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Abstract 

Although laminated materials have been used for decades, their employment has 
increased nowadays in the last years as a result of the gained confidence of the industry 
on these materials. This has provided the scientific community many reasons to 
dedicate considerable amount of time and efforts to address a better understanding of 
their mechanical behavior. With this objective both, experimental and numerical 
simulation have been working together to give response to a variety of problems related 
with these materials. 

 
Regarding numerical simulation, a correct modeling of the kinematics of laminated 

materials is essential to capture the real behavior of the structure. Moreover, once the 
kinematics of the structure has been accurately predicted other non-linear phenomena 
such as damage and/or plasticity process could be also studied. 

 
In consequence, in order to contribute to the constant development of simpler and 

more efficient numerical tools to model laminated materials, a numerical method for 
modeling mode II/III delamination in advanced composite materials using one- and 
two-dimensional finite elements is proposed in this work. In addition, two finite 
elements base on a zigzag theory for simulating highly heterogeneous multilayered 
beams and plates structures are developed here. 

 
The document is written based on results of four papers published in indexed 

journals. Copies of all these papers are included in Appendix. The main body of this 
thesis is constituted by Chapters 2 to 4. Chapter 2 deals with the numerical treatment of 
laminated beams and plates. Chapter 3 presents the formulation of the LRZ beam and 
the QLRZ plate finite elements based on the Refined Zigzag Theory. Finally, the main 
contribution of this thesis, the LRZ/QLRZ delamination model, is developed in Chapter 
4. 
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Resumen 

Aunque los materiales laminados se han utilizado durante décadas, su uso ha 
aumentado en los últimos años como resultado de una mayor confianza por parte de la 
industria. Esto ha proporcionado a la comunidad científica muchas razones para dedicar 
una considerable cantidad de tiempo y esfuerzos en aras de una mejor comprensión de 
su comportamiento mecánico. Con este objetivo tanto la simulación experimental como 
numérica han estado trabajando juntos para dar respuesta a una variedad de problemas 
relacionados con estos materiales. 

 
En cuanto a la simulación numérica, un correcto modelado de la cinemática de los 

materiales laminados es esencial para capturar el comportamiento real de la estructura. 
Por otra parte, una vez que la cinemática de la estructura se ha predicho con precisión 
otros fenómenos no lineales como los proceso de daño y/o plasticidad podrían ser 
también estudiados. 

 
En consecuencia, con el fin de contribuir al constante desarrollo de herramientas 

numéricas más simples y eficaces para modelar materiales laminados, un método 
numérico para el modelado de la delaminación (modo II/III) en materiales compuestos 
avanzados utilizando elementos finitos de una y dos dimensiones es propuesto en este 
trabajo. Además, dos elementos finitos para la simulación de vigas y placas de varias 
capas altamente heterogéneos son desarrollados aquí. 

 
El documento está escrito en base a los resultados de cuatro artículos publicados en 

revistas indexadas. Copias de estos artículos se incluyen en el Apéndice. El cuerpo 
principal de esta tesis está constituido por los Capítulos 2-4. El Capítulo 2 aborda el 
tratamiento numérico de vigas y placas laminadas. El capítulo 3 presenta la formulación 
de los elementos finitos de viga LRZ y placa QLRZ basados en la Teoría Zigzag 
Refinada. Finalmente, la principal contribución de esta tesis, el modelo de delaminación 
LRZ/QLRZ, se desarrolla en el capítulo 4. 
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1 Introduction 

A laminated material is an orderly stacking of a finite number of relatively thin 
layers perfectly linked together, designed for achieving, among other properties, 
improved strength, stability, energy absorption and resistance to fatigue and correction. 
Nowadays, the varieties of materials to be combined available on the market and the 
different techniques of manufacturing made their design extremely customizable 
according to the needs, which is the key attribute.   

 
Laminated or multilayered materials have a multitude of applications in a diversity 

of sectors. Aviation, astronautics, automotive, marine, civil engineering, sports 
equipment, musical instruments and information technology are a sample of them. 
Laminated materials are present in our daily life. For example, the modern windshields 
(Figure 1.1a), which generally consist of a sandwich of glass sheets with a plastic layer 
between them. Ballistic glasses (Figure 1.1b) are a special multilayered material, which 
are usually constructed by an alternation of plastic sheets and hard and soft glass layers 
that make the laminate stronger and more elastic. A very important laminated material 
in the electronic industry is the Printed Circuit Board (PCB) (Figure 1.2), which is a 
stacking of prepregs and copper layers. Laminated wood beams are also a multilayered 
material commonly used in civil engineering. These are constructed by stacking up 
wood plies bonded by adhesives. A special case of multilayered laminates are the 
sandwich-structured materials, which consist of two thin but stiff skins and a 
lightweight but thick core between them (Figure 1.3). One of the most interesting 
multilayered materials are the advanced composites (Figure 1.4). These are widely 
employed in many high-performance applications where conventional materials cannot 
be used. Each layer of these laminates consists of a composite material known as fiber-
reinforced polymer (FRP), which is made of continuous fibers surrounded by a 
polymeric matrix. 
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a) b) 

 

  
Figure 1.1 – Modern windshields for automobiles (a) (From: http://www.titanmotorsports.com) 

and ballistic glasses for windshields (b) (From: http://www.miller-holzwarthinc.com/). 
 

 
Figure 1.2 – Printed circuit board. From: http://www.clarydon.com/. 

 

a) b) c) 

 
Figure 1.3 – Sandwich laminated formed by an aluminium honeycomb as core with skins of 

aluminium (a), fiber-glass composites (b) and fiber-carbon composites (c). From: 
http://www.cel.eu/. 

 

 
Figure 1.4 – Advanced composites of carbon fibers (CFRP). From: http://www.zero-

carbon.com. 
 
Although laminated materials have been used for decades, their employment has 

increased nowadays in the last years as a result of the gained confidence of the industry 

http://www.titanmotorsports.com/
http://www.miller-holzwarthinc.com/
http://www.clarydon.com/
http://www.cel.eu/
http://www.zero-carbon.com/
http://www.zero-carbon.com/


Chapter 1 
 

3 

on these materials. This has provided the scientific community many reasons to 
dedicate considerable amount of time and efforts to address a better understanding of 
their mechanical behavior. With this objective both, experimental and numerical 
simulation have been working together to give response to a variety of problems related 
with these materials.  

 
Regarding numerical simulation, the subject covered in this work, a correct 

modeling of the kinematics of laminated materials is essential to capture the real 
behavior of the structure. Moreover, once the kinematics has been accurately predicted 
other phenomena such as damage process could be also studied.  

   
In order to correctly predict the kinematics of complex structures, 3D finite 

elements analysis can be the best alternative. However, the simulation of large 
multilayered structures with many plies can be unaffordable with 3D analyses because 
of the excessive computational cost, especially when non-linear studies are required. In 
addition, the discretization of very thin layers can lead to highly distorted elements 
carrying numerical issues.  

These difficulties made the simpler models [1, 2], such as the Equivalent Single 
Layer (ESL) or the Layer-Wise (LW), a proper alternative to model multilayered 
laminates. In ESL theories governing equations are written for the whole plate, which 
leads to a constant number of variables through the thickness. This characteristic makes 
ESL models very efficient. However, they suffer from limitations to correctly simulate 
the kinematics of highly heterogeneous laminates. 

Unlike ESL theories, LW models define each layer as an independent laminate 
which implies that the number of variables dependent on the number of analysis layers. 
Although LW theories accurately describe the behavior of multilayered laminates with 
independence of the level of transverse heterogeneity, they may result unattractive for 
simulating large laminated structures with many plies. 

A good compromise between the accuracy of LW models and the computational 
efficiency of ESL models are the Zigzag theories (ZZT). ZZT models are a special case 
of LW models where the number of unknowns is independent of the number of analysis 
layer.  

Among many other, the Refined Zigzag Theory (RZT) developed by Tessler et al. 
[3, 4] is a simple, efficient and robust ZZT theory to be considered for developing 
numerical tools able to simulate multilayered laminated materials. 

According to the fracture process of advanced composites materials, different 
failure mechanisms can occur. These can be grouped into intra- and inter-laminar 
fracture modes, depending where the failure occurs: within or between the layers. The 
fiber fracture, the matrix cracking and the fiber-matrix shear failure (debonding) are 
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distinguished as intra-laminar failure modes since they occur within the layer. 
Delamination, i.e. the relative displacement between neighboring layers, is a common 
inter-laminar failure mode that once it has been occurred the load carrying capacity of 
the composite member could be considerately reduced. Furthermore, this phenomenon 
may take place suddenly without any notice. These characteristics made delamination a 
really dangerous failure mechanism in advanced composite materials. 

 
During the design phases of composite laminates, may be important to know how 

the global response of the structure is affected by delamination. For this purpose, the 
numerical simulation results very helpful. 

Numerical techniques based on the linear elastic fracture mechanics (LEFM), the 
cohesive zone models (CZM) or the continuum damage mechanics (CDM) are usually 
applied for simulating delamination in a variety of engineering problems. Some 
applications examples are the skin-stiffness debonding [5] (CZM), the ply drop-off test 
[6] (CDM), the skin-core delamination and sub-laminate buckling [7] (LEFM) and the 
delamination in low-energy impact [8] (CZM). In these problems, the structures are 
discretized by means of 3D finite elements [6], by a combination between 3D elements 
and interface elements [8] or by employing shell elements and interface elements [5]. 
Although a detailed discretization of the structure is needed to accurately capture mix-
mode delamination process in complex studies, simpler structural discretization may be 
enough for simulating delamination in cases where the opening mode (mode I) could be 
neglected. For instance, such case is found in low energy impact analyses, where 
fracture mode I appears usually after the shear modes (mode II and mode III) when the 
impact energy is considerably increased [8]. Thus, numerical methods based on a 
simpler discretization can be an acceptable approximation for modeling cases where 
delamination process is governed by the shear modes.  

 

1.1 Objectives 
This research aims at contributing to the development of simpler and more efficient 

numerical tools for simulating laminated materials.  
 
Thus, this thesis is focused on two topics: the modeling of the kinematics of 

multilayered beam and plate structures (i) and the simulation of delamination in 
advanced composite materials (ii). At point (i), robust, efficient and effective finite 
elements are looked for. Regarding to point (ii), a simple delamination model that only 
uses reduced model to discretize the laminate is desired. 
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The main goals of this thesis are: 
 

• The development of a numerical method based on one- and two-
dimensional finite elements for simulating delamination processes (mode II 
and mode III) in beams and plates of advanced composite materials. 

 
• The development of one- and two-dimensional finite elements based on the 

RZT theory in order to simulate the lineal behavior of highly heterogeneous 
multilayered beams and plates. 
 

1.2 Organization 
In order to achieve the objectives listed above, this work is structured as follows: 
 

• Chapter 2 deals with the numerical treatment of laminated beams and 
plates. A review of more common reduced models employed to simulate 
multilayered beam/plate structures is presented first. Then, a complete 
description of the RZT plate theory used for developing the beam (LRZ) 
and plate (QLRZ) finite elements is given. Furthermore, the influence on 
the zigzag in-plane displacement of both, the transverse anisotropy and the 
span-to-thickness ratio is analyzed. In the second part of the Chapter, the 
failure mechanisms in advanced composite materials are dealt. In 
particular, special attention is given to the delamination process. Moreover, 
the most common numerical methods to model the failure mechanisms are 
presented.  
 

• Chapter 3 presents the formulation of the LRZ beam and the QLRZ plate 
finite elements. The performance of these elements is studied through 
several numerical examples. Verification and convergence analyses are 
also performed. Furthermore, the problem of shear locking and the 
techniques employed to overcome it are addressed. 
 

• Chapter 4 proposes the numerical model based on the LRZ and QLRZ 
finite element to model delamination process in advanced composite 
materials. A description about the isotropic damage model used for 
managing the onset and growth of delamination is also given. In addition, 
the modified Newton-Raphson scheme and the implicit integration 
algorithm used for solving the non-linear problem are presented. The 
performance of the method is analyzed by different numerical examples. 
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The potential of this method to simulate multi-delamination is also 
investigated. Moreover, the limitations of the model due to the LRZ/QLRZ 
kinematics are also studied. 
 

• Chapter 5 summarizes the main achievements of this work and gives some 
aspects which deserve future attention. 

 
• Appendix includes copies of all four papers on which this document is 

based. 
 



7 

2 Numerical treatment of laminated beam/plate 
structures 

In the first part of this Chapter, a review of reduced models for modeling 
multilayered beams and plates is presented. Furthermore, the Refined Zigzag Plate 
Theory (RZT) proposed by Tessler et al. [4] is fully described. Then, the influence on 
the zigzag in-plane displacement of the material transverse anisotropy and the laminate 
span-to-thickness ratio is studied.  

The second part is focused on advanced composite materials and their failure 
mechanisms. In particular, special attention is given to the inter-laminar damage or 
delamination. Moreover, usual damage models to simulate intra- and inter-laminar 
failure modes are treated.  

 

2.1 Multilayered beam/plate theories 
The most precise technique for simulating laminated structures are the micro-

models, where 3D finite elements are used for discretizing not only each ply but also 
the constituents within layer or even the interface between them. Although macroscopic 
approach at layer level could be considered, i.e. the constituents are not discretized, 
simulation of large laminated structures with many of plies can be unaffordable with 3D 
analyses due to the excessive computational cost, especially for non-linear analyses. In 
addition, the discretization of very thin layers can lead to highly distorted elements 
carrying numerical issues. 

 
Multi-scale approaches [9, 10] can be also used to model multilayered materials. In 

this method a macroscopic model is used to obtain the global response of the structure 
whereas the material behavior is solved with a microscopic model. Basically, the 
macro-model transfers the structural deformation field onto the micro-model as 
boundary conditions. Then, within the micro-scale, the material response is evaluated 
and transferred back to the macroscopic model as a constitutive law. Subsequently the 
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structural equilibrium is found in the macro-scale and a new deformation field is 
computed and so forth. The simulation of large structures having complex geometries 
by means of this method results computationally unattractive. 

 
Thus, simpler and more efficient techniques than that above-mentioned are required 

for modeling laminated structures. 3D descriptions can be reduced to 2D models by 
introducing hypotheses on the displacements or/and on the stresses field, since laminate 
thickness is at least one order of magnitude lower than in-plane dimensions.  

However, in order to develop precise reduced models, the through-thickness 
discontinuity of mechanical properties within a laminated material has to be accounted 
for. From a qualitative point of view, the influence of the transverse anisotropy on the 
thickness distribution of the displacement and stress fields is schematized in Figure 2.1.  

The in-plane displacement, outlined in Figure 2.1a, could exhibit abrupt changes of 
their slope along the thickness direction at each interface because large differences on 
the transverse shear properties between layers exist. This slope change leads to an in-
plane displacement with zigzag pattern whose amplitude and shape depend not only on 
the transverse anisotropy but also on the laminate span-to-thickness ratio, as discussed 
in Section 2.1.4. Furthermore, all displacements are continuous along the thickness.  

Although in-plane stresses can be discontinuous at each interface (Figure 2.1b), 
transverse stresses must be continuous for equilibrium reasons (Figure 2.1c). However, 
like in-plane displacement, the first derivatives along z are discontinuous at each 
interface.  

As a result, it is desirable that multilayered models satisfy the following two 
conditions: zigzag pattern of in-plane displacements (ZZ condition) and the continuity 
of transverse stresses along the thickness direction (TC condition) [11].  

 
Many 2D approaches have been developed and improved since 19th century [12]. 

In order to facilitate their classification, they could be distinguished according what 
type of unknown variables is chosen (i) and how these variables are described (ii). At 
point (i), displacements are defined as variable in the so-called “displacement-based 
theories” (DB) whereas stresses are employed in “stress-based theories” (SB). In case 
of both, the displacement and the stress are considered as unknown, a “mixed1 
approach” (MB) is obtained. Regarding to point (ii), unknowns could be described by 
means of Equivalent Single Layer (ESL) or Layer-Wise (LW) descriptions.  

                                                 
1 Mixed approaches can be distinguished between full or partial models. In full mixed 
approaches all stresses are considered as variable whereas in partial mixed approach only the 
transverse shear stresses are accounted for.  
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In ESL description, governing equations are written for the whole plate, i.e. 
unknown variables are not defined for each layer but for the whole laminate. Thus, the 
number of variables is independent of the number of analysis layers.  

On the contrary, each layer is treated as an independent plate in LW description, 
assuming separate displacement/stress field within each ply. In other words, governing 
equations are written for each layer. Moreover, in order to enforce compatibility 
conditions at the interface between layers, interface constraints on displacements and 
transverse stresses are required. Hence, the number of variables is dependent on the 
number of analysis layers.  

A special case of LW models where the number of unknowns is independent of the 
number of analysis layer are the Zigzag theory (ZZT).  

Useful overviews of available theories for modeling laminated plate structures have 
been written by Carrera [1] and Reddy [2]. 

 a) b) c) 

 
Figure 2.1 – Continuous zigzag in-plane displacement a), discontinuous in-plane stresses b), and 

continuous transverse stresses c).  
 

2.1.1 Equivalent Single Layer models 
Displacement-based models with ESL description (DB-ESL) have been widely 

developed for decades. An interesting review of DB-ESL models has been written by 
Wanji et al. [13].  

 
The most basic DB-ESL model is the Classical theory (CT) [12, 14], which propose 

that transversal sections remain plane and normal to the reference surface after 
deformation, i.e. transverse shear strains are postulated to be negligible with respect to 
other strains. Because of these assumptions, the CT theory is limited to thin 
beams/plates where transverse shear effects can be neglected. In addition, this model 
despises the transverse normal deformation. The CT plate theory has only 5 unknown 
variables. Classical beam and plate models are also known as Euler-Bernoulli and 
Kirchhoff theories, respectively. 
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An improvement of the CT model are the First Order Shear Deformation theory 
(FSDT) [15-17], which enhance the CT kinematics by adding shear effects. This model 
establishes that transversal sections remain plane but not necessarily normal to the axis 
after deformation. Therefore, the transverse shear strain is defined constant through the 
thickness but not zero as in the CT theory. Like the CT model, strain along the 
thickness is not accounted for. Also, the plate FSDT contains only 5 unknown 
variables. However, in order to accurately compute transverse shear stresses, a shear 
correction factor2 is required. FSDT beam and plate models are also known as 
Timoshenko and Reissner-Mindlin theories, respectively. 

 
Although CT and FSDT theories are excellent alternatives to accurately model 

homogenous thin and thick structures, respectively, they gives poor predictions when 
applied to laminated structures having high level of transverse anisotropy. The cause is 
found in the linear thickness distribution of the axial displacement, which does not 
match the ZZ pattern schematized in Figure 2.1a.  

 
FSDT theory can be improved by adding high-order terms of thickness coordinate z 

to the in-plane and transverse displacement fields. These improvements are known as 
High Order Shear Deformation theories (HSDTs).  

One of first HSDTs model, where only the in-plane displacements are improved by 
a third-order polynomial, has been proposed by Reddy [18]. This model proposes a 
constant distribution of the transverse displacement. 

Usually, both, the in-plane and the transverse displacement fields are defined by 
means of third-order polynomials [19]. However, it is also possible to find HSDTs 
models where fifth- and ninth-order polynomials are employed to describe the 
displacement field [20].  

One advantage of HSDTs theories is that no shear correction factor is needed. 
Furthermore, those HSDTs models where a high-order description of the transverse 
displacement is used allow obtaining better through-thickness distribution of the 
transverse stresses.  

 
With the aim to accurately satisfy the continuity of the transverse stresses along the 

thickness, mixed formulations should be employed.  
For instance, Auricchio et al. [21] have proposed a partially mixed-based ESL 

model (MB-ESL) where the transverse shear stresses are a priori defined by means of 
the equilibrium equations assuming piecewise quadratic functions. Furthermore, the 
displacement field is described by the FSTD kinematics. Although the thickness 

                                                 
2 This factor is equal to 5/6 for homogeneous rectangular transversal sections. 
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distribution of transverse shear stresses is well predicted, the axial displacement does 
not match the ZZ form because of the linear FSTD kinematic. 

Another way to achieve through-thickness continuity of the transverse stresses is by 
integrating a posteriori of the equilibrium equations3. However, the accuracy of this 
method depends on how precise the displacement field is modeled. A comprehensive 
analysis of the available techniques for computing transverse stresses in multilayered 
plates has been presented by Carrera [22]. 

   
Summarizing, although the TC condition could be satisfied by some ESL models, 

any of them is able to capture the zigzag shape of in-plane displacements. 
 

2.1.2 Layer-Wise models 
A LW description of the in-plane displacement is an accurate alternative to fulfill 

the ZZ condition. Displacement-based LW models (DB-LW) employs ESL theories, 
such as the CT, FSDT and HSDTs, to describe the displacement field of each layer.  

Some DB-ESL and DB-LW models have been evaluated and compared by Reddy 
and Robbins [23]. 

Although the ZZ condition is satisfied by DB-LW models the TC condition is not 
fulfilled unless appropriate interface constraints are considered. For example, Robbins 
and Reddy [24] have improved a DB-LW theory by assuming a piecewise continuous 
distribution of the transverse strain, which allows to compute the inter-laminar 
continuity of transverse stresses. 

 
Models that accurately fulfill the ZZ and TC conditions are those in which both, the 

displacement and the stress field are described by means of LW description. These 
models are known as mixed-based LW models (MB-LW).  

Among many works related with MB-LW theories, readers are referred to Carrera’s 
papers [25, 26] to go deeper on these models. 

 
Although LW theories accurately fulfill both, the ZZ and the TC condition, the 

number of unknown variables is proportional to the number of analysis layers. As a 
result, these models yield not only a high level of accuracy but also an amount of 
unknown variables similar to the 3D analysis. For this reason, LW models may result 
unattractive for simulating large laminated structures with many plies. Therefore, these 
models should be employed to analyze complex problems where other less expensive 
approaches fail to give realistic predictions. 

                                                 
3 The equilibrium equations for computing “a posteriori” the transverse shear stresses are 
defined by div[ ] = 0σ , where σ  is the stresses tensor.  
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2.1.3 Zigzag models 
A good compromise between the accuracy of MB-LW theories and the 

computational efficiency of DB-ESL models are the ZZT theories. One of the most 
important advantages of these theories is that the number of kinematics unknowns is 
independent of the number of analysis layers. 

In ZZT models the in-plane displacement is defined by a superposition of a 
piecewise continuous function, called zigzag function henceforth, over a linear, 
quadratic, cubic or even higher order displacement field. The zigzag functions allow 
these models to reproduce the abrupt change in the slope of the in-plane displacement at 
each interface, as shown in Figure 2.1a. Moreover, in order to fulfill the TC condition 
and to reduce the number of unknown variables, constraint equations at the interface 
between layers must be enforced.  

 
One of first attempt to refine an ESL model by means a zigzag function has 

proposed by Murakami [27]. In this model, the FSDT kinematics is enhanced by adding 
a piecewise linear zigzag function. It is important to remark that the slope of the 
Murakami’s zigzag function is defined positive for odd layers and negative for even 
plies, which implies that the shape of this function depends on the stacking sequence of 
the laminate only. Then, Murakami et al. [28] have also proposed an improvement of a 
high-order ESL theory.  

It should be mentioned that approaches where the displacement field is improved 
by means of the Murakami’s zigzag function are unable to a priori satisfy the TC 
condition.  

In order to provide the through-thickness continuity of the transverse shear stress, 
Carrera [29] has developed a refined FSDT plate model based on Murakami’s concepts 
[27]. In Carrera’s model the TC condition is fulfilled a priori by assuming a piecewise 
quadratic function and a set of equilibrium conditions at each interface. 

Demasi [30] has investigated the numerical performance of Murakami’s zigzag 
function by means of FEM analysis. 

 
At around the same period Murakami was developing his refined FSDT model 

[27], Di Sciuva [31] was working in his ZZT model. He proposed a refinement of the 
FSDT theory by adding a linear zigzag function also. However, the transverse shear 
strain is defined as a kinematic variable instead of a bending rotation as in the FSDT 
model. Moreover, in order to compute the zigzag function, constant shear stresses along 
the thickness are enforced, which is a very strict constraint for simulating multilayered 
materials.  

Furthermore, Di Sciuva [32] and Cho et al. [33] have independently provided a 
refinement of a third-order ESL models by adding a linear zigzag function. 
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Many ZZT theories, including those mentioned above, require C1-continuity when 

solved via finite element analysis, which implies a disadvantage versus simpler C0-
continuity theories, such as the FSDT model.  

In order to overcome this drawback, Averill [34] formulated a refined linear zigzag 
theory where the FSDT model is used as its baseline. Then, the FSTD kinematics 
variables, i.e. the deflection, the axial displacements and the bending rotation, are 
considered as unknowns together with a kinematics variable associated with the zigzag 
function. All these variables can be interpolated with C0-continuious polynomials. 
Moreover, the through-thickness continuity of the transverse shear stress is enforced 
using a penalty method. A cubic zigzag model was also provided by Averill et al. [35]. 
Although C0-continuity is achieved, Averill’s theories suffer from their inability to 
model correctly clamped boundary conditions.  

 
With the goal to avoid these shortcomings and propose an amiable theory to 

formulate robust C0-continuity finite element, Tessler et al. [3, 4, 36, 37] have 
developed the Refined ZigZag Theory (RZT). The plate4 RZT theory proposed by 
Tessler et al. [36] is described below in next section.  

The RZT displacement field is defined by a superposition of a linear zigzag 
function over the FSDT kinematics. In these models, constraint conditions on the 
distribution of the zigzag functions are imposed, which leads to a constant piecewise 
distribution of transverse shear stress along the thickness. However, the TC condition of 
transverse shear stresses could be computed a posterior by using equilibrium equations 
[38, 39].  This post-process gives accurate results because the zigzag in-plane 
displacements are correctly predicted. On the other hand, transverse normal strain is 
despised. The RZT kinematics variables are the displacements and the bending 
rotations of the FSDT theory together with a variable associated with the zigzag 
function. The key attributes of the RZT are, first, the zigzag function vanishes at the top 
and bottom surfaces of the laminate section. Second, it does not require full transverse 
shear stress continuity across the thickness coordinates. Third, in order to formulate 
finite elements, C0 continuous polynomials are needed for discretizing the kinematic 
variables. Fourth, all boundary conditions can be effectively simulated. Finally, the 
zigzag function is defined as a function of the transverse shear modulus of each layer, 
which results useful in non-linear material analysis [40, 41]. 

 
The simplicity, efficiency and effectiveness of the RZT theory allowed develop in 

this thesis two robust C0 continuous finite elements for simulating multilayered beams 
                                                 
4 The beam RZT displacement field is easy obtained from the plate RZT theory by neglecting 
the in-plane transverse displacement v. 
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[38] and plates [39]. The formulation of these elements is presented in Chapter 3. 
Simultaneously, Gherlone et al. [42] and Versino et al. [43] have also formulated beam 
and plate finite elements based on the RZT theory.  

 
Recently, Barut et al. [44] have extended the RZT plate theory [4] for taking into 

consideration the transverse normal strain. In this model, the in-plane displacement 
consist of a piecewise quadratic function, whereas a quadratic polynomial is used for 
describing the transverse displacement component. Based on this extended RZT model, 
Barut et al. [45] have formulated a C0 continuous triangular plate element. 

 

2.1.3.1 Refined zigzag theory (RZT) 
Let us consider a laminated plate of uniform thickness h formed by N orthotropic 

layers of thickness hk (k  = 1, 2, … , N). The orthogonal Cartesian coordinates system 
(x,y,z) is employed as reference coordinates. The ordered pair (x,y) is set as the in-plane 
coordinates whereas z denotes the thickness coordinate which ranges from –h/2 and 
+h/2. The in-plane reference surface is placed at the middle plane for z = 0.0. 

 
The displacement field in the RZT plate theory is written as 

 
0

0

0

( , , ) ( , ) ( , ) ( , , )

( , , ) ( , ) ( , ) ( , , )

( , ) ( , )

k k
x

k k
y

u x y z u x y z x y u x y z
v x y z v x y z x y v x y z
w x y w x y

θ

θ

= − ⋅ +

= − ⋅ +

=

 2.1 

where the axial displacement zigzag function ku  and kv  are defined as 

 
( ) ( , )

( ) ( , )

k k
x x

k k
y y

u z x y
v z x y

φ ψ

φ ψ

= ⋅

= ⋅
 2.2 

and superscript k  indicates quantities within the k th layer. The uniform axial 
displacements along the coordinate directions x and y are denoted by 0u  and 0v , 

respectively; xθ  and yθ  represent the average bending rotation of the transverse normal 

about the negative y and positive x directions; and 0w  is the uniform transverse 

deflection. k
iφ ( ),i x y=  denote the known piecewise linear zigzag function, and iψ  is 

a primary kinematics variable defining the amplitude of the zigzag function. 
Summarizing, the unknown variables are 

 0 0 0

T

x y x yu v w θ θ ψ ψ =  a  2.3 
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where the uniform displacement 0u , 0v  and 0w , and the bending rotation xθ  and 

yθ  are derivate from the FSDT theory, where the iψ  variables are associated with the 

added displacement zigzag functions ku  and kv . 

The in-plane ( k
pε ) and transverse shear ( k

tε ) strains are defined as 

 

0

0

0 0
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kx x
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x
y yk k

p y y

xy
y yk kx x

x y
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being k
izγ  and k

iβ  ( ),i x y= , the transverse shear strain and the slope of k
iφ  in the 

thickness direction ( k k
i i zβ φ= ∂ ∂ ) for the k th layer, respectively. izγ  represent the 

average transverse shear strains of the FSDT ( iz iw iγ θ= ∂ ∂ − ). 

The stress-strain constitutive relationship for the k th orthotropic layer is written as 
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           

=  2.6 

or 

 k k k= Dσ ε  2.7 

where kD  is the constitutive matrix referred to the reference coordinate system 
(x,y,z). Matrix kD  is computed by Eq.(3.50) in Section 3.3.3. 
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a)  b)  

 
Figure 2.2 – Strain (a) and stress (b) field. 

The zigzag functions k
iφ  are defined by piecewise linear continuous functions 

through the laminate thickness as 

 ( ) ( )
1 1

11 11 1
2 2 2 2

k k k k
k k k ki i i i
i i i

φ φ φ φφ ξ φ ξ φ ξ
− −
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where k
iφ  and 1k

iφ
−  are the zigzag function valued at k  and k−1 interface, 

respectively, with 0 0N
i iφ φ= =  and 

( )1

2 1
k

k
k

z z
h

ξ
−−

= − .  

Figure 2.3 schematizes the zigzag function k
xφ , the zigzag displacements ku , and 

the axial displacements ku  along x direction for a four-layered laminate. Similar 
distributions of these values are found for the y direction. 

 
The computation of k

iβ  is obtained by computing the derivative of  k
iφ  (Eq.(2.8)) 

with respect to the z coordinate as  

 
( )1k kk

i ik i
i kz h

φ φφβ
−−∂

= =
∂

 2.9 

which result in piecewise constant functions. 
The piecewise linear zigzag functions of Eq.(2.8) can be written as functions of k

iβ  

as 

 ( )1 1
2

k k
k k ki
i i

h βφ φ ζ−= + +  2.10 

Because the zigzag function vanishes on the top and bottom surfaces, the through-
the-thickness integrals of the slope functions k

iβ  is equal to zero, i.e. 
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Integrating the layer transverse shear strains of Eq.(2.5) across the laminate 
thickness and using Eq.(2.11) reveals that 

 
/2

/2

1 h k
iz iz i ih

dz w
h

γ γ θ
+

−
= = ∂ ∂ −∫  2.12 

which verifies that izγ  represent the average transverse shear strains of the FSDT. 

Moreover, Eq.(2.12) shows that the zigzag amplitude variables iψ  do not contribute to 

izγ . 

For convenience, a new difference function iη  is defined as 

 i iz iη γ ψ= −  2.13 

which leads to the following expression of the transverse shear strains for the kth 
layer as 

 ( )1k k
iz i i iγ η β ψ= + +  2.14 

Using Eqs.(2.14) and (2.6), the transverse shear stresses are written in matrix form 
as 
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or, alternatively, they can be expressed as 
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In this equation, the first stress vector associated with iη  functions is independent 
of the zigzag functions. The second and third stress vectors contain the coefficients 

( ){ }11 1 k
t xD β+  and ( ){ }22 1 k

t yD β+ , which are dependent on the zigzag functions. In 

this theory, both coefficients are set to be constant quantities, denoted as izG  

( ),i x y= , whose constraint leads to constraint conditions on the distribution of the 

zigzag function. Thus, the continuity of the transverse shear stresses at each layer 
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interface, i.e. 1k k
iz izτ τ += , is not enforced. In addition, Eq.(2.16) revels that k

izτ  is 
piecewise constant across the thickness. 

The constraints give 
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where the explicit form of izG  is obtained by substituting Eq.(2.17) in the integral 
of Eq.(2.11), i.e. 
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The coefficients izG  are considered as an average transverse shear stiffness 

properties of the laminate referred to the reference coordinates system (x,y,z). 

a) b) c) 

 
Figure 2.3 - Thickness distribution of the zigzag function k

xφ  a), zigzag displacement ku  b), 

and axial displacement ku c) in the RZT theory. 
 

2.1.4 Influence of the span-to-thickness ratio and the transverse heterogeneity 
on the zigzag pattern of the in-plane displacements 

This section aims to analyze how the amplitud and shape of the zigzag in-plane 
displacement is afected by not only the through-thickness anisotropy of transverse shear 
stiffness but also the laminate span-to-thickness ratio. 
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In order to assess the objective, a clamped beam of thickness h = 1and span-to-

thickness ratio λ = 5, 10, 20 and 50 is studied. The beam is submitted under a unitary 
vertical displacement Δw at the free end (Figure 2.4a). The laminated material is 
formed by three layers of thickness hk = h/3 (k  = 1,2,3) with symmetry distribution 
(Figure 2.4b). Four levels of transverse heterogeneity are performed defining different 
transverse shear modulus for the middle layer (GM) (Table 2.1). Heterogeneity ranges 
from the “lowest” (H1) to the “highest” (H4) level for which the shear modulus of the 
middle layer is two to thousand times smaller than that of the top/bottom layers (GT/B), 
respectively. All cases were solved via plane stress analysis. 

a)  b)  

 
Figure 2.4 - Cantilever beam under vertical displacement a) and symmetric three-layered 

material b). 

 

Transverse heterogeneities 

 GT/B / GM 

H1 2 
H2 10 
H3 100 
H4 1000 

Table 2.1 – Relation between the shear moduli of the top/bottom layer and the middle layer. The 
less and most heterogeneous configurations are the heterogeneity H1 and H4, respectively.    

 
Figure 2.5 show the normalized axial displacement for all span-to-thickness ratios. 

Figure 2.5a shows that only a difference of ten times (H2) between the shear moduli is 
enough to obtain a zigzag distribution of the axial displacement for the less slender 
beam (λ = 5). On the contrary, a difference of thousand times (H4) gives a slight zigzag 
distribution for the most slender beam (λ = 50) (Figure 2.5c). Another interesting 
observation is that a difference of two orders of magnitude (H3) between the shear 
moduli provokes an almost linear distribution for the most slender beam and a slight 
zigzag pattern for the beam of λ = 20. Furthermore, a difference of one order of 
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magnitude (H2) gives a zigzag kinematics for the less slender beam only whereas the 
lowest heterogeneity (H1) provokes a linear distribution for all span-to-thickness ratios. 

Therefore, the amplitude of the zigzag in-plane displacement is increased according 
the transverse anisotropy of the shear modulus is higher whereas it is reduced according 
the laminate is more slender. 

a) b) 

 
c) d) 

 
Figure 2.5 – Normalized axial displacement for span-to-thickness ratio λ = 5 a), λ = 10 b), λ = 

20 c) and λ = 50 d). 

 

2.2 Advanced composite materials and delamination phenomenon 
Advanced composites laminates are a stacking of fiber reinforced plastic (FRP) 

layers. FRP plies are composed of continuous fibers embedded in a polymeric matrix. 
Although there is a large bandwidth of fiber materials, carbon are the most widely used 
for high-performance applications. In addition, there are a countless number of different 
carbon fibers, e.g. high strength, high stiffness, surface treated or non-surface-treated, 
etc., and polymeric matrixes, e.g. thermosetting, thermostable or thermoplastic. This 
wide variety of material leads to an almost infinite number of potential mixtures. 
Moreover, the chance to orient the fibers according an optimum distribution of strength 



Section 2.2 
 

21 

and stiffness provides a very customizable design. Furthermore, the use of very light 
and strong raw materials leads to lightweight laminates with a considerable high 
specific strength and stiffness5. Other well valued characteristics of these materials are 
the fatigue and corrosion resistance and the high energy absorption capacity. 

 
These features made the advanced composites a good alternative for applications 

where the weight saving implies substantial cost reductions. Moreover, they are also the 
material of choice for structures under high strengths. Aviation and astronautics are 
some examples of application. The use of advanced composites in aeronautics has been 
considerable increased in last decades [46]. For example, about 25 and 50 percent of the 
airplanes Airbus A380 and Boing 787 Dreamliner are made of composite materials. In 
addition, composite materials represent about 80 percent of the structure weight in the 
construction of satellites. Automotive, marine, civil engineering, sport and medical 
industries are also interested in advanced composite materials. 

 
In order to define the load carrying capacity of the structure, the study of material 

fracture process is a very important topic. Advanced composite laminate may suffer 
from different failure mechanisms. These can be grouped into intra- and inter-laminar 
fracture modes, depending where the failure occurs: within or between the layers. The 
fiber fracture6, the matrix cracking7 and the fiber-matrix shear failure8 (debonding) are 
distinguished as intra-laminar failure modes since they occur within the layer. 
Delamination, i.e. the relative displacement between neighboring layers, is a common 
inter-laminar failure mode that once it has been occurred the load carrying capacity of 
the composite member could be considerately reduced. Moreover, this phenomenon 
may take place suddenly without any notice. These characteristics made the 
delamination a really dangerous failure mechanism in advanced composite materials. 

Although all these failure modes have to be accounted for accurately simulating the 
fracture behavior of advanced composites materials, this thesis is focused on the 
numerical simulation of delamination only. However, for the sake of completeness, the 
modeling of intra-laminar fracture modes is also treated below. 

                                                 
5 The specific strength is the strength per unit weight. It is also known as the strength/weight 
ratio. The same holds for specific stiffness. 
6 Fiber fracture can be provoked by not only tensile but also compressive stresses. Failure due to 
tensile stress occurs when the fiber strength is achieved. Longitudinal compressive stress can 
induce micro-buckling of fiber if the matrix is unable to hold the fibers in their position.  
7 When matrix strength is exceeded a crack is produced which tends to propagate 
perpendicularly to the stress direction until the fiber. If fiber strength is enough strong the crack 
can be stopped, otherwise, the discontinuity will be continue causing fiber fracture. Furthermore, 
fracture can grow parallel to the fiber at the fiber-matrix interface, i.e. debonding. 
8 Debonding occurs when fibers are disjointed from the matrix due to the fiber-matrix interface 
is unable to support the shear stresses acting parallel to the fibers. 
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2.2.1 Modeling of intra-laminar fracture modes 
In order to simulate intra-laminar fracture modes, intra-laminar damage models or 

also called failure models can be employed. These models consist of failure criteria, 
which evaluate if stress leads to the failure, and degradation models, which manage the 
material degradation.  

 
A simple and well known failure criterion is the maximum stress/strain criterion, 

which is computed by comparing the uni-axial stresses/strains with their threshold value 
for each component. Despite its simplicity, no interaction of stresses is taken into 
account.  

 
Failure criteria that consider interactions between stresses can be subdivided into 

two classes, namely the global criteria, which use only one equation for all failure 
modes, and the physically-based criteria, which employ different criteria for different 
failure modes.  

One of first attempts to develop a global criterion was presented by Hill [47], who 
proposed a single formula that take into account different strengths in various principal 
directions. Another very interesting global criterion has been proposed by Tsai and Wu 
[48], where a strength-based second order polynomial is proposed for all intra-laminar 
failures modes.  

Among hundreds of physically-based criteria, a well-known damage criterion and 
widely used by commercial finite element codes is the Hashin’s failure criterion [49]. 
This damage model is able to model fiber fracture and matrix cracking under tensile 
and compressive stress state. An improvement of the Hashin’s model was proposed by 
Goyal et al. [50] where fiber-matrix shear failure is also considered. Goyal’s model is 
also known as the extended Hashin’s model. Based on Hashin’s ideas, Puck [51] 
proposed a failure criterion where three different types of matrix cracking are 
considered. Dávila et al. [52] have developed a damage model, denoted LaRC03, that 
consists of six phenomenological failure criteria which can predict matrix and fiber 
failures without curve-fitting parameters. An improvement of the LaRC03 failure 
criteria, denoted LaRC04, was proposed by Pinho et al. [53].  

 
Intra-laminar material properties of FRP composite laminates, such as 

stiffness/strengths parallel and transverse to the fiber, can be characterized according 
the American [54, 55] and the European [56-58] standards. These experimental tests are 
carried out under tensile and compressive load states. 
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Oller et al. [59] and Martínez [60] proposed another way for modeling the non-
linear mechanical behavior of FRP laminated structures. Their methods are based on the 
combination of the constitutive models of each phase, i.e. fibers and matrix, together 
with governing equations that control the mechanical behavior of the composite. In 
other words, the mechanical behavior of each component is treated separately whereas 
the global response of the composite is obtained by assembling all contributions of 
components. In order to separately model the phases in a uni-directional (UD) 
composite material, the Classical mixing theory [61, 62] or the Serial/Parallel mixing 
theory [63] can be employed. 

 

2.2.2 Inter-laminar fracture mode - Delamination phenomenon 
 According to Bolotin [64], two kinds of delamination can be distinguished: 

internal and near-surface delamination. The first one is situated within the bulk of 
material (Figure 2.6a) whereas the second one, as its name suggests, is placed near the 
surface of the laminate (Figure 2.6b).  

 
After near-surface delamination, delaminated part does not necessarily have the 

same deformation as the rest of laminate. That leads to a complex fracture process 
where have to be accounted for not only the delamination growth but also local stability 
of the delaminated part.  

 
Unlike near-surface delamination, the delaminated parts after internal delamination 

have similar deformation because of the interaction between them. Moreover, local 
instabilities are almost improbable to occur after internal delamination. However, this 
type of delamination may considerably modify the stiffness of the composite member 
provoking a substantial reduction of the load carrying capacity.  

 
Furthermore, many delamination processes can take place within the laminate, 

which is known as multi-delamination (Figure 2.6c).  
 
Local forces, thermal actions and low-energy impacts may serve as sources of 

delamination during transportation, storage, montage or service life of the structure. In 
addition, geometry discontinuities such as access holes, notches, free edges or bonded 
and bolted joints can also induce delamination due to high stress gradients. 

 
At a microscopic scale, delamination is preceded by the formation of micro-cracks 

in a resin-rich zone between layers (Figure 2.7). Although micro-cracks could migrate 
through the plies [65], delamination is usually assumed to propagate parallel to the ply 
planes within the interface, which is an acceptable idealization for its numerical 
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modeling. Furthermore, according to fracture mechanics, delamination may occur as a 
single fracture mode I, mode II, mode III (Figure 2.8), or more likely as any 
combination of these (mixed mode). Mode I or opening mode corresponds to transverse 
normal tensile stress where mode II and III are provoked by the sliding and the 
scissoring shear stresses9, respectively. These stresses are known as inter-laminar 
stresses also. 

a) b) 

 
c) 

 
 

Figure 2.6 – Internal (a), near-surface (b) and multiple (c) delamination according to Bolotin. 

 

 
Figure 2.7 – Photomicrograph of an advanced composite where resin-rich zones and 

delamination are shown, from Barut et al. [44].  
 

a) b) c) 

   
Figure 2.8 – Fracture mode I a), mode II b) and mode III c). 

 
Delamination process, i.e. the onset and the growth, are governed by two inter-

laminar properties, namely the strength and the fracture toughness (Gc). These 

                                                 
9 Sliding and scissoring shear stresses correspond to the transverse shear stresses parallel and 
transversal to fiber direction, respectively.  
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properties depend on the delamination mode. The fracture toughness is also known as 
fracture energy, since it is defined as the amount of energy dissipated per unit area 
during the fracture process.  

 
Both inter-laminar properties can be characterized via experimental tests. The mode 

II strength can be determined by the American standard ASTM D2344 [66]. It is not 
clear to the author if exist experimental tests to characterize strength for modes I and 
III. However, mode I strength is usually considered equal to the in-plane transverse 
tensile strength because the opening mode is matrix-dominated. Regarding to mode III 
strength, an assumption of safe design is to define it equal to mode II strength. 

 
Fracture toughness for pure modes I (GIc) and II (GIIc) can be determined via the 

double cantilever beam (DCB) [67, 68] and the end notched flexure (ENF) [69] 
standardized tests, respectively. Mode III fracture energy (GIIIc) can be characterized via 
the no standardized edge crack torsion (ECT) test proposed by Lee [70].  

In order to compute the fracture toughness (Gc) for different mode mixing ratios (ρ 
= GII/GT)10 from the pure mode I (DCB) to the pure mode II (ENF), the mixed mode 
bending (MMB) [71] standardized test can be employed. However, the experimental 
characterization of the fracture energy for all possible mixed mode results impossible to 
carry out. For this reason, the fracture toughness is usually determined by means of 
curves that approximately fit the data generated by experimental tests. For example, 
among many others [65, 72], the BK model [73], the power law model [74] and the 
polynomial curve [75] (Table 2.2) are some of the most common mixed mode criteria. 
The fracture energy characterization is schematized in Figure 2.9. 

 

 
Figure 2.9 – Characterization of the fracture toughness for different mode mixing ratios. 

                                                 
10 The mode mixing ratio ρ relates the mode II energy release rate (GII) with the total energy 
release rate (GT) in order to distinguish different mixed modes. This value ranges from 0 (pure 
mode I - DCB) to 1 (pure mode II – ENF). 
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Mixed mode criteria 
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Polynomial 2
1 2c IcG G κ ρ κ ρ= + +  

Table 2.2 – Mixed mode criteria for computing the mixed mode fracture toughness. ρ  is the 

mode mixing ratio defined as GII/ GT , whereas 1κ , 2κ  and κ  are curve fitting parameters. 

 

2.2.2.1 Modeling of delamination 
Methods based on the linear elastic fracture mechanics (LEFM), such as the Virtual 

Crack Closure Technique (VCCT) [7, 76], the J-integral method [77, 78] and the virtual 
crack extension method [79], have proved to be suitable for predicting delamination 
growth. These methods are used to compute the energy release rate by means of results 
obtained from finite elements analyses. Then, delamination propagation occurs when 
the energy release rate is higher than the fracture thoroughness. 

 
Nowadays, the VCCT technique is widely used to study several delamination cases, 

such as delamination buckling [80-82] and skin-stiffener debond [83-85], where the 
structure can be discretized with 3D, plane stress and/or plate finite elements. An 
interesting overview of this technique is presented by Kruger [7], where expressions to 
compute the energy release rate with different kinds of finite elements are also derived. 

LEFM-based methods can be also employed together with simpler models such as 
the LW theories. Recently, Saeedi et al. [86] formulated a delamination model based on 
a LW description where the energy release rate is computed via the VCCT technique. In 
addition, Saeedi’s model is contrasted with a 3D analysis that employs the J-integral 
method. Also, Barbero et al. [87] proposed a model based on a LW description where 
the virtual crack extension method is employed.  

Although the efficacy of these techniques to predict delamination growth is well 
known, an initial crack must be predefined since they are unable to predict delamination 
onset. This is a significant drawback for certain geometries and load cases where the 
predefined crack can be difficult to locate.  
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Nowadays, cohesive or interface finite elements are other effective numerical 
method to fully simulate the delamination process. These elements are based on the 
cohesive zone approach (CZM) proposed by Dudgale [88] and Barenblatt [89] where it 
is assumed that molecular forces or cohesive forces act in the close vicinity of the crack 
tip. As a result, the crack is extended within a fracture process zone where a softening 
process takes place instead of a sudden decohesion.  

The softening process is described by cohesive laws11 which use different criteria12 
to control not only the onset but also the growth of delamination. Usually, onset criteria 
relate inter-laminar stress and strength whereas delamination growth is governed by the 
energy dissipated during the process13.    

Interface elements can be formulated based on solid-like [90, 91] or zero-thickness 
[92-97] approaches.  

Solid-like interface elements are based on hexahedral solid elements with finite 
thickness. However, the transverse normal and shear stresses are accounted for only. 
All other stresses are set to zero. In addition, the initial thickness of the element has to 
be thin enough14 in order to avoid membrane effects.  

Unlike solid-like elements, zero-thickness elements are defined by two surfaces 
that are initially coincident, i.e. the thickness is equal to zero. These surfaces are held 
together by inter-laminar tractions as long as the interface is intact.  

Cohesive laws are usually written in stress-strain and traction-displacement 
relationships for solid-like and zero-thickness elements, respectively. An interesting 
comparison between both types of interface element can be found in Balzani’s PhD 
thesis [5].   

Cohesive elements do not require initial crack to provide delamination onset, which 
is an important advantages respect to the LEFM-based methods, but they have to be 
placed between the plies where delamination is expected to occur. Thus, in cases where 
delamination paths are unknown it would be necessary to place interface elements 
between all layers. As a result, the computational resources needed for carrying out the 
simulation is considerably increased, especially in laminates of many plies. For this 
reason interface elements are peculiar suitable for studies where delamination path is 
known a priori, such as skin-stiffener delamination problems [5, 94, 95, 98]. 

 
Methods based on the continuum damage mechanics (CDM) are also able to 

simulate delamination. Martinez et al. [6] successfully analyzed delamination in a ply 

                                                 
11 Cohesive laws are frequently defined by means of bi-linear and exponential curves.  
12 These criteria are usually formulated taking into account mixed-mode delamination. 
13 When the area under cohesive law curve is equal to the fracture toughness complete 
decohesion occurs and delamination is propagated. 
14 A thickness of 1/100 of the thinnest layer thickness is usually adopted. 
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drop-off test using 3D finite elements to discretize the laminate and an isotropic damage 
model to manage the material mechanical behavior.  

For this method, it is not necessary to know a priori where delamination is expected 
to occur because any layer can suffer from damage. However, 3D finite elements are 
required to describe the laminate. Because of this, the study of delamination in large 
laminated structures of many layers may be unaffordable with this method. In addition, 
the discretization of very thin layers can lead to highly distorted elements carrying 
numerical issues. 

 
Reduced models, such as those treated in Section 2.1, can be also employed to 

simulate delamination.  
ESL-based finite elements can be employed together with LEFM-based techniques 

[7] or interface elements [5, 91]. However, these elements cannot simulate delamination 
by themselves since their kinematics are unable to predict discontinuities in the 
displacement field. 

LW models can be also used in conjunction with LEFM-based methods [86, 87, 
99], as already mentioned. In addition, it is also possible to use interface elements in 
LW descriptions as proposed by Hosseini-Toudeshky et al. [100]. Furthermore, 
delamination can be simulated via LW models by incorporating constitutive laws to 
manage the non-linear behavior of the interface continuity condition [101]. However, 
the main disadvantage of LW-based models is that the number of variable depends on 
the number of analysis layers, which could result computationally too expensive to 
simulate large composite structures of many layers. 

To the knowledge of the author, the use of ZZT theories to model delamination in 
advanced composite laminates has been quite limited so far.  

Di Sciuva and Gherlone [102] developed a refined version of the cubic zigzag 
theory, where both, the displacement and the transverse shear stress are defined as 
variables on the surfaces of the laminate. This feature allows the model to be employed 
in sub-laminate approaches15 [103].  Although these approaches are able to simulate 
discontinuities on the displacement field, they may require excessive computational 
resources since the number of variables depends on the number of analysis layer. 

Icardi et al. [104-106] have proposed a model based on a refined 3D cubic zigzag 
theory to analyze damage induced by low velocity impacts on composites laminates. 
However, in order to overcome the C2 continuity requirement, FSDT-based C0 plate 
elements are employed to approximate the solution. Then, stresses and other quantities 
of the zigzag theory are computed by a post-processing procedure based on strain 
energy updating from the FSDT model to the zigzag one. 
                                                 
15 Sub-laminate approaches are special cases of the LW description where the laminate thickness 
is conveniently divided in several sub-domains.  
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RZT theory is a good alternative to simulate laminate structures with highly 
transverse anisotropy. Among many reason, the efficiency and efficacy to capture the 
zigzag in-plane displacement are some of the most important, as already mentioned in 
Section 2.1.3. However, in order to predict the relative displacement between layers, the 
definition of the zigzag function is the key feature. This function depends on the 
transverse shear modulus of each layer, which provides to the RZT theory the ability of 
changing the shape of the in-plane displacement by simply modifying the shear 
properties of the plies. Thus, the relative displacement between neighboring layers can 
be modeled by simply locating a thin enough ply between them and then reduce the 
shear modulus of the added ply.  

Based on this idea, the author and advisors of this thesis have recently proposed a 
numerical model for predicting delamination in advanced composite beams [40] and 
plates [41] using the LRZ [38] and QLRZ [39] finite elements, respectively. This 
delamination model is presented in Chapter 4.  



30 

 
 



31 

3 Formulation of the beam LRZ and the plate QLRZ 
multilayered finite elements 

Formulation of the two-noded beam LRZ [38] and four-noded plate QLRZ [39] 
finite elements are presented in this Chapter. These elements are based on the refined 
zigzag theory of Tessler et al. [4, 36] presented in Section 2.1.3.1. 

 
Both finite elements are formulated under the following consideration: 

• Small deformations and displacements. 
• Quasi-static application of loads and displacements. 

 

3.1 Weak form of equilibrium equations via the principle of 
virtual work 
The strong form of the differential equations is defined by the local Lagrangian 

equation of motion given by 

 [ ]div ρ+ − =b a 0σ  3.1 

being σ  the stresses tensor, b the body forces and ρa  the dynamics forces 
vectors. This equation must be satisfied at each point within the volume of the body, 
denoted by Ω . 

Now, boundary conditions have to be defined in order to formulate a complete 
boundary value problem. Thus, the stress-like (Newmann) and the displacement 
(Dirichlet) boundary condition, which are prescribed at the surfaces of the body tΓ   

and uΓ , respectively, are defined by 

 on and ont u= = Γ = Γt n t u uσ  3.2 

where n  is the unit normal vector. t  and u  are the external forces and 
displacement vector, respectively. 
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Eqs.(3.1) and (3.2) define a complete boundary value problem, where its weak form 
is obtained via the principle of virtual work (PVW) [107] as 

 d d d d 0
t

T T T T
tρ

Ω Ω Ω Γ
δ Ω+ δ Ω− δ Ω− δ Γ =∫ ∫ ∫ ∫a a a b a t ε σ  3.3 

Since dynamic effects forces are not considered in this work, Eq.(3.3) is rewritten 
as 

 d d 0
t

T T
tΩ Γ

δ Ω− δ Γ =∫ ∫ a tε σ  3.4 

where intd WT

Ω
δ Ω =∫ ε σ  is the internal work and extd W

t

T
tΓ

δ Γ =∫ a t  is the 

work of the external forces.  
Here, Eq.(3.4) is solved by the finite element method. Thus, the integrand of 

Eq.(3.4) is computed by the summation of the contribution of each finite element e as 

 ( )(e) (e)

(e) (e) (e) (e) (e)

1
d d d d 0

T T

t t

n
T T

t t
e

Ω Γ Ω Γ
=

δ Ω− δ Γ = δ Ω− δ Γ =∑∫ ∫ ∫ ∫a t a tε σ ε σ 3.5 

being (e)Ω  and (e)
tΓ  the volume and the contour of the element. Therefore, it is 

possible firstly to compute the stiffness matrix and the forces vector element by element 
and then assemble them all. 

 

3.2 LRZ beam finite element 
An isoparametric two-noded C0 beam element, named LRZ, with four kinematic 

variables per node based on the RZT theory is formulated in this Section. This element 
is able to simulate thick and thin beams of highly heterogeneous laminated materials. 
Since this element suffers of shear looking, as shown in Section 3.2.7.1, a selective 
numerical integration of the transverse stiffness matrices is employed to overcoming 
this effect. In order to evaluate the performance of the LRZ element for simulating 
laminated materials, convergence and comparison studies are carried out in Section 
3.2.7.2 and 3.2.7.3, respectively.  

 

3.2.1 Beam RZT kinematics 
From Eq.(2.1), the RZT kinematics for a beam is obtained by considering the axial 

u displacement and the transverse deflection w only. Thus, the beam displacement field 
is defined as 

 0

0

( , ) ( ) ( ) ( , )
( ) ( )

k ku x z u x z x u x z
w x w x

θ= − ⋅ +
=

 3.6 
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with 

( ) ( )k ku z xφ ψ= ⋅  

The four kinematics variables of the RZT beam theory are 

 [ ]0 0
Tu w θ ψ=a  3.7 

 

3.2.2 Strain and generalized strain 

For convenience, the strain kε  of the k th layer is split into the in-plane ( k
pε ) and the 

transverse shear ( k
tε ) strains as 
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where mε , bε  and sε are the strain value duo to membrane, bending and transverse 
shear effects of the RMT theory, respectively. The in-plane and transverse shear strains 
values emanating from the RZT theory are denoted by mbφε  and sφε . ˆ pε  and ˆ tε  are the 

generalized in-plane and transverse shear strains vectors, respectively, defined as 
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where ˆ( )•  denotes the generalized strain values. 
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3.2.3 Stress-strain constitutive relationships 
The relationship between the in-plane and the transverse shear stresses and the 

strains for the k th layer are expressed in matrix form as 
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Dσ ε  3.10 

being Ek and Gk the Young and the shear modulus for the kth layer, respectively. 
 

3.2.4 Stress resultants 
According to the subdivision of the strains (Eq.(3.8)), the stress resultant vector σ̂  

is subdivided into in-plane ˆ pσ  and transverse shear ˆ tσ  stress resultants as 
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where N , M  and Q  are the membrane force, the bending moment, and the 

transverse shear force of standard beam theory, respectively. Mφ  and Qφ  are 

respectively an additional bending moment and an additional shear force, which are 
derived from the RZT theory (Figure 3.1).  

a)  b)  

 
Figure 3.1 – Direction of stress resultants of standard beam theory (a) and those derived from 

the RZT beam theory (b). 

The stress resultants for a beam are obtained by integrating stresses (Eq.(3.10)) 
over the transverse section A as 
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being ˆ
pD  and ˆ

tD  the generalized constitutive matrices given as 
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 ( )

( )

2

A A
2

2A A

1
ˆ dA dA

1
ˆ dA dA

T

T

k

k k k k k
p p p

k k k

k

k k k k
t t t k k

z
E E z z z

z

G G

φ
φ

φ φ φ

β

β β

 − 
 = = − −
 
 − 

 
 = =
  

∫ ∫

∫ ∫

D S S

D S S

 3.13 

The generalized constitutive matrices D̂  are exactly computed using analytical 
integration. The kφ  function and its derivate kβ  within each layer k  are computed by 

Eqs.(2.10) and (2.17), respectively. Note that functions for x direction are only 
considered. Moreover, in case of beams, the parameter 11

k
tD  in Eqs.(2.17) and (2.18) is 

the shear modulus kG . 
 

3.2.5 Principle of virtual work 
Let us consider a beam of length L and transverse section A bh=  which is 

subjected to distributed q loads applied on the contour Γ  and point loads pi. For this 
case, the differential equations of equilibrium (Eq.3.4) is rewritten as 

 
V

1
dV d a p

T
pl

k k T
i i

i
Γ

=

δ = δ Γ + δ∑∫ ∫ a qε σ  3.14 

where the l.h.s. is the internal virtual work performed by the stresses kσ  and the 
r.h.s. is the external virtual work. 

Substituting Eq.(3.8) into the l.h.s. of Eq.(3.14) gives 

V V V
ˆ ˆdV dV dV

T T Tk k T k T k
p s x t t xzσ τδ = δ + δ∫ ∫ ∫S Sε σ ε ε  

Using Eqs.(3.8), (3.10), (3.12) yields 

V L L
ˆ ˆˆ ˆdV dL dL

Tk k T T
p p t tδ = δ + δ∫ ∫ ∫ε σ ε σ ε σ  

Finally, the equilibrium equations of Eq.(3.4) can be written as 

 ( )
L

1

ˆ ˆˆ ˆ dL d a p
pl

T T T
p p t t i i

i
Γ

=

δ + δ = δ Γ + δ∑∫ ∫ a qε σ ε σ  3.15 



LRZ beam finite element 
 

36 

The integrands in Eq.(3.15) contain kinematic variables derivatives up to first order 
only, which allows to use C016 continuous finite elements. 

 

3.2.6 LRZ formulation 

3.2.6.1 Discretization of the displacement field 
The middle axis of the beam is discretized by using 2-noded isoparametric finite 

elements, where the kinematic variables a  of Eq.(3.7) are interpolated within each 
element as 

 [ ]
0

(e)
2

0(e) (e) (e)1
1 2

1 2
i i

i

u
w
θ
ψ

=

 
    = = = ⋅      
 

∑ n n
a

a N a N N = N a
a

 3.16 

where 

[ ](e)
4 0 0; T

i i i i
N u w θ ψ= =N I a  

being ( )1i iN ξξ= +
1
2

(Table 3.1 and Figure 3.2) the linear shape function17 of 

node ith and 4I  is the 4x4 unit matrix. 

 

Node ξi 

1 -1 
2 1 

Table 3.1 - Values of ξi for each node. 

 
Figure 3.2 – Linear shape functions of two-noded element. 

 

                                                 
16 In general, a finite element is Cm continuous if the displacement field and its m first 
derivatives are continuous between elements. Thus, a finite element is C0 continuous if the 
kinematic variables are inter-elements continuous only.   
17 In order to standardize the process of developing the elemental matrices, the shape functions 
Ni are established in the normalized natural coordinate system (ξ). In case of bilinear shape 
functions, Ni are normalized to the natural coordinate system (ξ,η). 
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The element geometry is interpolated as 

 
2

1

ˆ
i i

i
x N x

=

=∑  3.17 

where ˆ
i iN N= , which leads to an isoparametric formulation18. 

Considering the length of the finite element defined by (e)
2 1L x x= −  and the form 

of iN , the value d dx ξ  is computed from Eq.(3.17) as 

(e)
1 2

1 2 1 2
d dd 1 1 L

d d d 2 2 2
N Nx x x x x

ξ ξ ξ
= + = − + =  

wherewith 

 
(e)

(e)

L d 2d d and
2 d L

x
x
ξξ= =  3.18 

Thus, the derivatives of the shape functions with respect to the Cartesian 
coordinates are computed using the chain rule as 

 

1 1
(e) (e)

2 2
(e) (e)

d d d 1 2 1
d d d 2 L L
d d d 1 2 1
d d d 2 L L

N N
x x
N N
x x

ξ
ξ

ξ
ξ

= = − = −

= = =
 3.19 

3.2.6.2 Generalized strain field 
The interpolated generalized in-plane strains (e)ˆ pε  within each finite element are 

obtained by substituting Eq.(3.16) into Eq.3.9 as 

 

(e)
0

0(e)

2 2
(e) (e) (e)

1 1

ˆ
ˆ ˆ

ˆ
i

i

m
i

p b p i p
i i

mb
i

i

Nu u
xx
N

x x
N

x x

φ

ε
θε θ

ε ψ ψ

= =

∂∂   
   ∂∂    
∂∂    = = = = =    ∂ ∂      ∂ ∂  

   ∂ ∂   

∑ ∑ nB a B aε  3.20 

                                                 
18 The formulation is named isoparametric when kinematic variables as well as element 
geometry are approximated using the same shape function, e.g. ˆ

i iN N= . If the polynomial 

degree of ˆ
iN  is higher than that of Ni, then a super-parametric formulation is obtained; 

otherwise, the formulation is called sub-parametric. 
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where pB  and 
ipB  are the in-plane generalized strain matrices for the element e 

and the ith node, respectively. The matrix 
ipB  is split into membrane ( )m , bending 

( )b  and zigzag ( )mbφ  contributions, which leads to 

 

0 0 0

0 0 0

0 0 0

i

i

m
i

p b

mb i i

N
x

N
x

N
x

φ

∂ 
 ∂   

∂   = =   ∂     ∂ 
 ∂ 

B
B B

B
 3.21 

In the same manner, the generalized transverse strains (e)ˆ tε  are obtained as 

 

(e)
(e) 0 2 2

0(e) (e) (e)

1 1

ˆ
ˆ

ˆ i

i
s ix

t t i t
i is

i i

Nw w N
xx

Nφ

ε θθ
ε

ψψ = =

∂∂     −−   = = = = =∂∂          
∑ ∑ nB a B aε 3.22 

where tB  and 
it

B  are the transverse generalized strain matrices for the element e 

and the ith node, respectively. Matrix 
it

B  is split into shear ( )s  and zigzag ( )sφ  

contributions as 

 
0 0

0 0 0
i

i
s i

t
s i

i

N N
x

Nφ

∂   − = = ∂       

B
B

B
 3.23 

3.2.6.3 Element stiffness matrix and nodal forces vector 
Considering Eqs.(3.5), (3.15), the beam element stiffness matrix and the nodal 

forces vector are obtained via the following equation 

 ( )(e) (e)

(e) (e) (e) (e)

L L
ˆ ˆˆ ˆ dL dL

T T T T

p p t tδ + δ = δ + δ∫ ∫ na q a pε σ ε σ  3.24 

being L(e) the length of the finite element. 
Considering that 

(e) (e) (e) (e) (e) (e)ˆ ˆT T T T T TT T T
p p t tδ = δ ; δ = δ ; δ = δn n n na B a B a a Nε ε  

and substituting Eq.(3.12) into Eq.(3.24) gives 

( )(e) (e)

(e) (e) (e) (e)

L L
ˆ ˆˆ ˆ dL dL

T T T TT T T
p p p t t tδ + δ = δ + δ∫ ∫n n n n na B D a B D a N q a pε ε  
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Then, substituting Eqs.(3.20), (3.22) into the previous equation yields 

( )(e) (e)

(e) (e) (e) (e) (e) (e)

L L
ˆ ˆ dL dL

T T T TT T T
p p p t t tδ + δ = δ + δ∫ ∫n n n n n n na B D B a a B D B a a N q a p  

Thus, the equation can be factored as 

( ){ } ( )(e) (e)

(e) (e) (e)

L L
ˆ ˆ dL dL

T TT T T
p p p t t t

 δ + = + δ ∫ ∫n n n na B D B B D B a N q p a  

( )(e) (e)

(e)

L L
ˆ ˆ dL dLT T T

p p p t t t
 + = + ∫ ∫n nB D B B D B a N q p  

Finally, Eq.(3.24) is reduced to 

 
(e)

(e) (e)

L
dLT= +∫n nK a N q p  3.25 

with  

 ( )(e)

(e)

L
ˆ ˆ dLT T

p p p t t t= +∫K B D B B D B  3.26 

Matrix (e)K  is the elemental stiffness matrix, which for convenience is computed 

as 
(e) (e) (e)

p t= +K K K  

being (e)
pK  and (e)

tK  the in-plane and the transverse elemental stiffness matrices, 

respectively, defined as 

 
(e)

(e)

(e)

L

(e)

L

ˆ dL

ˆ dL

T
p p p p

T
t t t t

=

=

∫
∫

K B D B

K B D B
 3.27 

To assess the influence of the reduced integration of matrix (e)
tK  for overcoming 

the shear locking of the solution, matrix (e)
tK  is split as follows 

 (e) (e) (e) (e) (e) T

t s s ss ssφ φ φ + + +  K = K K K K  3.28 

with  

 

(e)

(e)

(e)

(e)
(1,1)L

(e)
(2,2)L

(e)
(1,2)L

ˆ dL

ˆ dL

ˆ dL

T
s s s s

T
s s s s

T
ss s s s

φ φ φ

φ φ

=

=

=

∫
∫
∫

K B D B

K B D B

K B D B

 3.29 
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The external nodal forces vector extF  are defined by the r.h.s. of Eq.(3.25) as 

 
(e)

ext

L
dLT= +∫ nF N q p  3.30 

Considering Eq.(3.18), the integrals of Eq.(3.27) defined in the Cartesian 
coordinate are transformed to the natural coordinate as 

 
(e)

(e)

(e)1(e)

L 1

(e)1(e)

L 1

Lˆ ˆdL d
2

Lˆ ˆdL d
2

T T
p p p p p p p

T T
t t t t p t p

ξ

ξ

+

−

+

−

= =

= =

∫ ∫

∫ ∫

K B D B B D B

K B D B B D B
 3.31 

The derivatives of the shape functions with respect to the Cartesian coordinates 
contained into the generalized strain matrices B  are computed by Eq.(3.19). 

The integrals of the in-plane element stiffness matrix (e)
pK  (Eq.(3.31)) is exactly 

computed by using the one-point Gauss quadrature as 

 
(e) (e)1(e)

1

L Lˆ ˆd
2 2 GP

T T
p p p p p p p GPW

ξ
ξ

+

−
 = =  ∫ ( )

K B D B B D B  

 (e) (e)

0.0
ˆL

GP

T
p p p p ξ

 =  ( = )
K B D B  3.32 

where 2GPW =  and 0.0GPξ =  are respectively the weighting factor and the 

natural coordinate of the center integration point (or Gauss points (GP)). Matrices B  
are evaluated at 0.0GPξ = . 

 
The exact integration of matrix (e)

tK  is obtained by using two Gauss points. 

However, the full numerical integration of (e)
tK  leads to shear locking effects for 

slender beams. For this reason, a selective integration scheme is used, where matrices 
(e)
sK  and (e)

ssφK  are solved by employing a reduced integration (one integration point 

only) as 

 

(e)1(e) (e)
(1,1) (1,1)1 0.0

(e)1(e) (e)
(1,2) (1,2)1 0.0

Lˆ ˆd L
2

Lˆ ˆd L
2

GP

GP

T T
s s s s s s s

T T
ss s s s s s s

ξ

φ φ φ ξ

ξ

ξ

+

−

+

−

 = =  

 = =  

∫

∫

( = )

( = )

K B D B B D B

K B D B B D B
 3.33 

and matrix (e)
sφK  (Eq.(3.29)) is full integrated using two Gauss point as 
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(e) (e)21(e)

(2,2) (2,2)1
1

L Lˆ ˆd
2 2 GP

T T
s s s s s s s GP

GP
Wφ φ φ φ φ ξ

ξ
+

−
=

 = =  ∑∫ ( )
K B D B B D B  3.34 

Both natural coordinate GPξ  and weighting factor GPW  for the two-point Gauss 
quadrature are listed in Table 3.2. 

GP GPξ  GPW  

1 
1
3

−  1 

2 
1
3

+
 

1 

Table 3.2 – Natural coordinates and weighting factors of integration points. 

 
A study of the accuracy of the LRZ solution for modeling slender beams using this 

selective integration scheme is presented in Section 3.2.7.1. 
 

3.2.6.4 Boundary conditions 
The boundary conditions are: 

• Clamped side: 

0w u θ ψ= = = =  

• Simply supported side: 

0w =  

• Symmetry axis: 

0n n nu θ ψ= = =  

where “n” is the orthogonal direction to the symmetry axis. 
 

3.2.6.5 Improved computation of transverse shear stresses 
Since the constitutive equation (Eq.(3.10)) yields a constant value of the transverse 

shear stress k
xzτ  into each layer, a discontinuous thickness distribution of xzτ  is 

obtained. A useful alternative to improve the computation of  xzτ  is to use the 
equilibrium equations 

 0x xz

x z
σ τ∂ ∂

+ =
∂ ∂

 3.35 
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from which, the transverse shear stress at a point “P” located within the finite 
element is computed across the thickness by 

 
2

( )
z x

xz P h
P

z dz
x
στ

−

∂
= −

∂∫  3.36 

The axial stress xσ  at point “P” is calculated by the following approximation 

 
2

1
( ) ( )i

x i xP P
i

z N zσ σ
=

= ⋅∑  3.37 

where iN  is the shape function previously defined and i denotes the ith node. The 

nodal axial stress ( )i
x zσ  is obtained by the averaging of Gauss stresses from 

neighboring elements at the ith node.  
Finally, the thickness distribution of transverse shear stress is obtained by replacing 

Eq.(3.37) into Eq(3.36), 

 
2

2
1

( ) ( )
z ii

xz xP h
i P

Nz z
x

τ σ
−

=

 ∂
= − ⋅ ∂ 

∑∫  3.38 

3.2.7 LRZ studies 

3.2.7.1 Shear locking 
The selective integration scheme, as solution of the shear locking effects, is studied 

by analyzing a cantilever beam of length L subjected to a unit point load F = 1 N 
(Figure 3.3). The beam is formed by a three-layered laminate, whose properties are 
listed on Table 3.3. 

The study is performed for four span-to-thickness ratios: λ = 5, 10, 50, 100 (λ = 
L/h) using a mesh of 100 LRZ beam elements. The reference solution was obtained by 
a plane stress analysis (PS) using a mesh of 27000 4-noded quadrilateral (Figure 3.4). 

 

 
Figure 3.3 – Cantilever beam under point load. 
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Laminated Material 

 
Layer 1 
(bottom) 

Layer 2 
(core) 

Layer 3 
(top) 

h [mm] 6.6667 6.6667 6.6667 

E [MPa] 2.19x105 2.19x103 2.19x105 

G [MPa] 0.876x105 8.80x102 0.876x105 
Table 3.3 – Material properties of shear locking study. 

 
Figure 3.4 – Structured mesh of 27000 four-noded plane stress quadrilaterals elements. 

 
The ratio LRZ PSr w w=  between the vertical displacement at the free end 

computed with the LRZ element mesh ( LRZw ) and with the PS analysis ( PSw ) for each 
span-to-thickness λ is shown in Figure 3.5. Results for the LRZ mesh have been 
obtained using exact two-point integration for all terms of matrix (e)

tK  (Eq.(3.28)) and 

a one-point reduced integration for the following three groups of matrices: (e)
sK ; (e)

sK  

and (e)
sφK ; and all terms of (e)

tK . Labels “all”, “S”, “SPsi”, and “Psi” in Figure 3.5-

Figure 3.8  refer to matrices (e)
tK , (e)

sK , (e)
ssφK , and (e)

sφK , respectively.  

 
Figure 3.5 clearly shows that the LRZ element suffers shear locking when matrix 

(e)
tK  is full integrated. It is also shown that the finite element is shear locking-free 

when the reduced integration is used.  
The influence of the selective integration in the distribution of the transverse shear 

stress is also studied. Figure 3.6-Figure 3.8 show the thickness distribution of xzτ  in 
sections located at distances L/20, L/4, L/2 and 3L/4 from the clamped end for span-to-
thickness ratios λ = 5, 10 and 100. For this analysis, the Timoshenko solution (TBT) is 
also analyzed using a mesh of 300 standard 2-noded elements. A shear correction factor 
of 5 6  is used for all TBT results presented in this work.  

Results show that for thick beams (small values of λ) similar solutions are obtained 
for both, the reduced and the exact integration of matrix (e)

tK . For slender beams, 
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however, results obtained using reduced integration of the three matrix groups are 
different.  

It is shown that slightly more accurate results are obtained when matrices (e)
sK  and 

(e)
sφK  are integrated using a one-point quadrature, whereas matrix (e)

ssφK  is computed by 

using two Gauss points. Hence, this selective integration scheme is adopted to 
overcoming shear locking effects. 

 
Figure 3.5 – r ratio versus λ for cantilever beam under point load. 

a) τxz, λ = 5 , at x = L/20 b) τxz, λ = 5 , at x = L/4 

 
c) τxz, λ = 5 , at x = L/2 d) τxz, λ = 5 , at x = 3L/4 

 
Figure 3.6 – Thickness distribution of the transverse shear stress for λ = 5 at different sections. 
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a) τxz, λ = 10 , at x = L/20 b) τxz, λ = 10 , at x = L/4 

 
c) τxz, λ = 10 , at x = L/2 d) τxz, λ = 10 , at x = 3L/4 

 
Figure 3.7 – Thickness distribution of the transverse shear stress for λ = 10 at different sections. 

a) τxz, λ = 100 , at x = L/20 b) τxz, λ = 100 , at x = L/4 

 
Figure 3.8 – Thickness distribution of the transverse shear stress for λ = 100 at different 

sections. 
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c) τxz, λ = 100 , at x = L/2 d) τxz, λ = 100 , at x = 3L/4 

 
Figure 3.8 – Continuation. 

3.2.7.2 Convergence 
The beam of Figure 3.3 is studied for three laminated materials of different degree 

of heterogeneity. Materials properties are listed in Table 3.4. Material A is the most 
homogeneous one, while material C is clearly the most heterogeneous. 

 

Composite Materials 

  Layer 1 
(bottom) 

Layer 2 
(core) 

Layer 3 
(top) 

Composite A 
h [mm] 6.66 6.66 6.66 
E [MPa] 2.19x105 2.19x104 4.4E5 

G [MPa] 8.76x104 8.80x103 2.00E5 

Composite B 
h [mm] 6.66 6.66 6.66 

E [MPa] 2.19x105 2.19x103 2.19E5 
G [MPa] 8.76x104 8.80x102 8.76E4 

Composite C 
h [mm] 2 16 2 

E [MPa] 2.19x105 0.73x103 7.3x105 
G [MPa] 0.876x105 0.29x103 2.92x105 

Table 3.4 – Material properties of laminated materials used for convergence study. 

In order to evaluate mesh convergence of the LRZ solution, six meshes ranging 
from 5 to 300 elements are used.  

Convergence is measured by the relative error defined as 

 6

6

i
r

m me
m
−

=  3.39 

where 6m  and im  are the values of the magnitude of interest obtained using the 

finest grid (300 elements) and the ith mesh (i = 1, 2, … 5), respectively. 
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Table 3.5 and Figure 3.9 show the convergence for deflection w  and function ψ  at 

the free end, the maximum axial stress xσ  at the end section and the maximum shear 

stress xzτ  at the mid-section. 
 
Results clearly show that convergence is always slower for the most heterogeneous 

material. For the mesh of 25 elements the errors for all the magnitudes considered are 
less than 1% for materials A and B. For material C the maximum error does not exceed 
5%. For the 50 element mesh errors around 1% were obtained in all cases. 

Results for the 10 element mesh are good for material A (errors less than 0.4%), 
relatively good for material B (errors less than around 5%) and unacceptable for 
material C (errors ranging from around 8% to 20%). 

a) b) 

 
c) d) 

 
Figure 3.9 – Convergence relative error for: a) w at x = L, b) ψ at x = L, c) maximum axial 

stress at x = L, d) and maximum shear stress at x = L/2. 

 

 

 

 

 



LRZ beam finite element 
 

48 

 a)    b)  

(%)re  - w at x = L  (%)re  - ψ at x = L 

Number 
of 

elements 

Composites  Number 
of 

elements 

Composites 

A B C  A B C 

5 1.800 9.588 42.289  5 0.040 8.563 36.113 
10 0.506 2.901 19.277  10 0.003 1.814 8.042 
25 0.0860 0.499 4.913  25 0.000 0.259 0.328 
50 0.0191 0.123 1.406  50 0.000 0.063 0.033 
100 0.0048 0.031 0.339  100 0.000 0.016 0.007 
300 0.0000 0.0000 0.0000  300 0.000 0.000 0.000 

 c)    d)  

(%)re  -  ( )maxxσ  at x = L 
 (%)re  -  ( )maxxzτ  at x = L/2 

Number 
of 

elements 

Composites  Number 
of 

elements 

Composites 

A B C  A B C 

5 -0.568 -6.923 -18.239  5 7.020 19.283 50.938 
10 -0.076 -2.704 -12.437  10 0.352 5.176 20.602 
25 -0.013 -0.568 -4.266  25 0.052 0.888 3.408 
50 -0.003 -0.131 -1.095  50 0.010 0.210 0.707 
100 0.001 -0.029 -0.250  100 0.003 0.049 0.147 
300 0.000 0.000 0.000  300 0.000 0.000 0.000 

Table 3.5 – Convergence relative error for: a) w at x = L, b) ψ at x = L, c) maximum axial stress 
at x = L, d) and maximum shear stress at x = L/2. 

 

3.2.7.3 Numerical examples 
Cantilever beam under an end point load 
The beam material is the highly heterogeneous laminate C defined in the previous 

analysis (Table 3.4). The span-to-thickness ratio is λ = 5. 
 
The reference solution is a PS analysis using the structured mesh of 27000 four-

node quadrilaterals shown in Figure 3.4. TBT theory is also compared employing a 
mesh of 300 two-node beam elements. Labels “LRZ-300”, “LRZ-50”, “LRZ-25”, and 
“LRZ-10” refer to the solution obtained by the LRZ meshes of 300, 50, 25 and 10 
elements, respectively. 
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Deflection w  along the beam length is shown in Figure 3.10. Very good agreement 
with the PS solution is obtained already for the LRZ-50 mesh. TBT results are 
considerable stiffer. Deflection value computed by TBT is about six times stiffer at the 
free edge. 

 
Figure 3.11 shows the distribution of the axial displacements at the top and bottom 

surfaces of the top layer along the beam length. Excellent results are again obtained 
with the LRZ-50 mesh. The TBT results are far from the correct ones. 

 
The thickness distribution for the axial displacement at sections located at distances 

L 4 , L 2  and 3L 4  from the clamped end are shown in Figure 3.12. Results for the 
LRZ element are in good agreement with the reference solution. The standard linear 
distribution of TBT theory is far from the correct zigzag results. 

 
Figure 3.16 shows the distribution of the axial stress xσ  at the top and bottom 

surfaces of the beam cross section along the beam length. Very good results are 
obtained for the LRZ-50 and LRZ-300 meshes. Results for the LRZ-25 mesh compare 
reasonably well with the PS solution except in the vicinity of the clamped edge. 
However, this error is corrected for the LRZ-50 and LRZ-300 meshes. The TBT results 
yield a linear distribution of the axial stress along the beam, as expected. This 
introduces large errors in the axial stress values in the vicinity of the clamped support. 

 
Thickness distribution for the transverse shear stress xzτ  at different sections are 

shown in Figure 3.13. LRZ results provide an accurate estimate of the average 
transverse shear stress value for each layer. The distribution of xzτ  across the thickness 

can be improved by using Eq.(3.38). 
 
Figure 3.14 shows the thickness distribution of the axial stress xσ  at the clamped 

end and at the center of the beam. LRZ results are well approximated to the reference 
solution. TBT results have an erroneous stress distribution for the top and bottom layers 
at the clamped end. These differences are less important at the central section. 

 
LRZ and TBT results for the distribution of the tangential shear stress xzτ  for each 

layer along the beam length are shown in Figure 3.15. 
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Figure 3.10 – Distribution of vertical displacement w along the beam length. 

a) b) 

 
Figure 3.11 – Axial displacement u at the upper (a) and lower (b) surfaces of the top layer along 

the beam length. 

a) b) 

 
Figure 3.12 – Thickness distribution of the axial displacement u at x = L/4 (a), x = L/2 (b), and 

x = 3L/4 (c). 
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c) 

 
Figure 3.12 – Continuation. 

a) b) 

 
c) d) 

 
Figure 3.13 – Thickness distribution of the transverse shear stress at x = L/20 (a), x = L/4 (b), x 

= L/2 (c), and x = 3L/4 (d). 
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a) b) 

 
Figure 3.14 – Thickness distribution of the axial stress at x = 0 (a) and x = L/2 (b). 

 

a) b) 

 
c) 

 
Figure 3.15 – Transverse shear stress along the beam length for layer 1(a), layer 2 (b), and layer 

3 (c). 
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a) b) 

 
Figure 3.16 – Axial stress at the upper (a) and lower (b) surfaces of the cross section along 

the beam length. 
 
Simple supported beam under uniformly distributed unit load 
Laminated material properties are listed in Table 3.6. The span-to-thickness ratio is 

λ = 5. 

Laminated Material 

 
Layer 1 
(bottom) 

Layer 2 
(core) 

Layer 3 
(top) 

h [mm] 6.6667 6.6667 6.6667 

E [MPa] 2.19x105 5.30x105 7.39x105 

G [MPa] 0.876x105 2.90x102 2.92x105 
Table 3.6 – Material properties. 

 
LRZ results are once more compared with those obtained with the TBT mesh of 

300 two-noded elements and with a structured mesh of 27000 4-noded plane stress 
quadrilateral elements. PS solution is obtained by fixing the vertical displacement of all 
nodes at the end sections and the horizontal displacement for the mid-line edge nodes 
only. No advantage of symmetry was taken into account. 

 
The distribution of the vertical deflection along the beam length is shown in Figure 

3.17. For the finest LRZ mesh the central deflection is around 12% stiffer than the PS 
solution. The discrepancy is due to the difference in the way the simple support 
condition is modelled in beam and PS theories, as well as to the limitations of beam 
theory to model accurately very thick beams. TBT results are inaccurate, as expected. 
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Figure 3.17 – Distribution of vertical displacement w along the beam length. 

 
Figure 3.18 shows the distribution of the axial stress xσ  along the beam at the top 

surface for the second and third layer. Results show an acceptable accuracy of the LRZ 
solution with a maximum error of 10% for the finest mesh. On the contrary, the TBT 
model gives a too poor solution. 

a) b) 

 
Figure 3.18 – Axial stress at the top surface for the second (a) and third (b) layer along the beam 

length. 

 
Figure 3.19 shows the thickness distribution of the axial displacement at the left 

end section (x = 0) and at x = L 4 . The LRZ element captures very well the zigzag 
shape of the axial displacement field even for a coarse mesh of 10 elements. The TBT 
element yields an unrealistic linear distribution. 

 
Thickness distribution of the axial stress (at x = L/4, L/2) and the transverse shear 

stress (at x = L/20, L/4) are shown in Figure 3.20 and Figure 3.21, respectively. The 
accuracy of the LRZ results is again noticeable (even for the coarse 10 element mesh). 
The TBT element fails to capture the zigzag distribution of the axial stress and gives a 
wrong value of almost zero shear stress at the core layer. 

 



Section 3.2 
 

55 

a) b) 

 
Figure 3.19 – Thickness distribution of the axial displacement u at x = 0 (a) and x = L/4 (b). 

a) b) 

 
Figure 3.20 – Thickness distribution of the axial stress at x = L/4 (a) and x = L/2 (b). 

a) b) 

 
Figure 3.21 – Thickness distribution of the transverse shear stress at x = L/20 (a) and x = L/4 

(b). 
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Figure 3.22 shows the distribution of the transverse shear stress along the beam for 
each ply obtained with the LRZ and TBT elements. 

 
Figure 3.23 shows a similar set of results for a moderately thick SS beam (λ=10) 

and the same material properties. The distribution of the deflection and the axial stress 
along the beam length are shown in Figure 3.23a and Figure 3.23b, respectively. The 
accuracy of the LRZ element is again noticeable. 

a) b) 

 
c) 

 
Figure 3.22 – Transverse shear stress along the beam length for layer 1(a), layer 2 (b), and layer 

3 (c). 

a) b) 

 
Figure 3.23 – Distribution of the vertical displacement w (a) and the axial stress at the top 

surface of second layer (b) along the beam length. 
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Non-symmetric ten-layered clamped beam under uniformly distributed unit load 
In this example a ten-layered clamped slender beam (L = 100 mm, h = 5 mm, b = 1 

mm, λ = 20) under uniformly distributed loading (q = 1KN/mm) is analyzed. Laminated 
material properties are listed in Table 3.7. 

a)  b) 
Layer hi Material  Material E [MPa] G [MPa] 

1 0.5 IV  I 2.19x105 0.876x105 
2 0.6 I  II 7.30x105 2.92x105 
3 0.5 V  III 7.30x102 2.92x102 
4 0.4 III  IV 5.30x105 2.12x105 
5 0.7 IV  V 0.82x105 0.328x105 
6 0.1 III     
7 0.4 II     
8 0.5 V     
9 0.3 I     
10 1 II     

Table 3.7 – Layer distribution (a) and material properties (b). 

 
Figure 3.24 shows the deflection along the beam for LRZ meshes of 10 and 300 

elements (LRZ-10 and LRZ-300). LRZ results are compared with PS and TBT results. 
A mesh of 27.000 4-noded PS quadrilaterals and a mesh of 300 TBT elements are used. 
Even for the coarse 10 element mesh the LRZ deflection is good approximated to the 
PS solution. 

 
Figure 3.24 – Distribution of vertical displacement w along the beam length.  

 
Figure 3.25 shows the thickness distribution of the axial displacement and the axial 

stress for the section at x = L 4 . The accuracy of the LRZ results is once more 
remarkable. 
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Thickness distribution of the transverse shear stress at x = L4 is shown in Figure 
3.26. Figure 3.26a shows the values obtained by the constitutive equation Eq.(3.10). 
These results are clearly better than those obtained with the TBT element but only 
coincide in an average sense with the plane stress FEM solution. The improved 
computation of the transverse shear stress using Eq.(3.38) is shown in Figure 3.26b, 
where a very good approximation to the PS result is observed even for the coarse mesh 
of 10 LRZ elements. 

a) b) 

 
Figure 3.25 – Thickness distribution of the axial displacement u (a) and the axial stress (b) at x 

= L/4. 

a) b) 

 
Figure 3.26 – Thickness distribution of the transverse shear stress at x = L/4 computed by the 

constitutive equation 3.10 (a) and by the improved equation 3.38 (b). 

3.3 QLRZ plate finite element  
The formulation of an isoparametric four-node C0 quadrilateral plate element, 

named QLRZ, with seven kinematic variables per node based on the RZT theory is 
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presented in this Section. This element is designed for modeling thick and thin 
plate/shell structures of highly heterogeneous laminated materials. The original form of 
this element suffers of shear looking, as shown in Section 3.3.7.1, which is avoided by 
means of an assumed linear shear strain field. The performance of QLRZ is analyzed in 
three different studies: verification, convergence and comparison. The verification 
study (Section 3.3.7.2) aims at evaluating the performance of this element when the 
material is homogenous, i.e. when the zigzag function vanishes. The influence of the 
material transverse heterogeneity on convergence and accuracy of the QLRZ element is 
analyzed in the convergence study (Section 3.3.7.3). Finally, the performance of the 
QLRZ element for modeling highly heterogeneous materials is evaluated in the 
comparison analysis (Section 3.3.7.4). 

 

3.3.1 Plate RZT kinematics 
The QLRZ kinematics is defined by Eq.(2.1) in Section 2.1.3.1 as 

 
0

0

0

( , , ) ( , ) ( , ) ( , , )

( , , ) ( , ) ( , ) ( , , )

( , ) ( , )

k k
x

k k
y

u x y z u x y z x y u x y z
v x y z v x y z x y v x y z
w x y w x y

θ

θ

= − ⋅ +

= − ⋅ +

=

 3.40 

where the axial displacement zigzag function ku  and kv  are defined as 

 
( ) ( , )

( ) ( , )

k k
x x

k k
y y

u z x y
v z x y

φ ψ

φ ψ

= ⋅

= ⋅
 3.41 

The unknown variables for the plate RZT theory are 

 0 0 0

T

x y x yu v w θ θ ψ ψ =  a  3.42 

where the uniform displacement 0u , 0v  and 0w , and the bending rotation xθ  and 

yθ  are derivate from the FSDT theory, where the iψ  variables are associated with the 

added displacement zigzag functions ku  and kv . 

3.3.2 Stain and generalized strain 
For convenience, the strain kε  of the k th layer is split into the in-plane ( k

pε ) and the 

transverse shear ( k
tε ) strains as 
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where mε , bε  and sε are the strain vectors duo to membrane, bending and 
transverse shear effects of the RMT theory, respectively. The in-plane and transverse 
shear strains vectors emanating from the RZT theory are denoted by mbφε  and sφε . ˆ pε  

and ˆ tε  are the generalized in-plane and transverse shear strains vectors, respectively, 

defined as 

 

ˆ
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where ˆ( )•  denotes the generalized strain vectors given by 
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and matrix operators S  are defined as 
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In Eq.(3.45) izγ ( ),i x y= is the average transverse shear strain of RMT. Note that 

k
iφ  is piecewise linear, hence, its derivative 

k
ki
iz

φ β
 ∂

= ∂ 
 is constant within each layer. 

 

3.3.3 Stress-strain constitutive relationships 
The reduced elasticity matrix for the orthotropic k th layer is given by 

 
k

k p

t
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 3.47 

with  
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being E and G the Young and the shear moduli, respectively, and υ  the Poisson’s 
ratio. It is important to note that the strains kε  are referred to the local coordinate 

system (x,y,z) whereas the k
ijD  magnitudes are referred to the material orientation 

(e1,e2,e3) (Figure 3.27). Direction e1 is parallel to the main in-plane direction19, e2 is 
the in-plane direction transverse to the e1, and e3 is the through-thickness direction that 
is coincident with the local vertical direction z. The relations between the basis vectors 
are defined by 

 
e1 x c s 0
e2 = y with = -s c 0
e3 z 0 0 1

     
     ⋅     
          

T T  3.49 

where ( )c cos α=  and  ( )s sin α= . 

 
Figure 3.27 – Local coordinate system (x,y,z) and material orientation (e1,e2,e3). The angle 

between vector x and e1 is defined by α. 

 
When material orientation is not correlated with local coordinate, e.g. the angle α  

between vectors x and e1 is different to cero, a transformation of the constitutive matrix 
kD  to the local orientation has to be done by 

                                                 
19 The main in-plane orientation e1 is coincident to that on which the higher in-plane Young's 
modulus is oriented. For advanced composite materials, direction e1 is parallel to the fibre 
orientation. 
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with 
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Note, if 0α = , that implies: 5Π = Ι  and k kD = D . 

Then, the stress-strain constitutive relationship of the k th layer referred to the local 
coordinate system (x,y,z) is defined as 
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where k
pσ  and k

tσ  are the in-plane and the transverse shear stresses vectors, 

respectively. 

Finally, the stresses kσ  and strains kε  vector referred to the material coordinate 
system (e1,e2,e3) for the k th layer are computed by 

 ( ) 1Tk k k k k

k k k

−
⋅ = ⋅

⋅

= D

=

σ Π σ ε

ε Π ε
 3.52 

Although layers are treated as isotropic or orthotropic material in this work, the 
mechanical behavior of each component within FRP laminates (e.g. fibers and matrix) 
can be separately modeled using the well-known Mixing theory [61, 62] or a more 
advanced mixing theory called Serial/Parallel [63]. 

 

3.3.4 Stress resultants 
Due to the subdivision of the strains (Eq.(3.43)) also the stress resultant vector σ̂  is 

subdivided into membrane forces ˆ mσ , bending moments ˆ bσ , transverse shear forces 
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ˆ sσ , pseudo-bending moments ˆ mbφσ  and pseudo-shear forces ˆ sφσ  (Figure 3.28). ˆ mσ , 

ˆ bσ , and ˆ sσ  derives from the standard plate theory, whereas ˆ mbφσ  and ˆ sφσ  are pseudo 

stress resultants from the RZT plate theory. 

a)  b)  

 
Figure 3.28 – Direction of stress resultants of standard plate theory (a) and those derived from 

the RZT plate theory (b). 

 
The stress resultants for a plate are obtained by integrating stresses (Eq.(3.51)) over 

the thickness as 
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Transverse shear forces ˆ sσ  
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ˆ ˆ ˆˆ ˆ ˆˆ mb mb m m mb b bb mb mmbbφ φ φ φ φφ= + +D D Dσ ε ε ε  
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z

z

z

ˆ dz

ˆ dz

ˆ dz

T

T

T

k k
mb m mb p m

k k
mb b mb p b

k k k
mb mb p mb

φ φ

φ φ

φ φ φ

=

=

=

∫
∫
∫

D S D S

D S D S

D S D S

 

and finally pseudo-shear forces ˆ sφσ  

 
z

ˆ dz
Tx

y

xz k k
s s t

xz

Q

Q
φ

φ φ
φ

 
= = 
  

∫ Sσ σ  3.57 

( ) ( )z z
ˆ ˆˆ dz dz

T Tk k k k k
s s t s s s t s sφ φ φ φ φ= +∫ ∫S D S S D Sσ ε ε  

ˆ ˆˆ ˆˆ s s s s s sφ φ φ φ= +D Dσ ε ε  

z

z

ˆ dz

ˆ dz

T

T

k k
s s s t s

k k k
s s t s

φ φ

φ φ φ

=

=

∫
∫

D S D S

D S D S
 

The matrix expression for the stress resultants σ̂  can be written as 

 
ˆˆ

ˆ
ˆˆ

p pp

t tt

    
= = ⋅    
    

D 0
0 D





σ ε
σ

σ ε
 3.58 

where ˆ pσ  and ˆ tσ  contain the in-plane and transverse shear stress resultants, 

respectively, 

 
ˆ

ˆ
ˆ ˆ ˆ; ˆ

ˆ

m
s

p b t
s

mb
φ

φ

 
  = =   
   

σ
σ

σ σ σ
σ

σ

 3.59 

and the in-plane and transverse shear generalized constitutive matrices, p
D  and 

t
D  respectively, are given by 

 

ˆ ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ ; ˆ ˆ
ˆ ˆ ˆ

m mb mmb
s ss

p bm b bmb t
s s s

mb m mb b mb

φ
φ

φ
φ φ

φ φ φ

 
  

= =   
    

  

D D D
D D

D D D D D
D D

D D D

   3.60 

Analytical integration is used to compute the generalized constitutive matrices D̂ . 
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3.3.5 Principle of virtual work 
Let us consider a plate of volume V, which is subjected to the distributed surface q 

and line f loads applied on the surface AΓ  and the contour LΓ , respectively. Point loads 

pi are also acting on the plate. For this case, the differential equations of equilibrium 
(Eq.(3.4)) is rewritten as 

 
A L

A LV
1

dV d d a p
T

pl
k k T T

i i
i

Γ Γ
=

δ = δ Γ + δ Γ + δ∑∫ ∫ ∫a q a fε σ  3.61 

where the l.h.s. is the internal virtual work performed by the stresses kσ  and the 
r.h.s. is the external virtual work.  

 
Substituting Eq.(3.43) into the l.h.s. of Eq.(3.61) gives 

( )
( )

( )
( )

V V

V

V

V

V

ˆ ˆ ˆ

d

dV dV

ˆ ˆ dV

ˆV ˆ ˆ dV

ˆ ˆ dV

T T

T

T

T

T

k k T T T T T k k
m m b b mb mb p

T T T k k
s s s s t

T T k T T k T k k
m m p b b p mb mb p

T T k T k k
s s t

k

s s

k

t

φ φ

φ φ

φ φ

φ φ

δ = δ + δ + δ +

+ δ + δ

= δ + δ + δ +

+ δ

δ

+ δ

∫ ∫
∫

∫
∫

∫ ε σ

ε σ ε ε ε σ

ε ε σ

ε σ ε σ ε σ

ε σ ε σ

S S S

S S

S S S

S S

 

Using Eq.(3.43), (3.51), (3.58) yields 

( ) ( )
V A A

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆdV dA dA
Tk k T T T T T

m m b b mb mb s s s sφ φ φ φδ = δ + δ + δ + δ + δ∫ ∫ ∫ε σ ε σ ε σ ε σ ε σ ε σ  

being A the in-plate area of the plate. 
Finally, the equilibrium equations of Eq.(3.4) can be written as 

 ( )
A L

A LA
1

ˆ ˆˆ ˆ dA d d a p
pl

T T T T
p p t t i i

i
Γ Γ

=

δ + δ = δ Γ + δ Γ + δ∑∫ ∫ ∫a q a fε σ ε σ  3.62 

Theses integrands contain kinematics variables derivatives up to first order only, 
which allows to use C0 continuous finite elements. 

 

3.3.6 QLRZ formulation 

3.3.6.1 Discretization of the displacement field 
The middle surface of the plate is discretized into 4-node planar isoparametric finite 

elements of quadrilateral shape.  
The kinematic variables a of Eq.(2.3) are interpolated within each element as 
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 [ ]

0

(e)0
1

0 4
(e) (e) (e)2

1 2 3 4
1 3

4

x i i
i

y

x

y

u
v
w
θ
θ
ψ
ψ

=

 
 
   
   
   = = = ⋅ =   
   
     
 
 

∑ n n

a
a

a N a N N N N N a
a
a

 3.63 

Where 

(e)
7 0 0 0;

T

i i i x y x y i
N u v w θ θ ψ ψ = =  N I a  

being ( )( )1 1i i iN ξξ ηη= + +
1
4

(Table 3.8 and Figure 3.29) the bi-linear shape 

function of node ith and 7I  is the 7x7 unit matrix. 

Node ξi ηi 

1 -1 -1 
2 1 -1 
3 1 1 
4 -1 1 

Table 3.8 - Values of ξi and ηi for each node. 

 
Figure 3.29 – Bi-linear shape functions of quadrilateral four-noded element. 

 
The element geometry is interpolated as 

 
4 4

1 1

ˆ ˆ;i i i i
i i

x N x y N y
= =

= =∑ ∑  3.64 

where ˆ
i iN N= , which leads to an isoparametric formulation. 

The Jacobian matrix (e)J  of the transformation from the natural coordinates to the 
Cartesian coordinates is obtained using the chain rule as 
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i i i

i i i

N N Nx y
x y

N N Nx y
x y

ξ ξ ξ

η η η

∂ ∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂∂ ∂

= +
∂ ∂ ∂ ∂ ∂

 

or in a matrix form 

 (e)

i i i

i ii

N x y N N
x x

N NN x y
y y

ξ ξ ξ

η ηη

∂ ∂ ∂  ∂ ∂     
       ∂ ∂ ∂ ∂ ∂       = ⋅ =

∂ ∂∂ ∂ ∂       
       ∂ ∂∂ ∂∂      

J  3.65 

where (e)J  is the Jacobian matrix. 
                   

1(e)

ii

i i

NN
x

N N
y

ξ

η

−

∂ ∂ 
   ∂∂     =  ∂ ∂  
  ∂ ∂   

J  

with  

1(e)
(e)

1
y y

x x
η ξ

η ξ

−

∂ ∂ − ∂ ∂   =  ∂ ∂ − ∂ ∂ 

J
J

 

being (e)J  the Jacobian determinant. Thus, 

 
(e)

(e)

1

1

i i i

i i i

N N Ny y
x

N N Nx x
y

η ξ ξ η

ξ η η ξ

∂  ∂ ∂ ∂ ∂
= − ∂ ∂ ∂ ∂ ∂ 

∂  ∂ ∂ ∂ ∂
= − ∂ ∂ ∂ ∂ ∂ 

J

J

 3.66 

The Jacobian determinant is also used to determinate the differential area in natural 
coordinates as 

 (e)dx dy d dξ η= J  3.67 

The term of (e)J  are computed using the isoparametric transformation of Eq.(3.64) 

as 
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4 4

1 1

4 4

1 1

;

;

i i
i i

i i

i i
i i

i i

N Nx xx x

N Ny yy y

ξ ξ η η

ξ ξ η η

= =

= =

∂ ∂∂ ∂
= =

∂ ∂ ∂ ∂
∂ ∂∂ ∂

= =
∂ ∂ ∂ ∂

∑ ∑

∑ ∑
 

Thus, the Jacobian matrix is defined by 

 
4

(e)

1

i i
i i

i i i
i i

N Nx y x y

x y N Nx y

ξ ξ ξ ξ

η η η η
=

∂ ∂∂ ∂   
  ∂ ∂ ∂ ∂  = =

∂ ∂ ∂ ∂  
  ∂ ∂ ∂ ∂   

∑J  3.68 

3.3.6.2 Generalized strain field 

The interpolated generalized in-plane strains (e)ˆ pε  within each finite element are 

obtained by substituting Eq.(3.63) into Eq.(3.43) as 

 

(e)
0

0

0
0

0 0
0 0

(e)

(e)

ˆ
ˆ ˆ

ˆ

i

i

i i

x i
x

y i
m

p b
yx

mb

x

y

x

y

u N ux x
v N vy y

u v N Nu vy x y x

N
x x

N
y y

y x

x

y

y

x

φ

θ
θ

θ
θ

θθ

ψ

ψ

ψ

ψ

∂  ∂
 ∂ ∂ 

∂ ∂ 
 ∂ ∂ 
∂ ∂  ∂ ∂+ + ∂ ∂ ∂ ∂ 

 ∂  ∂
 ∂ ∂ 

∂  ∂   ∂ ∂   = = =  ∂ ∂  +   ∂ ∂ 
 ∂
 

∂ 
 ∂
 

∂ 
 ∂
 

∂ 
 ∂
 

∂ 

ε
ε ε

ε

4 4
(e) (e)

1 1
i

y

p i p
i ii i

x y

i
x

i
y

i
x

i
y

i

N N
y x

N
x

N
y
N
y

N
x

θ θ

ψ

ψ

ψ

ψ

= =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  = =
∂ ∂ + ∂ ∂
 
 ∂
 ∂ 

∂ 
 ∂ 

∂ 
 ∂ 

∂ 
 ∂ 

∑ ∑ nB a B a

3.69 
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where pB  and 
ipB  are the in-plane generalized strain matrices for the element and 

the ith node, respectively. The matrix 
ipB  is split into membrane ( )m , bending ( )b  

and zigzag ( )mbφ  contributions, which leads to 

 
i

m

p b

mb iφ

 
 =  
  

B
B B

B
 3.70 

with 

 

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

i i

i

i i

i i
m b

i i i i

i

i

mb
i

i

N N
x x

N N
y y

N N N N
y x y x

N
x

N
y

N
y

N
x

φ

= =

=

   ∂ ∂
   
∂ ∂   

∂ ∂   
   ∂ ∂
   ∂ ∂ ∂ ∂   
   ∂ ∂ ∂ ∂   

∂ 
 ∂ ∂ 

∂ 
 ∂
 

∂ 
 ∂ 
  ∂

B B

B

3.71 

Generalized transverse strains (e)ˆ tε  are also obtained by the same manner as 

 

(e)
0

0

(e)
4 40(e) (e) (e)0

1 1

ˆ
ˆ

ˆ i

i
x i x

is
y i yt t i t

i is

x i x

y i y i

w N w N
x x

w N w N
y y

N
N

φ

θ θ

θ θ

ψ ψ
ψ ψ

= =

∂ ∂   − −   ∂ ∂   
∂ ∂     − −= = = = =     ∂ ∂

     
   
   
   

∑ ∑ nB a B a
ε

ε
ε

3.72 

where tB  and 
it

B  are the transverse generalized strain matrices for the element and 

the ith node, respectively. Matrix 
it

B  is split into shear ( )s  and zigzag ( )sφ  

contributions as 
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i

s
t

s iφ

 
=  
 

B
B

B
 3.73 

where 

 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

i

i

i
i

s
i

i

i
s

i

N N
x

N N
y

N
Nφ

∂ − ∂ =
∂ − ∂ 

 
=  
 

B

B

 3.74 

3.3.6.3 Element stiffness matrix and nodal forces vector 
Considering Eqs.(3.5), (3.62), the element stiffness matrix and nodal forces vector 

are obtained via the following equation 

 ( )(e) (e) (e)

(e) (e) (e) (e) (e)

A A S
ˆ ˆˆ ˆ dA dA dS

T T T T T

p p t tδ + δ = δ + δ + δ∫ ∫ ∫ na q a f a pε σ ε σ  3.75 

being A(e) the element area and S(e) the element side where f is applied. 
Considering that 

(e) (e) (e) (e) (e) (e)ˆ ˆT T T T T TT T T
p p t tδ = δ ; δ = δ ; δ = δn n n na B a B a a Nε ε  

and substituting Eq.(3.58) into Eq.(3.75) gives 

( )(e) (e)

(e)

(e) (e) (e)

A A

(e) (e)

S

ˆ ˆ dA dA

dS

T T T

T T

T T T
p p p t t t

T

δ + δ = δ +

+ δ + δ

∫ ∫
∫

 ε εn n n n

n n n

a B D a B D a N q

a N f a p
 

Substituting Eqs.(3.69), (3.72) into previous equation yields 

( )(e) (e)

(e)

(e) (e) (e) (e) (e)

A A

(e) (e)

S

dA dA

dS

T T T

T T

T T T
p p p t t t

T

δ + δ = δ +

+ δ + δ

∫ ∫
∫

 

n n n n n n

n n n

a B D B a a B D B a a N q

a N f a p
 

Thus, the equation is factorized as 

( ){ } ( )(e) (e) (e)

(e) (e) (e)

A A S
dA dA dS

T TT T T T
p p p t t t

 δ + = + + δ ∫ ∫ ∫n n n n na B D B B D B a N q N f p a 

( )(e) (e) (e)

(e)

A A S
dA dA dST T T T

p p p t t t
 + = + + ∫ ∫ ∫n n nB D B B D B a N q N f p   

Finally, Eq.(3.75) is reduced to 
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(e) (e)

(e) (e)

A S
dA dST T= + +∫ ∫n n nK a N q N f p  3.76 

with  

 ( )(e)

(e)

A
dAT T

p p p t t t= +∫K B D B B D B   3.77 

Matrix (e)K  is the elemental stiffness matrix, which for convenience is split as 

(e) (e) (e)
p t= +K K K  

being (e)
pK  and (e)

tK  the in-plane and the transverse elemental stiffness matrices, 

respectively, defined as 

 
(e)

(e)

(e)

A

(e)

A

dA

dA

T
p p p p

T
t t t t

=

=

∫
∫

K B D B

K B D B





 3.78 

To facilitate subsequent shear locking studies, matrix (e)
tK  is split as follows 

 (e) (e) (e) (e) (e) T

t s s ss ssφ φ φ + + +  K = K K K K  3.79 

with 

 

(e)

(e)

(e)

(e)

A

(e)

A

(e)

A

ˆ dA

ˆ dA

ˆ dA

T
s s s s

T
s s s s

T
ss s ss s

φ φ φ φ

φ φ φ

=

=

=

∫
∫
∫

K B D B

K B D B

K B D B

 3.80 

The external nodal forces vector extF  are defined by the r.h.s. of Eq.(3.76) as 

 
(e) (e)

ext

A S
dA dST T= + +∫ ∫n nF N q N f p  3.81 

Considering Eq.(3.67) and dA = dx dy , the integrals of Eq.(3.78) defined in the 
Cartesian coordinate are transformed to the natural coordinate as 

 
(e)

(e)

1 1(e) (e)

A 1 1
1 1(e) (e)

A 1 1

dA d d

dA d d

T T
p p p p p p p

T T
t t t t t t t

ξ η

ξ η

+ +

− −

+ +

− −

= =

= =

∫ ∫ ∫
∫ ∫ ∫

K B D B B D B J

K B D B B D B J

 

 

 3.82 

Note that, the derivatives of the shape functions with respect to the Cartesian 
coordinates contained into the generalized strain matrices B  are computed by Eq.(3.66
). The integrals of Eqs.(3.82) are solved via numerical integration using the Gauss 
quadrature as 
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41 1(e) (e) (e)

1 1
1

41 1(e) (e) (e)

1 1
1

d d

d d

GP GP

GP GP

T T
p p p p p p p GP

GP

T T
t t t t t t t GP

GP

W

W

ξ η

ξ η

ξ η

ξ η

+ +

− −
=

+ +

− −
=

 = =  

 = =  

∑∫ ∫

∑∫ ∫

( , )

( , )

K B D B J B D B J

K B D B J B D B J

 

 

 3.83 

where a 2x2 integration scheme is used for providing an exact integration of both, 

the (e)
pK  and the (e)

tK  matrices. The subscript GP indicates the actual integration point 

(the Gauss points) under consideration, which weighting factor is GPW . Matrices B  

and the Jacobian determinant are evaluated at point GP. 
 
The natural coordinates and the weighting factor of each Gauss point GP GPξ η( , )  

are listed in Table 3.9.  

GP 
GP GPξ η( , )  

GPW  
GPξ  GPη  

1 
1
3

−  
1
3

−  1 

2 
1
3

+
 

1
3

−
 

1 

3 
1
3

+
 

1
3

+
 

1 

4 
1
3

−
 

1
3

+
 

1 

Table 3.9 – Natural coordinates and weighting factors of each Gauss point. 

 
However, when full Gauss integration is used, the QLRZ element suffers from 

shear locking for slender plates, which leads to too stiff solutions. Note that for 
homogeneous plate the QLRZ becomes to the 4-noded quadrilateral Reissner-Mindlin 
finite element (QLLL), which is based on the FSDT theory. Taking into account that 
the QLLL element also suffers from shear locking it is reasonable to think that the 
causes of shear locking in the QLRZ element are the same as in the QLLL element. For 
the QLLL element, it is demonstrated [108] that according the plate is more slender the 

contribution of (e)
sK  (Eq.(3.79)) in the stiffness matrix (e)K  is progressively increasing 

until infinity in the limit case for h = 0. Thus, it is considered that the source of shear 
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locking in the QLRZ element is also related to the shear stiffness contribution of (e)
sK , 

as showed below in this chapter.  
 
In order to avoid this numerical problem, a reduced integration of the shear 

contribution using a selective integration technique, where the (e)
sK  matrix is integrated 

by using one Gauss point only, can be used. However, it may further lead to undesired 
hour-glassing, which can propagate through the finite element mesh. For this reason, it 
is has to be carefully used.  

 
Another robust technique is the assumed transverse shear strains approach 

developed by Dvorkin and Bathe [109, 110], which is adopted for overcoming the shear 
locking effects in the QLRZ element. This approach is based on the imposition of a 
special transverse shear strain ˆ sε  field, which satisfies the Kirchhoff condition for thin 

plate, e.g. ˆ 0s =ε . Note, ˆ sε  is the shear strain of the Reissner-Mindlin theory.  
 

The assumed elemental shear strain (e)ˆ sε  related to the Cartesian coordinate is 
defined as 

 (e) (e)ˆ s s n= B aε  3.84 

where sB  is the sought substitute transverse shear strain matrix. Thus, this 

technique leads to matrix sB  (Eq.(3.73)) being replaced by the substitutive matrix sB  

of Eq.(3.96) . Therefore, the stiffness matrices (e)
sK  and (e)

sφK  (Eq.(3.80)) of (e)
tK are 

now computed by 

 
(e)

(e)

(e)

A

(e)

A

ˆ dA

ˆ dA

T
s s s s

T
ss s ss sφ φ φ

=

=

∫
∫

K B D B

K B D B
 3.85 

The computation of sB  is briefly explained at following. A detailed description of 
this technique can be found in [108].  

 
Computation of the substitutive shear strain generalized matrix sB  

The assumed natural transverse shear strain field is given by 
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1

1 2 2'

3 4 3

4

1 0 0
ˆ .

0 0 1s
ξ

η

α
γ α α η αη
γ α α ξ αξ

α

 
 +       = = = =       +      
 

Aε α  3.86 

where coefficients αi are obtained by sampling the natural shear strains at the four 
points I, II, III and IV. Points I and III are denoted by symbol + whereas points II and 
IV by x. Figure 3.30 shows the assumed strain field. 

The transverse shear strains in the Cartesian coordinate system are expressed as  

 1 'ˆ ˆxz
s s

yz

γ
γ

− 
= = 
 

Jε ε  3.87 

where J  is the 2D Jacobian matrix defined by Eq.(3.68). 

For convenience, a transverse shear stress along the predefined orientations iξ  
(Figure 3.31) is defined as 

 ( ) ( )1 2 3 4cos sin ; 1, 4
i

i i iξγ α α η δ α α ξ δ= + ⋅ + + ⋅ =  3.88 

where iδ  is the angle between direction iξ  and the natural axis ξ . The matrix 
form of Eq.(3.88) is written as 

 

1

2

3

4

1

2

3

4

1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

ξ

ξ

ξ
ξ

ξ

γ α
γ α

αγ
αγ

  −           = = ⋅ =          −    

Pγ α  3.89 

where ξγ  contains the values of the assumed transverse shear strain at each 

sampling points (+ and x).  
From Eq.(3.89) 

 1
ξ

−= Pα γ  3.90 

where the strains 
iξ

γ  are related to 
jξ

γ  and 
jηγ  ( , )j I IV=  by 
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1

2

3

4

'

1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0

ˆ
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

I

I

II

II

III

III

IV

IV

ξ

η

ξ ξ

ηξ

ξ
ξξ

ηξ

ξ

η

γ

γ
γ γ

γ γ

γγ

γγ
γ

γ

 
 
 
                = = ⋅ =                
 
 
  

Tγ γ  3.91 

Combining Eqs.(3.86), (3.90), (3.91) gives 

 ' 1 'ˆ ˆs
−= AP Tε γ  3.92 

The Cartesian transverse shear strains γ̂  at the sampling points are related to the 

natural transverse shear strains 'γ̂  by 

 

I I

II II'

III III

IV IV

ˆ
ˆ

ˆ ˆ ˆ;
ˆ
ˆ

xz
j

yz j

γ
γ

   
        = ⋅ = =           
   

J 0 0 0
0 J 0 0

C
0 0 J 0
0 0 0 J

γ
γ

γ γ γ
γ
γ

 3.93 

The Cartesian shear strains and the nodal displacements a are related as 

 ˆ s= B aγ  3.94 

where sB  is the original transverse generalized strain matrix (Eq.(3.74)) evaluated 

at the jth sampling point. Note that matrix C  is also evaluated at each jth point. 
Substituting Eqs.(3.92), (3.93), (3.94) into (3.87) yields 

 1 1ˆ s s s
− −= =J AP TCB a B aε  3.95 

where sB  is the sought substitute transverse shear strain matrix given by 

 1 1
s s

− −=B J AP TCB  3.96 
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Figure 3.30 – Assumed transverse shear strain field. 

 

 
Figure 3.31 - QLRZ element. Evaluation points of the kinematics variables and the assumed 

shear strains. 

3.3.6.4 Boundary conditions 
The boundary conditions are: 

• Clamped side: 

0
0
0

x x

y y

w
u
v

θ ψ
θ ψ

=
= = =
= = =

 

• Simply supported side: 
Hard Support 

0s s sw u θ ψ= = = =  

Soft Support 

0w =  

where “s” is the direction of the side. 
• Symmetry axis: 

0n n nu θ ψ= = =  

where “n” is the orthogonal direction to the symmetry axis. 
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3.3.6.5 Improved computation of transverse shear stresses  
Whereas in-plane stresses ( ), andx y xyσ σ τ  are well predicted by Eq.(3.51), the 

transverse shear stresses ( )andxz yzτ τ  are not. The reason is that the constitutive yields 

a constant value into each layer, leading to a discontinuous thickness distribution of 
andxz yzτ τ . A useful alternative is to compute xzτ  and yzτ  from the in-plane stresses 

using the equilibrium equations 

 
0

0

xyx xz

xy y yz

x y z

x y z

τσ τ

τ σ τ

∂∂ ∂
+ + =

∂ ∂ ∂
∂ ∂ ∂

+ + =
∂ ∂ ∂

 3.97 

from which, the transverse shear stresses at a point “P” within the finite element 
across the thickness coordinates z are computed by 

 
2 2

2 2

( )

( )

z z xyx
xz P h h

P P

z zy xy
yz h hP

P P

z dz dz
x y

z dz dz
y x

τστ

σ τ
τ

− −

− −

∂∂
= − −

∂ ∂

∂ ∂
= − −

∂ ∂

∫ ∫

∫ ∫
 3.98 

The in-plane stresses at point “P” are approximated by 

 

4

1
4

1
4

1

( ) ( )

( ) ( )

( ) ( )

i
x i xP P

i

i
y i yPP

i

i
xy i xyPP

i

z N z

z N z

z N z

σ σ

σ σ

τ τ

=

=

=

= ⋅

= ⋅

= ⋅

∑

∑

∑

 3.99 

where iN  is the shape function and i denotes the ith node. The nodal stresses 

( )i
x zσ , ( )i

y zσ  and ( )i
xy zτ  are obtained by the averaging of Gauss stresses from 

neighboring elements at the ith node. Finally, the transverse shear stresses are obtained 
by replacing Eq.(3.99) into Eq.(3.98), 
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4 4

2 2
1 1

4 4

2 2
1 1

( ) ( ) ( )

( ) ( ) ( )

z zi ii i
xz x xyP h h

i iP P

z zi ii i
yz y xyP h h

i i PP

N Nz z z
x y

N Nz z z
y x

τ σ τ

τ σ τ

− −
= =

− −
= =

  ∂ ∂
= − ⋅ − ⋅    ∂ ∂   

   ∂ ∂
= − ⋅ − ⋅    ∂ ∂  

∑ ∑∫ ∫

∑ ∑∫ ∫
 3.100 

3.3.7 QLRZ studies 
3.3.7.1 Shear locking 

In order to show the efficiency of the assumed transverse shear strain technique for 
overcoming shear looking effects, a simply supported (SS) square plate of length side 

2L =  under a uniformly distributed load of unit value ( 1q = ) is analyzed (Figure 
3.32). 

Moreover, the selective integration technique of (e)
tK  matrix is analyzed. 

Considering that  

(e) (e) (e) (e) (e) T

t s s ss ssφ φ φ + + +  K = K K K K  

it is possible to define the following three different combinations of selective 
integration 

Integration combinations 

Combinations Exact  Reduced  

C1 (e) (e);s ssφ φK K  (e)
sK  

C2 (e)
sφK  (e) (e);s ssφK K  

C3 - (e)
tK  

Table 3.10 – Integration combinations used to assess the selective integration of Kt . 

 
Figure 3.32 – Simply supported square plate under uniformly distributed load. 
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The analysis is performed for four span-to-thickness ratios: 
5,10,50,100L hλ = = . A 3-layer composite material is used, whose properties are 

listed in Table 3.11. 
 

Laminated Material 

 
Layer 1 
(bottom) 

Layer 2 
(core) 

Layer 3 
(top) 

hi [mm] L 4λ  L 2λ  L 4λ  

E [MPa] 2.19x105 2.19x104 4.40x105 

G [MPa] 0.876x105 8.80x104 1.76x105 
Table 3.11 – Material properties of shear locking study. 

 
Only one quarter of the plate is studied due to symmetry (Figure 3.32) using a mesh 

of 16x16 QLRZ elements (Figure 3.33a) with 289 nodes and 1445 DOFs. The reference 
solution is obtained by a 3D finite element analysis using a mesh of 10x10x9 (3 
elements per ply) of 20-noded hexahedral elements (HEXA20) involving 4499 nodes 
and 13497 DOFs (Figure 3.33b). 

a) b) 

 

 

 
Figure 3.33 – Meshes used for the analysis of one quarter of the SS plate. 16x16 QLRZ 

elements (a) and 10x10x9 HEXA20 elements (b). 

Figure 3.34 shows the r ratio defined as 

 
3

QLRZ

D

w
r

w
=  3.101 

where QLRZw  and 3Dw  are the middle (z = 0) deflection at the plate center obtained 

with the QLRZ element and the 3D finite element analysis, respectively. The QLRZ 
element results have been obtained with exact integration of matrix (e)

tK  (exact), 
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employing the three selective integration listed in Table 3.10 (C1, C2, and C3), and 
finally using the assumed transverse shear strain field technique (QLRZ). 

a) b) 

 
Figure 3.34 – r ratio vs. span-to-thickness ratio L hλ = . Simply supported square plate under 

uniformly distributed load. Figure a): exact integration (exact) and the three integration 
combinations (C1, C2, and C3) of Table 3.10. Figure b): exact integration and assumed 

transverse shear strain fields (QLRZ). 

Figure 3.34 clearly shows shear locking defects when exact integration of (e)
tK  is 

used. However, it is shown that this defect disappears for both techniques. 
Figure 3.35 shows the distribution of the vertical deflection w along the plate 

central line BC (Figure 3.32). Figure 3.35a reveals the existence of mechanisms when 
reduced integration is used. These mechanisms do not appear if the assumed transverse 
shear strain technique is used (Figure 3.35b). 

a) b) 

 
Figure 3.35 - Vertical deflection w along BC. Clamped square plate ( 10λ = ) under a center 
point load. Figure a): exact integration (exact) and the three integration combinations (C1, C2, 

and C3) of table AI-1. Figure b): exact integration, assumed transverse shear strain fields 
(QLRZ), and 3D analysis (HEXA20). 
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3.3.7.2 Verification 
The accuracy of the QLRZ element for isotropic homogeneous material is studied in 

this section. The aim is to evaluate the behavior of the QLRZ element when ϕi (i = x, y) 
vanishes which leads to ψi = 0 and the RZT kinematics becomes the RMT displacement 
field.  

 
This study consists in analyzing a SS and a clamped square plate of side length L = 

2 and thickness h = 0.05 (λ = L/h = 40) under a uniformly distributed load q = 1 and a 
point load P = 4 acting at the center (Figure 3.36). Isotropic homogeneous material 
properties are assumed with: E = 0.219, μ = 0.25, and G = E/2(1+ μ). 

 
Assuming symmetry along both axes, only one quarter of the plate is analyzed. 

Five different meshes of QLRZ elements whose properties are listed in Table 3.12 are 
employed (Figure 3.37). 

a) 

 
b) 

 
Figure 3.36 – Square plate ( 40λ = ) for verification and convergence analysis. SS plate (a) and 

clamped plate (b) under uniformly distributed load and central point load. 

 

a) b) c) d) e) 

 
Figure 3.37 – Meshes of nxn QLRZ elements employed for verification and convergence 

analysis. (a) n = 2; (b) n = 4; (c) n = 8; (d) n = 16; (e) n = 32. 
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QLRZ meshes properties 

Mesh N Elements Nodes DOFs 

1 2 4 9 45 
2 4 16 25 150 
3 8 64 81 405 
4 16 256 289 1445 
5 32 1024 1089 5445 

Table 3.12 – QLRZ meshes properties. 

 
The reference solution was obtained by a finite element analysis using a mesh of 

32x32 4-noded quadrilateral Reissner-Mindlin (FSDT) element with substitute shear 
strain fields [111]. 

In order to assess the element accuracy, the following relative error is defined 

 i RMT
r

RMT

w we
w
−

=  3.102 

where iw  is the vertical deflection at the center point computed with the ith QLRZ 

mesh ( )1,2,...,5i =  and RMTw  is the reference solution. The RMTw  values for all cases 

are listed in Table 3.13. 
 

Reissner-Mindlin solutions 

Boundary Load RMTw  

SS 
Distributed 0.02680 

Point 0.07730 

Clamped 
Distributed 0.00841 

Point 0.03790 
Table 3.13 – Reissner-Mindlin solutions using a mesh of 32x32 four-noded quadrilateral 

elements. 

 
The QLRZ solution of the problem and the relative error are listed in Table 3.14. 
 
Figure 3.38 shows the behavior of the error. Labels “SS-P”, “SS-q”, “C-P”, and “C-

q” refer to simply-supported-point-load, simply-supported-distributed-load, clamped-
point-load, and clamped-distributed-load, respectively. 
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Relative error (er% ) of w at center point 

Load Mesh  
SS Clamped 

w er (%) w er (%) 
D

is
tri

bu
te

d 
2x2 0.026150 -2.43 0.0080239 -4.59 
4x4 0.026638 -0.60 0.0082998 -1.31 
8x8 0.026744 -0.21 0.0083747 -0.42 

16x16 0.026770 -0.11 0.0083939 -0.19 
32x32 0.026776 -0.09 0.0083988 -0.13 

Po
in

t 

2x2 0.076049 -1.62 0.0322470 -14.92 
4x4 0.076392 -1.17 0.0360900 -4.78 
8x8 0.076767 -0.69 0.0371910 -1.87 

16x16 0.076966 -0.43 0.0375650 -0.88 
32x32 0.077097 -0.26 0.0377400 -0.42 

Table 3.14 – Relative error er  of w at center point. 

 

 
Figure 3.38 – Relative error er  of central deflection. 

 
Figure 3.38 clearly shows the convergence of the QLRZ solution to the Reissner-

Mindlin solution for all cases. Good accuracy is obtained already for the 4x4 mesh (er 
less than 2.5%) except for the C-p case (er approximately equal to 5%). Results for the 
SS case (error < 2.5%) are better than for the clamped one. The worst result is obtained 
for the clamped plate under central point load for the 2x2 mesh (er=-14.92%). 
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3.3.7.3 Convergence 
In order to study the influence of the heterogeneity of the laminated material on the 

convergence and accuracy of the QLRZ element, a SS and a clamped square plates of 
length side L = 2m and thickness h = 0.1m (λ = 20) under uniformly distributed load q 
= 1N/m2 (Figure 3.36a and Figure 3.36c) are analyzed. Three different laminated 
materials, whose properties are listed in Table 3.15, are considered for each example. 
The material heterogeneity increases from composite C1 to C3. 

 
Taking advantage of symmetry only one quarter of plate is analyzed using the 

QLRZ meshes shown in Figure 3.37. The reference solution was obtained by a 3D 
finite element analysis using a mesh of 10x10x9 (3 elements per ply) 20-noded 
hexahedral elements involving 4499 nodes and 13497 DOFs (Figure 3.39). 

 

Composite Materials 
  Layer 1 

(bottom) 
Layer 2 
(core) 

Layer 3 
(top) 

Composite C1 

hi h/3 h/3 h/3 

E [MPa] 2.19x10-1 2.19x10-2 4.40x10-1 

υ 0.25 0.25 0.25 

Composite C2 

hi h/3 h/3 h/3 

E [MPa] 2.19x10-1 2.19x10-3 2.19x10-1 

υ 0.25 0.25 0.25 

Composite C3 

hi h/10 4h/5 h/10 

E [MPa] 2.19x10-1 7.25x10-4 7.30x10-2 

υ 0.25 0.25 0.25 

Table 3.15 – Composite material properties. 

a) b) 

 

 

 

 
Figure 3.39 – 10x10x9 HEXA20 meshes employed to compute the reference solution for 

composite C1 and C2 (a), and composite C3 (b). 
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Convergence is quantified by the relative error defined as 

 3

3

i D
r

D

m me
m
−

=  3.103 

where im  and 3Dm  are the magnitudes of interest obtained with the ith QLRZ mesh 

(i = 1,2,…,5) and the 3D reference solution, respectively. The magnitudes studied m 
are: the middle (z = 0) vertical deflection w at the center point C (Figure 3.36), the axial 
stress σx on the top surface of ply 1 at point E, and ψx at point E. Since ψx does not 
appear in 3D finite element analyses, mi and m3D are the values of this magnitude 
obtained with the ith QLRZ mesh (i = 1,…,4) and the finest mesh (32x32), respectively.  

 
Results are listed in Table 3.16 and Table 3.17, and Figure 3.40 and Figure 3.41. 
It is clearly seen that convergence is always slower for the most heterogeneous 

material and for the clamped plate.  
For the clamped plate and the three materials (Table 3.16) errors are less than 10% 

for the 16x16 mesh for all variables. For the SS plate (Table 3.17) errors are less than 
2.3% for the 8x8 mesh in all cases. 

For composite C1 (the most homogeneous) errors are less than 2.9% for the 8x8 
mesh in all cases and less than 6.3% for the 4x4 mesh in all cases except for σx in the 
clamped plate.  

For the most heterogeneous material (composite C3), the difference in the results 
between the SS and the clamped plate is larger. For the SS plate (Table 3.17) errors are 
less than 2.3% for the 8x8 mesh in all variables. For the clamped plate (Table 3.16) 
errors are less than 23% for the 8x8 mesh and less than 10% for the 16x16 mesh in all 
cases. The quality of results obtained for the composite C2 is between that of 
composites C1 and C3. 

 

 Relative error re (% ) in clamped plate 

Mesh 
w at point C σx at point E ψx at point E 

C1 C2 C3 C1 C2 C3 C1 C2 C3 

2x2 11.71 50.28 60.99 99.99 100 100 26.13 80.09 86.48 
4x4 4.65 30.16 43.47 20.86 44.14 45.53 6.28 43.34 54.80 
8x8 1.60 12.32 22.44 2.90 14.35 17.24 1.47 13.68 18.58 

16x16 0.29 3.67 9.25 -1.21 -0.40 -1.15 0.30 2.58 2.22 
32x32 -0.14 0.69 2.85 -2.22 -4.70 -4.62 0.00 0.00 0.00 

Table 3.16 – Clamped square plate ( 20λ = ) under uniformly distributed load. Relative error 

re (%) for w, xσ , and xψ . 
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Relative error re (% ) in SS plate 

Mesh 
w at point C σx at point E ψx at point E 

C1 C2 C3 C1 C2 C3 C1 C2 C3 

2x2 2.69 19.36 25.83 26.98 32.89 33.24 9.11 41.06 51.92 
4x4 0.68 6.50 10.14 4.86 7.70 9.05 3.99 8.95 13.67 
8x8 0.25 1.54 2.22 -0.30 -0.79 0.44 0.71 0.40 1.84 

16x16 0.15 0.38 0.35 -1.55 -3.04 -1.92 0.07 0.45 1.44 
32x32 0.12 0.12 -0.02 -1.86 -3.49 -2.07 0.00 0.00 0.00 

Table 3.17 – SS square plate ( 20λ = ) under uniformly distributed load. Relative error re (%) 

for w, xσ , and xψ . 

a) b) c) 

 
Figure 3.40 – Clamped square plate ( 20λ = ) under uniformly distributed load. Relative error 

re (%) for w (a), xσ  (b), and xψ  (c). 

a) b) c) 

 
Figure 3.41 – SS square plate ( 20λ = ) under uniformly distributed load. Relative error re (%) 

for w (a), xσ  (b), and xψ  (c). 
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3.3.7.4 Numerical examples 
Comparison for SS square and circular composite laminated plates 
In order to show the performance of the QLRZ element for highly heterogeneous 

composite material, a square SS plate of length L = 2m and thickness h = 0.1m, and a 
circular SS plate of diameter D = 2m and thickness h = 0.1m are studied. The structures 
are loaded under a uniformly distributed load, q=10000N/m2 (Figure 3.42).  

a) b) 

 
Figure 3.42 – Square SS plate (a) and circular SS plate (b) under uniformly distributed load. 

Each plate is studied for different composite laminated materials with properties 
listed in Table 3.18 and Table 3.19. The square plate is analyzed for composites C4-7 
and the circular plate for composites C6-7. 

 
Do to symmetry only one quarter of plate is analyzed with the QLRZ meshes 

shown in Figure 3.43 whose properties are listed in Table 3.20. The reference solution 
is a 3D finite element analysis using HEXA20 elements. The different 3D meshes for 
each case are shown in Figure 3.44. Details of each mesh are listed in Table 3.21. 

 

Layer material properties 

 A B C D 
E1 157.9x102 19.15 

0.104 x102 104.1 x102 E2 9.58 x102 19.15 
E3 9.58 x102 191.5 
μ12 0.32 6.58 x10-4 

0.30 0.31 μ13 0.32 6.43 x10-8 
μ23 0.49 6.43 x10-8 
G12 5.93 x102 42.3 x10-7 

0.04x102 39.73 x102 
G13 5.93 x102 36.51 
G23 3.23 x102 124.8   
Table 3.18 – Layer material properties. E and G are given in MPa. 
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Composite laminated materials 

Composite Layer distribution hi / h 

C4  (A/C/A)  (0.1/0.8/0.1) 
C5 (A/B) (0.5/0.5) 
C6 (A/B/C/D) (0.1/0.3/0.5/0.1) 
C7 (A/C/A/C/B/C/A/C/A) (0.1/0.1/0.1/0.1/0.2/0.1/0.1/0.1/0.1) 

Table 3.19 – Layer distribution of composite materials. 

 

QLRZ meshes properties 

Mesh nxn 
Number  

of elements 
Nodes DOFs 

a 8x8 64 81 567 
b 16x16 256 289 2023 
c -- 40 53 371 
d -- 168 193 1351 

Table 3.20 – QLRZ meshes properties. 

a) b) 

 
c) d) 

 
Figure 3.43 – QLRZ meshes. Square plate: 8x8 (a) and 16x16 element (b). Circular plate: 40 (c) 

and 168 (d) elements. 
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HEXA20 mesh properties 

Mesh Composite 
Number  

of elements 
Nodes DOFs 

a C4 640 3285 9855 
b C5 512 2673 8019 
c C6 768 3897 11691 
d C7 1728 8487 25461 
e C6 602 3094 9282 
f C7 1161 5824 17472 

Table 3.21 – HEXA20 meshes properties. 

a) b) 

 

 

 

  

c) d) 

 

 

 

  

e) f) 

 

 

 

 
Figure 3.44 – HEXA20 reference meshes. Square meshes for composites C4 (a), C5 (b), C6 (c), 

C7 (d), and circular meshes for composites C6 (e) and C7 (f). 
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The RMT results for the square plate of composite C4 are also shown in Figure 
3.45. The RMT solution was obtained by using a mesh of 16x16 four-noded QLLL 
plate element [108, 112]. 

 
Figure 3.45-Figure 3.50 show the computed vertical deflection w (a), the thickness 

distribution of the axial displacement u (b), the axial stress σx (c), the transverse shear 
stress τxz (d) for each plate under study. 

 
The vertical deflection is accurately captured. At the center of plate, the maximum 

error (14%) is given by the circular plate of composite C6 for the 40-element mesh 
(Figure 3.46a). The errors are less than 10% for the finest mesh (168 elements). 

 
The thickness distribution of the axial displacement is accurately predicted in all 

cases. The ability to capture the complex kinematics of laminated composite materials 
is a key feature of the QLRZ plate element. The successful axial displacement 
prediction leads to accurate axial stress values as shown in Figures c). Figures d) 
displays the good results for the thickness distribution of the transverse shear stresses 
computed by means of Eq.(3.100).  

 
Figure 3.45 shows the inaccurate results when modeling a composite laminated 

plate using QLLL elements based on RMT. The deflection at the plate center is three 
times stiffer than the reference solution (Figure 3.45a). The RMT solution also yields an 
erroneous linear thickness distribution of the axial displacement (Figure 3.45b), which 
leads to a distorted distribution of the axial stress (Figure 3.45c). Finally, the RMT is 
unable to capture the correct transverse shear stress distribution (Figure 3.45d). 
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a) b) 

 
c) d) 

 
Figure 3.45 – SS square plate under uniformly distributed load. Composite C4. (a) Vertical 

deflection along central line BC. Thickness distribution of: (b) axial displacement u at point B, 
(c) axial stress xσ  at the center point C, and (d) transverse shear stress xzτ  at point E. 
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a) b) 

 
c) d) 

 
Figure 3.46 – SS square plate under uniformly distributed load. Composite C5. (a) Vertical 

deflection along central line BC. Thickness distribution of: (b) axial displacement u at point B, 
(c) axial stress xσ  at the center point C, and (d) transverse shear stress xzτ  at point E. 
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a) b) 

 
c) d) 

 
Figure 3.47 – SS square plate under uniformly distributed load. Composite C6. (a) Vertical 

deflection along central line BC. Thickness distribution of: (b) axial displacement u at point B, 
(c) axial stress xσ  at the center point C, and (d) transverse shear stress xzτ  at point E. 
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a) b) 

 
c) d) 

 
Figure 3.48 – SS square plate under uniformly distributed load. Composite C7. (a) Vertical 

deflection along central line BC. Thickness distribution of: (b) axial displacement u at point B, 
(c) axial stress xσ  at the center point C, and (d) transverse shear stress xzτ  at point E. 
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a) b) 

 
c) d) 

 
Figure 3.49 – SS circular plate under uniformly distributed load. Composite C6. (a) Vertical 

deflection along line BC. Thickness distribution of: (b) axial displacement u at point D, (c) axial 
stress xσ  at the center point C, and (d) transverse shear stress xzτ  at point D. 
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a) b) 

 
c) d) 

 
Figure 3.50 – SS circular plate under uniformly distributed load. Composite C7. (a) Vertical 

deflection along line BC. Thickness distribution of: (b) axial displacement u at point D, (c) axial 
stress xσ  at the center point C, and (d) transverse shear stress xzτ  at point D. 
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4 Numerical model of delamination using the beam 
LRZ and the plate QLRZ finite elements 

 A numerical model to simulate mode II/III delamination in advanced composite 
beams and plates based on the RZT theory is presented in this Chapter.  

The method uses the LRZ and QLRZ finite elements for describing the whole 
laminated material including the resin-rich zone at the interface between plies where 
delamination occurs. In other words, no additional technique for modeling the 
delamination paths is required. 

Some limitations of the model are discussed below in Section 4.1. 
 
The key attribute of the RZT theory that makes it able to capture relative 

displacement between layers is that the zigzag function depends on the transverse shear 
modulus of each layer. This feature allows changing the shape of the zigzag in-plane 
displacement by modifying the shear properties of plies. With this in mind, the relative 
displacement between neighboring layers can be modeled by simply discretizing the 
resin-rich interface zone between them (Figure 2.7) with an additional thin enough ply 
and then considerately reduce its shear modulus in comparison with those of 
neighboring layers. It is important to note that no additional kinematics variables are 
introduced in the model by incorporating these interface plies. 

The additional layers, which describe the delamination path, are also named as 
cohesive layers (cl) henceforth. Moreover, layers that make up the laminate are named 
as material layers (ml). 

  
The resin-rich zone at the interface is considered as an isotropic material. 

Therefore, the mechanical behavior of “cl” layers is controlled by an isotropic damage 
model which is developed below in Section 4.2. Note that delamination process is 
described by the intra-laminar damage of the “cl” ply.  

Intra-laminar failure mechanisms within “ml” layers are not considered. The 
mechanical behavior of these layers is considered as linear elastic. As a result, 
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delamination cannot migrate through layers but it can propagate parallel to the ply 
planes within the “cl” layers. Although failure mechanisms of material layers are 
despised in the present form of the LRZ/QLRZ delamination model, they can be 
accounted for in the future. 

 
The non-linear problem induced by the degradation process is solved by the 

modified Newton-Raphson method presented in Section 4.3. 
 

4.1 Kinematics limitations of the LRZ and QLRZ elements for 
simulation delamination 
The most relevant limitations of the LRZ/QLRZ delamination model proceed from 

the definition of the displacement field and the zigzag function.  
 
Definition of the through-thickness displacement: The model is unable to simulate 

opening fracture mode (mode I) because the vertical displacement is defined constant 
along the laminate thickness. Thus, sliding (mode II) and scissoring (mode III) fracture 
modes can be simulated only. Of course, fracture mode III is not accounted for in 
beams since the transversal in-plane displacement is not considered (Eq.(3.6)).  

 
Definition of the zigzag function: After delamination, the laminate is divided into 

sub-laminates with their own kinematics. According to Section 2.1.4, for a given 
structural slenderness ratio, if the transverse anisotropy of the resultant sub-laminates is 
enough high, the in-plane displacement may describe a zigzag form, as shown in Figure 
4.1b.  

Zigzag patterns of in-plane displacement within sub-laminates after delamination 
cannot be captured by the present model because of the zigzag function definition. The 
reasons are deducted immediately below. For simplicity, no distinction between 
orthogonal directions (x,y) is considered. 

The zigzag function is computed by Eq.(2.10) as 

( )1 1
2

k k
k k kh βφ φ ζ−= + +  

where the slope of kφ  function for the k th layer is computed by Eq.(2.17) as 

1k
k
t

G
D

β = −  
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being k
tD  and G  the transverse shear stiffness of the k th layer and the average 

transverse shear stiffness properties of the laminate, respectively. G  is defined by 
Eq.(2.18) as 

1

1

kN

k
k t

hG h
D

−

=

 
=  

 
∑  

In order to capture relative in-plane displacement between plies with the 
LRZ/QLRZ delamination model, the zigzag function must be updated by reducing the 
shear modulus of the damaged cohesive layer, as demonstrated below in Section 4.4. 
Thus, when the transverse shear properties of a damaged layer d are reduced almost to 
zero, i.e. Dd → 0, G tends to zero. As a result, the slope of the zigzag function for all 
undamaged layers is approximately equal to the negative unit value, i.e. βk


-1, 

whereas the slope for the damaged layer is defined positive by           βd


h / hd-1.  
Therefore, the zigzag function is defined by a piecewise linear function, where its slope 
changes at the damaged ply only, as schematized in Figure 4.2a. Thus, the in-plane 
displacement of the sub-laminates can be represented by a linear distribution only 
(Figure 4.2b) because similar slopes are computed for all undamaged layers.  

 
According to Section 2.1.4 and what has been previously stated, delamination in 

multilayered structures having low span-to-thickness ratio and high transverse 
anisotropy cannot be correctly simulated with the present model.  

However, that is not the case of advanced composite materials where the shear 
modulus does not differ generally in more than one order of magnitude between layers 
[113]. Moreover, laminated structures of composite materials are generally 
characterized by high slenderness ratios.  

Furthermore, delamination in three-layered laminates can be modeled with 
independence of the level of transverse anisotropy and the slenderness of the 
structures20 because the in-plane displacement within each sub-laminate presents a 
linear distribution. For these materials, sub-laminates consist of at most two layers 
where the linear kinematics is governed by the stiffer ply only. 

 Because of this, skin-core delamination in sandwich materials can be also modeled 
with the LRZ/QLRZ delamination model, as shown in Section 4.6.1. 

 
 
 
 

                                                 
20 In order to avoid tall beams/plates, the span-to-thickness ratio has to be at least 5. 
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a) b) 

 
Figure 4.1 – In-plane displacement before a) and after b) delamination. 

 

a) b) 

 
Figure 4.2 – Zigzag function a) and RZT in-plane displacement b) after delamination. 

 

4.2 Isotropic damage model 
The mechanical behavior of the cohesive layer is described by the isotropic damage 

model detailed below. 
 
Among different continuum damage models such as those found in Ref. [114-117], 

the simple and robust isotropic damage model proposed by Oliver et al. [118] is used to 
manage the non-linear behavior of the “cl” layers.  

The level of damage or degradation is monitored through a single internal scalar 
variable d, which takes values ranged between 0 (no damage) and 1 (full damage). This 
variable represents the loss of the material stiffness as shown in Figure 4.3a. Physically, 
the degradation process is characterized by the presence and the growth of micro-cracks 
and -cavities within the solid which leads to a reduction of the effective area of load 



Section 4.2 
 

103 

transfer. Thus, the real stresses vector σ  of any isotropic layer is transformed to an 
effective one 0σ  as 

 
( )0 =
1 d−
σ

σ  4.1 

where d measures the degradation level of the isotropic layer in all direction.  
From Eq.(4.1), the real stresses vector is defines as 

 ( ) ( )0 0= 1 1d d− = − Dσ σ ε  4.2 

where ε  is the strain vector and 0D  is the undamaged isotropic constitutive 

matrix which can be easily obtained from Eq.(3.10) and Eq.(3.48) for beams and plates, 
respectively. 

In order to distinguish between a damage state and an undamaged one, it is 
necessary to define a damage criterion which is formulated here in the undamaged 
stress space as 

 ( ) ( ) ( )0 0, 0F d f c d= − ≤σ σ  4.3 

where f is a norm used to compare different states of deformation and c is the 
damage threshold. Note that f depends on the effective stresses whereas c is a function 
of the damage variable. Damage occurs when the value of f is larger than c. Damage 
starts for f  > c0, being c0 the initial damage threshold value, which depends on the 
material properties, defined as 

 0
0

tfc
E

=  4.4 

where tf  is the tensile strength and 0E  the Young modulus of the undamaged 

isotropic material. 
 
The norm f  adopted in this work is defined as 

 0:f = ε σ  4.5 

For convenience, a fully equivalent expression for Eq.(4.3) is defined as 

 ( ) ( ) 0F f c= Θ −Θ ≤  4.6 

where ( )Θ ⋅  is a suitable monotonic scalar function. 
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The evolution laws for the damage variable d and the damage threshold c are 
expressed as 

 ( )
c

fFd
f f

µ

µ

• •

• •

=

∂Θ∂
= =

∂ ∂

 4.7 

where μ is a damage consistency parameter which is used to define loading and 
unloading/reloading (Figure 4.3a) conditions according to the Kuhn-Tucker conditions 

 0 ; 0 ; 0F Fµ µ
• •

≥ ≤ =  4.8 
From Eq.(4.7), the evolution of variables d and c is obtained via integrating [119] 

as  

 
( )

{ }{ }0max ; max

d f

c c f

= Θ

=
 4.9 

In this work an exponential evolution law is adopted for ( )fΘ  (Figure 4.3b) as 

 ( ) 0

1
01

fB
ccf e

f

 
− 

 Θ = −  4.10 

Considering the norm of Eq.(4.5), the exponential softening of Eq.(4.10), and the 
initial damage threshold value 0c  (Eq.(4.4)), the parameter B is computed as 

 
( )

1

0
2*

1 0
2

f

t

G E
B

l f

−
 ⋅

= − ≥ 
 ⋅ 

 4.11 

being fG  the fracture energy per unit area and *l  a characteristic length, which is 

here defined as the influence length of each Gauss point for LRZ element and is equal 
to the square root of the influence area of each Gauss point for QLRZ element. 

a) b) 

 
Figure 4.3 – Uniaxial stress-strain curve with softening (a) and exponential damage variable 

evolution (b). 

 



Modified Newton-Raphson method 
 

105 

4.3 Non-lineal problem solution: modified Newton-Raphson 
method 
During a material degradation process, the structure stiffness suffers changes that 

induce a non-linear response of the structure. The resulting non-linear set of equilibrium 
equations can be written as 

 ( ) ( )ext int 0− = =F F q R q  4.12 

where q , extF  and ( )intF q  are the discretization parameters, the external and the 

internal forces vectors, respectively. ( )R q  is the residual forces vector. Note, dynamic 

forces are not considered. 
The solution of Eq.(4.12) is achieved by using an incremental-iterative method 

employing sufficiently small increment from a known solution. Thus, the non-lineal 
problems is formulated as the solution of 

 ( ) ( )ext int 0n n n− = =F F q R q  4.13 

for the nth increment and from the last known solution 

 ext ext
1 1 1; ; 0n n n− − −= = =q q F F R  4.14 

The well-known iterative Newton-Raphson method proposes a linear 
approximation of Eq.(4.13) via the truncated Taylor series as 

 
1

1 0
i

i i i
n n

n

d
−

−  ∂
≈ + = ∂ 

RR R q
q

 4.15 

where dq  is the increment of the nodal DOF at ith iteration. 
 
From Eq.(4.13) 

 
11 int

1
T

ii
i

n n

−−

−   ∂∂
= − = −  ∂ ∂   

FR K
q q

 4.16 

where TK  is the tangent stiffness matrix at i-1th iteration. 

Substituting Eq.(4.16) into Eq.(4.15) gives 

 1 1
T

i i i
n d− −R = K q  4.17 

or 

 ( ) 11 1
T

i i i
nd

−− −q = K R  4.18 
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Finally, the solution is found by updating the nodal DOF q  as 

 1= i i i
n n d− +q q q  4.19 

or 

 1= i i
n n− + ∆q q q  4.20 

with  

 
1

i
i m

m
d

=

∆ ∑q = q  4.21 

The process is repeated until the convergence criterion extς≤R F  is satisfied 

being ς  a predefined error tolerance [120]. 
In this work a modification of the Newton-Raphson method is used, where the 

tangent stiffness matrix TK  is approximated by 

 1 1
T d

i i− −≈K K  4.22 

being dK  the damaged stiffness matrix defined as 

 1 1
d d di T i− −

ω
= ω∫K B D B  4.23 

with  

 1 1 1 1
d d d dd

Ti i k i k i k

ζ
ζ− − − − =  ∫D S D S  4.24 

being 1
d

i k− D  and dD  the damaged constitutive matrix for the kth layer computed by 

Eqs.(3.10, 3.48) and the damaged generalized constitutive matrix of the whole laminate 
defined by Eqs.(3.13, 3.60), respectively. The integration domains ω and ζ  depend on 
the finite element employed.  

 
Note, the subscript d indicates damaged quantities which are computed by reducing 

the mechanical properties of those layers where damage occurs. In order to capture 
delamination, the zigzag function has to be updated. Thus, the matrix 1

d
i k− S  is set as a 

damaged quantity since it contains the zigzag function. 
 
Furthermore, the solution at the first iteration of a new nth step has to be calculated 

by means of the damaged stiffness matrix Kd computed at the last iteration of the 
previous n-1th step. 
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Figure 4.4 schematizes the original and the modified Newton-Raphson method.  

a) b) 

 
Figure 4.4 – Original (a) and modified (b) Newton-Raphson method. 

 

4.4 Update of the zigzag function to simulate delamination  
In order to capture relative displacements between layers, a technique based on 

updating the zigzag function during the degradation process of the “cl” plies is 
employed by the LRZ/QLRZ delamination model. The basics of this strategy are 
explained below. 

 
In 3D finite element analyses, the nodal internal forces are obtained by integrating 

stresses over the finite elements volume. When a finite element suffers from softening 
because the damage threshold is reached, stresses within that damaged element are 
reduced. As a result, a lack of equilibrium between the internal forces of the damaged 
element and the neighboring elements happens, which induces nodal residual forces. 
These forces generate the relative displacement between layers that typically occurs 
during a delamination process. Then, equilibrium is achieved with an iterative process 
such as that of Section 4.3. This process is schematized in Figure 4.5a. 

 
The kinematic variables (Eq.(2.3)) and stress resultants (Eqs.(3.11),(3.58)) of the 

LRZ/QLRZ finite elements are computed at the in-plane middle surface of the element 
(z = 0). Because of this, there are no forces within the laminate able to induce relative 
displacements between plies. Consequently, the LRZ/QLRZ elements are unable to 
provoke any change on the zigzag shape of the in-plane displacement by reducing 
stresses only.  

In case stresses are reduced only, a variation of the amplitude of the previous 
displacement field is obtained, instead of capturing a delaminated kinematics. That is 
because the LRZ/QLRZ kinematics variables are not able to modify by themselves the 
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shape of the zigzag displacement, but they can vary the amplitude only. This is outlined 
in Figure 4.5b – Without ϕ update. 

 
The kinematics of the RZT theory is defined by a superposition of a linear 

piecewise zigzag function over the linear FSDT displacement fields (Figure 2.3). As a 
result, the zigzag shape of the in-plane displacement is governed by the zigzag function 
ϕ only. Comprehensibly, in order to modify the zigzag form of the RZT in-plane 
displacement, the zigzag function must be updated according with the delamination 
process. Taking into account that the zigzag function depends on the transverse shear 
stiffness of each layer, the update of this function by reducing the shear properties of 
the damaged layer is a natural manner for provoking changes in the zigzag pattern of 
the in-plane displacement. 

 Taking into account that only “cl” plies are able to suffer damage in the 
LRZ/QLRZ delamination model and the degradation level is measured by the damage 
variable d, the update of the zigzag function is proposed by reducing the initial elastic 
shear moduli 0

clG  of the damaged cohesive layers “cl” as 

 ( ) 0= 1cl cl cl
dG d G−  4.25 

which leads to the definition of the average transverse shear stiffness izG  as  

 

1

1 111

1
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∑ ∑

∑ ∑
 4.26 

where Nml and Ncl denote the number of material and cohesive layers, 
respectively. The slope of zigzag function for the material layer “ml” and the cohesive 
layer “cl” are computed by 

 11

22

1 1
;

1 1

xz xz
ml clml cl

t dx x

yz yzy y
ml cl
t d

G G
D G
G G
D G

β β
β β

   − −         = =            − −   
   

 4.27 

This simple update procedure of the zigzag function allows the method to capture 
the relative displacement between layers.  
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Figure 4.5 schematizes all mentioned above. The implicit algorithm proposed to 
compute delamination with the LRZ/QLRZ model is shown in Figure 4.6.  

a) 

 
b) 

 
Figure 4.5 - The delaminated displacement field is achieved by the residual forces (R) in a plane 
stress analysis (PS) (a). Delaminación can be captured with the LRZ/QLRZ finite element when 

the zigzag function φ  is updated by reducing the shear modulus of the damaged layer (b). 
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# Loop over load increments 
 

Update external forces  extF  
 

# Iterative process   
 

If ith iteration = 1   
1 ext

d
1 −= ⋅a K F  
1 k k 1

d= S B aε  

Note that for the first iteration 1
d
−K  and k

dS  are computed at the last 
iteration of the previous load increment. 

Else 
1 1

d
i i id − −= ⋅a K R  

1i i id−= +a a a  
1i k i k i

d
−= S B aε  

Remember that 1i k
d

− S  contains the updated φ  function of the i-1th 

iteration. As a consequence, the strain field i kε  corresponds to the 
delaminated kinematics. 

End if 
 

         Evaluate undamaged stresses:     
          0

i k k i k= ⋅Dσ ε       
 

Damage evaluation in cohesive layers: 
          Compute damage variable:  

          0

1
0

0with1 :
i fB
ci cl i i cl i cl

i

cd e f
f

 
− 

 = − = ε σ     

          Correct stresses and shear moduli: 
          ( ) ( )0 0= 1 ; = 1i cl i cl i cl i cl i cl i cl

dd G d G− −σ σ                        
 

Update zigzag function: 
          Compute average transverse shear stiffness: 

1

1 111

1

1 122

ml clNml Ncl

i ml i cl
ml clt dxz

ml clNml Nclyz

ml i cl
ml clt d

h hh
D GG

G h hh
D G

−

= =

−

= =

  
 + 

    =   
    +  

  

∑ ∑

∑ ∑
 

 

Figure 4.6 - Algorithm for solving the non-linear problem by means of the modified Newton-
Raphson. Note that the zigzag function is updated at each iteration. Figure continued on the 

page. 
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          Compute zigzag slope:  

                                  

11
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for cohesive layers " "
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  
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−    =       −
  

 

 

          Compute zigzag function: 

( ) ( )1 11 ; 1
2 2

k i kk i k
yi k k k i k k kx

x x y y

hh ββφ φ ζ φ φ ζ− −= + + = + +  
 

Computation of the damaged stiffness matrix and internal forces: 

d d
ˆi T i

A
dA∫K = B D B  

inti T i T i k

V
dV= ∫F B S σ  

 

Verification of convergence criteria 
ext inti i− =F F R  

exti ς≤R F  
 

# END iterative process   
 

# END loops over load increments 
Figure 4.6 - Continuation. 

 

4.5 Multi-delamination modeling with the LRZ/QLRZ 
delamination model  
Simulation of multi-delamination with the LRZ/QLRZ delamination model is 

investigated in this section.  
 
In the LRZ/QLRZ model, relative displacements are provoked by modifying the 

shape of the zigzag function using Eqs. (4.25)-(4.27). The alteration of this function is 
motived by reducing the shear modulus of damaged cohesive layers during degradation 
process. Note that these equations are written to simulate multi-delamination, i.e. 
several “cl” plies can be damaged. However, in order to capture more than one relative 



Multi-delamination with the LRZ/QLRZ delamination model 
 

112 

displacement with the LRZ/QLRZ delamination model, some cares have to be 
accounted for when updating the zigzag function.  

 
In order to analyze the potential of the QLRZ/LRZ model for simulating multi-

delamination, a sandwich clamped beam with two possible delamination paths is 
studied.  

The beam is subjected to a vertical displacement Δw = 1mm at the free end (Figure 
4.7a). The length and thickness of the beam are L = 100mm and h = 20.02mm, 
respectively. The laminated material consists of two skins (the top and the bottom 
layers) and a less stiff core between them (the middle ply). The top and bottom 
delamination paths between skins and core are described by the cohesive layers “cl-1” 
and “cl-2”, respectively (Figure 4.7b). Thickness and mechanical properties of each 
layer are listed in Table 4.1. 

a) b) 

 
Figure 4.7 - Cantilever beam under vertical displacement a) and sandwich three-layered 

material b). 
 

Thicknesses  and material properties 
 Top  

Skin 
Core Bottom 

Skin 
Cohesive 

layers 

h [mm] 2 16 2 0.01 

E [MPa] 2.19x105 7.30x102 7.3x105 7.30x102 

G [MPa] 0.876x105 2.90x102 2.92x105 2.90x102 
Table 4.1 – Layer properties for multi-delamination study. 

 
In this case, the damage of each interface layer is induced by reducing the shear 

modulus from G = 2.9x102 MPa to G = 2.9x10-8 MPa. Note that the reduction of the 
“cl” shear modulus is applied over the whole beam length.  

 
Reference solution is computed by a plane stress analysis (PS) using a mesh of 

3200 4-noded quadrilateral finite elements (Figure 4.8). The beam length is discretized 
with 100 elements whereas the thicknesses of the skins and core are described with 3 



Section 4.5 
 

113 

and 24 finite elements, respectively. Only 1 finite element is required to define the 
cohesive layers. 

 
Figure 4.8 - Four-noded quadrilateral finite element mesh for the PS analysis. 

 
Figure 4.9 shows the thickness distribution of the axial displacement u at the free 

end for the undamaged beam (a), after first delamination at the top cohesive layer “cl-1” 
(b) (single-delamination) and after second delamination at the bottom layer “cl-2” (c) 
(multi-delamination). 

Despite the low span-to-thickness ratio and high transverse anisotropy of the beam, 
results clearly show a great agreement between the LRZ/QLRZ model and the PS 
analysis. It is appreciated that both, the single- (Figure 4.9b) and the multi-delamination 
(Figure 4.9c) are well captured. 

a) b) 

 
c) 

 
Figure 4.9 - Axial displacement u at the free end for the undamaged beam (a), for single-

delamination at the cohesive layer “cl-1” (b) and for multi-delamination (c). 
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Before to continue analyzing results, it is important to remark that after 
delamination the slope of the zigzag function (Eq.(4.27)) is controlled by the average 
transverse shear stiffness of laminate (Eq.(4.26)) which in turn is governed by the 
smallest damaged shear modulus. 

With this in mind, once the top delamination has been occurred, the shape of the 
zigzag function is controlled by the “cl-1” ply only. After second delamination, 
however, the zigzag function could be governed by the “cl-1” (if Gcl-1 < Gcl-2), the “cl-
2” (if Gcl-1 > Gcl-2) or both cohesive layers (if Gcl-1 ≈ Gcl-2). 

In consequence, the model was able to capture the second relative displacement at 
the bottom interface because the shear modulus of the “cl-2” ply have been reduced to 
the same value as the “cl-1” layer (Gcl-2 = Gcl-1 = 2.9x10-8 MPa). Otherwise, the model 
could predict wrong displacement field, as detailed below. 

 
With the aim to clarify the mentioned above, imagine a delamination process where 

the “cl-1” ply was full damage at the nth step by reducing its shear modulus to Gcl-1 = 
2.9x10-8 MPa. As a result, the undamaged zigzag function (Figure 4.10a) has to be 
updated provoking a jump at the top cohesive layer (Figure 4.10b). This update of the 
zigzag function induces the top single-delamination of Figure 4.9b.  

Then, some steps later, the shear modulus of the bottom cohesive layer is also 
reduced to 2.9x10-8 MPa (Gcl-2 = Gcl-1). Consequently, the zigzag function is updated 
again leading to two jumps at top and bottom cohesive layers (Figure 4.10c). This new 
configuration of the zigzag function provokes the multi-delamination showed in Figure 
4.9c.  

 
Now, imagine that the shear modulus of the “cl-2” layer is decreased to     2.9x10-10 

MPa instead of be reduced to 2.9x10-8 MPa, i.e. two orders of magnitude smaller than 
the shear modulus of the “cl-1” ply previously damaged.  

Therefore, the updated zigzag function has only one jump at the bottom interface 
(Figure 4.11a), instead of having two jumps like in Figure 4.10c. In consequence, a 
single-delamination path at the cohesive ply “cl-2” is computed neglecting the previous 
delamination at layer “cl-1”, as shown in Figure 4.11b. The reason is that the average 
transverse shear stiffness of laminate is now governed by the shear modulus of the “cl-
2” because of Gcl-1 > Gcl-2. 

This situation is completely unreal since not only the double-delamination could 
not be captured, but also the in-plane displacement is modified to a new configuration 
which does not take into account the relative displacement at ply “cl-1” previously 
computed. 



Section 4.5 
 

115 

Thus, in order to maintain previous delamination state, the reduced shear modulus 
of new damaged cohesive layers must not be smaller than that of the first degraded 
cohesive layer. 

 It is important to note that the difference of two orders of magnitude between the 
damaged shear moduli (arbitrarily chosen for this example) implies a difference of the 
damage variable d between both layers approximately equal to 9.9x10-9 % only. 

 
In addition, in order to capture new delamination paths, the sensibility of the zigzag 

function to be modified once first delamination has been occurred has to be studied.  
Thus, imagine that the “cl-2” shear modulus is decreased to 2.9x10-6 MPa instead 

of 2.9x10-8 MPa, i.e. two orders of magnitude larger than that of the “cl-1” layer 
previously damaged. As a result, the update of the zigzag function does not provoke 
significant changes on its previous delaminated shape (Figure 4.10b), as shown in 
Figure 4.12a. Therefore, the second delamination path at the “cl-2” ply cannot be 
captured (Figure 4.12b). The reason is that the average transverse shear stiffness of 
laminate is still governed by the shear modulus of the “cl-1” because Gcl-2 is quite larger 
than Gcl-1.  

 
Consequently, although delamination process has begun at bottom interface layer 

(Gcl-2 = 2.9x10-6), it was not possible to capture the relative displacement at "cl-2" ply. 
Note that, for this case, the difference of two orders of magnitude between the shear 

moduli implies a difference of the damage variable d equal to 9.9x10-7 % only. 
 
Summarizing, in order to predict multi-delamination with the LRZ/QLRZ 

delamination model, the reduced shear properties of new degraded interfaces must be 
almost the same as that of the first damaged cohesive layer. This precaution allows the 
model to capture new relative displacement while maintaining previous delamination 
states. 

 
In consequence, it is necessary to development an strategy for controlling the 

degradation process of each cohesive layer at Gauss point level. This topic is proposed 
as future work. Thus, the model is actually able to simulate single-delamination only. 
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a) b) 

 
c) 

 
Figure 4.10 – Zigzag function for the undamaged beam (a), for single-delamination 

at the cohesive layer “cl-1” (b) and for multi-delamination (c). 

a) b) 

 
Figure 4.11 - Zigzag function (a) and axial displacement (b) for the case where the damage 
shear modulus of the bottom cohesive layer is smaller than that of the top damaged cohesive 

layer. 
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a) b) 

  
Figure 4.12 - Zigzag function (a) and axial displacement (b) for the case where the damage 

shear modulus of the bottom cohesive layer is higer than that of the top damaged cohesive layer. 
 

4.6 Numerical examples 
The performance of the LRZ/QLRZ delamination model is analyzed in this section. 

Only single-delamination cases are studied.  
 
Simulations are carried out under the following considerations: quasi-static 

application of vertical displacement, geometrically linear problem and small 
deformation. 

 

4.6.1 Delamination in beams 
Sandwich clamped beam under vertical displacement 
Skin-core delamination at the top interface (cl-1 ply) of the sandwich clamped 

beam of Section 4.5 is analyzed. The structure is subjected to a vertical displacement 
Δw = 10mm. Dimension, boundary conditions and layer stacking of the beam are 
schematized in Figure 4.7. Layer mechanical properties are listed in Table 4.1. Tensile 
strength and fracture energy of the “cl-1” layer are equal to ft = 2MPa and 
Gf=5x104kN/m, respectively. The LRZ mesh contains 25 elements.  

The reference solution is computed by a plane stress analysis (PS) using the mesh 
of Figure 4.8. The step increment is dw = 0.003mm for both solutions. The tolerance 
value is ζ = 1x10-3 for the LRZ analysis and ζ = 1x10-2 for the PS solution due to 
difficulties for getting convergence. 

 
Figure 4.13 shows the load-displacement curve. Load P corresponds to the total 

vertical reaction computed at the clamped support whereas displacement w is the 
imposed vertical displacement Δw.  
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Figure 4.13 - Load vs. displacement curves for single-delamination in sandwich laminated 

materials. 
 
Although the error at the end of simulation is approximately 12.0%, both, the onset 

and the growth of delamination are correctly predicted by the LRZ delamination model. 
Damage starts for Δw = 0.468mm and Δw=0.414mm for the PS and LRZ models, 
respectively.  

 
After onset delamination, the LRZ solution exhibits a load drop at Δw=0.519mm, 

which is related to the update of the zigzag function. 
At this increment, degradation of the “cl-1” layer is increased from dcl = 0.98 

(Δw=0.513mm) to dcl = 0.998, approximately. This relatively small variation (2% 
approx.) of damage variable induces a significant change of the zigzag function, as 
shown in Figure 4.14, which provokes the load drop of Figure 4.13.  

 
Figure 4.14a shows the zigzag function obtained with different degradation levels 

of the top cohesive layer. In other words, the sensibility of zigzag function to the 
damage variable is shown. It is observed that no major changes on the zigzag function 
are produced until damage variable d reaches values close to 0.998.  

 
In order to reduce the load drop of Figure 4.13, smaller step increments can be 

used, as shown in Figure 4.14b. In this figure two LRZ solutions computed using 
dw=0.003mm (LRZ) and dw=0.00003mm (LRZSI) are compared. 

Results show that immediately after onset delamination, i.e. at Δw = 0.417mm, a 
very small load drop is computed by the LRZSI solution when damage variable changes 
from 0.437 to 0.976 in a few number of finite elements. Although a degradation level of 
0.976 does not induce relevant alterations in the zigzag function, it is enough to 
provoke a small fall. 
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a) b) 

 
Figure 4.14 - Undamaged and damaged zigzag function (a) and load vs. displacement curves 

obtained by the LRZ model for two different step increments (b). 
 
Figure 4.15 shows the evolution of the cl-1 damage variable for the LRZ and LRZSI 

solutions. The jump of d from 0.437 to 0.976 at Δw =0.417mm and from 0.98 to 0.998 
at Δw =0.519mm for the LRZSI and the LRZ solutions, respectively, can be observed.  

This figure also reveals that damage variable evolves faster for LRZSI than LRZ 
solution. The reason is that the strains ε used to calculate the predictor stresses (σ = D ε) 
are computed from the previous delaminated kinematics. Consequently, the greater is 
the relative displacement at the n-1th step the higher is the predictor stresses at the nth 
step. 

 

 
Figure 4.15 – Damage variable d of the “cl-1” ply at the Gauss point of the first finite element 

from the free end obtained by the LRZ model for two different step increments. 
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Figure 4.16 shows the thickness distribution of the axial displacement u at the free 
end for three different steps: before (a) (Δw =0.393mm) and after delamination onset 
(b) (Δw =2.013mm) and at the end of simulation (c) (Δw=9.993mm). 

a)  b) 

 
c) 

 
Figure 4.16 - Thickness distribution of the axial displacement u at the free end before (a) and 

after delamination (b) and at the end of simulation (c). 
 
Multilayered clamped beams under vertical displacement 
In this example single-delamination in multilayered beams is studied by modeling a 

beam of length L = 0.5m supported as shown in Figure 4.17. A vertical displacement 
Δw at the clamped support is imposed. The beam is analyzed for two laminates (L1 and 
L2) with properties listed in Table 4.2-Table 4.4. Location of the cohesive layer for 
both laminates is shown in Figure 4.18. 
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Figure 4.17 - Boundary conditions of the analyzed beam. 

 

a)  b) 

 
Figure 4.18 - Cohesive layer in laminate L1 a), and laminate L2 b). 

 

Mechanical properties of linear-elastic plies [MPa] 

Material Young’s Modulus ( 0E ) Shear Modulus ( 0G ) 

A 157.9x105 5.93x105 

B 104.0x102 40.0x102 

C 5.3x102 2.12x102 

D 2.19x102 0.876x102 

E 0.82 x102 0.328 x102 

F 0.73 0.29 

G 7.3 x102 2.92 x102 
Table 4.2 - Mechanical properties of linear-elastic layers. 

 

Mechanical properties of cohesive plies (cl) 

Material 0E  

[MPa] 
0G    

[MPa] 

Tensile 
Strength 

( tf ) 
[MPa] 

Fracture Energy ( fG ) [kN/m] 

Ductile ( D
fG ) Fragile ( F

fG ) 

Hcl 104.0x102 40.0x102 6.5 5.0x105 1.0x10-1 

Icl 0.73 0.29 0.02 5.0x105 1.0x10-2 

Table 4.3 - Mechanical properties of cohesive layers (cl). 
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Laminated materials 

Laminate Layer distribution hi / h h 
[mm] 

L1 (A/B/A/Hcl/A/B/A/B/A) (0.11/0.11/0.11/0.01/0.22/0.11/0.11/0.11/0.11) 9.1  

L2 (C/D/E/F/C/Icl/G/E/D/G) (1.0/0.12/0.1/0.08/0.14/0.02/0.08/0.1/0.06/0.2) 25.0 

Table 4.4 - Layer distribution of laminated materials. 

 

In order to show the influence of the fracture energy Gf
cl in the delamination 

process, two values of this parameter (a larger one and a smaller one) are adopted for 
the cohesive layer in each laminate. For clarity, in the followings the largest value (Gf

D) 
is associated to a “ductile” property whereas the smallest (Gf

F) to a “fragile” one. 
 
LRZ meshes of 2, 16, 128 finite elements are used in the analysis. The reference 

solution is obtained by means of a plane stress analysis (PS) using 4-noded quadrilateral 
finite elements and the isotropic damage model presented in Section 4.2 for managing 
the degradation of the cohesive layer. The beam length, the thickness of the elastic 
layers and the thickness of the cohesive ply are discretized with 100, 2 and 1 finite 
elements, respectively. The discretization chosen leads to meshes of 1700 (Figure 
4.19a) and 1900 (Figure 4.19b) 4-noded quadrilateral PS elements for the laminates L1 
and L2, respectively. 

a) 

 
b) 

 
Figure 4.19 – Four-noded quadrilateral finite element meshes for laminate L1 a), and laminate 

L2 b). 

 
Figure 4.20 and Figure 4.21 show the load-displacement curves for the laminates 

L1 and L2, respectively. The load corresponds to the vertical reaction at the clamped 
support. The displacement corresponds to the incremental displacement Δw applied at 
the clamped end (Figure 4.17). The curves shown in Figures a) are obtained when the 
“ductile” (Gf

D)  fracture energy is considered. The response of the beam when the 
“fragile” (Gf

F)  fracture energy is used is shown in Figures b). The fracture energy 
values are listed in Table 4.3. 
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Results reveal an admissible agreement between both solutions. The errors for the 
finest LRZ meshes at the end of simulation for the cases L1- Gf

D (Figure 4.20a), L1- Gf
F 

(Figure 4.20b), L2- Gf
D (Figure 4.20a) and L2- Gf

F (Figure 4.21b) are less than 11.0%, 
2.5%, 7.5% and 2.9%, respectively. LRZ solution exhibits small drops of load for the 
case L1- Gf

D (Figure 4.20a), which are not present in the PS solution. The cause of 
these drops was mentioned in the previous skin-core delamination analysis. 

 

a) Ductile material b) Fragile material 
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Figure 4.20 - Load vs. displacement curves for laminate L1 with ductile (a) and fragile (b) 

fracture energy. 

a) Ductile material b) Fragile material 
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Figure 4.21 - Load vs. displacement curves for laminate L2 with ductile (a) and fragile (b) 

fracture energy. 

When the “fragile” value of the fracture energy (Gf
F) is used, the cohesive layer 

completely loses its energy at the delamination onset, which provokes the sharp drop in 
the sample resistance, as shown in Figures b). The loss of resistance computed by the 
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PS solution is around 56% for both laminates, whereas LRZ solution gives 60% and 
70% for L1 and L2, respectively. 

 
The initial stiffness and the stiffness once delamination process has been started are 

very close to the stiffness obtained by 2D analysis in all cases. Also, is shown that 
delamination starts for similar values of displacement and load. 

 
The thickness distribution of the axial displacement u at the simply supported end, 

before and after delamination onset, is shown in Figure 4.22 and Figure 4.23 for 
laminates L1 and L2, respectively.  

a) Undamaged b) Ductile material 
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b) Fragile material 
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Figure 4.22 - Thickness distribution of the axial displacement u at the simply supported end for 
laminate L1. This figure shows the undamaged kinematics a) and the damaged kinematics when 

the “ductile” b) and the “fragile” c) fracture energy is used. 

 
The undamaged kinematics is shown in Figures a), which make evident the very 

good match between PS and LRZ kinematics. Figures b) and c) show the delaminated 
kinematics at the end of simulation when the “ductile” and the “fragile” fracture energy 
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values are used, respectively. In the “ductile” case, the LRZ elements are capable to 
capture the relative displacement with errors around 11% and 16% for laminates L1 and 
L2, respectively. In the “fragile” case, the errors are less than 3.3% for both laminates. 

Almost identical results are obtained with the quadratic LRZ beam element. 
 
Figure 4.24 shows the thickness distribution of the zigzag function φ  for laminate 

L1 (a) and laminate L2 (b). The solid line represents the initial zigzag function 
(undamaged), whereas the dashed and the dash-dot line correspond to the damaged 
zigzag function when the damage variable of cohesive layer is equal to 0.9 and 1, 
respectively. As mentioned in Section 4.4, the ability of the LRZ element to capture the 
relative displacement between plies during a delamination process lies in the zigzag 
function update according the layers are being damaged. 

a) Undamaged b) Ductile material 
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b) Fragile material 
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Figure 4.23 - Thickness distribution of the axial displacement u at the simply supported end for 
laminate L2. This figure shows the undamaged kinematics a) and the damaged kinematics when 

the “ductile” b) and the “fragile” c) fracture energy is used. 
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a) b) 
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Figure 4.24 - Undamaged and damaged zigzag function for laminate L1 a) and laminate L2 b). 

 
In order to compare the performance of the PS and the LRZ analyses, the total 

increment numbers and the incremental displacement values as well as the tolerance 
value (ζ = 1x10-4) are the same for both methods. The total increment numbers are 
equal to 1000 and 7000 for laminates L1 and L2, respectively. The incremental 
displacement value applied in each increment is 1x10-3mm and 4x10-3mm for L1 and 
L2, respectively. Table 4.5 and Table 4.6 show the total number of iterations, the 
maximum number of iteration needed for achieving convergence in any increment and 
the total CPU time used in the simulation for L1 and L2, respectively. 

As expected, the computation time needed for the PS analysis is several times 
greater than that required for LRZ solutions. Comparing with the finest 128-LRZ mesh, 
PS uses at best around 67 times the time used by LRZ solution for laminate L2 and Gf

F 
=1.0x10-3 (Table 4.6). At worst, the time used by PS is 156 times greater than that 
required by the LRZ solution for laminate L1 and Gf

D =5.0x104  (Table 4.5). If the 
comparison is made versus the 16-LRZ mesh, the time used by the PS solution is 530 
and 1954 times of that needed by the LRZ solution at best and at worst scenarios, 
respectively. 

Computational cost of  the iterative process for laminate L1 

Finite element 
Gf = 5.0x104 (Ductile) Gf = 1.0x10-2 (Fragile) 

Total Iter. Max. Iter. 
Time 
[seg] 

Total Iter. Max. Iter. 
Time 
[seg] 

2D 1700 9308 485 3069.0 3465 254 1127.0 

LRZ 
2 1543 166 1.52 - - - 
16 1286 81 1.57 1009 9 1.27 
128 2291 225 19.61 1036 23 9.45 

Table 4.5 - Computational cost of the iterative process for laminate L1. 
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Computational cost of  the iterative process for laminate L2 

Finite element 
Gf = 5.0x104 (Ductile) Gf = 1.0x10-3 (Fragile) 

Total Iter. Max. Iter. 
Time 
[seg] 

Total Iter. Max. Iter. 
Time 
[seg] 

2D 1900 18374 88 6967.0 10141 144 4223.0 

LRZ 
2 7298 76 8.10 - - - 
16 7131 53 8.11 7016 11 7.96 
128 7072 71 64.51 7372 101 65.46 

Table 4.6 - Computational cost of the iterative process for laminate L2. 

 

4.6.2 Delamination in plates 
The capability of the QLRZ element for simulating the relative in-plane 

displacements (Mode II and III) between plies is studied by modeling a simply 
supported rectangular plate of length L=1.0m, depth D=0.5m and thickness h=0.025m 
with a center hole of radius R=0.0125m (Figure 4.25a). Taking advantage of symmetry, 
only one quarter of plate is studied (Figure 4.25b). The structure is subjected to bending 
by imposing a uniform vertical displacement Δw along the segment CF  (Figure 4.25b). 
The plate is analyzed for two laminates (L1 and L2) with properties listed in Table 4.7-
Table 4.9. The cohesive layers are denoted as Icl and Jcl for the L1 and the L2 laminate, 
respectively.  

 
The reference solution was obtained via a 3D finite element analysis using a mesh 

of 16416 8-noded hexahedral elements (HEXA8) involving 18620 nodes and 55860 
DOFs (Figure 4.26). One and two finite elements are used to discretize the thickness of 
the cohesive layer and the thickness of the elastic layers, respectively. This mesh was 
used for both laminates as they share the same geometry.  

 
Mesh convergence is studied using five QLRZ meshes of 44, 102, 216, 384 and 

964 finite elements with 60, 126, 250, 429, 931 nodes and 420, 882, 1750, 3003, 6517 
DOF, respectively, as shown in Figure 4.27. 
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a) b) 

 

 

 
Figure 4.25 - Simply supported rectangular plate with a center hole. Whole structure dimensions 

a), quarter of plate under study with boundary conditions b). 

 

Mechanical properties of linear-elastic plies [MPa] 

Mat. 
Young’s Modulus Shear Modulus Poisson 

Ex Exy Ez Gxy Gxz Gyz μ 

A 157.9x105 9.584x105 9.584x105 5.93x105 5.93x105 3.227x105 0.32 

B 19.15x103 19.15x103 19.15x104 42.3x10-4 36.51x103 124.8x103 6.58 x10-4 

C 104.0x102 40.0x102 0.30 

D 5.30x102 2.12x102 0.25 

E 2.19x102 0.876x102 0.25 

F 0.82 x102 0.328 x102 0.25 

G 0.73 0.29 0.25 

H 7.3 x102 2.92 x102 0.25 

Table 4.7 - Mechanical properties of linear-elastic layers. 

 

Mechanical properties of cohesive plies (cl) 

Materials 
E0  

[MPa] 
G0  

[MPa] 

Tensile 
Strength 

( tf ) [MPa] 

Fracture Energy  

( fG ) [kN/m] 

Icl 104.0x102 40.0x102 20.0 5.0x105 
Jcl 0.73 0.29 3.0 x10-3 5.0x105 

Table 4.8 - Mechanical properties of cohesive layers (cl). 
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Laminated materials 

Laminate Layer distribution hi / h h 
[mm] 

L1 (A/C/A/C/B/Icl/C/A/C/A) (1.0/0.12/0.1/0.08/0.14/0.02/0.08/0.1/0.06/0.2) 25.0 

L2 (D/E/F/G/D/Jcl/H/F/E/H) (1.0/0.12/0.1/0.08/0.14/0.02/0.08/0.1/0.06/0.2) 25.0 

Table 4.9 - Layer distribution of laminated materials. 

 

a) b) 

 
 

  
Figure 4.26 – HEXA8 mesh for both laminates. Isometric view a), top and side view b). 

 

a) b) c) 

   
 d) e)  
 

  

 

Figure 4.27 – QLRZ meshes of 44 a), 102 b), 216 c), 384 d) and 964 e) finite elements. 

 
The load-displacement curves for both laminates are shown in Figure 4.28. The 

curves are obtained with the HEXA8 element (solid line) and the finest QLRZ mesh 
(dashed lines). The load corresponds to the total vertical reaction computed at the 
simply supported end whereas the displacement is the imposed vertical displacement 
Δw (Figure 4.25b). Results show a good agreement between both solutions. In all cases, 
the lineal-elastic QLRZ stiffness is very close to that computed by means of 3D 
analysis. Also, it is shown that delamination starts approximately at the same values of 
displacement and load.  
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Figure 4.29 shows the convergence of the normalized load value at the end of the 

simulation as the number of DOF is increased. The error for the coarser QLRZ mesh 
reaches almost 35% and 65% for the L1 and the L2 laminates, respectively. However, 
the error is around 1% (L1) and 10% (L2) for the finest QLRZ mesh. 

 
The evolution of the transverse shear stress τxz for the cohesive layer for laminates 

L1 and L2 is shown in Figure 4.31 and Figure 4.32, respectively. For the linear-elastic 
state, the HEXA8 solution gives about 12% (L1) and 30% (L2) higher maximum value 
of τxz as appreciated for Δw =0.01mm. Because of this, damage starts a little later for the 
QLRZ solution. This mismatch between both solutions is more evident for the L2 
laminate where the τxz distribution obtained with the HEXA8 mesh at Δw =0.41mm is 
similar to that computed with the QLRZ mesh at Δw =0.51mm. For the L1 laminate, no 
great differences are observed between both solutions. In all cases, approximately the 
same values of τxz are predicted at the end of the simulation (Δw =2.51mm). 

 
Figure 4.33 and Figure 4.34 show the evolution of the transverse shear distribution 

along the segments AC and BD (Figure 4.25b) for the L1 and the L2 laminate, 
respectively. Results along segment AC are influenced by the mesh topology especially 
for laminate L2 as shown in Figure 4.34 for Δw =0.01mm. However, this mesh 
dependence disappears once delamination has started.  

 
Taking into account that the degradation of the cohesive layer is governed by the 

transverse shear stress in these examples, the norm f of Eq.(4.5) can be approximated by  

2
0f Gτ  

Thus, equating the initial threshold c0 of Eq.(4.4) and the preceding equation, the 
transverse shear stress for which delamination starts is approx. computed by 

0 0 tG E fτ   

which reveals that delamination onset occurs for a transverse shear stress smaller 
than the tensile strength ft, as appreciated in Figure 4.33 and Figure 4.34. 

 
The gray-scale images shown in Figure 4.35 and Figure 4.36 illustrate the damage 

growth of the cohesive ply for laminates L1 and L2, respectively. The black color 
denotes a full damage state (d = 1). These images confirm that damage starts earlier 
when the HEXA8 finite elements are used, especially for the L2 laminate. However, the 
global response of the structure (Figure 4.28) is similar for both finite elements. 
Although the cohesive layer seems to be full damaged at the last step (Δw=2.51mm), 
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the damage variable just reaches at most a value of 0.997. For this reason, the 
transverse shear stress τxz did not decrease as expected in a softening process. Surely, if 
the test continues until the ply is full damaged, the stresses will be reduced to zero. 

The thickness distribution of the axial displacement u  at points A, B and E (Figure 
4.25b), before (Δw =0.01mm) and after (Δw =2.51mm) delamination, is plotted in 
Figure 4.37 (L1) and Figure 4.38 (L2), respectively. The QLRZ element captures the 
relative displacement with errors less than 6% and 2% for laminates L1 and L2, 
respectively. For all cases, a very good match between 3D and QLRZ kinematics was 
found. 

 
To emphasize the importance of the zigzag function update to capture relative 

displacement between layers during a delamination process, Figure 4.30 shows the 
change of the zigzag thickness distribution from an undamaged to a full damaged state 
for laminates L1 (Figure 4.30a) and L2 (Figure 4.30b). 

 
In order to compare the performance of the 3D solution and the QLRZ analysis, 

both, the total increment numbers and the incremental displacement values as well as 
the error tolerance value are the same for both methods. As expected, the computation 
time needed for the QLRZ solution is several times less than that required for the 3D 
analysis. The time used by the finest QLRZ mesh is approximately 20 and 12 times less 
than that required by the HEXA8 mesh for laminates L1 and L2, respectively. In 
addition, the computation storage space during the simulation is much greater for the 
3D analysis as expected. 

a) b) 

  

Figure 4.28 – Load vs vertical displacement for laminate L1 a) and L2 b). 
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Figure 4.29 – Mesh convergence. Normalized load value for both laminates and all meshes. 

 

a) b) 

  

Figure 4.30 – Undamaged and damaged zigzag function xφ  for laminate L1 a) and L2 b). 
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Transverse shear stress xzτ  of cohesive layer – Laminate L1 
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Figure 4.31 – Transverse shear distribution xzτ  of cohesive layer for laminate L1 computed 
with the finest QLRZ mesh (left) and the HEXA8 mesh (right) observed at four different Δw 

increments. 
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Transverse shear stress xzτ  of cohesive layer – Laminate L2 
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Figure 4.32 – Transverse shear distribution xzτ  of cohesive layer for laminate L2 computed 
with the finest QLRZ mesh (left) and the HEXA8 mesh (right) observed at four different Δw 

increments. 
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Transverse shear stress xzτ  of cohesive layer – Laminate L1 
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Figure 4.33 – Transverse shear distribution xzτ  of cohesive layer for laminate L1 along the 

segments AC  (left) and BD  (right), which were observed at four different Δw increments. 
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Transverse shear stress xzτ  of cohesive layer – Laminate L2 
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Figure 4.34 – Transverse shear distribution xzτ  of cohesive layer for laminate L2 along the 

segments AC  (left) and BD  (right), which were observed at four different Δw increments. 
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Damage growth of cohesive layer – Laminate L1 
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Figure 4.35 – Damage level of cohesive layer for laminate L1 computed with the finest QLRZ 
mesh (left) and the HEXA8 mesh (right) observed at four different Δw increments. White color 

is a sing of non-damage and black color indicates full damage. 
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Damage growth of cohesive layer – Laminate L2 
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Figure 4.36 – Damage level of cohesive layer for laminate L2 computed with the finest QLRZ 
mesh (left) and the HEXA8 mesh (right) observed at four different Δw increments. White color 

is a sing of non-damage and black color indicates full damage. 
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 Thickness distribution of the axial displacement u  – Laminate L1 
 Δw = 0.01 mm Δw = 2.51 mm 
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Figure 4.37 – Thickness distribution of the axial displacement u at three different points for 

laminate L1. Figures show the undamaged kinematics (left - Δw = 0.01 mm) and the 
delaminated kinematics at the end of simulation (right - Δw = 2.51 mm). 
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 Thickness distribution of the axial displacement u  – Laminate L2 
 Δw = 0.01 mm Δw = 2.51 mm 
   

Po
in

t A
 

  
   

Po
in

t B
 

  
   

Po
in

t E
 

  
Figure 4.38 – Thickness distribution of the axial displacement u at three different points for 

laminate L2. Figures show the undamaged kinematics (left - Δw = 0.01 mm) and the 
delaminated kinematics at the end of simulation (right - Δw = 2.51 mm). 
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5 Conclusions and future work 

This thesis dealt with the modeling of laminated materials. The formulation of the 
beam (LRZ) and plate (QLRZ) finite elements based on the RZT theory for simulating 
highly heterogeneous multilayered laminates and the development of a numerical 
method based on these elements for modeling mode II/III delamination in advanced 
composite materials were the main goals.  

The contents and main achievements of the present work are summarized in the 
following. 

 
In Chapter 2, a review of more common beam/plate theories for modeling 

laminated materials was presented. In particular, the Refined Zigzag Theory (RZT) was 
described in detail since the finite elements here developed are based on this zigzag 
theory. Then, the influence on the zigzag in-plane displacement of both, the material 
transverse anisotropy and the laminate span-to-thickness ratio was also studied. Results 
showed that the amplitude of the zigzag kinematics is increased according the 
transverse anisotropy is higher whereas it is reduced according the laminate is more 
slender. Furthermore, advanced composite materials and their failure mechanisms were 
treated, with special attention on delamination. Common numerical methods to predict 
intra- and inter-laminar failure modes were discussed.  

 
Chapter 3 dealt with development of two simple, robust, shear locking free and 

accurate isoparametric finite elements based on the RZT theory for simulating 
laminated beam and plate structures, which constitute the first achievement. The LRZ 
beam element is a two-node element with four variables per node, whereas the QLRZ 
plate element is a four-node quadrilateral element with seven variables per nodes. Both 
elements were formulated on small deformation and displacement. 
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A key attribute of these elements is that the number of node variables is constant 
and independent of the analysis layers used to define the laminate. In order to overcome 
the shear locking defect, a selective numerical integration of the transverse stiffness 
matrix is adopted in the LRZ element, and a linear shear strain field is assumed in the 
QLRZ element.  

The performance of these elements was investigated through several studies. 
Results showed that the elements are able to accurately model highly heterogeneous 
laminated materials under different loads and boundary conditions. The influence of the 
transverse anisotropy on the convergence and accuracy of the LRZ/QLRZ solutions was 
also studied. It was found that as the transverse anisotropy is greater the LRZ/QLRZ 
solution gives worse results.  

A very important feature of these elements is their ability to accurately capture the 
through-thickness distribution of both, the zigzag in-plane displacement and the axial 
stress. On the contrary, however, the transverse shear stresses distribution is defined by 
the constitutive equations as a constant pricewise function, which is far from the real 
distribution. There, the post-processing computation of the transverse shear stresses by 
means of the equilibrium equations has demonstrated to be a suitable alternative. 

An acceptable agreement between the LRZ/QLRZ solutions and the reference 
solutions was observed in all cases studied.  

 
The development of a numerical model for modeling delamination in advanced 

composite materials was addressed in Chapter 4. The model uses the LRZ/QLRZ finite 
elements for describing the whole laminated material including the resin-rich zone at 
the interface between plies where delamination takes place. In other words, no 
additional technique for modeling the delamination paths is required. The interfaces are 
defined by means of additional layers (cohesive layer), which need to be enough thin to 
avoid membrane effect. It is important to mention that no additional kinematics 
variables are introduced in the model by incorporating interface layers. Their 
mechanical behavior is managed by an isotropic damage model. Thus, the relative 
displacement between two neighbor layers occurs when the transverse shear modulus of 
the cohesive layers between them is considerably reduced in comparison with those of 
the neighbor plies. 

Only the shear fracture modes (mode II and III) can be captured with the 
LRZ/QLRZ delamination model because the vertical displacement in the RZT theory is 
defined constant through the thickness.  

In addition, as a result of the definition of the zigzag function, the model cannot 
predict the zigzag pattern of the in-plane displacement of sub-laminates after 
delamination. This limitation causes that delamination in multilayered structures having 
low span-to-thickness ratio or high transverse anisotropy of shear properties cannot be 



Chapter 5 
 

143 

properly simulated with the LRZ/QLRL delamination model. However, that is not the 
case of advanced composite laminates where the shear modulus does not differ 
generally in more than one order of magnitude between layers [113]. Moreover, 
laminated structures of composite materials are generally characterized by high 
slenderness ratios. Furthermore, delamination in three-layered laminates can be 
modeled with independence of the level of transverse anisotropy and the slenderness of 
the structures, because the sub-laminates, for this kind of material, present a linear 
displacement distribution after delamination. Because of this, skin-core delamination in 
sandwich materials can be also modeled with the model, as showed the results.  

It was demonstrated that, in order to simulate delamination with this model it is 
necessary to update the zigzag function. This update was performed by taking into 
account the level of degradation of the interface layer. 

It was also observed that, in order to predict multi-delamination with the 
LRZ/QLRZ delamination model the reduced shear properties of new degraded 
interfaces must be almost the same as that of the first damaged cohesive layer. 
Otherwise, the model may predict wrong displacements obviating previous 
delamination states or ignoring new delamination paths.  

The performance of the LRZ delamination model was analyzed through some 
single-delamination cases. The analyses include the skin delamination from the core in 
a clamped sandwich beam and the internal delamination within two different 
multilayered materials in a simple supported beam. Moreover, the influence on the 
structural response of the fracture energy of the cohesive layer was also analyzed.  

A comparison of the computational cost between the LRZ delamination model and 
the reference solution, i.e. the finite element plane stress (PS) analysis, was performed. 
As expected, the results showed that the computation time and the memory space 
needed by the LRZ model is several times less than that required by a PS analysis.  

The performance of the QLRZ delamination model has been studied by simulating 
internal delamination in a simply supported rectangular plate with a center hole 
subjected to bending. Two different multilayered materials were used and the results 
were compared with a reference solution obtained with a 3D finite element analysis.  

It was observed that the LRZ/QLRZ delamination model predicts with an 
acceptable precision the onset and growth of delamination. In addition, the in-plane 
displacement after delamination is also well predicted. 

 
Summarizing, the main achievement of this work is the development of a 

preliminary numerical model based on the LRZ/QLRZ finite elements for predicting 
delamination in advanced composite materials as well as in sandwich laminates. In 
addition, the LRZ beam and the QLRZ plate finite elements based on the RZT theory 
are also contributions of this thesis. 
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It should be noted that some aspects of the developments should be still improved 

in order to obtain more generality. The following are some of the most relevant aspects 
which deserve future attention. 
 

• The LRZ and QLRZ elements could be improved in order to obtain more 
generality. Membrane locking should be investigated. Finite displacements 
and rotations may be accounted for to simulate geometrically non-linear 
problems.  

 
• A better definition of the zigzag function is needed to capture zigzag 

patterns in sub-laminates after delamination with independence of the span-
to-thickness ratio and the transverse anisotropy. 

 
• A strategy for controlling the degradation process should be developed in 

order to simulate multi-delamination with the LRZ/QLRZ delamination 
model. This strategy has to be applied at each integration points.  

 
• Although the adopted isotropic damage model demonstrated to be able to 

predict the onset and growth of delamination, it would be interesting to 
evaluate other damage laws which can simulate the delamination process as 
a combination of the fracture mode II and III, i.e. mixed mode 
delamination. 

 
• In order to simulate the complex fracture behavior of advanced composites 

materials, intra-laminar failure mechanisms should be also accounted for. 
 
All numerical tools developed in this thesis were implemented by the author in his own 
finite element code. The reference solutions were computed by using the PLCD [121] 
software developed by the International Center for Numerical Methods in Engineering 
(CIMNE). Pre- and post-process tasks were carried out employing the GID [122] 
software developed by CIMNE. 



 

145 

References 

[1] Carrera, E. Theories and Finite Elements for Multilayered, Anisotropic, Composite 
Plates and Shells. Arch. Comput. Meth. Engng., 9: 87-140, 2002. 

[2] Reddy, J. N. Mechanics of Laminated Composite Plates and Shells: Theory and 
Analysis. 2nd Ed. United States of America, CRC Press, 2003. 

[3] Tessler, A., Sciuva, M. D., and Gherlone, M., "Refinement of Timoshenko Beam 
Theory for Composite and Sandwich Beams Using Zigzag Kinematics," NASA, 
Technical Publication TP-215086, 2007. 

[4] Tessler, A., Sciuva, M. D., and Gherlone, M. A consistent refinement of first-order 
shear deformation theory for laminated composite and sandwich plates using improved 
zigzag kinematics. Mechanics of Materials and Structures, 5: 341-365, 2010. 

[5] Balzani, C., "Finite element modeling of intra- and interlaminar damage growth in 
composite laminates," Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften der 
Universität Fridericiana zu Karlsruhe, Karlsruhe, Germany, 2009. 

[6] Martinez, X., Rastellini, F., Oller, S., Flores, F., and Oñate, E. Computationally 
optimized formulation for the simulation of composite materials and delamination 
failures. Composites: Part B, 47: 134-144, 2011. 

[7] Krueger, R. The Virtual Crack Closure Technique: History, Approach and 
Applications. Applied Mechanics Reviews, 57: 109-143, 2002. 

[8] Aymerich, F., Dore, F., and Priolo, P. Prediction of impact-induced delamination in 
cross-ply composite laminates using cohesive interface elements. Composites Science 
and Technology, 68: 2383-2390, 2008. 

[9] Sánchez-Palencia, E. S. Homogenization techniques for composite media. Springer-
Verlag, Berlin, Germany. Chapter: “Boundary layers and edge effects in composites”, 
121-192, 1987. 

[10] Oller, S., Miquel, J., and Zalamea, F. Composite material behavior using a 
homogenization double scale method. Journal of Engineering Mechanics, 131: 65-79, 
2005. 

[11] Carrera, E. C0z Requirements-models for the two dimensional analysis of multilayered 
structures. Composite Structures, 37: 373-383, 1997. 

[12] Kirchhoff, G. Über das Gleichgewicht und die Bewegung einer elastishen Scheibe. J 
Angew Math, 40: 51-88, 1850. 



References 
 

146 

[13] Wanji, C. and Zhen, W. A Selective Review on Recent Development of Displacement-
Based Laminated Plate Theories. Recent Patents on Mechanical Engineering, 1: 29-44, 
2008. 

[14] Timoshenko, S. P. and Woinowsky-Krieger, S. Theory of plates ans shells. 3rd Ed. 
New York, McGraw-Hill, 1959. 

[15] Timoshenko, S. P. On the correction for shear of differential equations for transverse 
vibrations of prismatic bars. Philosophical Magazine Series, 41: 744-746, 1921. 

[16] Reissner, E. The effect of transverse shear deformation on the bending of elastic plates. 
Appl. Mech., 12: 69-79, 1945. 

[17] Mindlin, R. D. Influence of rotatory inertia and shear in flexural motions of isotropic 
elastic plates. Appl. Mech., 18: 31-38, 1951. 

[18] Reddy, J. N. A simple higher-order theory for laminated composite plates. Appl. Mech., 
51: 745-752, 1984. 

[19] Kant, T. and Swaminathan, K. Analytical solution for the static analysis of laminated 
composite and sandwich plates based on a higher order refined theory. Composite 
Structures, 56: 329-344, 2002. 

[20] Matsunaga, H. Assessment of a global higher-order deformation theory for laminated 
composite and sandwich plates. Composite Structures, 56: 279-291, 2002. 

[21] Auricchio, F. and Sacco, E. Partial-mixed formulation and refined models for the 
analysis of composite laminates within an FSDT. Composite Structures, 46: 103-113, 
1999. 

[22] Carrera, E. A priori vs. a posteriori evaluation of transverse stresses in multilayered 
orthotropic plates. Composite Structures, 48: 245-260, 2000. 

[23] Reddy, J. N. and D. H. Robbins, J. Theories and computational models for composite 
laminates. Applied Mechanics Reviews, 47: 147-165, 1994. 

[24] Robbins, D. H. and Reddy, J. N. Modelling of thick composites using a layerwise 
laminate theory. Int. Journal for Numerical Methods in Engineering, 36: 655-677, 
1993. 

[25] Carrera, E. Mixed layer-wise models for multilayered plates analysis. Composite 
Structures, 43: 57–70, 1998. 

[26] Carrera, E. Evaluation of Layerwise Mixed theories for laminated Plates Analysis. 
AIAA, 36: 830-839, 1998. 

[27] Murakami, H. Laminated composite plate theory with improved in-plane responses. 
Journal of Applied Mechanics, 53: 661-666, 1986. 

[28] Murakami, H. A higher-order laminated plate theory with improved in-plane response. 
Int. J. Solids Struct., 23: 111-131, 1987. 

[29] Carrera, E. C0 Reissner-Mindlin multilayered plate elements including zigzag and 
interlaminar stress continuity. Int. J. Numer. Meth. Engng, 39: 1797-1820, 1996. 

[30] Demasi, L. Refined multilayered plate elements based on Murakami zig–zag functions. 
Composite Structures, 70: 308-316, 2005. 

[31] DiSciuva, M. A refinement of transverse shear deformation theory for multilayered 
orthotropic plates. Atti Accademia delle Scienze di Torino, 118: 279-295, 1984. 

[32] DiSciuva, M. A third-order triangular multilayered plate finite element with continuous 
interlaminar stresses. Int. J. Numer. Meth. Engng, 38: 1-26, 1995. 

[33] Cho, M. and Parmerter, R. An efficient higher-order plate theory for laminated 
composites. Composite Structures, 20: 113-123, 1992. 

[34] Averill, R. C. Static and dynamic response of moderately thick laminated beams with 
damage. Composites Engineering, 4: 381-395, 1994. 

[35] Averill, R. C. and Yip, Y. C. Development of simple, robust finite elements based on 
refined theories for thick laminated beams. Computers & Structures, 59: 529-546, 
1996. 



References 
 

147 

[36] Tessler, A., Sciuva, M. D., and Gherlone, M. A refined zigzag beam theory for 
composite and sandwich beams. Journal of Composite Materials, 43: 1051-1081, 2009. 

[37] Tessler, A., Sciuva, M. D., and Gherlone, M. Refined zigzag theory for homogeneous, 
laminated composite, and sandwich plates: a homogeneous limit methodology for 
zigzag function selection. Numerical Methods for Partial Differential Equations, 27: 
208-229, 2011. 

[38] Oñate, E., Eijo, A., and Oller, S. Simple and accurate two-noded beam element for 
composite laminated beams using a refined zigzag theory. Computer Methods in 
Applied Mechanics and Engineering, 213–216: 362-382, 2012, DOI: 
http://dx.doi.org/10.1016/j.cma.2011.11.023. 

[39] Eijo, A., Oñate, E., and Oller, S. A four-noded quadrilateral element for composite 
laminated plates/shells using the refined zigzag theory. Int. J. Numer. Meth. Engng, 95: 
631-660, 2013, DOI: http://dx.doi.org/10.1002/nme.4503. 

[40] Eijo, A., Oñate, E., and Oller, S. A numerical model of delamination in composite 
laminated beams using the LRZ beam element based on the refined zigzag theory. 
Composite Structures, 104: 270-280, 2013, DOI: 
http://dx.doi.org/10.1016/j.compstruct.2013.04.035. 

[41] Eijo, A., Oñate, E., and Oller, S. Delamination in laminated plates using the 4-noded 
quadrilateral QLRZ plate element based on the refined zigzag theory. Composite 
Structures, 108: 456–471, 2014, DOI: 
http://dx.doi.org/10.1016/j.compstruct.2013.09.052. 

[42] Gherlone, M., Tessler, A., and Di Sciuva, M. Cº beam element based on the refined 
zigzag theory for multilayered composite and sandwich laminates. Composite 
Structures, 93: 2882-2894, 2011. 

[43] Versino, D., Gherlone, M., Mattone, M., Sciuva, M. D., and Tessler, A. C0 triangular 
elements based on the Refined Zigzag Theory for multilayer composite and sandwich 
plates. Composites Part B: Engineering (online), -: -, 2012. 

[44] Barut, A., Madenci, E., and Tessler, A., "A refined zigzag theory for laminated 
composite and sandwich plates incorporating thickness stretch deformation," in 
53rdAIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials 
conference, Honolulu, Hawaii., 2012. 

[45] Barut, A., Madenci, E., and Tessler, A. C0-continuous triangular plate element for 
laminated composite and sandwich plates using the {2,2} – Refined Zigzag Theory. 
Composite Structures, 106: 835-853, 2013. 

[46] Harris, C. E., "Opportunities for Next Generation Aircraft Enabled by Revolutionary 
Materials," in AIAA SDM Conference, Denver, EEUU, 2011. 

[47] Hill, R. A theory of the yielding and plastic flow of anisotropic metals. Proceedings of 
the Royal Society of London, Serie A: Mathematical and Physical Sciences 193, 1033: 
281-297, 1948. 

[48] Tsai, S. and Wu, E. M. A general theory of strength for anisotropic materials. Journal 
of Composite Materials, 5: 58-80, 1971. 

[49] Hashin, Z. Failure criteria for unidirectional fiber composites. Journal of Applied 
Mechanics, 47: 329-334, 1980. 

[50] Goyal, V. K., Jaunky, N. R., Johnson, E. R., and Ambur, D. R. Intralaminar and 
interlaminar progressive failure analyses of composite panels with circular cutouts. 
Composite Structures, 64: 91-105, 2004. 

[51] Puck, A. and Schürmann, H. Failure analysis of FRP laminates by means of physically 
based phenomenological models. Composites Science and Technology, 58: 1045-1067, 
1998. 

[52] Dávila, C. G., Camanho, P. P., and Rose, C. A. Failure Criteria for FRP Laminates. 
Journal of Composite Materials, 39: 323-345, 2005. 

http://dx.doi.org/10.1016/j.cma.2011.11.023
http://dx.doi.org/10.1002/nme.4503
http://dx.doi.org/10.1016/j.compstruct.2013.04.035
http://dx.doi.org/10.1016/j.compstruct.2013.09.052


References 
 

148 

[53] Pinho, S. T., Dávila, C. G., Camanho, P. P., Ianucci, L., and Robinson, P., "Failure 
models and criteria for FRP under in-plane or three-dimensional stress states including 
shear non-linearity," NASA, Technical Memorandum TM-2005-213530, 2005. 

[54] ASTM Standard D3039 / D3039M - 00. Standard Test Method for Tensile Properties of 
Polymer Matrix Composite Materials. American Society for Testing and Materials, 
West Conshohokken, PA, USA, 2000. 

[55] ASTM Standard D3410 / D3410M - 03. Standard Test Method for Compressive 
Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by 
Shear Loading. American Society for Testing and Materials, West Conshohokken, PA, 
USA, 2003. 

[56] DIN Standard DIN EN 2561. Aerospace series - Carbon fibre reinforced plastics - 
Unidirectional Laminates - Tensile test parallel to the fibre direction. Deutsches 
Institut für Normung, Berlin, Germany, responsible committee NA 131-02-01 AA, 
1995. 

[57] DIN Standard DIN EN 2597. Aerospace series - Carbon fibre reinforced plastics - 
Unidirectional Laminates - Tensile test perpendicular to the fibre direction - German 
version EN 2597:1998. Deutsches Institut für Normung, Berlin, Germany, responsible 
committee NA 131-02-01 AA, 1998. 

[58] DIN Standard DIN EN 2850. Aerospace series - Carbon fibre thermosetting resin 
unidirectional laminates - Compression test parallel to fibre direction. Deutsches 
Institut für Normung, Berlin, Germany, responsible committee NA 131-02-01 AA, 
1998. 

[59] Oller, S., Martínez, X., Barbat, A., and Rastellini, F. Advanced composite material 
simulation. Ciência e Tecnologia dos Materiais, 20: 2008. 

[60] Martinez, X., "Micro mechanical simulation of composite materials using the 
Serial/Parallel Mixing Theory," Dto. Resistencia de Materiales, Universidad Politécnica 
de Cataluña, Barcelona, Spain, 2008. 

[61] Truesdell, C. and Toupin, R. The classical field theories, handbuch der physik iii/i ed.  
Berlin, Germany,, Springer-Verlag, 1960. 

[62] Car, E., Oller, S., and Oñate, E. An anisotropic elastoplastic constitutive model for 
large strain analysis of fiber reinforced composite materials. Computer Methods in 
Applied Mechanics and Engineering, 185: 245–277, 2000. 

[63] Rastellini, F., Oller, S., Salomon, O., and Oñate, E. Composite materials non-linear 
modelling for long fibre reinforced laminates: continuum basis, computational aspects 
and validations. Computers & Structures, 86: 879-896, 2008. 

[64] Bolotin, V. V. Delaminations in composite structures: its origin, buckling, growth and 
stability. Composites: Part B, 27B: 129-145, 1996. 

[65] Villaverde, B. N., "Variable mixed-mode delamination in composite laminates under 
fatigue conditions: Testing and analysis.," Departament of Physics of University of 
Girona, Girona, Spain, 2004. 

[66] ASTM Standard D2344 / D2244M - 00 (2006). Standard Test Method for Short-Beam 
Strength of Polymer Matrix Composite Materials and Their Laminates. American 
Society for Testing and Materials, West Conshohokken, PA, USA, 2006. 

[67] DIN Standard DIN EN 6033. Aerospace series - Carbon fibre reinforced plastics - Test 
metod - Determination of interlaminar fracture toughness energy - Mode I - GIc. 
Deutsches Institut für Normung, Berlin, Germany, responsible committee NA 131-02-
01 AA, 1996. 

[68] ASTM Standard D5528-01 (2007) E1. Standard Test Method for Mode I Interlaminar 
Fracture Toughness of Inidirectional Fiber-Reinforced Polymer Matrix Composites. 
American Society for Testing and Materials, West Conshohokken, PA, USA, 2007. 

[69] DIN Standard DIN EN 6033. Aerospace series - Carbon fibre reinforced plastics - Test 
metod - Determination of interlaminar fracture toughness energy - Mode II - GIIc. 



References 
 

149 

Deutsches Institut für Normung, Berlin, Germany, responsible committee NA 131-02-
01 AA, 1996. 

[70] Lee, S. M. An edge crack torsion method for mode III delamination fracture testing. 
Journal of Composites Technology and Research 15, 3: 193-201, 1993. 

[71] ASTM Standard D6671 / D6671M - 06. Standard Test Method for Mixed Mode I - 
Mode II Interlaminar Fracture Toughness of Inidirectional Fiber-Reinforced Polymer 
Matrix Composites. American Society for Testing and Materials, West Conshohokken, 
PA, USA, 2006. 

[72] Reeder, J. 3d mixed mode delamination fracture criteria-an experimentalist perspective. 
NASA Langley research center,M/S 188E, Hampton VA 23681-2199,USA. 

[73] Benzeggagh, M. and Kenane, M. Measurement of Mixed-Mode Delamination Fracture 
Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending 
Apparatus. Composite Science and Technology, 56: 439, 1996. 

[74] Wu, E. M. and Reuter-Jr., R. C. Crack Extension in Fiberglass Reinforced Plastics. T 
and M Report, University of Illinois, 275: . 1965. 

[75] Greenhalgh, E., Asp, L., and Singh, S., "Delamination resistance, failure criteria and 
fracture morphology of 0º/0º, 0º/5º and 0º/90º ply interface in cfrp," in 5th International 
Conference on Deformation and Fracture of Composite, London, United Kingdom, 
1999. 

[76] Rybicki, E. F. and Kanninen, M. F. A finite element calculation of stress intensity 
factors by a modified crack closure integral. Engineering Fracture Mechanics, 9: 931-
938, 1977. 

[77] Cherepanov, G. P. The propagation of cracks in a continuous medium. Journal of 
Applied Mathematics and Mechanics, 31: 503-512, 1967. 

[78] Rice, J. R. A Path Independent Integral and the Approximate Analysis of Strain 
Concentration by Notches and Cracks. Journal of Applied Mechanics, 35: 379-386, 
1968. 

[79] Hellen, T. K. On the Method of Virtual Crack Extension. Int. J. Numer. Meth. Engng, 
9: 187-207, 1975. 

[80] Klug, J., Wu, X. X., and Sun, C. T. Efficient modeling of postbuckling delamination 
growth in composite laminates using plate elements. AIAA, 34: 178-184, 1996. 

[81] Gaudenzi, P., Perugini, P., and Riccio, A. Post-buckling behavior of composite panels 
in the presence of unstable delaminations. Composite Structures, 51: 301-309, 2001. 

[82] Liu, P. F., Hou, S. J., Chu, J. K., Hu, X. Y., Zhou, C. L., Liu, Y. L., Zheng, J. Y., Zhao, 
A., and Yan, L. Finite element analysis of postbuckling and delamination of composite 
laminates using virtual crack closure technique. Composite Structures, 93: 1549–1560, 
2011. 

[83] Wang, J. T. and Raju, I. S. Strain energy release rate farmulae for skin-stiffener debond 
modeled with plate elements. Engineering Fracture Mechanics, 54: 211-228, 1996. 

[84] Krueger, R., Paris, I. L., O'Brien, T. K., and Minguet, P. J., "Fatigue Lifo Methodology 
for Bonded Composite Skin Stringer Configurations," NASA, Technical Memorandum 
TM-2001-210842 ARL-TR-2432, 2002. 

[85] Krueger, R., Paris, I. L., O'Brien, T. K., and Minguet, P. J. Comparison of 2D finite 
element modeling assumptions with results from 3D analysis for composite skin-
stiffener debonding. Composite Structures, 57: 161-168, 2002. 

[86] Saeedi, N., Sab, K., and Caron, J. F. Cylindrical bending of multilayered plates with 
multi-delamination via a layerwise stress approach. Composite Structures, 95: 728-739, 
2013. 

[87] Barbero, E. J. and Reddy, J. N. Modeling of delamination in laminates using a layer-
wise plate theory. International Journal of Solids and Structures, 28: 373-388, 1991. 

[88] Dudgale, D. S. Yielding of steel sheets containing slits. Journal of Mechanics and 
Physics of Solids, 8: 100-104, 1960. 



References 
 

150 

[89] Barenblatt, G. I. The mathematical theory of equilibrium cracks in brittle failure. 
Advances in Applied Mechanics, 7: 1962. 

[90] Wagner, W., Gruttmann, F., and Sprenger, W. A finite element formulation for the 
simulation of propagating delaminations in layered composite structures. Int. J. Numer. 
Meth. Engng, 51: 1337-1359, 2001. 

[91] Balzani, C. and Wagner, W. An interface element for the simulation of delamination in 
unidirectional fiber-reinforced composite laminates. Engineering Fracture Mechanics, 
75: 2597-2615, 2008. 

[92] Camanho, P. P. and Dávila, C. G., "Mixed-mode decohesion finite elements for the 
simulation of delamination in composite materials," NASA, Technical Memorandum 
TM-211737, 2002. 

[93] Zou, Z., Reid, S. R., and Li, S. A continuum damage model for delaminations in 
laminated composites. Journal of the Mechanics and Physics of Solids, 51: 333-356, 
2003. 

[94] Turon, A., Camanho, P. P., Costa, J., and Da´vila, C. G. A damage model for the 
simulation of delamination in advanced composites under variable-mode loading. 
Mechanics of Materials, 38: 1072–1089, 2006. 

[95] Balzani, C. and Wagner, W. Numerical treatment of damage propagation in axially 
compressed composite airframe panels. Int. J. Struct. Stab. Dyn., 10: 683-703, 2010. 

[96] Turon, A., "Simulation of delamination in composite under quasi-static and fatigue 
loading using cohesive zone models," University of Girona, Girona, Spain, 2007. 

[97] Turon, A., Camanho, P. P., Costa, J., and Renart, J. Accurate simulation of 
delamination growth under mixed-mode loading using cohesive elements: Definition of 
interlaminar strengths and elastic stiffness. Composite Structures, 92: 1857–1864, 
2010. 

[98] Wagner, W. and Balzani, C. Simulation of delamination in stringer stiffened fiber-
reinforced composite shells. Computers and Structures, 86: 930-939, 2008. 

[99] Na, W. J. and Reddy, J. N. Delamination in cross-ply laminated beams using the 
layerwise theory. Asian Journal of Civil Engineering, 10: 451-480, 2009. 

[100] Hosseini-Toudeshky, H., Hosseini, S., and Mohammadi, B. Delamination buckling 
growth in laminated composites using layerwise-interface element. Composite 
Structures, 92: 1846-1856, 2010. 

[101] Williams, T. O. and Addessio, F. L. A general theory for laminated plates with 
delaminations. International Journal of Solids and Structures, 34: 2003-2024, 1997. 

[102] Sciuva, M. D. and Gherlone, M. A global/local third-order Hermitian displacement 
field with damaged interfaces and transverse extensibility: FEM formulation. 
Composite Structures, 59: 433-444, 2003. 

[103] Sciuva, M. D. and Gherlone, M. Quasi-3D static and dynamic analysis of undamaged 
and damaged sandwich beams. Journal of Sandwich Structures and Materials, 7: 31-
52, 2005. 

[104] Icardi, U. and Zardo, G. C0 Plate element for delamination damage analysis, based on a 
zig-zag model and strain energy updating. International Journal of Impact Engineering, 
31: 579-606, 2005. 

[105] Icardi, U. C0 plate element based on strain energy updating and spline interpolation, for 
analysis of impact damage in laminated composites. International Journal of Impact 
Engineering, 34: 1835-1868, 2007. 

[106] Icardi, U. and Ferrero, L. Impact analysis of sandwich composites based on a refined 
plate element with strain energy updating. Composite Structures, 89: 35-51, 2009. 

[107] Zienkiewicz, O. C. and Taylor, R. L. Finite element method. Vol. 1, 5 Ed. Oxford, UK, 
Butterworth-Heinemann, 2000. 

[108] Oñate, E. Structural analysis by the finite element method. Vol. 2: Beams, plates and 
shells Barcelona, Springer-CIMNE, 2013. 



References 
 

151 

[109] Dvorkin, E. N. and Bathe, K. J. A continuum mechanics based four node shell element 
for general non-linear analysis. Engineering computations, 1: 77-88, 1984. 

[110] Bathe, K. J. and Dvorkin, E. N. A four node plate bending element based on Mindlin-
Reissner plate theory and mixed interpolation. Int. Journal for Numerical Methods in 
Engineering, 21: 367-383, 1985. 

[111] Hinton, E. and Huang, H. C. A family of quadrilateral Mindlin plate elements with 
substitute shear strain fields. Computers & Structures, 23: 409 - 431, 1986. 

[112] Oñate, E., Zienkiewicz, O., Suárez, B., and Taylor, R. L. A general methodology for 
deriving shear constrained Reissner-Mindlin plate elements. Int. Journal for Numerical 
Methods in Engineering, 33: 345-367, 1992. 

[113] Soden, S. P., Hinton, M. J., and Kaddour, A. S. Lamina properties, lay-up 
configurations and loading conditions for a range of fibre-reinforced composite 
laminates. Compos Sci Technol, 58: 1011-1022, 1998. 

[114] Simo, J. C. and Ju, J. W. Strain - and stress - based continuum damage models - I. 
Formulation. International Journal Solids Structures, 23: 821-840, 1987. 

[115] Simo, J. C. and Ju, J. W. Strain - and stress - based continuum damage models - II. 
Computational aspects. International Journal Solids Structures, 23: 841-869, 1987. 

[116] Chaboche, J. L. Continuum damage mechanics: Part I - General concepts. Journal of 
Applied Mechanics, 55: 59-64, 1988. 

[117] Chaboche, J. L. Continuum damage mechanics: Part II - Damage growth, crack 
initiation, and crack growth. Journal of Applied Mechanics, 55: 65-72, 1988. 

[118] Oliver, J., Cervera, M., Oller, S., and Lubliner, J., "Isotropic damage models and 
smeared crack analysis of concret," in Second international conference on computer 
aided analysis and design of concrete structures. Zell am See, Austria, 1990. 

[119] Oller, S. Fractura mecánica. Un enfoque global., 1ra Ed. Barcelona, España, CIMNE, 
2001. 

[120] Zienkiewicz, O. C. and Taylor, R. L. El método de los elementos finitos. Vol. 2, 5 Ed. 
Barcelona, CIMNE, 2004. 

[121] International Center for Numerical Methods in Engineering, 2011. Implicit finite 
element code for the simulation of composite materials. 
https://web.cimne.upc.edu/users/plcd/. 

[122] International Center for Numerical Methods in Engineering, 2010. Pre- and post-
processor software. http://gid.cimne.upc.es/. 

 
 

http://gid.cimne.upc.es/


 
 
 

Appendix 
 
 

 
Attention¡¡ 

 
Pages 153 to 249 of the thesis are available at the editor’s web 
 
• Oñate, E., Eijo, A., and Oller, S. Simple and accurate two-noded  

beam element for composite laminated beams using a refined zigzag   
theory. Computer Methods in Applied Mechanics and 
Engineering (IF: 2.617), 213–216: 362-382, 2012. 

      DOI: http://dx. doi.org/10. 1016/ j.cma.2011. 11.023.  
      http://www.sciencedirect.com/science/article/pii/S0045782511003690
  
 
• Eijo, A., Oñate, E., and Oller, S. A four-noded quadrilateral 

element for composite laminated plates/shells using the refined 
zigzag theory. Int. J. Numer. Meth. Engng (IF: 2.068), 95: 631-660, 
2013. 

      DOI: http://dx. doi.org/10. 1002/nme.4503. 
       http://onlinelibrary.wiley.com/doi/10.1002/nme.4503/full 
 
• Eijo, A., Oñate, E., and Oller, S. A numerical model of delamination in 

composite laminated beams using the LRZ beam element based on the 
refined zigzag theory. Composite Structures (IF: 2.231),  104:  270-280 
2013. 

       DOI: http://dx. doi.org/10. 10 6/ j.compstruc t.20 13. 04. 035. 
       http://www.sciencedirect.com/science/article/pii/S0263822313002018 
 
• Eijo, A., Oñate, E., and Oller, S. Delamination in laminated plates using the 

4-noded quadrilateral QLRZ plate element based on the refined zigzag 
theory. Composite Structures (IF: 2.231), 108: 456–471, 2014 

       DOI: http://dx. doi.org/10. 1016/ j.compstruc t.20 13. 09. 052. 
       http://www.sciencedirect.com/science/article/pii/S0263822313004996 
 
 
 

 
 
 
 
 

152 

http://www.sciencedirect.com/science/article/pii/S0045782511003690
http://www.sciencedirect.com/science/article/pii/S0045782511003690
http://onlinelibrary.wiley.com/doi/10.1002/nme.4503/full
http://www.sciencedirect.com/science/article/pii/S0263822313002018
http://www.sciencedirect.com/science/article/pii/S0263822313004996

	Declaración inicial
	Acknowledgments
	Abstract
	Resumen
	1 Introduction
	1.1 Objectives
	1.2 Organization

	2 Numerical treatment of laminated beam/plate structures
	2.1 Multilayered beam/plate theories
	2.1.1 Equivalent Single Layer models
	2.1.2 Layer-Wise models
	2.1.3 Zigzag models
	2.1.3.1 Refined zigzag theory (RZT)

	2.1.4 Influence of the span-to-thickness ratio and the transverse heterogeneity on the zigzag pattern of the in-plane displacements

	2.2 Advanced composite materials and delamination phenomenon
	2.2.1 Modeling of intra-laminar fracture modes
	2.2.2 Inter-laminar fracture mode - Delamination phenomenon
	2.2.2.1 Modeling of delamination



	3 Formulation of the beam LRZ and the plate QLRZ multilayered finite elements
	3.1 Weak form of equilibrium equations via the principle of virtual work
	3.2 LRZ beam finite element
	3.2.1 Beam RZT kinematics
	3.2.2 Strain and generalized strain
	3.2.3 Stress-strain constitutive relationships
	3.2.4 Stress resultants
	3.2.5 Principle of virtual work
	3.2.6 LRZ formulation
	3.2.6.1 Discretization of the displacement field
	3.2.6.2 Generalized strain field
	3.2.6.3 Element stiffness matrix and nodal forces vector
	3.2.6.4 Boundary conditions
	3.2.6.5 Improved computation of transverse shear stresses

	3.2.7 LRZ studies
	3.2.7.1 Shear locking
	3.2.7.2 Convergence
	3.2.7.3 Numerical examples


	3.3 QLRZ plate finite element 
	3.3.1 Plate RZT kinematics
	3.3.2 Stain and generalized strain
	3.3.3 Stress-strain constitutive relationships
	3.3.4 Stress resultants
	3.3.5 Principle of virtual work
	3.3.6 QLRZ formulation
	3.3.6.1 Discretization of the displacement field
	3.3.6.2 Generalized strain field
	3.3.6.3 Element stiffness matrix and nodal forces vector
	3.3.6.4 Boundary conditions
	3.3.6.5 Improved computation of transverse shear stresses 

	3.3.7 QLRZ studies
	3.3.7.1 Shear locking
	3.3.7.2 Verification
	3.3.7.3 Convergence
	3.3.7.4 Numerical examples



	4 Numerical model of delamination using the beam LRZ and the plate QLRZ finite elements
	4.1 Kinematics limitations of the LRZ and QLRZ elements for simulation delamination
	4.2 Isotropic damage model
	4.3 Non-lineal problem solution: modified Newton-Raphson method
	4.4 Update of the zigzag function to simulate delamination 
	4.5 Multi-delamination modeling with the LRZ/QLRZ delamination model 
	4.6 Numerical examples
	4.6.1 Delamination in beams
	4.6.2 Delamination in plates


	5 Conclusions and future work
	References
	Appendix
	Página en blanco
	Página en blanco
	Página en blanco
	LRZ_PAPER.pdf
	Simple and accurate two-noded beam element for composite laminated  beams using a refined zigzag theory
	1 Introduction
	2 General concepts of zigzag beam theory
	3 Refined zigzag theory
	3.1 Zigzag kinematics
	3.2 Computation of the zigzag function
	3.3 Constitutive relationship
	3.4 Virtual work expression

	4 Two-noded LRZ beam element
	5 Study of shear locking for the LRZ beam element
	6 Convergence study
	7 Examples of application
	7.1 Three-layered thick cantilever beam with non symmetric material properties
	7.2 Three-layered simple supported (SS) thick beams under uniform load
	7.3 Non-symmetric ten-layered clamped slender beam under uniformly distributed loading
	7.4 Modeling of delamination with the LRZ element

	8 Conclusions
	Acknowledgements
	References


	LRZ_delam_PAPER.pdf
	A numerical model of delamination in composite laminated beams using the LRZ beam element based on the refined zigzag theory
	1 Introduction
	2 Refined Zigzag Theory (RZT) for beams and LRZ beam element
	2.1 RZT kinematics
	2.2 Derivation of the zigzag function ϕk
	2.3 Stresses and resultant stresses
	2.4 LRZ beam element

	3 Isotropic damage model
	4 Algorithm for the non-linear solution
	5 Numerical simulations
	6 Conclusions
	Acknowledgements
	References


	QLRZ_delam_PAPER.pdf
	Delamination in laminated plates using the 4-noded quadrilateral QLRZ plate element based on the refined zigzag theory
	1 Introduction
	2 Refined Zigzag Theory (RZT) for plate and QLRZ plate/shell element
	2.1 RZT plate kinematics
	2.2 Derivation of the zigzag function ϕ
	2.3 Stresses and resultant stresses
	2.4 QLRZ plate/shell element

	3 Isotropic damage model
	4 Update of the zigzag function ϕ to simulate de
	5 Numerical simulations
	6 Conclusions
	Acknowledgements
	References





