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ABSTRACT 

This thesis presents an automated topological design system for low 

frequency electromagnetic devices, e.g. an interior permanent magnet 

motor. The automated design is carried out through a topological shape 

optimization process: first, the system employs a topological sensitivity 

analysis to examine the design domain and to determine the optimal 

topology (distribution of source and materials); second, the system uses a 

shape optimizer to further improve the design; these two steps are 

performed alternately until the optimality condition is satisfied. 

 

The robustness of a topology with respect to small variations on its 

geometries is studied and a robustness measure is defined, originally in 

the thesis, as the worst case performance of an objective function for the 

topology and shape optimization. Therefore, the idea of robust design can 

be applied to the conceptual design (topological design) of electrical 

machines. Other than the application to motor design, the topology 

optimization algorithm developed in the thesis, was used originally in the 

non-destructive testing for quickly location and accurately shape 

reconstruction of cracks. 
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ABRÉGÉ 

Cette thèse présente un système automatique de conception topologique 

pour les dispositifs électromagnétiques à basse fréquence, par exemple, 

un moteur à aimant permanent intérieur. La conception automatisée est 

effectuée par un processus d'optimisation topologique de la forme : 

d'abord, le système emploie une analyse de sensibilité topologique pour 

examiner le domaine de la conception et déterminer la topologie optimale 

(répartition des sources et des matériaux); Deuxièmement, le système 

utilise une optimisation de forme pour améliorer la conception, les deux 

étapes étant effectuées alternativement jusqu'à ce que la condition 

d'optimalité est satisfaite. 

 

La robustesse de la topologie par rapport à de petites variations est 

étudiée et une mesure de robustesse est défini, à l'origine dans cette 

thèse, comme la performance de la fonction objectif, dans le pire des cas, 

pour l'optimisation topologique de la forme. Le  concept de conception 

robuste peut donc être appliquée à la conception (conception topologique) 

des machines électriques. Autre que l'application de la conception du 

moteur, l'algorithme d'optimisation topologique, développé dans la thèse, 
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a été utilisé à l'origine dans le contrôle non destructif pour trouver 

rapidement les fissures et preciser la forme optimale. 
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Chapter 1 INTRODUCTION 

 

1.1 Research Objectives 

 

The purpose of this research work is to implement an efficient and robust 

process of automating the design of low-frequency (frequencies below 

several tens of kHz) electromagnetic devices using CAD/CAE software. 

The automated design system is a software framework which accepts a 

set of device specifications as the input and produces the description (i.e. 

dimensions and material layout) of a device as the output. In addition, the 

actual output of the system is a simulation model of the real device against 

which the performance can be verified. The design automation is achieved 

by an iterative procedure of solving direct problems until the desired 

performance is obtained. At each iteration, the performance of the device 

is determined based on the field solution computed numerically. A 

topological design scheme is employed to explore all the possible design 

candidates under only the assumption of physical principles. The robust 

design formulation is also applied to guarantee the stability of the actual 
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performance of realistic devices under variations in manufacturing and 

working environment. 

   

1.2 Background 

 

Computational methods have been extensively applied to electromagnetic 

(EM) field analysis for decades. With the advent of high performance 

computing facilities and advanced software, accurate field results can be 

obtained by a variety of numerical methods, such as the Finite Element 

Method (FEM), the Boundary Element Method (BEM), and the Finite 

Difference Method (FDM). However, when dealing with an Inverse 

Electromagnetic Problem (IEP) where a device is required to produce 

certain specified global quantities (such as force or torque) or field values, 

i.e. an optimal design synthesis, the conventional approach to solving 

such a problem is to find the desirable device by “trial and error”, which, in 

effect, is a random search procedure, involving a computationally costly 

process of solving the field problem many times.  

 

In recent years, Computer-Aided-Design (CAD) has become the first 

choice of design engineers when new electromagnetic devices are 
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needed. More specifically, the automation of the design process can be 

achieved by first modeling the physical problem with CAD tools; and then 

all the feasible design candidates are mapped into a search space using 

parameterization; finally the search for an optimal result is conducted 

through a mathematical optimization programming process, such as 

gradient based search direction algorithms which converge within an 

affordable number of iterations in most cases. This is extremely cost-

efficient compared to the conventional trial and error approach. 

 

Topological design of EM devices 

The design parameterization of a low-frequency electromagnetic device 

usually contains three major categories of problems: the Sizing, Shape 

and Topology design (Bendsoe and Sigmund, 2003). Unlike the first two 

(sizing and shape) problems which only play with a limited number of 

specifications, topology design optimization can start with an empty space 

which is free of assumptions (on shape and topology) and provides the 

possibility of achieving innovative design results. In fact, designing an 

electrical machine can be interpreted as finding the physical layout and 

connectivity of different materials (Topological design) and sources and 

determining the boundary between different components (shape design) 
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under certain requirements of performance and manufacturing constraints 

(Dyck and Lowther, 1996). From a systematic point-of-view of the 

engineering design (Pahl et al., 2007), topological design can be 

considered as a conceptual design tool for determining solutions that can 

be used for  the embodiment and detail design phase (which are 

equivalent to shape design). 

 

Uncertainties and robust design 

The job of design cannot be considered as complete until a physical 

device or prototype can be produced. If the newly designed device is to be 

manufactured, the tolerance problem must be taken into account. For 

example, one can run the simulated model in the computer several times 

and the results are always the same; but, in reality, the manufacturing 

process often generates small variations to the product. Sometimes, these 

variations can cause serious deterioration in the performance of a device. 

Therefore, in order to prevent such performance deterioration, 

perturbations of the design variables need to be handled and integrated 

into the mathematical formulation of optimal design, and such a procedure 

is usually referred to as “Robust Design” since the performance of the 

resulting product is more robust, i.e. reliable. 
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Although the concept of robust design, which was pioneered by Dr. 

Genichi Taguchi (Taguchi, 1993), has been widely used in quality 

engineering for several decades, the criteria of “Robustness”, particularly 

in the context of topological design, has rarely been discussed except in 

(Al-Widyan and Angeles, 2005). Different definitions maybe found in the 

literature developed by different authors based on their individual 

applications. Therefore, we must first clarify the meaning of “robustness” 

discussed within the scope of this thesis. 

  

Other than the definition from its semantics perspective by the dictionary, 

the word “Robustness” was originally described by Taguchi in (Taguchi et 

al., 2000), as: 

The state where the technology, product, or process performance is 

minimally sensitive to factors causing variability (either in the 

manufacturing or user’s environment) and aging at the lowest unit 

manufacturing cost. 

 

From Taguchi’s definition, it is worth noting that sensitivity is considered 

as a key to the measurement of the robustness being sought in robust 

design. Yet another question being raised is how to measure the 
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robustness of a design in a quantitative way or in mathematical terms. 

While there exist many metrics to express robustness, such as the signal 

to noise (S/N) ratio, meeting specifications, reliability data, etc., a 

comprehensive expression of robustness is to use the standard deviation 

(or scatter) of the performance with respect to the probabilistic distribution 

of the design parameters. Figure 1.1 shows the comparison of the 

performance distributions between two products (A and B).  

 

Figure 1.1 Definition of robustness 

 

From the above figure, we can easily tell that the performance of design B 

is more robust than that of design A, because the standard deviation of 

design B is smaller than  that of A, which means design B has higher 
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reliability (in the sense of avoiding performance deterioration) than design 

A, despite the fact that designs A and B have the same mean value of 

performance. In other words, from the point of view of a probabilistic 

distribution of the performance under manufacturing uncertainties, design 

B yields better qualified products with the target performance.  

 

A robust design solution should be less sensitive to the uncertainties in the 

design variables. In some cases, the solution from a conventional 

optimization process might not be optimal any more in the sense of 

robustness. Figure 1.2 illustrates the objective function taking account of 

the variations in the design variables.  

 

Figure 1.2: Robustness of the solution 
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As shown in figure 1.2, point A is the local minimum of the deterministic 

design, and point B is the robust optimum. Although the nominal value of 

the objective function at point A is smaller than that of point B, the 

performance varies drastically in a small neighborhood of the point A, 

therefore if a prescribed minimum performance criterion is specified, which 

is the dashed line in the above figure, the performance of design B is also 

acceptable and it is more robust since the performance variation is much 

smoother around its nominal design. In conclusion, a robust solution is 

found in a flat region in the search space instead of narrow valleys around 

minima. 

 

Unfortunately, the evaluation of the variance of the performance or 

objective function requires probability information. If a stochastic model 

based on statistics is used, some drawbacks may occur. First, the 

probability information about the distribution of design variables is not 

usually available or could be hard to retrieve (Parkinson et al., 1993, Yoon 

et al., 1999). Even if it is available, it is computationally expensive to 

compute the variance of the performance, which usually requires many 

evaluations of FEM solutions. Therefore, although such analyses can be 

used a posteriori for robustness evaluation, it is not practical to use the 



9 

9 

stochastic model to deal with the problems when there is a large number 

of design variables. On the other hand, it is desirable to build the 

robustness measurement into the mathematical formulation of the design 

system, thus we need an approach to estimate the robustness of any 

design and to guide the search in the direction of a more robust solution. 

This information about the robustness must be easy to obtain and can be 

efficiently computed to approximate the variance of the performance 

function. Among many methods, sensitivity analysis is an effective tool for 

numerical analysis, and it provides a good measure of the robustness. 

Minimum sensitivity indicates the smallest likelihood of failure in the linear 

case of the response with respect to the uncertain variables. 

 

Interval mathematics provides an alternate and straightforward approach 

of expressing the robustness of the device performance (Lowther, 2003). 

For example, any variable in the design that is subject to uncertainty can 

be transformed to an interval variable, i.e. representing a range of values.  

If the interval is defined using the nominal value of the design variable plus 

its tolerance, the range of the values can be propagated through the 

equation network, and the tolerance of the device performance can be 

obtained through the propagation. Hence, the robustness and validity of 
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the design can be evaluated using the information provided by an analysis 

based on interval mathematics. 

 

Another important issue in robust design is the violation of the constraints. 

In constrained optimization problems, optima are often found near the 

boundary of the feasible set and if a small variation exists in the design 

variables, the values may no longer be feasible. Some treatment of the 

constraint function is required to guarantee the feasibility as well as the 

robustness of the solution. 

 

Combining robust design with topology optimization 

Optimal topology design has been studied extensively in the field of 

structural and mechanical engineering. It is used to design the optimal 

topological structure for supporting systems. Due to the similarity between 

the two disciplines, some of the recently developed techniques in 

structural engineering can be migrated to the area of electric machine 

design.  

 

A topological design system can provide size and geometry of the target 

device as well as its topological structure. As a result of the advance of 
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design technologies, target devices are more and more complex; some 

have really delicate structures such as MEMS. It has been noted that both 

the structure and performance of the optimal topological solution are quite 

sensitive to the variation situation, but so far very little work has been done 

to merge the topological design with robust design considerations taking 

into account the uncertainties in design and state variables.  

 

In the context of a robust topological design, the uncertainties can be 

categorized as noise in the measurement, material properties and 

geometry of the body. Unfortunately, in the conventional formulation of 

topology optimization based on the theory of homogenization or material 

distribution, the design variables are the material densities in the 

discretized cells, thus it is difficult to associate the performance variation 

with respect to geometrical or topological uncertainties, and only 

uncertainties in the material properties or noise in the measurement can 

possibly be handled using uncertainty sets defined on these design 

variables. 

 

Recent research shows that the concept of topological sensitivity analysis 

is a very promising tool to enhance the topology design. The so-called 
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topological derivative or topological gradient (TG) is derived from the 

topological asymptotic expansion for partial differential equation (PDE) 

systems. The physical implication of TG presents the sensitivity of the 

design performance when a hole is created in the material domain. Thus, 

the topological gradient can be used to determine whether a topological 

change is necessary. Topological sensitivity analysis can be applied in 

conjunction with the classical shape gradient in the optimization, which 

allows the simultaneous change of shape and topology. Compared to the 

conventional topology optimization methods in the area of EM device 

design, which suffer from a series of drawbacks, such as non-smooth 

boundaries, checkerboard situations and high computational costs, 

topological shape optimization is more flexible and powerful in handling 

the delicate shape and structure of EM devices. Most importantly, the 

topological shape optimization approach provides the possibility of 

incorporating robust design with topology optimization since the design 

variables are no longer density functions in discretized cells, as in the 

case of the conventional topology optimization methods. Hence, by 

combining topological design and robust modeling, a solution which is less 

sensitive to the discretization and measurement error can be found.   
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1.3 Literature Review 

 

Engineering design processes are often described as iterative feed-back 

loops. For example, in the model developed by (French, 1999), the design 

process is divided into four major stages: analysis  of 

problem;  conceptual  design;  embodiment  of schemes and  detailing. In 

addition to French's model, (Pahl et al., 2007) added some detailed 

working steps to each stage and implemented a complete strategic 

guideline for mechanical design. Two most important components in 

computer-based design packages (based on the aforementioned design 

models) for the design of electromagnetic devices are synthesis and 

optimization. In the synthesis phase, a parametric definition of the physical 

device is provided by the design environment in order to create the design 

space, instead of sketches using pencil and paper; while in the 

optimization phase, a variety of mathematical formulations and 

programming algorithms are applied to search for the final design which is 

optimal and feasible in terms of the imposed conditions and constraints. 

The state of the art methodologies and techniques are reviewed in the 

following four areas: design parameterization, topology design, design 

sensitivity analysis, and robust design. 
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Design parameterization 

Design parameterization generates design variables for any piece of data 

that changes during the design process, such as material properties, 

electromagnetic quantities and geometry information that describes the 

size, position and shape of the physical device. From the design 

perspective, modification of the values of the corresponding design 

variables changes the design target and the performance of the device. 

Constraints in the design are also represented by the lower and upper 

bounds on the design variables and some of their combinations. As a 

result, this creates a search space for the optimization process and these 

variables are used as specifications of the realistic device in the final 

design. During the early development of EM device design assisted by the 

field solutions from FEM, the design variables are usually associated with 

the nodes or elements of the FEM mesh (Hoole and Subramaniam, 1992). 

It was revealed by (Weeber and Hoole, 1992b) that the choice of the 

proper design variables is critical to the success of an optimization 

procedure using parametric design. Various approaches to defining the 

parameterization are possible for the shape optimization. One of those 

uses the various dimensions of the device as the design variables 

(Mohammed et al., 1993); another one uses the coordinates of a set of 
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nodes as the design variables, with the interface surface defined by 

segments connecting the nodes (Preis and Ziegler, 1990); another 

approach uses a linear combination of basis functions to represent the 

shape in which case the design variables are the weights associated with 

the basis functions (Preis et al., 1990). The design element method 

(Weeber and Hoole, 1992c) has imposed itself in solving shape 

optimization problems, where the analysis domain is divided into several 

sub-domains and the finite element is distortable but the topology is kept 

constant. Interpolation methods, such as Hermite, B-Spline and Bezier, 

were used to generate smooth boundaries, allowing at least C1 continuity 

(Weeber and Hoole, 1992a). It must be emphasized that different 

interpolation techniques applied to the same design nodes, generate 

interfaces with different shapes. An important  development in this field 

was the creation of a design environment that provided user interface and 

facilities for non-expert designers (Biddlecombe et al., 1994) and would 

eventually replace the conventional sketching work of a human 

(Mohammed et al., 2001); (Parker et al., 1996). It is of particular 

importance to review the technologies developed for design 

parameterization since the robustness of the design is linked to the 

variation in the design parameters.  
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An alternative machine representation scheme was proposed in (Dyck and 

Lowther, 1996), where the design region was divided into thousands of 

small cells and the EM device was described as distribution of material 

and sources. The automated design system requires no a priori 

knowledge but the physical principles, and yields a global optimum for the 

design. This work belongs to the area of topological optimization and more 

details will be elaborated later. 

 

Topological optimization 

Topology optimization techniques can be used to predict the optimal lay-

out of the device structure as well as the size and shape. In practice, 

topology optimization is often used as a preprocessing stage before shape 

optimization. As a result, novel designs of a device can be generated 

through topological optimization and further refined by the shape 

optimization method. The early concept of topological design was 

developed in the 1900s in the area of lay-out design based on analytical 

methods and was referred to as generalized shape optimization in the 

literature (Michell, 1904). Over the last two decades, significant 

development was achieved in both the theoretical study and the 

applications. Most of these achievements can be divided into two 
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categories: the Microstructure technique and Macrostructure technique 

(Eschenauer and Olhoff, 2001). The fundamental difference between the 

two techniques lies in the material model employed; the former uses a 

microstructure of material or material density, while the later focuses on 

solid isotropic materials, i.e. the topology optimization is closely linked with 

a shape optimizer. In 1988, Bendsoe first presented a grey-scale pixel-like 

image of device representation and applied it in the field of structural 

engineering (Bendsoe and Kikuchi, 1988); (Bendsoe, 1989). The design 

space was extended to include the solutions of composite materials and 

this guaranteed the existence of the solution through a regularization of 

the objective function based on the method of homogenization (Kohn and 

Strang, 1986). In formulations based on the material distribution, the 

physical device is treated as the combination of a set of distributed 

functions of material properties or sources with continuously varying 

values. Uniform and rectangular elements in the mesh are commonly used 

to represent the material or empty space. The density of material within 

each finite element is used as a design variable defined between 0 (no 

material) and 1 (solid material). One possible treatment of the composite 

material was known as Solid Isotropic Material with Penalization (SIMP), 

where the intermediate values of material (between 0 and 1) are penalized 
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and the optimal solid structure is obtained through a procedure known as 

solidification (Sigmund, 1999). Some recent research effort has been 

focused on combining topology and shape design (Campelo et al., 2008). 

 

On the other hand, the Macrostructure approaches to topology 

optimization work are based on the constitutive laws for solid, isotropic 

materials. Among many techniques based on the concept of the 

Macrostructure, it is important to emphasize the so-called bubble method 

(Eschenauer et al., 1994). This method combines a fixed method with the 

natural extension of the classical shape sensitivity inside the domain of the 

material. The concept of topological gradient was developed by 

Schumacher, and it allows the calculation of the sensitivity to topological 

changes (i.e. infinitesimal holes) to the design domain. (Sokolowski and 

Zochowski, 1999a); (Sokolowski and Zochowski, 1999b) provided 

mathematical justification of topological sensitivity analysis, where the 

topological gradient was derived in the case of homogeneous Neumann 

boundary conditions on a hole with various objective functions, and 

(Masmoudi et al., 2005) extended the definition of topological gradient to 

the case of more generalized boundary conditions. Various algorithms 

were later developed by (Cea et al., 2000) and (Stephane et al., 2001) 
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based on the concept of the topological gradient of a functional that 

depends on the solution to a PDE for a large class of problems. 

 

In particular, topological optimization has been employed in the design of 

electrical machines. The Optimal Material Distribution (OMD) method was 

adopted from structural engineering by (Dyck and Lowther, 1996) and 

applied in the automated design of magnetic devices. Later, in (Choi et al., 

1998), the material distribution representation from the topology design 

was converted to a conventional shape optimization problem by the 

application of image processing techniques, which resulted in the 

significant reduction of the design space. The performances of two 

different design approaches, using Artificial Neural Networks (ANN) and 

deterministic optimization based on OMD, were compared by (Lowther et 

al., 1998). Various applications exploiting sensitivity information in the 

topological optimization of different electromagnetic devices, such as an 

electrostatic actuator and nonlinear magnetostatic devices, can be found 

in (Byun et al., 1999); (Byun et al., 2000); (Byun et al., 2002); (Wang and 

Kang, 2002). A modified density method based on the homogenization 

design concept was developed by (Yoo, 2004), and the results were 

compared between the density method and the homogenization design 
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method. A novel material updating scheme based on continuum design 

sensitivity analysis was applied in the optimal design of the coil 

configuration in a MRI device, where no intermediate states of the material 

are required in the optimal source distribution (OSD) formulation (Dong-

Hun et al., 2005). Most recently, Kim presented a smooth boundary 

topological shape design algorithm based on the idea of topological 

gradient, where the shape optimization and the topology design were 

performed simultaneously (Kim et al., 2008); (Kim et al., 2009). 

 

An alternative design scheme is to treat the topological design of EM 

devices as a combinatorial optimization process for which each element in 

the design space has a discrete value representing a different material 

that can be used in the design. In this case, Ant Colony Optimization 

(ACO) algorithms can be applied to find the optimal topology. The 

combinatorial topological design of a magnetic actuator and interior 

permanent magnetic machines were solved by the ACO (Batista et al. 

2011); (Batista et al. 2012).  

 

 

 



21 

21 

Design sensitivity analysis 

In the context of design optimization, “sensitivity” is defined as the change 

of the objective function with respect to a small perturbation of the design 

variables. The procedure for obtaining such information is also known as 

“design sensitivity analysis”. The sensitivity can be computed numerically 

via a finite difference approach where the derivative is approximated by 

the ratio of the difference of the objective function and the design variables 

through perturbation. However, this approach requires many FEA 

solutions, and is thus not computationally practical. Two major approaches 

for computing the sensitivity for the EM design optimization problem have 

been developed over the past few years. The discrete design sensitivity 

analysis (DDSA) approach, which first became known through Coulomb’s 

implementation of the virtual work principle (VWP) (Coulomb, 1983), 

employed a direct differentiation of the algebraic system matrix of the 

FEM. (Ramirez et al., 1994) applied Tellegen’s theorem (Tellegen, 1952) 

to the magnetic network model to access sensitivity information and thus 

successfully obtained the magnetostatic loading force using virtual work 

with only one solution. The work of (Nguyen and Coulomb, 1999) 

presented a generalized framework of computing high-order finite element 
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derivatives with respect to geometric parameters based on the symbolic 

computation of Taylor’s polynomials.  

 

On the other hand, the continuum design sensitivity analysis (CDSA) was 

first proposed by (Park et al., 1991) in the magnetostatic case for shape 

optimization. The material derivative concept of continuum mechanics was 

adopted from structural engineering (Komkov et al., 1986) and the adjoint 

variable method was applied to derive the explicit sensitivity formula for 

the interface between two different linear materials, e.g. non-saturating 

iron and air. Later, Park and Coulomb demonstrated a numerical 

implementation of CDSA (Park et al., 1993) in conjunction with a standard 

FEA package, while the adjoint variables are obtained through the 

computation of an adjoint load based on the existing finite element code. A 

further derivation of the sensitivity formula, performed by Kim, can be 

applied together with existing general purpose FEA software (Kim et al., 

2003b). The EM implications of the pseudo sources of the adjoint system 

used in CDSA were discussed by (Kim et al., 2004). Particularly, analytical 

formulae of the force calculation as the shape design sensitivity of the 

system energy were derived by coupling the augmented Lagrangian 

method, the material derivative concept and the adjoint variable method 
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(Kim et al., 2005). The contribution of different EM sources (such as 

permanent magnetization and current) to the global forces was indicated 

in three different cases. The most recent work of (Kim et al., 2007) 

presented an efficient CDSA based method for global force as well as 

local force calculation. 

 

The CDSA method is based on the assumption that the material 

properties are continuous and the derivative of an objective function with 

respect to the shape design variables can be obtained by differentiating 

the variational governing equations in integral form. The method is thus 

able to compute any global quantity of the field problem in terms of the 

perturbation of a parameter. Unlike the DDSA proposed by (Coulomb, 

1983), the implementation of CDSA-based force calculation  can easily be 

coupled with any commercial FEM software package without knowing 

detailed information about the system matrix and the procedures within 

the solver. In fact, the CDSA based approach is independent of the 

numerical field computation tools, and it only requires a set of field values 

for any force calculation. 
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Robust design 

Robust design is an area that has raised most interest in the field of 

engineering in recent decades. It originated from the research on design 

tolerance and improving engineering productivity and quality control for 

reducing the output variation. The earlier attempt by engineers to handle 

such problems was to use the Six Sigma Quality strategy (Tennant, 2001) 

and +−3 standard deviations to guarantee the performance of a product 

within the range of acceptance. Later, two different fashions of non-

deterministic methods became dominant in this area, which are the 

reliability-based method and robust design method. While the reliability-

based method employs risk analysis by computing the probability of failure 

of the product using the probability distribution of the system’s response, 

the variation is not minimized according to a robustness measurement 

during the process. Thus, this approach is out of the scope of this thesis. 

The objective of robust design approaches is different from the reliability 

approach, and is to optimize the mean performance and minimize its 

variation, while maintaining feasibility with probabilistic constraints. This is 

achieved by optimizing the product and process of design to make the 

performance minimally sensitive to the various causes of variation. In the 

1950’s and 1960’s, Dr. Taguchi developed the foundations of robust 
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design to meet the challenges of producing high-quality products. The 

Taguchi method (Taguchi, 1989)  is a data driven and design of 

experiments method and uses the concept of signal-to-noise ratio to 

estimate the robustness of the product. The applications using Taguchi 

models are usually pretty accurate around the nominal value of the 

performance. Later, more robust design methods were developed based 

on an optimization process trying to find the optimal design with a robust 

performance with respect to uncertainties in the design (Alotto et al., 

2003). Sensitivity was considered as a good approximation to the 

standard deviation of the performance since the reduction of sensitivity 

implies the increase of robustness (Belegundu and Zhang, 1992). 

(Parkinson et al., 1993) proposed a general approach for robust design 

and addressed the issue of design feasibility where the procedures are 

developed to account for tolerances during design optimization such that 

the final design will remain feasible despite variations in parameters or 

variables. The robust design idea for electromagnetic devices was first 

introduced by Yoon, where the design was treated as a multi-objective 

problem with the function value and its derivative as the objectives (Yoon 

et al., 1999). A robust target function was built through the integration of 

uncertainty factors and the robustness measure into the optimization 
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process in (Alotto et al., 2003), including the discussion of the shape of the 

uncertainty set and the differentiability of the robust target function. The 

robustness of the feasibility in constrained design problems was further 

discussed in (Steiner et al., 2004). In addition to the sensitivity-based 

approaches, genetic algorithms and evolutionary algorithms have been 

applied to obtain the solution of a multi-objective function based on a 

worst case approach to the robust design of magnetic devices 

(Spagnuolo, 2003); (Cioffi et al., 2004). Several robust design formulations 

were discussed by (Guimaraes et al., 2006), who pointed out that the 

standard deviation can be approximated using the difference between the 

worst performance and the nominal performance and the computation 

cost could be largely reduced. In particular, (Han and Kwak, 2004) defined 

a gradient index (GI) using the sensitivity of performance functions with 

respect to stochastic variables. This simple and efficient algorithm was 

illustrated with an example of a MEMS device where robustness is crucial 

for a high yield rate. And the performances of a gradient-based worst case 

optimization (G-WCO), conventional WCO and multi-objective approach 

using gradient index (GI) were compared by (Ren et al., 2013a). In the 

recent development of robust design optimization, a second-order 

sensitivity analysis implemented by the hybrid direct differentiation-adjoint 
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variable method was employed for the accurate prediction of the worst 

case for complex and strongly non-linear performance functions (Ren et 

al., 2013b). Last but not least, the kriging surrogate modelling, which takes 

advantage of information already found, is a promising method  for 

reducing the computational cost of solving robust design optimization 

problems (Xiao et al., 2012); (Xiao et al., 2013b); (Xiao et al., 2013a). 

 

1.4 Original Contributions 

 

The objective of this research project is to find an efficient and accurate 

solution to the non-routine design of electromagnetic devices. In particular, 

the projected original contribution to knowledge will lie in the following:  

1. The introduction of the robust design formulation in the early stage 

(conceptualization) of the design of an EM device using topology 

optimization. 

2. A quantified definition of robustness of the topological design solution. 

3. Sensitivity analysis of the objective performance function with respect to 

the random variables to determine the critical design parameters in 

topology optimization. 
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4. An efficient algorithm for the automated design of EM devices exploring 

the topological and shape gradient. 
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Chapter 2 METHODOLOGIES 

 

A design problem involving a low-frequency device is often formulated as 

a mathematical programming problem where an objective function is 

minimized or maximized under certain requirements of the performance 

and physical constraints. As a requirement of robust design, a 

measurement of the robustness of the objective function needs to be 

incorporated into the design optimization process in order to provide not 

the best but the most robust solution in the feasible region. 

 

In this chapter, first, we give the general formulation of robust design using 

worst case analysis, where a robust design can be formulated using a 

robust objective function on an uncertainty set. Then a novel method of 

the topology optimization using topological sensitivity analysis is 

introduced; and, at the end of this chapter, the two methods are combined 

and an algorithm for robust topology optimization is presented. 
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2.1 General Robust Design Formulations 

 

Non-robust objective function 

A design problem can be expressed mathematically as an optimization 

problem. While robustness is not considered, an objective function f(x): Rn 

→ R, for the design optimization is defined as, 
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where x = [x1, x2, …, xn]T is a vector of the design variables; f(x) is an 

objective function defined to evaluate the performance of the target 

device; the constraints of the design are expressed as the functions g(x); 

and XL and XU are the lower and upper boundaries of the design variables, 

x, respectively. 

 

The design variables are usually chosen by the design engineer as 

geometries, physical attributes or material properties of the device; 

examples are dimensions of the rotor or the currents in the windings of an 

electrical motor.  In general, the objective function, as in (2.1), is an 

implicit function of the design variables and they can be evaluated  after a 

numerical field analysis. The objective function, f, can be defined as the 
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performance of a device (e.g. torque in the case of electrical motor design) 

or the difference between the current state and the target (e.g. squared 

error in the case of non-destructive crack reconstruction).  

 

Uncertainty set 

Unlike the conventional formulation of design optimization, a robust design 

formulation aims to minimize the variation of the objective function. The 

concept of an uncertainty set is introduced to take account of the 

variations of the design variables which can cause the performance 

variation. An uncertainty set U(x) ⊂ Rn is defined as a compact sub-

domain of the design space containing all the possible combinations of 

perturbations to the nominal values of the design variables x. For a 

particular point x0 of the design variables x, the uncertainty set U(x0) is 

given as, 

}:{)( 000  xxRxU n  .  (2.2) 

where ∆ = [∆1, ∆2, …, ∆n]T represents the variations to the nominal value of 

point x0.  

 

Sometimes the variations of the design variables may be defined as 

proportional to the nominal value of the design variables of every 
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dimension, especially when the vector of design variables contains 

different physical quantities. Thus the uncertainty set U(x) of x0, when x0 is 

a positive real number, can also be defined as: 

})1()1(:{)( ,0,00 iiii

n xxRxU   .  (2.3) 

where ∆ix0,i represents the largest variation to x0,i, the ith component of 

vector x0, as shown in figure 2.1. This uncertainty set is modeled as a 

hyper-rectangular box and figure 2.1 shows the shape of a rectangular 

uncertainty set in 2-D. 

 

Figure 2.1: 2-D rectangular uncertainty set 

 

While there can be other shapes of the uncertainty set, the advantage of 

the rectangular uncertainty set is the simplicity of its implementation and it 

does not require any statistical information about the design variables. 

  

Robust objective function 

There are many different formulations of robustness measures existing in 
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the literature, e.g. the worst case or the statistical tolerance (Parkinson et 

al., 1993) or the mean value and variance (Yoon et al., 1999). One of the 

practical ways to treat the robust design problem is to use the worst case 

scenario. A robust objective function is defined as the worst performance 

of the objective function f due to the perturbation of the design variables x, 

as: 

)(max)(
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fxf
xU

w


 .  (2.4) 

 

Design feasibility 

In a constrained design problem, the robust design formulation must 

guarantee that the perturbed design does not violate any of the 

constraints. For example, if a solution x* is located too close to the 

boundary of the feasible region, variations to x* may not be feasible 

anymore. Figure 2.2 shows a 2-D solution space of a constrained robust 

design problem. 
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Figure 2.2: Feasibility robustness 

 

Figure 2.2(a) indicates the case where a non-robust optimum x* becomes 

infeasible. And figure 2.2(b) shows a robust solution xr* that satisfies the 

constraints over the entire uncertainty set defined on xr*. Thus, to ensure 

feasibility robustness, the shape of the constraint function must be altered 

by the uncertainty set. A robust constraint function can be defined as: 

0)(max
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where any points in the uncertainty set, U(x), must satisfied the 

constraints. 

 

Overall, a robust design problem can be formulated as minimizing the 

worst performance of the objective function value within the uncertainty 
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Differentiability of robust objective functions 

 

 

Figure 2.3: Differentiability of the robust objective function 

The properties of the robust objective function fw may be different from the 

original objective function f and this can be critical for the implementation 

of the optimization algorithms. If f is continuous on Rn, then it guarantees 

that fw is also continuous on Rn. If f is continuously partially differentiable, 

then the directional derivative exists for fw, but the differentiability is not 

guaranteed. In addition, fw only loses its differentiability at the point where 

at least one of the partial derivatives of the original objective function 
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changes its sign, as shown in figure 2.3. Therefore, if deterministic search 

algorithms are to be applied to the optimization process, some special 

treatments are required for the gradients of the robust objective functions 

at those non-differentiable points.  

 

Worst vertex prediction using sensitivity 

From the constrained optimization theory (Alotto et al., 2003), the worst 

value of the objective function f occurs at one of the corners of the 

uncertainty set U, if f is convex on U, and convexity can always be 

assumed in a small neighborhood of a local minimum. Unfortunately, 

evaluating the objective function at every single vertex of the uncertainty 

set to find the worst value on the uncertainty set is not feasible since the 

whole procedure has an exponentially increased time complexity with 

respect to the number of design variables. The total number of function 

evaluations, K, equals 2N for an N-dimensional problem. In order to find 

the worst vertex more efficiently, a worst vertex prediction mechanism can 

be applied based on the determination of the direction of the ascent of the 

objective function value, as: 
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Hence the worst performance is approximated by the function value at the 

worst vertex xpred, 

)()(max
)( 0

pred
xU

xff 





.  (2.8) 

 

This approximation requires only K = 2N+1 times function evaluations, 

where N is the number of the design variables. This has seriously reduced 

the computational cost of the robust design optimization compared to 2N 

function evaluations if the value of the objective function is evaluated at 

every corner of the uncertainty set. 

 

In addition, we may also use the information of the gradient computed at 

the point x if the gradient can be obtained without a high cost. This can 

further reduce the computational cost of the robust objective function 

evaluation. Figure 2.4 gives an example of the worst vertex prediction, for 

a non stationary point,  in R2, where the opposite direction of the gradient 

of the objective function points to the worst vertex of the uncertainty set. 
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Figure 2.4: Worst vertex prediction using gradient information 

 

2.2 Topological Gradient 

 

In the conventional formulation of topology optimization based on the 

theory of homogenization or material distribution, the design space is 

usually divided into cells. And the design variables are the dimensions of 

the discretized elements. The possible values of these design variables 

are numbers between 0 and 1 which represent the intermediate states of 

the material properties. If only solid material is allowed in the design, there 

cannot be any variation to the nominal value of the design variables, since 

they must be either 0 or 1 at the end of the design. Therefore, it is not 
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possible to apply the robust design formulation from (2.6) to conventional 

topology optimization methods such as homogenization and material 

distribution. 

 

On the other hand, topology optimization based on macrostructure (also 

known as topological shape optimization) shows the potential to be 

coupled with robust design formulations. Topological shape optimization 

methods have been successfully applied to electromagnetic design 

problems (Kim et al., 2008). In such an optimization method, a topological 

gradient (TG) provides the sensitivity information of a design with respect 

to topological changes, e.g. the insertion of a small air hole at any point 

inside the solid material. To be more precise, the TG indicates the change 

in the objective function with respect to a potential topology change in the 

design domain, thus  the TG can be used as a decision making tool for the 

topology optimization process.  

 

A topological shape optimization process usually contains two stages: 

first, generate topology changes to the domain of the design by creating a 

small hole of a different material based on the values of the topological 

gradient; second, optimize the shape of the hole created in the first stage 
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using a standard shape optimizer. These two steps are repeated in 

sequence until the optimality conditions are satisfied.  

 

 

Figure 2.5: A design domain with a small hole 

 

A mathematical formulation of the TG, which originated from the classical 

shape gradient information, is derived using a topological asymptotic 

expansion for PDE systems (Masmoudi et al., 2005). Figure 2.5 illustrates 

a design domain Ω defined on ℝn (n=2 or 3), with an outer boundary Γ. 

Consider an infinitesimal hole ϕ(x, r) in  , where x is the center of ϕ and r 

is the radius of ϕ. The topological gradient G(x) is given as: 
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where Ψ is an objective function defined on Ω and an implicit function of a 

solution to a partial differential equation, Ω\ ϕ(x, r) = (∀y ∈ Ω, ||y - x|| ≤ r) is 
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the domain excluding the small hole ϕ, and δ(Ω) = Ω\ ϕ(x, r) - Ω is the 

volume of the hole with a negative sign.  

 

The topological gradient is closely linked with the classical shape gradient. 

In order to derive the expression of the topological gradient, first, we need 

recall how to obtain the shape sensitivity on the boundary of the design 

domain Ω. We consider a perturbation V of the boundary Γ  which 

changes the domain Ω to Ω +V, 

}),({  xxVxV .                   (2.10) 

 

The general shape sensitivity of the objective function Ψ in the direction of 

the perturbation V can be expressed in the form of a surface integral as,  




 dsVsLs n)()(' .                   (2.11) 

where L is a function defined on the boundary ∂Ω and Vn is the normal 

component of the perturbation V with respect to the boundary, also known 

as the design velocity. 

 

In the case of the Laplace equation with Neumann boundary conditions, L 

can be obtained using the primary solution to the PDE defined on Ω and 
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an adjoint solution, where a detailed definition can be found in (Guillaume 

and Masmoudi, 1994), used to facilitate the sensitivity calculation, as: 

))(()( spusL  .                   (2.12) 

where u is the primary solution and p is the adjoint solution. 

 

 

Figure 2.6: Boundary perturbation on the small hole 

Now assuming a perturbation V of the boundary of the small hole ϕ(x, r) 

as shown in figure 2.6, while the external boundary Γ of Ω remains 

unchanged, let V= -n. Consider a scalar function J(r) = Ψ(Ω\ϕ(x, r), using 

(2.11) and (2.12) we have, 
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where ur and pr are the primary and adjoint solutions to the PDE, across 

the boundary respectively. 
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Using a local asymptotic expansion of the solutions, ∇ur and ∇pr, (Cea et 

al., 2000), J’(r) is approximated as: 

)())((4)( roxpurrJ   .                   (2.14) 

Note that the coefficient -4πr is not a result from the integration and 

substitution of ∇ur by ∇u and ∇pr by ∇p, which leads to the result as -2πr. 

 

The change in the objective function value due to the topology change can 

be calculated as, 
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By substituting the result from (2.15) back into (2.9), with δ(Ω) = -πr2 in  

2-D, the topological gradient G(x) and the relationship between G(x) and 

the natural extension of the shape gradient L(x) is given as: 

)(2))((2)( xLxpuxG  .                   (2.16) 

 

Equation (2.16) has some implications on the simultaneous shape and 

topology optimizations. The variation of the objective function Ψ due to the 

topological change is proportional to G(x)δ(Ω)  and the variation due to the 

shape change of the external boundary of the design domain Ω  is 



44 

44 

proportional to L(x)δ(Ω) = G(x)δ(Ω)/2. For a topology optimization with a 

volume constraint imposed, the choice between a shape change or a 

topological change during the optimization is balanced by this relationship.  

The implication of (2.16) on the optimality condition will be discussed next. 

In addition, equation (2.9) can be re-written using a local expansion as: 

 ))(()()()()),(\(   oxGrx objobj .                 (2.17) 

 

It can be observed that if a hole is created (δ(Ω) < 0 by definition) in the 

region where G(x) is greater than zero, we have the right-hand side of the 

equation smaller than zero; hence the left-hand side of the equation, 

Ψ(Ω\ϕ(x, r) – Ψ(Ω) < 0, and the objective function Ψ is minimized.  

 

For an unconstrained topological shape optimization, an optimum is the 

state where no more improvement of the performance can be achieved. 

Thus the following optimality conditions must be satisfied, 
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In the case of a maximum volume constraint imposed on the problem, the 

optimality condition for the shape gradient becomes L = c on the boundary 

Γ with c ≥ 0. If a topological change and a boundary variation are taking 
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place simultaneously, the first variation of the objective function J is 

expressed as: 

mcxGmcmxG

dsVsLmxGJ n





))(()())((

)())((



 
 ,                  (2.19) 

where δm is the volume change. 

 

For a local minimum, we have δJ ≥ 0, thus the optimality condition is given 

as:  
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The theory of the topological shape optimization is still in development, 

and the convergence of the optimization is not guaranteed by the 

optimality conditions defined in (2.18) to (2.20). In the stopping criterion, 

both the optimality condition and some dimensional constraints in 

manufactory (e.g. minimal size of components) are considered.  

 

Based on the optimality condition in (2.18), a simple algorithm for 

topological shape design, without considering a volume constraint, can be 

proposed as follows: 

1. Set the iteration number k =0. 
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2. Solve the primary and adjoint systems. 

3. Calculate the topological gradient at different points in the design 

domain. 

4. Define the new domain Ωk by changing the material in a small region 

ϕ around the point x if TG(x)>0.  

5. Apply the standard shape optimization method to determine the 

shape of the boundary of ϕ. 

6. Verify the stopping criteria and exit if the optimality condition is 

satisfied 

7. Set k=k+1 

Note that the topological gradient can be obtained at any point inside the 

design domain; it only requires the primary and adjoint solution of the 

original problem (without creating the hole). 

 

2.3 Robust Topology Optimization 

 

If a topology change has taken place, the scalar objective function J can 

be approximated near the point ξ using a first-order local expansion as in 

(2.15), 

)()()()()),(\()( 2dodTGdJ   .   (2.21) 
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Since Ψ(Ω) and δ(d) are both constants with respect to ξ  (note that δ(d) 

has a negative sign), J(ξ) has the largest value where TG(ξ) is the 

smallest. Therefore, the worst performance of J due to the perturbation of 

the design variables is determined by the point ξ in the uncertainty set, 

where TG(ξ) has the smallest value. Hence we can obtain a robust 

topological gradient as: 

                     )(min)(
)(




TGxTG
xU

R


 .  (2.22) 

 

Figure 2.7 is used to illustrate the robustness of a topological change. 

There exist two areas for a potential topological change in the design 

domain Ω. However, area 1, which has the highest TG value, is close to a 

large area which has the lowest TG value, i.e. the TG value drops 

drastically in the neighborhood of area 1. If a topology change is made in 

area 1, e.g. an air hole in the domain of solid material, a small variation to 

the boundary of the hole may cause a big change in the objective function 

value, which implies that the new topology is not robust. Therefore, area 2, 

which has the second largest TG value, is superior to 1 for a topological 

change in terms of the topological robustness. This is, in fact, equivalent 

to the robust topological design using second-order sensitivity analysis 

(Nam-Kyung et al., 2010). 
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Figure 2.7: Robustness of topological changes 

 

As a result, the robust formulation of the topological gradient TGR can be 

computed and used as a decision criterion on the location where the 

topology changes will take place. 

 

In robust topology optimization, first, we use the robust TG to determine 

whether a topology change in the problem domain is needed for reducing 

the objective function value. Then a small hole (of a different material) is 

created in the area where the robust TG has the highest positive values. 

After the hole is created in the domain, the boundary of the hole is 

parameterized and is optimized using a shape optimizer. Thus a new 

uncertainty set is defined for the new design variables, which are the 

coordinates of the controlling points on the discretized boundary of the 
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hole. As shown in figure 2.8, several controlling points are created and the 

boundary is described using a B-Spline curve. 

 

 

Figure 2.8: Boundary parameterization 

 

The uncertainty set can be defined as the perturbation to the nominal 

value of P = [P1, P2, P3, P4, P5], and the worst performance function 

remains the same through the entire design process. 

 

An algorithm for robust topology optimization 

Finally, a simple algorithm for robust topology optimization based on 

topological shape optimization is described as follows: 

1. Set the iteration number k =0.  

2. Calculate the robust topological gradient TGR at the center of each 

element.  
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3. Define the new domain Ωk where the topology changes take place by 

removing the material in the region where TGR is greater than zero.  

4. Apply the standard shape optimization method with a robust objective 

function to determine the shape of the boundary.  

5. Verify the stopping criteria and exit if the optimality condition is 

satisfied  

6. Set k=k+1  

Uncertainties in both the topology and shape are handled throughout the 

entire design process. 

 

2.4 Links between Worst-Case Analysis and Multi-Objective Approaches 

 

Some may argue that a robust design approach based on worst-case 

analysis might be too "conservative", e.g. if the user-defined uncertainty 

set is too large, the solution to the robust objective function will have a 

very poor performance compared to the nominal solution. The alternate 

way to treat the robust design problem is to use a expectancy measure of 

robustness based on probability, i.e. using a multi-objective optimization 

formulation that minimizes the mean and the variance of the nominal 

performance simultaneously, as:  
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where E[f(x)] and V[f(x)] are the expectation (mean) and the variance of 

the performance f based on statistical models, respectively. 

While obtaining the mean and variance is still computationally expensive 

since many function evaluations are needed, we may use the nominal 

value of f to approximate the mean and the deviation , fw − f, as a 

surrogate of the variance in the multi-objective formulation (Guimaraes et 

al., 2006). Thus equation (2.23) is considered equivalent to,  
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In addition, the problem in (2.24) can be solved using a convex 

combination as:  
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If we choose α = 0.5, we have,  

)(5.0 xfw ,  (2.26) 

therefore the worst case scenario is just one of the solutions to the multi-

objective optimization problem defined in (2.24). 
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Using the multi-objective formulation, the robust design problem is treated 

as a classical conflict design and a pareto front of the potential robust 

solutions can be generated by changing the value of the weighting factor 

and solving the single objective function successively.  
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Chapter 3 NON-DESTRUCTIVE TESTING 

 

Non-destructive testing (NDT) technologies play a critical role in many 

fields of modern day industry, (e.g. to assure the quality and reliability of 

structural materials). NDT technicians and engineers define and 

implement tests to detect and locate defects in the material that may affect 

the reliability of the structure (e.g. small fractures in the body of a plane 

might cause a plane crash and flaws in a pipe might cause an oil leak). 

The benefits of NDT are that these tests or inspections can be performed 

without damaging the test specimen or causing any changes in the future 

use of them.  

 

3.1 NDT Forward and Inverse Problems 

 

One of the typical applications of topology optimization is the 

reconstruction of defects in the test specimen from the signals of NDT. 

Inverse problems are usually formulated as minimizing the squared errors 

between the measured and the simulated signals. In general, it is more 
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important to know the number of the flaws and their locations rather than 

the determination of the exact shape.   

 

NDT systems can be enhanced in conjunction with field analysis software 

tools. The finite element method (FEM) is employed to perform full 3-D 

simulations of the testing to obtain more accurate results of the field 

distribution than purely analytical approaches. While field computations 

from given sources, material properties and the geometries of the cracks 

are considered as a forward problem, the reconstruction of the crack 

shape is defined as an inverse problem for which the goal is to find correct 

values of specific parameters, such as length, depth and size of the 

cracks, given particular performance criteria (e.g. the field distribution 

measured by the sensing device). In fact, the forward problem is solved 

iteratively until the system output matches the input signals, i.e. a classical 

feedback control problem.  

 

Conventional solutions to the inverse NDT problem can be categorized as 

two types: crack reconstruction based on optimization; or signal inversion 

using artificial neural networks. In the first category, the inverse problems 

are solved through a standard shape optimization of a parameterized 
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crack profile with a gradient-based search algorithm (Badics et al., 1998, 

Hoole et al., 1991) or a topology optimization based on optimal material 

distribution, assuming different conductivity values in an array of 

discretized cells (Dyck et al., 1994). However, the drawbacks of the 

optimization-based methods are that they cannot be applied to real-time 

detection because of the iterative nature of the problem that requires 

many evaluations of finite element field problems before the results 

converge.  

 

On the other hand, the defect profile can be determined by various 

Artificial Neural Networks using signal inversion. This method is relatively 

faster than the optimization-based approach, but it requires a large set of 

training data from the NDT experiments, which may not be available for a 

particular problem in practice. Also, it cannot provide the information of the 

exact shape of the cracks, unless an exact match can be found between 

the measurement and the training data.  

 

A novel solution strategy for the inverse NDT problem, proposed in this 

thesis, is shown in the following flow chart, figure 3.1. Unlike the 

conventional iterative procedure of shape optimization (Badics et al., 
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1998), in this method, the topological gradient is computed to predict any 

potential effect of topology changes in the problem domain, i.e. replacing 

the solid material with air. Note that for NDT problems, usually the external 

boundary of the problem domain cannot change, thus the shape 

optimization in the first iteration is ignored. After the topology change to 

the domain, a sensitivity analysis based shape optimizer is used to 

determine the exact shape of the boundary of the crack. The global 

optimality condition defined in (2.18) is checked at the end, and the 

algorithm terminates when there is no more topology change needed.   

. 
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Figure 3.1: A solution to the inverse NDT problem 

 

There are a number of different electromagnetic testing methods and in 

this chapter we will demonstrate the numerical applications of topological 

sensitivity analysis to the magnetic flux leakage (MFL) and eddy current 

testing (ECT) methods. 
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3.2 Magnetic Flux Leakage type NDT 

 

The magnetic flux leakage method is a fast and reliable non-destructive 

testing technique that has been widely used for decades. When a piece of 

metal made of ferromagnetic material is placed in a magnetic field, small 

defects or flaws in the material cause a significant flux anomaly due to the 

permeability variation. The anomalous fields are captured by Hall-effect 

probes or sensing coils, placed close to the surface of the test object, and 

which generate signals that can be used to identify the defect. 

 

FEM forward model of MFL 

Figure 3.2 shows the basic model for MFL testing consisting of two 

permanent magnet blocks as the excitation source of the magnetic field 

(Al-Naemi et al., 2006). A test plate, 6mm thick, is placed under the MFL 

system. A sensor is placed 4.5 mm above the test plate and is moved 

parallel to the surface of the plate.  
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 Figure 3.2: MFL test device 

 

In the simulation model, the back yoke and iron arms in the sensing 

system are made of magnetically linear material. The test plate is made of 

cold rolled steel which has a nonlinear permeability. The forward MFL 

model is solved using a 3-D FEM system, MagNet (Infolytica, 2013b). In 

the reconstruction tests, first, cracks with different shapes and sizes are 

created in the test plate, and then, MFL signals corresponding to different 

cracks are generated from the simulation.  Those simulated signals are 

used as the targets (measured results) for the inverse problem of defect 

identification. 

 

Formulation of the inverse problem 

The solution to the inverse problem utilizes a nonlinear optimization 

scheme in order to identify the size and the shape of the defects in the 
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material from a given MFL signal profile. An objective function, F, is 

formulated from the field signals Bio captured by MFL sensors (obtained at 

n sampling points along a line from the simulation model with the defects) 

and the field values Bi are computed from the FEM solution of the forward 

model where the shape of the plate is allowed to change at each iteration 

as the system tries to create the defect shape to minimize F. 



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n

i

ioi BBF
1

2)( .                    (3.1) 

 

Topological sensitivity analysis using an adjoint problem 

The topological gradient for the MFL field problem (magnetostatic) can be 

expressed in terms of the field solution of the original problem and an 

adjoint problem as,  
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 ,                 (3.2) 

where ν1 is the permittivity of the ferromagnetic material, ν2 is the 

permittivity of air or the defect; L(A, λ) is the generic shape sensitivity and 

A and λ are the state variable and adjoint variable from the field solutions. 

Thus, ∇ X A and ∇ X λ are the magnetic flux densities obtained from the 

original field solution and adjoint field solution respectively. 
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In this problem, the calculation of TG requires a solution from the adjoint 

problem. In the discrete design sensitivity analysis (DDSA) based on a 

FEM solution, the adjoint variable λ is introduced to avoid the inversion of 

the system matrix S in the sensitivity calculation (Sundaresan et al., 1995). 

The adjoint variable λ is given as:  

A

F
ST




 ,                   (3.3) 

where S is the system matrix of the FEM, which represents the linear 

equations to be solved for obtaining the field solution; A is the solution to 

the FEM and F is the objective function. 

 

While the DDSA method requires obtaining details about the locations of 

the nodes inside the FEM mesh, a continuum design sensitivity analysis 

(CDSA) approach is capable of computing the sensitivity independent of 

any field solution methods. From (3.3) we can define an adjoint system 

that has the following properties (Kim et al., 2004): 

1. A linear problem which has the same geometric and material properties 

(except for the excitation sources and the boundary conditions) as the 

original problem. 

2. The source for the adjoint problem depends on the objective function 

used in the design optimization problem. 
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Figure 3.3: Dual systems of sensitivity calculation 

Figure 3.3 shows the analogy between the original problem and the 

adjoint problem. If an objective function is formed as f = (Bxi – Bxo)2, the 

source term is given as Bra = ∂f / ∂B, B is the magnetic flux density, which 

acts as a magnetic source  to the adjoint problem (Kim et al., 2004). Bra is 

set as the residual flux density for the magnetic source in the area of Ωf 

where the field values of the original problem are sampled. 
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Calculation of the topological gradient 

In order to find the location of the defects, the topological gradient is 

computed over the domain. Based on the asymptotic expansion of (2.17) 

and the optimality condition (2.18), we would expect that the defects lie in 

the regions where the topological gradient has the largest positive value.  

The use of topological gradient to detect cracks was first tested in 2-D. A 

region from x = −20 mm to 20 mm in the center of the plate is the domain 

of interest in the test. It is then divided to 6X40 small blocks (1mmX1mm), 

and the topological gradient evaluated at the center of each block. The 

units of the topological gradient do not have any physical meanings, since 

they depend on the choice of objective functions. Thus, in all the figures 

for the values of TG, we do not include the units. 

  

 

Figure 3.4: Topological gradient plot for one defect in 2-D 
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Figure 3.5: Topological gradient plot for two defects in 2-D 

Figure 3.4 shows the topological gradient plot for the model with one 

defect 4 mm wide and 4 mm deep and centered at x = 0. Figure 3.5 shows 

the topological gradient of a model with two defects, each of them are 4 

mm wide and centered at x = −12 mm and x = 12 mm respectively. As can 

be seen from the figures, the regions of the highest values of topological 

gradient coincide with the position of the defects. 

 

In addition, the topological gradient is computed for the case of a buried 

crack in 3-D. The required field values are obtained from a finite element 

solution on a relatively coarse mesh. A cuboid shape crack of size 6x6 

mm and height 5 mm exists at the center of the steel plate, and the 

topological gradient plot on the bottom surface of the plate is shown in 

figure 3.6. The highlighted area in the figure matches the location of the 

defect. TG plots for two and three cracks of the same size in the plate are 

shown in figures 3.7 and 3.8. 
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Figure 3.6: Topological gradient plot for one defect in 3-D 

 

Figure 3.7: Topological gradient plot for two defects in 3-D 
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Figure 3.8: Topological gradient plot for three defects in 3-D 

 

As a result, the method based on the topological sensitivity analysis has 

the potential to be employed to locate the cracks in the test plate fairly 

quickly. 

 

Determination of defect size and shape 

While obtaining the information on the location of the crack involves only 

one computation of the TG, to reconstruct the shape of the crack from the 

test signal requires more integrations. The defect prediction based on 

topological shape optimization method is tested with one crack located on 
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the near side of a steel plate of 5 mm width and with an average depth 

equal to 80% (4.8 mm) of the thickness of the plate. First, the topological 

gradient is computed over the domain of interest consisting of 6X40 

blocks. Then, from this calculation, about 5% of the area, which has the 

highest positive TG values, is removed from the domain. Next, the 

boundary of the initial crack is discretized with 5 points and expressed 

using a piecewise linear approximation. Then it can be modified through a 

shape optimizer based on CDSA. The topology and shape changes in the 

optimization are illustrated in figures 3.9 and 3.10 for a rectangular shape 

crack and irregular shape crack respectively. The final shapes of the crack 

obtained from the topological shape optimization are consistent with those 

used for producing the test signals. 

 

 

Figure 3.9: Rectangular shape crack reconstruction 
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Figure 3.10: Irregular shape crack reconstruction 

 

The values of the objective function F during the topological shape 

optimization of the rectangular shape crack are shown in figure 3.11. The 

initial value of the objective is 0.0865 when there is no crack existing in the 

simulation model. The topological change reduces it to 10% of this value. 

The remaining improvement is then obtained through shape optimization. 

Figure 3.11 also shows the convergence of the process if only shape 

optimization is used. In this particular example, the topological shape 

optimization process converges in twelve iterations while the conventional 

shape optimizer takes a lot more iterations and in turn requires more FEM 

solutions. 
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Figure 3.11: Objective function values through the optimization 

 

We should note that given the ill-posed nature of this kind of inverse 

problem, the shape optimizer is likely to run into a local minimum. In that 

case, it is still possible to use the topological gradient to look for another 

topology change in the problem domain and to merge the two holes into a 

larger hole. Therefore the topological shape optimization is able to find a 

global minimum by verifying the global optimality condition until no more 

topology change is necessary to minimize the objective function.  
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Robustness of the topological gradient 

In real MFL tests, noise from the environment (i.e. experimental errors) 

cannot be avoided, therefore the reconstruction methods must be robust 

in the presence of random noise. In order to verify the robustness of the 

topological gradient in the presence of noise, a uniformly distributed 

random noise signal is created and is added to the original signal obtained 

for the crack. Figure 3.12 shows the MFL signal corresponding to one 

surface crack in the test plate. In figure 3.12, the dashed line with cross 

marker indicates the original signal, the dashed grey line illustrates the 

noise signal and the solid line with square marker is the summation of the 

original signal and the noise. 

 

Figure 3.12: Random noise added to the MFL signal 
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The signal containing noise is then used as the input for the crack 

reconstruction. The resultant topological gradient plots are compared  in 

figure 3.13. In figures 3.13 a) and 3.13 b), the areas of positive TG values, 

which indicate the location of the cracks, are almost identical. This implies 

that the method is relatively robust with respect to a small (less than 20% 

of the magnitude of the signal) amount of noise. 

 

Figure 3.13: Noise effects on the topological gradient plot 

 

Conclusions 

In the MFL type NDT inverse problem, the topological gradient can be 

employed to find any potential topology change that may reduce the 

objective function value. It provides a fast, but approximate, exploration of 

the solution space. The initial topology predicted by TG can significantly 

reduce the value of the objective function, and the shape optimization can 

then be used to refine the solution from that initial state. Thus, the 
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topological shape optimization is more efficient compared to conventional 

methods using pure shape optimization for the inverse problem of crack 

reconstruction. 

This method is able to detect buried defects in 2-D and 3-D. Although the 

solution to the inverse problem might take a long time to converge, i.e. find 

the exact shape of the defects, the topology gradient can roughly predict 

the position and numbers of the defects within one step. In the case where 

fast detection speed is needed, it can be used to label the position of the 

defects and the full signal profile can be used later for an accurate 

description of the cracks. 

 

3.2 Eddy current testing problems 

 

The eddy current non-destructive testing relies on the physical effect 

called "eddy currents" to inspect the cracks in a conductive specimen. In 

the eddy current testing (ECT), a coil is usually placed above the test 

plate. When the coil is excited with sinusoidal current, eddy currents are 

induced in the body if it is conductive. If a crack exists in the test 

specimen, the crack will block the eddy currents in the region and this 
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results in a change of the external magnetic field which can in turn be 

picked up by some sensing coils. 

 

Derivation of the topological sensitivity for ECT problems 

Let Ω be a bounded domain of Rn with an external boundary Γ. The 

magnetic field, H, is the solution to the following problem:  
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where n is a unit vector normal to Γ and α and β are scalar auxiliary 

functions, defined on Ω, which are used to facilitate the derivation and will 

be replaced by the coefficients depending on the Maxwell governing 

equations for the problem. 

 

 

Figure 3.14: Small inhomogeneity in the problem domain 
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If a small inhomogeneity ϕε, e.g. a different material, bounded by γε is 

created in domain Ω, as shown in figure 3.14. α and β become piecewise 

constant functions across the boundary γε, as:  
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Thus the perturbed solution Hε in the presence of ϕε must satisfy the 

following equations:  
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where the superscripts + and – represent the limit of field values as the 

sampling point approaches Γε from outside ϕε and inside ϕε respectively. 

 

The field solution in the absence of ϕε is denoted as H0 and the variational 

form associated with H0 can be expressed as:  

VvvvH  )(),( 01  .  (3.8) 

where ℓ is a bilinear form on V and V is a functional space of all admissible 

potentials.  
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In order to compute the variation of an objective function J with respect to 

the perturbation, we define an adjoint problem in the form of  

VwwLvw H  )(),(
0 .  (3.9) 

where L is the linear term depending on J. Equation (3.9) has a unique 

solution v0 when ε is small enough. 

 

From the result proven in (Masmoudi et al., 2005), the topological 

asymptotic expansion is expressed in terms of the solution H0 and adjoint 

state v0 as:  
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The governing Maxwell equation for the steady state time harmonic 

problem is:  

0)
1

(  HjH 


.  (3.11) 

 

 

To obtain the topological gradient for the steady state time harmonic 

problem, α is substituted by 1/σ and β by –jωμ in (3.10). If the material is 
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nonmagnetic, i.e. it has the same permeability as air, the coefficient of the 

second term in (3.10) becomes zero, and we obtain:  
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where σ1 is the electrical conductivity of the material and σ2 is the 

electrical conductivity of air. EA is the electrical field computed from the 

adjoint problem. 

 

The volume of the small ball ϕε is given as 4/3πε3. Combining (3.12) and 

the definition in (2.9), finally, the topological gradient is given as:  
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Note that the topological gradient is expressed with field values only and, 

therefore, the calculation of TG is independent of the field analysis 

approach and code used, and the TG can be evaluated at any point in the 

domain using just two field solutions, which could even be from different 

methods of field calculation. 
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Inverse procedure of ECT 

An objective function F is formulated from the squared errors between the 

measured signal and simulated signals, as:  

  2)( i

Measured

i

Simulated SSF ,  (3.14) 

where S can be a variety of  physical quantities depending on the means 

of the measurement, such as impedance, voltage or magnetic flux density; 

and i is the index for different sampling points. 

 

Similar to the crack reconstruction in MFL testing, in ECT, the topological 

gradient of the objective function F is computed over the domain of 

interest in order to discover any potential topology changes that may 

reduce the value of F. The material in the area which has the highest TG 

values is replaced with air to create an initial crack model. Then the 

boundary of the initial crack is parameterized and altered through a shape 

optimizer until both the optimal shape and topology are obtained. The 

global optimality condition defined in (2.18) is verified at the end. For the 

problem of detecting multiple cracks, this procedure can be performed 

repeatedly until all the cracks in the area are found.  
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Examples of the ECT inverse solution 

The topological shape optimization method is tested against several ECT 

inverse problems, which include the TEAM 15 benchmark problem, the 

determination of wall thickness of a conductive tube and several crack 

reconstruction problems.  

 

TEAM 15 benchmark problem 

The numerical simulation of an eddy current testing signal requires 

sophisticated models and accurate field computation. The goal of the 

benchmark problem is to reconstruct the crack shape using the 

experimental data from eddy current testing recorded in the TEAM 

workshop problem 15. The experimental setup is shown in figure 3.15, 

and consists of a circular coil placed above a conductive test plate of 

aluminum alloy. There is one rectangular slot in the center of the 

conductor. The length of the slot is 12.6 mm and the depth is 5 mm. The 

scan frequency used is 900 Hz, which in turn gives the depth of 

penetration as 3.04 mm.  
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Figure 3.15: Coil configuration of TEAM 15 

 

A numerical model is created with the same geometry as described in the 

TEAM problem 15 (Compumag, 2013). The forward field problem is 

solved with a 3D time harmonic FEM solver from MagNet (Infolytica, 

2013b). 

 

The inverse procedure starts with an assumption of no cracks. Hence, the 

objective function F in (3.14) is evaluated using the values taken from 

TEAM problem 15 as the measured signal and the values computed from 

a simulation of an aluminum plate free of flaws. Figure 3.16 shows the 

dimensions of the crack and the topological gradient is computed and 

plotted in figure 3.17. 
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Figure 3.16: Dimensions of the crack 

 

Figure 3.17: Topological gradient plot for a rectangular slot 

 

As shown in the above figure, the regions of the highest values of 

topological gradient (represented by the light area) coincide with the 

position of the slot in the plate. The topological sensitivity analysis 

indicates a topology change in the domain of interest. Figure 3.18 shows 

the discretization of the problem domain and it demonstrates that we can 

create an initial slot of air in the test plate and parameterize the boundary 

of this slot with five control points. The precise shape of the slot is then 

determined using a shape optimization based on CDSA. The final shape 
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of the crack matches the dimensions of the slot, indicated in figure 3.16,  

used in the TEAM 15 experiment. 

 

Figure 3.18: Final shape of the reconstructed slot 

 

The measured signal used in the reconstruction is the change of the 

voltage in the coil. The magnitude and phase of the impedance change 

can be computed as:  

22 )()(|| LXRZ  ,  (3.15) 

where ΔXL = ωΔL. 

 

The signal of impedance changes calculated from the reconstructed 

shape is compared to the experimental results from TEAM 15 in figure 

3.19. 
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Figure 3.19: Impedance signal of the reconstructed slot 

 

 

Figure 3.20: Performances of two optimization models 

 

Figure 3.20 shows the changes of the objective function values during the 

inverse procedure of crack reconstruction using the topological shape 

optimization and a pure shape optimization procedure as presented in 

(Badics et al., 1998). As can be seen in figure 3.20, the topological shape 

optimization has a better performance than shape optimization alone. This 



83 

83 

may result from the fact that the topological sensitivity analysis can 

provide a better starting point for the shape optimization algorithm. The 

value of the objective function is reduced by four orders of magnitude in 

13 iterations. 

 

A conductive tube with eccentric walls 

Eddy current NDT can also be used in the test of wall eccentricity of 

cylindrical tubes with coaxial internal and external surfaces (Diserens and 

Sullivan, 1994), (Theodoulidis and Bowler, 2008), (Skarlatos and 

Theodoulidis, 2010), (Theodoulidis and Bowler, 2010). In such tests, an 

air-cored bobbin coil is placed in the center of a conductive, nonmagnetic 

tube. Eddy currents in the tube are induced by the coil whose axis is 

parallel to the axis of the tube. Therefore if there is a deviation from the 

coaxial geometry (eccentricity) or there is a change in the wall thickness, 

the change of the eddy currents will result in a change of the magnetic 

field which can be picked up by the coil. However, if the test problem is 

modeled using conventional formulations based on FEM, the huge 

computational cost may be an disadvantage for obtaining the inverse 

solution (Skarlatos and Theodoulidis, 2010). 
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The topological gradient is applied to the ECT of a conductive tube with 

eccentric walls. The TG is calculated using an objective function of the 

impedance changes. Figure 3.21 a) shows the set up of the problem, a 

coil inside a conductive tube with an outer diameter of 12 cm. As we can 

see from the result in figure 3.21 b), TG can identify the wall thickness 

correctly as the highest values of TG correspond to the area where the 

tube wall is the thinnest. Therefore, the TG-based method can be used to 

detect the changes in the wall thickness or the eccentricity without  

intensive computational cost since only one FEM solution is required. 

 

Figure 3.21: TG plot for a conductive tube with eccentric walls 

 

Buried flaw reconstruction 

One advantage of the ECT technique is the ability to detect flaws buried 

under the surface. Figure 3.22 shows an ECT imaging system consisting 
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of five parallel coils and an aluminum block containing a buried flaw. A 2-D 

model of the ECT system is used for crack reconstruction instead of the 

full 3-D simulation, for the reason of faster field calculation. The thickness 

of the conductive plate is 10 mm. An excitation frequency of 60 Hz is used 

in the coils for a deep enough penetration of the induced eddy currents. 

 

Figure 3.22: Eddy current imaging system in 2D 

 

When one of the coils is excited with a current, the induced voltages of all 

five coils are measured. The goal of the inverse problem is to reconstruct 

the flaw by matching the target signal with the reconstructed signal. Thus, 

the objective function is formulated as:  


 


5

1

5

1

2)(
2

1

i i

Measured

ijij VVF ,  (3.16) 

where Vij denotes the voltage of coil i induced by coil j. The ECT physical 

problem is modeled using MagNet (Infolytica, 2013b) and the field 

solutions are obtained using a FEM time harmonic solver. The target 
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(measured) signals are also obtained from the simulation of the model 

with pre-defined cracks.  

 

The topology gradient is calculated for one crack of 4x4 mm centered at  

(0,−3), as shown in figure 3.22, and the TG is plotted in figure 3.23. The 

location of the flaw is clearly indicated by TG in figure 3.23. 

 

Figure 3.23: Topological gradient plot for one buried flaw 

 

Figure 3.24 shows the shape reconstruction of buried flaws with different 

sizes and shapes. The dashed line indicates the reconstructed flaw while 

the solid line defines the original crack. 
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Figure 3.24: Shape reconstruction of buried flaws 

 

Multiple flaws reconstruction 

The inverse problem involving multiple flaws is much more complicated 

than single defect reconstruction due to the ill-posed nature of the inverse 

problem structure (Hoole et al., 1991). The same eddy current imaging 

system model as in figure 3.22 is employed. The topology gradient is 

calculated for the problem of a test plate containing two defects of 4x4 mm, 

centered  at (−12,−4) and (2,−4) respectively as in figure 3.25. 
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Figure 3.25: Test plate containing two cracks 

 

First, the TG plot indicates that two flaws may exist in the test block, as 

shown in figure 3.26. 

 

Figure 3.26: Topological gradient plot for two cracks 

 

A first hole is created in the left region of high TG values. Its boundary is 

optimized until no improvement can be achieved. This is a local minimum 

for the inverse crack reconstruction problem. The final result of the shape 

optimization is shown in figure 3.27. 

 

Figure 3.27: Shape optimization of the left hole 
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Then the TG is computed again for the domain shown in figure 3.27 

against the measured signal obtained from the cracks model. And we can 

see, in figure 3.28, another region of positive TG values, which 

corresponds to the location of the second crack. 

 

Figure 3.28: Topological gradient plot 

 

Therefore, a second hole is created in the region indicated by the TG in 

figure 3.28, and the boundaries of both holes are optimized 

simultaneously. The final result achieved from the shape optimization is 

given in figure 3.29. 

 

Figure 3.29: Final shape for two flaws 
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Comparison of ECT crack reconstruction methods 

There exist many different methods to solve the ECT inverse problem, 

such as the method of pure topology optimization based on optimal 

material distribution (OMD), a pure shape optimization or signal inversions 

using artificial neural networks. We are only interested in comparing the 

topological shape optimization with the inverse solutions from different 

optimization methods. In OMD methods, the results are limited to the 

spatial resolution while the smooth boundary topological shape 

optimization can be used to match the cracks of any size. If a pure shape 

optimization model is employed to reconstruct the crack, certain 

assumptions must be made in order to decide the initial shape of the crack. 

Given the ill-posed nature of the inverse problem, the pure shape 

optimization model has a high probability of encountering a local minimum. 

On the other hand, TSO can be used to detect the crack anywhere free of 

any assumptions. The topology sensitivity analysis changes the objective 

function value drastically and thus brings a huge performance 

improvement to this inverse strategy. 
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Conclusions 

In this section, an equation for the topological gradient was derived for a 

steady state time harmonic problem. The TG formula contained only the 

field values and therefore it can be evaluated independent of any field 

solution method. Topological sensitivity analysis can be used to predict 

any potential topological changes in the problem domain and provide a 

better starting point for the optimization algorithm. 

 

The topological gradient based method has been shown to be very 

efficient in the application to eddy current non-destructive testing. It can be 

used to detect the locations of multiple cracks in the test plate with a 

relatively low computational cost. Good crack reconstruction results were 

achieved from various testing problems, including a benchmark test 

problem from the TEAM workshop. 

 

3.3 Examples of robust topology optimization 

 

In topology optimization of solid structures, a topology is defined by the 

features of the space, such as the connectivity of the domain and the 

number and locations of holes in the domain (Bendsoe and Sigmund, 
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2003). Therefore, we may define a robust topology as that in which the 

connectivity of the domain does not change or is the least sensitive to 

small variations to the topology or shape of the domain. Figure 3.30 shows 

some examples of non-robust topology under the definition above. On the 

left side of the figure, the domain has two holes, however, if there is a 

small variation to the boundary of the holes, they will connect with each up 

and become one hole. On the right, the domain contains only one hole, 

but under some variations, the  two parts of the large hole will be 

disconnected thus changing the connectivity of the domain.   

 

Figure 3.30: Final shape for two flaws 

 

Reconstruction of two cracks close together 

The robust topology optimization method for ECT problems is tested 

against a crack reconstruction problem with two cracks close together 

using the same ECT imaging system setting as mentioned in figure 3.22. 
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The test specimen contains two cracks close together as shown in figure 

3.31. The size of both cracks is 4 mm by 4 mm, and the distance between 

the cracks is 6 mm. 

 

Figure 3.31: Two cracks at a close distance 

 

In the ECT, when two cracks exist in a close distance and are scanned 

simultaneously within the detection range of the coils, the response 

voltage signals from the different cracks can interact with each other. In 

fact, the signals generated by the second crack can be considered as a 

noise source in the signals from the first crack. This presents a challenge 

for the crack reconstruction. 

 

The robust topological gradient given in (2.22) is computed in order to 

estimate the location of the potential crack in the problem domain and to 

provide an initial crack for the robust shape optimization which in turn 

optimizes the shape of the crack. The value of the robust TG is 

determined by the lowest values of the TG in the neighboring cells in the 
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discretized domain for TG calculation as shown in figure 3.26. Figure 3.32 

shows the contour plot of both non-robust and robust topological gradient 

values. 

 

Figure 3.32: Topological gradient contour plots. 

 

As can be seen in figure 3.32 b), there are two peaks in the values of the 

robust TG which correspond to the location of the two cracks in the test 

plate. While in figure 3.32 a), the non-robust TG plot only showed one 

significant peak, which implies only one crack may exist in the test plate. If 

the shape optimization is applied, different reconstruction results will be 

achieved for the two different initial topologies indicated by the TG plots in 

figure 3.32 a) and b); and the results are displayed in figure 3.33, with the 

target crack shape displayed by solid lines and the reconstructed crack 

shapes indicated by dashed lines. 
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Figure 3.33: Reconstruction of two cracks. 

The reconstruction result from figure 3.33 a) shows that the non-robust 

formulation is unable to differentiate the two cracks. The reconstructed 

shape of the shallow and wide crack produces the closest matching 

signals for the target, based on the initial topology generated by the non-

robust topological gradient. On the other hand, the robust topology 

optimization method demonstrates the capability to distinguish the two 

cracks in the presence of noise, i.e. signal caused by the other crack in 

the test plate. The topology, a domain with two cracks, as determined by 

the robust TG, is considered as a more robust topology than that with only 

one crack in this problem. And the robust estimated initial topology 
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eventually leads to a successful reconstruction of the shapes of the two 

cracks. 

 

Conclusions 

The robust topology optimization (RTO) was illustrated using an example 

of the ECT crack reconstruction problem, while the uncertainties are 

caused by the presence of a second crack in the testing system. In 

chapter 2, a robust objective function was defined using the worst 

response due to the variations of the design variables in the topological 

design. The robustness of the design can be evaluated during the entire 

design process through the topological shape optimization where the 

topology and shape of the object are being optimized simultaneously.  

 

Topology optimization is often used as conceptual design tools in the early 

stage of a design. The example of the ECT inverse problem has shown 

that if the initial topology is incorrect, the shape optimization applied later 

to the detailed design may produce wrong results as well. Therefore, it is 

critical to introduce the robustness evaluation in the early stage of the 

solution process of the inverse problem, i.e. the topological design. In 

addition, the calculations of the robust TG for the ECT problem showed 



97 

97 

that it is possible to find a robust topology through the topological 

sensitivity considering variations to the topology. This method also has a 

large computational advantage since the worst performance caused by 

the variations of the design parameters can be predicted using the 

topological gradient without the evaluation of the cost function. Numerical 

applications of RTO to eddy current crack reconstruction problems 

showed that this method can provide reliable results in the presence of 

significant noise. 
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Chapter 4 SENSITIVITY BASED TORQUE CALCULATION 

FOR ELECTRICAL MACHINES 

 

4.1 Introduction 

 

The general purpose of electric motors is to provide torques or forces from 

the conversion of electromagnetic energy into mechanical effects. As a 

result, in the design and analysis of such machines, the accurate 

computation of electromagnetic forces and torques at both the global and 

local level is crucial. It is generally accepted that two major approaches 

exist for the numerical evaluation of electromagnetic forces and torques.  

 

The first one is based on the Maxwell stress tensor (MST), which is in the 

form of a surface integral evaluated in the air region surrounding the body 

of interest. Numerical examples of MST based torque calculations of 

electric motors can be found in (Mizia et al., 1988) (Howe and Zhu, 1992) 

(Salon et al., 1997). Despite that the MST torque expression is quite 

simple and only relies on the field values, the torque calculation requires 

accurate results of the tangential field in the air gap, thus the resultant 
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torques are sensitive to the discretization (Salon et al., 1997). Therefore, 

the integration contour must be carefully chosen in order to avoid the area 

with large numerical errors in the field solution (McFee and Lowther, 

1987), (McFee et al., 1988). 

 

The second category of torque/force calculation methods is based on the 

principle of virtual work, where the force or torque on a component in a 

certain direction can be found by computing the changes in the system 

energy with respect to a virtual displacement of the body in the same 

direction. The basic virtual work algorithms require the energy in a system 

in each of two positions. Coulomb first applied the design sensitivity 

analysis to finite element field analysis and his approach was able to 

compute the virtual work forces using only one FEM mesh and solution 

(Coulomb, 1983), (Coulomb and Meunier, 1984). Later a method based on 

the direct differentiation of the finite element co-energy was developed by 

Aronson and Brauer to compute the force as a derivative of co-energy. 

(Aronson and Brauer, 1989). Local forces were computed through a 

formulation of the virtual nodal displacement with edge elements 

(Kameari, 1993). Unfortunately, the implementation of the nodal force 

formulae is quite cumbersome and involves the Jacobian matrix of 
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coordinate transformation which results in a relatively heavy computational 

cost. Recently papers by Kim suggested using a continuum design 

sensitivity analysis (CDSA) approach to determine the virtual work forces 

through a single field solution (Kim et al., 2005), (Kim et al., 2007). The 

CDSA approach was demonstrated and validated on a simple electrostatic 

problem in (Li et al., 2008), where it has the advantage over MST of not 

requiring a virtual air gap. The accuracy and mesh dependency issues 

were discussed in (Li and Lowther, 2009). 

 

The CDSA based force formulation, while based on the values of the fields 

in the problem, is similar to, but differs from, the Maxwell stress result in 

two ways. First, the sensitivity analysis computes a force which is 

generated whenever a boundary between two materials having different 

magnetic properties is moved; and, second, since the approach effectively 

provides a virtual movement of every point individually, it can provide the 

local stress distribution. In fact, the approach could be applied inside a 

body wherever there is a change in permeability such as might happen as 

saturation occurs. This effect cannot be recognized by the Maxwell stress 

approach as has been pointed out in (Bossavit and Verite, 1983).  

 



101 

101 

In this chapter, the CDSA based virtual work torque calculation is applied  

to the problems of rotating machines. In the CDSA based torque 

calculation, a vector of a local torque component is obtained through the 

decomposition of the local CDSA force component, normal to the interface 

between two different materials, in the direction of the rotation. And the 

total torque of the system is the summation of these local torque vectors. 

The first example is the comparison of the Maxwell stress and CDSA 

approaches of torque calculation for a simple rotating actuator made of 

linear material. The second example involves an interior permanent 

magnet (IPM) motor. The CDSA based approach is able to determine not 

only the global torques but also the distributed torques in three different 

areas: torque distributions on the surface of the rotor, on different parts 

inside the rotor (such as the permanent magnet and the flux barriers) and 

the distributions inside the rotor body of saturated nonlinear steel. The 

capability to predict the distributed torques is particularly important for the 

design of IPM motors for which we can separate the effects caused by the 

external excitation or the reluctance change. This can be used for the 

topological design of electric motors where the optimal material 

distribution is to be determined for a desired model of motor. 
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4.2 Torque Calculation Formulae  

 

The MST torque calculation 

The tangential component of the Maxwell stress tensor is used to find the 

torque density on a rotating part of the motor: 

0
tn

t

BB
f  .     (4.1) 

where Bn and Bt are the normal and tangential components of the flux 

density respectively and µ0 is the permeability of air.  

 

The torque is obtained as a surface integral on a contour l surrounding the 

body in the air: 

)( dlfrwT
l

t ,          (4.2) 

where r is the displacement vector (from the origin of the torque to the 

point where ft is computed) and l is the length of integration path and w is 

the depth of the 2-D model of the electrical machine. 

 

The virtual work torque calculation 

Torques can also be computed using the virtual work principle as the 

derivative of the system co-energy W’ with respect to a virtual 

displacement angle θ (under the assumption of constant flux), as: 
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T .          (4.3) 

The conventional virtual work torque calculation employs a finite difference 

approach, therefore two FEM field solutions corresponding to the two 

positions of the rotor are needed, and this is quite expensive in terms of 

computational cost. In addition, the conventional virtual work approach 

does not support the calculation of local torque, i.e. it cannot provide the 

value of torque at a desired point. 

 

The CDSA torque calculation 

Figure 4.1 shows a two-dimensional magnetostatic problem containing 

two domains Ω1 and Ω2 with different material properties (e.g. air and 

iron). γ is the interface boundary between Ω1 and Ω2. 

 

Figure 4.1: A 2-D shape design problem 
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The CDSA based force calculation method is derived from the shape 

sensitivity analysis (Park et al., 1993) for electromagnetic design 

problems, which computes the derivative of an objective function G with 

respect to the boundary shape change using an adjoint variable as: 

 


d
dp

dg
dVAL

dp

dG
n

2

),( 


,  

 (4.4) 

where L(A,λ) is a function of the magnetic vector potential A and an adjoint 

variable λ determined by g(x), p is the variable describing the boundary 

change. 

 

Let the system energy, W, be the objective function. In this case, the 

problem becomes self adjoint (i.e.  A = λ), and there is no need to solve 

the adjoint problem. Therefore, the sensitivity of the energy with respect to 

boundary perturbation variables p, for a magnetostatic problem, is given in 

(Kim et al., 2007) as:  
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where all values with subscript indices 1 and 2 correspond to the two sub-

domains Ω1 and Ω2  containing different materials, ν is the material 

reluctivity, B is the vector of flux density, A is the magnetic vector 

potential, M is the permanent magnetization, J is the current density. 

 

If the design variable, p, is set as the virtual displacement, the force and 

torque formulae based on the virtual work principle can be derived using 

the energy sensitivity in (4.5). For a ferromagnetic material, the magnetic 

force consists of a surface force distribution due to the reluctivity change 

across the surface and a volume force due to the gradient of the reluctivity 

inside the body Ω2, 

 


dBBvrdVBBvvrFrT n )].(
2

1
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2




. (4.6) 

 

In addition, the force and torque acting on a permanent magnet is 

calculated as: 
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.  (4.7) 

 

And the force and torque acting on a conductor containing a current is 

given as:   

 


dVAJJrFrT n]).[( 212 .    (4.8) 

The CDSA torque formulation can can be applied to a boundary between 

any two materials having different magnetic properties and it does not 

require a closed contour in the air region as in the case of the MST 

method. 

 

The CDSA force calculation with a field solution 

The CDSA force can be computed based any field solutions obtained by 

not only the finite element solver but also other approaches of field 

analysis. Figure 4.2 shows the B field (flux density) on different sides of an 

interface boundary, γ, between two domains (Ω1 and Ω2) of different 

materials . In the following description, all the fields and material properties 

of one side of the boundary are assigned the subscript 1 and those on the 

other side of the boundary are assigned the subscript 2. 
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Figure 4.2: Fields on different sides of a boundary 

In the CDSA based force calculation, the unit force exerted on a point on 

the boundary is given by: 

 2121 )(
2

1
BBf s   .      (4.9) 

 

In the problem shown in figure 4.2, the tangential component of the flux 

density field presents a discontinuity on each side of the boundary while 

the normal components of B remains the same across the boundary. 

Therefore, to evaluate fs in (4.9), B1 and B2 cannot be directly obtained at 

any point on the boundary, but inside the domains on each side of the 

boundary.  

 

The total force acting on one element edge, from point a to b, is computed 

as:  
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The global force is obtained by summing up all the local forces: 

 

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,  
 (4.11) 

where N is the total number of element edges that form the entire 

boundary of the body. 

 

 4.3 Torque Calculation Examples 

 

Two numerical models for torque calculation were studied. Both models 

were solved using the commercial finite element field analysis software 

(Infolytica, 2013b). The MST torques were provided by MagNet using a 

tunable volume integration formulation based on MST (McFee et al., 

1988). The CDSA torques were computed using exactly the same field 

solutions. 

  

Example 1 – Torques on a rotating block 



109 

109 

The first model for the CDSA torque verification consists of a simple C-

core and a rotating block. The core and the rotating block are both made 

of a linear material with a relative permeability of 1000. 

 

Figure 4.3: C-core with a rotating block 

 

The surface force distributions produced by the CDSA approach are 

illustrated in figure 4.4 for two different positions of the block. According to 

the CDSA, large forces are distributed at the corner of the block where 

high magnetic fields are present. 
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Figure 4.4: Force distributions by the CDSA 

 

The total torque of the CDSA is obtained by integrating the distributed 

torque on the boundary of the rotating block. The CDSA torques are 

computed at seven positions of the block: 0, 15, 30, 45, 60, 75, 90 

degrees and are compared to the results provided by MagNet in figure 

4.5. We can observe a good agreement between the two results, and the 

slight discrepancy may be a result of the numerical errors in the field 

solutions. 

 

Figure 4.5: Torques vs. rotation angles 

 

Example 2 – Torques of an IPM machine 

This example looks at the calculation of torques generated by a 3-phase, 

4-pole interior permanent magnet (IPM) machine. The detailed structure of 
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the IPM machine is shown in figure 4.6. Only a quarter of the motor is 

modeled in order to reduce the computational cost. The rotor contains 

three different materials, a NdFeB (neodymium iron boron) magnet bar, 

two flux barriers of air, and the rest of the rotor is made of M19 steel, 

which is also used in the stator. 

 

Figure 4.6: A quarter of an IPM machine 

 

Figure 4.7 shows the geometries of the IPM components. The values of all 

the parameters are given in table 4.1. 

Table 4.1: Parameters of the IPM motor 

Symbol Value 

R 27.75 mm 

r 8 mm 
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L 20.5 mm 

d 2.5 mm 

H 12 mm 

θ  2 deg 

 

 

Figure 4.7: Geometries of the IPM motor 
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Figure 4.8: Illustration of local force directions 

Based on the CDSA force equations (4.7) and (4.8), the local force 

components appear on and are normal to the boundaries between any 

two different materials (e.g. iron and air or permanent magnet and iron). 

The directions of the distributed forces inside the rotor are indicated in 

figure 4.8. The global torque is obtained as the summation of all local 

distributed torques on the rotor surface and inside the rotor body. 

 

The IPM motor model is solved for 31 positions of the rotor, starting at 

zero degrees and increasing at one degree each time. Torques are 

computed at each position and plotted against the rotor angle. 
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Figure 4.9: Torques against rotor position of a linear core 

 

If a linear material is used instead of the M19 in the rotor, the volume 

integral in the CDSA disappears, thus only the surface torques distributed 

between the different components of the rotor account for the global 

torque. As shown in figure 4.9, the CDSA torque agrees with the MST 

torque in every position. 

 

If the rotor core is made of nonlinear material, part of the rotor is saturated 

in the magnetic field as shown in figure 4.10. Forces distributed between 

the saturated and non-saturated area cannot be ignored. 
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Figure 4.10: Plot of relative permeability distribution 

 

Figure 4.11 shows the comparison of the MST torques and the CDSA 

torques computed from the surface integral for a non-linear rotor core. 

Large discrepancies are observed and this results from the reluctance 

torque due to the saturation in the material. 



116 

116 

 

Figure 4.11: Torques against rotor position of a non-linear core 

 

The CDSA volume torques are evaluated using a fine mesh. The model 

has a total of more than 90,000 elements in the rotor where the maximum 

element size is set to 0.1 mm. In order to simplify the calculation, we used 

first order elements inside which the relative permeability is a constant. 

The distributed torques are computed on the three sides of every element 

in the mesh. The volume torques are shown in figure 4.12 for 31 positions 

of the rotor. 
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Figure 4.12: Volume torques against rotor position 

 

The combination of the surface torque and the volume torque makes up 

the CDSA total torque. The CDSA total torques are compared with the 

MST torques in figure 4.13.  As we can see, the volume torque has made 

up for the discrepancy and the results of the two approaches are very 

close. The small difference between the two torques for rotor angles after 

16 degrees may be result from the discretization error of the finite element 

model. 
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Figure 4.13: MST vs. CDSA total torques 

 

4.4 Conclusion 

 

A CDSA based method is applied to the calculation of torques of electrical 

machines. The results are verified by MagNet which uses a MST based 

torque calculation. Unlike the MST, the CDSA force calculation method 

can be applied directly to the boundary between two different materials. 

The CDSA method also produces the surface force distributions and 

internal force distributions inside a body where different materials (or 

different value of reluctivity within one material) exist. Thus this method 

has the potential to be applied to coupled structural-magnetic analysis 
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problems such as are encountered in deformation and vibration 

computations.  

 

In the case of a non-linear problem, the CDSA needs to evaluate both the 

surface integral and the volume integral for the total torque while the MST 

torque calculation is relatively simpler. On the other hand, the CDSA 

torque formulation defines different components of the torque. The volume 

integral accounts for the torque caused by the reluctance change inside 

the rotor due to the saturation. It provides an important piece of 

information for the design optimization of IPM and other motors. 

 

 Finally, the evaluation of the CDSA torque is as efficient as that of the 

MST. And we may use the subtraction of the CDSA surface integral from 

the MST torque to compute the torque due to internal permeability 

changes indirectly and thus avoiding the direct evaluation of the volume 

integral. However, if this is done, the internal distribution of local torques 

cannot be determined. 
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Chapter 5 ROBUST TOPOLOGY OPTIMIZATION OF 

ELECTRICAL MACHINES 

 

5.1 Introduction 

 

Permanent magnet (PM) synchronous motors have been used in many 

industries as an alternative to induction motors in recent years. PM 

synchronous machines have many advantages such as high efficiency, 

high power density and easy speed control over some other types of 

electrical machines (Staunton et al., 2004). Thus, they have shown great 

promise in the application of hybrid electric vehicle (HEV) traction drive 

systems.  

 

There are two major categories of PM synchronous motors: surface 

mounted PM (SPM) motors and interior PM (IPM) motors where PMs are 

embedded inside the rotor cores. There are certain features of the IPM 

model that make it more attractive than the SPM model. One significant 

advantage of the IPM is its suitability for high-speed operations. When 

operated at high speeds, an IPM can produce a reluctance component to 
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the torque in addition to the magnetic torque (alignment torque between 

different directions of magnetization of the stator windings and the PM in 

the rotor), which can improve the constant-power speed range of the 

machine. The manufacturing processes of IPMs are much simpler and 

more robust than those of SPMs, because IPMs use less expensive 

rectangular PM blocks rather than arc magnets glued to the surfaces of 

the rotors of SPMs. In addition, in an IPM, the permanent magnet blocks 

are not directly exposed to the magnetic field from the excitation coils. 

Thus, the magnet flux is shielded by the rotor iron which provides a 

protection from demagnetization. 

 

The finite element method (FEM) is often applied to the analysis and 

design of IPM motors to provide accurate performance estimation. FEM 

analyses were combined with genetic algorithm based optimization (Sim 

et al., 1997), (Bianchi and Canova, 2002), or analytical approaches (Liu et 

al., 2002) to look for efficient IPM designs. An investigation on the 

performance of various IPM rotor structures with flux barriers can be found 

in (Stumberger et al., 2008). In order to match a specific torque-speed 

curve for an IPM, a multi-objective optimization scheme is employed for 

which torques produced at different currents are treated as different 
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objectives (Ray and Lowther, 2009). In addition to the analyses, various 

optimization methods have been applied to the design of the IPM in order 

to improve its performance, e.g. torque ripple reduction. Ohnishi and 

Takahashi have built a FEM model considering the rotation of the motor, 

and conducted the design of the motor using an experimental design 

method (Ohnishi and Takahashi, 2000). The shape of the surface of the 

iron core in an IPM motor has been optimized to reduce the cogging 

torque using a continuum design sensitivity analysis (CDSA) approach in 

(Kim et al., 2003a). While in (Kim et al., 2003a), only the surface of the 

rotor is allowed to change within a small range, Takahashi et al. proposed 

a new design scheme using the ON/OFF method in order to find new 

magnetic circuits of IPM motors (Takahashi et al., 2010). Two designs 

have been presented in (Takahashi et al., 2010), one is through surface 

optimization and the other is the design of the field barrier using topology 

optimization. In (BATISTA et al., 2012), the topological design of the rotor 

of an IPM was treated as a combinatorial problem and the ant colony 

optimization (ACO) method is applied to find the best rotor structure for 

producing the maximum output torque. However, the resultant structures 

obtained from the conventional topology optimization do not have smooth 
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boundaries, thus these designs require some post-processing tools or 

they are not practical for manufacture. 

 

5.2 IPM Design using Topological Sensitivity Analysis 

 

Field analysis model of an IPM 

 

Figure 5.1: A sample model of an IPM motor 

 

Figure 5.1 shows a 3-phase, 4-pole single-barrier interior permanent 

magnet (IPM) motor. The radius of the motor shaft is 8 mm, the outer 

radius of the rotor is 27.75 mm and the stator outer radius is 56 mm. The 
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currents Iu, Iv and Iw in the stator winding are three-phase sinusoidal, and 

have the form given by: 
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where θ is the advance angle of the stator pole. 

 

This model is solved using a 2-D nonlinear FEM solver from MagNet 

(Infolytica, 2013b). The periodic torque is obtained by solving the motor 

model for 30 different positions where the rotor angle changes one degree 

at each step. 

 

Topological design of the rotor 

The optimal design of an IPM machine is not a single target problem 

(Ohnishi and Takahashi, 2000). A feasible design must satisfy several 

different objectives at the same time, such as high average torque and low 

torque ripple. If the topological design of an IPM starts from an empty 

space, made of pure iron or air, the torque ripple can be very small for that 

design but the essential torque is zero. Therefore we must change the 

design strategy first to increase the average torque to meet the minimal 

torque requirement for a practical machine, and then other parameters 
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can be optimized for reducing the torque ripple. Thus, at the beginning of 

the design, an objective function of maximizing the torque T (i.e. 

minimizing -T) is used, 

)min( F .             (5.2) 

 

The topological gradient of a torque based objective function can be 

derived as: 
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where TGw is the topological gradient of the system co-energy. In this 

phase of design, the topological design of the motor starts with an empty 

design space. 

 

The design region is the entire rotor core, discretized into a 45x39 grid. 

The topological design of the rotor starts with an empty space free of 

assumptions. The topological design process is divided into two phases, 

finding the optimal source distribution (OSD) and then finding the optimal 

material distribution (OMD). 
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Design phase 1: OSD 

At the beginning of this phase, the domain of design is a quarter of the 

rotor core filled with nothing else but iron, e.g. M19 silicon steel, thus the 

initial torque is extremely small (ideally this will be zero in the absence of 

permeability variations). The goal of the OSD design is to use the material 

of the excitation source, e.g. a NdFeB magnet, to replace part of the iron 

in the design region in order to increase the output torque, i.e. finding the 

optimal distribution of the excitation source for the design. 

 

The topological gradient of the system energy can be written as:  

2

2112 )()(2 BvvBMMTGw  ,  

 (5.4) 

where v1 and v2 are the reluctivity of the material before and after the 

topological change, and M1 and M2 are the magnetization of the material 

before and after the topological change. 
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In (5.4), the term associated with the magnetization is responsible for the 

energy or torque change due to the introduction of the permanent magnet 

as an excitation source, thus the TG for OSD is given as:  





B

MMTGOSD )(2 12 ,   (5.5) 

∂B/∂θ is evaluated using a finite-difference approach using a second field 

solution of the problem where the rotor angle changes by a small amount. 

  

The robust TG is computed on a 45x39 mesh in the design region with the 

fields due to the stator excitation, and is plotted in figure 5.2. The unit of 

the TG depends on the objective function defined for the optimization, thus 

it has no physical meaning.  



128 

128 

 

Figure 5.2: TG plot for OSD 

 

The region with the highest values of TG is shown in a light color, which 

suggests a material swap in the area on the surface of the rotor. This 

corresponds to the structure of a surface mount permanent magnet (SPM) 

motor. However, as mentioned earlier, one of the advantages of IPM 

motors over SPM motors is the capability of creating reluctance variation 

of the rotor while keeping the air gap length constant. A significant amount 

of the output torque comes from the reluctance change inside the rotor 

body due to the magnetic field of the permanent magnet. Also, the PM 

bars need to be shifted away from the stator excitation field in order to 

prevent eddy current losses and demagnetization. Therefore, the 



129 

129 

minimum distance between the PM bars and the surface of the rotor is 

imposed as a constraint on the system which ignores the TG values in the 

surface layer of the rotor. As a result, a topology change to the design 

domain is performed by changing the material from iron to PM below the 

surface layer in the regions indicated by the TG. Next, the size and the 

location of the PM block are optimized using a shape optimizer. The final 

layout of the rotor with a PM after OSD design is shown in figure 5.3. 

 

Figure 5.3: Optimized size and location of the PM by OSD 

The output torques of the optimal IPM layout by OSD are plotted against 

the rotor angle in figure 5.4. This is a huge improvement of the motor 

performance over the initial structure. 
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Figure 5.4: Optimized torques vs. rotor angle (phase 1) 

Design phase 2: OMD 

At the OMD design stage, a third material, air, is introduced. The 

topological gradient for the OMD is expressed based on the second term 

in (5.4), as:  





B

BvvTGOMD )(2 21 .   (5.6) 

 

The TG for the OMD is calculated over the design domain to determine 

whether there is any potential topological change which may improve the 

performance, as shown in figure 5.5. 
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Figure 5.5: TG plot for OMD 

 

In this stage of the rotor design, two physical constraints based on a 

human expert’s knowledge about the manufacturing must be taken into 

account. First, the rotor structure is usually symmetric. Second, the 

surface of the rotor is round and the air-gap length between the rotor and 

stator must be constant in order to reduce the vibration. As a result, when 

we decide to create an air region (flux barrier) in the rotor based on the TG 

values, the area with the highest values is ignored since it touches the 

surface of the rotor. Instead, we choose the area that has lower positive 

values of the TG around the corner of the PM bar and create another air 

region on the other side of the PM bar due to the symmetry. Therefore, a 
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new topology of the rotor core is produced according to the TG values 

from figure 5.5. Figure 5.6 shows the rotor layout generated by OMD 

which also corresponds to a common design of IPM motors with flux 

barriers.  

 

Figure 5.6: Rotor layout produced by OMD 

 



133 

133 

 

Figure 5.7: Torques vs. rotor angles (phase 2) 

 

Figure 5.7 shows the torques obtained from the model determined by 

OSD, and yet another performance improvement can be observed, 

although with a fairly large torque ripple. After design phase 2, the 

average output torque obtained is 0.70 Nm. Now we have obtained a 

feasible design that can be carried on to the next design phase with a 

different objective. 

 

Design phase 3: Reduction of the torque ripple 

The goal of design in this phase is to optimize the shape and size of the 

magnet and flux barrier in order to reduce the torque ripple, while 

maintaining an adequate average torque. The objective function is defined 
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using the output torques Ti at every rotor angle from 0 to 30 degrees and 

the average torque Tavg as: 
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The second objective, the average output torque, is now treated as a 

constraint in this optimization. The rotor layout, as shown in figure 5.6, has 

gone through a standard shape optimizer, and the final design of the IPM 

is shown in figure 5.8. 

 

Figure 5.8: Final design of the IPM 
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Figure 5.9: Final torques vs. rotor angle 

 

Figure 5.10: Variation of objective functions values with optimization 

iterations 

The target torque curve of the final design is compared to the initial IPM 

motor model used in (Infolytica, 2013a), which has the same rotor and 

stator size, and the same excitation current, in figure 5.9. The final optimal 

design has an average torque of 0.63 Nm and a torque ripple of 9.78% 
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which has been improved by 50% compared to the reference model. The 

changes of the objective function values during the entire design process 

are shown in figure 5.10. 

 

 

 

 

5.3 Robust Design of an IPM 

 

 

Figure 5.11: Design variables of an IPM motor 

Design variables 
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Figure 5.11 shows a quarter of a 3-phase 4-pole IPM machine and the 

design variables chosen for the robust design optimization: the length of 

the permanent magnet, L, the width of the PM, h, and the distance from 

the PM to the surface of the rotor, d. A robust objective function can be 

defined, considering the manufacturing uncertainties, as,  
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Results of robust design 

In section 5.2, we employed the robust topological gradient to find a rotor 

structure with one PM bar and two flux barriers. This can be used as the 

starting point of the shape optimization process with the robust objective 

function.  The system optimizes the shape of the boundaries between 

different materials in order to achieve more accurate values of the 

geometries.  

 

Table 5.1: Values of design variables of the nominal and robust optima 

Design variables Unit Initial 

Values 

Nominal 

Optimal 

Robust 

Optimal 

H mm 2.5 1.588 1.616 
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L mm 22.5 18.33 19.879 

D mm 12 13.426 12.243 

Nominal performance %  0.2358 0.2583 

Worst performance %  0.2709 0.2791 

Feasibility robustness   No Yes 

 

Table 5.1 shows the values of the design variables, the nominal 

performance, the worst performance and the feasibility robustness of the 

non-robust optimal and the robust optimal. The uncertainty is set to as 5% 

of the design variables. Although the nominal solution has a better 

performance, but the variations to the design variables violate the 

constraint. On the other hand the robust optimal satisfies the constraint on 

the entire uncertainty set. Also the difference between the worst 

performance and the nominal performance of the robust solution is smaller 

than that of the non-robust solution, which implies that the performance of 

the robust design is less sensitive than the nominal design.  
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5.4 Conclusion 

 

A topological shape optimization scheme has been successfully applied to 

the design of an IPM motor and a novel design layout is obtained. Robust 

objective functions were used and the robust TG was computed to handle 

the topological uncertainties. The performances of both targets, the 

average running torque and the torque ripple, were improved compared to 

a reference model. The values of TG provided suggestions for design 

decision making in accordance with the knowledge from design experts. 

The final IPM layout obtained through the optimal design process has a 

much more practical structure than that developed from a conventional 

topology optimization based the ON/OFF method. The proposed method 

is very efficient since the objective function converges much faster than a 

stochastic optimization approach. 

 

The robust topology optimization method employs a deterministic search 

based on the topological gradient and the shape sensitivity, and the 

method is very efficient and fast to converge.  However, as mentioned 

earlier in chapter 2, the robust objective function defined in (2.20) is not 

necessarily partially differentiable and this may pose some difficulties to 
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the optimization. Also, the convexity of the objective function is not 

guaranteed, thus the worst performance point may be found inside the 

uncertainty set instead of on the corner. The worst performance prediction 

is only an approximation. 
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Chapter 6 DISCUSSION AND CONCLUSION 

 

6.1 Re-Statement of the Objective 

 

The research objective of this thesis was to create an automated 

topological design system for low frequency electromagnetic device 

design. The first step towards this goal has been achieved by successfully 

implementing the code using MATLAB and MagNet software. Several 

design or inverse engineering problems were tested by the automated 

design system and very satisfactory results were obtained. 

 

The implemented system has the following features: 

1. It does not require any knowledge of the shape or topology of the target 

device; but works on the first principles of physical laws. On the other 

hand, if design knowledge is available, it can be applied to reduce the size 

of the search space and thus used to accelerate the search process. 

 

2. The system does not require a prototype, and it can start with an empty 

space free of assumptions (on topology or shape). Also different materials 
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can be introduced to the design in the form of topology changes. This 

feature breaks the limitation of the conventional shape design optimization 

which only improves the performance of the design through altering the 

design variables defined on the boundary of the design domain. In the 

context of systematic engineering design (Pahl et al., 2007), the 

automated system forms a cycle between the stages of conceptual and  

embodiment design until an optimal design can be achieved. 

 

3. The system also takes advantage of the design sensitivity information; 

thus it is quite efficient compared to the algorithms based on the 

stochastic search such as genetic algorithms or evolutionary algorithms. 

 

6.2 Most Significant Contributions of the Thesis 

 

Besides several publications based on the work described in this thesis, 

the contributions of this thesis are stated as follows: 

1. The method based on the topological gradient is applied to the design 

of low frequency electromagnetic devices. The concepts of topological 

gradient and topological shape optimization were adopted from the study 

of mechanical engineering while the derivation of the sensitivity formulae 
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was adapted for the governing equations of Maxwell in electrical 

engineering. The algorithm for the topological shape optimization was also 

improved by the author in order to better serve the purpose of electrical 

machine design. 

 

2. The idea of combining the robust design formulation and the topological 

optimization is original from this thesis. A definition of the robustness of a 

topology was introduced by the author to the research. This allows the 

examination of a topology for robustness before applying any shape 

changes to the domain. Then the robustness evaluation can be extended 

to the shape design variables of the topological shape optimization. The 

robust target function does not change through the entire design process. 

 

3. The topological shape optimization is applied to the inverse problem of 

crack reconstruction in non-destructive testing, including MFL and ECT 

problems. The method can quickly identify and locate the crack in the test 

specimen through the values of the topological gradient computed using 

field solutions generated from any numerical or analytic method. The 

exact shape of the crack can be obtained through a parameterization of 

the boundary of the initial crack and a shape optimizer. In addition, the 
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method is capable of dealing with uncertainties caused by noise in the test 

signals using a robust target function, and the results are proven to be 

more robust than those from conventional methods. 

 

4. A design sensitivity based torque calculation was demonstrated in this 

thesis. The torque equations are derived based on virtual work principles 

and  are able to predict the local torque densities as well as the global 

torque. The method has been applied to the torque calculation of an 

interior permanent magnet motor where two torque components are 

revealed, the torque due to the excitation source (windings and/or 

permanent magnets) and the torque due to the reluctance change inside 

the rotor core. This is crucial to the design of electric motors where the two 

torque components can be treated as different objectives and the trade-off 

between the torques can be analyzed. 

 

6.3 Future Work 

 

Multi-objective formulation of robust design 

This thesis used a robust objective function based on the worst case 

scenario which is sometimes considered as "too conservative". An 
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extension of such kind of robust design formulation is the multi-objective 

robust design formulation (Gimaraes 2006) which minimizes the worst 

case of the original objective and the performance variation (the difference 

between the worst case and the nominal value of the original objective 

function) simultaneously. The single objective robust target function used 

in this thesis is just one special case of the multi-objective robust design 

formulation. The result obtained from the method in the thesis is only one 

point on the pareto front and the entire pareto front may be obtained by 

altering the weighting factors for the two objectives. 

 

Robust design for multi-objective problems 

Some design problems have two or more objectives and they may be 

conflicting objectives. For instance, in the case of an IPM design, three 

objectives, the maximization of the output torque, the minimization of the 

torque ripple and the minimization of the cost (by restricting the use of rare 

earth permanent magnet material) must be taken into account at the same 

time. In addition, a robust design may focus on the robustness of each 

objective or a global robustness of the design defined on all the design 

variables. This is an interesting research area that needs further 

investigation.   
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Combination with stochastic search algorithms 

Stochastic search algorithms have many advantages such as global 

exploration and avoiding local minima. Although a stochastic search 

algorithm does not necessarily need the gradient information, the 

topological and shape sensitivity can help enhance the performance of 

those algorithms. For instance, a topological gradient can quickly examine 

the meta design space in the global exploration stage and a shape 

gradient can provide an efficient solution in the local exploitation stage by 

converging to the local minimum very quickly. Therefore, a hybrid method 

combining the advantages of the stochastic method and the sensitivity 

analysis can be proposed in the future. 
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