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Rezime

Analiza topoloske strukture skalarnih polja je u osnovi mnogih savremenih
i tradicionalnih oblasti istrazivanja, kao Sto su modelovanje geografskih ter-
ena i analiza oblika molekula, analiza volumetrijskih skupova podataka dobi-
jenih merenjima uz pomo¢ senzora ili simulacijom (na primer, analiza mesanja
fluida) u raznim domenima primene, ukljuéujuéi medicinu, biologiju, meteo-
rologiju, geologiju, da navedemo samo neke.

Teorija Morza (M. Morse) [84,86] se bavi izu¢avanjem veza izmedju kritiénih
tacaka skalarnog polja f definisanog na mnogostrukosti M, i topoloske struk-
ture (oblika) mnogostrukosti M. U neprekidnom slucaju, teorija Morza pred-
stavlja prirodan i intuitivan alat za analiziranje strukture skalarnog polja, kao
i nac¢ina da se ta struktura kompaktno predstavi kroz dekompoziciju domena
M skalarnog polja f u celijske komplekse koji se zovu (rastuéi i opadajuéi)
kompleksi Morza.

Kompleksi Morza su sacinjeni od oblasti pridruzenih kriticnim tackama
polja. Integralne linije koje konvergiraju ka kriticnoj tacki p indeksa ¢ formi-
raju i-dimenzionalnu celiju, koja se zove opadajuéa celija tacke p. Dualno,
integralne linije koje polaze iz p formiraju njenu (n —i)-dimenzionalnu rastucu
¢eliju. Opadajuce i rastuce celiju definiSu dekompoziciju mnogostrukosti M
na opadajuce i rastu¢e komplekse Morza, koji se oznacavaju sa I'y i 'y,
redom. Njihov presek definise komplekse Morz-Smejla (S. Smale). Slika 2.3
ilustruje primer integralnih linija, rastuc¢eg i opadajuceg kompleksa Morza, kao
i kompleksa Morz-Smejla za dvodimenzionalno skalarno polje.

Kompleksi Morza nalaze $iroku primenu u analizi i modelovanju oblika (ge-
ografskih terena, 3D objekata, grafika skalarnih 3D polja), a nasli su primenu
i u razumevanju i analizi osobina skalarnih polja u vizualizaciji nau¢nih po-
dataka. Kompleksi Morza se mogu reprezentovati pomocu bilo koje strukture
podataka za reprezentaciju celijskih kompleksa. Mi smo u [24, 27] definisali
grafovsku strukturu podataka za reprezentaciju topoloske strukture kompleksa
Morza i Morz-Smejla, koju smo nazvali Morzov graf incidencije (Morse Inci-
dence Graph - MIG).

Prvi pristup reprezentaciji topoloske strukture dvodimenzionalnih skalarnih
polja je predozio Kejli (A. Cayley) 1859. godine [18], u okviru analize to-
pografskih povrsi. Teren (grafik dvodimenzionalnog skalarnog polja) je opisan
i analiziran pomoc¢u konturnih i integralnih linija polja. Primeceno je da do
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svakog sedla dolaze dve integralne linije koje ga spajaju sa minimumima, da iz
svakog sedla polaze dve integralne linije koje ga spajaju sa maksimumima, kao
i da su integralne linije koje spajaju dve sedla nestabilne i mogu se eliminisati
malom perturbacijom polja. Dekompozicije domena polja na oblasti koje su
pokrivene integralnim linijama koje imaju zajednicku po¢etnu odnosno krajnju
tacku su kasnije nazvane rastuc¢i odnosno opadajuci kompleksi Morza. Iste po-
jmove je nezavisno otkrio Maksvel (J. C. Maxwell) 1870. godine [85], i prosirio
ih je uvodjenjem detaljnije klasifikacije sedlastih tacaka, i izucavanjem pre-
seka opadajuc¢ih i rastu¢ih kompleksa Morza. Takodje je ustanovio relaciju
izmedju broja kriticnih tacaka razli¢itih indeksa dvodimenzionalnog polja.
Morz je 1925. godine poceo da izucava zavisnost izmedju kriticnih tacaka
n-dimenzionalnog skalarnog polja i topologije (homologije) domena polja [87].

U primenama, neprekidna skalarna polja u 2D i 3D su obi¢no diskretizo-
vana, odnosno zadata su svojim vrednostima na diskretnom skupu tacaka koji
¢ini temena regularne kvadratne odnosno kubne mreze, ili neregularne mreze
trouglova odnosno tetraedara. Ovaj opis baziran na geometriji nije u stanju
da na kompaktan nac¢in reprezentuje topolosku strukturu polja definisanu nje-
govim kriticnim tackama i na¢inom na koji su te tacke medjusobno povezane.
Osim sto je kompaktan, opis topoloske strukture takodje podrzava prisup za-
snovan na znanju za analizu, vizualizaciju i razumevanje ponasanja skalarnog
polja (u prostoru i vremenu) kao Sto se zahteva na primer u vizualnom istrazi-
vanju baza podataka.

U literaturi su razvijeni mnogi algoritmi za segmentaciju domena M polja
f, odnosno za izracunavanje aproksimacije dekompozicije domena M na kom-
plekse Morza i Morz-Smejla, kako na regularnim 2D [6,98,99] i 3D [57, 106]
mrezama, tako i na trougaonim [7, 14, 19,43, 52, 77,91, 102] i tetraedarskim
[50, 51, 60,64, 95] mrezama. Mi smo dali pregled algoritama za segmentaciju
2D i 3D skalarnih polja u [37] i [33], redom.

Zajednicka odlika ovih algoritama u 2D je da se u izrac¢unatoj aproksi-
maciji kompleksa Morz-Smejla moze desiti da se dve ili vise integralnih linija
spoje i zajedno konvergiraju prema istom minimumu ili maksimumu. Ekviva-
lentno, moze se desiti da u aproksimaciji kompleksa Morza tri ili vise 2-¢elija
ima zajednicku tacku koja nije teme (0-¢elija) kompleksa. Drugim recima, u
kompleksima Morza, 1-¢elije se mogu geometrijski delimi¢no poklapati, a da
se smatra da su kombinatorno disjunktne [13].

Tako kompleksi Morza reprezentuju topolosku strukturu skalarnog polja
na kompaktniji nac¢in nego polazan skup podataka, ipak postoji potreba da
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se ti kompleksi pojednostave i da se time time smanji veli¢ina reprezentacije
topoloske strukture polja. Razlozi za to su dvostruki. Prvo, danas dostupni
skupovi nau¢nih podataka su uglavnom dati kao konacan skup tacaka iz dvodi-
menzionalnog ili trodimenzionalnog domena M na kojima je data vrednost
skalarnog polja f. Takvi skupovi podataka se dobijaju na dva nacina: mere-
njem ili simulacijom. U oba slucaja, dobijeni podaci su neprecizni zbog pri-
sustva buke (gresaka mernih instrumenata odnosno gresaka numerickih postu-
paka). Pojednostavljivanje kompleksa Morza se moze posmatrati kao elim-
inacija takvih inherentih gresaka. Drugo, u poslednje vreme se primecuje
sve veci rast kompleksnosti i koli¢ine dostupnih naucnih skupova podataka.
To dovodi do porasta velicine kompleksa Morza i Morz-Smejla koji reprezen-
tuju topolosku strukturu tih podataka u meri koja prevazilazi racunarske
moguénosti za njihovu efikasnu obradu. Zbog svega navedenog, istrazivanje
simplifikacije kompleksa Morza i Morz-Smejla dobija na znacaju poslednjih
godina.

U literaturi je predlozen operator za simplifikaciju funkcija Morza, koji se
naziva kancelacija. Ovaj operator je definisan u okviru teorije Morza [84].
Osobine ovog operatora su izuc¢avane za 2D polja u [13, 14,52, 91,102, 112].
Kancelacija eliminise dve kriticne tacke p i g skalarnog polja f sukcesivnih
indeksa 7 i 7+ 1 koje su povezane jedinstvenom integralnom linijom. U dimen-
zijama veéim of dva, kancelacija povecava broj integralnih linija (separatrisa)
koje spajaju kriticne tacke sukcesivnih indeksa, i time komplikuje strukturu
polja.

Efekat kancelacije na komplekse Morz-Smejla za 3D polja je izu¢avan u
[62]. Pokazano je da posle kancelacije 1-sedla i 2-sedla broj ¢elija u komplek-
sima Morz-Smejla moze da se poveca. Mi smo izucavali efekat kancelacije
na opadajuce i rastuée komplekse Morza u [22], i pokazali smo da je efekat
kancelacije lakse opisati i razumeti na kompleksima Morza, nego na komplek-
sima Morz-Smejla. U kompleksima Morza, svaka c¢elija r dimenzije najvise
i koja je bila na granici (i + 1)-dimenzionalne éelije p je posle kancelacije
na granici svake celije ¢t dimenzije najmanje (i + 1) koja je sadrzavala i-
dimenzionalnu ¢eliju ¢ na svojoj granici pre kancelacije. Ako je r i-¢elija u di-
rektnoj granici (i+1)-¢elije p i ako je t (i+1)-Celija u direktnoj ko-granici i-Celije
q, onda je visestrukost mult'(r, 0t) i-¢elije r u direktnoj granici (i + 1)-Celije ¢
posle kancelacije jednaka mult'(r, 0t) = mult(r, 0t) + mult(r, dp) - mult(q, Ot),
gde je sa mult oznacena visestrukost celije u odgovarajucoj direktnoj granici
0 pre kancelacije. U kompleksima Morz-Smejla, svakom takvom paru celija r
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(dimenzije I, 0 <1 <) it (dimenzije m, i + 1 < m < n) odgovara nova celija
dimenzije m — [. Slika 2.10 ilustruje primer kancelacije 1-sedla i 2-sedla na 3D
kompleksima Morza i Morz-Smejla.

Geometrijski, mult(q,0t) disjunktnih kopija (i + 1)-¢elije p i i-Celije ¢
postaje deo (i + 1)-Celije ¢ posle kancelacije. Dakle, posle kancelacije se moze
desiti da se ¢elije delimiéno poklapaju (geometrijski), a da se smatra da su
(kombinatorno) disjunktne. Zbog toga smo u [26] uveli pojam kombinatornih
¢elijskih kompleksa, kod kojih ¢elije mogu da zadovoljavaju ovaj uslov.

U dimenzijama ve¢im od dva, kancelacija u opstem slucaju povecava relaciju
incidencije medju ¢elijama kompleksa Morza i ne moze se smatrati pravim
operatorom za simplifikaciju. Zbog toga se u 3D posle kancelacije 1-sedla i
2-sedla vrse dodatne kancelacije koje uklju¢uju ekstremne tacke (kancelacije
minimuma i 1-sedla ili maksimuma i 2-sedla) [62]. Predlozeno je nekoliko
strategija koje imaju za cilj da odloze primenu kancelacija koje uvode veci
broj incidencija u kompleksima Morza od unapred zadatog praga [61].

Napred navedeno nam je bilo motiv da definiSemo operatore za simpli-
fikaciju kompleksa Morza koji ne¢e imati nepozeljne osobine kancelacije. U
[24,27], definisali smo operatore za simplifikaciju kompleksa Morza, koje smo
nazvali removal 1 contraction.

Operator removal, koji smo definisali u [24,27] i detaljnije izucavali u [26],
i njegovo uopstenje operator remove, koji smo definisali u [32], su elemen-
tarni operatori za simplifikaciju funkcija Morza, kao i odgovarajué¢ih kompleksa
Morza i Morz-Smejla. Definicija tih operatora je nezavisna od dimenzije odgo-
varajuc¢ih kompleksa Morza i Morz-Smejla skalarnog polja f. Kao kancelacija,
ovi operatori takodje eliminisu dve kriticne tacke p i ¢ funkcije f sukcesivnih
indeksa 7 i i+ 1, dve ¢éelije p i ¢ u opadajuéim (odnosno rastué¢im) kompleksima
Morza sukcesivnih dimenzija i i i4+1 (odnosno n—iin—i—1), kao i dva temena
p i ¢ u kompleksima Morz-Smejla, ali pri tom uvek smanjuju broj integralnih
linija koje povezuju preostale kriticne tacke simplifikovane funkcije, smanjuju
relaciju incidencije medju preostalim c¢elijama u simplifikovanim opadajué¢im i
rastu¢im kompleksima Morza, i smanjuju broj ¢elija u simplifikovanim kom-
pleksima Morz-Smejla.

Operator remove je definisan kao specijalan sluc¢aj kancelacije i ima dve in-
stance: remove; ;41 i remove; ;1. Operator remove; ;41, koji eliminise kriticnu
tacku p indeksa ¢ + 1 i kriticnu tacku ¢ indeksa ¢, ima dva tipa. Prvi tip,
koji oznacavamo sa remove; ;11(q, p,p’) je definisan ako je kriticna tacka ¢ in-
deksa i povezana integralnom linijom sa taéno dve kriti¢ne tacke p i p’ indeksa



t 4+ 1, 1 pri tome postoji jedinstvena integralna linija koja spaja tacke ¢ i p.
U opadajué¢em kompleksu Morza (i dualno u rastuéem kompleksu), operator
remove; ;+1(q,p,p’) je definisan ako se i-Celija ¢ javlja na granici taéno dve
(i + 1)-Celije p i p/, i pri tom se ¢elija ¢ javlja tacno jednom na granici ¢elije p,
odnosno mult(q,dp) = 1.

Posle primene operatora remove;;11(q,p,p’), svaka integralna linija koja
je povezivala neku kriticnu tacku r indeksa najvise i sa kriticnom tackom p
indeksa i + 1 postaje integralna linija koja povezuje tacku r sa tackom p'.

Da bismo definisali efekat operatora remove; ;1 na opadajuc¢e kompleksa
Morza, posmatramo sledeée skupove ¢elija u I'y: skup Z = {zp,h =1, .., hypas
(1 — 1)-Celija u direktnoj granici ¢elije ¢; skup S = {sx, k = 1, .., kmaz } (1 + 2)-
¢elija u direktnoj ko-granici ¢elije p; skup R = {rj,j = 1, .., Jmax} i-Celija u
direktnoj granici celije p.

Operator remove; ;1+1(q, p, p’) na opadaju¢em kompleksu I'y:

e brise éelije p i g,

e brige svaku instancu éelije ¢ iz direktne ko-granice Céelije p’ i svih éelija
iz 4,

e briSe svaku instancu celije p iz direktne granice ¢elija iz S,

e zamenjuje svaku instancu celije p u direktnoj ko-granici ¢elije r iz R sa
mult(q, 0p') instanci éelije p'.

Drugim rec¢ima, mult'(r, 0p’) = mult(r, 0p’)+mult(r, Op)-mult(q, Op'), gde smo
sa mult 1 mult’ redom oznacili visestrukost ¢elije u direktnoj granici 9 pre i
posle primene operatora remove. Primer primene operatora remove; 5(q, p, p’)
u 3D je ilustrovan na Slici 4.2. Posle primene operatora na opadajuéi kompleks
Morza I'y, 2-Celije p i p' iz I'y su postale nova 2-Celija p’ u simplifikovanom
kompleksu I,

Geometrijski, u opadajuéem kompleksu Morza, mult(q,dp’) disjunktnih
kopija (i + 1)-dimenzionalne ¢éelije p (kao i i-dimenzionalne ¢elije ¢) postaje
deo (i + 1)-dimenzionalne ¢elije p’. Sve éelije koje su bile na granici (i + 1)-
dimenzionalne éelije p su na granici (i+1)-dimenzionalne éelije p’ posle primene
operatora remove. U rastuéem kompleksu Morza, mult(q, dp’) disjunktnih
kopija (n — i)-dimenzionalne ¢elije ¢ postaje deo svake (n — i)-dimenzionalne
¢elije r koja je imala (n — i — 1)-dimenzionalnu ¢eliju p na svojoj granici. Ko-
granica (n — i — 1)-dimenzionalne ¢elije p (skup svih éelija koje imaju p na
svojoj granici) postaje deo ko-granice (n — ¢ — 1)-dimenzionalne éelije p'.
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Drugi tip operatora remove; ;11, kojeg oznacavamo sa remove; ;+1(q,p, )
je definisan ako je kriticna tacka ¢ indeksa 7 povezana integralnom linijom sa
tacno jednom kriticnom tackom p indeksa ¢+ 1, i pri tome postoji jedinstvena
integralna linija koja spaja tacke ¢ i p. U opadajuéem kompleksu Morza (i
dualno u rastuéem kompleksu), operator remove;;1(q,p, ) je definisan ako
se i-¢elija ¢ javlja na granici tacno jedne (i + 1)-¢elije p, i pri tom se celija ¢
javlja tacno jednom na granici celije p.

Posle primene operatora remove; ;11(q, p, ), svaka integralna linija koja je
povezivala neku kriticnu tacku r indeksa najvise ¢ sa kriticnom tackom p in-
deksa i + 1 postaje integralna linija koja povezuje tacku r sa nekom tackom
indeksa vec¢eg od i+ 1. U opadajuéem kompleksu Morza, (i+ 1)-dimenzionalna
¢elija p (kao i i-dimenzionalna ¢elija ¢) se brisu iz kompleksa. U rastu¢em kom-
pleksu Morza, brisu se (n—i)-dimenzionalna ¢elija ¢ i (n —i—1)-dimenzionalna
¢elija p.

Druga instanca operatora remove, koju oznacavamo sa remove; 1, eli-
miniSe kritiénu tacku ¢ indeksa ¢ i kriticnu tacku p indeksa i — 1. Operator
remove; ;1 takodje ima dva tipa, u oznaci remove; ;—1(q, p, p’) i remove; ;—1(q, p,
0), koji su dualni operatorima remove; ;11(q, p,p’) i remove; ;+1(q, p, 0), redom.

Osim operatora za simplifikaciju removal i contraction, u [26] smo defin-
isali i inverzne operatore insertion i expansion za rafinaciju funkcije Morza, i
odgovarajuéih kompleksa Morza i Morz-Smejla. U [32] smo definisali uopstenje
ovih operatora za rafinaciju. Novi operator, nazvan insert, je inverzan opera-
toru za simplifikaciju remove, od kojeg ima suprotan efekat.

Operator insert kreira dve nove kriticne tacke skalarnog polja f, dve celije
sukcesivnog indeksa u opadajué¢im i rastu¢im kompleksima Morza, i dva temena
u kompleksima Morz-Smejla.

Operator insert; ;+1(q, p,p') je odredjen novim ¢elijama (i-¢elijom ¢ i (i+1)-
¢elijom p), (i + 1)-Celijom p’ (koja ¢e biti u direktnoj ko-granici ¢éelije q), i-
¢elijama iz skupa R (koje ¢e biti u direktnoj granici ¢éelije p), (i+2)-¢elijama iz
skupa S (koje ¢ée biti u direktnoj ko-granici éelije p), (i — 1)-Celijama iz skupa
Z (koje ¢e biti u direktnoj granici ¢elije q), kao i viSestrukostima mult’ ¢elija
koje su u rafinisanom kompleksu I'' u direktnoj granici ili ko-granici bar jedne
od dve kreirane ¢elije p i q.

Operator insert; ;+1(q, p,p’) se moze primeniti na kompleks I'y ako se ¢elija
p’, kao i sve ¢elije iz skupova R, S i Z, nalaze u I'y. Takodje, viSestrukost
mult svake Celije r iz R u direktnoj granici Celije p’ mora da bude veéa ili
jednaka od proizvoda mult'(r,dp) - mult'(q, 0p’) visestrukosti Celije r iz R u
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direktnoj granici ¢elije p i visestrukosti Celije ¢ u direktnoj granici ¢elije p’ posle
rafinacije. Operator insert na kompleksu I'y se moze prikazati kao modifikacija
koja zamenjuje skup {p'} U RU Z U S ¢Celija skupom {q,p,p’} URU ZUS i
azurira visestrukosti ¢elija: visestrukost mult’ éelije r iz R u direktnoj granici
¢elije p’ posle rafinacije je data sa mult'(r,0p’) = mult(r,0p") — mult'(r, dp) -
mult'(q,0p"). Slika 4.11 ilustruje primer primene operatora insert »(q, p,p’)
na opadajuci kompleks Morza u 3D.

Operator za rafinaciju insert;;+1(q,p, ), inverzan operatoru za simpli-
fikaciju remove;;11(q,p, ), moze da se primeni na kompleks I'; ako su sve
¢elije iz skupa R U Z U S ¢elija koje ¢e biti u direktnoj granici ili ko-granici
neke od dve kreirane celije u I'y. Operator kreira celije ¢ i p i azurira odgo-
varajuce visestrukosti.

Operatori za rafinaciju insert;;—1(q, p,p') i insert; ;—1(q, p, 0), inverzni op-
eratorima za simplifikaciju remove; ;_1(q, p,p’) i remove; ;—1(q, p, ) redom, su
dualni.

Skup operatora za simplifikaciju i rafinaciju ima znacajnu osobinu da ¢ini
bazu za skup operatora koji modifikuju komplekse Morza. To znaci da ovi oper-
atori ¢ine minimalan skup operatora takav da se svaki operator koji modifikuje
komplekse Morza na mnogostrukosti M na pogodan nacin moze izraziti kao
kombinacija operatora iz baze. U [26] smo pokazali kako se makro-operator,
definisan na trodimenzionalnim kompleksima, koji se sastoji od kancelacije 1-
sedla i 2-sedla, i niza kancelacija koje eliminisu incidencije uvedene takvom
kancelacijom tako sto eliminiSu ekstremne tacke, moze izraziti kao niz opera-
tora remove, koji u svakom koraku smanjuje relaciju incidencije na komplek-
sima Morza.

U [25], pokazali smo kako se niz operatora remove na kompleksima Morza
proizvoljne dimenzije moze kompaktno predstaviti u obliku hijerarhijske grafov-
ske strukture podataka, koju smo nazvali augmented cancellation forest. Ispi-
tali smo neke osobine te strukture i dali smo postupak za njenu konstrukciju.

U okviru geometrijskog modelovanja, dvodimenzionalni i trodimenzionalni
oblici se najcesce predstavljaju pomocu simplicijalnih ili ¢elijskih kompleksa.
U literaturi je predlozen veliki broj struktura podataka za takve komplekse,
kao i operatora za njihovu modifikaciju. U [28], dali smo pregled i klasifikaciju
struktura podataka za celijske komplekse, kao i operatora na njima.

U [29], definisali smo operatore za simplifikaciju i rafinaciju éelijskih kom-
pleksa, koji ne menjaju homologiju kompleksa. Ti operatori su uopstenje op-
eratora remove i insert. Oni brisu ili dodaju par ¢elija u kompleks. Takodje
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smo definisali operatore za simplifikaciju i rafinaciju celijskih kompleksa, koji
menjaju homologiju kompeksa tako sto brisu jednu ¢eliju iz kompleksa ili tako
Sto dodaju jednu celiju u kompleks. Operatori koji menjaju homologiju trodi-
menzionalnih kompleksa su ilustrovani na slici 5.2. Pokazali smo da skup
definisanih operatora ¢ini bazu za skup operatora na celijskim kompleksima
proizvoljne dimenzije, i pokazali smo kako se poznati operatori predlozeni u
literaturi mogu izraziti preko definisanih operatora.

Multi-rezoluciona reprezentacija topoloske strukture skalarnih polja i ob-
lika je vazna u mnogim domenima primene. Ona je nezaobilazan element pri
interaktivnoj analizi i istrazivanju terena, stati¢ih i dinamickih volumetrijskih
skupova podataka. Koristi se za analiziranje njihovih znacajnih osobine pri
razli¢itim nivoima detalja i za smanjivanje velicine njihove reprezentacije.

Nas rad na multi-rezolucionoj reprezentaciji kompleksa Morza i ¢elijskih
kompleksa je sproveden u nekoliko faza. U [23] smo predlozili multi-rezolucioni
model za trodimenzionalne komplekse Morza baziran na operatorima removal
i contraction. U [32], predlozili smo multi-rezolucioni model za komplekse
Morza proizvoljne dimenzije, baziran na operatorima remove i insert. On
¢e umnogome povecati mogucnosti za analizu i razumevanje statiénih i di-
namicnih oblika i volumetrijskih skupova podataka koji se mogu modelovati
kao 3D i 4D skalarna polja. Taj model je sustinski isti kao multi-rezolucioni
model za ¢elijske komplekse baziran na operatorima koji ne menjaju homologiju
kompleksa, koji smo predlozili u [34]. Konac¢no, u [36] smo predlozili multi-
rezolucioni model za ¢elijske komplekse koji je baziran kako na operatorima koji
ne menjaju tako i na onima koji menjaju homologiju kompleksa. Ovaj posled-
nji model smo nazvali Multi-rezolucioni éelijski kompleks (Multi-Resolution
Cell Complex - M RCC).

M RCC se konstruise pocevsi od kompleksa I u punoj rezoluciji, tako sto se
iterativno primenjuju operatori za simplifikaciju, u redosledu koji je odredjen
nekim kriterijumom koji zavisi od primene. Kompleks I'p koji se dobija kao
rezultat primene niza operatora za simplifikaciju je bazni kompleks najnize
rezolucije koji reprezentuje polazni kompleks I'; i on ¢ini prvu komponentu
multi-rezolucionog modela.

Drugu komponentu ¢ini skup M operatora za rafinaciju, inverznih opera-
torima za simplifikaciju pomoc¢u kojih je dobijen bazni kompleks ['g.

Treéu komponentu ¢ini relacija direktne zavisnosti medju operatorima za
rafinaciju iz skupa M. Obelezi¢emo sa p rafinaciju koja kreira kompleks ',
i smatracemo da je ona element skupa M.
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Mi smo relaciju zavisnosti definisali na sledeé¢i na¢in: Neka su u = insert(q, p,
p') i p* dve rafinacije iz M, i neka rafinacija p koja ¢uva homologiju kreira
¢elije p i ¢ (neka rafinacija p koja menja homologiju kreira ¢eliju p). Relacija
direktne zavisnosti medju modifikacijama iz skupa M je definisana na sledeci
nacin: modifikacija p direktno zavisi od modifikacije p* ako i samo ako

e 1 kreira bar jednu ¢eliju u direktnoj granici ili ko-granici ¢elije p ili celije
q (ako p ne menja homologiju kompleksa);

e u* kreira bar jednu celiju u direktnoj granici éelije p (ako g menja ho-
mologiju kompleksa).

M RCC se definise kao uredjena trojka (I'g, M, R), gde je R relacija direk-
tne zavisnosti. Relacija zavisnosti je tranzitivno zatvaranje relacije direktne
zavisnosti. Ona je relacija parcijalnog poretka, jer se svaka ¢elija kreira samo
jednom modifikacijom u M. Fleksibilnost multi-rezolucionog modela zavisi od
nacina na koji je definisana relacija zavisnosti.

U M RCC-u je organizovan veliki broj reprezentacija kompleksa I' u ra-
zlicitim rezolucijama, koje se mogu dobiti tako Sto se na bazni kompleks I'p
u najnizoj rezoluciji primeni niz U = (uo, 1, -, i) operatora za rafinaciju.
Iz M RCC-a, odnosno iz skupa M, se moze izabrati podskup operatora za
rafinaciju koji je saglasan sa relacijom poretka odredjenom relacijom direktne
zavisnosti. Primenom tih operatora na bazni kompleks I'g u najnizoj rezolu-
ciji se moze dobiti siroka lepeza kompleksa u kojima je rezolucija (definisana
odgovarajuéim kriterijumom) uniformna ili varijabilna.

Primer M RCC-a u 2D je ilustrovan na slici 5.6 u obliku usmerenog acik-
licnog grafa. Cvorovi grafa predstavljaju operatore za rafinaciju, dok grane
predstavljaju relaciju direktne zavisnosti.

Uporedili smo dvodimenzionalnu instancu M RC'C-a baziranu na opera-
torima koji ne menjaju homologiju kompleksa sa hijerarhijskim i multi-rezolu-
cionim modelom za reprezentaciju kompleksa Morse-Smale-a koji su predlozeni
u literaturi u [14] i [15], redom. Ova dva modela su bazirana na kancelaciji
[52,84], koja se u dvodimenzionalnom slu¢aju svodi na operator remove. Moze
se pokazati da je relacija zavisnosti koja definise M RC'C manje restriktivna
od one u [14]. Sto se tice relacije zavisnosti koja definise MRCC i relacije
zavisnosti u [15], nijedna nije podskup druge.

U [31] smo predlozili algoritam za simplifikaciju kompleksa Morza i M G-
a koji reprezentuje njegovu topolosku strukturu, i izlozili smo neke rezultate



eksperimenata na 2D i 3D skupovima podataka, ukljuc¢ujuéi vreme izvrsenja
algoritma i potreban memorijski prostor. Rezultate implementacije multi-
rezolucionog modela za komplekse Morza smo izlozili u [32], gde smo pokazali
kako se iz modela mogu konstruisati kompleksi uniformne ili varijabilne re-
zolucije. Rezultate implementacije multi-rezolucionog modela za celijske kom-
plekse baziranog na operatorima koji ne menjaju homologiju kompleksa smo
predstavili u [34]. Rezultati primene multi-rezolucionog modela na izra¢una-
vanje homologije ¢elijskih kompleksa su predstavljeni u [36], gde smo pokazali
kako se pomocu tog modela mogu propagirati generatori homologije, izracunati
na baznom kompleksu, na komplekse proizvoljne rezolucije. Implementacija
multi-rezolucionog modela i algoritmi za upite sa uniformnom ili varijabil-
nom rezolucijom su ostvareni u saradnji sa Federicom Iuricichem. Primena
multi-rezolucionog modela na izracunavanje homologije ¢elijskih kompleksa je
ostvarena u saradnji sa Uldericom Fugacciem. Definicija multi-rezolucionog
modela je potpuno nezavisna od dimenzije polja, i obezbedjuje okvir za ma-
nipulaciju i ispitivanje topoloske strukture oblika i skalarnih polja pri razli¢itim
rezolucijama.
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Struktura disertacije

Disertacija je podeljena u Sest poglavlja.

Prvo poglavlje je uvodno. U njemu je ukratko izlozen kontekst u kojem
je sprovedeno istrazivanje prikazano u tezi, i data je motivacija za njega koja
potice iz razli¢itih oblasti primene.

U drugom poglavlju su izlozeni neki osnovni pojmovi korisé¢eni u tezi. Prvo
je data definicija ¢elijskih kompleksa, koji su jedan od osnovnih pojmova al-
gebarske topologije. Zatim su dati osnovni pojmovi i teoreme teorije Morza:
funkcije Morza, kriticne tacke funkcije, dekompozicija domena M funkcije f
na rastuce i opadajucée komplekse Morza. Opisan je operator za simplifikaciju
kompleksa Morza, koji se naziva kancelacija.

Trec¢e poglavlje sadrzi kratak pregled stanja u nekim relevantnim oblastima
istrazivanja. Predstavljeni su razliciti pristupi reprezentaciji topoloske struk-
ture skalarnih polja pomoéu kompleksa Morza i Morz-Smejla i algoritmi za
izracunavanje aproksimacije tih kompleksa pocevsi od diskretnog skupa tacaka
na kojima je data vrednost polja. Predstavljeni su pristupi, predlozeni u lit-
eraturi za dvodimenzionalna skalarna polja, za primenu kancelacije na kon-
struisanje hijerarhijskih i multi-rezolucionih modela kompleksa Morza i Morz-
Smejla. Takodje je dat pregled postojec¢ih operatora za modifikaciju dvodi-
menzionalnih i trodimenzionalnih ¢éelijskih kompleksa.

Cetvrto i peto poglavlje sadrze originalne rezultate teze. U éetvrtom poglav-
lju su definisani novi operatori za simplifikaciju i rafinaciju funkcija i kompleksa
Morza proizvoljne dimenzije, koji su nazvani remove i insert, redom. Detaljno
je opisan efekat tih operatora, kako na relaciju incidencije tako i na geometriju
¢elija u kompleksima Morza. Operator za simplifikaciju remove, za razliku od
kancelacije, smanjuje ne samo broj ¢elija u kompleksima Morza, nego sman-
juje i relaciju incidencije medju ¢elijama. Pokazano je da definisani operatori
¢ine bazu za skup svih operatora na kompleksima Morza na mnogostrukosti
M. Operator remove je uporedjen sa kancelacijom, i pokazano je kako se
makro-operator, koji se sastoji od kancelacije 1-sedla i 2-sedla i niza kancelacija
koje eliminisu ekstremne tacke, moze izraziti preko operatora remove. Pred-
stavljena je hijerarhijska grafovska struktura podataka za reprezentovanje niza
operatora remove, i dat je postupak za njeno izracunavanje.

U petom poglavlju su definisani operatori za simplifikaciju i rafinaciju
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¢elijskih kompleksa proizvoljne dimenzije. Oni se mogu podeliti na dve klase:
na operatore koji ne menjaju homologiju kompleksa, i na one koje je men-
jaju. Operatori koji ne menjaju homologiju kompleksa su definisani tako
da je njihov efekat na celijske komplekse isti kao efekat operatora remove i
insert na cCelijske komplekse. Pokazano je da definisani operatori ¢ine bazu za
skup svih operatora na celijskim kompleksima, i pokazano je kako se neki poz-
nati i Siroko koriSéeni operatori na trodimenzionalnim celijskim kompleksima
mogu izraziti preko operatora iz baze. Definisan je multi-rezolucioni model za
¢elijske komplekse proizvoljne dimenzije, predstavljen je postupak za njegovu
konstrukciju i ispitane su neke njegove vazne osobine. Pokazano je kako se iz
multi-rezolucionog modela moze dobiti veliki broj reprezentacija ¢elijskih kom-
pleksa uniformne ili varijabilne rezolucije. Multi-rezolucioni model baziran na
operatorima koji ne menjaju homologiju kompleksa je sustinski isti kao multi-
rezolucioni model za komplekse Morza baziran na operatorima remove i insert.
Dvodimenzionalna instanca takvog modela je uporedjena sa postoje¢im hije-
rarhijskim i multi-rezolucionim modelima za dvodimenzionalna skalarna polja.
Sesto poglavlje je zakljuéno i sadrzi neke smernice za dalja istrazivanja.



Abstract

Morse and Morse-Smale complexes have been recognized as a suitable model
for representing topological information extracted from discrete scalar fields.
They induce a subdivision of the domain M of a scalar field f into regions
associated with the critical points of f, and compactly represent the topology
of M. We define a simplification remove operator on Morse complexes, which
works in arbitrary dimensions, and we define its inverse refinement insert op-
erator. We describe how simplification and refinement operators affect Morse
complexes on M, and we show that these operators form a complete set of
atomic operators to create and update Morse complexes on M. Thus, any
operator that modifies Morse complexes on M can be expressed as a suitable
sequence of the atomic simplification and refinement operators we have defined.
We compare the 3D instance of our operator with the existing simplification
operator proposed in the literature. We define a graph-based data structure
for representing a sequence of simplifications on Morse complexes. The simpli-
fication and refinement operators provide a suitable basis for the construction
of a multi-resolution representation of Morse complexes which contains a large
number of topological representations of the scalar field over its domain M, at
both uniform and variable resolutions.

We define homology-preserving and homology-modifying simplification and
refinement operators on cell complexes in arbitrary dimensions, and we show
that they form a basis for the update operators on cell complexes. We show
how various widely used operators on cell complexes can be expressed in terms
of our operators.

We propose a dimension-independent multi-resolution model for cell com-
plexes, that we call the Multi-Resolution Cell Complez (M RCC'), and we in-
vestigate its important properties. The M RC'C based on homology-preserving
operators is essentially the same as the multi-resolution model for Morse com-
plexes based on remove and insert operators. We compare its two-dimensional
instance with the existing hierarchical models for two-dimensional scalar fields.
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Introduction

The focus of this thesis are the update operators on Morse and cell complexes.

Morse complexes have been introduced in computer graphics for the analy-
sis of 2D scalar fields, and specifically for terrain modeling and analysis, where
the domain is a region in the plane, and the scalar field is the elevation func-
tion. Recently, these complexes have been considered as a tool to analyze
also 3D functions. They are used in scientific visualization, where data are
obtained through measurements of scalar field values over a volumetric do-
main, or through simulation, such as the analysis of mixing fluids. With an
appropriate selection of the scalar function, Morse complexes are also used for
segmenting molecular models to detect cavities and protrusions, which influ-
ence interactions between proteins. Morse complexes of the distance function
have been used in shape matching and retrieval.

Structural problems in Morse complexes, like over-segmentation in the pres-
ence of noise, or efficiency issues arising due to the very large size of the
available input data sets, can be faced and solved by defining simplification
operators on those complexes. Morse complexes can be simplified by apply-
ing an operator called cancellation. In general, a cancellation complicates the
structure of Morse complexes by increasing the incidence relation between its
cells, which renders it unfeasible in dimensions higher than two.

Cell (and simplicial) complexes are the most common way to discretize ge-
ometric shapes, such as static and dynamic 3D objects, or surfaces and hyper-
surfaces describing the behavior of scalar or vector fields. Representations for
these complexes are at the heart of modeling and simulation tools in a variety
of application domains, such as computer graphics, computer aided design, fi-



nite element analysis, animation, scientific visualization, and geographic data
processing. The literature on operators for building and updating cell com-
plexes is vast but quite disorganized; many sets of basis operators on 3D cell
complexes have been proposed.

We have defined a set of simplification remove and refinement insert oper-
ators on Morse and Morse-Smale complexes, and we have shown that these op-
erators form a basis for the set of operators on Morse complexes on a manifold
M. We have compared the remove simplification operator with the existing
simplification operator on Morse and Morse-Smale complexes, called cancel-
lation. We have shown that the remove operator, unlike cancellation, always
reduces the incidence relation on the Morse complexes, and decreases the num-
ber of cells in the Morse-Smale complexes. We have defined a graph-based data
structure for encoding a sequence of simplification remove operators.

We have defined a set of basis modeling operators on cell complexes, which
are not necessarily Morse complexes of a Morse-Smale function. These oper-
ators can be classified as homology-preserving and homology-modifying ones.
Homology-preserving operators extend the remove and insert operators, which
are defined on Morse complexes.

Based on these operators, we have defined a multi-resolution model for
cell complexes, and we have investigated its important properties. The multi-
resolution model based on homology-preserving operators is basically the same
as the multi-resolution model for Morse complexes based on remove and
insert. We have compared its 2D instance with existing hierarchical and multi-
resolution models for 2D scalar fields.

In Section 2, we recall some background notions on Morse theory. We give
also the definition of complete and admissible Morse complexes, which we have
introduced in [26].

In Section 3, we give a brief overview of the related work on topological
representation of scalar fields through Morse and Morse-Smale complexes, on
their computation, simplification and multi-resolution representation, and on
update operators on cell complexes. We have given a survey on data structures
and operators on cell complexes in [28].

In Sections 4 and 5, we review the original work on topological update oper-
ators on Morse and cell complexes, and their use in multi-resolution modeling.
In Section 4, we review simplification remove and refinement insert opera-
tors on Morse complexes that we have defined in [32]. They generalize the
simplification and refinement operators that we have introduced and studied



in [24,26,27]. We show that these operators form a basis for the set of update
operators on Morse complexes on a manifold M. We compare in detail the
3D instance of the remove operator with the existing simplification operator
on Morse complexes called cancellation. We review a hierarchical graph-based
data structure that we have introduced in [25], which encodes a sequence of
remove operators on Morse complexes.

In Section 5, we review the homology-preserving and homology-modifying
update operators on cell complexes that we have defined in [29]. We show that
these operators form a basis for the set of update operators on cell complexes,
and we compare them with the existing update operators on cell complexes.
Based on these operators, we have defined a multi-resolution model for cell
complexes in [32], and we have implemented the multi-resolution model on
a graph-based representation of cell complexes based on homology-preserving
operators in [34] in collaboration with Federico Iuricich. In [36], we have used
this multi-resolution model to compute homology of a cell complex at various
uniform or variable resolution in collaboration with Ulderico Fugacci.

In Section 6, we give some possible research directions to extend the work
presented here.
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Background Notions

We briefly review some basic notions on cell complexes (for more details on
algebraic topology, see [1,65,81,88]) and on Morse theory in the case of n-
manifolds (for more details on Morse theory, see [84,86,87]).

2.1 Cell Complexes

Intuitively, a cell complex is a collection of basic elements, called cells, which
cover a domain in the Euclidean space R™.

An (open) k-dimensional cell (k-cell) p (also denoted as p*)) in the Eu-
clidean space R™, 1 < k < m, is a subset of R”™ homeomorphic to an open
k-dimensional ball B¥ = {x € R* : ||z|| < 1} (||z|| denotes the magnitude or
the norm of the vector ). A 0-cell is a point in R™. A closed k-cell p* is a
homeomorphic image of a closed k-dimensional ball B = {x e R*: ||z|]| < 1}
The integer k is called the dimension of the k-cell.

Informally, a cell complex in R™ is a finite set ' of cells in R™ such that

1. the cells in I" are pairwise disjoint,
2. for each cell p € ', the boundary of p is a disjoint union of cells in I'.

The maximum d of dimensions of cells in I' is the dimension of I', and T" is
called a cell d-complex.

More formally, a (combinatorial) n-dimensional cell complex (a cell n-
complex) [76] on a set X is defined as the equivalence class of cell structures
(X, ®). A cell structure (X, ®) on the set X (or a cellular decomposition of
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the set X) is a pair composed of X and a collection ® of (continuous) maps ¢
of closed Euclidean cells into X such that:

1. each map ¢ € ® with domain p* is injective on the interior p® of p*,

2. the images of the maps ¢ € ® are disjoint and their union is X,

3. for each map ¢ € ® with domain ¥, ¢ maps the boundary of p*) into

the union of images of maps ¢ € ® with domain pV), j < k — 1.

The relative boundary of a k-cell p*) in a cell complex T is a subset of p*)
corresponding to the (k — 1)-sphere S*~! = {z € E* : ||z|| = 1} under .

We make the following assumptions: (i) The image of the boundary of p(¥)
under ¢ € ® meets finitely many images of maps 1)’ € ® with domain p\,
j <k —1. (i) If the image of map ¢ € ® with domain p*) contains a point
in the image of map ¢/ € ® with domain ), j < k — 1, then it contains all
points in the image of map ¢’ € ®. (i7i) On the image of map ¢ € @, the
number of connected components of ¢)~! is constant. This number is called
the multiplicity (denoted as mult) of the image of map ¢’ in the boundary of
the image of map ¢.

Two cell structures (X, ®) and (X, ®’) are equivalent if there is a one-to-
one correspondence between ® and ®’ such that the corresponding maps differ
only by a reparametrization of their domain.

A subset A of I is called a subcomplex of T" if and only if A is a cell complex.
The k-skeleton of T" is the subcomplex of I' that consists of all cells of I' of
dimension less than or equal to k. A cell complex I' is normal if each cell p*)
in I' carries a subcomplex.

The set of all cells in the relative boundary of an (open) k-cell p*) in
[ is called the (combinatorial) boundary of p*). The boundary of a O-cell is
empty. The (combinatorial) co-boundary of p*) consists of those cells in I that
have p® in their combinatorial boundary. If p is a k-cell, then the immediate
(combinatorial) boundary Oy p (also denoted as Jdp) of p is a multi-set that
consists of all the (k — 1)-cells p’ in the boundary of p, 1 < k < n, where
each cell is taken with the multiplicity, denoted as mult(p’,dp), equal to the
number of times the cell p’ appears in the immediate boundary of p. Dually,
the immediate (combinatorial) co-boundary of p is a multi-set that consists of
all the (k + 1)-cells in the co-boundary of p, 0 < k < n — 1, where each cell
is taken with the multiplicity equal to the number of times it appears in the
immediate co-boundary of p. The co-boundary of an n-cell in a cell n-complex



is empty. If the (k—1)-cell p’ is in the immediate boundary of the k-cell p with
multiplicity mult(p’, dp), then the k-cell p is in the immediate co-boundary of
the (k — 1)-cell p’ with the same multiplicity. An h-cell p’ in the boundary of
a k-cell p, 0 < h < k, is called an h-face of p, and p is called a coface of p/,
denoted as p’ < p. The cells v and ' are said to be incident.

The (open) star St(p) of a cell p in I" is the set of all cells in I' that have
p on their boundary. In other words, St(p) is equal to the co-boundary of p.
The closed star St(p) is the closure of the star St(p) of p (St(p) plus all the
faces of St(p)). The link Lk(y) is the closed star of p minus the star of the
closure of p (Lk(p) = St(p)\St(p)). The link of p is a subcomplex of I', while
the star of p is in general not a subcomplex.

The domain (or carrier) AT of a cell complex I' is the subset of R™ spanned
by the cells of I" (the cells in I' cover AI'). We will consider cell complexes
I' such that AI' is homeomorphic to a smooth compact manifold M without
boundary.

The Euler-Poincaré formula expresses the necessary validity condition of
a cell complex with manifold or non-manifold carrier [2]. The Euler-Poincaré
formula for a cell d-complex T" (with or without boundary, of homogenous or
non-homogenous dimension) with n; i-cells states that

d d
Z(—l)lnl =Nng—nN1+. + (—1)dnd = Z(—l)lﬂz = ﬂo - 51 + ..+ (—1)dﬂd.
=0 i=0

Here, (3; is the ith Betti number of I', and it measures the number of indepen-
dent non-bounding i-cycles in I', i.e., the number of independent ¢-holes. The
alternating sum ng — ny + .. + (—1)%ng is denoted as x(I'), and is called the
FEuler-Poincaré characteristic of T'.

If T is a (manifold or non-manifold) cell complex embedded in R3, then
fs = 0 and the number of 0-cells (vertices), 1-cells (edges), 2-cells (faces) and
3-cells (volumes) is usually denoted as v, e, f and ¢, respectively. For a cell
3-complex in R3,

v—e+ f—c=[Fy— i+ P (2.1)
For a cell 2-complex in R3, also ¢ = 0 and
U—e—i-f:ﬁo—ﬁl—Fﬂg. (22)

Intuitively, in R3, 3, is the number of connected components, 3; is the num-
ber of holes (non-bounding 1-cycles), and s is the number of cavities (non-
bounding 2-cycles) in T



For a manifold cell 2-complex I" whose carrier is the boundary of a solid
object in R?, the Euler-Poincaré formula states that

v—e+ f=2(s—g). (2.3)

Here, s is the total number of shells (connected components of I') and g is the
genus of the boundary surface.

If I' is a cell 2-complex homeomorphic to a 2-sphere, then
v—e+f=1-0+1=2. (2.4)
If I' is a 1-dimensional cell complex (a graph), called a wire frame, then
v—e=F— P (2.5)

Two distinct k-cells p; and ps are said to be adjacent if and only if (i) k =0
or there exists a (k — 1)-cell of I'; which is a face of both p; and ps, and (i7)
k = n or there exists a (k 4 1)-cell of I'; which is a coface of both p; and ps.
For example, two 0-cells p; and p, are adjacent if there is a 1-cell connecting
them. Two n-cells p; and py are adjacent if they share an (n — 1)-face.

A d-complex I'* is called a space dual of a d-complex I' if there is a one-to-
one mapping from I' onto I'* such that (i) p is a k-cell in I" if and only if its
image is a (d — k)-cell in T, and (i) cells p; and ps are adjacent in T if and
only if their images are adjacent in I'*.

2.2 Morse Theory

Morse theory is a powerful tool to capture the topological structure of shapes
and scalar fields by establishing the relationships between the topology of a
manifold M, and the critical points of a scalar (real-valued) function defined
on M.

We review basic notions on Morse theory for C?-differentiable functions.
More details can be found in [84, 86, 100]. Recall that an n-manifold is a
Hausdorff space with countable base, in which each point has a neighborhood
homeomorphic to R".
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Figure 2.1: [26] Neighborhoods of non-degenerate critical points in the 2D
case. Arrowed lines represent integral lines, dotted lines represent iso-lines. A
regular point (a), a local maximum (b), a local minimum (c), and a simple

saddle (d).

2.2.1 Morse Functions

Let f be a C?-differentiable real-valued function (a scalar field) defined over
a closed differentiable manifold M. A point p € M is a critical point of f if
and only if the gradient Vf = (g—i, s %) (in some local coordinate system
around p) of f vanishes at p. Function f is said to be a Morse function

if all its critical points are non-degenerate (the Hessian matrix Hess,f =

n
[%] of the second derivatives of f at p is non-singular). The number
975 ] j=1

of negative eigenvalues of Hess, f is called the indez of a critical point p. The
corresponding eigenvectors show the directions in which f is decreasing. If the
index of pis i, 0 < i < n, pis called an i-saddle. A 0-saddle, or an n-saddle,
is also called a minimum, or a maximum, respectively. Non-critical points are
called regular points. Figures 2.1 and 2.2 illustrate a neighborhood of critical
points in two and three dimensions, respectively.

For a Morse function f, there is a neighborhood U of each critical point
p = (p1,p2, .., pn) of f, in which f can be expressed in the standard form as

fla,xg, o xn) = f(P1, D2y o pn) — 7 — =@ afy

This representation of the scalar field f is valid for all (xy,zs,...,z,) € U.
The number ¢ of the minus signs in the above equality is equal to the num-
ber of the negative eigenvalues of Hess,f (the index of the critical point p).
This representation implies that the critical points of a Morse function f are
isolated, and if M is compact then f has finitely many critical points.



10

N\
/

() &

TN A A ED D
NusZ/ ENPANIP A R
(a) (b) (c) (e)

Figure 2.2: [26] Neighborhoods of non-degenerate critical points in the 3D
case. Arrowed lines represent integral lines, dotted lines indicate cone-like iso-
surfaces. A regular point (a), a local maximum (b), a local minimum (c), a

1-saddle (d) and a 2-saddle (e).
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A vector field X is a gradient-like vector field [84] for a Morse function f
on a manifold M if

1. X -Vf >0 away from the critical points of f, and

2. in some neighborhood of each i-saddle p of f, X = =2z, 5~ 8 —2x; aiv +
201 75— Bm -+t 2%8— in some local coordinate system around p.

If we denote as m; the number of i-saddles of f, and as x(M) the Euler-
Poincaré characteristic of M, then the strong and the weak Morse inequalities
are satisfied, that is, for : = 1, .., n,

mi —mi—1 + ... + (=1)'mg > B; — Bic1 + ... + (=1)" o,

m; > .

The last strong Morse inequality (for ¢ = n) is an equality. This implies that
the Euler-Poincaré characteristic y(M) of M, defined as the alternating sum

of the Betti numbers of M (x(M) = >_(—1)!3;), is equal to the alternating
i=0

sum of the number of i-saddles of f (x(M) = > (—1)'m;), i.e.,

=0

An integral line of a function f is a maximal path that is everywhere tangent
to the gradient V f of f. Thus, an integral line follows the direction in which



11

the function has the maximum increasing growth. More formally, an integral
line through a point p € M is a curve ¢,(t) in M such that

dcy

(1) = VS, l0) =

If p is a critical point of f, then an integral line through p is p itself. Two
integral lines ¢,(t) and ¢,(t) are either disjoint or the same. Each integral line
c(t) starts at a critical point r = tlim c(t) of f, called its origin, and ends at

another critical point s = tlim c(t) of f, called its destination. We say that

the integral line ¢(t) connects points r and s (and that it is incident to r and
s), although it does not contain these points. An integral line that connects
an i-saddle and an (i + 1)-saddle, 0 < i < n — 1, is called a separatriz or a
separatriz line.

Each 1-saddle is connected to exactly two (not necessarily distinct) minima,
and each (n — 1)-saddle is connected to exactly two (not necessarily distinct)
maxima. FEach i-saddle, 2 < ¢ < n, is connected to an arbitrary number of
m-saddles, 0 < m < ¢ < n, and each 7 -saddle, 0 < i < n — 2, is connected to
an arbitrary number of [-saddles, 0 < i <[ < n. In 2D, a saddle is connected
exactly to two minima and two maxima. In 3D, a l-saddle is connected to
two minima and to an arbitrary number of 2-saddles and maxima, and a 2-
saddle is connected to two maxima and to an arbitrary number of 1-saddles
and minima.

2.2.2 Morse and Morse-Smale Complexes

Integral lines that converge to a critical point p of index i (together with p)
cover an (open) i-cell called the stable (descending) cell W*(p) of p. Dually,
integral lines that originate at p cover an (n — i)-cell called the unstable (as-
cending) cell W"(p) of p. More formally,

Wi(p) =1p}U{g € M lim c,(t) = p},

W p)={p}U{qge M: 1tEr_noo cq(t) = p}.

The descending cells (or manifolds) are pairwise disjoint, they cover M,
and the boundary of every cell is a union of lower-dimensional cells. The de-
scending cells decompose M into a cell complex, called the descending Morse
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complex of f on M, denoted as I'y. Dually, the ascending cells form the as-
cending Morse complex T'y of f on M. A maximum corresponds to an n-cell
in the descending complex and to a 0-cell in the ascending complex. Dually, a
minimum corresponds to a 0-cell in the descending complex and to an n-cell
in the ascending complex.

Two cells p and ¢ are incident in the Morse complexes if and only if the
corresponding critical points p and ¢ are connected through an integral line of
f. If a cell p is on the boundary of a cell ¢ in the descending complex I'y, then
for the corresponding critical points p and ¢, f(p) < f(q).

A Morse function f is called a Morse-Smale function if and only if each
non-empty intersection of a descending and an ascending cell is transversal.
This means that each connected component of the intersection (if it exists) of
the descending i-cell of an i-saddle p, and the ascending (n — j)-cell of a j-
saddle ¢, i > 7, is an (i— j)-cell. The connected components of the intersection
of descending and ascending cells of a Morse-Smale function f decompose M
into a Morse-Smale complex.

Each 0-cell in the Morse-Smale complex corresponds to a critical point of f.
Each i-cell in the Morse-Smale complex, 1 < i < n, is covered by the integral
lines connecting a k-saddle p to a (k + i)-saddle ¢, 0 < k < n —i. Figure 2.3
illustrates the correspondence between Morse and Morse-Smale complexes in
the 2D case.

Figure 2.3: [26] (a) Integral lines and critical points of a scalar field f defined
on a 2D domain. Green, blue, and magenta points denote maxima, saddles,
and minima, respectively. (b) Ascending Morse complex with integral lines
originating at the minimum p. (c¢) Descending Morse complex with integral
lines converging to the maximum ¢. (d) Morse-Smale complex with integral
lines originating at p and converging to q.

In 2D, each 2-cell in a Morse-Smale complex is related to a maximum p
and a minimum ¢, as it is obtained as the intersection of the descending 2-cell
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Figure 2.4: The three possible types of 2-cells in the Morse-Smale complex
of a Morse-Smale function f in 2D. The numbers indicate the index of the
corresponding critical point.

of p and the ascending 2-cell of ¢q. Such 2-cell is quadrangular, with vertices of
index 0,1,2,1 (g, s1,p, S2), in this order along the boundary. These 2-cells are
obtained as the union of two triangles, namely ¢, s, p and ¢, so, p, where s; and
s9 are the saddles connected through an integral line to both p and ¢. Saddles
s; and sy are not necessarily distinct, thus it is possible that s; = s9 = s.
In [89], it has been shown that, for a Morse-Smale function f, there are three
different types of 2-cells in the Morse-Smale complex of f, which are illustrated
in Figure 2.4.

In 3D, each 3-cell of the Morse-Smale complex is related to a maximum p
and a minimum ¢: it is obtained as the intersection of the descending 3-cell of
p and the ascending 3-cell of ¢. Such 3-cell is the union of tetrahedra of the
form q, s1, So, p, where s; and s, are 1-saddles and 2-saddles connected through
an integral line to both p and ¢q. These 1- and 2-saddles may belong to more
than two such different tetrahedra.

If f is a Morse-Smale function, then there is no integral line connecting
two different critical points of f of the same index. The ascending complex
I', and the descending complex I'y of f are space duals. Each i-saddle p of f,
0 <12 < n, corresponds to

1. the vertex p in the Morse-Smale complex of f,
2. the descending i-cell of p in I'y, and
3. the ascending (n — i)-cell of p in T',.

If p is an i-cell and ¢ is an (¢4 1)-cell in the descending Morse complex, then
the multiplicity mult(p, 0q) of the i-cell p in the boundary of the (i + 1)-cell
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q is equal to the number of integral lines connecting the ¢-saddle p and the
(i + 1)-saddle gq.

2.2.3 Complete and Admissible Morse Complexes

We review complete and admissible Morse complexes, which we have defined
in [26].

The majority of topological models and data structures for representing
and handling subdivided objects, like quasi-Morse complexes [51,52], incidence
graphs [49], combinatorial maps [17], n-G maps [73], cell-tuples [16], actually
represent admissible cell complexes. Here, we introduce formally the definition
of such complexes.

We define a Morse function f to be a complete Morse function if

1. each i-saddle is connected to at least one (i — 1)-saddle, 1 < i < n, and
2. each i-saddle is connected to at least one (i + 1)-saddle, 0 <i <n — 1.

Recall that there is a one-to-one correspondence between (1) the i-saddles of
f, (2) the i-cells in the descending complex of f and (3) the (n — i)-cells in
the ascending complex of f, 0 < ¢ < n. Two cells in the descending Morse
complex (and dually in the ascending Morse complex) are incident if and only
if the corresponding critical points are connected through an integral line of
f. Thus, both in the ascending and the descending Morse complexes of a
complete Morse function f:

1. each i-cell is bounded by at least one (i — 1)-cell, 1 <i < n, and
2. each i-cell bounds at least one (i + 1)-cell, 0 <i <n —1.

We call the Morse complexes of a complete Morse function f complete Morse
complexes.

A Morse function f can be complete without being Morse-Smale, and it
can be Morse-Smale but not complete. We illustrate this in the two examples
in Figure 2.5. Recall that a Morse function f is a Morse-Smale function if each
non-empty intersection of a descending and an ascending cell is transversal.

Figure 2.5 (a) illustrates a descending Morse complex of a function defined
on a torus. It has one minimum p, one maximum ¢, and two saddles r and
t. There are two integral lines starting, and two integral lines ending at each
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Figure 2.5: [26] (a) Critical points and integral lines of a Morse function f
defined on a torus. Function f is complete but it is not Morse-Smale, as there
is an integral line of f connecting two critical points, r and ¢, of the same
index. Subdivision of a 3-sphere (R? compactified by a point at infinity) into
(b) descending cells (two 3-cells r and ¢, one bubble-like 2-cell s in blue, and
one 0-cell p in yellow) and (c) ascending cells (two 0-cells  and ¢ in magenta,
one 1-cell s in cyan, and one 3-cell p), induced by a Morse-Smale function f,
which is not complete, since, for example, the descending 2-cell s has no 1-cell
on its boundary.

saddle. Two integral lines starting at ¢ connect the saddle ¢ to the maximum g,
and two integral lines ending at r connect the minimum p to the saddle . One
of the integral lines ending at ¢ connects the minimum p to the saddle ¢, and
one of the integral lines starting at r connects the saddle r to the maximum q.
There is one integral line starting at r and ending at ¢, connecting the saddle
r to the saddle ¢. This function is clearly complete, but it is not Morse-Smale,
since the descending 1-cell of t and the ascending 1-cell of r partially overlap,
and thus do not intersect transversally (there is an integral line of f connecting
two different saddles, r and ¢, of the same index).

Figure 2.5 (b) and (c) illustrates the descending and ascending Morse com-
plex, respectively, of a function f defined on a 3-sphere (R* compactified by
a point at infinity). It has two maxima r and ¢, one 2-saddle s, no 1-saddles,
and one minimum p. In the descending complex, the two 3-cells r and ¢ are
bounded by the only 2-cell s. The 2-cell s is bounded by the only 0-cell p and is
not bounded by any 1-cell. The 0-cell p does not bound any 1-cell. In the dual
ascending complex, illustrated in Figure 2.5 (c), the only 3-cell p is bounded
by the only 1-cell s. It is not bounded by any 2-cell. The 1-cell s is bounded



16

by two O-cells » and ¢. The intersection of the ascending and the descending
cells is transversal, and the function is Morse-Smale. It is not complete, since
for example in the descending complex there are no 1-cells on the boundary of
the 2-cell s.

We say that a complete Morse-Smale function is admissible. We call the
Morse complexes defined by an admissible function admissible Morse com-
plexes.

The topological structure of admissible Morse functions and the corre-
sponding ascending and descending Morse complexes can be represented in the
Incidence Graph (IG) [49], which is an incidence-based explicit data structure
for n-dimensional cell complexes. The topological information captured is the
set of incidence relations among cells that differ by one dimension. Formally,
the IG encodes all the cells of any given n-dimensional cell complex I', and
for each i-cell p, its immediate boundary, and immediate co-boundary rela-
tions, namely (i) for each i-cell p, where 0 <i <n, all the (i — 1)-cells in the
immediate boundary of p, and (ii) for each i-cell p, where 0 <7 <n, all the
(7 + 1)-cells in the immediate co-boundary of p. A similar notion is that of
the Hasse diagram describing the complex [72], the difference being that in the
Hasse diagram each arc connecting an i-cell and an (i — 1)-cell in its boundary
is oriented from the i-cell towards the (i — 1)-cell.

In [23,24], we have extended the notion of the incidence graph to rep-
resent not only cell complexes (admissible descending and ascending Morse
complexes), but also the critical points of the corresponding admissible scalar
field f and the integral (separatrix) lines connecting them. The Morse Inci-
dence Graph (MIG) is a multigraph G = (N, A) where:

1. the set of nodes N is partitioned into n + 1 subsets Ny, Ny,...,N,, such
that there is a one-to-one correspondence between the nodes in N; (which
we call the i-nodes) and the i-saddles of f (and thus the i-cells of T'; and
the (n —i)-cells of T',);

2. there are k arcs joining an i-node p with an (i + 1)-node ¢ if and only if
there are k integral lines connecting the i-saddle p and the (i + 1)-saddle
q. The integer k is equal to the number of times the i-cell p appears in
the immediate boundary of the (i+1)-cell ¢ in I'y, i.e., to the multiplicity
mult(p, dq) of the i-cell p in the immediate boundary of the (i + 1)-cell
qin ['y.
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Figure 2.6: [24] A descending 3D Morse complex, the dual ascending complex,
and the corresponding MIG.

Each node is labeled with the critical point (or equivalently, the descending
and the dual ascending cell) it represents.

Alternatively, the Morse incidence graph (M IG) can be defined as a labeled
simple graph G = (N, A, 1), where N is the set of nodes, A is the set of arcs,
and v : A — N is the labeling function, such that:

1. the set of nodes N is partitioned into n + 1 subsets Ny, Ny,...,N,, such
that there is a one-to-one correspondence between the nodes in V; (the
i-nodes) and the i-saddles of f (and thus the i-cells of 'y, and the (n—i)-
cells of T',);

2. there is an arc joining an i-node p with an (i41)-node ¢ if and only if there
is an integral line of f connecting the i-saddle p and the (i + 1)-saddle ¢
(if the i-cell p appears in the immediate boundary of the (i + 1)-cell ¢ in
Ty).

3. the label ¥(p, q) of the arc joining an i-node p with an (i + 1)-node ¢ is
equal to the number of integral lines connecting the i-saddle p and the
(1 + 1)-saddle ¢. It is equal to the number of times the i-cell p appears
in the immediate boundary of the (i 4+ 1)-cell g, i.e., to the multiplicity
mult(p, dq) of the i-cell p in the immediate boundary of the (i + 1)-cell
q in I'y.

If f is a Morse-Smale function, then the MIG provides also a combinato-
rial representation of the 1-skeleton of its Morse-Smale complex. Figure 2.6
illustrates the descending Morse complex and the corresponding M IG in 3D.
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2.2.4 Cancellation Operator

The cancellation operator simplifies a Morse function f defined on a manifold
M by eliminating its critical points in pairs [84]. It transforms the canceled
critical points into regular points by transforming the function f into a new
Morse function g. This is achieved by modifying the gradient field of f around
the integral line connecting the two canceled critical points. Two critical points
p and ¢ can be canceled if and only if the following two conditions are both
satisfied:

1. p and q are of index ¢ and 7 + 1, respectively, 0 <i <n — 1, and
2. there is a unique integral line connecting p and q.

If p and ¢ can be cancelled, then in a neighborhood of the unique integral
line connecting p and ¢ in some coordinates in which p = (0,0,..,0) and ¢ =
(0,..0,1,0,..0) (1 is at the (i+1)st place) the gradient-like vector field of f can
be written as X = —2x18%1 S Qxia%i + 2U(xi+1>ax?+1 +.+ 21’”%, where
v(x;41) is a C*°-differentiable function defined on (—6,1+46) (6 > 0), v(t) =t
in a neighborhood of 0, v(t) = 1 — t in a neighborhood of 1 and v(t) > 0 for
0<t<l1

The cancellation of the i-saddle p and the (i + 1)-saddle g perturbs the
gradient-like vector field X to the vector field Y = —2x18%1 — . — me%i +

8 8 . .
2Ux§+..+m%($z‘+1)m + ..+ 2255, where v,2, .2 (7i41) is obtained from a

family {vs(z;41)}s such that: (i) each vgs(x;11) is a C*-differentiable function
on (—d,1 4+ 0), (i7) for a sufficiently small v > 0, the functions vs(z;41) are
defined for —v < s < 2v, (i) for s > v, vg(xi11) = v(Tiy1), (0) for s <0,
Vs(Tiq1) = vo(xip1) and vo(zs41) < 0 for z,41 € (6,1 +9), (v) for x4 < —g
or i1 > 14 2, vy(zi41) = v(2,41) for any s.

The vector field Y is a gradient-like vector field of a Morse function g,
which coincides with f everywhere on M except in a small neighborhood of
the integral line connecting p and g. Thus, the critical points of g are the same
in position and in index as the critical points of f with the exception of p and
q. Neither the function g obtained from f after the cancellation of p and g,
nor its gradient, are uniquely determined by the cancellation. Nevertheless,
the cancellation of p and ¢ affects the set of integral lines starting or ending
at either p or ¢ in an unambiguous way.

In Figure 2.7, we illustrate a neighborhood of the unique integral line con-
necting critical points p and g before and after the cancellation of p and q.
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Figure 2.7: [26] A neighborhood (dotted green) of the integral line (red) con-
necting critical points p and ¢ of index ¢ and 7 + 1, respectively, before and
after the cancellation of p and ¢. Integral lines that converged to ¢ or p before
the cancellation converge to u after the cancellation (top). Integral lines that
originated at p or g before the cancellation originate at v after the cancellation
(bottom).

The set of integral lines that converged to g or to p before the cancellation is
transformed into a set of integral lines converging to critical points u of index
j > 1 that were the destination of integral lines starting at p before the cancel-
lation (see Figure 2.7 (top)). Similarly, the set of integral lines that originated
at g or at p before the cancellation is transformed into a set of integral lines
originating at critical points v of index k£ < ¢+1 that were the origin of integral
lines ending at ¢ before the cancellation (see Figure 2.7 (bottom)).

The conditions on the feasibility of the cancellation on the Morse complexes
of f are obtained from the conditions on the feasibility of the cancellation on
the scalar field f. Recall that two cells in the Morse complexes of f are
incident if and only if the corresponding critical points are connected through
an integral line of f.

In the descending (and, symmetrically, ascending) Morse complex, two cells
p and ¢ can be simultaneously eliminated if the following conditions are both
satisfied:

1. pis an ¢-cell and ¢ is an 7 + 1-cell, and

2. the cell p appears exactly once in the immediate boundary of the cell ¢
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(the multiplicity mult(p, dq) of the i-cell p in the immediate boundary
of the (i + 1)-cell ¢ is equal to 1).

The first condition translates the fact that p and ¢ are critical points of index
1 and 7 + 1, respectively. The second condition specifies that critical points p
and ¢ are connected through exactly one integral line.

The Morse and Morse-Smale complexes of f are determined by the integral
lines of f. Thus, the effect of the cancellation of p and ¢ on these complexes
can be deduced from the effect of the cancellation on the set of integral lines
starting or ending at p or q. We describe the effect of the cancellation on the
descending complexes, ascending complexes, and on Morse-Smale complexes.

Let us denote as

1. uj, j = 1...k;, the cells in the co-boundary of the i-cell p in I'y, u; # g,
and

2. vy, h =1, ...kp, the cells in the boundary of the (i+1)-cell ¢ in Ty, vy, # p.

The cancellation of p and ¢ changes the connectivity (the incidence relation)
of the descending complex I'y, as each cell vy, h = 1, ...k, becomes part of the
boundary of each cell u;, j = 1...k;.

If we denote as

1. r;, i = 1...k;, the (i + 1)-cells in the immediate co-boundary of the i-cell
pin Iy, 73 # ¢, and

2. t;, L =1,...k;, the i-cells in the immediate boundary of the (i 4 1)-cell ¢
in Fd? tl % b,

then the effect of the cancellation of p and ¢ on the immediate boundary
relation is as follows: each i-cell ¢; will belong to the immediate boundary
of each (i + 1)-cell r; with the multiplicity increased by the product of the
multiplicity of the i-cell p in the immediate boundary of the (i + 1)-cell r; and
the multiplicity of the i-cell ¢; in the immediate boundary of the (i + 1)-cell gq.
In other words, mult'(t;, 0r;) = mult(t;, Or;) +mult(p, Or;) -mult(t;, q), where
mult and mult’ denote the multiplicities in the descending Morse complex I’
and in the simplified descending Morse complex I, respectively.

The cancellation of p and ¢ changes also the geometry of some cells in the
descending complex I'y. If
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Figure 2.8: [26] Portion of a 2D descending Morse complex (a), ascending
Morse complex (b), and Morse-Smale complex (c), before and after the can-
cellation of the maximum p and the saddle ¢. Numbers indicate the index of
the corresponding critical point.

1. s;, @ = 1..k;, are the (i + 1)-cells in the immediate co-boundary of the
i-cell pin Ty, s; # q, and

2. z, 1 =1,...k;, are the i-cells in the immediate boundary of the (i+ 1)-cell
qinTy, z # p,

then in the descending complex I'y, each (i+1)-cell s; is merged with mult(p, 0s;)
disjoint copies of the (i 4 1)-cell ¢ (and the i-cell p).

Dually, in the ascending complex I',, the effect of the cancellation of the
i-cell p and the (7 + 1)-cell ¢ is to merge mult(z;, dq) disjoint copies of the
(n — i)-cell p and the (n — i — 1)-cell ¢ into each (n — i)-cell z;. These copies
are infinitesimally close, and are considered to be combinatorially disjoint.

If ¢ is a maximum (an n-cell in I'y) and p is an (n—1)-saddle, (an (n—1)-cell
in I'y), then k; = 1 and mult(p,ds1) = 1. This means that the unique other
n-cell s in the co-boundary of the n-cell ¢ in I'y is different from ¢. Dually, if
p is a minimum (a 0-cell in the descending complex I'y) and ¢ is a 1-saddle (a
1-cell in I'y), then k; = 1 and mult(z;,0q) = 1. This means that the unique
other O-cell z; in the boundary of ¢ in I'y is different from p.

In the Morse-Smale complex, there is a new k-cell for each two critical
points u and v of f that become connected through an integral line after the
cancellation and that differ in index by k (for each two cells u and v that
become incident to each other in the Morse complexes after the cancellation
and that differ in dimension by k).

In 2D, there are two instances of the cancellation. One cancels a saddle
and a maximum, the other cancels a saddle and a minimum.



22

The mazimum-saddle cancellation is defined if the maximum p and the
saddle ¢ are connected through a unique integral line. This implies that the
saddle ¢ is connected through a unique integral line to exactly two different
maxima p and p'.

In the descending complex I'y, p and p’ correspond to 2-cells and ¢ corre-
sponds to the 1-cell shared by p and p’. The maximum-saddle cancellation,
which eliminates the maximum p and the saddle g, is feasible on I'y if in a cyclic
order of edges in the boundary of ¢, edge p appears only once (mult(p, dq)=1).
The effect of the cancellation consists of deleting the 1-cell corresponding to
g and thus merging the 2-cells p and p’ (see Figure 2.8 (a)). Each 1-cell (and
each 0-cell) on the boundary of p becomes a part of the boundary of p'.

In the ascending complex I'y, p and p’ correspond to O-cells and ¢ corre-
sponds to a 1-cell bounded by p and p’. The cancellation of the maximum p
and the saddle ¢ is feasible on I', if the 1-cell ¢ is not a loop with endpoint
p. The effect of the maximum-saddle cancellation on I', consists of collapsing
the 1-cell corresponding to ¢ and thus merging p into p’ (see Figure 2.8 (b)).
Each 1-cell (and each 2-cell) in the co-boundary of p becomes incident to p'.

In the Morse-Smale complex, p, p’ and ¢ are O-cells, and ¢ is connected to p
and to p’ through a 1-cell. After the cancellation, p and ¢ are deleted, together
with all the 1-cells incident in ¢ (see Figure 2.8 (c)). All the 1-cells and 2-cells
incident in p and not incident in ¢ become incident in p'.

The effect of the minimum-saddle cancellation is completely dual. It cor-
responds to the contraction of a 1-cell in the descending complex and to the
removal of a 1-cell in the ascending complex. The effect on the Morse-Smale
complex is exactly the same as described for the maximum-saddle cancellation.

In higher dimensions, there are two types of the cancellation: one cancels
an extremum and a saddle (a maximum and an (n — 1)-saddle, or a minimum
and a 1-saddle), the other cancels two saddle points. The first type of the
cancellation can be thought of as the merging of cells.

The cancellation of a maximum p and an (n — 1)-saddle ¢ is feasible if ¢
is connected through a unique integral line to exactly two different maxima p
and p’. In the descending Morse complex, it removes the (n — 1)-cell ¢, thus
merging the n-cell p into the n-cell p'.

The cancellation of a minimum p and a 1-saddle ¢ is feasible if ¢ is connected
through a unique integral line to exactly two different minima p and p’. In the
descending complex I'y, it contracts the 1-cell ¢ with the effect of collapsing
the O-cell p on the 0-cell p/. Dually, in the ascending Morse complex, the
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Figure 2.9: [26] A portion of the 3D descending Morse complex (a), and the
Morse-Smale complex (b) before and after the cancellation of the maximum
p and the 2-saddle q. The numbers indicate the index of the corresponding
critical point.

cancellation of a minimum p and a 1-saddle ¢ removes the (n — 1)-cell ¢ and
merges the n-cell p with the n-cell p’; the cancellation of a maximum p and an
(n — 1)-saddle ¢ contracts the 1-cell ¢ and collapses the O-cell p on the 0-cell
p.

On the Morse-Smale complex, the effect of the cancellation of a maximum
p and an (n — 1)-saddle ¢ consists of deleting all the cells incident in ¢ and not
incident in either p or p/, and merging p and ¢ into p’ by contracting the 1-cells
connecting p to ¢ and ¢ to p’. The effect of the cancellation of a minimum p
and a 1-saddle ¢ on the Morse-Smale complex is completely similar.

Figure 2.9 shows the effect of the cancellation of a maximum p and a 2-
saddle g on a 3D descending Morse complex and on the corresponding Morse-
Smale complex. In the descending Morse complex 'y, the 2-cell ¢ is removed,
and the 3-cell p is merged with the unique 3-cell p’ incident in ¢ and different
from p. In the Morse-Smale complex, all cells incident in ¢ and not incident
in either p or p’ are deleted, and the 1-cells connecting p and ¢, and ¢ and p’
are contracted. Thus, all the remaining cells that were incident in p become
incident in p'.

Cancellations that do not involve an extremum are more complex. In 2D, all
cancellations involve an extremum, while already in 3D there are cancellations
involving a 1-saddle and a 2-saddle. These latter cannot be interpreted as the
merging of cells in the descending or ascending Morse complexes.
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Figure 2.10: [26] The cancellation of the 1-saddle p and the 2-saddle ¢ in 3D
on (a) a portion of the descending Morse complex, and (b) a portion of the
Morse-Smale complex. The numbers indicate the index of the corresponding
critical point.
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The cancellation of a 1-saddle p and a 2-saddle g on a 3D descending Morse
complex is illustrated in Figure 2.10 (a). The 1-cell p and the 2-cell ¢ are
deleted. Each 1-cell that was in the immediate boundary of the 2-cell ¢ (with
the exception of the 1-cell p) becomes part of the immediate boundary of each
2-cell (with the exception of the 2-cell ¢) in the immediate co-boundary of the
1-cell p. Geometrically, each 2-cell incident in the 1-cell p (in the immediate co-
boundary of p) is extended to include a disjoint copy of the 2-cell ¢ (and of the
1-cell p), keeping an infinitesimal separation between these copies. Each 1-cell
and each 0-cell that was in the boundary of the 2-cell ¢ (with the exception
of the 1-cell p) becomes part of the boundary of each 2-cell and each 3-cell
incident in p (with the exception of the 2-cell q).

The effect of a cancellation of a 1-saddle p and a 2-saddle ¢ on a Morse-
Smale complex is illustrated in Figure 2.10 (b). The 0-cells corresponding to p
and ¢ are deleted from the complex, as well as all the 1-cells incident in either
of them. The problem here is that there is an arbitrary number of 2-saddles
connected through an integral line to p and an arbitrary number of 1-saddles
connected to ¢q. Each 2-saddle (and each 3-saddle) that was adjacent to p,
becomes adjacent to each 1-saddle (and each 0-saddle) that was adjacent to g.
The number of the 0-cells in the Morse-Smale complex (critical points of f)
decreases by two, but the number of the 1-cells (and of the higher-dimensional
cells) in the Morse-Smale complex may increase. Let s;, i = 1,...,k; be the
2-saddles adjacent to p and let z, [ = 1,...,k; be the 1-saddles adjacent to
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q. Then, the operator deletes each 1-cell connecting p to s;, and each 1-cell
connecting ¢ to z;, and thus it deletes k; + k; 1-cells, but it inserts a 1-cell
for each pair (s;, z;), and thus it inserts a total of k; - k; 1-cells. Similarly, the
number of 2-cells and 3-cells in the Morse-Smale complex may increase after
the 1-saddle-2-saddle cancellation. There is a new 2-cell for each pair (s;,7),
where 7, is a 0-saddle (minimum) adjacent to ¢ and not adjacent to p, and
for each pair (¢;, z;), where ¢; is a 3-saddle (maximum) adjacent to p and not
adjacent to ¢. Finally, there is a new 3-cell for each pair (¢;, 7).

Each such new cell in the Morse-Smale complex corresponds to a new pair
of incident cells in the descending (and in the ascending) Morse complex.

Let us consider another example of a sequence consisting of two cancella-
tions, illustrated in Figure 2.11. A portion of the Morse complex before the
cancellations is illustrated in Figure 2.11 (left). There are five 2-cells, which
separate four 3-cells. The 2-cell f; is bounded by the 1-cells (v, v2), (ve, vg),
(ve,v5), (vs,v1), the 2-cell fy is bounded by the 1-cells (v, v4), (v4, vg), (vs, 5),
(vs,v3), the 2-cell f3 is bounded by the 1-cells (v7,vg), (vs, V10, (V10, Vo), (ve, v7),
the 2-cell fy is bounded by the 1-cells (v, vg), (vs, v12), (v12,v11), (V11,vs), while
the 2-cell f5 is bounded by the 1-cells (vs,vg), (ve,vs), (vs,v7), (v7,v5). The
2-cell f; separates the 3-cells Vi and V5, the 2-cell f5 separates the 3-cells V5
and V3, the 2-cell f3 separates the 3-cells V; and Vj, the 2-cell f, separates the
3-cells V3 and Vjy, while the 2-cell f5 separates the 3-cells V; and V3.

After the cancellation of the 1-cell (vs,vg) and the 2-cell f5, the 1-cells in
the immediate boundary of the 2-cell f; are (vy,vs3), (ve,vs), (vs,vs), (vs,v7),
(v7,v5), (vs,v1) (in this order), the 1-cells in the immediate boundary of f,
are (vs,vy), (v4,v6), (vs,vs), (vs,v7), (v7,v5), (vs,v3) (in this order), the 2-cell
f1 separates the 3-cells V] and V, (as was the case before the cancellation),
and the 2-cell f; separates the 3-cells V5 and V5 (as was the case before the
cancellation). The 3-cells V; and V3 are no longer adjacent (they are not
separated by a common 2-cell). This is illustrated in Figure 2.11 (b).

After the cancellation of the 1-cell (v7,vs) and the 2-cell f;, the 1-cells in
the immediate boundary of the 2-cell fy are (vs,vy), (v4,vs), (vs,vs), (vs, vs),
(ve,v2), (v2,v1), (v1,vs5), (vs,v7), (v7,v5), (vs,v4) (in this order). Thus, the
1-cells (vg,vs) and (vs,v7) have the multiplicity equal to 2 in the immediate
boundary of the 2-cell f; (mult((ve,vs),df1) = mult((vs,v7),0f1) = 2). The
1-cells in the immediate boundary of the 2-cell f5 are (v10,v9), (vo, v7), (v7,v5),
(vs,v1), (v1,v2), (ve,v), (vs,vs), (vs,v10) (in this order), and the 1-cells in the
immediate boundary of the 2-cell f; are (vi1,v12), (vi2,vs), (vs,vs), (ve,v2),
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Figure 2.11: A portion of the descending Morse complex (a). After the can-
cellation of the 1-cell (vs,vg) and the 2-cell f5 (b). After the cancellation of
the 1-cell (v, vg) and the 2-cell f; (c).

(vg,v1), (v1,v5), (vs5,v7), (v7,v11) (in this order). The 2-cell f3 separates the
3-cells Vy and Vi, the 2-cell f; separates the 3-cells V5 and V3, and the 2-cell f
separates the 3-cells V3 and V}, as was the case before the cancellation. The
3-cells V1 and V; are no longer adjacent.

Note that in 2D, the cancellation of a 1-cell and a 2-cell is also called edge
removal, and the cancellation of a 0-cell and a 1-cell is also called edge con-
traction. These are the well known Euler operators, which are widely used
both in boundary-based solid modeling [79], and in the framework of combi-
natorial maps and n-G maps. In solid modeling, they are called K EV (Kill
Edge and Vertex) and K EF (Kill Edge and Face), while the inverse operators
are called M EV (Make Edge and Vertex) and M EF (Make Edge and Face).
In the framework of combinatorial maps the cancellation is called the (dual)
edge contraction [17]. In 3D combinatorial maps, cancellation of a 1-cell and
a 2-cell is defined only in a special situation, when a face is bounded by two
different edges, and when no volume and no vertex are removed by the can-
cellation, thus avoiding the folding of faces [66]. All these operators maintain

the Euler formula x(T') = > (—1)’c;, where ¢; is the number of the i-cells in T

i=0

They change the number of the cells in the complex, but they do not change
the Betti numbers or the Euler characteristic of the complex. We give a more
detailed review of Euler operators in Section 3.4.1.
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State of the Art

We review the related work on different research areas, which are relevant to
the work presented here, namely: (i) topological representations of scalar fields
in 2D and 3D, (ii) algorithms that assume a discretization of the domain of
the scalar field as a manifold simplicial or cell complex and extract critical
points and an approximation of Morse and Morse-Smale complexes of the
field, (i77) simplification algorithms on Morse and Morse-Smale complexes,
(7v) hierarchical and multi-resolution representations of the topology of 2D
scalar fields encoded through the Morse and Morse-Smale complexes, and (v)
update operators on cell complexes.

3.1 Topological Representations for 2D and 3D
Scalar Fields

The first technique for representing the topological structure of a 2D scalar
field has been proposed in [18], in the framework of analyzing topographic
surfaces. Contour lines and integral lines have been used in [18] to describe
and analyze terrains (2D scalar fields defined over a subset of a plane). It has
been noted that in 2D each saddle is the origin and destination of exactly two
integral lines, and that a slight perturbation of the scalar field f can eliminate
integral lines connecting two saddles. The same notions have been discovered
independently in [85], and have been extended to include the notion of the
Morse-Smale complex in 2D, obtained as the intersection of the ascending and
descending Morse complexes. The distinction between the different types of

27
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Figure 3.1: The slope districts of the CPCG.

saddles has been made (those that merge two components of the lower level set
into one, and those that split one such component in two) and a relationship
between the number of the critical points of f (the number of extrema and the
number of saddles) has been established for the 2D case. In [87], the study of
Morse theory proper has been initiated as a study of the relationships between
the critical points of an nD scalar field f defined over a manifold M, and the
topology (homotopy type) of M.

In [93,111,112], a definition of the weighted surface network is given, as a
weighted, directed, tripartite planar graph G = (Ny, Ny, No; E). For a given
Morse-Smale scalar field f, the nodes in Ny, N1 and Ny correspond to minima,
saddles and maxima of f, the arcs correspond to integral lines connecting them
and the regions correspond to the 2-cells in the Morse-Smale complex of f. The
weight of an arc is equal to the absolute difference in function values between
its two end nodes. The notion of the critical net [102] is similar.

The Critical Point Configuration Graph (CPCG) [89] is a generalization
of the critical net for a Morse function f defined on the closure of a simply-
connected open set in the plane. It is not supposed that f is a Morse-Smale
function, so some integral lines may connect two saddles. Minimal cycles of
edges of the CPCG partition the domain of f into regions, called slope districts.
There are four different types of slope districts, as illustrated in Figure 3.1. The
first three are quadrangles (possibly glued along the edges) with nodes of index
1,0,1,2 respectively (saddle, minimum, saddle, maximum). These quadrangles
correspond to the possible types of 2-cells in the Morse-Smale complex. The
first type occurs most frequently in the real data, the second and third type
correspond to an isolated mountain and an isolated crater, respectively. The
last type of a slope district occurs only if f is not a Morse-Smale function. It
is unstable, in the sense that a small perturbation of the scalar field f would
replace the integral lines connecting two saddles with integral lines connecting
those saddles to extrema.
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The notion of a quasi-Morse-Smale compler in 2D and 3D has been in-
troduced in [52] and [51], respectively, as a discrete counterpart of a Morse-
Smale complex, with the aim of capturing the combinatorial structure of the
Morse-Smale complex of a Morse-Smale function f defined over a manifold
M, without making reference to the function f. In 2D, a quasi-Morse-Smale
complex is defined as a complex (a graph embedded in M), in which the set
of vertices can be partitioned into three sets U, V and W (corresponding to
minima, saddles and maxima, respectively, of a Morse-Smale function f) and
the set of edges can be partitioned into two sets A and B, such that: (i) there
is no edge connecting two vertices from U U W, or two vertices from V', (i7)
edges in A have endpoints in U UV and edges in B have endpoints in VU W,
(7i1) each vertex p € V belongs to four edges, which alternate between A and
B in a cyclic order around p, (iv) all regions of I' are quadrangles, with vertices
from U, V, W, V in this order along the boundary.

In 3D, a complex I' is a quasi-Morse-Smale complex if it is a subdivision of
M, in which the set of vertices can be partitioned into four sets U, V', X and Y
(corresponding to minima, 1-saddles, 2-saddles and maxima of a Morse-Smale
function f), the set of edges can be partitioned into three sets R, S, and T" and
the set of regions can be partitioned into two sets P and @), such that: (i) the
edges from R, S, and T connect vertices from U and V', V and X, and X and
Y, respectively, and the regions from P and () are quadrangles with the nodes
from U, V, X, V, and V, X, Y, X, in that order, respectively, around the
boundary, (i) there are no vertices within the arcs, quadrangles and 3-cells,
(7i1) each edge in S is in the boundary of four quadrangles, which in a cyclic
order alternate between P and ().

3.2 Algorithms for Computing Morse and
Morse-Smale Complexes

The problem of extracting critical points and integral lines connecting them, as
well as segmenting the domain of the scalar field f into regions associated with
the critical points, has a long history. The first attempts to the decomposition
of the domain of a scalar field f have been for 2D scalar fields representing
images or terrains. Recently, some algorithms or 3D scalar fields have been
proposed. It is assumed that the values of f are given at a discrete set of
vertices forming either a regular square grid (RSG) [6,92,99,104,105] or an
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irreqular triangular network (TIN). Thus, the domain of a discrete scalar field
is usually the set of vertices of a cubical or a simplicial complex. We will briefly
review only the algorithms working on simplicial complexes. For a survey of
the work in this area, see [11].

Almost all the existing methods extract the critical points of a scalar field
f as a first step, based on the values of the function f at a vertex p and
at the points in some neighborhood of p. In [8,52,90], the vertices of the
triangulation are classified as regular, minimum, maximum or saddle according
to their lower star St~ (p). The lower star of a vertex p is the subset of the
star of p which contains simplices that have p as their highest vertex. Thus,
St=(p) = {o € St(p) : flq) > f(p),q < o}. If a vertex p is a minimum
(maximum), then its lower star is empty (coincides with the star). Otherwise,
let £ be the number of connected components in St~ (p) — {p}. If £ =1, then
p is a regular vertex, and if £ > 1, then p is a saddle point of multiplicity
k—1 (a (k—1)-fold saddle). A procedure to decompose a k-fold saddle into k
simple saddles has been proposed in [102]. It is similar to the procedure called
unfolding of multiple saddles in [52].

Algorithms for decomposing the domain M of a 2D scalar field f into
an approximation of a Morse or of a Morse-Smale complex can be classified
as boundary-based [7,14,52,91,102], or region-based [19,77]. Boundary-based
algorithms compute the critical points and trace the integral lines of f (or their
approximations), which start at saddle points and converge to minima and
maxima of f. Region-based methods (including the watershed-based ones [96])
grow the 2D cells, defined by the minima and maxima of f, starting from those
critical points.

A common feature of boundary-based algorithms is that in the computed
approximation of the Morse-Smale complex it may happen that two or more
ascending integral lines merge, and converge to the same maximum. Simi-
larly, two or more descending integral lines may merge, and converge to the
same minimum. Equivalently, in the approximation of the Morse complexes
computed by region-based algorithms, it may happen that three or more 2-
cells meet at a point, which is not a 0-cell in the complex. Thus, in an ap-
proximation of the Morse complexes (computed either by boundary-based or
by region-based algorithms) 1-cells may (geometrically) partially overlap, but
they are considered to be (combinatorially) disjoint [13].

Among the methods for classification of critical points in 3D based on
gridded data [57,103,106,107], only the method in [103] classifies saddles in
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more detail (multiple 1- or 2-saddles), while for unstructured 3D data, the
method in [51] uses the Betti numbers of the lower link of p to characterize the
configurations of the neighborhood of each vertex and, in this way, it recognizes
multiple saddles composed of an arbitrary number of 1- and 2-saddles. For
each vertex p of X, the lower link Lk~ (p) of p is considered. It consists of the
vertices ¢ in the link Lk(p) of p such that f(q) < f(p), and of the simplexes
of Lk(p) defined by these vertices. The vertex p is classified as a minimum if
its lower link is empty. It is classified as a maximum if its lower link is the
same as its link Lk(p). Otherwise, p is classified based on the reduced Betti
numbers (y an 3 of the lower link Lk~ (p) as a critical point composed of [
1-saddles and Bl 2-saddles. The reduced Betti numbers Bk are equal to the
un-reduced Betti numbers 5, for £ > 1. For empty complexes, Bo =1, and
for non-empty complexes By = By — 1. Intuitively, the Betti numbers [, and
(1 count the number of connected components and the number of holes in the
complex, respectively.

Algorithms for computing Morse and Morse-Smale complexes for 3D scalar
fields can also be classified as boundary-based [50,51] and region-based [30,43,
64]. Discrete methods rooted in discrete Morse theory proposed by Forman
[55,56] are computationally more efficient [38,60,70,95].

We have given a survey on algorithms for extracting Morse and Morse-
Smale complexes in 2D and 3D in [37] and [33], respectively.

3.3 Simplification and Hierarchical Represen-
tation of Morse and Morse-Smale Com-
plexes

One of the major issues that arise when computing a representation of the
scalar field as the Morse or the Morse-Smale complex is over-segmentation.
It is caused by the inherent presence of noise in the data sets. Simplification
algorithms have been developed in the literature in order to eliminate less sig-
nificant features from these complexes. Simplification is achieved by applying
an operator, called cancellation, which has been described in Section 2.2.4.
The cancellation is defined for smooth Morse functions [84]. It transforms a
Morse function f into a Morse function g with fewer critical points. Thus, it
transforms a Morse-Smale complex into another, with fewer vertices, and it
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transforms a Morse complex into another, with fewer cells. It enables also the
creation of a hierarchical representation.

The cancellation in 2D consists of collapsing a maximum-saddle pair into
a maximum, or a minimum-saddle pair into a minimum. The cancellation
operator on 2D Morse-Smale complexes has been investigated in [14,52,62,102,
112]. In [44], the cancellation operator in 2D has been extended to functions
that may have multiple saddles and macro-saddles (saddles that are connected
to each other).

In 3D, the cancellation consists of collapsing a maximum-2-saddle pair into
a maximum, or a minimum-1-saddle pair into a minimum, plus the cancel-
lation operator of a pair consisting of a 1-saddle and a 2-saddle. The effect
of the cancellation of critical points on 3D Morse-Smale complexes has been
investigated in [62]. In [22], we have investigated the effect of the cancellation
on 3D Morse complexes and we have shown that the effect of the cancellation
can be more naturally described on Morse complexes than on Morse-Smale
ones. We have also shown how the cancellation affects the incidence graph
representing Morse and Morse-Smale complexes.

There have been only two approaches in the literature to modify not only
the Morse and Morse-Smale complexes by the cancellation, but to simplify
also the scalar field f after the cancellation, i.e., to construct a function g that
corresponds to the simplified complexes and thus to couple the topological sim-
plification with the smoothing of f. Both approaches are for two-dimensional
scalar fields and they modify the function f numerically. The approach in [14]
uses Laplacian smoothing and produces a CY simplified field, while the ap-
proach in [109] produces a C! result. Another approach, presented in [54] for
the 2D case, modifies the scalar field f combinatorially, by changing the order
in which the vertices appear in their sorted list according to function values.

In [67], simplification of cubical complexes in arbitrary dimensions has been
considered, with the aim to compute the homology of the complex by reducing
it to a smaller complex having the same homology. Simplification operators
used are called collapses and reductions. A collapse is our remove; ;11 operator
of the second type (see Section 4), and a reduction is a cancellation (see Section
2.2.4), both applied on a cubical complex.

In [97], simplification operators have been defined in the framework of ge-
ometric modeling, without studying a (scalar) function defined on the object.
The object is described through a decomposition into cells, which are not as-
sumed to be topological cells (homeomorphic to a ball). Two simplification



33

operators have been defined: a topological simplification operator join is our
remove; ;41 operator of the first type; a (non-topological) simplification oper-
ator incorporate produces cells that are not homeomorphic to a ball.
Topological simplification operators have been defined for 2D vector fields
in [20]. For gradient vector fields (without periodic orbits) these operators
reduce to the cancellation (which, in 2D, is equal to the remove operator).
Due to the large size and complexity of available scientific data sets, a hi-
erarchical and a multi-resolution representation is crucial for their interactive
exploration. Historically, a hierarchical representation of the 2D scalar field
topology has been first investigated in the framework of Geographic Informa-
tion Systems (GIS), where 2D scalar fields are usually called terrains, and the
critical points and the separatrix lines connecting them are represented in the
form of a critical net. Current hierarchical terrain models are just based on a
progressive simplification process based on the cancellation operator applied
to a simplicial mesh describing a terrain at full resolution [13,52,101,112].
The pair of critical points to be removed must be selected in such a way
that the resulting decomposition is still a Morse-Smale complex. This means
that along each integral line connecting a minimum with a saddle, or a saddle
with a maximum, the function f is increasing. In other words, the weights of
the arcs in the corresponding generalized surface network are positive. When
a saddle s together with an adjacent minimum (maximum) p is removed, the
remaining saddles s; that were connected to p will be connected to the other
minimum (maximum) p’ adjacent to s. This connection is possible if the
elevation (function value) at s; is higher (lower) than the elevation (func-
tion value) at p’. One way to ensure this is to express the weights of the
edges (p', s;) in terms of the weights of the edges (p/, s), (s,p), and (p, s;), as
w(p,s;) = w(p,s) —w(s,p) +w(p,s;), and take care that the negative sum-
mand (—w(s,p)) is not greater (in absolute value) than the sum of other two
summands (w(p', s) +w(p, s;)).
In [112], a minimum (maximum) p is chosen for cancellation together with
its lowest (highest) adjacent saddle s. In [101], a pair of critical points (p, s)
is chosen such that the difference in elevation between p and s is minimal
among all (unsigned) differences in elevation between a saddle and an ad-
jacent minimum, or a saddle and an adjacent maximum. In the approach
described in [52], and later in [13] (where geometric considerations are taken
into account), a saddle s is chosen together with its adjacent maximum at
lower elevation, or its adjacent minimum at higher elevation. The order in
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which the pairs of points are cancelled is determined based on the notion of
persistence (see [53] for details). Different measures of importance of a critical
point, defined by assigning a weight not only to the edges, but also to the ver-
tices of the critical net, have been introduced in [112], such as the maximum,
or the minimum or the sum of the differences in elevation between a maximum
(minimum) and all of its adjacent saddles. It has been argued that the criteria
using only elevation difference, and not taking into account the length of the
corresponding integral lines or some other area- or slope-based measures, fail
to provide enough information about the importance of the critical point [94].
In any case, the measure of importance of a point is application dependent,
and cannot be expressed in absolute terms. In [41], a simplification algorithm
guided by the morphology of the critical net has been proposed. Finally, in [98]
a hierarchical critical net has been proposed based on an entirely different ap-
proach, which identifies hierarchies of ridges and valleys inside the critical net
at maximum resolution.

A more concise and powerful representation can be obtained by combining
the Morse-Smale decomposition (and the critical net) with a multi-resolution
approach. It is based on the simplification operators incrementally applied
to the critical net at maximum resolution and on the definition of the de-
pendency relation between these operators, which can be organized into a
multi-resolution representation as the one proposed in [46].

There have been several approaches in the literature to a multi-resolution
representation of the topology of a scalar field in 2D [14,15,44]. In [14], a
region of influence is associated with each cancellation, and two cancellations
are defined to be independent if their regions of influence have an empty inter-
section. The large size of the region of influence induces many dependencies
between the operators, and thus a small number of representations that can be
obtained from the multi-resolution model. In [15], the region of influence of a
cancellation has been significantly reduced, enabling a creation of a more flex-
ible multi-resolution model for 2D scalar fields. The method in [44] creates a
multi-resolution representation of a function with multiple saddles and saddles
that can be connected to each other. Hierarchical watershed approaches have
been developed to cope with the increase in size of both 2D and 3D images [10].

There have been two attempts in the literature to couple the multi-resolution
topological model provided by Morse-Smale complexes with the multi-resolution
model of the geometry of the underlying simplicial mesh. The approach in [14]
first creates a hierarchy of Morse-Smale complexes by applying cancellation
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operators to the full-resolution complex, and then, by Laplacian smoothing,
it constructs the smoothed function corresponding to the simplified topology.
The approach in [42] creates the hierarchy by applying half-edge contraction
operator, which simplifies the geometry of the mesh. When necessary, the
topological representation corresponding to the simplified coarser mesh is also
simplified. The data structure encoding the geometrical hierarchy of the mesh,
and the data structure encoding the topological hierarchy of the critical net
are interlinked. The hierarchical critical net is used as a topological index to
query the hierarchical representation of the geometry of the simplicial mesh.

3.4 Update Operators on Cell Complexes

We review briefly the topological operators designed for building and updating
data structures representing cell complexes. We classify these operators as:
Homology-preserving operators, which change the combinatorial description of
the model by introducing or removing cells in the complex, but do not change
its homology (expressed through the Euler-Poincaré characteristics and the
Betti numbers); Homology-modifying operators, which introduce or remove
topological entities in a way that changes the topology of the complex, but
they do not influence the validity of the Euler-Poincaré formula. Initialization
operators, which create an initial model starting from the empty set, may be
considered as homology-modifying.

A review of data structures and update operators for cell complexes has
been presented in [28]. A review of data structures for simplicial complexes
can be found in [45].

3.4.1 Euler Operators on Cell Complexes

We adopt the naming convention widely used for Euler operators. The letters
M and K stand for Make and Kill (create and delete) a topological entity. Kill
operators are inverse to the corresponding Make ones.

In a wide variety of the basis Euler operators proposed in the literature,
operators M EV (Make Edge and Vertex) and M EF (Make Edge and Face)
are a part of virtually all of the bases. They have been proposed in [9] for
modeling polyhedral models (surfaces) homeomorphic to a 2-sphere and satis-
fying formula 2.4. M EV operator and the dual M EF operator are illustrated
in Figures 3.2 and 3.3, respectively.
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Figure 3.2: [28] Some instances of the M E'V operator.
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Figure 3.3: [28] Some instances of the M EF operator.

Euler Operators on Manifold Complexes

For a complex I representing an orientable manifold surface S bounding a solid
object in 3D and satisfying FEuler-Poincaré formula 2.3, several sets of basis
operators have been proposed [3,12,48,78,79]. The connected components of
S are called shells. The initialization operator is called MVFS (Make Vertex,
Face and Shell). It creates a topological representation of a 2-sphere with
minimum number of cells: one vertex and one face, which together define one
shell.

In [48], two homology modifying operators are defined, called glue and
MEKF (Make Edge, Kill Face).

The glue operator merges two faces and deletes them both, together with
all the edges and vertices on the boundary of one of the deleted faces. It
corresponds to the connected sum operator on manifold surfaces. Two faces
may be glued if they have the same number of vertices, and they have no edges
in common. There are two instances of the glue operator, illustrated in Figure
3.4. If the two glued faces belong to the same shell, a handle (genus) is created,
and the operator is called KFMH (Kill Face, Make Hole). If the two glued
faces belong to two different shells, one shell is deleted, and the operator is
called KF'S (Kill Face and Shell).

MEKF operator in [12,48,78] operator joins two vertices belonging to two
different faces through a new edge, merging the two faces into one face. The
new edge belongs twice to the new joined face. The operator has three in-
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(a) (b)

Figure 3.4: [28] The two instances of the glue operator: K FMH (Kill Face,
Make Hole) (a); KFS (Kill Face and Shell) (b).

stances, since it ca decrease the number (3, of connected components, decrease
the number (3, of cavities, or increase the number ; of holes, as illustrated in
Figure 3.5.

: )
() o) ©

Figure 3.5: [28] The three instances of the MEKF (Make Edge, Kill Face)
operator.

In [12], the topology modifying operator is called M RK'F (Make Ring, Kill
Face). Tt creates a ring and deletes a face from the model, by gluing a (simply
connected) face to another face, thus deleting one face and making an (inner)
ring in another face. It has two instances:

- KFMRH (Kill Face, Make Ring and Hole) operator glues two faces
belonging to the same shell, thus making a hole (genus) in the surface.

- MRKFS (Make Ring, Kill Face and Shell) operator glues together two
faces belonging to two different shells, thus merging two shells into one.

MRKF operator is similar to the glue operator in [48], but it imposes looser
conditions on the glued faces, and it deletes only one of the faces. If an edge
is introduced connecting a vertex from one face to a vertex of the other face,
then no inner ring is produced, and the remaining cell is a topological cell
(homeomorphic to a disc).

Euler Operators on Non-Manifold Complexes

The earliest approaches to solid modeling considered a wireframe model (a
graph). The homology modifying operator, called M E (Make Edge) [110],
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creates a new edge, which connects two existing vertices. It either merges two
components or creates a hole.

The first approach to modeling and updating the boundary of a non-
manifold solid object, introduced in [108], has been extended in [71], where
the set of basis operators has been proposed.

Homology-modifying operators, illustrated in Figure 3.6, are: MV Cc (Make
Vertex and Complex Cavity), which makes a new vertex in the interior of a
component, and a new cavity composed of a single vertex; M ECh (Make
Edge and Complex Hole), which makes a new edge connecting two existing
vertices on the same connected component in the complex, and creates a hole;
MFKCh (Make Face, Kill Complex Hole), which makes a face, which fills in
and kills an existing complex hole (cycle of edges); and M FCc (Make Face
and Complex Cavity), which makes a face filling in a loop of edges that is not
a cycle, and closes off a cavity.

(a) (b) () (d)
Figure 3.6: [28] Homology modifying operators in [71]: MV Cc (Make Vertex

and Cavity) (a); MECh (Make Edge and Hole) (b); MFKCh (Make Face,
Kill Hole) (¢); MFCc¢ (Make Face and Cavity) (d).

For 3-complexes in R? [82,83], an additional homology-modifying operator
is defined, called MVIKCc (Make Volume, Kill Complex Cavity), which makes
a volume that fills in a cavity.

In [58], the operators in [83] have been extended to complexes called strat-
ifications, in which cells, called strata, are defined by analytic equalities and
inequalities. Homology preserving operators, called cell subdividers, subdivide
an n-cell by inserting into it an (n — 1)-cell.

Homology modifying operators, called global hole shapers, either attach or
detach a cell, thus creating or deleting a hole. There are two instances of this
operator: the attached topological n-cell creates an m-hole or the detached
topological n-cell creates an (n — 1)-hole.
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3.4.2 Splice Operator

The splice operator, defined in 2D in [59] and in 3D in [47], unifies the various
Euler operators in a single operator.

In 2D, it takes as argument two edges. Depending on the cycles the two
edges belong to, the splice operator can be either homology-preserving or
homology-modifying. In the case when it is homology-preserving, splice can be
expressed through homology-preserving Euler operators as a M EF' followed
by KEV, or as a MEV followed by K EF. Thus, it either increases the num-
ber of faces by one and decreases the number of vertices by one, or it decreases
the number of faces by one and increases the number of vertices by one.

When it is homology-modifying, it either merges two connected components
of the surface into one, or it creates a handle on the surface. In the first case, it
can be expressed through homology-modifying Euler operator KFSME in [79],
which connects the two connected components through an edge, followed by
KEV, which contracts the edge made by KFSME. In the second case, it can be
expressed through homology-modifying operator KFMEH, which connects two
vertices on the same face through an edge, followed by KEV, which contracts
the edge made by KFSME.

The splice operator in 3D does not always produce a valid complex. Because
of this drawback, another homology-modifying operator, called meld has been
introduced in [47]. It glues two faces with equal number of edges on their
boundaries, similarly to the glue operator in [48], but it deletes only one of the
glued faces, not both of them.

3.4.3 Handle Operators

The handle operators on a manifold cell 2-complex I' triangulating a surface
S have been introduced in [74]. They are based on the handlebody theory for
surfaces, stating that any surface S can be obtained from a 2-ball by iteratively
attaching handles (0-, 1- and 2-handles).

The initialization operator in [74] corresponds to attaching a O-handle. Tt
creates a new surface with one face, three edges and three vertices.

There are three operators that correspond to attaching a 1-handle. They
identify two boundary edges of I" (incident in exactly one face) with no vertices
in common. If the two identified edges belong to two different components
of I', then the number of connected components 3y and of boundary curves
(connected components of boundary edges) in I' is decreased by one. If the two
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identified edges belong to the same component and the same boundary curve
of I', then the number f3; of holes (independent 1-cycles) and the number of
boundary curves in I' is increased by 1. If the two identified edges belong to
the same component and two different boundary curves of I', then the number
B1 of holes (independent 1-cycles) is increased by 1, and number of boundary
curves in I' is decreased by 1.

The operator that corresponds to the attachment of a 2-handle identifies
two edges on the boundary of I with two vertices in common. It decreases the
number (; of holes and the number of boundary curves in I" by 1.

The analogous work in 3D in [75] uses the fact that each compact orientable
3-manifold S can be obtained by iteratively attaching handles (0-, 1-, 2- and
3-handles) to a 3-ball.

The operator that creates a new 3-ball (initialization operator) corresponds
to the attachment of a 0-handle. Other operators identify two boundary faces
(incident in exactly one 3-cell) of a cell 3-complex I' triangulating a solid S.

The attachment of a 1-handle can be applied in three situations: if the two
identified boundary faces are on different connected components of I', then the
two components are merged into one; if the two identified faces belong to the
same boundary surface component of I' (connected component of boundary
faces) and have no edges in common, then a hole is created; if the two iden-
tified faces belong to the different boundary surfaces of the same connected
component of I', the operator can be realized only if I' is embedded in a space
of dimension greater than 3.

The attachment of a 2-handle corresponds to identifying two faces on the
same boundary surface component of I' that have some edges in common. The
operator can create cavities and/or close holes in I'. The attachment of a 3-
handle is applicable if the two identified faces belong to the same boundary
surface component and have all edges in common. This operator fills in the
cavity formed by the two identified faces.
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New Update Operators on
Morse Complexes

In [24,27], we have defined two dual dimension-independent simplification op-
erators that we have called remowval and contraction. These operators have
been defined as a special case of the cancellation, and they have been obtained
by imposing additional constraints on the feasibility of the cancellation. The
constraints guarantee that the two operators behave like a cancellation in-
volving an extremum: they do not increase the number of separatrix lines of
the Morse function, they do not increase the incidence relation on the Morse
complexes or the number of cells in the Morse-Smale ones. A removal be-
haves like a cancellation involving a maximum, and a contraction behaves like
a cancellation involving a minimum.

In [26], we have defined the refinement insertion and expansion operators,
inverse to the simplification removal and contraction operators, respectively.
We have described the effect of these operators on the Morse function and
on the corresponding Morse complexes. We have proved that the simplifica-
tion removal and contraction operators, together with the inverse refinement
insertion and expansion operators, form a minimal basis through which any
operator on Morse complexes on a manifold M can be expressed.

In [32], we have defined a new simplification operator as a generalization
of the remowval and contraction simplification operators, by relaxing the con-
straints on the feasibility of the operators, and we have defined the inverse
refinement operator. We have called the new simplification operator remove.
It retains the properties of removal and contraction operators while having a

41
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wider applicability domain. The operator remove has two instances, namely
the remove; ;11 and the dual remove;;_1, which are a generalization of the
removal and contraction operators, respectively. The new refinement opera-
tor has been called insert. It is a generalization of the insertion and expansion
operators. It also has two instances, the insert;;;; and the dual insert;;_i,
inverse to the remove; ;41 and the dual remove; ;_1, respectively.

Here, we recall the definition of the simplification remove operator, and of
its inverse refinement insert operator, and we show the effect of these operators
on Morse functions and on the corresponding Morse complexes in Sections 4.1
and 4.2, respectively. In Section 4.3, we prove that these operators form a
basis for the set of operators on Morse complexes on a manifold M. In Section
4.4, we describe a dimension-independent data structure for representing a
sequence of simplification operators. We have introduced this data structure
in [25], and we have called it the augmented cancellation forest. In Section 4.5,

we give a detailed comparison of the remove operator and cancellation in the
3D case.

4.1 Simplification Operator remove

We introduce the notion of the combinatorial Morse complex, as a cell complex
in which the cells are allowed to partially overlap (geometrically), while they
are considered to be disjoint (combinatorially). The motivation for introducing
combinatorial Morse complexes is twofold:

- the majority of algorithms that compute an approximation of the Morse
complexes produce combinatorial complexes (see Section 3.2),

- the cancellation of an i-cell p and an (i+1)-cell ¢ on the descending Morse
complex (and dually on the ascending complex) in the continuous case
merges each (i+1)-cell in the co-boundary of p with a disjoint copy of the
(i+1)-cell ¢ (and the i-cell p), keeping an infinitesimal separation between
these copies, thus producing a combinatorial complex (see Section 2.2.4).

We have defined the removal and contraction simplification operators, and their
generalization the remove operator, on the combinatorial Morse complexes
in the discrete case as the operators that simulate the effect on the Morse
complexes of the same operators on a Morse function.
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4.1.1 Operator remove; ;i1

The remove; ;11 operator merges two (i + 1)-saddles by deleting the i-saddle
connected to both of them. It is feasible if the deleted i-saddle has a correct
neighborhood structure through integral lines, as we explain below. The oper-
ator has two types, denoted as remove; ;11(q, p, p') and remove; ;11(q, p,0). We
will give a definition of the remove; ;1 operator on the scalar field f and on
the corresponding combinatorial Morse complexes, and we will give examples
in 2D and 3D.

Definition 1 Let p and g be an (i + 1)-saddle and an i-saddle respectively,
1 <i<n-—1, such that

- the i-saddle q is connected through an integral line (a separatriz) to the
(¢ + 1)-saddle p and exactly one (i + 1)-saddle p' different from p, and

- there is exactly one integral line connecting the i-saddle q to the (i + 1)-
saddle p.

Then, the cancellation of p and q is called the remove; ;11 of the i-saddle q¢ and
the (i + 1)-saddle p, denoted as remove; ;11(q,p, 7).

Definition 2 Let p and q be an (i + 1)-saddle and an i-saddle respectively,
1 <i<n-—1, such that

- the i-saddle q is connected through an integral line (separatriz) to exactly
one (i + 1)-saddle p, and

- there is exactly one integral line connecting the i-saddle q to the (i + 1)-
saddle p.

Then, the cancellation of p and q is called the remove; ;1 of the i-saddle ¢ and
the (i + 1)-saddle p, denoted as remove; ;11(q,p,0).

The effect of the remove; ;11(q, p,p’) operator on the set of integral lines
starting or ending at p or ¢, can be deduced from the effect of the cancellation
of p and ¢ on those lines. The remove; ;11(q, p,p’) transforms the set of integral
lines converging to p or to ¢ into a set of integral lines converging to p’ (the
unique (7 4+ 1)-saddle different from the (i 4+ 1)-saddle p, connected to the i-
saddle ¢). Each critical point that was the origin of an integral line converging
to p or to ¢ becomes the origin of an integral line converging to p'.
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The effect of the cancellation of the critical points p and ¢ on the geometry
of cells in the descending Morse complex I'y is as follows: the i-cell ¢ is removed
and (a disjoint copy of) the (i 4+ 1)-cell p is merged into the (i + 1)-cell p’ for
each time the i-cell ¢ appears in the immediate boundary of the (i + 1)-cell
p. More formally, the only (i 4+ 1)-cell p’ in the co-boundary of the lower-
dimensional deleted cell (the i-cell ¢) is merged with & disjoint copies of the
higher-dimensional deleted cell (the (i41)-cell p), where k is the multiplicity of
the lower-dimensional cancelled cell (the i-cell ¢) in the immediate boundary
of the (i + 1)-cell p’ (k = mult(q,0p")).

The combinatorial effect of the operator is that the immediate boundary
of the (i + 1)-cell p is merged in the immediate boundary of the (i + 1)-cell
p’ with the appropriate adjustment of the multiplicities. We denote as mult
the multiplicities before the remove, and as mult’ the multiplicities after the
remove. Each i-cell r that was in the immediate boundary of the (i 4 1)-cell
p (with the exception of the i-cell ¢) with the multiplicity mult(r, Op) belongs
to the immediate boundary of the (i + 1)-cell p’ after the remove; ;11(q, p,p’)
with the multiplicity increased by the product of the multiplicity of the i-
cell 7 in the immediate boundary of the (i 4+ 1)-cell p and the multiplicity of
the i-cell ¢ in the immediate boundary of the (i + 1)-cell p’ (mult'(r,dp’) =
mault(r,0p") + mult(r, Op) - mult(q, Op’)).

We introduce the following notation for the cells in the combinatorial com-
plex I'y (before the remove; ;11(q, p,p’) of the i-cell ¢ and the (i + 1)-cell p):

1. 75, 3 =1, .., jmaz, are the i-cells (different from the i-cell ¢) in the imme-
diate boundary of the (i + 1)-cell pin 'y, R={r;,7 =1, .., Jmaz },

2. zp, h =1, .., hynas, are the (i — 1)-cells in the immediate boundary of the
i-cell g in Ty, Z ={zn,h =1, .., hypaz }, and

3. sk, k=1, .., kpas, are the (i + 2)-cells in the immediate co-boundary of
the (i + 1)-cell pin T'y, S = {sg, k=1, .., knas }-

We denote as Cy ;, the set of cells in the immediate boundary and the immediate
co-boundary of the deleted cells ¢ and p, C,, = {p'}URUZUS.

We define the remove; ;11 operator on the combinatorial (descending) Morse
complex ['y so that it simulates the effect on the descending Morse complex of
the remove; ;41 operator on the Morse function.

Definition 3 The remove; ;+1(q,p,p’) operator (of the first type), 1 < i <
n — 1, on the descending combinatorial complex Uy is feasible if the i-cell q
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appears in the boundary of exactly two (i + 1)-cells p and p', and it appears
exactly once in the immediate boundary of the (i +1)-cell p (mult(q,0p) =1).

The operator replaces the set {q,p}U{p'}URUZUS = {q,p} UC,, of cells
in Iy with the set {p’ }URUZUS = C,,, producing the simplified complex I",.
The immediate boundary and co-boundary relation for the cells in the simplified
complex I'!; is the same as the immediate boundary and co-boundary relation
for the corresponding cells in Ty, except that:

1. each instance of the (i+1)-cell p is removed from the immediate boundary
of each (i + 2)-cell sy in S, and from the immediate co-boundary of each
t-cell rj in R,

2. each instance of the i-cell q s removed from the immediate co-boundary
of each (i —1)-cell z, in Z, and from the immediate boundary of the new
(t+1)-cell p/, and

3. each wnstance of each i-cell r; in R is added k times to the immediate
boundary of the new (i + 1)-cell p’, where k is the multiplicity of the i-
cell q in the immediate boundary of the (i + 1)-cell p' (mult'(r;,0p’) =
mult(r;, 0p') + mult(r;, Op) - mult(q, Op') ).

The new (i + 1)-cell p' in T, is the union of the (i + 1)-cell p’ (before the
remove; i1 (q,p,0')), a disjoint copy of the (i + 1)-cell p for each time the
i-cell q appears in the immediate boundary of the (i + 1)-cell p’, and the i-cell
q in Lq. Other cells in T, are the same as the corresponding cells in T'y.

The operator remove; ;+1(q, p,p’) is defined on the dual combinatorial as-
cending Morse complex I', in a dual manner. We introduce the notation:

L. 7, 5 =1,.., Jmas, are the (n —i)-cells (different from the (n —1i)-cell ¢) in
the immediate co-boundary of the (n —¢ —1)-cell pin I'y, R = {r;,j =
17 s jm(m?}a

2. zp, h =1, .., hypas, are the (n — i+ 1)-cells in the immediate co-boundary
of the (n —i)-cell g in Ty, Z = {zp,h =1, .., hpas }, and

3. sk, k=1, .., kmax, are the (n — i — 2)-cells in the immediate boundary of
the (n —i—1)-cell pin T'y, S = {sr, k=1,.., kpaz }-
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Z, Z;

Figure 4.1: After the remove; (g, p,p’), 1-cell 1 appears two times in the
immediate boundary of the 2-cell p'.

After the remove; ;41(q, p, '), the (n—1i)-cell ¢ is contracted and the (n—i—1)-
cell p is merged into the (n —i — 1)-cell p’. A disjoint copy of the higher-
dimensional deleted cell (the (n — i)-cell ¢) is merged into each (n — i)-cell in
the immediate co-boundary of the lower-dimensional deleted cell (the (n—i—1)-
cell p) for each time the higher-dimensional deleted cell ¢ has the (n — i — 1)-
cell p in its immediate boundary. Each (n — i)-cell 7; in R that had the
(n—1i—1)-cell p in its immediate boundary (with the exception of the (n —i)-
cell ¢) has a copy of the (n — i — 1)-cell p’ in its immediate boundary with
the multiplicity increased by the product of the multiplicity of the (n —i — 1)-
cell p in the immediate boundary of the (n — i)-cell r; and the multiplicity
of the (n — i — 1)-cell p’ in the immediate boundary of the (n — 7)-cell ¢
(malt'(p', Or;) = mult(p', 0r;) + mult(p, Or;) - mult(p’, 0q)).

In 2D, there is just one remove; ;11 operator, the remove; 2(q, p,p’), where
q is a saddle, and p and p’ are maxima: it is the cancellation of a maximum p
and a saddle ¢, discussed in Section 2.2.4, and illustrated in Figure 2.8.

Another example is illustrated in Figure 4.1. Before the remove; 2(q, p, p'),
the 1-cell r{ appears once in the immediate boundary of the 2-cells p and p’
(mult(ry, Op) = mult(ry,0p’) = 1). After the remove; 5(q, p,p’), mult'(r1, 0p')
= mult(ry, 0p') + mult(ry, Op) - mult(q,0p') =1+1-1=2.

In 3D, there are two remove; ;41 operators: the remove;  of a 1-saddle and
a 2-saddle, and the removey s of a 2-saddle and a maximum. This latter is
the same as the cancellation of a maximum p and a 2-saddle ¢, discussed in
Section 2.2.4, and illustrated in Figure 2.9.

The removey 2(q, p,p’) in 3D is different from the cancellation of a 1-saddle
q and a 2-saddle p, since it requires that the 1-saddle ¢ is connected to exactly
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Figure 4.2: [26] A portion of a 3D descending Morse complex before (a) and
after (b) the remove; 2(q,p, p’).

two 2-saddles p and p/, i.e., that the 1-cell ¢ bounds exactly two 2-cells p and
p’ in the descending complex, and that the 1-cell ¢ appears exactly once in the
boundary of the 2-cell p. An example of the effect of the remove; 2(q, p,p’) on a
3D descending Morse complex is illustrated in Figure 4.2. After the remove; o,
in the simplified descending Morse complex I'/;, the 1-cell ¢ is deleted, and the
2-cell p is merged with the unique 2-cell p’ in the co-boundary of ¢ and different
from p. The boundary of p becomes part of the boundary of p'.

In the n-dimensional case, the remove,_1,(q,p,p’) is the same as the can-
cellation of an (n — 1)-saddle ¢ and a maximum p, while the remove; 41,
1 <14 < n—1,is a special case of the cancellation, since it requires that the i-
saddle is connected to exactly two (i+1)-saddles. Thus, the remove; ;11(q, p, p’)
is always a merging of two cells sharing one common cell in both the descending
and the ascending complex.

The remove; ;11(q, p, ) of the second type of an i-saddle ¢ and an (i + 1)-
saddle p transforms the set of integral lines converging to p or to ¢ into a set of
integral lines converging to critical points ¢ of index at least 7+ 2 that were the
destination of the integral lines originating at ¢ before the remove; ;+1(q, p, 0).
In the descending Morse complex I'y, the remove; ;410f the second type cannot
be viewed as the merging of two (i+1)-cells into one, but rather as the merging
of an (i +1)-cell (and an i-cell) into an empty cell, as it deletes the i-cell ¢ and
the (i + 1)-cell p in T',.

Definition 4 The remove; ;11(q,p, D) of the second type, 1 <i < n—1, on the
combinatorial (descending) complex Ty is feasible if the i-cell q is incident once
to exactly one (i+1)-cell p in Ty (mult(q,0p) = 1). It transforms the complex
I’y into the simplified complex ', by replacing the set {¢,p} URU Z U S =
{q,p} U C,, of cells in T'y with the set RUZ U S = Cy,, of cells in I');. The
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Figure 4.3: [26] A portion of a 3D descending complex before (a) and after (b)
the removes 2(q, p, ).

immediate boundary and co-boundary relation for the cells in 1", is the same as
the immediate boundary and co-boundary relation for the corresponding cells
in Iy, except that:

1. each instance of the (i+1)-cell p is removed from the immediate boundary
of each (i +2)-cell sy, in S, and from the immediate co-boundary of each
i-cell r; in R, and

2. each instance of the i-cell q is removed from the immediate co-boundary
of each (i — 1)-cell z, in Z.

Fach (i+42)-cell s, € S in 1", is equal to the (i+2)-cell s in Ty plus a disjoint
copy of the i-cell ¢ and the (i+1)-cell p. Other cells in I, are the same as the
corresponding cells in T'y.

Dually, on the ascending complex 'y, the remove; ;11(q, p, 0) deletes the (n—i)-
cell ¢ and the (n —i — 1)-cell p.

A 3D example of the effect of the removes o(q, p, ) is illustrated in Figure
4.3. The 1-cell q is incident once to exactly one 2-cell p. The 3-cell s is the
only 3-cell in the co-boundary of the 2-cell p. After the remove; ;+1(q, p,p’), the
cells ¢ and p are deleted. The 2-cell p is deleted from the immediate boundary
of the 3-cell s and from the immediate co-boundary of the 1-cells r; and ry,
and the 1-cell ¢ is deleted from the immediate co-boundary of the O-cells z;
and zs.

The remove; ;41(q, p,p’) operator is a generalization of the removal;(q, p, p’)
operator, which is defined in the same way as the remove; ;+1(q, p,p’) with an
additional constraint that the i-cell ¢ appears exactly once in the boundary of
both the (7 + 1)-cell p and the (i + 1)-cell p’ (mult(q, Op) = mult(q,0p’) = 1).
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The (combinatorial) effect of the removal;(q,p,p’) operator on the combi-
natorial descending Morse complex I'y is exactly the same as the effect of
the remove; ;11(q, p,p’) operator, except that mult'(r;, dp’) = mult(r;, 0p') +
mult(r;, Op) (since mult(q,0p’) = 1). The (geometrical) effect of the removal;
(q,p, ") operator on the combinatorial descending Morse complex I, is exactly
the same as the effect of the remove; ;11(q, p, p’) operator, except that (one copy
of) the (i + 1)-cell p is merged in the (i + 1)-cell p’ (since mult(q, dp') = 1).
The removal;(q, p, ) operator is the same as the remove; ;11(q, p, ) operator
(see [26]).

4.1.2 Operator remove; ;_

Intuitively, the remove; ;_; operator collapses two (i — 1)-saddles by deleting
the i-saddle connected to both of them. It is feasible if the i-saddle has a
correct neighborhood structure through integral lines.

Definition 5 Let p and q be an (i — 1)-saddle and an i-saddle respectively,
1<i<n-—1, such that

- the i-saddle q is connected through an integral line (a separatriz) to the
(1 — 1)-saddle p, and exactly one (i — 1)-saddle p" different from p, and

- there is a unique integral line connecting the i-saddle q to the (i — 1)-
saddle p.

Then, the cancellation of p and q is called the remove; ;1 (of the first type) of
the i-saddle q and the (i—1)-saddle p, and it is denoted as remove; ;_1(q,p,p’).

Definition 6 Let p and q be an (i — 1)-saddle and an i-saddle respectively,
1<i<n-—1, such that

- the i-saddle q is connected through an integral line (a separatrix) to ex-
actly one (i — 1)-saddle p, and

- there is a unique integral line connecting the i-saddle q to the (i — 1)-
saddle p.

Then, the cancellation of p and q is called the remove; 1 (of the second type)
of the i-saddle q and the (i — 1)-saddle p, denoted as remove;;—1(q,p, D).
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The effect of the remove; ;—1(q,p,p’) of the first type of the i-saddle ¢ and
the (i — 1)-saddle p is as follows. The set of integral lines originating at p
or ¢ is transformed into a set of integral lines originating at p’ (the unique
(i — 1)-saddle different from the (i — 1)-saddle p, connected to the i-saddle gq).
Each critical point that was the destination of an integral line originating at p
or at ¢ becomes the destination of an integral line originating at p'.

The effect of the remove;;—1(q,p,p’) on the geometry of the cells in the
descending complex I'y is the same as the effect of the remove,_;,—i+1 on
the ascending complex I',: the i-cell ¢ in 'y is deleted and the (i — 1)-cell p is
merged into the (i—1)-cell p’. A disjoint copy of the higher-dimensional deleted
cell (the i-cell ¢) is merged into each i-cell in the immediate co-boundary of the
lower-dimensional deleted cell (the (i — 1)-cell p) for each time the (i — 1)-cell
p’ appears in the boundary of the i-cell ¢. More formally, each (i + 1)-cell r in
the co-boundary of the lower-dimensional deleted cell (the i-cell p) is merged
with & disjoint copies of the higher-dimensional deleted cell (the (i + 1)-cell q),
where k is the multiplicity of the lower-dimensional deleted cell (the i-cell p)
in the immediate boundary of the (i 4+ 1)-cell r (the number of times the i-cell
q appears in the immediate boundary of the (i + 1)-cell r, i.e., mult(q,0r)).

The combinatorial effect of the operator is that the immediate co-boundary
of the i-cell p is merged in the immediate co-boundary of the i-cell p’ with the
appropriate adjustment of the multiplicities. We denote as mult the mul-
tiplicities before the remove;;_1, and as mult’ the multiplicities after the
remove;;—1. BEach (i + 1)-cell r that was in the immediate co-boundary of
the i-cell p (with the exception of the (i 4+ 1)-cell ¢) with the multiplicity
mult(p,0r) belongs to the immediate co-boundary of the i-cell p' after the
remove; ;—1(q, p,p') with the multiplicity increased by the product of the mul-
tiplicity of the (i + 1)-cell r in the immediate co-boundary of the i-cell p and
the multiplicity of the (i + 1)-cell ¢ in the immediate co-boundary of the i-cell
P (mult' (p', 0r) = mult(p', Or) + mult(p, Or) - mult(p', 0q)).

We introduce the following notation for the cells in the combinatorial com-
plex Iy (before the remove;;_1(q, p,p’) of the i-cell ¢ and the (i — 1)-cell p):

1. 75, j =1,.., jmaz, are the i-cells (different from the i-cell ¢) in the imme-
diate co-boundary of the (i — 1)-cell pin I'y, R ={rj,7 =1, .., jmaz }

2. zp, h =1, .., hypas, are the (i 4+ 1)-cells in the immediate co-boundary of
the i-cell ¢ in Ty, Z = {2z, h =1, .., hypas }, and
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3. sk, k=1, .., kmax, are the (i — 2)-cells in the immediate boundary of the
(t—1)-cell pin Ty, S = {sp, k=1,.., knaz}-

We denote as C,, the set of all the cells in the immediate boundary and the
immediate co-boundary of the cancelled cells ¢ and p (C,, = {p'}URUZUS).

Definition 7 The remove;;—1(q,p,p’) of the first type, 1 < i < n —1, on
a (descending) combinatorial complex Uy is feasible if the i-cell q appears in
the co-boundary of exactly two different (i — 1)-cells p and p’, and it appears
exactly once in the co-boundary of the i-cell p (mult(p,0q) = 1). It replaces
the set {q,p} U{p'} URUZUS = {q,p} UC,, of cells in I'y with the set
{PYURUZUS =C,,, producing the simplified complex I');. The immediate
boundary and co-boundary relations for the cells in the simplified complex I,
are the same as the immediate boundary and co-boundary relations for the
corresponding cells in Iy, except that:

1. each instance of the (i — 1)-cell p is removed from the immediate co-
boundary of each (i — 2)-cell sy in S, and from the immediate boundary
of each i-cell vj in R,

2. each instance of the i-cell q is removed from the immediate boundary of
each (i+1)-cell z, in Z, and from the immediate co-boundary of the new
(1 —1)-cell p', and

3. each wnstance of each i-cell v; in R is added k times to the immediate
co-boundary of the new (i —1)-cell p’, where k is the multiplicity of the i-
cell g in the immediate co-boundary of the (i —1)-cell p’ (mult'(p',0r;) =
mult(p', Or;) + mult(p, Or;) - mult(p', 0q) ).

Eachi-cellr; € R in 1"} is the union of the i-cellr; in Iy (before the remove; ;4
(q,p,p")) and a disjoint copy of the i-cell q¢ (and the (i — 1)-cell p) for each
time the (1 — 1)-cell p' appears on the boundary of the i-cell q. Other cells in
I, are the same as the corresponding cells in I'y.

The effect of the remove;;—1(q,p,p’) on the ascending combinatorial com-
plex I'y is the same as the effect of the remove,_;,_1+1 on the descending
complex T'y.

In 2D, there is just one remove; ;_; operator (the remove; o(q,p,p’)), where
q is a saddle, and p and p’ are minima. It is the same as the cancellation of



52

/N
() o)

Figure 4.4: [26] A portion of the 2D descending (a) and ascending (b) Morse
complex before and after the remove; 2(q, p,p’).

’p,

Figure 4.5: [26] A portion of a 3D descending Morse complex before and after
the remove; o(q,p,p’). The co-boundary of the O-cell p is merged into the
co-boundary of the 0-cell p'.

the minimum p and the saddle ¢, discussed in Section 2.2.4. An example of
the effect of the remove; o(q,p,p") on the 2D descending Morse complex is
illustrated in Figure 4.4 (a). It merges the co-boundary of the 0-cell p into the
co-boundary of the 0-cell p’. The same operator merges the boundary of the
2-cell p into the boundary of the 2-cell p’ in the dual ascending Morse complex,
as shown in Figure 4.4 (b).

In 3D, there are two remove;,;—; operators: the remove;o of a l-saddle
and a minimum, and the removey; of a 2-saddle and a 1-saddle. The former
is the same as the cancellation of a minimum and a 1-saddle. An example
of the effect of the remove; o(q,p,p’) on the 3D descending Morse complex
is illustrated in Figure 4.5. It eliminates the 1-cell ¢ and the O-cell p. All
cells in the co-boundary of p become part of the co-boundary of p’ after the
removey o(q, p,p’).

The removes (g, p,p") in 3D is a special case of the cancellation with the
constraint that the 2-saddle ¢ is connected to exactly two 1-saddles p and p/,
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Figure 4.6: [26] (a) A portion of the 3D descending Morse complex before and
after the removes;(q,p,p’). The co-boundary of the 1-cell p, consisting of
the 2-cells r; and 79, is merged into the co-boundary of the 1-cell p’. (b) A
portion of the corresponding 3D ascending Morse complex before and after the
removes1(q,p,p’). The boundary of the 2-cell p, consisting of the 1-cells 7
and 75, is merged into the boundary of the 2-cell p'.

i.e., that the 2-cell ¢ is bounded by exactly two 1-cells p and p’ in the descending
complex, and that the 1-cell p appears exactly once in the boundary of the 2-
cell g. An example of the effect of the removes 1 (g, p,p’) on the 3D descending
and ascending Morse complexes is illustrated in Figure 4.6 (a) and (b). In the
descending complex I'y it merges the 1-cell p into the 1-cell p’ eliminating the
2-cell g. All cells in the co-boundary of p different from ¢ (such as the 2-cells r;
and r3), become part of the co-boundary of the 1-cell p’. In the dual ascending
complex, the boundary of the 2-cell p (containing the 1-cells 1 and ry different
from the 1-cell ¢), is merged into the boundary of the 2-cell p'.

In the n-dimensional case, the remove; o(¢, p, p') is the same as the cancella-
tion of a 1-saddle and a minimum, while the remove; ;_1(¢,p,p’), 1 <i <n—1,
is a special case of the cancellation, since it requires that the i-saddle is con-
nected to exactly two (i — 1)-saddles. The remove;;—1(q,p,p’) is always a
collapse of two (i — 1) cells in the descending complex, and a merge of two
(n — i+ 1)-cells in the ascending complex.

The remove;;—1(q, p, D) of the second type of an i-saddle ¢ and an (i — 1)-
saddle p transforms the set of integral lines originating at p or at ¢ into a
set of integral lines originating at the critical points r of index at most 7 — 2
that were the origin of the integral lines converging to ¢. It is dual to the
remove,_in—i+1(q, p,0) of the second type. In the descending Morse complex
4, the remove; ;_1(q, p, D) deletes the i-cell ¢ and the (i — 1)-cell p, and in the
ascending Morse complex I, it deletes the (n—1)-cell ¢ and the (n—i+1)-cell
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Definition 8 The remove;;—1(q,p,0) of the second type, 1 < i <n —1, on
the combinatorial (descending) complex Ty is feasible if the i-cell q is incident
once to exactly one (i — 1)-cell p in T'y (mult(p,0q) = 1). It transforms the
complex Ty into the simplified complex T, by replacing the set {q,p} U R U
ZUS ={q,ptUC,, of cells in I'y with the set RUZUS = C,, inIl,. The
immediate boundary and co-boundary relation for the cells in 1", is the same as
the immediate boundary and co-boundary relation for the corresponding cells
in Iy, except that:

1. each instance of the (i — 1)-cell p is removed from the immediate co-
boundary of each (i — 2)-cell sy in S, and from the immediate boundary
of each i-cell v; in R, and

2. each instance of the i-cell q is removed from the immediate boundary of
each (i + 1)-cell z, in Z.

Each (i+1)-cell z,, € Z in T, is equal to the (i+1)-cell z, in Ty plus a disjoint
copy of the i-cell ¢ and the (i —1)-cell p. Other cells in ', are the same as the
corresponding cells in T'y.

Dually, on the ascending complex I',, the remove; ;—1(q, p, 0) deletes the (n—1i)-
cell ¢ and the (n — i+ 1)-cell p.

The remove; ;—1(q, p,p’) operator is a generalization of the contraction;(q, p,
p') operator, which is defined in the same way as the remove;;—1(q,p,p)
with an additional constraint that the ¢-cell ¢ appears exactly once in the
co-boundary of both the (i — 1)-cell p and the (i — 1)-cell p' (mult(p,0q) =
mult(p’,0q) = 1). The (combinatorial) effect of the contraction;(q,p,p’) op-
erator on the combinatorial descending Morse complex I'; is exactly the same
as the effect of the remove;;_1(q,p,p’) operator, except that mult'(p’, 0r;) =
mult(p', Or;) + mult(p, Or;) (since mult(p’,0q) = 1). The (geometrical) effect
of the contraction;(q,p,p’) operator on the combinatorial descending Morse
complex I'y is exactly the same as the effect of the remove;,;_1(q, p,p’) oper-
ator, except that (one copy of) the i-cell ¢ is merged in each i-cell r; (since
mult(p’,dq) = 1). The contraction;(q,p, () operator is the same as the remo-
ve; i1 (q,p, D) operator (see [26]).
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Figure 4.7: [26] A 2D (a) and a 3D (b) example of the remove; o(q,p,p’),
which is not allowed as 1t Would ehmlnate the only 1-cell ¢ from the immediate
boundary of the (bubble-like) 2-cell r.

4.1.3 Operator remove on Admissible Morse Complexes

The result of the remove; ;41 or the remove;;_; may be a complex, which
is not an admissible Morse complex, as stated in Section 2.2.3 (a complex
in which each cell has a non-empty immediate boundary and a non-empty
immediate co-boundary). We allow the remove;;+1(q,p,p’) of the first type,
or a remove; ;i1+1(q,p, ) of the second type, 1 <i <n — 1, on a combinatorial
complex I'y only if

1. each (i + 2)-cell s; in S in the immediate co-boundary of the (i 4 1)-cell
pin Iy has an (i 4 1)-cell different from p in its immediate boundary,

2. each (i — 1)-cell z; in Z in the immediate boundary of the i-cell ¢ in Ty
has an i-cell different from ¢ in its immediate co-boundary, and

3. (only for a remove; ;41 of the first type) p or p’ have an i-cell different
from the i-cell ¢ in the immediate boundary,

4. (only for a remove; ;1 of the second type) each i-cell r; in R in the
boundary of the (i + 1)-cell p in T’y has an (i + 1)-cell different from p in
its immediate co-boundary.

The conditions for the remove;;_; are dual.

In Figures 4.7 (a) in 2D, and 4.7 (b) in 3D, we give examples of the
removey o(q, p,p’), which is not allowed as it eliminates the only 1-cell ¢ in
the immediate boundary of the 2-cell r.

In 3D, we consider the feasibility of the operators remove; o, removes,
remove; o and removegs. The remove; o, which deletes a 1-cell ¢ and a 2-cell
p is feasible on the admissible Morse complex I' if all the 2-cells bounded by
the 1-cell ¢ have at least one other 1-cell different from ¢ in their immediate
boundary. The removes;, which eliminates the 1-cell ¢ and the 2-cell p, is
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Figure 4.8: The 1-cell (loop-edge) bounds two 2-cells, which have no other
I-cell in their immediate boundary. The remove; 2(q,p,p’) would leave the
2-cell p’ with no 1-cell in its immediate boundary (a). Dually, the two 1-cells p
and 7 in the immediate boundary of the shaded 2-cell ¢ are in the immediate
boundary of no other 2-cell different from the 2-cell g. The remove(q,p, )
would leave a dangling 1-cell (the 1-cell which is not in the immediate boundary
of any 2-cell) (b). The only 1-cell ¢ in the immediate boundary of the 2-cell
has two 1-cells p and p’ in its immediate boundary. The remove; o(q, p,p’)
would leave the 2-cell without a 1-cell in its immediate boundary (c). Dually,
the 1-cell is in the immediate boundary of only one 2-cell, which separates two
distinct 3-cells. The removey 3 would leave a dangling 1-cell (d).

feasible on the admissible Morse complex I' if all the 1-cells in the immediate
boundary of the 2-cell ¢ are in the immediate boundary of at least one other
2-cell different from ¢. These situations are illustrated in Figure 4.8 (a) and

(b).

The remove; o deletes a 1-cell ¢ and a O-cell p. It is feasible if there is no
2-cell 7 such that the 1-cell ¢ is the only 1-cell in the immediate boundary of
the 2-cell r. Dually, the removes 3 deletes a 2-cell ¢ and a 3-cell p. It is feasible
if there is no 1-cell r such that r is in the immediate boundary of no other
2-cell but ¢q. These situations are illustrated in Figure 4.8 (c) and (d).
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Figure 4.9: [26] A part of the 3D descending Morse complex before (a) and after
(b) the cancellation of the 1-saddle with function value 5 and the 2-saddle with
function value 10. The cells are labeled with the values of the scalar function f
at the corresponding critical points. After the cancellation, the 1-cell labeled
9 becomes incident to the 2-cell labeled 6, and thus such cancellation is not
feasible as regards the function values, although it is feasible as regards the
connectivity of cells (the 1-cell labeled 5 appears exactly once in the immediate
boundary of the 2-cell labeled 10, i.e., the multiplicity of the 1-cell labeled 5
in the immediate boundary of the 2-cell labeled 10 is equal to 1).

4.1.4 Feasibility of Simplification Operators as Regards
the Scalar Field

Let us recall that if a cell p is in the boundary of a cell ¢ in the descending
Morse complex I'; of a Morse function f, then for the corresponding critical
points p and ¢, f(p) < f(q) (see Section 2.2.2). For the simplification removal
operator we have defined, the consistency of the simplified complex I, from
the point of view of function values can be guaranteed. For a (topologically)
feasible remowal; operator, from the two possible operators with middle cell g,
removal;(q,p,p’) and removal;(q,p’, p), the first is performed if f(p) < f(p'),
and the second is performed if f(p) > f(p'). In the first case, all the i-cells
t that were in the immediate boundary of the (i + 1)-cell p in 'y (before the
removal;), and that are in the immediate boundary of the (i + 1)-cell p’ in I,
(after the removal;), have a lower function value than p’, i.e., f(t) < f(p'),
and symmetrically for the second case.

The conditions for the contraction are dual: for the (topologically) feasible
contraction;, from the two possible operators with middle cell g, contraction;
(¢, p,p") and contraction;(q,p’, p), we choose to perform the first one if f(p) >
f(p'), and the second one if f(p) < f(p'). For the removal or the contraction
of the second type, the consistency from the point of view of the function
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values is trivially satisfied.

Such a guarantee for a cancellation (or a remove) cannot be given in gen-
eral. In the example illustrated in Figure 4.9, the cancellation of the 1-saddle
with the function value 5 and the 2-saddle with the function value 10 is topo-
logically consistent, as the corresponding 1-cell labeled 5 appears exactly once
in the immediate boundary of the 2-cell labeled 10 in the descending complex
['y. Nevertheless, this cancellation is not feasible, since it would make the
1-cell with function value 9 incident to the 2-cell with function value 6, and
the descending complex obtained after such cancellation would not satisfy the
condition stated in Section 2.2.2.

4.2 Refinement Operator insert

One of the aims of Morse theory is to relate the homotopy type of a manifold
M to that of a cell complex with an n-cell for each i-saddle of a scalar function
f defined over M. The cancellation operator decreases the number of critical
points of f and provides a representation of the homotopy type of M through
a cell complex with fewer cells. In Morse theory, an inverse operator of the
cancellation in arbitrary dimensions has not been defined. Only in the two-
dimensional case the inverse anticancellation operators of the cancellation of
a minimum and a saddle and of a maximum and a saddle have been defined
in [15].

In [26], we have defined two dimension independent refinement operators,
that we have called insertion and expansion, inverse to the corresponding sim-
plification operators, removal and contraction, respectively. In [32], we have
defined a generalization of these refinement operators, the operator insert,
inverse to the simplification operator remove. A refinement undoes the cor-
responding simplification by restoring the canceled cells and their immediate
boundary and co-boundary in the combinatorial Morse complexes. The refine-
ment ¢nsert operator has two instances, insert; ;41 and insert; ;_;, inverse to
the corresponding instances remove; ;41 and remove; ;_; of the simplification
operator remove. The two instances of the refinement operator are dual to
each other, just like the two instances of the simplification operator.
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4.2.1 Operator insert; ;1

Intuitively, an insert; ;11 operator (of the first type) introduces two new cells
of consecutive dimensions into Morse complexes by splitting one existing cell.
It introduces an i-cell ¢ and an (i + 1)-cell p in the descending Morse complex,
and an (n—1)-cell ¢ and an (n—i—1)-cell p in the ascending complex. Namely,

1. in the descending complex I'y, the i-cell ¢ is inserted into the interior of
an existing (i 1)-cell p/, splitting the (i+1)-cell p’ into the (i+1)-cells p
and p’, and splitting the immediate boundary of the (i + 1)-cell p’ in the
immediate boundaries of the new (i 4 1)-cells p and p’. The new i-cell g
separates the (i + 1)-cells p and p'.

2. in the ascending complex I',, the (n — 1)-cell ¢ is expanded from an
existing (n—i—1)-cell p/; splitting the (n—i—1)-cell p’ into the (n—i—1)-
cells p and p’, and splitting the immediate co-boundary of the (n—i—1)-
cell p' in the immediate co-boundaries of the new (n —i — 1)-cells p and
p'. The new (n — i)-cell ¢ is bounded by the (n — i — 1)-cells p and p'.

The refinement is an undo operator of the corresponding simplification.
It replaces one set of cells with another set of cells in the two dual Morse
complexes, which are connected in the same way as they were connected before
the corresponding simplification. It is specified by the cells in the immediate
boundary and in the immediate co-boundary of the introduced cells, and by
the multiplicities of these cells in the corresponding immediate boundaries and
co-boundaries in the refined complex I',.

Let us consider the remove; +1(q,p,p’) of the first type. We recall the
following notation:

L. 7j, 7 =1, .., jmas, are the i-cells (different from the i-cell ¢) in the imme-
diate boundary of the (i 4 1)-cell p before the remove; 41, R = {r;,j =
17 9y jmax}?

2. zp, h =1, .., hypas, are the (i — 1)-cells in the immediate boundary of the
i-cell ¢ before the remove; 11, Z = {zn,h =1, .., hypas }, and

3. sk, k =1, .., kmas, are the (i + 2)-cells in the immediate co-boundary of
the (i + 1)-cell p before the remove; ;i11, S = {sk. k =1, .., kmaa }-
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We have denoted as C,,, the set of cells in the immediate boundary and in the
immediate co-boundary of the cancelled cells ¢ and p, i.e., C;, = {p'} URU
ZUS.

Before performing the refinement, we need to ensure that the situation
around the two introduced cells p and ¢ is the same as it was at the time of
simplification, i.e., that: all the cells that were in the immediate boundary
and in the immediate co-boundary of p and ¢ at the time of the simplification
are present in the complex at the time of the refinement; that the multiplicity
mult(r;, 0p') of each i-cell r; in R in the immediate boundary of the (i+1)-cell
p’ in the complex I'y is greater than or equal to the product of the multiplicity
mult'(r;,0p) of the i-cell r; in the immediate boundary of the new (i+1)-cell p
and the multiplicity mult'(q, dp') of the new i-cell ¢ in the immediate boundary
of the (i 4+ 1)-cell p’ in the refined complex I". We have denoted as mult the
multiplicities in the complex I', and as mult’ the multiplicities in the refined
complex I".

Definition 9 The refinement operator insert;11(¢,p,p’), 1 < i < n —1,
inverse to the simplification operator remove; ;+1(q,p,p'), is specified by the
(i+1)-cellp’, thei-cellsr; € R, the (i—1)-cells z, € Z and the (i42)-cells s, €
S, together with the corresponding multiplicities mult(q, 0p'), mult(r;, Op),
mult(zn, 0q) and mult(p,dsy). It is feasible on the (descending) combinatorial
complex Iy if the (i +1)-cell p/, the i-cells rj € R, the (i —1)-cells z, € Z and
the (i4-2)-cells s, € S are in 'y and mult(r;, Op") > mult'(r;, Op)-mult'(q, Op').

The operator replaces the set of cells {p'} URU Z U S = Cy,, in I'y with
the set {q¢,p} U{p'}URUZUS = {q,p} UC,, in the refined complex I'),. The
immediate boundary and co-boundary relation for the cells in 1"} is the same as
the immediate boundary and co-boundary relation for the corresponding cells
i Iy, except that:

1. the immediate boundary of the (i+1)-cell p in 1", consists of the i-cells r;
in R and the i-cell q, with the corresponding multiplicities mult'(r;, Op)
and mult'(q, Op) = 1, respectively,

2. the immediate boundary of the i-cell q in ') consists of the (i — 1)-cells
zp in Z, with the corresponding multiplicities mult'(z,, 0q),

3. the immediate boundary of the new (i 4+ 1)-cell p’ in ', consists of the
same cells as its boundary in 'y plus the i-cell ¢ with the multiplic-
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ity mult'(q,0p") and with mult'(r;,0p’) = mult(r;, 0p') — mult'(r;,0p) -
mult'(q,0p') for the i-cells r; in R,

4. the immediate co-boundary of the (i + 1)-cell p in I'), consists of the
(1 + 2)-cells sy, in S, with the corresponding multiplicities mult'(p, Osy,),

the immediate co-boundary of the i-cell q in I, consists of the (i + 1)-
cells p and p', with the corresponding multiplicities mult'(q, Op) = 1 and
mult'(q,0p’), respectively, and

O

6. the immediate co-boundary of the new (i+1)-cell p’ in 1", is the same as
the immediate co-boundary of the (i + 1)-cell p’ in I'q (before insert).

The cells p and q are the same as they were before the corresponding remove; ;41
(¢,p,p'). The new (i + 1)-cell p' in I, is the same as the (i + 1)-cell p' in Ty
minus mult(q, 0p') disjoint copies of the (i+1)-cell p (and the i-cell q). Other
cells in 1", are the same as in I'y.

Dually, in the ascending complex Iy, the (n — 7)-cell ¢ and the (n —i — 1)-cell
p are restored as they were before the remove; ;11(q, p, p’).

An example of the insert; 2(q, p,p’) on the 2D descending complex is illus-
trated in Figure 4.10. It is specified by the new 2-cell p and the new 1-cell ¢,
the 2-cell p’ that will be split, the 1-cell r; in the immediate boundary of the
2-cell p’ before insert, which is in the immediate boundary of the 2-cell p after
the insert, and the O-cells z; and z, which are in the immediate boundary of
the new 1-cell ¢ after the insert. All the multiplicities are equal to 1. There
are no cells s, in the co-boundary of the 2-cell p.

In 3D, there are two insert; ;11 operators: insert; o of a 1-saddle and a 2-
saddle, and inserts 3 of a 2-saddle and a maximum. Figure 4.11 shows the effect
of the insert; 2(q,p,p’) on the 3D descending Morse complex. It is specified
by the new cells p and ¢, the existing 2-cell p/, the 1-cells rq, r9 and r3 in the
immediate boundary of the 2-cell p, the O-cells z; and z; in the immediate
boundary of the 1-cell ¢, the 3-cells s; and s, in the immediate co-boundary
of the 2-cell p after the insert and the corresponding multiplicities that are all
equal to 1.

Figure 4.12 (a) shows the effect of the inserts (¢, p,p’) on the 3D descend-
ing Morse complex. It is specified by the new cells ¢ and p, the 3-cell p’ to be
split, the 2-cells rq, 79, r3, 74 and r5 in the immediate boundary of the 3-cell
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Figure 4.10: [26] An example of the insert; »(q,p,p’) on a portion of the 2D
descending Morse complex I'y. It is specified by the cells p, g and p/, the 1-cell
r1 in the immediate boundary of the 2-cell p, and the 0-cells z; and 25 in the
immediate boundary of the 1-cell ¢, and the corresponding multiplicities that
are all equal to 1.
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Figure 4.11: [26] An example of the insert; (¢, p,p’) on a portion of the de-
scending Morse complex I'y in 3D. It is specified by the cells p, ¢ and p’, the
1-cells r1, 79 and r3 in the immediate boundary of the 2-cell p, the 0O-cells z;
and 2z in the immediate boundary of the 1-cell ¢, and the 3-cells s; and ss in
the immediate co-boundary of the 2-cell p. All the multiplicities are equal to
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Figure 4.12: [26] (a) An example of the insertss(q,p,p’) on a portion of the
3D descending Morse complex I'y. It is specified by the cells ¢, p, and p/,
the cells in the immediate boundary and in the immediate co-boundary of the
introduced cells p and ¢ and the corresponding multiplicities. (b) An example
of the insert; »(q, p, ) on a portion of the 3D descending Morse complex I'y.
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p, and the 1-cells z1, 2o, 23 and z4 in the immediate boundary of the 2-cell q.
All the corresponding multiplicities are equal to 1.

The insert; ;11(q, p, 0) of the second type is inverse to the remove; ;11(q, p, 0)
of the second type. It cannot be viewed as a split of an existing (i + 1)-cell into
two. It introduces the i-cell ¢ and the (i + 1)-cell p in the descending complex,
and the (n —i)-cell ¢ and the (n — i — 1)-cell p in the ascending complex. In
both complexes, it is specified by exactly the same cells (with the correspond-
ing multiplicities) as the insert; ;1 of the first type, with the exception of the
(i 4+ 1)-cell p’ in 'y and the (n — i — 1)-cell p’ in T',.

Definition 10 The refinement operator insert;;+1(¢,p,0), 1 < i < n —1,
inverse to the simplification operator remove; ;11(q,p, ), is specified by the i-
cells r; € R, the (i — 1)-cells z, € Z and the (i + 2)-cells s, € S, and the
multiplicities mult(r;, Op), mult(zy, 0q) and mult(p, Osy). It is feasible on the
(descending) combinatorial complex Ty if the i-cellsr; € R, the (i—1)-cells zj, €
Z and the (i + 2)-cells s, € S are in I'y. The operator transforms the complex
Iy into the refined complex I') by replacing the set of cells RUZUS = C,, in Ty
with the set {q,p}URUZUS = {q,p}UC,, inI",. The immediate boundary and
co-boundary relation for the cells in '), is the same as the immediate boundary
and co-boundary relation for the corresponding cells in Iy, except that:

1. the immediate boundary of the (i + 1)-cell p in T, consists of the i-
cells r; in R and the i-cell q, with the multiplicities mult'(r;,0p) and
mult'(q,0p) = 1, respectively,

2. the immediate boundary of the i-cell q in I"; consists of the (i — 1)-cells
zp in Z, with the multiplicities mult'(zy,, 0q),

3. the immediate co-boundary of the (i + 1)-cell p in I, consists of the
(i + 2)-cells sy, in S, with the multiplicities mult' (p, dsy) and

4. the immediate co-boundary of the i-cell q in I') consists of the (i+1)-cell
p with the multiplicity mult'(q,0p) = 1.

The two inserted cells, the (i + 1)-cell p and the i-cell ¢ in I, are the same as
they were before the corresponding remove; ;i11(q,p,0). Each (i+2)-cell sy € S
in I, is equal to the (i+2)-cell sy in 'y minus a disjoint copy of the (i+1)-cell
p and the i-cell q. Other cells in I"; are the same as in I'y.
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The operator insert; ;+1(q,p,0) is defined in a dual manner on the ascending
complex T',.

In Figure 4.12 (b), an example of the insert; ;11(q, p,?) on the 3D descend-
ing complex is illustrated. It is specified by the 1-cell ¢ and the 2-cell p, the
1-cells r; and ro in the immediate boundary of the 2-cell p, the 0-cells z; and
z5 in the immediate boundary of the 1-cell ¢, and the 3-cell s in the immediate
co-boundary of the 2-cell p. All the corresponding multiplicities are equal to
1.

4.2.2 Operator insert;

The operator insert;;—; (of the first type), dual to the operator insert; ;i
and inverse to the operator remove;;_1, splits an existing (i — 1)-cell in I'y by
expanding a new ¢-cell, which splits its immediate co-boundary, and creates a
new (i — 1)-cell. The operator insert;;—1(q,p,p’) introduces the i-cell ¢ and
the (i — 1)-cell p in the descending Morse complex I'y, and the (n — i)-cell ¢
and the (n — i+ 1)-cell p in the ascending complex I',. Namely,

1. in the descending complex I'y, the i-cell ¢ is expanded from the existing
(1 — 1)-cell p/, splitting the (¢ — 1)-cell p’ into two (i — 1)-cells p and p'.
The new i-cell ¢ is bounded by the (i — 1)-cells p and p'.

2. in the ascending complex I'y, the (n—i)-cell ¢ is inserted into the interior
of the existing (n — i + 1)-cell p/, splitting the (n — ¢+ 1)-cell p’ into the
(n—i+1)-cells p and p’. The new (n—i)-cell g separates the (n—i+1)-cells
p and p'.

The operator is specified by the cells in the immediate boundary and in the
immediate co-boundary of the introduced cells, and by the multiplicities of
these cells in the corresponding immediate boundaries and co-boundaries in
the refined complex I,.

Let us consider the remove;;_1(q,p,p’) of the first type. We recall the
following notation:

L. 7, 7 = 1, .., jmas, are the i-cells (different from the i-cell ¢) in the im-
mediate co-boundary of the (i — 1)-cell p before the remove;;—1, R =

{rjuj = 17 ”7jmam}7

2. zp, h =1, .., hypas, are the (i 4+ 1)-cells in the immediate co-boundary of
the i-cell ¢ before the remove;;—1, Z = {zp,h = 1, .., hypas }, and
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3. sk, k=1, .., kmax, are the (i — 2)-cells in the immediate boundary of the
(i — 1)-cell p before the remove; ;—1, S = {sk,k =1, .., kmaz }-

We have denoted as C,,, the set of the cells in the immediate boundary and
in the immediate co-boundary of the canceled cells ¢ and p, i.e., C,, = {p'} U
RUZUS.

Before performing the refinement, we need to ensure that the situation
around the two introduced cells p and ¢ is the same as it was at the time of
simplification, i.e., that: all the cells that were in the immediate boundary
and in the immediate co-boundary of p and ¢ at the time of the simplification
are present in the complex at the time of the refinement; that the multiplicity
mult(p', Or;) of the (i —1)-cell p’ in the immediate boundary of each i-cell r; in
R in the complex I'; is greater than or equal to the product of the multiplicity
mult'(p, Or;) of the new (i — 1)-cell p in the immediate boundary of the i-cell
r; and the multiplicity mult'(p’, 0q) of the (i — 1)-cell p’ in the immediate
boundary of the new i-cell ¢ in the refined complex I". We have denoted as
mult the multiplicities in the complex I', and as mult’ the multiplicities in the
refined complex I".

Definition 11 The refinement operator insert;;—1(q,p,p’), 1 < i < n —1,
inverse to the simplification operator remove;;—1(q,p,p'), is specified by the
(¢ —1)-cell ', the i-cells r; € R, the (i + 1)-cells z, € Z and the (i — 2)-cells
sk € S, and the multiplicities mult(p, Or;), mult(q, 0z,) and mult(p’,dq). It
is feasible on the (descending) combinatorial complex Ty if the (i — 1)-cell p/,
the i-cells r; € R, the (i + 1)-cells z;, € Z and the (i — 2)-cells s, € S are in
I'q and mult(p’, Or;) > mult' (p, Or;) - mult(p', 0q).

The operator transforms the complex I'q into a refined complex I'); by replac-
ing the set {p'URUZUS = C,,, of cells in 'y with the set {p, q,p' VURUZUS =
{¢,p} U Cy, in T, so that

1. the immediate co-boundary of the (i—1)-cell p in I"; consists of the i-cells
r; in R and the i-cell q, with the given multiplicities mult' (p,0r;) and
mult'(p,0q) = 1,

2. the immediate co-boundary of the i-cell g in I, consists of the (i+1)-cells
zp in Z, with the given multiplicities mult'(q, 0zy),

3. the immediate co-boundary of the new (i —1)-cell p" in I"; consists of the
same i-cells as its co-boundary in 'y plus the i-cell g with the given mul-
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Figure 4.13: [26] A portion of the 2D descending Morse complex I'; before (a)
and after (b) the insertio(q,p,p’).

tiplicity mult'(p', 0q), and mult'(p/, Or;) = mult(p’, Or;) — mult'(p, Or;) -
mult'(p', 0q) for the i-cells r; in R,

4. the immediate boundary of the (i — 1)-cell p in I; consists of the (i — 2)-
cells si in S, with the given multiplicities mult(sy, Op),

5. the immediate boundary of the i-cell q in I, consists of the (i — 1)-cells
p and p', with the given multiplicities mult'(p,0q) = 1 and mult'(p’, dq),
respectively, and

6. the immediate boundary of the new (i —1)-cell p’ in I, is the same as the
immediate boundary of the (i — 1)-cell p’ in Ty (before the insert;; 1).

The two introduced cells, the (i — 1)-cell p and the i-cell q, are the same after
the insert;;—1(q,p,p’) as they were before the remove; ;—1(q,p,p"). Each i-cell
r; in Iy is equal to the i-cell r; in I'q minus mult(p, Or;) disjoint copies of the
i-cell ¢ (and the (i — 1)-cell p). Other cells in I', are the same as they were in
Iy

In the ascending complex I',, the (n —i)-cell g is restored and the (n — i+ 1)-
cell p’ is split into two (n — i + 1)-cells p and p’. The (n — i)-cell ¢ and
the (n — ¢ + 1)-cell p are as they were before the corresponding simplification
remove; ;—1(q,p,p'). The (n—i+1)-cell p’ in I is the same as the (n—i+1)-cell
p’ in T'y minus the (n — i 4 1)-cell p and the (n — i)-cell q.

Figure 4.13 shows a 2D example of the insert;,_, operator. In 2D there is
only one insert; ;1 operator, namely insert; o of a saddle ¢ and a minimum p.
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Figure 4.14: [26] An example of the inserts1(q, p,p’) on a portion of the 3D
descending Morse complex.

Figure 4.15: [26] A portion of the 3D descending Morse complex before and
after the insert; o(q,p,p’).

It corresponds in the descending complex to an expansion of the 0-cell p’ into
two O-cells p and p’ through the 1-cell ¢ corresponding to a saddle.

In 3D, there are two insert; ;_; operators: the insert; o of a 1-saddle and
a minimum, and the inserty; of a 2-saddle and a 1-saddle. Figure 4.14 shows
the effect of the inserts1(q, p,p’) on the 3D descending Morse complex. It
is specified by the new cells ¢ and p, the existing 1-cell p/, the 2-cell r; in
the immediate co-boundary of the 1-cell p, the two 3-cells z; and z, in the
immediate co-boundary of the 2-cell ¢, and the two 0-cells s; and sy in the
immediate boundary of the 1-cell p. All the corresponding multiplicities are
equal to 1.

Figure 4.15 shows the effect of the insert; o(¢,p,p’) on the 3D descending
Morse complex. It is specified by the new cells g and p, the 0-cell p’ to be split,
the four 1-cells 71, 79, r3 and 74 in the immediate co-boundary of the 0-cell p,
and the four 2-cells z1, 29, 23 and z4 in the immediate co-boundary of the 1-cell
q. The boundary of the 0-cell p is empty. All the corresponding multiplicities
are equal to 1.
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The refinement operator insert;;—1(q,p, ) of the second type is inverse
to the simplification remove;;_1(g,p, ) of the second type. It introduces the
i-cell ¢ and the (i — 1)-cell p in the descending Morse complex, and the (n —1i)-
cell ¢ and the (n — i + 1)-cell p in the ascending complex. It is specified by
the same cells as the insert; ;_1(q,p,p’) of the first type, with the exception of
the (i — 1)-cell p’ in the descending complex and the (n — i + 1)-cell p’ in the
ascending complex.

Definition 12 The refinement operator insert;;—1(¢,p,0), 1 < i < n —1,
inverse to the simplification remove; ;_1(q,p, ), is specified by the i-cells r; €
R, the (i+1)-cells z, € Z and the (i —2)-cells s, € S (the cells in Cyy ), with
the multiplicities mult(p, Or;), mult(q, 0z,) and mult(sy,Op). It is feasible on
the (descending) combinatorial complex Ty if the i-cells r; € R, the (i+1)-cells
zn € Z and the (i — 2)-cells s, € S are in U'y. It transforms the complex Ty
into the refined complex ') by replacing the set of cells RUZUS = C,,, in Ty
with the set {p,q} URUZUS = {q,p} UC,, in I, so that:

1. the immediate co-boundary of the (i—1)-cell p in T, consists of the i-cells
r; in R and the i-cell q, with the given multiplicities mult'(p, 0r;) and
mult’ (p, 0q) = 1, respectively,

2. the immediate co-boundary of the i-cell q in I, consists of the (i+1)-cells
zp, in Z, with the given multiplicities mult'(q, 0zy),

3. the immediate boundary of the (i — 1)-cell p in ', consists of the (i —2)-
cells sy in S, with the given multiplicities mult'(sy, Op), and

4. the immediate boundary of the i-cell q in I'; consists of the (i —1)-cell p,
with the given multiplicity mult’ (p, dq) = 1.

The two introduced cells, the i-cell ¢ and the (i — 1)-cell p in I'}, are the same
as they were before the corresponding remove;;—1(q,p,0). Each i-cell r; in
I, is equal to the i-cell r; in I'y minus a disjoint copy of the i-cell g and the
(i — 1)-cell p. Other cells in I'; are the same as they were in I'y.
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4.3 Validity and Minimality of remove and insert
Operators

We have shown in [26] that the removal and contraction simplification oper-
ators and the inverse insertion and expansion refinement ones are valid (i.e.,
if they are applied on a combinatorial Morse complex I'y on M they produce a
combinatorial Morse complex I, on M), and that they form a basis for the set
of operators that modify Morse complexes on M in a topologically consistent
manner. In Sections 4.3.1 and 4.3.2, respectively, we show that the same two
properties are satisfied for the remove and insert operators.

4.3.1 Validity

We show that simplification and refinement operators are valid, i.e., that if
applied on a combinatorial complex I'; with manifold carrier M, they produce a
combinatorial complex I, on M. Recall that in a combinatorial Morse complex
cells are allowed to partially overlap (geometrically), while they are considered
to be disjoint (combinatorially). We will show that if I'; is a combinatorial
cell complex, and if the complex I, is obtained from the complex I'; after a
simplification or a refinement, then

1. the cells in I"; are disjoint,
2. the cells in I'), cover M, and

3. the boundary of each cell in I"; is a disjoint union of cells in I,
Proposition 1 FEach simplification remove operator is valid.

Proof. We will show that each remove; ;11(q, p, p’) of the first type, remove; ;11
(q,p, ) of the second type, remove; ;—1(q, p, p') of the first type, and remove; ;_;
(q,p, D) of the second type is valid.

Let us consider the remove; ;+1(q,p,p’) of the first type. The effect of this
operator on a combinatorial complex I'; is to merge the (i 4+ 1)-cell p and the
i-cell ¢ into the (i 4 1)-cell p’ in the simplified complex I'},; and to modify the
immediate boundary and co-boundary relation by merging the boundary of p
into the boundary of p’, as explained in Section 4.1.1. We show that I, is a
combinatorial cell complex by verifying the following three conditions:
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1. The cells in I"; are disjoint. The cells in I/, are the same as the cells in

Iy, with the exception of the (i + 1)-cell p’ in I'}, which is the union of
the (i + 1)-cell p/, and disjoint copies of the (i 4+ 1)-cell p and the i-cell
q in I'y. If the cells in 'y are (combinatorially) disjoint, then the cells in
I/, are (combinatorially) disjoint.

. The cells in I'), cover M. If the cells in I'y cover M, then the cells in I",

also cover M, since no part of M is deleted or created by the operator.

. The boundary of each cell in I'; is a disjoint union of cells in I'/. The

boundary relation is the transitive closure of the immediate boundary
relation (without considering the multiplicities). The only cells with the
changed immediate boundary relation are the (i + 2)-cells s, € S (the
cells in the immediate co-boundary of the (i+1)-cell p) and the (i+1)-cell
p in I,

- The immediate boundary of each (i + 2)-cell s, € S in ", is the
same as its immediate boundary in I'; minus (all instances of) the
(¢ + 1)-cell p. The boundary of each (i + 2)-cell s, € S in I' is the
same as its boundary in I'y minus the (i + 1)-cell p and the i-cell g.

- The immediate boundary of the (i 4+ 1)-cell p’ in I, is the same as
its immediate boundary in I'y plus the i-cells 7; € R (cells on the
immediate boundary of the (i+1)-cell pin I'y) with the multiplicities
mult(r;, Op) - mult(q, 0p’) and minus (all instances of) the i-cell g.
The boundary of the (i+1)-cell p’ in I", is the same as its boundary
in Iy plus all the cells in the boundary of the (i+1)-cell p and minus
the i-cell q.

Thus, the boundary of each cell in I, is a disjoint union of cells in I7,.

The complex I') is a combinatorial cell complex, and each remove; ;1+1(p, ¢, p’)
of the first type is valid.

Let us consider the remove;;1(q,p,0) of the second type. Its effect is
to eliminate the (7 4+ 1)-cell p and the i-cell g. We verify that the simplified

complex 7, is a combinatorial cell complex:

1. The cells in I/, are the same as the cells in I'y, with the exception of the

(i + 2)-cells s € S in I (the cells in the immediate co-boundary of the
(7 + 1)-cell p), which contain a disjoint copy of the (i + 1)-cell p and the
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i-cell ¢ in ['y. If the cells in T'y are (combinatorially) disjoint, then the
cells in I/, are (combinatorially) disjoint.

2. The cells in I', cover M, since no part of M is deleted or created by the
operator.

3. The only cells with the changed immediate boundary relation are the
(i+2)-cells s, € S (the cells in the immediate co-boundary of the (i+1)-
cell p).

- The immediate boundary of each (i+2)-cell s, € S in I'; consists of
the same cells as its immediate boundary in 'y minus (all instances
of) the (4 1)-cell p. The boundary of each (i +2)-cell s, € S in I
consists of the same cells as its boundary in I'y minus the (i+ 1)-cell
p and the i-cell q.

Thus, the boundary of each cell in I, is a disjoint union of cells in I".

The complex I”, is a combinatorial cell complex, and each remove; ;11(q, p, )
of the second type is valid.

Let us consider the remove;;—1(q,p,p’) of the first type. The effect of this
operator on a combinatorial complex I'; is to merge the (i — 1)-cell p and the
i-cell ¢ into the (i — 1)-cell p’ in the simplified complex I';,; and to modify the
immediate boundary and co-boundary relation by merging the co-boundary
of p into the co-boundary of p/, as explained in Section 4.1.2. We show that
the simplified complex I, is a combinatorial cell complex by verifying the
conditions in the definition of a cell complex:

1. The cells in I, are the same as the cells in I'y, with the exception of the
i-cells r; € R in I'); (which are the i-cells in the immediate co-boundary
of the (i — 1)-cell p). Each i-cell r; in I'}, is a union of the i-cell r; in
[y and mult(p, Or;) disjoint copies of the i-cell ¢ and the (i — 1)-cell p.
If the cells in I'; are (combinatorially) disjoint, then the cells in I, are
(combinatorially) disjoint.

2. The cells in I', cover M, since no part of M is deleted or created by the
operator.

3. The only cells with the changed immediate boundary relation are the
i-cells 7; € R (the cells in the immediate co-boundary of the (i — 1)-cell
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p) and the (i + 1)-cells z;, € Z (the cells in the immediate co-boundary
of the i-cell ¢) in I,

- The immediate boundary of each i-cell r; € R in I"; is the same as
its immediate boundary in I'; minus (all instances of) the (i—1)-cell
p and plus mult(p, Or;) - mult(p’, 0q) instances of the (i — 1)-cell p'.
The boundary of each i-cell r; € R in [ is the same as its boundary
in I'; minus the (¢ — 1)-cell p plus the (i — 1)-cell p’ and all the cells
in its boundary.

- The immediate boundary of each (i + 1)-cell z, € Z in I", is the
same as its immediate boundary in I'y minus all instances of the
i-cell ¢. Its boundary in I", is the same as its boundary in I'y minus
the i-cell ¢ and the (i — 1)-cell p.

The cells with the changed boundary relation are the cells in the set U of
cells of dimension at least ¢ + 2 in the co-boundary of the i-cell ¢ and the
cells in the set V of cells of dimension at least ¢ + 1 in the co-boundary
of the (i — 1)-cell p. For each cell u in U, the boundary of u in I} is the
same as its boundary in I'y minus the i-cell ¢ and the (i — 1)-cell p. For
each cell v in V\U, the boundary of v in I/, is the same as its boundary
in 'y minus the (i — 1)-cell p and plus the (i — 1)-cell p’ and all the cells
in its boundary.

Thus, the boundary of each cell in I, is a disjoint union of cells in I",.

The complex I, is a combinatorial cell complex, and each remove; ;—1(q, p,p’)
of the first type is valid.

Let us consider the remove;;_1(q,p,0) of the second type. Its effect is
to eliminate the (¢ — 1)-cell p and the i-cell g. We verify that the simplified
complex 7, is a combinatorial cell complex:

1. The cells in I, are the same as the cells in I'y, with the exception of the
i-cells r; € R in I (the cells in the immediate co-boundary of the (i —1)-
cell p), which contain mult(p, dr;) disjoint copies of the i-cell ¢ and the
(i — 1)-cell p in I'y. If the cells in I'y are (combinatorially) disjoint, then
the cells in I/, are (combinatorially) disjoint.

2. The cells in I'}, cover M, since no part of M is deleted or created by the
operator.



73

3. The only cells with the changed immediate boundary relation are the
i-cells 7; € R (the cells in the immediate co-boundary of the (i — 1)-cell
p) and the (i + 1)-cells z;, € Z (the cells in the immediate co-boundary
of the i-cell ¢) in I",.

- The immediate boundary of each i-cell r; € R in IY, consists of
the same cells as its immediate boundary in I'; minus mult(p, Or;)
instances of the (i—1)-cell p. The boundary of i-cell r; in I"/; consists
of the same cells as its boundary in Iy minus the (i — 1)-cell p.

- The immediate boundary of each (i+41)-cell 2, € Z in I"; consists of
the same cells as its immediate boundary in I'y minus mult(q, 0z)
instances of the i-cell g. The boundary of each (i + 1)-cell zp, in I
consists of the same cells as its boundary in I'; minus the i-cell ¢
and the (i — 1)-cell p.

The cells with the changed boundary relation are the cells in the set U of
cells of dimension at least ¢ + 2 in the co-boundary of the i-cell ¢ and the
cells in the set V' of cells of dimension at least ¢ + 1 in the co-boundary
of the (i — 1)-cell p. For each cell u in U, the boundary of u in I, is the
same as its boundary in I'y minus the i-cell ¢ and the (i — 1)-cell p. For
each cell v in V\U, the boundary of v in I, is the same as its boundary
in I'y minus the (i — 1)-cell p.

Thus, the boundary of each cell in I, is a disjoint union of cells in I",.

The complex I”, is a combinatorial cell complex, and each remove; ;—1(q, p, )
is valid. 0

Proposition 2 Fach refinement insert operator is valid.

Proof. We will show that each insert; ;11 (¢, p,p’) of the first type, insert; ;1
(q,p, ) of the second type, insert;;—1(q,p,p’) of the first type, and insert; ;1
(q,p,0) of the second type is valid.

Let us consider the insert;;11(q,p,p’) of the first type. The effect of the
operator on I'y is to split the (i + 1)-cell p’ in 'y into the (i + 1)-cells p and
p’ by inserting the i-cell ¢ in I, (see Section 4.2.1). We show that 17, is a
combinatorial cell complex by verifying the conditions in the definition of a
cell complex:
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1. The cells in I/, are the same as the cells in I'y, with the exception of the
(i+ 1)-cell p’ in T'y, which is split into (disjoint) (i + 1)-cells p and p’ and
i-cell ¢ in I". If the cells in I'y are (combinatorially) disjoint, then the
cells in I", are also disjoint.

2. The cells in I/, cover M, since no part of M is deleted or created by the

operator.

3. The cells with the changed immediate boundary relation are the (i + 2)-

cells s, € S (the cells in the immediate co-boundary of the (i + 1)-cell
p), the (i + 1)-cell p’, and the new cells p and ¢ in I7,.

- The immediate boundary of the new i-cell ¢ in I", consists of the
(1 — 1)-cells z, € Z with the given multiplicities mult'(zp, dq). The
boundary of the i-cell ¢ consists of the (i — 1)-cells z;, € Z, and all
the cells on the boundary of the (i — 1)-cells z;, € Z in I'y (and in
).

- The immediate boundary of the new (i + 1)-cell p in I'} consists of
the i-cells r; € R with the given multiplicities mult'(r;, Op) and the
i-cell ¢ with the multiplicity mult'(q, dp) equal to 1. The boundary
of the new (i 4 1)-cell p in I'), consists of the i-cells r; € R and the
i-cell ¢, and all the cells in their boundary in I',.

- The immediate boundary of each (i + 2)-cell s; in I', consists of the
same (i + 1)-cells as its immediate boundary in I'y plus the (i 4 1)-
cell p with the given multiplicity mult'(p, 0sx). The boundary of
cach (7 + 2)-cell s in I, consists of the same cells as its boundary
in 'y plus the (i + 1)-cell p and all the cells in its boundary in I',.

- The immediate boundary of the (i + 1)-cell p’ in I”, is the same
as its immediate boundary in I'y minus mult'(r;, dp) - mult'(q, Op’)
instances of the i-cells r; € R (the cells in the immediate boundary
of (i41)-cell p in I'})) and plus the i-cell ¢ with the given multiplicity
mult'(q, dp'). The boundary of the (i+1)-cell p’ in I'; is the same as
its boundary in I’y minus the cells in the boundary of the (i+ 1)-cell
p, and plus the i-cell ¢ and all the cells in its boundary.

The cells with the changed boundary relation are the cells in the set U
of cells in the co-boundary of the (i + 2)-cells s, € S and the cells in
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the set V of cells in the co-boundary of the (i — 1)-cells 2z, € Z. The
boundary of each cell u € U in I} is the same as its boundary in I'; plus
the (i + 1)-cell p and all the cells in its boundary (in I'}). The boundary
of each cell v € V\U in I", is the same as its boundary in I'; plus the
i-cell ¢ and all the cells in its boundary (in I')).

Thus, the boundary of each cell in I, is a disjoint union of cells in I",.

The complex I, is a combinatorial cell complex, and each insert; ;+1(q, p,p’)
is valid.

Let us consider the insert;;11(q,p,0) of the second type. Its effect is to
introduce the (i + 1)-cell p and the i-cell g. We verify that the refined complex
!, is a combinatorial cell complex:

1. The cells in I, are the same as the cells in I'y, with the exception of the
(4 1)-cell p and the i-cell ¢ that are inserted in I",, and the (i + 2)-cells
sk € S in I') (the cells in the co-boundary of the (i + 1)-cell p), which are
the same as the (i + 2)-cells s; in Iy minus a disjoint copy of the (i 4 1)-
cell p and the i-cell q. If the cells in 'y are combinatorially disjoint, then
so are the cells in I,

2. The cells in I'), cover M, since no part of M is created or deleted by the
operator.

3. The cells with the changed immediate boundary relation are the (i + 2)-
cells s, € S (the cells in the immediate co-boundary of the (i + 1)-cell
p), the (i 4+ 1)-cell p and the i-cell g in T,

- The immediate boundary of the i-cell ¢ in I", consists of the (i —
1)-cells 2z, € Z with the given multiplicities mult'(z,,dq). The
boundary of the i-cell ¢ in I, consists of the (i —1)-cells z, € Z and
all the cells in their boundary.

- The immediate boundary of the (i + 1)-cell p in I', consists of the
i-cells r; € R and i-cell ¢ with the given multiplicities mult'(r;, Op)
and mult'(q,0p) = 1, respectively. The boundary of the (i + 1)-cell
p in I'; consists of the i-cells r; € R and the i-cell ¢, and all the
cells in their boundary.

- The immediate boundary of each (i 4 2)-cell s;, in I/, consists of the
same (i + 1)-cells as its immediate boundary in I'y plus the (i + 1)-
cell p with the given multiplicity mult'(p,dsx). The boundary of
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each (7 + 2)-cell s; in I, consists of the same cells as its boundary
in 'y plus the (i + 1)-cell p and all the cells in its boundary.

The cells with the changed boundary relation are the cells in the set U
of cells in the co-boundary of the (i + 2)-cells s € S and the cells in
the set V of cells in the co-boundary of the (i — 1)-cells 2z, € Z. The
boundary of each cell w € U in I, is the same as its boundary in I'y plus
the (i + 1)-cell p and all the cells in its boundary (in I'}). The boundary
of each cell v € V\U in I, is the same as its boundary in I'y plus the
i-cell ¢ and all the cells in its boundary (in I')).

Thus, the boundary of each cell in I, is a disjoint union of cells in I7,.

The complex I", is a combinatorial cell complex, and each insert; ;11(q, p, 0) is

valid.
Let us consider the insert;;_1(q,p,p’") of the first type. The effect of the

operator on Iy is to split the (¢ — 1)-cell p’ in 'y into the (i — 1)-cells p and p/
by expanding the i-cell ¢ in I", (see Section 4.2.2). We show that I", verifies
the conditions in the definition of a combinatorial cell complex:

1. The cells in I, are the same as the cells in I'y, with the exception of the

new cells p and ¢, and the i-cells r; € R in I", (the cells in the immediate
co-boundary of the (i—1)-cell p), which are equal to i-cells r; in Iy minus
mult(p, Or;) disjoint copies of the i-cell ¢ and the (i — 1)-cell p. If the
cells in I'y are (combinatorially) disjoint, then so are the cells in I,

. The cells in I"; cover M, since no part of M is deleted or created by the

operator.

. The cells with the changed immediate boundary relation are the i-cells

r; € R (the cells in the immediate co-boundary of the (i — 1)-cell p), the
(1 + 1)-cells z, € Z (the cells in the immediate co-boundary of the i-cell
r), and the new cells p and ¢ in I'),.

- The immediate boundary of the new (i — 1)-cell p in I'/; consists of
the (i — 2)-cells s € S with the given multiplicities mult'(sg, Op).
The boundary of the (i —1)-cell p consists of the (i —2)-cells s; € 5,
plus all the cells in the boundary of each (i — 2)-cell s, € S in I'y
(and in I')).
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- The immediate boundary of the new i-cell ¢ in I"; consists of the
(¢ — 1)-cells p and p’ with the given multiplicities mult'(p,dq) = 1
and mult'(p', 0q), respectively. The boundary of the new i-cell ¢ in
I'!, consists of the (i — 1)-cells p and p’, and all the cells on their
boundary.

- The immediate boundary of each i-cell r; € R in I'; consists of the
same (i—1)-cells as its immediate boundary in I'y minus mult'(p, 0r;)-
mult'(p', 0q) instances of the (i — 1)-cell p’ and plus the (i — 1)-
cell p with the given multiplicity mult’(p, Or;). If mult(p’, 0r;) —
mault'(p, dr;) - mult'(p’,0q) = 0, then the boundary of the i-cell
r; € R in I", consists of the same cells as its boundary in Iy
minus the (i — 1)-cell p’ and all the cells in its boundary plus
the (i — 1)-cell p and all the cells in its boundary. Otherwise, if
mult(p', 0r;) — mult' (p,0r;) - mult'(p’, dg) > 0, then the boundary
of the i-cell r; € R in I", consists of the same cells as its boundary
in [y plus the (i — 1)-cell p and all the cells in its boundary.

- The immediate boundary of each (i + 1)-cell z;, € Z in I", is the
same as its immediate boundary in I'y plus the i-cell ¢ with the
given multiplicity mult'(q,0zp). The boundary of each (i + 1)-cell
zp, € Z in I is the same as its boundary in I'; plus the i-cell ¢ and
all the cells in its boundary.

The cells with the changed boundary relation are the cells in the set U
of cells in the co-boundary of the (i + 1)-cells z;, € Z and the cells in the
set V' of cells in the co-boundary of the i-cells r; € R. The boundary of
each cell w € U in I'} is the same as its boundary in I'y plus the i-cell
g and all the cells in its boundary (in I'}}). The boundary of each cell
v € V\U in I", is the same as its boundary in I'y plus the (i — 1)-cell p
and all the cells in its boundary (in I')).

Thus, the boundary of each cell in I, is a disjoint union of cells in I",.

The complex I, is a combinatorial cell complex, and each insert;;_1(q, p,p’)
is valid.

Let us consider the insert;;—1(q,p,0) of the second type. It introduces
the (¢ — 1)-cell p and the i-cell g. We verify that the refined complex I, is a
combinatorial cell complex:
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1. The cells in I/, are the same as the cells in I'y, with the exception of the
(i—1)-cell p and the i-cell g that are inserted in I";, and the i-cells 7; € R
in I/, (the cells in the immediate co-boundary of the (i —1)-cell p), which
are the same as the i-cells r; in I'y minus mult(p, Or;) disjoint copies of
the (¢ — 1)-cell p and the i-cell ¢. If the cells in I'y are combinatorially
disjoint, then so are the cells in I',.

The cells in I/, cover M, since no part of M is deleted or created by the

operator.

The cells with the changed immediate boundary relation are the ¢-cells

r; € R (the cells in the immediate co-boundary of the (i — 1)-cell p), the
(1 + 1)-cells z, € Z (the cells in the immediate co-boundary of the i-cell
q), the new (i — 1)-cell p and the new i-cell ¢ in I7,.

The immediate boundary of the new (i — 1)-cell p in I"; consists of
the (i — 2)-cells s, € S with the given multiplicities mult' (s, Op).
The boundary of the (i —1)-cell p consists of the (i —2)-cells s, € 5,
plus all the cells in the boundary of each (i — 2)-cell s, € S in I'y
(and in I')).

The immediate boundary of the new i-cell ¢ in I, consists of the
(1 — 1)-cell p with the given multiplicity mult'(p,dq) = 1. The
boundary of the new i-cell ¢ in I"; consists of the (i — 1)-cell p and
all the cells in the boundary of p in I",.

The immediate boundary of each i-cell r; € R in 1", consists of the
same (i — 1)-cells as its immediate boundary in I'y plus the (i — 1)-
cell p with the given multiplicity mult'(p, dr;). The boundary of
each i-cell r; € R in I", consists of the same cells as its boundary in
[y plus the (i — 1)-cell p and all the cells in its boundary.

The immediate boundary of each (i 4+ 1)-cell z;, € Z in I", is the
same as its immediate boundary in I'y plus the i-cell ¢ with the
given multiplicity mult’(q,0z,). The boundary of the (i + 1)-cell
2, € Z in I, is the same as its boundary in I'y plus the i-cell ¢ and
all the cells in its boundary.

The cells with the changed boundary relation are the cells in the set U
of cells in the co-boundary of the (i + 1)-cells z;, € Z and the cells in the
set V' of cells in the co-boundary of the i-cells r; € R. The boundary of
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each cell w € U in I, is the same as its boundary in I'; plus the i-cell
q and all the cells in its boundary (in I'}). The boundary of each cell
v € V\U in I", is the same as its boundary in I'y plus the (i — 1)-cell p
and all the cells in its boundary (in I')).

Thus, the boundary of each cell in I, is a disjoint union of cells in I".

The complex I”; is a combinatorial cell complex, and each insert;;_1(q,p, ) is
valid.
O

4.3.2 Minimality

In the 2D case, the Euler operators have been defined as operators for modeling
2-complexes with manifold domain maintaining the Euler-Poincaré formula.
This formula relates the number of cells in a decomposition of a surface with
the topology of the surface [9]. It has been shown in [79] that the Euler
operators form a complete set of operators for modeling manifold surfaces.

In this Section, we show that our simplification remove and refinement
insert operators form a complete set of basis operators for modifying Morse
complexes in arbitrary dimensions. We do this by using the Euler-Poincaré
formula

X(M) =cy—C + . + (—1)ncn = ﬁo — ﬁl + ..+ (_1)715”

Here, ¢; is the number of i-cells in a cell complex I' with manifold carrier M,
and (; is the ith Betti number of M.

Our simplification and refinement operators are examples of Euler operators
in the sense that they affect a constant number of entities (cells) on the left
hand side of the Euler-Poincaré formula. They affect only the decomposition
of M without changing the topology of M, and thus its Betti numbers, or the
Euler-Poincaré characteristic x(M).

Both the remove; 11, 1 <i < n —1, and the remove;y1,;, 0 <@ <n —2,
can be interpreted as Euler operators, since they eliminate an i-cell and an
(i + 1)-cell from the descending Morse complex ['y, and an (n — i)-cell and an
(n—1—1)-cell from the ascending Morse complex I',,. If ¢; denotes the number
of the i-cells in I'y before the simplification, and ¢, denotes the number of the
i-cells in the simplified complex I}, then ¢; = ¢; — 1, ¢j,; = ¢;41 — 1, and

¢; = ¢j for j # 4,4+ 1. Similarly, an insert;;y1, 1 <4 < n—1, and an
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insertiy1q, 0 <4 < n —2, can be interpreted as Euler operators, since they
introduce an i-cell and an (i 4+ 1)-cell in the descending Morse complex T'y,
and an (n — i)-cell and an (n — i — 1)-cell in the ascending Morse complex
[,. If ¢; denotes the number of the i-cells in I'y before the refinement, and ¢
denotes the number of the i-cells in the refined complex I, then ¢ = ¢; + 1,
¢y = ciy1 + 1, and ¢f = ¢; for j # 4,0+ 1. As a consequence, we have that
the Euler-Poincaré formula is satisfied after each simplification remove and
refinement insert operator.

Proposition 3 Operator remove (together with the inverse operator insert)
forms a basis of the set U of topological operators that modify the Morse com-
plexes subdividing a manifold M.

Proof. The set of operators U is a subset of the set of operators W that modify
Morse complexes by adding or removing cells from it. The set W is a free Z-
module over the ring of integers, and each operator in W can be expressed as
an (n+1)-dimensional vector (ag, a1, ..., a, )5, with integer coordinates (a; € Z,
0 < i < n) in the standard basis B of W. (The correspondence between the
operators in W and the (n+ 1)-tuples over Z is not one-to-one. Each operator
is represented as a unique tuple, but different operators may be represented by
the same tuple.) The integer |a;| denotes the number of i-cells removed from
the descending Morse complex (and the number of (n — i)-cells removed from
the ascending Morse complex) if a; > 0, and it denotes the number of i-cells
introduced into the descending Morse complex (and the number of (n —1)-cells
introduced into the ascending Morse complex) if a; < 0.

Each operator u in U can be expressed as an (n + 1)-dimensional vector
u = (ag, ai, .., a,)p with integer coordinates a;, 0 < i < n, such that ay — a; +
..+ (=1)"a, = 0. Thus, U is a submodule of W. Let us consider the (n + 1)-
dimensional vectors dy = (1,0, ...,0, (=1)""Yg, d; = (0,1,0,...,0, (=1)""?)5,...,
dpy = (0,...,1,(=1)"~ =)z = (0,...,0,1, —1)5. They are in U, they are lin-
early independent, and they generate U. They form a basis of U, and thus
each basis of U has n vectors.

The remove;;11, 1 < i < n—1, (and the remove;i1,;, 0 < i < n —2),
which eliminates an i-cell p and an (i + 1)-cell ¢, can be expressed as a vector
b; with coordinates (in the standard basis B) b; = (ao, a1, .., a, )5, where a; =
ai+1 = 1, and a; = 0, j # 4,9+ 1. In other words, by = (1,1,0,...,0)3,
by = (0,1,1,0,....,0)5, ..., bpy_1 = (0,...,0,1,1)5. We will show that these n
vectors are linearly independent, and that they generate U.
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To show that vectors by, b1, ..., b,_1 are independent, let us consider the
equation

Mobo + Mlbl + ...+ ,LLn_lbn_l = 0, i.e.,
to(1,1,0,..,0)p + p1(0,1,1,0,..,0)5 + ... + pt_1(0,..,0,1,1)5 = 0,
which is equivalent to the system of equations
po=0, pro+ 1 =0, p1 +p2=0, .., pn—o+ pp—1 =0, pn_y =0.

The only solution to this system is

Ho = p1 = ... = fp—1 =0,
and the vectors by, by, ..., b,_1 are linearly independent.
To show that the vectors by, by, ..., b,_1 generate U, let us consider the

equation
u = piobo + p1b1 + ... + pip—1bp 1,

where u = (ag, ay, ..., a,)p is an arbitrary vector in U. This equation is equiv-
alent to the system of equations

ag = o, A1 = fo + f1, Q2 = [ + 42 ooy Q1 = fp—2 + fn—1, Qn = [n—1-
The solution to this system is
o = Qg, {1 = a1 — Qg, [2 = A2 — a1 + Ao, ..y fp—1 = Qp.

Each vector w in U can be expressed as a linear combination of the vectors by,

b1, ..., b,_1, and the vectors by, b1, ..., b,_1 generate U.
The n vectors by, by, ..., b,_1 are linearly independent, they generate U,
and thus they form a basis of U. O

Note that the above proof does not provide an algorithm for expressing
an arbitrary operator u in U as a sequence of basis operators. The order in
which the basis operators should be applied, and the cells affected by the basis
operators are not specified in the proof. The vector b; represents not only the
simplification remove operator, but also (when multiplied by —1) the inverse
refinement insert operator.
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4.4 Representing a Sequence of remove Oper-
ators

We have designed a data structure for representing a sequence of simplification
removal and insertion operators in [25]. We have called this data structure
augmented cancellation forest. It is a generalization of the cancellation forest
which represents a sequence of cancellations defined in [15] for the 2D case.
Here, we recall the definition of the cancellation forest in [15], and we define the
augmented cancellation forest for representing a sequence of remove operators.

4.4.1 Cancellation Forest in 2D

In 2D, a cancellation involves either a saddle ¢ and a maximum p, or a saddle ¢
and a minimum p, and each saddle ¢ is connected to exactly two maxima, and
exactly two minima. Thus, in 2D, a cancellation of a saddle ¢ and a maximum
p reduces to a remove;y 2(q,p,p’). In the descending Morse complex I'y, the
removes 2(q, p, p’) merges the descending 2-cell p into the descending 2-cell p'.
A cancellation of a saddle ¢ and a minimum p reduces to a remove; o(g, p, p').
In 'y, it merges the descending O-cell p into the descending O-cell p'. A se-
quence of remove operators on the initial full-resolution Morse complex can
be encoded in a data structure called cancellation forest, introduced in [15],
in which each tree encodes either a set of remove; s operators, or a set of
remove; o operators.

A remove; o (remove o) tree is a rooted tree. The nodes of the remove; o
(removey o) tree correspond to maxima (minima) in the initial highest-resolution
descending Morse complex. Each arc in the remove; 5 (remove; ) tree repre-
sents a saddle, i.e., a 1-cell ¢, such that the remove; 2(q, p, p’) (removey o(q, p,p’))
belongs to the set of simplifications on the Morse complex, and both nodes p
and p’ and arc g belong to the same tree in the forest. The root of a remove; o
(removey o) tree T represents a 2-cell (a 0-cell), into which all cells correspond-
ing to nodes of the tree are merged.

A cancellation forest encoding a sequence of simplifications on a descending
Morse complex is built starting from a graph (forest), in which each tree has
only one node, corresponding to a maximum or a minimum. Each simplifica-
tion merges two trees into one tree, by introducing an arc in the forest, and
the inverse refinement operator removes an arc from the forest.

Figure 4.16 shows a sequence of remove; » operators on a 2D descending
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Figure 4.16: [25] A sequence of remove; 5 on a portion of the 2D descending
Morse complex, and the process of building the cancellation forest, consisting
of remove; 5 trees. The root of each tree created in the process is shaded.

Morse complex, and the construction of the corresponding remove; o tree en-
coding that sequence. This example is taken from [15], but is expressed in
terms of the descending Morse complex instead of the Morse-Smale complex.
First, remove; o(s1, My, M) and removey o(sa, My, M3) merge the 2-cells M,
and Ms into Ms, and removey o(sg, My, Ms) and removey o(sq, Mg, M5) merge
the 2-cells M, and M;g into the 2-cell M;, as shown in Figure 4.16 (a). Then,
removey 2(sg, Mz, Ms) and removey o(s5, M3, Ms) merge the 2-cells M7 and M;
into the 2-cell M5. The node M3 is not connected to the node Ms in the cancel-
lation forest, because the descending 2-cells M3 and M; are not adjacent in the
initial Morse complex. Instead, the tree rooted at the node M3 is connected
to the tree rooted at the node Mj through an arc connecting the node M,
to the node M5 (since the descending 2-cells My and Mj; are adjacent in the
initial Morse complex), as shown in Figure 4.16 (b). The coarsest-resolution
complex, and the corresponding cancellation forest (which in this example is
a tree), are shown in Figure 4.16 (c).

4.4.2 Augmented Cancellation Forest

In this Section, we extend the notion of the cancellation forest to arbitrary
dimensions. In Section 4.4.2, we discuss some issues related to the extension to
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higher dimensions. In Section 4.4.2, we introduce the notion of an augmented
cancellation forest. In Section 4.4.2, we give an algorithm for constructing an
augmented cancellation forest, starting from a sequence of simplifications on
an n-dimensional Morse complex.

Motivation

As we have seen, in 2D the cancellation reduces either to a remove; » or to a
remove; o, depending on index of the cancelled points, i.e., on the dimension
of the corresponding descending cells. The cancellation of a 2-cell and a 1-cell
reduces to a remove; 2, and the cancellation of a O-cell and a 1-cell reduces to
a remove; o. In other words, the role of a critical point p in the cancellation
forest is determined by the index of p: a maximum (minimum) may only
correspond to a node in a remove; o (remove; ) tree, and a saddle may only
correspond to an arc in some tree.

The extension of the tree-based encoding of a sequence of simplification
operators to arbitrary dimensions is non-trivial due to the following reasons.

1. In higher dimensions, a simplification is not uniquely determined by
the index of the eliminated critical points, as a critical point p of in-
dex 7 and a critical point ¢ of index 7 + 1 may be involved either in a
remove; ;+1(q,p,p'), or in a remove; ;1 ,;(p,q,p’). Thus, a critical point
of index ¢ may correspond either to a node or to an arc in either a
remove; ;1 Or a remove; ;1 tree. For example, a simplification elimi-
nating the 1-cell p and the 2-cell ¢ may be a remove; 2(q, p, ), shown in
Figure 4.17 (a), or a removes(p, ¢,t), shown in Figure 4.17 (b).

2. The role of a critical point may change after simplification. An example
is illustrated in Figure 4.18. Initially, the 2-cells p and ¢, and 1-cells a,
b, and s, are the roots of trees, each having only one node. After the
removes 2(q, s,p), p and ¢ are nodes, and s is an arc in a remove; 5 tree
rooted at p, as shown in Figure 4.18 (b). After the removes (b, p, a),
b and @ are nodes, and p is an arc in a removey, tree, rooted at a, as
shown in Figure 4.18 (c).

3. In higher dimensions, remove operators of the second kind are not ig-
nored, as is the case in 2D. Thus, we will have two kinds of remove; ;14
(remove; ;1) trees, depending on the type of the simplification they en-
code.
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Figure 4.17: [25] The type of a simplification is not determined by the index of
eliminated critical points. (a) The remove; s(q,p,r) of the 1-cell p is feasible,
while the removes ; of the 2-cell g is not feasible. (b) The removes;(p,q,t) of
the 2-cell q is feasible, while the remouve; o of the 1-cell p is not feasible.

p

(c)

Figure 4.18: [25] (a) The initial 3D descending complex. (b) After the
removey 2(q, s,p). (c) After the removes (b, p,a). The root of each tree is
shaded.

4. We want a tree-based data structure which will be able to handle the
inverse refinements efficiently, namely as deletion of arcs in the forest,
like in the 2D case.

Definition

Informally, in an augmented tree each node and each arc may encode another
augmented tree. An augmented tree is a tree which may have regular nodes
and hyper-nodes, and regular arcs and hyper-arcs. A hyper-node (a hyper-arc)
is a node (an arc) which encodes an augmented tree. Regular nodes (arcs) of
augmented trees encoded by hyper-nodes (hyper-arcs) of T}, are called hidden
nodes (arcs) of T,. We will consider augmented trees with finite number of
(regular and hidden) nodes.



86

An augmented cancellation forest is a forest of augmented trees such that
all nodes and all arcs of each augmented tree are labeled consistently, as ex-
plained below. We assign a label Type(T) to each tree T' in an augmented
cancellation forest, depending on the type of a sequence of simplifications it
encodes (remove; ;11 or remove;;_1). We call such trees removal and con-
traction trees. All nodes in a tree correspond to critical points of the same
index 7 + 1, and all arcs correspond to critical points of index ¢ if the tree is
a removal tree. In a contraction tree, all nodes correspond to critical points
of index ¢ — 1, and all arcs correspond to critical points of index 7. Thus, we
partition the set NV of labels of nodes and arcs in the forest into n + 1 subsets
N;, 0 < i < n, such that labels in N; correspond to critical points of index 1.
We introduce a hyper-node in the forest when a root of a removal tree labels
a node in a contraction tree, and when a root of a contraction tree labels a
node in a removal tree. We introduce a hyper-arc in the forest when a root of
a removal or a contraction tree labels an arc of another tree in the cancellation
forest. We also introduce a special tree Teppy, rooted at node empty, which
encodes all remove; ;11 and remove; ;1 operators of the second kind (of the
form remove; ;11(q,p,0) and remove; ;—1(q,p,0)). Tree Ty, does not have
any label indicating its type.

More formally, an augmented cancellation forest AC'F is a forest of rooted
augmented trees, such that

1. all nodes and arcs in an ACF have a label [ in the set N = {empty} U
NoUN; U ..UN,,

2. there is a bijection between the set N and the set of regular nodes and
regular arcs (hidden or not) of AC'F,

3. label empty labels the root of an augmented tree T¢p, Which is not
represented by any hyper-node or hyper-arc,

4. each augmented tree T, has an associated label Type(T},), which is set
to void (if T}, has only one node p, or if T}, = T,y ), or to r or ¢ (if T,
has more than one node),

5. the labels [ of nodes in each tree T}, # Teppty in ACF belong to the same
set N;, 0 <17 < n,

6. the labels of arcs in each tree T, rooted at node p with I(p) € N;, 0 <
i < n, all belong either to N;_;, in which case Type(T},) = r (and T, is
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called a removal tree), or to N1, in which case T'ype(T},) = ¢ (and T}, is
called a contraction tree),

7. if @uew is a hyper-node in an augmented tree T, with Type(T,) = r,
representing an augmented tree T}, then Type(T},) = ¢, and l(gnew) =

I(q),

8. if @new 1s @ hyper-node in an augmented tree T, with Type(T},) = c,
representing an augmented tree T, then Type(T,) = r, and {(gnew) =

I(q),

9. if the root empty is deleted from 7., then the tree T, decomposes
into subtrees 7, that all satisfy conditions 4. to 8.

Construction

An augmented cancellation forest ACF, representing a sequence of simplifi-
cation operators on Morse complexes, is built bottom up, starting from the
full-resolution Morse complex, over which a sequence of simplifications is ap-
plied. An ACF by itself is not sufficient for the recovery of all the information
encoded in the sequence of simplified Morse complexes. Connectivity between
the cells needs also to be stored. Specifically, for each i-cell p in the initial
Morse complex, we need to store all (i — 1)-cells in its immediate boundary,
and all (i 4+ 1)-cells in its immediate co-boundary. This can be done using an
incidence graph [49]. A regular node with label in N; in an augmented tree
represents an ¢-cell in the initial Morse complex. The root p of each removal
or contraction tree 7, represents all the cells, corresponding to nodes of the
tree, merged into it through cells, corresponding to arcs of 7),. Recall that a
remove; ;+1(q, p, p') merges the boundary of p into the boundary of p’, and does
not change the co-boundary of p’. Dually, a remove; ;1 (g, p, p’) merges the co-
boundary of p into the co-boundary of p/, and does not change the boundary of
p’. This knowledge enables us to keep track of the immediate boundaries and
co-boundaries of each intermediate cell p created in the simplification process,
and represented by the root p of some tree 7},.

The construction process of an AC'F actually describes the effect of a sim-
plification applied on an AC'F corresponding to the current Morse complex
which is being simplified. Initially, when the descending Morse complex is at
full resolution, each cell p (corresponding to a critical point p) defines a tree
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Figure 4.19: [25] A sequence of remove; o operators on a 2D descending Morse
complex, and the construction of the cancellation forest. The root of each tree

1s shaded.

T, with only one regular node, labeled p, which is a root of 7,,. Thus, labels
in N; correspond to i-saddles, i.e., to i-cells of the initial descending Morse
complex. Each cell p is initially a representative only of itself. This is illus-
trated in 2D in Figure 4.19 (a), and in 3D in Figure 4.20 (a). For each tree
T, the label Active(T),) is set to 1, meaning that cell p corresponding to the
root p of tree T}, is present in the Morse complex, and the label Type(T},) is
set to void, meaning that no simplification eliminating the cell p has yet been
applied. A tree 7., rooted at node empty, without an Active or a Type
label is initialized.

Let sim(p, s, q) be a feasible simplification (a remove; ;11 or a remove; ;_1)
on a current Morse complex. Then p, s, and ¢ are roots of trees T}, Ts, and
T,, respectively. The label Type(sim(p,s,q)) is set to r or ¢ if sim(p,s,q)
is a remove; ;11 or a remove;;_1, respectively. If Type(sim(p,s,q)) = r
(T'ype(sim(p,s,q)) = c¢), the set of all cells in the initial Morse complex which
constitute the immediate boundary (the immediate co-boundary) of a current
cell s, represented by the root s of tree Ty, will be denoted by S. The trees T},
and T, rooted at nodes p and s, respectively, are deactivated from the forest,
by changing the labels Active(T,) and Active(Ts) from 1 to 0, indicating that
cells p and s are no longer present in the Morse complex.

Let sim(p,s,q) be a remove; ;11 (a remove;;—1). Then, a regular or a
hidden node p’ in tree T}, and a regular or a hidden node ¢’ in 7, are found,
such that cells p’ and ¢’ are in the co-boundary (in the boundary) of cell s,
i.e., such that p',¢' € S. Nodes p" and ¢ (if they are not hidden in 7}, and T,
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respectively), or the hyper-nodes containing them, are connected through an
arc labeled s, if s is a cell in the initial Morse complex, or through a hyper-arc
encoding augmented tree T, otherwise. The Type label of tree T, depends
on the Type labels of trees T, and T,, and of simplification sim(p,s,q). We
describe in more detail how the nodes p’ and ¢, and the label Type(T,), are
determined.

- If Type(T,) = Type(T,) = void, as it happens at the beginning of the
construction of the augmented cancellation forest, then nodes p and ¢ are
the only (regular) nodes of trees T, and T}, respectively. The two trees
are merged into a new tree T, through an arc labeled s (or a hyper-arc
encoding T), connecting nodes p and g, as illustrated in Figure 4.19 (b)
and (c), and in Figure 4.20 (b). The root of the new tree T, with two
regular nodes p and ¢ is node ¢, and the label T'ype(T}) is set to be equal
to the label Type(sim(p, s,q)).

- If Type(T,) = void, and Type(T,) = Type(sim(p, s,q)), then a node ¢’
is found in tree T, such that cell ¢’ is in S. If ¢’ is a regular node, then
trees T, and 7T, are merged into a new tree Tj through an arc labeled
s or Ty, connecting nodes p and ¢/, as illustrated in Figure 4.19 (d). If
the node ¢’ is hidden, then trees 7, and 7T, are merged into a new tree
T, through an arc connecting node p to a hyper-node containing node
¢'. The root of the new tree T, remains node ¢, and the label Type(T,)
remains unchanged.

- If Type(T,) = Type(sim(p, s, q)), and T'ype(1,) = void, we proceed anal-
ogously to the previous case. A node p’ is found in tree 7),, such that
cell p' is in S. If p' is a regular node, then trees T}, and T}, are merged
into a new tree T, through an arc labeled s or T, connecting nodes p’
and ¢, as illustrated in Figure 4.19 (e). If node p’ is hidden, then trees
T, and T} are merged into a new tree 7; through an arc connecting node
q to a hyper-node containing node p’. The root of the new tree T re-
mains node ¢, and the label T'ype(T},) is set to be equal to the label

Type(sim(p, s, q)).

- If Type(T,) = Type(T,) = Type(sim(p, s, q)), then nodes p’ and ¢’ are
found in trees T, and T, respectively, such that cells p’ and ¢ are in
S. If p’ and ¢ are regular nodes, then trees 7, and 7, are merged into
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a new tree T, through an arc labeled s or T}, connecting nodes p’ and
¢, as illustrated in Figure 4.19 (f). If p’ or ¢ are hidden, then the
corresponding hyper-nodes are connected, as explained above. The root
of the new tree 7, remains the node ¢, and the label T'ype(T},) remains
unchanged.

If Type(T,) # Type(sim(p,s,q)), Type(T,) # void, and Type(T,) =
Type (sim(p,s,q)), then a new hyper-node py.,, associated to tree T},
is constructed. A node ¢’ is found in tree 7} such that cell ¢’ is in S.
If node ¢’ is regular, then trees T, . (consisting of a single hyper-node
Pnew) and T, are merged into a new tree T}, through an arc labeled s
or T, connecting nodes pye, and ¢, as illustrated in Figure 4.20 (c).
Otherwise, a hyper-node containing ¢’ is connected to the hyper-node
Pnew- The root of the new tree T, is node ¢, and the label Type(T,)
remains equal to the label T'ype(sim(p,s,q)).

If Type(T,) = Type(sim(p,s,q)), Type(Ty) # Type(sim(p,s,q)) and
Type (T,) # void, then the tree T, is deactivated from the forest, by
setting its Active label to 0, and a new hyper-node ¢,.,,, associated to
tree T, is constructed. A node p’ is found in tree 7, such that cell p’
is in S. If node p is regular, then trees 7, and 7, , (consisting of a
single hyper-node @y, ) are merged into a new tree T, . through an arc
labeled s or Ty, connecting nodes p’ and ¢pe,,. Otherwise, a hyper-node
containing p’ is connected to hyper-node g,¢.,, as illustrated in Figure 4.20
(d). The root of the new tree T, ., is node gnew, the label Active(T,,.,, )

dnew
is set to 1, and the label Type(T,, ., ) is set to be equal to the label

qnew
Type(sim(p, s, q)).

If Type(T,) # void, Type(T,) # Type(sim(p, s,q)) Type(T,) # void, and
Type(Ty) # Type(sim(p, s,q)), then the tree T is deactivated from the
forest by setting the label Active(T},) to 0. Two new hyper-nodes pyey,
and gpey, associated with trees T, and Ty, respectively, are constructed.
The trees T),,., and T}, . (consisting of a single hyper-node pye,, and gpew,
respectively) are merged into a new tree T, . through an arc labeled s

or T, connecting the hyper-nodes p,e, and ¢ne,. The root of the new

tree Ty, is the node gew, the label Active(Ty, ) is set to 1, and the
label T'ype(Ty,..) is set to be equal to the label T'ype(sim(p, s, q)).

In Figure 4.20, a sequence of simplifications, consisting of the remove; o
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Figure 4.20: [25] The effect on the initial Morse complex and on the corre-
sponding AC'F (a) of a sequence of simplifications. It consists of two remove; 1
operators, which merge 1-cells p and 7 into 1-cells ¢ and ¢, respectively (b),
followed by two removes; operators. The first merges 1-cell ¢ into 1-cell u
(¢), and the second merges 1-cell ¢ into 1-cell u (d). The root of each tree is
shaded.

merging 1-cell p into 1-cell ¢, the remove; » merging 1-cell r into 1-cell ¢, the
removey; merging 1-cell ¢ into 1-cell u, and the removes ; merging 1-cell g into
1-cell u, is illustrated. After the first two simplifications, two removal trees,
rooted at ¢ and ¢ are constructed. The third simplification is a removesy;, and
T; is a removal tree. Thus, a new hyper-node t,.,, associated to tree T} is
created, and it is connected through an arc to node u. The fourth cancellation
is a removey 1, and node ¢ is a root of a removal tree. So again, a new hyper-
node ¢, is created, and it is connected through an arc to hyper-node ¢, of
tree T,.

If a simplification is a remove; ;11(p,s,0) or a remove;;—1(p,s,d) of the
second kind, then trees T}, and T are deactivated by setting their Active labels
to 0. An arc labeled s or T}, connecting node p to node empty is added to the
set of arcs of the forest.

If we construct the augmented cancellation forest by applying a sequence of
removal and contraction operators, then we can take care of the consistency of
the simplified complexes with regard to function values when we construct an
augmented cancellation forest. We can assign an f value to each hyper-node
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Pnew representing a tree T}, to be equal to the f value of the root p of 7}, i.e.,
f(Prew) = f(p). Then the root of each removal tree 7}, will be the regular node
or the hyper-node of T}, with highest f value among all its nodes, and dually for
contraction trees. This is important for two reasons. First, in this way, each
feasible simplification is determined only by its type (removal or contraction)
and its middle-cell s (the cell which is removed or contracted). Second, the
inverse refinement operators are also determined only by the middle cell s, and
can be implemented as deletion of arcs in the augmented cancellation forest.
After the deletion, the root of each of the two new removal (contraction) trees
will be its node or hyper-node with highest (lowest) f value.

4.5 Cancellation and remove in the 3D Case

The first attempts in the literature to the simplification of topological repre-
sentations of 3D scalar fields used the cancellation operator and considered the
effect of the cancellation on the Morse-Smale complexes of the field [62,63]. It
has been shown that the cancellation of a 1-saddle and a 2-saddle in general
increases the size of the Morse-Smale complex, as it increases the number of
the cells in the complex. This undesirable property of the cancellation has
been the main obstacle to applying the cancellation for the simplification of
scalar fields in dimensions higher than two.

In our first work on the simplification of topological representations of 3D
scalar fields [22] we have considered the effect of the cancellation operator on
the dual ascending and descending Morse complexes, and we have shown that
the cancellation on the Morse complexes in general increases the incidence
relation on the complexes. We have shown that the effect of the cancellation
on the Morse complexes is easier to describe and more intuitive to understand
than its effect on the Morse-Smale complexes.

In 3D, there are two types of a cancellation. The first type cancels a
maximum and a 2-saddle, and it is the same as a removess, or dually it
cancels a minimum and a 1l-saddle, and it is the same as a remove; . The
second type cancels a 1-saddle p and a 2-saddle ¢q. In general, it does not
reduce directly to a remove. It increases the incidence relation in the Morse
complexes, and it introduces new cells in the Morse-Smale complex.

Here, we will explain first:

1. the effect of the 1-saddle-2-saddle cancellation on the 3D descending
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Morse complex (new incidences in the descending Morse complex created
by the cancellation),

2. the effect of the 1-saddle-2-saddle cancellation on the 3D Morse-Smale
complex (the new cells in the Morse-Smale complex created by the can-
cellation).

Then, we will show that the macro-operator defined in [62] on Morse-Smale
complexes, consisting of a cancellation of a 1-saddle and a 2-saddle followed
by cancellations involving extrema (which remove the new cells introduced by
the 1-saddle-2-saddle cancellation) can be naturally expressed as a sequence
of remove operators. This confirms the fact that the remove and the insert
operators form a basis for the set of operators that modify Morse complexes
on a manifold M. In [31], we have implemented a macro-operator defined
in [62] based on cancellation, and a macro-operator based on remove, which
eliminates first the minima connected to the 1-saddle, or the maxima con-
nected to the 2-saddle, before performing the simplification (remove) of the
1-saddle and the 2-saddle. We have applied the macro-operators on the Morse
Incidence Graph (MIG) representing the Morse complexes. In our experi-
ments, we noticed that usually the operators involving the simplification of
1-saddles and 2-saddles are the first operators executed by the simplification
algorithm. A high percentage (80% or even higher) of the remove operators
involving extrema are triggered by the macro-operator involving saddles. This
means that when using cancellation, the simplification algorithm introduces
first many new arcs in the MIG that will be removed in subsequent steps of
the algorithm. Simplification remove operator, on the contrary, reduces at
each step the size of the MIG.

Finally, we will show how the transition matrix for the change of base can be
used to infer some properties of a sequence of remove operators and to deduce
the minimum number of remove operators needed to express any arbitrary
operator on the Morse (and the Morse-Smale) complexes on a manifold M.

The material in this section has been presented in [22,26].

4.5.1 1-saddle-2-saddle Cancellation on Morse and Morse-
Smale Complexes

In a descending Morse complex, after the cancellation of the 1-cell p and the
2-cell ¢ in 3D, each 1-cell p; and each O-cell r; that was on the boundary
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Figure 4.21: [26] The cancellation of a 1-saddle p and a 2-saddle ¢ in 3D on the
descending Morse complex (a), and on the Morse-Smale complex (b). Numbers
indicate the index of the corresponding critical point.

of the 2-cell ¢ becomes incident to each 2-cell g, and each 3-cell ¢; that was
in the co-boundary of the 1-cell p. Thus, all pairs (p;, qx), (pi,t1), (75, qx) and
(r;,t;) become part of the incidence relation on the descending (and ascending)
Morse complex. Each such pair of cells that become incident to each other in
the descending Morse complex corresponds to a new cell of the appropriate
dimension in the Morse-Smale complex. In particular, each pair consisting
of a O-cell r; and a 3-cell ¢; corresponds to a new 3-cell in the Morse-Smale
complex. For example, a pair consisting of the 0-cell r; and the 3-cell #; in the
descending Morse complex, illustrated in Figure 4.21 (a) right, corresponds to
a new 3-cell determined by the O-cell r; and the O-cell ¢; in the Morse-Smale
complex, illustrated in Figure 4.21 (b) right.

In a Morse-Smale complex, all cells that were incident to the 0-cells (ver-
tices) p or ¢ are affected by the cancellation of p and ¢. Specifically,

1. the O-cells p and ¢, and the 1-cell connecting them, are deleted.

2. All the 3-cells incident to both p and ¢ lose some faces on their boundary.
For example, the middle 3-cell in Figure 4.21 (b) left, determined by the
maximum ¢ and the minimum r, is bounded by the 2-cells q, t, q4, po;
q, t, q1, p; ¢, D, Ty D25 P2, Ty Pa, G4 Uy q1, Pa, Ga; P, T, pa, @1 before the
cancellation. It is transformed into a new 3-cell determined by ¢ and r,
whose boundary consists of the 2-cells 7, ps, qu4, pa; P2, @4, t, @15 Qa, t, Q15
P4; T, P2, q1, Pa. In the descending Morse complex before the cancellation,
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- the 1-cell p; is the unique 1-cell different from p incident to the
0-cell r and the 2-cell g,

- the 2-cell ¢ is the unique 2-cell different from ¢ incident to the 3-cell
t and the 1-cell p,

- the 1-cell p; is the unique 1-cell different from p incident to the
0-cell r and the 2-cell ¢;, and

- the 2-cell ¢4 is the unique 2-cell different from ¢ incident to the 3-cell
t and the 1-cell p;.

3. Other 3-cells in the Morse-Smale complex incident to the 0O-cell p are
modified. For example, the lower 3-cell in Figure 4.21 (b) left, incident
to the O-cell p, is transformed to the lower 3-cell in Figure 4.21 (b) right,
in which the 0-cell p is replaced with the 0-cell p;. Other 3-cells incident
to the 0-cell ¢ are modified in a similar way. For example, the upper
3-cell in Figure 4.21 (b) left, incident to the 0-cell ¢, is transformed to
the upper 3-cell in Figure 4.21 (b) right, in which the 0-cell ¢ is replaced
with the 0-cell ¢;.

4. For each pair of 0-cells, consisting of

- a 0-cell corresponding to a minimum, which together with the 0-
cell ¢ determines a 2-cell in the Morse-Smale complex before the
cancellation, and

- a 0-cell corresponding to a maximum, which together with the 0-
cell p determines a 2-cell in the Morse-Smale complex before the
cancellation,

a new 3-cell in the Morse-Smale complex is created by the cancellation.
Such new 3-cell is for example the 3-cell determined by r; and t;, whose
boundary consists of the 2-cells r1, pa, g2, p1; 71, P2, @1, P15 t1, G2, P2, G

tl? q2, P1, q1-

The new 3-cells introduced in the Morse-Smale complex by the 1-saddle-2-
saddle cancellation are undesirable. They are eliminated by applying further
cancellations of minima and 1-saddles and of maxima and 2-saddles, as dis-
cussed in [62].

A new 3-cell determined by a maximum ¢; and a minimum r; can be elim-
inated by the cancellation of the maximum ¢; and one of the (at most two)
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2-saddles connected to both ¢; and p before the cancellation of p and ¢, which
are the only 0-cells corresponding to the 2-saddles in any new 3-cell incident
to t;. For example, the new 3-cell in the Morse-Smale complex, determined by
the minimum 7, and the maximum ¢y, illustrated in Figure 4.21 (b), can be
eliminated by the cancellation of the maximum ¢; and the 2-saddle ¢; or the
2-saddle g2 (both cancellations are equivalent to a removess). A cancellation
involving the maximum ¢; and the 2-saddle ¢; is feasible if the 2-saddle ¢; is
connected to the maximum ¢;, and to exactly one other maximum different
from ¢;.

In [62], the authors have defined a macro-operator, that we call here a
macro-1-saddle-2-saddle operator. The effect of this macro-operator is to first
introduce new cells in the Morse-Smale complex by applying the cancellation
of a 1-saddle p and a 2-saddle ¢, and then to eliminate these new cells by
applying cancellations involving extrema, as illustrated in Figure 4.22.

4.5.2 Macro-1-saddle-2-saddle Operator as a Sequence
of remove Operators

Macro-1-saddle-2-saddle operator can be expressed as a sequence of remove
simplification operators in such a way that each simplification in the sequence
reduces the number of cells in the Morse-Smale complex. This sequence con-
sists of removes 3 operators, which eliminate all but two 2-cells ¢ and ¢’ in the
co-boundary of the 1-cell p, and of the remove; 2(p, q,q’).

Recall that a cancellation only changes the connectivity of the cells incident
in the cancelled 0-cells in the Morse-Smale complex, and the incidence relation
of the cells on the immediate boundary and co-boundary of the cancelled cells
in the Morse complexes. In particular, if a O-cell g, corresponding to a 2-
saddle in the Morse-Smale complex (e.g. the O-cells ¢; and ¢y) was connected
through a 1-cell to the O-cell p before the cancellation of ¢ and p, then only
the 1-cells connecting g to 0-cells corresponding to 1-saddles are affected by
the cancellation. The 1-cells connecting g to 0O-cells corresponding to maxima
are unchanged by the cancellation of ¢ and p.

We give here one possible sequence of remove; ;11 operators through which
the macro-1-saddle-2-saddle operator can be expressed. Another possible se-
quence would only consist of remove; ;1 operators. The problem here is that
the 1-cell p is incident to k 2-cells, where k > 2, and the 2-cell ¢ is incident to
m 1-cells, where m > 2. To be able to apply a remove; o operator, which will
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Figure 4.22: [26] A sequence consisting of the cancellation of the 1-saddle p
and the 2-saddle ¢, followed by the removey s operators, which eliminate the
2-saddles and the 3-saddles connected to p, on a 3D descending Morse complex.
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Figure 4.23: [26] A sequence consisting of the removes 3 operators, which elim-
inate the 2-saddles and the 3-saddles connected to p, followed by the remove; o
that eliminates the 1-saddle p and the 2-saddle ¢ on a 3D descending Morse
complex.

eliminate the 1-cell p and the 2-cell ¢, we need to have only two 2-cells ¢ and
¢ incident to the 1-cell p. We can reduce the complex I'y to this situation by
applying k — 1 removesy 3 operators, until all the 2-cells incident to the 1-cell p,
with the exception of the 2-cell ¢ and one other 2-cell ¢’ are eliminated. Now,
we can apply the remove; 5(q, p,q’), which eliminates the 1-cell p and the 2-
cell ¢, as shown in Figure 4.23. Such sequence of remove operators consists of
the same number of operators as the macro-operator consisting of a sequence
of cancellations (macro-1-saddle-2-saddle operator), and it maintains simpler
Morse and Morse-Smale complexes at each step.

4.5.3 Transition Matrix in 3D

We show how we can infer the number and dimensions of cells introduced or
removed by an operator u, given the coordinates of u in basis B, and vice
versa, how we can infer the minimum number of our atomic operators needed
to express an arbitrary operator u, given the number and dimensions of cells
removed or introduced by wu.

In 3D, there are three 4-tuples that form a basis of the set of 4-tuples
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that correspond to topologically consistent operators for modifying Morse
complexes. These three 4-tuples by, b; and by have coordinates (1,1,0,0)z,
(0,1,1,0)5 and (0,0, 1, 1)s, respectively, in the standard basis B. Operator by
corresponds to the remove; o, operator b; corresponds to the remove; o, and
to the removey;, and operator by corresponds to the removess. The vector
bs = (1,—1,1,—1)p, together with vectors by, by and be, completes the basis of
the four-dimensional module over Z.

The transition matrix T for the change of basis of Z*, from basis B =
{bo, b1, b, b3} to the standard basis B = {e1, e, 3, €4}, where e; = (1,0,0,0)5,
es =(0,1,0,0)5, e3 =(0,0,1,0)5, e4 = (0,0,0,1)5, is

1 00 1
110 -1
I'= 011 1
001 -1

Using this matrix, it is possible to infer the characteristic of a macro-
operator expressed as a sequence of remove operators. For example, a sequence
consisting of one remove; o and two removess is a macro-operator u with
coordinates ug = (1,0,2,0)p in basis B. After the multiplication of T with
u’y (v’ is the transpose of u), we get the coordinates of w in standard basis,
ug = Tuly = (ap,a1,a2,a3)p = (1,1,2,2)5. This means that the operator u
decreases the number of O-cells and 1-cells by 1, and it decreases the number
of 2-cells and 3-cells by 2.

The minimum number of basis operators needed to express an arbitrary
operator u € U can be computed using the inverse matrix

3 1 -1 1
1l -2 2 2 =2
41 1 =1 1 3

1 -1 1 -1

T =

For example, an operator u, which decreases the number of 0-cells by 1,
and increases the number of 2-cells by 1, has coordinates ug = (ag, a1, as, a3)s
= (1,0,—1,0)5 in the standard basis B. After multiplication by T, we get
up = T ujy = (1,—1,0,0)5. This means that u can be expressed as at least
one remove; o, and at least one insert; o (or one inserts ;). The same minimal
number of basis operators needed to express u could be obtained from

u = pobo + p1b1 + poby as
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4.6 Summary

In [24,27], we have defined the simplification removal and contraction oper-
ators on the Morse functions and on the corresponding dual descending and
ascending Morse complexes. In [26], we have defined their inverse refinement
insertion and expansion operators, and we have shown that the defined sim-
plification and refinement operators form a basis for the set of operators on
Morse complexes on a manifold M. In [32], we have generalized these oper-
ators; the new generalized simplification operator is called remove, and its
inverse refinement operator is called insert. Here, we have shown that the
remove operator (together with the inverse insert) forms a basis for the set
of operators that modify Morse complexes on a manifold M. As opposed to
the simplification cancellation operator defined in Morse theory, the simplifi-
cation remove operator has another important property: it does not increase
the incidence relation on the Morse complexes, and it does not introduce new
cells in the Morse-Smale complex. This property makes the remove operator
viable for applications. In [25], we have presented a tree-based data structure
for encoding a sequence of simplifications on Morse complexes.

In [22], we have compared the effect of the cancellation operator on 3D
Morse and the Morse-Smale complexes of scalar fields. We have shown how
a macro-operator, consisting of the cancellation of a 1-saddle and a 2-saddle
followed by cancellations involving extrema which eliminate the spurious cells
from the Morse-Smale complex introduced by the 1-saddle-2-saddle cancella-
tion, can be expressed as a sequence of the remove operators. This work has
been presented in [26].

Our more recent work, done in collaboration with Federico Iuricich, is
on the experimental evaluation and comparison of the cancellation and the
remove operators [35]. In [35], a simplification algorithm based on the cancella-
tion operator and on the remove operator has been designed and implemented.
The algorithm iteratively applies a sequence of simplification algorithms on an
initial Morse-Smale complex at full resolution. It has been shown that, with
the same number of the applied simplification operators, the number of 1-
cells in the simplified Morse-Smale complex obtained through the cancellation
operator always exceeds the number of 1-cells in the simplified Morse-Smale
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complex obtained through the remove operator. The large number of 1-cells
in the Morse-Smale complex influences not only the storage cost of the data
structure for encoding it and the time required for performing the simplifica-
tions, but it also reduces the number of feasible simplification and thus the
flexibility of the simplification algorithm.

Our next step has been to design and implement a multi-resolution model
for the topology of the scalar fields and the corresponding Morse and Morse-
Smale complexes [32]. We will describe this work in Section 5.
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Multi-Resolution Models

In [29], we have defined a set of operators for updating cell complexes. We
classify these operators as homology-preserving and homology-modifying ones.
Homology-preserving operators are a generalization of the simplification remove
operator and its inverse refinement insert operator defined on Morse complexes
to simplification and refinement operators defined on arbitrary cell complexes.

The set of homology-preserving and homology-modifying operators forms
a basis for the set of operators that modify cell complexes while maintaining
the Euler-Poincaré formula. As a consequence, any operator that modifies cell
complexes can be expressed as a suitable sequence of the operators we have
defined. In [29], we have found such sequence for some widely used operators
on cell complexes defined in the framework of geometric modeling, such as
removal and contraction operators on nG-maps, Euler operators and handle
operators.

In [36], we have defined a multi-resolution model for cell complexes in arbi-
trary dimensions based on the simplification and the refinement operators. We
have implemented the multi-resolution model based on homology-preserving
operators in collaboration with Federico Iuricich. The multi-resolution model
based on homology-preserving operators is a generalization of the multi-resolu-
tion model for Morse complexes that we have defined and implemented in [32].
Here, we compare its 2D instance with the approaches proposed in the lit-
erature to the multi-resolution representation of 2D Morse or Morse-Smale
complexes.

101
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5.1 Topological Operators on Cell Complexes

There have been many proposals in the literature for manipulation operators on
2D and 3D cell complexes (see Subsection 3.4). In Subsection 5.1.1, we describe
a minimal set of Euler operators on cell complexes in arbitrary dimensions
that we have introduced in [29]. These operators subsume all the other Euler
operators proposed in the literature. In Subsection 5.1.2, we show that these
operators form a minimally complete basis for the set of operators that modify
cell complexes in a topologically consistent manner. In Subsection 5.1.3, we
show how some of the widely used update operators proposed in the literature
can be expressed as suitable combinations of the ones presented here.

5.1.1 Topological Operators

We have defined both the simplification and the refinement topological oper-
ators on cell complexes. The topological operators can be classified as:

e homology-preserving operators:

- simplification KiC'(i + 1)C (Kill i-Cell and (i+1)-Cell) operators,
which delete an i-cell and an (7 + 1)-cell, and

- refinement MiC(i + 1)C' (Make i-Cell and (i+1)-Cell) operators,
which create an i-cell and an (i 4 1)-cell;

e homology-modifying operators:

- simplification KiC'iCycle (Kill i-Cell and i-Cycle) operators, which
delete an i-cell and an i-cycle, and

- refinement MiCiCycle (Make i-Cell and i-Cycle) operators, which
create an ¢-cell and an i-cycle.

Homology-Preserving Simplification Operators

The homology-preserving simplification operator KiC'(i+ 1)C' (Kill i-Cell and
(i+1)-Cell) deletes an i-cell and an (i + 1)-cell from a cell complex I', and it
changes the immediate boundary and co-boundary relation of some cells in T'.
Specifically, the immediate co-boundary relation is changed for the cells in the
immediate boundary of the deleted cells, and the immediate boundary relation
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is changed for the cells in the immediate co-boundary of the deleted cells. The
Euler characteristic and the Betti numbers of the complex remain unchanged.
We have defined the KiC(i+ 1)C operator so that it has the same effect on a
cell complex I' as the remove operator on a descending Morse complex I'y.

There are two types of the KiC'(i+ 1)C operator. The first type is feasible
in the following two cases:

1. the (i 4+ 1)-cell ¢ to be deleted is bounded by exactly two i-cells (the
i-cell p to be deleted and the i-cell p’ which will remain) and the i-cell p
appears exactly once in the immediate boundary of the (i+1)-cell ¢ (i.e.,
the multiplicity mult(p, Oq) of the i-cell p in the immediate boundary of
the (i + 1)-cell ¢ is equal to 1);

2. the i-cell g to be deleted bounds exactly two (i 4 1)-cells (the (i + 1)-cell
p to be deleted and the (i + 1)-cell p’ which will remain) and the i-cell ¢
appears exactly once in the immediate boundary of the (i+1)-cell p (i.e.,
the multiplicity mult(q, p) of the i-cell ¢ in the immediate boundary of
the (i 4+ 1)-cell p is equal to 1).

The first instance is denoted as KiC'(i+1)Ce, (g, p, p') (contract). We denote
as R, Z and S, respectively, the sets of cells in the immediate co-boundary
of the i-cell p, in the immediate co-boundary of the (i 4 1)-cell ¢ and in the
immediate boundary of the i-cell p. We denote as C,,, the set {p}URUZUS.
The operator transforms a cell complex I' in the simplified complex IV by
replacing the set {¢,p} U C,,, of cells with the set C,, so that:

1. each instance of the (i+1)-cell ¢ is deleted from the immediate boundary
of each (i + 2)-cell z € Z, and from the immediate co-boundary of the
i-cell p/,

2. each instance of the i-cell p is deleted from the immediate co-boundary
of each (i — 1)-cell s € S,

3. each instance of the i-cell p is replaced with k instances of the i-cell p’
in the immediate boundary of each (i 4+ 1)-cell » € R, where k is the
multiplicity of the i-cell p’ in the immediate boundary of the (i + 1)-
cell ¢ (k= mult(p’,0q)). In other words, the multiplicity mult’ in the
simplified complex I'" of the i-cell p’ in the immediate boundary of each
(¢ + 1)-cell r € R is increased by the product of the multiplicity of
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the i-cell p in the immediate boundary of the (i + 1)-cell r and the
multiplicity of the i-cell p’ in the immediate boundary of the (i + 1)-cell
q (mult' (p', 0r) = mult(p’, 0r) + mult(p, Or) - mult(p', Jq)).

If the i-cell p appears mult(p,0r) times in the immediate boundary of the
(7 4+ 1)-cell r, then mult(p,dr) disjoint copies of the (i + 1)-cell ¢ are merged
into each (i + 1)-cell r.

The second instance, denoted as KiC(i + 1)Ce(q, p,p') (remove), is dual.
We denote as R, Z and S, respectively, the sets of cells in the immediate
boundary of the (i + 1)-cell p, in the immediate boundary of the i-cell ¢ and
in the immediate co-boundary of the (i + 1)-cell p. We denote as C,, the set
{P} URUZUS. The operator transforms a cell complex I" in the simplified
complex I'" by replacing the set {¢,p} U C,, of cells with the set C,, so that:

1. each instance of the i-cell ¢ is deleted from the immediate co-boundary of
each (i—1)-cell z € Z and from the immediate boundary of the (i+1)-cell

p/

2. each instance of the (i+1)-cell p is deleted from the immediate boundary
of each (i + 2)-cell s € S,

3. each instance of the (i41)-cell p is replaced with mult(q, dp’) instances of
the (i + 1)-cell p’ in the immediate co-boundary of each i-cell r. In other
words, the multiplicity mult’ in the simplified complex I of each i-cell
r € R in the immediate boundary of the (i + 1)-cell p’ is increased by
the product of the multiplicity of the i-cell r in the immediate boundary
of the (i + 1)-cell p and the multiplicity of the i-cell ¢ in the immediate
boundary of the (i+1)-cell p" (mult'(r,0p’) = mult(r, Op’) + mult(r, dp) -
mult(q, 0p')).

Figure 5.1 shows the effect of the homology-preserving K1C2C,..(q,p,p’)
operator on a cell 2-complex.

The second type of the KiC(i + 1)C operator is feasible in the following
two cases:

1. the (i + 1)-cell ¢ to be deleted is bounded only by the i-cell p which will
be deleted as well, and the multiplicity of the i-cell p in the immediate
boundary of the (i 4 1)-cell g is equal to 1 (mult(p, dq) = 1);
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Figure 5.1: [21] The K1C2C,.(q,p,p’) operator on a 2D cell complex.

2. the i-cell ¢ to be deleted bounds only the (i + 1)-cell p which will be
deleted as well, and the multiplicity of the i-cell ¢ in the immediate
boundary of the (7 + 1)-cell p is equal to 1 (mult(q,dp) = 1).

The operator is denoted as KiC'(i+1)Ce(q, p) and KiC(i+1)C,e(q, p), respec-
tively. The sets R, Z and S are defined in the same way as for the correspond-
ing operators of the first type. The set C,, is equal to RU Z U S. The effect
of the operator is to delete both cells from the complex, and to delete each
instance of the cells ¢ and p from the immediate boundary and the immediate
co-boundary of each cell in C,,. The KiC(i + 1)Ce(q, p) merges mult(p, Or)
disjoint copies of the (i + 1)-cell ¢ and i-cell p into each (i + 1)-cell r € R. The
KiC(i+1)C,c(q,p) merges mult(p, ds) disjoint copies of the (i + 1)-cell ¢ and
i-cell p into each (i + 2)-cell s € S.

Homology-Preserving Refinement Operators

The homology-preserving refinement operator MiC(i + 1)C' (Make i-Cell and
(i+1)-Cell) creates an i-cell and an (i+1)-cell, thus transforming a cell complex
I' in the refined complex I"”. It changes the immediate boundary relation for
the cells in the immediate co-boundary of the created cells and the immediate
co-boundary relation for the cells in the immediate boundary of the created
cells. The Euler characteristic and the Betti numbers of the complex remain
unchanged. We have defined the MiC(i + 1)C operator as an undo of the
corresponding KiC'(i+ 1)C operator on the cell complexes, in the same way as
the insert operator has been defined as an undo of the corresponding remove
operator on the Morse complexes.

The homology-preserving refinement operator MiC(i + 1)C' can create the
two new cells from an existing i- or (i 4+ 1)-cell, or insert the two new cells in
the complex. It is feasible on the complex I' if all the cells in the immediate
boundary and in the immediate co-boundary of the two created cells are present
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in I', and it is specified by these cells. There are two types of homology-
preserving refinement operators, where the operators of the first type create
the two new cells by splitting an existing cell.

The first type of MiC(i + 1)C operator either splits the existing (7 + 1)-
cell into two by splitting its boundary, thus creating the i-cell separating the
two (i + 1)-cells, or dually, it splits the existing i-cell in two by splitting its
co-boundary, thus creating the (i 4+ 1)-cell bounded by the two i-cells.

The first type of MiC(i + 1)C operator has two instances, as follows:

1. the first instance of the operator, that we denote as MiC(i+1)Ce.(q,p,p)
(expand), splits the existing i-cell p’ into two i-cells p and p’ by splitting
the immediate co-boundary of p/, and it creates the (i41)-cell ¢ bounded
by the two i-cells p and p;

2. the second instance of the operator, that we denote as MiC(i+1)C;,(q, p, p')
(insert), splits the existing (i 4+ 1)-cell p’ into two (i + 1)-cells p and p/
by splitting the immediate boundary of p’, and it creates the i-cell ¢
separating the two (i + 1)-cells p and p'.

In both cases, the created i-cell appears exactly once in the immediate bound-
ary of the created (i 4 1)-cell.
The MiC(i+ 1)Ce.(q,p,p’) operator is specified by

1. the i-cell p’ that is the only i-cell (with the exception of the i-cell p)
that will be in the immediate boundary of the (7 + 1)-cell ¢, and the
multiplicity mult'(p/, 0q) of the i-cell p’ in the immediate boundary of
the (i + 1)-cell ¢ in the refined complex I”;

2. the set Z of the (i + 2)-cells that will be in the immediate co-boundary
of the (i + 1)-cell ¢, and the multiplicity mult’(q,0z) of the (i + 1)-cell
¢ in the immediate boundary of each (i + 2)-cell z € Z in the refined
complex I";

3. the set S of the (i —1)-cells and the set R of the (i+1)-cells that will be in
the immediate boundary and the immediate co-boundary, respectively, of
the i-cell p, together with the multiplicities mult'(s, dp) and mult'(p, Or)
of each boundary (and co-boundary) relation.

We denote as C,, the set {p’} UZURUS.
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The MiC(i 4+ 1)Ces(q, p,p’) operator is feasible on the cell complex T if
all the specified cells are in I, and the multiplicity mult(p’,0r) of the i-cell
p’ in the immediate boundary of each (i + 1)-cell  in R in I' is greater than
or equal to the product of the multiplicity mult'(q, dp’) of the i-cell ¢ in the
immediate boundary of the (i + 1)-cell p’ and the multiplicity mult'(p, Or)
of the i-cell p in the immediate boundary of the same (i + 1)-cell r in I
(mult(p’, 0r) > mult'(p', dq) - mult'(p, Or)).

The effect of the MiC(i + 1)Cei(q, p,p") operator is to insert the i-cell
q and the (i 4 1)-cell p in I', by replacing the set C,, of cells with the set
{¢,p} U C,,, and to adjust the immediate boundary relation of the cells ¢, p
and the cells in C,,,. For each (i + 1)-cell 7 in R (in the immediate boundary
of the (i+ 1)-cell r), the multiplicity of the i-cell p’ in the immediate boundary
of the (i + 1)-cell r is diminished by the product of the multiplicity of the
i-cell p in the immediate boundary of the (i 4+ 1)-cell r and the multiplicity of
the i-cell p’ in the immediate boundary of the (i + 1)-cell g (mult'(p’,0r) =
mult(p’, Or) —mult' (p', dq) -mult’ (p, 0r)). Each (i+1)-cell € R in the refined
complex I is equal to the same (i + 1)-cell r in I" minus mult'(p, Or) disjoint
copies of the (i 4 1)-cell ¢ and the i-cell p.

The second instance MiC'(i 4+ 1)C;,(q, p,p’) has a dual effect.

For a 2-complex I' embedded in R?, the homology-preserving operators
are also called: MV E (Make Vertex and Edge) and MEF (Make Edge and
Face), which correspond to M0OC1C and M1C2C, respectively. These oper-
ators are illustrated in Figures 3.2 and 3.3, respectively. For a 3-complex I'
embedded in R3, there is an additional homology-preserving operator, M EFV]
(Make Face and Volume (3-Cell)) which creates a new face (2-cell) and a new
three-dimensional (volumetric) cell. It is the same as the M2C3C operator.

The second type of the MiC(i 4+ 1)C operator either creates an i-cell and
an (i+1)-cell bounded only by the i-cell, or dually, it creates an (i+ 1)-cell and
an i-cell bounding only the (7 + 1)-cell. The created i-cell appears exactly once
in the boundary of the created (i + 1)-cell. We will denote the first instance of
the operator as MiC(i+1)C.,(q, p) and the second one as MiC(i+1)C;,(q, p).
The operator is specified by the set C , of cells in the immediate boundary and
co-boundary of the created cells, and is feasible on a cell complex IT' if all the
cells in Cy, are in I'. Its effect is to update the immediate boundary and co-
boundary relation of the cells in {q,p} U C,,. After the MiC(i + 1)Ce.(q, p),
each (i + 1)-cell » € R in I"” is equal to the same (i 4+ 1)-cell r in I" minus
mult'(p,0r) disjoint copies of the (i + 1)-cell ¢ and the i-cell p. After the



108

MiC (i + 1)Cin(q, p), each (i + 2)-cell s € S in I is equal to the same (i + 2)-
cell s in I minus mult’(p, Js) disjoint copies of the (i 4+ 1)-cell p and the i-cell
q.

Homology-Modifying Operators

Homology-modifying operators change both the number of cells in the complex
I' and its Betti numbers, and thus the Euler characteristic of I'.

The homology-modifying refinement operator MiCiCycle (Make i-Cell and
i-Cycle) increases the number n; of i-cells and the number §; of non-bounding
i-cycles by one. It is specified by the set C,, = R of the (i — 1)-cells in the
immediate boundary of the created i-cell p (together with the corresponding
multiplicities mult'(r, p), r € R). It is feasible on a cell complex T if all the
cells in the set C), (in the immediate boundary of the created cell) are in T
Its effect is to introduce the created cell in the immediate co-boundary of each
cell in the set €}, = R with the appropriate multiplicity. The co-boundary of
the created i-cell p is empty.

The inverse homology-modifying simplification operator KiCiCycle (Kill
i-Cell and i-Cycle) deletes an i-cell and destroys an i-cycle, thus decreasing the
numbers n; and J; by one. It is feasible on a cell complex I' if the immediate
co-boundary of the cell to be deleted is empty. It changes the immediate co-
boundary relation of each (i — 1)-cell r € R = (), in the immediate boundary
of the deleted i-cell. Its effect is to remove all instances of the deleted cell from
the immediate co-boundary of each (i — 1)-cell r € R.

ol
(a) ) (©)

Figure 5.2: [29] Homology-modifying operators on a portion of the 2-complex
in E3: MV0Cycle (Make Vertex and 0-Cycle) (a); M E1Cycle (Make Edge and
1-Cycle) (b); M F2Cycle (Make Face and 2-Cycle) (c).

For a 2-complex I' embedded in R?, the homology-modifying operators
MO0C0Cycle, M1C1Cycle and M2C2Cycle (illustrated in Figure 5.2) are also
called MVO0Cycle (Make Vertex and 0-Cycle), M E1Cycle (Make Edge and
1-Cycle) and M F2Cycle (Make Face and 2-Cycle), respectively.
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The operator MV 0Cycle creates a new vertex and a new connected com-
ponent, it increases by one the number of vertices (0-cells) and the zeroth Betti
number (. It is also an initialization operator, which creates a new complex
['. The operator M E1Cycle creates a new edge and a new 1-cycle, thus in-
creasing by one the number of edges (1-cells) and the first Betti number ;.
The operator M F2C'ycle creates a new face and a new 2-cycle, thus increasing
by one the number of faces (2-cells) and the second Betti number [3;.

For a 3-complex I' embedded in R3, the homology-modifying operators will
be the same as for 2-complexes, since in this case the third Betti number (s is
null.

We note here that the Betti numbers of a cell complex are determined
by the immediate boundary relation 0; on the complex, which relates i-cells
with (i — 1)-cells. The creation of an i-cell affects relations 0;1; and 9;, and
thus it either increases [3; by one, or it decreases (3;_1 by one, to maintain
the validity of the Euler-Poincaré formula. In the first case, we obtain our
operators MiCiCycle (Make i-Cell and i-Cycle). The operators MiCK (i —
1)Cycle (Make i-Cell, Kill (i — 1)-Cycle), i > 2, obtained in the second case,
can be expressed through the proposed ones as: K(i — 1)C(i — 1)Cycle (Kill
(1 — 1)-Cell and (i — 1)-Cycle) applied on one (i — 1)-cell in the boundary of
the i-cell to be created (possibly preceded by some K (i — 1)CiC', which delete
all the i-cells in the co-boundary of the (i — 1)-cell), followed by M (i —1)CiC
(Make (i — 1)-Cell and ¢-Cell), which re-creates the deleted (i — 1)-cell and
creates the i-cell (followed by M (i — 1)CiC, inverse to K (i — 1)CiC, which
restore the deleted cells).

M1CKO0Cycle (Make 1-cell, Kill 0-Cycle) can be obtained by destroy-
ing one of the merged 0-cycles (components), applying one M0C1C', and re-
creating the destroyed component.

5.1.2 Minimality and Completeness

The topological operators described in Section 5.1 form a set of basis operators
for creating and updating cell complexes of dimension at most d. This can be
shown by interpreting these operators as ordered (2d + 2)-tuples (co, ¢1, ., cq,

d
To,T1,..,T4) in an integer grid, belonging to the hyperplane II: > (—1)'¢; =
i=0

d

S~ (—1)"z; defined by the Euler-Poincaré formula. The first d + 1 coordinates
i=0
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denote the number of i-cells created or deleted by the operator, depending on
the sign of the coordinate, and the last d + 1 coordinates denote the change
in the Betti numbers of the complex induced by the operator. The operator
MiC(i +1)C, 0 < i < d—1, has coordinates ¢; = ¢;41 = 1, ¢; =0, j €
{0,1,....,d}\{i,e + 1}, z; = 0, 7 € {0,1,..,d}. The operator MiCiCycle,
0 <i <d, has coordinates ¢; =z; =1, ¢; =2; =0, j € {0, 1, ..., d}\{i}.

We will show that

(1) the 2d + 1 (2d + 2)-tuples corresponding to our operators are linearly
independent, and

(17) any (2d + 2)-tuple in the hyperplane I can be expressed as a linear
combination of 2d + 1 (2d + 2)-tuples corresponding to our operators,

which will imply the claim.
d—1 d
A linear combination ) p; MiC(i + 1)C + ) v;MiCiCycle vanishes if
i=0 i=0
and only if (o, po,0,..,0) + (0, gy, 11, ..,0) + .. + (0, ..0, g_1, fta—1,0, ..,0) +
(l/()7 0, ey O, L, 0, ey O) + (0, vy, O, ey 07 vy, 0, ey O) +.. .+ (0, ey 0, Vg, 0, ey 0, l/d) = 0,
which is equivalent to (po + vo, po + p1 + v, 1 + po + Vay oy fla—2 + fa—1 +
Va—1, fta—1 + Va, Vo, V1, -, Vq) = 0. It follows that ; =0, 0<i<d—1, v, =0,
0 < < d, implying that the tuples corresponding to our operators are linearly
independent.
A tuple (ag,aq,..,aq,b0,b1,..,b4) in the hyperplane II can be expressed
through the 2d + 1 independent (2d + 2)-tuples corresponding to our oper-

d—1 d
ators as Y u;MiC(i + 1)C + > v;MiCiCycle if (po + vo, fto + 1 + v1, i1 +
i=0 i=0
fo+ Vo, ooy fag—o + fa—1+ Va—1, fba—1 + Va, Vo, V1, -, Va) = (ag, @i, .., aq, by, by, .., ba).
It follows that vV, = bl‘, 0 S 1 S d, and Mo = Ao — b(], H1 = ai —b1 — Mo =
(a1 —ag) — (b1 —bo), pia = az —bo — p1 = (a2 — a1 + @) — (ba — b1 + o) .., pta—1 =
(ag_1 — ag_o+ ..+ (=1)%ag) — (bg_1 — bg_o2 + .. + (=1)%by) = ag — bg. In short,
pwi= . (=1)a; — > (=1)"7b;,0<i<d—1,and v; = b;, 0 < i < d. Thus,
7=0 7=0
each operator satisfying the Euler-Poincaré formula on a cell complex I' can
be expressed as a linear combination of the topological operators.
In the space (hyperplane) of dimension (2d+ 1), a generating set consisting

of (2d + 1) independent tuples forms a basis for the hyperplane.
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5.1.3 Comparison with other Operators on Cell Com-
plexes

We compare the operators proposed here with other operators on cell com-
plexes proposed in the literature, in particular with removal and contraction
operators defined in the framework of n-maps and nG-maps, and with Euler
operators and handle operators, defined in the framework of geometric model-
ing (see Section 3.4). We show how these operators can be expressed through
the topological MiC(i + 1)C' and MiCiCycle operators. We have presented
this work in [29].

Comparison with Removal and Contraction Operators

Removal and contraction operators have been introduced in digital geometry
literature as simplification operators on n-G-maps [40]. An i-cell ¢, 0 < i <
n — 1, can be removed in two cases: if it bounds exactly two different (i + 1)-
cells p and p" and it appears exactly once in the immediate boundary of both
p and p'; or if it bounds exactly one (i + 1)-cell p and it appears exactly twice
in the immediate boundary of p. The contraction operator is dual.

The first instance of the removal operator is a special case of the KiC'(i +
1)C.e(q, p,p') operator, as it requires that the i-cell ¢ appears exactly once not
only in the immediate boundary of the (i 4 1)-cell p but also in the immediate
boundary of the (i + 1)-cell p'.

The second instance of the removal operator may, but is not guaranteed
to, preserve the topological characteristics of the complex (it may produce
cells that are not topological cells, or it may disconnect the complex). Thus,
it is not an operator on cell complexes and it cannot be classified neither as
homology-preserving nor as homology-modifying.

In [39], homology generators of a cell complex are computed using two
homology-preserving simplification operators: the removal of a degree-two cell
(which is the same as KiC'(i+1)Ce(q, p,p") and as the first instance of the re-
moval operator in [40]) and the removal of a dangling cell (which is the same as
KiC(i+1)Ce(q,p)). The inverse (refinement) insertion and expansion opera-
tors have been introduced in [5]. They are the same as MiC(i +1)Cy,(q, p,p')
and MiC(i 4+ 1)Cey(q,p,p’), respectively.



112

Comparison with other Euler Operators

We show that various Euler operators proposed in the literature for 2D and
3D cell complexes are either instances of our operators, or can be expressed
through them.

Virtually all the proposed sets of basis Euler operators on 2D and 3D cell
complexes contain MEV (Make Edge and Vertex) and MEF (Make Edge
and Face) operators, which are the same as our M0C1C (Make 0-cell and
1-cell) and M1C2C (Make 1-cell and 2-cell) homology-preserving operators,
respectively.

Several sets of basis operators have been proposed for manifold 2-complexes
bounding a solid in R* (boundary models) [12,48,79,80].

The glue operator in [48] merges two faces and deletes both of them. Two
faces may be glued if they have the same number of vertices, and they have
no edges in common. The glue operator deletes not only the two faces, but it
deletes also all the edges and vertices on the boundary of one of the deleted
faces. If the two glued faces belong to two different shells, one shell is deleted
(Bo is decreased by one), and the operator is called K F'S (Kill Face and Shell).
If the two glued faces belong to the same shell, a handle (genus) is created (5 is
increased by two), and the operator is called K FMH (Kill Face, Make Hole).

Let vy, e1,v9, €2, .., Uk, e and v}, €], vy, €5, .., vy, ;. be the cyclical lists of ver-
tices and edges of the two glued faces f and f’, listed in the order in which they
are identified. Both instances of the glue operator can be expressed through
our operators as follows:

- M1CKO0Cycle for KFS and M1C1Cycle for KFMH creates an edge
connecting vy and v,

- KO0C1C contracts the edge (v1,v]), and identifies v] with v; (vertex vy
is the current vertex),

- M1C2C makes a triangular face with vertices v;, v;11, vj,; for current
vertex v;, KOC1C and K1C2C identify vertex v;,; with vertex v;;; and
edge e}, , with edge e;;1, respectively (v;41 is the current vertex),

- M2C2Cycle and K1C2C identify edge e), with edge ey,

- K2C2Cycle deletes face f' and the 2-cycle formed by faces f and f/,
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- K2C2Cycle for KFS merges the two solids bounded by shells containing
f and f’" into one, and K2CM1Cycle for KFMH deletes face f and

creates a 1-cycle determined by edges ey, ..,ex.

In [12,79, 80], the topology-modifying operator is called MRKF (Make
Ring, Kill Face). It glues the face f’ to the face f, and deletes the face f’.
MRKF can be expressed through our operators as follows (see Figure 5.3):

[ MOC1C operators, where [ is the number of the edges and of the vertices
of f',

[ M1C2C operators, which create a copy of f" in f,

a sequence defining the glue operator in [48],

(I — 1) K1C2C operators (we leave one edge joining a vertex of f to a
vertex of f’ to maintain the topological validity of the face f).

PN PN PN
S S LS A S LS
(a) (b) (c) (d) (e)

Figure 5.3: [29] M RK F operator expressed through our operators: triangular
face to be glued to the quadrangular face (a), three M0C1C operators (b),
three M 1C2C operators (c), glue (d), two K1C2C operators (e).

Homology-modifying operators defined for non-manifold 2-complexes in R3
[71] are called M ECh (Make Edge and Complex Hole), MFKCh (Make Face,
Kill Complex Hole) and M FCc¢ (Make Face and Complex Cavity). They are the
same as our operators M1C1Cycle, M2CK1Cycle (Make 2-Cell Kill 1-Cycle)
and M2C2Cycle, respectively. For 3-complexes in R? [82,83], an additional
homology-modifying operator is defined, called MVIKCc (Make Volume, Kill
Complex Cavity). It is the same as M3C K2Cycle (Make 3-Cell, Kill 2-Cycle).

In [58], homology-preserving operators are called cell subdividers and homo-
logy-modifying ones are called global hole shapers.

A cell subdivider subdivides an i-cell by inserting into it an (i — 1)-cell.
This operator is equal to the M (i — 1)C'iC operator.
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A global hole shaper either attaches or detaches a cell, thus creating a hole.
There are two instances of this operator: the attached topological i-cell creates
an i-hole or the detached topological i-cell creates an (i — 1)-hole. The first
instance of this operator is the same as MiCiCycle. The second instance is
the same as KiC'M (i — 1)Cycle (Kill i-Cell, Make (i-1)-Cycle).

The inverse homology-modifying operators attach or detach a cell, thus
deleting a hole. They are the same as KiCiCycle and MiCK (i — 1)Cycle
(inverse to KiC'M (i — 1)Cycle), respectively.

Comparison with Handle Operators

A AV A H A A B
(a) (b) (c) (d) (e)

Figure 5.4: [29] Handle operators in 2D: the attachment of a 0-handle (a); the
attachment of a 1-hande (b), (c¢) and (d); the attachment of a 2-handle (e).

Handle operators on a manifold cell 2-complex I" triangulating a surface S,
introduced in [74], can be classified as homology-modifying operators. They
are illustrated in Figure 5.4, and can be expressed through our operators as
discussed below:

1. The attachment of a 0-handle corresponds to creating an initial triangle
(a 2-ball). It can be expressed as M0C0Cycle operator, two M0C1C
operators and one M1C2C operator (see Figure 5.5 (a)).

2. The attachment of a 1-handle identifies two boundary edges e; and e,
with no vertices in common. It can be expressed through one M1C
K0Cycle and one M1C1Cycle operator if e; and ey belong to differ-
ent components, or two M1C1Cycle operators if they belong to the
same component (the created edges connect the endpoints of e; to the
corresponding endpoints of e), two K0C1C' operators (they contract
the two created edges and identify the corresponding endpoints), one
M2CK1Cycle operator (it creates a face that fills the ring and deletes
the cycle formed by e; and e3), and finally one K1C2C operator (it
contracts the created face and identifies e; with ey) (see Figure 5.5 (b)).
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3. The attachment of a 2-handle identifies two edges with both vertices in
common. It can be expressed as M2C K1Cycle, followed by K1C2C'.

(a) (b)
Figure 5.5: [29] Attachment of a 0O-handle in 2D can be expressed as one
MO0C0Cycle, two MOC1C and one M1C2C (a). Attachment of a 1-hande

in 2D can be expressed as one M1CKO0Cycle or one M1C1Cycle, one
M1C1Cycle, two K0OC1C, one M2C K1Cycle and one K1C2C' (b).

Handle operators have been extended to 3D in [75]. The handle operators
in 3D generalize the glue operator in [48], since the two faces identified by a
handle operator may have none, some, or all edges in common. They can be
expressed in terms of our operators in a similar manner.

5.2 Multi-Resolution Cell Complexes

In this Section, we introduce a hierarchy of cell complexes, that we call a Multi-
Resolution Cell Complex (M RCC'). We construct the M RCC by iteratively
applying simplification operators, and we define it in terms of the inverse
refinement operators.

A Multi-Resolution Cell Complex (M RCC') is generated from a d-complex
[' at full resolution by iteratively applying simplification KiC(i + 1)C' and
KiCiCycle operators. Each simplification KiC'(i + 1)C operator deletes two
cells p and ¢ from the complex I". This affects the immediate boundary or
co-boundary relation of the cells in the set C,, (see Subsection 5.1.1). Each
simplification K1CiCycle operator deletes one cell ¢ from the complex I". This
affects the immediate co-boundary relation of the cells in the set C,.

Each simplification KiC(i+1)C (KiCiCycle) can be seen as a replacement
of the set {¢,p} UC,, ({¢} UC,) of cells with the set C,, (the set C;) of cells
(and an update of the immediate boundary and co-boundary relation). We
denote such simplification as ({¢,p} U C,,, Cyp) ({¢}UC,, CY))

We can apply first the homology-preserving operators, to obtain a complex
[ (with fewer cells) having the same homology as the initial complex I", and
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such that no homology-preserving operator is feasible on I". Next, we apply
homology-modifying operators to iteratively remove the cells of I, each time
affecting the homology of the complex. After each application of a homology-
modifying operator, we apply all feasible homology-preserving ones. We repeat
this until a complex is obtained that has one i-cell for each 0 < i < n. At
each step when a homology-modifying operator is applied, we remove a top cell
from the complex. We denote the set of the applied simplification operators
as S.

The complex obtained as a result of the simplification sequence is the coars-
est representation of the cell complex. We denote such coarse complex as ',
and we call it the base complez. 1t is the first component of the M RC'C.

The second component of the M RCC' is the set M of the inverse refine-
ments to the simplifications in S, that have produced I'g from I'.

The third component is the dependency relation between the refinements in
M. Let us consider the set M of all refinements. We consider, for simplicity,
the creation of the base complex I'g as a dummy refinement that we denote
as o (po generates I'g). We define the dependency relation between the
refinements in M as follows:

e Homology-preserving refinement p = MiC(i + 1)C' that creates the cells
p and ¢ and is defined by the cells in the set C,, that will be in the
immediate boundary or co-boundary of either p or ¢ (together with the
corresponding multiplicities), directly depends on the refinement p*, if p*
creates a cell in the set C,, (that will be in the immediate boundary or
co-boundary of either p or q).

e Homology-modifying refinement y = M:iCiC'ycle that creates the i-cell
q and is defined by the (i — 1)-cells in the set C, that will be in the im-
mediate boundary of ¢ (together with the corresponding multiplicities),
directly depends on the refinement p*, if p* creates a cell in the set C
(that will be in the immediate boundary of the i-cell q).

Thus, the homology-preserving refinement p = MiC(i + 1)C(q,p,p’), cre-
ating the cells p and ¢ and defined by the cells in the set C,,,, directly depends
on the refinement p* = MiC(i + 1)C(q*,p*,p™), if {¢",p*} NCyp # 0. It
directly depends on the refinement p* = MiCiCycle(q*) if {¢*} N C,, # 0.

The homology-modifying refinement p = MiCiCycle(q), creating the i-
cell ¢ and defined by the (i — 1)-cells in the set C,, directly depends on the
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Figure 5.6: [32] An example of the M RCC' in 2D.

refinement p* = MiC(i + 1)C(¢*, p*, p™*), if {¢*,p*} N C, # 0. It directly
depends on a refinement p* = MiCiCycle(q*) if {¢*} N C, # 0.

The MRCC' is defined as the triple (I'g, M, R), where R denotes the
direct dependency relation defined above. The dependency relation between
refinements is the transitive closure of the direct dependency relation. It is a
partial order relation, since a cell is never introduced twice by the modifications
in M.

A 2D example of the M RCC' is illustrated in Figure 5.6. The refinement
1o creates the base complex I'g at the coarsest resolution. The refinement
inserts 1-cell ¢ and 2-cell C' in 2-cell D, i.e., uy = M1C2C;,(C,i, D). For py,
Py =D, Ry = {h,1}, Z, = {4,8}, Sy = 0, and the set Cc; = {D,h,l,4,8}.
The refinement ps inserts the O-cell 5 and the 1-cell g in the 0-cell 6, i.e.,
po = MOC1C,,(5,9,6). For g, py = 6, Ry = {f,j}, Zo = {B,E}, Sy = 0,
and the set Cy5 = {6, f,7, B, E}. The refinement p3 inserts the 1-cell d and
the 2-cell A in the 2-cell B, ie., us = M1C2C;,(A,d, B). For us, py = B,
Ry ={a,c, f}, Z3 ={2,5}, S3 =0, and the set Cya = {B,a,c, f,2,5}.

The refinements 1 and uo are independent. The refinement 3 depends on
the refinement ps, as po =5 € {2,5} C Cp, 4, = Caq, and it does not depend
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on .

5.3 Extracting Adaptive Representations from
the MRCC

We discuss how to extract a large number of adaptive representations of the
topological structure of cell complexes from the M RC'C, by providing the basic
definitions and results and briefly discussing the algorithmic aspects.

Definition 13 A sequence U = (o, pi1, pi2, .-, o) of refinements in M is
feasible if uy is feasible on the base complex I'g and each refinement p;, 2 <
1 < m 1is feasible on the complex I';_1 obtained from the base complex I'g by
applying on it the sequence (i1, .., fi—1).

Definition 14 Let U = (po, 11, 2, ---, i) be a feasible sequence of refine-
ments in M. The front complex 'y associated with the sequence U is the
complex obtained from the base complex I'g by applying on it the sequence of

refinements (1, fl2, ..., fim)-

The front complex represents the topological structure of the cell complex
I' at an intermediate level of detail. If the feasible sequence U contains all the
refinements in M, then the front complex 'y associated with U is the same as
the complex I' at full resolution. Figure 5.7 shows the front complex obtained
by applying refinements pg, 11, g2 and pz on the M RC'C' illustrated in Figure
5.6.

Let I'y be the cell complex obtained by applying the sequence U of refine-
ments on the base complex I's. We will show that a refinement p is feasible on
the complex I'y if the sequence U contains all the refinements in M on which g
depends. In more detail: the homology-preserving refinement u, which creates
the cells ¢ and p, is feasible on the cell complex I'y; if and only if the sequence
U contains all the refinements u;, 1 <7 < k, which create cells in the immedi-
ate boundary and co-boundary of ¢ and p; the homology-modifying refinement
i, which creates the cell ¢, is feasible on I'yy if and only if the sequence U
contains all the refinements p;, 1 <14 < k, which create cells in the immediate
boundary of ¢, and it does not contain any refinement v which creates a cell
in the immediate co-boundary of g.



119

Figure 5.7: [32] The complex at full resolution, obtained from the M RCC in
Figure 5.6 by applying the refinements pg, t1, po and ps.

Proposition 4 The homology-preserving refinement 1 = (Cyp, {q,p} U Cyp),
where Cy,, is the set of cells in the immediate boundary or co-boundary of the
introduced cells q and p, is feasible on a complex I' = T'y (at some intermediate
resolution) if and only if the sequence U of refinements that produces the com-
plex T from the base complex I'p contains all refinements p;, 1 <1 <k, such
that {qi,pi} N Cyp # 0 if pi = (Cyypiy {6, pi} U Cyp;) is homology-preserving,
i.e., such that {q;} N Cyp # 0 if pi = (Cyy, {a:} U Cy,) is homology-modifying.

Proof. Let us denote as )V the set of refinements in M that create at least
one cell in C .

We show first that the refinement p is feasible on the complex I' = I'y; if all
refinements in V are also in U. The only refinements (beside refinement p) that
affect the immediate boundary and co-boundary relation of the cells in C, , are
refinements in V. Since a refinement is defined as an undo of a simplification,
refinements u; restore those relations as they were before the corresponding
inverse simplifications 7;. No other refinements, different from the refinements
in V, create the cells in C,,,. Thus, the cells in C,, are in the complex I', with
the multiplicity that is greater than or equal to their multiplicity needed for
the feasibility of the refinement p, and the refinement p is feasible on I' = I'y.

Next, we show that if the refinement p is feasible on the complex I' = I'y,
then all the refinements in V are contained in the sequence U of refinements
that produce the complex I' from the base complex I'g. The refinement p is
feasible on I' if all the cells in C,, are in I' (with sufficiently large multiplicities
in the corresponding immediate boundaries and co-boundaries). The only re-
finements that introduce cells in C, ,, and that affect the immediate boundary
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and co-boundary relation of these cells, are the refinements p; in V. Thus,
those refinements must be in the sequence U. ([l

Proposition 5 The homology-modifying refinement pn = (Cy, {q}UC,), where
Cy 1s the set of cells in the immediate boundary of the introduced cell q, is
feasible on the complex I' = T'y (at some intermediate resolution) if and only
if the sequence U of refinements that produces the complex I' from the base
complex I'p contains all the refinements p;, 1 < i < k, such that {q;,p;} N
Cy # 0 if i = (Cyypys {di, pi} U Cyp;) is homology-preserving, and such that
{g}NCy # 0 if uy = (Cy, {q:} U Cy,) is homology-modifying.

Proof. Let us denote as V the set of refinements in M that create at least
one cell in Cj,.

We show first that the refinement p is feasible on I' if all the refinements
in V are in U. The only refinements (beside refinement p) that affect the
immediate boundary relation of the cells in C, are refinements in V. Since
a refinement is defined as an undo of a simplification, refinements p; restore
those relations as they were before the corresponding inverse simplifications
7;. No other refinements, different from the refinements in V, create the cells
in C,. Thus, the cells in C; are in the complex I', with the multiplicity that
is greater than or equal to their multiplicity needed for the feasibility of the
refinement p. The sequence U cannot contain any refinement that creates a
cell in the co-boundary of ¢, since any such refinement is feasible only if the
cell ¢ has already been created. Thus, the refinement p is feasible on I' = T’y
if U contains all refinements in V.

Next, we show that if the refinement p is feasible on a complex I' = I'y,
then all the refinements in V are contained in a sequence U of refinements
that produce the complex I'" from the base complex I'g. The refinement pu
is feasible on I' if all the cells in C, are in I', with the corresponding multi-
plicities. The only refinements that introduce cells in C,, and that affect the
immediate boundary relation of these cells, are the refinements in V. Thus,
those refinements must be in the sequence U. O

This means that the homology-preserving refinement p is feasible on the
complex I' if and only if all the cells in C, , are contained in I" (C,,, C T"). If the
cells in C, , are in I', then the set C,, of cells that defines the feasibility of the
refinement g is a subset of the set of cells in the complex I' = I'y;. Conversely,
it C,, C I'y, then all the refinements that create at least one cell in C,, are
in U.
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A large number of adaptive morphological representations can be extracted
from the M RCC' defined by the triple (I'g, M, R) by considering the closed
sets of refinements in M U pg under the dependency relation R. Recall that
the dependency relation R is a partial order relation, and thus it defines a
closure operator on the set M of refinements. We denote a closed set of such
refinements as U. The set U implicitly defines a complex representing an
approximation of the original full-resolution complex.

Definition 15 Let (I'g, M, R) be an MRCC, and let U = { o, o1, 2, -y fom }
be a set of refinements in M. The setU is closed with respect to the dependency
relation R if for each i, 1 <1 < m, each refinement on which the refinement
Wi depends is in U.

Proposition 6 If the sequence U = (pg, i1, o, ---, fhm) 0f refinements in M
is feasible, then the set U = {jio, ft1, 2, - b } 1S closed with respect to the
dependency relation R.

Proof. Let U = (po, 1, pi2, ---, ftm) be a feasible sequence of refinements in M,
and let pu; € U. Since the sequence U is feasible, the refinement p; is feasible
on the complex I'y, |, where U;_y = (o, pt1, .-, fti—1). By previous proposition,
this means that the set U;_;, and thus the set U, contains all refinements on
which the refinement p; depends. Thus, the set U = {po, i1, f12, -y fln } 18
closed with respect to the dependency relation R. O

Definition 16 Let pi1 and ps be two feasible refinements on the complex I'. We
say that the refinements 1y and o are interchangeable if the sequence (1, fio)
of refinements (consisting of py followed by ps) on the complex I' produces the
same refined complex T" as the sequence (uz, p1) (consisting of po followed by

fi1)-

Proposition 7 Two homology-preserving independent refinements py and pio
are interchangeable.

Proof. Let u; and py be two independent homology-preserving refinements
of the first type feasible on a complex I'. Let us first consider the sequence
(,ula,UQ) applied on I'. The effect of py = (Cth,plv {qlapl} U Othl)’ Cqmn =
{Pi} URyUZ US, is to delete the cells r ; from the set R;, to create the
cells ¢; and p; and to adjust the immediate boundary and co-boundary of the
cells in {q1,p1} U Cy, p,, thus creating the complex I';.
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The effect of ps on the complex I'; is to remove the appropriate number of
instances of the cells 75 ; from the set Ry (this is possible since p5 is feasible on
I', and p; and ¢; are not in Cy, ,,), to create the cells ¢, and p, and adjust the
immediate boundary and co-boundary relation of the cells in {g2, p2} U C,
thus creating the refined complex I'; 5.

Similarly, the sequence (ps, 1) of refinement creates the refined complex
I'y1. We will show that I'; o =T'y ;.

Each refinement p = (Cy,, {q,p} U C,,) introduces some cells in the im-
mediate boundary and co-boundary of the cells in {q,p} U C,,, with the cor-
responding multiplicities. For each refinement p in M, we can label the cor-
responding instances of the cells introduced in the immediate boundary and
co-boundary of the cells in {¢,p} U C,, by p (or, equivalently, by the inverse
simplification 7). Similarly, we label each instance of each cell in the immedi-
ate boundary or co-boundary of all cells in I'g by . Then it is obvious that
the two complexes I'; o and I'y; are equal: they consist of the same cells, the
corresponding cells in the two complexes have the same immediate boundary
and co-boundary relations, and all the corresponding cells in the immediate
boundaries and co-boundaries have the same labels. U

2,029

Proposition 8 Two homology-modifying independent refinements puy and ps
are interchangeable.

Proof. Let p; and ps be two independent homology-modifying refinements
feasible on a complex I'. Let us first consider the sequence (p1, p2) applied on
I'. The effect of p; = (Cyy, {1} UC,,), Cpy = Ry, is to create the cell ¢; and to
adjust the immediate boundary of the cell ¢; and the immediate co-boundary
of the cells in C, = Ry, thus creating the complex I';.

The effect of s = (Cy,, {g2} U Cy,) on the complex I'y is to create the cell
g2 and to adjust the immediate boundary of the cell g and the immediate
co-boundary of the cells in Cj, = Ry, thus creating the refined complex I'; 5.

Similarly, the sequence (ps, 1) of refinement creates the refined complex
I'y1. We will show that I'; o = I'y ;.

Since the refinement p is feasible on the complex I, all the cells in Cy, are
in I and no cell in the co-boundary of ¢, is in I'. The refinement p; deletes
no cells. Thus, all the cells in C,, are in I'y. If the cell ¢ is in the immediate
co-boundary of the cell ¢ in I';, then the refinement p; is not feasible on I'
(the cell ¢o is in C,, and is not in I'). If the cell ¢ is in the co-boundary of the
cell go in I'y, then after the refinement s, the cell ¢; is not a topological cell
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(homeomorphic to a disc). The co-boundary of ¢s is empty in I" and the cell
q1 created by the refinement p4 is not in the co-boundary of the cell go. Thus,
the co-boundary of the cell ¢, is empty in I'y, and the refinement pu, is feasible
on I'y. Similarly, the refinement p; is feasible on I'y. It is obvious that the
two complexes I'1 o and I'y; are equal: they consist of the same cells and the
corresponding cells in the two complexes have the same immediate boundary
and co-boundary relations. O

Proposition 9 Let py1 be a homology-preserving refinement and let py be a
homology-modifying refinement on a complex I'. If g and ps are independent,
then they are interchangeable.

Proof. Let us denote as I'; and I'y, respectively, the complex obtained from
the complex I' by applying the refinement py and py. We will show first that
the refinement ps is feasible on I'y and that p; is feasible on I's.

The refinement iy is feasible on the complex I'. Thus, all the cells in C,
are in ' and no cell in the co-boundary of ¢, is in I'. The refinement p; deletes
no cells. Thus, all the cells in C,, are in I'y. If either the cell ¢; or the cell p;
is in the immediate co-boundary of the cell go in I'y, then the refinement p is
not feasible on I' (the cell ¢, is in Cy, ,, and is not in I'). If the cell ¢; (the
cell py) is in the co-boundary of the cell ¢y in I'j, then after the refinement
2, the cell ¢ (the cell py) is not a topological cell (homeomorphic to a disc).
The co-boundary of ¢y is empty in I' and the cells ¢; and p; created by the
refinement pq are not in the co-boundary of the cell ¢o. Thus, the co-boundary
of the cell ¢y is empty in 'y, and the refinement pus is feasible on I'y.

The refinement p, is feasible on the complex I'. Thus, all the cells in the
set Cy, p, are in I', and the multiplicities of the cells r € R; are sufficiently
large for the feasibility of the refinement p1. The refinement s does not delete
any cells from I', and does not remove any cells from any immediate boundary
or co-boundary. Thus, the refinement p, is feasible on the complex I's.

It is obvious that the two complexes I'y o (obtained from I'; by applying
the refinement ps) and I'y; (obtained from I'y by applying the refinement )
are equal: they consist of the same cells and the corresponding cells in the two
complexes have the same immediate boundary and co-boundary relations. [

Proposition 10 Two interchangeable refinement modifications py and ps are
independent.
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Proof. Let us denote as C;® the set of cells introduced by the refinement
. It consists of two cells if p is homology-preserving, and of one cell if p is
homology-modifying.

If the refinements p; and o are interchangeable, then they are both feasible
on the complex I', i.e., all the cells in both C,, and C,, are in I', and the cells
in O U™ are not in I'. This implies that the cells in €} are not in C

M2
ie., O NCy, =0, and similarly C7s* N C),, = 0. Thus, refinements y; and
[ are independent. ([l

Definition 17 Let (G, M,R) be an MRCC, and let U = (o, i1, 42, -y fom)
be a feasible sequence of refinements in M. A permutation fig, fi1, iz, -5 fim
of the refinements in U is consistent if the sequence V. = (po, fi1, fhi2s -+ fim)
15 a feasible sequence of refinements in M.

Proposition 11 Let U = (po, fi1, fi2, -, fbm) be a feasible sequence of refine-
ment modifications in M, and let the sequence V' = (g, fi1, fio, -, fim) D€
obtained from U through a consistent permutation of refinements in U. Then,
the front complexr Gy associated with the sequence U is the same as the front
complex Gy associated with the sequence V.

Proof. A permutation that defines V' starting from U is consistent if each
refinement f;; is feasible in sequence V. This means that each refinement ji;,
on which p;; depends has a position ik < 47 in V. The permutation defin-
ing V from U is a composition of adjacent transpositions of two independent
refinements (composition of permutations obtained by reversing the order of
two consecutive refinements). For each such transposition, the associated front
complex before and after the transposition remains unchanged. Thus, the front
complex Gy associated with the sequence V' is the same as the front complex
Gy associated with the sequence U. U

A closed set U of refinements can be applied to the base complex I'g in any
total order U that extends the partial order, producing the complex I'y; at an
intermediate resolution. An M RC'C' encodes a collection of all representations
of the cell complex I' at intermediate levels of detail which can be obtained from
the base representation I'g by applying a closed set of modifications on I'g.
From an M RCC' it is thus possible to dynamically extract representations of
the topology of the cell complex at uniform and variable resolutions. The basic
query for extracting a single-resolution representation from a multi-resolution
model is known as selective refinement.
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A selective refinement query on an M RCC' consists of extracting from it
a complex with the minimum number of cells, satisfying some application-
dependent criterion. This criterion can be formalized by defining a Boolean
function 7 over all nodes of an M RCC, such that the value of 7 is true on the
nodes which satisfy the criterion, and false otherwise. A complex I' is said
to satisfy the criterion 7 if function 7 assumes the value true on all cells in
['. Thus, a selective refinement query consists of extracting from the M RCC
an intermediate complex of minimum size that satisfies 7. Equivalently, it
consists of extracting a minimal closed set U of modifications from M such
that the corresponding complex satisfies 7. Such closed set of modifications
uniquely determines a front complex, which is obtained from the base complex
[' by applying to it all modifications from U in any order that is consistent
with the partial order defined by the dependency relation.

The selective refinement algorithm is independent of the criterion 7, which
may be expressed in terms on the size of the created cell or cells, e.g., the
diameter of the bounding box or the maximum distance between the vertices,
or in terms of the portion of space covered by the complex where the resolution
should be maximal, while it can be arbitrary otherwise.

When the complex is the descending (or ascending) Morse complex and
the M RC'C' is built based only on the homology-preserving operators (that is,
on remove and insert operators), the M RCC' is called the Multi-Resolution
Morse complex. In this context, the Boolean criterion 7 is defined based on
persistence, which is a measure of importance of a feature defined by the pair
(p, q) of critical points of the scalar field f, i.e., by the pair (p, ¢) of cells in the
Morse complexes of f. Thus, persistence value is assigned to the refinement
i that introduces a given pair of cells. We assign the persistence value of
refinement p to the cells p and ¢, and we say that cells p and ¢ satisfy the
Boolean criterion 7 if the persistence value associated with p and ¢ is greater
than some prescribed value P.

We can have query at uniform resolution, when we extract a topological
representation in which all nodes have persistence value greater than a pre-
defined threshold value, or at variable resolution, when we request a value of
persistence which varies in different parts of the domain. In collaboration with
Federico Turicich, we have implemented a depth-first algorithm for the selec-
tive refinement query. The algorithm starts from the coarse complex I'g and
recursively applies to it all refinements p; which are required to satisfy the
error criterion. In order that a new modification p be applied, all its ancestor
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modifications need to be applied before p to maintain the partial order. It can
easily be proven that the result of a selective refinement algorithm is the com-
plex I' with minimal number of cells among the ones encoded in the M RCC,
which contains all cells satisfying criterion 7.

5.4 Comparison with Other Approaches

To the extent of our knowledge, the only approaches proposed in the litera-
ture to the multi-resolution representation of Morse or Morse-Smale complexes
are for 2D scalar fields. We compare the hierarchical representation for Morse-
Smale complexes presented in [14] and the multi-resolution representation pro-
posed in [15] with the 2D instance of the M RMC' (Multi-Resolution Morse
Complex), which is essentially the same as a M RCC (Multi-Resolution Cell
Complex) based on homology-preserving operators (i.e., based on remove and
insert operators).

The two approaches are based on the cancellation operator [52,84] which
in 2D reduces to the remove operator. It eliminates a saddle and a maximum
(removey 2), or a saddle and a minimum (remove; o).

In all the approaches, including the M RMC, each simplification (cancel-
lation, i.e., remove), and the inverse refinement, can be seen as a replacement
of one set of cells in some cell complex with another set of cells, with the suit-
able adjustment of the immediate boundary and co-boundary relations. Each
refinement that introduces the critical points ¢ and p (or equivalently, the cells
q and p in the Morse complexes, or the vertices ¢ and p in the Morse-Smale
complex) replaces a set of cells S, , with the set {¢,p}US,,. We will show that
in all the approaches, the dependency relation is defined based on the cells in
the two sets. A refinement is feasible on a complex I' if all the cells in the set
Sqp are in I'. The dependency relation in all the approaches is defined in the
same way: each refinement directly depends on all the refinements that create
a cell in S, ,, and the dependency relation is defined as the transitive closure
of the direct dependency relation. In other words, each refinement depends on
all the refinements that make it feasible.

We will describe for each approach: the complex on which the simplifi-
cations and refinements are defined; the set S, ,; and the direct dependency
relation R.

The basic component of the hierarchical data structures described in [14]
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Figure 5.8: Splitting of a quadrangular 2-cell (slope district) in the Morse-
Smale complex of a scalar field f, by an integral line inside that 2-cell, in
two triangles. (a) A generic slope district, (b) an isolated mountain and (c) a
crater.

and [15] is a diamond, which consists of a saddle s, its adjacent minima and
maxima, and the integral lines connecting them. The lines that connect the
saddle s to the extremal points are the separatrix lines incident in s, while
the lines that connect the extremal points are chosen arbitrarily among the
integral lines in the corresponding quadrangular 2-cell in the Morse-Smale com-
plex (slope district). In other words, each quadrangular 2-cell in the Morse-
Smale complex is split in two triangles, by an arbitrary integral line which
connects the vertex of the 2-cell corresponding to a minimum to the vertex
corresponding to a maximum, as illustrated in Figure 5.8. The four trian-
gles incident in the same saddle are grouped together in the diamond. The
possible types of the diamonds for a Morse-Smale function f are illustrated
in Figure 5.9. More formally, the diamond associated with the simplifica-
tion remove; 2(q,p,p’) (and with the inverse refinement insert; »(q,p,p’)) is
the quadrangle z1,p, zo,p’, where z; and z; are the two (not necessarily dis-
tinct) minima connected to the 1-saddle ¢ (see Figure 5.10 (a)). Dually, in the
diamond 2y, p, 22, p’ associated with the simplification remove; (g, p,p’) (and
with the inverse refinement insert; (¢, p,p’)), z1 and 2z, are the two maxima
connected to q.

Thus, the cell complex on which the simplification and refinement operators
are defined in [14] and [15] is a complex in which each 2-cell is a quadrangle (a
diamond), each 1-cell corresponds to an integral line connecting a minimum
and a maximum that define a 2-cell in the Morse-Smale complex of f (i.e.,
each 1-cell corresponds to a slope district of f), and each 0-cell corresponds to
a minimum or to a maximum of f.

The cancellation deletes a cell (a diamond) from the complex, and recon-
nects the adjacent cells. The adjacency relation of the cells that share a 1-cell
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(a)

Figure 5.9: The possible types of the diamonds. (a) All four 2-cells incident
in the saddle in the Morse-Smale complex are generic. (b) One of the 2-cells
incident in the saddle is an isolated mountain. (c) One of the 2-cells incident
in the saddle is a crater.

with the deleted diamond is affected by the cancellation. The diamonds that
share only a vertex (and not an edge) with the deleted diamond notice no
(topological) change in the adjacency relation.

In both [14] and [15], the dependency relation between the refinements is
defined in terms of diamonds. The dependency relation is defined as follows:
two refinements (anticancellations) are dependent if the associated diamonds
have at least one vertex in common [14], or if they have an edge in common [15].

Thus, in [14], S,, is the set of diamonds that share at least one vertex
with the diamond centered at ¢, and in [15], S, is the set of (at most four)
diamonds that share an edge with the diamond centered at q.

The refinement introducing a diamond () centered at ¢ replaces the set S,
of cells in the complex of diamonds with the set Q U S, ,. It is feasible if the
cells in the replaced set S, are present in the complex, and it directly depends
on all the refinements that create a cell in S .

The dependency relation in [15] is clearly less restrictive than the one in [14]
(the set of cells in S, for the approach in [15] is contained in the set of cells
Syp for the approach in [15]).

We compare the two approaches with the 2D instance of the M RMC.
To this aim, we interpret the dependency relation expressed in terms of the
diamonds as a dependency relation expressed in terms of the cells in the de-
scending Morse complex. Let remove; 2(q,p,p’) be the simplification delet-
ing a diamond () (associated with the saddle ¢) in [14] and in [15], and let
inserty 2(q, p,p’) be the inverse refinement.

In [14], the refinement insert; »(q, p, p’) directly depends on all refinements
that introduce either the 2-cell p’ or at least one of the following cells: a cell
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in the boundary of the 2-cell p, a cell in the boundary of the 2-cell p’ or a cell
in the co-boundary of the 0-cell z € Z (a cell in the boundary of the 1-cell g in
the descending Morse complex). These cells constitute the set S, ,. The direct
dependency relation is dual for the removes o(q, p,p’).

In [15], the refinement insert; »(q, p, p’) directly depends on all refinements
that introduce one of at most four 1-cells incident both in a O-cell z € Z and
in 2-cell p or p’. We denote this set of cells as S, ,. The direct dependency
relation is dual for the remove; o(g, p,p’).

The dependency relation defining the M RMC' is less restrictive than the
one in [14]. If a refinement insert(q, p, p’) depends on a refinement insert(s, t,t')
in the M RMC, then the associated diamonds share a vertex. In other words,
the set S, , of cells for the M RMC'is the subset of the set S, for the approach
in [14].

There is no containment relation between the dependency relation in the
M RMC' and the one in [15] in the sense that we cannot say which one is more
restrictive than the other. In other words, there is no containment relation
between the sets S, , for the M RMC' and for the approach in [15].

Figure 5.10 shows a sequence of simplifications consisting of remove; o(s, My,
M,), removey o(s5, ms, ma) and remove; o(s2, ms, my). Let pn = inserty o(ss,
ms, Ma), Ha = inserty o(S2, ms, mq) and ps = inserty s (s, My, My) be the in-
verse refinements. The diamonds associated with the saddles s (refinement
p3) and sy (refinement ps) have one common vertex Mi, and the diamonds
associated with the saddle s (refinement p3) and s (refinement p4) have two
common vertices, my and M. The refinement ug directly depends on w1, and
does not depend on ps, in the approach in [15].

In the MRMC, the refinement 3 depends on p, since the 1-cell s5 is in the
immediate boundary of the 2-cell M;, while pu3 does not depend on iy, since
none of the cells ms and s5 is in the immediate boundary or the immediate
co-boundary of M; or s.

To conclude, in all three approaches to the hierarchical or multi-resolution
representation of the topology of 2D scalar fields (the 2D instance of the
MRMC| the hierarchical approach in [14] and the multi-resolution approach
in [15]), the same set of simplification operators is used: the cancellation op-
erator, which in 2D is equal either to a remove; 2 or to a remove; . In each
of the three approaches, the simplification, and the inverse refinement, can
be interpreted as a replacement of one set S,, of cells in some cell complex
with another set of cells. The dependency relation is defined in the same way
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Figure 5.10: A portion of the 2D descending Morse complex. Dotted lines
delineate diamonds associated with 1-saddles (a). After remove; o(s, My, M>)
(b). After remove; o(s5, ms, ma) and removey o(sa, M3, My).

in all three approaches: a refinement directly depends on all the refinements
that create a cell in the set S, ,. The difference between the three approaches
lies in the way the set S,, is defined. The smaller the set S,,, the smaller
the dependency relation between the refinements and the larger the number
of complexes at intermediate resolution that can be extracted from the corre-
sponding M RMC'.

We propose here another multi-resolution model for the topology of scalar
fields represented in the form of descending and ascending Morse complexes,
using the notion of the cancellation forest [15] (see Section 4.4).

We propose to build a cancellation forest starting from the two dual full-
resolution Morse complexes by applying all the feasible simplifications in the
order determined by persistence. If the domain M of the scalar field f is
homeomorphic to the plane (or the 2-sphere), then the cancellation forest
consists of exactly two trees, one removes o tree and one remove; o tree. Any
refinement insert operator introducing a 1-cell ¢ is independent of all the other
insert operators and can be performed at any step of the refinement process.
In other words, the set S, ,, for each refinement is the empty set. The effect of
the refinement on the cancellation forest is to split one tree in the forest in two
trees by deleting the arc corresponding to the 1-cell q. The root of each of the
two new trees is the node corresponding to the highest 2-cell (maximum) in the
remove o trees, and the node corresponding to the lowest 0-cell (minimum) in
the remove; ¢ trees. The effect of the insert; o operator on the complex is to
create the two cells p and ¢ in the complex, such that the immediate boundary
and the immediate co-boundary of the two inserted cells consists of the roots
of the trees to which the cells in the set {p'} U RU Z U S belong. After each
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refinement insert; o introducing the 1-cell ¢, the boundaries of the 2-cells p
and p’ separated by the 1-cell ¢ need to be updated, by checking to which of
the two new remove; 5 trees the corresponding 1-nodes belong. The effect of
the insert; o operator on the complex is completely dual.

The proposed multi-resolution model offers full flexibility in modeling the
Morse complexes at intermediate resolutions, but it is more time and space
consuming than the present three approaches.

5.5 Implementation and Experimental Evalu-
ation

We have performed various sets of experiments that validate our operators,
both on Morse and on cell complexes, and that show the versatility and flex-
ibility of the multi-resolution model in extracting representations at uniform
and variable resolutions.

In [35], we have implemented a simplification algorithm on Morse com-
plexes, and we have compared its version based on the operator remove with
the one based on cancellation for various 2D and 3D Morse functions. In
the implementation, we have encoded the Morse complexes in the form of the
Morse Incidence Graph (M 1G) [23,24], see Section 2.2.3. We have shown that
the number of arcs in the graph simplified with cancellation always exceeds
the number of arcs in the graph simplified with the same number of remove
operators. Recall that the arcs of the M IG encode the incidence relation be-
tween cells in Morse complexes. Such behavior influences the efficiency of the
whole algorithm, doubling the time needed to manage and enqueue a larger
number of arcs (and thus, a larger number of possible simplifications) for large
data sets. When the data set is small and the number of simplifications is
high compared to the total number of nodes the two simplification operators
perform quite similar. With the increase of size of the data set the two opera-
tors start to differ: by using remove we can get a 20% more compressed MIG
in about half the time than by using cancellation. The remove operator is
particularly useful in the first simplifications performed on a data set (simplifi-
cations that can be interpreted as noise removal). On many data sets we have
noticed that by using cancellation the number of arcs remains approximately
the same while by using remove their number immediately decreases. In gen-
eral, the cost of the MIG is reduced by 10% to 20% by using remove instead
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of cancellation and the same number of simplifications can be performed in
half the time.

We have implemented a version of the M RC'C' based on homology-preserving
operators. We have used the encoding of the initial full-resolution complex as
an incidence graph. Note however that our definition of the M RCC is inde-
pendent of the specific implementation data structure. We have chosen the
incidence graph as the basis of our implementation since it can effectively and
efficiently encode arbitrary cell complexes in any dimension.

The M RCC' based on homology-preserving operators and the /G-based
representation of cell complexes is essentially the same as the multi-resolution
representation of Morse complexes given in the form of the Morse Incidence
Graph (MIG): Morse complexes are cell complexes, and the effect of the
remove and insert operators on Morse complexes (and on the MIG) is the
same as the effect of the homology-preserving KiC(i+1)C and MiC(i+1)C op-
erators on cell complexes (represented as the /G). We have called such multi-
resolution model the Multi-Resolution Morse Incidence Graph (MMIG). In
both the M RM C' and the M RC'C', each simplification and refinement operator
is interpreted as a modification of the corresponding graph, i.e., it can be seen
as a replacement of one subgraph with another subgraph. The dependency
relation between modifications is expressed in terms of the nodes of the graph.
The results of the MM IG and M RCC' implementation, done in collaboration
with Federico luricich, have been presented in [32] and [34, 36], respectively.

We have performed some experiments to show the versatility of the MM IG
in extracting adaptive representations of scalar fields at uniform and variable
resolutions. We illustrate the results of applying the selective refinement al-
gorithm on Matterhorn 2D data set in Figure 5.11, and on Hydrogen 3D data
set in Figure 5.12.

In Figure 5.13 we show examples of extractions from the M RCC' at uni-
form resolution performed on the Fertility data set. We have also conducted
experiments with extractions at variable resolution from the M RCC', with a
desired percentage of refinement modifications performed inside a query box
chosen by hand and with size between 15 and 30 percent of the whole data
set. In Figure 5.14, we show examples of refinement queries at uniform and
variable resolution performed on the VaseLion data set. The holes that seem
to appear in the crown of the lion are rendering artifacts.

Note that extracting at variable resolution is a distinctive feature of the
M RCC which cannot be performed on other hierarchical representations, like
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(a)

Figure 5.11: The descending Morse complexes at the coarsest resolution (there
is only one 2-cell in the descending Morse complex) (a), the full resolution
complex (b), and the complex at intermediate resolution (full resolution inside
a query box) (c) for the Matterhorn 2D terrain data set.

Figure 5.12: The original scalar field (a), the coarsest resolution MIG (b),
the full resolution MIG (c), and the MIG at intermediate resolution (full
resolution inside a query box) (d) for the Hydrogen 3D data set.

pyramids.

The M RCC' based only on homology-preserving operators has been used
to compute the homology of a cell complex. Homology is computed on the
base complex at the coarsest resolution using known techniques, and homology
generators are propagated to complexes at intermediate resolution using the
MRCC [36]. Homology computation has been done in collaboration with
Ulderico Fugacci.



Figure 5.13: The base complex (a) of the Fertility data set, and complexes
obtained from it after 300K (b), 600K (c) and 700K (d) refinements at uniform
resolution.

Figure 5.14: [34] In (a), (b) and (c) the representations obtained from the
MRCC after 10000, 50000 and 2000000 refinements, respectively. In (d), the
complex at full resolution of the VaseLion data set. In (e) the representation
obtained with a query at variable resolution.

In Figure 5.15, we show the H; generators computed on two 2D shapes:
Fertility and Hand data sets.

5.6 Summary

In [29], we have defined a set of homology-preserving and homology-modifying
simplification and refinement operators on cell complexes and we have shown
that they form a basis for the set of update operators on cell complexes. We
have compared these operators with other known update operators on cell
complexes. The defined operators enabled us to define a multi-resolution model



135

Figure 5.15: [36] The H; generators computed on the Fertility data set (a) and
on the Hand data set (b) by fully refining the cell complex.

for the topology of cell complexes, that we have called the Multi-Resolution
Cell Complex (M RCC). The M RCC encodes a large number of topological
representations at uniform and variable resolutions. It is constructed based
on the simplification operators, and defined in terms of the refinement ones.
In collaboration with Federico Iuricich, we have implemented a version of the
M RCC based only on homology-preserving operators, and we have presented
the results in [34] and [36]. This version of the M RCC is basically the same as
the multi-resolution model of Morse complexes based on the remove and insert
operators. We have called such model the Multi-Resolution Morse Complex
(MRMC). We have defined it in [32] and implemented it in collaboration with
Federico Turicich.

We have compared the 2D instance of the M RM C' with the two known ap-
proaches to the hierarchical and multi-resolution representation of the topology
of 2D scalar fields. We have shown that in each approach, a simplification (and
a refinement) can be seen as a replacement of one set S of cells in some com-
plex with another set of cells. The dependency relation between refinements is
defined in the same way: each refinement directly depends on all refinements
that create a cell in the set S. The smaller the set S, the larger the number of
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complexes at intermediate resolutions encoded in the multi-resolution model.

The M RCC based only on homology-preserving operators has been used
to compute the homology of a cell complex. Homology is computed on the
base complex at the coarsest resolution using known techniques, and homology
generators are propagated to complexes at intermediate resolution using the
MRCC'. This work has been done in collaboration with Federico Turicich and
Ulderico Fugacci, and has been presented in [36].



6

Concluding Remarks and
Future Work

Morse complexes are a widely used representation for the topology of scalar
fields in many application domains. We have defined operators for simplifi-
cation and refinement of Morse complexes in 3D [23] and in arbitrary dimen-
sions [24,27]. We have shown their effect on the ascending and descending
Morse complexes, we have shown that these operators are valid, and that
they form a minimally complete set of basis operators for creating and mod-
ifying Morse complexes on a manifold M [26]. We have proven this result
by interpreting our operators as Euler operators, that is, as operators that
affect a constant number of cells in the Euler-Poincaré formula without chang-
ing the topology of M. As a consequence, any macro-operator that modifies
Morse or Morse-Smale complexes can be expressed as a sequence of our oper-
ators. Simplification operators reduce at each step the incidence relation on
the Morse complexes and they reduce the number of cells in the Morse-Smale
complexes [35]. We have defined a graph-based data structure, called the ex-
tended cancellation forest, for encoding a sequence of simplification operators
on Morse complexes [25].

We have defined homology-preserving and homology-modifying operators
on arbitrary (not necessarily Morse) cell complexes [29]. Homology-preserving
operators affect the cell complex in the same way as the simplification and
refinement operators affect the Morse complexes. We have shown that the
defined operators form a basis for the set of operators on cell complexes that
maintain the Euler-Poincaré formula, and we have shown how various existing
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operators on cell complexes can be expressed through the proposed ones.

We have defined a multi-resolution model for the topological structure of
3D [23] and nD scalar fields [32]. We have also defined a multi-resolution
model for cell complexes, based on homology preserving [34] and on homology-
modifying operators [36], and we have implemented it in collaboration with
Federico Turicich. We have shown how a large number of complexes at in-
termediate resolution can be extracted from the multi-resolution model. The
multi-resolution model based only on homology-preserving operators is essen-
tially the same as the multi-resolution model for Morse complexes [32]. We
have compared the 2D instance of such model with the existing hierarchical
representations for 2D scalar fields.

We have used the multi-resolution model for cell complexes based on ho-
mology preserving operators to compute homology generators of the com-
plex [36] in collaboration with Federico Iuricich and Ulderico Fugacci. The
idea is to compute homology generators on the base complex at the coarsest
resolution using standard techniques [2], and then to propagate those genera-
tors to complexes at intermediate resolution using the multi-resolution model.
The advantages of our approach are that a homology-preserving M RCC' is
dimension-independent, can be applied to general cell complexes and enables
the extraction of homology generators at variable resolutions.

In our current and future work, we first plan to extend the previous ap-
proach to the computation of homology and homology generators with co-
efficients in Z. We also plan to adapt the M RCC framework to simplicial
complexes. We plan to consider two simplification operators for generating an
MRCC: simplex collapse [68], which is an instance of simplification opera-
tor KiC(i+ 1)Cye(q,p), and edge contraction, a widely used operator in mesh
processing which has been proven to be homology-preserving [4].

Another possible research direction is to use the extended cancellation for-
est [25] to define a smaller dependency relation between the refinements and
thus to obtain a more flexible multi-resolution model for Morse and cell com-
plexes.
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