow storages are used as “nudge factors” to improve the forecasts, 
which results in a disrupted hydrological cycle (Dee et al. 2011).  

The results indicate that care must be taken when using these data for hy-
drological purposes, but the results must also be seen in the perspective of 
these models being aimed at producing the best possible weather forecasts, 
not at predicting runoff or at representing global hydrological regimes.  

Regionalisation of flow-duration curves 
Using direct techniques for regionalisation of FDCs, i.e. proximity in the 
geographical/descriptor space or ANNs for percentile flow estimation, re-
sulted in non-monotone FDCs unless only one donor was used for the prox-
imity approaches (which resulted in high errors for low flows). The mono-
tonicity issue could be considered negligible if only very low flows were 
concerned, but the issue appeared for intermediate flows too. Therefore, 
approximation of the FDCs with a given monotonic model seemed to be a 
good alternative for prediction of theoretically sound FDCs in this thesis. It 
was not possible to find one approximation, among the ones tested herein, 
that encompassed all the different shapes of the FDCs, but LN3 performed 
relatively well for most basins. Other functions or distributions should be 
tested to find a more appropriate approximation. However, the biggest loss 
in performance was found in the parameter regionalisation step. 

The regionalisation of the fitted parameters showed that ANNs outper-
formed SR in terms of R2-values and NRMSE. Performance of SR was im-
proved by clustering of similar catchments prior to parameter estimation, but 
performance was still poorer than ANNs. A drawback with ANNs is that 
they represent somewhat of black box models, offering little insight to how 
the hydrological regimes are related to basin climate and physiographic 
characteristics. Although outside the scope of this thesis, some knowledge 
about the importance of different input variables can be gained by analysis 
of the trained weights (Olden et al., 2004) which could be interesting to ex-
plore. However, whether using ANNs or SR for the parameter estimation, 
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the regionalised FDCs displayed large relative errors for high, intermediate 
as well as low flows. For instance, the mean discharge of the Amazon River 
was poorly predicted (μ 10.8 ln m3 s-1 compared to the empirical 12.0 ln m3 s-

1), which led to massive relative errors (average -70%). On the other hand, 
the Murrumbidgee River was overestimated by ~75% due to an overestima-
tion of the mean discharge (μ 5.0 ln m3 s-1 compared to the empirical 4.4 ln 
m3 s-1). The Murrumbidgee River is heavily impacted by regulation and wa-
ter diversions, which could partly explain the poor predictions, but for the 
Amazon River, the reason for the underestimation was harder to explain. 
This indicated that even though rudimentary sensitivity tests to regulation 
(exclusion of basins with maximum capacities of 10, 20 and 30% of annual 
discharge) did not show any marked effects, anthropogenic influences can be 
very important on individual basin level, and need to be accounted for. 

Including more basins (e.g. smaller than 5,000 km2 or with shorter dis-
charge records) may help in the training of the networks, but it is also possi-
ble that there are important characteristics of the basins that have been over-
looked in the input data selection. In addition, the basin average values 
might not contain enough information to distinguish between different hy-
drological functioning of basins. It is also possible that the parameters that 
the networks were trained on actually introduced disinformation in the cases 
where the fit of a particular approximation was poor. For instance, low α-
values in EOF were typically indicative of a poor fit in intermittent basins 
and may add little (or even wrong) information during the training process.  

The parameter, and ultimately FDC, regionalisation may possibly im-
prove with some of the aforementioned measures, but nonetheless a high 
uncertainty will remain in the predictions. Accounting for this uncertainty, 
including the uncertainty in the empirical FDCs themselves, the uncertainty 
introduced by the approximations and finally the uncertainty in the parame-
ter estimation, will be of outmost importance for the regionalised FDCs to be 
useful for e.g. indirect model calibration. 
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Conclusions 

Uncertainties in hydrological modelling and analysis is not an issue reserved 
for large-scale studies, but is often exacerbated by limited data availability 
and quality over large domains. The results in this thesis have shown that the 
uncertainties in global hydrological data can be high, and that these high 
uncertainties often lead to physically implausible discrepancies when com-
bining data.  

The analysis in paper II clearly showed that many of the data used in hy-
drological modelling are inconsistent. The method for screening forcing and 
evaluation data to detect inconsistencies is in no way limited to large-scale 
studies, but can be applied at any scale. Performing such a screening prior to 
analyses can, to some extent, prevent drawing the wrong conclusions in sub-
sequent modelling, by highlighting basins/regions for which model results 
should be carefully considered before accepting or rejecting them (paper I).  

However, not only data uncertainties affect global hydrological models, 
but differences in model structure and parameters can have a major effect on 
runoff estimates. The many differences between models reviewed in paper 
III have been shown to result in large spreads in model output in model in-
tercomparison studies. This indicates that more data are needed in order to 
falsify or confirm the process parameterisations and in that way improve 
global water-resources estimates and reduce the predictive uncertainties. 

In the analysis of the land-surface water budgets of the seven ECMWF 
model versions (paper IV), it was clear that they suffered from serious limi-
tations in terms of imbalances between long-term precipitation, evaporation 
and runoff, but also biases compared to observational data. The data assimi-
lation process led to disrupted hydrological cycles. This limits the usefulness 
of these data for hydrological purposes and bias correction, although fraught 
with its own problems, will be necessary until these issues are resolved. 

In paper V, several issues were identified in the process of prediction of 
FDCs for a wide range of climatic, physiographic and ultimately hydrologi-
cal conditions globally. Unrealistic FDCs, i.e. non-monotonic or with nega-
tive flows, were produced through several of the methodologies employed. 
In order to ensure theoretically sound regionalised FDCs, it was found nec-
essary to approximate the empirical FDCs with some monotonic function or 
distribution. The mixed lognormal distribution was found to perform reason-
ably well for most basins in terms of reproducing the empirical FDCs. Re-
gionalisation of the parameters through ANNs were found to perform better 
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than SR, but many FDCs were poorly predicted using regionalised parame-
ters.  
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Sammanfattning på svenska   
Summary in Swedish 

Desinformativa och osäkra data i global hydrologi – utmaningar för 
modellering och regionalisering 

 
Vatten är en förutsättning för människan och för välfungerande ekosystem, 
men många människor lever utan tillgång till rent vatten och goda sanitära 
förhållanden. Globalt sett ökar behovet av färskvatten genom att befolkning-
en ökar och ekonomierna växer. Även förändringar i klimat och markan-
vändning förväntas bidra till att belastningen på de redan ansträngda vatten-
resurserna ökar. För att kunna trygga vattenförsörjningen och därmed mat-
försörjningen krävs kunskap om dessa resurser. Vid bedömning av vattenre-
sursers storlek är avrinningen i vattendragen en nyckelfråga. Den säger hur 
mycket och hur fort färskvatten nybildas av nederbörden och därmed hur 
mycket vatten som finns tillgängligt för människa och ekosystem. Trots den 
avgörande roll som vatten spelar är våra kunskaper om hur de globala vat-
tenresurserna varierar i tid och rum begränsade och olika uppskattningar av 
den globala avrinningen uppvisar stora skillnader. 

En av utmaningarna med att skatta vattenresurser är att det saknas data av 
god kvalitet i många områden. Tidiga skattningar av de globala vattenresur-
serna byggde enbart på mätdata, men under 1980-talet började man utveckla 
hydrologiska modeller att användas i global skala. Sådana modeller kan an-
vändas för att skatta vattentillgången när data saknas, antingen i tid eller i 
rum, och för projektioner inför framtiden. Globala modeller är utvecklade 
med ett storskaligt fokus och lämpar sig för studier av kontinental och reg-
ional natur, men är inte lämpliga för studier av lokala vattenresurser.  

Alla hydrologiska modeller, och kanske särskilt globala hydrologiska 
modeller, är förknippade med osäkerhet. Detta är oundvikligt vid all model-
lering då våra matematiska modeller är förenklingar av en komplex verklig-
het. Den förenklade processbeskrivningen i hydrologiska modeller är en 
bidragande orsak till osäkerheten i modellresultaten, men även osäkerhet i 
indata, parameterosäkerhet och osäkerhet i utvärderingsdata bidrar. Trots 
detta har analyser av dessa osäkerheter och deras konsekvenser för modellre-
sultat nästintill helt saknats i global modellering. 

Det finns idag ett flertal modeller som används för storskalig hydrologisk 
modellering. En del av dessa modeller har sin bakgrund inom meteorologisk 
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forskning och fungerar framförallt som randvillkor för storskaliga atmo-
sfärsmodeller. De utvecklades med fokus på energibalansen snarare än på 
vattenbalansen. Ofta är den rumsliga upplösningen av dessa modeller låg, 
men den tidsmässiga relativt hög (<1 dag), och lateral transport av vatten 
mellan beräkningsrutor saknas. Globala hydrologiska modeller, å andra si-
dan, utvecklades inom det hydrologiska forskningsfältet och fokuserar helt 
på vattenbalansen. Med undantag för hybridmodeller är t.ex. snöparametrise-
ringen enklare i de globala hydrologiska modellerna än i de som är kopplade 
till klimatmodellerna eftersom energibalansen inte simuleras. Stora variat-
ioner i komplexitet, upplösning och parametrisering gör de hydrologiska 
modellerna lämpliga för olika tillämpningar, men ger även upphov till de 
stora variationer i modellresultat som visats när det gäller skattningar av den 
globala avrinningen. 

Osäkerheten i data påverkar både modellresultat och hur dessa korrekt ska 
utvärderas. Osäkerheten hos nederbördsdata dominerar ofta osäkerheten i de 
indata som används till hydrologiska modeller, men osäkerheten i beräknad 
potentiell avdunstning kan också vara viktig. Oftast utvärderas modellresul-
tat mot observerad vattenföring, men i de många avrinningsområden på jor-
den där vattenföringsmätningar saknas är sådan direkt kalibrering och utvär-
dering av modeller inte möjlig. 

Denna avhandling berör både osäkerheter i data, genom jämförelser av 
globala data och modellresultat, och avsaknaden av data genom en inledande 
studie för regionalisering av varaktighetskurvor. I en studie omfattande flera 
uppsättningar indata (nederbörd och potentiell avdunstning) och vattenfö-
ringsdata från ett stort antal avrinningsområden världen över kunde det fast-
läggas att 8–43 % av alla avrinningsområden uppvisade desinformativa data 
(fysiskt orimliga) om den observerade vattenföringen användes vid jämförel-
sen. Om hänsyn togs till osäkerheten i vattenföringsdata gällde detta för 6–
35 % av avrinningsområdena. För alla uppsättningar nederbördsdata obser-
verades avrinningskoefficienter (kvoten mellan avrinning och nederbörd) 
högre än ett för många avrinningsområden, vilket är orimligt om inte vatten 
tillförs genom glaciärsmältning eller genom grundvattenflöden som inte 
tagits hänsyn till. De flesta avrinningsområden med dessa höga avrinnings-
koefficienter ligger i områden där den uppmätta nederbörden sannolikt är 
betydligt mindre än den verkliga på grund av snö eller orografiska effekter. 
Den skattade verkliga avdunstningen (nederbörd minus avrinning) översteg 
den potentiella i många områden, vilket är fysiskt orimligt och tyder på des-
informativa data. En orsak till detta bedömdes vara att den potentiella av-
dunstningen i de använda datauppsättningarna är beräknad utan hänsyn till 
vegetationens inverkan. Förekomsten av desinformativa data varierade bero-
ende på vilka data som kombinerades, även om det fanns vissa likartade 
geografiska mönster för alla kombinationer. 

Analysen av vattenbudgetarna i de olika versionerna av den numeriska 
vädermodellen från det europeiska centret för medellånga väderprognoser 
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(European Centre for Medium-Range Weather Forecasts, ECMWF) visade 
stora avvikelser från hydrologiskt rimliga resultat. Globalt sett fanns obalans 
mellan långtidsvärden av nederbörd och avdunstning och avdunstningen var 
i många fall större än nederbörden i både modellrute- och avrinningsområ-
desskala. I många avrinningsområden balanserades inte långtidsvärden för 
avrinningen av skillnaden mellan nederbörd och avdunstning och den uppvi-
sade för majoriteten av avrinningsområdena relativa fel på över ±20 % av 
observerad avrinning. Modeller av denna typ är ämnade att producera väder-
prognoser av hög kvalitet och för att nå detta mål uppdateras modellerna 
genom assimilering av olika observerade variabler och under denna process 
används bland annat markvatten som en justeringsfaktor, vilket till stor del 
kan förklara de obalanserade vattenbudgetarna. 

Den sista delen i avhandlingen angriper problemet med avsaknad av vat-
tenföringsdata, vilken förhindrar kalibrering och utvärdering av hydrologiska 
modeller i många avrinningsområden i världen. För att skatta avrinningen i 
områden utan mätdata krävs metoder för att överföra kunskap från områden 
med data till områden utan data, så kallad regionalisering. Traditionellt har 
man inom den hydrologiska forskningen ofta försökt att regionalisera mo-
dellparameterar, som kalibrerats i områden med vattenföringsdata, till områ-
den utan mätdata genom att exempelvis utveckla regressionssamband mellan 
modellparametrar och olika egenskaper hos avrinningsområden (såsom kli-
mat, geologi, vegetation m.m.).  

I avhandlingen utforskas istället möjligheten att regionalisera varaktig-
hetskurvor, vilket har fördelen att de är modelloberoende och kan (om reg-
ionaliseringen fungerar väl) användas för indirekt kalibrering av hydrolo-
giska modeller. Ett flertal metoder för regionalisering prövades, både direkt 
regionalisering av kurvorna och regionalisering av parametrar för funktioner 
anpassade till kurvorna. Ingen av anpassningarna kunde representera alla de 
former som de empiriska kurvorna visade och de direkta metoderna resulte-
rade i teoretiskt orimliga kurvor (icke-monotona). Användandet av neurala 
nät för regionaliseringen av parametrarna gav bättre resultat än multipel lin-
jär regression, men de regionaliserade kurvorna visade i många fall på stora 
systematiska fel. Även om en del kurvor förutsas väl visade studien att mer 
forskning behövs både för att förbättra resultaten, men också för att på ett 
adekvat sätt kunna skatta osäkerheten i de regionaliserade kurvorna. 

Resultaten i denna avhandling visar att det finns stor osäkerhet i data för 
storskalig hydrologisk modellering. Denna osäkerhet kan få en avgörande 
betydelse i modelleringsprocessen och bör tas i beaktande. Avhandlingen 
leder till slutsatsen att data bör kontrolleras innan modelleringen sker och att 
desinformativa data i möjligaste mån bör exkluderas från kalibrering och 
utvärdering. Fortsatt arbete med hur osäkerhet i indata, utvärderingsdata och 
modellresultat kan kvantifieras och kommuniceras för storskaliga modeller 
är en förutsättning för mer robusta och trovärdiga skattningar av de globala 
vattenresurserna. 
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