
 

 
Humboldt-Universität zu Berlin – Geographisches Institut 

 

Understanding land use and land cover change in 
Inner Mongolia using remote sensing time series 

 

DISSERTATION 
 

Zur Erlangung des akademischen Grades 
doctor rerum naturalium 

(Dr. rer. nat.) 
 

Im Fach Geographie 
 

eingereicht an der 
Mathematisch-Naturwissenschaftlichen Fakultät II 

der Humboldt-Universität zu Berlin 
von 

M.Sc. He Yin 
 
 

Präsident der Humboldt-Universität zu Berlin 
Prof. Dr. Jan-Hendrik Olbertz 

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II 
Prof. Dr. Elmar Kulke 

 
 

Gutachter: 
Prof. Dr. Patrick Hostert 

Prof. Dr. Thomas Udelhoven 
Prof. Dr. Tobias Kümmerle 

 
Eingereicht: 06. Juni 2014  

Tag der Verteidigung: 05. September 2014 

 



 ii 



 

 



 

 iv 



 

 

 
 

 

 

 

Abstract 
Monitoring land use and land cover change (LULCC) support better interpretation about 
how land surfaces are impacted by human decisions. The overall aim of this thesis is to 
gain a better understanding about LULCC in Inner Mongolia using remote sensing under 
consideration of China’s land use policies. With the largest scale land restoration programs 
in the world, China aims to reduce human pressure on lands and promote sustainable land 
use. As a hot-spot of environmental change, Inner Mongolia received the heaviest 
investment from the central government for land restoration. Yet the effectiveness and 
consequences of China’s land use policies in Inner Mongolia remain unclear. Remote 
sensing is an effective tool for monitoring land use and land cover change across broad 
scales, yet data limitations and a lack of available change detection methods hampers the 
capacity of researchers to apply remote sensing techniques for LULCC monitoring. To 
reliably map LULCC in Inner Mongolia, the opportunities and limitations of using coarse 
resolution imagery time series for monitoring long-term land changes was first examined. 
Second, an approach detecting annual changes between multiple land categories was 
developed and applied in Inner Mongolia. Results indicate that China’s land use policies 
effectively preserved and recovered forest ecosystems in Inner Mongolia after the year 
2000. The decreasing trends of deforestation and forest gain are obvious in the regions that 
implement China’s land use policies, which reflect the positive influence of the policy. 
Cropland retirement was mostly found in ecologically fragile areas where climate and 
topographic conditions are unsuitable for cultivation, suggesting that China’s land use 
policies support local farmers who use their vulnerable lands in a more adaptive way. 
Strong political influences were reflected by the drastic change in forest re-generation and 
cropland retirement in 2004, when the land restoration program was largely reduced due to 
worries about food security. This thesis reveals how political factors and other underlying 
social-economic drivers impact a country's land surface, and highlights the values of using 
coarse resolution imagery and time series analysis for LULCC monitoring across large 
areas. 
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Zusammenfassung 
Das Monitoring des Landnutzungswandels trägt dazu bei, die Auswirkungen des 
menschlichen Handelns auf die Landoberflächen besser zu verstehen. Ziel dieser 
Dissertation war es, mittels Fernerkundung ein besseres Verständnis der Folgen des 
Landnutzungswandels in der Inneren Mongolei unter der Berücksichtigung der 
Landnutzungspolitik Chinas zu erlangen. Mittels umweltpolitischer Programme von 
weltweit einzigartigem Ausmaß versucht China sowohl den menschlichen Druck auf die 
Landbedeckung zu mindern als auch eine nachhaltige Landnutzung zu fördern. Als Hotspot 
globaler Umweltveränderungen wurden insbesondere für die Innere Mongolei erhebliche 
Investitionen zur Renaturierung von Landoberflächen von der chinesischen 
Zentralregierung getätigt. Die Wirksamkeit und Auswirkungen dieser Landnutzungspolitik 
Chinas innerhalb der Inneren Mongolei sind jedoch unklar. Die Fernerkundung ist ein 
effektiver Ansatz für ein flächendeckendes Monitoring des Landnutzungswandels. Jedoch 
erschweren die limitierte Datenverfügbarkeit und das Fehlen verfügbarer 
Veränderungsanalysemethoden die Anwendung fernerkundlicher Techniken zum 
Monitoring von Landnutzung und ihrer Veränderungen. Um den Landnutzungswandel in 
der Inneren Mongolei verlässlich zu kartieren, wurden daher in einem ersten Schritt 
Möglichkeiten und Grenzen von Zeitreihen räumlich grob aufgelöster 
Fernerkundungsdaten für das Monitoring von Langzeitveränderungen der Landbedeckung 
untersucht. Im zweiten Schritt wurde ein Ansatz zur Erfassung von jährlichen 
Veränderungen zwischen mehreren Landnutzungsklassen entwickelt und angewandt. Die 
Ergebnisse zeigen, dass die chinesische Landnutzungspolitik seit dem Jahr 2000 wirksam 
zum Erhalt und zur Regenerierung von Waldökosystemen in der Inneren Mongolei 
beiträgt. Abnehmende Entwaldung und ein Zuwachs von Waldflächen sind insbesondere in 
jenen Regionen zu finden, in welchen die landnutzungspolitischen Maßnahmen umgesetzt 
wurden. Dies bestätigt den positiven Einfluss politischen Handelns. Die Konvertierung von 
Ackerland zu Grasland wurde zumeist innerhalb anfälliger, klimatisch und topographisch 
ungeeigneter Gebiete beobachtet. Dies deutet auf die Wirksamkeit der chinesischen 
Landnutzungspolitik bei der Unterstützung von lokalen Bauern hin, welche 
Anpassungsstrategien für ihre anfälligen Landflächen entwickelt haben. Der starke 
Einfluss der Politik spiegelt sich im Jahre 2004 in den drastischen Veränderungen der 
Waldregenerierung und Ackerlandkonvertierung wider. Diese sind auf Kürzungen der 
umweltpolitischen Programme zurückzuführen, welche aufgrund von Sorgen bezüglich der 
Nahrungsmittelverfügbarkeit beschlossen wurden. Die vorliegende Dissertation 
veranschaulicht sowohl den Einfluss politischer Maßnahmen und zugrunde liegender 
sozio-ökonomischer Treiber auf die Landoberfläche als auch die Bedeutung von grob 
aufgelösten Fernerkundungsdaten und Zeitreihenanalysen für das Monitoring des 
Landnutzungswandels in großräumigen Gebieten. 
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1 Global environmental change and land system 

Humans are currently influencing the global environmental system in unprecedented ways 

(MEA 2005b). During the early stages of human civilization, the Earth was altered through 

hunting and fishing, fiber and other material extraction, as well as land clearing for farming 

and housing to meet human’s demand for food, medicine, clothing and shelter (Ruddiman 

2003; Ellis et al. 2013). Since the industrial revolution, however, human impact on the 

environment has profoundly accelerated (Jelinski et al. 1992; Vitousek et al. 1997). To 

address the spatial extent and temporal changes of the human influences on the Earth, the 

term Anthropocene was established to describe the new geological era (Crutzen 2002; 

Zalasiewicz et al. 2011). Since the 18th century, Earth’s population has increased 10-fold, 

from 600 million people to currently 6.9 billion (US Census Bureau 2014). Most of this 

increase occurred in the 20th century, largely due to advances in food production and 

distribution, and improvements in public health and medical technology (UN 2013). With 

this population increase and accompanying technological innovation, the environment has 

been fundamentally transformed at both local and global scales (Tilman and Lehman 2001; 

Vörösmarty et al. 2004; Cardinale et al. 2012).  

As the core component of the biosphere, the land surface has experienced the longest and 

most extensive changes by humans (Steffen 2005; Ramankutty et al. 2006). Characterized 

by the arrangements, activities and inputs people undertake in a certain land type, land use 

reflects the purpose for which humans exploit land cover (Di Gregorio and Jansen 1998; 

Lambin et al. 2004). Throughout the emergence and development of human civilization, 

the use of land provides material support and was in turn reshaped by humans. While land 

was already significantly used in Asia and Europe by 3000 B.C., and in most other regions 

by A.D. 1000 (Ellis et al. 2013), only during the last three centuries have changes in land 

(i.e., changes in land use and land cover) rapidly sped up globally (Goldewijk 2001; 

Ramankutty et al. 2006). The most significant land change is rapid agricultural expansion, 

which has come at the expense of  natural habitats such as forest, grassland and wetland, 

and has been driven by the increasing demand for resources (Ramankutty and Foley 1999). 

Indeed, the total area of cultivated land worldwide increased by 466% from 1700 to 1980 

(Meyer and Turner 1992; Matson et al. 1997).  

As fertile and cultivatable land is becoming scarcer, land-based production has to rely on 

increases of output per unit area rather than on the expansion of land use (Lambin and 

Meyfroidt 2011; Erb et al. 2013; Kuemmerle et al. 2013). Land use intensification (i.e., 
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using high-yielding species, irrigation, fertilization, mechanization and labor input to 

increase land output), for example, has substantially contributed to the tremendous 

improvements in food production since the 1960s (Matson et al. 1997; Foley et al. 2011). 

To address the complexity of land use and land cover change (LULCC), two forms of the 

changes are conceptualized: land conversion and land modification (Meyer and Turner 

1992; Turner et al. 1994; Lambin et al. 2003). Land conversion refers to the changes 

between different land categories, exemplified by cropland encroachment at the expense of 

forests or grasslands. Land modification is a more subtle change that occurs within the 

same land category without changing the overall land attribute, such as higher levels of 

inputs and increased output of cropland per unit area and time (Lambin et al. 2003).       

LULCC has both beneficial and unfavorable impacts to human society and the Earth’s 

environment. Indeed, land use underpinned ecosystems’ ability to sustain human 

population and thus promotes the evolution of civilization. However, land change at the 

expense of natural ecosystems is often linked to a high environmental cost and in turn can 

affect human well-being. In the mid-1970s, the scientific community became aware of 

regional climate change due to the alteration of energy-water budge caused by land cover 

change (Otterman 1974; Charney et al. 1975). Deforestation, for instance, has been widely 

recognized as a mechanism that releases CO2 into the atmosphere and reduces carbon 

storage in trees and soils (Woodwell et al. 1983; DeFries et al. 2002). Roughly 35% of the 

anthropogenic emission of CO2 equivalents since 1850 can be directly traced to the totality 

of land cover change (Foley et al. 2005; Turner et al. 2007). The impacts of land use on the 

biotic environment are also visible and pervasive. Habitat loss and fragmentation, 

especially caused by agricultural expansion, have greatly degraded biological diversity 

from regional to global scales (Harding et al. 1998; Sala et al. 2000). The negative 

environmental consequences that land use causes become clear when considering regions 

with fragile ecological settings, such as arid and semi-arid areas (Reynolds and Stafford 

Smith 2002). The limited water resource and interannual variability in precipitation makes 

drylands particularly vulnerable to human exploitation. It has been estimated that 10-20% 

of the Earth’s drylands are already degraded, and 250 million people in the developing 

world are directly affected (MEA 2005a).   

Confronting the challenges outlined above, trade-offs have to be considered to meet the 

increasing demand for food and to maintain the structure and function of ecosystems in the 

future (DeFries et al. 2004b; Foley et al. 2005). Under the umbrella of “sustainable 

development” (WCED 1987), sustainable land use has been identified as an important 
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objective to address the challenges of the 21st century (UN 1996). Land use policy, in this 

sense, is an important tool for regulating land management and thus land use and land 

cover change (Reid et al. 2006). Aiming for reconciling human requirements and 

environmental protection, land use policies are often designed to preserve ecologically 

valuable landscapes, promote sustainable land use practices and restore degraded 

ecosystems (Zhang et al. 2000; Chazdon 2008). Establishing nature reserves, for example, 

is one of the typical approaches to ecosystem conservation through national and sometimes 

cross-border political interventions. Recently, land use policies that primarily target 

environmental issues have become more prevalent in developing countries with fast-

growing economies because they often face severe environmental deterioration. One of the 

most prominent examples is China, which implemented a series of policies for fostering 

sustainable land use in the early 2000s to address the devastating environmental crises that 

the country was and is facing (Liu et al. 2008).  

In this context, monitoring LULCC is crucial for policy making. Spatially explicit, timely 

information on land use and land cover change is a prerequisite for interpreting ecosystem 

status (Foster et al. 2003; Mustard et al. 2004). Information about land conversion and land 

modification provides valuable references to policy makers for defining their objectives. 

While policy makers need land use change information to address, for instance, pressing 

policy issues, policy can also cause changes in land use (Reid et al. 2006). Indeed, land use 

change information is often used as one of the most important indicators for assessing the 

effectiveness of current land use policy (Ellis and Porter-Bolland 2008; Sieber et al. 2013). 

Therefore, land use and land cover change information are needed and should be conveyed 

to policy makers for them to understand the impacts of the current policy and to create 

more effective ones (Goetz et al. 2004; Reid et al. 2006).  

Driven by multiple factors across various spatial and temporal scales (Lambin et al. 2001), 

the temporal pathway of land change is often complex. Evidence has shown that land 

change is not always progressive and gradual. Rather, abrupt social or economic factors 

such as institutional changes, conflicts or land use policies can introduce non-linear change 

(Lambin and Meyfroidt 2010; Hostert et al. 2011). Such “shocks” may trigger the change 

of land use decisions in a short period and influence land use patterns in the long-run. On 

the other hand, the drastic influence of a “shock” on land system, however, can only be 

addressed by continuous monitoring in space and time (Lambin and Linderman 2006). 

Unfortunately, until now we still cannot fully understand how and when land system 

responds to “shocks” or other drivers (Ramankutty et al. 2006).  
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In summary, we are witnessing unprecedented changes on Earth, and these processes have 

radically accelerated over the past 50 years, largely driven by the social-economic 

development of human society. Land surface, as the core component of the biosphere, was 

extraordinarily altered by humans through land conversion and land modification. The 

overuse of land resources, together with other human activities, however, have deeply 

affected the function of global ecosystems and have led to profound environmental 

deterioration in many areas across the globe. To meet human demand and maintain 

ecosystem functioning, sustainable land use is therefore needed to address the challenges 

of the future. Land use policy, as one of the most important and effective tools in this 

regard, is often employed to regulate territorial land use and promote sustainable practices. 

Monitoring land use and land cover changes helps one to better understand the mechanism 

of land response to multiple drivers and provide valuable references for policy makers to 

revise and make more effective land use policies for sustainable land use.  

2 Inner Mongolia and China’s land restoration program 

The Inner Mongolia Autonomous Region is located in the north of the People’s Republic of 

China, and is bordered by Mongolia and Russia (Figure I-1). As the third-largest provincial 

subdivision, Inner Mongolia covers an area of 1.18 million km2, or 12% of the nation’s 

territory. Inner Mongolia is a relatively sparsely populated area, with 24.7 million people in 

2010, which constituted 1.84% of the population in China (IMARBS 2000-2013). 

Primarily divided into 12 prefecture-level divisions (Leagues or Primate City, Chinese: 盟

市), Inner Mongolia includes 101 county-level administrative divisions (Banner, County or 

District, Chinese: 旗, 县或区).  

Listed as one of the International Geosphere-Biosphere Programme (IGBP) terrestrial 

transects (Steffen et al. 1992; Canadell et al. 2002), Inner Mongolia is characterized as a 

climate-ecological transitional zone. Monsoons, and a semi-arid continental climate with 

cold, dry winters and warm, relatively wet summers characterize Inner Mongolia (Barthold 

et al. 2013). The annual precipitation gradually decreases from 570 mm in the east to 10 

mm in the west, and inter-annual variation is relative high. Corresponding to the climatic 

gradient, Inner Mongolia consists of a forest-steppe ecotone where various types of forests 

in the northeast are gradually replaced by grasslands, which require less rainfall, in the 

central region (Liu et al. 2000). The vegetation cover of the grassland decreased along the 

precipitation gradient and desert occupies the extremely dry west. In the south and 
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southeast areas neighboring the surrounding provinces, cropland replaces grassland and 

forms China’s largest farming-pastoral zone. 

 

Figure I-1: Location of Inner Mongolia and its administrative divisions. Data source: ESRI Data and Maps 
Kit, Data Sharing Infrastructure of Earth System Science of China (http://www.geodata.cn). 

Covered by 0.14 million km2 of forest (11.9% of the entire region), Inner Mongolia is 

home to China’s largest forest ecosystem in terms of area and living forest stock volume 

(SFA 2000-2013). Constituted mostly by deciduous needle-leaf forests and deciduous 

broadleaf forests in the Greater Khingan Range, the tree species of Inner Mongolia are 

mainly Dahurian Larch (Larix gmelinii), Mongolian Scots Pine (Pinus sylvestris), Chinese 

Pine (Pinus armandii), Mongolian Oak (Quercus mongolica) and Birch (Betula 

platyphylla) (Li et al. 2014). Inner Mongolia's forests not only provide timber products but 

also play an important role for watershed regulation (Wang et al. 2010a; Li et al. 2012b; 

Tang et al. 2012), carbon sequestration (Tan et al. 2007; Piao et al. 2009; Li et al. 2014), 

and wildlife habitat (Wang et al. 2000; Wang et al. 2002; Zhang et al. 2007a).   
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Grassland and cropland account for more than half (58.1%) of the area in Inner Mongolia.  

Including natural prairie and anthropogenically-managed types such as pasture and hay 

lands, grassland forms the largest land cover class, stretching across an area of 0.46 million 

km2 (45.3% of the entire territory). The diverse grasslands in Inner Mongolia are highly 

valued for livestock grazing (Longworth and Williamson 1993; Yu et al. 2004), wildlife 

habitat (Wang et al. 1997; Luo et al. 2014), and for maintaining natural areas and 

watershed protection (Zhao et al. 2006). Historically, nomadism was the main practice of 

land use in Inner Mongolia (Li et al. 1993). However, during the late period of the Qing 

dynasty (1840-1912), grasslands in southern and eastern Inner Mongolia were gradually 

cultivated and converted to cropland for grain production by the Han immigration from 

surrounding provinces (Bayaer et al. 2005; Ye and Fang 2014). By the end of the 1990s, 

cropland occupied nearly 12.6% of Inner Mongolia. Maize (36.6%), soybean (13.6%) and 

wheat (8.0%) were the dominant crop speceis in terms of sown area. 

The present land use and land cover pattern is, to a major degree, a result of drastic social-

economic changes that have taken place since the late 1940s in Inner Mongolia (Sneath 

1998; Bayaer et al. 2005). Three sub-periods with different land use policies and social 

environments influenced the land system prior to 2000: 1) Moderate land use (1949-1957); 

2) Land use intensification and cropland expansion (1958-1977); 3) Post-socialism land 

use (1978-1999) (Table I-I).  

Table I-1: Land use and land cover change in Inner Mongolia during various periods. The orange colors in 
the cells indicate area loss and the green colors indicate area gain. Higher levels of change magnitude are 
illustrated in deeper-color tones.  

 1949-1957 1958-1977 1978-1999 

Forests    

Croplands    

Grasslands    

 

Shortly before and after the foundation of the People’s Republic of China in 1949, 

socialism was adopted and land reform was conducted in the Communist Party-controlled 

Inner Mongolia (Chaogemandula 2012). Private cropland was taken away and equally 

redistributed to individuals, while most grasslands and forests remained under the previous 

commune’s ownership (Qinggeletu 1998). During this period, grasslands were well 

protected under regional policies between 1949 and 1957 (Jiang 2005). For instance, a 

regional regulation was authorized in 1951 to maintain grasslands and prohibit land 
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reclamation (Chinese: 保护牧场, 禁止开荒) (Zhang et al. 2008). To reduce wind and 

water erosion, forests were well-protected in Inner Mongolia, as well as in China as a 

whole  (Richardson 1990).  

The moderate use of land in Inner Mongolia prior to 1957 was interrupted by social and 

political changes. With an aim of rapidly transforming the country from an agrarian 

economy into an advanced communist society, drastic industrialization and collectivization 

was taken in the “Great Leap Forward” campaign (Chinese: 大跃进, 1958-1961) (Eckstein 

1977; Chan 2001). Private lands were taken away again and managed by communes under 

a collective farming regime. Land use was gradually intensified to meet the increasing 

material needs of industry. Encouraged by the national policy “grain-first” (Chinese: 以粮

为纲 ), large-scale cropland expansion on grasslands or forests spread out in Inner 

Mongolia (Song and Zhang 2006). It is estimated that more than two million hectares of 

grasslands or forests have been converted to cropland between 1958 and 1976 in Inner 

Mongolia (Enkhee 2000; Bayaer et al. 2005).  

The end of political turmoil in 1976 developed into a period of profound political-

economic reform that marked the beginning of the Chinese era of "Reform and Opening 

Up" (Chinese: 改革开放) (Song 1985). After 1978, the economy was put ahead of politics 

and a series of economic reform initiatives were implemented, including the expansion of 

free markets, diminishing state control over enterprises, decollectivization of agriculture, 

and opening up of the country to foreign investment and so forth (Brogaard and Zhao 

2002). The reforms reached every economic sector and greatly influenced the agricultural 

sector in Inner Mongolia. The implementation of the Households Production 

Responsibility System (HPRS), for instance, contracts farmers and stimulates their 

incentives for choosing more profitable means of land management. As a result, the 

number of livestock rapidly increased and exacerbated wide-spread grassland degradation 

(Thwaites et al. 1998; Su et al. 2005; Li et al. 2007). Meanwhile, cultivation continued to 

encroach on grasslands, resulting in a new wave of cultivation from 1986 to 1996 (Bao et 

al. 1998; Jiang 2005). Contrary to the semi-privatization reforms in the agricultural sector, 

the forestry sector in Inner Mongolia remained mostly state-controlled, although small 

parcels of forested land were leased to individuals. The government’s intense exploitation 

of timber has caused forests to rapidly shrink in Inner Mongolia; the forest stock volume in 

the Greater Khingan Range was estimated to have decreased by 28.7% between 1962 and 

2000 (Wang 2005; Wang 2013).  
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The overuse of land resources before the 2000s resulted in severe ecological consequences 

in the ecologically fragile area of Inner Mongolia. Desertification (Wu and Ci 2002; Zhao 

et al. 2005; Ci and Yang 2010), frequent sandstorms (Xu 2006; Han et al. 2008; Wang et al. 

2013), increasing floods (Lv and Zhang 1999) and biodiversity loss (Li 1995; Zhou et al. 

2006; Tian et al. 2009) have been widespread in Inner Mongolia, which pushed the 

Chinese central government to rethink how land is used (Liu and Diamond 2005). To 

mitigate negative ecological outcomes and ensure a more sustainable method of 

development, in the late 1990s the Chinese central government launched a series of 

nationwide land restoration programs to preserve natural ecosystems, regenerate forests 

and reduce human pressure in ecologically fragile regions (Liu et al. 2008). Most of the 

national land restoration programs were implemented in Inner Mongolia, which makes it 

the province with the heaviest investment (SFA 2013). 

The Natural Forest Conservation Program (NFCP, Chinese: 天然林保护工程), approved 

by the State Council in 2000, is a prominent land restoration program. Spanning nearly half 

a century (1999-2050), the NFCP intends to preserve natural forests and to increase the 

productivity of forest plantations (Zhang et al. 2000). Complementing NFCP, another 

notable land use policy titled Returning Farmlands to Forest and Grassland Project (also 

known as “Grain to Green Program”, GGP, Chinese: 退耕还林还草工程) plans to spend 

325 billion yuan (1 Euro = 8.6 yuan in April 2014) to convert 147 million ha of farmland 

on steep slopes (≥15° in northwestern China and ≥25° elsewhere) or with low yield, and 

173 million ha of grassland into forest between 1999 and 2010 (Uchida et al. 2005; Wang 

et al. 2007a). To reduce the sources of sandstorms that affect Beijing and its neighboring 

Tianjin Municipality, 145 billion yuan have been invested into vegetation re-generation in 

phase I (2001-2012) of the Beijing and Tianjin Sandstorm Source Treatment Project 

(BTSST, Chinese: 京津风沙源治理工程), and an additional 88 billion yuan will be 

invested into the phase II program (2013-2022) (Li and Zhang 2004; Zhang et al. 2012). 

The land restoration programs in China are implemented through several policy 

instruments.  On the one hand, administrative means were adopted and the overall goals 

were sub-tasked and assigned to the local governments each year. Vegetation regenerations, 

including mountain enclosure or tree plantations, were conducted in the state-owned land 

directly (Hyde et al. 2003). Further, the local governments were requested to create off-

land jobs and re-train the labor in the forestry and agricultural sectors for re-settlement 

(Zhang et al. 2000). On the other hand, subsidies higher than the opportunity costs were 
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offered to farmers to encourage conversion from marginal cropland to forest or grassland 

(Gauvin et al. 2010). Based on the choice of land use, farmers receive contracts with 

different time limits and compensation levels. For instance, farmers can obtain 8-year 

subsidies if the cropland is converted to ecological forests (i.e., forests serving to alleviate 

soil erosion and sandstorms) (SFA 2008) while compensation is carried out over 5 years if 

economic tree species such as fruit trees are used for afforestation (Yan and Yan 2004). 

Yet land use and land cover change in Inner Mongolia after 2000 has not been completely 

known. Beyond China’s land use policies, other social-economic factors may influence 

land use decisions in Inner Mongolia as well. One of the underlying drivers is the 

increasing demand for agricultural and timber products during the past decade. Inner 

Mongolia has been experiencing the most rapid economic development in its history, and 

the Gross Domestic Product (GDP) has increased more than 10-fold between 2000 and 

2012 (IMARBS 2000-2013). Correspondingly, the consumption of timber and agricultural 

products has reached all-time highs in Inner Mongolia since the late 2000s (Zhu 2008; 

Wang 2009; Xiao 2012). The increasing price of commodities may stimulate land use 

intensification and reduce the willingness of farmers to join governmental land restoration 

plans. Unfortunately, by now we still do not clearly know how land use and land cover in 

Inner Mongolia was changed under the background of Chinese land use policies and other 

interacting factors. 

3 Monitoring land use and land cover change using remote sensing 

Remote sensing has proven to be a valuable tool for land surface monitoring, as it provides 

a synoptic perspective and periodic view of the Earth’s surface. The reflected or emitted 

electromagnetic energy can be captured through sensors and can then be translated into 

physical properties of the land surface (Loveland and Defries 2004b). The repeated 

observation of remote sensing makes it possible to investigate changes by comparing the 

imagery acquired at several points in time. Since the late 1970s, imagery taken from 

remote sensing has been employed for the purpose of land cover mapping and change 

detection (Tardin et al. 1979; Tardin et al. 1980).  

The great abundance of earth-observing sensors available today has greatly improved the 

capacities for land monitoring from local to global scales (Kenneny et al. 2014). In 1972, 

the Landsat satellites were launched to monitor land surfaces, making them the longest 

consecutively running remote sensing program. However, the relatively narrow swath that 
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they encircle (ca. 185 km) hampers the utility of Landsat for large-scale mapping (Clark et 

al. 2012). With wide-field-of-view (henceforth: coarse resolution) satellite data, land 

monitoring at the continental or global scale becomes feasible for the first time (Tucker et 

al. 1985; Defries and Townshend 1994). Since the launch of National Oceanic and 

Atmospheric Administration (NOAA)-6 in 1979, the Advanced Very High Resolution 

Radiometer (AVHRR) has provided global coverage imagery that has been successfully 

used for continental and global land cover mapping at coarse spatial resolution (i.e., 8x8 

km, (Townshend 1994; Loveland et al. 2000)). Several more recent satellite missions have 

tremendously improved monitoring capabilities, specifically with regard to improved 

spatial resolution and radiometric calibration. Among others, Système Probatoire 

d’Observation de la Terre VEGETATION (SPOT VGT), launched in 1998, and Moderate-

Resolution Imaging Spectroradiometer (MODIS), in operation since 2000, have increased 

the utilities of remote sensing for wall-to-wall large scale land cover monitoring (Friedl et 

al. 2002; Huete et al. 2002) (Table I-2).  

Table I-2: Characteristics of the AVHRR, SPOT-VGT, and MODIS and the respective Normalized Difference 
Vegetation Index (NDVI) datasets, adopted from Tarnavsky et al (2008). 

 AVHRR SPOT-VGT MODIS 

NDVI product AVHRR GIMMS SPOT-VGT S10 MOD13Q1 

Platform NOAA-7/9/11/14/16 SPOT- 4/5 MODIS Terra 

Wavebands used for NDVI 
calculation 

Red = 580-680 μm 
NIR = 725-1100 μm 

Red = 610-680 μm 
NIR = 780-890 μm 

Red = 620-670 μm 
NIR = 841-876 μm 

Time period 06/1981 to - 12/2006 04/1998 to - 03/2000 to - 

Nadir pixel size 5 km 1 km 250 m 

Nominal pixels size 8 km 1 km 250m 

Off-nadir view angle (degree) 55.4 50.5 65 

Radiometric quantization 10-bit 8-bit 12-bit 

Compositing, cloud removal 15-day MVC NDVI 10-day MVC NDVI 16-day CV-MVC NDVI 

MVC = maximum value composite; CV–MVC = constrained maximum value composite. 

Another advantage of the coarse resolution data is the capacity of observing the Earth at 

high frequency intervals. Compared to the 16-day satellite revisits of Landsat, AVHRR and 

other coarse resolution sensors provide a daily repeat observation, which is crucial for 

monitoring seasonal and innerannual variation in land surface driven by climatic variability 

or land use change (Linderman et al. 2005). The advantage provided by daily observation 

is particularly acute in drylands, which are highly influenced by large seasonal variations 

in precipitation. Thus, to be able to separate subtle land use and land cover change (i.e., 

land modification) from fluctuations in land cover conditions caused by climatic 
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variability, a long-term time series of coarse resolution imagery is required for land change 

monitoring across broad scales (Brown et al. 2007; Redo and Millington 2011).       

To be able to rely on the changes detected from integrated time series from multiple 

sensors, it is crucial to ensure consistency across products and over time. While state-of-

the-art remote sensing instruments provide higher quality data, their relatively short record 

compared to AVHRR has been a limiting factor for long-term surface monitoring. 

Integrating imagery from different sensors provides an option to extend the higher quality 

dataset acquired from SPOT VGT or MODIS back to the 1980s (Brown et al. 2008; Liu et 

al. 2012). 

However, combining imagery from various sensors and platforms remains a challenging 

task and related uncertainties are not well understood (van Leeuwen et al. 2006; Baldi et al. 

2008; Beck et al. 2011). In addition to the different bandwidths and calibration techniques, 

temporal inconsistency due to sensor replacement and degradation means that AVHRR is 

not easily combined with imagery from other advanced sensors (Latifovic et al. 2012; Yu et 

al. 2013). During the past 30 years, three AVHRR instruments have been operated on more 

than ten NOAA satellite platforms, and orbital drift often resulted in inconsistent time-

sampling of clouds and other geophysical variables (Price 1991; Gleason et al. 2002; 

Devasthale et al. 2012). Therefore, examining the temporal consistency of long-term 

satellite records is a prerequisite for robust change detection (Fensholt et al. 2009; Stellmes 

et al. 2010).    

Methodologically, developing cost-effective, accurate, and automated methods for 

monitoring land use and land cover change is a growing area of research (Mas 1999; 

Turner et al. 2007). Depending on the forms of land use and land cover change, methods 

utilized for change detection are diverse (Singh 1989; Lu et al. 2004). As a simple and 

robust approach, trend analysis has frequently been applied to characterize land cover 

change processes from multi-temporal imagery, using, for example, Normalized Difference 

Vegetation Index (NDVI) time series (Eklundh and Olsson 2003; Vogelmann et al. 2012; 

Jamali et al. 2014). Trend analysis of biophysical land properties can capture the 

magnitude and direction of land changes (Hostert et al. 2003; Verbesselt et al. 2010b), yet 

it does not provide detailed information about land change processes. For instance, without 

other auxiliary information, it is difficult to label land conversion directly from the results 

of trend analysis (Lasanta and Vicente-Serrano 2012). Nevertheless, trend analysis is still a 

useful tool for screening land changes, especially ones that are related to subtle land 
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modifications such as land use intensification or land degradation (Hill et al. 2008; Hilker 

et al. 2014).  

While trend analysis supports the detection of gradual land modification, there is a strong 

need to develop a method that can reliably map land cover conversions at frequent time 

intervals. Though annually updated land cover maps have been produced for many regions 

(Friedl et al. 2002; Clark et al. 2010), automated methods and standards for mapping land 

cover change across multiple land cover types at annual intervals are not readily available. 

This disparity has consequences for land change analyses. Comparing land cover maps 

from multiple dates is one of the most traditional approaches for land conversion mapping; 

however, annual land cover conversion cannot be accurately inferred from the existing 

annual land cover products due to the large inter-annual variation in heterogeneous areas 

(Friedl et al. 2010; Fritz et al. 2011). Recently, trajectory-based techniques have emerged 

for detailed change detection (Huang et al. 2010; Kennedy et al. 2010). However, the 

trajectory approach mostly focused on changes between two conditions within the scope of 

forest monitoring. If changes between multiple land cover classes are of interest, the 

change attribution becomes difficult to map. 

4 Objectives, research questions and method design 

The overall aim of this thesis is to gain a better understanding of land use and land cover 

change in Inner Mongolia after 2000 using remote sensing and considering China’s land 

restoration programs. The study area of Inner Mongolia is a hotspot for global 

environmental change research. The ecosystems there are vulnerable and past 

anthropogenic disturbances have caused a series of environmental disasters that have 

caught wide public attention (Liu et al. 2013). While great efforts and massive investments 

have targeted land restoration, little knowledge has been gained regarding how and when 

land surface was altered in Inner Mongolia. Coarse resolution imagery provides the 

potential for monitoring land changes across broad scales, yet it suffers from uncertainty 

due to temporal consistency. Moreover, to capture complex land change processes, we 

need a robust approach to detect changes across multiple land classes at frequent intervals 

(e.g., annual). Therefore, a comprehensive examination of data consistency and the 

development of robust methods for annual land cover change mapping are prerequisites. 

The first objective of this thesis is to examine the utility of coarse resolution imagery time 

series for long-term land change monitoring. The second objective is to develop a method 
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for land use and land cover change mapping at frequent time intervals to improve the 

capabilities of remote sensing to capture changes across multiple land cover categories. 

The final aim is to investigate how the land changed in Inner Mongolia under the 

background of national land restoration programs since the year 2000. Consequently, this 

thesis investigates these questions in three separate research chapters (Chapter II-IV): 

Research question I (Chapter II): How do time series from global satellite archives 

compare across Inner Mongolia, and how do trends derived from time series relate to land 

change? 

To investigate this question, this chapter used a trend analysis to examine the temporal 

consistency of AVHRR GIMMS data – the longest NDVI time series record against the 

latest state-of-the-art sensors SPOT VGT and MODIS Terra. This chapter compared the 

trend from NDVI time series, as well as the derived phenological indicators to investigate 

the utility of different sensor-based NDVI archives for land monitoring. The results of the 

trend analysis were interpreted to learn about the land modification process in Inner 

Mongolia.  

Research question II (Chapter III): How can land use and land cover change be reliably 

mapped at an annual interval using hyper-temporal satellite imagery? 

To address the complexly of land surface dynamics, wall-to-wall land change monitoring at 

frequent time intervals is needed. This chapter tested the utility of a trajectory-based 

change detection approach applied to MODIS data to map annual land use and land cover 

change using time series of land cover class probabilities for multiple land cover class 

trajectories. The approach developed in this chapter was applied to Inner Mongolia to 

address research question III. 

Research question III (Chapter IV): How was the land changed in Inner Mongolia 

considering national land restoration programs? 

Three processes that are mostly related to China’s land restoration programs are the main 

foci in this chapter: deforestation, forest regeneration (i.e., afforestation and reforestation) 

and conversion from cropland to grassland (cropland retirement). This chapter mapped the 

spatial and temporal pattern of these three processes in Inner Mongolia after 2000, when 

the various land restoration programs were initially implemented. 

 



Introduction 

 15 

5 Structure of this thesis 

This thesis comprises five chapters. Following this introduction three core chapters 

(Chapters II - IV) address each research question. Chapter V provides a synthesis of the 

thesis by summarizing the answers to the research questions, and concludes by providing 

an outlook for future research. The core chapters were written as stand-alone documents in 

the format of an article that can be published in peer-reviewed journals. Nevertheless, these 

chapters fit the framework of this thesis well. The three core chapters were published 

(Chapter II), submitted (Chapter III), or is under preparation (Chapter IV) as follows: 

Chapter II:  Yin, H., Udelhoven, T., Fensholt, R., Pflugmacher, D., & Hostert, P. 

(2012). How Normalized Difference Vegetation Index (NDVI) trends 

from Advanced Very High Resolution Radiometer (AVHRR) and 

Système Probatoire d’Observation de la Terre VEGETATION (SPOT 

VGT) time series differ in agricultural areas: An Inner Mongolian case 

study. Remote Sensing, 4, 3364-3389. 

Chapter III:  Yin, H., Pflugmacher, D., Kennedy, R.E., Sulla-Menashe, D., & Hostert, 

P. Mapping annual land use and land cover changes using MODIS time 

series. (in revision). IEEE Journal of Selected Topics in Applied Earth 

Observation and Remote Sensing. 

Chapter IV: Yin, H., Pflugmacher, D., Li, A., Li, Z.G., & Hostert, P. (in preparation). 

Land use and land cover change in Inner Mongolia - understanding the 

effects of China's re-vegetation programs. 
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Abstract 

Detailed information from global remote sensing has greatly advanced our understanding 

of Earth as a system in general and of agricultural processes in particular. Vegetation 

monitoring with global remote sensing systems over long time periods is critical to gain a 

better understanding of processes related to agricultural change over long time periods. 

This specifically relates to sub-humid to semi-arid ecosystems, where agricultural change 

in grazing lands can only be detected based on long time series. By integrating data from 

different sensors it is theoretically possible to construct NDVI time series back to the early 

1980s. However, such integration is hampered by uncertainties in the comparability 

between different sensor products. To be able to rely on vegetation trends derived from 

integrated time series it is therefore crucial to investigate whether vegetation trends derived 

from NDVI and phenological parameters are consistent across products. In this paper we 

analyzed several indicators of vegetation change for a range of agricultural systems in 

Inner Mongolia, China, and compared the results across different satellite archives. 

Specifically, we compared two of the prime NDVI archives – AVHRR Global Inventory 

Modeling and Mapping Studies (GIMMS) and SPOT Vegetation (VGT) NDVI. Because a 

true accuracy assessment of long time series is not possible, we further compared SPOT 

VGT NDVI with NDVI from MODIS Terra as a benchmark. We found high similarities in 

interannual trends, and also in trends of the seasonal amplitude and integral between SPOT 

VGT and MODIS Terra (r > 0.9). However, we observed considerable disagreements in 

NDVI-derived trends between AVHRR GIMMS and SPOT VGT. We detected similar 

discrepancies for trends based on phenological parameters, such as amplitude and integral 

of NDVI curves corresponding to seasonal vegetation cycles. Inconsistencies were 

partially related to land cover and vegetation density. Different pre-processing schemes and 

the coarser spatial resolution of AVHRR GIMMS introduced further uncertainties. Our 

results corroborate findings from other studies that vegetation trends derived from AVHRR 

GIMMS data not always reflect true vegetation changes. A more thorough understanding 

of the factors introducing uncertainties in AVHRR GIMMS time series is needed, and we 

caution against using AVHRR GIMMS data in regional studies without applying regional 

sensitivity analyses. 
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1 Introduction 

Remote sensing data have provided unique insights for global environmental change 

research during the past decades (Tucker et al. 1985; MEA 2005b; Turner et al. 2007). 

Global data archives such as those based on imagery acquired by the Moderate-Resolution 

Imaging Spectroradiometer (MODIS), Système Probatoire d'Observation de la Terre 

VEGETATION (SPOT VGT) or the National Oceanic and Atmospheric Administration 

(NOAA) Advanced Very High Resolution Radiometer (AVHRR) are key to understanding 

ecosystem changes from regional to global scales(Cracknell 1997; van Leeuwen et al. 

1999; Friedl et al. 2002; Fensholt et al. 2009; Ganguly et al. 2010). Without detailed 

information from global remote sensing systems, global environmental change research 

would be hampered from understanding Earth as a system (Townshend et al. 1991; Gutman 

et al. 2004; Turner et al. 2008). 

Monitoring agricultural change trajectories over long time periods is critical to gain a 

better understanding of the Earth System’s carrying capacities (Matson et al. 1997; 

Rasmussen et al. 1998; Barnosky et al. 2012). Gradual or long-term change processes, such 

as ecosystem degradation due to agricultural over-use, can only be detected and 

characterized with confidence from time series. However, extracting trends from time 

series can be challenging due to short-term (e.g. phenological) variations in the data or 

overall low signal-to-noise-ratios (Verbesselt et al. 2010a; Verbesselt et al. 2010b; Samanta 

et al. 2011; de Jong et al. 2012). It is hence necessary to establish long enough time series 

to reliably capture vegetation trends in agricultural ecosystems (Tucker et al. 1991; Reed 

and Brown 2005; Udelhoven et al. 2009). In this paper, we strive to better understand how 

time series from global satellite archives compare across one of China’s prime agricultural 

areas and how trends derived from time series relate to agricultural change. 

Among the various remote sensing-based vegetation measures utilized in agricultural 

monitoring, the Normalized Difference Vegetation Index (NDVI) is the most widely used 

proxy for vegetation cover and production (Tucker 1979; Myneni et al. 1997; Field et al. 

1998; Pettorelli et al. 2005; Panda et al. 2010). There is a strong relationship between 

NDVI and agricultural yield (Labus et al. 2002; Boschetti et al. 2009). Vegetation 

properties, such as length of growing season, onset date of greenness, and date of 

maximum photosynthetic activity are often derived from NDVI time series for monitoring 

changes in agricultural systems (Lee et al. 2002; Xin et al. 2002; Hill and Donald 2003; de 
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Beurs and Henebry 2004). These phenological indicators emphasize different 

characteristics of terrestrial ecosystems to gain a better understanding of structure and 

function of land cover and associated changes (Schwartz 2003; Ganguly et al. 2010; 

Kariyeva and Van Leeuwen 2011). Phenology, i.e. the timing of recurring life cycle events, 

may for example shift in response to natural or anthropogenic disturbances in agricultural 

ecosystems (Bradley and Mustard 2008; Yu et al. 2010). Environmental scientists have an 

increasing interest in spatially explicit phenological data to better understand agricultural 

change processes associated with land use and climate change. In this context, remote 

sensing-based time series of NDVI are increasingly used to obtain phenological data at 

regional to global scales (Zhang et al. 2003; Martinez-Beltran et al. 2009; Gu et al. 2010; 

Alcantara et al. 2012).  

Daily NDVI series of global coverage derived from AVHRR data have been extensively 

used for land change research, including agricultural ecosystems (Tucker et al. 1985; de 

Beurs and Henebry 2004; Geerken and Ilaiwi 2004; Wessels et al. 2007; Li et al. 2010a; 

Bégué et al. 2011). Because AVHRR was originally designed for deriving information 

about the Earth’s atmosphere, its radiometric and spatial resolution is not optimized for 

vegetation monitoring (Steven et al. 2003; Lillesand et al. 2008). Nevertheless, the 

AVHRR systems are the only available instruments that have provided repeated, long-term 

observations of global vegetation properties in an operational mode since June 1979, the 

launch of NOAA-6. 

Since the late 1990s, satellite missions have tremendously improved monitoring 

capabilities and data quality, specifically with regard to data calibration and standardized 

pre-processing schemes. Among others, bandwidths and spectral response in the red and 

near-infrared bands needed for NDVI calculation have been improved compared to 

AVHRR (Huete et al. 2002; Tarnavsky et al. 2008). While newer remote sensing 

instruments such as SPOT-VEGETATION and MODIS supply higher quality data, their 

relatively short service record compared to AVHRR has been a limiting factor for 

analyzing long-term surface conditions. Therefore, AVHRR remains an invaluable and 

irreplaceable archive of historical land surface information when targeting long-term 

change processes in ecosystem analysis, such as agricultural expansion and intensification 

(Jiang 2005; Tucker et al. 2005; Li et al. 2007). 

Despite the need for integrating NDVI time series from different sensors, it is not well 

understood how phenological parameters and change trends derived from NDVI time 
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series compare across sensors in different regions. Little information exists on which 

factors might lead to systematic biases, specifically in areas with low and strongly varying 

NDVI (Alcaraz-Segura et al. 2010). With the advent of new generations of sensors, van 

Leeuwen (1999), for example, pointed out that differences between AVHRR and MODIS 

time series in the spectral, radiometric, and spatial domain need to be better understood to 

meet the needs of long-term agricultural change research. In general, it is crucial to better 

understand differences in time series products from different NDVI archives acquired 

from, among others, NOAA AVHRR, SPOT VGT and MODIS (Gitelson and Kaufman 

1998; Brown et al. 2006; Fontana et al. 2008). 

There have been several studies showing a generally acceptable agreement between NDVI 

time series from AVHRR sensors and MODIS, MERIS (MEdium Resolution Imaging 

Spectrometer), or SPOT VGT. Gallo (2005) examined NDVI time series between 2002 and 

2003 derived from AVHRR (NOAA-16 and NOAA-17) and MODIS (MOD13A2; 

Collection 4), and found good linear relationships for 89% of the NDVI values for the 

conterminous United States. Swinnen and Veroustraete (2008) found a good linear 

agreement between the SPOT-VGT 10-day synthesis product (S10) and the AVHRR Local 

Area Coverage (LAC) Level 1b datasets after conducting sensor calibrations to improve 

consistency for Southern Africa.  

However, these studies were based on correlation analyses, which mainly proof the 

coherence of the seasonal, sinusoidal-like NDVI patterns. As phenological changes are 

often much greater than long-term vegetation trends, these analyses are not sensitive 

enough to allow inferences on long-term vegetation trends. Less research has focused on 

directly comparing trends derived from different NDVI datasets. For regional and global 

agriculture monitoring, however, it is crucial to know whether trends derived from 

different NDVI archives are comparable or not. Using four NDVI time series derived from 

AVHRR spanning 1982 to 1999, Alcaraz-Segura et al (2010) evaluated the differences in 

spatial patterns of trends in Pathfinder (PAL), Fourier-Adjustment, Solar zenith angle 

corrected, Interpolated Reconstructed (FASIR), GIMMS, and Land Long Term Data 

Record (LTDR) datasets. They found that GIMMS-derived trends differed the most and 

concluded that it is necessary to compare trends from different AVHRR-based NDVI 

products with those derived from other sensors. One study focusing on the comparability 

of NDVI-based trend derivatives from AVHRR, MODIS and SPOT VGT data was 

performed by Fensholt et al (2009) for the Sahel region. They concluded that GIMMS, 

MODIS 16-day NDVI and SPOT VGT 10-day composites produced largely similar trends, 
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with variations increasing towards more humid climate regimes, i.e. higher biomass. Song 

et al (2010) examined correlation and compared trend maps from AVHRR GIMMS and 

SPOT VGT visually across China from 1999 to 2006, they concluded that these two 

products correlated well and trends are largely coherent, apart from desert areas. A global 

comparison between the newly-processed GIMMS3g archive and MODIS data showed 

that global class-wise trends across biomes exhibit similar tendencies, but spatial patterns 

at the local to regional scale do often correlate less well (Fensholt and Proud 2012). 

Findings on the comparability of vegetation trends derived from different satellite data 

archives are inconclusive and not available across the full range of biomes. While the 

AVHRR GIMMS dataset has been cross-calibrated with data from other sensors (Tucker et 

al. 2005), a deeper knowledge on the compatibility of vegetation trends derived from these 

cross-calibrated data is needed across a range of different agricultural systems. 

We chose Inner Mongolia as a test region, which allowed us to compare NDVI-based 

trends from different sensors across a climatic gradient from sub-humid to arid 

environments. While agricultural intensification in Inner Mongolia started in the late 

1970ies, policies to protect the environment were mostly implemented since the late 

1990ies, i.e. related effects will only be detectable in recent data. Such long time periods of 

agricultural change require a coupling of different NDVI archives in a consistent 

framework to capture the full range of change processes. The aim of this paper is a 

comprehensive comparison of vegetation trends in various agricultural systems derived 

from AVHRR GIMMS and SPOT VGT NDVI archives, using MODIS as a benchmark for 

SPOT VGT. We strive to better understand how consistent indicators of vegetation change 

are between these archives. We therefore ultimately pose the question which restrictions 

apply when analyzing long-term trends from joint NDVI archives for agricultural areas. 

2 Materials 

2.1 Study area 
Our study area is located in central and western Inner Mongolia (Figure II-1). The region is 

characterized by an arid to sub-humid climate with a strong zonal distribution of rainfall 

and vegetation from East to West (Lee et al. 2002; Yu et al. 2003). Along with the zonal 

precipitation patterns, land uses follow a distinct gradient. The northeastern part of the 

study area is dominated by deciduous forest and in the lowlands by agriculture. Between 
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the forested East and the desert in the West, land cover is dominated by various grassland 

ecosystems.  

We selected the Hinggan region in densely-vegetated northeast Inner Mongolia and the 

sparsely vegetated Ordos region as two prototypic landscapes for testing our analysis 

scheme and for an in-depth evaluation of results. Hinggan is known as an ecological 

transition zone, with landscapes ranging from cultivated cropland in the eastern plain to 

forests in the mountainous West. Ordos is dominated by dry grasslands, desert and 

irrigated cropland along the Yellow River (Nemani et al. 2003; Tao et al. 2005). 

Considering agricultural change during the last decades, Inner Mongolia has undergone 

several land use transitions. Those changes are on the one hand triggered by a 

tremendously increasing demand for agricultural products in China (Liu et al. 2003; Liu et 

al. 2010b), and on the other hand by the need to stop ongoing land degradation (Jiang 

2005; Wang et al. 2007b). In Inner Mongolia, four different change processes can be 

distinguished on agricultural land: First, the semi-arid to sub-humid grasslands of the 

steppe regions have been and still are intensively grazed. Extended areas heavily degraded 

over time, which enforced restrictive grassland exclosure policies (Tong et al. 2004; Jiang 

2006; Li et al. 2007). Second, in the more humid regions of Inner Mongolia intensive 

cropping systems developed. These also prevail along the river valleys of the semi-arid 

areas of Inner Mongolia, where irrigation systems allow for higher yields and more water-

demanding crop species. This trend is still ongoing (Chen et al. 2003; Qiao et al. 2009). 

Third, agricultural land on slopes has been affected by China’s Sloping Land Conversion 

Program, also referred to as the national “Grain for Green” Program (Deng et al. 2006; 

Bennett 2008). In mountainous terrain we consequently expect a greening up of previously 

cropped areas. Fourth, natural forest protection and afforestation in croplands as wind 

shelter is extensively practiced in Inner Mongolia to combat land degradation and prevent 

sand storms, known as the “Green Great Wall” and “The Combating Desertification 

Program in Wind-Sand Source Areas Affecting Beijing and Tianjin” initiatives (Chen et al. 

2003; Qiao et al. 2009). Almost all the croplands in the study region are covered by these 

programs, while the exact time of implementation depends on local policies and may 

accordingly vary. 
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Figure II-1: Mean annual rainfall (1999–2006) in Inner Mongolia interpolated from China Meteorological 
Administration (CMA; http://cdc.cma.gov.cn/) data (top). Elevation data from Shuttle Radar Topography 
Mission (SRTM) digital elevation model (center). Reclassified land cover map of Inner Mongolia as provided 
by the Chinese Academy of Science (CAS, Liu et al. 2002) for the year 2000. Black frames showing focus 
regions. Inset showing Inner Mongolia in Asia (bottom). 
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2.2 Data 

2.2.1 AVHRR NDVI composites 

The AVHRR NDVI archive employed in this study was obtained from the NASA GIMMS 

group (Pinzon et al. 2007) and covered the years 1999 to 2006. We selected AVHRR 

GIMMS because it is the only updated archive and also the most widely used global 

AVHRR dataset (Tucker et al. 2005).  GIMMS data are 15-day maximum value composites 

(MVC) at 8-km spatial resolution produced from Global Area Coverage (GAC) 1B data 

(Tucker et al. 2005). Data from six AVHRR instruments on different satellite platforms 

were used to produce this dataset. To ensure the continuity of NDVI time series derived 

from different instruments, GIMMS data have undergone rigorous data post-processing, 

including corrections of residual differences between sensors, viewing geometry caused by 

orbit drift, volcanic aerosols effects, and low signal-to-noise ratios due to sub-pixel cloud 

contamination (Tucker et al. 2005). Furthermore, Empirical Mode Decomposition (EMD) 

has been employed to identify and remove components of the NDVI signal that are largely 

related to the satellite drift on the Solar Zenith Angle (SZA) (Pinzon 2002; Pinzon et al. 

2004). Finally, temporally overlapping SPOT Vegetation NDVI time series were used to 

intercalibrate the NOAA-14 and NOAA-16 NDVI time series (Pinzon et al. 2004). To this 

end, non-linear regression was performed to establish coefficients that transform historical 

data into the same value range as that of MODIS and SPOT (Tucker et al. 2005; 

Mangiarotti et al. 2010). 

2.2.2 SPOT-VGT NDVI composites 

The SPOT-VGT S10 products obtained from the Vlaamse Instelling voor Technologisch 

Onderzock (VITO) Image Processing center (http://free.vgt.vito.be/) are derived from 

SPOT-VGT P (P=physical) products. Launched on 24 March 1998, the VGT 1 on board 

SPOT-4 began capturing data until February 2003, when VGT 2 on board SPOT-5 became 

the nominal instrument. The VEGETATION instrument has several advantages compared 

to AVHRR, including better navigation, improved radiometric sensitivity, reduced 

geometric distortions, and 4 spectral bands instead of 2 in the visible to near infrared 

(VISNIR) spectral domain (Gobron et al. 2000). The SPOT-VGT S10 products are 

compiled by merging segments (data strips) acquired in a 10-day MVC at 1-km spatial 

resolution based on VGT-P products, which have been atmospherically corrected for 

molecular and aerosol scattering, water vapor, ozone and other gas absorptions (SPOT 

Vegetation user's guide 2012). A slight increase in NDVI after 2003 has been reported due 

to differences in radiometric calibration methods and band widths between VGT 1 and 
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VGT 2. The observed 3.5% increase in NDVI (for values > 0.3 only) is related to a bias in 

the near-infrared and red band of 6.3% and 2.1%, respectively (Henry and Meygret 2001; 

Fensholt et al. 2009; SPOT Vegetation user's guide 2012). 

2.2.3 MODIS Terra NDVI composites 

We obtained MODIS-based NDVI data between 2001 and 2010 from the MODIS-Terra 

Vegetation Index (VI) products (MOD13Q1, Collection 5). We acquired the data from the 

United States Geological Survey (USGS) Land Processes (LP) Distributed Active Archive 

Center (DAAC) at the Earth Resources Observation and Science (EROS) Data Center. The 

MODIS VI archive is available at a nominal 250-m spatial resolution and composited with 

a time interval of 16-days. Unlike AVHRR GIMMS and SPOT-VGT products, which use 

the simpler MVC method for compositing, MODIS VI products use a more sophisticated 

compositing algorithm that consists of two components: 1) a bidirectional reflectance 

distribution function composite (BRDF-C), and 2) a constrained view angle - maximum 

value composite (CV-MVC). These algorithms were designed to constrain the strong 

angular variations encountered in the MVC method and to reduce spatial and temporal 

discontinuities in the composited product (Huete et al. 2002). The MODIS VI archives 

have shown a better ability to provide useful radiometric and biophysical information for 

land surface characterization than previously available NOAA-AVHRR datasets (Huete et 

al. 2002; Vermote et al. 2002). 

2.2.4 Other data 

The Chinese Academy of Sciences’ (CAS) Land-Use/Land-Cover Change (LUCC) 

database (Liu et al. 2002) was used as the main source of high resolution land use and land 

cover information. This vector dataset was derived from 505 Landsat TM scenes acquired 

in 2000 that were classified with an overall accuracy of 81% for all of China. Compared to 

other coarser land cover products such as the IGBP DISCover or GLC2000, the CAS 

LUCC database has a finer spatial resolution and is more accurate (Ran et al. 2009). The 

original 25 land cover types of the CAS LUCC database were merged into 8 relevant 

classes for our study region (Table II-1, Figure II-1). 
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Table II-1: Reclassified CAS land cover scheme. 

Land cover types Description 

Sparse grassland (SG) Herbaceous land with 5-20% canopy cover 

Medium dense grassland (MG ) Herbaceous land with 20-60% canopy cover  

Dense grassland (DG) Herbaceous land with over 60% canopy cover 

Croplands (CL) Agricultural land with crops 

Forestland (FL) Coniferous, broadleaf and mixed tree cover 

Waterbodies (WB) Ocean, lakes, reservoirs, and rivers 

Constructed area (CA) Artificial surfaces 

Non-vegetated land (NL) All other land cover with less than 5% vegetation cover 

3 Methods 

We used the relatively short time series of MODIS-Terra NDVI between 2001 and 2010 to 

better understand how well this time series correlates with the SPOT VGT derived NDVI 

over time. The idea behind this benchmarking was to test how well spatio-temporal 

patterns can be reproduced between state-of-the-art NDVI archives. If patterns are similar, 

we can conclude that those are not arbitrary and we can rely on the underlying time series. 

In a second step we evaluated how AVHRR-GIMMS differs against this benchmark. 

Comparing AVHRR GIMMS to SPOT VGT data allowed us to take advantage of the 

maximum temporal overlap between both archives from 1999 to 2006. We first smoothed 

all the NDVI products by time series fitting and then extracted phenological parameters, 

NDVI amplitude and integral, from each NDVI time series. We then performed a 

correlation analysis to investigate the relationship between different NDVI archives. 

Lastly, we compared NDVI trends based on NDVI values and also based on phenological 

parameters using non-parametric statistics. 

3.1 Time series fitting and phenological metrics 
Several approaches have been developed to eliminate noise in NDVI time series caused by 

clouds, ozone, dust, as well as off-nadir viewing and low sun zenith angles (Holben 1986; 

Gutman and Ignatov 1997; Jonsson and Eklundh 2004; Udelhoven 2011). Most widely 

used techniques include Best Index Slope Extraction (BISE), Fourier based filtering, 

Savitzky-Golay and asymmetric Gaussian filters. These techniques are based on a temporal 

approach, which provides an estimate of NDVI noise through temporal interpolation 

(Julien and Sobrino 2010). Here, the double logistic function fitting provided in the 

TIMESAT software was chosen to smooth NDVI time series because of its proven general 
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applicability and superiority to many other filters (Jonsson and Eklundh ; Hird and 

McDermid). Pixels flagged as no data (value=-1), snow/ice covered (value=2) or cloud 

contaminated (value=3) in the MOD13Q1 pixel reliability layer were excluded prior to the 

temporal interpolation. Outliers were identified by a Seasonal-Trend decomposition based 

on Loess (STL) (Holben 1986), which is global in character and not dependent on ancillary 

data (Cleverland et al. 1990; Jonsson and Eklundh 2004). 

Based on the fitted time series, we computed land surface phenological parameters for the 

AVHRR GIMMS, SPOT-VGT and MODIS Terra NDVI archives. Two frequently used 

phenological metrics based on NDVI time series, NDVI seasonal amplitude and integral, 

were derived to analyze both functional and structural dynamics of vegetation. Seasonal 

amplitude is defined as the difference between the base and maximum NDVI values in 

each growing cycling. NDVI amplitude indicates the intra-annual dynamics in vegetation 

phenology and thus has often been used in terrestrial ecosystem classification (Bradley and 

Mustard 2008). The NDVI integral, estimated as the cumulative value of NDVI time series 

in vegetation growth during the season (Jonsson and Eklundh 2002; White et al. 2009), is 

closely related to net primary productivity. Using TIMESAT, the start of season is defined 

as 20% of the fitted curve amplitude. We used the so-called “large NDVI integral” defined 

in TIMESAT (Jonsson and Eklundh 2002; Heumann et al. 2007; White et al. 2009). 

3.2 Correlation analysis 
Following Song et al (2010), we conducted a correlation analysis to test the linear 

relationship between different NDVI products. In a first step, fitted MODIS Terra NDVI 

time series data were spatially resampled to meet the coarser resolution of SPOT VGT 

NDVI time series. Both time series were aggregated to monthly data. MVC and a bilinear 

interpolation algorithm were used to generate a monthly 1-km MODIS Terra NDVI time 

series. We then calculated the pixel-wise linear Pearson correlation coefficient (r) between 

monthly 1-km SPOT VGT and MODIS Terra NDVI values between 2001 and 2010. We 

compared SPOT VGT and AVHRR GIMMS NDVI time series in a similar fashion. SPOT 

VGT was aggregated into monthly and 8-km resolution time series for calculating r 

between SPOT VGT and AVHRR GIMMS NDVI time series. 

3.3 Trend analysis 
We calculated linear trends in NDVI time series to analyze patterns of changes and also to 

test whether a good correlation between NDVI from different global archives can be used 

to infer a good correlation between trends. We used non-parametric statistical tests, the 
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Modified Seasonal Mann-Kendall (MSK) and Mann-Kendall (M-K) test to evaluate the 

statistical significance of trends based on a) all data from monthly fitted NDVI time series 

and b) annual values of the NDVI phenological metrics, respectively (Mann 1945; Kendall 

1975; Hirsch and Slack 1984). Unlike ordinary least squares regression, the MSK trend test 

is less affected by missing values and uneven data distribution, and are robust towards 

extreme values and serial dependence (Udelhoven 2011). To identify the magnitude of a 

trend, we calculated Sen’s slope (Sen 1968; Hirsch et al. 1982) which is a form of robust 

linear regression and less affected by gross data errors or outliers compared to linear 

regression analysis (Gilbert 1987; Bouza-Deano et al. 2008).  

The quantitative comparison of trends was conducted based on sampling plots of 8km x 

8km. To assure homogeneity and minimize the effects of mixed pixels and misregistration, 

we overlaid the reclassified Landsat-based CAS LUCC database with the sample plots and 

selected only plots with at least 80% of a single land cover type. Based on that strategy, 

2770 samples were selected for trend analysis, among which 278 plots were labeled as 

cropland, 199 plots as forestland, 955 plots as dense grassland, 742 plots as medium dense 

grassland, and 596 as sparse grassland. We then calculated for each sample plot average 

values of Sen’s slope for SPOT VGT, MODIS Terra and AVHRR GIMMS. 

4 Results 

4.1 Correlation analysis and comparing trends from SPOT VGT and MODIS Terra 
NDVI archives 

The correlation between NDVI time series from SPOT VGT and MODIS in vegetated 

areas of Inner Mongolia was larger than 0.9 (Figure II-2, top). In comparison, NDVI time 

series showed a correlation less than 0.2 for non-vegetated areas such as the desert in the 

Alxa Plateau and for water bodies. 
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Figure II-2: Pearson’s correlation coefficient (r value) between monthly 1-km SPOT VGT and MODIS (top), 

monthly 8-km SPOT VGT and AVHRR GIMMS (bottom). 

Temporal trends derived from SPOT VGT and MODIS time series showed similar spatial 

patterns (Figure II-3). Most areas in Inner Mongolia did not show a significant trend during 

the past 10 years in neither SPOT VGT nor MODIS data (p<0.05, MSK test). Some 

regions, however, exhibited significant trends which were also captured in both datasets, 

e.g. a greening pattern extending from southern Inner Mongolia to the northern Shannxi 

and Shanxi provinces (Figure II-1, Figure II-3). Overall, 0.1% of Inner Mongolia exhibited 

significant negative and 3.3% significant positive NDVI trends based on SPOT VGT data. 

MODIS Terra based analyses resulted in 3.4% of the area having a statistically significant 

vegetation decrease, and 6.0% with a significant increase. Few regions showed trend 

disagreements (p<0.05, MSK test). Major discrepancies were found in the central Inner 

Mongolia, where SPOT VGT based trends showed little change and MODIS Terra NDVI 

decreased. In Hinggan, MODIS Terra NDVI increased less than that from SPOT VGT. 



NDVI trends comparison 

 31 

 

Figure II-3: Maps of NDVI change between 2001 and 2010 based on statistically significant Sen’s slope of 1-

km SPOT VGT (top) and 250-m MODIS (centre) time series (p<0.05, MSK test). Comparison of Sen’s slope 

values for different phenological parameters based on 2770 sampling plots (bottom). 
 

Compared to grassland, croplands showed more widespread increase in NDVI in both 

NDVI archives (Table II-2). About 18.0% and 24.3% of the pixels classified as croplands 

exhibited a positive trend based on SPOT VGT and MODIS Terra, respectively. Only 

0.1% and 1.0% of the cropland pixels were characterized by a decreasing trend in SPOT 
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VGT and MODIS Terra data, respectively. Both NDVI archives showed the smaller NDVI 

changes for grassland areas. Only 9.8% of the grassland areas showed a significant 

increase and 0.4% a significant decrease in SPOT VGT data, while based on MODIS Terra 

15.4% and 3.9% area of the NDVI in grasslands increased and decreased, respectively. 

Table II-2: Statistics for SPOT VGT and MODIS Terra NDVI linear trend analysis from 2001 to 

2010 (p<0.05, MSK test). 

Observation Cropland area (%) Grassland area (%) 

SPOT VGT NDVI positive slope 18.0 9.8 

SPOT VGT NDVI negative slope 0.1 0.4 

MODIS Terra NDVI positive slope 24.3 15.4 

MODIS Terra NDVI negative slope 1.0 3.9 

 

Similarly, we found that the spatial patterns of the trends derived from the NDVI 

amplitude and integral exhibited high similarities between SPOT VGT and MODIS Terra 

(not shown here for brevity).  The regression analysis between SPOT VGT-derived and 

MODIS-derived trend parameters further confirmed a good agreement between the two 

NDVI time series (Figure II-3, bottom). For example, there was a strong correlation 

between NDVI trends derived from SPOT VGT and MODIS Terra (r = 0.91) time series, 

and also between trends in NDVI amplitudes (r = 0.92). The slope of the fitted regression 

functions showed a close to a 1:1-relationship. The correlation between Sen’s slope of the 

integral of SPOT VGT against MODIS Terra was lower, but still indicated good 

correlation (r = 0.86). We therefore used the longer SPOT VGT time series for further 

analyses. 

4.2 Correlation analysis and comparing trends from SPOT VGT and AVHRR 
GIMMS NDVI archives 

The direct comparison between the NDVI time series from SPOT VGT and AVHRR 

GIMMS showed a similar strong linear correlation between the cyclic vegetation dynamics 

that dominate both archives. Comparable to the results from our comparison of SPOT VGT 

and MODIS Terra, NDVI time series from SPOT VGT and AVHRR GIMMS were 

positively correlated with generally high r values (r > 0.9) in vegetated areas of Inner 

Mongolia (Figure II-2, bottom).  

However, when comparing inter-annual trends between SPOT VGT and AVHRR GIMMS 

NDVI, major disagreements became apparent (Figure II-4 top and center). Trends from 

AVHRR GIMMS showed, for example, a significant NDVI decrease in the vegetation-free 
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western part of Inner Mongolia. Almost the whole desert area exhibited this decreasing 

trend. In comparison, SPOT VGT did not show any significant trends in these areas. 

Considerable trend disagreement was also evident in northeast Inner Mongolia, where only 

AVHRR GIMMS-derived trends showed a strong greening pattern. Although the trend 

patterns from AVHRR GIMMS exhibit similarities with those derived from SPOT VGT in 

some regions, e.g. greening patterns in southern Inner Mongolia, trend discrepancies 

clearly prevail at a regional scale. Generally, the substantial trend disagreement in the 

maps was supported by a low r of 0.28, 0.42 and 0.37 (for trends derived from NDVI, 

amplitude and integral, respectively; Figure II-4, bottom). 

As we were interested in better understanding the causes for the discrepancies, we 

analyzed if trend differences were associated with specific land cover categories and also if 

low NDVI values were differently affected than high NDVI values. To answer these 

questions we first grouped all pixels based on five land cover classes derived from the 

reclassified CAS map (excluding waterbodies, constructed area, and non-vegetated land), 

and then we grouped pixels based on 0.1 NDVI intervals from multiannual averages of 

SPOT VGT NDVI (Figure II-5). The slope differences derived from the two archives 

increased with higher NDVI levels (Figure II-5 left). This was also in agreement with 

forested areas exhibiting the largest trend disagreement between archives, while sparse 

grassland correlated better (Figure II-5 right). As grassland fractional cover increased, 

higher variance in differences and stronger average differences were observed between 

trends from both archives. 

Trends derived from amplitude and integral also support these findings (not shown). 

Similarly, correlations of AVHRR GIMMS and SPOT VGT-derived Sen’s slope values for 

all phenological parameters were low (Figure II-4 bottom). 
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Figure II-4: Maps of NDVI change between 1999 and 2006 based on statistically significant Sen’s 

slope of 8-km AVHRR GIMMS (top) and 1-km SPOT VGT (centre) time series (p<0.05, MSK test). 

Comparison of Sen’s slope values for different phenological parameters based on 2770 sampling plots 

(bottom). 

Large trend discrepancies between SPOT VGT and AVHRR GIMMS can be found in our 

test regions Ordos and Hinggan (Figure II-6). Grazing land did generally not exhibit strong 

trends for the Ordos region (Figure II-6, A), which is reflected in the SPOT VGT derived 

map. Significant changes between 1999 and 2006 relate to the growing city of Yinchuan 
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and intensified irrigation in its surroundings and along the Yellow River. Quite the 

opposite, trends from AVHRR GIMMS data clearly suggest strong vegetation cover 

decreases in the dryland areas, while there is no detection of increased productivity in 

irrigated west Yinchuan plain. Interestingly, AVHRR GIMMS data estimate changes in the 

opposite direction for the Hinggan region (Figure II-6, B).  

 

Figure II-5: Boxplots of absolute differences between regression (Sen’s) slopes derived from SPOT VGT and 

AVHRR GIMMS time series grouped by land cover types (right) and SPOT VGT-based NDVI intervals 

(left). See Table 1 for a description of land cover types. The boxes represent first (25%) and third (75%) 

quartiles; the whiskers are defined as 1.5 times interquartile. The bold horizontal line in the box represent 

median. 

To illustrate the disagreement in NDVI trends from the two archives, we plotted NDVI 

time series for selected pixels from both focus regions (Figure II-6). The samples show that 

SPOT VGT was able to depict the vegetation seasonality in a semi-arid to arid 

environment in the Ordos region, while AVHRR GIMMS did not resolve such information 

in years with low average NDVI (e.g. 2003 and 2005; Figure II-6). Major discrepancies 

also existed in 1999 and 2000 when NDVI values from AVHRR GIMMS were much 

higher compared to SPOT VGT, leading to a significantly decrease in NDVI for the Ordos 

region. In the Hinggan region, AVHRR GIMMS deviated from SPOT VGT mostly at the 

start of the time series (1999 and 2000), while the similarity much improved between these 

two products for later years. However, the considerably lower values from AVHRR 

GIMMS NDVI in these two years overall lead to a more positive trend compared to SPOT 

VGT. 
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Figure II-6: Maps of Sen’s slope for AVHRR GIMMS and SPOT VGT from 1999 to 2006 in Ordos (A) and 

Hinggan (B). NDVI time series for a sample location in Ordos and Hinggan (below respective maps) 

5 Discussion 

The high temporal resolution of global data sets such as AVHRR, MODIS and SPOT VGT 

allows us to derive indicators of agricultural dynamics across the globe. However, spectral 

mixtures and a broad range of problems largely related to the pre-processing of global 

remote sensing data sets complicate the interpretation of trends from such coarse resolution 

data (250m- 8 km). Thus, it is important to gain a deeper knowledge on the reliability of 
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temporal patterns derived from coarse resolution datasets before we interpret trends and 

link change trajectories to specific agricultural processes. 

AVHRR-based NDVI datasets such as the AVHRR GIMMS data constitute the longest 

hyper-temporal remote sensing records for agricultural monitoring at global scales. Much 

research related to the impact of global climate change on agricultural productivity and to 

land degradation monitoring in arid and semi-arid agriculture is based on AVHRR GIMMS 

(Symeonakis and Drake 2004; Heumann et al. 2007; Dent et al. 2008; Helldén and Tottrup 

2008; Fensholt and Proud 2012). 

We established a benchmark for analyzing the consistency of AVHRR GIMMS-derived 

vegetation trends in Inner Mongolia, an important area of agricultural production in China, 

based on a comparison of MODIS and SPOT-derived trend parameters. Integrating large 

areas implies that average changes in NDVI are subtle. Still, similar patterns are found 

when comparing these effects in MODIS and SPOT VGT derived time series. The high 

consistency between MODIS Terra and SPOT-derived results proves the general reliability 

of analyses based on these archives. Our comparison shows that different satellite 

platforms and sensors, differing pre-processing schemes and moderately different spatial 

resolutions do not hamper the analytical potential of time series analysis when using 

MODIS Terra and SPOT-derived vegetation products. In Inner Mongolia, analysis based 

on both MODIS Terra and SPOT VGT allow for successfully analyzing multiple 

agricultural processes related to a set of agricultural and environmental policies in China 

addressing increasing agricultural production and decreasing environmental degradation.  

Our results from the trend analysis of SPOT VGT and MODIS Terra time series indicate 

that land degradation processes only marginally affected the agricultural sub-systems of 

Inner Mongolia during the last decade. Most of Inner Mongolia’s grasslands did not exhibit 

a significant change after the restrictive fencing policies were introduced for all the 

grassland in Inner Mongolia around the turn of the century. The significantly increasing 

trend of NDVI in mountainous environment (e.g. Loess Plateau, Yan Mountains) reflects 

the process of afforestation based on massive subsidization. The “greening” pattern also 

confirms the effectiveness of China’s “Grain for Green” program in Inner Mongolia in the 

last decade (Figure II-3). However, comparing trends derived from SPOT-VGT and 

AVHRR GIMMS reveals that major discrepancies can occur when comparing trends from 

NDVI archives that are more profoundly different. This is also the case when compared the 

trends from all three NDVI archives during their overlap period (2001-2006) and using 
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increasing kernel size (3 x 3 GIMMS pixels) of sampling plots (not shown for brevity). 

Differences between NDVI trends seem to increase with increasing NDVI levels (Figure 

II-5 left). Fensholt et al (2012) assume on a global level that these deviations relate to land 

cover classes. Comparing different agricultural land cover categories with trend 

discrepancies (Figure II-5 right), our findings generally agree with this assumption. From 

our quantitative analysis across arid to semi-arid biomes, we conclude differently from 

Song et al (2010) that the differences in NDVI trends not only affected desert regions but 

also semi-arid landscapes. However, further tests across a broader range of biomes with in-

depth regional information on land use and land cover changes will be needed to 

quantitatively confirm this finding. Different regional land surface biophysical properties 

and the limitations of NDVI in relation to the respective sensor characteristics and 

preprocessing schemes hence contribute to these trend differences (Kobayashi and Dye 

2005; Nagol et al. 2009). Moreover, the sensitivity of trend analysis needs to be tested 

further to gain a more confident assessment for long-term land degradation (Wessels et al. 

2012). 

The two focus regions of Ordos and Hinggan served for a more detailed analysis of 

GIMMS- and SPOT VGT based trends. The Ordos region exhibited a clear decreasing 

trend in NDVI based on the GIMMS data for the Otog Qianqi grasslands that was not 

evident from SPOT VGT (Figure II-6). Likewise, the GIMMS-based trend analysis did not 

reflect the immense growth of Yinchuan city (negative trends), which was correctly 

identified in SPOT VGT-derived trends (Figure II-6). Our results for Ordos are in line with 

findings derived from Landsat data by Zhu et al (2008), which indicate a slight vegetation 

increase across different ecosystems during our observation period. Also, field-based 

measurements of vegetation cover, height and biomass indicate no broad-scale degradation 

in the vast grasslands of Otog Qianqi (Hasbagen 2009). The patterns related to agricultural 

intensification along the Yellow River in Ningxia (Figure II-1, Figure II-6) was captured 

both by SPOT VGT and AVHRR GIMMS. However, cropland intensification and 

expansion in the western Yinchuan Plain was not well detected based on AVHRR GIMMS 

data (Figure II-6).  

In Hinggan, positive trends were extracted from SPOT VGT data along the Taor River 

valley. Rice is the main crop along the Taor River, and these positive trends correspond 

well with the intensified cropping system that was established in the early-1990s (Xia and 

Hu 2004; Liu et al. 2007a).  AVHRR GIMMS derived trends did clearly not preserve the 

patterns retrieved from SPOT VGT (Figure II-6). While the overall trend is also positive, 
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the greening up for a major area north of the Taor River is largely overestimated, as the 

intensified irrigation does not prevail across these several 1,000 km2. Moreover, land use 

and land cover change assessments based on Landsat data do not support the positive 

trends identified in AVHRR GIMMS data (Liu et al. 2010b). 

We also observed an overall decreasing trend in AVHRR GIMMS-derived NDVI values 

across non-vegetated areas of Inner Mongolia. This trend was likely caused by satellite 

drift effects in the signal (Deng and Di 2001). NOAA AVHRR platforms do not allow for 

orbital drift adjustments, resulting in illumination differences affecting NDVI values 

(Sobrino et al. 2008). According to Pinzon et al (2007), EMD largely minimizes effects 

related to orbital drift. However, as AVHRR GIMMS data are not accompanied by 

metadata on applied pixel-wise EMD correction, it is not possible to conclude on the local 

effects of EMD. 

Further, differences in atmospheric correction algorithms likely contributed to trend 

discrepancies. Natural variability in column water vapor, ozone and aerosol optical 

thickness (AOT) in the atmosphere can greatly affect land surface reflectance estimates 

(Kaufman 1988). Unlike MODIS on the Terra and Aqua platforms, AVHRR does not 

provide additional spectral channels that allow us to derive information on atmospheric 

composition to be used for correction (King et al. 1992; Nagol et al. 2009). To minimize 

impacts from the atmosphere, a bimonthly MVC is applied for the top-of-atmosphere GAC 

data to produce AVHRR GIMMS. However, it has been reported that MVC does not 

significantly improve data quality in regions with persistently high AOT (Kobayashi and 

Dye 2005; Nagol et al. 2009). This is most likely the case for Inner Mongolia, where high 

aerosol loads prevail due to frequent dust storms (Wang et al. 2004a). 

Different spatial aggregation algorithms applied for producing NDVI archives certainly 

contribute to trend discrepancies as well. The input data used for producing the AVHRR 

GIMMS archive is the GAC 1B product, which is sampled spatially through a combination 

of line skipping and averaging (Goward et al. 1993; POES (U.S.) and NCDC (U.S.) 1997). 

Each GAC pixel (roughly 3km by 5km) is binned into one of the 8 km pixels of the output 

product based on a forward, nearest neighbor mapping, where the GAC pixel with the 

highest NDVI value is selected (James and Kalluri 1994). As a consequence, at least four 

GAC 1B pixels are mapped to one bin. At nadir, the binning can include up to 6 pixels 

(James and Kalluri 1994). The much coarser spatial resolution per AVHRR GIMMS pixel 

certainly hampers the comparability of AVHRR GIMMS to finer spatial resolution NDVI 
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archives. Specifically, knowledge on the detectability of fine scale processes in 64 km2 

pixels is limited, and statistically valid experiments for increasing our understanding based 

on field data are complex (Gupta et al. 2000; Hufkens et al. 2008). The small average patch 

size of Inner Mongolian croplands limits the ability of AVHRR GIMMS for consistent 

change detection. This is specifically the case for agricultural intensification along the river 

valley. Taking the smaller absolute vegetation variation in arid and semi-arid environments 

into account, NDVI derived from AVHRR data are generally less sensitive and hence less 

correspondent to finer spatial resolution NDVI archives.  

Summarizing, our findings indicate a good agreement between trends from SPOT VGT 

and MODIS Terra for different agricultural land uses across Inner Mongolia, although the 

spatial and temporal resolution, the spectral bandwidths and preprocessing algorithms are 

different. This consistency is supported by trends based on phenological indicators derived 

from original NDVI time series. Overall, trend analyses from AVHRR-related products did 

in most cases not reproduce similar patterns of change across different agricultural systems 

across Inner Mongolia. 

6 Conclusions 

AVHRR GIMMS has regularly been employed for detecting hot-spots of land surface 

changes via NDVI trend analyses or NDVI-based phenological parameters derived from 

time series. While comparisons based on the raw time series indicate congruence between 

AVHRR GIMMS and other NDVI archives, more recent studies based on trend parameters 

derived from these archives indicate that inconsistencies exist between trends (Baldi et al. 

2008; Alcaraz-Segura et al. 2010; Beck et al. 2011). We here demonstrated that 

considerable discrepancies in trend magnitude and direction exist between AVHRR 

GIMMS and SPOT VGT-based NDVI products (r = 0.28). These discrepancies are 

exemplified for a range of agricultural land use systems across Inner Mongolia. Analyses 

based on phenological parameters derived from such NDVI time series lead to comparable 

dissimilarities (supported by a low r of 0.42 and 0.37 from amplitude and integral, 

respectively). While quantifying the magnitude of different factors contributing to these 

inconsistencies is beyond the scope of this paper (and probably not possible due to the lack 

of empirical evidence), it is obvious that hyper-temporal NDVI products and related trend 

analyses from AVHRR GIMMS can strongly differ from those retrieved from instruments 

such as MODIS Terra and SPOT VGT. 
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We have shown that such deviations can occur regardless of the chosen trend indicator and 

across a range of agricultural systems. Comparing significant positive and negative trend 

hotspots in Ordos and Hinggan derived from SPOT VGT and AVHRR GIMMS revealed 

that even broad scale changes in vegetation cover can be missed in 8 km AVHRR GIMMS 

data.  

There is an urgent need to better understand the opportunities and limitations of AVHRR 

GIMMS data in different regions of the world to advise a broad user community on where 

and how different NDVI archives can be reliably linked to derive longer and more reliable 

time series. Based on our findings along climate and land-use gradients from the Gobi 

desert to the northeast of China across the 3,000 km of Inner Mongolia, we caution that 

monitoring of agricultural lands based on hyper-temporal imagery from AVHRR GIMMS 

needs to be underpinned with viable consistency checks on the comparability of trends 

derived from time series in the respective regional setting. We conclude that AVHRR 

GIMMS and NDVI products from other sensors cannot be combined into homogeneous, 

long-term time series across the globe without regional sensitivity analyses. 
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Abstract 

Mapping land use and land cover change (LULCC) over large areas at regular time 

intervals is a key requisite to improve our understanding of dynamic land systems. In this 

study, we developed and tested an automated approach for mapping LULCC at annual time 

intervals using data from the Moderate Resolution Imaging Spectroradiometer (MODIS). 

Our approach characterizes changes between land cover/use types based on annual time 

series of per-pixel land cover probabilities. We used the temporal segmentation algorithm 

MODTrendr to identify trends and changes in the probability time series that were 

associated with land cover/use conversions. Accuracy assessment revealed good 

performance of our approach (overall accuracy of 92.0%). The method detected 

conversions from forest to grassland with a user’s accuracy of 94.0±2.0% and a producer’s 

accuracy of 95.6±1.6%. Conversions between cropland and grassland were detected with a 

user’s and a producer’s accuracy of 65.8±4.8% and 72.2±9.2%, respectively. We here 

present for the first time an approach that combines probabilities derived from machine 

learning (random forest classification) with time series based analysis (MODTrendr) for 

land cover/use change analysis at MODIS scale. 
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1 Introduction 

Land use and land cover change (LULCC) is one of the critical drivers of global 

environmental change. Monitoring land use and land cover change is vital for a number of 

environmental monitoring applications, including carbon emission estimation, biodiversity 

conservation and land degradation mitigation (De Sherbinin et al. 2002). In this context, 

mapping LULCC at frequent (e.g. annual) time intervals is needed to improve our 

understanding of complex anthropogenic and natural drivers of change. Equally important, 

quantifying the consequences of land transitions is only possible based on frequent and 

reproducible LULCC monitoring procedures (Kuemmerle et al. 2013).  

Coarse resolution satellite sensors like Advanced Very High Resolution Radiometer 

(AVHRR), SPOT-Vegetation (SPOT-VGT), Medium Resolution Imaging Spectrometer 

(MERIS), and Moderate Resolution Imaging Spectroradiometer (MODIS) have great 

potential for consistent large-area land surface monitoring because of their frequent revisit 

times and wide swaths. The near daily observations have enabled spatial analyses of land 

surface phenology (Ganguly et al. 2010) but to-date only few studies have used MODIS 

time series to map land cover changes at annual intervals. For example, Lunetta et al. 

(2006) used multi-temporal MODIS NDVI composites and a standard normal distribution 

statistical approach to detect land cover changes on a yearly basis. They successfully 

detected changes in non-agricultural areas using a 4-year MODIS time series from 2002 - 

2005. Recently, Sulla-Menashe et al. (2014) created annual maps of forest disturbance 

from MODIS Normalized Burn Ratio (NBR) time series using a temporal segmentation 

algorithm. The continuous and increasing record of MODIS makes it suitable for long-term 

land cover change monitoring. 

Given the importance of regional and global environmental monitoring, developing cost-

effective, accurate, and consistent methods for mapping LULCC over large areas is a 

growing area of research (Clark et al. 2012). While methods for regional and global land 

cover monitoring have greatly evolved and annually updated land cover maps have been 

produced for many regions (Friedl et al. 2002; Clark et al. 2010), automated methods and 

standards for mapping LULCC at annual intervals are not readily available. This disparity 

has consequences for land change analyses. It is commonly accepted that land cover 

change cannot be accurately mapped via simple post-classification analyses of existing 

land cover products due to the large year-to-year variability of spectrally similar classes 
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(Friedl et al. 2010; Fritz et al. 2011). A variety of studies have developed approaches to 

overcome this problem. For example, Liu and Cai (2012) developed a classification 

approach to classify Landsat images from multiple time periods simultaneously instead of 

individually. Incorporating contextual information of spatially and temporally neighboring 

pixels into a probabilistic classification model helped to reduce the impact of classification 

errors on change detection. However, the approach requires specifying a transition 

probability model, and including spatial context information may be less suitable for 

coarse-resolution imagery, at least in heterogeneous environments. Other studies have 

employed temporal filters with transition rules (Clark et al. 2012) and change-based 

updating to develop temporally consistent land cover time series (Pouliot et al. 2014). For 

example, Pouliot et al. (2014) generated a base map from MODIS time series and 

recursively updated it using land cover change maps and land cover change transition 

matrices. Change-based updating methods have improved the inter-annual consistency of 

land cover time series, but their performance in estimating land cover changes has not been 

rigorously assessed.  

Recently, novel approaches have emerged for land cover change mapping from satellite 

images time series. These trajectory-based methods make full use of dense image time 

series to identify trends and breakpoints that represent land cover change on the ground. 

Several packages and algorithms such as LandTrendr (Landsat based detection of trends in 

disturbance and recovery) (Kennedy et al. 2010), BFAST (Breaks For Additive Season and 

Trend) (Verbesselt et al. 2010a), and TimeStats (Udelhoven 2011) have been developed 

and applied to monitor regional to global land surface change. Trajectory-based change 

mapping has greatly increased the capacity of depicting a variety of land cover changes 

that are difficult to detect with traditional two-date or multi-date methods, e.g. long-term, 

gradual change processes like degradation and afforestation and short-term changes in 

highly resilient systems. 

In past studies, trajectory methods have been applied to single spectral bands, vegetation 

indices such as NBR (Meigs et al. 2011), tasseled cap (TC) components (Pflugmacher et al. 

2012), normalized difference vegetation index (NDVI) (Stellmes et al. 2013), and to 

biophysical metrics such as aboveground biomass (Powell et al. 2010; Main-Knorn et al. 

2013). In either case, a priori knowledge of the per-pixel land cover type or condition is 

needed to translate spectral quantities into physical land surface properties. This process is 

straightforward if only changes between two end-member conditions are sought, e.g. forest 

and non-forest or high biomass and low biomass. To our knowledge, all past studies have 
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therefore focused on changes between two conditions within the scope of forest 

monitoring. However, if changes between multiple land surface conditions are of interest, 

the change attribution becomes challenging. 

One possible means to facilitate time series analyses of multiple land cover conditions is 

by using land cover class probabilities. Land cover probabilities describe the chance that a 

pixel belongs to a certain land cover class. Therefore, probabilities should be more directly 

related to land cover changes than the underlying spectral values or vegetation indices 

(Broich et al. 2011). By representing land cover as a continuous measure rather than a 

discrete class, quantitative time series methods can be applied to separate inter-annual 

changes in class membership resulting from classification uncertainties from true changes. 

Compared to discrete classifications, land cover probabilities can also capture sub-pixel 

heterogeneity and mixtures of different land cover types in coarse-resolution data (Colditz 

et al. 2011). The utility of probabilities or probability-like metrics for tracking changes in 

satellite time series have previously been demonstrated in the context of forest change 

detection (Huang et al. 2010; Broich et al. 2011). Huang et al. (2010) used a z-score (also 

standard score) to detect changes in forest-ness and to reconstruct historic forest 

disturbance events. Broich et al. (2011) quantified forest loss using time series of forest 

probability metrics derived from a decision tree classifier.  

In summary, methods for mapping annual LULCC across different biomes and at regular 

time intervals are much needed. Despite the recent advances in trajectory-based change 

detection, there is a specific need to test such approaches not only to detect forest changes, 

but also to map changes in other land cover types. Considering that probability metrics are 

useful quantitative descriptors of land cover class membership, it seems logical that 

integrating probability-metrics with trajectory-based change models can provide a potential 

solution. In this work, we aim to test the utility of a trajectory-based change detection 

approach applied to MODIS data to map annual LULCC using time series of land cover 

class probabilities for multiple land cover class trajectories. 

2 Study area 

To test our approach we selected a study region in Inner Mongolia (China), more 

specifically an area of 656,819 km2 covered by MODIS tile h26v04 (Figure III-1). The 

region is an interesting test area because Inner Mongolia has experienced substantial 

changes in land use in the last decade. On one hand, strict vegetation protection and 
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regeneration policies have been implemented in this region for mitigating severe land 

degradation since 2000s (Wang et al. 2013). Most of the natural forests have been 

protected and massive investments were poured into forest recovery programs (Liu et al. 

2008). On the other hand, the increasing price of agricultural products led to cropland 

cultivation on grassland, whereas governmental programs have encouraged the conversion 

of existing croplands to grassland (Wang et al. 2012b). The combination of multiple land 

cover/use changes, the rapid change regimes and our knowledge on change trajectories in 

the region render this area a good test case for evaluating our proposed method of annual 

LULCC detection. 

 

Figure III-1: Location of study area (MODIS tile h26v04) within Inner Mongolia, China, the grey dots with 
numbers marked the regional subsets in Figure III-2 (1) and Figure III-3 (2). Five Landsat scenes used for 
labeling validation samples are shown as black frames. 

3 Methodology 

3.1 Data and data preparation 
 

We used the MODIS-Terra Vegetation Index (VI) product (MOD13Q1, Collection 5) for 

mapping annual land cover probabilities. The MODIS VI product is a 16-day composite 

with a nominal 250-m spatial resolution. MODIS VI includes Normalized Difference 

Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), surface reflectance in the 

blue, red, near-infrared (NIR), mid-infrared (MIR) wavelengths, and pixel quality data. We 
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obtained all available imagery for MODIS tile h26v04 between mid-February 2000 and 

December 2011 from the United States Geological Survey (USGS) Land Processes 

Distributed Active Archive Center (https://mrtweb.cr.usgs.gov/). 

To reduce residual noise in the time series caused by clouds, ozone, dust, off-nadir viewing 

and low sun zenith angles, we smoothed the data using a Savitzky-Golay filter from the 

TIMESAT software (Jonsson and Eklundh 2004). Pixels flagged as no data, snow/ice or 

cloud in the MOD13Q1 pixel reliability layer were excluded prior to the filtering. Outliers 

that were not identified as such in the MODIS reliability layer were removed by a 

Seasonal-Trend decomposition based on Loess (STL) (Cleveland et al. 1990), which is 

global in character and not dependent on ancillary data.  

The Chinese Academy of Sciences’ (CAS) Land-Use/Land-Cover (CAS-LUCC) database 

(Liu et al. 2002), Landsat imagery and Google EarthTM (GE) imagery covering Inner 

Mongolia were used as reference data for labeling training samples. The CAS-LUCC 

dataset was derived from Landsat TM and CBERS-1 (China-Brazil Earth Resources 

Satellite-1) imagery acquired during 1999-2000. The map has six land use and land cover 

classes in level I, including cropland, forest, grassland, constructed area, water and bare 

lands. CAS-LUCC has a reported overall accuracy of 81.0% for all of China. 

3.2 Predicting annual land cover probability 
We used random forest (RF) classification (Breiman 2001) implemented in the EnMAP-

BOX software (Rabe et al. 2014) to predict land cover class probabilities for each year 

between 2000 and 2011. The number of variables randomly sampled as candidates at each 

split (mtry) was set to the square root of the number of input variables, the minimum size 

of the terminal nodes and the number of the trees was set to we used 10 and 500 

respectively. Per-pixel probability for each land cover class was estimated as the proportion 

of tree votes for a given class. Focal classes were: cropland, forest, grassland, water and 

non-vegetated areas (constructed areas and bare lands). The CAS-LUCC dataset served as 

an initial source for training data generation. Because training data were not available for 

every year, we employed a signature generalization approach that trains individual 

classification models for each year based on reference locations with stable land cover (e.g. 

(Gray and Song 2013)). We identified and labeled stable training samples as follows: First, 

we randomly distributed samples with the center of each sample snapped to the center of 

the nearest MODIS pixel. We enforced a minimum distance of 1500 m between samples to 

avoid spatial autocorrelation and along-scan triangular point spread function (PSF) effects 

https://mrtweb.cr.usgs.gov/
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(Tan et al. 2006). Each sample unit was set to a square with 1.5 times the side length of a 

MODIS pixel. Second, we calculated the land cover proportions in each sample using the 

CAS-LUCC dataset and labeled each sample according to the dominant land cover class 

while retaining only samples with a single dominating class of more than 80%. To generate 

a temporally stable dataset, we then calculated, for each sample, the linear regression slope 

of the average growing season NDVI across the 12-year time series and eliminated 

samples with a statistically significant slope (p<0.05). Finally, we visually cross-checked 

the remaining samples against the Landsat archive and GETM imagery to eliminate and 

correct miss-classified samples. In all, 49,852 samples were available for model training. 

We calculated several seasonal statistics from the MODIS time series to serve as predictor 

variables in the RF models. For each smoothed MODIS time series (NDVI, EVI, and four 

reflectance bands) and each year, we computed the mean, minimum, maximum, range and 

standard deviation for the first half (March – June), and the second half of the growing 

season (July – October), as well as the entire growing season, respectively. 

3.3 Temporal segmentation of probability time series and LULCC labeling 
Even class probabilities based on smoothed time series may contain residual inter-annual 

noise (e.g. due to model prediction errors). Thus, we used the time series segmentation 

algorithm MODTrendr (Kennedy et al. 2010; Sulla-Menashe et al. 2014) to detect and 

describe changes in each pixel’s class probabilities over time. MODTrendr fits a series of 

linear segments to each pixel’s time series, where each segment describes a distinct period 

of change or no change between two points in time (Kennedy et al. 2010). The fitting 

reduces inter-annual noise and a variety of change statistics can be extracted from 

individual segments or groups of segments. Key metrics include the class probability and 

the year of the segment start and segment end, segment duration (years) and change 

magnitude (difference between probability of segment end and segment start). MODTrendr 

is an adaptation of the Landsat-based LandTrendr algorithm (Kennedy et al. 2010) for 

MODIS data. The algorithm has recently been applied for detecting forest disturbances in 

the Pacific Northwest, USA. After a few tests, we decided to use the same fitting 

parameters as in Sulla-Menashe et al (2014), except that we used a more restrictive 

significance threshold for model fitting (p-value=0.05) and a higher number of trajectory 

segments (6) as in Kennedy et al (2010).  

We applied MODtrendr to all five land cover class probability time series. We identified 

pixels with permanent land cover (no change) where the highest MODTrendr-fitted 
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probability always belonged to the same land cover class across the entire time period. For 

example, a pixel was labeled as permanent forest if the forest class probability was always 

higher than the other class probabilities during the 12 years. To detect and describe pixels 

that underwent land cover change, we used the change magnitudes of the MODtrendr 

segments. For each land cover probability time series, we derived two metric sets - greatest 

decrease and greatest increase to represent land cover loss and gain, respectively. First, we 

labeled segments representing land cover loss when the change magnitude was -0.4 or less 

and the pre-change probability was greater than 0.5, as these thresholds resulted in 

balanced omission and commission errors. For each pixel we recorded the converted land 

cover class and the timing of the conversion based on the year when the change segment 

ended. To identify the land cover class following the conversion, we selected class 

probability segments with a positive change magnitude of 0.4 or greater occurring within 1 

year of the detected conversion. Thus, a pixel was flagged as a land cover conversion when 

a pronounced land cover loss in one land cover probability trajectory occurred 

simultaneously with a gain in another land cover type. 

3.4 Accuracy assessment 
Validating LULCC classes was challenging because the number of change classes 

substantially increases with the number of land cover classes for which change is observed 

(Olofsson et al. 2013). In our case, annual changes between five land cover types resulted 

in 220 change classes over 12 years. Collecting reference samples for all change classes 

and years is not feasible. Thus, we temporally aggregated change classes for the accuracy 

assessment and focused on four conversions that represent major land use and land cover 

change processes in Inner Mongolia during the first decade of 21th century, i.e. on 

conversions between forest and grassland, and conversions between cropland and 

grassland (Liu et al. 2009).  

Each conversion class was aggregated into two time windows: 2000-2005 and 2006-2011, 

as those two periods relate to the early and late impact periods of policy-induced changes 

in Inner Mongolia. Grassland-forest conversions were assessed across the entire time 

period (2000-2011) because the gradual process of tree growth requires longer records for 

assessment.  

We used a disproportionate stratified estimator at pixel level for our accuracy assessment. 

We randomly selected five Landsat footprints (p121r28, p121r30, p122r31, p126r31, 

p129r32) across our study area and randomly selected 100 MODIS pixels as reference 
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samples within each change class and 200 pixels for non-change classes across footprints 

(except water: 100 only, due to class size). Each reference sample was manually labeled by 

an expert interpreter without knowledge of the mapped class label using Landsat images 

acquired around 2000, 2005 and 2011 during the late growing season (July-October). In 

addition to the Landsat images, the interpreter also used temporal profiles of MODIS 

NDVI time series (MOD13Q1) to aid labeling samples with data gaps in the Landsat 

images and gradual change classes (e.g. conversion from grassland to forest). For each 

time period, the interpreter recorded the dominant land cover based on the area proportion 

in the sampling unit. If no change occurred, the sample was labeled as permanent class, 

e.g. permanent forest and permanent grassland. If the dominant land cover changed 

between two time periods, the sample was labeled as change classes, e.g. cropland to 

grassland.  

Finally, we constructed an error matrix adjusted for the disproportional sampling (Card 

1982; Olofsson et al. 2013), from which we calculated overall accuracy, commission and 

omission errors. 

4 Results 

In all, MODTrendr mapped land use and land cover changes with a high overall accuracy 

(OA) 92.0% (Table III-1). Permanent forest had the lowest commission error (CE) rate of 

2.0%, followed by permanent cropland (4.0%) and permanent non-vegetated areas (5.0%). 

Forests also showed a low omission error (OE) rate of 3.3%, whereas croplands and 

grasslands had higher OE but less than 10%. Among change classes, MODTrendr detected 

conversions from forest to grassland most accurately. Here, omission and commission 

errors of forest changes were lower than 10%. The conversions between croplands and 

grassland were mapped with less accuracy (e.g. CE between 30-40%). However, 

conversions from grassland to cropland were consistently better detected than conversions 

from cropland to grassland. With respect to timing of the detected changes, we found little 

confusion between different time periods (e.g. CG1 and CG2, Table III-1). This suggests 

that, for the periodic assessment, the timing of the change was accurately detected.  

Figure III-2 and III-3 shows two examples of probability time series and the corresponding 

MODTrendr results. The first example shows the detection of forest loss in the transitional 

zone between grassland and forest. A fire disturbance in 2003 spread from the western 

plains to the mountainous areas in the East causing forest conversion to open grassland. In 
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the land cover probability time series, the change is marked by a sudden decrease of forest 

probability and a rapid increase of grassland probability (Figure III-2, E).  

Table III-1: Error matrix showing estimated area proportions (%) of land cover/use conversion after adjusting 
for disproportional sampling. 

 PC PF PG PW PN FG1 FG2 GF GC1 GC2 CG1 CG2 O CE 

PC 20.83 0 0.87 0 0 0 0 0 0 0 0 0 0 0.04 

PF 0 8.96 0.14 0 0 0 0 0 0 0 0 0 0 0.02 

PG 1.66 0.28 50.18 0 3.33 0 0 0 0 0 0 0 0 0.10 

PW 0 0 0.00 0.18 0 0 0 0 0 0 0 0 0.02 0.11 

PN 0 0 0.49 0 9.36 0 0 0 0 0 0 0 0 0.05 

FG1 0 0.01 0 0 0 0.18 0.01 0 0 0 0 0 0 0.08 

FG2 0 0 0 0 0 0.01 0.12 0 0 0 0 0 0 0.04 

GF 0 0.02 0 0 0 0 0 0.12 0 0 0 0 0 0.14 

GC1 0.05 0 0.02 0 0 0 0 0 0.20 0.02 0 0 0 0.32 

GC2 0.05 0 0.04 0 0 0 0 0 0.02 0.26 0 0 0 0.30 

CG1 0.02 0 0.02 0 0 0 0 0 0 0 0.09 0 0.01 0.39 

CG2 0.01 0 0.03 0 0 0 0 0 0 0 0.01 0.10 0.01 0.36 

O 0 0 0.14 0.05 0.05 0 0 0.02 0.05 0.02 0.05 0.05 1.88 0.18 

OE 0.08 0.03 0.03 0.21 0.26 0.03 0.06 0.16 0.26 0.15 0.37 0.33 0.02  

Class codes: PC: permanent cropland, PF: permanent forest, PG: permanent grassland, PW: permanent water, 
PN: permanent non-vegetated areas, FG1: conversion from forest to grassland (2001-2005), FG2: conversion 
from forest to grassland (2006-2011), GF: conversion from grassland to forest (2001-2011), GC1: conversion 
from grassland to cropland (2001-2005). GC2: conversion from grassland to cropland (2001-2005), CG1: 
conversion from cropland to grassland (2001-2005), CG2: conversion from cropland to grassland (2006-
2011), O: other change types, CE: commission error, OE: omission error 

 
The second example illustrates the expansion of cropland into grassland previously used 

for grazing (Figure III-3). The replacement of grassland with cropland is visible by an 

abrupt decrease of grassland probability and a simultaneous rapid increase of cropland 

probability (Figure III-3, E). The final change map shows that cultivation in this region 

started in areas close to permanent croplands and then quickly expanded into the grassland 

area. 
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Figure III-2: Conversion from forest to grassland. Landsat composites (p122r27, RGB=4, 5, 3) for 2002 (A), 

2003 (B) and 2011 (C). D: LULCC map. E: Source values and fitted probability trajectories in red (grassland) 

and green (forest); source location marked in cyan in A-D. 

 

 

Figure III-3: Conversion from grassland to cropland. Landsat composites (p121r30, RGB=4, 5, 3) for 2000 

(A), 2005 (B) and 2010 (C). D: LULCC map. E: Source values and fitted probability trajectories in red 

(grassland) and green (cropland); source location marked in cyan in A-D. 

5 Discussion 

We demonstrated that time series of land cover probabilities derived from MODIS data can 

be used to map land-cover and land-use changes at annual intervals. To detect and map 
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changes, we used a trajectory-based change detection algorithm MODTrendr, which has 

previously been applied to detect forest disturbances. Here we applied the algorithm to 

map multiple LULCC, and achieved an overall mapping accuracy of 92.0%. 

Despite the high overall accuracy, uncertainties still exist: Errors in LULCC maps may 

relate either to poor land cover probability estimates or from MODTrendr model fitting. 

For permanent classes, we found most of the errors stemming from the confusion between 

permanent grassland and permanent non-vegetated areas. This is due to the confusion 

between very low vegetation coverage in sparse grasslands and barren land in semi-arid 

environments (Huttich et al. 2011). Moreover, rainfall is the main driver for vegetation 

growth in drylands and exhibits large temporal variance, which makes it even more 

challenging to distinguish permanent grassland and barren lands. Similarly challenging 

was mapping conversions between croplands and grasslands. As grassland and cropland, 

especially non-irrigated cropland, can exhibit similar spectral and temporal responses, it 

can be difficult to separate these two classes and map the conversions reliably on remote 

sensing data alone, regardless of the underlying methodology. Generally, grassland to 

cropland conversion was more reliably detected than the other way around. Based on our 

knowledge of the study area, the confusion between permanent cropland and the 

conversion of grassland to cropland was most likely caused by agricultural intensification 

on previously non-irrigated croplands.  

Uncertainties also remained in model fitting. To provide a conservative estimate for each 

land cover conversion, a relatively high threshold of change magnitude was set to balance 

commission and omission errors. However, reducing false positives may lead to 

underestimating subtle change classes, e.g. the gradual desertification of grasslands to 

barren land. However, to test the sensitivity of our approach in these sparsely vegetated 

areas will require more accurate reference data than what we could obtain from Landsat 

and Google Earth. Moreover, our observation period is relatively short with regard to long-

term change processes in comparison to the data-inherent signal-to-noise ratio over time. 

Nevertheless, the forest-cropland and cropland-grassland changes in our study regions 

were distinct enough to enable their detection with a 12-year MODIS time series. 

The high mapping accuracy was derived using both homogenous and heterogeneous 

validation samples, suggesting the capacity of combining land cover probability and 

MODTrendr for sub-pixel change detection. As illustrated in Boschetti et al (2004), 

depicting sub-pixel classes from coarse resolution satellite data could be biased either due 
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to omission or commission errors. Though sub-pixel fractional error matrices can assess 

the accuracy of static land cover mapping in mixed pixels (Latifovic and Olthof 2004), 

validating sub-pixel changes between multiple land cover classes remains challenging 

because of the inherent data limitation and the complexity of land cover conversions. 

Further efforts are therefore needed to address the mapping accuracy of land cover 

conversions at sub-pixel scales using coarse resolution imagery. 

6 Conclusion 

In this study, we illustrated the potential of using land cover probabilities derived from 

MODIS data for annual LULCC mapping. While the idea of using land cover probabilities 

for mapping land cover is not new, the utility of probability time series for subsequent land 

cover change monitoring has not yet been exploited. Using probability estimates instead of 

spectral indices in trajectory-based change detection has the advantage that observed 

changes and trends are more directly linked to specific changes in land cover and land use. 

This facilitates monitoring of multiple land conversion trajectories. At the same time, the 

approach requires that probabilities be estimated for each image in the time series, which 

can be initially more time consuming. Here, we used RF models and a signature 

generalization approach to estimate per-pixel land cover probabilities for each year. 

However, probability maps can be produced with a variety of different methods. In fact, 

probabilities are often “by-products” of discrete classifications. Thus, land cover 

probabilities might be a useful way to combine information from different map sources and 

sensors. This should encourage map producers to release probability maps in addition to 

the original products. The presented study highlights the capacity of trajectory-based 

methods for LULCC mapping at annual intervals. To our knowledge, this is the first study 

that has applied a trajectory-based approach for mapping land cover conversion. We 

demonstrated the capacity of our approach for monitoring different change types (e.g. 

abrupt and gradual change) and categories (e.g. conversions between cropland and 

grassland) using dense MODIS time series. In all, this study provides a thorough insight 

for detecting how and when land surface was altered thus benefit deeper understanding 

about the change drivers in the context of global environmental change. 
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Abstract 

During the past decades, overuse of land resources has increasingly contributed to 

environmental crises in China. To mitigate wide-spread land degradation, actions have 

been taken to maintain and restore ecologically valuable landscapes such as natural forests. 

However, the effects of the various vegetation protection policies that have been 

implemented in China since the late 1990’s still remain largely unknown. In this paper, we 

therefore focus on mapping land use and land cover change (LULCC) in Inner Mongolia, 

one of the key regions targeted by Chinese ecological restoration programs. We used 250-

m MODIS time series and a random forest classification approach to generate annual 

probabilities for each land cover class between 2000 and 2012. We then applied a 

trajectory-based change detection algorithm, a modified version of LandTrendr (Landsat-

based detection of trends in disturbance and recovery), to the probability time series to map 

land cover changes. We found that our trajectory-based approach achieved high accuracies 

(overall accuracy 0.92). It provides spatio-temporal land change maps that allow land-use 

related interpretation of change patterns. Our change maps show, that i) deforestation 

decreased rapidly after 2000 and forest regeneration occurred in the ecological program 

zones, leading to a net forest increase in Inner Mongolia, and  ii) cropland retirement 

mostly occurred at the early stage of ecological programs  and mainly concentrated in drier 

environments and steep terrain. Our results suggest that ecological programs implemented 

in China during the past decade played a positive role for maintaining forests, promoting 

forest regrowth, and reducing human pressure on land in Inner Mongolia. Overall, land 

cover mapping and trajectory-based remote sensing data analysis allowed a consistent 

characterization of LULCC over large areas, which is crucial for gaining a better 

understanding of environmental changes in the light of rapidly changing environmental 

policies and governance regimes. 
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1 Introduction 

Land use and land cover change (LULCC) is one of the most important processes related 

to global environmental change (Foley et al. 2005). Political decisions or institutional 

change, however, often cause non-linear trends in land systems (Lambin and Geist 2006). 

Land laws or regulations largely determine whether or not land is developed or utilized. 

Rapid land system changes are often directly related to changing governance regimes, e.g. 

reduced deforestation rates after a logging ban (Wang et al. 2004b; de Blas and Perez 2008; 

Barsimantov and Antezana 2012), cropland expansion on grassland (Ojima et al. 2004; 

Wang et al. 2012b; Miao et al. 2013), or land abandonment in post-communism after the 

breakdown of the Soviet Union (Kuemmerle et al. 2008; Alcantara et al. 2012; Renwick et 

al. 2013). 

In the face of the environmental consequences of land over-use, some developing countries 

have taken political decisions to preserve and restore ecosystems (Nesheim et al. 2014). 

Among them, China has the largest land restoration initiatives worldwide in terms of 

spatial scale, payment, and duration (Zhang et al. 2000; Xu et al. 2006a; Liu et al. 2008). 

China suffers widespread environmental consequences caused by overexploitation of land 

resources, particularly in ecologically vulnerable arid and semi-arid regions (Ding 2003; 

John et al. 2009; Wang et al. 2013). Since the year 2000, ecological programs have come 

into act in form of reducing deforestation, promoting forest regeneration, and relieving 

human pressure on land through converting cropland to grassland (cropland retirement) 

(Zhang et al. 2000; Uchida et al. 2005; Wang et al. 2007a; Wang et al. 2012b). 

Considered as one of the most severely degraded areas, almost all of the national land 

restoration projects for environmental protection were implemented in Inner Mongolia, 

making it the most invested in province in China (SFA 2000-2013). By adopting the 

nation-wide Natural Forest Conservation Program (NFCP) in 2000, Inner Mongolia 

intended to maintain natural forests by decreasing deforestation and increasing the 

productivity of forest plantations (Li 2012; Guo et al. 2013). Also launched in 2000, the 

Returning Farmlands to Forest and Grassland Project (also known as “Grain to Green 

Program”, GGP) plans to convert farmland on steep slopes or with low yield and grassland 

into forest (Uchida et al. 2005; Wang et al. 2007b). Including the functionalities of GGP, 

phase I of the Beijing and Tianjin Sandstorm Source Treatment Project (BTSST, 2001–

2012) tries to reduce the sources of sandstorms that affect Beijing and its neighboring 
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Tianjin Municipality through cropland retirement and vegetation regeneration (Li and 

Zhang 2004; Zhang et al. 2012). 

Previously, the land use pattern changed substantially in Inner Mongolia after the 

establishment of the People’s Republic of China in 1949. Vast grassland in the cropping-

grazing transitional zones was cultivated and the area of cropland was doubled by the end 

of the 20th century (Lin and Ho 2003; Sorgog et al. 2013). The spatial pattern and the 

change rate of cropland retirement in the 2000’s, however, are largely unknown. The forest 

ecosystem, too, changed substantially in Inner Mongolia after 1949 (Liu et al. 2008). Since 

the goal of China’s forest management in the early years was to maximize timber 

production to support the economy, forest was heavily harvested and the forested area 

shrunk significantly (Zhang and Song 2006; Song et al. 2014).  Apart from human factors, 

natural disturbances, especially fire, also played an important role in the forest loss in Inner 

Mongolia (Tao et al. 2013). With more afforestation and reforestation efforts in the 2000’s, 

the forest cover has been reported to increase in general (IMARBS 2000-2013). 

Despite the relevant important ecological and socioeconomic regional to global 

implications, however, to date, spatially and temporally coherent documentation of land 

use and land cover change is still missing in Inner Mongolia (Wang et al. 2012b).  Most 

assessments were limited to localized areas (Du 2006; Peng 2010) and divergences 

emerged when the observations were conducted from different perspectives at different 

levels and regions (Cao et al. 2010a, b; Yang et al. 2010). Zhou et al. (2012) found GGP 

induced forest increase in the dry Loess Plateau using multi-temporal Landsat imagery. A 

field survey conducted by Song (2014) concluded low deforestation risk for forests created 

by GGP, although risk varied greatly across sites. However, Cao et al. (2008) and Wang 

(2010b) argued large-scale afforestation failed in arid and semi-arid China, based on the 

local observations and meta-analysis. Previous LULCC monitoring in Inner Mongolia 

usually took the land cover information observed from two single- or multi-date images to 

deduce the changes (John et al. 2009). The comparison approach, however, is not well-

suited for determining rapid land surface changes (Dearing et al. 2010; Kenneny et al. 

2014). Therefore, high-frequency observations are needed for investigating the drastic 

changes in land systems triggered by political factors. 

Remote sensing has a long tradition; mapping land use and land cover changes across local 

to global scales (Meyer and Turner 1994; Lambin et al. 2003; DeFries et al. 2004a; Clark et 

al. 2012). Previously, we demonstrated for a sub-region in Inner Mongolia that land cover 
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probabilities derived from a Random Forest classifier are useful to characterize changes 

between multiple land cover classes at annual intervals, e.g. forest to grassland and 

grassland to cropland (Yin et al. under review). By describing the chance that a pixel from 

satellite imagery belongs to a specific land cover class (Colditz et al. 2011), land cover 

probabilities are more sensitive to land cover change compared to the underlying spectral 

values or vegetation indices (Broich et al. 2011). More important, land cover probabilities 

provide a quantitative land surface measurement and therefore can be used as input 

variables for time series models. Rather than detecting the simplistic from-to change from 

two- or multiple-date land cover maps, our approach took advantage of the hyper-temporal 

resolution of the MODIS archive to explore detailed changes using a trajectory-based 

approach which captures the rapid transformation in the land system. 

Accordingly, we extended our approach to map annual land cover change for Inner 

Mongolia, China, to understand how the land system is altered against the background of 

national land restoration programs. Methodologically, we aimed to answer the question 

how probability-based land change trajectories from machine learning can support such 

insights. We focused on three specific land cover change processes that should closely 

correlate with China’s ecological programs, meeting the interests of most: deforestation, 

forest regeneration and cropland retirement. 

2 Methodology 

2.1 Study area 
Inner Mongolia is an autonomous region located in Northern China with twelve prefecture-

level divisions which are subdivided into 101 counties (Figure 1). It covers about 1.18 

million km² area with a population of 27 million people in 2010 (IMARBS 2000-2013). 

Lying in a climatic transitional zone from sub-humid to dry environments, land covers in 

Inner Mongolia follow a distinct gradient. With higher precipitation, the northeastern part 

of the study area is dominated by mostly deciduous forest and by agriculture in the 

lowlands. Croplands in the East then give way to grassland in the West. Between the 

forested East and the vast desert in the West, land cover is dominated by various grassland 

ecosystems. 
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Figure IV-1: Inner Mongolia and ecological programs conducted in administrative divisions at prefecture- 
and county-level. GGP refers to Grain for Green Program, NFCP refers to Natural Forest Conservation 
Program, and BTSST is Beijing and Tianjin Sandstorm Source Treatment Project. 

2.2 Image data and reference data generation 
The MODIS-Terra Vegetation Index (VI) product (MOD13Q1, Collection 5) (Huete et al. 

2002) was used as the main data source to predict land cover probability between 2000 and 

2012. The MOD13Q1 comprised the Normalized Difference Vegetation Index (NDVI), the 

Enhanced Vegetation Index (EVI), surface reflectance in the blue, red, near-infrared (NIR), 

shortwave-infrared (SWIR) waveband, and pixel quality data with nominal 250-m spatial 

resolution and a composite time interval of 16 days. We used the Savitzky-Golay filter 

from the TIMESAT software (Jonsson and Eklundh 2004) to generate smooth time series 

of NDVI, EVI and other four reflectance bands so as to reduce the noises caused by 

atmosphere, off-nadir viewing and low sun zenith angle. For each calendar year during the 

growing season (March–October), we computed the mean, minimum, maximum, range and 

standard deviation for the first half (March–June), second half (July–October), as well as 

the entire growing season. This reduced the number of input variables for the classifier 
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while keeping phenological information helpful for distinguishing different land cover 

classes (Huttich et al. 2011; Clark et al. 2012).  

We adopted the level 1 legend from the Chinese Academy of Science (CAS) national cover 

mapping initiative as a tradeoff between the need of meeting regional settings and the 

ability of MODIS for land cover mapping (Liu et al. 2002; Liu et al. 2005). The reference 

data for Random Forest model training was generated following Yin et al. (under review), 

with modifications of the signature generation approach. Here we used a more cost-

effective and robust automatic signature generalization approach that adapts the class 

spectral signature to individual images (Gray and Song 2013). Change vector analysis 

(CAV) was used to screen the areas where land covers are stable, and only the samples 

located in the stable areas were kept for model training between 2000 and 2012. We 

selected red band and NDVI for CAV analysis as they are sensitive to ground change and 

similarly affected by atmospheric effects across different land cover types (Gray and Song 

2013). We stacked the mean value of the smoothed red band and NDVI during the growing 

season for 2000 and 2012, respectively. A linear regression function was used for 

radiometric normalization to reduce the effects of atmospheric difference or other factors 

(Hall et al. 1991).  The CAV analysis was hereafter conducted on the differenced red band 

and NDVI value. As we aimed to minimize omission errors, a relative relaxed threshold of 

change magnitude was set and nearly 15% of the study area was detected as changed areas.  

Collecting a sufficient number of references for precisely validating a land cover change 

map is challenging, because the number of change classes increases substantially compared 

to a single-date land cover map (Olofsson et al. 2013; Wickham et al. 2013). Hence we 

used a disproportionate stratified estimator and six randomly selected Landsat footprints 

(p121r27, p121r30, p122r24, p124r29, p126r32, p129r32) to validate the map. We 

collected 98 Landsat L1T images acquired mostly in late summer or early autumn for 

nearly every year between 2000 and 2012 as reference data. The spectral and spatial 

patterns of the Landsat imagery, as well as the phenological discrepancies of different land 

cover types helped to distinguish land cover classes visually. A size of one MODIS pixel 

was used as the sample unit. We randomly selected 300 pixels for each stable class, except 

permanent water bodies which have a relative smaller reference size of 150 pixels, 50 

pixels for each strata within each land cover change class, and 150 pixels for other change 

classes. Where no Landsat image was available (i.e. data gap due to ETM SLC-off or cloud 

cover), or the samples were undecidable in visual interpretation, a temporal profile from 

the MOD13Q1 NDVI time series was employed as ancillary information. In all, a number 
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of 3062 reference samples were labeled. The accuracy was reported in form of a confusion 

matrix, including the omission error, commission error and overall accuracy. 

 

Figure IV-2: Methodology overview showing the dataset and algorithms used. 

2.3 Land use and land cover change mapping 
Pixel-wise probabilities for forested land, cropland, grassland, waterbodies and non-

vegetated land were estimated using the Random Forest model for each year during 2000 

and 2012. Land probability time series and a temporal segmentation approach, 

MODTrendr (Sulla-Menashe et al. 2014), were employed to investigate the change within 

each land cover. The conversions between different land cover classes were mapped 

hereafter based on the summary of structural changes class (Yin et al. under review). 
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Adapted from the LandTrendr algorithm, MODTrendr was used to generate temporal 

segmentation in class-wise land cover probability time series  where the directional change 

of a temporal segment is interpreted as a proxy for change on the ground (Sulla-Menashe 

et al. 2014). Several metrics provide the characteristic summary of the segments, including 

the start and the end timing of the segment, segment duration (years) and change 

magnitude (probability difference between segment end and segment start).  These metrics 

help interpreting the segment for translating the segments to the ground change. We ran 

MODTrendr on all the land cover probability time series separately and derived the metrics 

of the segments. As we had no ground reference to calibrate MODTrendr, we decided to 

use the same fitting parameters as in (Sulla-Menashe et al. 2014), except that we used a 

more restrictive significance threshold for model fitting (p-value=0.05) and a higher 

number of trajectory segments (5). This was considered to eliminate noise due to the 

misestimation and large inter-annual variation of land cover probability in drylands, while 

capturing more abrupt and quick recovery land change processes. 

For each land cover probability time series, we derived two metric sets – the largest 

decrease and the largest increase of land cover probabilities, respectively. For retrieving 

largest decrease/increase metrics, we first labeled segments representing land cover loss 

when the change magnitude was -0.4 or less and the pre-change probability was greater 

than 0.5, as these thresholds resulted in balanced omission and commission errors. For 

each pixel we recorded the converted land cover class and the timing of the conversion 

based on the year when the change segment ended. To identify the land cover class 

following the conversion, we selected class probability segments with a positive change 

magnitude of 0.4 or greater. Thus, a pixel was flagged showing a land cover conversion 

when a pronounced land cover loss in one land cover probability trajectory occurred 

simultaneously with a gain in another land cover type. A ±2 year difference in timing label 

was allowed and the conversion time was decided by the detected loss time of the land 

cover trajectory.  Detailed descriptions of the metrics can be found in Kennedy (2010) and 

Sulla-Menashe (2014). 

A thematic land map was created for the year 2000 from the fitted probability time series 

and each pixel was assigned a land cover label, based on the majority land cover 

probability. We combined the land cover change map with the baseline map in 2000, to 

create a single map representing stable land cover classes and the change categories. We 

labeled five non-change land classes including permanent cropland (PC), permanent 

forested land (PF), permanent grassland (PG), permanent waterbodies (PW), and 
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permanent non-vegetated land (PN). Conversions from forested land to grassland and 

cropland were integrated as deforestation (DF), the conversions from grassland and 

cropland to forested land were combined as forest regeneration (FR), and the conversion 

from cropland to grassland represents cropland retirement (CR). Other class changes, such 

as changes of waterbodies or non-vegetated land, were integrated into a single class as 

other changes (OC). 

2.4 Spatial and temporal patterns of LULCC 
For each class, we estimated the error-adjusted area and associated 95% confidence 

intervals using formulas provided by Olofsson (2013).  Because we were interested in the 

human influence on the forest change, we separated fire-induced forest loss from the total 

deforestation using the Collection 5.1 MODIS Burn Area Product (MCD45A1) download 

from the University of Maryland (ftp://ba1.geog.umd.edu).  

To assess the regional response to the ecological programs implemented for a given land 

cover conversion class, we estimated the total relative change (RC) and annual relative 

change (ACR). Sen’s slope and the Mann-Kendall test of the annual relative change at 

county level were calculated to assess possible trends in the change rates, except for forest 

regeneration. As forest growth requires a longer period of time, the detected area of forest 

regeneration is hypothesized to be decreasing during the late-stage of the investigation 

period. Net deforestation rates (D) were calculated for the forested land. RC, ACR and 

PNC were calculated using the following formulas: 

                                                   
2012

2000
2001

100*( / )i
i

RC AC A
=

= ∑                                             (1) 

where ACi is the converted area at year i, and A2000 denotes the area of land cover in 2000. 

For example, when calculating the relative change for forest regeneration, A2000 denotes the 

area of herbaceous land in 2000. In the case of deforestation, A2000 stands for the area of 

forested land in 2000. 

                      1100*( / )j j jACR AC A −=                                   (2) 

where ACRj is the relative change ratio in year j, ACj denotes the area of the conversions in 

year j and Aj-1 equals the area of the land cover class in year j-1. Overall, the net 

deforestation rate (D) was estimated as follows: 

                                                  (3) 
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where Ri and Di stand for the area of forest regeneration and deforestation in year i, 

respectively, and F2000 denotes the forested area in 2000.  

We investigated how land cover changes vary among different topographic and climatic 

conditions, because ecological programs are largely set up according to the environmental 

settings. The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) 

database v4.1 was used to represent topography. The original 90-m SRTM dataset was 

resampled and reprojected to the same resolution as the LULCC map, before calculating 

the RC for each land cover change type among each stratum of slope at 5-degree breaks. 

The climate moisture index (Im) dataset covering Inner Mongolia, downloaded from the 

Data Sharing Infrastructure of Earth System Science of China (http://www.geodata.cn), 

was used to assess climatic conditions of the land on which LULCC occurred. The 500-m 

resolution climate moisture index dataset was produced by the Institute of Agricultural 

Resources and Regional Planning of the Chinese Academy of Agricultural Sciences, using 

long-term ground gauges of precipitation and temperature based on the method of 

Thornthwaite and Mather (1955). We stratified the climate moisture index into 12 strata 

where each stratum corresponded to a certain climate type: semi-arid (SA, Im≤-35), dry 

sub-humid (DS, -35<Im≤0) and moist sub-humid (MS, Im>0). Each climate type was 

divided into sub-classes at an interval of five. We then estimated the total relative change 

of each LULCC class within each stratum. 

3 Results 

3.1 Mapping accuracy 
The accuracy assessment revealed reliable land cover change mapping in Inner Mongolia 

with an overall accuracy of 91.8%, though errors varied among land categories and change 

classes (Table IV-1). For the permanent land classes, the user’s accuracies were higher than 

90% for permanent cropland, forest, and water. Apart from permanent cropland and non-

vegetated land, other permanent land cover classes achieved producer’s accuracies greater 

than 90%. 

Compared to the permanent land cover classes, change classes were in general less 

accurately mapped and variations of the errors in each individual class are larger (Table IV-

1, Table IV-2). Deforestation, however, showed the most promising mapping accuracy. The 

user’s accuracy varied little (standard deviation = 0.06) and was higher than 85% across all 

the individual classes of deforestation. The highest commission error was found in 2001 
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due to confusion with the classes in the following years (e.g. 2003) (Table IV-2). The 

producer’s accuracies also confirmed the good capacity of deforestation mapping with an 

average omission error of less than 5% and a standard deviation of 0.06. Forest 

regeneration from 2001 to 2012 was also well captured, with an average user’s and 

producer’s accuracy of 83.7% and 84.7%, respectively. Similar to that of deforestation, the 

individual forest regeneration class in 2001 showed larger inter-annual timing label 

confusion (user’s accuracy = 62.0%). In contrast to the high accuracies in deforestation and 

forest regeneration mapping, cropland retirement was less well detected due to a mapping 

error with an average user’s accuracy (62.0%) and producer’s accuracy (81.8%). The 

confusions of cropland retirement were mainly with permanent cropland and grassland, 

which account for 65% of the errors. Compared to deforestation and forest regeneration, 

the change of timing was less accurately labeled in cropland retirement.  We also found 

least accuracy in the individual cropland retirement class of 2001.  

Table IV-1:  Accuracy assessment report showing omission errors (OE, %) and commission errors (CE, %) 
for deforestation (DF), forest regeneration (FR), and cropland retirement (CR) and permanent classes: 
permanent cropland (PC), permanent forested land (PF), permanent grassland (PG), permanent waterbodies 
(PW), and permanent non-vegetated land (PN). 

Year DF OE DF CE FR OE FR CE CR OE CR CE 

2001 0 16.0 0 38.0 0 54.0 

2002 2.3 4.0 21.8 20.0 4.7 36.0 

2003 3.9 0 33.5 16.0 8.0 34.0 

2004 0 14.0 25.3 10.0 29.6 32.0 

2005 0 2.0 13.8 16.0 47.8 40.0 

2006 0.4 6.0 0 16.0 16.7 44.0 

2007 10.8 8.0 28.8 12.0 20.1 42.0 

2008 8.4 10.7 18.7 10.0 7.3 36.0 

2009 0 12.5 4.9 16.0 26.6 34.0 

2010 0 10 5.8 8.6 17.6 38.0 

2011 5.8 0 -- -- 9.1 46.0 

2012 -- -- -- -- 30.8 44.0 

Overall Accuracy = 91.8% 
OE for permanent classes: PC (11.8), PF (1.4), PG (6.6), PW (3.5), PN (11.8) 
CE for permanent classes: PC (5.6), PF (5.3), PG (10.6), PW (14.7), PN (6.3) 
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Table IV-2: Error matrixes based on sample counts and the area-adjusted proportion for deforestation (DF), 
forest regeneration (FR), and cropland retirement (CR) and permanent classes: permanent cropland (PC), 
permanent forested land (PF), permanent grassland (PG), permanent waterbodies (PW), and permanent non-
vegetated land (PN). 

 PC PF PG PW PN DF2001 DF2002 DF2003 DF2004 DF2005 

PC 1.26E-01 - 7.56E-03 - - - - - - - 

PF - 1.22E-01 4.28E-04 - 6.42E-03 - - - - - 

PG 1.58E-02 1.43E-03 3.84E-01 - 2.87E-02 - - - - - 

PW - - 2.25E-05 2.89E-03 - - - - - - 

PN - - 1.79E-02 - 2.64E-01 - - - - - 

DF2001 - - 5.34E-06 - - 1.12E-04 2.67E-06 1.33E-05 - - 

DF2002 - - - - - - 1.11E-04 4.65E-06 - - 

DF2003 - - - - - - - 7.78E-04 - - 

DF2004 - - - - - - - 1.37E-05 8.41E-05 - 

DF2005 - - 1.01E-06 - - - - - - 4.96E-05 

DF2006 - 1.81E-05 - - - - - - - - 

DF2007 - - - - - - - - - - 

DF2008 - 6.43E-06 - - - - - - - - 

DF2009 - 1.33E-06 1.99E-06 - - - - - - - 

DF2010 - 6.43E-07 6.43E-07 - - - - - - - 

DF2011 - - - - - - - - - - 

FR2001 - 3.46E-05 - - - - - - - - 

FR2002 - 1.51E-05 - - - - - - - - 

FR2003 - 1.83E-05 - - - - - - - - 

FR2004 - - - - - - - - - - 

FR2005 - 7.48E-06 - - - - - - - - 

FR2006 - 2.15E-06 - - - - - - - - 

FR2007 - 1.84E-06 - - - - - - - - 

FR2008 - 1.49E-06 - - - - - - - - 

FR2009 - - - - - - - - - - 

FR2010 - - - - - - - - - - 

CR2001 5.77E-05 - 1.73E-04 - - - - - - - 

CR2002 1.05E-04 - 1.20E-04 - - - - - - - 

CR2003 7.01E-05 - 1.23E-04 - - - - - - - 

CR2004 3.04E-05 - 1.22E-05 - - - - - - - 

CR2005 1.32E-05 - 4.95E-06 - - - - - - - 

CR2006 4.74E-05 - 2.84E-05 - - - - - - - 

CR2007 2.68E-05 - 2.08E-05 - - - - - - - 

CR2008 2.70E-05 - 3.37E-06 - - - - - - - 

CR2009 1.37E-05 - 8.22E-06 - - - - - - - 

CR2010 1.92E-05 - 2.41E-06 - - - - - - - 

CR2011 3.94E-05 - 3.29E-05 - - - - - - - 

CR2012 6.81E-05 - 1.57E-05 - - - - - - - 

Other 
changes 5.28E-04 2.11E-04 6.34E-04 1.06E-04 3.17E-04 - - - - - 

PA 8.82E-01 9.86E-01 9.34E-01 9.65E-01 8.82E-01 1.00E+00 9.77E-01 9.61E-01 1.00E+00 1.00E+00 
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Table IV-2:  Error matrixes based on sample counts and the area-adjusted proportion (Continued) 

 DF2006 DF2007 DF2008 DF2009 DF2010 DF2011 FR2001 FR2002 FR2003 FR2004 

PC - - - - - - - - - - 

PF - - - - - - - - - - 

PG - - - - - - - - - - 

PW - - - - - - - - - - 

PN - - - - - - - - - - 

DF2001 - - - - - - - - - - 

DF2002 - - - - - - - - - - 

DF2003 - - - - - - - - - - 

DF2004 - - - - - - - - - - 

DF2005 - - - - - - - - - - 

DF2006 4.25E-04 9.03E-06 - - - - - - - - 

DF2007 1.63E-06 7.48E-05 4.88E-06 - - - - - - - 

DF2008 - - 5.35E-05 - - - - - - - 

DF2009 - - - 2.32E-05 - - - - - - 

DF2010 - - - - 2.89E-05 6.43E-07 - - - - 

DF2011 - - - - - 1.04E-05 - - - - 

FR2001 - - - - - - 8.93E-05 1.44E-05 5.76E-06 - 

FR2002 - - - - - - - 1.01E-04 1.01E-05 - 

FR2003 - - - - - - - 4.58E-06 1.92E-04 - 

FR2004 - - - - - - - 9.15E-06 3.05E-06 1.37E-04 

FR2005 - - - - - - - - - 7.48E-06 

FR2006 - - - - - - - - - - 

FR2007 - - - - - - - - - - 

FR2008 - - - - - - - - - - 

FR2009 - - - - - - - - - - 

FR2010 - - - - - - - - - - 

CR2001 - - - - - - - - - - 

CR2002 - - - - - - - - - - 

CR2003 - - - - - - - - - - 

CR2004 - - - - - - - - - - 

CR2005 - - - - - - - - - - 

CR2006 - - - - - - - - - - 

CR2007 - - - - - - - - - - 

CR2008 - - - - - - - - - - 

CR2009 - - - - - - - - - - 

CR2010 - - - - - - - - - - 

CR2011 - - - - - - - - - - 

CR2012 - - - - - - - - - - 

Other 
changes - - - - - - - - 2.11E-04 1.06E-04 

PA 9.96E-01 8.92E-01 9.16E-01 1.00E+00 1.00E+00 9.42E-01 1.00E+00 7.82E-01 4.55E-01 5.48E-01 
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Table IV-2:  Error matrixes based on sample counts and the area-adjusted proportion (Continued) 

 FR2005 FR2006 FR2007 FR2008 FR2009 FR2010 CR2001 CR2002 CR2003 CR2004 

PC - - - - - - - - - - 

PF - - - - - - - - - - 

PG - - - - - - - - - - 

PW - - - - - - - - - - 

PN - - - - - - - - - - 

DF2001 - - - - - - - - - - 

DF2002 - - - - - - - - - - 

DF2003 - - - - - - - - - - 

DF2004 - - - - - - - - - - 

DF2005 - - - - - - - - - - 

DF2006 - - - - - - - - - - 

DF2007 - - - - - - - - - - 

DF2008 - - - - - - - - - - 

DF2009 - - - - - - - - - - 

DF2010 - - - - - - - - - - 

DF2011 - - - - - - - - - - 

FR2001 - - - - - - - - - - 

FR2002 - - - - - - - - - - 

FR2003 1.37E-05 - - - - - - - - - 

FR2004 3.05E-06 - - - - - - - - - 

FR2005 1.05E-04 - 4.98E-06 - - - - - - - 

FR2006 - 9.02E-05 8.59E-06 - - - - - - - 

FR2007 - - 4.06E-05 2.77E-06 - - - - - - 

FR2008 - - 4.95E-07 2.23E-05 4.95E-07 - - - - - 

FR2009 - - - 2.35E-06 3.29E-05 2.35E-06 - - - - 

FR2010 - - 2.37E-06 - 1.19E-06 3.80E-05 - - - - 

CR2001 - - - - - - 2.65E-04 - 2.31E-05 3.46E-05 

CR2002 - - - - - - - 4.80E-04 1.50E-05 3.00E-05 

CR2003 - - - - - - - 1.75E-05 5.79E-04 1.75E-05 

CR2004 - - - - - - - 6.08E-06 1.22E-05 2.07E-04 

CR2005 - - - - - - - - - 4.95E-06 

CR2006 - - - - - - - - - - 

CR2007 - - - - - - - - - - 

CR2008 - - - - - - - - - - 

CR2009 - - - - - - - - - - 

CR2010 - - - - - - - - - - 

CR2011 - - - - - - - - - - 

CR2012 - - - - - - - - - - 

Other 
changes - - - - - - - - - - 

PA 8.62E-01 1.00E+00 7.12E-01 8.13E-01 9.51E-01 9.42E-01 1.00E+00 9.53E-01 9.20E-01 7.04E-01 
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Table IV-2:  Error matrixes based on sample counts and the area-adjusted proportion (Continued) 

 CR2005 CR2006 CR2007 CR2008 CR2009 CR2010 CR2011 CR2012 Other changes UA 

PC - - - - - - - - - 9.43E-01 

PF - - - - - - - - - 9.47E-01 

PG - - - - - - - - - 8.93E-01 

PW - - - - - - - - 4.73E-04 8.53E-01 

PN - - - - - - - - - 9.37E-01 

DF2001 - - - - - - - - - 8.40E-01 

DF2002 - - - - - - - - - 9.60E-01 

DF2003 - - - - - - - - - 1.00E+00 

DF2004 - - - - - - - - - 8.60E-01 

DF2005 - - - - - - - - - 9.80E-01 

DF2006 - - - - - - - - - 9.40E-01 

DF2007 - - - - - - - - - 9.20E-01 

DF2008 - - - - - - - - - 8.93E-01 

DF2009 - - - - - - - - - 8.75E-01 

DF2010 - - - - - - - - 1.29E-06 9.00E-01 

DF2011 - - - - - - - - - 1.00E+00 

FR2001 - - - - - - - - - 6.20E-01 

FR2002 - - - - - - - - - 8.00E-01 

FR2003 - - - - - - - - - 8.40E-01 

FR2004 - - - - - - - - - 9.00E-01 

FR2005 - - - - - - - - - 8.40E-01 

FR2006 - - - - - - - - 6.44E-06 8.40E-01 

FR2007 - - - - - - - - 9.22E-07 8.80E-01 

FR2008 - - - - - - - - - 9.00E-01 

FR2009 - - - - - - - - 1.57E-06 8.40E-01 

FR2010 - - - - - - - - - 9.14E-01 

CR2001 - - - - - - - - 2.31E-05 4.60E-01 

CR2002 - - - - - - - - - 6.40E-01 

CR2003 1.75E-05 1.75E-05 - - - - - - 3.51E-05 6.60E-01 

CR2004 1.82E-05 - - - - - - - 1.82E-05 6.80E-01 

CR2005 4.95E-05 3.30E-06 1.65E-06 - - - - - 4.95E-06 6.00E-01 

CR2006 9.48E-06 1.33E-04 1.42E-05 - - - - - 4.74E-06 5.60E-01 

CR2007 - 2.97E-06 8.62E-05 2.97E-06 5.95E-06 - - - 2.97E-06 5.80E-01 

CR2008 - - 3.37E-06 1.08E-04 2.02E-05 - - - 6.74E-06 6.40E-01 

CR2009 - 2.74E-06 - 5.48E-06 9.04E-05 2.74E-06 - - 1.37E-05 6.60E-01 

CR2010 - - 2.41E-06 - - 7.46E-05 7.22E-06 - 1.44E-05 6.20E-01 

CR2011 - - - - 6.57E-06 1.31E-05 1.77E-04 2.63E-05 3.29E-05 5.40E-01 

CR2012 - - - - - - 1.05E-05 1.47E-04 2.10E-05 5.60E-01 

Other 
changes - - - - - - - 1.06E-04 1.36E-02 8.60E-01 

PA 5.22E-01 8.33E-01 7.99E-01 9.27E-01 7.34E-01 8.24E-01 9.09E-01 5.27E-01 9.54E-01 OA 
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Figure IV-3: Land use and land cover change map (downright). Three subsets, indicated in the black frame, 
show the detailed map and the comparison of that from Landsat imagery (RGB=453): (A) deforestation, (B) 
forest regeneration and (C) cropland retirement. The trajectory in figure (D), (E) and (F) indicate the source 
and the fitted values of land cover probability located in (A), (B) and (C) respectively. The location is 
indicated in dot in three subsets. 
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3.2 Deforestation and forest regeneration 
The forest area in Inner Mongolia increased between 2001 and 2012, though the change 

differed in different periods across the regions (Figure IV-4, Figure IV-5). For the 

deforestation, the estimated forest loss area was 205,534±14,556 hectare (0.42% of all the 

forest in 2000) between 2001 and 2012 (Figure IV-4A). Two notable years were 2003 and 

2006, with above-average change caused by natural fire disturbances. The MODIS burnt 

product revealed fire introduced forest disturbances. This was the largest factor of forest 

loss which constitutes nearly 71.5% of the whole lost area. The fire-excluded forest loss 

showed a decreasing trend in the time series of the deforestation area (Figure IV-4B). The 

annual net deforestation area gradually decreased from 10,770 ha (0.07% of the whole 

forest) in 2001 to 930 ha (0.01% of the forest) in 2011, while no forest loss was detected in 

2012.  
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Figure IV-4: (A) Error-adjusted area estimates of deforestation and the fire introduced forest loss and (B) 
Fire-excluded deforestation and error-adjusted area estimates of forest generation. The associated 95% 
confidence intervals were shown as error bars. 

The deforestation rate and its temporal trend were found to be heterogeneous at county 

level (Figure IV-5). Counties with higher rate of forest loss were mainly located in the 

southern Greater Khingan Range where the NFCP program was not implemented (Figure 

IV-5A, Figure IV-1). Taking Hinggan and Tongliao, for example, the counties enrolled in 

the NFCP program showed less forest decline, compared to the non-NFCP implemented 

counties. All counties in Inner Mongolia exhibited a decreasing trend of deforestation 

while the magnitude of change varied regionally (Figure IV-5B). The NFCP installed 

counties had a statistically significant (ɑ=0.01) negative trend of deforestation ratio, 

indicating faster deforestation reduction.  
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Figure IV-5: Forest changes at county-level between 2000 and 2012. (A) Relative change ratio calculated and 
(B) Sen’s slope and Mann-Kendall test of annual relative change ratio of deforestation. (C) Relative change 
ratio of forest regeneration and (D) Percentage of forest net change. 

We estimated an area of 112,898±21,154 hectare forest regeneration accounting for 0.18% 

of the herbaceous land in Inner Mongolia during the investigation period (Figure IV-4B). 

Unlike the gradual decrease of deforestation, forest increase showed a more dramatic path. 

A rapid increase of forest gain occurred between 2001 and 2003, when the area of forest 

increase reached a peak. Gradual decreases followed afterwards, leading to the lowest 

forest gain in 2008. The forest gain subsequently increased slightly until 2010, with a much 

lower absolute change magnitude than that between 2001 and 2003. No forest gain was 

found in 2011 and 2012.  

The spatial pattern of the forest gain showed regional heterogeneity, with most of the forest 

gain detected in the NFCP and BTSST installed regions (Figure IV-1, Figure IV-5C). For 

example, we found considerable forest increase in both NFCP sub-zones, the Yellow River 

and the Greater Khingan Range. Southern counties in Chifeng, where close to Beijing, also 
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increased forest cover. In all, forested area in Inner Mongolia increased by 54,321±35,710 

ha after balancing forest gain and fire-excluded forest loss. Areas of the northern and 

southern-most Greater Kinghan Range, Hulunbuir, Hinggan and Chinfeng, exhibited net 

forest cover loss, while Tongliao, southern Chifeng and the counties close to the Yellow 

River showed pronounced net forest gain (Figure IV-1, Figure IV-5D). 

The relative change across mountain slopes and climatic strata showed a distinguished 

difference between deforestation and forest regeneration (Figure IV-6). A greater 

proportion of forest was converted to herbaceous lands in the flatter environments 

(slope<5°), where nearly 0.5% of the forest was lost (Figure IV-6A). With increasing 

mountain slope, the percentage of forest loss dropped with a gradually decreasing trend. 

The discrepancy between proportional forest loss in areas flatter than 5 degrees and steeper 

than 25 degrees was 0.24%. In contrast to deforestation, the conversion of herbaceous land 

to forest tended to occur at steeper slopes. Only 0.05% of the herbaceous lands in areas 

flatter than 5 degrees was converted to forest, while more than 1.5% of the herbaceous 

lands were detected with a forest gain in the steeper areas (slope>15°). The increased forest 

cover in the herbaceous areas was most notable in the regions where slopes are between 20 

and 25 degrees. We found forest change differed with climatic conditions as well (Figure 

IV-6B). Deforestation was most prominent in the drier sub-humid areas. In general, the 

ratio of forest loss decreased in the more humid regions. In the semi-arid area, however, 

little forest loss was detected. Conversely, forest gain tended to occur in places with better 

moisture conditions. The ratio of forest regeneration on herbaceous land gradually rose up 

from 0.01% in semi-arid areas to 0.6% in moist sub-humid regions. 
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Figure IV-6: Rates of deforestation and forest generation by (A) topographic slope and (B) climatic types. 
SA1 stands for the strata (Im≤-45), SA2 for -45<Im≤-40 and SA3 for -40<Im≤-35. DS1 to DS7 correspond to 
the Im values ranging from -35 to 0 at an interval of 5. MS1 and MS2 are 0<Im≤ 5 and Im>5 respectively. 
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3.3 Cropland retirement 
We observed temporal and spatial variances in cropland retirement between 2000 and 2012 

in Inner Mongolia (Figure IV-7, Figure IV-8).  The error-adjusted area estimate suggested 

1.9% of cropland (313,956±79,151 ha) was converted to grassland during the investigation 

period. The cropland return increased rapidly before 2003, when the change area reached 

the all-time peak (Figure IV-7). The change was decelerated drastically in 2004 after which 

the cropland return continued, though at a much smaller change rate. Spatially, we found 

cropland retirement was more pronounced in the GGP and BTSST counties where a greater 

fraction (>0.5%) of cropland was converted to grassland (Figure IV-1, Figure IV-8A). The 

rate of cropland retirement was slowing down in most of the cropland returned counties 

(Mann-Kendall test p-value< 0.05) (Figure IV-8B). 
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Figure IV-7: Error-adjusted area estimates of cropland retirement. The associated 95% confidence intervals 
were shown as error bars. 

Cropland retirement was also found to be topographically and climatically correlated 

(Figure IV-9). Cropland in steeper environments (slope>10°) had a higher likelihood to be 

converted to grassland (Figure IV-9A). We found that 2.5% of the cropland in flat areas 

with a slope lower than five degrees was returned, in contrast to 6.7% (10° ≤slope<15°) 

and 6.3% (slope≤15°) of cropland converted in the steeper areas.  Crop retirement tended 

to occur in the dry areas (e.g. SA3, DS1) (Figure IV-9B). Nearly 2.7% of the cropland in 

the sub-humid zone was returned to grassland, while cropland was relatively stable in the 

semi-arid (1.6%) and moist sub-humid (0.8%) regions.  
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Figure IV-8: Summary of the cropland retirement at country-level of Inner Mongolia during 2000 and 2012: 
(A) Relative change ratio calculated and (B) Sen’s slope and Mann-Kendall test of annual relative change 
ratio.  
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Figure IV-9: Ratio of cropland retirement by (A) topographic slope and (B) climatic types. 

4 Discussion 

Monitoring land use and land cover change helps understanding better how land surfaces 

interact with human decisions. Observations at high-frequency time intervals benefit the 

investigation of abrupt and gradual change processes, avoiding ambiguous cognitions of 

the non-linear land system. On the other hand, wall-to-wall land cover change mapping 

supports a complete view of land changes in different regions, which is crucial for 

evaluating land policies widely implemented. In this work, we mapped annual land cover 

changes across broad scales to investigate how the land system in Inner Mongolia was 
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altered against the background of China’s ecological programs after 2000. We found 

decreasing deforestation trends, which reflected the direct influences of the NFCP 

grogram. Net forest increase, after excluding fire-disturbance, implied the forest 

regeneration efforts encouraged by the governments. Our results show, that the peak time 

of forest regeneration appeared in 2003, concurring with the all-time high investment of 

the government in afforestation and reforestation (Figure IV-10) (SFA 2013). We also 

found cropland retirement mostly concentrated in the years before 2004, suggesting that 

the local farmers were willing to join at early stages of the GGP and BTSST programs (Liu 

et al. 1999; Guan 2008). The much lower rate of cropland return afterwards, however, was 

largely due to the diminishing cropland retirement plan for the purpose of food security 

(Barthold et al. 2013).  
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Figure IV-10: Annual statistics of national forest regeneration from the major national forestry programs in 

China (SFA, 2013) 

Forest was reported to be shrinking in Inner Mongolia prior to the end of the 1990s (Zhan 

et al. 2004; Zhang et al. 2006). Our results indicate that human-introduced forest loss is 

rapidly decreasing after the year 2000 (Figure IV-4B), likely caused by the forest 

protection regulations. The NFCP installed counties, such as those located in the northern 

Greater Khingan Range, showed a smaller deforestation ratio and a more pronounced 

decreasing trend of forest loss (Figure IV-5A). A similar trend was found in other provinces 

implementing NFCP (Shi et al. 2011; Liu et al. 2014; Van Den Hoek et al. 2014). One 
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prerequisite ensuring implementation of China’s forestry policy is the state-controlled 

ownership of the majority of forested land. Covering the largest forested area of China, the 

Inner Mongolia Forest Industry Group (IMFIG) functions both as the enterprise and the 

forestry administrative body (Wang 2006; Wang and Shen 2008; Gong 2011). The mixed 

function of IMFIG warranted the effectiveness of adopting the central government’s 

decisions. For instance, IMFIG transferred 96,698 forestry works to the tertiary and other 

economic sectors during 2000 and 2011, so that the goal of logging reduction required by 

the NFCP program could be achieved (SFA 2000-2013).      

We found most counties with forest increase concentrated in the NFCP and BTSST 

program zones (Figure IV-5C), in accordance with the forest gain detected in the individual 

regions of Inner Mongolia (Ouyang et al. 2008; Guo and Zhang 2009; Zhang 2011a; Hou 

et al. 2013). We also found that the steeper areas tended to have more forest regeneration 

than the flatter regions, reflecting the intention of reducing soil erosion in the mountainous 

environment (Figure IV-6A).  Temporally, the remote sensing detected forest increases in 

Inner Mongolia agree, in general, with the overall trend of nation-wide census data (Figure 

IV-4B, Figure IV-10). The rapid increase in forest regeneration before 2004 is in line with 

investments at the early stages of the ecological programs (Liu et al. 2008). However, 

following diminishing grain production at the expense of forest expansion, the goal of 

forest regeneration was reduced after 2003 and led to the decreasing trend of forest gain 

(Tao et al. 2004; Xu et al. 2006b). We did not observe forest gain in 2011 and 2012, 

probably due to the time-lag between the recent forest regeneration efforts and the long 

growing process of the trees.  

Different factors suggest that the increase in forest was largely forest expansion on the 

non-forest lands rather than regrowth on the post-disturbed forested land. First, we found 

little forest that was fully recovered on the post-fire forested land during 2000 and 2012. 

Most of the disturbances occurred in Inner Mongolia’s cold-temperate forest ecosystems 

and the slow growth of the tree species on the post-fire ground determined a long recovery 

process which often requires more than 20 years or much longer (Luo 2002; Yu et al. 2009; 

Cai et al. 2013; Tao et al. 2013). Second, if the forest disturbed before 2000 had fully 

recovered during our investigation period, the detected timing label for forest increase 

would be 2000 from our trajectory approach. Instead, we found a forest regeneration peak 

in 2003, suggesting forest increase was merely the recovery from the disturbance in early 

years. Third, the detected forest increase was mainly located in the marginal grassland and 
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cropland areas rather than the center of the forested land, implying that the ecological 

programs promoted forest expansion on the non-forested land (Figure IV-3B).    

Despite the general forest increase in Inner Mongolia, the long-term sustainability of the 

new generated forest needs to be further investigated. The planting of native and 

ecologically functional tree species was encouraged for forest regeneration in the 

ecological programs (SFA 2013). However, the planting of fast-growing and water 

consuming tree species (e.g. Populus Tremula L.) could also be found in the arid and semi-

arid areas (Wang et al. 2007b; Cao 2008).  Water consuming trees planted in drylands may 

produce unfavorable ecological consequences (Jiang 2005; Wang et al. 2010b).  

Correspondingly, we discovered that most of the successfully generated forest could be 

found in the areas with better humid conditions (Figure IV-6B), suggesting tree planting 

needs to consider the regional climatic conditions. On the other hand, land use decisions of 

the farmers enrolled in the programs after their contracts expired may have influenced land 

use and land cover changes. Though field surveys confirmed the farmers’ positive attitude 

towards participating in GGP and BTSST programs (Liu and Zhang 2006; Ma et al. 2008; 

Hu et al. 2010),  land productivity, local market conditions and other regional contexts 

influenced the decisions on whether the newly planted forest would be maintained or 

converted back after the contract expired (Liu et al. 2010a; Li et al. 2011; Song et al. 

2014).  

Conversions from cropland to grassland changed drastically before and after 2004 was 

coincident with that of forest regeneration (Figure IV-7), implying that the GGP and 

BTSST projects played an important role in land use decision making. As mentioned 

previously, the rapid decrease in cropland retirement after 2003 was a result of political 

decisions. The GGP program, launched in 2000 in Inner Mongolia, caused a drastic 

decrease in sown areas of grain which eventually dropped by nearly 1 million ha, or more 

than 20% in 2003, from its peak in 1998 (IMARBS 2000-2013). The rapid shrinkage of 

cropland prompted the government to reduce cropland retirement in 2004 and 2005 (Hao 

2011; Song et al. 2014). This is evidenced by the significantly decreasing trend of cropland 

retirement in the counties enrolled in the GGP and BTSST programs (Figure IV-1, Figure 

IV-8B).  

While rainfall is limited and its large inter-annual variability does not favor cultivation in 

arid and semi-arid Inner Mongolia (Ellis et al. 2002), the GGP and BTSST programs 

seemed to help local farmers to shift from vulnerable cereal cropping to the more adaptive 

grazing. This is supported by the higher conversion rate in the dry sub-humid areas where 
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lands were vulnerable to more frequent droughts (Figure IV-9B). The willingness of 

farmers to participate in the government’s land retirement plans was also confirmed by 

numerous household surveys in Inner Mongolia (Yan 2010; Su et al. 2011; Song et al. 

2014). In the much drier areas (Figure IV-9B), we found that little land was converted. This 

suggests that the mostly irrigated and well managed cropland in the very dry environments 

(e.g. Yellow River irrigated lands in south Bayannur, Figure IV-1) still serves as a grain 

producing base and does not get involved in the ecological programs.  

Other factors, such as urbanization and land degradation, may also stimulate conversion 

from cropland to grassland (Kawada et al. 2011; Yan et al. 2012). Driven by mining 

industry and economic boom in Inner Mongolia during the last decade, rural farmers were 

attracted to giving up cultivation and immigrating to cities for better lives (Yang and Min 

2006). It has been estimated that the proportion of people engaged in agricultural activities 

has fallen from 57.8% in 2000 to 42.3% in 2012, with little change of the overall 

population in Inner Mongolia (IMARBS 2000-2013). Land degradation, on the other hand, 

further influenced land use decisions against the background of sociopolitical change. 

Vulnerable to climate change, soil erosion, and salinization, cultivated cropland in dry 

environments is prone to degradation, and land abandondment was observable in Inner 

Mongolia (Li 1999; Zhan et al. 2004; An et al. 2008).  

The major goals of China’s ecological programs were to mitigate frequent disasters and 

improve human well-being. The consequences of the political decisions need to be 

investigated comprehensively. In general, increasing forest and grassland benefits regional 

vegetation cover recovery (Yin et al. 2011; Li et al. 2012a; Yin et al. 2012),  soil erosion 

alleviation (Li et al. 2010b; Deng et al. 2012; Zhou et al. 2012), carbon sequestration 

enhancement (Chang et al. 2011; Deng et al. 2013; Feng et al. 2013), and soil properties 

amelioration (Liu et al. 2007b; Qiu et al. 2011).  However, it should be noted that changes 

of China’s land policy  may trigger land displacement in the form of maintaining and 

expanding domestic forests and grassland while increasing land degradation risks in the 

other regions (Liu and Diamond 2005; Lambin and Meyfroidt 2011).  Such indirect land 

use changes need to be considered for understanding the ecological benefits and shifting 

environmental deterioration in the context of globalization and sustainable development 

(Meyfroidt et al. 2013). 

Despite the relatively high mapping accuracy (Table IV-3), uncertainties still exist, either 

due to land cover class similarity, time series segmentation, or the capacity of the remote 

sensing data for complex land use change detection. First of all, using existing land cover 
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products and the CAV approach for reference data regeneration created reliable land cover 

probability estimation by the Random Forest model. However, spectral similarity of 

cropland and grassland caused a relatively higher mapping error between these two 

herbaceous classes. The confusions between cropland and grassland further influenced the 

conversions mapped, using the temporal segmentation algorithm. We also found 

considerable confusions with the permanent grassland and permanent non-vegetated land 

which was caused by the inter-annual variability in the dry, sparse vegetated land.  Second, 

a relatively strict threshold was set in the temporal segmentation and change mapping in a 

trade-off to avoid time series over-fitting and capture more changes. The higher errors in 

the change classes of the early years are likely caused by the higher susceptibility of the 

segmentation approach to outliers (Griffiths et al. 2012).  Nevertheless, our segmentation 

algorithm generated highly accurate estimations of the change timing labels. Third, the 

complex LULCC processes on the ground may not be coherently reflected from the 

perspective of remote sensing. Mapping and monitoring land use by remote sensing data 

can be problematic, since satellite imagery portrays land cover rather than use (Loveland 

and DeFries 2004a). For instance, we found that cropland retirement had considerable 

confusions with other changes. The confused cropland retirement was due to urban sprawl 

occurring on the cropland surrounding the cities in Inner Mongolia. A large area of land 

was taken out of cropping and kept unused for years. Therefore, we could only map the 

conversion from cropland to grassland before the impervious space gradually covered all 

land. Finally, fine-scale land change processes could be missed by the relatively coarse 

resolution MODIS. Although we observed a temporal pattern of forest regeneration similar 

to national census data, the detected absolute change area was much lower – taking into 

account that Inner Mongolia covers nearly 15% of all national program zones (Figure IV-

4B, Figure IV-10). Compositing higher resolution archives, such as Landsat imagery, may 

improve detecting LULCC at fine scale across broad scales (Potapov et al. 2011; Griffiths 

et al. 2013). However, high-frequency observations are still needed to capture rapid 

changes in a non-linear land system. 

5 Conclusion 

Detecting LULCC is perhaps one of the most important tasks for the remote sensing 

community. The development of abundant and vigorous algorithms has greatly enhanced 

the capacity of land systems monitoring, especially at regional to global scales. The service 

of wide-swath satellite sensors and long-term data depositories further make global 
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LULCC mapping at regular interval feasible. In combining a temporal segmentation 

approach and a land cover probability time series derived machine-learning approach, this 

study provides an effective means of accurately mapping land cover changes across broad 

scales. Our mapping approach takes advantage of the hyper-temporal resolution of the 

MODIS archive, and exploits the different characteristic signatures of land use/cover 

properties in-depth to produce a pan-view of LULCC at an annual interval. To our 

knowledge, this study is the first to provide a spatially and temporally detailed 

documentation of how land use was altered in Inner Mongolia against the background of 

China’s political decisions. We highlighted the capacity of our approach to detect rapid 

land cover conversion and gradual land change in non-linear land systems.  

In this study, we found that China’s ecological programs helped to reduce human pressure 

on the land system in Inner Mongolia. This is evidenced by the detected decreasing 

deforestation and net forest gain, as well as the significant cropland retirement in the policy 

implementation zones. The change of political decisions, however, caused drastic changes 

in land systems. Here we found a rapid decrease in the extent of forest regeneration and 

cropland retirement after 2003. Our findings contribute to the acknowledgement of the 

effectiveness of China’s ecological programs and the broader discussion on whether 

China’s experience is exemplary for the developing countries pursuing rapid economic 

development while mitigating land degradation. One should be aware, however, that the 

long-term and cross-border effects of China’s ecological programs should be examined 

regardless of the current success stories. The sustainability of large-scale land restoration 

relying on massive subsidization needs to be observed in the future. On the other hand, we 

need comprehensive assessments to understand what LULCC processes triggered by 

political decisions mean for China and the world. 
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1 Summary 

The overall aim of this thesis is to gain a better understanding about land changes in Inner 

Mongolia after the year 2000 by using a remote sensing approach and considering China’s 

land restoration programs. Monitoring LULCC change helps one to evaluate the 

effectiveness of current land use policies and therefore provides important information for 

developing more sustainable policies. Such monitoring becomes more and more important 

for assessing policy effects in our era of globalization. As the world's largest and one of the 

most rapidly developing countries, China’s land use policy on restoring natural ecosystems 

not only profoundly affects regional environments, but further triggers interconnected 

cross-border consequences due to indirect effects. Studying how the land system responded 

to China’s land restoration programs is the premise for understanding the complex 

interactions and feedbacks between distant social-ecological systems (Lambin and 

Meyfroidt 2011; Meyfroidt et al. 2013). Inner Mongolia is a hot-spot of environmental 

change and policy implementation, and thus provides an interesting example in this 

context. To advance our understanding of land use and land cover change in Inner 

Mongolia, a deeper knowledge of long-term remote sensing time series and improved 

methodology for change detection is required.   

This thesis investigated three core research questions to address the issues mentioned 

above, and here they are answered individually: 

Research question I: How do time series from global satellite archives compare across 

Inner Mongolia, and how do trends derived from time series relate to land change? 

In Chapter II, the trends of annual NDVI and the phenological indicators derived from 

AVHRR GIMMS, SPOT VGT and MODIS Terra time series were compared to reveal the 

strength and limits of using long-term hyper-temporal archives for change detection. To 

avoid spurious trends due to short-term (e.g., phenological) variations in the data or overall 

low signal-to-noise-ratios, a comparison was conducted between MODIS Terra and SPOT 

VGT, and between SPOT VGT and AVHRR GIMMS during their overlap periods so that  

longer time series could be used for analysis. 

The results illustrated that temporal inconsistences exist in different archives and 

sensitivity analyses are needed before combing these different data for regional time series 

analysis. The spatial pattern of vegetation trends derived from SPOT VGT and MODIS 

Terra exhibited great similarities, and the regression analysis between these two NDVI 
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product-derived trend parameters further confirmed a strong agreement. However, major 

disagreements became apparent when inter-annual trends between SPOT VGT and 

AVHRR GIMMS NDVI were compared. Higher variance in differences and stronger 

average differences between trends from the two archives were found as vegetation cover 

increases. In the test regions of Ordos and Hinggan, AVHRR GIMMS was found to both 

neglect and overestimate land cover change processes in different cases. Various factors 

such as illumination differences due to platform change or sensor orbital drift, lack of 

atmospheric correction, or different spatial aggregation algorithms may hamper the 

capacity of AVHRR GIMMS to reliably detect land changes. Therefore, it is important to 

check the comparability of trends derived from hyper-temporal time series before drawing 

conclusions about the respective regional setting.  

The vegetation trend derived from MODIS Terra and SPOT VGT suggests that cropland 

areas expanded while grassland remained relatively stable in Inner Mongolia during the 

past decade. From the MODIS Terra dataset, 24% of the cropland area showed an 

increasing NDVI trend, suggesting that agricultural intensification occurred in the past 

decade in Inner Mongolia. This finding is in line with the ground census data, which 

indicates that the land use intensification process in Inner Mongolia occurs largely due to 

increasing inputs such as fertilizer, machinery and irrigation (Song and Pijanowski 2014). 

About 15.4% of the grassland shows increasing vegetation cover, while only 3.9% of the 

area showed a decreasing trend from the MODIS Terra archive. This finding suggests the 

degrading trend of grassland was reversed after 2000. 

Research question II: How can land use and land cover change be reliably mapped at an 

annual interval using hyper-temporal satellite imagery? 

In Chapter III, an automated approach for mapping land cover changes at annual time 

intervals was developed using data from MODIS Terra. The underlying idea is to 

characterize changes between land use and land cover types across large areas using a 

trajectory-based approach. Rather than using the underlying spectral values or vegetation 

indices, machine learning estimated per-pixel land cover probabilities were employed to 

map changes among different land cover types. The temporal segmentation algorithm 

MODTrendr, on the other hand, enhances the capacity of depicting the process of various 

land cover changes that are difficult to detect with traditional multi-date comparison 

methods, e.g., long-term, gradual change processes such as afforestation and short-term 

changes in highly resilient systems. 
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The approach developed in this chapter achieved reliable accuracy for annual land cover 

change mapping. Both the abrupt and gradual land change processes were well depicted, 

though the levels of accuracy vary from one type to another. Forest change, for example, 

was found to be most reliably detected, while changes between herbaceous land cover 

types were less well detected due to their spectral similarity. This approach highlights that 

land cover probability can be used for tackling land cover change detection instead of only 

being treated as a by-product of discrete classification. The study suggested that land cover 

probability could even be used to channel land cover information derived from multi-

sensor-based imagery, as long as they share the same land cover legend. This chapter also 

highlights the capacity of a trajectory-based method to explore the in-depth signature of 

land surface dynamics from time series. Regardless the spatial resolution, this approach 

could also be applied to the imagery from medium resolution sensors such as Landsat if a 

near-annual time series of land probability can be obtained.   

Research question III: How was the land changed in Inner Mongolia considering national 

land restoration programs? 

In Chapter IV, the approach developed in Chapter III was employed to investigate the 

spatial and temporal pattern of three land cover change processes that are mostly targeted 

by China’s land restoration programs: deforestation, forest regeneration and cropland 

retirement. Results indicated that forest areas have been recovering during the past decade, 

whereas cropland retirement varies over space and time. Specifically, most of the forest 

loss (71.5%) was caused by fire disturbances, which brought a deforestation area of 

205,534±14,556 hectares during the years 2000 and 2012. The fire-excluded deforestation 

rate rapidly decreased after 2000, and the counties that were enrolled in the NFCP program 

showed more decline in deforestation. The forest regeneration findings may suggest that 

China’s land restoration programs help forest ecosystems to recover. Most forest gain was 

detected in the NFCP and BTSST installed regions where forest regeneration was 

promoted. The higher forest regeneration rates in the steeper areas seem to directly fulfill 

the program target, which aims to reduce soil erosion in the mountainous environments. 

Political decisions triggered a drastic change in forest regeneration. A rapid decrease in the 

area of forest regeneration was detected in 2004 due to the reduced scale of land 

restoration programs in response to rising national food security concerns. The spatial and 

temporal distribution of the forest regeneration further suggests that the forest gain was 

merely forest expansion, rather than the recovery of fire-disturbed forest.  
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A similar development compared to forest regeneration was found in cropland retirement. 

Most of the conversions from cropland to grassland occurred at the early stage of the land 

restoration programs. In the steeper and drier areas, which do not favor agricultural 

activities, higher cropland retirement rates were found. This finding suggests the GGP 

program has been accepted by the farmers, at least by those who are willing to use their 

vulnerable land in a more adaptive way. Other factors such as urbanization might also 

influence land use decisions and further encourage the conversion from cropland to 

grassland in Inner Mongolia. For example, 26.8% of people engaged in agriculture 

transferred to other economic sectors during 2000 and 2012. As the urbanization process 

continues, less labor will be involved in agricultural production, and this affect will change 

regional land use in the near future.  

2 Conclusion 

Monitoring land use and land cover change helps us to better understand how land use and 

land cover are impacted by human decisions and other factors, and thereby supports the 

development and implementation of sustainable land use policies. Thus, remote sensing 

techniques provide unique insights for monitoring how and when land use and land cover 

was altered, and help determine and evaluate drivers of the changes. This thesis monitored 

LULCC in Inner Mongolia using state-of-the-art remote sensing approaches to better 

understand the role of China’s land use policies. 

Results from this thesis clearly demonstrate the limit and the opportunities of coarse 

resolution remote sensing archive for monitoring long-term land change across broad 

scales. Radiometric consistency is the perquisite for reliably detecting land changes using 

satellite imagery, yet uncertainties exist, either due to the inherent sensor issues (e.g. sensor 

design, sensor degradation) or data processing. This is especially the case for AVHRR, 

which used different versions of sensors on multiple platforms over three decades. For 

users, the AVHRR-based products are often considered to be of high quality because of the 

careful and elaborate preprocessing that was implemented by the product developers. 

However, this thesis emphasizes that a critical data exploration of AVHRR GIMMS is 

essential prior to regional applications. Further improvement is also mandatory for 

producing more reliable AVHRR products for the user’s community.   

Dense time series from the coarse resolution archive allows us to better understand 

complex land changes. The hyper-temporal observation of coarse resolution archive is well 
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suited to monitor such intra/inter-annual land changes. For example, with equidistant and 

frequent observations, it is possible to derive phenological parameters that can be used for 

addressing land changes. As illustrated in this thesis, hyper-temporal imagery time series 

yields improved interpretation of complex land change processes. Thus, combining a 

trajectory-based approach and machine learning derived probability allows one to monitor 

both abrupt and gradual changes between multiple land use and land cover categories at an 

annual interval. The results can support better understanding of the drivers of land change, 

especially how land use policies quickly trigger surface changes.   

So, how has land use and land cover in Inner Mongolia been influenced by China’s land 

use policies and other underlying social-economic factors after 2000?  

The results in Chapter II and Chapter IV showed that both gradual land modification and 

drastic land conversions occurred in Inner Mongolia during the observation period. Forest 

was generally reported to have shrunk before the year 2000 in Inner Mongolia (Zhan et al. 

2004; Zhang et al. 2006); this thesis found that the trend of forest loss was reversed after 

2000 and very little deforestation could be detected in recent years. Decreasing 

deforestation is not exceptional in Inner Mongolia; similar trends were also observed in the 

neighboring regions where NFCP programs were implemented (Zhou et al. 2011; Wang et 

al. 2012a).  

The results of forest regeneration confirm the effectiveness of diverse efforts to promote 

forest recovery in Inner Mongolia. As opposed to the top-down command of reducing 

deforestation, forest was regenerated in a more diverse way. In the state-controlled forests 

(e.g. Greater Khingan Range) or collective barren lands, forests were mostly planted by 

local governments according to an annual plan. Correspondingly, a high rate of forest 

regeneration was detected in the northeast counties that are mostly covered by state-owned 

forested land. For non-state-owned land, farmers were encouraged to plant trees by 

offering subsidies higher than the opportunity cost. In counties such as south Chifeng, 

which were mostly dominated by croplands, a strong gain in forests was detected. Together 

with other field surveys (Yan 2010; Su et al. 2011; Song et al. 2014), this thesis supports 

the assumption that the political instrument of subsidies was effective at encouraging local 

farmers to join the government’s ecological programs.  

Agricultural lands underwent different types of development in Inner Mongolia. Reduced 

land use pressure in low-quality land and land use intensification were both observed after 

2000. On the one hand, cropland retirement programs stimulated the conversion of 
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croplands to grasslands in ecologically fragile regions. While geographical conditions in 

dry and steep areas are not suitable for tree plantations, converting cropland to grassland is 

a better choice. On the other hand, this thesis found land use intensification in many 

cropland areas of Inner Mongolia (Figure II-3, Table II-II). As the land suitable for 

cultivation becomes scarcer in Inner Mongolia, intensification of arable land becomes a 

solution for meeting the increasing demand for agricultural products (Jiang et al. 2013).  

The drastic changes of forest regeneration and cropland retirement after the year 2003 

reflect the variability and inconsistency of the policies; the rapid decrease of cropland due 

to cropland retirement programs has cast a shadow on grain production. Therefore, the 

government largely reduced the scale of cropland retirement in 2004. Later in 2009, the 

central government of China set a “red line” (or bottom line, Chinese: 耕地红线) of 

minimum cropland area to guarantee food security. In consequence, the question is, can 

land use intensification compensate the loss of grain production caused by the cropland 

retirement program? From the official statistics data, grain production increased, though 

the area of croplands shrank between 2000 and 2012 (IMARBS 2000-2013). Thus, the 

intensified croplands might fill the gap of grain loss due to the cropland retirement 

program (Deng et al. 2006; Song and Pijanowski 2014). Therefore, the government should 

comprehensively re-evaluate the influence of current political decisions and make more 

concrete land use policies in the future.         

Another question arises: What are the ecological consequences of land use and land cover 

change in Inner Mongolia? 

The main purpose of China’s land restoration program is to mitigate the negative 

ecological impacts of land cover use. Though implemented only for a decade, substantial 

ecological impacts might be introduced by the land restoration programs in Inner 

Mongolia. The net forest gain observed in this thesis suggests that the capacity of carbon 

sequestration was enhanced in Inner Mongolia. Some regions have shifted from net carbon 

sources to carbon sinks due to increased levels of vegetation cover (Feng et al. 2013). 

Converting croplands to grasslands also benefits long-term carbon sequestration in the arid 

and semi-arid Inner Mongolia (Zhang et al. 2007b; Deng et al. 2013). Promoting forest 

recovery in subarctic China might help inhibiting temperature to rise, though the exact 

effect on climate warming still needs to be quantified (Gao and Liu 2012; Peng et al. 

2014). Another potential contribution of the increased forest and grassland areas is the 

reduction of soil erosion. In arid and semi-arid environments, converting croplands to 
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native ecosystems was effective for alleviating wind or water erosion (Fu et al. 2011; Deng 

et al. 2012). The increasing forest area and the conversion from croplands to grasslands 

was also found to have positive effects on biodiversity, though this effect largely depends 

on species selected for forest and grassland restoration (Yang et al. 2006; Zhang 2011b).  

Agriculture intensification, however, may pose environmental challenges in Inner 

Mongolia. The increased yield was largely achieved through more production inputs such 

as fertilizer and irrigation, which could influence ecosystems in many ways. It is well 

recognized that industrial fertilizers change soil composition, contribute to the emission of 

N2O and NO to the atmosphere, as well as increase nitrates in water runoff and the 

sediments therein (Matson et al. 1997; Steffen 2005; Qu et al. 2014). The increasing use of 

ground and underground water for irrigation may exacerbate water shortages in the dry and 

semi-dry Inner Mongolia, thus disrupting regional hydrological cycling and altering 

aquatic environments. Case studies indicated human activities—especially agriculture 

intensification—consumed much of the limited water resources, thus leading to the 

expansion of desertification in arid and semi-arid Inner Mongolia (Zhang et al. 2009; Lian 

et al. 2012; Hu et al. 2013).  

Moving beyond Inner Mongolia, land use policies in China may trigger unexpected and 

indirect ecological consequences in other regions or countries. Indeed, cross-border trade 

has caused land use displacement, and brought with it unintended effects (Mayer et al. 

2005; Stahls et al. 2010). The successful reduction of deforestation in China cannot be 

achieved without importing timber products from other countries to fill the timber 

shortage. In China during 1998 and 2011, the import of coniferous timber increased 21-

fold, from 1.5 million to 31.5 million m3, respectively (SFA 2000-2013). Therefore, the 

forest protection policy in Inner Mongolia has likely increased the risk of deforestation in 

other boreal areas such as Russia. On the other hand, land displacement as a regional 

specialization increases the efficiency of land use (Lambin and Meyfroidt 2011). Thus, 

retiring the low-yield croplands in the unsuited areas of Inner Mongolia and importing 

agricultural products from more productive regions could improve the efficiency of land 

use and relieve the human pressure on ecological fragile areas.  

This thesis reveals the importance of national land use policies in shaping regional land use 

and land cover patterns. Using coarse resolution imagery time series, it is feasible to 

explore the in-depth information of previous land use and land cover change across large 

areas. Yet, monitoring land change back to 1980s poses specific requirements on the data 
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quality, which is particularly the case for the coarse-resolution archive. As shown in this 

thesis, the AVHRR GIMMS archive suffers considerable temporal inconsistency compared 

to other state-of-the-art sensor-derived NDVI products. The approach developed for 

detecting annual changes between different land use and land cover categories, on the other 

hand, highlights the capacity of remote sensing time series to capture complex land change 

processes. By applying the approach in Inner Mongolia, this thesis emphasizes how land 

use policy triggers ground changes. For example, the NFCP program triggered rapidly 

decreasing deforestation since the implementation year of 2000. Regardless of the present 

effectiveness of China’s land use policies, there is a need to revise the current land use 

policies so that the goal of mitigating environmental deterioration can be better 

accomplished. Converting croplands in unproductive areas to grassland or forest does not 

threaten grain production; rather, resuming land restoration programs in Inner Mongolia 

will be ecologically and sociologically beneficial (Liu and Wu 2010). In this context, 

policy makers should comprehensively evaluate the consequences of land use policies 

through implementation, and thus create more effective policies that promote sustainable 

land use.  

3 Outlook 

This thesis has explored the data utility and methodological capacity for land system 

monitoring on one hand, and land dynamics in Inner Mongolia influenced by multiple 

factors, on the other. During the course of the thesis, some interesting perspectives for 

future research have surfaced.  

Long-term monitoring supports increased understanding about how various factors shape 

land use and land cover. As Chapter II shows, AVHRR GIMMS suffers from temporal 

inconsistency due to multiple factors. Other AVHRR NDVI products, for example 

Pathfinder, were also found to have either temporal gaps or other quality problems (Nagol 

et al. 2009; Beck et al. 2011). The under-developed AVHRR NDVI products such as 

GIMMS-3g (Pinzon and Tucker 2014) may overcome the shortcomings of previous 

versions of AVHRR GIMMS. Still, the coarse 8-km resolution would neglect a fine-scale 

land change process. The 30-m resolution Landsat archive provides over 30 years of 

observations, and the recent granting of access to the archive greatly strengthens its 

capacity for land surface monitoring. The processing techniques that emerged partly in 

response to the free data policy, especially pixel-based compositing approaches (Roy et al. 
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2010; Potapov et al. 2011; Griffiths et al. 2013), seem to be a promising way to broaden 

Landsat data for land use and land cover change monitoring across large scales.  

As the largest and most ambitious ecological programs in the world, NFCP, GGP and other 

programs no doubt influence national and even global land use patterns. While these 

programs are conducted nationwide and the implementation standards are relatively 

homogenous, regional variance may greatly influence the effectiveness of the programs. 

Previous research indicated that the success of implementation strongly depends on the 

local context (Grosjean and Kontoleon 2009; Yao et al. 2010; Persha et al. 2011). The 

results in this thesis suggest that China’s land use policies effectively preserve and restore 

the forest ecosystem in Inner Mongolia, partly owing to the state-owned forestland 

ownership. Future research is therefore needed to assess whether successful 

implementation is also possible in other Chinese provinces with different regional contexts. 

A wide-area study on land system dynamics would facilitate regional comparisons, and 

thus support investigating the determinants of land use. This will further support revising 

and regionalizing the current programs. 

Understanding land displacement and its associated consequences is necessary for 

promoting sustainable land use while avoiding shifting geographically negative 

environmental impacts. Such understanding requires one to better integrate factors 

associated with the demand-supply chain for land resources, yet few studies have 

established causal links between land use policy and actual land changes at the global scale 

(Meyfroidt et al. 2013). Analyzing the displacement effect of China’s land restoration 

programs was beyond the scope of this thesis and should be an objective for future 

research. While datasets on global trade volumes alone are not sufficient for analyzing 

casual links, integrating remote-sensing derived land use and land cover change 

information and land-based consumption-production information for modeling would be 

one option to assess the extent to which China’s land use policies shifted external land 

changes.  
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